SRR,

7\

TEKELEC

Chameleon 32

C Development System

TEKELEC

CHAMELEON 32

C DEVELOPMENT SYSTEM

Version 2.7

TEKELEC
26580 Agoura Road
Calabasas, California
91302

| Part Number 909-3384

November, 1992

Informationin this documentation is subject to change withoutnotice. Any software which is furnished in conjunction with or
embedded within the product(s) described in this documentation is furnished under a license agreement and/or a
nondisclosure agreement, and may be used only as expressly permitted by the terms of such agreements(s).
Unauthorized use or copying of the software or this documentation can result in civil or criminal penalities.

No part of this documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying or recording, for any purpose without the express written permission of an authorized
representative of Tekelec.

Copyright Tekelec 1991. All-rights reserved.- -
' Chameleon 32 and Chameleon 32-plus are registered trademarks of Tekelec.

Other product names used herein are for identification purposes only, and may be trademarks of their respective
companies.

The hardware, software and documentation comprising the product(s) are provided under a Tekelec limited 12 month
warranly. Other than the limited warranties that are expressly stated thersin, and without limiting the generality thereof,
Tekelec makes no warranty, express or implied, to you or to any other person or entity, concerning the hardware, the
software and this documentation. Tekelec will not be liable for incidental, consequential, lost profits, or other similar
damages, or for damages resulting from loss of use, data, revenues or time. Inno eventwill Tekelec's liability, regardless of
the form of claim, for any damages ever exceed the price/license fee paid for the specific product. You may have other
rights which vary from state to state.

TABLE OF CONTENTS
CHAPTER DESCRIPTION ' PAGE

CHAPTER 1: INTRODUCTION TO THE CHFAMELEON 32 C PACKAGE
1.1 C Package Description

1.2 Loading the C Package

ExecutingCApplications i, 1.24
Configuration Files i 1.2-5
1.3 C Programming Tutorial
CHAPTER 2: C SYSTEM DESCRIPTION
2.1 Shell

LoginFile o 2.1

Configuration File i, 2.1-1

Device Filesciiii it i i e i e 2.1-2

Filename Substitution it iaeeaaaaa 2.1-3

I/ORedirection e 214

Environmental Variables i i, 2.1-4

ShellCommands P 2.1-5
& (BackgroundMede) i, e 2.1-6
#(Remark)c... i eteteeaeaenaanas 2.1-7
T(Echo Text) i e 2.1-8
batCh ... i e e 2.1-9 -
= P 2.1-10
o PP 2.1-11
- « T 2.1-12
e =T L 2 2.1-13
o 3 + 2.1-14
= PR 2.1-15
format e e i 2.1-16
Lo L= = 31 2.1-17
7= | P PP 2.1-18
JObS e e i 2.1-19
Kill L. e i e 2.1-20
- 2.1-21
1= 4 PP 2.1-22
MKAIr .. e et 2.1-23
MKIES ...ttt it iiit it et citetatnanaacananenans 2.1-24
3T (- P 2.1-25
L1 2.1-26
PWA .. i i e iee et et e 2.1-27
22 1 TP T T e e 2.1-28
11T L PR 2.1-29
1171 2.1-30
1 2.1-31
SOtV i et 2.1-32
shell e i i e 2.1-33
1 - 2.1-34
{1117 P 2.1-35

Shell ErrorMessagescveveueeenecnennnennannans 2.1-36

TOC-1 e Version 2.7

TABLE OF CONTENTS

CHAPTER 3:

-CHAPTER 4:

22 Compiler Commands
CC ettt et e e e e e e

4o o PN
2.3 Linker Command

o PP

Linker Errors .. i et e

The LinkingProcessuiiiiniiiiiiiiiiiiennnn.

Object FileFormat............ P

2.4 Librarian

2.5 Disassembler
o [

26 Egrep (File Search)
Usagecciiviiiiiiiinnnnenns PP
Examples....... ..ot

27 Symbol Namer -
2.8 Global Error Codes

29 BASIC/SITREX/Text File Conversion Utility
General Guidelinesooiiii
BASICFileExtensionscoviiiiiiiiiiiinnnnennns
Converting BASIC Filesto TextFiles
Converting Text Filesto BASICFiles

MAKE UTILITY

3.1 Make Utility
make e ee e ae s ee ettt e
Makefile Structurec.coiiiiiiiii ittt i ieneerennnnnnns
Macro Definitioncoiiiiinitiin i i e,
DynamicDependencyccuiiiiiiiinenennnennnnnnn.
SUfIXeS TaDIEttt ittt ittt tennteraneannns
Transformation Rulesccviiiiiniiieiiiinreennennnns

Examples PP

COMPILER- - - -
4.1 Machine Dependencies
DataElementsoiitiii it i e i ittt

IncludeFileProcessingcoiiiiiiiiiiiriienanannn.
FloatingPointcoiiiiiiiiiiiiiiiiiianrnrananenn.
Register Variable Supportcciiiiiiiiiiiiiiiiinann.

4.2 Compiler Processing
ErrorProcessing eeesesritaaaaananan
CodeGenerationcovviieieieeieneenenenennnnennns

43 Run-Time Program Structure
SystembLibraryt i i i it i,
ProgramEntry/Exitcciiiiiiiiiiiiiiiiiiiinnnnn..
FunctionCallConventionsccviiiiiiiinennnn..

TOC-2 e Version2.7

TABLE OF CONTENTS

4.4 Library Implementation
LineSeparatorsttt e e e 4.4-1
Memory Allocation i 4.4-1
4.5 Language Extensions
Assembler e e 4.5-1
Defaullso e e e 4.5-3
AccessingCObjects ...t 4.5-3
Available Registers ..ot 4.5-3
CreatingGlobalSymbois i i i 4.5-3
Assembly LanguageExample L., 454
Structure Assignment i i 4.5-5
CharacterConstantsot i, 4.5-5
Scope of lgentifiers e 4.5-5
Forward Pointer Referencescciiviiiiiinn.s. 4.5-5
CHAPTER 5: LIBRARY COMMANDS
5.1 Library Index
Filel/O......... e heees s ettt et 5.1-1
Stream VO e e e 5.1-1
/ORedirectioncciiiiiiiiiiiiiiiiiiiiiiniannnn 5.1-2
DevicellO e aeaa e 5.1-2
Memory Allocationottt iiiiiii e 5.1-2
ProgramParametersciiiiiiiiiiniiiinnienn.. 8.1-3
- Library Index (alphabetical), 5.14
Library Index (byfunction), e 5.1-5
5.2 Library Description (libc.a)
= 1o 5.2-1
= o T 5.2-2
alloca e e e e e 5.2-3
=1 o) P 5.2—4
atoi,atol, strtol e e 5.2-5
T 1 1o 5.2-6
BCOPY . oot e i e e 5.2-6
7.2 (o A 5.2-6
calloc,lcalloct i e e 5.2-7
cearemr e it e 5.2-8
ClOSE ... i e i i e e it e i 5.2-9
Lo (- - | 5.2-10
- o 5.2-11
L= 20 5.2-12
L - | 52-13
fOl0SE e i e et i e e 5.2-14
(£ 5.2-15
(=2) O §.2-16
14T o 5.2-17
fgete ... e e i e e 5.2-18
(o = A 5.2-19
111 1o O 5.2-20
fopen,freopenttt i i i i i i e 5.2-21
1 <L 1 5.2-22
.. 5.2-23
fread i i i i i i ettt e e e, 5.2-24
1= - T 5§.2-25
== 5.2-26
L1 P 5.2-27

TOC-3 e Version2.7

TABLE CF CONTENTS

53
54

5.5

isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct,

isprint, iscntr, isascii, isxdigit ol 5.2-33
ISEEK ... e e e 5.2-34
Lo g e |13 o L 5.2-35
malloc,Imalloc e 5.2-36
ONBXit . ..ttt i et et e e e, 5237
o o7 1 P 5.2-38
printf, fprintf, sprintf, _sprintf, _fprintf, 5.2-39
7T (o 5.2-42
o 11 (o 5243
11 (o7 - 5.2-44
o1 1 5.2-45
PUIW . . ottt it ittt ittt ittt it e e 5.2-46
o T T P 5.6-47
rand, srand i i it 5.2-48
== T 5.2-49
realloc,lrealloc et 5.4-50
=T =T 1= 5.2-51
= T« 5.2-52
scanf,fscanf,sscanf il 5.2-53
setbuf, setbuffer, setlinebuf e 5.2-56
=T {1 1 5.2-57
strcat, strnecat, strcmp, strnemp, strepy, strepy, strien, index,

rindex, xtrepy, xtrcat, tmepyo '5.2-58
toupper, tolower, —tolower,toascii 5.2-60
73 T T P 5.2-61
UNNK . ..o e i et et 5.2-62
1 L1 C- 2P eeeereeeaneaeae.... D.2-63
System Library Globals

Window Intertace Functions

Standard Input/Outputot 5.4-1
VTI00 Formatcoiii ittt ittt e it e 5.4-1
FormModecciiiiiiiiiiiiiiiiiiinienensannnnnnnans 5.4-1
Default Window Attributescoevua i, 542
assignledsciiiiiiiiiii i e 5.4-3
e LT (o 1 Y 5.44
oSVt ... e e e et 5.4-4
disablecur i i e e i e 5.4-6
ONADIECUN it i i i e et e 5.4-7
o = o £ 5.4-8
o L= o 5.4-9
Lo o= 1) (< 11 1 5.4-10
Lo o =4 5.4-11
pdata i it ettt i i 5.4-12
PUIVE it i i it ittt it e 5.4-13
= o 1 1 5.4-14
Window Interface EscapeSequences 5.4-15
Screen Attributes it e i e i i i 5.4-16

Floating Point Math Library (libm.a)

TOC-4 o Version 2.7

TABLE OF CONTENTS

T, o e SRR S RRORRINRO0OS ‘:‘P" 2 .:'"‘""T]
74« T 5.5-1
LargestValuet 5.5-1
Ifinily ... e 5.58-1
SmallestVaiue e 5.5-2
Math Functions i i e 5.5-3
5.6 Control Characters
5.7 Using Aux Serial Ports 1 & 2
' Port 1 Functions
initportb e 5.7-2
SeNAPD ... e e e e 5.7-3
TeCPb .. . e 574
rstdrvb .. e 5.7-5
SampleProgramottt i e 5.7-6
Port 2 Functions
nitporta e e 5.7-7
SeNAPa i e e e 5.7-8
(=T + - 5.7-9
=1 C 5.7-10
SampleProgramottt it 5.7-11
5.8 MS-DOS Compatible File Functions :
EmmorCodesottt i i e et 5.8-2
Fmkdir (makedirectory)ttt 5.4
Frmdir (removedirectory)t i 5.8-5
Fsearch (search forfile/directory), 5.8-6
SampPleUSage iiii ittt i i i i e et 5.8-7
5.9 Non-Printing ASCII Characters
5§.10 BERT Functions
Startup and Idle Mode Functions 5.10-3
block len....... ...t i i it 5.10-4
Clr preamcoiiiiiiniiinnineneenennnananannn 5.10-4
COME_FUN ... it iiiiiiinnneenenensnessanosnenannnas 5.10-5
one_block i e e it 5.10-5
SEt em rate(sel)oiiiiii i i 5.10-6
Sel_MOdeiiiii i i ettt 5.10-7
=T o - 1 1 5.10-7
=T o1 P 5.10-8
Start_aSYNCcoiiiiiiii i i i ettt 5.10-9
Start_SYNC it 5.10-10
timed_test 5.10-10
1= ¢ (g 5.10- 11
Functions used while FEP isrunningaTest 5.10-12
ermor_Off i e i et 5.10-13
OITOT_ONt itieeratonecaesnnsseneannananennns 5.10-13
0N IOl iieneenneeeeneeaaaeeeaaansaeannnns 5.10- 14
TESYNC ...ttt iiteetnerensaeraatassossoasaansanasanns 5.10- 14
SlatUS i e ie ittt ie it 5.10-15
stop_test ... e 5.10-15
Functions Related Collecting Test Data et eieieeaaea, 5.10- 16
doubleget err rate i i, 5.10-17
longget blkerrs eeesecsascacrecauncsrasnaannan 5.10-17
longget emsecottt i i i e 5.10-18
longget rbits i 5.10-18
longget thitsol 5.10-19

TOC-5 @ Version2.7

TABLE OF CONTENTS

longget mhiterrs e 5.10-19
longget_runtimet 5.10-20
longget_Sermsec ... i e 5.106-20
longget_syncloss ...t 5.10- 21
longget thiterrs e E.10-21
reset data i i e e 5.10-22

Timed TestExampleo, 5.10-23

Advanced Prcgramming Technique:

Getting Correct Results fromvery long TestRuns 5.10-23

CHAPTER 6: THE vi EDITOR
6.1 Using the vi Editor

ViSORKEYS . . ittt i i e e it e i 6.1-19
vion=LineHelpottt 6.1-21
6.2 Command Reference
Control Characterscceeeeeeeenneeeeneeneeeneneness 6.2-2
SpecialCharactersciiiiiiiiiiiiinnnnniennnn. 6.2-4
UpperCaseCommandsciiiiniieninnnnennnennnnn 6.2-6
. Lower Case Commandsvoiiietennereeenennneeeenns 6.2-8
APPENDIX A: LIMITS AND EXTENSIONS
CompilerLimitsc....citiiiiiieiiniiiiiiiiiennnannaannns A-1.
Ly (= 113 Lo T Sy
IR £ = A-2
(I T =T 7= o A-2

APPENDIX B: TEKELEC PROTOCOL LIBRARIES
' B.1 Common Library Features

FEPStatus Codesicii ittt tieteeeerenananannnss B.1-1
Emor Codeso ittt it e i i et et B.1-1
CommonFuUnctionsccciiitiiinnnneennnennnnnnnns .. B.1-2
111 1 P B.1-3
o 1= {2 B.1—4
Lo o 1 B.1-5
GetIME i i i e ittt B.1-6
114115 (= 2 B.1-7
plresetl e i B.1-8
seHeds i i i ettt ettt et e B.1-9
L= 1 B.1-10
= (oo 1 P B.1-11
E=T= 111117~ N P B.1-12
- - B {117 AP B.1-13
B.2 Bit Oriented Protocol Emulation C Library (libbop.a)
1411+ P B.2-2
41 3 R B.2-3
FOCRIVEt iiiiieietteoaansossaaesosenaanannnaannsans B.24
== 11« B.2-5
(= 1Y 111 P B.2-6
treadyciiiiii it i i it ittt i eaaas B.2-7
B.3 LAPD Simulation C Library (liblapd.a)
GOt=MOdciiiiiiirieiititetierttretittttatananens B.3—4
get=mmtei i it i it i ittt B.3-5
o = 27 T o B.3-6
got—SConfigcciiiiiiiii i it it i i et B8.3-7
o L= = 11 B.3-8

TQC-6 e Version2.7

B.4

TABLE OF CONTENTS

TOC-7 e Version2.7

111 B.3-9
7= o] 1 V- B.3-10
=T = T €71 4 T B.3-12
setflg e e et e B.3—-13
set-bittate e e B.3-14
£ =1 o 13T Lo B.3~15
L 172400 A P B.3-16
£ 174 0 B.3-17
SeIEt i e i et e e e B.3~18
SOHNIBI e e B.3-19
L= =TT o B.3-20
= T o P B.3-21
Set=8C0Nfigciiii i e B.3-22
SEb-SUD i et e e B.3-24
L - 1, T B.3-25
E - 1< A B.3-26
E =] o (= 1P B.3-27
SEWINAOW i i i i et et e e, B.3-28
L] o | AP B.3-29
=1 Lo £ P B.3-30
L] - L L J A B.3-31
F3 (o o= 11 T B.3-32
(1= 4 J O B.3-33
transmit i i i et e e e B.3-34
1§ PP B.3-35
o (o= 11T B.3-36
22 1A B.3-37
o[[+ AP B.3-38
(o | B.3-39
Auto HDLC Simulation C Library (libhdic.a)
1411+ 3 PO B.4-2
(==~ |- 2 ettt e e, B.4-3
L= G 1 O B.44
L= o B.4-5
L= R 4 P B.4-6
Set_ WINdOW it e, B.4-7
= Lo U B.4-8
L U B.4-9
1 - 1 B.4-10
raANSMIt i ittt ittt B.4-11
SDLC Simulation C Library (libsdic.a) .
L1171« B.5-2
oY= PP B.5-3
Sel adr i i it ie et et B.5—4
== S 3 B.5-5
== S o B.5-6
- B.5-7
- L | B.5-8
1 B.5-9
L - 7L AP B.5-10
= T4 1 117 B.5-11
115 B.5-12
1) B.5-13
27 B.5-14
17 B.5-15

B.6

B.7

B8

B.9

B.10

B.11

TABLE OF CONTENTS

Basic Rate Interface Library {!ibbri.a)
0T =Y - (o
CeY=Y {0 1= 1] Lo P

BSC C Library (libbsc.a)

idle_mode i et e
31«
=T AT
transmit et e
L= 1o |

ISDN Primary Rate Interface Library (libpri.a)
oL T 21 o 1 e
SEIPIMANY ...ttt it it e

Async Likrary (libasync.a)
X T

Analysis Library (libanal.a)
I T

Multi-Link LAPD Llibrary (libmiapd.a)

5T T
getfreelinko it i
get fwaitingciiiiiii i i e
getlink e e s
get INKSapi i i i i e i e
getnktei ettt e
get Inkdgi i e e
get meswaiting i i i it

SO IINK .« ov ittt ettt e
L, B
SO MBI . .iviitiie ittt it et e,

TOC-8 ® Version2.7

B.12

TABLE OF CONTENTS

St rSapPi e e B.11-32
=T Y= o PP B.11-33
get_sconfig B.11-24
Set_SUD i e e e B.11-35
Set el .. e e e B.11-36
Set_tgi e e B.11-37
Set_ WINdow e et e B.11-38
Setllg ... e, B.11-39
L] o P B.11—40
=] L o B.11-41
SrCh_InK . .o e B.11—42
Start Sim ... et et e B.11—43
=] 6= L1 B.11—44
=T 4 T B.11-45
transmit i i i e et B.11-46
T P B.11-47
(- (o 1| B.11-48
([« o B.11—49
Lo | B.11-50
(13T B.11-51
Sample Programsciiiiiiietnt ittt B.11-52
V.120 Library (libv120.a)
getfreelink il B.124
getfwaitingo i e B.12-5
get link i et e B.12-6
Lo L= A B.12-7
getInkdll i i e e B.12-8
get meswaitingciuiiiiiiiiii i i i B.12-9
get_mink i i i e it B.12-10
getmxstat et i e e e B.12-11
get_sconfig et et B.12-12
get_WINdOW i et e e B.12-13
|11+ P B.12-14
ink_stat i i i e B.12-15
=T o7= V- B.12-16
E I 1740 B.12-17
=3 20 A B.12-18
S 1200 ... i e e e ittt e e B.12-19
- 00 0 < N B.12-20
set_sconfig ettt eieereaeceaiiieraie e B.12-21
Set_link i i e e e B.12-22
-7 B.12-23
Set_ WINAOW i i i i e B.12-24
setflg i e i e e B.12-25
SlOf . i e i ettt e B.12-26
- L AP B.12-27
SPOh _INK i i et ie i e B.12-28
Start Sim i ittt e, B.12-29
=1 £ 1 - B.12-30
NS ittt it i it et e i e B.12-31
transmitiiiiiiiiiiiii ittt e e B.12-32
Tans_respcovviiiiiiinnnnrennnnnns Ceesee e B.12-33
L1 F B.12-34
L2, (> 1 B.12-35
o[U B.12-36

TOC-9 e Version2.7

B.14

TABLE CF CONTENTS

L1 1 B.13-9
flush_all e B.13-10
11 - S B.13-11
01 S B.13-12
11+ 3 PO B.13-13
mih_flush i e e e B.13-14
mih_receive i e e B.13-15
mMih_set_ N1 ... i i i B.13~16
mih_set_N2c.i i i i it e B8.13-17
mh_set_net............ it B.13-18
mih_set_sub i i i B.13-19
L1 T T= O & A PP B.13-20
mih_set_t2..... ... i i i i B.13-21
mih_set_window i e B.13-22
mih_slof i i e e B.13-23
101] o £ T AP B.13-24
mih_statusiiiiiiiiii i it ittt B.13-25
mih trans Bt oot eeannesoeeneeneenneannns B.13-26
=T o 1T O B.13-27
7= G 1 P B8.13-28
== 1 PP B.13-29
=L 1T P 'B.13-30
= o - | B.13-31
Set_ratiottt i e it et e B.13-32
L= G PR B.13-33
=T S~ B.13-34
set_Sub () i e B.13-35
Set_ Window i i i e it B.13-36
=] Lo | B.13-37
L] LT I B.13-38
StatUS () - ...t i i i e i e e e B.13-39
transmit i i i i i it B.13-40
U-Interface Library (libu.a) ‘
T (g B.14-1
EmorCodesc.oviiiiiiiiiiiiinenenereontaennaenans B.14-2
Initializec. i i i it B.14-3
(0o o1 T B.14-3
SetTransceiverStatecciiiiiiiinnnnnnnnnnnns B.14-5
GetTransceiverStatesccoiiiiininnenenennnnnns B.14-5
Set TransceiverActivationciiiiiiiiiinnnn. B.14-6
SetTransceiverConnectionccciiiiuniunnnnnnn. B.14-6
SetTransceiver Emorscciiiiiiiinranenennnnnnnn B.14-7
GetTransceiverEmorsc.oiiiiiiiiininennannnnn B.14-7
GetHW Versionc.ciiiiiiiiiinierenenennannnnnns B.14-8
GetLinkStatusc.iiiiiiiiiiiiiii it e it e, B.14-8
Transceiver Transmit _ B14-9
Transceiver Receive B14-10
EOC Processing B14-11
EOCModeControlciiiiiriiiienencnennnnennnns B.14-11
MAModeControlottt iiiiiiannennennnnns B.14-12
M5/6ModeControlttt e B.14-12
ShutdownB .14-13

TOC-10 Version 2.7

TABLE OF CONTENTS

INDEX

B.15

ETSI Library (libetsi.a)

find_linK(O) ... B.15-4
get_freelink) B.15-5
get fwaiting e B.15-6
get link() ..o 8.15-7
GOtINKSAPI .« .ottt e s B.15-8
getInklict e B.15-9
get_Inklic2 e B.15-10
getInklic3 e B.15-11
get_meswaiting B.15-12
get_ fink() il e B.15-13
get_rink() PP B.15-14
get_SaPi() ... e e e B8.15-15
get_ sconfig()ot e B.15-16
getsim()coieiiiiiiiii i e B.15-17
getlict() e B.15-18
get_liC2() ... e e B.15-19
GOt lC3() ..ot e e e e B.15-20
get_ Windowt i B.15-21
12T+« B.15-22
T Q1 | B.15-23
=TT B.15-24
G-I =0 o O P B.15-25
LI 17~ B.15-26
S 1200ciiiiii i e i B.15-27
L300 7~ 0 2 T B.15-28
set link e tee ettt e s B.15-29
Set Net () ... i e i e ettt B.15-30
L= T= T =T o B.15-31
SOt _SCONfiIgocitiiiiiiii i i i B.15-32
set_SUb () e e B.15-33
set_liel i i it B15-34
SO lIC2 i i et e et e B.15-35
set_iCd e i B.15-36
set_WIndow i i e B.15-37
setflgo e e B.15-38
SIOf () . ii i e e e e B.15-39
=1L X | B.15-40
Start_Sim i i e et et e B.15-41
StatUS() ... i e i e et e i B.15-42
PANS ... i it e ettt e B.15-43
transmito i i i e e i et B.15-44
L T B.15-45
L (= o P B.15-46
tdde0l ettt B.15-47
1 AP B.15-48
1 1 O B.15-49

TOC-1% Version2.7

Chameleon 32 C Manual

Ch. 1.1: C Package Description

1.1 C PACKAGE DESCRIPTION

Note

The Chameleon 32 C Compiler System provides a complete
development environment for C programming. The C
Compiler is a complete implementation of Kernighan and
Ritchie C, and includes the following features: -

C shell

vi style editor
Linker
Assembler .
Disassembler
Librarian

The program editing functions are also accessible via
softkeys, for easy program development. The Chameleon 32
C Shell controls all C activities using a command line
interface. -

The Chameleon 32 provides a multi-tasking operating
system, page display system, custom keyboard, and color
display for a powerful development environment which is
familiar to UNIX and PC C language programmers. With the
multi-tasking system, you can edit a program, compile a
second program, and run a third program simuitaneously.

If you are unfamiliar with the use of the Chameleon 32
keyboard or the concept and use of pages, refer to the
Chameleon 32 User’s Guide,Chapter 3: Using the Chameleon
32.

Libraries are provided for UNIX compatible standard /O (file
IO, memory access). There are also protocol-specific
libraries, which include:

BOP

HDLC

SDLC

LAPD

Analysis

Async

BSC

Basic Rate Interface
Primary Rate Interface

Libraries are also included for floating point math and window
interface functions.

TEKELEC

1.1-1 Version 2.2

Chameleon 32 C Manual

Ch. 1.1: C Package Description

Compatibility with
other Systems

C File Upload and
Download To/From
a Host Computer

Run_ Time
Environment

The Chameleon 32 C package is compatible with MS-DOS
version 2.X.

C programs developed on other hosts (such as VAXes or
PCs) can be compiled and run without change on the
Chameleon 32 if they use UNIX style calls to access console
and file /0O devices. Programs developed on the Chameleon
32 that use the same facilities can also be compiled and run
on other hosts.

Programs developed on a Chameleon 32 that access the
Protocol Specific 1/0O libraries will not run on another
computer, unless an equivalent protocol specific library is
developed for that computer’s hardware. Similarly, C
programs which rely on special system facilities of other
computers may not be portable to the Chameleon 32 without
modification.

Chameleon 32 file upload and download functions may be
used to transfer C source files between the Chameleon 32
and other computers. Program code must be linked with
Chameleon 32 system interface and library code to make
executable tasks. This means that executable and object
code files cannot be transferred from other computers to the
Chameleon 32. ‘

In the past, test instruments did not offer convenient high level
language development environments. As a result, present
users would like to be able to perform program development
on host computers, and then download programs to the test
instrument for execution. Due to various portability issues
described above, functional testing of programs can only be
done in the test instrument. The Chameleon 32 allows
download of program source code from a host, and, in
addition, offers a fast, powerful, complete and easy to use
stand alone development environment that is familiar to UNIX
and PC C programmers.

There are two types of user programs (analysis and
simulation). Since the run time environment is different for the
two types, a user program can only be executed in the same
environment in which it was compiled and linked.

TEKELEC

1.1-2 Version 2.2

Chameleon 32 C Manual

Ch. 1.1: C Package Description

Each user program is a separate task with its own ‘default
page. The shell is responsible for starting the task, assigning
its default page and killing it upon termination.

Run files can be loaded and executed from the development
system shell. An additional selection of User Task can be
made (in the Main Menu) to select all files that can be
executed (ON/OFF). Turning off a task (or using the KILL
command) will close the task’s page.

User programs interact with the Chameleon 32 software
through libraries. The Libraries include:

e |/O library (for standard console 1/0, device access,
memory and file manipulation),

® Protocol specific libraries

e Library to support acquisition buffer activities

These libraries are described in Appendix B.

TEKELEC

1.1-3 Version 2.2

Chameleon 32 C Manual

Ch. 1.2: LoadingC

1.2 LOADING THE C PACKAGE

Introduction This section gives you brief instructions for loading the C
Development System. If you need additional information about
booting and configuring the Chameleon 32, refer to the
Chameleon 32 User’s Guide, Chapter 3.

To load the C Development System, do the following:
1. Power up and boot the Chameleon 32.
2. The main configuration page should appear as shown in
Figure 1.2-1. If this menu is not displayed, move the
arrow cursor to Setup Mode and press F1 Menu.
n
O

Tekelec CHAMELEON 32 Version x.xx. Copyright (C) 198x - 188x

[Pross F6 to change the PROTOCOL sotuag] [Press 60 to Accept

Setup Mode

Port A

Mode of Operation

C Development System

C Development System FUNCTIONS

Figure 1.2-1: Configuration Page (Menu Setup Mode)

3. Move the red arrow cursor to the C Development
System parameter at the bottom of the screen. (If this
parameter does not appear, your C package is not
installed.)

4. Press F2 On.

TEKELEC

1.2-1 Version 2.4

Chameleon 32 C Manual

Ch. 1.2: Loading C

Press Go. The message Loading C-Shell appears in
the upper right corner of the Configuration page.

The C Shell banner appears at the bottom of the screen
and the Applications Selection page is displayed.

To use the C Shell page, press Select until the C Shell
banner is highlighted (active). You can then use the
keys listed in the table below to change the size of the C

Shell page.

KEY - FUNCTION

Move 1 Moves the page banner upward one line at a time (increases the size
of the page).

Move | Moves the page banner downward one line at a time (decreases the
 size of the page).

Scroll 1 Scrolls the data displayed in the page upward one line at a time.

Scroll | Scrolls the data displayed in the page downward one line at a time.

Shift Scroll T - Scrolls the data displayed in the page upward the number of lines
displayed in the page.

Shift Scroll |

Scrolls the data displayed in the page downward the number of lines
displayed in the page. :

Shift Hide Page

Hides the active page so that the banner is no longer visible on the
screen (the application continues to run).

Show Page Displays a page that has been hidden with Shift Hide Page. -

Replace Replace the active page with one that has been hidden using Shift
.Hide Page.

Shift Move 1 Displays the page in a special full-screen mode referred to as Blow
Mode (indicated by the letter B on the top left side of the banner).
Other pages cannot be accessed when the active page is in Blow
Mode. Shift Move 1 again disables Blow Mode, and returns the
screen to its previous state.

TEKELEC 1.2-2 Version 2.4

Chameleon 32 C Manual Ch. 1.2: LoadingC

The hardware and protocol are configured from your C
program. Refer to the appropriate section for a
description of the available functions:

Clibrary Section 5.2
Window Interface Functions Section 5.4
Math Library Section 5.5
Aux Serial Port 2 Functions Section 5.7
Common Library Features Appendix B.1
Bit-Oriented Protocol (BOP) Library Appendix B.2
LAPDLibrary Appendix B.3
HDLC Library Appendix B.4
SDLClLibrary Appendix B.5
Basic Rate Interface Library Appendix B.6
BSClibrary Appendix B.7
Primary Rate Interface Library ... Appendix B.8
AsynclLibrary Appendix B.9
Analysis Library Appendix B.10

Section 1.3 contains a short tutorial to acquaint you with
the Chameleon 32 C compiler and editor.

Chapter 2 contains a descnptlon of C Shell usage and
shell commands.

7. To turn the C Development System off, use one of the
following methods:

a. At the C Shell prompt %, enter the command:
%exit <RETURN>

b. Select the Configuration page and press F10 Exit.

TEKELEC 1.2-3 Version 2.4

Chameleon 32 C Manual

Ch. 1.2: Loading C

Executing
C Applications

There are two ways to execute a C program that has been
compiled on the Chameleon 32:

You can run it from the C Shell. To use this method, the
C Development System must be installed on the
Chameleon 32. Refer to Section 2.1 for more
information.

You can run it from the Applications Selection menu.
You must use this method to execute a C application in
the following cases:

» To run a C program on a Chameleon 32 that does
not have the C Development system installed

» To run a C program on a Chameleon 20. The
Chameleon 20 C Run-Time module must be
installed on the Chameleon 20 in order to do this.

In addition, this method enables you to include your C
application in your configuration file, so that the program
can be executed automatically when the configuration file
is loaded. This procedure is described below.

To execute a C application from the Chameleon 32 or
Chameleon 20 Applications Selection menu, do the following:

1.

Compile the C program on a Chameleon 32. See
Chapter 2.2 for compiler syntax.

The application file name must have the extension .exe.

Copy the file to the hard disk of the Chameleon on which
you want to run the application. The directory
determines when the application will be displayed in the
Applications Selection menu, using the conventions
described below.

To have the program appear in the Monitoring window of
the Applications Selection menu, copy the program to:

a:\tekelec\analysis\xxxx
xxxx is one of the sub-directories of analysis. If copied

to a:\tekelec\analysis\appl, the application is displayed in
the Monitoring window for all protocols.

TEKELEC

1.2-4 : Version 2.4

Chameleon 32 C Manual

Ch. 1.2: Loading C

Notes

If the application is copied to a protocol sub-directory of
a:\tekelec\analysis, the application is displayed in the
'donitoring window only when the Chameleon is
configured for that protocol. For example, if the
application resides in a:\tekelec\analysis\x25, it appears
in the Monitoring window only when X.25 is the selected
protocol.

To have the program appear in the Simulation window of
the Applications Selection menu, copy the program to:

A\tekelec\simul\xxxx

xxxx is one of the sub-directories of simul. If copied to
a:\tekelec\simul, the application is displayed in the
Simulation window for all protocoils.

If the application is copied to a protocol sub-directory of
a:\tekelec\simul, the application is displayed in the
Simulation window only when the Chameleon is
configured for that protocol. For example, if the
application resides in a:\tekelec\simul\x25, it appears in
the Simulation window only when X.25 is the selected
protocol.

- Only applications copied to a:\tekelec\analysis\appl\ can

be started on Ports A+B on Chameleon 32 Dual Port
machines. Applications in all other directories must be
started on each port independently.

Applications developed for the Chameleon 20 use Port A
only, since Dual Port is not available.

In the main configuration menu, set up the Chameleon
port for the mode of operation (Monitor or Simulate) and
protocol appropriate for the C application.

