

CHAMELEON 32
C DEVELOPMENT SYSTEM

Part Number 909-3384

Version 2.7

TEKELEC
26580 Agoura Road

Calabasas, California
91302

November, 1992

Information in this documentation is subject to change without notice. Any software which is furnished in conjunction with or
embedded within the product(s) described in this documentation is furnished under a license agreement andlor a
nondisclosure agreement, and may be used only as expressly permitted by the terms of such agreements(s).
Unauthorized use or copying of the software or this documentation can result in civil or criminal penalties.

No part of this documentation may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying or recording. for any purpose without the express written permission of an authorized
representative of Tekelec.

Copyright Tekelec 1991. All rights reserved. -

Chameleon 32 and Chameleon 32-plus are registered trademarks of Tekelec.

Other product names used herein are for identification purposes only, and may be trademarks of their respective
companies.

The hardware, software and documentation comprising the product(s) are provided under a Teke/ec limited 12 month
warranty. Other than the limited warranties that are expressly stated therein, and without limiting the generality thereof,
Tekelec makes no warranty, express or implied, to you or to any other person or entity, concerning the hardware, the
software and this documentation. Tekelec will not be liable for incidental, consequential, lost profits, or other similar
damages, orfor damages resulting from loss of use, data, revenues or time. In no event will Tekelec's liability, regardless of
the form of claim, for any damages ever exceed the priceJlicense fee paid for the specific product. You may have other
rights which vary from state to state.

CHAPTER

CHAPTER 1:

CHAPTER 2:

TABLE OF CONTENTS

DESCRIPTION

INTRODUCTION TO THE CI-'AMELEON 32 C PACKAGE
1.1 C Package Description

1.2 Loading the C Package

PAGE

Executing C Applications .. 1 .2-4
Configuration Files .. 1 .2-5

1.3 C Programming Tutorial

C SYSTEM DESCRIPTION
2.1 Shell

Login File .. 2.1-1
Configuration File ... 2.1-1
Device Files .. 2.1-2
Filename Substitution 2.1-3
1/0 Redirection ... 2.1-4
Environmental Variables 2.1-4
Shell Commands 2.1-5

& (Background Mode) : 2.1-6
(Remark) _. 2.1-7
• (Echo Text) .. 2.1-8
batch .. 2.1-9 -
cat ... 2.1-10
cd ... 2.1-11
cp ... 2.1-12
ctags .. 2.1-13
dump. . . • . • 2.1-14
exit•................................ 2.1-15
fonnat .. 2.1-16
getenv•.................................. 2.1-17
help. .. 2.1-18
jobs ,•.. 2.1-19
kill .. 2.1-20
Is .. 2.1-21
man .. 2.1-22
mkdir .. 2.1-23
mkres .. 2.1-24
more • .. 2.1-25
mv • . • • 2.1-26
pwd .. 2.1-27
rm -.-; ' : ' . .--;-:-.. : . : .. ; ; 2.1-28
rmdir • • 2.1-29
rmres .. 2.1-30
run .. 2.1-31
setenv • • .. 2.1-32
shell •......•....•.............•..•................. 2.1-33
size • . . • • . • . • . • • . . . • • • • • • . • 2.1-34
time • . • • . • . • . . • • . . . • • . •_ • • 2.1-35

Shell Error Messages••.........••........... 2.1-36

TOC-1 • Version 2.7

CHAPTER 3:

, CHAPTER 4: '

TABLE OF CONTENTS

2.2 Compiler Commands
co .. 2.2-1
mcc•........... ,' 2.2-3

2.3 linker Command
Id•.............. , 2.3-1
Unker Errors ' •..•.....•.... , . . • 2.3-3
The Unking Process " • .. 2.3-4
Object File Format '. .. 2.3-5

2.4 librarian
Random Ubrary .. 2.4-1
ar , 2.4-2
Error Messages • • . . . • . • • • • • . • • . . • • • • • • • . • . . • 2.4-3

2.5 DIsassembler
dis ... 2.5-1

2.6 Egrep (File Search)
Usage .•..• ,.,•••.••..•.••••.• ;•......••.•.•.... 2.6-1
Examples ••.......••••.•• " .•••• " .•..•••...••.•.. , . . . • . . •. 2.6-3

2.7 Symbol Namer

2.8 Global Error Codes

2.9 BASICISITREXIText File Conversion Utility
Generat Guidelines ..•...••..•••....•.....••....••......... 2.9-1
BASIC File Extensions ; 2.9-1
Converting BASIC Files to Text Files 2.9-2

Converting Text Files to BASIC Files 2.9-3

MAKE UTILITY
3.1 Make Utility

make ..•....•.....• ' ..••.•••.••••....• ' .•••..•.•••....•..• 3.1-2
Makefile Structure •...•.•..••••••.•...•.•....••••.••••..••. 3.1-3
Macro'Definition .. 3.1-6
Dynamic Dependency • • 3.1-7
Suffixes Table •......••..••.••.•.••••.•.•..••••.•.•••.•••• 3.1-8
TransformatiOn Rules ...•....•.....••.......•.•..•.•....... 3.1-8

Examples •.••.••• " • . • • . • • • • • • • • • • • • • • . • • . • • • • • • • 3.1-10

COMPILER-, - .. _-
4.1 Machine Dependencies

Data Elements ...•••.•.•.••••••••••••••...•...•.•.•••..... 4.1-1
Extemal Names ...••••••••••••.•••••.••••••.•.•.•...•....• 4.1-1
Include File Processing•.....•.•.••.•.....•.........•..• 4.1-2
Floating Point •.••••••••..••.••••••••.•..•••.•••••.••••.•• 4.1-2
Register Variable Support • . . . • . • • • 4.1-2

4.2 Compiler Processing
Error Processing•.••••.••.•.•••. • . . • • • .. 4.2-1
Code Generation ...•.•••••••.••••••.•• '. • • • . • • . • • . • . . •. 4.2-1

4.3 Run-Time Program Structure
System Ubrary•.•.•.....••...••.•••.••••.....•....... 4.3-1
Program Entry/Exit ...•..•••.•••..•....••.•••....•..•••.••. 4.3-1
Function can ConventiOns •••••••••••••••••••••••••••••••••. 4.3-1

TOC-2. Version 2.7

CHAPTERS:

TABLE OF CONTENTS

4.4 Li,brary Implementation
Une Separators ... 4.4-1
Memory Allocation ,. 4.4-1

4.5 Language Extensions
Assembler ... 4.5-1
Defaults ... '. 4.5-3
Accessing C Objects , 4.5-3
Available Registers .. 4.5-3
Creating Global Symbols. .. 4.5-3
Assembly Language Example , , .' 4,5-4
Structure Assignment 4.5-5
Character Constants , , 4.5-5
Scope of laentifiers ... " 4.5-5
Forward Pointer References .•..•....•.......••.•.........•.. 4.5-5

LIBRARY COMMANDS
5.1 Library Index

File 1/0 ' •.........•..•. ~ • 5.1-1
Stream 110 ..•...............•........•...•...•........•... 5.1-1
I/O Redirection •......•.... ~ • • . . • • 5.1-2
Device I/O ...•.. • . . • • . • . • • . . • • • • • . • 5; 1-2
Memory Allocation•..•• .- ...•••.•...•.... '. 5.1-2
Program Parameters • • • . • . .. 5.1-3

, Ubrary Inde~ (alphabetical) . • • • 5.1-4
Ubrary Index (by function)••.••..•... ;••••.... ' 5.1-5

5.2 Library Description (1Ibe.a)
abs •............•••..•.•.•••..•••.•....•.••............ 5.2-1
access•.•....••.•••.••.•.••...•.•....•........... 5.2-2
alloca • . • . . • • • • 5.2-3
atof •..............•.••.. :.............................. 5.2-4
atoi, atol, strtol . • • • . .. 5.2-5

, bcmp•...•............................. '. 5.2-6
bcopy • • • . . • • • • 5.2-6
bzero 5.2-6
callOC,lcalloc•........••....•................... 5.2-7
clearerr••..•••...............•••.....•..... 5.2-8
close .••......•••.••••..••••••........•..•••••...•••.... 5.2-9
creat ••..•...•.•.....•..•••.•...•.•••....•••.•......••. 5.2-10
exed .•.••••••••••••••..•••..•...••••.•..•.•.••.....••• 5.2-11

. execv••••••••.••••••.••.•.••.•••.••••.•.•......••. 5.2-12
exit, _exit •••.••••••••••••.•••••••••••.•••.•••••••.•••••• 5.2-13
fclose•••••.............•.••.•.•...•...•.••.... 5.2-14
ferror .•.....•.............• '•.••.....••..••...•.... 5.2-15
feof ••.•..•..••••••..•..........••••.....•.••••..••.... 5.2-16
fflush •••......•.••.•••.•.••.•...••••....••.•.•. ,•• 5.2-17
fgete•.••.••••.•.. .••••••••••.••• '. • • • • • . . • • . . • • • . .. 5.2-18
fgets ••..•••••.••••..•.••••.•••••.••••••.•••.•.•••••... 5.2-19
flleno •.. . • . • • • • . • . • • • • • • • . . • • • . •• 5.2-20
fopen, freopen ••••.•.••••.•.••.••••.••••••..•••.••...•.••• 5.2-21
fputc ••••••••••••••.•• ~ • • • • • • • • • • • • • • • • • • • . • . . • • . . • • 5.2-22
fputs •••.•• 5.2-23
freacI •• 5.2-24
free•........... 5.2-25
fseek•..........•............ 5.2-26
ftell . • • .. 5.2-27

TOC-3. Version 2.7

TABLE OF CONTENTS

fwrite , • .. 5.2-28
gete ... 5.2-29
getchar .. 5.2-30
gets 5.2-31
getw ..•.. 5.2-32
isalpha, is upper, islower, isdigit, isalnum, iss pace, ispunct,
isprint. isentrl, isaseii, isxdigit 5.2-33
Iseek ... 5.2-34
longjrnp .. 5.2-35
malloe, Imalloe ... 5.2-36
onexit .. 5.2-37
open .. 5.2-38
printf, fprintf, sprintf, _sprintf. _fprintf 5.2-39
perror .. 5.2-42
pute • .. 5.2-43
putchar .. 5.2-44
puts 5.2-45
putw .. 5.2-46
qsort .. 5.6-47
rand, srand ... 5.2-48
read ..•••.....•...•..•......................•......... '. 5.2-49
realloc,lrealloc ..•...............•....................... 5.4-50
rename•....•................•..................... 5.2-51
rewind 5.2-52
scanf, fscant, sscant•.............. 5.2-53
setbuf, setbuffer, setlinebuf· . . • • . • • • 5.2-56
setjrnp . ~ • • • • • • . . • • • • • . . . • • 5.2-57
strcat, stmcat, strcmp, stmcmp. strcpy, stmcpy, strlen, index,
rindex, xtrcpy, xtrcat, xtmcpy .. 5.2-58
toupper, tolower. -tolower, toascii • 5.2~0
ungetc ; .. 5.2~1
unlink. . . . • • • .. 5.2~2
write .. 5.2~3

5.3 System Library Globals

5.4 Window Interface Functions
Standard Input/Output .. 5.4-1
VT100 Fonnat .•...•.........•............................ 5.4-1
Form Mode••.....•.....•.........•....•.......... 5.4-1
Default Window Attributes•..•••.•.......•.•........ ;. 5.4-2
assignleds •....•.•...••.....•••.....•........ -, .'. 5.4-3. -
cIoseform • • • • • 5.4-4
closevt . • • . • . . . • • • • 5.4-4
disablecur•.........•......•...................... 5.4-6
enablecur . • • • . • • • 5.4-7
getch 5.4-8
getcwt•..•..•..•...•• '. • • • . • • • • • 5.4-9
openfonn • . • • • . • . • • . . . • • • . • • • . • . • . . • • 5.4-1 0
openvt ...•..•....•...•.•••..••..••••......••.......... , 5.4-11
prnc:Iata ••••.•••••••..••••••••••••••.•.•..••••••........ 5.4-12
putvt ;.. 5.4-13
selpm •••••••••••.....•.•••••.•...•.•.....•.•.•...•...• 5.4-14
Window Interface Escape Sequences. . . • .. 5.4-15
Screen Attributes •..•......•....•..•••.................... 5.4-16

5.5 Floating Point Math Library (libm.a)

TOC-4·. Version 2.7

TABLE OF CONTENTS

Zero .. 5.5-1
Largest Value .. 5.5-1
Infinity .. 5.E-1
Smallest Vaiue .. 5.5-2
Math Functions ... 5.5-3

5.6 Control Characters

5.7 Using Aux Serial Ports '1 & 2
Port 1 Functions

initportb .. 5.7-2
sendpb .. 5.7-3
recpb .. 5.7-4
rstdrvb ... 5.7-5
Sample Program 5.7-6

Port 2 Functions
initporta .. 5.7-7
sendpa .. 5.7-8
recpa .. 5.7-9
rstdrv ... 5.7-10
Sample Program•... : . .. 5.7-11

5.8 MS-OOS Compatible File Functions
Error Codes '. .. 5.8-2
Fmkdir (make directory)•........................... 5.8-4
Fnndir (remove directory) 5.8-5
Fsearch (search for file/directory) ..•.............•............ 5.8-6
Sample Usage•........•..•............... 5.8-7

5.9 Non-Printing ASCII Characters

5.10 BERT Functions
Startup and Idle Mode Functions 5.10 - 3

block_len•............................ 5.10 - 4
clr-pream ... 5.10 - 4
cont_run ' , 5.10 - 5
one_block•.......•........ 5.10 - 5
SEt_err_rate(sel) 5.10 - 6
set_mode•..................................... 5.10 - 7
set-Pfeam•...•.................... 5.10 - 7
set..J)trn • • • • 5. 1 0 - 8
start_async••........................ 5.10 - 9
start_sync•.•....•.•....•..•........ 5.10 - 10
tlmecCtesC -. ":. ~ • 5.10 - 10
user-ptrn•................. 5.10 - 11

Functions used while FEP is running a Test '" 5.10 - 12
error_off•..................•...... 5.10 - 13
error_on•......................... 5.10-13
one_error•.................................... 5.10 - 14
resync •.••....•.......•..•.....•.••..•.....•....... 5.10 - 14
status•...•••..•.•••.••..••......••..•. 5.10 - 15
stop_test••.••........•......••....... 5.10 - 15

Functions Related Collecting Test Data•.•••......•.•...• 5.10 - 16
double geCerr_rate•...•••...•.•........... 5.10- 17
long geCblkens• ' ...••..•.....••..••...•.•...••. 5.10- 17
long Q8Cerrsec•.•.............•...••........... 5.10- 18
long get_ rbits••......•........•......••....... 5. 1 0 - 18
long get_ tbits•••........••..•...•••...... 5. 1 0 - 19

TOC-5. Version 2.7

CHAPTER 6:

..
APPENDIX A:

APPENDIX B:

TABLE OF CONTENTS

long geCrbiterrs 5.10 - 19
long get_runtime 5.10 - 20
long geCserrsec , 5.10 - 20
long geCsyncloss 5.10 - 21
long geUbiterrs 5.10 - 21
reset data. 5. 1 0 - 22

TImed Test Example ' 5.10 - 23
Advanced Prcgramming Technique:
Getting Correct Results from very long Test Runs 5.10 - 23

THE vi EDITOR
6.1 Using the vi Editor

6.2

vi Softkeys•........................ 6.1-19
vi On-Une Help • . • . • • • • 6. i -21

Command Reference
Control Characters•........................ 6.2-2
Special Characters .. 6.2-4
Upper Case Commands 6.2-6

LOVier Case Commands ..•............•...•............. 6.2-8

LIMITS AND EXTENSIONS
Compiler Umits ~ ,•..•.•......................... A-l.
Extensions • • . . •• . . • • . . . • ,4\-1
Unker•............•....•.•........................ A-2
Ubrarian•••.......••.........•....................... A-2

TEKELEC PROTOCOL LIBRARIES
B.1 Common Library Features

FEP Status Codes .. B.l-1
Error Codes . . • . . • • . . • . . . • • B. 1-1
Common Functions • . . . • • • • • • B. 1-2
flush • . • . . . • . . • . • . . . • .. B. 1-3
getphy•. , •...•.....•...•...........•............. , B.l-4
getport . . . • • . . . • .. B. 1-5
getime '. • '. B. 1-6
inittime .. 6.1-7
plreset•.............................•............ B.l-8
setleds • . . . • • • . • • . . . • • • . • B. 1-9
setphy •..•..••.•......•..•.....•........•...•......•... B.l-l0
setport • • • • . • • • • • • . • • • • • • • • . . • • • • . • • . . . • . . • • • B.1-11
settimer . . • • . • • . • . • . . • . • • • • . . . • . . • . .. B.1-12

.. ····timer •••.•.•..•......••••••••.•••••.••••••.•...... ; B.1-13

B.2 Bit Oriented Protocol Emulation C Library (libbop.a)
initp 1 •........•.......•..•.•.•.••..•...•.•••............ B.2-2
initpl_Sk .••..••.....••••••••••.•••••••.••••.•.•...•••.•• B.2-3
receive. • . . . • . • • • • • . • • • • • • • . • • • B.2-4
setflg •••.•..•..•••.••.•••••..••••..•.....•.........•••.• B.2-5
transmit • • • • . . . • • • • • . • • • • • • . • • • • • • • • • • . . • B.2-6
tready .••.•...••...•.••••.••.••.••...•••.••••.•.•.•.•... B.2-7

B.3 LAPD Simulation C Library (liblapd.a)
get-mod •.•••••••••••••••••••••••••••.•••••••••.•••••••. B.3-4
get--mtei ... III •• B.3--5
get-rsapi .. B.3-6
get-sconfig ..•.........••.••••.•.••••.••.••••••••...•.••. B.3-7
get-sim••.•.....•••••••••••.••••..••.•••...••.••.••. B.3-8

TOC-6. Version 2.7

TABLE OF CONTENTS

• :." • ~.:.: • :,;'. ~ ~ •• , •••• ~'\ ':':~"':':"' •• :.",,' ~.O;' •••• '" ~ ~:-o: ':", ". ~ •••• OY ... ~o; •••• -:.... '.: ,.-: ... : •• ' : •••• ; ••• :0 •••• :.:-: ••• :0 •• : ••••••• 0':' •• :.:.; •• :.:0:.: ••••••• : •••• : •.

initp1 ... 6.3-9
receive. .. 6.3-10
restartsim .. 6.3-12
setflg -................................. 6.3--13
set-bit-rate 6.3-14
set-mod ... 6.3-15
s-n200 .•... 6.3-16
s-n201 ... 6.3-17
set-net•..............•....................... 6.3-18
set-rntei•.......•...................... 6.3-19
set-rsapi ... B.3-20
set-sapi • . • • • • . • • . • • . • . • . • . • 6.3-21
set-sconfig•..................... 6.3-22
set-sub•. . . • . . . • . . • . • • • . . . • . • . • • . . . • •. 6.3-24
s-t2OO ... 6.3-25
s-t203 6.3-26
set-tei ... 6.3-27
set-window•.......•..•.................. 6.3-28
slof ...••.•.. ; •••••....••..•....•.•.••.................. 6.3-29
slon••...••.........•.•...•........................ 6.3-30
status ••••• -•.•••••• : ••••••••• -•..•••••••..••.••..•....•.. 6.3-31
Stopsim •••...•••..••••..••.••.••••••••••..••........... 6.3-32
trans •••......•.••..•....••.•.•••..••...•.•.•......••.. 6.3-33
transmit • • • • • • . • • . • • • . . • • . • 6.3-34
trui ". • • • • • . . . • . . • • • . • • 6.3-35
trxcni•...........•.......................... 6.3-36
trxrni ••••••••••••••••••.•.••••••••••••••••••••••.•••••• 6.3-37
trxidc•.•........••.....•... 6.3-38
trxidr •..•...••••.•..•••.•••••.•••••••••...••.......•..• 6.3-39

B.4 Auto HDLC Simulation C Library (libhdlc.a)
initp1••.•....................................... 6.4-2

- receive .•...••.••• : • • • • • • • • . • . • • B.4-3
set_n1•.•••••......•.•....• -.•.• -•••..........•..•.. B.4-4
set_n2•.••.•......•...........•.......•.........•. B.~
set_t1••...•...............•...••.•..•......•.... B.4-6
set_window . • B.4-7
slof .•••.••...••••••••••••••••.•••••••.....••............ B.4-8
slon •••.••...•••••••.•.•••.••.•••••••••••••............. B.4-9
status • • • . • • • . • . • • • • •. B.4-1 0
transmit•....•.. ~ . . • . . . • . . . • . . . • . . • B.4-11

B.5 SDLC Simulation C Ubrary (Ilbsdlc.a) .
initp1 .•••....•..•....••...••....••••.•••••.•.......•.... B.5-2
receive • • . • • • . • • . . . • • • . • . . • • • • • • • • • . • . • • B.5-3
set_adr .••.••.••••.•••••••.•..••••• ~ . • • • • • • • • B.5-4
set_n2 •••..••••••••••••••••.•.••••••••...•.•.......••... B.5-5
set_t1 ••.•.•••••••...••••••••.•••••••••.•••••.....•.••.. B.5-6
set_12 •••••••••••••••••••••••.••••••••••••••••..•..•••. -: 8.5-7
slot •••••.••.••••••.••••••••.••••••••••••••••••.•..••...• B.H
81or1 •••••••••••••• •. ' •• 8.5-9
status • . • • • • • • • • • • • . • • • • . • • .• B.5-1 0
transmit • • . . • . • • • • • • • . • • . . . • • • • • • • • • • • • . .. 8.5-11
~ ••••••••••••••••••••••• ~ •••••••••••••.••••••••..•••. 8.5-12
nifr .. 8.5-13
tr1St ••• 8.5-14
truI ••••••••••••.•••••••••••••••••••••••••••••.••....••. 8.5-15

TOC-7. VetSion 2. 7

TABLE OF CONTENTS

xid .. B.5-16

B.6 Basic Rate Interface Library (lIbbrt.a)
bas version•.................................. B.6-2
setbasic•................... B.6-3

B.7 BSC C Library (libbsc.a)
idle mode•••...................... B.7-2
initp1•..•............•.................... B.7-3
receive. .. B.7-4
transmit ... B.7-5
tready ... ;...... B.7-6

B.8· ISDN Primary Rate Interface Library (lIbpri.a)
pri_version • • • • • . • . . • • • • . • . • • • • • . • • • • . • • . . • • B.8-3
set primary .. B.8-4

B.9 Async Library (libasync.a)
initp 1 ... B.9-2
receive . • . • • . • • • . . • . • . . • • • . • • B.9-4
tbreak .•..•.. :.. B.9-5
transmit ,. . • • . • • • . • • . • • • • . . • • • • . . • • • • • • • • . • B.9-6

. treacly .•••.•••••••.••••....•.•.•.••.••.•••....••••.••..• B.9-7

B.l0 Analysis Ubrary (libanal.a)
In~anal•.•.....•........•..•.......•............... B.10-2
getevent ••••••.•••..•.•••..•.••••••••••••••.•.••...•••. B. 1 0-5
reset_anal ••.••••••••••••..•.•.••••.•••••••.•..•...••.•. B.l0-7

B.l1 MultJ-llnk LAPD Library (lIbmlapd.a)
find-'ink ..•...••.•...••••..•.•.•.•.•••••••••....••..... " B.11-4
get_freelink .••...................... • • B.11-5
get_fwaiting • • • • • • • • • . . • • . .. • • • . . • . • . . • . • • • • • B.11-6
get_link .•.•.•.. B.11-7
get_l.nkSapi .•..•.....••••. ,............................. B.11-8
get_lnktei ••.••....•...••....•....•.•..•.•••.•............ B.11-9
getJnktgi ... B.11-10
get_meswaiting •.•.... • B.l1-11
get_rlink .•••••.•••.•..•••.•..•..••.•..•••.••....•..... , B.11-12
get_mtei••.•.............•.•••.................... B.11-13
get_rsapi .•••••••••.•••••.•.••••••••••.•••••...•..•••.. B.11-14
get_rxstat ..••.....••••••.....••••.....•••............. B.11-15
get_sapi ••••••• , ••••••••••••••••••••••••••• '.' •.... : •..• '. B.11-16
get_sconfig '. .. B.11-17
get_sim ..•.•••..•...•.•........•.•....••••............ 8.11-18
get_tei .•.....•.................•.....•................ , 8.11-19
get_tgi ' 8.11-20
get_window ••••..•••••••••..•••••••.••••••.••.....•.... 8.11-21
inltp1•..•........•..•.••.•.••.................... 8.11-22
Ink_stat. • • .. 8.11-23
receive • . . • . . • • . . . • • • . • . • • . . • • • 8.11-24
s_n200•...........•••..•.••.••...•.•.•............ 8.11-25
8_11201 •• '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" "' .• '" 8.11-26
s_12OO '" ,. '" '" • '" B.11-,z"1
8_'12.03 '" .' '" '" '" '" '" '" '" " '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" ~ 8.11-28
set_fink •••.•••••••••••••••••••••••••••••••••••.•••.••. 8.11-29
set_net •.. 8.11-30
set_mtei ••••••••••••••••••••••.••••.••••••••••.••...•. 8.11-31

TOC-S. Version 2.7

TABLE OF CONTENTS

set_rsapi .. B.11-32
set_sapi ... B.11-33
set_sconfig .. B.11-24
set_sub B.11-35
set_tei ... " .. B.11-36
set_tgi .. B.11-37
set_window••........ B.11-38
set1lg ... B. 11-39
sl01•............................ B.11-40
slon ... " B.11-41
srch_lnk .. B.11-42
start_sim ... B.11-43
status .. B.11-44
trans•.............•.......•......... B.ll-45
transmit••...•..........•.•..•.....•......... B.11-46
trui ... B.11-47
trxcni ... B.11-48
trxidc •..................•.....•...• :•.......•.• B.11-49
trxidr•........•••........•......... B.ll-50·
trxmi••..•••..•....••..•.••••...•.•...•......... B.11-51
Sample Programs .•••..•••. ~ • • • • . . . • • • B.11-52

B.12 V.120 Library (libv120.a)
get_freelink • • . • • • • B.l2-4
get_fwaiting••......••.•.•••••.•.•............. .- B.12-5
get_link•..••••..••••••••.••....•..•.......... B.12-6
get_III •••.•••••••••••••••.•••.••••••••••..••• ; •.•.•••••. B.12-7
get_lnkili •....•.••.••...•••.••.•.•.•......•.•.•.•....••. B.12-8
get_meswaiting • • • • • . • . • • • • . • • • • • • •. B.12-9
get_rlink . • • . . . • . • . • • • B.12-10
get_rxstat .. '.'•..........•............ B.12-11
get_sconfig• ~ • • • . • • • . . •• B.12-12
get_window•••••••............................. B.12-13

. initp1 ...•.......•.•••••••..••.....•..•.......•........ B.12-14
link_stat•...•.•.•••••••...•.•••.•..............•.• B.12-15
receive. . • . . . • . . • . • . • . . • . • . . • • . • • B.12-16
s_n2oo•..•.•...................•......•.••. · B.12-17
s_n201•.••.••..••.....•...•.••..•.•.••••••.••..... B.12-18
s_t200 .•••..••••••..•.....•...••.••••..••••••.•......• B.12-19
s_t203 •.••.••••.•.......•.....••••••...•.•.•••.....•.• B.12-20
set_sconflg .••.•.••.•.••.•••....•••••.•••..••......•..• B.12-21
set_link •••...••.•...... ~.:-:, •• ' .•. -. -.- •• ~-.• '. • • • • • . • • . • . • • .• B.12-22
set-'Ii . • . • • • • . . . • • . • • . . • . . • • . • • • . .. B.12-23
set_'Ntndow • . . • . . . • • . • . . . • • . . . • . . . • • B.12-24
setflg ..•.....•...•••...••.•........••.•....••••....... B.l2-25
slol .•......•.•.••.••.•.•.•...•..•••.••••.•.•......... B.12-26
slon ... B.12-27
srch_lnk • • • . . • • • . • . • • . • . • • • . • .• B.12-28
start_sim ••....•..•.•••.••••.•••.•••••••.••••••••..••.• B.l2-29
status • • • • • • . • . . • • . • • . • • • • • • . • • • • • • . • • • • • • • • • • • • . • . . • •• B.12-30
trans "........................ B.12-31
transmit •••••••••••••.••••••••• •• B.l2-32
trans_resp . •. • B.l2-33
trui . . • . . • • • •.• • . . . • . • B.l2-34
trxcni ..••.....••........•.•...•...•........•.......... B.l2-35
trxidc•. . • • • . • . . . • • • . . . • . . • .. B.l2-36

TOC-9. V8I'Sion 2.7

TABLE OF CONTENTS

trxidr ... B.12-37
trxrni .. B.12-38

B.13 V.120 Library (libv120.a}
flush .. B.13-9
flush_all ... 6.13-10
in it_a ... B.13-11
init_b ... 6.13-12
initp1 ... 6.13-13
mlh_flush .. 8.13-14
mlh_receive .. " B.13-15
nllh set n1 .. 6.13-16
mlh::=se(n2 .. 6.13-17
mlh_set_net .. B.13-18
mlh_set_sub•............................ B.13-19
mlh_set_t1 .. B.13-20
mlh_set_t2 . • . . . • B.13-21
mlh_set_window .. B.13-22
mlh_slof ; • B.13-23
mlh_slon •....................••......•................ B.13-24
mlh_status•.•..........................•........ B. f3-25
mlh_trans•.••.... ~ .', , B.13-26
receive . . • • . . . : .. B.13-27
set_n1 •••.•....••••.•...........•.•..•................ 8.1-3-28
set_n2 •....•.....••....................... ',' 8.13-29
set_net () • . • • • • . • • .. B.13-30
set..J)8t ...••.•.••.••....•.•..•....•..................• B.13-31
setJatio ..•..••••.•...•..•...•......•................. B.13-32
set_t1 ••..........••...•.•.................•.......... B.13-33
set_t2 •.•..•....•..........•••..•.••.•..•............. B.13-34
set_sub ()•.....•....•....•..•.••.................. B.13-35
set_window ...•..•.••.•.•...•......•................... B.13-36
slof 0 B.13-37
slon () .•.•.......•.........•.••..............•........ B. 13-38
status 0 B.13-39

transmit • . . • .. B.13-40

B.14 U-Interface Library (lIbu.a)
SetU •••.•........•.. ;•......... B.14-1
Error Codes . . . • • . • . . • • . • . • . •• B. 14-2
Initialize . . • • . • . • . • . . • . • • . . . • . . • . • • B. 14-3
Configure . . . • . • . • • • . . • . . • • . . • . . . • • • . . . •• B. 14-3
Set Transceiver State ••..••......•.•.••.••..•............. B.14-5
Get Transceiver States .•..••.•.•.....•.•................•• B.14-5
Set Transceiver Activation . . • • • B.l4-6
Set Transceiver Connection•......••.••................ B.14-6
Set Transceiver Errors .•.....•.......••.•.............•... B.14-7
Get Transceiver Errors B.14-7
Get HW Version:......................... B. 14-8
Get Link Status .••..••.•......•••.•.••.•••.••...•.•....•. B. 14-8
Transceiver Transmit B14-9
Transceiver Receive B14-10
EOC Processing B14-11
EOC Mode Control •••••.•••••.••••••••••••.••.••...•.••• B. 14-11
M4 Mode Control. • . . • • . . • . . . • • • • . • . • • • . . • • . • • • • . • • .• B.14-12
M5/6 Mode Control B.14-12

ShutdownB .14-13

TOC-1~ Version 2.7

INDEX

TABLE OF CONTENTS

B.15 ETSI Library (libetsl.a)
find_linkO .. 6.15-4
geCfreelinkO .. B.15-5
get_fwaiting .. 6.15-6
get_linkO S. 15-7
get_lnksapi ... 6.15-8
get_lnkUc1 B.15-9
get_lnklic2 .. B.15-10
get_lnklic3 .. B.15-11
get_meswaiting .. 9.15-12
get_rlinkO '.......... B.15-13
get_rllnkO ... B.15-14
get_sapiO ... B.15-15
get_sconfig () •...................•..................... B.15-16
get_sim () ;........ B.15-17
get_lic1() •.•................... ,. ~ 6.15-18
get_IIc2() .. B.15-19
get_lic3() .•...•......................••... B.15-20
get_window • • • .. B.15-21
initp1 .•.•....••.•.•........•..••.••.... ~ B.15-22
link_stat . • • • • • • • • • • • • • . • . . • • • • • • • • • • . • • • . • . • . . • • • • • . • .• B.15-23
receive ...•••......•........••.... : . . • . . • B.15-24
s_n200 ..•••..•............• ' ~ ..•........... ; . .. B.15-25
s_n201 •.••••••.....•........... :.. .. B.15-26
s 1200 •••••••••..•••••••...••••...•....•. ; . . . • . . . • • • •. B.15-27
s-t203 •••.•..•..••••...•.•.••.•••••..••...•..•...•..•. B.15-28
set link •.•••...•.••..••..•..••.•.•.•....•.....•••..•... B.l5-29
set:net () . • . . . • . . • . • • • . . . • • • • • • .. B.15-3O
set_sapi • . . • • • . . . • • • • • . • B.15-31
set_sconfig ••.•.......•.....•........•...•.....•....... B.15-32
set_sub () .••.•......••...................•............ B.15-33
set 11e1 .•••••......•••.•.....••••...•............ .. ;. . . B.15-34
set:lic2 •••••.•.....•.........•.••.....•............... B.15-35
set_lic3 .•••• ~ • .. B.15-36
set window •• • • • B.15-37
setiig ... B.15-38
slof 0 B.15-39
slon () •••••••.....•••••..••••.•.....•••........•...... B.15-40
star't.-sim ••••.•.. .•• :.................................. B.15-41
status()· .•••• '. . • • • . • • • • . • . . • • . • . • • . . . • • • • • B.15-42
trans .. '......... B.15-43
transrrit .. B.15-44
trul • . • . • • • . • • • • • • . . . • • . • • • • • . . . • • • • . • B.15-45
trxcni .. B.15-46
trxidc•••.....•••. . • • . • . • • . • • • • • • B.15-47
trxidr •••.••........•..•••.•...••.....•••.....•........ B.15-48
trxml •••••••••••••••••.••••••••••••.•••••••••.••••••.. B.15-49

TOC-11. Version 2.7

Chameleon 32 C Manual Ch. 1.1: C Package Description

1.1 C PACKAGE DESCRIPTION

Note

TEKELEe

The Chameleon 32 C Compiler System provides a complete
development environment for C programming. The C
Compiler is a complete implementation of Kernighan and
Ritchie C, and includes the following features:

• C shell
• vi style editor
• Linker
• Assembler
• Disassembler
• Librarian

The program editing functions are also accessible via
softkeys, for easy program development. The Chameleon 32
C Shell controls all C activities using a command line
interface.

The Chameleon 32 provides a multi-tasking operating
system, page display system, custom keyboard, and color
display for a powerful development environment which is
familiar to UNIX and PC C language programmers. With the
multi-tasking system, you can edit a program, compile a
second program, and run a third program Simultaneously.

If you are unfamiliar with the use of the Chameleon 32
keyboard or the concept and use of pages. refer to the
Chameleon 32 User's Guide,Chapter 3: Using the Chameleon
32.

Libraries are provided for UNIX compatible standard 110 (file
110, memory access). There are also protocol-specific
libraries, which include:

• BOP
• HDLC
• SDLC
• LAPD
• Analysis
• Async
• BSC
• Basic Rate Interface
• Primary Rate Interface

Libraries are also included for floating point math and window
interface functions.

1.1-1 Version 2.2

Chameleon 32 C Manual

Compatibility with
other Systems

C File Upload and
Download To/From
a Host Computer

Run Time
Environment

TEKELEC

Ch. 1.1: C Package Description

The Chameleon 32 C package is . compatible with MS-DOS
version 2.x.

C programs developed on other hosts (such as V AXes or
PCs) can be compiled and run without change on the
Chameleon 32 if they use UNIX style calls to access console
and file 110 devices. Programs developed on the Chameleon
32 that use the same facilities can also be compiled and run
on other hosts.

Programs developed on a Chameleon 32 that access the
Protocol Specific 110 libraries will not run on another
computer, unless an equivalent protocol specific library is
developed for that computer's hardware. Similarly, C
programs which rely on special system facilities of other
computers may not be portable to the Chameleon 32 without
modification.

Chameleon 32 file upload and download functions may be
used to transfer C source files between the Chameleon 32
and other computers. Program code must be linked with
Chameleon 32 system interface and library code to make
executable . tasks. This means that executable and object .
code files cannot be transferred from other computers to the
Chameleon ·32.

In the past, test instruments did not offer convenient high level
language development environments. As a result, present
users would like to be able to perform program development
on host computers, and then download programs to the test
instrument for execution. Due to various portability issues
described above, functional testing of programs can only be
done in the test instrument. The Chameleon 32 allows
download of program source code from a host, and, in
addition, offers a fast, powerful, complete and easy to use
stand alone development environment that is familiar to UNIX
and PC C programmers.

There are two types of user programs (analysis and
simulation). Since the run time environment is different for the
two types, a user program can only be executed in the same
environment in which it was compiled and linked.

1.1-2 Version 2.2

Chameleon 32 C Manual

TEKELEC

Ch. 1.1: C Package Description

Each user program is a separate task with its own default
page. The shell is responsible for starting the task, assigning
its default page and killing it upon termination.

Run files can be loaded and executed from the development
system shell. An additional selection of User Task can be
made (in the Main Menu) to select all files that can be
executed (ON/OFF). Turning off a task (or using the KILL
command) will close the task's page.

User programs interact with the Chameleon 32 software
through libraries. The libraries include:

• lID library (for standard console lID, device access,
memory and file manipulation),

• Protocol specific libraries
• library to support acquisition buffer activities

These libraries are described in Appendix B.

1.1-3 Version 2.2

Chameleon 32 C Manual Ch. 1.2: Loading C

1.2 LOADING THE C PACKAGE

Introduction This section gives you brief instructions for loading the C
Development System. If you need additional information about
booting and configuring the Chameleon 32, refer to the
Chameleon 32 User's Guide, Chapter 3.

To load the C Development System, do the following:

1. Power up and boot the Chameleon 32.

2. The main configuration page should appear as shown in
Figure 1.2-1. If this menu is not displayed, move the
arrow cursor to Setup Mode and press F1 Menu.

Tekelec CHAMELEON 32 Version x.xx. Copyright (C) 198x - 198x

I Press Fa to cbange the PROTOCOL setup I Press GO to Accept I
Setup Mode

Port A Mode of Operation

C Development System 1::li!:::::!~:jj:~:::::I +-

I C Development System I FUNCTIONS

::l:::: .• :~:~::: ::j::.::j:::::~::lj:ll::~::ll::~::::~!ii:::: :~~I.:~~::::::::::::.:!::::::::: .::!M:Jfi~::j:~: i:~:::!:::i:ill::!;l::::::: ::::;::::::::I:::l:::::::::: ::::;:i::ii!:~:i:!::!!!i!*i!: :::::::;::::~::j::::::::i:i:::::::i::::: :::::::;::j:j::::::::::~:::::::l:::::j~~

TEKELEC

Figure 1.2-1: Configuration Page (Menu Setup Mode)

3. Move the red arrow cursor to the C Development
System parameter at the bottom of the screen. (If this
parameter does not appear, your C· package is not
installed.)

4. Press F2 On.

1.2-1 Version 2.4

Chameleon 32 C Manual Ch. 1.2: Loading C

KEY

Move i

Move~

Scroll f
Scroll ~

Shift Scroll f .

·Shift Scroll ~

Shift Hide Page

Show Page

Replace

Shift Move f

TEKELEC

5. Press Go. The message Loading C-Shell appears in
the upper right corner of the Configuration page.

The C Shell banner appears at the bottom of the screen
and the Applications Selection page is displayed.

6. To use the C Shell page, press Select until the C Shell
banner is highlighted (active). You can then use the
keys listed in the table below to change the size of the C
Shell page.

. FUNCTION

Moves the page banner upward one line at a time (increases the size
of the page) ..

Moves the page banner downward one line at a time (decreases the
size of the page).

Scrolls the data displayed in the page upward one line at a time.

Scrolls the data displayed in the page downward one line at a time.

Scrolls the data displayed in the page upward the number of lines
displayed in the page.

Scrolls the data displayed in the page downward the number of lines
displayed in the page. I

Hides the active page so that the banner is no longer visible on the
screen (the application continues to run).

Displays a page that has been hidden with Shift Hide Page.

Replace the active page with one that has been hidden using Shift
.Hide Page. I

Displays the page in a special full-screen mode referred to as Blow
Mode (indicated by the letter B on the top left side of the banner).
Other pages cannot' be accessed when the active page is in Blow
Mode. Shift Move i again disables Blow Mode, and returns the
screen to its previous state.

1.2-2 Version 2.4

Chameleon 32 C Manual

TEKELEC

Ch. 1.2: Loading C

The hardware and protocol are configured from your C
program. Refer to the appropriate section for a
description of the available functions:

C Library Section 5.2
Window Interface Functions Section 5.4
Math Library Section 5.5
Aux Serial Port 2 Functions Section 5.7
Common Library Features Appendix B.1
Bit·Oriented Protocol (BOP) Library Appendix B.2
LAPD Library Appendix B.3
HDLe Ubrary Appendix B.4
SOLe Library Appendix B.5
Basic Rate Interface Ubrary Appendix B.6
BSC Library Appendix B.7
Primary Rate Interface Ubrary ... Appendix B.B
Async Library Appendix B.9
Analysis Library Appendix B.1 0

Section 1.3 contains a short tutorial to acquaint you with
the Chameleon 32 C compiler and editor.

Chapter 2 contains a description of C Shell usage and
shell commands.

7. To turn the C Development System off, use one of the
following methods:

a. At the C Shell prompt %, enter the command:

%exit <RETURN>

b. Select the Configuration page and press F10 Exit.

, .2-3 Version 2.4

Chameleon 32 C Manual

Executing
C Applications

TEKELEC

Ch. 1.2: Loading C

There are two ways to execute a C program that has been
compiled on the Chameleon 32:

• You can run it from the C Shell. To use this method, the
C Development System must. be installed on the
Chameleon 32. Refer to Section 2.1 for more
information.

• You can run it from the Applications Selection menu.
You must use this method to execute a C application in
the following cases:

~ To run a C program on a Chameleon 32 that does
not have the C Development system installed

To run a C program on a Chameleon 20. The
Chameleon 20 C Run-Time module must be
installed on the Chameleon 20 in order to do this.

In addition, this method enables you to include your C
application in your configuration file, so that the program
can be executed automatically when the configuration file
is loaded. This procedure is described below.

To execute a C application from the Chameleon 32 or
Chameleon 20 Applications Selection menu, do the following:

1. Compile the C program on a Chameleon 32. See
Chapter 2.2 for compiler syntax.

2. The application file name must have the extension .exe.

3. Copy the file to the hard disk of the Chameleon on which
you want to run the application. The directory
determines when the application will be displayed in the
Applications Selection menu, using the conventions
described below.

To have the program appear in the Monitoring window of
the Applications Selection menu, copy the program to:

a:\tekelec\analysis\xxxx

xxxx is one of the sub-directories of analysis. If copied
to a:'tekelec\analysis\appl, the application is displayed in
the Monitoring window for all protocols.

1.2-4 Version 2.4

Chameleon 32 C Manual

Notes

TEKELEC

Ch.1.2: Loading C

If the application is copied to a protocol sub-directory of
a:'lekelec\analysis, the application is displayed in the
r Aonitoring window only when the Chameleon is
configured for that protocol. For example, if the
application resides in a:'lekelec\analysis\X25, it appears
in the Monitoring window only when X.25 is the selected
protocol.