- Press Go. This displays the Applications Selection

menu, with the C application name displayed in the
window according to the conventions described in step 3.

Move the red arrow cursor to the application name and
press the function key that starts it on the appropriate
port (F1 Load A, F2 Load B, F3 Load AB).

Press Go to start the application.

TEKELEC

1.2-5 Version 2.4

Chameleon 32 C Manual

Ch. 1.2: Loading C

Programming
Notes:

When running a C application from the Applications Selection
menu, the Chameleon automatically opens a window for the
application when it is started and closes the window when the
application is stopped. This is similar to running the program
from the C Shell in background mode, using the syntax:

% prognameé&

See page 2.1-5 for more information about using &
(background mode) in the C Shell.

When usmg the Applications Selection menu, a pointer to the
application file name is passed to argv[0] and a pointer to the
port selected by the user is passed to argv[1]. This is
equivalent to executmg a program from the C Shell using the
convention:

%progname A

%progname B

%progname AB

This information can then be used in the C application to
initialize and access the appropriate port(s) using the protocol
library functions.

In order to exit from the application properly, use the function
onexit. This function enables you to finish your program when
the user stops the application from the Applications Selection
menu. See page 5.2-37 for more information.

TEKELEC

1.2-6 Version 2.4

Chameleon 32 C Manual

Ch. 1.3: CProgramming Tutorial

1.3 C PROGRAMMING TUTORIAL

Introduction This section contains a brief tutorial that introduces you to the
process of developing programs in the Chameleon 32 C
environment. In the tutorial, you write a short program that
causes the Chameleon 32 to transmit a short message.

C Program

Development Figure 1.3-1 illustrates the steps required to develop
programs using the Chameleon 32 C package. The chapter
that contains more information about each facility is also
indicated. ‘

START
:“Source Program . Ch.2.1: Shell
& » EDIT (file.c) Ch. 6: vi Editor
COMPILE ObyectPr 3 ram Ch. 2.2: Compiler Usage
DEBUG AND : (file.o : Ch.4: Compiler
ASSEMBLE Ch. 2.3: Disassember
LINK sy:tnzmo'i“’h;rary 8:: gau%?:f; Conomands
Object Programs : App. B: Tekelec C Libraries
¢ LOAD AND et S Ch.2.1:shel
EXECUTE (a.out) :
Figure 1.3-1: C Development Cycle

Tutorial The following is a hands-on introduction to the process of
writing, compiling, and executing a C program. This program
transmits a short message.

1. Boot the Chameleon 32.

2. Use the port Configuration page to turn the C
Development System ON, and then press Go. After a
few seconds, the C Shell page banner should appear at
the bottom of the screen.

TEKELEC 1.3-1 Version 2.2

Chameleon 32 C Manual

Ch. 1.3: CProgramming Tutorial

Note

Display C Shell page so that the % prompt is visible.
The login file was executed and put you in the home
directory (as defined in the login file).

List the files and directories on the hard disk by entering:
Is <Return>

The list should include a directory called USR\. This
directory has been provided for your user application
files (although you do not have to store your files in it.)

Change to the USR\ directory so that the program you
write will be saved to this directory. To change
directories, enter:

cd usr <Return>

You will use the vi editor to write a program called
testi.c. In the command, you will use an ampersand
(&) to open a separate vi page to enter and edit the
program. This is referred to as background mode. To
call up the vi editor in background mode, enter:

\vi test1.c & <Return> -

The PATH environment variable will look for vi in the \bin
directory. If you don’t have a login file you should set
the path (see SETENV command in Section 2.1). '

The VI banner appears at the bottom of the screen. (If
this is the first time the vi editor has been used this
session, you may have to wait a few seconds for the
banner to appear.)

Display the VI page.

The cursor is positioned at the top of the screen and
tildes (~) appear on the other lines. The message
"test1.c” [New File] appears at bottom of page.

If there is a window banner at the bottom of the screen,
you will not be able to see the messages on the bottom.

vi will be in command mode. To enter a program, use
the insert mode. To change to insert mode, press:

i (Do not press Return.)

TEKELEC

1.3-2 Version 2.2

Chameleon 32 C Manual

Ch. 1.3: CProgramming Tutorial

The screen does not change appearance or display a
message to distinguish between command and insert
mode.

9. Enter the program that is listed in bold type below.
Programming remarks have been added for your benefit;
These appear in non-bold type and do not have to be
entered.

Press Return at the end of each program line. Use the
same spacing and capitalization as shown below. Press
Tab one or more times to indent.

#include {cham.h> /*Defines constants that will be used*/
#include <{stdio.h>

#define GOOD_CRC 0O

main ()

{

initpl (DCE, NRZ, 9600L, FILLFF); /*Initializes simulation of
bop library®/

printf ("Hit RETURN to transmit frame\n");

getchar (); ’

transmit (600D_CRC, "hello®,5); /*Transmits the frame ‘hello’
with a good CRC and 5 as the
frame length in byies‘/

puts ("Transmission cospleted®);

10. When the program is completely entered, press Esc to
return to command mode.

11. To save the file, enter:
W < Return>

A message at the bottom of the screen verifies the
number of lines and characters entered.

12. To quit vi, enter:
:q <Return>

The VI page disappears, but the C Shell page banner is
still displayed.

TEKELEC

1.3-3 Version 2.2

Chameleon 32 C Manual

Ch. 1.3: CProgramming Tutorial

13.
14.

15.

16.

17.

Display the C Shell page and the % prompt.
Now you are back in the shell and ready to compile and
link the program, using the cc command, which is in the
BIN\ directory. To do this, enter:

cc testi.c -lbop <Return>
The -l option calls the library libbop.a . If you entered
the program correctly, the % prompt is redisplayed. If
you typed something incorrectly, the errors are
described on the screen. If there are errors, repeat step
6 to edit the file using vi, and then repeat step 12 to
compile and link the corrected program.

To execute the compiled program, at the % prompt,
enter:

a.out <Return>
The following message appears:
Hit RETURN to transmit frame

Press a key, the frame will be transmitted, and this
message displayed:

Transmission completed

TEKELEC

1.3-4 Version 2.2

Chameleon 32 C Manual

Ch. 2.1: Shell

2.1 SHELL

Introduction

"Login File

Configuration
File

The Tekelec development sheil provides a command line user
interface for C development. The shell enables you to run pregrams
and contains programs for maintaining files and sub—directories.

There are a number of buiilt—in shell commands that are ioaded into
memory as part of the shell. Typing a command other than one of
these built—in shell commands is treated as an attempt to load and
execute a program.

Some shell commands are built into the shell and alsoc exist as
programs. These commands include: cc, cp, rm, and mv. If you
execute one of these commands from a batch file or make file, the
program is used.

Each shell and program has the notion of current directory, so you
can view and work from different directories simultaneously.

The login batch file is executed automatically when the shell starts.
It contains a list of shellcommands and can be modified using the vi
editor. A default login file is provided. Use the more command to
view the contents of the login file. If you create a new login file and
save it, the new login file overwrites the existing login file.

The loader uses an environment variable called PATH to locate
programs to execute. The PATH variable is set in the login file on
the distribution disk. Command line argument passage is
supported. 4

The CONFIG.SYS file is used to configure certain functions of the
Chameleon 32. This file is located in the /TEKELEC/UTIL directory.
As the Chameleon is booting, CONFIG.SYS is read by the
operating system and acted upon based on commands within the
file. Should this file not exist, default values are assumed and acted
on.

CONFIG.SYS supports the following commands:

BOOT — For the P6 board of the Chameleon 32-plus only,
this command tells the Chameleon which
application is to be booted at start-up.

The valid bptions are:

A:\\tekelec\\utiN\stmenu.sys
(stmenu = standard menu)

A:\tekelec\\uti\\stshell.sys
(stshell = C shell)

TEKELEC

2.1-1 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

REM — Remark or Comment. Used primarily for
documentation of the CONFIG.SYS file itself. All
other commands on this line are ignored.

DBGPORT - Location of the Debugger Port. Used to place the
Debuggar Port on the AUX 1 serial port or on the
Chameleon CRT and keyboard. Also used to turn
the debugger off. When the Debugger is not
piaced on AUX 1, this port is availabie for other
applications uses (See Section 5.7).

This command takes one operand having the following

syntax:

AUX1 -~ places the debugger on the serial port. The
default location.

vT — places the debugger on the CRT/keyboard.

OFF. - turns the debugger off.

For Chameleons operating over an Ethernet:

GW - allows you to specify the Internet address of the
gateway connecting your Chameleon 32 to other
subnets, using standard decimal dot notation. For
example: ‘

192.9.200.104

IMASK — allows you to specify the Internet mask of the
Internet if subnet masking is used. For example:
255.255.255.0

INET -~ allows you to specify the Internet address of the

Ethernet board, using standard decimal dot-
notation. For example:

192.9.200.102

N

TEKELEC : 2.1-2 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

Example.
The foilowing is an example of what a CONFIG.SYS file might look
like:
REM This file is used to place the debugger on
the
REM Chameleon 32 CRT and keyboard.
REM By doing this | may now access AUX 1 viaa
C program.
DBGPORT vT
Device Files Devices are referred to by file names, using the following
conventions:
L .CON = Console
L .PRT = Printer '
- L .AUX = Serial port 2 (unformatted data)
N , ° .TTY = Serial port 2 (formatted data)

These names must be in upper case letters. For example:
shell <.TTY> .TTY

redirects shell input and output through Serial port 2 and will work
from a remote terminal.

TEKELEC 2.1-3 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

Filename

Substitution The * and [] characters can be used for filename substitution, as
described below.
L *.c Matches all filenames with .c extension.
. test* Matches all files named test. with any file
extension.
. [x] Matches filenames containing the letter
enclosed in the brackets, in this example, x.
® [bgy] or
[b.g.y] Matches filenames containing the indicated
letters (logically ORed). In this example,
filenames with bor gor y.
L [(ch),(te)] Matches filenames containing chor te.
o [b—-g] Matches filenames with the letters in the
indicated range. In this example, filenames with
b, ¢, d, e, f, or g would be matched
For example, if a directory contains the following files:
hello.c testl.c test2.c test2.0 testl.o a.out
If you use the Is (list files) command as shown below, the resulting
filenames are listed.
Is* helloc.c test1.c test2.c test2.0 testl.o a.out
Is*c hello.c testl.c test2.c
Is t* testi.c test2.c test2.0 testl.o
Is *[o]* hello.c a.out
Any word enclosed in single or double quotation marks prevents
floname expansion, or creates a single argument to pass to a
program. For example:
% a.out *.c receives: argv[0] : “a.out”

' argv(1] : “HELLO.C”
argv(2] : “TEST1.C”
argv[3] : OL (NULL)

% a.out ’*.c’ receives: argvi0] : “aout”
‘ argvi1 : “*.c”
argv[2 : OL (NULL)
TEKELEC

2.1-4 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

I/O Redirection

Environmental
Variables

The shell supports redirection of standard output and input from any
command line, as follows:

< name Read the file 'name’ in place of stdin
> name Write stdout to the file ‘'name’

>> name Append stdout to the file 'name’

>& name Write stderr to the file ‘'name’

>>& name Append stderr to the file 'name’

The default for stdin is the keyboard. The default, for stdout and
stderr is the window for the calling program. /O redirecticn
operators and names are not passed to the calling program.

Built—-in shell commands also use I/O redirection operators, for
example:

dis filename.o: more Uses shell command more
Is > filename Redirects file listing to filename

I/O redirection is available'through the system function. The
following example illustrates this.

main() ,
{ char line[80];
system (line,”Is");
system (line,”ls > filename”);

The shell supports environment variable setting (setenv) and
printing (getenv). These variables are stored internally as a string of
the form: name='value’.

The variable PATH (note upper case) is used by the loader to find
programs to execute. A typical PATH is:

', \bin \user’

This command string means first search the current directory (.), the
\bin directory, and then the \usr directory. /fyou set a path, you must
include the period (.) or the current directory will not be searched.
If no path variable is set, only the current directory is searched.

TEKELEC

2.1-5 ' Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

The variable VIINIT is loaded by the editor as it is executed. The
value of VIINIT may be any valid vi commands to be processed as
the editer is started. The variables FC and BC (foreground color
and background color) are used as colors for window creaticn when
a program is run as a separate task.

See the description of setenv and getenv for additional
information.

Commands The shell supports the commands listed below. In the syntax
descriptions, angle brackets (<>) indicate that the field is user
supplied. Square brackets ([]) indicate optional items.

The following methods can be used to execute more than one
command in a single command line.
% a; b; ¢ Executes commands, a, b, and ¢ as if they were
entered as follows:
% a
% b
% ¢
%a&b&c Executes commands a, b, and ¢ as if they were
entered as follows:
% a &
% b &
% ¢
%al|b|c Executes commands a, b, and ¢ as if they were
- entered as follows:
% a > pipet
% b < pipel > pipe2
% C < pipe2
The shell commands are listed in alphabtical order, one command
per page, on the following pages. .
" TEKELEC 2.1-6 Version 2.6, November 1992

Chameleon 32 C Manual . Ch. 2.1: Shell

& (Background Mode)

Description The ampersand symbol (&) is the command that runs an executable
file in background mode. When the ampersandis used, a window is
opened for the task and it is used as stdin and stdout.

‘Syntax <name> &
where: name is the filename of an executable file.

To modify the window color, use the setenv command. The window
wili be closed when the task is kilied.

See Also run (page 2.1-30)
Example To run the file named PROG1 in background mode, enter:
% PROG1 &

TEKELEC 2.1-7 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

(Remark)

Description The # sign enables you to enter a remark that is ignored by the shell.
The remark is not echoed to the screen. It is useful for inserting
programmer’s remarks in batch files.

Syntax #[text]
where: text is the remark you want in the batch file.

Example To enter a remark, enter:

#Setting environment.

TEKELEC 2.1-8 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

> (Echo Text)
Description The ’ sign enables you to echo text to the screen. It can be used in
batch files to echo messages or instructions to the screen.
Syntax "[text]
where: text is the text to echo to the screen.
Example To display the message 'Hello out there’, enter:

%$’'Hello out there! <RETURN>
Hello out there!

TEKELEC p 2.1-9 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

batch
Description The batch command executes a batch file. A batch file is a file
~which contains a sequence of shell commands.

If a batch file named login exists on the root directory of either the
hard or floppy disk, it is automatically executed when the shell is
launched.

Syntax batch <filename>
where: filename is the name of the batch file.

Example To execute a batch file named startup, enter:

batch startup

TEKELEC 2.1-10 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

cat

Descripticn The cat command prints files to standard output. It is used primarily
to display the contents of one or more files.

Syntax cat <file...>

where: file is the name dispiay on the screen. If a single file name
is specified, the contents of that file is displayed on the screen.

If two or more files are specified, cat concatenates them in the order
given and writes the output to the indicated file.

If the file parameter is not specified cat reads from standard input.
Example To display the contents of the file prog1, enter:
cat progl

To concatenate the contents of fllea and fileb and write the result
into filec, enter:

cat filea fileb >filec

Errors) File not found: name The file or directory name does not exist.

TEKELEC 2.1-11 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

cd

Description

Syntax

Example

The cd command changes the current sub—directory.
To determine the names of the sub—directories of the current
directory, use the Is command. This lists the entries of the current
directory with sub—directory names followed by a slash (\).
The root directery is referred to by a back slash (\).

cd <path>

where: path is the path name of the sub—directory that you want to
use.

To change from the root directory to the USR/ sub—directory, enter:
cd usr <RETURN>
To change back to the root directory, enter:

cd \

TEKELEC

2.1-12 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

cp

Description

Syntax

Exémple

Errors

The cp command copies one or more files into a specified cirectory.
The cp command can be used to make copies of files, rename files,
or transfer files to a different directory.

cp <oldfile> <newfile>

where: oldfile is the name of the source file and newfile is the name
of the new copy of the file. The c¢p command will not copy a file onto
itself, therefore a newfile name must be supplied.

If newfile already exists, its contents are overwritten. If newfile is
overwritten by the cp command, the original mode and owner are
preserved. [f newfile is a new file, the mode and owner of the
source file is used.

The cp command copies one or more files into a different dlrectory,
using the following syntax:

cp <file...> <dir/>

where: file is the name of the file to copy and dir is the name of the
directory to copy the file into. Note that the directory name is
followed by a slash (/) to indicate that it is a directory and not a new
filename. The filenames remain unchanged.

To make a copy of a file named PROG1 and give the copy the name
PROG2, enter:

Cp progl prog2
To copy a file named PROGi into USR/ sub—directory, enter:
cp progl usr/
Can’t copy file to itself: name CP was given the same file name

to copy to as the source file
name.

name: not a directory The name of the directory to copy
to was invalid.

Can’t open: name The source file does not exist, or
Lhe;e is something wrong with the
is :

TEKELEC

2.1-13 Version 2.6, November 1992

Chameleon 32 C Manual b

Ch. 2.1: Shell

ctags

Description

Syntax

ctags is a utility that helps you locate definitions in multiple C
program files. It searches specified files and creates a file.named
tags which contains a list of the functions that were found in the
program files. The tagsfile can then be used in conjunction with the
vi editor to quickly locate specific functions in the files you are
editing.

ctags files
where: files are the C program filenames that you want to search
through. You can use wildcards to specify the files to search. For
example, this searches all C source files beginning with the name
test:

ctags test*.c
This creates a file named tags which contains the fellowing
information about the definitions (tags) in the files that were
searched.

tag filename - String to search for

You can use the more command to view the contents of the tagsfile.

There are two ways to use the tags file with the vi editor:

1. Use the -t option when you invoke the vi editor. For example:
vi ~t tagname
This edits the first file listed in the tags file which contains the
tag specified by tagname. The cursor is positioned at the first
occurrence of the tag in the file.

2. Invoke the vi editor and then use the :tag command. For
example:

vi *.c
:tag tagname

This first invokes the vi editor to edit all .c files. The :tag
command then positions the cursor at the first occurrence of
the specified tag within the files being edited.

TEKELEC

21-14 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

dump
Description The dump command prints one or more files in hex to standarc
output.
Syntax dump file
Example To print the contents of the file named test1 in hex, enter:
dump testi
Errors File not found: name The file name does not exist.

TEKELEC 2.1-15 Version 2.6, November 1992

Chameleon 32 C Manual _ Ch. 2.1: Sheill

exit‘

Description The exit command exits from the C shell and returns to the
Chameleon 32 port configuration page. It causes the C shell to no
longer be active.

Syntax exit

Example To return to the Chameleon 32 port configuration page from the C

shell prompt (%), enter:

exit

TEKELEC 2.1-16 _ Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

format

Description The format command formats a floppy diskette.

Warning Formatting erases all »the data on the disk. Make back up copies
of files you want to keep before you format.

Syntax format b

Example To format the floppy disk, enter:

format b
The following message is displayed:

Do you wish to format the floppy disk B:? (Yes or No) Y <cr>

TEKELEC : 2.1-17 Version 2.6, November 1992

Chameleon 32 C Manuali

Ch. 2.1: Shell

getenv
Description The getenv command prints the string value of all environmental
variables or of a specified environment variable. Use the setenv
command to set the value of an environment variable.
Syntax getenv Dispiays values of all environmental
variables.
getenv <name> Displays value of a specified
environmental variable.
where: name is the name of the environment variable to print. The
following variable names are used by the Shell, but up to 20
variables can be defined by the user. The following variable names
must be entered in UPPER CASE letters.
PATH Displays the default search path for
locating files.
FC ' Displays the foreground color for new
windows.
BC Displays the background color for new
windows.
YEAR Displays the global _curr_year in the
libraries :
HOME Displays a path that is changed to when
the cd command (with no argument) is
used.
Example To display'the current default search path, enter:
% getenv PATH <RETURN>
.b:\bin
To display the foreground color for new windows, enter:
% getenv FC. <RETURN>
white
TEKELEC 2.1-18 Version 2.6, November 1992

Chameileon 32 C Manual Ch. 2.1: Shell

help

Description The help command displays a list of shell commands and their
usage.

Syntax | help

Example % help

TEKELEC ~ 2.1-19 Version 2.6, November 1992

Chameleon 32 C Manual . Ch. 2.1: Shell

jobs

Description Tke jobs command prints job control status, including process id
(pid), program name, and whether resident or running.
If running, a program is active and can be killed using the kill
ccmmand.
If resident, a program is in memory, and when started, is loaded
from memory and not from disk.

Syntax jobs

Example To display the current jobs and their process id numbers, enter:

% jobs
[0] Running B:\SHELL
[1] Resident B:\BIN\CP

TEKELEC 2.1-20 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

Kill

Description The kill command kiils a process that is running. It does notremove
the process from residency.
Syntax kill <pid>
where: pid is the process id of the program to kill. Refer to the jobs
command to print pids and other information about programs.
Example If you want to view the current jobs, enter:
jobs
A display such as the following appears:
[0] Running B:\SHELL
[1] Resident B:\BIN\CP
[2] Running B:\USR\PROG1
This display indicates that PROG1 is- running and is assigned
process id 2. To stop the process but leave PROG1 resident, enter:
kill 2
TEKELEC 2.1-21 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

Is

Description

Syntax

Example

Error Messages

The is command prints a list of files and directories, and information
about them. If a directory {or drive specifier) is given, the directory
name, numbsr of files in the directory, and a list of all files in the
directory is displayed. If a file name is given, matching file names .
are listed. If no file/directory names are given, the contents of the
current directory is listed. In the absence of a sorting option, names

_are sorted alphabetically.

In the resulting display, sub—directory names are followed by a
stash (/).

Is [-L] [-K] [-S] [-D] [spec]
Is options are: -
-L Long listing format. “Provides the name, size

(excluding header information) and date of the file,
with each file displayed on a separate line.

K Listing is sorted by file extension (kind)
-S Listing is sorted by size
-D Listing’is sorted by date of last modification.

If one of the sorting options is note used, the list is sorted by
filename. Filename substitution is performed.

To list the files in the current directory including the date and size,
enter: B ‘

. 1ls -L

To list all entries in the current directory that begin with the letter S,
enter:

ls s*

Unknown option: option An option was given that LS does
not recognize.

File not found: name The file or directory names does not
exist.

Drive DRIVE: not available The drive is not available.

TEKELEC

2.1-22 Version 2.6, November 1992

Chamelecn 32 C Manual Ch. 2.1: Shell

man
Description The man command displays a named help file for C commands,
programs, and library functions.
Syntax man <filename>
where: filename is the name of the help file. The following help files
are available:
Filename Topic
anal Analysis library
ar Librarian
asynclib Async library
aux2lib Aux Port 2 library
bop BOP library
bri BRI library
bsc BSC library
cc compiler
dis Disassembler
egrep egrep
filefunc Low level MS-DOS file functions
hdic HDLC library
lapd - LAPD library
o] Linker
libc Standard C library functions
make make command :
mathlib Math library
mlink Multi-Link LAPD library
pri PRI library
sdlc SDLC library
shell Shell commands
vi20 V.120 library
vi vi commands
window Window. functions
Example To display the help file for the BOP library, enter:

man bop

TEKELEC 2.1-23 ~ Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

mkdir
Description The mkdir command creates a sub—directory. If a partial pathname
is given, mkdir creates the sub—directory in the current directory.
Syntax mkdir <name>
where: name is the name of the sub—directory you are creating.
Example To make a new sub—directory named PROGS, enter:
mkdir progs
Errors Can’t create directory: name The directory name already
exists, or the disk is write
protected.

TEKELEC 2.1-24 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

mkres

Description

Syntax

Example

The mkres command makes a program RAM resident. Normally,
any program you execute becomes RAM resident. The mkres
command enables ycu to make a program RAM resident without
running it. It also prints the process id (pid) of the program.

mkres [—p] <prog>

where: prog is the filename of the program.

The —p option indicates that the program cannot be removed from
memory to satisfy a request for a block of free memory. If the
memory manager receives a request for a block of free memory
which it cannot satisfy, it removes the least recently used programs
until it can satisfy the request. The —p option indicates that the
program cannot be removed by the memory manager.

This option is useful for large programs, such as the compiler, which
take some time to load. ‘

To make a program named PROG1 resident in RAM, enter:

mkres progl

TEKELEC

2.1-25 ' Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

more

Description

Syntax

Example

The more command displays the contents of a specified file or pipe,
one screenful at atime. If the display is longer than a single screen,
it pauses when the screen is full, and prints the following p.ompt at
the bottom of the screen:

—more— (n%)

The n% is an integer that indicates the percentage of the file (in
characters) that has already been read. The percentage is not
displayed if more is reading from a pipe.

You have three options for displaying additional text on the screen
when the —more— prompt appears. These options are:

o Press Return to display the next line from the file
o Press the Space bar once to display the next screen

o Type a number and then press Space bar to display that
number of lines. For example, to display the next 10 lines,
enter:

10 <Space bar>
more <file>
where: file is the name of the file to display.

If more is redirected to a device other than a terminal, it transmits
the file.

To list the contents of the file PROG1, one screenful at a time, enter:

more progl ’

TEKELEC

2.1-26 Version 2.6, November 1992

Chamelz2on 32 C Manual

Ch. 2.1: Shell

mv

Description

- Syntax

Example

Errors

The mv command moves a file, removing the original copy of the
file. You can use the command to move the replace an existing file
with another file or to move files from one directory into ancther
directory.

mv filetfile2 Replace file2 with the contents of filei.
Both files must already exist.

mv files dir Move the specified files from the current
directory into the specified directory.

To replace the contents of test1 with test2, enter:
mv test2 testl

To move all files named test to the parent of the current directory,
enter: : :

| mv test* ..

Where .. specifies the parent of the current directory.

Can't copy file to itself: name MV was given the same file name
to move to as the source file
name.

name: not a directory The name of the directory to
move to was invalid.

Can’t open: name The file that is to be moved does
not exist, or there is a disk error.

TEKELEC

2.1-27 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

pwd
Description The pwd command displays the name of the current directory cn
the screen.
Syntax pwd
Example to display the current directory, enter:
% pwd
B: \USR\

TEKELEC 2.1-28 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

rm

Description

Syntax

Example

Errors

The rm command deletes one or more files frcm the disk.

rm <file> [file...]
where: file is the name of the file to delete. Note that you can delete
more than one file with a single rm command by listing the
filenames separated by blank spaces. Filename substitution is
performed.
To delete a file named PROGH1, enter:

rm progl

To delete all files that have PROG as the first four letters of the

filename, enter:

rm prog*

Usage: rmfile... There are no options to rm.

TEKELEC

2.1-29 Version 2.6, November 1992

Chameleon 32 C Manual . Ch. 2.1: Shell

rmdir
Description The rmdir command deletes a sub—directory. You cannot delete a
sub—directory if it is the current directory. You must be in the parent
of the sub—directory in order to delete it. The directory must be
empty before you can delete it.
Syntax rmdir <name>
where: name is the name of the sub—directory you are deleting.
Example To remove the directory named PROGS, enter:
| rmdir progs
Errors No such directory: name The directory name does not exist or

the disk is write protected.

TEKELEC 2.1-30 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

rmres

Description

Syntax

Example

The rmres command makes a RAM resident program
non—resident.

rmres <pid>

where: pid is the process id of the program. Refer to the jobs
command to print pids and other informaticn about programs.

If you want to view the current jobs, enter:

jobs
A display such as the following appears:

[0] Running B:\SHELL

[1] Resident B:\BIN\MORE

[2] Resident B:\BIN\CP
This display indicates that the more program is resident and is
assigned process id 1. To remove the more program from RAM,
enter:

rmres 1

The screen then displays:

[1] Removed B:\BIN\MORE

TEKELEC

2.1-31 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Shell

run

Description

Syntax

Note:

See Also

Example

The run command runs a program as a separate process. it loads
the program, creates a new window for the program’s standard I/O,
and executes the program.

run [-xxx] <prog>

The —xxx option sets the process priority within the range 1 — 230,
with 230 having the highest priority. The process priority is actually
the priority given to the MTOS-UX operating system when a task
is created. The default priority is 100 unless otherwise specified.

The & character may be used as the last character of a command
line to indicate ’run’.

By setting your task’s priority, you can force your task to run by
taking CPU time from other tasks. For example, the following are
the process priorities assigned to Chameleon Monitoring
applications: g '

Real Time display 100
History 200
Statistics - 200

If your task does only CPU processing (no I/O), it may not allow
processing time for other applications. If this occurs, you can use
the MTOS-UX pause function to allow time for other tasks to run.
& (page 2.1-5)
To run the program named PROGH1, enter:

run progl

A prog1 banner appears at the bottom of the screen for the 1/O of
the program. : :

To run the program named PROG1 with a process priority of 200,
enter:

run -200 prog1

TEKELEC

2.1-32 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

setenv

Description The setenv command sets an environment variable.
Syntax setenv <name> <’value’>

where: name is the name of the environment variable and value’
is the string value of name. Note that the value is enclosed in
quotation marks to protect the string.

The following variable names are used by the Shell, but up to 20
variables can be set and used by a user program. The following
variable names must be entered in UPPER CASE letters.

BC Sets the background color for new windows.

FC Sets the foreground color for new windows.

HOME Contains a path to change to if the cd command is
used without an argument. If no HOME vanable is
found, the path is set to the root. ~

PATH Sets the default search path for locating files.

YEAR Sets the global _curr_year in the libraries.

The available foreground and background colors are:

black
red
green
yellow
blue
magenta
cyan
white

Example To set a path from the current directory (.) to the root dlrectory tothe
BIN sub~—directory on the A drive, enter:

setenv PATH a:.’\bin b:\’
To set the foreground color to biue, enter:

setenv FC ’'blue’

TEKELEC 2.1-33 Version 2.6, November 1992

Chameleon 32 C Manuai Ch. 2.1: Shell

shell

Description The shell command starts another shell that will do all that the T
shell dees. The other shell can te run in background mode, if
desired.
Note: The cd command will not work on all shells.

Syntax shell <name> &
where: name is the shell name and the & optionally runs the shell
in background mode.

Example To run a shell called newshell in background mode, enter:

shell newshell &

TEKELEC 2.1-34 Version 2.6, November 1992

Chameleon 32 C Manual

Ch. 2.1: Sheil

size
Lescription The size command prints size information for the different
segments of object or executable files to standard output.
Syntax size files
Example To display the size of an object file names scripts.o, enter:
size scripts.o
The resulting display will be:
text data bss dec hex
17590 4384 0 21974 55d6 scripts.o
TEKELEC 2.1-35 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

time

Description The time ccmmand displays the current time as maintained by the
Chameleon 32 clock.

Syntax time

Example To display the current time, enter:

% time :
23 SEP 1987 02:06:34

TEKELEC 2.1-36 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

SHELL ERROR MESSAGES

Table 2.1-1 lists the Shell error messages and their meanings.

2.1-37

ERROR
MESSAGE MEANING
L_FNFERR File not found.
" L_OPNERR Command not found.
L_MEMERR Memory allocation error.
L_REDERR File read error.
_I-:RELERR File contains external references.
L_FMTERR File not executable.
| L_RUNERR Program is currently running.
—T_:F ULERR Too many programs currently loaded.
L_PNRERR Tried to restore a non-resident program.
| L BSYERR Could not get semaphore to use loader.
S_COMERR Command line error.
S_CRTERR Unable to create a task.
|_S_KEYERR Unable to get a new key.
S_MEMERR Out of memory.
| _S_TOKERR Bad command line syntax.
S_PTYERR Priority must be from 1 - 230
Table 2.1-1: Shell Error Messages
TEKELEC Version 2.6, November 1992

" Chameleon 32 C Manual

Ch. 2.2: Compiler Commands

2.2 COMPILER COMMANDS

Introduction

cc

This section describes the compiler commands cc and mcc.

The cc command compiles and links files. The cc command
runs the compiler mecc and/or the linker Id on the specified
files depending on the file extension.

Compiler flags and files with the .c extension (C source files)
are passed to mcc. Linker flags and files with the .o
extension (object files) are passed to Id. This includes .o files
produced from .c files by the compiler. When the cc
command calls the linker, the proper init code and C system
library are included automatically.

The cc command functions as shown in this example:

cc [flags] [file.c] mcc [flags] [file.c] -Ninclude
Id [flags] \lib\init.o file.o \lib\libc.a \lib\libm.a

cc [flags] [file.o] Id [flags] \lib\init.o file.o \lib\libc.a \lib\libm.a
The compiler commands cc and mcc are described in this
section. Id is described in Section 2.3. Square brackets []
indicate an optional field; angle brackets < > indicate a user
specified field. ‘

The cc command uses the following syntax:

cc [-c] [flags] [file.c/file.o...]

The cc fields are:

-¢c Compiles only; does not link

flags Optionally specified flags for /d and mcc as
summarized below.

Id flags: -d Debug option. Causes the linker to
include the names of functions in
the executable program.

-Ixxx Library search path. The linker
automatically searches the path
\lib\libxoocx.a where libxxxx.a is the
name of the library.

TEKELEC

2.2-1 Version 2.2

'~ Chameleon 32 C Manual

Ch. 2.2: Compiler Commands

-txxx

mcc flags: --lpath

file.p

file.c

-dname

Prints names and addresses of
globals which are included in the
executable program. Creates
MAPFILE of globals in program.
This is a set of symbols and their
offset from the beginning of the file.

Writes output to specified output
file (default is a.out).

Linker adjusts references wihtin
program as if program were at hex
memory location xxx. :

Causes the compiler to search the
specified path for include files.
Defauit path is \include.

Equivalent to inserting #define
name in the source.

-dname =value

-X

Equivalent to inserting #define
name value in the source.

Trace Mode. Adds calls to the
debugging routines debugin as
each function is entered and

debugout as each function
ferminates.

If an object file is specified, cc calls Id only (links), but
does not call mcc (compiler).

If a C sourcefile is specified, cc calls Id (linker) and
mcc (compiler), unless the -c option is included..

TEKELEC

2.2-2

Version 2.2

Chameleon 32 C Manual Ch. 2.2: Compiler Commands

mcc mcc is the name of the compiler and compiles one C source
file at a time. It uses the following syntax:

mcc [-dname[=value]] [-lpath] [-x] [-Nifile] <file.c>
The mcc command fields are:

-dname Equivalent to inserting #define
- name in the source.

-dname = value Equivalent to inserting #define
name value in the source.

Example: Dtest=1 is the same as
#define test 1 in the source file.

?lpath Causes the compiler to search the specified
path for include files. Default path is \include.

=X Trace Mode. Adds calls to the debugging
routines - debugin as each function is
entered and debugout as each function
terminates. The routines shown below are
the default routines that will print the
procedure names and the passed
parameters. These routines can be
overwritten by user routines.

debugin(args, format)
Char *args;
char *format; ‘
args is a pointer to the parameters on the
stack :

format is a pointer to a printf type format
string containing the name of the function
entered and a % conversion for each arg.

debugout(name)
char *name;
name is a pointer to a string containing the
name of the fucntion that is terminating.

file.c The C source file name. C source files have
the file extension .c. The compiler produces
an object file and assigns the same file name
as the corresponding C file, but changes the
extension to .0.

Compiler Errors Refer to section 2.8 for a list of global error codes which can
be returned by the compiler.

TEKELEC 2.2-3 Version 2.2

Chameleon 32 C Manual

Ch. 2.3: Linker Command

2.3 LINKER COMMAND (Id)

introduction

Usage

The Tekelec Linker is similar to the UNIX linker /d. The linker
takes as input multiple object and library files and creates an
executable file from them by resolving all external references
(references to symbols not defined in the file making the
reference). The user specifies which object files he wants
loaded and which library files he wants searched.

The utility program named cc includes the correct libraries and
initialization code. You will normally use program cc to
compile and link your user programs.

The linker must be used even if a program doesn’t contain any
external references because an object file created by the
compiler is not executable.

Symbols defined in the user specified object files will override
definitions of the same symbol in the libraries because user
object files are loaded first. Likewise, symbols defined in the
first libraries in the list override definitions from latter libraries
(the system library is always read last). A programmer may
make use of this feature by writing his own versions of system
library functions (such as malloc for instance) while still using
other procedures from the library.

The linker is run from the shell. Linker command syntax is
shown below. Square brackets [] indicate optional fields;
angle brackets < > indicate user specified fields.

Id [-V] [-Llib] [-M] [-X] [-Txxx] [-0 output] <objects > [libraries]

The fields for the Id command are:

-V Verbose option. Displays the names of the
functions in each of the object or library files
specified in the command line.

-Llib Library search path. The linker automatically
searches the path \lib\libooxx.a where libxxxx.a
is the name of the library.

TEKELEC

2.3-1 v Version 2.5

Chameleon 32 C Manual

Ch. 2.3: Linker Command

-Txoxx

-0 output

objects

libraries

For example, to compile prog.c using the libsdlc
(SDLC library), you can use the command:

id prog.d -Isdic
This causes the same result as entering:
Id prog.o lib\libsdic.a

Prints names and addresses of globals which are
included in the executable program. Writes this
information to MAPFILE. This is a set of symbols
and their offset from the beginning of the file.

Debug option. This option causes the linker to
include the names of functions in the executable
program. |f the program terminates abnormally
(dure to a processor exception), a stack dump
can be printed. Static functions begin with a tilde
(") while global functions being with an
underscore (_).

Causes the linker to adjust references within the
program as if the program was at hex memory
location xox. Normally, the program is linked as if
it were based at location zero, and relocation
information is included so that when a program is
run, the references may be adjusted for the
actual memory location. Setting this option also
prevents this relocation information from being
included.

Writes output to a file, where output it the name
of the output file. The default output file name is
a. out

One or more input object files. This must always
include:

NMib/init.o

One or more input library files, if not already
specified with the -Llib option.

TEKELEC

2.3-2 Version 2.5

Chameleon 32 C Manual

Ch. 2.3: Linker Command

Linker Errors

If an error occurs during the link, the link is aborted and no
output program is written. Error messages are listed below.
Also refer to section 2.8 which describes the global error
codes which can be returned by the linker.

Usage: Id [-d] [-box] [-m] <infile> [-hocx] [-0 outfile]

Either an invalid link option was specified, or no object or
library files were given.

File open error: name
The object or library file name was not found. Check to
see that the file name and path name are given correctly
and that the file actually exists.

File read error: name
Likely a disk problem. Try a newly formatted disk.

File write error: name
Either the disk onto which the linker output is being
written is full, or there is a physical problem with the
disk. Check to see that adequate space for the output is
avialable.

Unable to open output file: name
Check to see that the disk is not write protected, and
that the path given for the output, if any, is correct. May
also be the result of a problem with the disk.

File format error: name
The named input file is not in the correct format or has
been corrupted. Assure that only object files and library
files are specified.

Undefined symbol(s):

The linker found references to function name(s) or global
variable name(s) for which there is no definition. Make
sure that the listed globals are actually defined, and that
references to library functions are spelled correctly.
Note that a leading underscore () is added to each
global by the compiler and should be |gnored by the
user.

Duplicate name definition: name
The global name has been defined in more than one
lace. Eliminate or rename one of the
unctions/variables.

TEKELEC

2.3-3 Version 2.2

Chameleon 32 C Manual

Ch. 2.3: Linker Command

The Linking
Process

- No name list: file

File is missing symbol table information. Object files
r ust have at least one global name to be linked.

No string table: file
File is missing its string table, a list of the actual names
referred to by the symbol table.

The linker examines each argument in the order given.
Object is always included, while libraries are searched by the
linker and only those object code modules which are needed
are actually included in the final executable program. Since
libraries frequently contain many object code modules, the
archiver may be used to add an index of global function and
variable names to the beginning of a library. Using this index,
the linker can quickly resolve external references, greatly
speeding the linking process.

The index, if it exists, is loaded into memory and searched
repeatedly until either no more undefined names need
resolving, or a complete pass of the index is made and no
additional object code modules are extracted. If the library
does not contain this index, the linker will make only one
sequential pass through the library, including code modules
only if they are needed. Therefore, without the index,
references in the library must refer to object modules which
appear further into the file.

TEKELEC

2.3-4 Version 2.2

Chameleon 32 C Manual

Ch. 2.3: Linker Command

Object File
Format

A.out is the format of the object file that is created by the
compiler. This object file format is the same one that is used
by Unix systems. The file has five sections: a header, the
program text, the program data, relocation information, a
symbol table, and a string table (in that order). The text
segment contains the actual machine code for the program,
while the data segment contails initialized variables. - A
segment for uninitialized variables, called the bss segment, is
set up at the time the program is run.

Format using the C structure definitions are shown on the next
page. ‘

TEKELEC

2.3-5 : Version 2.2

Chameleon 32 C Manual

Ch. 2.3: Linker Command

/: Header prepended to each object file.
/

typedef struct {
long a__magic;
long a__text;
long a__data;
long a__bss;
long a__syms;
long a__entry;
long a__trsize;
long a__drsize;
{: Format of a relocation datum
typedef struct {
long ‘ r__address;
. unsigned long r__info;
/
} relocation___info;

/:/ Macros to access the r__info field

#define r__symbolnum(x)
#define r_i)crel(x)
#define r__length(x)

#define r__extern(x)

/* magic number 0x0107 */
/* size of text segment */
/* size of initialized data */
/* size of unitialized data */
/* size of symbol table */
/* entry point */
I* size of text relocation */
/* size o_f data relocation */
/* address which is relocated - ¥
/* r__symbolnum, r__pcrel, r__length,

/* r__extern */

((x> > 8) & Ox{THiTL)
(x>>7) & 0x1L)
((x>>5) & 0x3L)
((x>>4) & 0x1L)

If r_extern is. zero, then r__symbolnum is actually the N_TYPE (see
below) for the relocation rathér than an index into the symbol table.

/* Format of a symbol table entry.

r*
typedef struct {
char *n__name; /* string table index */
char n__type; /* typeflag,i.e. N__TEXTete */
char n__other; /* unused : */
char n__desc; /* currently not used */
long n__value; /* value of this symbol */
Inlist;
f‘/ Simple values for n__type
#define N__ UNDF 0x0 /* undefined Y
#define N__ABS 0x2 /* absolute */
#define N__TEXT 0x4 /* text */
#define N__DATA 0x6 /* data */
#define N__BSS 0x8 /* bss */
#define N__COMM 0x12 /* common (internal to 1d) */
#define N__FN Ox1f /* file name symbol */
#define N__EXT 01 /* external bit, ORed in */
#define N__N-YTPE Oxle /* mask for all the type bits */
TEKELEC 2.3-6 Version 2.2

Chameleon 32 C Manual

Ch. 2.3: Linker Command

Object File]
Format Obiject files are composed of up to four sections: a header,
the text and data segments, an optional symbol table, and
optional relocation information. The header, the first
component in the file, specifies the size and starting
address of the other components in the object file whichar
are listed below.
/* header
*/
typedef struct { .
int ¢__magic; /* magic number (0x601A) */
long c__text; /* size of text segment */
long c__data; /* size of initialized data */
long ¢__bss; /* size of uninitialized data */
long c__syms; I* sizeof symbol table */
long c__entry; /* entry point */
long c__res; /* reserved, always zero ¥
} header;

/"; Symbol table entry

typedef struct {
char name{8];
int type;
long vme;
} symbol;

/;; values for symbol types

#define - DEFINED 0x8000 /* The symbol is defined */

tdeﬁne EQUATED 0x4000 /* The symbol is an equate */

#define GLOBAL 0x2000 /* The symbel is global */

iﬁ;deﬁne EQU__REG 0x1000 /* The symbol is a register */

iﬁ;deﬁne EXTERNAL 0x0800 ~ /* The reference is external */

#define DAT__REL 0x0400 /* Data segment reference */

#define TEX__REL 0x0200 /* Test segment reference */

f;deﬁne BSS_REL 0x0100 /* Bss segment reference */

The above values may be ORed together to indicate symbol
type.

One word (16-bit) of relocation information exists for each
word of text and data. The type of relocation is indicated in
bits 0-2 of the word. If the relocation is an external
reference, the remianing bits (15-3) form an index into the
symbol table, indicating the name of the external reference.

TEKELEC

2.3-7 Version 2.2

Chameleon 32 C Manual

Ch. 2.3: Linker Command

/* relocation word values (bits 0-2)

*

#define NO__RELOC 0
#define DATA_BASED 1
#define TEXT BASED 2
#define BSS__BASED 3
#define UNDEF__ SYMBOL 4
#define LONG_REF 5
#define PR__RELATIVE 6
#define INSTRUCTION 7
TEKELEC 2.3-8 Version 2.2

Chameleon 32 C Manual

Ch. 2.4: Librarian Usage

2.4 LIBRARIAN

Introduction

Random Library

The Tekelec librarian, ar, maintains a group of files combined
into a single archive. Its main purpose is to create object file
libraries to be used by the linker. -

The librarian is compatible with the UNIX program ar (file
archiver). It also provides the function of the UNIX utility
ranlib, which creates a dictionary of symbols that the linker
uses to speed the process of searching through libraries.

The ar command includes an option (I) which converts an
archive of object files into a random library. This enables the
linker to search the archive more efficiently.

The librarian performs this randomization by examining the
entire library, collecting global function and variable names,
and information about the object modules in which they are
defined, and writing a special component into the library. This
component, named SYMDEF, is always the first component
of the library. -

Always randomize a newly created library. Once randomized,
the librarian automatically re-randomizes any library which is
changed.

If a library has a .SYMDEF ahd it is changed, the librarian
automatically recréates the _ SYMDEF.

The usage of ar is on the following page.

TEKELEC

2.4-1 Version 2.2

Chameleon 32 C Manual

Ch. 2.4: Librarian Usage

Usage The ar command uses the following syntax:

ar <key> [v][pos] <afile> <file> [file...]

The ar fields are:

key

ra

pos

afile

file

One of the commands listéd below.
List a table of contents of the archive..

Replace (add) file to the archive. If the
archive does not exist, it is created. If an
archive component name matches <file>, it
is replaced. Otherwise <file> is appended
to the end of the archive in the order
specified.

Same as option r, except the replace/add
begins after the component in the archive
named in [pos]. The file pos is first located,
then the replace command is executed.
Delete file from archive.

Extract copy of file from archive.

| Write the file to the standard output.

Convert archive into random library. Always
randomize a newly created library.

The letter v (verbose) can be appended to
any of the commands, causing the librarian to
print information about the action performed.

Used with option ra. Indicates where the file
is to he archived. pos is the file that the new
file should follow in the archive.

Archive file name.

One or more file names, used according to
key.

TEKELEC

2.4-2 Version 2.2

Chameleon 32 C Manual

Ch. 2.4: Librarian Usage

ERROR MESSAGES

Table 2.4-1 lists the librarian error messages and their
meanings. Also refer to section 2.8 which describes the
global error codes that can be returned by the librarian.

ERROR MESSAGE

Usage: ar...

MEANING

An invalid key was specified, or not object or library files
were specified.

File open error: name

The file name was not found. Check to see that the file
name and path are correct, and that the file actually
exists.

File read error: name

Try a newly formatted disk.

File write error: name

Disk is full or there is a physical program with the disk.
The librarian writes a temporary file, called AR..TMP to
the disk. Make sure there is adequate space available
on both the librarian disk and the disk on which the
library exists. .

File create error: name

Unable to create a new library. Make sure that the disk
is not write-protected, and that the path for the output is
correct. Could also indicate a disk problem.

Temporary file open error

Unable to create the temporary file. There is either a
problem witht he disk or the disk from which the librarian
is being run is full. Make sure there is adequate space
available on both the librarian disk and the disk on
which the library exists.

File format error: name

File given is not a library file.

Memory allocation error

Memory is exhausted. Remove RAM disk or cache.

Maiformed archive (0xXXX)

The library file is internally corrupt. Create or copy a
new file. The hex number given is the address where
the librarian expected to find the beginning of a
component file, but did not.

Table 2.4-1: Librarian Error Messages

TEKELEC

2.4-3 Version 2.2

Chameleon 32 C Manual

Ch. 2.5: Disassembler Usage

2.5 DISASSEMBLER

Description

The Disassembiler, called dis, prints the assembly language
equivalent of an object code file. This allows you to check the
compiler’s code generation for errors or determine if it can be
improved.

If the file contains symbol information, it is used where
possible; otherwise, actual reference values are printed.
Since references internal to an object file are resolved by the
compiler, there will be instances where no name is associated
with a reference. In these instances, the Disassembler makes
an educated guess as to the name of a reference, and prints
it , rather than a value. All numeric values are printed in hex.

The output of the Disassembler is not directly compatible with
the in-line assembly of the compiler, because the compiler
inserts extra characters that are not part of the assembler
syntdax. This additional information can be removed using the
vi editor. '

The . Disassembler uses Motorola mnemonics to print the
assembly language equivalent of an object file. The
disassembler prints labels as they would appear in an
assembly language program by examining the symbol table

. and the relocation information.

Usage

The disassembler command uses the following syntax:
dis [-n] [-r] [-a] [-i] ofile [ofile . . .]

-n Suppress reference names and
addresses. Print actual reference values.
Default is for symbol names to be printed.

-r Relative branches. Normally branch
instructions, which specify addresses
relative to the program counter, are
converted to absolute addresses. This
option suppresses the conversion.
Default is the absolute address of the
destination of the branch.

-a Assembly format. Print as an assembly
file, suitable for compiling. Often, slight
modifications will be necessary before it
will compile correctly.

TEKELEC

2.5-1 Version 2.2

Chameleon 32 C Manual

Ch. 2.5: Disassembler Usage

-i Instruction print. The hex value of each .
instruction is printed before the instruction
is disassembled.

ofile An object or executable file

Disassembler _
Errors Table 2.5-1 lists the Disassembler error messages and their
' meanings. Also refer to section 2.8 which describes the
global error codes that can be returned by the disassembler.
ERROR MESSAGE MEANING

Usage : dis ...

An invalid option was specified or no object or
program files were given.

File open error: name

| that the file name and the path name are correct,

The input file name was not found. Check to see

and that the file exists.

Memory full while
processing

Memory exhausted. Remove RAM disk or cache.

File format error: name

The file name is not an abject or program file, or it is
corrupt. - ' . S

Table 2.5-1: Disassembler Error Messages

TEKELEC

2.5-2 Version 2.2

Chameleon 32 C Manual

Ch.2.6: Egrep

2.6 EGREP
Description Egrep searches files for patterns that the user specifies. The
patterns are in the form of regular expressions. Normally,
each line that matches the user-defined pattern is copied to
the standard output. Egrep patterns are extended regular
expressions using a fast deterministic algorithm that
sometimes needs exponential space. Lines are limited to
1024 characters; longer lines are truncated.
Egrep prints the file name if there is more than one input file.
Usage Egrep uses the following syntax:
egrep.ttp [-C] [-L] [-V] [-N] [-S] pattern [files]
-C Matching line count.
This option prints the number of lines that
matched the pattern.
-L File listing.
This option prints the file names
containing matching lines. :
-V ~ Print all non-matching lines.
This option prints the lines that do not
match the pattern.
-N Print line number.
This option prints the line number of the
matching line.
-S Silent option.
This option prints only error messages.
[files]
TEKELEC 2.6-1 Version 2.2

Chameleon 32 C Manual

Ch. 2.6: Egrep

Pattern

Egrep accepts extended regular expressions. A regular
expression specifies a set of strings of characters. A member
of this set of strings is said to be matched by the regular
expression.

Care should be taken when using the characters $ *["~ | ()
and \ in the expression, as they may also be meaningful to the
shell. It is safest to enclose the entire expression arguments
in single quotes (’). In the following description, the term
character excludes newline:

® \ (back slash) followed by a single character (other than
newline) matches that character

° " (caret)matches the beginning of a line
] . (period) matches any character
® Any other character matches that character

® A string enclosed in brackets [] matches any single
character from the string. Ranges of ASCIlI character
codes can be abbreviated, for example, a-z0-9. A
right bracket (]) can occur only as the first character of
the string. A literal - must be placed where it cannot
be mistaken as a range indicator.

® A regular expression followed by an asterisk (*) matches
a sequence of zero or more matches of the regular
expression.

A regular expression followed by plus (+) matches a
sequence of one or more matches of the regular
expression.

A regular expression followed by a question mark (?)
matches a sequence of zero or one matches of the
regular expression.

e Two regular expressions concatenated match a match of
the first followed by a match of the second.

e Two regular expressions separated by | or newline
match either a match for the first or a match for the
second.

] A regular expression enclosed in parentheses matches
a match for the regular expression. The order of
precedence of operators at the same parenthesis level
is as follows: [] then * + 2, then concatenation, then |
and newline.

TEKELEC

2.6-2 Version 2.2

Chameleon 32 C Manual

Ch. 2.6: Egrep

Examples

If a file named test1 contains the line:

The lazy dog jumped over the the cow
To search for the word dog in the file, use egrep as follows:
egrep 'dog’ test1
To list all functions in a file, use egrep as follows:
egrep ’“([a-zA-Z][_]) (a-zA-ZO0-9Jj[_ I (' test2.c
If test2.c is the following program:
main()
int i;
foo();
00()
int i;
main();.
Egrep would print:
foo()
TEKELEC 2.6-3 Version 2.2

Chameleon 32 C Manual Ch. 2.6: Egrep

Egrep Errors Table 2.6-1 lists egrep error messages and their meanings.
Also refer to section 2.8 for a description of global error codes
which can be returned by egrep.

ERROR MESSAGE MEANING

Usage : egrep.ttp... No pattern or files were given.

Unable to open: name Egrep cannot open the file name.

Unknown flag: flag Flag is not used by egrep.

Invalid regular expression Something is wrong with the regular expression.

Unmatched (A right garenthesis has been omitted from the
expression.

Unmatched) A left payenthesis has been omitted from the
expression.

Premature end of regular The expression finished before it should have.
expression

Nesting too deep The nesting of parentheses was too great.

Regular expression too big | The expression was too big for egrep to compute.

Memory Exhausted Egrep ran out of memory.

Table 2.6-1: Egrep Error Messages

TEKELEC 2.6-4 Version 2.2

Chameleon 32 C Manual

Ch. 2.7: Symbol Namer

2.7 SYMBOL NAMER

Introduction

Usage

Error Messages

Object files and application files can contain symbolic
information in their symbol tables. This symbolic information
can be printed using the Symbol Namer utility.

Each symbol is preceded by its value (in hexadecimal) and
one of the following letters:

Absolute

Bss segment
Common symbol
Data segment
Text segment
Undefined symbol

o000 OO
cHoom>»

If the letter is lower case, the symbol is local. If upper case,
the symbol is global.

The Symbol Namer syntax is:

nm [file]
file An executable file which has been
linked so that it still has its symbol
table.

~ Table 2.7-1 lists the Symbol Namer error messages and

their meanings.

ERROR MESSAGE . MEANING

Usage: nn...

An invalid option was specified or no object or
application file was specified.

File open error:

The input file was not found. Make sure that the file
name and path name are correct, and that the file
actually exists.

File format error: name The file is not a valid object or application file or

program file, or is corrupt.

No name list The file has no symbol table.
Table 2.7-1: SymbolNamer Error Messages
TEKELEC 2.711 Version 2.2

Chameleon 32 C Manual Ch. 2.8: Global Error Codes

2.8 GLOBAL ERROR CODES

Description This table below lists the global error codes which may be
returned when you are using C programs, such as the
compiler, make, librarian, disassembler, or egrep. Additional
error codes are listed in the appropriate section for each

program.
Eckgg: MEANING
0 Successtful (no error)
-100 No command given
-101 Error creating task
-102 Unable to get key
-103 Out of memory
-104 Invalid command line token
-105 | Invalid priority
-106 No match on file name expression
-107 openvt error
-108 Ambiguous redirection
-109 Unable to open redirection

Table 2.8-1: Global Error Codes

TEKELEC 2.8-1 - Version 2.2

Chameleon 32 C Manual

Ch. 2.9: BASICSITREX/Text File Conversion

2.9 BASIC/SITREX/TEXT FILE CONVERSION

Introduction The Chameleon 32 BASIC/SITREX/TEXT File Conversion utility
provides the following file conversion capability:
.® Converts a Chameleon BASIC (FRAMEM or SIMP/L) or
SITREX program file to a text file

° Converts a text file to a Chameleon BASIC/SITREX file

This gives you the ability to write and edit your BASIC/SITREX

programs using the C vi Editor, or a text editor on a PC or

other computer. The text file can then be converted to a

BASIC or SITREX program file and run on the Chameleon 32.

The Chameleon 32 BASIC/SITREX/TEXT File Conversion utility

requires that you have the optional C Package installed on

your Chameleon 32. It includes the following programs:

e totext Converts a Chameleon BASIC or SITREX file

to a text file

e tobas Converts a text file to a Chameleon BASIC or

SITREX file
General
Guidelines General guidelines for using the conversion utility are listed
‘ below. Steps for performing a specific type of file conversion

begin on page 2.9-3.

1. Verify that the two conversion programs are in the \BIN
directory of the Chameleon 32 hard disk drive. They are
automatically copied to the correct directory when the
system software is installed.

Your environment (setenv) should contain a search path
to the \BIN directory so that the conversion programs can
be executed from any directory of the hard disk.

2. If you are using vi or another text editor to write your
BASIC or SITREX programs, be sure that your text files
conform to the necessary syntax rules before you
convert them. In the Chameleon 32 Simulation Manual,
BASIC is described in Chapter 3 and SITREX is
described in Chapter 8.

3. BASIC and SITREX files have unique 2-character
filename extensions and must be located in specific
directories in order to be used. Figure 2.9.1 on the next
page lists the extensions and directories for each file
type.

TEKELEC 2.9-1 Version 2.2

Chameleon 32 C Manual

Ch. 2.9: BASIC/SITREX/Text File Conversion

FILE TYPE

DIRECTORY FILE EXTENSION

SITREX

\TEKELEC\SIMULATE\SITREX .BA

FRAMEM SDLC/HDLC

\TEKELEC\SIMULATE\FBOP .CB

SIMP/L SDLC

\TEKELEC\SIMULATE\SSDLC .DB

SIMP/L HDLC

\TEKELEC\SIMULATE\SHDLC .EB

SIMP/L V.120

\TEKELEC\SIMULATE\V120 .GB

BISYNC

\TEKELEC'SIMULATE\BISYNC ' .HB

ASYNC

\TEKELEC\SIMULATE\ASYNC ' B

FRAMEM DMI

\TEKELEC\SIMULATE\FDMI ' JB

FRAMEM LAPD

\TEKELEC\SIMULATE\FLAPD LB

SIMP/L LAPD
SIMP/L MLAPD

\TEKELEC'\SIMULATE\SLAPD .MB

Figure 2.9.1: Simulation Directories and File Extensions

When executing the conversion programs, you can
specify path names so that the BASIC/SITREX files do
not have to be copied to a specific directory before
converting. However, the amount of typing you do will
be minimized if you change to the directory that contains
the files you want to convert.

Converted files are copied to the same directory
containing the BASIC/SITREX file you are converting.

Text files can be exchanged between the Chameleon 32
and other computers using the following methods:

Files on 3 1/2” MS-DOS floppy diskette can be
accessed directly from the Chameleon 32 floppy
disk drive or copied to the hard disk.

Files stored on other media can be transferred with
the Chameleon 32 Kermit File Transfer utility. In
order to use Kermit, the other computer must have
a Kermit-compatible file transfer program.

Text files should be transferred using the Kerrit
text mode option.

Refer to the Chameleon 32 User’s Guide, Chapter
10 for more information about Kermit file transfer.

TEKELEC

2.9-2 Version 2.2

Chameleon 32 C Manual

Ch. 2.9: BASIC/SITREX/Text File Conversion

Converting BASIC/SITREX Files to Text Files

The totext program converts a Chameleon 32 BASIC or
“SITREX file to a text file so that it can be edited with the C vi
Editor or a text editor on another computer.

To convert BASIC/SITREX files to text files, do the following:

1.

Copy the files you want to convert to the difectory a:usr.

BASIC and SITREX files are located in specific
directories of the hard disk and have unique 2-character
file extensions. This information is hsted in Figure 2.9.1
on page 2.9-2.

Access the C Shell prompt and change to the directory
a:\usr.

Execute the totext program using the following syntax
totext file1.ext file2.ext

filet.ext file1 is the BASIC/SITREX program filename
of 1 - 8 characters. :

ext is the 2-character file extension specific to
each type of file as listed in the Figure 2.9.1
on page 2.9-2.

file2.ext You can convert more than one file at a timé,
by delimiting each filename with a space.

You can also use wildcards to convert more
than one file at a time.

When converted, the text file will be located in the a:\usr
directory. The new file will have the same filename as
the BASIC/SITREX file, with the file extension .ED.

You can edit the text file with the C vi Editor, or use the
Kermit File Transfer utility to transfer the file to another
computer.

After editing the text file, you must convert it back to a

- BASIC or SITREX file and copy it to the appropriate

directory before you can use the program on the
Chameleon 32.

TEKELEC

2.9-3 Version 2.2

Chameleon 32 C Manual

Ch. 2.9: BASIC/SITREX/Text File Conversion

Converting Text Files to BASIC/SITREX Files

The tobas program convert a text file to a Chameleon 32
BASIC or SITREX file. After converting a text file to a
BASIC/SITREX file, it must be copied to the appropriate hard
disk directory before it can be used. This information is listed
in Figure 2.9.1 on page 2.9-2. To convert a text file to a
BASIC/SITREX file, do the following:

Access the C Shell prompt (!).
2. Copy the text files to the directory a:dusr.

If they are located on another device, use the
Chameleon 32 Kermit File Transfer Utility to transfer them
from the other device to the Chameleon 32 hard disk
drive. The text file must be transferred using the Kermit
text mode option.

3. Execute the tobas program using the following syntax:
tobas -type file1.ext -type file2.ext

-type -type is the 2-character file extension for the
type of BASIC/SITREX file being created.

For example, a FRAMEM HDLC file must have
the extension .cb, therefore if you were
converting a text file to FRAMEM HDLC, the
type would be -cb. The type must be one of
-the following in lower case letters:

IF CONVERTING TO: USE THE TYPE:
SITREX ' -ba
FRAMEM SDLC/HDLC -cb
SIMP/L SDLC -db
SIMP/L HDLC -eb
SIMP/L V.120 -gb
BISYNC -hb
ASYNC -ib
FRAMEM DMI b
FRAMEM LAPD -Ib
SIMP/L LAPD ' -mb
SIMP/L MLAPD

TEKELEC

2.9-4 Version 2.2

Chameleon 32 C Manual

Ch. 2.9: BASIC/SITREX/Text File Conversion

filet.ext file1 is any valid MS-DOS filename of 1 - 8
characters.

ext is a 1-3 character file extension.

file2.ext You can convert more than one file at a time,
by delimiting each filename with a space.

You can also use wildcards to convert more
than one file at a time.

When converted, the file will be located in the same
directory as the text file. The new file will have the same
flename as the text file, with the file extension specified
in the type parameter.

Before you can run the converted BASIC/SITREX file it
must be copied to the appropriate directory and given
the correct file extension as indicated in Figure 2.9.1 on
page 2.9-2.

TEKELEC

29-5 Version 2.2

Chameleon 32 C Manual

Ch. 3.1: Make Utility

3.1 MAKE UTILITY

Introduction

Makefile

Built-In Rules

Macro Feature

Programmers often divide large programs into smaller pieces.
These smaller units are easier to work with on an individual
basis, but tracking the relationships and dependencies among
the pieces becomes a time-consuming task. As you modify
your program, it is difficult to remember which files depend on
which others, which files have been modified, and the exact
sequence of operations needed to make or test a new version
of a program.

make automates a number of program development activities
so that you can maintain up-to-date versions of your
programs with a minimum of effort.

® Find the name of a specified target file(s)

] Ensure that the files that the target depends on
(dependencies) exist and are up-to-date

] Update or create the target to incorporate modifications
that have been made to the dependencies since the
target was last modified

To use make, you ctreate a description file, referred to as a
makefile, that identifies the target files, the dependencies of
the targets, and commands. The information in the makefile
enables make to identify the operations necessary to update
and compile your program after you make modifications.

In addition to the information in the makefile, make maintains
a table of built-in rules in a special makefile called
SUFFIXES. It uses the information in SUFFIXES to determine
which file name suffixes are interesting, and how to transform
files with specific suffixes into files with other suffixes.

For example, a rule in the SUFFIXES table could specify that
files with a .c suffix (C source files) are to be transformed into
.0 (object files). This rule causes C source code files to be
compiled.

You can add or modify suffixes and rules in the SUFFIXES
table, thus enabling you to define global rules that make will
apply to any makefile. Additionally, you can inhibit the use of
built-in rules in the SUFFIXES table by entering the make
command -r option, described later in this section.

make includes a macro substitution facility that enables you to

perform string substitution in dependency lines and. command

strings.

TEKELEC

3.141 Version 2.2

Chameleon 32 C Manual

Ch. 3.1: Make Utility

MAKE COMMAND

The make command executes commands in a makefile,
causing specified target files to be updated or created to
reflect changes made to files they depend on.

The make command executes the file with the default name
MAKEFILE, unless a different name is specified.

Syntax The syntax of the make command is shown below. Items
enclosed in square brackets [] are optional items.
make [opt] target] [macro = value] [Fname . . .]
The make command fields are described below.
opt The following options are available:

-1 Ignore error codes returned by invoked programs.
Alternately, you can ignore error codes, using two
other methods:
® Enter .IGNORE as a false target in the

makefile
® Press TAB - .(tab followed by a hypen)
preceding a command in the makefile

N No execute mode. Print commands, but do not
execute them.

-R Do not use Make Utility built-in rules specified in
SUFFIXES. Alternately, you can inhibit the use of
the SUFFIXES table by entering .SUFFIXES, without
a dependency list, as a false target name in the
makefile.

-S Silent mode. Do not print command lines before
executing. Alternately, you can specify silent
mode, using two other methods:
® Enter SILENT as a false target in the

makefile
] Enter @ as the first character of a command
in the makefile

-P Print all macros and targets

-Q Question up-to-dateness of a target

-X Print a list of all targets in the makefile

TEKELEC 3.1-2 Version 2.2

Chameleon 32 C Manual

Ch. 3.1: Make Utility

target The names of one or more target file names
separated by a blank space. If target files are
not specified in the make command, the
target(s) specified in the first line of the
makefile are updated/created.

macro =value Define a macro (see page3.1-6)

-Fname The name of the makefile to use. In the
‘ absence of this option, make looks for the
default name of MAKEFILE. More than one
-fmakefile parameter can occur in a make

ommand.
MAKEFILE : ‘
STRUCTURE To use the make command, you create a makefile that
specifies the target files and the files that depend on them. A
makefile contains the following information:
] Entries (targets + dependencies + commands)
e Comments
® Macros
Entries The entry is the most important part of a makefile. It consists
\ Ic_>f the target file names, their dependencies, and command
_lines. ‘ .
There are two types of entries:
e Dependency lines
e Command lines
The general form of an entry is described below. Note that
items in square brackets [] are optional items; items in
parentheses are mandatory. An ellipsis (...) indicates that
more than one like item can be entered.
A dependency line defines the target files and their
dependencies (the files that the target depends on).
Optionally, a dependency line can contain one or more
commands. The form of a dependency line is:
target...[:] [dependent...] [;command...]
A command line contains a progra name followed by program
parameters. Command lines must begin with a TAB. The
form of a command line is:
(tab)[command...]
TEKELEC 3.1-3 Version 2.2

Chameleon 32 C Manual

Ch. 3.1: Make Utility

The items in a makefile entry are described below.

target

The target is the name of one or more target files.
These are the files that you want updated or
created. Target names are strings of letters, digits,
periods, and slashes. Multiple target names are
separted by blank spaces. Shell metacharacters *
and ? are expanded.

dependent The dependent is the name of one or more

command

files that the target files depend on. Dependent
names are strings of letters, digits, periods, and
slashes. Multiple dependent names are
separated by blank spaces. Shell
metacharacters * and ? are expanded.