To have the program appear in the Simulation window of
the Applications Selection menu, copy the program to:

A:\tekelec\Simul\Xxxx

xxxx is one of the sub-directories of simul. If copied to
a:'lekelec\Simu/, the application is displayed in the
Simulation window for all protocols.

If the application is copied to a protocol sub-directory of
a:'ltekelec\Simu/, the application is displayed in the
Simulation window only when the Chameleon is
configured for that protocol. For example, if the
application resides in a:'lekelec\SimuI\x25, it appears in
the Simulation window only when X.25 is the selected
protocol.

Only applications copied to a:'lekelec\analysis\appA can
be started on Ports A + B on Chameleon 32 Dual Port
machines. Applications in all other directories must be
started on each· port independently.

Applications developed for the Chameleon 20 use Port A
only, since Dual Port is not available.

4. In the main configuration menu, set up the Chameleon
port for the mode of operation (Monitor or Simulate) and
protocol appropriate for the C application.

5. Press Go. This displays the Applications Selection
menu, with the C application name displayed in the
window according to the conventions described in step 3.

6. Move the red arrow cursor to the application name and
press the function key that starts it on the appropriate
port (F1 Load A, F2 Load B, F3 Load AS).

7. Press Go to start the application.

1.2-5 Version 2.4

Chameleon 32 C Manual Ch. 1.2: Loading C

Programming
Notes: When running a C application from the Applications Selection

menu, the Chameleon automatically opens a window for the
application when it is started and closes the window when the
application is stopped. This is similar to running the program
from the C Shell in background mode, using the syntax:

TEKELEC

%progname&

See page 2.1-5 for more information about using &
(background mode) in the C Shell.

When using the Applications Selection menu, a pointer to the
application file name is passed to argv[O] and a pointer to the
port selected by the user is passed to argv[1]. This is
equivalent to executing a program from the C Shell using the
convention:

%progname A
%progname S
%progname AS

This information can then be used in the C application to
initialize and access the appropriate port(s) using the protocol
library functions. '

In order to exit from the application properly, use the function
onexit. This function enables you to finish your program when
the user stops the application from the Applications Selection
menu. See page 5.2-37 for more information.

1.2-6 Version 2.4

Chameleon 32 C Manual Ch. 1.3: C Programming Tutorial

1.3 C PROGRAMMING TUTORIAL

Introduction

C Program
Development

Tutorial

TEKELEC

DEBUG

This section contains a brief tutorial that introduces you to the
process of developing programs in the Chameleon 32 C
environment. In the tutorial, you write a short program that
causes the Chameleon 32 to transmit a short messa~e.

Figure 1.3-1 illustrates the steps required to develop
programs using the Chameleon 32 C package. The chapter
that contains more information about each facility js also
indicated.

• ED

: r
COMPILE

AND
ASSEMBLE

J.
UNK

J.
LOAD AND

EXECUTE

..
: Source Program: Ch. 2.1: Shell
~ (file.c) ~ Ch.6: vi Editor
· .
..

.. " ...
~ Obje~ Program ~
: (flle.o) :
· . · . ·

1" 5Y;~;~; i.it;;~;;:· 'j
: and Other :
~ Object Programs ~

: ':
: Executable :
: Object :
: (a.out) :
..

Ch. 2.2: Compiler Usage
Ch.4:Compiler
Ch. 2.3: Disassember

Ch. 2.3: Linker Usage
Ch. 5: Library Commands
App. B: Tekelec C Libraries

Ch. 2.1 : Shell

Figure 1.3-1: C Development Cycle

The following is a hands-on introduction to the process of
writing, compiling, and executing a C program. This program
transmits a short message.

1. Boot the Chameleon 32.

2. U~e the port Configuration page to turn the C
Development System ON, and then press Go. After a
few seconds, the C Shell page banner should appear at
the bottom of the screen.

1.3-1 Version 2.2

Chameleon 32 C Manual Ch. 1.3: C Programming Tutorial

3. Display C Shell page so that the % prompt is visible.
The login file was executed and put you in the home
directory (as defined in the login file).

4. Ust the files and directories on the hard disk by entering:

Is <Return>

5. The list should include a directory called USR\. This
directory has been provided for your user application
files (although you do not have to store your files in it.)

Change to the USR\ directory so that the program you
write will be saved to this directory. To change
directories, enter:

cd usr ~ Return >

6. You will use the vi editor to write a program called
test1.c. In the command, you will use an ampersand
(&) to open a separate vi page to enter and edit the
program. This is referred to as background mode. To
call up the vi editor in background mode, enter:

\vi test1.c & < Return>

The PATH environment variable will look for vi in the \bin
directory. If you don't have a login file you should set
the path (see SETENV command in Section 2.1). .

The VI banner appears at the bottom of the screen. (If
this is the first time the vi editor has been used this
session, you may have to wait a few seconds for the
banner to appear.)

7. Display the VI page.

The cursor is positioned at the top of the screen and
tildes (-) appear on the . other lines. The message
"test1.c" [New File] appears at bottom of page.

Note If there is a window banner at the bottom of the screen,
you will not be able to see the messages on the bottom.

TEKELEC

S. vi will be in command mode. To enter a program, use
the insert mode. To change to insert mode, press:

i (Do not press Return.)

1.3-2 Version 2.2

Chameleon 32 C Manual

TEKELEC

Ch. 1.3: C Programming Tutorial

The screen does not change appearance or display a
message to distinguish between command and insert
mode.

9. Enter the program that is listed in bold type below.
Programming remarks have been added for your benefit;
These appear in non-bold type and do not have to be
entered.

Press Return at the end of each program line. Use the
same spacing and capitalization as shown below. Press
Tab one or more times to indent.

.include

.include
#define
.in 0
{

<cll ... h> I-Defines constants that will be used-I
<stdio.h>
GOOD_CRe 0

}

initpl (DCE. NRZ. 9600L. FILLFF); I-Initializes simulation of
bop library-I

printf (-Hit RETURN to trans.it fra.e\n-);
getcllar ();

I-Transmits the frame 'hello'
wi th a good CRC and 5 as the
frame length in bytes-I

10. When the program is completely entered; press Esc to
return to command mode.

11. To save the file, enter:

:W <Return>

A message at the bottom of the screen verifies the
number of lines and characters entered.

12. To quit vi, enter:

:q <Return>

The VI page disappears, but the C Shell page banner is
still displayed.

1.3-3 Version 2.2

Chameleon 32 C Manual Ch. 1.3: C Programming Tutorial

TEKELEC

13. Display the C Shell page and the % prompt.

14. .~ow you are back in the shell and ready to compile and
link the program, using the cc command, which is in the
BIN\ directory . To do this, enter:

cc test1.c -Ibop < Return >

The -I option calls. the library libbop.a. If you entered
the program correctly, the % prompt is redisplayed. If
you typed something incorrectly, the errors are
described on the screen. If there are errors, repeat step
6 to edit the file using vi, and then repeat step 12 to
compile and link the corrected program.

15. To execute the compiled program, at the % prompt,
enter:

a.out < Return >

16. The following message appears:

Hit RETURN to transmit frame

17. Press a key, the frame will be transmitted, and this
message displayed:

Transmission completed

1.3-4 Version 2.2

Chameleon 32 C Manual

2.1 SHELL

Introduction

Login File

Configuration
File

TEKELEC

Ch. 2.1: Shell

The Tekelec development shell provides a command line user
interface for C development. The shell enables you to run programs
and contains programs for maintaining files and sul>-directories.

There are a number of built-in shell commands that are loaded into
memory as part of the shell. Typing a command other than one of
these built-in shell commands is treated as an attemptto load and
execute a program.

Some shell commands are built into the shell and also exist as
programs. These commands include: CC, cp, rm, and my. If you
execute one of these commands from a batch file or make file, the
program is used.

Each shell and program has the notion of current directory, so you
can view and work from different directories simultaneously.

The login batch file is executed automatically when the shell starts.
It contains a list of shelrcommands and can be modified using the vi
editor. A default login file is provided. Use the more command to
view the contents of the login file. If you create a new login file and
save it, the new login file overwrites the existing login file.

The loader uses an environment variable called PATH to locate
programs to execute. The PATH variable is set in the login file on
the distribution disk. Command line argument passage is
supported.

The CONFIG.SYS file is used to configure certain functions of the
Chameleon 32. This file is located in the ITEKELEC/UTIL directory.
As the Chameleon is booting, CONFIG.SYS is read by the
operating system and acted upon based on commands within the
file. Should this file not exist, default values are assumed and acted
on.

CONFIG.SYS supports the following commands:

BOOT - For the P6 board of the Chameleon 32-plus only,
this command tells the Chameleon which
application is to be booted at start-up.

The valid options are:

A:\ \tekelec\\util\ \stmenu.sys
(stmenu = standard menu)

A:\ \tekelec\\util\ \stshell.sys
(sts he II = C shell)

2.1-1 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

TEKELEC

REM - Remark or Comment. Used primarily for
documentation of the CONFIG.SYS file itself. All
other commands on this line are ignored.

DBGPORT - Location of the Debugger Port. Used to place the
Debugger Port on the AUX 1 serial port or on the
Chamel.aon CRT and keyboard. Also used to tum
the debugger off. When the Debugger is not
pi aced on AUX 1, this port is availabie for other
applications uses (See Section 5.7).

This command takes one operand having the following
syntax:

AUX1 - places the debugger on the serial port. The
default location.

VT - places the debugger on the CRT/keyboard.
OFF - turns the debugger off.

For Chameleons operating over an Ethernet:

GW - allows you to specify the Internet address of the

IMASK

gateway connecting your Chameleon 32 to other
subnets, using standard decimal dot notation. For
example:

192.9.200.104

- allows you to specify the Intetnet mask of the
Internet if subnet masking is used. For example:

255.255.255.0

INET - allows you to specify the Internet address of the
Ethernet board, using standard decimal dot
notation. For example:

192.9.200.102

2.1-2 Version 2.6, November 1992

Chameleon 32 C Manual

Device Files

TEKELEC

Ch.2.1: Shell .

Example.

The following is an example of what a CONFIG.SYS file might look
like:

REM

REM
REM

DBGPORT

This file is used to place the debugger on
the
Chameleon 32 CRT and keyboard.
By doing this I may now access AUX 1 via a
C program.
VT

Devices are referred to by file names, using the following
conventions:

• .CON =- Console
• .PRT =- Printer
• .AUX=- Serial port 2 (unformatted data)

• .TTY - Serial port 2 (formatted data)

These names must t?e in upper case letters. For example:

shell <.ny> .nv

redirects shell input ~nd output through Serial port 2 and will work
from a remote terminal. .

2.1-3 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

Filename
Substitution The * and [1 characters can be used for filename substitution, as

described below.

TEKELEC

• *.c

• test. *

• [x]

• [bgy] or
[b,g,y]

• [(ch),{te)]

• [b-g]

Matches all filenames with .c extension.

Matches all files named test, with any file
extension.

Matches filenames containing the letter
enclosed in the brackets, in this example, X.

Matches filenames containing the indicated
letters (logically ORed). In this example,
filenames with b or g or y.

Matches filenames containing ch or teo

Matches filenames with the letters in the
indicated range. In this example, filenames with
b, c, d, e, f, or 9 would be matched

For example, if a directory contains the following files:

hello.c testf.c test2.c test2.o test1.0 a.out

If you use the Is (list files) command as shown below, the resulting
filenames are listed.

Is *
Is *.c
Is t*
Is *(0)*

helloc~c test1.c test2.c test2.0 test1.oa.out
hello.c test1.c test2.c
test1.c test2.c test2.0 test1.0
hello.c a.out

Any word enclosed in single or double quotation marks prevents
filename expansion, or creates a single argument to pass to a
program. For example: - . -

% a.out *.c receives: argv[O] "a.out"
argv[1] "HELLO.C"
argv[2] ''TEST1.C''
arg"[31 OL (NULL)

argv[O] "a. out"
argv[1] "·.c"
argv[2] OL (NULL)

% a.out '*.c· receives:

2.1-4 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

I/O Redirection The shell supports redirection of standard output and input from any
command line, as follows:

, '

Environmental
Variables

TEKELEC

< name Read the file 'name' in place of stdin
> name Write stdout to the file 'name'
» name Appand stdout to the file 'name'
>& name Write stderr to the file 'name'
»& name Append stderr to the file 'name'

The default for stdin is the keyboard. The default, for stdout and
stderr is the window for the calling program. I/O redirection
operators and names are not passed to the calling program.

Built-in shell commands also use I/O redirection operators, for
example:

dis filename.o: more
Is > filename

Uses shell command more
Redirects file listing to filename

I/O redirection is available through the system function. The
following ex~mple illustrates this.

main() .
{ char line[80];

system (Iine,"ls");
system (line, "Is> filename");

}

The shell supports environment variable setting (setenv) and
printing (getenv). These variables are stored'internally as a string of
the form: name.'value'.
The variable PATH (note upper case) is used by the loader to find
programs to execute. A typical PATH is:

'. \bin \user'

This command string means first search the currentdirectory (.), the
\bin directory, and then the \usr directory. If you set a path, you must
include the period (.) or the current directory will not be searched.
If no path variable is set, only the current directory is searched.

2.1-5 Version 2.6, November 1992

Chameleon 32 C Manual

Commands

. TEKELEC

Ch. 2.1: Shell

The variable VIINIT is -'oaded by the editor as it is executed. The
value of VIINIT may be any valid vi commands to be processed as
the editor is started. The variables FC and BC (foreground color
and background color) are used as colors for window creation when
a program is run as a separate task.

See the description of setenv and getenv for additional
information.

The shell supports the commands listed below. In the syntax
descriptions, angle brackets «» indicate that the field is usar
supplied. Square brackets ([]) indicate optional items.
The following methods can be used to execute more than one
command in a single command line.

% a; b; c

%a&b&c

%alblc

Executes commands, a, b, and c as if they were
entered as follows:

%a
%b
%c

Executes commands a, b, and c as if they were
entered as follows:

%a&
%b&
%c

Executes commands a, b, and c as if they were
. entered as follows:

% a > pipe1
% b < pipe1 > pipe2
% c < pipe2

The shell commands are listed in aJphabticaJ order, one command
per page, on the following pages .

2.1-6 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

& (Bacxground Mode)

Description

Syntax

See Also

Example

TEKELEC

The ampersand symbol (&) is the command that runs an executable
file in background mode. When the ampersand is used, a window is
opened for the task and it is used as stdin and stdout.

<name> &

where: name is the filename of an executable file.

To modify the window color, use the setenv command. The window
wili be closed when the task is killed.

run (page 2.1-30)

To run the file named PROG1 in background mode, enter:

% PROGl &

2.1-7 Version 2.6, November 1992

Chameleon 32 C Manual

(Remark)

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The # sign enables you to enter a remark that is ignored by the shel!.
The remark is not echoed to the screen. It is useful for inserting
programmer's remarks in batch files.

#[text]

where: text is the remark you want in the batch file.

To enter a remark, enter:

tSetting environment.

2.1-8 Version 2.6, November 1992

Chameleon 32 C Manual

, (Echo Text)

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The' sign enables you to echo text to the screen. It can be used in
batch files to echo messages or instructions to the screen.

'[text]

where: text is the text to echo to the screen.

To display the message 'Hello out there', enter:

%'Hello out there! <RETURN>
Hello out there!

2.1-9 Version 2.6, November 1992

Chameleon 32 C Manual

batch

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The batch command executes a batch file. A batch file is a file
which cont.ains a sequence of shell commands.
If a batch fHe named login exists on the root directory of either the
hard or floppy disk, it is automatically executed when the shell is
launched.

batch <filename>

where: filename is the name of the batch file.

To execute a batch file named startup. enter:

batch startup

2.1-10 Version 2.6, November 1992

Chameleon 32 C Manual

cat

Descripticn

Syntax

Example

Errors

TEKELEC

Ch. 2.1: Shell

The cat command prints files to standard output. It is used primarily
to display the contents of one or more files.

cat <file .•• >

where: file is the name display on the screen. If a single file name
is specified, the contents of that file is displayed on the screen.

If two or more files are specified, cat concatenates them in the order
given and writes the output to the indicated file.

If the file parameter is not specified cat reads from standard input.

To display the contents of the file prog1, enter:

cat proql

To concatenate the contents of filea and fileb and write the result
into filec, enter:

cat filea fileb >filec

File not found: name The file or directory name does not exist:

2.1-11 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

,.
cd

Description

Syntax

Example

TEKELEC

The cd command changes the current sub-directory.

To determine the names of the sub-directories of the current
directory, use the Is command. This lists the entries of the current
directory with sub-directory names followed by a slash (\).

The root directory is referred to by a back slash (\).

cd <path>

/ where: path is the path name of the sub-directory that you want to
use.

To change from the root directory to the USRI sub-directory, enter:

cd usr <RETURN>

To change back to the root directory, enter:

cd \

2.1-12 Version 2.6, November 1992

Chameleon 32 C Manual

cp

Description

Syntax

Example

Errors

TEKELEC

Ch. 2.1: Shell

The cp command copies one or more files into a specified directory.
The cp command can be used to make copies of files, rename files,
or transfer files to a different directory.

cp <oldfile> <newfile>

where: oldfile is the name of the source file and newfile is the name
of the new copy of the file. The cp command will not copy a file onto
itself, therefore a newfile name must be supplied.

If newfile already exists, its contents are overwritten. If newfile is
overwritten by the cp command, the Original mode and owner are
preserved. If neY/file is a new file, the mode and owner of the
source file is used.

The cp command copies one or more files into a different directory,
using the following syntax:

cp <file ••• > <dirt>

where: file is the name of the file to copy and dir is the name of the
directory to copy the file into. Note that the directory name is
followed by a slash (I) to indicate that it is a directory and not a new
filename. The filenames remain unchanged.

To make a copy of a file named PROG1 and give the copy the name
PROG2, enter:

cp proql proq2

To copy a file named PROG 1 into USR/ sub-directory, enter:

cp proql usr/

Can't copy file to itself: name CP was given the same file name
to copy to as the source file
name.

name: not a directory

can't open: name

2.1-13

The name of the directory to copy
to was invalid. ,

The source file does not exist, or
there is something wrong with the
disk. .

Version 2.6, November 1992

Chameleon 32 C Manual

ctags

Description

Syntax

TEKELEC

Ch. 2.1: Shell

ctags 1s a utility that helps you locate definitions in multiple C
program files. It searches specified files and creates a file.named
tags which contains a list of the functions that were found in the
program files. The tags file can then be used in conjunction with the
vi editor to quickly locate specific functions in the files you are
editing.

ctags files

where: files are the C program filenames that you want to search
through. You can use wildcards to specify the files to search. For
example, this searches all C source files beginning with the name
test:

ctags testlt.c

This creates a file named tags which contains. the following
information about the definitions (tags) in the files that were
searched.

tag filename . String to search for

You can use the more command to view the contents ofthe tagsfiJe.

There are two ways to use the tags file with the vi editor:

1. Use the -t option when you invoke the vi editor. For example:

vi -t tagname

This edits the first file listed in the tags file which contains the
tag specified by tagname. The cursor is positioned at the first
occurrence of the tag in the file.

2. Invoke the vi editor and then use the :tag command. For
example:

vi It.e
:tag tagname

This first invokes the vi editor to edit all .c files. The :tag
command then positions the cursor at the first occurrence of
the speci1ied tag within the files being edited.

2.1-14 Version 2.6, November 1992

Chameleon 32 C Manual

durnp

Description

Syntax

Example

Errors

TEKELEC

Ch. 2.1: Shell

The dump command prints one or more files in hex to standard
output.

dump file

To print the contents of the file named test1 in hex, enter:
dump test1

File not found: name The file name does not exist.

2.1-15 Version 2.6, November 1992

Chameleon 32 C Manual

exit

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The exit command exits from the C shell and returns to the
Chameleon 32 port configuration page. It causes the C shell to no
longer be active.

exit

To return to the Chameleon 32 port configuration page from the C
shell prompt (%), enter:

exit

2.1-16 Version 2.6, November 1992

Chameleon 32 C Manual

format

Description

Warning

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The format command formats a floppy disl<ette.

Formatting erases all the data on the disk. Make back up copies
of files you want to keep before you format.

format b

To format the floppy disk, enter:

format b

The following message is displayed:

Do you wish to format the floppy disk B:? (Yes or No) Y <cr>

2.1-17 Version 2.6, November 1992

Chameleon 32 C Manual

getenv

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The getenv command prints the string value of all environmental
variables .or of a soecified environment variable. Use the setenv
command to set the value of an environment variable.

getenv Displays values of aI/ environmental
variables.

getenv <name> Displa}'s '1alue of a specified
environmental variable.

where: name is the name of the environment variable to print. The
following variable names are used by the Shell, but up to 20
variables can be defined by the user. The following variable names
must be entered in UPPER CASE letters.

PATH

FC

BC

YEAR

HOME

Displays the default search path for
locating files.
Displays the foreground color for new
windows.
Displays the background color for new
windows.
Displays the global _curr""year in the
libraries
Displays a path that is changed to when
the cd command (with no argument) is
used.

To display the current default search path, enter:

% getenv PATH <RETURN>
.b: \bin

To display the foreground color for new windows, enter:

0/0 getenv Fe. <RETURN> _
white

2.1-18 Version 2.6, November 1992

Chameleon 32 C Manual

help

Descr!ption

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The help command displays a list of shell commands and their
usage.

help

% help

2.1-19 Version 2.6, November 1992

Chameleon 32 C Manual . Ch. 2. 1: Shell

jobs

Description

Syntax

Example

TEKELEC

Tr.e jobs command prints job control status, including process id
(pid), program name, and whether resident or running.
If running, a program is active and can be killed using the kill
command.

If resident, a program is in memory, and when started, is loaded
from memory and not from disk.

jobs

To display the current jobs and their process id numbers, enter:

% jobs
[0] Running B:\SHELL
[1] Resident B:\BIN\CP

2.1-20 Version 2.6, November 1992

Chameleon 32 C Manual

kill

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The kill command kills a process that is running. It does not remove
the process from residency.

kill <pid>

where: pid is the process id of the program to kill. Refer to the jobs
command to print pids and other information about programs.

If you want to view the current jobs, enter:

jobs

A display such as the following appears:

[0] .Running
[1] Resident
[2] Running

B:\SHELL
B:\BIN\Cl?

B:\OSR\l?ROG1

This display indicates that PROG1 is· running and is assigned
process id 2. To stop the process bu! leave PR()G 1 resident. enter:

kill 2

2.1-21 Version 2.6, November 1992

Chameteon 32 C Manual

Is

Description

Syntax

Example

Error Messages

TEKELEC

Ch. 2.1: Shetl

The Is command prints a list of files and directories, and information
about them. If a directory (or drive specifier) is given, the directory
name, number of files in the directory, and a list of all files in the
directory is displayed. If a file name is given, matching fila names.
are "sted. If no fileldirectory names are given, the contents of the
current directory is listed. In the absence of a sorting option, names

. are sorted alphabetically.

In the resulting display, sub-directory names are followed by a
slash (I).

Is [-L] [-K] [-S] [-D) [spec]

Is options are:

-L

-K
-S
-D

Long listing format. . Provides the name, size
(excluding header information) and date of the file,
with each file displayed on a separate line.'
Listing ·is sorted by file extension (kind)
Listing is sorted by size
Listing1s sorted by date of last modification.

If one of the sorting options is note used, the list is sorted by
filename. Filename substitution is performed.

To list the files in the current directory including the date and size,
enter:

ls -L

To list all entries in the current directory that begin with the letter S, .
enter:

18 s*

Unknown option:' option

File not found: name

An option was given that LS does
not recognize.

The file or directory names does not
exist.

Drive DRIVE: not available The drive is not available.

2.1-22 Version 2.6, November 1992

Chameleon 32 C Manual

man

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The man command displays a named help file for C commands,
programs, and library functions.

man <filename>

where:filename is the name of the help file. The following help files
are availab!e:

Filename

anal
ar
asynclib
aux2lib
bop
bri
bsc
cc
dis
egrep
filefunc
hdlc
lapel

Id
libe
make
mathlib
mlink
pri
sdlc
shell
v120
vi
window

Topic

Analysis library
Librarian
Async library
Aux Port 2 library
BOP library
BRI library .

BSC library
compiler
Disassembler
egrep
Low level M~OS file functions
HDLC library
LAPD library
Linker
Standard C library functions
make command
Math library
Multi-Link LAPD library
PRI_I~~rary
SOLC library
Shell commands
V.120 library
vi commands
Window functions

To display the help file for the BOP library, enter:

. maD bop

2.1-23 Version 2.6, November 1992

Chameleon 32 C Manual

mkdir

Descrlption

Syntax

Example

Errors

TEKELEC

Ch. 2.1: Shell

The mkdir command creates a sub-directory. If a partial path name
is given, mkdir creates the sub-directory in the current directory.

mkdir <name>

where: name is the name of the sub-directory you are creating.

To make a new sub-directory named PROGS, enter:

mkdir progs

Can't create directory: name The directory name already
exists, or the disk is write
protected.

2.1-24 Version 2.6, November 1992

Chameleon 32 C Manual

mkres

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The mkres command makes a program RAM resident. Normaliy,
any program you execute becomes RAM resident. The mkres
command enables you to make a program RAM -resident without
running it. It also prints the process id (pid) of the program.

mkres [-p] <prog>

where: prog is the filename of the program.

The -p option indicates that the program cannot be removed from
memory to satisfy a request for a block of free memory. If the
memory manager receives a request for a block of free memory
which it cannot satisfy, it removes the least recently used programs
until it can satisfy the request. The -p option indicates that the
program cannot be removed by the memory manager.

This option is useful for large programs, such as the compiler, which
take some time to load.

To make a program named PROG1 resident in RAM, enter:

. mkres progl

2.1-25 Version 2.6, November 1992

Chameleon 32 C Manual

more

Description

Syntax

Example

TEKELEC

Ch. 2 .. 1: Shell

The more command displays the contents of a specified file or pipe,
one screenful at a time. If the display is longer than a single screen,
it pauses when the screen is full, and prints the foUowing pmmpt at
the bottom of the screen:

-more-(n%)

The n% is an integer that indicates the percentage of the file (in
characters) that has already been read. The percentage is not
displayed if more is reading from a pipe.

You have three options for displaying additional text on the screen
when the -more- prompt appears. These options are:

• Press Return to display the next line from the file

• Press the Space bar once 10 display the next screen

• Type a number and then press Space bar to display that
number of lines. For example, to display the next 10 lines,
enter:

10 <Space bar>

more cfile>

where: file IS the name of the file to display.

If more is redirected to a device other than a terminal, it transmits
the file.

To list the contents of the file PROG1, one screenful at a time, enter:

more progl

2.1-26 Version 2.6, November 1992

Chameleon 32 C Manual

mv

Description

. Syntax

Example

Errors

TEKELEC

Ch. 2.1: Shell

The mv command moves a file, removing the original copy of the
file. You can use the command to move the replace an existing file
with another file or to move files from one directory irto another
directory.

mv file1 file2

mv files dir

Replace file2 with the contents of file 1.
80th files must already exist.

Move the specified files from the current
directory into the specified directory.

To replace the contents of test1 with tes12, enter:

mv test2 testl

To move all files named test to the parent of the current directory,
enter:

mv test* .•

Where .. specifies the parent of the current directory.

Can't copy file to itself: name MV was given the same file name
to move to as the source file
name.

name: not a directory

Can't open: name

2.1-27

The name of the directory to
move to was invalid.

The file that is to be moved does
not exist, or there is a disk error.

Version 2.6, November 1992

Chameleon 32 C Manual

pwd

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The pwd command displays the name of the current directory on
the screen.

pwd

to display the current directory, enter:

% pwd
B: \USR\

2.1-28 Version 2.6, November 1992

Chameleon 32 C M&nual

rm

Description

Syntax

Example

Errors

TEKELEC

Ch. 2.1: Shell

The rm command deletes one or more files from the disk.

rm <file> [file ...)

where: file is the name of the file to delete. Note that you can delete
more than one file with a single rm command by listing the
filenames separated by blank spaces. Filename substitution is
performed.

To delete a file named PROG1, enter:

rm progl

To delete all files that have PROG as the first four letters of the
filename, enter:

rm prog*

Usage: rm file... There are no options to rm.

2.1-29 Version 2.6, November 1992

Chameleon 32 C Manual

rmdir

Description

Syntax

Example

Errors

TEKELEC

Ch. 2.1: Shell

The rmdir command deletes a sub-directory. You cannot delete a
sub-directory if it is the current directory. You must be in the parent
of the sub-directory in order to delete it. The directory must be
empty before you can delete it.

rmdir <name>

where: name is the name of the sub-directory you are deleting.

To remove the directory named PROGS. enter:

rmdir progs

No such directory: name The directory name does not exist or
the disk is write protected.

2.1-30 Version 2.6, November 1992

Chameleon 32 C Manual

rmres

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The rmres command makes a RAM resident program
non-resident.

rmres <pid>

where: pid is the process id of the program. Refer to the jobs
command to print pids and other information about programs.

If you want to view the current jobs, enter:

jobs

A display such as the following appears:

[0] Running
[1] Resident
[2] Resident

B:\SHELL
B:\BIN\MORE
B:\BIN\CP

This display indicates that the more program is resident and is
assigned process id 1. To remove the more program from RAM,
enter:

rmres 1

The screen then displays:

[1] Removed B:\BIN\MORE

2.1-31 Version 2.6, November 1992

Chameleon 32 C Manual

run

Description

Syntax

Note:

See Also

Example

TEKELEC

Ch. 2.1: Shell

The run command runs a program as a separate process. It loads
the program, creates a new window for the program's standard I/O,
and executes the program.

run [-xxx] <prog>

The -xxx option sets the process priority within the range 1 - 230,
with 230 having the highest priority. The process priority is actually
the prioriW given to the MTOS-UX operating system when a task
is created. The default priority is 100 unless otherwise specified.

The & character may be used as the last character of a command
line to indicate 'run'.

By setting your task's priority, you can force your task to run by
taking CPU time.from other tasks. For example, the following are
the process priorities assigned to Chameleon Monitoring
applications: .

Real Time display 100
History 200
Statistics 200

If your task does only CPU processing (no 110), it may not allow
processing time for other applications. If this occurs, you can use
the MTOS-UX pause function to allow time for other tasks to run.

& (page 2.1-5)

To run the program named PROG1, enter:

run proql

A prog1 banner appears at the bottom of the screen for the I/O of
the -program.

To run the program named PROG1 with a process priority of 200,
enter:

run -200 prog1

2.1-32 Version 2.6, November 1992

Chameleon 32 C Manual

setenv

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The setenv command sets an environment variable.

setenv <name> <'value'>

where: name is the name of the environment variable and value'
is the string value of name. Note ·that the value is enclosed in
quotation marks to protect the string.

The following variable names are used by the Shell, but up to 20
variables can be set and used by a user program. The following
variable names must be entered in UPPER CASE letters.

BC
FC
HOME

PATH
YEAR

Sets the background color for new windows.
Sets the foreground color for new windows.
Contains a path to change to if the cd command is
used without an argument. If no HOME variable is
found, the path is set to the root. '
Sets the default search path for locating files.
Sets the global_curr-year in the libraries.

Tne available foreground and,background colors are:

• black

• red

• green

• yellow

• blue

• magenta

• cyan

• white

To set a path from the current directory (.) to the root directory to the
BIN sub-directory on the A drive, enter: -

setenv PATH a:.'\bin b:\'

To set the foreground color to blue, enter:

setenv Fe 'blue'

2.1-33 Version 2.6, November 1992

Chameleon 32 C Manual

shell

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The shell command starts another shell that will do all that the C
shell does. The other shell can be run in background mode, if
desired.

Note: The cd command will not work on all shells.

shell <name> &

where: name is the shell name and the & optionally nJns the shell
in background mode.

To run a shell called newshell in background mode, enter:

shell newshell &

2.1-34 Version 2.6, November 1992

Chameleon 32 C Manual

size

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The size command prints size information for the different
segments of object or executable files to standard output.

size files

To display the size of an object file names scripts.o, enter:

size scripts.o

The resulting display will be:

text data bss dec hex

17590 4384 o 21974 55d6 scripts.o

2.1-35 Version 2.6, November 1992

Chameleon 32 C Manual

time

Description

Syntax

Example

TEKELEC

Ch. 2.1: Shell

The time c~)mmand displays the current time as maintained by the
Chameleon 32 clock.

time

To display the current time, enter:

% time
23 SEP 1987 02:06:34

2.1-36 Version 2.6, November 1992

Chameleon 32 C Manual Ch. 2.1: Shell

SHELL ERROR MESSAGES

Table 2.1-1 lists the Shell error messages and their meanings.

ERROR MEANING
MESSAGE

L FNFERR File not found.

lOPNERR Command not found.

L MEMERR Memory allocation error.

L REDERR File read error.

L RELERR File contains external references.

L FMTERR File not executable.

L RUNERR Program is currently running.

L FULERR Too many programs currently loaded.

L PNRERR Tried to restore a non-resident program.
L_BSYERR· Could not get semaphore to use Ioad$f'.

S COMERR Command line error.

. S CRTERR Unable to create a taSk .
S_KEYERR Unable to get a new key.
S MEMERR Out of memory.

S TOKERR Bad command line syntax.

S_PTYERR Priority must be from 1 - 230

Table 2.1-1: Shell Error Messages

TEKELEC 2.1-37 Version 2.6, November 1992

· Chameleon 32 C Manual Ch. 2.2: Compiler Commands

2.2 COMPILER COMMANDS

Introduction

cc

TEKELEC

This section describes the compiler commands cc and mcc.

The cc command compiles and links files. The cc command
runs the compiler mcc andlor the linker Id on the specified
files depending on the file extension.

Compiler flags and files with the .c extension (C source files)
are passed to mcc. Linker flags and files with the .0
extension (object files) are passed to Id. This includes .0 files
produced from .c files by the compiler. When the cc
command calls the linker, the proper init code and C system
library are included automatically.

The cc command functions as shown in this example:

cc [flags] [file.c] mcc [flags] [file.c] -I\include
Id [flags] \Iib\init.o file.o \lib\libc.a \lib\libm.a

cc [flags] [file.o] Id (flags] \Iib\init.o file.o \lib\libc.a \lib\libm.a

The compiler commands cc and mcc are described in this
section. Id is described in Section 2.3. Square brackets []
indicate an optional field; angle brackets < > indicate a user
specified field.

The cc command uses the following syntax:

cc [-c) [flags] [file.c/file.o •..]

The cc fields are:

-c Compiles only; does not link

flags Optionally specified flags for Id and mcc as
summarized below.

Id flags: -d

-Ixxx

2.2-1

Debug option. Causes the linker to
include the names of functions in
the executable program.

Library search path. The linker
automatically searches the path
\lib\libxxxx.a where libxxxx.a is the
name of the library.

Version 2.2

· Chameleon 32 C Manual

TEKELEC

-m

-0

-txxx

mcc flags: -I path

-dname

Ch.2.2: Compiler Commands

Prints names and addresses of
globals which are included in the
executable program. Creates
MAPFILE of globals in program.
This is a set of symbols and their
offset from the beginning of the file.

Writes output to specified output
file (default·is a.out).

Unker adjusts references wihtin
program as if program were at hex
memory location xxx.

Causes the· compiler to search the
specified path for include files.
Default path is \Include.

Equivalent to inserting #define
name in the source.

-dname = value

Equivalent to inserting #define
name value in the source.

-x Trace Mode. Adds calls to the
debugging routines debugln as
each function is entered and

debugout as each function
terminates.

flle.o If an object file is specified, cc calls Id only (links), but
does not call mcc (compiler).

flle.c' If a C sourcefile is specified, cc calls Id (linker) and
mcc (compiler), unless the -c option is included ..

2.2-2 Version 2.2

Chameleon 32 C Manual Ch.2.2: Compiler Commands

mcc mcc is the name of the compiler and compiles one C source
file at a time. It uses the following syntax:

Compiler Errors

TEKELEC

mcc [-dname[= value]] I-lpath] [-x] [-I\ifile] < file.c >

The mcc command fields are:

-dname Equivalent to inserting #define
name in the source. .

-dname = value Equivalent to inserting #define
name value in the source.

-lpath

-x

Example: Dtest = 1 is the same as
#define test 1 in the source file.

Causes the compiler to search the specified
path for include files. Default path is \include.

Trace Mode. Adds calls to the debugging
routines debugin as each function is
entered ana debugout as each function
terminates. rne routines shown below are
the default routines that will print the
procedure names and the passed
pa(ameters. These routines. can be
overwritten by user· routines.

debugln(args, format)
iffiar -args;
char -rormat; .
args is a pointer to the parameters on the
stack

format is a pointer to a printf type format
string containing the name of the function
entered and a % conversion for each arg.

debugout(name)
iffiar *name;
name is a pointer to a string containing the
name of the fucntion that is terminating.

file.c The C source file name. C source files have
the file extension .c. The compiler produces
an object file and assigns the same file name
as the corresponding C file, but changes the
extension to .0.

Refer to section 2.8 for a list of global error codes which can
be returned by the compiler.

2.2-3 Version 2.2

Chameleon 32 C Manual Ch.2.3: Linker Command

2.3 LINKER COMMAND (Id)

Introduction

Usage

TEKELEC

The Tekelec Linker is similar to the UNIX linker Id. The linker
takes as input multiple object and library files and creates an
executable file from them by resolving all external references
(references to symbols not defined in the file making the
reference). The user specifies which object files he wants
loaded and which library files he wants searched.

The utility program named cc includes the correct libraries and
initialization code. You will normally use program cc to
compile and link your user programs.

The linker must be used even if a program doesn't contain any
external references because an object file created by the
compiler is not executable.

Symbols defined in the user specified object files will override
definitions of the same symbol in the libraries because user
object files are loaded first. Likewise, symbols defined in the
first libraries in the list override definitions from latter libraries
(the system library is always read last). A programmer may
make use of this feature by writing his own versions of system
library functions (such as ma 11 ac for instance) while still using
other· procedures from the library.

The linker is run from the shell. Linker command syntax is
shown below. Square brackets [] indicate optional fields;
angle brackets < > indicate user specified fields.

Id [-V1 [-Uib] [-M1 [-X1 [-Txxx1 [-0 output] <objects> [libraries]

The fields for the Id command are:

-v Verbose option. Displays the names of the
functions in each of the object or library files
specified in the command line.

-Llib Library search path. The linker automatically
searches the path \Iib\libxxxx.a where libxxxx.a
is the name of the library.

2.3-1 Version 2.5

Chameleon 32 C Manual

TEKELEC

Ch.2.3: Linker Command

For example, to compile prog.c using the libsdlc
(SDLC library), you can use the command:

Id prog.o -Isdlc

This causes the same result as entering:

Id prog.o lib\libsdlc.a

-M Prints names and addresses of globals which are
included in the executable program. Writes this
information to MAPFILE. This is a set of symbols
and their offset from the beginning of the file.

-X Debug option. This option causes the linker to
include the names of functions in the executable
program. If the program terminates abnormally
(dure to a processor exception), a stack dump
can be printed. Static functions begin with a tilde
(-) while global functions being with an
underscore (_).

-Txxx Causes the linker to adjust references within the
program as if the. program was at hex memory
location xxx. Normally, the program is linked as if
it were based at location zero, and relocation
information is included so that when a program is
run, the references may be adjusted for the
actual memory location. Setting this option also
prevents this relocation information from being
included.

-0 output Writes output to a file, where output it the name
of the output file. The default output file name is
a. out

objects One or more input object files. This must always
include:

libraries

llib/init.o

One or more input library files, if not already
specified with the -Llib option.

2.3-2 Version 2.5

Chameleon 32 C Manual Ch. 2.3: Linker Command

Linker Errors If an error occurs during the link, the link is aborted and no
output program is written. Error messages are listed below.
Also refer to section 2.8 which describes the global error
codes which can be returned by the linker.

TEKELEC

Usage: Id [-d) [-txxxl [-m] <Infile> [-lxxx1 [-0 outfile]

Either an invalid link option was specified, or no object or
library files were given.

File open error: name
The object or library file name was not found. Check to
see that the file name and path name are given correctly
and that the file actually exists.

File read error: name
Likely a disk problem. Try a newly formatted disk.

File write error: name
Either the disk onto which the linker output is being
written is full, or there is a physical problem with the
disk. Check to see that adequate space for the output is
avialable. .

Unable to open output file: name
Check to see that the disk is' not write protected, and
that the path given for the output, if any, is correct. May
also be the result of a problem with the disk.

File format error: name
The named input file is not in the correct format or has
been corrupted. Assure that only object files and library
files are specified.

Undefined symbol(s):
The linker found references to function name(s) or global
variable name(s) for which there is no definition. Make
sure that the listed globals are actually defined, and that
references to library functions are spelled correctly.
Note that a leading underscore () is added to each
global by the compiler and shouIa be ignored by the
user.

Duplicate name definition: name
The global name has been defined in more than one
place. Eliminate or rename one of the
functions/variables.

2.3-3 Version 2.2

Chameleon 32 C Manual

The Unking
Process

TEKELEC

Ch. 2.3: Linker Command

No name list: file
File is missing symbol table information. Object files
rr ust have at least one global name to be linked.

No string table: file
File is missing its string table, a list of the actual names
referred to by the symbol table.

The linker examines each argument in the order given.
Object is always included, while libraries are searched by the
linker and only those object code modules which are needed
are actually included in the final executable program. Since
libraries frequently contain many object code modules, the
archiver may be used to add an index of global function and
variable names to the beginning of a library. Using this index,
the linker can quickly resolve external references, greatly
speeding the linking process.

The index, if it exists, is loaded into memory and searched
repeatedly until either no more undefined names need
resolving, or a complete pass of the index is made and no
additional object code modules are extracted. If the library
does not contain this index, the linker will make only one
sequential pass through the library~ including code modules
only if they are needed. Therefore, without the index,
references in the library must refer to object modules which
appear further into the file.

2.3-4 Version 2.2

Chameleon 32 C Manual Ch. 2.3: Linker Command

Object File
Format A.out is the format of the object file that is created by the

compiler. This object file format is the same one that is used
by Unix systems. The file has five sections: a header, the
program text, the program data, relocation information, a
symbol table, and a string table (in that order). The text
segment contains the actual machine code for the program,
while the data segment contails initialized variables. A
segment for uninitialized variables, called the bss segment, is
set up at the time the program is run.

TEKELEC

Format using the C structure definitions are shown on the next
page.

2.3-5 Version 2.2

Chameleon 32 C Manual

1* Header prepended to each object file.
*/
typedef struct {

long
long
long
long
long
long
long
long

1* Format of a relocation datum
*/
typedef struct {

long f_address;
8/

*/
unsigned long

1* Macros to access the r _info field
*/
#def"me
#define
#define
#define

Ch.2.3: Linker Command

1* magic number OxOl07
1* size of text segment
1* size of initialized data
1* size ofunitialized data
1* size of symbol table
1* entry point
J* size of text relocation
1* size of data relocation

1* address which is relocated

1* r_symbolnum, r-pcrel, r_Iength,

1* r-.extern

«x> >8) & 0xftlll'fL)
«x> >7) & OxlL)
«x> >5) & Ox3L)
«x> >4) & OxlL)

*/
*/
*/
*/
*/
*/
*/
*/

. */

*/

H r extern is. zero, then r symbolnum is actually the N TYPE (see
belOW) for the relocation ratherthan an index into the symbol ta15re.