You can use a single colon (:) or double colon (::)
to separate the targets from the dependencies. A
target name can appear on more than one
dependecy line, but all lines that it appears on must
be of the same (single or double colon) type.

If a target appears on more than one dependency
line, and a single colon is used, only one of the
dependency lines can have a command sequence
associated with it. If the target requires updating,
and a command sequence is specified, it is
executed.

If a target appears on more than one dependency
line, and a double colon is used, each dependency
line can have a command sequence associated
with it. If the target requires updating, the
associated commands are executed, including
built-in rules. The double-colon form is valuable
for updating archive-type files.

A command is a program name followed by
optional program parameters (any string of
characters, excluding a # or carriage return).

Commands can appear on a dependency line or
on the line immediately following a dependency
line. If a command appears on the dependency
line, it is preceded by a semicolon. If a command
appears on the line following a dependency line,
the command line must begin with a tab.

TEKELEC

3.1-4 Version 2.2

Chameleon 32 C Manual

Ch. 3.1: Make Utility

Command lines are executed one at a time, each
by its own shell. This is important to remember
when using commands that have meaning only
within a single Shell process; the results are
forgotten before the next line is executed. These
types of commands include e¢d and Shell control
commands.

A line is printed when it is executed unless the
make command -s option is used or .SILENT is
entered as a false target name in the makefile.

Commands returning nonzero status cause the

make command to terminate unless the make

command -i option is used or .IGNORE is entered
. as a faise target name in the makefile.

Some commands return nonzero status
inappropriately. Use the make command -i option
or begin the particular command with <TAB>
<HYPHEN> in the makefile.

Make remembers embedded newlines and tabs in
Shell command sequences. If you write a for loop -
in the makefile with tabs, make retains the tabs
and backslashes when the commands are
displayed. Output can be piped to the Shell and is
readable. ,

Command lines can appear on a dependency line or on the
line immediately following a dependency line. If a command
appears on the dependency line, it is preceded by a
semicolon. If a command appears on the line following the
dependency line, thecommand must begin with a tab.

A line is printed when it is executed unless the -S options is-
used or .SILENT is entered as a false target name in the
makefile.

Commands returning non-zero status cause make to
terminate, unless the -l option is used or .GNORE is entered
as a false target name in the makefile. Some commands
return non-zero status inappropriately. For these cases, use
the -l option, or begin the particular command with (tab)
(hyphen) in the makefile.

TEKELEC

3.1-5 Version 2.2

Chameleon 32 C Manual

Ch. 3.1: Make Utility

Entry logic

Comments

Macro Definition

The order of your entries in a makefile is significant. Lower
level dependencies must be defined before higher level
dependencies. For example, If target A depends on B, and
target B depends on C, the entries must appear in the .
following order in the makefile:

B:C
AB

This logic causes make to update B based on C, before it
updates A from B. In order for make to update your files
correctly, you must use this logic when creating your
makefiles.

The pound sign (#) indicates a comment. All characters, from
a pound sign to the end of the line, are ignored. Blank lines
and lines beginning with # are ignored totally. Comments can
appear on dependency lines or command lines.

Make also provides a simple macro substitution facility for
substituting strings in dependency lines and commands.

A macro line contains an equal sign (=) which is not
preceded by a colon or a tab. The macro name is the string
to the left of the equal sign (trailing blank and tabs are
stripped). The macro is assigned the. string of characters to
the right of the equal sign (leading blanks and tabs stripped).

For example, to define a macro named PROGRAM as the
three object files, 1.0, 2.0 and 3.0, you enter:

PROGRAM = 1.0 2.0 3.0
You can assign a null string as a macro value by leaving the
right of the equal sign blank. For example, to assign a null
value to the macro named ZIP, enter
ZIP =
You can also define macros in the make command itself.
A macro is invoked using a dollar sign ($) as shown below:
$(macroname) or ${macro name}
If the macro name is a single character, the parentheses or
braces are optional. Macro names exceeding one character

in length, must be enclosed in parentheses () or braces { },
as shown.

TEKELEC

3.1-6 Version 2.2

Chameleon 32 C Manual

Ch. 3.1: Make Utility

Implicit Macros

Dynamic
Dependency

For example, to invoke a macro named Y, a single-character
name, enter either:

$Y or $(Y) or ${Y}
To invoke a macro named PROGRAM, enter either:
$(PROGRAM) or ${PROGRAM}

There is also a facility to perform translations when a macro is
referenced and evaluated. The general syntax for a macro
reference is:

$(macro : string1 = string2)

This causes each occurrence of string1 to be substituted with
string2 in the macro being evaluated, where macro is the
name of the macro being evaluated. All environment
variables which are defined as make is executed, become
macro definitions in make.

If a file is generated using one of the built-in transformation
rules, the following macros can be used:

o Name of the file to be made (excluding the suffix)
e $@ Full name of the file to be made
® §$< List of the dependencies .

o $? List of dependencies that are out of date

To use these implicit macros, there is a dynamic dependency
parameter referenced by the notation:

$s@

It has meaning only when it appears on a dependency line.
The $$@ refers to the item(s) to the left of the colon, which is
referenced by the $@ implicit macro.

The following is an example using implicit macros and the
dynamic dependency parameter.

PROGS= s1 s2 s3 s4 Defines macro PROGS as files s1 - s4.

$(PROGS) : @.cC Invokes the PROGS macro, defining the
target file names as s1, s2, s3 and s4.
Defines their dependencies as C source
files (.c) with the same filenames: si.c,
s2.c, s3.c, and s4.c.

TEKELEC

3.1-7 Version 2.2

Chameleon 32 C Manual Ch. 3.1: Make Utility

There is also a second form of the dynamic dependency
parameter which refers to the file part of $@. This form is
referenced using the notation $$(@F).

SUFFIXES TABLE As mentioned previously, make maintains a table of suffixes
and built-in transformation rules in a suffixes table. You can
change the table with the .SUFFIXES directive. For example:

Add the suffixes .0 and .c to the suffixes table
SUFFIXES : .0 .c

When attempting to determine a transformation for a file which
has no explicit target mentioned in the makefile, make uses
the suffixes table. Make looks for a file with the desired suffix,
and uses the associated transformation rule to create or
update the target file.

Table 7-1 lists the default suffixes in the SUFFIXES file.

SUFFIX FILE TYPE

Object file

C source file

Ratfor source file
Assembler source file
Yacc-C source grammar
Pascal source

Lex source grammar
Include file

s|=lol<|o|=]|o]o

Table 7-1: Default Suffix List
Transformation
Rules A transformation rule name is the concatenation of the two
suffixes. For example, the name of the rule that tranforms .c
files to .o files is .c.0. For example:

Compile (with CC) a .c file to produce a .o file
.c.0
cc -¢c $°.c

TEKELEC : 3.1-8 : Version 2.2

Chameleon 32 C Manual

Ch. 3.1: Make Utility

A transformation rule is used only if the user’s makefile does
not contain an explicit command sequence for these suffixes.

The order of the SUFFIXES list is significant. Make scans the
list from left to right, and uses the first name that has both a
file and a rule associated with it. To append new names to
the sulffix list, enter SUFFIXES as a special target in your own
makefile, listing the new suffixes as dependencies. The
dependencies will be added to the suffix list.

For example, to transform a source file into an object (.0) file,
make calls up the appropriate compiler. There are also
transformation rules to create library (.a) files from source
files. :

To delete the built-in suffix table, enter .SUFFIXES as a
target, without listing any dependents in the makefile. It is
necessary to do this to clear the current list, if changes in the
order of the suffixes is desired.

TEKELEC

3.1-9 Version 2.2

- Chameleon 32 C Manual

Ch. 3.1: Make Utility

EXAMPLES

Some example makefiles are described below.

Example 1: For this example, the SUFFIXES files contains a
built-in rule that enables make to compile three source files,
X.S, y.s and z.s to generate the needed object files x.0, y.o
and z.o. (tab) indicates that you enter a tab character.

#Example 1
#
prog: x.0 y.0 z.0

(tab) cc x.0 y.o z.0 -0 prog

Xx.0 y.o: defs

States that the target file prog
depends on three object files: x.o,
y.0, and z.0.

Describes how to load the three
object files to create prog. Note
that command line begins with
TAB.

The target files x.0 and y.o depend
on the header file defs.

Example 2: This example illustrates the use of macros.

0BJECTS = x.0 y.0 z.0

LIBES = -Im

prog: S(OBJECTS)

(tab) cc $(OBJIECTS) $(LIBES) -o prog

Defines the macro OBJECTS to be
the three object files x.0, y.0 and
z.0.

Defines the macro LIBES as -Im.

Defines the dependencies of the
prog target file as x.0, y.0 and z.0
by invoking the macro OBJECTS.

Builds the target prog by loading
the three object files with the Im
library.

TEKELEC

3.1-10

Version 2.2

Chameleon 32 C Manual

Ch.4.1: Machine Dependencies

4.1 MACHINE DEPENDENCIES

Data Elements

External Names

The C compiler supports all of the standard scalar types of
the C language: char, int, short, long, unsigned, float, and
double, as well as pointers to all types. Also unsigned char
and unsigned long are supported. The amount of space
allocated for each data type (in terms of 8-bit bytes) is as
follows:

unsigned char:

char: 1 1
unsigned: 2 unsigned long: 4
short: 2 float: 4
int: 2 double: 8
long: 4 *anything: 4

Floating point types are stored in IEEE standard format.

The maximum size of an identifier or string constant is 255
bytes.

Space for variables of type char and short are allocated on
the next available byte boundary in memory if the variable is
within a struct or union or is of storage class auto, or on
the next available word boundary if the variable is extern or
static. Space for all other variables, including those of any
other storage class as well as arrays, struct’s and union’s, is
always allocated on the next available word boundary,
regardless of storage class. Bit fields within struct’'s are
allocated in unsigned units, starting from the least significant
bit. .

Identifiers (names of variables and functions) may contain up
to 255 characters each. Only the first ten characters are used
to distinguish one identifier from another, however. As per the
standard for the C language, both upper and lower case
letters are allowed in identifiers, and are distinct from each
other. In other words, the names myvar and MyVar are
different. The underscore character () is also legitimate
within identifiers, as are digits. The only restriction is that an
identifier may not begin with a digit. It should be noted that
various internal functions, such as floating point routines and
support for long integers, have names beginning with an
underscore. Programmers should therefore avoid extern
identifiers beginning with an underscore if possible.

TEKELEC

4.1-1 Version 2.2

Chameleon 32 C Manual

Ch.4.1: Machine Dependencies

Include File
Processing

Floating Point

Register Variable
Support

The #include feature of the standard C preprocessor allows
file names to be given within either double quotes or angle
brackets. Angle brackets will cause the compiler to look in
“include”. Double quotes cause the compiler to look first in
the directory containing the ".c" file being compiled and then
to look inthe predefined places. ‘

Include files may be nested to a depth of 6 levels,.including
the main module level. An attempt to nest beyond this
maximum (such as would be the case if an include file
inadvertently #included itself) results in an error message.

All floating point operations in Tekelec C can be carried out in

either single (32 bit) or double (64 bit) modes. The single
precision mode is the default and is about three times faster
than double mode.

Each function in a C program can expect up to three registers
available for register storage class variables. One data
registers is available for integral types (char, short, int, long,
and unsigned), and two address registers are available for
pointer variables. Judicious use of register variables can
substantially. increase execution speed and decrease code
size.

TEKELEC

4.1-2 Version 2.2

Chameleon 32 C Manual

Ch.4.2: Compiler Processing

4.2 COMPILER PROCESSING

Error Processing

Code Generation

Error messages generated during compilation are reported to
the screen, accompanied by the line of source code
containing the error. Error messages are of the form

"file-name"”. line line-number: error message text

To simplify correction of errors in a program, error messages
may be redirected to a file (see Shell: /O redirection). This
file may be used while editing the source to correct mistakes.

The C compiler, including preprocessor, syntax check, and
code generation, is one-pass. In other words, all work which
needs to be done by the compiler is finished after looking at
the contents of the source file once. The compilation process
is thus quite fast.

Linkable object code is generated directly by the compiler;
there is no assembly post-pass. C performs many processor
specific "strength reduction" optimizations, such as using
MC68000 "quick" instructions, replacing multiplies and divides
by powers of two with shifts, and avoiding intermediate register.
loads when possible. Simple statements, such as increments

and assignment operations involving constants, frequently
generate only one machine instruction.

For example, the statement
i+ +; '

compiles into a single instruction to increment the variable i.
The statement :

i = 50;
will compile to a single MOVE instruction.

Certain expressions involving constants will be evaluated at
compile time.

Therefore, the statement
i +=5* ARRAYSIZ;

will generate one ADD instruction, assuming ARRAYSIZE is a
constant which was #def ined.

TEKELEC

4.2-1 Version 2.2

Chameleon 32 C Manual

Ch. 4.3: Run-Time

4.3 RUN-TIME PROGRAM STRUCTURE

System Library

Program
Entry/Exit

Function Call
Conventions

Each program is executed under MTOS-UX as a task. As a
task is initiated, it creates a “virtual terminal“ on the
Chameleon 32 screen through which standard (terminal)
input/output is done. Calls to C memory allocation routines
(malloc and calloc) allocate memory from an MTOS-UX
memory pool which is created when the Chameleon 32 is
booted. All tasks allocate and deallocate from this pool (pid is
“POOL”). As a task terminates, it is killed and all memory
allocated by the program (throughmalloc and calloc) will
be returned to the pool. Programs may call MTOS-UX
memory pool management routines directly, but must assume
responsibility for resource disposal.

C stores all string constants with a terminating null byte, as
per the standard for the C language.

All code for functions from the system library is included in
each executable program by the linker.

When a program is linked after compilation, an object module
containing startup code is automatically included by cc. The
following declaration will allow program parameters:

main (argc, argv)
int argc;
char *argv[]:

where argc is the number of strings in the argv array.
Argv[0] is always the program name. If you do not need
program parameters, just declare main() without any
%arameters and the linker will not include the code to handle
them.

Parameter expressions encountered in function calls are
evaluated and then passed to the function on the stack. The
parameters are pushed in the reverse of the order given in
the parameter list. Reversal of the parameter list is necessary
for functions with variable numbers of parameters. Such
functions may access lists of parameters as follows: :

TEKELEC

4.3-1 Version 2.2

Chameleon 32 C Manual

Ch.4.3: Run-Time

max(n, p);
/* Return max of list of into; n gives list length */
int n, p, {
int ®*pp, max = -32768;
for (pp=&p, n, pp++, n--)
if (max < *pp)
max = *pp,
return max;

}

The above function max() returns the maximum of an
arbitrary number of integers. The number of integers is
passed as the first parameter, followed by the list of values:

m = max(5, i, j, k * 2, 87, f(abc));

Note that the pointer variable pp is incremented in the for
loop of the above function. The pointer will move down
through the stack towards higher memory locations retrieving
each parameter in turn. Any functions which use this method
of obtaining parameters are not necessarily portable to other
implementations of C.

Values are returned from functions in processor register DO. It
is the responsibility of the calling environment to remove
parameters from the stack after return from a function call.
Each function must ensure that any registers used to hold
register variable values are saved and then restored when the
function terminates.

Structs may be passed by value.

TEKELEC

4.3-2 Version 2.2

Chameleon 32 C Manual

Ch. 4.4: Library Implementation

4.4 LIBRARY IMPLEMENTATION

Line Separators

Memory
Allocation

Because of the heritage of the C language, the AUCIl line
feed character (numerically, 10 decimal) is usually considered
to be the line separator character.

In text files, a line feed separates lines, however, upon output
to the screen, line feeds are automatically converted to
carriage return/line feed pairs.

The memory allocation routines malloc() and calloc()
are available to the C programmer. To avoid excessive
fragmentation of the common memory pool, memory is
allocated in 8 KB blocks, breaking up the blocks as necessary
to satisfy the requests made from the C program. The
free() routine will coalesce space which is returned and the
allocation system will reuse deallocated space.

Note that because pointers are 32 bits long, a C program can
use as much memory as is available on the machine through
dynamic allocation.

IMPORTANT NOTE: you must make the declaration:
extern char *malloc();

in your program before you use malloc (the same is true for
calloc). If you don’t do this the compiler will assume malloc
returns an int (which is only 16 bits wide).

Also note that malloc requires an unsigned int as its
parameter. If more than 64 Kbytes of memory is needed,
MTOS-UX memory allocation routines may be used (see
malloc (), alloc ()).

TEKELEC

4.4-1 Version 2.2

Chameleon 32 C Manual

Ch. 4.5: Language Extensions

4.5 LANGUAGE EXTENSIONS

ASSEMBLER

Introduction

Syntax

The Tekelec C compiler allows the addition of assembly
language code to a C program directly in-line with the C
code. The C language has been extended to include the
construct: '

asm {

deéBéOO Assembler Instructions

}

The code within the braces after the keyword asm is
assembled and included in-line with code generated from
surrounding C statements.

The in-line assembler obviates the need for a separate
assembler. General control structure, input/output, and
complex data structures can be implemented in C, while
certain low-level routines can be coded in assembly
language within the same module. The problem of interfacing
C functions to assembly language functions and vice-versa
is eliminated, because calling sequences can be written in C
for -functions coded in assembler. Programs can first be
developed in C to debug algorithms and to generate quickly a
working prototype. Functions which comprise the most time
consuming sections of the program (generally less than 10%
of the code) can then be re-coded in assembly language.
Because of the efficiency of the C code generator, such a
hybrid approach yields execution speeds favorably
comparable with pure assembly language code while retaining
the ease of modification and maintenance of a pure high-
level language approach.

Use of assembly language decreases readability, exacerbates
debugging headaches, and drastically reduces portability.
Discretion must be used when considering functions for hand
translation. There are some situations where speed is critical,
most notably graphics. Such applications frequently involve
system or machine dependencies anyway, so portability is not
an issue. In such cases, the availability of in-line assembly
language is a great benefit.

The general syntax for in-line assembly language follows.
{stuff} means stuff is repeated one or more times.
(choicel|choice2|. . .) means one of the choices
must appear. [stuff] means stuff is optional.

TEKELEC

451 Version 2.2

Chameleon 32 C Manual

Ch. 4.5: Language Extensions

<asm-statement> --> asm {{<asm-lined}}

<asm-line> --> {<label>:|<op-code>[.(B|W|L|S)]{<operand>
[.<operand>]]}[(;<comment>|/*<comment>*/)]

<operand> --> (D<n>|A<a>|(A<nD>)+]|-(A<nd>)|<disp>(A<nd)|
<disp> (A<n>,<ix>)|<constrxpr|[.W|L]|<disp.(PC,<ix>|
#<{constexpr>|<reglist>|CCR|SR|USP)

<disp> --> (identifier>[(+|-)<constexpr>]|<constexpr>)

<ixd ==>(A<n>|D<nd>)[.(WIL)]

<n> -->(0]1}2]|3]|4]|5]6{7)

<reglist> --> (<reggroup>)/<reggroup>

<reggroup> --> (A<n>|D<n>)[-A<n>|D<ad>)]

The syntax of the in-line assembler is almost identical to that
described in the Motorola 68000 manual. Exceptions are
noted below.

In-line assembly may appear anywhere in your program,; it is
not necessary to place it inside a function. Please note that
(identifier> is the same as a C identifier, and
{constexpr> is the same as the C constant expression.
Opcodes are the same as in the Motorola literature and may
be given in upper or lower case. The size modifiers B, W, L,
and S can also be given in upper -or lower case. The register
names are defined only in uppercase. Expansion of
#defined macros is performed within sections of assembly
language, so the programmer is free to rename. instructions or
registers.

Each line of assembly language may consist of one or more
instructions, optionally followed by a semicolon and comment
text. Comments may also be given as C comments. Note that
#defines can be used to create simple macros, using the
multiple statement per line feature. Within macros, C style
comments must be used instead of the normal semicolon-
to-end-of-line assembly language comments.

Expressions which give displacement values are restricted in
that only one identifier may be involved. A constant
expression may be added to or subtracted from this identifier.
In such expressions, the identifier must be placed first in the
expression; in other words, the statement

MOVE DO, x+2(A4)
is legal, but the instruction

MOVE DO, 2+x(A4)
is not.

The application of addressing modes to instructions is not
completely orthogonal in the MCB68000 instruction set. For

TEKELEC

4.5-2 Version 2.2

Chameleon 32 C Manual

Ch. 4.5: Language Extensions

Defaults

Accessing c
Objects

Available

Registers

Creating Global
Symbols

complete information on addressing modes and instruction
forms, consult a Motorola databook.

If no size specifier is given for an instruction which can
operate on more than one size, the assembler defaults to
word. If a size specifier is not applicable to a particular
instruction, no specifier may be given. All labels given default
to local code labels unless declared as something else
previously. This means that all functions called, for example,
must be declared or defined previously in C.

Branches default to word-sized displacements. The code
improver will change the word branches to short branches
where possible. A short branch can be forced by using a .s,
but no warning message will be given if the necessary
displacement is too large for a short branch.

External and static variables from the C environment are
accessed using the name of the variable. Auto variables are
accessed using the name of the variable as the displacement
from the A6 register (the Address Register Indirect with
Displacement mode). Register variables may also be
accessed by name. The first four non-pointer register
variables are placed in data registers; the first two pointer
register variables are placed in address registers. Any excess
register variables must be accessed relative to A6. The
assembler will not report misuse of any variable names.

Functions in the C program can be referred to by name.
Arguments are passed to functions on the stack in reverse of
the order they are written in C. Values are returned from
functions in data register DO, or in global_fpregO if the value
is double.

Registers DO-D3 and A0 and A1 may be used without saving
them. Registers D4-D5, A2, and A3 are used for register
variables, and are allocated in reverse numeric order. Each of
these registers not used for a register variable within a
function containing in-line assembly language must be saved
by the assembly code if modified therein. Register A6 is used
to access auto variables.

This section is not for the novice user of the in-line assembly
and discusses the use of a construct that is very dangerous. It
is almost never needed and should be avoided if at all
possible.

TEKELEC

4.5-3 Version 2.2

Chameleon 32 C Manual

Ch. 4.5: Language Extensions

Assembly Language

The normal functions in C start with a link instruction to make
room for local variables and then end with a corresponding
unlink instruction. These instructions can be avoided by
making a label inside assembly to be called instead of the C
function name. A rts instruction must also be placed at the
end of the routine to avoid the unlink instruction. To indicate
that this is an extern or static symbol it must be so declared
before it is used as a label. This is done by declaring it as an
extern or static function in C. Remember, by overriding the
normal entry point a lot of nice things that C does about
parameter passing and setting up local variables is lost.

Example
/%
Function to do a block move from the first pointer to the. The routine moves
one char at a time to allow odd addresses.
*/
block_move (source, dest, count) .
register char ®source, *dest; /* uses address registers */
register int count; /* placed in a data register */
{
asm {
subq #1, count ;because dbf counts to -1
1p : move.b (source)+, (dest)+
dbf count, 1lp
3
}
Ve
An example of a macro to use in assembly language
./
#define INC(x) addq #1, x
TEKELEC 4.5-4 Version 2.2

Chameleon 32 C Manual

Ch. 4.5: Language Extensions

Structure
Assignment

Character
Constants

Scope of
Identifiers

Forward Pointer
References

C supports structure and union assignment and passing. If x
and y are structures of type stype then the following
statements are legal: -

X =y /* contents of y are copied to x */
foo(x); /®* x is passed by value to foo() */
struct stype bar(); /* function returning struct °*1

The definition of character constants has been extended in C
to allow int and long size as well as char. The syntax is a
single quote followed by 1, 2 or 4 characters and a closing
single quote. The resultant type will be a char, int or long
respectively.

In general, name scoping within the C compiler is as per
standard C. One exception to this standard is the treatment
of identifiers of structure members. In Tekelec C, structure
member names need not be unique across struct boundaries.
Therefore it is valid for two different structures to contain
members at different relative offsets with identical names.

A restriction imposed by the one-pass nature of the Tek~'ec
C compiler is that static functions must be declared before the
first reference in a program. The declaration need not be the
definition of the code of the function. A simple declaration
such as ‘

static my-func();

will do.

A problem arises when two structures must refer to each
other: the reference in the first structure causes an undefined
type error because the second structure hasn’t been defined
yet. This mutual referencing almost invariable arises with
some kind of linked data structure. The Tekelec C compiler
has been extended to allow pointer references to structs or
unions that have not yet been defined. Note that this only
works with pointers to structs or unions with a tag name
(typedefs will not work). Additional errors will be generated
later in the compile if the struct or union is never defined. .

TEKELEC

4.5-5 Version 2.2

Chameleon 32 C Manual

Ch.S5.1: Library Index

5.1 LIBRARY INDEX

Introduction

File 110

Stream 1/0

The functions described in this chapter are compatible with
functions by the same names which are available to C
programmers using the UNIX operating system. Most of these
routines are available in all C implementation; even those on
microcomputers without UNIX. Therefore, use of these
functions simplifies the task of porting a C program to another
computer.

The system library contains routines for buffered and
unbuffered input/output to disk files. Buffered routines, for the
stream file interface, begin with the the letter f. The
unbuffered routines are the low-level read() and write()
routines. Both levels of I/O allow random access to disk files.
Along with these routines you can use the BIOS routines for
input/output.

A stream file is a pointer to a FILE data structure declared in
the head file STDIO.H. Each stream is associated with a
regular file via a file descriptor returned by open or creat.
Streams buffer data through the file descriptor so that single
character 1/O is efficient. To increase speed, you can change
the default buffer size (512 bytes) using the setbuffer call.
sgela_ms; provide a larger number of functions than the Basic
evel.

Three streams are open when a program start:

e stdin Open for reading only, and is connected to
the keyboard (file descriptor 0).

® stdout Open for writing only, and is connected to the
screen (file descriptor 1).

® stderr Open for writing only, and is connected to the
screen (file descriptor 1).

TEKELEC

5.1-1 Version 2.4

Chameleon 32 C Manual

~ Ch.5.1: Library Index

/0 Redirection

Device /O

Memory Allocation

I/O redirection is a mechanism where stdin and stdout are
changed from using the keyboard and screen, to using files,
as follows:

L stdin Changed by passing <INFILE on the
command line.

® stdout can be changed two ways:

» >OUTFILE opens and erases outfile
» >>O0OUTFILE appends to an existing
outfile

You do not have to change the program for I/O redirection to
work, although you must declare the parameters argc and argv
for main().

All system devices are available to you through the C
input/output system. For most device input/output, it is wise to
use setbuf() to prevent buffering on the stream connected to
the device.

When using the unbuffered input/output services, the only
significant flag in the mode word is the binary (O BINARY)
flag. If this flag is set, there will be no special tréatment for
gne. separator characters. Note that you cannot creat() a
evice.

You can use BIOS routines to manipulate devices, but these
routines require the file descriptor number. This number is the
fileno(), defined in <stdio.h>, of the stream or the file number
returned by open().

The memory allocation routines are malloc() and calloc(). The
free() routine coalesces space which is returned, and the
allocation system will reuse deallocated space.

Program begin execution with 8 Kbytes of stack space
available. This is sufficient for more applications. The C
compiler, for example, uses less than 5 Kbytes. The size of
the stack may be changed by declaring global variable

stksize and initializing that variable to the size of the stack
required. For example:

long __ stksize = 16384L

TEKELEC

5.1-2 Version 2.4

Chameleon 32 C Manual |

Ch.5.1: Library Index

Note

Program
Parameters

Library Index

Since pointers are 32 bits long, a C program can use as much
memory as is available on the machine through dynamic
allocation.

Before you use malloc or calloc, you must make the
declaration:

extern char "malloc()
extern char “calloc()

If you fail to do this, the compiler will assume that malloc() or
calloc() returns an int, which is only 16 bits wide. The
declaration is included in <stdio.h>. o

Program parameters passed from the shell are available
through the argc and argv program parameters to main(). For
example:

main(argc, argv, envp)
int argc;

char "argv(];

char "envp(];

argc is the number of strings in the argv array. argv/0] is not
defined. If you do not need program parameters, declare
main() without parameters, and the link will not load the code
to retrieve them.

envp is a pointer to a NULL terminated list of environment
variables from the previous program, and is optional.

The system library functions are listed alphabetically on the
next page. On page 5.1-5 they are listed in functional groups.
Detailed descriptions of each function are provided in section
5.2. ’

TEKELEC

5.1-3 Version 2.5

Chameleon 32 C Manual Ch.5.1: Library index

The C system library functions are listed alphabetically below.
Refer tn the page number indicated for a detailed description.
The functions are listed by function on the next page.

Command _ Page Command __ Page
abs 5.2-2 isxdigit 5.2-33
alloca 5.2-3 Icalloc 5.2-7
atot 5.2-4 Imalloc - 5.2-36
atoi 5.2-5 longjmp 5.2-35
atol 5.2-5 Irealloc '5.2-49
bcmp 5.2-6 Iseek 5.2-34
bcopy 5.2-6 malloc 5.2-36
bzero 5.2-6 onexit 5.2-37
calloc 5.2-7 open 5.2-38
clearerr 5.2-8 perror 5.2-42
close 5.2-9 printf 5.2-39
creat 5.2-10 putc 5.2-43
execl 5.2-11 putchar 5.2-44
execv 5.2-12 puts 5.2-45
exit 5.2-13 putw 5.2-46
fclose 5.2-14 qsort 5.2-47
terror 5.2-15 rand 5.2-48
feof 5.2-16 read 5.2-49
fflush 5.2-17 realloc 5.2-50
fgetc 5.2-18 rename 5.2-51
fgets 5.2-19 rewind 5.2-52
fileno - 5.2-20 rindex 5.2-58
fopen 5.2-21 . scant .5.2-53
fprintf 5.2-38 setbuf 5.2-56
fputc 5.2-22 setbuffer 5.2-56
fputs 5.2-23 setlinebuf 5.2-56
fread 5.2-24 setjimp 5.2-57
free 5.2-25 sprintf 5.2-39
freopen 5.2-21 srand 5.2-48
fscanf - 5.2-52 sscanf 5.2-53
fseek 5.2-26 strcat 5.2-58
ftell 5.2-27 strcmp 5.2-58
fwrite 5.2-28 strcpy 5.2-58
getc 5.2-29 strlen 5.2-58
getchar 5.2-30 strncat 5.2-58
gets 5.2-31 strncmp 5.2-58
getw 5.2-32 strncpy 5.2-58
index 5.2-58 : strtol 5.2-5
isalnum 5.2-33 toascii 5.2-60
isalpha 5.2-33 tolower 5.2-60
isascii 5.2-33 __tolower 5.2-60
iscntrl 5.2-33 toupper 5.2-60
isdigit 5.2-33 ungetc 5.2-61
islower 5.2-33 unlink 5.2-62
isprint 5.2-33 write 5.2-63
ispunct 5.2-33 xtrcat 5.2-58
isspace 5.2-33 xtrcpy 5.2-58
isupper 5.2-33 xtrncpy 5.2-58

TEKELEC 5.1-4 Version 2.5

Chameleon 32 € Manual

Ch. S.1: Library Index

Basic I'O

Stream 1O

Conversion and
Classification

This section lists the functions in the C Library by function.
Refer to the page number indicated for a detailed description.

Command _ Page

close
creat
Iseek
open
read
unlink

© write

clearerr
fclose
feof
ferror
fflush
fgetc
fgets
fileno
fopen
fprintf
fputc
fputs
fread
freopen
fscanf
fseek
ftell
fwrite
getc
getchar
gets
getw
printf
putc
putchar
puts
putw
rewind
scanf
setbuf
setbuffer
setlinebuf
sprintf
sscanf
ungetc

atof
atoi
atol
isalnum

5.2-9
5.2-10
5.2-34
5.2-38
5.2-49
5.2-62
5.2-63

5.2-8
5.2-14
5.2-16

5.2-15

5.2-17
5.2-18
5.2-19
5.2-20
5.2-21
5.2-39
5.2-22
5.2-23
5.2-24

" 5.2-21
5.2-53 .