1* Format of a symbol table entry.
1*
typedef struct {

char
char
char
char
long
}nlist;

,. Simple values for n type
*/ -
#define N_UNDF
#def"meN ABS

:~=~ ~~l
#def"me N-BSS
#define N-COMM
#defmeN FN

#define NEXT
#define N N-YTPE

TEKELEC

OxO
Ox2
Ox4
Ox6
Ox8
Ox12
Oxlf

01
Oxle

1* string table index
1* type flag, i.e. N_TEXT etc
/* unused
/* currently not used
1* value of this symbol

1* undefined
1* absolute
1* text
1* data
1* bss
,. common (internal to ld)
,. file name symbol

,. external bit, ORed in
1* mask for all the type bits

2.3-6

*/
*1
*1
*1
*/

*/
*1
*1
*/
*/
*/
*/

*/
*/

Version 2.2

Chameleon 32 C Manual Ch.2.3: Linker Command

Object File
Format

1* header

*' typedef struct {
int
long
long
long
long
long
long
} header;

1* Symbol table entry

*' typedef struct {
char
int
long
} symbol;

Object files are composed of up to four sections: a header,
the text and data segments, an optional symbol table, and
optional relocation information. The header, the first
component in the file, specifies the size and starting
address of the other components in the object file whichar
are listed below.

name[8];
type'
valu~;

1* magic number (Ox601A)
1* size of text segment '* size of initialized data
1* size of uninitialized data
1* sizeof symbol table '* entry point '* reserved, always zero

*' *' *' *' *' *' . *'

'* values for symbol types
*' #defme
#define

*' #defme
#defme
*' #define
*'
#define
#defme
#define

*'

TEKELEC

DEFINED Ox8000 1* The symbol is defmed *' EQUATED Ox4000 1* The symbol is an equate *'
GLOBAL Ox2000 1* The symbol is global *' EQU_REG OxlOOO 1* The symbol is a register *'
EXTERNAL Ox0800 1* The reference is external *'

DAT REL Ox0400 '* Data segment reference *' TEX-REL Ox0200 '* Test segment reference */
BSS REL OxOlOO '* Bss segment reference *'

The above values may be ORed together to indicate symbol
type.

One word (16-bit) of relocation information exists for each
word of text and data. The type of relocation is indicated in
bits 0-2 of the word. If the relocation is an external
reference, the remianing bits (15-3) form an index into the
symbol ~able, indicating the name of the external reference.

2.3-7 Version 2.2

Chameleon 32 C Manual Ch. 2.3: Linker Command

1* relocation word values (bits 0-2)
*1 .
#define NO RELOC 0
#define DATA BASED 1
#defme TEXT-BASED 2
#define BSS lfASED 3
#defme UNDEF SYMBOL 4
#defme LONG REF 5
#defme PR RELATIVE 6
#define INSTRUCTION 7

TEKELEC 2.3-8 Version 2.2

Chameleon 32 C Manual

2.4 LIBRARIAN

Introduction

Random Ubrary

TEKELEC

Ch. 2.4: Librarian Usage

The Tekelec librarian, ar, maintains a group of files combined
into a single archive. Its main purpose is to create object file
libraries to be used by the linker.

The librarian is compatible with the UNIX program ar (file
archiver). It also provides the function of the UNIX utility
ranllb, which creates a· dictionary of symbols that the linker
uses to speed the proces$ of searching through libraries.

The ar command includes an option (I) which converts an
archive of object files into a random library. This enables the
linker to search the archive more efficiently.

The librarian performs this randomization by examining the
entire library, collecting global function and variable names,
and information about the object modules in which they are
defined, and writing a special component into the library. This
component, named SYMDEF, is always the first component
of the library. -

Always randomize a newly created library. Once randomized,
the librarian automatically re-randomizes any library which is
changed ..

If a library has a .SYMDEF and it is changed, the librarian
automatically recreates the _ SYMDEF.

The usage of ar is on the following page.

2.4-1 Version 2.2

Chameleon 32 C Manual Ch.2.4: Librarian Usage

Usage The ar command uses the following syntax:

TEKELEC

ar < key> [v] [pas] < afile > < file> [file ...]

The ar fields are:

key One of the commands listed below.

pas

atile

file

t List a table of contents of the archive ..

r Replace (add) file to the archive. If the
archive does not exist,it is created. ·If an
archive component name matches < file>, it
is replaced. Otherwise < file > is appended
to the end of the archive in the order
specified.

ra Same as option r, except the replace/add
begins after the component in the archive
named in [pos]. The file pas is first located,
then the replace command is executed.

d Delete file from archive.

x Extract copy of file from archive.

w Write the file to the standard output.

v

Convert archive into random library. Always
randomize a newly created library.

The letter v (verbose) can be appended to
any of the commands, causing the librarian to
print information about the action performed.

Used with option ra. Indicates where the file
is to be archived. pas is the file that the new
file should follow in the archive.

Archive file name.

One or more file names, used according to
key.

2.4-2 Version 2.2

Chameleon 32 C Manual Ch. 2.4: Librarian Usage

ERROR MESSAGES

Table 2.4-1 lists the librarian error messages and their
meanings. Also refer to section 2.8 which describes the
global error codes that can be returned by the librarian.

ERROR MESSAGE - MEANING

Usag~: ar ... An invalid key was specified, or not object or library files
were specified.

File open error: name The file name was not found. Check to see that the file
name· and path are correct, and that the file actually
exists.

File read error: name Try a newly formatted disk.

File write error: name Disk is full or there is a phYSical program with the disk.
The librarian writes a temporary file, called AR..TMP to
the disk. Make sure there is adequate space available
on both the librarian disk and the disk on which the
library exists. .

File create error: name Unable to create a new library. Make sure that the disk
is not write-protected, and that the path for the output is
correct. Could also indicate a disk problem.

Temporary file open error Unable to create the temporary file. There is either a
problem witht he disk or the disk from which the librarian
is being run is full. Make sure there is adequate space
available on both the librarian disk and the disk on
which the library exists.

File format error: name File given is not a library file.

Memory allocation error Memory is exhausted. Remove RAM disk or cache.

Malformed archive (OXXXX) The library file is internally corrupt Create or copy a
new file. The hex number given is the address where
the librarian expected to find the beginning of a
component file, but did not.

Table 2.4-1: Librarian Error Messages

TEKELEC 2.4-3 Version 2.2

Chameleon 32 C Manual Ch. 2.5: Disassembler Usage

2.5 DISASSEMBLER

Description

Usage

TEKELEC

The Disassembler, called dis, prints the assembly language
equivalent of an object code file. This allows you to check the
compiler's code generation for errors or determine if it can be
improved.

If the file contains symbol information, it is used where
possible; otherwise, actual reference values are printed.
Since references internal to an object file are resolved by the
compiler, there will be instances where no name is associated
with a reference. In these instances, the Disassembler makes
an educated guess as to the name of a reference, and prints
it , rather than a value. All numeric values are printed in hex.

The output of the Disassembler is not directly compatible with
the in-line assembly of the compiler, because the compiler
inserts extra characters that are not part of the assembler
syntax. This additional information can be removed using the
vi editor. .

The. Disassembler uses Motorola mnemonics to print the
assembly language equivalent of an object file. The
disassembler prints labels as they would appear in an
assembly language program by. examining the symbol table

. and the relocation information.

The disassembler command uses the following syntax:

dis [-n] [-r] [-a] I-i] ofile [of lie...]

-n Suppress reference names and
addresses. Print actual reference values.
Default is for symbol names to be printed.

-r Relative branches. Normally branch
instructions, which specify addresses
relative to the program counter, are
converted to absolute addresses. This
option suppresses the conversion.
Default is the absolute address of the
destination of the branch.

-8 Assembly format. Print as an assembly
file, suitable for compiling. Often, slight
modifications will be necessary before it
will compile correctly.

2.5-1 Version 2.2

Chameleon 32 C Manual

-i

ofile

Ch. 2.5: Disassembler Usage

Instruction print. The hex value of each
instruction is printed before the instruction
is disassembled.

An object or executable file

Disassembler
Errors Table 2.5-1 lists the Disassembler error messages and their

meanings. Also refer to section 2.8 which describes the
global error codes that can be returned by the disassembler.

ERROR MESSAGE MEANING

Usage: dis ... An invalid option was specified or no object or
program files were given.

File open error: name The input file name was not found. Check to see
that the file name and the path name are correct.
and that the file exists.

Memory full while Memory exhausted. Remove RAM disk or cache.
processing'

File format error: name The file name is not an object or program file; or it is
corrupt. .

Table 2.5-1: Disassembler Error Messages

TEKELEC 2.5-2 Version 2.2

Chameleon 32 C Manual

2.6 EGREP

Description

Usage

TEKELEC

Ch. 2.6: Egrep

Egrep searches files for patterns that the user specifies. The
patterns are in the form of regular expressions. Normally,
each line that matches the user-defined pattern is copied to
the standard output. Egrep patterns are extended regular
expressions using a fast deterministic algorithm that
sometimes needs exponential space. Lines are limited to
1024 characters; longer lines are truncated.

Egrep prints the file name if there is more than one input file.

Egrep uses the following syntax:

egrep.ttp [-C) [-L] [-V] [-N] reS] pattern [files]

-C Matching line count.
This option prints the number of lines that
matched the pattern.

-L File listing.
This option prints the file names
containing matching lines.

-V . Print all non-matching lines.
This option prints the lines that do not
match the pattern.

-N Print line number.
This option prints the line number of the
matching line.

-S Silent option.
This option prints only error messages.

[files]

2.6-1 Version 2.2

Chameleon 32 C Manual Ch.2.6: Egrep

Pattern Egrep accepts extended regular expressions. A regular
expression specifies a set of strings of characters. A member
of this set of strings is said to be matched by the regular
expression.

TEKELEC

Care should be taken when using the characters $ * [A I ()
and \ in the expression, as they may also be meaningful to the
shell. It is safest to enclose the entire expression arguments
in single quotes ('). In the following description, the term
character excludes newline:

• \ (back slash) followed by a single character (other than
newline) matches that character

• A (caret)matches the beginning of a line

• . (period) matches any character

• Any other character matches that character

• A string enclosed in brackets [1 matches any single
character from the string. Ranges of ASCII character
codes can be abbreviated, for example, a-zO-9. A
right bracket (J) can occur only as the first character of
the string. A literal - must be placed where it cannot
be mistaken as a range indicator.

• A regular expression followed by an asterisk (j matches
a sequence of zero or more matches of the regular
expression.

A regular expression followed by plus (+) matches a
sequence of one or more matches of the regular
expression.

A regular expression followed by a question mark (?)
matches a sequence of zero or one matches of the
regular expression.

• Two regular expressions concatenated match a match of
the first followed by a match of the second.

• Two regular expressions separated by I or newline
match either a match for the first or a match for the
second.

• A regular expression enclosed i:1 parentheses matches
a match for the regular expression. The order of
precedence of operators at the same parenthesis level
is as follows: [] then * + ?, then concatenation, then I
and newline.

2.6-2 Version 2.2

Chameleon 32 C Manual Ch. 2.6: Egrep

Examples If a file named test1 contains the line: .

TEKELEC

The lazy dog jumped over the the cow

To search for the word dog in the file, use egrep as follows:

egrep 'dog' test1

To list all functions in a file, use egrep as follows:

egrep , .. ([a-zA-Z]I[_]) (a-zA-ZO-911[_n,]*\(' test2.c

If test2.c is the following program:

maln()
{

Int I;
fooO;

1000
{

Int I;

maln();
}

Egrep would print:

mainO
fooO

2.6-3 Version 2.2

Chameleon 32 C Manual Ch. 2.6: Egrep

Egrep Errors Table 2.6-1 lists egrep error messages and their meanings.
Also refer to section 2.8 for a description of global error codes
which can be returned by egrep.

ERROR MESSAGE MEANING

Usage : egrep.ttp ... No pattern or files were given.

Unable to open: name Egrep cannot open the file name.

Unknown flag: flag Flag is not used by egrep.

Invalid regular expression Something is wrong with the regular expression.

Unmatched (A right parenthesis has been omitted from the
expression.

Unmatched) A left parenthesis has been omitted from the
expression.

Premature end of regular The expression finished before it should have.
expression

Nesting too deep The nesting of parentheses was too great.

Regular expression too big The' expression was too big for egrep to compute.

Memory Exhausted Egrep ran out of memory.

Table 2.6-1: Egrep Error Messages

TEKELEC 2.6-4 Version 2.2

Chameleon 32 C Manual Ch.2.7: Symbol Namer

2.7 SYMBOL NAMER

Introduction

Usage

Error Messages

Object files and application files can contain symbolic
information in their symbol tables. This symbolic information
can be printed using the Symbol Namer utility.·

Each symbol is preceded by its value (in hexadecimal) and
one of the following letters:

• A Absolute
• S Sss segment
• C Common symbol
• D Data segment
• T Text segment
• U. Undefined symbol

If the letter is lower case, the symbol is local. If upper case,
the symbol is global.

The Symbol Namer syntax is:

nm [file]

file An executable file which has been
linked so that it still has its symbol
table.

Table 2.7-1 lists the Symbol Namer error messages and
their meanings.

ERROR MESSAGE MEANING

Usage: nn ... An invalid option was specified or no object or
application file was specified.

File open error: The input file was not found. Make sure that the file
name and path name are correct, and that the file
actually exists.

File format error: name The file is not a valid object or application file or
program file. or is corrupt.

No name list The file has no symbol table.

Table 2.7-1: Symbol Namer Error Messages

TEKELEC 2.7-1 Version 2.2

Chameleon 32 C Manual Ch. 2.8: Global Error Codes

2.8 GLOBAL ERROR CODES

Description

TEKELEC

This table below lists the global error codes which may be
returned when you are using C programs, such as the
compiler, make, librarian, disassembler, or egrep. Additional
error codes are listed in the appropriate section for each
program.

ERROR MEANING
CODE

0 Successful (no error)

-100 No command given

-101 Error creating task

-102 Unable to get key

-103 Out of memory

-104 Invalid command line token

-105 Invalid priority

-106 No match on file name expression

-107 openvt error

-108 Ambiguous redirection

-109 Unable to open redirection

Table 2.8-1: Global Error Codes

2.8-1 Version 2.2

Chameleon 32 C Manual Ch. 2.9: BASICISITREXlText File Conversion

2.9 BASIC/SITREXITEXT FILE CONVERSION

Introduction

General
Guidelines

TEKELEC

The Chameleon 32 BASIC/SITREXITEXT File Conversion utility
provides the following file conversion capability:

.• Converts a Chameleon BASIC (FRAMEM or SIMP/L) or
SITREX program file to a text file

• Converts a text file to a Chameleon BASIC/SITAEX file

This gives you the ability to write and edit your BASIC/SITAEX
programs using the C vi Editor, or a text editor on a PC or
other computer. The text file can then· be converted to a
BASIC or SITREX program file and run on the Chameleon 32.

The Chameleon 32 BASIC/SITREXITEXT File Conversion utility
requires that you have the optional C Package installed on
your Chameleon 32. It includes the following programs:

•
•

totext

tobas

Converts a Chameleon BASIC or SITAEX file
to a text file
Converts a text file to a Chameleon BASIC or
SITAEX tile

General guidelines for using the conversion utility are listed
below. Steps for performing a specific type of file conversion
begin on page 2.9-3.

1. Verify that the two conversion programs are in the \BIN
directory of the Chameleon 32 hard disk drive. They are
automatically copied to the correct directory when the
system software is installed.

Your environment (setenv) should contain a search path
to the \BIN directory so that the conversion programs can
be executed from any directory of the hard disk.

2. If you are using vi or another text editor to write your
BASIC or SITREX programs, be sure that your text files
conform to the necessary syntax rules before you
convert them. In the Chameleon 32 Simulation Manual,
BASIC is described in Chapter 3 and SITREX is
described in Chapter 8.

3. BASIC and SITREX files have unique 2-character
filename extensions and must be located in specific
directories in order to be used. Figure 2.9.1 on the next
page lists the extensions and directories for each file
type.

2.9-1 Version 2.2

Chameleon 32 C Manual Ch. 2.9: BASIClSITREXlText File Conversion

FILE TYPE DIRECTORY FILE EXTENSION

SITREX \TEKELEC\SIMULA TE\SITREX .BA

FRAMEM SoLC/HoLC \TEKELECI$IMULA TE\FBOP .CB

SIMP/L SoLC \TEKELEC\SIMULA TE\$SoLC .oB

SIMP/L HoLC \TEKELEC'$IMULA TE\SHoLC .EB

SIMP/L V.120 \TEKELEC\SIMULA TEW120 .GB

BISYNC \TEKELEC$IMULA TE\BISYNC .HB

ASYNC \TEKELEC\SIMULA TE\ASYNC .lB

FRAMEM OMI \TEKELEC\SIMULA TE\FOMI .JB

FRAMEM LAPO \TEKELEC\SIMULA TE\FLAPO .LB

SIMP/L LAPO \TEKELEC,sIMULA TE\SLAPO .MB
SIMP/L MLAPo

Figure 2.9.1: Simulation Directories and File Extensions

TEKELEC

3. When executing the conversion programs, you can
specify path names so that the BASIC/SITREX files do
not have to be copied to a specific directory before
converting. However, the amount of typing you do will
be minimized if you change to the directory that contains
the files you want to convert. .

4. Converted files are copied to the same directory
containing the BASIC/SITREX file you are converting.

5. Text files can be exchanged between the Chameleon 32
and other computers using the following methods:

• Files on 3 1/2" MS-DOS floppy diskette can be
accessed directly from the Chameleon 32 floppy
disk drive or copied to the hard disk.

• Files stored on other media can be transferred with
the Chameleon 32 Kermit File Transfer utility. In
order to use Kermit, the other computer must have
a Kermit-compatible file transfer program.

T ext files should be transferred using the Kerr.,it
text mode option. .

Refer to the Chameleon 32 User's Guide, Chapter
10 for more information about Kermit file transfer.

2.9-2 Version 2.2

Chameleon 32 C Manual Ch. 2.9: BA$IClSITREXlText File Conversion

Converting BASIC/SITREX Files to Text Files

TEKELEC

The totext program converts a Chameleon 32 BASIC or
. SITREX file to a text file so that it can be edited with the C vi
Editor or a text editor on another computer.

To convert BASIC/SITREX files to text files, do the following:

1. Copy the files you want to convert to the directory a:lusr.

BASIC and SIT REX files are located in specific
directories of the hard disk and have unique 2-character
file extensions. This information is listed in Figure 2.9.1
on page 2.9-2.

2. Access the C Shell prompt and change to the directory
a:\usr. .

3. Execute the totext program using the following syntax

totext file1.ext file2.ext

file1.ext file1 is the BASIC/SITREX program filename
of 1 - 8 characters.

ext is the 2-character file extension specific to
each type of file as listed in the Figure 2.9.1
on page 2.9-2.

file2.ext You can convert more than one file at a time,
by delimiting each filename with a space.

You can also use wildcards to convert more
than one file at a time.

4. When converted, the text file will be located in the a:\usr
directory. The new file will have the same filename as
the BASIC/SITREX file, with the file extension .ED.

You can edit the text file with the C vi Editor, or use the
Kermit File Transfer utility to transfer the file to another
computer.

5. After editing the text file, you must convert it back to a
. BASIC or SITREX file and copy it to the appropriate

directory before you can use the program· on the
Chameleon 32.

2.9-3 Version 2.2

Chameleon 32 C Manual Ch. 2.9: BASIC/SITREXlText File Conversion

Converting Text Files to BASIC/SITREX Files

TEKELEC

The tobas program convert a teXt file to a Chameleon 32
BASIC or SITREX file. After converting a text file to a
BASIC/SITREX file, it must be copied to the appropriate hard
disk directory before it can be used. This information is listed
in Figure 2.9.1 on page 2.9-2. To convert a text file to a
BASIC/SITREX file, do the following: '

1. Access 'the C Shell prompt (!).

2. Copy the text files to the directory a:\usr.

If they are located on another device, use the
Chameleon 32 Kermit File Transfer Utility to transfer them
from the other device to 'the Chameleon 32 hard disk
drive. The text file must be transferred using the Kermit
text mode option.

3. Execute the tobas program using the following syntax:

tobas -type file 1.ext -type file2.ext

-type -type is the 2-character file extension for the
type of BASIC/SITREX file being created.

For example, a FRAMEM HOLC file must have
the extension .cb, therefore if you were
converting a text file to FRAMEM HOLC, the
type would be -cb. The type must be one of
,the following in lower case letters:

IF CONVERTING TO: USE THE TYPE:

SITREX -ba

FRAMEM SOLC/HOLC -cb

SIMP/L SOLC -db

SIMP/L HOLC -eb

SIMP/L V.120 -gb

BISYNC -hb

ASYNC -ib

FRAMEM OMI -jb

FRAMEM LAPD -Ib

SIMP/L LAPO -mb
SIMP/L MLAPD

2.9-4 Version 2.2

Chameleon 32 C .Manual Ch. 2.9: BASICISITREX/Text File Conversion

TEKELEC

file1.ext file1 is any valid MS-DOS filename of 1 - 8
characters.

ext is a 1-3 character file extension.

file2.ext You can convert more than one file at a time,
by delimiting each filename with a space.

You can also use wildcards to convert more
than one file at a time.

4. When converted, the file will be located in the same
directory as the text file. The new file will have the same
filename as ,the text file, with the file extension specified
in the type parameter.

Before you can run the converted BASIC/SITREX file it
must be copied to the appropriate directory and given
the correct file extension as indicated in Figure 2.9.1 on
page 2.9-2.

2.9-5 Version 2.2

Chameleon 32 C Manual Ch. 3.1: Make Utility

3.1 MAKE UTILITY

Introduction

Makefile

Built-In Rules

Macro Feature

TEKELEC

Programmers often divide large programs into smaller pieces.
These smaller units are easier to work with on an individual
basis. but tracking the relationships and dependencies among
the pieces becomes a time-consuming task. As you modify
your program, it is difficult to remember which files depend on
which others, which files have been modified, and the exact·
sequence of operations needed to make or test a new version
of a program.

make automates a number of program development activities
so that you can maintain up-to-date versions of your
programs with a minimum of effort.

• Find the name of a specified target file(s)
• Ensure that the files that the target depends on

(dependencies) exist and are up-to-date
• Update or create the target to incorporate modifications

that have been made to the dependencies since the
target was last modified

To use make, you create a description file, referred to as a
make file , that identifies the target files, the dependencies of
the targets. and commands. The information in the makefile
enables make to identify the operations necessary to update
and compile your program after you make modifications.

In addition to the information in the makefile, make maintains
a table of built-in rules in a special makefile called
SUFFIXES. It uses the information in SUFFIXES to determine
which file name suffixes are interesting, and how to transform
files with specific suffixes into files with other suffixes.

For example, a rule in the SUFFIXES table could specify that
files with a .C suffix (C source files) are to be transformed into
.0 (object files). This rule causes C source code files to be
compiled.

You can add or modify suffixes and rules in the SUFFIXES
table, thus enabling you to define global rules that make will
apply to any makefile. Additionally, you can inhibit the use of
built-in rules in the SUFFIXES table by entering the make
command -r option, described later in this section.

make includes a macro substitution facility that enables you to
perform string substitution in dependency lines and command
strings.

3.1·1 Version 2.2

Chameleon 32 C Manual Ch. 3.1: Make Utility

MAKE COMMAND The make command executes commands in a makefile,
causing specified target files to be updated or created to
reflect changes made to files they depend on.

Syntax

TEKELEC

The make command executes the file with the default name
MAKEFILE, unless a different name is specified.

The syntax of the make command is shown below. Items
enclosed in square brackets [] are optional items.

make [opt] target] [macro = value] [Fname ...]

The mak.e command fields are described below.

opt The following options are available:

-I Ignore error codes returned by invoked programs.
Alternately, you can ignore error codes, using two
other methods:

• Enter .IGNORE as a false target in the
makefile

• Press TAB - (tab followed by a hypen)
preceding a command in the makefile

-N No execute mode. Print commands, but do not
execute them.

-R Do not use Make Utility built-in rules specified in
SUFFIXES. Alternately, you can inhibit the use of
the SUFFIXES table by entering .SUFFIXES, without
a dependency list, as a false target name in the
makefile.

-s Silent mode. Do not print command lines before
executing. Alternately, you can specify silent
mode, using two other methods:

• Enter .SILENT as a false target in the
makefile

• Enter @ as the first character of a command
in the makefile

-p Print all macros and targets

-Q Question up-to-dateness of a target

-X Print a list of all targets in the makefile

3.1-2 Version 2.2

Chameleon 32 C Manual

MAKEFILE
STRUCTURE

Entries

TEKELEC

target

Ch. 3.1: Make Utility

The names of one or more target file names
separated by a blank space. If target files are
not specified in the make command, the
target(s) specified in the first line of the
makefile are updated/created.

macro = value Define a macro (see page3.1-6)

-Fname The name of the makefile to use. In the
absence of this option, make looks for the
default name of MAKEFILE. More than one
-fmakefile parameter can occur in a make
ommand.

To use the make command, you create a makefile that
specifies the target files and the files that depend on them. A
makefile contains the following information:

• Entries (targets + dependencies + commands)
• Comments
• Macros

The entry is the most important part of a makefile. It consists
of the target file names, their dependencies, and command

. lines.

There are two types of entries: .

• Dependency lines
• Command lines

The general form of an entry is described below. Note that
items in square brackets [] are optional items; items in
parentheses are mandatory. An ellipsis (.••) indicates that
more than one like item can be entered.

A dependency line defines the target files and their
dependencies (the files that the target depends on).
Optionally, a dependency line can contain one or more
commands. The form of a dependency line is:

target ... :[:] [dependent ...] [;command ••.]

A command line contains a progra name followed by program
parameters. Command lines must begin with a TAB. The
form of a command line is:

(tab)[command •..]

3.1-3 Version 2.2

Chameleon 32 C Manual Ch. 3.1: Make Utility

TEKELEC

The items in a makefile entry are described below.

target The target is the name of one or more target files.
These are the files that you want updated or
created. Target names are strings of letters, digits,
periods, and slashes. Multiple target names are
separted by blank spaces. Shell metacharacters *
and? are expanded.

dependent The dependent is the name of one or more
files that the target files depend on. Dependent
names are strings of letters, digits, periods, and
slashes. Multiple dependent names are
separated by blank spaces.'· Shell
metacharacters * and ? are expanded.

You can use a single colon· (:) or double colon (::)
to separate the targets from the dependencies. A
target name can appear on more than one
dependecy line, but all lines that it appears on must
be of the same (single or double colon) type.

If a target appears on more than one dependency
line, and a single colon is used, only one of the
dependency lines can have a command sequence
associated with it. If the target requires updating,
and a command sequence is specified, it is
executed.

If a target appears on more than one dependency
line, and a double colon is used, each dependency
line can have a command sequence associated
with it. If the target requires updating, the
associated commands are executed, including
built-in rules. The double-colon form is valuable
for updating archive-type files.

command A command rs a program name followed by
optional program parameters (any string of
characters, excluding a # or carriage return).

Commands can appear on a dependency line or
on the line immediately following a dependency
line. If a command appears on the dependency
line, it is preceded by a semicolon. If a command
appears on the line following a dependency line,
the command line must begin with a tab.

3.1-4 Version 2.2

Chameleon 32 C Manual

TEKELEC

Ch. 3.1: Make Utility

Command lines are executed one at a time, each
by its own shell. This is important to remember
when using commands that have meaning only
within a single Shell process; the results are
forgotten before the next line is executed. These
types of commands include cd and Shell control
commands.

A line is printed when it is executed unless the
make command -s option is used or .SILENT is
entered as a false target name in the makefile.

Commands returning nonzero status cause the
make command to terminate unless the make
command -i option is used or .IGNORE is entered
as a false target name in the makefile.

Some commands return nonzero status
inappropriately. Use the make command -i option
or begin the particular command with < T AS >
< HYPHEN> in the makefile.

Make remembers embedded newlines and tabs in
Shell command sequences. If you write a for loop·
in the makefile with tabs, make retains the tabs
and backslashes when the commands are
displayed. Output can be piped to the Shell and is
readable.

Command lines can appear on a dependency line or on the
line immediately following a dependency line. If a command
appears on the dependency line, it is preceded by a
semicolon. If a command appears on the line following the
dependency line, thecommand must begin with a tab.

A line is printed when it is executed unless the -S options is'
used or .SILENT is entered as a false target name in the
makefile.

Commands returning non-zero status cause make to
terminate, unless the -I option is used or .GNORE is entered
as a false target name in the makefile. Some commands
return non-zero status inappropriately .. For these cases, use
the -I option, or begin the particular command with (tab)
(hyphen) in the makefile.

3.1-5 Version 2.2

Chameleon 32 C Manual

Entry logic

Comments

Macro Definition

TEKELEC

Ch. 3.1: Make Utility

The order of your entries in a makefile is significant. Lower
level dependencies must be defined before higher level
dependencies. For example, If target A depends on B, and
target B depends on C, the entries must appear in the
following order in the makefile:

B:C
A:B

This logic causes make to update B based on C, before it
updates A from B. In order for make to update your files
correctly, you must use this logic when creating your'
makefiles.

The pound sign (#) indicates a comment. All characters, from
a pound sign to the end of the line, are ignored. Blank lines
and lines beginning with # are ignored totally. Comments can
appear on dependency lines or command lines.
Make also provides a· simple macro substitution facility for
substituting strings in dependency lines and commands.

,

A macro line contains an equal sign (=) which is not
preceded by a c%n or a tab. The macro name is the string
to the left of the equal sign (trailing blank and tabs are
stripped). The macro is assigned the· string of characters to
the right of the equal sign (leading blanks and tabs stripped).

For example, to define a macro named PROGRAM as the
three object files, 1.0, 2.0 and 3.0, you. enter:

PROGRAM = 1.0 2.0 3.0

You can assign a null string as a macro value by leaving the
right of the equal sign blank. For example, to assign a null
value to the macro named ZIP, enter

ZIP =

You can also define macros in the make command itself.

A macro is invoked using a dollar sign ($) as shown below:

$(macro name) or ${macro name}

If the macro name is a single character, the parentheses or
braces are optional. Macro names exceeding one character
in length, must be enclosed in parentheses () or braces { },
as shown.

3.1-6 Version 2.2

Chameleon 32 C Manual

Implicit Macros

Dynamic
Dependency

TEKELEC

Ch. 3.1: Make Utility

For example, to invoke a macro named V, a single-character
name, enter either:

$Y or $(V) or $M
To invoke a macro named PROGRAM, enter either:

$(PROGRAM) or ${PROGRAM}

There is also a facility to perform translations when a macro is
referenced and evaluated. The general syntax for a macro
reference is:

$(macro : string1 = string2)

This causes each occurrence of string1 to be substituted with
string2 in the macro being evaluated, where macro is the
name of the macro being evaluated. All environment
variables which are defined as make is executed, become
macro definitions in make.

If a file is generated using one of the built-in transformation
rules, the following macros can be used:

• $* Name of the file to be made (excluding the suffix)
• $@ Full name of the file to be made .
• $ < . List of the dependencies
• $1 List of dependencies that are out of date

To use these implicit macros, there is a dynamic dependency
parameter referenced by the notation:

$$@

It has meaning only when it appears on a dependency line.
The $$@ refers to the item(s) to the left of the colon, which is
referenced by the $@ implicit macro.

The following is an example using implicit macros and the
dynamic dependency parameter.

PROGS= sl s2 s3 s4

S(PROGS) : @.c

Defines macro PROGS as files s1 - s4.

Invokes the PROGS macro, defining the
target file names as s 1, s2, s3 and s4.
Defines their dependencies as C source
files (.c) with the same filenames: s1.c,
s2.c, 53.c, and s4.c.

3.1-7 Version 2.2

Chameleon 32 C Manual Ch. 3.1: Make Utility

There is also a second form· of the dynamic dependency
parameter which refers to the file part of $@. This form is
referenced using the notation $$(@F).

SUFFIXES TABLE As mentioned previously, make maintains a table of suffixes
and built-in transformation rules in a suffixes table. You can
change the table with the .SUFFIXES directive. For example:

Transformation
Rules

TEKELEC

Add the suffixes .0 and .c to the suffixes table
.SUFFIXES : .0 .c

When attempting to determine a transformation for a file which
has no explicit target mentioned in the makefile, make uses
the suffixes table. Make looks for a file with the desired suffix,
and uses the associated transformation rule to create or
update the target file. .

Table 7-1 lists the default suffixes in the SUFFIXES file.

SUFFIX FILE TYPE

.0 Object file

.c C source file

.r Rattor source file

.s Assembler source file

.y Yacc-C source grammar

.p Pascal source

.I Lex source grammar

.h Include file

Table 7-1: Default Suffix List

A transformation rule name is the concatenation of the two
suffixes. For example, the name of the rule that tranforms .c
files to .0 files is .c.o. For example:

Compile (with CC) a .c file to produce a .0 file
.c.o

cc -c $*.c

3. t-8 Version 2.2

Chameleon 32 C Manual

TEKELEC

Ch. 3.1: Make Utility

A transformation rule is used only if the user's makefile does
not contain an explicit command sequence for. these suffixes.

The order of the SUFFIXES list is significant. Make scans the
list from left to right, and uses the first name that has both a
file and a rule associated with it. To append new names to
the suffix list, enter SUFFIXES as a special target in your own
makefile, listing the new suffixes as dependencies. The
dependencies will be added to the suffix list.

For example, to transform a source file into an object (.0) file,
make calls up the appropriate compiler. There are also
transformation rules to create library (.a) files from source
files.

To delete the built-in suffix table, enter .SUFFIXES as a
target, without listing any dependents in the makefile. It is
necessary to do this to clear the current list, if changes in the
order of the suffixes is desired.

3.1-9 Version 2.2

· Chameleon 32 C Manual Ch. 3.1: Make Utility

EXAMPLES Some example makefiles are described below.

TEKELEC

Example 1: For this example, the SUFFIXES files contains a
built-in rule that enables make to compile three source files,
x.s, y.s and z.s to generate the needed object files x.o, y.o
and z.o. (tab) indicates that you enter a tab character.

#Eaup1e 1

prog: x.·o y.o z.o

(tab) cc x.o y.o Z.O -0 prog

a.o y.o: defs

States that the target file prog
depends on three object files: x.o,
y.o, and z.o.
Describes how to load the three
object files to create prog. Note
that command line begins with
TAB.

The target files x.o and y.o depend
on the header file defs.

Example 2: This example illustrates the use of macros.

OBJE~TS a x.O y.o z.o Defines the macro OBJECTS to be
the three object files X.o, y.o and
z.o.

LIlES '"' -1. Defines the macro LlBES as -1m.

prog: S(oa.lECTS) Defines the dependencies of the
prog target file as X.o, y.o and z.o
by invoking the macro OBJECTS.

(tab) c:c S(OBJECTS) S(LIBES) -0 prog Builds the target prog by loading
the three object files with the 1m
library.

3.1-10 Version 2.2

Chameleon 32 C Manual Ch.4.1: Machine Dependencies

4.1 MACHINE DEPENDENCIES

Data Elements

External Names

TEKELEC

The C compiler supports all of the standard scalar types of
the C language: char, int, short, long, unSigned, float, and
double, as well as pointers to all types. Also unsigned char
and unsigned long are supported. The amount of space
allocated for each data type (in terms of a-bit bytes) is as
follows:

char: 1 unsigned char: 1
unSigned: 2 unsigned long: 4
short: 2 float: .. 4
int: 2 double: a
long: 4 *anything: 4

Floating point types are stored in IEEE standard format.

The maximum size of an identifier or string constant is 255
bytes.

Space for variables of type char and short are allocated on
the next available byte boundary in memory if the variable is
within a s t r u c t or un; 0 n or is of storage class aut 0, or on
the next available word boundary if the variable is ext ern or
stat; c. Space for all other variables, including those of any
other storage class as well as arrays, struct's and union's, is
always allocated on the next available word boundary,
regardless of storage class. Bit fields within struct's are
allocated in unsigned units, starting from the least significant
bit.

Identifiers (names of variables and functions) may contain up
to 255 characters each. Only the first ten characters are used
to distinguish one identifier from another, however. As per the
standard for the C language, both upper and lower case
letters are allowed in identifiers, and are distinct from each
other. In other words, the names myvar and MyVar are
different. The underscore character () is also legitimate
within identifiers, as are digits. The onry-restriction is that an
identifier may not begin with a digit. It should be noted that
various internal functions, such as floating point routines and
support for long integers, have names beginning with an
underscore. Programmers should therefore avoid extern
identifiers beginning with an underscore if possible.

4.1-1 Version 2.2

Chameleon 32 C Manual

Include File
Processing

Floating Point

Register Variable
Support

TEKELEC

Ch.4.1: Machine Dependencies

The lin c 1 u d e feature of the standard C preprocessor allows
file names to be given within either double quotes or angle
brackets. Angle brackets will cause the compiler to look in
"include". Double quotes cause the compiler to look first in
the directory containing the H • c II file being compiled and then
to look inthe predefined places. "

Include files may be nested to a depth of 6 levels,. including
the main module level. An attempt to "nest beyond this
maximum (such as would be the case if an include file
inadvertently Ii ncl uded itself) results in an error message.

All floating point operations in T ekelec C can be carried out in
either single (32 bit) or double (64 bit) modes. The single
precision mode is the default and is about three times faster
than double mode.

Each function in a C program can expect up to three registers
available for register storage class variables. One data
registers is available for integral types (char, short, int, long,
and unsigned), and two address registers are available for
pointer variables. Judicious use of register variables can
substantially" increase execution speed and decrease code
size.

4.1-2 Version 2.2

Chameleon 32 C Manual Ch.4.2: Compiler Processing

4.2 COMPILER PROCESSING

Error Processing

Code Generation

TEKELEC

Error messages generated during compilation are reported to
the screen, accompanied by the line of source code
containing the error. Error messages are of the form

"f i1 e-name". line line-number: error message text

To simplify correction of errors in a program, error messages
may be redirected to a file (see Shell: I/O redirection). This
file may be used while editing the source to correct mistakes.

The C compiler, including preprocessor, syntax check, and
code generation, is one-pass. In other words, all work which
needs to be done by the compiler is finished after looking at
the contents of the source file once. The compilation process
is thus quite fast.

Unkable object· code is generated directly by the compiler;
there is no assembly post-pass. C performs many processor
specific "strength reduction" optimizations, such as using
MC68000 "quick" instructions, replacing multiplies and divides
by powers of two with shifts, and avoiding intermediate register,
loads when possible. Simple statements, such as increments
and assignment operations involving constants, frequently
generate only one machine instruction.

For example, the statement

i+ +;

compiles into a single instruction to increment the variable i.
The statement

i = 50;

will compile to a single MOVE instruction.

Certain expressions involving constants will be evaluated at
compile time.

Therefore, the statement

i + = 5 * ARRAYSIZ;

will generate one ADD instruction, assuming ARRAYSIZE is a
constant which was #def i ned.

4.2-1 Version 2.2

Chameleon 32 C Manual Ch.4.3: Run-Time

4.3 RUN-TIME PROGRAM STRUCTURE

System Library

Program
Entry/Exit

Function Call
Conventions

TEKELEC

Each program is executed under MTOS-UX as a task. As a
task is initiated, it creates a "virtual terminal" on the
Chameleon 32 screen through which standard (terminal)
input/output is done. Calls to C memory allocation routines
(ma 11 oc and ca 11 OC) allocate memory from an MTOS-UX
memory pool which is created when .the Chameleon 32 is
booted. All tasks allocate and deallocate from this pool (pid is
"POOL"). As a task terminates, it is killed and all memory
allocated by the program (throughma 11 oc and ca 11 oc) will
be returned to the pool. Programs may call MTOS-UX
memory pool management routines directly, but must assume
responsibility for resource disposal.

C stores all string constants with a terminating null byte, as
per the standard for the C language.

All code for functions from the system library is included in
each executable program by the linker.

When a program is linked after compilation, an object module
containing startup code is automatically included by cc. The
following declaration will allow program parameters:

mai n (a rg c. a rg v)
; nt argc;
char *argv[];

where a r 9 c is the number of strings in the a r 9 v array.
A rg v [0] is always the program name. If you do not need
program parameters, just declare rna; n () without any
parameters and the linker will not include the code to handle
them.

Parameter expressions encountered in function calls are
evaluated and then passed to the function on the stack. The
parameters are pushed in the reverse of the order given in
the parameter list. Reversal of the parameter list is necessary
for functions with variable numbers of parameters. Such
functions may access lists of parameters as follows:

4.3-1 Version 2.2

Chameleon 32 C Manual

TEKELEC

Ch.4.3: Run-Time

max(n, p);
/* Return max of list of into; n gives list length */

int n, p, {

}

int *pp, max = -32768;
for (pp=&p, n, pp++, n--)

if (max < .pp)
max = .pp,

return max;

The above function max () returns the maximum of an
arbitrary number of integers. The number of integers is
passed as the first parameter, followed by the list of values:

m = max { 5. ;, j, k * 2, 87. f (ab c » ;
Note that the pointer variable p p is incremented in the for
loop of the above function. The pointer will move down
through the stack towards higher memory locations retrieving
each parameter in turn. Any functions which use this method
of obtaining parameters are not necessarily portable to other
implementations of C.

Values are returned from functions in processor register DO. It
is the responsibility of the calling environment to remove
parameters from the stack after return from a function call.
Each function must ensure that any registers used to hold
register variable values are saved and then restored when the
function terminates.

Structs may be passed by value.

4.3-2 Version 2.2

Chameleon 32 C Manual Ch.4.4: Library Implementation

4.4 LIBRARY IMPLEMENTATION

Line Separators

Memory
Allocation

TEKELEC

Because of the heritage of the C language, the AL:CII line
feed character (numerically, 10 decimal) is usually considered
to be the line separator character.

In text files, a line feed separates lines, however, upon output
to the screen, line feeds are automatically converted to
carriage return/line feed pairs.

The memory allocation routines rna 11 a c () and c a 1 1 a c ()
are available to the C programmer . To avoid excessive
fragmentation of the common memory pool, memory is
allocated in 8 KB blocks, breaking up the blocks as necessary
to satisfy the requests made from the C program. The
free () routine will coalesce space which is returned and the
allocation system will reuse deallocated space.

Note that because pointers are 32 bits long, a C program can
use as much memory as is available on the machine through
dynamic allocation.

IMPORTANT NOTE: you must make the declaration:

extern char *rnallac(.);

in your program before you use rna 11 ac (the same is true for
calloc). If you don't do this the compiler will assume rna 11 ac
returns an ; nt (which is only 16 bits wide).

Also note that malloc requires an unsigned int as its
parameter. If more than 64 Kbytes of memory is needed,
MTOS-UX memory allocation routines may be used (see
malloc 0, alloc 0).

4.4-1 Version 2.2

Chameleon 32 C Manual Ch. 4.5: Language Extensions

4.5 LANGUAGE EXTENSIONS

ASSEMBLER

Introduction

Syntax

TEKELEC

The Tekelec C compiler allows the addition of assembly
language code to a C program directly in-line with the C
code. The C language has been extended to include the
construct:

asm { .
MC68000 Assembler Instructions

}

The code within the braces after the keyword asm is
assembled and included in-line with code generated from
surrounding C statements.

The in-line assembler obviates the need for a separate
assembler. General control structure, input/output, and
complex data structures can be implem~nted in C, while
certain low-level routines can be coded in assembly
language within the same module. The problem of interfacing
C functions to assembly language functions and vice-versa
is eliminated, because calling sequences can be written in C
for ·functions coded in assembler. Programs can first be
developed in C to debug algorithms and to generate quickly a
working prototype. Functions which comprise the most time
consuming sections of the program (generally less than 10%
of the code) can then be re-coded in assembly language.
Because of the efficiency of the C code generator, such a
hybrid approach yields execution speeds favorably
comparable with pure assembly language code while retaining
the ease of modification and maintenance of a pure high
level language approach.

Use of assembly language decreases readability, exacerbates
debugging headaches, and drastically reduces portability .

. Discretion must be used when considering functions for hand
translation. There are some situations where speed is critical,
most notably graphics. Such applications frequently involve
system or machine dependencies anyway, so portability is not
an issue. In such cases, the availability of in-line assembly
language is a great benefit.

The general syntax for in-line assembly language follows.
{stuff} means stuff is repeated one or more times.
(c hoi cell c hoi c e 2 I. . .) means one of the choices
must appear. [s t u f f] means stuff is optional.

4.5-1 Version 2.2

Chameleon 32 C Manual

TEKELEC

Ch. 4.5: Language Extensions

<asm-statement> --> asm {{<asm-line>}}
<asm-line> --> {<label>:I<op-code>[.(BIWILIS)][<operand>

[.<operand>]]}[(:<comment>I/·<comment>·/)]
<operand> --> (O<n>IA<n>I(A<n>}+I-(A<n»l<disp>(A(n»I

<disp> (A(n>.(ix»I<constrxprl[.WIL]I<disp.(PC.<ix>1
'<constexpr>l<reglist>ICCRISRIUSP)

(disp> --> «identifier>[(+I-)<constexpr>]I<constexpr»
<ix> -->(A<n>IO<n»[.(WIL)]
<n> -->(011121314151617)
<reglist> --> «reggroup»/<reggroup>
<reggroup> --> (A(n>IO<n»[-A<n>IO(n»]

The syntax of the in-line assembler is almost identical to that
described in the Motorola 68000 manual. Exceptions are
noted below.

In-line assembly may appear anywhere in your program; it is
not necessary to place it inside a function. Please note that
<; dent; f ; e r> is the same as a C identifier, and
<constexp r> is the same as the C constant expression.
Opcodes are the same as in the Motorola literature and may
be given in upper or lower case. The size modifiers B. W. L,
and S can also be given in upper .or lower case. The register
names are defined only in uppercase. Expansion of
#defi ned macros is performed within sections of assembly
language, so the programmer is free to rename. instructions or
registers.

Each line of assembly language may consist of one or more
instructions, optionally followed by a semicolon and comment
text. Comments may also be given as C comments. Note that
#def; nes can be used to create simple macros, using the
multiple statement per line feature. Within macros, C style
comments must be used instead of the normal semicolon
to-end-of-line assembly language comments.

Expressions which give displacement values are restricted in
that only one identifier may be involved. A constant
expression may be added to or subtracted from this identifier.
In such expressions, the identifier must be placed first in the
expression; in other words, the statement

MOVE DO. x+2(A4)

is legal, but the instruction

MOVE DO. 2+x(A4)

is not.

The application of addressing modes to instructions is not
completely orthogonal in the MC68000 instn Iction set. For

4.5-2 Version 2.2

Chameleon 32 C Manual

Defaults

Accessing C
Objects

Available
Registers

Creating Global
Symbols

TEKELEC

Ch. 4.5: Language Extensions

complete information on addressing modes and instruction
forms, consult a Motorola databook.

If no size specifier is given for an instruction which can
operate on more than one size, the assembler defaults to
word. If a size specifier is not applicable to a particular
instruction, no specifier may be given. All labels given default
to local code labels unless declared as something else
previously. This means that all functions called, for example,
must be declared or defined previously in C.

Branches default to word-sized displacements. The code
improver will change the word branches to short branches
where possible. A short branch can be forced by using a . s,
but no warning message will be given if the necessary
displacement is too large for a short branch.

External and static variables from the C environment are
accessed using the name of the variable. Auto variables are
accessed using the name of the variable as the displacement
from the Af;J . register (the Address Register Indirect with
Displacement mode). Register variables may also be
accessed by name. The first four non-pointer register
variables are placed in data registers; the first two pointer
register variables are placed in address registers. Any excess
register variables must be accessed relative to AS. The
assembler will not report misuse of any variable names.

Functions in the C program can be referred to by name.
Arguments are passed to functions on the stack in reverse of
the order they are written in C. Values are returned from
!unctions in data register DO, or in globaLfp regO if the value
IS double.

Registers DO-D3 and AO and A 1 may be used without saving
them. Registers 04-05, A2., and A3 are used for register
variables, and are allocated in reverse numeric order. Each of
these registers not used for a register variable within a
function containing in-line assembly language must be saved
by the assembly code if modified therein. Register A6 is used
to access auto variables.

This section is not for the novice user of the in-line assembly
and discusses the use of a construct that is very dangerous. It
is almost never needed and should be avoided if at all
possible.

4.5-3 Version 2.2

Chameleon 32 C Manual Ch. 4.5: language Extensions

The normal functions in C start with a link instruction to make
room for local variables and then end with a corresponding
unlink instruction. These instructions can be avoided by
making a label inside assembly to be called instead of the C
function name. Art s instruction must also be place j at the
end of the routine to avoid the unlink instruction. To indicate
that this is an extern or static symbol it must be so declared
before it is used as a label. This is done by declaring it as an
extern or static function in C. Remember, by overriding the
normal entry point a lot of nice things that C does about
parameter passing and setting up local variables is lost.

Assembly Language
Example

TEKELEC

Function to do a block move from the first pointer to the. The routine moves
one char at a time to allow odd addresses.

block_move (source, dest~ count)
register char -source, -dest; ,- uses address registers -,
register int count; ,- placed in a data register -,
{

asm {
subq #1, count' ;because dbf counts to -1

,1p : move.b (sQurce)+. (dest)+
db' count. lp

}
}

An example of a macro to use in assembly language

#define INC(x) addq #1, x

4.5-4 Version 2.2

Chameleon 32 C Manual

Structure
Assignment

Character
Constants

Scope of
Identifiers

Forward Pointer
References

TEKELEC

Ch. 4.5: language Extensions

C supports structure and union assignment and passing. If x
and yare structures of type s type then the following
statements are legal:

x = y :
foo(x):

,- contents of yare copied to x -,
,- x is passed by value to foo() -,

struct stype bar(): ,- function returning struct -1

The definition of character constants has been extended in C
to allow int and long size as well as char. The syntax is a
single quote followed by 1, 2 or 4 characters and a closing
single quote. The resultant type will be a char, int or long
respectively.

In general, name scoping within the C compiler is as per
standard C. One exception to this standard is the treatment
of identifiers of structure members. In Tekelec C, structure
member names need not be unique across struct boundaries.
Therefore it is valid for two different structures to contain
members at different relative offsets with identical names.

A restriction imposed by the one-pass nature of the Te'<'·~!ec
C compiler is that static functions must be declared before the
first reference in a program. The declaration need not be the
definition of the code of the function. A simple declaration
such as

static my-func();

will do.

A problem arises when two structures must refer to each
other: the reference in the first structure causes an undefined
type error because the second structure hasn't been defined
yet. This mutual referencing almost invariable arises with
some kind of linked data structure. The T ekelec C compiler
has been extended to allow pointer references to structs or
unions that have not yet been defined. Note that this only
works with pointers to structs or unions with a tag name
(typedefs will not work). Additional errors will be generated
later in the compile if the struct or union is never defined.· .

4.5-5 Version 2.2

Chameleon 32 C Manual Ch. 5.1: Library Index

5.1 LIBRARY INDEX

Introduction

File I/O

Stream I/O

TEKELEC

The functions described in this chapter are compatible with
functions by the same names which are available to C
programmers using the UNIX operating system. Most of these
routines are available in aU C implementation; even those on
microcomputers without UNIX. Therefore, use of these
functions simplifies the task of porting a C program to another
computer.

The system library contains routines for buffered and
unbuffered input/output to disk files. Buffered routines, for the
stream file interface, begin with the the letter f. The
unbuffered routines are the low-level readO and writeO
routines. Both levels of I/O allow random access to disk files.
Along with these routines you can use the BIOS routines for
input/output.

I
A stream file is a pointer to a FILE data structure declared in
the head file STOIO.H. Each stream is associated with a
regular file via a file descriptor returned by open or creat.
Streams buffer data through the file descriptor so that single
character I/O is efficient. To increase speed, you can change
the default buffer size (512 bytes) using the setbuffer call.
Streams provide a larger number of functions than the Basic
I/O level.

Three streams are open when a program start:

• stdin

• stdout

• stderr

Open for reading only, and is connected to
the keyboard (file descriptor 0).

Open for writing only, and is connected to the
screen (file descriptor 1).

Open for writing only, and is connected to the
screen (file descriptor 1).

5.1-1 Version 24

Chameleon 32 C Manual Ch. 5.1: Library Index

I/O Redirection I/O redirection is a mechanism where stdin and stdout are
changed from using the keyboard and screen, to using files,
as follows:

Device 1/0

• stdin Changed by passing < INFILE on the
command line.

• stdout can be changed two ways:

• > OUT FILE opens and erases outfile
• > > OUTFILE appends to an existing

outfile

You do not have to change the program for I/O redirection to
work, although you must declare the parameters argc and argv
for mainO.

All system devices are available to you through the C
input/output system. For most device input/output, it is wise to
use setbufO to prevent buffering on the stream connected to
the device.

When using the unbuffered input/output services, the only
significant flag in the mode word is the binary (0 BINARY)
flag. If this flag is set, there will be no special treatment for
line separator characters. Note that you cannot creatO a
device.

You can use BIOS routines to manipulate devices, but these
routines require the file descriptor number. This number is the
fileno(), defined in < stdio.h >, of the stream or the file number
returned by openO.

Memory Allocation The memory allocation routines are malloc() and callocO. The
free() routine coalesces space which is returned, and the
allocation system will reuse deallocated space.

TEKELEC

Program begin execution with 8 Kbytes of stack space
available. This is sufficient for more applications. The C
compiler, for example, uses less than 5 Kbytes. The size of
the stack may be changed by declaring global variable

stksize and initializing that variable to the size of the stack
required. For example:

long _ stksize = 16384L

5.1-2 Version 2.4

Chameleon 32 C Manual

Note

Program
Parameters

Library Index

TEKELEC

Ch. 5.1: Library Index

Since pointers are 32 bits long, a C program can use as much
memory as is available on the machine through dynamic
allocation.

Before you use malloc or calloc, you must make the
declaration:

extern char *mallocO
extern char *calloc()

If you fail to do this, the compiler will assume that mallocO or
caliocO returns an int, which is only 16 bits wide. The
declaration is included in < stdio.h > .

Program parameters passed from the shell are available
through the argc and argv program parameters to mainO. For
example:

main(argc, argv, envp)
int argc;
char "argv[];
char *envp[};

argc is the number of strings in the argv array. argv[O] is not
defined. If you do not need program parameters, declare
mainO without parameters, and the link will not load the code
to retrieve them.

envp is a pointer to a NULL terminated list of environment
variables from the previous program, and is optional.

The system library functions are listed alphabetically on the
next page. On page 5.1-5 they are listed in functional groups.
Detailed descriptions of each function are provided in section
5.2.

5. '·3 Version 2.5

Chameleon 32 C Manual Ch. 5.1: Library Index

The C system library functions are listed alphabetically below.
Refer tn the page number indicated for a detailed description.
The functions are listed by function on the next page.

Command Page Command Page

abs 5.2-2 isxdigit 5.2-33
aUoca 5.2-3 Icalloc 5.2-7
atot 5.2-4 Imalloc· 5.2-36
alai 5.2-5 longjmp 5.2-35
atol 5.2-5 Irealloc '5.2-49
bcmp 5.2-6 Iseek 5.2-34
bcopy 5.2-6 malloc 5.2-36
bzero 5.2-6 onexit 5.2-37
calloc 5.2-7 open 5.2-38
clearerr 5.2-8 perror 5.2-42
close 5.2-9 printf 5.2-39
creat 5.2-10 putc 5.2-43
execl 5.2-' 1 putchar 5.2-44
execv 5.2-12 puts 5.2-45
exit 5.2-13 putw 5.2-46
fclose 5.2-14 qsort 5.2-47
ferror 5.2-15 rand 5.2-48
feof 5.2-16 read 5.2-49
fflush 5.2-17 realloc 5.2-50
fgetc 5.2-18 rename 5.2-51
fgets 5.2-19 rewind 5.2-52
tileno· 5.2-20 rind ex 5.2-58
topen 5.2-21 scant .5.2-53
fprintf 5.2-38 setbut 5.2-56
fputc 5.2-22 setbuffer 5.2-56
tputs 5.2-23 setlinebuf 5.2-56
tread 5.2-24 setjmp 5.2-57
tree 5.2-25 sprintf 5.2-39
treopen 5.2-21 srand 5.2-48
fscant 5.2-52 sscanf 5.2-53
fseek 5.2-26 strcat 5.2-58
tteU 5.2-27 strcmp 5.2-58
twrite 5.2-28 strepy 5.2-58
gete 5.2-29 strlen 5.2-58
getehar 5.2-30 strncat 5.2-58
gets 5.2-31 strncmp 5.2-58
getw 5.2-32 strncpy 5.2-58
index 5.2-58 strtol 5.2-5
isalnum 5.2-33 toaseii 5.2-60
isalpha 5.2-33 tolower 5.2-60
isascii 5.2-33 tolower 5.2-60
isentrl 5.2-33 toupper 5.2-60
isdigit 5.2-33 ungetc 5.2-61
islower 5.2-33 unlink 5.2-62
isprint 5.2-33 write 5.2-63
ispunct 5.2-33 xtreat 5.2-58
isspaee 5.2-33 xtrcpy 5.2-58
isupper 5.2-33 xtrnepy 5.2-58

TEKELEC 5.1-4 Version 2.5

Chameleon 32 C Manual Ch. 5.1: Library Index

This section lists the functions in the C Library by function.
Refer to the page number indicated for a detailed description.

Command Page Description

Basic 1:0 close 5.2-9 Close a file
creat 5.2-10 Create a file (old method--use open)
Iseek 5.2-34 Reposition file
open 5.2-38 Open a file
read 5.2-49 Read data from file
unlink 5.2-62 Delete a file .
write 5.2-63 Write data to file

Stream 1.0 clearerr 5.2-8 Remove error state
fclose 5.2-14 Close a stream
feof 5.2-16 Test end of file
ferror 5.2-15 Test for error
fflush 5.2-17 Write buffer to disk
fgetc 5.2-18 Fast read byte
fgets 5.2-19 Read string
tileno 5.2-20 File associated with stream
topen 5.2-21 Open a stream
tprintf 5.2-39 Formatted write
fputc 5.2-22 Write byte
fputs 5.2-23 Write string
tread 5.2-24 Read data from stream
freopen 5.2-21 Use different file with stream
fscant 5.2-53 Formatted· read
tseek 5.2-26 Reposition stream
flell 5.2-27 Report position
fwrite 5.2-28 Write data to stream
getc 5.2-29 Read byte
getchar 5.2-30 Read byte from stdin
gets 5.2-31 Read string from stdin
getw 5.2-32 Read word
printf 5.2-39 Formatted write to stdout
putc 5.2-43 Fast write byte
putchar 5.2-44 Write byte to stdout
puts 5.2-45 Write word (integer) to the output stream
putw 5.2-46 Write string to stdout
rewind 5.2-52 Reposition stream to front
scant 5.2-53 Formatted read from stdin
setbut 5.2-56 Set buffer (standard size)
setbuffer 5.2-56 Set buffer (any size)
setlinebuf 5.2-56 Set buffer mode
sprintf 5.2-39 Formatted write to array
sscanf 5.2-53 Formatted read from array
ungetc 5.2-61 Put byte back on stdin

Conversion and
Classification atof 5.2-4 ASCII to float

atoi 5.2-5 ASCII to int
atol 5.2-5 ASCII to long
isalnum 5.2-33 Test for alphanumeric

TEKELEC 5.1-5 Version 2.5

Chameleon 32 C Manual Ch. 5.1: Library Index

isalpha 5.2-33 Test for letter
isascii 5.2-33 Test for ASCII
iscntrl 5.2-33 Test for control character
isdigit 5.2-33 Test for digit
islower 5.2-33 Test for lower case
isprint 5.2-33 Test for printable character
ispunct 5.2-33 Test for punctuation
isspace 5.2-33 Test for white space
isupper 5.2-33 Test for upper case
isxdigit 5.2-33 Test for hex digit
strtol 5.2-5 ASCII (any base) to long
toascii 5.2-60 Int to ASCII
tolower 5.2-60 Byte to lower case

tolower 5.2-60 Fast tolower
toupper 5.2-60 Byte to upper case

String Functions index 5.2-58 Find byte in string
rindex 5.2-58 Find byte from end
strcat 5.2-58 Append strings
strcmp 5.2-58 Compare strings
strcpy 5.2-58 Copy string
strlen 5.2-58 Lenght of string
strncat 5.2-58 Append n bytes
strncmp 5.2-58 . Compare n bytes
strncpy 5.2-58 Copy n bytes
xtrcat 5.2-58 Append. but return end
xtrcpy 5.2-.58 Copy. but return end
xtrncpy 5.2-58 Copy n bytes. return end

Memory Allocation alloca 5.2-3 Allocate on stack
bcmp 5.2-6 Compare two blocks of memory
bcopy 5.2-6 Copy ablock of memory to another block
bzero 5.2-6 Zeroes a block of memory
calloc 5.2-7 Allocate and clear
free 5.2-25 Release memory
Icalloc 5.2-7 Allocate a lot and clear
Imalloc 5.2-36 Allocate lots of memor
Irealloc 5.2-50 Resize a lot of memoryy
malloc 5.2-36 Allocate memory
realloc 5.2-50 Resize allocated memory

Miscellaneous abs 5.2-2 Absolute value of int
longjmp 5.2-35 Non-local goto
execl 5.2-11 Executes a file
execv 5.2-12 Execute a file
exit 5.2-13 Terminate program
onexit 5.2-37 Adds logic to exit function
perror 5.2-42 Displays system error message
qsort 5.2-47 Quick sort
rand 5.2-48 Random number
rename 5.2-51 Rename a file on disk
setjmp 5.2-57 Non-local label
srand 5.2-48 Start random sequence

TEKELEC 5.1-6 Version 2.5

Chameleon 32 C Manual Ch. 5.2: C Ubrary Description

5.2 C LIBRARY DESCRIPTION

Teke/ec

This section contains detailed descriptions of the standard C functions
supported by the Chameleon 32 C Development System compiler.
These functions are defined in the file libc.a and are listed in
alphabetical order. Refer to Section 5.1 for a list of the functions by
page number.

5.2-1 Version 2.6

Chameleon 32 C Manual

abs

Declaration

Description

TEKELEC

#include < stdio.h >

int abs (i)
int i;

Ch. 5.2: C Library Description

abs returns the absolute value of the number that is the
parameter.

5.2-2 Version 2.6

Chameleon 32 C Manual

alloca

Declaration

Description

char *alloca (size)
unsigned int size;

Ch. 5.2: C Library Description

This function allocates size bytes of space in the stack frame
of the calling function. This space is temporary and is

. automatically released upon the return of the calling function.

alloca does not check for stack overflow. The size of the
stack is set to the value in extern long stksize when the
program starts (default is 8 kbytes). Stksize should be
redefined if more space is needed,

See Also malloc, free, calloc

TEKELEC 5.2-3 Version 2.2

Chameleon 32 C Manual

atof

Declaration

Description

Returns

TEKELEC

double atof (nptr)
char *nptr;

Ch. 5.2: C library Description

This function converts a character string pointed to by nptr to
a double-precision floating-point number. The first
unrecognized character ends the conversion. atot recognizes
an optional string of white-spaced characters, then an
optional sign, then a string of digits optionally containing a
decimal point, then an optional E or e followed by an
optionally signed integer.

If the string begins with an unrecognized character, then a
zero is returned

5.2-4 Version 2.2

Chameleon 32 C Manual Ch. 5.2: C Library Description

atoi, atol, strtol

Declaration

Description

TEKELEC

int atoi (str)
char *str;

long atol (str)
char *str;

long strtol (str, ptr, base)
char *str;

. char **ptr;
int base;

These functions convert strings to integers.

strtal returns as a long integer the value represented by the
character string str. The string is scanned up to the first
character inconsistent with the base. Leading white-space
characters are ignored.

If the value of ptr is not (char -) NULL, a pointer to the
character terminating the scan is returned in *ptr. If no integer
can be formed, *ptr is set to str, and zero is returned.

If base is positive and not greater than 36, it is used as the
base for conversion. After an optional leading sign, leading
zeros are ignored, and "Ox" or "OX" is ignored if base is 16.

Truncation from long to int can take place upon assignment or
by an explicit cast.

atol takes the ASCII representation of a number and converts
it into a long integer.

atai takes the ASCII representation of a number and converts
it into an integer.

5.2-5 Version 2.2

Chameleon 32 C Manual Ch. 5.2: C Library Description

bcmp, bcopy, bzero

Declaration

Description

TEKELEC

int bcmp(block1, block2, len)
char *block 1 , *block2;
inllen;

int bcopy(source, destin, len)
char *source, *destin;
int len;

int bzero(block1, len)
char *block1;
int len;

These functions perform operations on blocks of memory.

bcmp compares two blocks of memory block1 and b/ock2.
The size of the blocks is len. A value of 1 is returned if they
are identical.

bcopy copies the source block of memory to the block of
memory pointed to by destin. 80th blocks are of. size len.

bzero zeroes the memory pointed to by b/ock1. The block is
of size len.

5.2-6 Version 2.2

Chameleon 32 C Manual

calloc, Icalloc

Declaration

Description

See Also

Returns

TEKELEC

Ch.5.2: C Library Description

char *calloc (nelem, elsize)
unsigned int nelem, elsize;

char 'calloc (nelem, elsize)
unsigned long nelem, elsize;

ea/loe allocates space for an array of ne/em elements of size
e/size. The spaee is initialized to zeros.

/eal/oe is like eal/oe but accepts long parameters.

malloe, free, alloca

Return a null pointer if there is no available memory.

5.2-7 Version 2.2

Chameleon 32 C Manual

clearerr

Declaration

Description

See Also

TEKELEC

#include < stdio.h >

clearerr (stream)
FILE ·stream;

Ch. 5.2: C Library Description

This function resets the error indicator and EOF indicator to
zero on the named stream. This function is implemented as a
macro and therefore cannot be declared or redeclared.

feof. ferror. fileno

5.2-8 Version 2.2

Chameleon 32 C Manual

close

Declaration

Description

See Also

Returns

TEKELEC

int close (tildes)
int tildes;

Ch. 5.2: C Library Description

This tunction closes a tile. tildes is a tile descriptor obtained
from creat or open. close will tail it tildes is not a valid, open
file descriptor.

creat, open

o = Successful
-1 = Error

5.2-9 Version 2.2

Chameleon 32 C Manual

creat

Declaration

Description

See Also

Returns

TEKELEC

Ch. 5.2: C Library Description

int creat (fname, of lag)
char *fname;
int of lag;

This function creates a new file or writes to an existing one. If
the file exists, the length of the file is reduced to O.

If successful, the file descriptor is returned and the file is
opened for writing. The file pointer is set to the beginning of
the file.

oflag may be set to 0 BINARY to indicate the untranslated
mode. No other flag valUes are allowed here (see open).

creat will fail if an OS error occurs.

No process may have more than 12 files open simultaneously.

This function has been superceded by open with the
0_ CREA T flag.

close

File descriptor (non-negative integer) = successful

-1 = Error

5.2-10 Version 2.2

Chameleon 32 C Manual

execl

Declaration

Description

See Also

TEKELEC

Ch.5.2: C Library Description

execl (name, argO, arg1, ... , argn, OL)
char -name;
char -argO, arg1, ... argn;

This function executes a file. PATH is not evaluated from
execl. For example, from the shell, you execute the cp (copy)
program, as follows:

Ofocp x y

where: cp is argO, x .s arg1 and y is arg2.

In a program, you use execl to execute the cp program, by·
entering the following:

execl(''\\bin\\cp" ,"cp" ,''x" , "y" , Ol)

where: \\bin\\cp is the path, cp is "argO, x is arg1, and y is
arg2.

" execv

5.2-11 Version 2.5

Chameleon 32 C Manual

execv

Declaration

Description

See Also

TEKELEC

int execv (pathname, argv)
char *pathname, *argv[];

Ch. 5.2: C Library Description

execv executes a program from the disk. The parameter
pathname is a pointer to a string which contains the path and
the name of the program to be executed.

The argv parameter is necessary only if the program being
started has arguments to mainO. argv is an array of character
pointers to strings, creating an argument list that is made
available to the new program. When used, at least one
argument must be present in this array, with the first element
of the array being the name of the executed program. For
more information, refer to the Program Parameters section at
the beginning of Chapter 5.

The parameter envp is also an array of character pointers to
strings which are not command line arguments, but system
environment variables.

When the executed program begin.s, it is called as foIlQws:·

main(argc, argv, envp)
int argc;
char *argvO;
char *envpO;

where argc, the arg count, is the number of elements in argv,
and argv is the array of character pOinters to the arguments
themselves.

The parameter envp is a pOinter to an array of strings which
are the environment variables from the calling program. Note
that a pointer to this array is also stored in the global variable
extem char -environ. Each string consists of a name, an =
sign, and a null-terminated value. The array of pointers is
terminated by a null pOinter. The result from execv is the exit
code or status of the program.

exec I

5.2-12 Version 2.5

Chameleon 32 C Manual

exit, exit -
Declaration

Description

TEKELEC

Ch. 5.2: C Library Description

exit (status)
int status;

exit (status)
iiil status;

These functions terminate a process.

exit performs the following cleanup operations before
terminating the program:

• The onexit functions are called in the reverse order in
which they were added

• . All open streams are flushed and closed

• All remaining file descriptors (opened with open or creat)
are closed

• exit is called

exit terminates the program immediately without performing
any cleanup operations.

5.2-13 Version 2.2

Chameleon 32 C Manual

fclose

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >

int fclose (stream)
FILE *stream;

Ch.5.2: C Library Description

This function writes any buffered data to disk and closes a
stream. It is called for each open stream by exit.

fflush

o = Successful
EOF = Unsuccessful

5.2-14 Version 2.2

Chameleon 32 C Manual

ferror

Declaration

Description

See Also

TEKELEC

#include < stdio.h >
int ferror (stream)
FILE ·stream;

Ch.5.2: C Library Description

This function returns a non-zero when an I/O error has
previously occurred reading from or writing to the named
stream. Otherwise a zero is returned. This function is
implemented as a macro and therefore cannot be declared or
redeclared .

. clearerr; feof, fileno

5.2-15 Version 2.2

Chameleon 32 C Manual

feof

Declaration

Description

See Also

TEKELEC

#include < stdio.h >
int feof (stream)
FILE ·stream;

Ch.5.2: C Library Description

This function returns a non-zero when EOF has previously
been detected reading the named input stream. Otherwise
zero is returned. This function is implemented as a macro,
and therefore cannot be declared or redeclared.

clearerr, ferror, fileno

5.2-16 Version 2.2

Chameleon 32 C Manual

fflush

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >

int fflush (stream)
FILE ·stream;

Ch. 5.2: C Library Description

This function writes any buffered data to disk and clears the
input buffer, but does not close the stream.

fclose

o = Successful
EOF = Unsuccessful

5.2-17 Version 2.2

Chameleon 32 C Manual

fgetc

Declaration

Description

See Also

TEKELEC

int tgetc (stream)
FILE ·stream;

Ch. S.2: C Library Description

This function returns the next byte from the named input stram
and positions the pointer ahead one byte in the stream. fgete
performs the same function as gete, however it is a true
function. It is slower, but takes less space per invocation.

EOF is returned when end-ot-tile or error is encountered.

getc, getchar, getw

Version 2.2

Chameleon 32 C Manual

fgets

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >
char "'fgets (s, n, stream)
char ·s;
int n;
FILE ·stream;

Ch.5.2: C Library Description

This function reads characters from the stream into an array
pointed to by s, until n-1 characters are read, or a new-line
character is read and transferred to s, or an EOF is
encountered. The string is terminated with a null character.

gets

s = Successful

If EOF is encountered and no characters have been read,
then no characters are transferred to s and a null pointer is
returned.

If an error occurs~ a null pointer is returned. Attempting to
use, this function on a file that has not been opened for
reading, causes an error.

5.2-19 Version 2.2

Chameleon 32 C lVianual

fileno

Declaration

Description

See Also

TEKELEC

#include < stdio.h >
int fileno (stream)
FILE *stream;

Ch.5.2: C Library Description

This function fileno returns the integer file descriptor for the
named stream. This function is implemented as a macro and
therefore cannot be declared or redeclared.

clearerr, feof, ferror

5.2-20 Version 2.2

Chameleon 32 C Manual Ch. 5.2: C Library Description

fopen, freopen
Declaration

Description

Returns

TEKELEC

#include < stdio.h >
FILE *fopen (file name, type)
char *file-name, '"type;

FILE *freopen (file name, type, stream)
char *file name, '"type;
FILE *stream;

'open opens the file named by file name and associates a stream
with it. It returns a pOinter to the RLE structure associated with the
stream. file name points to a character string that contains the
name of the file to be opened. type is one of the following:

r Open for reading
w Truncate or create for writing
a Append; open or create for writing at end of file
r + Open for update (reading and writing)
w + Truncate or create for update
a + Random open for read or write; pointer will be

repositioned to end of file for writing

'reopen substitutes the named file in place of the open stream.
The original stream is closed whether the open succee9s or not.
'reopen returns a pointer to the FILE structure associated with
stream. It is typically. used to attach the pre-opened" streams
associated with stdin, stdout, and 'stderr to other files; .

If a file is open for update, both input or output may be attempted
on the stream. However, output may not be directly followed by
input without an intervening 'seek or rewind. and input may not be
directly followed by output without an intervening 'seek; rewind, or
an input operation which encounters end-of-file.

Files open for append cannot have information overwritten. All
output is appended to the end of file regardless of the current
pointer position. After output is completed. the pointer is positioned
at the end of the file.

(open can be used to direct output to Chameleon 32 devices: .AUX
(Serial Port 2 unformatted data), . TTY (Serial Port 2 formatted
data). and .PRT (printer). For example:

FILE ·fp;
fp ~ fopen (-.AUX-, -.-);
fprintf (fp, -This is unfonaatted output to Serial Port 2-);

Referencing the Chameleon hard disk directories requires the use
of double back slashes as shown in the following example: . .

If unsuccessful, these routines return a NULL pointer.

5.2-21 Version 2.S

Chameleon 32 C Manual

fputc

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >
int fputc (c , stream)
char c;
FILE *stream;

Ch.5.2: C Library Description

fpute writes the character c to the output stream at the current
pointer position. It is similar to pute but it is a true function, it
is slower, and takes less space .per invocation.

putc, putchar, putw

If successful, the value written is returned.

If unsuccessful, EOF is returned. This can occur if the file is
not open for writing, or if the output file cannot be grown.

5.2-22 Version 2.S

Chameleon 32 C Manual

fputs

Declaration

Description

See Also

Returns

TEKELEC

include < stdio.h >
int fputs (s, stream)
char ·s;
FILE ·stream;

Ch. 5.2: C Library Description

This function writes the null-terminated string, pointed to by
s, to stream. The string is not followed by a new-line
character. It does not write out the terminating null character.

puts

EOF is returned if an error occurs. This will happen if output is
attempted to a file not open for writing.

5.2-23 Version 2.2

Chameleon 32 C Manual

fread

Declaration

Description

Note

See Also

Returns

TEKELEC

#include < stdio.h >
int fread (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

Ch. 5.2: C Library Description

This function is for binary input. It places into an array nitems
of data read from the input stream beginning at ptr. The data
items are a sequence of bytes of length size.

Reading is stopped when an error occurs, end-ot-file is
encountered, or nitems of data have been read. tread places
the pOinter, if any, at the byte following the last byte read, if
one exists. The contents of the stream are not changed.

fseek or rewind must be called before switching between
reading and writing on a stream that allows both.

fwrite

Returns the number of items. read. If a non-positive number
is given for nitems, then a Dis returned and nothing is read.

5.2-24 Version 2.2

Chameleon 32 C Manual

free

Declaration

Description

See Also

TEKELEC

free (ptr)
char *ptr;

Ch. 5.2: C Library Description

This function makes space, pointed to by ptr (and formerly
allocated by mal/oc, Imalloc, cal/oc or Ical/oc,) available for
further allocation. free does not affect the contents of the
space.

malloc, Imalloc, calloc, Icalloc, alloca

5.2-25 Version 2.2

Chameleon 32 C Manual

fseek

Declaration

Description

See Also

Returns

TEKELEC

Ch.5.2: C Library Description

#include < stdio.h >
int fseek (stream, offset, ptrname)
FILE ·stream;
long offset;
int ptrname;

This function sets the position of the next input or output
operation on the stream. The new position is at the signed
distance offset bytes from the beginning, from the current.
position, or from the end of the file, depending on the value of
ptmame. ptmame has the following values:

o Offset from beginning of file
1 Offset from current position in file
2 Offset from end of file

fseek undoes the effects of ungetc. After fseek, the next
operation to the file may be either input or output.

rewind, ftell

o = Successful
Non-zero = Unsuccessful. This can occur if fseek is
attempted on a file not open via fopen, or if it is used on
something other than a file.

5.2-26 Version 2.2

Chameleon 32 C Manual

ftell

Declaration

Description

See Also

TEKELEC

#include < stdio.h >
long ftell (stream)
FILE ·stream;

Ch. 5.2: C Library Description

This function returns the offset of the current byte relative to
the beginning of the file associated with the named stream.

fseek, rewind
, ,

5.2-27 Version 2.2

Chameleon 32 C Manual

fwrite,

Declaration

Description,

See Also

Returns

TEKELEC

#include < stdio.h >
int fwrite (ptr, size, nitems, stream)
char *ptr;
int size, nitems;
FILE *stream;

Ch. 5.2: C Library Description

This function is' for binary output. ,It attempts to append
nitems of data from the array pointed' to by ptr to the named
output stream.

fseek or rewind must ,be called before switching, between
reading and writing on a stream that allows both.

fread

Returns. the number of items written. If a non-positive
number is given for nitems, then a 0 is returned and nothing is
written.

5.2-28 Version 2.2

Chameleon 32 C Manual

getc

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >
int getc (stream)
FILE *stream;

Ch. 5.2: C Library Description

This function returns the next byte from the named input
stream and positions the pointer ahead one byte in stream.
gete is a macro and cannot be used where a function is
required. For example, a function pointer cannot point to it.

getchar, fgetc, getw

EOF is returned when end-of-file or error is encountered.

5.2-29 Version 2.2

Chameleon 32 C Manual

getchar

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >
int getcharO

Ch. 5.2: C Library Description

getchar is a macro that returns the next character from the
standard input stream, stdin.

The character is returned to the program only after pressing
Return. To get the character immediately, refer to the
window interface functions in Section 5.4.

getc, fgetc, getw

EOF is returned when end-of-file or error is encountered.

5.2-30 Version 2.2

Chameleon 32 C Manual

gets

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >
char *gets (s)
char *s;

Ch.5.2: C Library Description

This function reads characters from the standard input stream,
stdin, into the array pOinted to by s, until an end-of-file or
new-line character is encountered. The new-line character
is discarded and the string is terminated with a null character.

fgets

s = Successful

If EOF is encountered and no characters have been read,
then no characters are transferred to s and a null pointer is
returned.

If an error occurs, a null pointer is returned. Attempting to use
one of these functions on a file that has not been open for
reading will cause an appropriate error.

5.2-31 Version 2.2

Chameleon 32 C Manual

-getw

Declaration

Description

See Also

Returns

TEKELEC

int getw (stream)
FILE *stream;

Ch. 5.2: C Library Description

getw returns the next word (integer) trom the named input
stream. The tile pointer is positioned at the next word. No
special alignment is assumed.

EOF is returned when end-at-file or error is encountered.

getc, getchar, fgetc

EOF is returned it end-at-file or an error is encountered.
Since EOF is a valid integer, use teot or terror to check the
success of getw.

5.2-32 Version 2.2

Chameleon 32 C Manual Ch. 5.2: C library Description

isalnum, isalpha, isascii, iscntrl, isdigit, islower,
isprint, ispunct, iss pace, isupper, isxdigit

Declaration

Description

Returns

TEKELEC

#include < ctype.h >

int isalnum(c)

int isalpha(c)

int isascii(c)

int iscntrl(c)

int isdigit(c)

int islower(c)

int isprint(c)

int ispunct(c)

int isspace(c)

int isupper(c)

int isxdigit

int c;

c is alphanumeric

c is a letter

c is an ASCII character, code less than
0200

c is a delete character (0177) or an
ordinary control character (less than
040)

c is a digit

c is a lower case letter

c is a printing character, 040 (space)
through 0176 (tilde)

c is a punctuation character (neither
control nor alphanumeric)

c is a space, tab, carriage return, new
line, or form feed .

c is an upper case letter

c is a hexadecimal digit

These macros classify character-coded integer values.
isascii is defined on all integer values; the other functions are
defined where isascii is true and for EOF (-1). If the
argument of any of these macros lies outside its domain, the
result is undefined.

o = True
Non-zero = False

5.2-33 Version 2.2

Chameleon 32 C Manual

Iseek

Declaration

Description

Returns

TEKELEC

Ch. 5.2: C Library Description

long Iseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

This function moves the read/write file pointer. It sets the file
pointer associated with fildes, by offset from the position
specified by whence. whence has the following values:

o Pointer set to offset bytes
1 Pointer set to current position plus offset bytes
2 Pointer set to file size plus offset bytes

Iseek will fail and the pointer will remain unchanged if:

• fildes is not an open file descriptor

• whence is an invalid value.

• the resulting pointer position would be negative

-1 Unsuccessful

If successful, it returns the pointer position in bytes from the
beginning of the file.

5.2-34 Version 2.2

Chameleon 32 C Manual

longjmp

Declaration

Description

See Also

TEKELEC

#include < stdio.h >

longjmp (env, val)
jmp-buf env;
int val;

Ch. 5.2: C Library Description

This function is a non-local goto. It is useful for dealing with
errors and interrupts encountered in a low-level subroutine of
a program.

longjmp restores the environment saved by the last call of
setjmp with the same env argument. After longjmp is called,
program execution continues as if the corresponding call of
setjmp had just returned the value val.

/ongjmp cannot cause setjmp to return the value O. If /ongjmp
is invoked with a second argument of 0, setjmp will return 1.
All accessible data have values as of the time /ongjmp was
called.

If /ongjmp is called when env was never primed by a call to
setjmp, or when the last such call is in a function which has
since returned, the result will be unpredictable.

setjmp

5.2-35 Version 2.2

Chameleon 32. C Manual Ch.5.2: C Library Description

malloc, Imalloc

Declaration

Description

See Also

Returns

TEKELEC

char *malloc (size)
unsigned int size;

char 'malloc (size)
unsigned long size;

This function returns a pOinter to a block of at least size bytes
aligned for any use. The size parameter limits the size of the
block to 64K.

Ima//oc is like mal/oc but accepts a long parameter, allowing
more than 64K bytes per allocation.

free, calloc, alloca

Returns a null pointer if there is no available memory.

5.2-36 . Version 2.2

Chameleon 32 C Manual

onexit

Declaration

Description

See Also

Example

TEKELEC

onexit(f)
int (*f) ();

Ch. 5.2: C Library Description

onexit allows the user to add logic to the exitO function.
When a program is terminated normally or abnormally (using
-C, kill, or the Applications Selection menu), the exitO function
is called, which calls up to 10 functions defined by the user.
These functions can be defined by giving the function pointer
to onexitO. This is shown in the example below.

exit

myexit 0
{

puts(" exiting");

~aino
,{

onexit(myexit);
}

Result: This will display the message exiting on the screen
when the program is terminated.

5.2-37 Version 2.2

Chameleon 32 C Manual

open

Declaration

Description

Returns

TEKELEC

Ch. 5.2: C library Description

#include < fcntl.h >

int open (fname, .oflag)
char 'name;
int of lag;

This function opens a file for reading or writing as specified by
oflag. fname points to a string containing the name of the file
file. oflag values are constructed by ORing flags from the
following list (only one of the first three may be used):

O-RDONLY

O-WRONLY

O-RDWR

O-BINARY

Open for reading only.

Open for writing only.

Open for reading and writing.

Open in binary (untranslated) mode.

The ASCII line feed character (10 decimal) is
usually considered to be the line separator
character. Tekelec C considers a carriage
return/line feed combination to be the line
separator. In order to easily overcome this
difference, the run time library automatically
converts carriage returnlline feed to line feed
on input, and converts line feed to carriage
return/line feed on output to files.

This conversion occurs at a very low level
within the library routines. Files can be
opened in untranslated or binary mode by
setting a flag when the open procedure is
called.

Upon completion, the file pointer is set to the beginning of the
file. No process may have more than 12 tile descriptors open
simultaneously.

If successful, the file descriptor is returned.
If unsuccessful, -1 is returned and. errno is set appropriately.

5.2-38 Version 2.2

Chameleon 32 C Manual Ch.5.2: C library Description

printf, fprintf, sprintf, _fprintf, _sprintf

Declaration

Description

TEKELEC

#include < stdio.h >
int printf (format [, arg] ...)
char 'ormat;

int fprintf (stream, format [, arg] . . .)
FILE * stream;
char 'ormat;

int sprintf (s, format [, arg] . . .)
char *s, format;

int fprintf(stream, format, args)
FILE" *stream;
char 'ormat, *args;

int sprintf(s, format, args}
char *s, 'ormat, *args;

These functions print formatted output, as described below.
All buffers passed to printfO are limited to 256 characters.

print! place~ output on the standard output stream stdout.

fprint! places output on the named output stream.

{print! is like fprint! except the arguments are retrieved from
ffie pointer args.

sprintf places "output", followed by a null character (\0) in
consecutive bytes starting at *s. It is your responsibility to
ensure that enough storage is available.

sprint! works like sprint! except the arguments are retrieved
ITom the pOinter args, which normally pOints into the stack.

Each function returns the number of characters transmitted
(not including \0 for sprintf) , or a negative value if an output
error was encountered.

5.2-39 Version 2.2

Chameleon 32 C Manual

TEKELEC

Ch.S.2: C Library Description-
.

Each of these functions converts, formats, and prints its args
under control of the format. The format is a character string
that contains two types of objects:

• Plain characters are copied into the output stream

• Conversion specifications results in fetching zero or
more args

The results are undefined if there are insufficient args for the
format. If the format is exhausted while args remain, the
excess args are ignored.

Each conversion specification is introduced by the character
%. After the %, the following appear in sequence:

• On optional flag which modifies the meaning of the
conversion specification.

• An optional decimal digit string specifying a minimum
field width. If the converted value has fewer characters
than the field width, it will be padded on the left (or right,
if the left-adjustment flag has been given), with spaces,
to the field width. A leading zero indicates zeros should
be used instead of spaces.

• A precision which gives the maximum number of
characters to be printed from a string, or the number of
digits to be printed to the right of the decimal point for
float or double •.

• An optional 1 specifying that a following d, 0, u, or x
conversion character applies to a long integer argo

• A character indicating the type of conversion to apply.

The only flag character is the minus sign (-). When used,
the result of the conversion will be left justified within the field.
A field width or precision may be * instead of a digit string. In
this case, an extra integer argument provides the field width
or precision.

The conversion characters and their meanings are:

d,o,u,x The integer arg is converted to signed decimal,
unsigned octal, decimal, or hexadecimal notation
respectively. The letters abcdef are used for x
conversion.

5.2-40 Version 2.2

Chameleon 32 C Manual

TEKELEC

f

Ch. S.2: C Library Description

The float or double arg is converted to decimal
notation in the style:

[-] < digits> . < digits>

where the number of digits after the decimal point is
equal to the precision specification. If the precision is
missing, six digits are output. If the precision is zero,
no decimal point appears.

For example, the float or double arg is converted to
the style:

[-] < digit>. < digits> E{ + I-} < digits>

where there is one digit before the decimal point and
the number of digits after it is equal to the precision.
When the precision is missing, six digits are output.
If the precision is zero, no decimal point appears.

c The character arg is printed.

s The arg is taken to be a string (character pointer) and
characters from the string are printed until a null
character (\0) is encountered, or· the number of
characters indicated by the precision specification is
reached. If the precision is missing, it will be taken to
be infinite, so all characters up to the first nutl
character are printed. A null arg will yield undefined
results.