5.2-26
5.2-27
5.2-28
5.2-29
5.2-30
5.2-31
5.2-32
5.2-39
5.2-43
5.2-44
5.2-45
5.2-46

 5.2-52

5.2-53
5.2-56
5.2-56
5.2-56
5.2-39
5.2-53
5.2-61

5.2-4
5.2-5
5.2-5
5.2-33

Description

Close a file

Create a file (old method--use open)
Reposition file ’

Open a file

Read data from file

Delete a file -

Write data to file

Remove error state
Close a stream
Test end of file
Test for error

" Write buffer to disk

Fast read byte

Read string

File associated with stream
Open a stream

Formatted write

Write byte

Write string

Read data from stream
Use different file with stream
Formatted read

Reposition stream

Report position

Write data to stream

Read byte

Read byte from stdin

Read string from stdin
Read word

Formatted write to stdout
Fast write byte

Write byte to stdout

Write word (integer) to the output stream
Wirite string to stdout
Reposition stream to front
Formatted read from stdin
Set buffer (standard size)
Set buffer (any size)

Set buffer mode

Formatted write to array
Formatted read from array
Put byte back on stdin

ASCIi to float

ASCIl to int

ASCI! to long

Test for alphanumeric

TEKELEC

5.1-5

Version 2.5

Chameleon 32 C Manual

Ch.5.1: Library index

String Functions

Memory Allocation

Miscellaneous

isalpha
isascii
iscntri
isdigit
islower
isprint
ispunct
isspace
isupper
isxdigit
strtol
toascii
tolower
__tolower
toupper

index
rindex

" strcat

strcmp
strcpy
strien
strncat
strncmp
strncpy
xtrcat
xtrcpy
xtrncpy

alloca
bcmp
bcopy
bzero
calloc
free
icalloc
Imalloc
Irealloc
malloc
realloc

abs
longimp
exec!
execv
exit
onexit
perror
gsort
rand
rename
setimp
srand

Test for letter

Test for ASCIi

Test for control character
Test for digit

Test for lower case

Test for printable character
Test for punctuation

Test for white space
Test for upper case

Test for hex digit

ASCIll (any base) to long
Int to ASCII

Byte to lower case

Fast tolower '

Byte to upper case

Find byte in string

Find byte from end
Append strings
Compare strings

Copy string

Lenght of string
Append n bytes
Compare n bytes

Copy n bytes

Append, but return end
Copy, but return end
Copy n bytes, return end

Allocate on stack

Compare two blocks of memary
Copy ablock of memory to another block
Zeroes a block of memory
Allocate and clear

Release memory

Allocate a lot and clear

Allocate lots of memor

Resize a lot of memoryy
Allocate memory

Resize allocated memory

Absolute value of int
Non-local goto

Executes a file

Execute a file

Terminate program

Adds logic to exit function
Displays system error message
Quick sort

Random number
Rename a file on disk
Non-local label’

Start random sequence

TEKELEC

5.1-6

Version 2.5

Chameleon 32 C Manual Ch. 5.2: C Library Description

5.2 C LIBRARY DESCRIPTION

This section contains detailed descriptions of the standard C functions
supported by the Chameleon 32 C Development System compiler.
These functions are defined in the file libc.a and are listed in
alphabetical order. Refer to Section 5.1 for a list of the functions by
page number.

Tekelec

5.2-1 Version 2.6

Chameleon 32 C Manual Ch.5.2: C Library Description

abs
Declaration #include <stdio.h>
int abs (i)
int i;
Description abs returns the absolute value of the number that is the
: parameter.

TEKELEC 5.2-2 Version 2.6

Chaméleon 32 C Manual

Ch.5.2: CLlibrary Description

alloca

Declaration

Description

char "alloca (size)
unsigned int size;

This function allocates size bytes of space in the stack frame
of the calling function. This space is temporary and is

- automatically released upon the return of the calling function.

See Also

alloca does not check for stack overflow. The size of the
stack is set to the value in extern long stksize when the
program starts (default is 8 kbytes). “stksize should be
redefined if more space is needed, -

malloc, free, calloc

TEKELEC

5.2-3 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: Clibrary Description

atof
Declaration

Description

double atof (nptr)
char *nptr;

This function converts a character string pointed to by nptr to
a double-precision floating-point number. The first
unrecognized character ends the conversion. atof recognizes
an optional string of white-spaced characters, then an
optional sign, then a string of digits optionally containing a

- decimal point, then an optional E or e followed by an

Returns

optionally signed integer.

If the string begins with an unrecognized character, then a
zero is returned

TEKELEC

5.2-4 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: CLlibrary Description

atoi, atol, strtol

Declaration int atoi (str)
char *str;
long atol (str)
char *str;
long strtol (str, ptr, base)

~char “str;

char *ptr;
int base;

Description These functions convert strings to integers.
strtol returns as a long integer the value represented by the
character string str. The string is scanned up to the first
character inconsistent with the base. Leading white-space
characters are ignored.
If the value of ptr is not (char ™) NULL, a pointer to the
character terminating the scan is returned in “ptr. If no integer
can be formed, *ptr is set to str, and zero is returned.
If base is positive and not greater' than 36, it is used as the
base for conversion. After an optional leading sign, leading
zeros are ignored, and "0x" or "0X" is ignored if base is 16.
Truncation from long to int can take place upon assignment or'
by an explicit cast.
atol takes the ASCII representation of a number and converts
it into a long integer.
atoi takes the ASCII representation of a number and converts
it into an integer.

TEKELEC 5.2-5 Version 2.2

Chameleon 32 C Manual Ch. 5.2: CLibrary Description

bcmp, bcopy, bzero

Declaration int bcmp(block1, block2, len)
char *block1, *block2;
int len;

int bcopy(source, destin, len)
char *source, "destin;
int len;

int bzero(block1, len)
char *blocki;
int len;

Description These functions perform operations on blocks of memory.
becmp compares two blocks of memory block? and block2.
The size of the blocks is len. A value of 1 is returned if they
are identical. '

bcopy copies the source block of memory to the block of
memory pointed to by destin. Both blocks are of size /en.

bzero zeroes the memory pointed to by block1. The block is
of size len.

TEKELEC _ 5.2-6 Version 2.2

Chameleon 32 C Manual) Ch. 5.2: CLibrary Description

calloc, Icalloc

Declaration char *calloc (nelem, elsize)
unsigned int nelem, elsize;
char *Icalloc (nelem, elsize)
unsigned long nelem, elsize;
Description calloc allocates space for an array of nelem elements of size
elsize. The space is initialized to zeros. .

Icalloc is like calloc but accepts long parameters.

See Also malloc, free, alloca

Returns Return a null pointer if there is no available memory.

- TEKELEC 5.2-7 Version 2.2

Chameleon 32 C Manual Ch. 5.2: ClLibrary Description

clearerr

Declaration #include <stdio.h>
clearerr (stream)

FILE *stream;

Description This function resets the error indicator and EOF indicator to
zero on the named stream. This function is implemented as a
macro and therefore cannot be declared or redeclared.

See Also feof, ferror, fileno

TEKELEC 5.2-8 Version 2.2

Chameleon 32 C Manual Ch. 5.2: CLibrary Description

close

Declaration int close (fildes)
int fildes;

Description This function closes a file. fildes is a file descriptor obtained
from creat or open. close will fail if fildes is not a valid, open
file descriptor.

See Also creat, open

Returns 0 = Successful

-1 =Error

TEKELEC 5.2-9 Version 2.2

Chameleon 32 C Manual Ch.5.2: ClLibrary Description

creat

Declaration int creat (fname, oflag)
char *fname;
int oflag;

Description This function creates a new file or writes to an existing one. If
’ the file exists, the length of the file is reduced to 0.

If successful, the file descriptor'is returned and the file is
ope?led for writing. The file pointer is set to the beginning of
the file.

oflag may be set to O BINARY to indicate the untranslated
mode. No other flag values are allowed here (see open).

creat will fail if an OS error occurs.
No process may have more than 12 files open simultaneously.
This function has been superceded by open with the
O__CREAT flag.

See Alsb - close

Returns File descriptor (non-negative integer) = successful

-1 =Error

TEKELEC 5.2-10 Version 2.2

Chameleon 32 C Manual

Ch.5.2: CLibrary Description

execl

Declaration execl (name, arg0, argi, . .., argn, OL)
char "name;
char *arg0, argt, . . . argn;

Description This function executes a file. PATH is not evaluated from
execl. For example, from the shell, you execute the cp (copy)
program, as follows:

%cCcp Xy
where: ¢cp is arg0, x is arg1 and y is arg2.
In a program, you use execl to execute the cp program, by’
entering the following:
execl(“\\bin\\cp” ,“cp” ,“x” , “y” , OL)
where: \\bin\\cp is the path, cp is arg0, x is argl, and y is
arg2. - C
See Also - execv
TEKELEC 5.2-11 ' Version 2.5

Chameleon 32 C Manual

Ch. 5.2: Clibrary Description

execv

Declaration

Description

See Also

int execv (pathname, argv)
char *pathname, *argv{ J;

execv executes a program from the disk. The parameter
pathname is a pointer to a string which contains the path and
the name of the program to be executed.

The argv parameter is necessary only if the program being
started has arguments to main(). argv is an array of character
pointers to strings, creating an argument list that is made
available to the new program. When used, at least one
argument must be present in this array, with the first element
of the array being the name of the executed program. For
more information, refer to the Program Parameters section at
the beginning of Chapter 5.

The parameter envp is also an array of character pointers to
strings which are not command line arguments, but system
environment variables.

When the executed program begins, it is called as follows:’

main(argc, argv, envp)
int argc;
char *argv(];
char *envp(];

where argc, the arg count, is the number of elements in argv,
and argv is the array of character pointers to the arguments
themselves.

The parameter envp is a pointer to an array of strings which
are the environment variables from the calling program. Note
that a pointer to this array is also stored in the global variable
extern char =environ. Each string consists of a name, an =
sign, and a null-terminated value. The array of pointers is
terminated by a null pointer. The result from execv is the exit
code or status of the program.

execl

TEKELEC

5.2-1‘2 Version 2.5

Chameleon 32 C Manual

Ch.5.2: CLlibrary Description

exit, _ exit

Declaration

Description

exit (status)
int status;

exit (status)

int status;

These functions terminate a process.

exit performs the following cleanup operations before
terminating the program: ,

The onexit functions are called in the reverse order in
which they were added

- All open streams are flushed and closed

All remaining file descriptors (6pened with open or creat)
are closed

exit is called

__exit terminates the program |mmed|ately wuthout performmg

any cleanup operations.

TEKELEC

5.2-13 Version 2.2

Chameleon 32 C Manual Ch.5.2: CLibrary Description

fclose

Declaration #include <stdio.h>
int fclose (stream)
FILE *stream;

Description This function writes any buffered data to disk and closes a
stream. It is called for each open stream by exit.

See Also fflush

Returns 0 = Successful

EOF = Unsuccessful

TEKELEC 5.2-14 Version 2.2

Chameleon 32 C Manual

Ch.5.2: Clibrary Description

ferror

Declaration #include <stdio.h>
int ferror (stream)

FILE *stream;

Description This function returns a non-zero when an /O error has
previously occurred reading from or writing to the named
stream. Otherwise a zero is returned. This function is
implemented as a macro and therefore cannot be declared or
redeclared.

See Also clearerr, feof, fileno

TEKELEC 5.2-15 Version 2.2

Chameleon 32 C Manual Ch. 5.2: Clibrary Description

feof

Declaration #include <stdio.h>
int feof (stream)

FILE *stream;

Description This function returns a non-zero when EOF has previously
been detected reading the named input stream. Otherwise
zero is returned. This function is implemented as a macro,
and therefore cannot be declared or redeclared.

See Also clearerr, ferror, fileno

TEKELEC 5.2-16 Version 2.2

Chameleon 32 C Manual Ch. 5.2: Clibrary Description

fflush

Declaration #include <stdio.h>
int fflush (stream)
FILE *stream;

Description This function writes any buffered data to disk and clears the
input buffer, but does not close the stream.

See Also fclose

Returns 0 = Successful

EOF = Unsuccessful

TEKELEC 5.2-17 Version 2.2

Chameleon 32 C Manual Ch. 5.2: CLibrary Description

. fgetc

Declaration ~int fgetc (stream)
FILE *stream;

Description This function returns the next byte from the named input stram
and positions the pointer ahead one byte in the stream. fgetc
performs the same function as getc, however it is a true
function. It is slower, but takes less space per invocation.
EOF is returned when end-of-file or error is encountered.

See Also ~ getc, getchar, getw

TEKELEC 5.2-18 Version 2.2

Chameleon 32 C Manual

Ch.5.2: Clibrary Description

. fgets

Declaration #include <stdio.h>
char *fgets (s, n, stream)
char *s;
int n;

FILE *stream;

Description This function reads characters from the stream into an array
pointed to by s, until n-1 characters are read, or a new-line
character is read and transferred to s, or an EOF is
encountered. The string is terminated with a null character.

See Also gets

Returns s = Successful
If EOF is encountered and no characters have been read,

. then no characters are transferred to s and a null pointer is
returned. o
If an error occurs, a null pointer is returned. Attempting to
use this function on a file that has not been opened for
reading, causes an error. '

TEKELEC 5.2-19 Version 2.2

Chameleon 32 C Manual ' Ch.5.2: Clibrary bescription

fileno

Declaration #include <stdio.h>
int fileno (stream)

FILE *stream;

Description This function fileno returns the integer file descriptor for the
named stream. This function is implemented as a macro and
therefore cannot be declared or redeclared.

See Also clearerr, feof, ferror

TEKELEC 5.2-20 Version 2.2

Chameleon 32 C Manual

Ch.5.2: Clibrary Description

fopen, freopen

#include <stdio.h>

Declaration
FILE ®fopen (file__name, type)
char *file-name, *type;

FILE "freopen (file__name, type, stream)
char *file__name, *type;
FILE *stream;

Description fopen opens the file named by file name and associates a stream
with it. It returns a pointer to the FILE structure associated with the
stream. file__name points to a character string that contains the
name of the file to be opened. type is one of the following:

r Open for reading

w Truncate or create for writing

a Append; open or create for writing at end of file

r+ Open for update (reading and writing)

w+ Truncate or create for update

a+ Random open for read or write; pointer will be

repositioned to end of file for writing

freopen substitutes the named file in place of the open stream.
The original stream is closed whether the open succeeds or not.
freopen returns a pointer to the FILE structure associated with
stream. It is typically used to attach the pre-opened streams
associated with stdin, stdout, and stderr to other files.
If a file is open for update, both input or output may be attempted
on the stream. However, output may not be directly followed by
input without an intervening fseek or rewind, and input may not be
directly followed by output without an intervening fseek, rewind, or
an input operation which encounters end-of-file.
Files open for append cannot have information overwritten. All
output is appended to the end of file regardiess of the current
pointer position. After output is completed, the pointer is positioned
at the end of the file.
fopen can be used to direct output to Chameleon 32 devices: .AUX
(Serial Port 2 unformatted data), .TTY (Serial Port 2 formatted
data), and .PRT (printer). For exampie:

FILE *fp;

fp = fopen (".AUX", “"w");

fprintf (fp, "This is unformatted output to Serial Port 2%);
Referencing the Chameleon hard disk directories requires the use
of double back slashes as shown in the following example:

fopen(®a:\\usr\\hisfile®,"r");

Returns If unsuccessful, these routines return a NULL pointer.

TEKELEC 5.2-21 Version 2.5

Chameleon 32 C Manual

Ch. 5.2: CLibrary Description

fputc

Declaration #include <stdio.h>
int fputc (c , stream)
char c;

FILE *stream;

Description foutc writes the character ¢ to the output stream at the current
pointer position. It is similar to putc but it is a true function, it
is slower, and takes less space per invocation.

See Also putc, putchar, putw

Returns If successful, the value written is returned.

If unsuccessful, EOF is returned. This can occur if the file is
not open for writing, or if the output file cannot be grown.

TEKELEC 5.2-22 Version 2.5

Chameleon 32 C Manual Ch.5.2: C Library Description

fputs

Declaration include <stdio.h>
int fputs (s, stream)
char *s;

FILE *stream;

Description This function writes the nuli-terminated string, pointed to by
s, to stream. The string is not followed by a new-line
character. It does not write out the terminating null character.

See Also puts

Returns EOF is returned if an error occurs. This will happen if output is

attempted to a file not open for writing.

TEKELEC 5.2-23 : Version 2.2

Chameleon 32 C Manual

Ch. 5.2: CLibrary Description

fread

Declaration

Description

Note

See Also

Returns

#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE *stream;

This function is for binary input. It places into an array nitems
of data read from the input stream beginning at ptr. The data
items are a sequence of bytes of length size.

Reading is stopped when an error occurs, end-of-file is
encountered, or nitems of data have been read. fread places
the pointer, if any, at the byte following the last byte read, if
one exists. The contents of the stream are not changed.

fseek or rewind must be called before switching between
reading and writing on a stream that allows both.

fwrite

Returns the number of items.read. If a non-positive number
is given for nitems, then a 0 is returned and nothing is read.

TEKELEC

5.2-24 Version 2.2

Chameleon 32 C Manual ' Ch. 5.2: CLibrary Description

free

Declaration free (ptr)
char *ptr;

Description This function makes space, pointed to by ptr (and formerly
allocated by malloc, Imalloc, calloc or Icalloc,) available for
further allocation. free does not affect the contents of the
space.

See Also malloc, Imalloc, calloc, lcalloc, alloca

TEKELEC 5.2-25 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: Clibrary Description

fseek

Declaration #include <stdio.h> .
int fseek (stream, offset, ptrname)

FILE *stream;
long offset;
int ptrname;

Description This function sets the position of the next input or output
operation on the stream. The new position is at the signed
distance offset bytes from the beginning, from the current
position, or from the end of the file, depending on the value of
ptrname. ptrname has the following values:

0 Offset from beginning of file

1 Offset from current position in file

2 Offset from end of file
fseek undoes the effects of ungetc. After fseek, the next
operation to the file may be either input or output.

See Also rewind, ftell

Returns - 0=S8uccessful '

Non-zero = Unsuccessful. This can occur if fseek is
attempted on a file not open via fopen, or if it is used on
something other than a file.

TEKELEC 5.2-26 Version 2.2

Chameleon 32 C Manual Ch.5.2: CLibrary Description

ftell
Declaration #include <stdio.h>
long ftell (stream)
FILE *stream;
Description This function returns the offset of the current byte relative to
the beginning of the file associated with the named stream.
See Also fseek, rewind

TEKELEC 5.2-27 Version 2.2

Chameleon32C Manual

Ch. 5.2: CLibrary Description

fwrite

Declaration #include <stdio.h>
int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

Description This function is for binary output. It attempts to append

y nitems of data from the array pomted to by ptr to the named

output stream.
fseek or rewind must be called before switching between
reading and writing on a stream that allows both.

See Also fread

Returns Returns the number of items written. If a non-positive
number is given for nitems, then a 0 is returned and nothing is
written.

TEKELEC 5.2-28 Version 2.2

Chameleon 32 C Manual

Ch.5.2: CLibrary Description

getc

Declaration

Description

See Also

Returns

#include <stdio.h>
int getc (stream)
FILE *stream;

This function returns the next byte from the named input
stream and positions the pointer ahead one byte in stream.
getc is a macro and cannot be used where a function is
required. For example, a function pointer cannot point to it.

getchar, fgetc, get\)v

EOF is returned when end-of-file or error is encountered.

TEKELEC

5.2-29 Version 2.2

Chameleon 32 C Manual . Ch. 5.2: CLibrary Description

getchar

Declaration #include <stdio.h>
int getchar()

Description getchar is a macro that returns the next character from the
standard input stream, stdin.
The character is returned to the program only after pressing
Return. To get the character immediately, refer to the
window interface functions in Section 5.4.

See Also getc, fgetc, getw

Returns EOF is returned when end-of-file or error is encountered.

TEKELEC 5.2-30 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: CLibrary Description

gets

Declaration

Description

See Also

Returns

#include <stdio.h>
char "gets (s)
char *s;

This function reads characters from the standard input stream,
stdin, into the array pointed to by s, untii an end-of-file or
new-line character is encountered. The new-line character
is discarded and the string is terminated with a null character.

fgets

s = Successful > .

If EOF is encountered and no characters have been read,
then no characters are transferred to s and a null pointer is

returned.

If an error occurs, a null pointer is returned. Attempting to use
one of these functions on a file that has not been open for

reading will cause an appropriate error.

TEKELEC

5.2-31 Version 2.2

Chameleon 32 C Manual Ch. 5.2: Clibrary Description

-getw

Declaration int getw (stream)
FILE *stream;

Description getw returns the next word (integer) from the named input
stream. The file pointer is positioned at the next word. No
special alignment is assumed.

EOF is returned when end-of-file dr error is encountered.
- See Also getc, getchar, fgetc
Returns EOF is returned if end-of-fle or an error is éncountered.

Since EOF is a valid integer, use feof or ferror to check the
success of getw.

TEKELEC 5.2-32 Version 2.2

Chameleon 32 C Manual . Ch. 5.2: ClLibrary Description

isalnum, isalpha, isascii, iscntrl, isdigit, islower,
isprint, ispunct, isspace, isupper, isxdigit

Declaration #include <ctype.h>

int isalnum(c) c is alphanumeric

int isalpha(c) c is a letter

int isascii(c) ¢ is an ASCIl character, code less than
0200 X

int iscntri(c) c is a delete character (0177) or an
ordinary control character (less than
040)

int isdigit(c) c is a digit

int islower(c) c is a lower case letter

int isprint(c) c is a printing character, 040 (space)
through 0176 (tilde)

int ispunct(c) ¢ is a punctuation character (neither
control nor alphanumeric)

int isspace(c) c is a space, tab, carriage return, new-
line, or formfeed

int isupper(c) C is an upper case letter

int isxdigit c is a hexadecimal digit

int c;

Description These macros classify character-coded integer values.

isascii is defined on all integer values; the other functions are
defined where isascii is true and for EOF (-1). [f the
argument of any of these macros lies outside its domain, the
result is undefined.

Returns 0 = True
Non-zero = False

TEKELEC 5.2-33 Version 2.2

Chameleon 32 C Manual

Ch.5.2: Clibrary Description

Iseek
Declaration long Iseek (fildes, offsét, whence)
int fildes;
long offset;
int whence;
Description This function moves the read/write file pointer. It sets the file
pointer associated with fildes, by offset from the position
specified by whence. whence has the following values: -
0 Pointer set to offset bytes
1 Pointer set to current position plus offset bytes
2 Pointer set to file size plus offset bytes

Iseek will fail and the pointer will remain unchanged if:

® fildes is not an open file descriptor

® whence is an invalid value.

° the resultir'ig pointer position would be negative

Returns -1 Unsuccessful
If successful, it returns the pointer position in bytes from the
beginning of the file.

TEKELEC 5.2-34 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: CLlibrary Description

longjmp

Declaration

Description

See Also

#include <stdio.h>

longjmp (env, val)
jmp-buf env;
int val;

This function is a non-local goto. It is useful for dealing with
errors and interrupts encountered in a low-level subroutine of
a program.

longjmp restores the environment saved by the last call of
setimp with the same env argument. After longjmp is called,
program execution continues as if the corresponding call of
setimp had just returned the value val.

longjmp cannot cause setjmp to return the value 0. If Jongjmp
is invoked with a second argument of 0, setimp will return 1.
All accessible data have values as of the time longimp was
called. .

If longjmp is called when env was never primed by a call to

setimp, or when the last such call is in a function which has
since returned, the result will be unpredictable.

setjmp

TEKELEC

5.2-35 : Version 2.2

Chameleon 32.C Manual Ch. 5.2: CLlibrary Description

malloc, Imalloc

Declaration char *malloc (size)
unsigned int size;

char "Imalloc (size)
unsigned long size;

Description This function returns a pointer to a block of at least size bytes
aligned for any use. The size parameter limits the size of the
block to 64K.

Imalloc is like malloc but accepts a long parameter, allowing
more than 64K bytes per allocation.

See Also free, calloc, alloca

Returns Returns a null pointer if there is no available memory.

TEKELEC 5.2-36 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: ClLibrary Description

onexit

Declaration onexit(f)
int () ();

Description onexit allows the user to add logic to the exit() function.
When a program is terminated normally or abnormally (using
“C, kill, or the Applications Selection menu), the exit() function
is called, which calls up to 10 functions defined by the user.
These functions can be defined by giving the function pointer
to onexit(). This is shown in the example below.

See Also exit

Example myexit ()

puts(“exiting”);
main ()
- onexit(myexit);
Result: This will display the message exiting on the screen
when the program is terminated.
TEKELEC 5.2-37 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: Clibrary Description

open

Declaration

Description

Returns

#include <fcntl.h>

int open (fname, .oflag)

char *fname;

int oflag;

This function opens a file for reading or writing as specified by
oflag. fname points to a string containing the name of the file
file. oflag values are constructed by ORing flags from the
following list (only one of the first three may be used):

0-RDONLY
0-WRONLY
0-RDWR

0-BINARY

Open for reading only.

Open for writing only.

Open for reading and writing.

Open in binary (untranslated) mode.

The ASCII line feed character (10 decimal) is
usually considered to be the line separator
character. Tekelec C considers a carriage
return/line feed combination to be the line
separator. In order to easily overcome this
difference, the run time library automatically
converts carriage return/line feed to line feed
on input, and converts line feed to carriage
return/line feed on output to files.

This conversion occurs at a very low level
within the library routines. Files can be
opened in untranslated or binary mode by
setltir:jg a flag when the open procedure is
called.

Upon completion, the file pointer is set to the beginning of the
file. No process may have more than 12 file descriptors open

simultaneously.

If successful, the file descriptor is returned.
If unsuccesstul, -1 is returned and errno is set appropriately.

TEKELEC

5.2-38 Version 2.2

Chameleon 32 € Manual Ch.5.2: Clibrary Description

printf, fprintf, sprintf, __fprintf, __sprintf

Declaration #include <stdio.h>
int printf (format [, arg] .. .)
char *format;

int fprintf (stream, format[, arg]...) :
FILE * stream;
char *format;

int sprintf (s, format [, arg] ...)
char *s, format;

int _fprintf(stream, format, args)
FILE *stream;
char *format, *args;

int _sprintf(s, format, args)
char *s, *format, *args;

Description "~ These functions print formatted output, as described below.
All buffers passed to printf() are limited to 256 characters.

printf places output on the standard output stream stdout.
forintf places output on the named output stream.

forintf is like fprintf except the arguments are retrieved from
the pointer args.

sprintf places "output", followed by a null character (\O) in
consecutive bytes starting at *s. It is your responsibility to
ensure that enough storage is available.

sprintf works like sprintf except the arguments are retrieved
from the pointer args, which normally points into the stack.

Each function returns the number of characters transmitted
(not including \O for sprintf), or a negative value if an output
error was encountered.

TEKELEC 5.2-39 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: CLibrary Description-

Each of these functions converts, formats, and prints its args
under control of the format. The format is a character string
that contains two types of objects:

L Plain characters are copied into the output stream

® Conversion specifications results in fetching zero or
more args

The results are undefined if there are insufficient args for the
format. If the format is exhausted while args remain, the
excess args are ignored.

Each conversion specification is introduced by the character
%. After the %, the following appear in sequence:

L On optional flag which modifies the meamng of the
conversion specification.

® An optional decimal digit string specifying a minimum
field width. If the converted value has fewer characters
than the field width, it will be padded on the left (or right,
if the Ieft-ad;ustment flag has been given), with spaces,
to the field width. A leading zero indicates zeros should
be used instead of spaces.

° A precision which gives the maximum number of
characters to be printed from a string, or the number of
digits to be printed to the right of the decimal point for
float or double.

. ® An optional 1 specifying that a following d, o, u, or x

conversion character applies to a long integer arg.
® A character indicating the type of conversion to apply.

The only flag character is the minus sign (-). When used,
the result of the conversion will be left justified within the field.
A field width or precision may be * instead of a digit string. In
this case, an extra integer argument provides the field width
or precision.

The conversion characters and their meanings are:

d,o,ux The integer arg is converted to signed decimal,
unsigned octal, decimal, or hexadecimal notation
respectively. The letters abcdef are used for x
conversion.

TEKELEC

5.2-40 Version 2.2

Chameleon 32 C Manual

Ch.5.2: ClLibrary Description

%

The float or double arg is converted to decimal
notation in the style:

[-]<digits >. <digits >

where the number of digits after the decimal point is
equal to the precision specification. If the precision is
missing, six digits are output. [f the precision is zero,
no decimal point appears.

For example, the float or double arg is converted to
the style:

[-] < digit>. < digits > E(+|-) < digits >

where there is one digit before the decimal point and
the number of digits after it is equal to the precision.
When the precision is missing, six digits are output.
If the precision is zero, no decimal point appears.

The character arg is printed.

The arg is taken to be a string (character pointer) and
characters from the string are printed until a null
character (\O) is encountered, or the number of
characters indicated by the precision specification is
reached. If the precision is missing, it will be taken to
be infinite, so all characters up to the first null
character are printed. A null arg will yield undefined
results.

Print a %. No argument is converted.

In no case does a non-existent or small field width cause
truncation of a field. If the result of the conversion is wider
than the field width, the field is simply expanded to contain the
conversion result. Characters generated by printf and fprintf
are printed as if putc had been called.

TEKELEC

5.2-41 Version 2.2

Chameleon 32 C Manual

Ch.5.2: Clibrary Description

perror

Declaration

Description

perror(s)
char *s;

extern int sys__nerr;
extern char *sys__errlist[];

perror writes a short description of the last error that set errno
onto the standard stream stderr. The string s is printed first,
then a colon, then the message and a newline. The string s
is usually the name of the program which called perror.

perror should only be called when a function which sets errno
indicates an error has occurred since errno is not cleared
upon successful execution.

The messages printed are stored in the array sys errlist and
may be indexed by -errno (this is not compatible”with UNIX
where errno is always positive). The number of entries in
sys__errlist is stored in sys__nerr. '

TEKELEC

5.2-42 Version 2.2

Chameleon 32 C Manual

Ch.5.2: Clibrary Description

putc
Declaration #include <stdio.h>
int putc (c , stream)
char c;
FILE *stream;
Description putc is a macro that writes the character ¢ to the output
stream at the current pointer position.
See Also putchar, fputc, putw
Returns If successful, the value written is returned.
If unsuccessful, EOF is returned. This can occur if the file is
not open for writing or if the output file cannot be grown.
TEKELEC

5.2-43 Version 2.2

Chameleon 32 C Manual Ch.5.2: CLibrary Description

putchar

Declaration #include <stdio.h>
int putchar (c)
char c;

Description putchar is a macro that is defined as putc(c, stdout). (putc is
a macro that writes the character ¢ to the output stream at the
current pointer position. See previous page.)

See Also putc, fputc, putw

Returns If successful, the value written is returned.

If unsuccessful, EOF is returned. This can occur if the file is
not open for writing or if the output file cannot be grown.

TEKELEC 5.2-44 Version 2.2

Chameleon 32 C Manual : Ch.5.2: CLlibrary Description

puts

Declaration include <stdio.h>
int puts (s)
char *s;

Description puts writes the null-terminated string, pointed to by s, to the
standard output stream stdout. The string is followed by a
new-line character. It does not write out the terminating null
character. '

See Also fputs

Returns EOF is returned if an error occurs. This will happen if output is

attempted to a file not open for writing.

TEKELEC 4 5.2-45 Version 2.2

Chameleon 32 C Manual

Ch.5.2: Clibrary Description

putw

Declaration

#include <stdio.h>
int putw (w, stream)
int w;

FILE *stream;

Description putw writes the word (integer) w to the output stream at the
current pointer position. putw does not force even alignment
on the file. : . '

See Also putc, putchar, fputc

Returns If successful, the value written is returned.

If unsuccessful, EOF is returned. This can occur if the file is
not open for writing or if the output file cannot be grown.
Because EOF is a valid integer, ferror should be used to
check for error when using putw.

TEKELEC 5.2-46 Version 2.2

Chameleon 32 C Manual

-Ch. 5.2: ClLibrary Description

gsort

Declaration

Description

Example

gsort(base, nelem, width, compare)
char *base;

int nelem, width;

int (*compare) ();

gsort is an implementation of the quicksort algorithm. The
parameter base is a pointer to the base of the data. The
parameter nelem is the number of elements in the array. The
parameter width is the width of each element in bytes. The
pararrlt'etgr compare is a pointer to the comparison routine to
be called. :

This user-defined function will be passed two arguments
which are pointers to the elements being compared. This
routine must return an integer less than, equal to, or greater
than zero, since the first argument is to be considered less
than, equal to, or greater than the second.

The quicksort algorithm used is recursive.
#include <stdio.h>

int test(a, b)

int ®a, *b;

{
}

. return *a - *b;

sain()
int x[100], i;
for (i=0; i<100; i++)/* Create somse random data */
x[i] = rand();

gsort(x, 100, sizeof(int),test);

for (i=0, i<100; i++)/* Display sorted result */
priatf(°%d *, x[i]);

puts (Press RETURN to continue®); getchar () ;

TEKELEC

5.2-47 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: CLibrary Description

rand

srand

Declaration #include <stdio.h>
int rand()
srand(seed)
long seed;

Description rand and srand are macros that function as simple random-
number generators.
rand uses a multiplicative congruential random-number
generator.
srand can be called at any time to reset the random-number
generator to a new starting point. The generator is initially
seeded with a value of 1.

TEKELEC 5.2-48 Version 2.2

Chameleon 32 C Manual .

Ch. 5.2: Clibrary Description

read
Declaration int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;
Description read attempts to read nbyte bytes from the file associated
with fildes into the buffer pointed to by buf.
fildes is a file descriptor obtained by using an open or creat.
read will fail if fildes is not a valid file descriptor open for
reading, or if an operating system error occurs.
If the O_BINARY flag is not set, linefeed/carriage return
combinations are translated to linefeeds, except from the
keyboard.
Returns 0=EOF is reached.
If successful, a non-négative integer is returned indicating
the number of bytes actually read.
If unsuccessful, a -1 is returned and errno is set
appropriately. -
TEKELEC 5.2-49 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: CLibrary Description

realloc, Irealloc

Declaration char *realloc(ptr, size)
char *ptr;
unsigned size;
char *Irealloc(ptr, size)
char *ptr;
unsigned long size;

,Description' These are RAM allocator functions. realloc changes the size
of the block pointed to by ptr to size bytes and returns a
pointer to the (potentially moved) block. Note that the data
will remain unchanged, and any data defined beyond size wiil
be lost. '

Irealloc is like realloc but accepts a long parameter.
Returns A null pointer if the memory requested is not available.
TEKELEC 5.2-50 Version 2.2

Chameleon 32 C Manual Ch.5.2: CLibrary Description

rename

Declaration int rename (from, to)
char *from, *to;

Description rename changes the existing name of a file on a disk to
another name. The parameter from is a pointer to the name
of the current file on disk. The parameter to is a pointer to
the new name for the file.