% Print a %. No argument is converted.

In no case does a non-existent or small field width cause
truncation of a field. If the result of the conversion is wider
than the field width, the field is simply expanded to contain the
conversion result. Characters generated by printf and fprintf
are printed as if putc had been called.

5.2-41 Version 2.2

Chameleon 32 C Manual

perror

Declaration

Description

TEKELEC

perror(s)
char *s;

extern int sys nerr;
extern char *sys _ errlist(];

Ch.5.2: C library Description

perror writes a short description of the last error that set ermo
onto the standard stream stderr. The string s is printed first,
then a colon, then the message and a newline. The string s
is usually the na~e of the program which called perror.

perror should only be called when a function which sets err no
indicates an error has occurred since ermo is not cleared
upon successful execution.

The messages printed are stored in the array sys errlist and
may be indexed by -erma (this is not compatibJewith UNIX
where ermo is always positive). The number of entries in
sys _ errlist is stored in sys_nerr.

5.2-42 Version 2.2

Chameleon 32 C Manual

putc

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >
int putc (c , stream)
char c;
FilE *stream;

Ch. 5.2: C Library Description

putc is a macro that writes the character c to the output
stream at the current pointer position.

putchar, fputc, putw

If successful, the value written is returned.

If unsuccessful, EOF is returned. This can occur if the file is
not open for writing or if the output file cannot be grown.

5.2-43 Version 2.2

Chameleon 32 C Manual

putchar

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >
int putchar (C)
char c;

Ch. 5.2: C Library Description

putchar is a macro that is defined as putc(c, stdout). (putc is
a macro that writes the character c to the output stream at the
current pOinter position. See previous page.)

putc, fputc, putw

If successful, the value written is returned.

If unsuccessful, EOF is returned. This can occur if the file is
not open for writing or if the output file cannot be grown.

5.2-44 Version 2.2

Chameleon 32 C Manual

puts

Declaration

Description

See Also

Returns

TEKELEC

include < stdio.h >
int puts (s)
char *s;

Ch.5.2: C Library Description

puts writes the null-terminated string, pOinted to by s, to the
standard output stream stdout. The string is followed by a
new-line character. It does not write out the terminating null
character.

fputs

EOF is returned if an error occurs. This will happen if output is
attempted to a file not open for writing.

5.2-45 Version 2.2

Chameleon 32 C Manual

putw

Declaration

Description

See Also

Returns

TEKELEC

#include < stdio.h >
int putw (w, stream)
int w;
FILE *stream;

Ch.5.2: C Library Description

putw writes the word (integer) w to the output stream at the
current pointer position. putw does not force even alignment
on the file. .

putc, putchar, fputc

If successful, the value written is returned.

If unsuccessful, EOF is returned. This can occur if the file is
not open for writing or if the output file cannot be grown.

Because EOF is a valid integer, ferror should be used to
check for error when using putw.

5.2-46 Version 2.2

Chameleon 32 C Manual

qsort

Declaration

Description

Example

TEKELEC

··Ch. 5.2: C library Description

qsort(base, nelem, width, compare)
char *base;
int nelem, width;
int (*compare) 0;

qsort is an implementation of the quicksort algorithm. The
parameter base is a pointer to the base of the data. The
parameter nelem is the number of elements in the array. The
parameter width is the width of each element in bytes. The
parameter compare is a pointer to the comparison routine to
be called.

This user-defined function will be passed two arguments
which are pointers to the elements being compared. This
routine must return an integer less than, equal to, or greater
than zero, since the first argument is to be considered less
than, equal to, or greater than the second.

The quicksort algorithm used is recursive.

.include <std10.h>
int test(a. b)
int -.. -b;
{

}

.in()
{

}

return -. - -b;

int &[100]. 1;
for (i=O; 1<100; i++)'- Create sa.e randa. data -,

&[i] = rand();

qsort(&. 100, sizeof(int).test);

for (1=0, 1<100; 1++)'- D1splay sorted result -,
printf(-%d -, &[i]);

puts (Press RETURN to continue-); getchar ()

5.2-47 Version 2.2

Chameleon 32 C Manual

rand
srand

Declaration

Description

TEKELEC

#include < stdio.h >

int randO

srand(seed)
long seed;

Ch.5.2: C Library Description

rand and srand are macros that function as simple random
number generators.

rand uses a multiplicative congruential random-number
generator.

srand can be called at any time to reset the random-number
generator to a new starting point. The generator is initially
seeded with a value of 1.

5.2-48 Version 2.2

Chameleon 32 C Manual

read

Declaration

Description

Returns

TEKELEC

int read (tildes, but, nbyte)
int fildes;
char *buf;
unsigned nbyte;

Ch. 5.2: C Library Description

read attempts to read nbyte bytes from the tile associated
with tildes into the buffer pointed to by but.

tildes is a file descriptor obtained by using an open or creat.

read will fail if tildes is not a valid file descriptor open for
reading, or if an operating system error occurs.

If the 0 BINARY flag is not set, lineteed/carriage return
combinations are translated to linefeeds, except from the
keyboard.

o = EOF is reached.

It successful, a non-negative integer is returned indicating
the number of bytes actually read.

If unsuccessful, a -1 is returned and errno is set
appropriately.

5.2-49 Version 2.2

Chameleon 32 C Manual Ch.5.2: C Ltbrary Description

realloc, Irealloc

Declaration

, Description

Returns

TEKELEC

char *realloc(ptr, size)
char *ptr;
unsigned size;

char'realloc(ptr, size)
char *ptr;
unsigned long size;

These are RAM allocator functions. realloc changes the size
of the block pointed to by ptr to size bytes and returns a
pointer to the (potentially moved) block. Note that the data
will remain unchanged, and any data defined beyond size will
be lost.

Irealloc is like realloc but accepts a long parameter.

A null pointer if the memory requested is not available.

5.2-50 Version 2.2

Chameleon 32 C Manual

rename

Declaration

Description

Returns

TEKELEC

int rename (from, to)
char '''from, '0;

Ch.s.2: C Library Description

rename changes the existing name of a file on a disk to
another name. The parameter from is a pointer to the name
of the current file on disk. The parameter to is a pointer to
the new name for the file.

-1 Unsuccessful

5.2-51 Version 2.2

Chameleon 32 C Manual

rewind

Declaration

Description

See Also

TEKELEC

#include < stdio.h >
rewind (stream)
FI lE *stream;

Ch. 5.2: C Library Description

rewind sets the position of the next input or output operation
on the stream. The new position is at the signed distance
offset bytes from the beginning, from the current position, or
from the end of the file. rewind is equivalent to fseek(stream,
Ol, 0), except no value is returned.

rewind undoes the effects of ungetc. After rewind the next
operation to the file may be either input or output.

fseek, ftell

5.2-52 Version 2.2

Chameleon 32 C Manual Ch. 5.2: C Library Description

scanf, fscanf, sscanf

Declaration

Description

TEKELEC

#include < stdio.h >
int scanf (format [, pointer] ...)
char ,ormat;

int fscanf (stream, format [, pOinter] ...)
FILE *stream;
char 'ormat;

int sscanf (s, format [, pointer] ...)
char *s, 'ormat;

Each function reads characters, converts them according to a
fo"rmat, and stores the results in its arguments. The arguments
consist of a control string" format and a set of pOinter
arguments indicating where the converted input should be
stored.

scanf reads from the standard input stream stdin.

fscanf reads from the nam~d input stream. ,

sscanf reads from the character string s.

The control string may contain:

• White-space characters (blanks, tabs, and new-lines)
which cause input to be read up to the next non white
space character.

• An ordinary character (not %), which must match the
next character of the input stream.

• Conversion specifications, consisting of the character %,
an 6ptional assignment suppressing character *, an
optional numerical maximum field width, an optional 1
indicating the size of the receiving variable, and a
conversion code.

5.2-53 Version 2.2

Chameleon 32 C Manual

TEKELEC

Ch. 5.2: C Library Description

A conversion specification directs the conversion of the next
input field; the result is placed in the variable pointed to by the
corresponding argument, unless assignment suppression was
indicated by *. The suppression of assignment provides a way
of describing an input field which is to be skipped. An input
field is defined as a string of non-white-space characters; it
extends to the next inappropriate character or until the field
width, if specified, is exhausted.

The conversion code indicates the interpretation of the input
field~ For a suppressed field, no pointer argument should be
given. The following conversion codes are legal:

% A single %. is expected in the input at this point; no
assignment is done.

d A decimal integer is expected; the corresponding
argument should be an integer pointer.

h A short decimal integer is expected, the
corresponding argument should be a short pointer.

o An octal integer is expected; the corresponding
argument should be an integer pointer.

x A hexadecimal integer is expected; the
corresponding argument should ·be an integer pointer.

,

e,f,g A floating point number is expected; the next field is
converted accordingly and stored through the
corresponding argument, which should be a pointer
to a float. The input format for floating pOint
numbers is an optionally signed string of digits,
possibly with a decimal point, followed by an optional
exponent field consisting of an e, or an E, followed
by an optionally signed integer.

s A character string is expected; the corresponding
argument should be a character pointer pOinting to an
array of characters large enough to accept the string
and a terminating \0, which will be added
automatically. The input field is terminated by a
white-space character.

5.2-54 Version 2.2

Chameleon 32 C Manual

Note

Returns

TEKELEC

c

Ch. 5.2: C Library Description

A character is expected. The corresponding
argument should be a character pointer. The normal
skip over white space is suppressed in this case. To
read the next non-space character, use 1s. If a field
width is given, the corresponding argument should
refer to a character array. The indicated number of
characters is read.

The conversion characters d, 0, and x may be preceded by 1
to indicate that a pointer to long rather than int is in the
argument list. Also, the conversion characters e, f, and g may
be preceded by 1 to indicate that a pointer to double rather
thal1 to float is in the argument list.

scant conversion terminates at EOF, at the end of the control
string, or when an input character conflicts with the control
string. In the latter case, the offending character is left unread
in the input stream.

scant returns the number of successfully matched and
assigned input items. This number can be zero in the event
of an early conflict between an input character and the control
string. If the input ends before the first conflict or conversion,
EOF is returned. .

Trailing white space (including anew-line) is left unread
unless matched in the control string.

These functions return EOF on end of input and a. short count
for missing or illegal data items.

5.2-55 Version 2.2

Chameleon 32 C Manual Ch.5.2: C Library Description

setbuf, setbuf1er, setlinebuf

Declaration

Description

TEKELEC

#include < stdio.h >

setbuf (stream, buf)
FILE ·stream;
char *buf;
char buf[BUFSIZE];

setbuffer (stream, but, bufsize)
FILE ·stream;
char *buf;

setlinebuf(stream)
FILE ·stream

Three types of buffering are available:

• Unbuffered Information appears on the destination
file or terminal as soon as written

• Block buffered Many characters are saved up and
written as a block. Normally, all files
are block buffered.

• line buffered Characters are saved up until a
newline is encountered.

setbut is used after a stream has been opened, but before it
is read or written. It causes the character array pointed to by
but to be used instead of an automatically allocated buffer. If
but is a NULL character pointer input/output will be completely
unbuffered. A constant BUFSIZ, defined in the < stdio.h >
header file, tells how big an array is needed.

setbuffer sets up a user-defined I/O buffer whose size is
determined by the parameter butsize. If but is NULL, the I/O
buffer will be completely unbuffered. This function should only
be used after a stream has been opened, but before it has
been read or written.

setlinebut changes stdout or stderr from block buffered or
unbuffered to line buffered. Unlike setbuf and setbuffer, it can
be used at any time that the file descriptor is active.

:t the space passed as but cannot be freed (it was not
allocated by malloc, for example), then the stream must be
set to unbuffered before closing.

5.2-56 Version 2.2

Chameleon 32 C Manual

setjrnp

Declaration

Description

See Also

TEKELEC

#include < stdio.h >

int setjmp (env)
jmp _ buf env;

Ch.S.2: C Library Description

This is a non-local goto which is useful for dealing with
errors and interrupts encountered in a low-level subroutine of
a program. setjmp saves its stack environment in env (whose
type, jmp buf, is defined in the < stdio.h > header file), for
later use BY longjmp. It returns the value o.

longjmp

5.2-57 Version 2.2

Chameleon 32 C Manual Ch.5.2: C Library Description

strcat, strncat, strcmp, strncmp, strcpy, strncpy,
strlen, inc ex, rindex, xtrncat, xtrcpy, xtrncpy

Declaration

Description

TEKELEC

#include < string.h >

char *strcat (s 1, s2)
char *s 1, *s2;

char *strncat (s 1, s2, n)
char *s1, *82;
int n;

int strcmp (s1, s2)
char *s1, *s2;

int strncmp (s 1, s2, n)
char *s1, *s2;
int n;

int index (s, c)
char *s, c;

int rind ex (s, c)
char *s, c;

char *strcpy (s 1, s2)
char *s1, *s2;

char strncpy (s1, s2, n)
char *s1, *s2;
int n;

int strlen (s)
char *s;

char *xtrcat(s 1, s2}
char *s1, *s2;

char *xtrcpy(s 1, s2}
char *s1, *s2;

char *xtrncpy(s1, 82)
char *s1, *s2;

These functions perform string operations as described
below. The arguments s 1, s2, and e point to strings (arrays
of characters terminated by a null character). The functions
strcat, strneat, strepy, strnepy, xtrcat, xtrepy, and xtrnepy all
alter s1. They do not check for overflow of the array pointed
to by s1.

strcat appends a copy of string s2 to the end of string s 1, and
returns s1.

xtreat appends but returns a pointer to the end of s 1, pointing
at the null byte.

strneat appends at most n characters.

stremp compares its arguments and returns an integer less
than, equal to, or greater than 0, depending on whether s 1 is
lexicographically less than, equal to, or greater than s2.

5.2-58 Version 2.2

Chameleon 32 C Manual

TEKELEC

Ch. 5.2: C Library Description

strncmp makes the same comparison as strcmp, but looks at
a maximum of n characters.

strcpy copies string s2 to s 1, stopping. after the null character
has been copied. The result is s 1.

xtrcpy copies but returns a pointer to the end of s1 .

strncpy copies exactly n characters, truncating s2 or adding
null characters to s 1 if necessary. The result will not be nulI
terminated if the length of s2 is n or more.

xtrncpy copies like strncpy, but returns a pointer to the end· of
s1.

strlen returns the number of characters in s, not including the
terminating null character.

index returns a pointer to the first occurrence of c in string s.
NULL is returned if c is not in s.

rindex returns a pointer to the last occurrence of c in string s.
NULL is returned if c is not in s.

5.2-59 Version 2.2

Chameleon 32 C M'anual Ch. S.2: C Library Description

to tipper, tolower, -tolower, toascii

Declaration

Range

Description

TEKELEC

#include < ctype.h >

int toupper (c)
int c:

int tolower (c)
int c;

int tolower (c)
int c;

int toascii (c)
int c;

The range for toupper and tolower is -1 to 255.

These functions convert characters as described below.

If the argument for toupper is a lower case letter, the result is
a corresponding upper case letter. It does not check for
already upper case.

If the argument for tolower is an upper case letter, the result
is a corresponding lower case letter. Arguments other than
the ones mentioned are returned unchanged.

tolower is similar to tolower but has a smaller domain and is
raster. It requires an upper case letter as its argument.
Undefined results occur if arguments are. other than required.

toaseii returns the argument with all but the low order' 7 bits
set to zero.

5.2-60 Version 2.2

Chameleon 32 C Manual

ungetc

Declaration

Description

Returns

TEKELEC

Ch. 5.2: C Library Description

#include < stdio.h >

int ungetc (c, stream)
char c;
FILE *stream;

This function pushes the character e into the buffer
associated with an input stream. e will be returned by the
next read from that stream. e is returned and the stream is
left unchanged. .

A read must be performed prior to the ungetc. c can be read
by gete, getehar, fread, gets, fgets, fgete, fseant, and scant.

One character pushback is guaranteed, provided that
something has been read from the stream.

fseek erases all memory of inserted characters.

If c equals EOF, ungete does nothing to the buffer and returns
EOF.

EOF is returned if ungete cannot insert the character.

5.2-61 Version 2.2

Chameleon 32 C Manual

unlink

Declaration

Description

Returns

TEKELEC

int unlink (fname)
char *path;

Ch. 5.2: C Library Description

This function removes the directory entry pointed to by fname.

The named file is unlinked unless the operating system
returns an error (see errno).

o = Successful
-1 = Error (errno is set appropriately)

5.2-62 Version 2.2

Chameleon 32 C Manual

write

Declaration

Description

Returns

TEKELEC

int write(fildes, but, nbyte)
int fildes;
char *buf,
unsigned nbyte;

Ch. 5.2: C Library Description

This function writes on a file. It writes nbyte bytes from the
buffer pointed to by but to the tile associated with the tildes.

tildes is a file descriptor obtained from a crest or open .

. Writing begins at the current pointer position and is
incremented by the number of bytes actually written after
returning from write.

write will fail if an operating system error occurs. The pointer
position will remain unchanged in this event.

If the 0 BINARY flag is not set, linefeeds and returns are
translated to carriage returns (except to the screen).

If successful, the number of bytes actually written' is returned. . .

If unsuccessful, -1 is returned and errno is set appropriately.

5.2·63 Version 2.2

Chameleon 32 C Manual Ch. 5.3: System Library Globals

5.3 SYSTEM LIBRARY GLOBALS

Introduction

GLOBAL

long _stdvt

int tab poss - -

Table 5.3-1 below lists C global variables that are defined in
libc.a. You can read these variables to determine information
about the current virtual terminal (window), cursor, time, and
other information.

You must declare these variables as external, using the C
extern command, before you can use them. These variables
may be used; however, changing their values is only for
experienced users.

FUNCTION

Returns the current virtual terminal number (vtnum)

Returns the cursor position in the line

int echo mode Echoes on getchar -- -
int cr mode Maps CR to CR LF' - -
int ctl c mode Allows Ctrl C to exit - --
int curr ...;.,year Returns current year, which is set in the shell and is

used by other programs.

long tab _width Returns the number of characters per TAB

longtkey Returns the task key of the current program

intclose vt ok Indicates if it is OK to close the VT 0 exitO - -
char **environ Environment for environmental variables

- initO Returns base address of current program

char **argv Program args

int argc Programs args count

Table 5.3-1: System Library Globals

TEKELEC 5.3-1 Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

5.4 WINDOW INTERFACE FUNCTIONS

Introduction

Standard Input!
Standard Output

VT100 Format

Form Mode

TEKELEC

The extended C library has additional Window Interface
functions that enable you to control windows for your
applications. The library includes:

• Functions ,
• Escape sequences

Both. of these features are described in this section.
Definitions of escape sequences, key values and function
declarations are in the file video.h.

When your program starts, a window is assigned to you for
standard input and output (stdin, stdout, stderr). The window
number (vtnum) is in the external variable stdvt.

If you want to use any of the window interface functions
without opening another window, you should use this variable
as the value returned from openvtO.

All the regular 1/0 functions (printf, getchar, etc.) will operate
on the standard window. If you open your own window, you
should overwrite stdvt with your window number, and then
restore it. For regular usage without. another window, you do
not need to be concerned with these functions.

You can use the Window Interface functions to address the
screen, as follows:

• Rows: 1 - 22

• Columns: 1 - 80

• Row 23 is reserved for the LED display, which can be
set by calling the assignledsO function.

• Row 24 is reserved for the window banner and cannot
be accessed by the application or the library.

You can change a window to form mode, using the
openform() function. In form mode a full screen is available;
there are no banner and LED lines.

5.4-1 Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

Default Window
Attributes When an openvtO call is made, a default attribute is set with

the following characteris .ics:

TEKELEC

• Banner line with the name given in openvt()

• Cursor is in (1,1) position and is disabled

• All characters will be written at the current cursor
position

• Any Escape sequences remain in effect until changed to
a different one or to the default. . .

The window interface functions are described beginning on
the following page.

5.4-2 Version 2.2

Chameleon 32 C Manual

assignleds

Declaration

Range

Description

TEKELEC

Ch. 5.4: Window Interface Functions

assignleds(vtnum, pleds, ledword)
long vtnum;
char *pleds;
long ledword;

vtnum

pleds

Virtual terminal number which is the value returned
by the topen function.

Pointer to 80 characters which will appear on the
LEOs line.

ledword Bits 10-31 are reserved.
Bits 0 - 9: If Bit i = 1, LED i + 1 is on.

If Bit i = 0 LED i + 1 is off

This function creates or changes the LEOs for an application.

5.4-3 Version 2.2

Chameleon 32 C Manual

closeform

Declaration

Description

See Also

TEKELEC

closeform(vtnum)
long vtnum;

Ch. 5.4: Window Interlace Functions

This function releases the screen from form mode and returns
to window mode. In other words, it restores the screen to it
previous status.

openform

5.4-4 Version 2.2

--
Chameleon 32 C Manual

-closevt

Declaration

Description

See Also

TEKELEC

closevt(vtnum)
long vtnum;

Ch. 5.4: Window Interface Functions

This function releases the virtual terminal. The virtual terminal
is determined by. the virtual terminal number (vtnum) which is
a value returned by the openvt function.

openvt, puM

5.4-5 Version 2.2

Chameleon 32 C Manual

.

disablecur

Declaration

Description

See. Also

TEKELEC

disablecur(vtnum)
long vtnum;

Ch. 5.4: Window Interface Functions

This function causes the cursor to be invisible on the screen
(default setting) .. vtnum is the virtual terminal number of the
window returned by the fopen function.

enablecur

5.4-6 Version 2.2

Chameleon 32 C Manual

enablecur

Declaration

Description

See Also

•

TEKELEC

enablecur(vtnum)
long vtnum;

Ch. 5.4: Window Interface Functions

This function causes the cursor to be visible on the screen.
vtnum is the virtual terminal number of the window returned
by the openvt function.

disablecur

5.4-7 Version 2.2

Chameleon 32 C Manual

getch

Declaration

Description

See Also

TEKELEC

unsigned char getch(vtnum)
long vtnum;

Ch. 5.4: Window Interface Functions

This function gets a character from standard input without
waiting. If no character is available, it returns a OxFF. When
standard input is used (not opened using the openvt()
function), the vtnum value is in stdvt. The characters are
not echoed.

getcwt

5.4-8 Version 2.2

Chameleon 32 C Manual

getcwt

Declaration

Description

See Also

TEKELEC

unsigned char getcwt(vtnum)
long vtnum;

Ch. 5.4: Window Interface Functions

As with the getch function, this function gets a character from
standard input. It does not return a value until a character is
available.

Note that if you use this function, you will have to force a key
when killing the task from the shell.

When stdio is used, the vtnum value is in stdvt.

getch

5.4-9 Version 2.2

Chameleon 32 C Manual

op~nform

Declaration

Description

See Also

Returns

TEKELEC

Ch. 5.4: Window Interface Functions

long openformO

This function puts the screen in non-window (form) mode of
24 lines and returns the virtual terminal number (vtnum). It
clears the screen and works in form mode using puMO calls.
Only one open form is allowed in the system, and therefore
this function should be in response to a request from the user.

closeform

o (the vtnum of the form window)

5.4-10 Version 2.2

Chameleon 32 C Manual

openvt

Declaration

Description

See Also

Example

TEKELEC

long openvt(pname)
char *pname;

Ch. 5.4: Window Interface Func.tions

This function assigns a virtual terminal to an application.
pname is a 25-character null-terminated string which will
appear on the window banner. The function returns the virtual
terminal number (vtnum) which is referenced in other
functions.

The first "10 characters of the string constitute an escape
sequence that defines the default foreground and background
colors of the window.

puM, closevt

long myvt;
myvt = openvt("\033[~6m\033[44mMyWindow");

where:

\033[36m
\033[44m
MyWindow

defines the foreground color as cyan
defines the background color as blue
defines the text for the window banner

5.4-11 Version 2.5

Chameleon 32 C Manual

prndata

Declaration

Description

See Also

TEKELEC

prndata(data)
char *data;

Ch. 5.4: Windov,,: Interface Functions

This function sends data to the printer.

endprint, selprn

5.4-12 Version 2.5

Chameleon 32 C Manual

putvt

Declaration

Description

See Also

TEKELEC

puM(vtnum,string)
long vtnum;
char *string;

Ch. 5.4: Window Interface Functions

This function displays a string on a virtual terminal (window).
The virtual terminal is determined by the virtual terminal
number (vtnum) which is a value returned by the openvt
function.

The string is a maximum of 80 ASCII characters in VT100
format. Esc sequences are defined.

openvt, closevt

5.4-13 Version 2.2

Chameleon 32 C Manual

selprn

Declaration

Description

See Also

TEKELEC

Ch. 5.4: Window Interface Functions

seJprn (device, br, bits, sb, par)
long device, br, bits, sb, par;

This function selects the parameters for outputing to a printer.
Use the numbers indicated below to select the setting for
each parameter.

The default printer settings are:

Parallel, 9600, 8 bits, 2 Stop bits, Even.

device Printer type 1 Parallel
0 Serial

br Baud rate 3 300
6 600
12 1200
24 2400
48 4800
96 9600
192 19200

bits Data Bits 0 5 bits
2 6 bits
1 7 bits
3 8 bits

sb Stop bits. 1 1 stop bits
2 1.5 stop bits
3 2 stop bits

par Parity 0 None
1 Odd
3 Even

endprint, prndata

5.4-14 Version 2.2

Chameleon 32 C Manual Ch. 5.4: Window Interface Functions

WINDOW INTERFACE ESCAPE SEQUENCES

Introduction

Note

The Chameleon 32 C Escape sequences are a subset of the
VT100 Escape sequences and are Ii~ted in the table below.

Where a value is required for the Escape sequence (indicated
by Pn in the syntax) enter the ASCII value of the value. For
example, to move the cursor up 7 seven lines, you would print
the string Esc [7 a. In C you use use the enter the following:

printf("\033[7a")

where \033 represents the Esc key in octal.

Esc Sequence Function

Esc[Pna Move cursor up Pn lines

Esc[Pnb Move cursor down Pn lines

Esc[Pn c Move cursor right Pn columns

Esc[Pnd Move cursor left Pn columns

Esc[Pi;Pnf Move cursor to line Pi column Pn

Esc[f Move cursor home

Esc[PnL Insert Pn lines (lines below the cursor move down)

Esc[PnM Delete Pri lines (lines below the cursor move up)

Esc[4h Insert mode

Esc[4i Replace mode (default)

Esc[1P Delete 1 character

Esc [OK Erase to the end of the line

Esc [OJ Erase to the end of the screen

Esc[2J Clear the screen

Table 5.4-1: Window Interface Escape Sequences

. TEKELEC 5.4-15 Version 2.2

Chameleon 32 C ManualCh. 5.4: Window Interface Functions

Screen Attributes Use the following command to set the screen attributes (color,
highlight, blink, reverse video, etc):

TEKELEC

Esc [nn m

where: nn is one of the attribute numbers listed in the table
below.

Attribute
Attribute

Number

0 Reset attributes (~nderline, Reverse, Blink,
Highlight)

1 Highlight

4 Underline

5 Blink

7 Reverse

30 Foreground Black

31 Foreground Red

32 Foreground Green

33 Foreground Yellow

34 Foreground Blue

35 Foreground Magenta

36 Foreground Cyan

37 Foreground White

40 Background Black

41 Background Red

42 Background Green

43 Background Yellow

44 Background Blue

45 Background Magenta

46 Background Cyan

47 Background White

Table 5.4-2: Window Interface Attribute Options

5.4-16 Version 2.2

Chameleon 32 C Manual Ch. 5.5: MatTI \..; ::1'"'.'

5.5 MATH LIBRARY

Introduction

Zero

Largest Value

Infinity

TEKELEC

The libm.a library includes the math functions described in this
section. The libm.a library is in the \lib directory. When
compiling a program, VibVib is automatically searched for
library files, so that you can compile a program using libm.a
by entering either:

cc prog.c \lib\libm.a .

or

cc progc. -1m

The format of a double precision floating point number is:

• The leftmost bit (63) is the sign for the mantissa
• The next bit (62) is the sign for the exponent
• The next 10 bits (61 - 52) contain the binary exponent,

which has a bias of Ox3ff (1023)
• The mantissa (in bits 51 - 0) is preceded by an implied

1-bit (left of the binary point). Therefore, the theoretical
precision is 53 x log1 0(2) = 15.95 decimal digits.

All intermediate floating point operations are done in double
precision. The transcendental functions use radians.

A zero is represented by all zeros in the floating point _
variable.

The largest possible value for a float variable is contained in
the math library variable double dcsu. The value of this
variable is 0 x 7fffffffffffmr.

The value of infinity is represented by the math library variable
double dcin. The value of this variable is 0 x fffftrffrtrfrtrr. This
value is returned in the instances where a floating point

. operation exceeded the maximum value of a double floating
point number.

5.5-1 Version 2.2

Chameleon 32 C Manual

Smallest Value

TEKELEC

The smallest number x> 0 is:

x = 0 x 0000000000000001
= «1 + (2-52»(21025)
= 1.1125369292536009 x 10-308

Ch. 5.5: Math Library

If the absolute value of a result is smaller than this number
(called underflow), a zero is returned.

The routines are described on the following page.

5.5-2 Version 2.2

Chameleon 32 C Manual Ch. 5.5: Math Library

Declaration #include < math.h >

/

TEKELEC

double log(x)
double log10(x}
double log2(x)

double exp(x)
double exp10(x)
double exp2(x)

Base e logarithm function
Base 10 logarithm function
Base 2 logarithm function

Base e exponential function
Base 10 exponential function
Base 2 exponential function

double sin(x), cos(x), tan(x) Transcendental functions
double asin(x), acos(x), atan(x) Inverse transcendental

double sqr(x)
double sqrt(x)

double powerd(x, y)
double poweri(x,a)

double dabs(x)

int dint (x)

double mulpower2(x, k)

double Ingamma(x)

double fac(k)

double x,y;
int a, k;

5.5-3

x2
v'x

xY (equivalent to exp2(X"1og2(y))
xa (equivalent to exp2(X"1og2(a))
where a is an integer)

Ixl

Integer part of the double that is
the parameter. The fractional
part is truncated. This is
equivalent to:

sgn(x) X Llx/J

where: sgn(x) = -1, if x < 0;
= 0, if x=O;
= 1, ifx>O

Performs a fast floating point
multiplication by 2k.

Natural logarithm of the gamma
function if 0 < x < 5.1 x 10305.
Outside of this range dcin
(infinity) is returned.

k!, where Osks 170

Version 2.2

Chameleon 32 C Manual

TEKELEC

double matinv(a, c, n)
double ·a;
long ·c;
long n;

. Ch. 5.5: Math Library

matinv is the matrix inverse of the n X n array a. The data in a
may be stored in either row or column major order (C double
dimension arrays are row major). c is a vector (one
dimensional array) of longs used during the computation.
matinv returns the determinant of a as the function result, and
the inverse of a in a. c has no meaning after matinv finishes.
A determinant value of zero indicates failure (a is destroyed).

For example:

#include < .. tb.b)

double e[2] [2] = (I,O,O,I};

.. ia()
{

double det;
long C(2]

. det=.atinv(e, C, ZL):
printf(-Tbe dete~iaaat of • is Sf\n-, det);

}

5.5-4 Version 2.2

Chameleon 32 C Manual Ch 5.6: Control Characters

5.6 CONTROL CHARACTERS

Introduction The control characters are listed in the table below.

Control
Control Key Function

Character

BEL (7) CtrlG Bell

BS (8) Ctrl H Back Space

LF (10) Ctrl J Line feed

VT (11) Ctrl K Move cursor down 1 line

FF (12) CtriL Move cursor forward 1 character

CR (13) Ctrl M Carriage return

Table 5.5-1: Control Characters

TEKELEC 5.6-1 Version 2.2

Chameleon 32 C Manual Ch. 5.7: Using Aux Serial Ports 1 & 2

5.7 USING AUX SERIAL PORTS 1 & 2

Introduction

TEKELEC

The C Development System includes functions for accessing the
Aux Serial Ports 1 and 2. There are four functions for each port.
Those for Port 1 are:

• initportb

• sndpb

• recpb

.. rstdrvb

Initializes the Aux Serial Port 1. You must use
this function to initialize the port before you can
transmit or receive.

Transmits data using Aux Serial Port 1 to another
device

Receives data using Aux Serial Port 1 from
another device

Flushes the driver reception buffer.

Port 1 is only available if the debugger is not attached to it. For
details on the debugger, see Chapter 2. 1, Configuration File.

Those for Port 2 are:

• initporta Initializes the Aux Serial Port 2. You must use
this function to initialize the port before you can
transmit or receive.

• sndpa Transmits data using Aux Serial Port 2 to another
device

• recpa Receives data using Aux Serial Port 2 from
another device

• rstdrv Flushes the driver reception buffer.

These functions are described on the following pages. The Port 1
functions are given on pages 5.7-2 through 5.7-5. The Port 2
functions are given on pages 5.7-7 through 5.7-10. Sample
programs are provided on pages 5.7-6 and 5.7-11.

5.7-1 Version 2.5

Chameleon 32 C Manual Ch.5.7: Using Aux Serial Ports 1 & 2

PORT 1 FUNCTIONS

initportb

Declaration

.
Ranges

Description

Returns

TEKELEC

#include "pavaLh"
int initportb (stopbit, bitchar, bitrate, parity)
long stopbit;
long bitchar;
long bitrate;
long parity;

stopbit ST1 (1 stop bit)
ST1S (1.5 stop bits)
ST2 (2 stop bits)

bitchar DBS (5 data bits)
DB6 (6 data bits)
DB7 (7 data bits)
DBS (8 data bits)

bitrate F110 (11 0 bits per second)
F300 (300 bits per second)
F120 (1200 bits per second)
F240 (2400 bits per second)
F480 (4800 bits per second)
F960 (9600 bits per second)
F192 (19200 bits per second)

parity PANO (No parity)
PAEV (Even parity}
PAOD {Odd parity}

This function initializes the Chameleon 32 Aux Serial Port 1 to
transmit and receive data. When you use initporta, the driver
reception buffer is automatically flushed.

o
-1
-2

Successful
Parameter error
Port 1 not available

5.7-2 Version 2.5

Chameleon 32 C Manual

sndpb

Declaration

Description

Returns

TEKELEC

Ch. 5.7: Using Aux Serial Ports 1 & 2

#include "paval.h"
int sndpb (ptr, nb, timeout)
char ptr; I*user buffer pointer* /
long nb; I*number of bytes*/
long timeout; I*timout value * /

This function transmits data using Aux Serial Port 1. You must first
initialize the port using the initportb function, before you can
transmit or receive data using this port.

ptr is a pointer to a buffer containing the data to transmit. nb is the
number of bytes of data to transmit. timeout is the amount of time
to wait for the other device to receive the data. It is in millisecond
units.

nb
o

-1
-2

Number of bytes transmitted
Time out
Parameter error
Port 1 not available

5.7-3 Version 2.5

Chameleon 32 C Manual

recpb

Declaration

Description

Returns

TEKELEC

Ch. 5.7: Using Aux Serial Ports 1 & 2

#include "paval.h"
int recpb (ptr, timeout)
char "ptr;
long timeout;

This function receives data using Aux Serial Port 1. You must first
initialize the port using the initportb function, before you can
transmit or receive data using this port.

ptr is a pointer to a buffer to put the received data.

timeout determines the amount of time to wait to receive data data
in millisecond units.

If timeout > 0, the function immediately returns the number of
characters currently in the reception buffer. If the reception buffer
is empty, it waits the timeout period before returning the number of
bytes or a timeout.

If timeout = 0 the function immediately returns the number of
characters currently in the reception buffer. If the buffer is empty,
the Chameleon waits until a character is received before returning
the number of bytes.

nb
o

-1
-2

Number of bytes received
Time out (no characters in the reception buffer)
Parameter error
Port 1 not available

5.7-4 Version 2.5

Chameleon 32 C Manual

rstdrvb

Declaration

Description

Returns

TEKELEC

#include "paval.h"
rstdrvbO

Ch.5.7: Using Aux Serial Ports 1 & 2

This function flushes the driver reception buffer. Note that the
initportb function automatically flushes the driver. reception buffer
when the port is initialized.

-2 Port 1 not available

5.7-5 Version 2.5

Chameleon 32 C Manual Ch. 5.7: Using Aux Serial Ports 1 & 2

SAMPLE PROGRAM

TEKELEC

A sample program using the Aux Serial Port 1 functions is provided
below. This program initializes the port for terminal emulation.

tinclude Upaval.h"
extern long stdvt ;

/*---
Ter.minal emulation program

---*/
main ()
{

char rbuf(300]
char dbuf(300]
char c ;

int len ;

;
;

/* reception buffer */
/* display buffer */

/* typed character */
/* number of data received *1

int ~,J ; /* local variables *1
puts(UTerminal Emulation program, Type ESC to exit") ;
/*---- Initialization of the port

1 stop bit
8 bits per characters
bit rate = 9600
No parity

----------------------------------*/
initportb(ST1,DB8,F960,PANO) ;
for (;;)

{

/*---- poll local keyboard, echo char and send char
*/
if ((c=getch(_stdvt» !=-1

{

:i,f (c = Oxlb /* exit with ESCAPE */

else
break ;

putvtsd(_stdvt,&c,lL)
sndpb{&c,lL,lOL) ;
}

/*---- poll reception on AUX 1 port and display */
else if ((len = recpb(rbuf,lOOL» != a)

{

for{i=O,j=O;i!=len;i++)
{

if (rbuf[i] >= ' ,)
dbuf(j++] = rbuf(i]

putvtsd(_stdvt,dbuf, (long)j)
}

}puts(U\nDisconnected")
}

5.7-6 Version 2.5

Chameleon 32 C Manual Ch.5.7: Using Aux Serial Ports 1 & 2

PORT 2 FUNCTIONS

initporta

Declaration

Ranges

Description

Returns

TEKELEC

#include "pavaLh"
int initporta (stopbit, bitchar, bitrate, parity)
long stopbit;
long bitchar;
long bitrate;
long parity;

stopbit ST1 (1 stop bit)
ST15 (1.5 stop bits)
ST2 (2 stop bits)

bitchar DB5 (5 data bits)
DB6 (6 data bits)
DB7 (7 data bits)
DBa (a data bits)

bitrate F110 (11 0 bits per second)
F300 (300 bits per second)
F120 (1200 bits per second)
F240 (2400 bits per second)
F480 (4800 bits per second)
F960 (9600 bits per second)
F192 (19200 bits per second)

parity PANO (No parity)
PAEV (Even parity)
PAOe (Odd parity)

This function initializes Aux Serial Port 2 to transmit and receive
data. When you use initportb, the driver reception buffer is
automatically flushed.

o
-1

Successful
Parameter error

5.7-7 Version 2.5

Chameleon 32 C Manual

sndpa

Declaration

Description

Returns

TEKELEC

Ch. 5.7: Using Aux Serial Ports 1 & 2

#include "paval.h"
int sndpa (ptr, nb, timeout)
char *ptr; I*user buffer pOinter*!
long nb; I*number. of bytes*!
long timeout; I*timout value*!

This function transmits data using Aux Serial Port 2. You must first
initialize the port using the initporta function, before you can
transmit or receive data using this port.

ptr is a pointer to a buffer containing the data to transmit. nb is the
number of bytes of data to transmit. timeout is the amount of time
to wait for the other device to receive the data. It is in millisecond
units.

nb
o

-1

Number of bytes transmitted
Time out
Parameter error

5.7-8 Version 2.5

Chameleon 32 C Manual

recpa

Declaration

Description

Returns

TEKELEC

Ch. 5.7: Using Aux Serial Ports 1 & 2 .

#include "paval.h"
int recpa (ptr, timeout)
char ·ptr;
long timeout;

This function receives data using Aux Serial Port 2. You must first
initialize the port using the initporta function, before you can
transmit or receive data using this port.

ptr is a pointer to a buffer to put the received data.

timeout determines the amount of time to wait to receive data data
in millisecond units.

If timeout > 0, the function immediately returns the number of
characters currently in the reception buffer. If the reception buffer
is empty, it waits the timeout period before returning the number of
bytes or a timeout.

If timeout = 0 the function immediately returns the number of
characters currently in the reception buffer. If the buffer is empty,
the Chameleon waits until a character is received before returning
the number of bytes.

nb
o

-1

Number of bytes received
Time out (no characters in the reception buffer)
Parameter error

5.7-9 Version 2.5

Chameleon 32 C Manual

rstdrv

Declaration

Description

TEKELEC

#include "paval.h"
rstdrvO

Ch.5.7: Using Aux Serial Ports 1 & 2

This function flushes the driver reception buffer. Note that the
initporta function automatically flushes the driver reception buffer
when the port is initialized.

5.7-10 Version 2.5

Chameleon 32 C Manual Ch.5.7: Using Aux Serial Ports 1 & 2

SAMPLE PR'OGRAM

TEKELEC

A sample program using the Aux Serial Port 2 functions is provided
below. This program initializes the port for terminal emulation.

tinclude "paval.h"
extern long _stdvt

/*---
Terminal emulation program

---*/
main ()
(

char rbuf[300] /* recept.i.on buffer */
char dbuf[300] /* display buffer */
char c ; /* typed character */
int len; /* number of data received */
int ~,J ; /* local variables */
puts("Terminal Emulation program, Type ESC to exit") ;

J*---- Initialization of the port
1 stop bit
8 bits per characters
bit rate = 9600
No parity

----------------------------------*/
initporta(ST1,DB8,F960,PANO)
for (;;)

{

/*---- poll local keyboard, echo char and send char
*/
if ((c=getch(_stdvt» !=-1

{

if (c = Ox1b). /* exit with ESCAPE */

else
break ;

putvtsd(_stdvt,&c,lL) ;
sndpa(&c,lL,lOL)
}

/*---- poll reception on AUX 2 port and display */
else if ((len = recpa(rbuf,lOOL» != 0)

{

for(i=O,j=O;i!=len;i++)
{

if (rbuf[i] >= ' ,)
dbuf(j++]

putvtsd(_stdvt,dbuf, (long)j) ;
}

}puts("\nDisconnected")
}

5.7-11

rbuf(i]

Version 2.5

Chameleon 32 C Manual Ch. 5.8: MS-DOS File Functions

5.8 MS-DOS COMPATIBLE FILE FUNCTIONS

Introduction

File Names

Wild Card
Characters

Directories

Pathnames

TEKELEC

The Chameleon MTOS-UX file system is designed to be
compatible with MS-DOS 2.x and 3.x. The functions described
in this section have been added to provide low-level access to
the Chameleon file system.

The format of a filename is set by the system to be eight bytes
in length, plus a three-byte extension. The set of characters
allowed in a filename and extension are:

A-Z, 0-9, - ! @ # $ % .. & ()" { }

All filenames must be terminated with a NULL (OxOO)
character.

The question mark can be used as a wild card to describe
multiple files having similar names. A wild card characfer can
be used only in the search function. . When used with other
functions, it may produce incorrect results.

The question mark is a single character wild card. For
example, if you have three files named test1.txt, test2.txt, and
test3.txt, they could be identified simultaneously by using the
name test? txt. -

The C library contains functions for creating and removing file
directories and subdirectories. This enables you to have a
hierarchical directory structure to provide a higher order of
organization of files on the drive.

The use of path names enables you 10 access a drive or
directory other than the current one. A filename is composed
of the drive name and the directory specifiers as described
below.

The format of a pathname is as follows:

. drive:\directory\directory\ ..• filename

drive is Chameleon disk drive you want to access, and is one
of the following:

5.8-1 Version 2.3

Chameleon 32 C Manual Ch. 5.8: MS-DOS File Functions

File Functions

Sample Usage

TEKELEC

a: hard disk drive
b: floppy disk drive

You do not need to specify the drive if you want to access the
current drive.