Returns -1 Unsuccesstful

TEKELEC 5.2-51 Version 2.2

Chameleon 32 C Manual

Ch.5.2: Clibrary Description

rewind

Declaration #include <stdio.h>
: rewind (stream)
FILE *stream;

Description rewind sets the position of the next input or output operation
on the stream. The new position is at the signed distance
offset bytes from the beginning, from the current position, or
from the end of the file. rewind is equivalent to fseek(stream,
OL, 0), except no value is returned.
rewind undoes the effects of ungetc. After rewind the next
operation to the file may be either input or output.

See Also fseek, ftell

TEKELEC 5.2-52 Version 2.2

Chameleon 32 C Manual

Ch.5.2: ClLibrary Description

scanf, fscanf,

Declaration

Description

sscanf

#include <stdio.h>
int scanf (format [, pointer] . . .)
char *format;

int fscanf (stream, format [, pointer] . . .)
FILE *stream;
char *format;

int sscanf (s, format [, pointer] . . .)
char *s, *format;

Each function reads characters, converts them according to a
format, and stores the results in its arguments. The arguments
consist of a control string format and a set of pointer
argurgents indicating where the converted input should be
stored.

scanf reads from the standard input stream stdin.

fscanf reads from the named input stream.

sscanf reads from the character string s.

The control string may contain: .

® White-space characters (blanks, tabs, and new-lines)
which cause input to be read up to the next non white-
space character.

® An ordinary character (not %), which must match the
next character of the input stream.

® Conversion specifications, consisting of the character %,
an optional assignment suppressing character *, an
optional numerical maximum field width, an optional 1
indicating the size of the receiving variable, and a
conversion code.

TEKELEC

5.2-53 Version 2.2

Chameleon 32 C Manual

Ch.5.2: Clibrary Description

A conversion specification directs the conversion of the next
input field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was
indicated by *. The suppression of assignment provides a way
of describing an input field which is to be skipped. An input
field is defined as a string of non-white-space characters; it
extends to the next inappropriate character or until the field
width, if specified, is exhausted.

The conversion code indicates the interpretation of the input
field. For a suppressed field, no pointer argument should be
given. The following conversion codes are legal:

% A single % is expected in the input at this point; no
assignment is done.

d A decimal integer is expected; the corresponding
argument should be an integer pointer.

h A short decimal integer is expected, the
corresponding argument should be a short pointer.

o] An octal integer is éxpected; the corresponding
argument should be an integer pointer.

X A hexadecimal integer is expected; the
corresponding argument should -be an integer pointer.

ef,g A floating point number is expected; the next field is
converted accordingly and stored through the
corresponding argument, which should be a pointer
to a float. The input format for floating point
numbers is an optionally signed string of digits,
possibly with a decimal point, followed by an optional
exponent field consisting of an e, or an E, followed
by an optionally signed integer.

S A character string is expected; the corresponding
argument should be a character pointer pointing to an
array of characters large enough to accept the string
and a terminating \O, which will be added
automatically. The input field is terminated by a
white-space character.

TEKELEC

5.2-54 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: ClLibrary Description

Note

Returns

c A character is expected. The corresponding
argument should be a character pointer. The normal
skip over white space is suppressed in this case. To
read the next non-space character, use 1s. If a field
width is given, the corresponding argument should
refer to a character array. The indicated number of
characters is read.

The conversion characters d, 0, and x may be preceded by 1
to indicate that a pointer to long rather than int is in the
argument list. Also, the conversion characters e, f, and g may
be preceded by 1 to indicate that a pointer to double rather
than to float is in the argument list. ‘

scanf conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control
string. In the latter case, the oftending character is left unread
in the input stream.

scanf returns the number of successfully matched and
assigned input items. This number can be zero in the event
of an early conflict between an input character and the control
string. If the input ends before the first conflict or conversion,
EOF is returned.

Trailing white space (including a new-line) is left unread
unless matched in the control string.

These functions return EOF on end of input and a.short count
for missing or illegal data items.

TEKELEC

5.2-55 Version 2.2

Chameleon 32 C Manual

Ch.5.2: ClLibrary Description

setbuf, setbuffer, setlinebuf

Declaration #include <stdio.h>
setbuf (stream, buf)
FILE *stream;
char “buf;
char buf[BUFSIZE];
setbuffer (stream, buf, bufsize)
FILE *stream;
char *buf;
setlinebuf(stream)
FILE *stream
Description Three types of buffering are available:
° Unbuffered Information appears on the destination
file or terminal as soon as written ,
o Block buffered Many characters are saved up and
written as a block. Normally, all files -
are block buffered.
® Line buffered Characters are saved up until a
- newline is encountered. _
setbuf is used aﬂef a stream has been opened, but before it
is read or written. It causes the character array pointed to by
buf to be used instead of an automatically allocated buffer. If
buf is a NULL character pointer input/output will be completely
unbuffered. A constant BUFS/Z, defined in the <stdio.h>
header file, tells how big an array is needed.
setbuffer sets up a user-defined /O buffer whose size is
determined by the parameter bufsize. If buf is NULL, the /O
buffer will be completely unbuffered. This function should only
be used after a stream has been opened, but before it has
been read or written.
setlinebuf changes stdout or stderr from block buffered or
unbuffered to line buffered. Unlike setbuf and setbuffer, it can
) be used at any time that the file descriptor is active.
f the space passed as buf cannot be freed (it was not
allocated by malloc, for example), then the stream must be
set to unbuffered before closing.
TEKELEC 5.2-56 Version 2.2

Chameleon 32 C Manual

Ch.5.2: CLibrary Description

setjmp

Declaration #include <stdio.h>
int setimp (env)
jmp__buf env;

Description This is a non-local goto which is useful for dealing with
errors and interrupts encountered in a low-level subroutine of
a program. setimp saves its stack environment in env (whose
type, jmp buf, is defined in the <stdio.h> header file), for
later use by longjmp. It returns the value O.

See Also longjmp

TEKELEC 5.2-57 Version 2.2

Chameleon 32 C Manual Ch.5.2: CLibrary Description

strcat, strncat, strcmp, strncmp, strcpy, strncpy,
strlen, incdex, rindex, xtrncat, xtrcpy, xtrncpy

Declaration #include <string.h>

char *strcat (s1, s2) char *strcpy (s1, s2)
char *s1, *s2; char *si, *s2;
char *strncat (s1, s2, n) char strncpy (s1, s2, n)
char *s1, *s2; char *s1, *s2;
int n; intn;
int strcmp (s1, s2) int strlen (s)
char *s1, *s2; char *s;
int strncmp (s1, s2, n) char *xtrcat(s1, s2)
char *s1, *s2; char *s1, *s2;
int n;
int index (s, ¢) char *xtrcpy(s1, s2)
char *s, c; char *s1, *s2;
int rindex (s, c) char *xtrncpy(s1, s2)
char s, c; char *s1, *s2;

~ Description These functions perform string operations as described

below. The arguments s7, s2, and ¢ point to strings (arrays
of characters terminated by a null character). The functions
strcat, strncat, strcpy, strncpy, xtrcat, xtrcpy, and xtrncpy all
alt%r s1. They do not check for overflow of the array pointed
to by s7.

strcat appends a copy of string s2 to the end of string s7, and
returns s7. :

xtrcat appends but returns a pointer to the end of s7, pointing
at the null byte.

strncat appends at most n characters.
strcmp compares its arguments and returns an integer less

than, equal to, or greater than 0, depending on whether s7 is
lexicographically less than, equal to, or greater than s2.

TEKELEC 5.2-58 Version 2.2

Chérneleon 32 C Manual

Ch. 5.2: Clibrary Description

strncmp makes the same comparison as strcmp, but looks at
a maximum of n characters. ‘

strcpy copies string s2 to s1, stopping after the null character
has been copied. The result is s7.

xtrcpy copies but returns a pointer to the end of s1.

strncpy copies exactly n characters, truncating s2 or adding
null characters to s7 if necessary. The result will not be null-
terminated if the length of s2 is n or more.

xtrncpy copies like strncpy, but returns a pointer to the end-of
sT. : :

strlen returns the number of characters in s, not including the
terminating null character.

index returns a pointer to the first occurrence of ¢ in string s.
NULL is returned if ¢ is not in s.

rindex returns a pointer to the /ast occurrence of ¢ in string s.
NULL is returned if ¢ is not in s.

TEKELEC

5.2-59 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: Clibrary Description

toupper, tolower, -tolower, toascii

Declaration #include <ctype.h>
int toupper (c)
int c:
int tolower (c)
int c;
int __tolower (c)
int c;
int toascii (c)
int c;

Range The range for toupper and tolower is -1 to 255.

Description These functions convert characters as described below.
If the argument for toupper is a lower case letter, the result is
a corresponding upper case letter. It does not check for
already upper case.
If the argument for tolower is an upper case letter, the resuit
is a corresponding lower case letter. Arguments other than
the ones mentioned are returned unchanged.

tolower is similar to tolower but has a smaller domain and is

faster. It requires an upper case letter as its argument.
Undefined results occur if arguments are other than required.
toascii returns the argument with all but the low order 7 bits
set to zero.

TEKELEC 5.2-60 Version 2.2

Chameleon 32 C Manual

Ch. 5.2: ClLibrary Description

ungetc

Declaration #include <stdio.h>
int ungetc (c, stream)
char c;
FILE *stream;

Description _This' function pushes the character ¢ into the buffer
-associated with an input stream. c will be returned by the
next read from that stream. c is returned and the stream is
left unchanged. ‘
A read must be performed prior to the ungetc. ¢ can be read
by getc, getchar, fread, gets, fgets, fgetc, fscanf, and scanf.
One character pushback is guaranteed, provided that
something has been read from the stream.
fseek erases all memory of inserted characters.

Returns If gFequaIs EOF, ungetc does nothing to the buffer and returns
EOF.
EOF is returned if ungetc cannot insert the character.

TEKELEC 5.2-61 Version 2.2

Chameleon 32 C Manual Ch.5.2: Clibrary Description

unlink

Declaration int unlink (fname)
char *path;

Description This function removes the directory entry pointed to by fname.
The named file is unlinked unless the operating system
returns an error (see errno).

Returns , 0 = Successful

-1=Error (errno is set appropriately)

TEKELEC 5.2-62 Version 2.2

Chameleon 32 C Manual

Ch.5.2: CLlibrary Description

write

Declaration

Description

Returns

int write(fildes, buf, nbyte)
int fildes;

char *buf,

unsigned nbyte;

This function writes on a file. It writes nbyte bytes from the
buffer pointed to by buf to the file associated with the fildes.

fildes is a file descriptor obtained from a creat or open.

.Writing begins at the current pointer position and is

incremented by the number of bytes actually written after
returning from write.

write will fail if an operating system error occurs. The pointer
position will remain unchanged in this event.

If the O BINARY flag is not set, linefeeds and returns are
translated to carriage returns (except to the screen).
If successful, the number of bytes actually written is returned.

If unsuccessful, -1 is returned and errno is set appropriately.

TEKELEC

5.2-63 Version 2.2

Chameleon 32 C Manual Ch. 5.3: System Library Globals

5.3 SYSTEM LIBRARY GLOBALS

Introduction Table 5.3-1 below lists C global variables that are defined in
libc.a. You can read these variables to determine information
about the current virtual terminal (window), cursor, time, and
other information.

You must declare these variables as external, using the C
extern command, before you can use them. These variables
may be used; however, changing their values is only for
experienced users.

GLOBAL | FUNCTION
[long _stdvt | Returnsthe current virtual terminal number (vtnum) |

int_t-ab__poss Returns the cursor position in the line

int__ echo__mode Echoes on getchar

int__cr_mode | MapsCRto CRLF

int_ctl_c¢_mode Allows Ctrl C to exit .

int curr -year Returns current year, which is set in the shell and is
- used by other programs.

long tab__width Returns the number of characters per TAB

long tkey Returns the task key of the current program

intclose_ vt ok Indicatesif it is OK to close the VT o exit()

char **environ Environment for environmental variables

__init() Returns base address of current program

char **argv Program args

int argc Programs args count

Table 5.3-1: System Library Globals

TEKELEC 5.3-1 Version 2.2

Chameleon 32 C Manual

Ch. 5.4: Window Interface Functions

5.4 WINDOW INTERFACE FUNCTIONS

Introduction

Standard input/
Standard Output

VT100 Format

Form Mode

The extended C library has additional Window Interface
functions that enable you to control windows for your
applications. The library includes:

® Functions
° Escape sequences

Both of these features are described in this section.
Definitions of escape sequences, key values and function
declarations are in the file video.h.

When your program starts, a window is assigned to you for
standard input and output (stdin, stdout, stderr). The window
number (vtnum) is in the external variable __stawvt.

If you want to use any of the window interface functions
without opening another window, you should use this variable
as the value returned from openvt().

All the regular /O functions (printf, getchar, etc.) will operate
on the standard window. If you open your own window, you
should overwrite stdvt with your window number, and then
restore it. For regular usage without another window, you do
not need to be concerned with these functions.

You can use the Window Interface functions to address the
screen, as follows:

® Rows: 1 - 22

° Columns: 1 - 80

® Row 23 is reserved for the LED display, which can be
set by calling the assignleds() function.

° Row 24 is reserved for the window banner and cannot
be accessed by the application or the library.

You can change a window to form mode, using the
openform() function. In form mode a full screen is available;
there are no banner and LED lines.

TEKELEC

5.4-1 Version 2.2

Chameleon 32 C Manual

Ch. 5.4: Window Interface Functions

Default Window

Attributes When an openvt() call is made, a default attribute is set with
the following characteris ics:
e Banner line with the name given in openvt()
e Cursoris in (1,1) position and is disabled
® All characters will be written at the current cursor
position
® Any Escape sequences remain in effect untll changed to
a different one or to the default
The window interface functions are described beginning on
the following page.
TEKELEC 5.4-2 Version 2.2

Chameleon 32 C Manual

Ch. 5.4: Window Interface Functions

assignleds
Declaration assignleds(vtnum, pleds, ledword)
long vtnum;
char *pleds;
long ledword;
Range vtnum Virtual terminal number which is the value returned
by the fopen function.
pleds Pointer to 80 characters which will appear on the
LEDs line.
ledword Bits 10-31 are reserved.
Bits0-9: IfBiti = 1,LEDi+1ison.
If Biti = O LED i+1 is off
Description This function creates or changes the LEDs for an application.
TEKELEC 5.4-3 Version 2.2

Chameleon 32CManual - Ch. 5.4: Window Interface Functions

closeform

Declaration closeform(vtnum)
long vtnum;

Description This function releases the screen from form mode and returns
to window mode. In other words, it restores the screen to it
previous status.

See Also openform

TEKELEC 5.4-4 ‘ Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

~closevt
Declaration closevt(vtnum)
long vtnum;
Description This function releases the virtual terminal. The virtual terminal
is determined by the virtual terminal number (vtnum) which is
a value returned by the openvt function.
See Also openwvt, putvt

TEKELEC 5.4-5 Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

disablecur

Declaration disablecur(vtnum)
long vtnum;

Description This function causes the cursor to be invisible on the screen
(default setting).. vtnum is the virtual terminal number of the
window returned by the fopen function.

See Also enablecur

TEKELEC 5.4-6 ‘ Version 2.2

Chameleon 32 C Manual ' Ch. 5.4: Window Interface Functions

enablecur

Declaration enablecur(vtnum)
long vtnum;

Description This function causes the cursor to be visible on the screen.
vtnum is the virtual terminal number of the window returned
by the openvt function.

See Also disablecur

TEKELEC . 5.4-7 Version 2.2

Chameleon 32 C Manual

Ch. 5.4: Window Interface Functions

getch

Declaration

Description

See Also

unsigned char getch(vtnum)
long vtnum;

This function gets a character from standard input without
waiting. If no character is available, it returns a OxFF. When
standard input is used (not opened using the openvt()
function), the vtnum value is in stdvt. The characters are
not echoed. - .

getcwt

TEKELEC

5.4-8 Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

getcwt

Declaration unsigned char getcwt(vtnum)
long vtnum;

Description As with the getch function, this function gets a character from
standard input. It does not return a value until a character is
available. |
Note that if you use this function, you will have to force a key
when killing the task from the shell.

When stdio is used, the vtnum value is in __stdvt.

See Also getch

TEKELEC 5.4-9 Version 2.2

Chameleon 32 C Manual , Ch. 5.4: Window Interface Functions

openform

Declaration long openform()

Description This function puts the screen in non-window (form) mode of
24 lines and returns the virtual terminal number (vtnum). It
clears the screen and works in form mode using putvt() calls.
Only one open form is allowed in the system, and therefore
this function should be in response to a request from the user.

See Also closeform

Returns -0 (the vtnum of the form window)

TEKELEC 5.4-10 Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

openvt

Declaration long openvt(pname)
: char *pname;

Description This function assigns a virtual terminal to an application.
pname is a 25-character null-terminated string which will
appear on the window banner. The function returns the virtual
terminal number (vtnum) which is referenced in other
functions.

The first 10 characters of the string constitute an escape

sequence that defines the default foreground and background
colors of the window.

See Also putvt, closevt

Exémple) long mywvt;
myvt = openvt(“\033[36m\033[44mMmedow”),

where:
\033{36m defines the foreground color as cyan

\033[44m defines the background color as blue
MyWindow defines the text for the window banner

TEKELEC 5.4-11 Version 2.5

Chameleon 32 C Manual ‘ Ch. 5.4: Window Interface Functions

prndata
Declaration prndata(data)
char *data;
Description This function sends data to the printer.
See Also endprint, selprn

TEKELEC 5.4-12 Version 2.5

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

putvt

Declaration putvt(vtnum,string)
long vtnum;
char *string;

Description This function displays a string on a virtual terminal (window).
The virtual terminal is determined by the virtual terminal
number (vtnum) which is a value returned by the openvt
function. ‘

The string is a maximum of 80 ASCIl characters in VT100
format. Esc sequences are defined.

See Also openvt, closevt

TEKELEC 5.4-13 Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

selprn

Declaration selprn (device, br, bits, sb, par)
long device, br, bits, sb, par;

Description This function selects the parameters for outputing to a printer.
Use the numbers indicated below to select the setting for
each parameter.

The default printer settings are:
Parallel, 9600, 8 bits, 2 Stop bits, Even.
device Printer type 1 Parallel
: 0 Serial
br Baudrate 3 300
6 600
12 1200
24 2400
48 4800
96 9600
192 19200
bits DataBits O 5 bits
2 6 bits
1 7 bits
3 8 bits
sb Stop bits. 1 . .1 stop bits
2 1.5 stop bits
3 2 stop bits
par Parity 0 None
1 Odd
3 Even
See Also endprint, prndata

TEKELEC 5.4-14 Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

WINDOW INTERFACE ESCAPE SEQUENCES

Introduction The Chameleon 32 C Escape sequences are a subset of the
VT100 Escape sequences and are listed in the table below.

Note Where a value is required for the Escape sequence (indicated
by Pn in the syntax) enter the ASCII value of the value. For
example, to move the cursor up 7 seven lines, you would print
the string Esc [7 a. In C you use use the enter the following:

printf("\033[7a")

where \033 represents the Esc key in octal.

Esc Seqhence Function
Esc[Pna Move cursor up Pn lines
Esc[Pnb Move cursor down Pn lines
Esc[Pnc Move cursor right Pn columns
Esc[Pnd Move cursor left Pn columns
Esc[Pi;Pnf Move cursor to line Pi column Pn
{ Esc[f Move cursor home
Esc[PnL Insert Pn lines (lines below the cursor move down)
Esc[PnM Delete Pn lines (lines below the cursor move up)
Esc[4h Insert mode
Escl4i Replace mode (default)
Esc[1P Delete 1 character
Esc[OK Erase to the end of the line
Esc[0J Erase to the end of the screen
Esc[2J Clear the screen

Table 5.4-1: Window Interface Escape Sequences

- TEKELEC 5.4-15 Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

Screen Attributes Use the following command to set the screen attributes (color,
highlight, blink, reverse video, etc):

Esc[nnm
where: nn is one of the attribute numbers listed in the table
below. 4
‘mﬁ’::f Attribute
Highlight)
1 Highlight
4 Underline
5 Blink
7 Reverse
30 Foreground Black
" 31 Foreground Red
32 Foreground Green
33 Foreground Yellow
34 Foreground Blue
35 Foreground Magenta
36 Foreground Cyan
37 Foreground White
40 Background Black
41 Background Red
42 Background Green
43 Background Yellow
44 Background Blue
45 Background Magenta
45 Background Cyan
47 - | Background White

Table 5.4-2: Window Interface Attribute Options

TEKELEC 5.4-16 Version 2.2

Chameleon 32 C Manual

Ch. 5.5: Matn uii.ary

5.5 MATH LIBRARY

Introduction

Zero

Largest Value

Infinity

The libm.a library includes the math functions described in this
section. The libm.a library is in the \lib directory. When
compiling a program, Vib\ib is automatically searched for
library files, so that you can compile a program using /ibm.a
by entering either:

cc prog.c \liblibm.a -
or
cc progc. -Im
The format of a double precision floating point nufnber is:

® The leftmost bit (63) is the sign for the mantissa

® The next bit (62) is the sign for the exponent

e The next 10 bits (61 - 52) contain the binary exponent,
which has a bias of 0x3ff (1023)

e The mantissa (in bits 51 - 0) is preceded by an implied
1-bit (left of the binary point). Therefore, the theoretical
precision is 53 X10g10(2) = 15.95 decimal digits.

All intermediate floating point operations are done in double
precision. The transcendental functions use radians.

A zero is represented by all zeros in the floating point .
variable. ,

The largest possible value for a float variable is contained in
the math library variable double dcsu. The value of this
variable is 0 X 7fffffffftitfiff.

The value of infinity is represented by the math library variable
double dcin. The value of this variable is 0 X ffffffffffffffff. This
value is returned in the instances where a floating point

_operation exceeded the maximum value of a double floating

point number.

TEKELEC

5.5-1 Version 2.2

Chameleon 32 C Manual Ch. 5.5: Math Library

The smallest number x>0 is:

0 %X 0000000000000001
((1 + (2-52))(21025)
1.1125369292536009 X 10-308

Smallest Value X

If the absolute value of a result is smaller than this number
(called underflow), a zero is returned.

The routines are described on the following page.

TEKELEC : 5.5-2 Version 2.2

Chameleon 32 € Manual

Ch. 5.5: Math Library

Declaration #include <math.h>
double log(x) Base e logarithm function
double log10(x) Base 10 logarithm function
double log2(x) Base 2 logarithm function
double exp(x) Base e exponential function
double exp10(x) Base 10 exponential function
double exp2(x) Base 2 exponential function
double sin(x), cos(x), tan(x) Transcendental functions
double asin(x), acos(x), atan(x) Inverse transcendental
double sqgr(x) x2
double sqgrt(x) VX
double powerd(x, y) xY (equivalent to exp2(x*1og2(y))
double poweri(x,a) xa (equivalent to exp2(x*log2(a))
where a is an integer)
double dabs(x) Ixl
int dint (x) Integer part of the double that is
the parameter. The fractional
part is truncated. This is
equivalent to:
sgn(x) X LixiJ
where: sgn(x) #-1, if x<0;
=0,ifx=0;
=1,ifx>0
double mulpower2(x, k) Performs a fast floating point
multiplication by 2K.
double Ingamma(x) Natural logarithm of the gamma
’ function if 0<x<5.1x10305,
Outside of this range dcin
(infinity) is returned.
double fac(k) k!, where 0<k=<170
double x,y;
int a, k;
TEKELEC 5.5-3 Version 2.2

Chameleon 32 C Manual

- Ch. 5.5: Math Library

double matinv(a, ¢, n)
double *a;
long *c;
long n;

matinv is the matrix inverse of the nXn array a. The data in a
may be stored in either row or column major order (C double
dimension arrays are row major). ¢ is a vector (one
dimensional array) of longs used during the computation.
matinv returns the determinant of a as the function resuit, and
the inverse of a in a. ¢ has no meaning after matinv finishes.
A determinant value of zero indicates failure (a is destroyed).

For example:
#include <math.h>
double ef2] [2] = {1,0,0,1}; /*1dentity Matrix®/
main()
{
double det;

long C[2]

. det=matinv(e, C, 2L);
printf("The determinant of e is Xf\n", det);

TEKELEC

5.5-4 Version 2.2

Chameleon 32 C Manual . Ch5.6: Control Characters

5.6 CONTROL CHARACTERS

Introduction The control characters are listed in the table below.
Control ' .
" Character Control Key Function
BEL (7) Curl G Bell
BS (8) Ctrl H Back Space
LF (10) Ctrl J Line feed
VT (11) Ctrl K Move cursor down 1 line
FF (12) Cti L Move cursor forward 1 character
CR (13) Ctri M Carriage return

Table 5.5-1: Control Characters

TEKELEC 5.6-1 Version 2.2

Chameleon 32 C Manual

Ch.5.7: Using Aux Serial Ports 1 & 2

5.7 USING AUX SERIAL PORTS 1 & 2

Introduction

The C Development System includes functions for accessing the
Aux Serial Ports 1 and 2. There are four functions for each port.
Those for Port 1 are:

e initportb Initializes the Aux Serial Port 1. You must use
this function to initialize the port before you can
transmit or receive.

e sndpb Transmits data using Aux Serial Port 1 to another
. device
® recpb Receives data using Aux Serial Port 1 from
another device
e rstdrvb Flushes the driver reception buffer.

Port 1 is only available if the debugger is not attached to it. For
details on the debugger, see Chapter 2.1, Configuration File.

Those for Port 2 are:

e initporta Initializes the Aux Serial Port 2. You must use
this function to initialize the port before you can
transmit or receive.

e sndpa Transmits data using Aux Serial Port 2 to another
device
® recpa Receives data using Aux Serial Port 2 from

another device

L rstdrv Flushes the driver reception buffer.

These functions are described on the following pages. The Port 1
functions are given on pages 5.7-2 through 5.7-5. The Port 2
functions are given on pages 5.7-7 through 5.7-10. Sample
programs are provided on pages 5.7-6 and 5.7-11.

TEKELEC

5.7-1 Version 2.5

Chameleon 32 C Manual Ch. 5.7: Using Aux Serial Ports 1 & 2

PORT 1 FUNCTIONS

initportb
Declaration #include “paval.h”
int initportb (stopbit, bitchar, bitrate, parity)
long stopbit;
long bitchar;
long bitrate;
long parity;
Ranges stopbit ST1 (1 stop bit)
ST15 (1.5 stop bits)
ST2 (2 stop bits)
bitchar DBS (5 data bits)
DB6 (6 data bits)
DB7 (7 data bits)
DB8 (8 data bits)
bitrate F110 (110 bits per second)
. F300 (300 bits per second)
F120 (1200 bits per second)
F240 (2400 bits per second)
F480 (4800 bits per second)
F960 (9600 bits per second)
F192 (19200 bits per second)
parity PANO (No parity).
PAEV (Even parity)
PAOD (Odd parity)
Description This function initializes the Chameleon 32 Aux Serial Port 1 to
transmit and receive data. When you use initporta, the driver
reception buffer is automatically flushed.
Returns 0 Successful
-1 Parameter error
-2 Port 1 not available

TEKELEC 5.7-2 Version 2.5

Chameleon 32 C Manual

Ch.5.7: Using Aux Serial Ports 1 & 2

sndpb

Declaration

Description

Returns

#include “paval.h”

int sndpb (ptr, nb, timeout)

char ptr; /*user buffer pointer*/
long nb; /*number of bytes®/
long timeout; /*timout value®/

This function transmits data using Aux Serial Port 1. You must first
initialize the port using the initportb function, before you can
transmit or receive data using this port.

ptris a pointer to a buffer containing the data to transmit. nbis the
number of bytes of data to transmit. timeout is the amount of time
to wait for the other device to receive the data. Itis in millisecond
units.

nb Number of bytes transmitted
0 Time out

-1 Parameter error

-2 Port 1 not available

TEKELEC

5.7-3 Version 2.5

Chameleon 32 C Manual

Ch. 5.7: Using Aux Serial Ports 1 & 2

recpb

Declaration

Description

Returns

#include “paval.h”

int recpb (ptr, timeout)
char *ptr;

long timeout;

This function receives data using Aux Serial Port 1. You must first
initialize the port using the inifportb function, before you can
transmit or receive data using this port.

ptris a pointer to a buffer to put the received data.

timeout determines the amount of time to wait to receive data data
in millisecond units.

If timeout > 0, the function immediately returns the number of
characters currently in the reception buffer. If the reception buffer
is empty, it waits the timeout period before returning the number of
bytes or a timeout.

If timeout = 0 the function immediately returns the number of
characters currently in the reception buffer. If the buffer is empty,
the Chameleon waits until a character is received before returning
the number of bytes.

nb Number of bytes received

0 Time out (no characters in the reception buffer)
-1 Parameter error
-2 Port 1 not available

TEKELEC

574 Version 2.5

Chameleon 32 C Manual Ch.5.7: Using Aux Serial Ports 1 & 2

rstdrvb

Declaration #include “paval.n”
rstdrvb()

Description This function flushes the driver reception buffer. Note that the
initportb function automatically flushes the driver reception buffer
when the port is initialized.

Returns -2 Port 1 not available

TEKELEC 5.7-5 Version 2.5

Chameleon 32 C Manual Ch. 5.7: Using Aux Serial Ports 1 & 2

SAMPLE PROGRAM

A sample program using the Aux Serial Port 1 functions is provided
below. This program initializes the port for terminal emulation.

#include “paval.h”

extern long _stdvt ;
/*
Terminal emulation program
*/
main ()
{
char rbuf {300] ; /* reception buffer */
char dbuf [300] /* display buffer */
char c ; /* typed character */
int len ; /* number of data received */
int i, j /* local variables */
puts(“Terminal Emulation program, Type ESC to exit”) ;
/*==—— Initialization of the port
1 stop bit
8 bits per characters
bit rate = 9600
No parity
*/
initportb(ST1,DB8,F960,PANO) ;
for(::)
{
/;-——- poll local keyboard, echo char and send char
*
if ((c=getch(_stdvt)) != -1
{
if (¢ == 0x1lb) /* exit with ESCAPE */
break ;
else
{
putvtsd(_stdvt,&c,1L) ;
sndpb (&c,1L,10L) ;
}
}
/*=——— poll reception on AUX 1 port and display */
else if ((len = recpb(rbuf,100L)) != 0)
{
for(i=0, j=0;i!=len;i++)
{
. if (rbuf{i] >= " ’)

dbuf[j++] = rbufli] ;
}
putvtsd (_stdvt,dbuf, (long) j)
}
}
}puts (“\nDisconnected”) ;
}

TEKELEC 5.7-6 Version 2.5

Chameleon 32 C Manual Ch. 5.7: Using Aux Serial Ports 1 & 2

PORT 2 FUNCTIONS
initporta
Declaration #include “paval.h”
int initporta (stopbit, bitchar, bitrate, parity)
long stopbit;
long bitchar;
long bitrate;
long parity;
Ranges stopbit ST1 (1 stop bit)
ST15 (1.5 stop bits)
ST2 (2 stop bits)
bitchar DB5 (5 data bits)
DB6 (6 data bits)
DB7 (7 data bits)
DBs8 (8 data bits)
bitrate F110 (110 bits per éecond)
F300 (300 bits per second)
F120 (1200 bits per second)
F240 - (2400 bits per second)
F480 (4800 bits per second)
F960 (9600 bits per second)
F192 (19200 bits per second)
parity PANO (No parity)
PAEV (Even parity)
PAOD (Odd parity)
Description This function initializes Aux Serial Port 2 to transmit and receive

data. When you use initportb, the driver reception buffer is
automatically flushed.

Returns 0 Successful
-1 Parameter error

TEKELEC 5.7-7 Version 2.5

Chameleon 32 C Manual

Ch.5.7: Using Aux Serial Ports 1 & 2

sndpa

Declaration

Description

Returns

#include “paval.h”

int sndpa (ptr, nb, timeout)

char *ptr; [*user buffer pointer*/
long nb; " [*number. of bytes™/
long timeout; [*timout value*/

This function transmits data using Aux Serial Port 2. You must first
initialize the port using the initporta function, before you can
transmit or receive data using this port.

ptris a pointer to a buffer containing the data to transmit. nbis the
number of bytes of data to transmit. timeoutis the amount of time
to wait for the other device to receive the data. It is in millisecond
units.

nb Number of bytes transmitted
0 Time out
-1 Parameter error

TEKELEC

57-8 Version 2.5

Chameleon 32 C Manual

Ch.5.7: Using Aux Serial Ports 1 & 2

recpa

Declaration

Description

Returns

#include “paval.h”
int recpa (ptr, timeout)
char *ptr;
long timeout;

This function receives data using Aux Serial Port 2. You must first
initialize the port using the initporta function, before you can
transmit or receive data using this port.

ptris a pointer to a buffer to put the received data.

timeout determines the amount of time to wait to receive data data
in millisecond units.

If timeout > 0, the function immediately returns the number of
characters currently in the reception buffer. If the reception buffer
is empty, it waits the timeout period before returning the number of
bytes or a timeout.

If timeout = 0 the function immediately returns the number of
characters currently in the reception buffer. If the buffer is empty,
the Chameleon waits until a character is received before returning
the number of bytes.

nb Number of bytes received
0 Time out (no characters in the reception buffer)
-1 Parameter error

TEKELEC

57-9 Version 2.5

Chameleon 32 C Manual Ch. 5.7: Using Aux Serial Ports 1 & 2

rstdrv
Declaration #include “paval.h”
rstdrv()
Description This function flushes the driver reception buffer. Note that the

initporta function automatically flushes the driver reception buffer
when the port is initialized.

TEKELEC 5.7-10 Version 2.5

Chameleon 32 C Manual Ch.5.7: Using Aux Serial Ports 1 & 2

SAMPLE PROGRAM

A sample program using the Aux Serial Port 2 functions is provided
below. This program initializes the port for terminal emulation.

#include “paval.h”

extern long _stdvt ;
/*
Terminal emulation program
*/
main ()
{
char rbuf [300] ; /* reception buffer */
char dbuf [300] ; /* display buffer */
char c ; /* typed character */
int len ; /* number of data received */
int i, 3 ; /* local variables */
puts (“Terminal Emulation program, Type ESC to exit”) ;
/*———— Initialization of the port
1 stop bit
8 bits per characters
bit rate = 9600
No parity
*/
initporta (ST1,DB8,F960,PANO) ;
for(;7)
{
/;-——— poll local keyboard, echo char and send char
*x
if ((c=getch(_stdvt)) != -1)
{
if (¢ == 0x1lb), /* exit with ESCAPE */
break ;
else
{
putvtsd (_stdvt, &c,1L) ;
sndpa (&c, 1L,10L) ;
}
}
/*=——— poll reception on AUX 2 port and display */
else if ((len = recpa(rbuf,100L)) != 0)

{
for(i=0, j=0;i!=len;i++)
{
if (rbuf[i] >= * 7)
dbuf{j++] = rbufi] ;
}
putvtsd (_stdvt,dbuf, (long) j) ;
}
}
}puts (“\nDisconnected”) ;
}

TEKELEC 5.7-1 Version 2.5

Chameleon 32 C Manual

Ch. 5.8: MS-DOS File Functions

5.8 MS-DOS COMPATIBLE FILE FUNCTIONS

Introduction

File Names

Wild Card
Characters

Directories

Pathnames

The Chameleon MTOS-UX file system is designed to be
compatible with MS-DOS 2.x and 3.x. The functions described
in this section have been added to provide low-level access to
the Chameleon file system.

The format of a filename is set by the system to be eight bytes
in length, plus a three-byte extension. The set of characters
allowed in a filename and extension are:

AZ,09,- 1@#%% &()" {}

All filenames must be terminated with a NULL (0x00)
character.

The question mark can be used as a wild card to describe
multiple files having similar names. ‘A wild card character can
be used only in the search function. When used with other
functions, it may produce incorrect results.

The question mark is a single character wild card. For
example, if you have three files named testi.txt, test2.txt, and
test3.txt, they could be identified simultaneously by using the
name test?.txt. ’

The C library contains functions for creating and removing file
directories and subdirectories. This enables you to have a
hierarchical directory structure to provide a higher order of
organization of files on the drive.

The use of pathnames enables you to access a drive or
directory other than the current one. A filename is composed
of the drive name and the directory specifiers as described
below.

The format of a pathname is as follows:
~ drive:\directory\directory\...filename

drive is Chameleon disk drive you want to access, and is one
of the following:

TEKELEC

5.8-1 Version 2.3

Chameleon 32 C Manual

Ch. 5.8: MS-DOS File Functions

File Functions

Sample Usage

a: hard disk drive
b: floppy disk drive

You do not need to specify the drive if you want to access the
current drive. '

Following the drive, you specify the hierarchy of directories
necessary to access the desired directory. Each directory
name is followed by the back slash (\) character. If a directory
is not specified, the current directory is assumed.

Following the directory path list is the file name of the files you
want to access. This must include the file extension. The wild
card ? can be used to specify more than one file name.

The standard C library (lib.c) contains the following MS-DOS
compatible file functions:

Fmkdir Makes a new directory

Frmdir Removes a directory

Fsearch Searches for a specified file or directory
These functions are described on the following pages.

Sample programs are provided beginning on page 5.8-7 to
illustrate the usage of the file functions.

TEKELEC

-

5.8-2 Version 2.3

Chameleon 32 C Manual Ch. 5.8: MS-DOS File Functions

Error Codes When a file function is completed, it returns either O for
success, or a negative number if an error has occurred during
the execution of the function.

The table below lists the possible codes:

ErrorCode Description
0 Successful
-1 Configuration error
-2 Opcode error
-3 Parameter error
-4 Error in volume access
-5 File not found error
-6 File already exists error
-7 Queue empty
-8 Physical read error
-9 Physical write error
-10 Directory full error
-11. Files open on directory
-12 . File aready open
-13 Error in filename
-14 File locked
-15 Function option error
-16 Attribute error
-17 End of file unexpected error
-18 EOF with partial record
-19 Fatal error
-20 Disk full - Temporary

TEKELEC 5.8-3 . Version 2.3

Chameleon 32 C Manual

Ch.'5.8: MS-DOS File Functions

Fmkdir

Declaration #include <msfsuse.h>
Fmkdir(dirname)
char * dirname;

Description This function creates a directory with the name dirname.
dirname is a pointer to the directory name and can include
the path for the new directory.

Returns See error codes on page 5.8-3.

Example “en
if (Fmkdir (".\\abc\\def") ! = 0) {

puts ("make dir error");
Also see Sample programs beginning on page 5.8-7.
TEKELEC 5.8-4 - Version 2.3

. .Chameleon 32 C Manual

Ch..5.8: MS-DOS File Functions

Frmdir

Declaration #include <msfsuse.h>
Frmdir(dirname)
char * dirname;

Description This function removes a directory with the name dirname.
dirname is a pointer to the directory name and can include
the path to the directory.

The directory must be empty before it can be removed from
the disk.

Returns See error codes on page 5.8-3.

Example .
if (Frmdir (".\\abc\\def") ! = 0) {

puts ("remove dir error");
~ Also see sample programs beginning on page 5.8-7.
TEKELEC 5.8-5 Version 2.3

Chameleon 32 C Manual

Ch. 5.8: MS-DOS File Functions

Fsearch
Declaration #include <msfsuse.h>
Fsearch(name, option, rec)
char * name;
int option;
struct DREC “rec
Description This function searches for a file or directory specified by
name. name is a pointer to the file/directory name and can
also include the path. -
If located, the file information is copied to the structure of type
DREC, which is defined in msfsuse.h, as shown below:
struct DREC
char dc fn[]; /*File name¥
char dc_ex[]; r/File extension"
char dc__at; /"File attributes™/
char dc™rs[]; /Reserved bytes*/
unsigned short dc__tim; /"Time of file creation”/
unsigned short dc__dat; /*Date of file creation®
unsigned short dc_str; /~Starting cluster number®/
unsigned long dc__fsz; /"File size in bytesY/ ‘
File attributes are defined in msfsuse.h as follows:
FA_RDF OxO1 Read Only File
FA_HDF 0x02 Hidden File
FA_SYs 0x04 System File
FA_VOL 0x08 Volume
FA_SDR 0x10 Sub-directory
FA_ARF 0x20 Archive
Returns See error codes on page 5.8-3.
Example See sample programs beginning on page 5.8-7.
TEKELEC 5.8-6 Version 2.3

Chameleon 32 C Manual

Ch. 5.8: MS-DOS File Functions

Sample Usage

The following sample programs demonstrate the use of the
MS-DOS compatible file functions. Error messages printed by
the programs are defined in a program named msfsmsg.c
and declared in the file msfsmsg.h, which are not included in
these samples.

The first sample program creates a directory named test__dir,
searches for it, and then removes it.

#include <stdio.h>
#include {video.h>
#include <msfsuse.hd
#include "msfsasg.h”

sain ()

{
char *pname;
int a;

name= “"test_dir";

it ((a=Fakdir(name)) == SUCCESS) {)
puts ("Fakdir completed successfully®);
1s_search (name);

}

else {
printf("Fakdir Error: %s®, msfsasg [-a]);
exit (0);

}

printf ("Hit a key to remove test directory®);
© fflush (stdout);

getcwt(_stdvt);

if ((a=Fradir(nase)) == SUCCESS {
puts ("Fredir completed successfully®);
1s_search(name);

}

else {
printf("Fradir Error: %s", msfsasg [-a]);

printf ("\nGoodbye\n");
3}
1s_search(name)
char *name;

{
struct DREC syrec;
int a;
if ((a=Fsearch(name, 0, &myrec)) == SUCCESS) {
puts ("Fsearch completed successfully");
1s_print (&myrec);
}
else {
printf (“"Fsearch Error: %s", msfsasg [-a]):
}
}

TEKELEC

5.8-7 Version 2.3

Chameleon 32 C Manual Ch. 5.8: MS-DOS File Functions

The second sample program illustrates how to search for a
specified file/directory. This program locates all items of the
specified name on the drive.

#include {stdio.h>
#include {video.h>
#include <{msfsuse.h>
#include "asfsasg.h”

main (argc, argv)
char *sargv;
{ :
. struct DREC myrec;
char buf [80];
int a, b,;
if (argc ! = 2)
strepy (buf, *.°);
else
strepy (buf, argv [1]);
for (a = 0; ; a++) {
printf ("Pass # Xd\n", a+l);
if (a > 0) {
printf(*\033[1m-- MORE -- \033[0m");
fflush (stdout);
getcwt(_stdvt);
puts(®®);

if ((b = Fsearch (buf, (a==070:1),8myrec))==SUCCESS) {
puts ("Fsearch completed successfully®);
1s_print (&amyrec);

}

else { R
printf (“"Fsearch Error: Zs\n", msfsasg [-b]);
break; -

}

TEKELEC 5.8-8 Version 2.3

Chameleon 32 C Manual Ch. 5.8: MS-DOS File Functions

This third program illustrates how the information resulting
from the file search function can be displayed for the user.

#include <msfsuse.h>
1s_print (rec)
structDREC *rec;
{ .
int a;
printf ("file name == %s\n®, rec-> dc_fn);
printf (°file extension == %s\n", rec-> dc_ex);
printf ("file attributes == %02x\an®, rec-> dc_at);
if ((rec-> dc_at & FA_RDF) == FA_RDF)
puts ("Read Only file");
else
puts("Read Write®);
if ((rec-> dc_at & FA_HDF) == FA_HOF)
puts ("Hidden file®); :
else)
puts (°Not Hidden file");
if ((rec-> dc_at & FA_SYS) == FA_SYS)
puts({“System file®);
else
puts (“"Not Systema file");
if ((rec-> dc_at & FA_VOL) == FA_VOL)
puts ("Volume bit == 1*);
else
puts ("Volume bit == 0");
if ((rec-> dc_at & FA_SDR) == FA_SDR)
puts ("Sub-directory file");
else
puts ("Not a Sub-directory file");
if ((rec-> dc_at & FA_ARF) == FA_ARF)
puts (“Archive file®);
else
puts (°Not Archive file");
printf ("reserved bytes == *);
for (a=0; a < RS_LEN; a++)
priatf (°"%02x *, rec-)> dc_rs [a]);
puts ("°);
printf ("time file was created== ");
1s_time (rec-> dc_tim);
puts(®"); :
printf ("date file was created== *);
1s_time (rec-> dc_dat);
puts(®*®);
printf (°starting cluster number == %04x\n", rec-> dc_str);
printf ("file size (bytes) == X-101d\n", rec-> dc_fsz);

1s_time (time)
int time;

{ int hrs = (timed>11) &Ox1f;
int min = (timed>5) &0x3f;
int sec = ((time) &0x1f) *2;
if (hrs == 0)
hrs = 12;

printf(°%02d:2102d:%X02d*, hrs, min, sec);

3}
1s_date (date)
int

date;
{
int =th = (dated)$) &0xf;
int day = (date) &0x1f;
int yr = ((date>>9) &0x7f) + 80;
printf(°%02d-2102d-%02d®, =ath, day, yr);
3}

TEKELEC . 5.8-9 Version 2.3

Chameleon 32 C Manual Ch 5.9: Non-Printing ASCll Characters

5.9 NON-PRINTING ASCll CHARACTERS

The following ASCIlI characters can be displayed on the
screen, but will not appear in output to a printer:

Hex Octal ASClI Hex Octal ASCHl Hex . Octal ASCll
80 200 N, a2 242 0O c2 302 |
81 201 Su a3 243 c3 303 |
82 202 5, a4 244 ca 304 ™M
83 203 & a5 245 c5 305 =
84 204 & a6 246 c6 306 =
85 205 g a7 247 c7 soz |l
86 206 A a8 250 | c8 310 +
87 207 8 a9 251 = c9 311 8
88 210 & aa 252 | ca 312 =
89 211 Hy ab 253 | cb 313

8a 212 4, ac 254 | ce 314 %
8b 213 v ad 255 cd 315 §
8c 214 F, ae 256 ce 316 N
8d 215 ¢, af 257 | of 3iz7 T
8e 216 s, b0 %0 4 do 20 L
8f 217 s b1 %1 b d1 321 1
%0 = 220 o b2 262 "™ d2 322 r
91 221 o, b3 263 -- d3 323 J
92 22 o, b4 264 | da 324 L
93 223 o, bS5 265 | .ds 325 +
04 24 o, b6 266 | dé 326 \
95 225 M b7 267 L d7 327 A
26 226 S b8 270 ds 330 |
97 227 £ b9 271 1 d9 331 y
a8 230 ¢, ba 272 T da 332 |
99 231 €, bb 273 i db 33 A\
9% 232 Ss be 2714\, dc 334 4
ab 233 £ bd 215 dd 335 T
¢ 234 Fo be 276 . de 336 1
od 235 Gg bf 277/ df 337 _!
% 236 A c0 < 0 340

of 237 ug cl < et 341 "
a0 240 !

at 241 1

TEKELEC 5.9-1 Version 2.4

Chameleon 32 C Maaual Ch. 5.10: BERT Functions

5.10 BERT LIBRARY FUNCTIONS

This section presents the functions for Bit Error-Rate Testing
supported by the Chameleon 32 C Deveiopment System compiler.
These functions are defined in the fiie bertlib and are given here in
alphabeitcal order within three, major functional categories (see the
Section Tabie of Contents on the next page). These are:

STARTUP AND IDLE MODE FUNCTIONS

FUNCTIONS USED WHILE FEP IS RUNNING A TEST

FUNCTIONS RELATED TO COLLECTING TEST DATA

The section INTERVAL TESTING gives a sample program using
some of these functions.

GENERAL NOTES AND REQUIREMENTS

As in other simulation libraries, before calling start_sync() or
start_async(), the user program should call setport(). If this is not
done, port selection will default to port A.

User programs must be linked with the math library (libm.a) provided
with system release 4.51 or later. Older versions may cause incorrect
exponents to be displayed when the value is quite small.

The include file (bertlib.h) must be included in the user program.
Otherwise, the returns to user calls to library functions that return long
or double values will be misinterpreted.

This library uses a sub~task started by start_sync() or start_async.
This sub-task manages the collection of test data from the FEP,
counts run-time seconds, errored seconds and timed tests. Because
of this, there are three rules that must be observed when writing a user
program:

e Program loops must contain a ‘pause()’ call that will stop the
program for a short time to allow the sub—task and any other tasks
access to processor time. This means that ‘mtosux.h’ should be
included in the user program.

e While this library may be run on either port, testing on both ports
requires running two separate programs. That is, you cannot start
both ports from a single task, as the same sub task will be started
twice and cause unpredictable results.

‘o Terminate with an ‘exit(0)’ call to assure termination of the

sub—task.

Tekelec

510-1 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

SECTION TABLE OF CONTENTS

The 29 functions of the BERT Library fall into three categories:

STARTUP AND IDLE MODE FUNCTIONS 5.10-3
FUNCTIONS USED WHILE FEP IS RUNNING A TEST . 5.10- 16

FUNCTIONS RELATED TO COLLECTING TEST DATA . 5.10-23

The functions in each category are listed one the first of the pages
devoted to that category, as listed above.

Tekelec

5.10-2 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

STARTUP AND IDLE MODE FUNCTIONS

block len i e 5.10-4
Clr_pream e 5.10-4
oo 1 S (' o 5.10-5
one block e 5.10-5
set err_rate(sel) i i i 5.10-6
set_mode e 5.10-7
S PrEaAMt e e 510-7
C=T= | G o £ ¢ 2 T 5.10-8
start_async i i 5.10-9
start_sync e e 5.10-10
timed_test 5.10-10
User_ P ... e e 5.10- 11

Tekelec

5.10-3 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

BLOCK_LEN

Declaration block_len(bllen)

Description Sets block length to be used in determining block errors.
bllen = unsigned int, 64k max.

CLR_PREAM

Declaration cir_pream()

Description Stops using preamb'le.

See SET_PREAM.

Tekelec 5.10-4 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

CONT_RUN

Declaration cont_run()

Description Sets FEP to active test mode. The test will continue to run until
STOP_TEST() is called or the test program is terminated by a cail to
exit (0). ‘

ONE_BLOCK

Declaration one_block()

Description Runs test for one block length, then returns to idle mode.

Tekelec 5.10-5 Version 1.0, November 1992

Chameleon 32 C Manual

Ch. 5.10: BERT Functions

SET_ERR_RATE(SEL)

Deciaration set_err_rate(sel)
Description Selects automatic error insertion rate. Only effective in SYNC testing.
sel = 0, none
1, 1.00E-5
2, 1.00E4
3, 9,84E4
4, 1.00E-3
5, 1.02E-3
6, 1.04E-2
Returns 0 - no problems
-1 — parameter error
See ERROR_ON (), ERROR_OFF (), ONE_ERROR ()
Tekelec 5.10-6 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

SET_MODE
Deciaration set_mode(mode)
Description Selects test mode, remote/local loopback, rx only.
mode = 1, Remote loopback
2, local loopback
4, receive only
Returns 0 — no problems
-1 — parameter error
SET_PREAM
Declaration set_pream(ch1,ch2)
Description Selects 2 byte user preamble to be transmitted at beginning of test

run.

ch1 = first byte to send
ch2 = second byte to send

See CLR_PREAM ()

Tekelec \ 7 5.10-7 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

SET_PTRN
Declaration set_ptrn(patsel)
Description Selects the test pattern. For user defined pattern, pattern location and
length MUST be set using user_ptrn().
parsel = 0, bert 63
~ 1, bert 511
2, bert 2047
3, bert 32767
4, 10101010
5, foxmes
6, user defined
Returns 0 - no problems

-1 — parameter error

Tekelec ' 5.10-8 Version 1.0, November 1992

Chameieon 32 C Manual ' Ch. 5.10: BERT Functions

START _ASYNC

Declaraticn start_async(interface,dbits,sbits,parsel,rate)

0, DCE
1, DTE

interface

dbits

-

(Data bits)

0 ~N O Ul
AN Ye]

sbits (Stop bits)

-

N—=O
N =t -
o

parsel = 2, evgn (Parity)

0, none

rate = 1,50 (Baud rate)
2,75
3, 110
4, 150
5, 300
6, 600
7, 1200
8, 2400
9, 4800
10, 9600
11, 19200

Returns 0 - no problems
-1 — parameter error
(see also global error table in the C library manual.)

Tekelec 5.10-9 Version 1.0, November 1992

Chameleon 32 C Manual . Ch. 5.10: BERT Functions

START_SYNC

Declaration

Returns

TIMED_TEST

Declaration

Description

start_sync(interface,rate)

interface = 0, DCE
1, DTE
2, ISDN

rate = 50 — 64000 bps if DCE is selected, any if DTE is selected.

0 - nc protlems
-1 — parameter error
(see also giobal error table in the C library manual.)

timed_test(length)

Run test for length seconds.

length = long int

For the convenience of the user, muitipliers have been added to
bertlib.h to convert hours and minutes to seconds.

EXAMPLE

timed_test(2*RN_HOURS + 1 O*RN_MINUTES +30); will run a test
for 2 hours 10 minutes and 30 seconds.

NOTE

This function sets up and starts the timed test, then returns. It will NOT
tie up the user program for the duration of the test. All other library and
user program functnons will operate normally during a timed test.

A call to stop_test() may be used to terminate atimed test before the
selected length of time.

Tekelec

5.10-10 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

USER_PTRN

Declaration user_ptrn(loc,len)

Description Passes address and length of user defined pattern. *loc = pointér to
user defined pattern len = length of pattern to send. Max length 4000
bytes.

*loc = pointer to user defined pattern
len = length of pattern to send. Max length 4000 bytes.
Returns 0 — no problems

~1 — parameter error

Tekelec 510-11 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

FUNCTIONS USED WHILE FEP IS RUNNING A TEST

ermor_off e i e 5.10-13
=T (o o o e 5.10-13
Lo L= T =T T 5.10-14
FESYNC .« ittt e e e e 5.10-14
Status e e 5.10-15
stop_test e 5.10- 15

Tekelec

5.10-12 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

ERROR_OFF
Declaration error_off()
Description Stons automatic error insertion.
See ERROR_ON (), ONE_ERROR (), SET_ERR_RATE
ERROR_ON
Declaration error_on()
Description Starts automatic error insertion. Requires previous call

to’'set_err_rate()’ to select error insertion interval.

See ERROR_OFF (), ONE_ERROR (), SET_ERR_RATE

Tekelec 5.10-13 Version 1.0, November 1992

Chameieon 32 C Manual Ch. 5.10: BERT Functions

ONE_ERROR
Declaration one_error()
Description Inserts one error in transmitted pattern independently of automatic
error insertion. Ineffective if test is not running.
See ERROR_ON (), ERROR_OFF (), SET_ERR_RATE ()
RESYNC
Declaration resync()
Description Resynchronizes on data pattern.

In the case of an excessively high error rate (25% or more) in one
second, resynchronization will occur automatically. The errors for that
second will be discarded and the sync loss counter will be
incremented. This is because such a high error rate normally means
a loss %fv data, a data slip, or a change in received pattern has
occurred.

This function allows you to program a lower resynch threshold than
that provided by the automatic resynch function.

Tekelec 5.10-14 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

STATUS
Declaration status()
Description Returns sync status.
0 = idle (test is not being run)
1 = running, not in sync
2 = running in sync
STOP_TEST
Declaration stop_test()
Description Stops test and return to idle mode.

See CONT_RUN (), ONE_BLOCK (), TIMED_TEST ()

Tekelec 5.10-15 Version 1.0, November 1992

Chameleon 32 C Manual " Ch. 5.10: BERT Functions

FUNCTIONS RELATED TO COLLECTING TEST DATA

doubleget err_rate i, 5.10-17
longget blkerrs i 5.10-17
ongget_errsec i i 5.10-18
long get_rbits e e 5.10-18
longget thits il 5.10-19
longget_rbiterrs 5.10-19
longget_runtime i il 5.10-20
longget_sermsecc.oiiiiiiiiiiiiiiiin. 5.10-20
longget syncloss i, 5.10 - 21
longget_tbiterrs 5.10 - 21
reset_ data........... ... i 5.10-22

Tekelec

5.10-16 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

DCOUBLE GET_ERR_RATE
Declaration double get_err_rate()

Description Returns cumulative bit error rate in floating point format.
To display the result, use the format code 2.2le.

EXAMPLE:

printf("The error rate is %2.2le\n”,get_err_rate());

LONG GET_BLKERRS
Déclarafion . long get_ blkerrs()

Description Returns the number of received block errors. (See block_len())

Tekelec : 5.10- 17 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functicns

LONG GET_ERRSEC
Declaration long get_errsec()

Description Returns the number of seconds during which one or more bit errors
were received.

LONG GET_RBITS
Deq!aration long get_rbits()

Description ~ Returns the number of received bits.

Tekelec 5.10-18 Version 1.0, November 1992

Chameleon 32 C Manual ‘ Ch. 5.10: BERT Functions

LONG GET _TBITS
Declaration long get_tbits()

Description Returns the number of transmitted bits.

LONG GET_RBITERRS

Declaration long get_rbiterrs()

Description @~ Returns the nunber of received bit errors.

Tekelec 5.10-19 Version 1.0, November 1992

%

Chameleon 32 C Manual : Ch. 5.10: BERT Functions

LONG GET_RUNTIME .

Declaration long get _runtimer)

Description Returns the cumulzative number of seconds during which the library is
in active test mcde. For example, this function will return ‘7’ when:

e cont_run() is called
o 5 seconds later stop_tesi() is called"

o then, the testis restarted 10 seconds later and again stopped after
2 seconds -

LONG GET_SERRSEC

Declaration long get_serrsec()

Description Retumns the number of seconds during which the received bit error
rate was 10E-3 or greater.

Tekelec 5.10-20 “Version 1.0, November 1992

®

Chameleon 32 C Manual Ch. 5.10: BERT Functions

LONG GET_SYNCLOSS
Deciaration long get_syncloss()

Description Returns the number of times that the received error rate was so high
that an automatic resync occured.

The returned value does not include calls to RESYNC() by the user
program.

LONG GET_TBITERRS

Declaration long get_tbiterrs()
Description Returns the number of transmitted bit errors when auto error insertion

is on. '

Tekelec 5.10- 21 Version 1.0, November 1992

Chameleon G2 C Manual Ch. 5.10: BERT Functions

RESET_DATA
Declaration reset_data()
Description Resets the counters for all the above to zero.

Tekelec 5.10-22 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

TIMED TEST EXAMPLE

The following program fragment is suggested as a means of running
a BERT test for a selected time interval. At this point, the FEP should
have been started using start_sync() or start_async() and the
parameters (e.g., mode, pattern, block length, etc.) set.

printf(M033{2J"); /* Clear screen */

timed_test(5 * RN_MINUTES); /* Start 5 minute timed test */

while(status()){ /* as long as test is running */ '
printf(M\033([1;1f"); /* position curser at 1,1 */

printf("Run time %010.0liseconds\n”
get_runtime(); /* %010.0lu prints in fixed 10 place format */

/* print all other test results of interest */

pause(1 + HMS); /* wait 100 msec so other tasks can use
processor */ :

} /* end of while loop */

/* Using 'HMS’ or other mnemonic in pause() requires inclusion of
MTOSUX.h ¥/

ADVANCED PROGRAMMING TECHNIQUE:
GETTING CORRECT RESULTS FROM VERY LONG TEST RUNS

A structure of long integers is used to store the collected test data. A
long, as defined by the Tekelec C compiler, will overflow at a value
slightly above two billion. To avoid problems during long test runs,
bertlib.h provides the user with a pointer to the data structure so that
individual values can be reset and an extension counter incremented.

. An example of this is in the following program fragment. — ' ‘

unsigned int tbit_oflo = 0;
if(get_tbits() >= 1000000000L){
tes_data—>tx_bits —=1000000000L ;/*adjust the count*/
tbit_oflo ++; /* and incr the extension counter */

}

Itisimportant that rx_bterrs should be reset any time rx_bits
is cleared to avoid incorrect bit error rate calculation by the
get_err_rate() function.

Tekelec 5.10-23 Version 1.0, November 1992

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

6.1 USING THE vi EDITOR

The Chameleon 32 C package provides an editor, called vi,
which is similar in function to versions of the vi editor
commonly in use.

if you are familiar with vi, you may not need to read this
section in detail. The last few pages of the section contain a
listing of all commands and their definitions. A vi quick
reference chart is also included in the Chameleon 32 Quick
Reference Guide.

If you are unfamiliar with vi, you may want to create a text file
to practice using the vi commands as you read this chapter.

Special Keys Esc, Return, and Delete have the following functions in vi:
Esc The Esc key cancels incomplete commands. Press
Esc if you have typed an incorrect command, or if
you are not sure what commands you have already
typed. Esc also exits from vi insert mode.
Return The Return key terminates commands. |
Delete When inserting a command line, Delete moves the .
cursor one character to the left. When you then
press Esc or Return, the characters to the right of
the cursor are erased.
Entering vi To edit a file in the C Shell page, type the command:
vi filename
If the file exists, the file is displayed in the C Shell page. If the
file does not exist, vi will assume you are creating a new file.
To edit a file in a separate page, use the syntax:
vi filename &
TEKELEC 6.1-1 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

This displays the file for editing in a VI page, which is separate
from the C Shell page. Likewise, if the file does not currently
exist, vi assumes it is a new file you wish to create.

The tags (-t) option invokes the vi editor to edit one or more
files which contain a specified function (tag). For example, the
following command invokes the vi editor to edit the files that
contain the function specified by tagname, and positions the
cursor at the first occurrence of the function:

vi -t tagname

In order to use the -t option, you must have used the shell
ctags command, which creates a tags file containing
information about the functions in the target files. Refer to the
ctags command in Section 2.1 for more information.

Also refer to the :tag command on page 6.1-3 which enables
you to search for tags once you are in vi.

Exiting vi To exit vi, use the following commands:
2z Exits vi and saves the changes made to the file.
:q Exits vi without saving the changes made to the file.
Only use this command if you are sure you want to
discard the changes made to the file.
Text Display The commands below move the text within the page.
CTRL B Moves backward one page.
CTRLD Moves half a page forward.
CTRL E Moves the page down one line, leaving the
cursor at its current location. -
CTRL F Moves forward one page.
CTRL U Moves half a page backward.
CTRLY Moves the page up one line, leaving the cursor
at its current location.
z Causes current line to be displayed in the
center of the page.
Z-
Z <Return> Causes current line to be displayed at the top
of the page.
TEKELEC 6.1-2 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Search
Commands You can also move through the file by searching for a string,
using the following command:

/XXXXXXX < Return>

where xxxxxxx is any character string. If the string is not

present in the file, the editor indicates that this is the case, and

returns the cursor to its original position. Additional search
commands are:

n Searches forward for the next occurrence of the string

?xxxxxxx <Return> Searches backward through the file for

the character string xxxxxxx.
/7 XXXXXXX A caret at the beginning of the character string
, searches for strings at the beginning of a line.

/xxxxxxx$ A dollar sign at the end of the character string
searches for strings at the end of a line.

:tég tagname Positions the cursor at the first occurrence of
the function specified by tagname in the files
being edited.

In order to use :tag, you must have used the
shell ctags command, which creates a tags
file containing information about the functions
in the target files. Refer to the ctags
command in Section 2.1 for more information.
Positioning 3
Commands You can move through the file by specifying a line number
using these commands:

xG Moves the cursor to line x.

G Moves the cursor to the end of the file.

Ctri G Display information about the file, including:

-the line number the cursor is positioned on
-the name of the file you are editing
-the number of lines in the buffer
-the percentage of the way through the buffer
" Two back quotes moves you back to a previous
position
TEKELEC 6.1-3 Version 2.4

Chameleon 32 C Manual ‘ Ch. 6.1: Using the'vi Editor

Screen Movement
Commands The four arrow keys (= | « 1) move the cursor to any position
on the screen. Other cursor commands include:

+ Moves to the first non-white character on the next
line

n+ Moves to the first non-white character down n lines
from the current line

- or

k Moves up one line.

n- or

nk Moves to the first non-white character up n lines
from the current line

Line Movement Once you reach the line you want, you can move the cursor

within the line using the following commands:

b Moves to the beginning of the preceding word.

nb Moves back n words.

e Moves to the end of the current word.

ne Moves forward n words to the end of the word

backspace or

h Moves left one character

nh - Moves left n characters

spacebar or
| . Moves right one character

nl Moves right n characters
w Moves to the beginning of the next word.
nw Moves forward n words.

TEKELEC 6.1-4 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Insert Mode

Note that the w and b commands treat punctuation as words,
and therefore stop the cursor at punctuation marks. The
corresponding upper case commands do not treat punctuation
as words:

B Moves to the beginning of the preceding word.
nB Moves back n words.

w Moves to the beginning of the next word.

nwW Moves forward n words. |

When you first enter the vi editor you are in command mode.
The command mode enables you to move the cursor around
in the file. If you want to add, change, and/or delete text, you
must change to insert mode. To enter insert mode, type:

In insert mode, the keys that you press are interpreted as text
input, and are entered to the left of the cursor.

There is also an append mode, which causes typed
characters to be entered to the right of the cursor. To enter
append mode (from command mode), type:

. a

To exit either the insert mode or the append mode, and return
to command mode, press Esc.

If you want to insert a new line between existing lines of text,
use the following commands:

(4} Creates a new line below the current line, and enters
insert mode.

0 Creates a new line above the current line and enters
insert mode.

While in either the O or 0 mode, press Return to insert
additional new lines of text. To exit 0 or 0 mode, press Esc.

You can also enter position the cursor and enter insert mode
using the following commands:

A Move to the end of the line and enter insert mode

| Move to the beginning of the line and enter insert mode

TEKELEC

6.1-5 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Deleting

Characters To make a correction when you are in command mode, use
the positioning keys described previously to place the cursor
over the character to be corrected, enter insert mode, and
then use one of the following commands:

X Deletes the character directly under the cursor

X Deletes the character left of the cursor

nx Deletes n characters beginning with the character directly
under the cursor.

rx Deletes the current character and replaces it with
character x.

sbbbb Esc Deletes the current character and replaces it

with the string bbbb.

nsbbbb Esc Deletes n characters beginning with the

character directly under the cursor, and
replaces them with the character string bbbb.

Delete Command Some commands are used with other commands to augment
their functions. For example, the d (delete) command can be
used in conjunction with other commands to delete different
amounts of text. For example:

db
dd
ndd
dL

dnL

dw

ndw

Deletes the word preceding the cursor
Deletes the current line
Deletes n lines

Deletes all lines up to and including the last line on
the screen

Deletes all lines up to the nth line from the bottom
of the screen.

Deletes a word

Deletes n words

TEKELEC

6.1-6 Version2.4.