Following the drive, you specify the hierarchy of directories
necessary to access the desired directory. Each directory
name is followed by the back slash (\) character. If a directory
is not specified, the current directory is assumed.

Following the directory path list is the file name of the files you
want to access. This must include the file extension. The wild
card ? can be used to specify more than one file name.

The standard C library (Iib.c) contains the following MS-DOS
compatible file functions:

Fmkdir Makes a new directory
Frmdir Removes a directory
Fsearch Searches for a specified file or directory

These functions are described on the following pages.

Sample programs are provided beginning on page 5.8-7 to
illustrate the usage of the file functions.

5.8-2 Version 2.3

Chameleon 32 C Manual Ch. 5.8: MS-DOS File Functions

Error Codes When a file function is completed, it returns either 0 for
success, or a negative number if an error has occurred during
the execution of the function.

The table below lists the possible codes:

ErrorCode Description

0 Successful

-1 Configuration error

-2 Opcode error

-3 Parameter error

-4 Error in volume access

-5 File not found error

-6 File already exists error

-7 Queue empty

-8 Physical read error

-9 Physical write error

-10 Directory full error

-11 . Files open on directory

-12 File aready open

-13 Error in filename

-14 File locked

-15 Function option error

-16 Attribute error

-17 End of file unexpected error

-18 EOF with partial record

-19 Fatal error

-20 Disk full - Temporary

TEKELEC 5.8-3 Version 2.3

Chameleon 32 C MCinual

Fmkdir

Declaration

Description

Returns

Example

TEKELEC

Ch. ·5.8: MS-DOS File Functions

#include < msfsuse.h >
Fmkdir(dirname)
char * dirname;

This function creates a directory with the name dirname.
dirname is a pointer to the directory name and can include
the path for the new directory.

See error codes on page 5.8-3.

if (Fmkdir (".\\abc\\deftt) ! = 0) {
puts ("make dir error");

Also see sample programs beginning on page 5.8-7.

5.8-4 Version 2.3

. Chameleon 32 C Manual

Frmdir

Declaration

Description

Returns

Example

TEKELEC

Ch.·S.8: MS-DOS File Functions

#include < msfsuse.h >
Frmdir(dirname)
char * dirname;

This function removes a directory with the name dirname.
dirnameis a pOinter to the directory name and can include
the path to the directory.

The directory must be empty before it can be removed from
the disk.

See error codes on page 5.8-3.

if (Frmdir (".\\abc\\def") ! = 0) {
puts ("remove dir error");

Also see sample programs beginning on page 5.8-7.

5.8-5 Version 2.3

Chameleon 32 C Manual

Fsearch

Declaration

Description

Returns

Example

TEKELEC

Ch. 5.8: MS-DOS File Functions

#include < msfsuse.h >
Fsearch(name, option, rec)
char· name;
int option;
struct DREC ·rec

This function searches for a file or directory specified by
name. name is a pointer to the file/directory name and can
also include the path.

If located, the file information is copied to the structure of type
DREC. which is defined in msfsuse.h, as shown below:

struct DREC
{
char
char
char
char

I*File name'"/
I*File extension*/
I*File attributes*/
I*Reserved bytes*/

unsigned short
unsigned short
unsigned short
unsigned long
};

dc fn[];
dc-ex[];
dc-at;
dc-rs[];
dc-tim;
dc-dat;
dc-str;
dc fsz;

!*Time of file creation'"/
I*Date of file creation'"/
I*Starting cluster number*/
I*File size in bytes'"/

File attributes are defined in msfsuse.h as follows:

FA ROF
FA-HOF
FA-SYS
FA-VOL
FA-SOR
FA-ARF

Ox01
Ox02
Ox04
OxOS
Ox10
0x20

Read Only File
Hidden File
System File
Volume
Sub-directory
Archive

See error codes on page 5.S-3.

See sample programs beginning on page 5.S-7.

5.8-6 Version 2.3

Chameleon 32 C Manual

Sample Usage

TEKELEC

Ch. 5.8: MS-DOS File Functions

The following sample programs demonstrate the use of the
MS-DOS compatible file functions. Error messages printed by
the programs are defined in a program named msfsmsg.c
and declared in the file msfsmsg.h, which .are not included in
these samples.

The first sample program creates a directory named test dir,
searches for it, and then removes it. -

.include <stdio.b>

.include (video.b>

.include <.sfsuse.h>

.include e.sfs-sg.h-

.in ()
{

}

int a;

n ... = etest_dire;
if «a=F.&dir(na.e» == SUCCESS) {

}

puts (-F.tdir ~leted successfullye);
ls_search (n ...);

else {

}

printf(eF.tdir Error: %5-, ~fs.s9 [-a]);
eAit. (0);

printf (-Hit a key to ra.ove test directorye);
fflusb (stdout);
getcwtLstdvt);
if «a=Fn.dir(n ... » == SUCCESS {

}

puts (-Fn.dir ca.pleted successfully-);
ls_sear~b(n ...);

else {
printf(-Fn.dir Error: %5-, ~fa.sg [-a]);

}

ls_search(n ...)
cb.r -n ... ;
{

}

struct DREC -yrec;
int a;
if «.=Fsearcb(n 0, .. yrec» == SUCCESS) {

puts (-Fseareb ea.pleted successfully-);
ls-print ("yree);

}
else {

printf (-Fseareh Error: %5-. ~f~g [-a]);
}

5.8-7 Version 2.3

Chameleon 32 C Manual

TEKELEC

Ch. 5.8: MS-DOS File Functions

The second sample program illustrates how to search for a
specified file/directory. This program locates all items of the
specified name on the drive.

'include <stdio.h>
'include <video.h>
'include <.sfsuse.h>
.include -.sfs-sg.h-

.ain (argc, argyl
cbar **argv;
{

struct DREC .yrec;
char buf [80];
int a, b,;
if (argc I = Z)

strcpy (buf, -.-);
else

strcpy (buf, argv [1]);
for (a = 0; ; a++) {

printf (-Pass , ~d\n-, a+1);
if (a > 0) {

}

printf(-\033[1.-- MoRE -- \033[0.-);
fflusb (stdout);
getClltLstdvt) ;
puts(--);

if «b:: Fsearcb (buf, (a::=O?0·:1),&.yrec)}==SUCCESS) {
puts (-Fsearcb ca.pleted successfully-);
ls-print (&'yrec);

}
else {

printf (-Fsearch Error: ~\n-, '.sfs.S9 [-b]);
break;

}
}

}

5.8-8 Version 2.3

Chameleon 32 C Manual

TEKELEC

Ch. 5.8: MS-DOS File Functions

This third program illustrates how the information resulting
from the file search function can be displayed for the user.

'include <.sfsuse.b)
1s....9rint (rec)
structDREC -rec;
{

int a;
printf (-file na.e == %$\0-. rec-) dc_fn);
printf (-file eatension == %$\n-. rec-) dc_ea);
printf (-file attributes == %OZa\n-. rec-) dc_at);
if «rec-) dc_at. fA_RDf) == FA_RDf)

puts (-Read Only file-);
else

puts(-Read Write-);
if «rec-> dc_at. FA_HDf) == fA_HUf)

puts (-Hidden file-);
else

puts (-lot Hidden file-);
if «rec-> dc_at. fA_SYS) == fA_SYS)

puts(-Syst .. file-);
else

puts (-tot Syst .. file-);
if «rec-) dc_at. fA_VOL} == fA_VOL)

puts (-Vol~ bit == 1-);
else

puts (-Vol~ bit -= 0-);
if «rec-) dc_at. fA_SDR) == fA_SOR}

puts (-Sub-directory fi1e-);
else

puts (-tot a Sub-directory file-);
if «rec-> dc_at. fA_ARf) == fA_ARF)

puts (-Arcbive fi1e-);
else

puts (-lot Archive fi1e-);
pri.t~ (-reserved bytes == -);
for (a=O; a < RS_LEN; a++)

printf (-%02a -. rec-) dc_rs [all;
puts (--);
printf (-ti" file was created== -);
ls_ti .. (rec-) dc_ti.);
puts(--);
printf (-date file was created== -);
1s_ti .. (rec-> dc_dat);
puts(--);
printf (-starting cluster n~er == %04a\n-. rec-) dc_str);
printf (-file size (bytes) == %-101d\o-. rec-) dc_fsz);

}
1s_ti .. (ti ..)
int ti .. ;
{

}

int brs = (ti .. »U)
int .in = (ti .. »5)
int sec = «ti ..)
if (brs == 0)

hrs = 12;
printf(-S02d:%02d:%OZd-.

lS_date (date)
int date;
{

&Odf;
&oa3f;
&Odf) -2;

lars •• in. sec);

int .til = (date»5) &oaf;
.int day = (date) &Odf;
int yr = «date»9) &Oa7f) + 80;
printf(-S02d-%02d-%02d- • .tb. day. yr);

}

5.8-9 Version 2.3

Chameleon 32 C Manual Ch 5.9: Non-Printing ASCII Characters

5.9 NON-PRINTING ASCII CHARACTERS

Hex Octal

80 200
81 201
82 202
83 203
84 204
85 205
86 206
87 207
88 210
89 211
Sa 212
8b 213
8c 214
8d 215
8e 216
8f 217
90 220
91 221
92 222
93 223
94 224
95 225
96 226
97 227
98 230
99 231
9a 232
9b 233
9c 234
9d 235
ge 236
9f 237
aO 240
a1 241

TEKELEC

The following ASCII characters can be displayed on the
screen, but will not appear in output to a printer:

ASCII Hex Octal ASCII Hex. Octal ASCII

NU a2 242 0 c2 302 II
SH a3 243 c3 303
Sx a4 244 c4 304 ..
Ex a5 245 c5 305 w

~ a6 246 c6 306
EO a7 247 c7 307 III

""
a8 250 c8 310 +

BL a9 251 - c9 311 8
BS aa 252 I ca 312
tty ab 253 \ cb 313 i LF ac 254 cc 314
vT ad 255 ~ cd 315
FF ae 256 +- ce 316 ~
c R at 257 I ct 317 T
So bO 260 ~ dO 320 I -s, b1 261 d1 321 ,
DL b2 262 - d2 322 r
D1 b3 263 d3 323 J
D2 b4 264 r1 d4 324 L
D3 b5 265 .d5 325 +
D .. b6 266 r d6 326 ,
ML b7 267 L d7 327 !
Sy b8 270 J d8 330 I
EB b9 271 1 d9 331

~ cH ba 272
I

da 332
EH bb 273 db 333 ~
sa bc 274 " dc 334 ~
EC bd 275 / dd 335 T
FS be 276 • de 336 .1.
Gs bt 277 / dt 337 ~
RS cO 300

II
eO 340

~ Us c1 301 el 341
~
t

5.9-1 Version 2.4

Chameleon 32 C Ma.1ual Ch. 5.10: BERT Functions

5.10 BERT LIBRARY FUNCTIONS

Tekelec

This section presents the functions for Bit Error-Rate Testing
supported by the Chameleon 32 C Development System compiler.
These functions are defined in the file bertlib and are given here in
alphabeitcal order within three, major functional categories (see the
Section Table of Contents on the next page). These are:

STARTUP AND IDLE MODE FUNCTIONS

FUNCTIONS USED WHILE FEP IS RUNNING A TEST

FUNCTIONS RELATED TO COLLECTING TEST DATA

The section INTERVAL TESTING gives a sample program using
some of these functions. .

GENERAL NOTES AND REQUIREMENTS

As in other simulation libraries, before calling start_syncO or
start_async(), the user program should call setportO. If this is not
done, port selection will default to port A.

User programs must be linked with the math library (!ibm.a) provided
with system release 4.51 or later. Older versions may cause incorrect
exponents to be displayed when the value is quite small.

The include file (bertlib.h) must be included in the user program.
Otherwise, the returns to user calls to library functions that return long
or double values will be misinterpreted.

This library uses a sub-task started by start_sync() or start_async.
This sub-task manages the collection of test data from the FEP,
counts run-time seconds, errored seconds and timed tests. Because
of this, there are three rules that must be observed when writing a user
program:

• Program loops must contain a 'pauseO' call that will stop the
program for a short time to allow the sub-task and any other tasks
access to processor time. This means that 'mtosux.h' should be .
included in the user program.

• While this library may be run on either port, testing on both ports
requires running two separate programs. That is, you cannot start
both ports from a single task, as the same sub task will be started
twice and cause unpredictable results.

• Terminate with an 'exit(O)' call to assure termination of the
sub-task.

5.10 -1 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.iO: BERT Functions

SECTION TABLE OF CONTENTS

Tekelec

The 29 functions of the BERT Library fall into three categories:

STARTUP AND IDLE MODE FUNCTIONS 5.10 - 3

FUNCTIONS USED WHILE FEP IS RUNNING A TEST . 5.10 - 16

FUNCTIONS RELATED TO COLLECTING TEST DATA. 5.10 - 23

The functions in each category are listed one the first of the pages
devoted to that category, as listed above.

5.10 -2 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

STARTUP AND IDLE MODE FUNCTIONS

Tekelec

block_len
c!r"pream
cont_run
one_block
set_err_rate(sel)
set_mode
set.-J)ream

5.10 - 4
5.10 - 4
5.10 - 5
5.10 - 5
5.10 - 6
5.10 - 7
5.10 - 7

set--ptrn .. 5.10 - 8
sta~async 5.10 - 9
start_sync .
timed_test
user--ptm

5.10 - 10
5.10 - 10
5.10- 11

5.10 -3 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

BLOCK LEN

Declaration

Description

C~R_PREAM

Declaration

Description

TekeIeC

block...Jen(bllen)

Sets block length to be used in determining block errors.

bUen = unsigned int, 64k max.

clr ""'preamO

Stops using preamble.

5.10 -4 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions .

CONT RUN

Declaration

Description

Deciaration

Description

Tekelec

Sets FEP to active test mode. The test will continue to run until
STOP _ TEST() is called or the test program is terminated by a call to
exit (0).

Runs test for one block length, then returns to idle mode.

5.10 - 5 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

Descript;on Selects automatic error insertion rate. Only effective in SYNC testing.

Returns

Tekelec

sel = O,none
1,1.00E-5
2,1.00E-4
3,9,84E-4
4,1.00E-3
5,1.02E-3
6,1.04E-2

o - no problems
-1 - parameter error

5.10 - 6 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

Declaration

Description

Returns

Declaration

Description

Tekelec

seCmode(mode)

Selects test mode, remote/localloopback, rx only.

mode = 1, Remote loopback
2, local loopback
4, receive' only

0- no problems
-1 - parameter error

sel,pream(ch1 ,ch2)

Selects 2 byte user preamble to be transmitted at beginning of test
run.

ch1 - first byte to send
ch2 - second byte to send

5.10·7 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

SET PTRN

Declaration

Description

Returns

Tekelec

setJltrn(patsel)

Selects the test pattern. For user defined pattern, partern location and
length MUST be set using userJltrnO.

parse I = 0, bert 63
1, bert 511
2, bert 2047
3, bert 32767
4, 10101010
5, foxmes
6, user defined

o - no problems
-1 - parameter error

5.10 - 8 Version 1.0, November 1992

Chameieon 32 C Manual Ch. 5.10: BERT Functions

ST.~AT ASYNC

Declaration start_async(interface, dbits,sbits ,parsel ,rate)

interface = O,DCE
1,DTE

dbits = 5, 5 (Data bits)
6,6
7, 7
8,8

sbits = 0, 1 (Stop bits)
1,1.5
2,2

parsel = 2, even (Parity)
-1, odd
0, none

rate = 1, 50 (Baud rate)
2, 75
3,110
4, 150
5,300
6,600
7, 1200
8,2400
9,4800
10,9600
11,19200

Returns o - no problems
-1 - parameter error
(see also global error table in the C library manual.)

Tekelec 5.10- 9 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

START Sy~C

Declaration

Returns

Declaration

Description

Teke/ec

start_ sync(interface ,rate)

interface = 0, DeE
1,DTE
2, ISDN

rate := 50 - 64000 bps if DCE is selected, any if DTE is selected.

o - no problems
-1 - parameter error
(see also global error table in the C library manual.)

timed_test(length)

Run test for length seconds.

length := long int

For the convenience of the user, multipliers have been added to
bertlib.h to convert hours and minutes to seconds.

EXAMPLE

timed_test(2*RN_HOURS + 1 O*RN_MINUTES + 30); will run a test
for 2 hours 10 minutes and 30 seconds.

NOTE

This function sets up and starts the timed test, then returns. It will NOT
tie up the user program for the duration of the test. All other library and
user program functions will operate normally during a timed test.

A call to stop_testO may be used to terminate a timed test before the
selected length of time.

5.10-10 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

USER PTRN

Declaration

Description

Returns

Tekelec

user otm(loc,len)

Passes address and length of user defined pattern. *Ioc = pointer to
user defined pattern len = length of pattern to send. Max length 4000
bytes.

*Ioc = pointer to user defined pattern

len • length of pattern to send. Max length 4000 bytes.

0- no problems
-1 - parameter error

5.10 -11 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

FUNCT;ONS USED WHILE FEP IS RUNNING A TEST

error_off 5.10- 13
error_on " 5.10 - 13
one_error , 5.10 - 14
resync .. 5.1 0 - 14
status .. 5.1 0 - 15
stop_test " 5.-10- 15

Teke/ec 5.10 - 12 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

ERROR OFF

Declaration

Description

De"claration

Description

Teke/ec

Stops automatic error insertion.

Starts automatic error insertion. Requires previous call
to'set_err_rateO' to select error insertion interval.

5.10 -13 Version 1.0, November 1992

Chameieon 32 C Manual Ch. 5.10: BERT Functions

ONE ERROR

Declaration

Description

RESVNC

Declaration

Description

Tekelec

Inserts one error in transmitted pattern independently of automatic
error insertion. Ineffective if test is not running.

resync()

Resynchronizes on data pattern.

In the case of an excessively high error rate (25% or more) in one
second, resynchronization will occur automatically. The errors for that
second will be discarded and the sync loss counter will be
incremented. This is because such a high error rate normally means
alQss of elata, a data slip, or a change in received pattern has
occurred.

This function allows you to program a lowe.r resynch threshold than
that provided by the automatic resynch function.

5.10 -14 Version 1.0, November 1992

Chameleon 32 C Manual

STATUS

Declaration

Description

Declaration

Description

Tekelec

statusO

Returns Sync status.

o
1
2

=
=
=

idle (test is not being run)
runn!ng, not in sync
running in sync

Stops test and return to idle mode.

5.10-15

Ch. 5.10: BERT Functions

Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

FUNCTIONS RELATED TO COLLECTING TEST DATA

Tekelec

double get_err_rate 5.10 - 17
long geCblkerrs 5.10 - 17
long get_errsec , 5.10 - 18
long ge't-rbits 5.10 - 18
long get_tbits 5.10 - 19
long geCrbiterrs " ... 5.10 - 19
long get_runtime 5.10 - 20
long geCserrsec .. 5.10 - 20
long geCsyncloss .. 5.10 - 21
long geCtbiterrs 5.10 - 21
reseCdata .. 5.10 - 22

5.10 -16 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

DOUBLE GET ERR RATE

Declaration

Description

double get_err _rate 0

Returns cumulative bit error rate in floating point format.

To display the result, use the format code 2.2Ie.

EXAMPLE:

printf("The error rate is %2.2Ie\n",ge~err_rateO);

LONG GET BLKERRS

Declaration

Description

Teke/ec

long get ... blkerrsO

Returns the number of received black errors. (See block_len())

5.10 - 17 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

LONG GET_ERASEC

Declaration long gee errsecO

Description Returns the number of seconds during which one or more bit errors
were received.

LONG GET_RBITS

Declaration long geCrbitsO

Description Returns the number of received bits.

Tekelec 5.10 - 18 Version 1.0, November 1992

Chameleon 32 C f.1anual

LONG GET T81TS

long get_tbitsO Declaration

Description Returns the number of transmitted bits.

LONG GET_RBITERRS

Declaration

Description

Tekelec

long geCrbiterrsO

Returns the nunbar of received bit errors.

5.10 -19

Ch. 5.10: BERT Functions

Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

LONG GET_RUNTIME.

Declaration

Description

long get.JuntimeO

Returns the cumulative number of seconds during which the library is
in active test mode. For example, this function will return '7' when:

• conLrun() is called

• 5 seconds later stop_testO is called·

• then, the test is restarted 10 seconds later and again stopped after
2 seconds

LONG GET_SERRSEC

Declaration

Description

Tekelec

long get_serrsecO

Returns the number of seconds during which the received bit error
rate was 10E-3 or greater.

5.10 - 20 . Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

LONG GET SYNC LOSS

Declaration

Description

long get_synciossO

Returns the number of times that the received error rate was so high
that an automatic resync occured.

The returned value does not include calls to RESYNC() by the user
program.

LONG GET_TBITERRs

Declaration

Des~ription

Tekelec

long geLtbiterrsO

Returns the number of transmitted bit errors when auto error insertion
is on.

5.10 - 21 Version 1.0, November: 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

RESET DATA

reseCdataO Declaration

Description Resets the counters for all the above to zero.

Teke/ee 5.10-22 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 5.10: BERT Functions

TIMED TEST EXAMPLE

The following program fragment. is suggested as a means of running
a BERT test for a selected time interval. At this point, the FEP should
have been started using start_syncO or start_asyncO and the
parameters (e.g., mode, pattem, block length, etc.) set.

printf('\033[2J"); /* Clear screen * /

timed_test(5 * RN_MINUTES); /* Start 5 minute timed test */

while(statusOH /* as long as test. is running */

printf('\033[1 ;1f"); /* position curser at 1,1 */

printf(" Run time %010.01f.Lseconds\n"
geCruntimeO; /* %01 O.Olu prints in fixed 10 place format */

/* print all other test results of interest */

pause(1 + HMS);-/* wait 100 msec so other tasks can use
processor * / -

} /* end of while loop */

/* Using 'HMS' or other mnemonic in pauseO requires inclusion of
MTOSUX.h */ -

ADVANCED PROGRAMMING TECHNIQUE:
GETTING CORRECT RESULTS FROM VERY LONG TEST RUNS

Teke/ec

A structure of long integers is used to store the collected test data. A
long, as defined by the Tekelec C compiler, will overflow at a value
slightly above two billion. To avoid problems during long test runs,
bertlib.h provides the user with a pointer to the data structure so that
individual values can be reset and an extension counter incremented.

_ An example of this is in the following program fragment. -

unsigned int tbit_oflo = 0;

if(get.tbits() >- 1000000000L){

tes_data->tx_bits --1 OOOOOOOOOL; /*adjustthe count*/

tbit_oflo ++; /* and incr the extension counter */

}

It is important that rx_bterrs should be reset any time rx_bits
is cleared to avoid incorrect bit error rate calculation by the
get_err_rateO function.

5.10-23 Version 1.0, November 1992

Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

6.1 USING THE vi EDITOR

Special Keys

Entering vi

TEKELEC

The Chameleon 32 C package provides an editor, called vi,
which is similar· in function to versions of the vi editor
commonly in use.

If you are familiar with vi, you may not need to read this
section in detail. The last few pages of the section contain a
listing of all commands and their definitions. A vi quick
reference chart is also included in the Chameleon 32 Quick
Reference Guide.

If you are unfamiliar with vi, you may want to create a text file
to practice using the vi commands as you read this chapter.

Esc, Return, and Delete have the following functions in vi:

Esc The Esc key cancels incomplete commands. Press
Esc if you have typed an incorrect command, or if
you are not sure what commands you have already
typed. Esc also exits from vi insert mode.

Return The Return key terminates commands.

Delete When inserting a command line, Delete moves the
cursor one character to the left. When you then
press Esc or Return, the characters to the right of
the cursor are erased.

To edit a file in the C Shell page, type the command:

vi filename

If the file exists, the file is displayed in the C Shell page. If the.
file does not exist, vi will assume you are creating a new file.

To edit a file in a separate page, use the syntax:

vi filename &

6.1-1 Version 2.4

Chameleon 32 C Manual

Exiting vi

Text Display

TEKELEC

Ch. 6.1: Using the vi Editor

This displays the file for editing in a VI page, which is separate
from the C Shell page. Likewise, if the file does not currently
exist, .vi assumes it is a new file you wish to create.

The tags (at) option invokes the vi editor to edit one or more'
files which contain a specified function (tag). For example, the
following command invokes the vi editor to edit the files that
contain the function specified by tagname, and positions the
cursor at the first occurrence of the function:

vi '-t tagname

In order to use the -t option, you must have used the shell
ctags command, which creates a tags file containing
information. about the functions in the target files. Refer to the
ctags command in Section 2.1 for more information.

Also refer to the :tag command on page 6.1-3 which enables
you to search for tags once you are in vi.

To exit vi, use the following commands:

zz

:q

Exits vi and saves the changes made to the file.

Exits vi without saving the chan'ges made to the file.'
Only use this command if you are sure you want to
discard the changes made to the file.

The commands below move the text within the page.

CTRL B Moves backward one page.

CTRL D Moves half a page forward.

CTRL E Moves the page down one line, leaving the
cursor at its current location ..

CTRL F Moves forward one· page.

CTRL U Moves half a page backward.

CTRL Y Moves the page up one line, leaving the cursor
at its current location.

z. Causes current line to be displayed in the
center of the page.

z-
z < Retum > Causes current line to be displayed at the top

of the page.

6.1-2 Version 2.4

Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

Search
Commands You can also move through th~ file by searching for a string,

using the following command:

Positioning
Commands

TEKELEC

/XXXXXXX < Return >

where xxxxxxx is any character string. If the string is not
present in the file, the editor indicates that this is the case, and
returns the cursor to its original position. Additional search
commands are:

n Searches forward for the next occurrence of the string

?xxxxxxx < Return> Searches backward through the file for

/AXXXXXXX

/xxxxxxx$

the character string xxxxxxx.

A caret at the beginning of the character string
searches for strings at the beginning of a line.

A dollar sign at the end of the character string
searches for strings at the end of a line.

:tag tagname Positions the cursor at the first occurrence of
the function specified by tagname in the files
being edited.

In order to use :tag, you must have used the
shell ctags command, which creates a tags
file containing information about the functions
in the target files. Refer to the ctags
command in Section 2.1 for more information.

You can move through the file by specifying a line number
using these commands:

xG

G

Ctrl G

""

Moves the cursor to line x.

Moves the cursor to the end of the file.

Display information about the file, including:

-the line number the cursor is positioned on
-the name of the file you are editing
-the number of lines in the buffer
-the percentage of the way through the buffer

Two back quotes moves you back to a previous
position

6.1-3 Version 2.4

Chameleon 32 C Manual Ch. 6.1: Using the'vi Editor

Screen Movement
Commands The four arrow keys (-+> ~ - t) move the cursor to any position

on the screen. Other cursor commands include:

Line Movement

TEKELEC

+ Moves to the first non-white character on the next
line

n + Moves to the first non-white character down n lines
from the current line

or
k Moves up one line.

n· or
nk Moves to the first non-white character up n lines

from the current line

Once you reach the line you want, you can move the cursor
within the line using the following commands:

b

nb

Moves to the beginning of the preceding word.

Moves back n words.

e Moves to the end of the current word.

ne Moves forward n words to the end of the word

backspace or
h Moves left one character

nh Moves left n characters

spacebar or
I Moves right one character

nl Moves right n characters

W Moves to the beginning of the next word.

nw Moves forward n words.

6.1-4 Version 2.4

Chameleon 32 C Manual

Insert Mode

TEKELEC

Ch. 6.1: Using the vi Editor

Note that the wand b commands treat punctuation as words,
and therefore stop the cursor at punctuation marks. The
corresponding upper case commands do not treat punctuation
as words:

B

nB

W

nW

Moves to the beginning of the preceding word.

Moves back n words.

Moves to the beginning of the next word.

Moves forward n words.

When you first enter the vi editor you are in command mode.
The command mode enables you to move the cursor around
in the file. If you want to add, change, and/or delete text, you
must change to insert mode. To enter insert mode, type:

In insert mode, the keys that you press are interpreted as text
input, and are entered to the left of the cursor.

There is also an append mode, which causes typed
characters to be entered to the right of the cursor. To enter
append mode (from command mode), type:

a

To exit either the insert mode or the append mode, and return
to command mode, press Esc.

If you want to insert a new line between existing lines of text,
use the following commands:

o Creates a new line below the current line, and enters
insert mode.

o Creates a new line above the current line and enters
insert mode.

While in either the 0 or 0 mode, press Return to insert
additional new lines of text. To exit 0 or 0 mode, press Esc.

You can also enter position the cursor and enter insert mode
using the following commands:

A Move to the end of the line and enter insert mode

Move to the beginning of the line and enter insert. mode

6.1-5 Version 2.4

Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

Deleting
Characters To make ·a correction when you are in command mode, use

the positioning keys described previously to place the cursor
over the character to bE' corrected, enter insert mode, and
then use one of the following commands:

Delete Command

TEKELEC

x Deletes the character directly under the cursor

X Deletes the character left of the cursor

nx Deletes n characters beginning with the character directly
under the cursor.

rx Deletes the current character and replaces it with
character x. .

sbbbb Esc Deletes the current character and replaces it
with the string bbbb.

nsbbbb Esc Deletes n characters beginning with the
character directly under the cursor, and
replaces them with the character string bbbb.

Some commands are used with other commands to augment
thei~ functions. For example, the d (delete) command can be
used in conjunction with other commands to delete different
amounts of text. For example:

db Deletes the word preceding the cursor

dd Deletes the current line

ndd Deletes n lines

dL Deletes all lines up to and including the last line on
the screen

dnL Deletes all lines up to the nth line from the bottom
of the screen.

dw Deletes a word

ndw Deletes n words

6.1-6 Version 2.4·

Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

Change Command The c (change) command can be used as follows:

Undoing
Changes

Moving Around
Quickly in a File

TEKELEC

cwxxxxEsc

ccxxxx Esc

Changes the text of a word to text xxxx

Changes the current line to text xxxx

The following ocmmand are available for undoing (reversing)
the effect of the preceding commmand:

u Undoes the last command, as if the command were
never performed

uu Undoes the undo command, replacing the change
which was undone by the u command

U Undoes the last command (up to 9 commands)

One way to move quickly to a certain place on a line is to use
a search command to search for a punctuation mark, and a
repeat command command to move to successive
occurrences of the punctuation mark.

To do this use the following commands:

fx Move to the next occurrence of character x on the
current line

Moves to the next instance of the same character.

To work with characters up to but not including character x,
you can use the t (up to) command. For example:

dtx Deletes characters up to but not including the
character x.

To move to the first non-white position on the current line, use
the command: .

To move to the begining of the previous line, use the
command:

6.1-7 Version 2.4

Chameleon 32 C Manual

Tab
Characters

REARRANGING
TEXT

TEKELEC

Ch. 6.1: Using the vi Editor

To move to the end of a line, use the command:

S

For example, the command Sa allows you to add new text to
the end of a line.

Tab and non-printing characters are treated as if they are a
single character, even though they take up move than one
character space in a file. Tabs are represented by CTRL I.
When the cursor moves to a tab or non-printing character, it
rests on the last space that represents the tab or character.

If you space or backspace over a non-printing character
(represented by a CTRL character and another character), the
cursor moves over it as if it were a single character.

The vi editor ignores the CTRL character if you insert it into a
file. If you want to be sure the vi editor does not ignore the
character, you must type a CTRL V before the CTRL
character.

The vi editor provides a number of text buffers. There is an
unnamed buffer which the, editor uses to save the last deleted
or changed text~ and a set of 26 buffers named a through z
which you can use to save copies of text, to move text around
in your file, and to move text between files.

You can use the command:

"xy

to put selected text into a buffer, where x specifies the buffer
name (a-z). If there is no buffer specified, the text will be put
into the unnamed buffer . To put the contents of a buffer back
into a file, use these commands:

P . Puts the text after or below the cursor

P Puts the text before or above the cursor

If the text you put in the buffer started with a line that was not
an entire line, it will be put LJack directly naxt to the cursor. If
the text you put in the buffer formed complete lines, it will be
put back as complete lines.

6.1-8 Version 2.4

Chameleon 32 C Manual

Marking Your
Place

TEKELEC

YP

nYP

Yp

nYp

Ch. 6.1: Using the vi Editor

Makes a copy of the current line and positions the
cursor on the copy.

Makes a copy of n lines and positions the cursor on
the copy.

Makes a copy of the current line, and positions the
cursor after the current line.

Makes a copy of n lines, and positions the cursor
after the current line.

To move text from one place in a file to another place in a file,
use a delete (d) command to move the text into a buffer and a
put (p) command to move the text from the buffer into the new
location in the file). For example, to move six lines of text, use
the following command sequence:

"a6dd Deletes six lines and puts the deleted text into
buffer a

Move the cursor to the new location for the text.

ap Puts the text in buffer a following the current
position of the cursor.

You can" return to the previous cursor position using the
command ". You can also mark places in your file with single
letter labels, then return to these labels later by specifying the
label name. The mark commands are: .

mx The cursor pOSition is marked with the reference x,
which is a letter from a - z.

'x Returns the cursor to the poitiosn marked with the
reference x.

'x Moves to the beginning of the line in which the
mark is located

Note that the labels disappear when you edit another file.

6.1-9 Version 2.4

Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

Adjusting the
Screen The fo/.lowing commands move lines and formfeeds:

SWitching
Between Files

TEKELEC

CtTI L This is the formfeed character, and causes the
screen to be repainted.

z

z.

z-

Moves the current line to the top of the screen

Moves the current line to the center of the screen

Moves the current line to the bottom of the screen.

You can edit a different file without leaving the vi editor by
entering the command:

:e filename < Return >

If you enter the command and you have not yet saved your
editing changes, the editor will remind you to do this first. You
can use the command :w < Return> to to save the file. Then,
give the :e filename < Return> command again. Or, you can
use the command:

:e! filename < Return >

which causes all the changes you made to the existing file to
be discarded, and opens up the specified new file for editing.

6.1-10 Version 2.4

Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

Editor Options Editor ~ptions are shown in the table below.

Name

autoindent

autowrite

ignorecase

list

magic

shiftwidth

tabstop

wrapscan

TEKELEC

Command Default Description

ai

aw

ic

list

magic

sw = n

ts = n

ws

noai Automatic indentation on/off

noaw Automatic write before :n, :ta, CTRL·, ! on/off

noic Ignore case in searching on/off

nolist Tabs print as CTRL I; end of lines marked with S
on/off

magic The characters . [and * are special in scans on/off

sw=8 Shift n characters for <, > and input CTRL D and
CTRL T

ts=4 Sets n number of characters indented for tab

ws Wrapscan on/off

You can put these statements in your EXINIT, or give the
commands while running vi. While in vi, you must precede the
comments with a colon {:} and end them with Return. There
are two kinds of options:

numeric options
on/off toggle options

You can set numeric options by a statement of the form:

set option = value

For example, in vi, the following sets the tabstop to 5:

:set ts=5

You can change toggle options on or off, using the form:

set option
set nooption

For example, in vi to turn autoindent on, use the command:

:set ai

To turn autoindent off in vi, use the command:

:set noai

6.1-11 Version 2.4

Chameleon 32 C Manual

Recovering
Deleted Text

TEKELEC

Ch. 6.1: Using the vi Editor

To display a list of set options and their current settings, use
the command:

:set all < Return >

set can be abbreviated se. Multiple options can be placed on
one line, for example:

:se ai aw < Return >

Options set by the set comand only last while you are in the vi
editor. If you want to have certain options set whenever you
use the vi editor, you can create a list of commands to set up
those options. The command list will be run every time. you
open up the editor. . ,

The following example sets the autoindent and autowrite
options, makes the @ character function as a "delete line"
key; and makes the # character function as a "delete a
character" key.

set ai awlmap @ ddlmap # x'

Redefining characters is described later in this chapter.

The command string should be put in the variable EXINIT. If
you use csh, put this line in the file .login in your home
directory.

The vi editor saves the last nine deleted blocks of text in a set
of registers numbered 1-9. To get the nth previous deleted
text back into your file, use the command:

"np

where n is the number of the buffer you need. If you want to
see the buffer after the nth buffer, use the command:

The period command, in general, causes the last command
typed to be repeated. For the "np command, however, it
increments the buffer number before it re-executes the
command.

6.1-12 Version 2.4

Chameleon 32 C Manual

Automatic
Word Wrap

High Level
Editing Functions

Autoindent

Line
Shifting

TEKELEC

Ch. 6.1: Using the vi Editor

If you are inputting large amounts of text, and you want to
avoid pressing Return at the end of every line, use the
command:

wm= 10 <Return>

This command causes each line to be broken at a space of at
least 10 columns from the right margin. To put a broken line
back together, use the command: .

J.

If you need to put several lines together, you can precede the
J with the number of lines. For example, 4J joins 4 lines
together.

The vi editor provides a number of high level editing functions
such as automatic tab indention and parenthesis matching.
These functions are described below.

The command:

:se ai < Return >

sets autoindent mode. While in this mode, all lines typed after
a tab will automatically line up under that tab. You will not be
able to backspace over the automatically inserted tabs, but
you can use the Ctrl D command to backtab over the tabs.
For every the cursor will back up one tab position, usually 8
spaces. You can use the command:

:se sw = x < Return >

to change the number of spaces represented by one tab
position. x represents the number of spaces. sw is called the
shiftwidth function.

You can shift lines in your file to the right and to the left by
using the command:

»
to shift your line one shiftwidth to the right, and

«

to shift your line one shiftwidth to the left.

6.1-13 Version 2.4

Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

Matching
Parentheses If you want to track how parentheses are matched in a

complex expression, you can move the cursor to the right or
left parenthesis and use the command:

Macros

TEKELEC

%

This will show you the matching parenthesis. The command
can also be used for {} and []. .

The vi editor allows you to create macros. Macros are user
specified combinations of keystrokes set up to execute at a
single keystroke command. There are two types of macros: ..

1. You can put the macro in a buffer register, for example,
Register x. You will then be able to type @x to run the
macro. You can also type @@ to repeat the last macro.

2. You can use the map command from vi as follows:

:map x y

where x is the name of the macro, and y is the listing of
commands. Note that:

x should be one keystroke because, it must be
entered within one second (unless notimeout is
set).

x can be no more than 10 characters·

y can be no longer than 100 characters

To put a space,tab, or newline into x or y, you
need to escape them with a Ctrl V.

Spaces and tabs inside y need not be escaped.

To delete a macro, use the command:

unmapx

If the macro x is #0 through #9, this maps the particular
function key instead of the 2 character sequence of the pound
sign and the number.

You can place a ! after the word map to cause the mapping to
apply to input mode, instead of command mode.

6.1-14 Version 2.4

· Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

Word
Abbreviation There is a word abbreviation function similar to the macro

function which allows you to type an abbreviation that the
editor will automatically spell out. Use the command:

Lines and the
vi Editor

TEKELEC

:ab xxx yyyyyyyyyy yyyyyy YYWY

where xxx is the abbreviation and yyyyyyyyyy wwyy yywy is
the expanded version of the abbreviation. Only whole words
are affected. If xxx is part of a larger word, the vi editor will
not change it. xxx does not need to be limited to a single
keystroke.

The editor folds long logical lines onto many physical lines in
the display. Line commands affect logical lines. The vi editor
puts only full lines on the display. If there is not enough room
for an entire logical line, the vi editor will not put part of the
line on the screen, but will leave it empty and use a @ as a
place holder.

You can cause tabs to be represented as Ctrll and the ends
of lines represented by S by using the command :se list
< Return> to enable, and :senolist < Return> to disable.

When the file ends above the last line on the screen, the
missing lines are represented by the character -.

6.1-15 Version 2.5

Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

Counts As stated previously, many vi commands use a number
preceding the command to alter the command. For example:

new window size
scroll amount
line/column number
repeat

: I? •
CTRLD CTRLU
zG
most of the rest

The vi editor remembers the current default window size. This
is the size used when the vi editor clears and refills the screen
after a search or repositions the cursor far from the current
window.

The scroll commands CTRL D and CTRL U remember the
amount of scroll last specified, starting with one half the
window size.

Except for a few commands, the rest of the editor commands
use a count to indicate a Simple repetition of their effect For
example, 6w advances six words on the current line.

File Manipulation
Commands The following table lists the file manipulation commands.

Command DescrIption

:w Write back changes

:wq Write and quit

:x Write (if necessary) and quit (same as ZZ)

:ename Edit file name

:el Re-edit. discarding changes

:e+name Edit, starting at end .

:e+n Edit. starting at line n

:8# Edit alternate file

:wname Write file name

:wl name Overwrite file name

:x,yw name Write lines x through y to name

:rname Read file name into buffer

:n Edit next file in argument list

:nl Edit next file, discarding changes to current

:n args Specify new argument list

TEKELEC 6.1-16 Version 2.5

Chameleon 32 C Manual

SEARCHING FOR

Ch. 6.1: Using the vi Editor

As the list indicates, if you make" changes to the editor copy of
the file, but do not want to write them back, then you must
give an ! after the command you are using.

The :e command can be given a + argument to start at the
end of the file, or a + n argument to start at line n.

The % character replaces the current filename, and the #
character replaces the alternate filename.

You can write part of the buffer to a file by finding out the lines
that bound the range to be written using the Ctrl G command,
and giving these numbers after the : and before the w,
separated by ,'so You can read another file into the buffer
after the current line by using the :r command. You can also
read in the output from a command by using !cmd instead of a
file name.

To edit a number of files in succession, you can give all the
names on the command line, and then edit them in turn by
using the command :n.

STRINGS When you search for strings using I and ?, the editor normally
places you at the next or previous occurrences of the string.
If you want to affect lines up to the line before the line
containing the string, you can use a command of the form:

Magic

TEKELEC

/pat/-n

to refer to the nth line before the next line containing pat, or
you can use + instead of - to. refer to the lines after the one
containing pat. If you do not give a line offset, the vi editor
affects characters up to the pat, rather than whole lines; thus
use + 0 to affect to the line which matches.

To have the vi editor ignore the case of the words in the
search, use the command:

:se ic < Return> •

The command :se noic < Return> disables this.

Strings searched for may contain regular expressions. If you
do not need this, you can give the command:

set no magic

in your EXINIT. Then, only the characters A and S are special.
The character \ may be used for an extended pattern matching
facility. It is necessary to use a \ before a I in a forward
search, or a ? in a backward search. "

6.1-17 Version 2.4

Chameleon 32 C Manual

Command
A

S

\<

\>

[str]

(A str]

[x-yJ

*

Correction
Characters

Command

CTRLH

CTRLW

erase

kill

\

ESC

DEL

CR

CTRLD

OCTRLD

'CTRLD

CTRLV

TEKELEC

Ch. 6.1: Using the vi Editor

The table below shows extended forms when magic is set.

Description

At beginning of pattern, matches beginning of line

At end of pattern, matches end of line

Matches any character .
Matches the beginning of a word

Matches the end of a word

Matches any single character in str
Matches any single character not in str

Matches any character between x and y

Matches any number of the preceding pattern

If you are using no magic, the. [and * primitives are given
with a preceding \.

There are a number of characters which you can use to make
corrections during input mode. These are shown in the
following table. Your system kill character (@. CTRL X or
CTRL, U) will erase all the input you have given on the current
line. If you want to tYpe in your erase or kill character. you
must precede it with a \a

Description

Deletes the last input character

Deletes the last input character, defined as by b

Your erase character, same as CTRL H

Your kill character, deletes the input on this line

Escapes a following CTRLH and your erase and kill

Ends an insertion

Interrupts an insertion, terminating it abnormally

Starts a new line

Backtabs over autoindent

Kills all the autoindent

Same as 0 CTRL D, but restores indent next line

Quotes the next non-printing character into the file

6.1-18 Version 2.4

Chameleon 32 C Manual

vi Softkeys

Introduction

Softkey
Options

Ch. 6.1: Using the vi Editor

There are several softkeys that correspond to vi commands
that you can use to edit your programs. The softkeys act as
macros. When you press the softkey, the command is typed
onto the screen. You must then type any additional
information (filename, for example), that is required by the
syntax, and then press Return to execute it.