Chameleon 32 € Manual

Ch. 6.1: Using the vi Editor

Change Command

Undoing
Changes

Moving Around
Quickly in a File

The ¢ (change) command can be used as follows:

cwxxxxEsc Changes the text of a word to text xxxx

~cexxxx Esc Changes the current line to text xxxx

The following ocmmand are available for undoing (reversing)
the effect of the preceding commmand:

u - Undoes the last command, as if the command were
never performed

uu Undoes the undo command, replacing the change
which was undone by the u command

u . Undoes the last command (up to 9 commands)

One way to move quickly to a certain place on a line is to use
a search command to search for a punctuation mark, and a
repeat command command to move to successive
occurrences of the punctuation mark.

To do this use the following commands:

fx Move to the next occurrence of character x on the
current line

; Moves to the next instance of the same character.

To work with characters up to but not including character x,
you can use the t (up to) command. For example:

dtx Deletes characters up to but not including the
character x.

To move to the first non-white position on the current line, use
the command:

~

To move to the begining of the previous line, use the
command:

TEKELEC

6.1-7 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Tab
Characters

REARRANGING
TEXT

To move to the end of a line, use the command:
S

For example, the command Sa allows you to add new text to
the end of a line.

Tab and non-printing characters are treated as if they are a
single character, even though they take up move than one
character space in a file. Tabs are represented by CTRL |I.
When the cursor moves to a tab or non-printing character, it
rests on the last space that represents the tab or character.

If you space or backspace over a non-printing character
(represented by a CTRL character and another character), the
cursor moves over it as if it were a single character.

The vi editor ignores the CTRL character if you insert it into a
file. If you want to be sure the vi editor does not ignore the
character, you must type a CTRL V before the CTRL
character.

The vi editor provides a number of text buffers. There is an
unnamed buffer which the editor uses to save the last deleted
or changed text, and a set of 26 buffers named a through z
which you can use to save copies of text, to move text around
in your file, and to move text between files.

You can use the command:

”xy |
to put selected text into a buffer, where x specifies the buffer
name (a-z). If there is no buffer specified, the text will be put
into the unnamed buifer. To put the contents of a buffer back
into a file, use these commands:

p Puts the text after or below the cursor

P Puts the text before or above the cursor
If the text you put in the buffer started with a line that was not
an entire line, it will be put back directly next to the cursor. If

the text you put in the buffer formed complete lines, it will be
put back as complete lines.

TEKELEC

6.1-8 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Marking Your
Place

YP Makes a copy of the current line and positions the
cursor on the copy.

nYP Makes a copy of n lines and positions the cursor on
the copy.

Yp Makes a copy of the current line, and positions the

cursor after the current line.

nYp Makes a copy of n lines, and positions the cursor
after the current line.

To move text from one place in a file to another place in a file,
use a delete (d) command to move the text into a buffer and a
put (p) command to move the text from the buffer into the new
location in the file). For example, to move six lines of text, use
the following command sequence:

“aédd Deletes six lines and puts the deleted text into
buffer a

Move the cursor to the new location for the text.

ap Puts the text in buffer a following the current
position of the cursor.

You can return to the previous cursor position using the
command “. You can also mark places in your file with single
letter labels, then return to these labels later by spemfymg the
label name. The mark commands are:

mx The cursor position is marked with the reference x,
which is a letter from a - z.

’x Returns the cursor to the poitiosn marked with the
reference x.

X Moves to the beginning of the line in which the
mark is located

Note that the labels disappear when you edit another file.

TEKELEC

6.1-9 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Adjusting the
Screen

Switching
Between Files

The following commands move lines and formfeeds:

Ctri L This is the formfeed character, and causes the
screen to be repainted.

z Moves the current line to the top of the screen
Z. Moves the current line to the center of the screen
z- Moves the current line to the bottom of the screen.

You can edit a different file without leaving the vi editor by
entering the command:

se filename < Return>

If you enter the command and you have not yet saved your
editing changes, the editor will remind you to do this first. You
can use the command :w <Return> to to save the file. Then,
give the :e filename <Return> command again. Or, you can
use the command:

:e! filename < Return>

which causes all the changes ydu made to the existing file to
be discarded, and opens up the specified new file for editing.

TEKELEC

6.1-10 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Editor Options

Editor options are shown in the table below.

Name Command Default Description
autoindent ai noai ' Automatic indentation on/off
autowrite aw noaw Automatic write before :n, :ta, CTRL", ! on/off
igndrecase ic noic Ignore case in searching on/off
list list nolist Tabs print as CTRL [; end of lines marked with S
' on/off
magic magic magic The characters .[and * are special in scans on/off
shiftwidth SW =n sw=8 Shift n characters for <,> and input CTRL D and
CTRLT
tabstop ts = ts=4 Sets n number of characters indented for tab
wrapscan ws ws Wrapscan on/off
You can put these statements in your EXINIT, or give the
commands while running vi. While in vi, you must precede the
comments with a colon (:) and end them with Return. There
are two kinds of options:
- numeric options
- on/off toggle options
You can set numeric options by a statement of the form:
set option =value |
For example, in vi, the following sets the tabstop to 5:
'setts=5
You can change toggle options on or off, using the form:
set option
set nooption
For example, in vi to turn autoindent on, use the command:
:set ai
To turn autoindent off in vi, use the command:
:set noai
TEKELEC 6.1-11 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Recovering
Deleted Text

To display a list of set options and their current settings, use
the command:

:set all < Return >

set can be abbreviated se. Multiple options can be placed on
one line, for example:

:se ai aw <Return>

Options set by the set comand only last while you are in the vi
editor. If you want to have certain options set whenever you
use the vi editor, you can create a list of commands to set up
those options. The command list will be run every txme you
open up the editor.

The following example sets the autoindent and autowrite
options, makes the @ character function as a “delete line”
key; and makes the # character function as a “delete a
character” key.

set ai aw|jmap @ dd|map # x’
Redefining characters is described later in this chapter.

The command string should be put in the variable EXINIT. If
you use csh, put this line in the file logm in your home
durectory

The vi editor saves the last nine deleted blocks of text in a set
of registers numbered 1-9. To get the nth previous deleted
text back into your file, use the command:

Q!np

where n is the number of the buffer you need. If you want to
see the buffer after the nth buffer, use the command:

The period command, in general, causes the last command
typed to be repeated. For the “np command, however, it
increments the buffer number before it re-executes the
command.

TEKELEC

6.1-12 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Automatic
Word Wrap

High Level
Editing Functions

Autoindent

Line
Shifting

If you are inputting large amounts of text, and you want to
avoid pressing Return at the end of every line, use the
command:

wm =10 <Return>
This command causes each line to be broken at a space of at
least 10 columns from the right margin. To put a broken line
back together, use the command:

J ! .
If you need to put several lines together, you can precede the

J with the number of lines. For example, 4J joins 4 lines
together.

The vi editor provides a number of high level editing functions
such as automatic tab indention and parenthesis matching.
These functions are described below.
The command:

:se ai <Return>
sets autoindent mode. While in this mode, all lines typed after
a tab will automatically line up under that tab. You will not be
able to backspace over the automatically inserted tabs, but
you can use the Ctrl D command to backtab over the tabs.
For every the cursor will back up one tab position, usually 8
spaces. You can use the command:

iSe SW=X <Return>
to change the number of spaces represented by one tab

position. x represents the number of spaces. sw is called the
shiftwidth function.

You can shift lines in your file to the right and to the left by
using the command:

>>
to shift your line one shiftwidth to the right, and

<<

to shift your line one shiftwidth to the left.

TEKELEC

6.1-13 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Matching ,

Parentheses If you want to track how parentheses are matched in a
complex expression, you can move the cursor to the right or
left parenthesis and use the command:

%

This will show you the matching parenthesis. The command
can also be used for {} and[].

Macros The vi editor allows you to create macros. Macros are user-

' specified combinations of keystrokes set up to execute at a
single keystroke command. There are two types of macros: ..
1. You can put the macro in a buffer register, for example,
Register x. You will then be able to type @x to run the
‘macro. You can also type @@ to repeat the last macro.
2. You can use the map command from vi as follows:
imap x y

where x is the name of the macro, and y is the listing of

commands. Note that:

- x should be one keystroke because, it must be
entered within one second (unless notimeout is
set).

- x can be no more than 10 characters

- y can be no longer than 100 characters

- To put a space, tab, or newline into x or y, you
need to escape them with a Ctrl V.

- Spaces and tabs inside y need not be escaped.

To delete a macro, use the command:
unmap x
If the macro x is #0 through #9, this maps the particular
function key instead of the 2 character sequence of the pound
sign and the number.
_ You can place a ! after the word map to cause the mapping to
apply to input mode, instead of command mode.
TEKELEC 6.1-14 Version 2.4

- Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Word
Abbreviation

Lines and the
vi Editor

There is a word abbreviation function similar to the macro
function which allows you to type an abbreviation that the
editor will automatically spell out. Use the command:

:ab XXX YYYYYYYYYY YYYYYY YYYYY

where xxx is the abbreviation and yyyyyvyyyy yvyyyyy yyyyy is
the expanded version of the abbreviation. Only whole words
are affected. If xxx is part of a larger word, the vi editor will
not change it. xxx does not need to be limited to a single
keystroke.

The editor folds long logical lines onto many physical lines in
the display. Line commands affect logical lines. The vi editor
puts only full lines on the display. If there is not enough room
for an entire logical line, the vi editor will not put part of the
line on the screen, but will leave it empty and use a @ as a
place holder.

You can cause tabs to be répresented as Ctrl I and the ends
of lines represented by S by using the command :se list
<Return> t0 enable, and :senolist <Return> to disable.

When the file ends above the last line on the screen, the
missing lines are represented by the character ~.

TEKELEC

6.1-15 : Version 2.5

Chameleon 32

CManual

Ch. 6.1: Using the vi Editor

Counts

File Manipulation

As stated previously, many vi commands use a number
preceding the command to alter the command. For example:

new window size 2/ ? ¢

scroll amount CTRLD CTRLU
line/column number z G

repeat most of the rest

The vi editor remembers the current default window size. This
is the size used when the vi editor clears and refills the screen
after a search or repositions the cursor far from the current
window.

The scroll commands CTRL D and CTRL U remember the
amount of scroll last speczf ied, starting with one half the
window size.

Except for a few commands, the rest of the editor commands
use a count to indicate a simple repetition of their effect. For
example, 6w advances six words on the current line.

Commands The following table lists the file manipulation commands.
Command Description
w Wirite back changes
‘wg Wirite and quit
X Wirite (if necessary) and quit (same as Z2)
e name Edit file name
el Re-edit, discarding changes
e + name Edit, starting at end
:le+n Edit, starting at line n
e# Edit alternate file
‘W name Write file name
:wl name Overwrite file name
X,yw name Write lines x through y to name
- :r name Read file name into buffer
n Edit next file in argument list
:nl Edit next file, discarding changes to current
n args Specify new argument list
TEKELEC 6.1-16 : Version 2.5

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

SEARCHING FOR
STRINGS

Magic

As the list indicates, if you make changes to the editor copy of
the file, but do not want to write them back, then you must
give an ! after the command you are using.

The :e command can be given a + argument to start at the
end of the file, or a +n argument to start at line n.

The % character replaces the current filename, and the #
character replaces the alternate filename.

You can write part of the buffer to a file by finding out the lines
that bound the range to be written using the Ctrl G command,
and giving these numbers after the : and before the w,
separated by ,’s. You can read another file into the buffer
after the current line by using the :r command. You can also
;$ad in the output from a command by using !emd instead of a
ile name.

To edit a number of files in succession, you can give all the
names on the command line, and then edit them in turn by
using the command :n.

When you search for strings using / and ?, the editor normally
places you at the next or previous occurrences of the string.
If you want to affect lines up to the line before the line
containing the string, you can use a command of the form:

Ipat/-n

to refer to the nth line before the next line containing pat, or
you can use + instead of - to refer to the lines after the one
containing pat. If you do not give a line offset, the vi editor
affects characters up to the pat, rather than whole lines; thus
use +0 to affect to the line which matches.

To have the vi editor ignore the case of the words in the
search, use the command:

:seic <Return> .
The command :se noic <Return> disables this.

Strings searched for may contain regular expressions. If you
do not need this, you can give the command:

set nomagic

in your EXINIT. Then, only the characters * and S are special.
The character \ may be used for an extended pattern matching
facility. It is necessary to use a \ before a/ in a forward
search, or a ? in a backward search.

TEKELEC

6.1-17 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

The table below shows extended forms when magic is set.

Command -Description)
- At beginning of pattern, matches beginning of line
S At end of pattern, matches end of line
Matches any character .
\< Matches the beginning of a word
\> Matches the end of a word
[str] Matches any single character in str
["str] Matches any single character not in str
[x-yl Matches any character between xand y
* Matches any number of the preceding pattern
If you are using nomagic, the . [and * primitives are given
with a preceding \.
Correction
Characters There are a number of characters which you can use to make
corrections during input mode. These are shown in the
following table. Your system kill character (@, CTRL X or
CTRL U) will erase all the input you have given on the current
line. If you want to type in your erase or kill character you
must precede it with a'\.
Command Description
CTRLH Deletes the last input character
CTRLW Deletes the last input character, defined asby b
erase Your erase character, same as CTRLH
kill Your kill character, deletes the input on this line
\ Escapes a following CTRL H and your erase and kill
ESC Ends aninsertion
DEL Interrupts an insertion, terminating it abnormally
CR Starts a new line
CTRLD Backtabs over autoindent
O0CTRLD Kills all the autoindent
CTRLD Same as 0 CTRL D, but restores indent next line
CTRLV Quotes the next non-printing character into the file
TEKELEC 6.1-18 Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

vi Softkeys

Introduction

Softkey
Options

There are several softkeys that correspond to vi commands
that you can use to edit your programs. The softkeys act as
macros. When you press the softkey, the command is typed
onto the screen. You must then type any additional
information (filename, for example), that is required by the
syntax, and then press Return to execute it.

There are two sets of vi softkeys. When you load the vi editor,
the first softkey strip appears at the bottom of the Chameleon
32 screen, as follows:

Open Save Quit | Sav/Qit | Revert Read | Set Next | Rewind | EDIT

Fi F2 F3 Fa F5 F6 F7 F8 F9 F10

These are the FILE softkeys. In general, the FILE softkeys
enable you to select a file for editing, save files, set editor
options, and exit from vi.

. When you press F10 Edit the second set of vi softkeys, the

EDIT softkeys, are active, as shown below:

Insert | Append | Del chr Cut Copy Paste | Srch Fw | Srch Bk | Again FILE

F1 F2

F3 Fa F5 F6 F7 F8 F9 F10

In general, the EDIT sofkeys enable you to make changes to
the text in your program file. If you select F1 Insert or F2
Append the softkey strip disappears from the screen because
the other options are invalid when you are in either of these
modes. To escape from the Insert or Append mode and
redisplay the softkey strip, press the Esc key.

Use the F10 key to move between the EDIT and FILE softkey
strips.

Table 6.1-1 lists the softkeys, a brief description of the
commands they represent, and a page reference for more
information about the command syntax and usage.

TEKELEC

6.1-19 - Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

Command
Softkey Strip , See
Softkey Key Description Page
F1 - Open e Edit file 6.1-16
‘ F2 - Save w Save changes 6.1-16
FILE - - — :
SOFTKEYS F3 - Quit q Quit vi and return to % 6.1-2
F4 - Sav/Qit y/4 Save changes and quit vi 6.1-2
; Discard changes made to current
- -e! -
F5 - Revert el file and re-edit 6.1-16
F6 - Read T Read file into buffer 6.1-16
F7 - Set :set Set editor options 6.1-11
F8 - Next n Edit next file in argument list 6.1-16
F9 - Rewind rrew Edit previous file in argument list 6.1-16
F1 - Insert i Insert before cursor 6.1-4
EDIT F2 - Append a Append after cursor. 6.1-4
SOFTKEYS -
: F3 - Del chr x | Delete a character 6.1-5
F4 - Cut Y Put line into buffer 6.1-8
) Make a copy of the current line }
FS - Copy Yp below the cursor 6.1-9
Copy line from buffer below
F6 - Paste P cursor 6.1-8
F7 - Srch Fw / Search forward from cursor for 6.2-5
specified string
Search backward from cursor for
F8 - Srch Bk ? specified string 6.2-5
F9 - Again Redo last operation 6.2-4

Table 6.1-1: vi Softkey Assignments

TEKELEC

6.1-20

Version 2.4

Chameleon 32 C Manual

Ch. 6.1: Using the vi Editor

vi On-Line Help

When you are in the vi editor, you can access on-line help by
pressing the Help key on the Chameleon 32 keyboard. It is
located to the right of the space bar.

To exit from the on-line help, and return to the vi editor, press
any key.

TEKELEC

6.1-21 Version 2.4

Chameleon 32 C Manual Ch. 6.2: Command Reference

6.2 COMMAND REFERENCE

The following tables list each vi command and give detailed
definitions. Control characters are listed first, then special
characters, then digits, and finally, upper and lower case.

A brief Quick Reference Guide is included in the Quick
Reference section of this manual.

TEKELEC 6.2-1 Version 2.2

Chameleon 32 C Manual Ch. 6.2: Command Reference

CONTROL CHARACTERS
Command Definition
CTRL A Density
CTRL B Move a full window backward. A count specifies repetition. Two lines
of continuity are kept if possible.
CTRLC Not used
CTRL D As a command, scrolls down a half-window of text. A count gives the

number of logical lines to scroll, and is remembered for future CTRL
D and CTRL U commands. During an insert, backtabs over
autoindent white space at the beginning of a line; this white space
cannot be backspaced over.

CTRL E Move the window down one line.

CTRLF Move a full window forward. A count specifies repetition. Two lines
of continuity are kept if possible.

CTRL G Equivalent to :f CR, printing the current file, whether it has been
modified, the current line number and the number of lines in the file,
and the percentage of the way through the file that you are.

CTRL H (BS) Move left one character (same as left arrow or h). During an insert,
eliminates the last input character, backing over it but not erasing it; it
remains so you can see what you typed if you wish to type something
only slightly different

CTRL I (TAB) Not a command character. When inserted, it prints as some number
of spaces. When the cursor is at a tab character, it rests at the last
of the spaces which represent the tab. The spacing of tab stops is
controlled by the tabstop option.

CTRL J (LF) Same as down arrow.

CTRL K Move up one line (sme as k).

CTRL L Move right one character (same as |)

CTRL M Move to the first non-white character on the next line.

CTRLO Not used

CTRL Q Not a command character. In input mode, CTRL Q quotes the next
character

CTRLR Redraws the current screen, eliminating logical lines not
corresponding to physical lines (lines with only a single @ character
on them).

CTRL S Unused

CTRL U Moves half a window forward:

TEKELEC 6.2-2 Version 2.2

Chameleon 32 C Manual Ch. 6.2: Command Reference

CONTROL CHARACTERS
Command Definition

CTRLV Not a command character. In input mode, quotes the next character
so that it is possible to insert non-printing and special characters into
the file '

CTRL W In insert mode, deletes the last word typed.

CTRL X Not used

CTRLY Moves the window up one line.

CTRL 2 Not used

CTRL\ Not used

CTRL] Searches for the word which is after the cursor as a tag. Equivalent
to typing :ta, this word, and then a CR. .

CTRL Equivalent to :e # CR, returning to the previous position in the last
edited file, or editing a file which you specified if you got a “No write
since last change diagnostic“ and do not want to have to type the file
name again.

CTRL _ Not used

TEKELEC : 6.2-3 Version 2.2

Chameleon 32 C Manual ' Ch. 6.2: Command Reference

SPECIAL CHARACTERS
Command Definition
space Same as right arrow
“ Precedes a named buffer specification. There are named buffers 1-

9 used for saving deleted text and named buffers a-z into which you
can place text. '

$ Moves to the end of the current line. If you :se list CR, then the end
of each line will be shown by printing a $ after the end of the
displayed text in the line. Given a count, advances to the count
following the end of line.

% Moves to the parenthesis or brace which balances the parenthesis or
brace at the current cursor position.

When followed by a ’ returns to the previous context at the beginning
of a line. The previous context is set whenever the current line is
moved in a non-relative way. When followed by a letter a-z,

returns to the line which was marked with this letter with an m
command, at the first non-white character in the line. When used
with an operator such as d, the operation takes place over complete
lines; if you use ’, the operation takes place from the exact marked
place to the current cursor position within the line.

* : Not used

+ Same as CR when used as a command

Repeats the last command which changed the buffer. Especially
useful when deleting words or lines; you can delete some words/lines
and then hit. to delete more and more words/lines. Given a count, it
passes it on to the command being repeated.

@ A macro character. If this is your fill character, you must escape it
with a \ to type it in during input mode, as it normally backs over the
input you have given on the current line.

> An operator which shifts lines right one shiftwidth, normally 8 spaces.
Like all operators, affects lines when repeated, as in > >. Counts
are passed through to the basic object.

TEKELEC 6.2-4 Version 2.2

Chameleon 32 C Manual ' Ch. 6.2: Command Reference

SPECIAL CHARACTERS

Command Definition

/ Reads a string from the last line on the screen, and scans forward for
the next occurrence of this string. The normal input editing
sequences may be used during the input on the bottom line. The
search begins when you hit CR to terminate the pattern; the cursors
moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB, or
by backspacing when at the beginning of the bottom line, returning
the cursor to its initial position. Searches normally wrap end-around
to find a string anywhere in the buffer.

When used with an operator, the enclosed region is normaily
affected. By mentioning an offset from the line matched by the
pattern you can force whole lines to be affected. .To do this give a
pattern with a closing / and then an offset +n or -n.

To include the character / in the search string, you must escape it
with a preceding \. A ° at the beginning of the pattern forces the
match to occur at the beginning of a line only; this speeds the
search. A §$ at the end of the pattern forces the match to occur at
the end of a line only. More extended pattern matching is available.

1-9 Used for numeric arguments to commands

A prefix to a set of commands for file and option manipulation and
escapes to the system. Input is given on the bottom line and
terminated with an CR, and the command then executed. You can
return to where you were by hitting the DEL or RUB if you hit :
accidentally.

; Repeats the last single character find whichusedf F t or T. A
count iterates the basic scan.

< An operator which shifts lines left one shiftwidth, normally 8 spaces.
Like all operators, affects lines when repeated, as in < <. Counts
are passed through to the basic object.

? Scans backwards, the opposite of /.

TEKELEC 6.2-5 Version 2.2

Chameleon 32 C Manual Ch 6.2: Command Reference

UPPER CASE COMMANDS

Command Description
A Append at the end of the line
B Backs up a word, where words are composed of non-blank

sequences, placing the cursor at the beginning of the word. A count
repeats the effect.

C Changes the rest of the text on the current line; same as c$

Deletes the rest of the text on the current line; same as d$

E Moves forward to the end of a word, defined as blanks and non-
blanks, like B and W. A count repeats the effect.

G Goes to the line number given as the preceding argument, or the end
of the file if no preceding count is given. The screen is redrawn with
the new current line in the center if necessary.

H Move to the first line in the window (home position).

| Inserts at the beginning of a line; same as “i.

J Joins together lines, supplying appropriate white space; one space
between words, two spaces after a ., and no spaces at all if the first
character of the joined on line is a). A count causes n lines to be
joined.

K Not used

Move to the Iast' line in the window or to the nth line above the last
line in the window.

N Scans for the next match of the last pattern given to / or ?, but in the
reverse direction; this is the opposite of n.

(0] Opens a new line above the current line and inputs text there up to
an ESC. - .

P Puts the last deleted text back before/above the cursor. The text

goes back as whole lines above the cursor if it was deleted as whole
lines. Otherwise, the text is inserted between the characters before
and at the cursor. May be preceded by a named buffer specification
"x to retrieve the contents of the buffer; buffers 1-9 contain deleted
material, buffers a-z are available for general use.

Q Not used

R Enter replace mode. Terminates with an ESC.

TEKELEC 6.2-6 Version 2.2

Chameleon 32 C Manual . Ch 6.2: Command Reference

UPPER CASE COMMANDS

Command ' Description

S Changes whole lines, same as cc. A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the
screen before the substitution begins.

U Restores the current line to its state before you started changing it.

Not used

<

Moves forward to the beginning of a word in the current line, where
words are defined as sequences of blank/non-blank characters. A
count repeats the effect.

X Deletes the character before the cursor. A count repeats the effect,
but only characters on the current line are deleted.

Y Yanks a copy of the:current line into the unnamed buffer, to be put
back by a later p or P. A count yanks that many lines. May be
preceded by a buffer name to put lines in that buffer.

y4 Exits the editor. Same as :x CR. If any changes have been made,
the buffer is written out to the current file. Then the editor quits.

\ Not used

Moves to the first non-white position on the current line:
.- Not used

When followed by a * returns to the previous context. The previous
context is set whenever the current line is moved in a non-relative
way. When followed by the letter a-z, returns to the position which
was marked with this letter with an m command. When used with an
operator such as d, the operation takes place from the exact marked
place to the current position within the line; if you use ’, the operation
takes place over complete lines. -

TEKELEC 6.2-7 Version 2.2

Chameleon 32 C Manual Ch. 6.2: Command Reference

LOWER CASE COMMANDS

Command Description

a Appends arbitrary text after the current cursor position; the insert can
continue onto multiple lines by using CR within the insert. A count
causes the inserted text to be copies, but only if the inserted text is
all on one line. The insertion terminates with an ESC.

b ‘Backs up to the beginning of a word in the current line. A word is a
sequence of alphanumerics, or a sequence of special characters. A
count repeats the effect.

c Deletes the specified text and enters insert mode.
d Deletes the specified text.
e Advances to the end of the next word, defined as forb and w. A

count repeats the effect.

f Finds the first instance of the next character following the cursor on
the current line. A count repeats the find.

Not used

Left arrow. Moves the cursor one character to the left. Like the
other arrow keys, either h, the left arrow key, or one of the synonyms
(“H) has the same effect. A count repeats the effect.

i Inserts text before the cursor, otherwise like a

i Down arrow. Moves the cursor one line down in the same column

k Up arrow. Moves the cursor one line up. “P is a synonym.

| Right arrow. Moves the cursor one character to the right. SPACE is
a synonym.

m Marks the current position of the cursor in the mark register which is

specified by the next character a-z. Return to this position or use
with an operator using ’ or ‘.

n Repeats the last / or ? scanning commands.
o] Opens new lines below the current line; otherwise like O.
p Puts text from the unnamed buffer following the cursor.

q Not used.

TEKELEC 6.2-8 Version 2.2

Chameleon 32 C Manual) Ch. 6.2: Command Reference

LOWER CASE COMMANDS

Command Description

r Replaces the single character at the cursor with a single character
you type. The new character may be a CR; this is the easiest way to
split lines. A count replaces each of the following count characters
with the single character given. R is usually more useful than r.

s Changes the single character under the cursor to the text which
follows up to an ESC; given a count, that many characters from the
current line are changed. The last character to be changed is
marked with $.

t Advances the cursor up to the character before the next character
typed. Most useful with operators such as d and c to delete the
characters up to a following character. You can use . to delete more
if this doesn’t delete enough the first time.

u Undoes the last change made to the current buffer. If repeated, will
alternate between these two states, thus is its own inverse. When
used after an insert which inserted text on more than one line, the
lines are saved in the numeric named buffers.

v Not used
w | Advances to the beginning of the next word.
X ' Deletes the single character under the cursor. With a'count deletes

that many characters forward from the cursor position, but only on
the current line. '

y An operator, yanks the following object into the unnamed temporary
buffer. If preceded by a named buffer specification, “x, the text is
placed in that buffer also. Text can be recovered later by a p or P.

z Redraws the screen with the current line placed as specified by the
following character: CR specifies the top of the screen, . the center
of the screen, and - at the bottom of the screen. A count may be
given after the z and before the following character to specify the
new screen size for the redraw. A count before the z gives the
number of the line to place in the center of the screen instead of the
default current line.

- Not used

TEKELEC 6.2-9 Version 2.2

Chameleon 32 C Manual Appendix A: Limits and Extensions

- APPENDIX A
LIMITS AND EXTENSIONS

COMPILER
LIMITS
char, unsigned char 1 byte
int, unsigned, short 2 bytes
long, unsigned long 4 bytes
float 4 bytes
double - 8 bytes
any type* 4 bytes
Variable names: 255 bytes (first 10 must be unique)
Floating point: IEEE format: 32 bit float, 64 bit double, 80-bit
‘ intermediate - '
| 'Register variables: 6 (2 pointer, 4 scalar)
EXTENSIONS

Structure passing, assignment and returning.
In-line M68000 assembly (pafséd aﬁd assembled by compiler).
Character constants can be int and long size (ie. 'xx’ and ’Axx’).
. The same structure member name can be used in more than one structure.
Forward pointer references to Structures and Uﬁions.

Addition of types unsigned long and unsigned char.

TEKELEC A-1 Version 2.2

Chameleon 32 C Manual

Appendix A: Limits and Extensions

LINKER
Symbols:

Segment types:
LIBRARIAN

Files per library:

Operations:

256 character maxfmum
Local and Global symbols are supported.

TEXT (code), DATA (initialized data), BSS
(uninitialized data)

unlimﬁed

| Add file, Delete file, Extract file, create random

library, list files

TEKELEC

A-2 Version 2.2

Chameleon 32 C Manual

Appendix B.1: Common Library Features

B.1 COMMON LIBRARY FEATURES

Introduction

Sample Programs

This section contains information that is common to all the
protocol libraries described in Appendix B. The return codes
described in this section are defined in the file cham.h in the
directory av/include. You will find it helpful to print a copy of
the cham.h file for your reference.)

The following sections describe each library separately. At the
end of each library description, you will find sample programs
that utilize that library. Some sample programs utilize more
than one library; these sample programs are cross-referenced
instead of being repeated.

All the sample programs can be found on the C Sample
Program Diskette. The samples consist of three programs for
each protocol. These samples are designed to be run alone
or against each other as follows:

XXXa.c Runs on a single or dual port machine on Port
A. The program begins by initiating a
transmission. It can be run against program
XXXb.c (with XXXb.c on a second machine, or
with both programs on the same dual port
machine--one on Port A and one on Port B).

XXXb.c Runs on a dual port machine on Port B. Can
also run on a single port machine if the
setport command is changed to call Port A
instead of Port B. This program begins by
waiting for a transmission.

XXXab.c Runs on a dual port machine by running Port
A against Port B.

TEKELEC

B.1-1 Version 2.4

Chameleon 32 C Manual

Appendix B.1: Common Library Features

FEP State Codes

Error Codes

The initp1 or init anal function initializes the Chameleon
Front End Processor (FEP) for a specific library. After using
one of these functions, the state of the FEP is indicated by
one of the following codes:

Number Meaning

100 FEP is being used by another application and
cannot be initialized by the simulation library. (The
FEP is busy.)

101 The FEP has not been initialized by the simulation

library (The FEP is currently free).

102 FEP is initialized by the current simulation library.
(The FEP is running.)

The error codes shown below may be returned by any of the
protocol library functions. Note that FEP refers to the
Chameleon Front End Processor.

Number _Meaning
-200 Port is busy

-201 FEP parameter error

-202 FEP Parameter port

-203 Not available on an ISDN interface
-208 Code not found

-209 FEP cannot be started

-211 Transmission mode not valid

-212 Timeout

-213 No memory available

-214 FEP Code read

-215 FEP copier not found

-216 'FEP Code not loaded

-217 Cannot halt FEP

-218 No Port B

-219 Internal error

-220 FEP Load error

-222 Undefined status

-224 FEP Data not set (initp1 not performed)
-225 Unknown FEP error

TEKELEC

B.1-2 Version 2.4

Chameleon 32 C Manual

Appendix B.1: Common Library Features

Functions The functions listed in this section are included in all protocol
libraries. The functions are described on the following pages:
FUNCTION PAGE
FLUSH B.1-4
GETPHY B.1-5
GETPORT B.1-6
GETIME B.1-7
INITTIME B.1-8
P1RESET B.1-9
SETLEDS B.1-10
SETPHY B.1-11
SETPORT B.1-12
SETTIMER B.1-13
TIMER B.1-14
TEKELEC B.1-3 Version 2.4

Chameleon 32 C Manual Appendix B.1: Common Library Features

FLUSH

Declaration int flush()

Description This function clears all outstanding frames in the reception
buffer.

Returns 0 Successful
3 Receive buffer overflow
See global errors on page B.1-1.

Note To clear a receive buffer overflow condition, perform an initp1.

TEKELEC B.1-4 Version 2.4

Chameleon 32 C Manual

Appendix B.1: Common Library Features

GETPHY
Declaration int getphy()
Description This function indicates the setting of the physical lines.
Returns 2-byte integer that can be interpreted using the figure below.
See global errors on page B.1-1.
BYTEO (LSB)
BIT: 7 6 5 4 3 2 1 0
CATT Greuit No. PIN:| 105 108 140 141 104 103 114 115
V.24 Reference PIN: a 20 3 2 15 17
* RS232 Signal Name SIG: RTS DTR RD TD SCT SCR
BYTE 1 (MSB)
BIT: 7 6 5 4 3 2 1 0
CQTT Circuit No. PIN:| 106 107 109 125 142
V.24 Reference PIN: 5 6 8 22
RS232 Signal Name SIG: CTS DSR <D RI
TEKELEC

B.1-5 Version 2.4

Chameleon 32 C Manual Appendix B.1: Common Library Features

GETPORT

Declaration int getport()

Description This function returns which port is currently communicating
with the library. Use the setport function to select the port.

Returns 0 Port A selected.

1 Port B selected

See global errors on page B.1-1.

TEKELEC B.1-6 Version 2.4

Chameleon 32 C Manual . : Appendix B.1: Common Library Features

GETIME

Declaration #include <mtosux.h>
int getime(msbfr)
unsigned char *msbfr;

Description This function . gets the number of milliseconds since the
system was started. msbfr is the address of a 6-byte buffer to
recei<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>