There are two sets of vi softkeys. When you load the vi editor,
the first softkey strip appears at the bottom of the Chameleon
32 screen, as follows:

Open Save Quit I Sav/Cit I Revert II L.. _R_e_ad......JI'-· _s_e_t--l._N_ext_..&.I_R_ew_i_nd--,-I_E_D_I_T~
F1 F2 F3 F4 F5 F6 F7 Fa F9 FlO

These are the FILE softkeys. In general, the FILE softkeys
enable you to select a file for editing, save files, set editor
options, and exit from vi.

When you press FlO Edit the second set of vi softkeys, the
EDIT softkeys, are active, as shown below:

L..-1"_se_rt-,-IL..,Ap_pe_n_d....lI_D_e_1 _ch_r l_c_u_t --,-_Co_p_Y.....I11 Paste I Srch Fw I Srch Bk I Again FilE

F1 F2

TEKELEC

F3 F4 F5 F6 F7 Fa F9 FlO

In general, the EDIT sofkeys enable you to make changes to
the text in your program file. If you select F1 Insert or F2
Append the softkey strip disappears from the screen because
the other options are invalid when you are in either of these
modes. To escape from the Insert or Append mode and
redisplay the softkey strip, press the Esc key.

Use the F10 key to move between the EDIT and FILE softkey
strips.

Table 6.1-1 lists the softkeys, a brief description of the
commands they represent, and a page reference for more
information about the command syntax and usage.

6.1-19 . Version 2.4

Chameleon 32 C Manual Ch. 6.1: Using the vi Editor

Command

Softkey Strip
See

Softkey Key Description
Page

F1 - Open :e Edit file 6.1-16

F2 - Save :w Save changes 6.1-16
FILE

SOFTKEYS F3 - Quit :q Quit vi and return to % 6.1-2

F4 - Sav/Qit ZZ Save changes and quit vi 6.1-2

F5 -"Revert :e!
Discard changes made to current

6.1-16
file and re-edit

F6 - Read :r Read file into buffer 6.1-16

F7 - Set :set Set editor options 6.1-11

F8 - Next :n Edit next file in argument list 6.1-16

F9 - Rewind :rew Edit previous file in argument list 6.1-16

F1 - Insert i Insert before cursor 6.1-4

EDIT F2 - Append a Append after cursor. 6.1-4
SOFTKEYS

F3 - Del chr x Delete a character 6.1-5

F4 - Cut y Put line into buffer 6.1-8

F5 - Copy Yp
Make a copy of the current line

6.1-9
below the cursor

F6 - Paste p
Copy line from buffer below
cursor

6.1-8

F7 - Srch Fw /
Search forward from cursor for

6.2-5
specified string

Fa - Srch Bk ? Search backward from cursor for
6.2-5

specified string

F9 - Again Redo last operation 6.2-4

Table 6.1-1: vi Softkey Assignments

TEKELEC 6.1-20 Version 2.4

Chameleon 32 C Manual

vi On-Line Help

TEKELEC

Ch. 6.1: Using the vi Editor

When you are in the vi editor, you can access on-line help by
pressing the Help key on the Chameleon ·32 keyboard. It is
located to the right of the space bar.

To exit from the on-line help, and return to the vi editor, press
any key.

6.1-21 Version 2.4

Chameleon 32 C Manual Ch. 6.2: Command Reference

6.2 COMMAND REFERENCE

TEKELEC

The following tables list each vi command and give detailed
definitions. Control characters are listed first, then special
characters, then digits, and fin~lly, upper and lower case.

A brief Quick Reference Guide is included in the Quick
Reference section of this manual.

6.2-1 Version 2.2

Chameleon 32 C Manual Ch. 6.2: Command Reference

CONTROL CHARACTERS

Command Definition

CTRLA Density

CTRLB Move a full window backward. A count specifies repetition. Two lines
of continuity are kept if possible.

CTRLC Not used

CTRLD As a command, scrolls down a half-window of text. A count gives the
number of logical lines to scroll, and is remembered for future CTRL
D and CTRL U commands. During an insert, backtabs over
autoindent white space at the beginning of a line; this white space
cannot be backspaced over.

CTRLE Move the window down one line.

CTRLF Move a full window forward. A count specifies repetition. Two lines
of continuity are kept if possible.

CTRLG Equivalent to :f CR, printing the current file, whether it has been
modified, the current line number and the number of lines in the file,
and the percentage of the way through the file that you are.

CTRL H (BS) Move left one character (same as left arrow or h). During an insert,
eliminates the last input character, backing over it but not erasing it; it
remains so you can see what you typed if you wish to type something
only slightly different

CTRL I (TAB) Not a command character. When inserted. it prints as some number
of spaces. When the cursor is at a tab character, it rests at the last

. of the spaces which represent the tab. The spacing of tab stops is
controlled by the tabstop option.

CTRL J (LF) Same as down arrow.

CTRLK Move up one line (sme as k).

CTRLL Move right one character (same as I)

CTRLM Move to the first non-white character on the next line.

CTRLO Not used

CTRLQ Not a command character. In input mode, CTRL a quotes the next
character

CTRLR Redraws the current screen, eliminating logical lines not
corresponding to physical lines (lines with only a single @ character
on them).

CTRLS Unused

CTRLU Moves half a window forward; .

TEKELEC 6.2-2 Version 2.2

Chameleon 32 C Manual Ch. 6.2: ComQ1and Reference

CONTROL CHARACTERS

Command Definition

CTRLV Not a command character. In input mode, quotes the next character
so that it is possible to insert non-printing and special characters into
the file

CTRLW In insert mode, deletes the last word typed.

CTRLX Not used

CTRLY Moves the window up one line.

CTRLZ Not used

CTRL\ Not used

CTRL) Searches for the word which is after the cursor as a tag. Equivalent
to typing :ta, this word, and then a CR. .

CTRL· Equivalent to :e # CR, returning to the previous position in the last
edited file, or editing a file which you specified if you got a "No write
since last change diagnostic" and do not want to have to type the file
name again.

CTRL Not used -

TEKELEC 6.2-3 Version 2.2

Chameleon 32 C Manual Ch. 6.2: Command Reference

SPECIAL CHARACTERS

Command Definition

space Same as right arrow

.. Precedes a named buffer specification. There are named buffers 1-
9 used for saving deleted text and named buffers a-z into which you
can place text.

$ Moves to the end of the current line. If you :se list CR, then the end
of each line will be shown by printing a $ after the end of the
displayed text in the line. Given a count, advances to the count
following the end of line.

% Moves to the parenthesis or brace which balances the parenthesis or
brace at the current cursor position.

,
When followed by a ' returns to the previous context at the beginning
of a line. The previous context is set whenever the current line is
moved in a non-relative way. When followed by a letter a-z,
returns to the line which was marked with this letter with an m
command, at the first non-white character in the line. When used
with an operator such as d, the operation takes place over complete
lines; if you use " the operation takes place from the exact marked
place to the current cursor position within the line.

* Not used

+ Same as CR when used as a command

Repeats the last command which changed the buffer. Especially
useful when deleting words or lines; you can delete some words/lines
and then hit. to delete more and more words/lines. Given a count, it
passes it on to the command being repeated.

@ A macro character. If this is your fill character, you must escape it
with a \ to type it in during input mode, as it normally backs over the
input you have given on the current line.

> An operator which shifts lines right one shiftwidth, normally 8 spaces.
Uke all operators, affects lines when repeated, as in > >. Counts
are passed through to the basic object.

TEKELEC 6.2-4 Version 2.2

Chameleon 32 C Manual Ch. 6.2: Command Reference

SPECIAL CHARACTERS

Command Definition

/ Reads a string from the last line on the screen. and scans forward for
the next occurrence of this string. The normal input editing
sequences may be used during the input on the bottom line. The
search begins when you hit CR to terminate the pattern; the cursors
moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB. or
by backspacing when at the beginning of the bottom line. returning
the cursor to its initial position. Searches normally wrap end-around
to find a string anywhere in the buffer.

When used with an operator. the enclosed region is normally
affected. By mentioning an offset from the line matched by the
pattern you can force whole lines to be affected. To do this give a
pattern with a closing / and then an offset + n or -no

To include the character / in the search string, you must escape it
with a preceding \. A' at the beginning of the pattern forces the
match to occur at the beginning of a line only; this speeds the
search. A $ at the end of the pattern forces the match to occur at
the end of a line only. More extended pattern matching is available.

1-9 Used for numeric arguments to commands

. A prefix to a set of commands for file and option manipulation and
escapes to the system. Input is given on the bottom line and
terminated with an CR, and the command then executed. You can
return to where you were by hitting the DEL or RUB if you hit :
accidentally.

• Repeats the last single character find which used f F t or T. A
count iterates the basic scan.

< An operator which shifts lines left one shiftwidth, normally 8 spaces.
Uke all operators, affects lines when repeated. as in < <. Counts
are passed through to the basic object.

? Scans backwards. the opposite of /.

TEKELEC 6.2-5 Version 2.2

Chameleon 32 C Manual Ch 6.2: Command Reference

UPPER CASE COMMANDS

Command Description

A Append at the end of the line

B Backs up a word. where words are composed of non-blank
sequences, placing the cursor at the beginning of the word. A count
repeats the effect.

C Changes the rest of the text on the current line; same as c$

D Deletes the rest of the text on the current line; same as d$

E Moves forward to the end of a word. defined as blanks and non-
blanks, like Band W. A count repeats the effect.

G Goes to the line number given as the preceding argument, or the end
of the file if no preceding count is given. The screen is redrawn with
the new current line in the center if necessary.

H Move to the first line in the window (home position).

I Inserts at the beginning of a line; same as • i.

J Joins together lines. supplying appropriate white space; one space
between words, two spaces after a ., and no spaces at all if the first
character of the joined on line is a). A count causes n lines to be
joined.

K Not used

L Move to· the last line in the window or to the nth line above the last
line in the window.

N Scans for the next match of the last pattern given to / or ?, but in the
reverse direction; this is the opposite of n.

0 Opens a new line above the current line and inputs text there up to
an ESC.

P Puts the last deleted text back before/above the cursor. The text
goes back as whole lines above the cursor if it was deleted as whole
lines. Otherwise. the text is inserted between the characters before
and at the cursor. May be preceded by a named buffer specification
"x to retrieve the contents of the buffer; buffers 1-9 contain deleted
material. buffers a-z are available for general use.

Q Not used

R Enter replace mode. Terminates with an ESC.

TEKELEC 6.2-6 Version 2.2

Chameleon 32 C Manual Ch 6.2: Command Reference

UPPER CASE COMMANDS

Command Description

S Changes whole lines, same as cc. A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the
screen before the substitution begins.

U Restores the current line to its state before you started changing it.

V Not used

W Moves forward to the beginning of a word in the current line, where
words are defined as sequences of blank/non-blank characters. A
count repeats the effect.

X Deletes the character before the cursor. A count repeats the effect,
but only characters on the current line are deleted.

y Yanks a copy of the· current line into the unnamed buffer, to be put
back by a later p or P. A count yanks that many lines. May be
preceded by a buffer name to put lines in that buffer.

ZZ Exits the editor. Same as :x CR. If any changes have been made,
the buffer is written out to the current file. Then the editor quits.

\ Not used
..

Moves to the first non-white position on the current line

- Not used

When followed by a • returns to the previous context. The previous
context is set whenever the current line is moved in a non-relative
way. When followed by the letter a-z, returns to the pOSition which
was marked with this letter with an m command. When used with an
operator such as d, the operation takes place from the exact marked
place to the current position within the line; if you use " the operation
takes place over complete lines ..

TEKELEC 6.2-7 Version 2.2

Cha~eleon 32 C Manual Ch. 6.2: Command Reference

LOWER CASE COMMANDS

Command Description

a Appends arbitrary text after the current cursor position; the insert can
continue onto multiple lines by using CR within the insert. A count
causes the inserted text to be copies, but only if the inserted text is
all on one line. The insertion terminates with an ESC .

b . Backs up to the beginning of a word in the current line. A word is a
sequence of alphanumerics, or a sequence of special characters. A
count repeats the effect.

c Deletes the specified text and enters insert mode.

d . Deletes the specified text.

e Advances to the end of the next word, defined as for band w. A
count repeats the effect.

f Finds the first instance of the next character following the cursor on
the current line. A count repeats the find.

g Not used

h Left arrow. Moves the cursor one character to the left. Like the
other arrow keys, either h, the left arrow key, or one of the synonyms
(A H) has the same effect. A count repeats the effect.

i Inserts text before the cursor, otherwise like a

j Down arrow. Moves the cursor one line down in the same column

k Up arrow. Moves the cursor one line up. .p is a synonym.

I Right arrow. Moves the cursor one character to the right. SPACE is
a synonym.

m Marks the current position of the cursor in the mark register which is
specified by the next character a-z. Return to this position or use
with an operator using , or '.

n Repeats the last I or ? scanning commands.

a Opens new lines below the current line; otherwise like O.

p Puts text from the unnamed buffer following the cursor.

q Not used.

TEKELEC 6.2-8 Version 2.2

Chameleon 32 C Manual Ch. 6.2: Command Reference

LOWER CASE COMMANDS

Command Description

r Replaces the single character at the cursor with a single character
you type. The new character may be a CR; this is the easiest way to
split lines. A count replaces each of the following count characters
with the single character given. R is usually more useful than r.

s Changes the single character under the cursor to the text which
follows up to an ESC; given a count, that many characters from the
current line are changed. The last character to be changed is
marked with $.

t Advances the cursor up to the character before the next character
typed. Most useful with operators such as d and c to delete the
characters up to a following character. You can use. to delete more
if this doesn't delete enough the first time.

u Undoes the last change made to the current buffer. If repeated, will
alternate between these two states, thus is its own inverse. When
used after an insert which inserted text on more than one line, the
lines are saved in the numeric named buffers.

v Not used

w Advances to the beginning of the next word.

x Deletes the single character under the cursor. With a'count deletes
that many characters forward from the cursor position, but only on
the current line.

y An operator, yanks the following object into the unnamed temporary
buffer. If preceded by a named buffer specification, "x, the text is
placed in that buffer also. Text can be recovered later by a p or P.

z Redraws the screen with the current line placed as specified by the
following character: CR specifies the top of the screen, . the center
of the s~reen, and - at the bottom of the screen. A count may be
given after the z and before the following character to specify the
new screen size for the redraw. A count before the z gives the
number of the line to place in the center of the screen instead of the
default current line.

- Not used

TEKELEC 6,2-9 Version 2,2

Chameleon 32 C Manual Appendix A: Limits and Extensions

COMPILER
LIMITS

char, unsigned char

int, unsigned, short

long, unsigned long

float

double

any type*

Variable names:

APPENDIX A

LIMITS AND EXTENSIONS

1 byte

2 bytes

4 bytes

4 bytes

a bytes

4 bytes

255 bytes (first 1 0 must be unique)

Floating point: IEEE format: 32 bit float, 64 bit double, aO-bit
intermediate .

. Register variables: 6 (2 pointer, 4 scalar)

EXTENSIONS

Structure passing, assignment and returning.

In-line M6aOOO assembly (parsed and assembled by compiler).

Character constants can be int and long size (ie. 'xx' and 'xxxx').

The same structure member name can be used in more than one structure.

Forward pointer references to Structures and Unions.

Addition of types unsigned long and unsigned char.

TEKELEC A-l Version 2.2

Chameleon 32 C Manual

LINKER

Symbols:

Segment types:

LIBRARIAN

Files per library:

Operations:

TEKELEC

Appendix A: Limits and Extensions

256 character maximum
Local and Global symbols are supported.

TEXT (code), DATA (initialized data), BSS
(uninitialized data)

unlimited

Add file, Delete file, Extract file, create random
library, list files

A-2 Version 2.2

Chameleon 32 C Manual Appendix B. 1: Common Library Features

B.1 COMMON LIBRARY FEATURES

Introduction This section contains information that is common to all the
protocol libraries described in Appendix B. The return codes
described in this section are defined in the file cham.h in the
directory a:/include. You will find it helpful to print a copy of
the cham.h file for your reference. .

Sample Programs The following sections describe each library separately. At the
end of each library description, you will find sample programs
that utilize that library. Some sample programs utilize more
than one library; these sample programs are cross-referenced
instead of being repeated.

TEKELEC

All the sample programs can· be found on the C Sample
Program Diskette. The samples consist of three programs for
each protocol. These samples are designed to be run alone
or against each other as follows:

XXXa.c Runs on a single or dual port machine on Port
A. The program begins by initiating a
transmission. It can be run against program
XXXb.c(with XXXb.c on a second machine, or
with both programs on the same dual port
machine-one on Port A and one on Port B).

XXXb.c Runs on a dual port machine on Port B. Can
also run on a single port machine if the
setport command is changed to call Port A
instead of Port B. This program begins by
waiting for a transmission.

XXXab.c Runs on a dual port machine by running Port
A against Port B.

8.1-1 Version 2.4

Chameleon 32 C Manual Appendix B.l: Common Library Features

FEP State Codes The initp1 or init anal function initializes the Chameleon
Front End Processor (FEP) for a specific library. After using
one of these functions, the state of the FEP is indicated by
one of the following codes:

Error Codes

TEKELEC

Number Meaning
,

100 FEP is being used by another application and
cannot be initialized by the simulation library. (The
FEP is busy.)

101 The FEP has not been initialized by the simu.lation
library (The FEP is currently free).

102 FEP is initialized by the current simulation library.
(The FEP is running.)

The error codes shown below may be returned by any of the
protocol library functions. Note that FEP refers to the
Chameleon Front End Processor.

Number . Meaning

-200 Port is busy
-201 FEP parameter error
-202 FEP Parameter port
-203 Not available on an ISDN interface
-208 Code not found
-209 FEP cannot be started
-211 Transmission mode not valid
-212 Timeout
-213 No memory available
-214 FEP Code read
-215 FEP copier not found
-216 . FEP Code not loaded
-217 Cannot halt FEP
-218 No Port B
-219 Internal error
-220 FEP Load error
-222 Undefined status
-224 FEP Data not set (initp1 not performed)
-225 Unknown FEP error

B.1-2 Version 2.4

Chameleon 32 C Manual Appendix B.1: Common Library Features

Functions The functions listed in this section are included in all protocol
libraries. The functions are described on the following pages:

FUNCTION PAGE

FLUSH B:1-4

GETPHY B.1-5

GETPORT B.1-6

GETIME B.1-7

INITTIME B.1-8

P1RESET B.1-9

SETLEDS B.1-10

SETPHY B.1-11

SETPORT B.1-12

SETTIMER B.1-13

TIMER B.1-14

TEKELEC B.1-3 Version 2.4

Chameleon 32 C Manual

FLUSH

Declaration

Description

Returns

Note

TEKELEC

Appendix B.l: Common Library Features

int flush()

This function clears all outstanding frames in the reception
buffer.

o
3

Successful
Receive buffer overflow

See global errors on page 8.1-1.

To clear a receive buffer overflow condition, perform an Initp1.

B.1-4 Version 2.4

Chameleon 32 C Manual Appendix B.l: Common Library Features

GETPHY

Declaration int getphyO

Description This function indicates the setting of the physical lines.

Returns 2-byte integer that can be interpreted using the figure below.

See global errors on page 8.1-1.

BYTEO ,LSB}

I BIT: I 7 6 5 4 3 2 1 0

carr Circuit No. I PIN: I 105 108 140 141 104 103· 114 115

V.24 Reference I PIN: I 4 20 3 2 15 17

RS232 Signal Name ISIG: I RTS OTR RO TO SCT SCR

BYTE 1 ,MSB}

~ 7 6 5 4 3 2 1 0

carr Circuit No. PIN: 106 107 109 125 142

V.24 Reference I PIN: I 5 6 8 22

RS232 Signal Name I SlG: I CTS OSR CD RI

TEKELEC B.1-5 Version 2.4

Chameleon 32 C Manual

GETPORT

Declaration

Description

Returns

TEKELEC

Appendix B.1: Common Library Features

int getportO

This function returns which port is currently communicating
with the library. Use the setport function to select the port.

o Port A selected.
1 Port 8 selected

See global errors on page 8.1-1.

B.1-6 Version 2.4

Chameleon 32 C Manual

GETIME

Declaration

Description

Returns

Example

TEKELEC

Appendix B.1: Common Library Features

#include < mtosux.h >
int getime(msbfr)
unsigned char *msbfr;

This function. gets the number of milliseconds since the
system was started. msbfr is the address of a 6-byte buffer to
receive the time value.

NOERR
BADPRM

Time value successfully copied
Unable to write into msbfr

unsigned char mstime[6];
getime(mstime);

B.1-7 Version 2.4

Chameleon 32 C Manual

INITTIME

Declaration

Description

Returns

TEKELEC

Appendix B.1: Common Ubrary-Features

inittimeO

This function initializes the .01 second and 1 second timers.
The timers are set to their end time: 00 for the down
counters, and FFFE for the up counters. You then can set the
timers using the settimer command.

See global errors on page 8.1-1.

B.1-8 Version 2.4

Chameleon 32 C Manual

P1RESET

Declaration

Range

Description

Returns

TEKELEC

Appendix B.1: Common Library Features

int p1 reset(kind)
int kind;

kind o Restart simulation
1 Stop simulation

This function either restarts or resets (stops) P1
The restart function clears the reception buffer.
function is similar to a hardware reset.

o Successful
-1 Parameter error

See global errors on page 8.1-1.

8.1-9

simulation.
The stop

Version 2.4

· Chameleon 32 C Manual

SETLEDS

Declaration

Range

Description

Returns

TEKELEC

Appendix 8.1: Common Library Features

int setleds(port)
int port;

port o
1

Port A LEDs are displayed
Port B LEDs are displayed

For Dual Port machines, this function controls which port's
LEOs are displayed on the front panel of the Chameleon 32.

o
1
2

Successful
Invalid parameter
Dual Port board not installed

See global errors on page 8.1-1.

8.1-10 Version 2.4

Chameleon 32 C Manual Appendix 8.1: Common Library Features

SETPHY

Declaration setphy(val)
int val;

Description This function sets the physical lines using val, which is bit-
mapped as follows:

SIMULATING OCE

I BIT: I 7 6 5 4 3 2 1 0

COTT Circuit No. I PIN: I 106 107 109 125 142

V.24 Reference I PIN: I 5 6 8 22

RS232 Signal Name I SIG: I CTS DSR CO RI

SIMULATING OTE

I Bn: I 7 6 5 4 3 2 1 0

CCITT Circuit No •. I PIN: I 105 108 140 141

V.24 Reference I PIN: I 4 20

RS232 Signal Name I SIG: I RTS OTR

Returns See global errors on page 8.1-1.

TEKELEC B.1-11 Version 2.4

Chameleon 32 C Manual

SETPORT

Declaration

Range

Description

Returns

TEKELEC

Appendix B.l: Common Library Features

int setport(port)
int port;

port o
1

Port A
Port B

This function sets the library to use either Port A or Port B.
Use the getport function to determine which port is currently
being used by the library. '

o Successful
-1 Parameter out of range
-2 Attempted to select Port B on Chameleon with a single

port (Port A)

See global errors on page B.1-1.

B.1-12 Version 2.4

Chameleon 32 C Manual

SETTIMEA

Declaration

Range

Description

Returns

TEKELEC

Appendix 8.1: Common Library Features

int settimer(number, value)
int number;
unsigned int value;

number o
1
2
3

.01 seconds (counting down)

.01 seconds (counting up)
seconds (counting down)
seconds (counting up)

This function sets the timer specified by number to the indicated
value.

o
1
2

Successful
number outside of range
inittime not performed

See global errors on page 8.1-1

8.1-13 Version 2.5

Chameleon 32 C Manual

TIMER

Declaration

Range

Description

Returns

TEKELEC

Appendix 6.1: Common Ubrary Features

int timer(number)
unsigned int(number)

number o
1
2
3

.01 seconds (counting down)

.01 seconds (counting up)
seconds (counting down)
seconds (counting up)

This function returns the value ~f a timer specified by number.

See global errors on page 8.1-1

6.1-14 Version 2.5

Chameleon 32 C Manual Appendix B.2: BOP Library

B.2 BIT ORIENTED PROTOCOL EMULATION C LIBRARY

Introduction

TEKELEC

The Bit-Oriented Protocol Emulation C Library (Iibbop.a) is
valid for any Bit Oriented Protocol. It is in the \Iib directory.

There are two library functions which initialize the Chameleon
Front End Processor:

• The initp1 function initializes the Chameleon to handle a
maximum frame size of 2 kbytes. When initialized with
this function, you can run Chameleon monitoring
applications simultaneously to analyze the simulation
traffic.

• The initp 1 8k function initializes the Chameleon to
handle frames up to 8 kbytes, but does not allow you to
run Chameleon monitoring applications simultaneously.

The functions are described on the following pages:

FUNCTION PAGE

DISCARD B.2-2

GET NXLEN B.2-2

GET NXSTAT B.2-3

INITP1 8.2-4

INITP1 8K B.2-5 -
RECEIVE 8.2-6

SETFLG B.2-7

TRANSMIT 8.2-8

TREADY 8.2-9

Also refer to Appendix B.1 for a description of common library
functions and error codes.

A sample program using the 80P library is provided at the end
of this section.

B.2-1 Version 2.6

Chameleon 32 C Manual

DISCARD

Declaration

Description

Returns

GET NXLEN

Declaration

Description

Returns

Teke/ec

Appendix B.2: BOP Library

int discard ()

This function provides a means oif discarding a frame without first
receiving it into a buffer.

o
<0

Frame discarded or no frame in buffer
standard error codes: FEP not started, etc.

See also the global error codes on page 8.1-1.
See GET_NXLEN, GET_NXSTAT.

int get_nxlen ()

This function returns the length of the next frame to be passed from
the FEP, providing you with information needed to optimize buffer
usage and detect abnormally long frames that might otherwise
exceed the allocated buffer space and overwrite part of the
program.

No new frame
Length of next frame to be received
standard error codes: FEP not started, etc.

See also the global error codes on page 8.1-1 .

B.2-2 Version 2.6

Chameleon 32 C Manual

GET NXSTAT

Declaration

Description

Returns

Teke/ec

Appendix B.2: BOP Library

int get_nxstat ()

This function lets you 'look ahead' at the status of the next frame to
be received, allowing you to decide whether to receive the frame or
discard it.

o
1
2
3
<0

No new frame
Frame ok
Frame received has a parity error
Frame received contains an abort sequence
standard error codes: FEP not started, etc.

See also the global error codes on page 8.1-1 .

B.2-3 Version 2.6

Chameleon 32 C Manual

INITP1

Declaration

Range

Description

Note

Returns

TEKELEC

Appendix B.2: BOP Library

int initp1 (type. encode, bitrate, flag)
int type;
int encode;
unsigned long bitrate;
int flag;

type O· DCE
1 DTE
2 ISDN

encode 0 NRZ
1 NRZI

bitrate SOL - 64000L

flag 0 FF
non-O 7E

This function initializes the Front End Processor (P1) and loads
its simulation software. The maximum frame size that can be
handled by the simulator when initialized with this code is 2
kbytes.

The initp 1 8k function enables you to initialize the Chameleon
to handle frames up to 8 kbytes.in size. However, when
initialized for 8 kbyte frame size, you cannot run monitoring
application simultaneously to analyze the simulation data.

o Successful
-1 One or more parameter errors
-2 P1 program file could not be loaded

See also the global error codes on page B.1-1.

B.2-4 Version 2.6

Chameleon 32 C Manual

INITP1 8K -
Declaration

Range

Description .

Returns

TEKELEC

Appendix B.2: BOP Library

int initp1 8k(type, encode, bitrate, flag)
int type;-
int encode;
unsigned long bitrate;
int flag;

type 0 DCE
1 DTE
2 ISDN

encode 0 NRZ
1 NRZI

bitrate SOL - 64OO0L

flag 0 FF
non-O 7E

This function initializes the 8 kbyte frame size version of the
Front End Processor (P1) and loads its simulation software.

The maximum frame size that can be handled by the simulator
when initialized with this code is 8 kbytes. However, you do
not have the ability to simultaneously monitor the line.

The initp1 function initializes the Chameleon for frames up to 2
kbytes in size and allows you to run monitoring applications
simultaneously for analyzing the simulation data.

o Successful
-1 One or more parameter errors
-2 P1 program file could not be loaded

See also the global error codes on page 8.1-1.

B.2-5 Version 2.6

Chameleon 32 C Manual

RECEIVE

Declaration

Description

Returns

Example

TEKELEC

int receive(frame)
char "'frame;

Appendix B.2: BOP Library

This function receives a frame from P1 and places the frame
starting at the address pointed to by the passed variable
frame.

The external global variable rx/en is set to the length of the
received frame. If rx/en = 0, then no frame was received.

o . Good CRC or no frame waiting
1 Bad CRC
2 initp 1 not performed
3 Overflow
4 Abort frame received

See also the global error codes on page B.1-1.

When a RECEIVE buffer overflow error occurs (error code 3).
use the Initp1 function to clear the condition. The flush
function wil not clear this condition.

do {
receive(frame);

} while (rxlen == 0);

B.2-6 Version 2.6

Chameleon 32 C Manual

SETFLG

Declaration

Range

Description

Returns

TEKELEC

Appendix B.2: BOP Library

int setflg (flag)
int flag;

flag 0
1

Fill with FFs
Fill with 7Es

This function changes the idle fill pattern.

See also the global error codes on page 8.1-1.

8.2-7 Version 2.6

Chameleon 32 C Manual

TRANSMIT

Declaration

Range

Description

Returns

TEKELEC

Appendix B.2: BOP Library

int transmit(mode, frame, length)
int mode;
char 'rame;
int length;

mode o
1
2

Good CRC
Bad CRC
Abort sequence

This function transmits the number of bytes specified by the
passed variable /enoth, starting at the address pointed to by
the passed pointer *frame.

o
1
2
3
4

Successful
P1 busy (transmitting previous frame)
initp 1 not performed
Parameter error
Buffer overflow (to clear condition use initp 1)

See also .the global error codes on page B.1-1.

B.2-8 Version 2.6

Chameleon 32 C Manual

TREADV

Declaration

Description

Returns

TEKELEC

Appendix B.2: BOP Library

int treadyO

This function returns the status of the transmitter.

o
1
2
3

Transmitter is ready for next frame
Transmitter is sending previous frame
initp 1 not performed
Overflow

See also the global error codes on page B.1-1.

B.2-9 Version 2.6

Chameleon 32 C Manual Appendix B.2: BOP Library

SAMPLE
PROGRAMS There are three BOP Library sample programs provided on the

C Sample Programs Disk:

• bopab.c
• bopa.c
• bopb.c

BOPAB.C This sample program runs on a Dual Port machine and
demonstrates transmitting and receiving over a V.24 interface
using the libbop.a library.

#include <stdio.h>
#include <video.h>
#include <cham.h>

/.

• INITIALIZE PORTS A AND B (LOAD FRONT END PROCESSORS)
./

init_ports()
{
int err;

/ ••••••••••• SETUP PORT "A" ••••••••••• /
if ((err=setport(PORTA» 1= 0) (

printf("ERROR: setport = ~d\n·, err);
exit(O);

}
if ((err=initpl(DCE,NRZ,96001,FILL7E» != 0) (

printf("ERROR: initpl = ~d\n", err);
exit(O) :

}

/ ••••••••••• SETUP PORT "B" •••••••••••• /
if ((err=setport(PORTB» != 0) (

printf("ERROR: setport = ~d\n", err);
exit(O):

}
if ((err=initpl(DTE,NRZ,96001,FILL7E» != 0) (

printf("ERROR: initpl = Xd\n", err);
exit(O);

}
}

/.

• RECEIVE DATA FROM THE PORT SPECIFIED
./

receive_data(port)
unsigned char port;

TEKELEC 8.2·10 Version 2.6

Chameleon 32 C Manual Appendix B.2: BOP Library

{
extern unsigned int rxlen;
unsigned char rxbuf[128];
int i;

/- global variable for receive data length -/

}

setport(port); /- activate appropriate port -/
rxl en = 0;
/- WAIT FOR DATA -/
while (rxlen==O) /- if rxlen=O then no data was received -/

receive(rxbuf);

for(i=O;i<rxlen;i++)
printf("~x ',rxbuf[i]); /- print results of data transfer -/

/-

- TRANSMIT DATA OUT THE PORT SPECIFIED
-/

send_data(port,buffer)
unsigned char port,-buffer;
{
int err;

}

setport(port); /- activate appropriate port -/
if«err=transmit(GOOD_CRC,buffer,100» != 0) {

printf(FRED); /* change text color */

}

switch (err) {

}

case 1:
printf("\ntransmit=~d; P1 busy sending previous frame\n",err);
break;

case 2:
printf("\ntransmit=~d; lnitpl not performed\n",err);
break;

case 3:
printf("\ntransmit=ld; Parameter "error\n" ,err);
break;

case 4:
printf("\ntransmit=~d; Buffer overflow, do a P1reset\n",err);
break;

printf(FWHITE); /- change text color back to normal -,

/-

* PROMPT USER FOR STATUS OF TRANSMITTER
-/

query_transmit_status()
{
extern long _stdvt;
unsigned char ans;

TEKELEC B.2-11 Version 2.6

Chameleon 32 C Manual Appendix B.2: BOP Library

}

wh il e (1) {

}

printf("\n~sPress RETURN to Transmit or any other key for Statusls\n",FYELLOW,FWHITE);
if«ans=getcwt(_stdvt» != '\r')

switch (tready(}) {

}
else

case 0:
printf(·~sTransmitter is ready to send the next frame~s\n",FGREEN,FWHITE);
break;

case 1:
printf("~sPl busy sending previous frame~s\n",FRED,FWHITE);
break;

case 2:
printf("~sInitpl not performedls\n",FRED,FWHITE);
break;

case 3:
printf("%sBuffer overflow%s\n",FREO,FWHITE);
break;

break; /. exit routine ./

main()
{

unsigned char atrans[100]; /* transmit array ./
int i;

printf(ClEARS); /* clear the screen */

, .••..................................... ,
'* INITIALIZE BOTH FRONT END PROCESSORS *' ,•............... ,

j •• ,

/* TRANSFER DATA FROM PORT A TO PORT B ., , .. ,
for (i=0;i<=99;i++)

atrans[i]=Ox66; ,. store hex 66 into transmit array *j

query_transmit_status(); '* check status before transmitting *'
send_data(PORTA,atrans); '* transmit data out port A *'
receive_data(PORTB); '* receive data on port B *'
, .. ,
/* TRANSFER DATA FROM PORT B TO PORT A */ , .. ,
for (i=0;i<=99;i++)

TEKELEC 8.2-12 Version 2.6

Chameleon 32 C Manual

}

atrans[i]=Ox22; /* store hex 22 into transmit array */

query_transmit_status(); /* check status before transmitting */

send_data(PORTB,atrans); /* transmit data out ~ort B */

receive_data(PORTA): /* receive data on port A */

printf("\n\n");

TEKELEC B.2-13

Appendix B.2: BOP Library

Version 2.6

Chameleon 32 C Manual Appendix 8.2: BOP library

BOPA.C This sample program demonstrates transmitting and receiving
on Port A over a V.24 interface using the libbop.a library. If
this program is run against bopb.c, they must both be run in
background mode.

#include <stdio.h>
#include <cham.h>
maine)
{

}

extern long _stdvt;
extern unsigned int rxlen; /* global variable for receive data length */

unsigned char atrans[100],rxbuf[128]; /* transmit & rev;eve arrays */

int result,err,i:
unsigned char c;

/. SET THE ACTIVE PORT TO "A" ./
if((err=setport(PORTA» != 0) {

printf("ERROR: setport = ~d\n", err):
exit(O);

}

if ((err=initpl(DCE,NRZ.9600l.FILL7E» 1= 0) {
printf("ERROR: initpl = ~d\n". err);
exit(O) ;

}

tor (1=0:i<=99;i++)
atrans[i]=Ox66; /. store ~ex 66 into transmit array */

printf("\n hit RETURN to send the data out of port 'A'\n"):
getchar();

result=transmit(GOOD_CRC.atrans.l00); /. transmit 100 hex 66 & get result */

printf("\nresult of transmit=~d\n·.result):

printf("\nWaiting to receive data on port 'A'\n"):
RxLEN=O;

/. WAIT FOR DATA ./
while (rxlen==O) {

receive(rxbuf); /. if rxlen=O then no data was received */

if((c=getchLstdvt» == 'q' II c == 'Q') exit(O); /* fail safe */

}

for(i=O;i<rxlen;i++)
printf(·~x ".rxbuf[i]); /* print results of data transfer */

printf("\n hit RETURN to exit the program\n"):
getchar() :

TEKELEC B.2- 14 Version 26

Chameleon 32.C Manual Appendix B.2: BOP Library

BOPB.C This sample program demonstrates transmitting and receiving
on Port B over a V.25 interface using the Iibbop.a library. If
this program is run against bopa.c, they must both be run in
background mode.

#inc1ude <stdio.h>
#inc1ude <cham.h>
main{)
{

}

extern long _stdvt;
extern unsigned int rx1en; ,- global variable for receive data length -,
unsigned char atrans[100],rxbuf[128]; ,- transmit & recieve arrays -,
int resu1t,err,i;
unsigned char c;

,- SET THE ACTIVE PORT TO "B" -,
if((err=setport(PORTB» != 0) {

printf("ERROR: setport = ~d\n", err);
exit(O);

}

if ((err=initpl(DTE,NRZ,96001,FILL7E» != 0) {
printf("ERROR: initpl = ~d\n", err);
exit(O) ;

}

printf{"\nWaiting to receive data on port 'B'\n");
RxLEN=O;

,- WAIT FOR DATA -,
while (rx1en==0) {

receive(rxbuf); ,- if rx1en=0 then no data was received -,
if{ (c=getchLstdvt» == 'q' II c == 'Q') exit(O); ,- fail safe -,

}

for(i=0;i<rx1en;i++)
printf("~x ",rxbuf[i]); ,- print results of data transfer -,

for (i=0;i<=99;i++)
atrans[i]=Ox77; ,- store hex 77 into transmit array -,

printf("\n hit RETURN to send the data out of port 'B'\n");
getchar();

resu1t=transmit(GOOD_CRC,atrans, 100); ,- transmit 100 hex 77 & get result -,
printf("\nresu1t of transmit=~d\n",result);

printf("\n hit RETURN to exit the program\n");
getchar();

TEKELEC B.2-15 Version 2.6

Chameleon 32 C Manual Appendix B.3: LAPD Library

B.3 LAPD LIBRARY

Introduction

, I

TEKELEC

The LAPD Library is valid for the CCID automatic Q.921
frame level. It is called Jib/apd.a and it is in the Vib directory.
The LAPD library fully simulates AT&T Specification 5E4 LAPD
and includes the following features:

• Supports up to three SAPls and three TEls, plus the
broadcast TEl

• Automatically responds with received SAPI and TEl
• Transmits and receives XID and UI frames

The LAPD library functions are described on the pages below.

FUNCTION PAGE

GET.MOD B.3-4
GET.RNTEI B.3-5
GET.RSAPI B.3-6
GET.SCONFIG B.3-7
GET.SIM B.3-8
INITP1 B.3-9
RECEIVE B.3-10
RESTARTSIM B.3-12
SETFLG B.3-13
SET .BIT.RATE B.3-14
SET.MOD B.3-15
S.N200 B.3-16
S.N201 B.3~17
SET.NET B.3.18
SET.RNTEI B.3.19
SET.RSAPI B.3.20
·SET.SAPI B.3.21
SET.SCONFIG B.3.22
SET.SUB B.3.24
S.T200 B.3.25
S~T203 B.3.26
SET.TEI 8.3.27
SET.WINDOW B.3.28
SLOF B.3.29
SLON 8.3.30
STATUS 8.3.31
STOPSIM 8.3.32
TRANS B.3.33
TRANSMIT 8.3.34
TRUI B.3.35
TRXCNI B.3.36
TRXRNI B.3.37
TRXIDC 8.3.38
TRXIDR 8.3.39

Refer to Appendix B.1 for a list of common library functions.

B.3·1 Version 2.4

Chameleon 32 C Manual Appendix B.3: LAPD Library

Automated
Functions When a command frame is received with any combination of

the three user-defined SAPI's and TEl's, or one of the three
SAPI's and the broadcast TEl, the response is autc matically
given a matching SAPIITEI combination. Thus, you no longer
have to simulate support of more than one TEl.

TEKELEC

Since this version of LAPD Simulation can receive a number of
different frame types from a number of sources that contain an
information field, a frame status byte has been added at the
beginning of every data packet passed to your program.
Refer to the receive function for the frame status byte
interpretation.

You can also set and display the status configuration byte
using function in the LAPD library. Refer to the set sconfig
and get sconfig library functions for more information and for
an interpretation of the configuration status byte.

The simulator is configured to assume that an XID frame
without an I-field is the link monitor and automatically
responds. Therefore no status is in the reception buffer when
an XID frame without an I-field is received.

B.3-2 Version 2.4

. Chameleon 32 C Manual Appendix 8.3: LAPD Library

Timeouts The library timeouts vary from 15 seconds to 45 seconds.
When you receive a timeout return from any of the functions,
you should stop and reset the Front End Processor, using the
function p1 reset(1) or initp10. If you continue to experience
problems, reset the Chameleon 32.

Defining Links To define a link, the following four functions are used:

Note

TEKELEC

• SET TEl
• SET-SAPI
• SET-RNTEI
• SET-RSAPI

In the Single Link LAPD library, you use SET TEl and
SET SAPI to set the TEl and SAPI values for the link:-

SET RNTEI and SET RSAPI are used in conjunction with
SET-TEl and SET sAP!. The SET RSAPI and SET RNTEI
commands allow you to select up totnree user-defineaSAPls
and TEls. One of the defined SAPls and TEl can then be
selected as the transmit value for the link. The three user
defined SAPls are referred to as RSAPIO, RSAPI1, and RSAPI2.
Likewise, the three user-defined TEls are referred to as
RNTEIO, RNTEI1, and RNTEI2.

To communicate on a given link, use SET SAPI and SET TEl.
to select the R"SAPI and" RNTEI. with the Oesired SARI ana-TEl
values. For example, if you use SET RSAPI to select 0, 16,
and 63 as the user-defined SAPls, ana SET RNTEI to select
0, 10 and 20 as the user-defined TEIs, youwould have the
following array of values available:

RTEIO=O RTEI1 = 10 RTE12=20

RSAPIO=O 0,0 0,10 0,20

RSAPI1 =16 16,0 16,10 16,20

RSAPI2=63 63,0 63,10 63,20

You would then use SET SAPI and SET TEl· to make one of
these links active. For example: -

SET _ SAP 1(63) Sets the transmit SAPI value to 63

SET_TEl(127) Sets the transmit TEl value to 127

Only one link at a time can be in the multi-frame alignment
state.

8.3-3 Version 2.5

Chameleon 32 C Manual

GET MOD -
Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD Library

int get_mod 0

This function returns the current modulus. The modulo may
change when receiving SABMs or SABMEs.

o
1

Mod8
Mod128

See also the global error codes on page B.1-1.

{

}
printf ("\nResult from get_mod==%d\n". get_mod (»;

B.3-4 Version 2.5

Chameleon 32 C Manual

GET· RNTEI -
Declaration

Range

Description

Returns·

Sample Usage

TEKELEC

Appendix B.3: LAPD Library

int get rntei (val)
int val;

val 0-2

This function returns the value of a user-defined TEl used for
reception.

The TEl (Terminal Endpoint Identifier) is a value assigned to
and may be associated with a . single terminal and a given
point-to-point data link connection. At any time, a given
terminal endpoint (TE) may contain one or more TEls.

This value may be assigned by the carrier at the time of
equipment installation, or may be automatically assigned on a
call-by-call basis. The broadcast value is associated with all
user-side data link entities with the same SAPI, regardless of
other assigned value(s). .

o - 127 (Value of TEl val)
-1 val outside of range

See also the global error codes on page 9.1-1.

{

}
printf ("\nResult from get_rntei==O/Od\n". get_rntei (0»);

B.3-5 Version 2.4

Chameleon 32 C Manual

'GET RSAPI -
Declaration

Range

Description

Returns

Sample Usage

TEKELEC

int get rsapi (val)
int val;

val 0 -2.

Appendix B.3: LAPD Library

This function returns the value of a user-defined SAP I used for
reception. The SAPI (Service Access Point Identifier)
indicates the layer two se~ice type requested or supported.

0-63
-1

Receive SAPI value
val outside of range

See also the global error codes on page B.1-1.

{

}
printf ("'nResult from get_rsapi==%d\n", get_rsapi (0»);

B.3-6 Version 2.4

Chameleon 32 C Ma"nual Appendix B.3: LAPD Library

GET SCONFIG

Declaration

Description

11 6 543 2 1 0

I

Returns

Sample Usage

TEKELEC

int get_config 0

This function returns the status configuration byte, interpreted
as shown below.

1 Bit

Reserved

Interframe Fill o = Set interframe fill to value 7E
1 = Set interframe fill to value FF

Address Restricted
0= Unrestricted (ACce~t responses matchin1 user-

defined SAPls and EI and broadcast TEL
1 = Restricted (Restrict received responses to the

transmit SAPI and TEl).

Status Changin~ Frames " o = Poll normal Set poll bit normal on status changing
frames SABM(E~ and DISC.)

1 = Poll set \set pol bit on status changing frames
SABM(E and DISC.)

SABM(E) Response
o = UA on:r. Stop ~enerating SABM(E) collisions. , 1 = UA an SABM(). Generate SABM(E) collisions.

XID Poll Bit
00 = No XID frames polled.

;

01 = Poll only XID frames without I-fields.
10 = Poll only XID frames with I-fields.
11 = Poll all XID frames

XID Exchange
o = Stop transmitting XI D's on T203 timeout.
1 = Transmit XID command on T203 timeout.

Status configuration byte.

See also the global error codes on page 8.1-1.

{

}
printf ("\nResult from get_sconfig==%x\n". get_sconfig ());

8.3-7 Version 2.4

Chameleon 32 C Manual

GET SIM -
Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD Library

int get_sim 0

This function returns the side being simulated.

o
1

Network
Subscriber

See also the global error codes on page 8.1-1.

{

}
printf C'\nResult from get_sim==O/Od\n", get_sim ());

8.3-8 Version 2.4

Chameleon 32 C Manual

INITP1

Declaration

Range

Description

Returns

Sample Usage*

TEKELEC

Appendix B.3: LAPO Library

int initp1 (interface, station, encode, bitrate)
int interface, station, encode;
long bitrate;

interface 0
1
2

station 0
1

encode 0
1

DeE (V-type)
DTE (V-type)
ISDN (Valid only if the Primary Rate or Basic
Rate Interface is physically installed)

Network
Subscriber

NAZ
NAZI

bftrate Integer value in the range 50-64000

This function initializes the Front End Processor and loads its
simulation software.

o Successful
-1 Parameter error

See also the global error codes on page B.1-1.

{

}
printf ("'nResult from initpl==~d'n·. ;n;tpl(O.1.0.16000l»:

DeE NRZ

Subscriber

*NOTE: The program must include cham.h for the definition.

8.3-9 Version 2.S

Chameleon 32 C Manual

RECEIVE
Declaration

Description

extern int rxlen;
int receive (rloc)
char *rloc;

Appendix B.3: LAPD library

This function receives an I-field from the data link layer, and
places it starting at the address pointed to by the passed
variable rloc. A status byte added in front of the received
information which can be interpreted as shown below.

The external global variable rx/en will be set to the length of
the received frame. If rx/en = 0, no I-frame was received.

17 6 5 4 3 2 1 o I BIT

Returns

TEKELEC

o
2
4

U .. "'fRAME
1 '" XID FRAME
2", I FRAME

0", TEl 0

1 = TEl 1

2 = TEl 2

3=BCTEI

O.SAPIO

1.SAPl1

2=SAPl2
,

0", COMMAND

1 = RESPONSE

O=PJF=O

1=PJF=1

Successful or no frame waiting
initp 1 not performed
P1 is busy

See also the global error codes on page 8.1-1.

B.3-10 Version 2.5

Chameleon 32 C Manual

Sample Usage

{
char rxbuf [512]:
int a;
extern int rxlen:
do { '-If rxlen = O. ,then no data was received) -,

a=receive (&rxbuf[O]);
} while (rxlen==O):

Appendix B.3: LAPD Library

printf("Receive len==ld. dl status==lx, Data Status==lx\n", rxlen, a, rxbuf [0]):
for(a=l; a < rxlen; a++)

printfC"lx " • rxbuf [a]):
puts("\n"):
}

TEKELEC B.3-11 Version 2.4

Chameleon 32 C Manual

RESTARTSIM

Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD Library

int restartsimO

This is equivalent to p1 reset(O). This function restarts P1
simulation. The restart function will bring the link down, as if
the initp 1 command had been carried out.

o
1

Successful
Time out

See also the global error codes on page 8.1-1.

{

}
printf ("\nResult from Restartsim==%d\n", restartsim 0);

B.3-12 Version 2.4

Chameleon 32 C Manual

SETFLG

Declaration

Range

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD Library

int setflg (flag)
int flag;

o
Non-zero

Fill with FF
Fill with 7E

This function changes the idle fill pattern.

o
1

Successful
Time out

See also the global error codes on page B.1-1.

{

}
printf ("\nResult from setflg==%d\n", setflg (0»;

B.3-13 Version 2.4

Chameleon 32 C Manual Appendix B.3: LAPD Library

SET BIT RATE - -
Declaration int set bit rate (rate)

long rare; -

Range

Description

Returns

Sample Usage

TEKELEC

rate 50 - 64000

This function sets the bit rate .. No check of the range is done.
It is your responsibility to verify that you enter a valid bit rate.

o Successful
1· Error

See also the global error codes on page 8.1-1.

{

}

B.3-14 Version 2.4

Chameleon 32 C Manual

SET MOD

Declaration

Range

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD library

int set mod (val)
int val;

val 0
1

Mod8
Mod 128

This function sets the modulus of N(S) and N(R).

o Successful
-1 val outside the range 0 - 1
1 Time out

See also the global error codes on page 9.1-1.

{

}
printf ("\nResult from set_mod = =%d\n", set_mod (0»);

8.3-15 Version 2.6

Chameleon 32 C Manual

S N200 -
Declaration

Range

Description

NOTE

Returns

Sample Usage ...

TEKELEC

int s n200(val}
int val;

val = 1 to 512

Appendix B.3: LAPD Library

This function sets the value of N200, the number of
retransmissions. This value defines the maximum number of
frame retransmissions that can occur after successive lapses
of the T201 timer before declaring the link unattainable, and
sending disconnects.

This function is also represented by set n 1 in the sample
programs on pages 8.3-43 and 8.3-45. TffiS representation of
the S N200 function is included in the LAPO Library to ease
the transition from HOLe to LAPO programming and aid in the
conversion of HOLe programs to run LAPO.

o
1

Successful
Time out

See also the global error codes on page 8.1-1.

{

}
printf ("\nResult from s_n200==%d\n", 5_n200 (3»);

B.3-16 Version 2.6

Chameleon 32 C Manual

S N201

Declaration

Range

Description

NOTE

Returns

Sample Usage ...

TEKELEC

int s n201 (val)
int val;

val 1 - 512

Appendix B.3: LAPD Library

This function sets the value of N201, the maximum size of a
packet in bytes. When the system receives a frame, it checks
the value of the N201 variable. If the system receives a frame
longer than N201, it automatically sends a frame reject
(FRMR).

This function is also represented by set n2 in the sample
programs on pages 8.3-43 and 8.3-45. Tfiis representation of
the S N201 function is included in the LAPP Library to ease·
the transition from HOLC to LAPO programming and aid in the
conversion of HOLC programs to run LAPO.

o Successful
-1 val outside the range 1 - 512
1 Time out

See also the global error codes on page 8.1-1.

{

}
printf .. ("\nResult from s-..:.0201 ==%d\n"; 5_n201 (128});

B.3-17 Version 2.6

Chameleon 32 C Manual

SET NET -
Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD Library

int set_net 0

This function sets simulation of a network. When the
Chameleon 32 emulates a network, it sends commands with
the CIA bit set to one, and responds with the CIA bit set to
zero. It sends the selected SAPI and TEl with the CIA bit
automatically set in accordance with CCITI Q. 921.

o
1

Successful
Time out

See also the global error codes on page B.1-1.

{

}
printf ("\nResult from set_net= =0/0 d\n " , set_net 0);

B.3-18 Version 2.6

Chameleon 32 C Manual

SET RNTEI

Declaration

Range

Description

, Returns

Sample Usage

TEKELEC

int set rntei (val, tei)
int val;tei;

val 0 - 2

tei 0 - 255

Appendix 8.3: LAPD Library

This function specifies up to three TEl values that can be
received. by the RECEIVE function. Three user-defined TEls
and one broadcast TEl (127) can be defined at anyone time.
Once set, one of the defined TEls can be selected as the
transmit TEl using the SET_TEl function.

To disable a user-defined TEl, use SET RNTEI to assign an
invalid value to the TEl, or assign a TEl value that is already in
use.

o Successful
1 Time out

-1 Invalid value

See also the global error codes on page 8.1-1.

(at program initiation)

init()
{

}

setport(PORTA);
set rntei(O,PHONE A);
set-rntei(1,TA_A);-

8.3-19 Version 2.4

Chameleon 32 C Manual

SET RSAPI -
De..;laration

Range

Description

Returns·

Sample Usage

TEKELEC

Appendix B.3: LAPD library

int set rsapi (val, sapi)
. int val;5api;

val o - 2 SAPI number

sapi 0 - 63 SAPI value

Standard SAP I values are:

o Call control procedures
16 Packet communications procedures
63 Management procedures

This function selects 1 - 3 RECEIVE SAPI values. The SAP!
(Service Access Point Identifier) indicates the layer two service
type requested or supported. One of these defined SAP!s can
be selected as the transmit SAPI using the SET SAPI
function. -

To disable a user-defined SAPI, use SET RSAPI to assign an
invalid value to the SAPI, or assign a SAPiValue that is already
in use. .

o Successful
1 Time out

-1 Invalid val

See also the global error codes on page 8.1-1.

{

}
printf ("'nResult from set_rsapi==%d'n". set_rsapi (1,63»);

B.3-20 Version 2.4

Chameleon 32 C Manual

SET SAPI -
Declaration

Range

Description

Returns

Sample Usage

TEKELEC

. ··Appendix 8.3: LAPD Library

int set sapi(val)
int val;

val 0-63

This function sets the supported SAPI for transmission~ The·'
SAPI (Service Access Point Identifier) indicates the layer two
service type requested or supported.

Standard SAP I values are:

o Call Control procedures
16 Packet Communication procedures
63 Management procedures

o Successful
-1 val outside of range
1 Timeout

See also the global error codes on page B.1-1.

{

}
printf (-\nResult from set_sapi==Ofod\n-, set_sa pi (0»;

8.3-21 Version 2.5

Chameleon 32 C Manual Appendix 8.3: LAPD Library

SET SCONFIG -
Declaration

Range

Description

176543210

I

TEKELEC

int set sconfig (byte)
int byte;

byte 0 - 255

This function sets the status configuration byte which is a bit
mapped control configuration byte shown in the figure below .

. ,

I Bit

Reserved

Interframe Fill
o = Set interframe fill to value 7E
1 = Set interframe fill to value FF

Address Restricted
0= Unrestricted (Acce~t responses matchin3 user-

defined SAPls and EI and broadcast TEL
1 = Restricted (Restrict received responses to the

transmit SAPI and. TEl). .

Status changin~ Frames o = Poll normal Set poll bit normal on status changing
frames SABM(El and DISC.)

1 = Poll set ~Set pol bit on status changing frames
SABM(E and DISC.)

SABM(E) Response
o = UA on!r- Stop ~enerating SABM(E) collisions.
1 = UA an SABM(). Generate SABM(E) collisions.

XID Poll Bit
00 = No XID frames polled.
01 = Poll only XID frames without I-fields.
10 = Poll only: XID frames with I-fields.
11 = Poll all XID frames

X1D Exchange o = Stop transmitting XID's on T203 timeout.
1 = Transmit XID command on T203 timeout.

8.3-22 Version 2.5

· Chameleon 32 C Manual

Returns

Sample Usage

TEKELEC

'Appendix B.3: LAPD Library

o
1

Successful
Time out

See also the global error codes on page B.1-1.

{

}
printf (.. ..."Result from set_sconfig==%d...,,", set_sconfig (Ox7A»;

The hex value 7 A is represented in binary as:

0111,1010

which. sets the status configuration byte as follows:

Bit'7 = 0
Bit 6,5 = 11
Bit 4 = 1
Bit 3 = 1
Bit 2 = 0
Bit 1 = 1
Bit 0

Stop transmitting XID frames on T203 timeout
Poll all XID frames
Generate SABM(E) collisions
Poll set
Unrestricted address
Interframe fill = FF
Reserved

B.3-23 Version 2.5

Chameleon 32 C Manual

SET SUB -
Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix 8.3: LAPO Library

This function sets simulation of subscriber. When the
Chameleon 32 emulates a SIMP/L LAPD subscriber, it sends
commands with the C/R bit set to zero, and responses with
the C/R bit set to one. It sends the selected SAPI and TEl
with the C/R bit automatically set in accordance with CCITT Q.
921.

o
1

Successful
Time out

See also the global error codes on page 8.1-1.

.{

.}

8.3-24 Version 2.5

Chameleon 32 <: Manual

S T200

Declaration

Range

Description

NOTE

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD Library

s t200(val)
inT val;

val In units of seconds; any int value (0 ~ OxFFFF)

This function sets the value of the T200 frame level timer and
defines the maximum timeout period permitted between
sending a frame and receiving an acknowledgment. The timer
is started by the station when it sends any command frames.
If T200 expires before the station receives a response, it
retransmits the message and restarts the timer and
decrements N200. When the T200 expires, the frame is
retransmitted N200 - 1 times at T200 intervals. Following an
N200 - 1 number of retransmissions, the station takes
appropriate recovery action. If T200 expires and outstanding
frames remain unacknowledged, the station re-arms T200 and
sends an appropriate Supervisory Command Frame with the
poll bit set.

T200 is expressed in units of seconds. The T200 timer can
be disabled by setting it to zero. Disabling the T200 timer
enables you to test a device without receiving a link status
check or retransmitted frame while performing a manual
operation or test measurement.

This function is also represented by t1 in the sample programs
on pages 8.3-43 and 8.3-45. This representation of the
S T200 function is included in. the LAPD Library to ease the
transition from HDLC to LAPD programming and aid in the
conversion of HDLC programs to run LAPD.

o
1

Successful
Time out

See also the global error codes on page 8.1-1.

{

}
printf ("\nResult from s_t200==%d\n". s_t200 (4»);

8.3-25 Version 2.6

Chameleon 32 C Manual

S T203 -
Declaration

Range

Description

NOTE

Returns

Sample Usage

TEKELEC

Appendix 8.3: LAPD Library

s t203(val)
im val;

val In units of seconds; any int value (0 - OxFFFF)

This function sets the value of the T203 frame level timer. The
T203 variable defines the maximum amount of time allowed
between the transmission of frames. If this timer expires, the
Chameleon 32 tests the link conditions by transmitting an RR,
RNR, REJ or XID command, depending on the current state
and configuration.

The T203 timer can be disabled by setting it to zero. Disabling
the T203 timer enables you to test a device without receiving a
link status check or retransmitted frame while performing a
manual operation or test measurement.

This function is also represented by set t2 in the sample
programs on pages B.3-43 and B.3-45. lOis representation of
the S T203 function is included in the LAPD Library to ease
the transition from HDlC to LAPD programming and aid in the
conversion of HOlC programs to run LAPD.

o Successful
1 'Time out

See also the global error codes on page 8.1-1.

{

}
printf ("\nResult from s_t203==%d\n", s_t203 (100»);

B.3-26 Version 2.6

Chameleon 32 C Manual

SET TEl -
Declaration

Range

Description

Returns

Sample Usage

TEKELEC

. Appendix B.3: LAPD Library

int set tei (val)
int val;

val 0 - 127

This function sets the transmit TEl. The TEl (Terminal
Endpoint Identifier) is a value assigned to and may be
associated with a single terminal and a given point-to-point
data link connection. At any time, a given terminal endpoint
(TE) may contain one or more TEls.

This value may be assigned by the carrier at the time of
equipment installation, or may be automatically assigned on a
call-by-caJl basis. The broadcast value is associated with all
user-side data link entities with the same SAPI, regardless of
other assigned value(s).

o Successful
-1 val outside of range
1 Time out

See also the global error codes on page 8.1-1.

{

}
printf ("\nResult from set_tei==Ofod\n", set_tei (1);

B.3-27 Version 2.5

Chameleon 32 C Manual Appendix B.3: LAPO Library

SET WINDOW -
Declaration

Range

Description

Return

Sample Usage

TEKELEC

int set window (val)
int val;

val 1-7

This function sets the window size for the frame level. The
WINDOW variable defines the maximum number of
sequentially numbered I-frames that the transmitting side can.
have outstanding (unacknowledged) at any given time.

o Successful
-1 val outside the range 1 - 7
1 Timeout

See also the global error codes on page 8.1-1.

{

}
. printf-(-'nResulffrom set_window==O/Od'n-, set_window (3));

B.3-28 Version 2.5

Chameleon 32 C Manual

SLOF

Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD Ubrary

int slofO

This function disconnects the link at the frame level by sending
a DISConnect. .

o
1

Successful
Time out

See also the global error codes on page 8.1-1.

{

}
printf (-\tIResult from slot= =%d\tl-, slof 0);

8.3-29

, I

Version 2.4

Chameleon 32 C Manual

SLON

Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix 8.3: LAPD Library

int slonO

This function attempts to establish a link at the frame level by
sending a SABM or SABME, depending on the selected
modulus.

o
1

Successful
Time out

See also the global error codes on page B.1-1.

{

}
printf (-\nResult from slon= =%d\n-, slon 0);

8.3-30 Version 2.4

Chameleon 32 C MCinual

STATUS

Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD Library

int statusO

This function returns a value indicating the status of the frame
level. .

o
1
2
3
4
5
6
7
8

Disconnected
Link connection requested
Packet reject state
Link disconnection
Information transfer state
Local station busy
Remote station busy
Local & remote station busy
Remote station not responding

See also the global error codes on page 8.1-1.

{

}
printf (-\nResult from status==%d\n-, status ());

8.3-31 Version 2.4

Chameleon 32 C Manual

STOPSIM

Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix 8.3: LAPD Library

int stopsimO

This function stops P1 simulation which is similar to a
hardware reset.

o
1

Successful
Time out

See also the global error codes on page 8.1-1.

{

}
printf ("\nResult from stopsim= =%d\n", stopsim 0);

8.3-32 Version 2.4

Chameleon 32 C Manual

TRANS

Declaration

Range

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPO Library

int trans (stat, frame, len)
char *frame;
int stat, len;

stat Ox80
Ox81
Ox82
Ox83

I-Frame
UI frame
XID Command frame
XI D Response frame

*frame any valid pointer
{en 0 - 511

This function transmits a frame where the· type of frame is
identified by stat. *frame is any valid pointer and len is in the
range

o Successful
1 P1 busy (transmitting previous packet)
2 initp1 not performed
3 Link not established for an I-Frame
5 Time out
Value returned from trxcniO is returned if an XID command
frame is transmitted with len = 0
Value returned from trxrniO is returned if an XID response
frame is transmitted with len = 0

See also the global error codes on page B.1-1.

{

}
printf (-\nResult from trans==%d\n-, trans (Ox80," ABCO" ,4));

8.3-33 Version 2.5

· Chameleon 32 C Manual

TRANSMIT

Declaration

Description

Returns

Sample Usage

TEKELEC

int transmit (packet,length)
char *packet;
int length;

Appendix B.3: LAPD Library

This function transmits the number of bytes specified by the
passed variable length, starting at the address pointed to by
the passed variable *packet.

Transmit calls and returns the value returned by this call:

trans(IFRAME, packet, length)~

See also the global error codes on page 8.1-1.

.{

}
printf ("'nResult from transmit==%d'n", transmit ("ABCD",4»);

B.3-34 Version 2.5

· Chameleon 32 C Manual

TRUI

Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix B.3: LAPD Library

trui (xloc, xlen)
char *xloc;
int xlen;

This function transmits an unnumbered I-frame. x/oc is the
location of data. x/en is the length of the data field.

In keeping with Q.921, a UI frame can be transmitted without
first setting multiple frame mode. In other words, it is not
necessary to exchange SABM(E) and UA frames before
transmitting a UI frame.

TRUI calls and returns the value returned by this call:

trans(UI, packet, length)

See also the global error codes on page B.1-1.

{

}
printf (-\nResult from trui==%d\n-; trui (&buffer,4»;

B.3-35 Version 2.5

Chameleon 32 C Manual

TRXCNI

Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix 8.3: LAPD library

int trxcni 0

This function transmits an XID command frame without an 1-
field.

o
1

Successful
Timeout

See also the global error codes on page 8.1-1.

{

}
printf (-\nResult from trxcni = = % d\n" • trxcni 0);

8.3-36 Version 2.5

Chameleon 32 C Manual

TRXRNI

Declaration

Description

Returns

Sample Usage

TEKELEC

.. Appendix B.3: LAPD library

int trxrni ()

This function transmits an XID response frame without an 1-
field.

Values returned are as follows:

o Successful
1 Time out

See also the global error codes on page 8.1-1.

{

}
printf ("ItlResult from trxrni= =%dltl". trxrni 0);

B.3-37 Version 2.4

-- Chameleon 32 C Manual

TRXIDC

Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix 8.3: LAPD Library

int trxidc (xloc, xlen)
char *xloc;
int xlen;

This function transmits an XID command frame with the I-Field
defined by the user-program, located at x/oc in the memory
and of x/en length.

TRXIDC calls and returns the value returned by this call:

trans(XIDC, xloc, xlen)

See also the global error codes on page 8.1-1.

{

}
printf ("\nResult from trxidc= =%d\n". trxidc (aABCOa,4»);

8.3-38 Version 2.4

· . Chameleon 32 C Manual

TRXIDR

Declaration

Description

Returns

Sample Usage

TEKELEC

Appendix 8.3: LAPD Library

.int trxidr (xloc, xlen)
char *xloc;
int xlen;

This function transmits an XID response frame with the I-Field
defined by the user-program, located at xloc in the memory
and of x/en length.

This response frame is under control of the user-program
because of the indefinite nature of the I-Field. The received
data must be closely monitored to generate a timely response
to the XID command.

This TRXIDA command transmits an XID response frame with
a copy of the last received SAPI and TEl. In this way, the
process of preparing the SAPI-C/A combination takes less
time and the remote unit receives the response it is expecting.

In light of this, it is highly recommended that SIMP/L LAPD
application programs be designed to monitor received frames
and respond immediately when an XID command is received.
If an XID response is sent at a different time, the remote unit
may treat it as a command, if the last received frame was a
response.

If an XID command is received without an .I-field, it is assumed
to be a link monitor frame. In this case, an XID response with
matching SAPI and TEl is automatically transmitted without an
I-field. This relieves the programmer of having to generate
responses in applications which use XID frames to test the
phYSical link.

TAXIDA calls: trans(XIDR, xloc, xlen)

See also the global error codes on page 8.1-1.

{

}
printf ("\slResult from trxidr==%d\sl", trxidr (-ABCD-.4));

8.3-39 Version 2.4

Chameleon 32 C Manual

Sample Program

TEKELEC

Appendix 8.3: LAPD Library

There are three sample programs provided on the C Sample
Programs Disk for the LAPD Library. These are:

• LAPDA.C

• LAPDB.C

• LAPDAB.C

8.3-40 Version 2.4

Chameleon 32 C Manual . Appendix B.3: LAPD Library

LAPDA.C This program initializes the Chameleon's Port A for layer 3
transmission over a V-type interface.

'include
'include
'include
'define

<stdio.h>
<video.h>
<cham.h>
MOD128

main ()
{
extern long _stdvt;
extern unsigned int rxlen;
int i,result, err;
unsigned char rxbuf[100], txbuf[100], c;

, ••••••••••• SETUP PORT "A" ••••••••••• /
if ((err=setport(PORTA» != 0) {

printf("ERROR: setport = Xd'n", err);
exit(O):

}
puts(CLEARS); /. clear the screen ./
printf ("'n\n");

, ... /
'* configure LAPD parameters & set link on ./ ,•...•.............................. /
printf ("'nResult from initpl == Xd",initpl(DCE,NETWORK,NRZ,9600l»;
printf ("'nResult from setflg == Xd",setflg(FILLFF»;
printf ("'nResult from set_mod == Xd",set_mod (MOD128»;
printf. ("'nResult from s_n200 == Xd",s_n200 (3»;
printf ("'nResult from 5_n201 == Xd",s_n201 (260»;
printf ("'nResult from set_sapi == Xd",set_sapi (0»;
printf ("'nResult from set_tei == Xd",set_tei (10»;
printf ("'nResult from s_t200 == Xd",s_t200 (10»;
printf ("'nResult from s_t203 == Xd",s_t203 (20»;
printf ("'nResult from set_window == Xd",set_window (3»;
printf ("'nResult from set_sconfig == Xd",set_sconfig (OxOO»;
printf ("'nResult from set_rnte; == Xd'n",set_rsapi (1,0»;
printf ("'nResult from set_rnte; == Xd'n",set_rntei (1.10»;

TEKELEC B.3-41 Version 2.5

Chameleon 32 C Manual Appendix B.3: LAPD Library

}

while «status(» != 4) ,. check for information transfer state .,
{
puts(HOME); ,. move,cursor to the upper left corner of the screen e,
printf ("\nResult from status ==1d\n".status(»:
if«c=getchLstdvt» == 'Q' II c == 'q') exit(O):
}

for(i=O;i<=25;i++)
tXbuf(i] - 65 + i; ,. fill transmit buffer with upper case letters .,

puts(CLEARS); ,e clear the screen .,
printf("\n press RETURN to transmit\n");
getchar();

, ,
,. TRANSMIT OUT SOME DATA ., , ,
result=transmit(txbuf,i); /. transmit, txbuf & get result ./
printf("\nresult=1d\n",result); ,. result of transmit e,

printf("\n waiting to receive\n");

,•........................ ,
,. WAIT FOR THE INCOMMING OATA ., , ,
do {

receive(rxbuf); ,. if rxlen=O then no data was received .,
if«c-getchLstdvt» == '0' II C ... 'q') exit(O);

} while (rxlen==O);

printf(,·\nrxlen = Sd\n", rxlen);

, ... ,
,. THIS FIRST BYTE FROM THE RECEIVE IS THE STATUS BYTE .,

printf("\nThe status from the receive command = Sx\n",rxbuf(O]);

for(i=l;i<rxlen;i++)
p~intf("Sc ",rxbuf[i]); ,. print results of data transfer .,

printf("\n press RETURN to exit program\n");
getchar();

TEKELEC B.3-42 Version 2.5

Chameleon 32 C Manual Appendix B.3: LAPD Library

LAPDB.C This program initializes the Chameleon's Port B for layer 3
transmission over a V-type interface.

In this program, set_t1, set_t2, set_n1 and set_n2 are
alternate representations for, respectively, T200, T203, N200,
and N203.

'include
'include
'include
'define

<stdio. h)
<video.h>
<cham.h>
MOD12S

main ()
{
extern long _stdvt;
extern unsigned int rx1en;
int i,resu1t, err;
unsigned char rxbuf[100], txbuf[100], c;

/ ••••••••••• SETUP PORT ·B" ••••••••••• /
if ((err=setport(PORTB» != 0) {

printf("ERROR: setport = ~d'n·, err);
exit(O) ;

}
puts(CLEARS); /. clear the screen ./
printf ("'n'n·);

/ ... /
/. configure LAPD parameters & set link on ./ , ... ,
printf (·'nResu1t from initpl == ~d·,initpl(DTE,SUBSCRIBER.NRZ.9600l»;
printf ("'nResu1t from setflg == ~d·,setflg(FILLFF»;
printf ("'nResu1t from set_mod == ~d·,set_mod (MOD1Za»;
printf (·'nResult from set_nZ == ~d·,set_nZ (3»;
printf (·'nResu1t from set_nl == ~d",set_nl (Z60»;
printf ("'nResult from set_sapi == ~d",set_sapi (0»;
printf ("'nResult from set_tei == ~d".set_tei (10»;
printf (·'nResu1t from set_tl == ~d",set_tl (10»;
printf ("'nResult from set_tZ == ~d·,set_t2 (20»;
printf ("'nResult from set_window == ~d",set_window (3»;
printf ("'nResult from set_sconfig == 1d",set_sconfig (OxOS»;
printf ("'nResult from set_rntei == ~d'n".set_rsapi (1,0»;
printf ("'nResult from set_rntei == ~d'n·.set_rntei (1,10»;
printf ("'nResult from slon == ~d",slon (»;

TEKELEC B.3-43 Version 2.6

Chameleon 32 C Manual Appendix 8.3: LAPD Library

}

while «status(» 1= 4) ,. check for information transfer state .,
{
puts(HOME); ,. move cursor to the upper left corner of the screen .,
printf ("\nResult from status ==ld\n",status(»;
if«c=getch(_stdvt» == '0' II c == 'q') (slof(); exit(O); }
if«status(»==O)

}

{
printf ("\n Link Not Established\n");
slof(); ,. bring link down .,
exitCO);
}

puts(CLEARS) ;
printf("\n waiting to receive\n");

, ,
,. WAIT FOR THE INCOMMING DATA ., , ,
do {

receive(rxbuf); ,. if rxlen=O then no data was received .,
if«c=getch(_stdvt» == '0' II c == 'q') (slof(); exit(O); }

} while (rxlen==O);

printfC"\nrxlen = Sd\n", rxlen);

, ... ,
,. THIS FIRST BYTE FROM THE RECEIVE IS THE STATUS BYTE ., , ... ,
printf(·\nThe status from the receive command = lx\n",rxbuf[O]);

for(i=1;i(rxlen;i++)
printf("Sc ",rxbuf[i]); ,. print results of data transfer ./

for(i=O;i(=25;i++)
txbuf[i] = 97 + i; ,. fill transmit buffer with lower case letters .,

printf("\n press RETURN to transmit\n");
getchar();

,•..... ,
,. TRANSMIT OUT SOME DATA ., , ,
result=transmit(txbuf,i); ,. transmit txbuf & get result .,
printf("\nresult=ld\n",result); ,. result of transmit .,

slofC); ,. bring link down .,

printfC"\n press RETURN to exit program\n");
getchar();

TEKELEC 8.3-44 Version 2.6

Chameleon 32 C Manual Appendix B.3: LAPD Library

-LAPDA8.C This program .initializes the Chameleon for Dual port layer 3
transmission over a V-type interface.

In this program, set_t1, set_t2, set_n1 and set_n2 are
alternate representations for, respectively, T200, T203, N200,
and N203.

#include
#include
#include
#define

<stdio.h>
<video.h>
<cham.h>
MOD128 1

config_lapd()
{

}

, ... ,
,. configure LAPD parameters & set link on ., , ... ,
printf ("'nResult
printf ("'nResult
printf ("'nResult
printf ("'nResult
printf ("'nResult
printf ("'nResult
printf ("'nResult
printf ("'nResult
printf (·'nResult
printf (·'nResult
printf ("'nResult

from setflg == ~d·.setflg(FILLFF»;
from set_mod == ~d·.set_mod (MOD128»;
from set_n2 == ~d·.set_n2 (3»;
from set_nl == ~d·.set_nl (260»:
from set_sapi == ~d·.set_sapi (0»;
from set_tei == ~d·.set_tei (10»:
from set_tl == ~d·.set_t1 (10»;
from set_t2 == ~d·.set_t2 (20»;
from set_window == ~d·.set_window (3»;
from set_rntei == ~d'n·.set_rsapi (1.0»:
from set_rntei == ~d'n·.set_rntei (1.10»:

init_ports()
{
unsigned int err:

, ••••••••••• SETUP PORT "A" ••••••••••• /

if ((err=setport(PORTA» != 0) (
printf("ERROR: setport = ~d'n". err);
exit(O) ;

}
pr;ntf(·'n~s····· PORT A ·····'n~s·.FYELLOW,FBLUE);
printf (·'nPort 'A' initpl == ~d·,initpl(DCE.NETWORK,NRZ.9600l»;
printf ("'nResult from set_sconfig == ~d·.set_sconfig (OxOO»;
confiLlapd();
printf(·'n~spress RETURN to continue'n~s".FRED,FBLUE);
getchar();

TEKELEC B.3-45 Version 2.6

Chameleon 32 C Manual Appendix B.3: LAPD Library

}

I··········· SETUP PORT "S" ···········1
if ((err=setport(PORTB» 1= 0) {

printf(·ERROR: setport = Xd\n·. err):
exit(O):

}
printf(·\nXs····· PORT B ·····\nXs·.FYELLOW.FBLUE):
printf (·\nPort 'B' initpl == Xd·.initpl(DTE.SUBSCRIBER.NRZ.9600l»:
printf (·\nResult from set_sconfig == Xd".set_sconfig (Ox08»:
confiLl apd():
printf(·\nXspress RETURN to continue\nXs·.FRED.FWHITE):
getchar() :

send_data(port.buf.count)
unsigned char port. ·buf. count:
{

}

setport(port): I· select the port to use ·1

printf(FRED):
if(port) I· port A is 0 and port B is 1 ·1

printf("\nPress RETURN to transmit data from port-B to port-A\n·):
else

printf(·Press RETURN to transmit data from port-A to port-B\n"):
pri.ntf (FWHITE):

getchar(): I· wait for a carrage return ·1

setport(port): I· select the port ·1

I··························,
,. TRANSMIT OUT SOME DATA .,

,··························1
printf(·Transmit result=Xd\n·.transmit(buf.count»;'· result of transmit ·1

wait_for_data(port)
unsigned char port;
{
unsigned char c.i.rxbuf[100];
extern long _stdvt;
extern unsigned int rxlen;

setport(port);

if(port)
printf(·XsReceive: on port B\nXs",FGREEN,FWHITE);

else
printf(·XsReceive: on port A\nXs",FCYAN,FWHITE);

TEKELEC B.3-46 Version 2.6

Chameleon 32 C Manual Appendix 8.3: LAPD Library

}

, /
Ie WAIT FOR THE INCOMMING DATA el

I·······························,
dO'{

receive(rxbuf); Ie if rxlen=O then no data was received e/
if«c=getchLstdvt» == '0' II c == 'q') {slof(); exit(O);}

} while (rxlen==O);

printf("rxlen = 1d\n", rxlen);

I ••• ~ ••• •• •••••••••••••••••• • •••• •••••••••••••••••••••··1
Ie THIS FIRST BYTE FROM THE RECEIVE IS THE STATUS BYTE el
, •• */

printf("The status from the receive command = 1x\n",rxbuf[O]);

for(i=l;i<rxlen;i++)
printf("1c ",rxbuf[i]): Ie print results of data transfer el

main ()
{
extern long _stdvt;
int i;
unsigned char txbuf[100]. c;

}

, ... ,
Ie INITIALIZE THE DUAL PORT CHAMELEON FOR LAPD el

putS(CLEARS); Ie clear the screen el
init_portst) ;

, .. ,
/e ESTABLISH A LINK BETWEEN THE PORTS (from port B) ·1 , .. ,
printf ("\nResult from slon == 1d".slon (»;

, ,
Ie WAIT FOR LINK CONFIRMATION ·1 , ,
while «status(» != 4) Ie check for information transfer state el

{
puts(CLEARS) ;
puts(HOME); Ie move cursor to the upper left corner of the screen ·1
printf ("Result from status ==~d\n·,status(»;
if«c=getchLstdvt» == '0' II c == 'q') { slof(); exit(O);
if«status(»==O)

{
printf ("\n Link Not Established\n·);
slof(); exit(O);
}

TEKELEC 8.3-47 Version 2.4

Chameleon 32 C Manual Appendix 8.3: LAPD Library

}

1···/
;. SETUP THE DATA TO BE TRANSFERED. THEN SEND IT .;
/ ... /
for(i=O:i<=25:i++}

txbuf[i] = 65 + i: ;. fill transmit buffer with upper case letters .;
send_data(PORTA.txbuf.i);

; ... ;
;. WAIT TO RECEIVE THE DATA ON OPPOSITE PORT ./ , ... ,

/ ••.......•....................................... ,
/. SETUP THE DATA TO BE TRANSFERED. THEN SEND IT ./
/ ~ /
for(i=O;i<=25;i++)

txbuf[i] = 97 + i; /. fill transmit buffer with lower case letters ./
send_data(PORTB.txbuf.i);

/ ... /
/. WAIT TO RECEIVE THE DATA ON OPPOSITE PORT ./ , ... /

slof(); /. bring link down ./

printf(·\n~sPress RETURN to exit program\n~s",FRED.FWHITE):
getchar();

TEKELEC 8.3-48 Version 2.4

Chameleon 32 C Manual Appendix 8.4: Auto HOLC Library

B.4 AUTO HOLC SIMULATION C LIBRARY

Introduction

TEKELEC

The HOLC Simulation C Library is called Iibhdlc.a and is in the
\lib directory. The Auto HOLC functions are listed in the table
below so that you can locate them quickly within this section.
Following the index, the functions are in alphabetical order with
one function per page.

FUNCTION PAGE

INITP1 B.4-2

RECEIVE B.4-3

SET N1 B.4-4 -
SET N2 B.4-5

SET T1 B.4-6

SET WINDOW B.4-7 -
SLOF B.4-8

SLON B.4-9

STATUS B.4-1 0

TRANSMIT B.4-11

Also refer to Appendix B.1 for a description of common library
functions and error codes. .

A sample program demonstrating the use of the HOLC library
is provided at the end of this section.

8.4-1 Version 2.4

Chameleon 32 C Manual

INITP1

Declaration

Range

Description

Returns

TEKELEC

Appendix 8.4: Auto HOLC Library

int initp1 (type 1 , type2, encode, bitrate)
int type1;
int type2;
int encode;
unsigned long bitrate;

type 1 0 DeE
1 DTE
2 ISDN

type2 0 Network
1 Subscriber

encode 0 NAZ
1 NAZI

i

bitrate SOL - 64000L

This function initializes the Front End Processor and loads its
simulation software. '

o Successful
-1 Parameter error
-2 P1 program file could not be loaded
-3 Port is busy by the Analysis application (port should be

off) . .

See also the global error codes on page 8.1-1.

8.4-2 Version 2.4

Chameleon 32 C Manual

RECEIVE

Declaration

Description

Returns

Example

TEKELEC

int receive(packet)
char *packet;

Appendix B.4: Auto HOLC Library

This function receives an I-frame from P1 and places the I-field
frame starting at the address pointed to by the passed variable
*packet.

The external global variable rx/en will be set to the length of
the received frame. If rx/en = 0, then no I-frame was received.

o
1
2

Successful
Link not established
initp1 not performed

See also the global error codes on page B.1-1.

do {
receive(frame);

} while (rxlen == 0);

B.4-3 Version 2.4

Chameleon 32 C Manual

SET N1 -
Declaration

Range

Returns

Example

TEKELEC

int set n1 (val)
int val;

val 1 - 512

Appendix B.4: Auto HOLC Library

This function sets the value of N 1 (the maximum size ofa
received frame. in bytes).

o Successful
-1 val outside of range

See also the global error codes ~n page 8.1-1.

char RxBuf[128];

set_Rl(sizeof(RxBuf)+2); . . .

B.4-4 Version 2.4

Chameleon 32 C Manual

SET N2 -
Declaration

Range

Returns

TEKELEC

int set n2(val)
int val;

val 1 - 255

Appendix B.4: Auto HOLC Library

This function sets the value of N2 (number of re
transmissions).

o Successful
-1 val outside of range

See also the global error codes on page 8.1-1.

B.4-5 Version 2.4

Chameleon 32 C Manual

SET T1 -
Declaration

Range

Description

Returns

TEKELEC

int set t1 (val)
int val;

val 1 - 255 seconds

Appendix 8.4: Auto HOLC Library

This function sets the value of the T1 frame level timer in units
of seconds.

o Successful
-1 val outside of range

See also the global error codes on page 8.1-1.

8.4-6 Version 2.4

Chameleon 32 C Manual Appendix B.4: Auto HOlC library

SET WINDOW -
Declaration

Range

Description

Returns

TEKELEC

int set window(val)
int val;

val 1-7

This function sets the window size for the frame level.

o Successful
-1 val outside of range

See also the global error codes on page B.1-1.

B.4-7 Version 2.4

Chameleon 32 C Manual

SLOF

Declaration

Description

Returns

TEKELEC

Appendix 8.4: Auto HOlC Library

int slofO

This function disconnects the link at the frame level by sending
a DISCONNECT. Be sure to check the link status for· the
result of this ,command.

See the global error codes on page B.1-1.

8.4-8 Version 2.4

Chameleon 32 C M~nual

SLON

Declaration

Description

Returns

TEKELEC

Appendix 8.4: Auto HOLe Library

int slonO

This function attempts to establish a link at the frame level by
sending a SABM. Verify that the link is established by using
the status function before you transmit data.

See the global error codes on page B.1-1.

8.4-9 Version 2.4

, Chameleon 32 C Manual

STATUS

Declaration

Description

Returns

TEKELEC

Appendix 8.4: Auto HOLC Ubrary

int status{}

This function returns a value indicating the status of the frame
level.

o Disconnected, ,
1 Unk connection requested
2 Frame reject state
3 Unk disconnection requested
4 Information Transfer State
5 Local Station Busy
6 Remote Station busy
7 Local and remote stations busy

See also the global error codes on page B.1-1. '

8.4-10 Version 2.4

Chameleon 32 C Manual

TRANSMIT

Declaration

Description

Returns

TEKELEC

Appendix 8.4: Auto HOLC Library

int transmit (packet,length)
char *packet;
int length;

This function transmits an I-frame with the I-field set to the
number of bytes specified by the passed variable length,

. starting at the address pointed to by the passed pointer
*packet.

o
1
2
3

Successful
P1 busy (transmitting previous packet)
initp 1 not performed
Link not established

See also the global error codes on page B. 1-1 .

B.4-11 Version 2.4

Chameleon 32 C Manual Appendix 8.4: Auto HOLC Library

Sample Programs There are three sample HOLe programs on the C Sample
Program Disk. They are:

• hdlca.c

• hdlcb.c

• hdlcab.c

HDLCA.C This sample program demonstrates transmitting and receiving
on Port A over a V:24 interface using the Iibhdlc.a library.

'include <stdio.h>
'include <video.h>
#include <cham.h>

maine)
{

exteOrn long _stdvt;
extern unsigned int rxlen; ,. global variable for receive data length .,
int i,result;
unsigned char rxbuf[100],c; ,. recieve frame data .,

, ,
,. SETUP PORT A ., , ,
if ((result=setport(PORTA» != 0) (

}

° printf("ERROR: setport = ~d\n·, result);
exitCO);

, ,
,. INITIALIZE THE FRONT END PROCESSOR .,
/ ,
if ((result=initpl(DCE,NETWORK,NRZ,9600l» != 0) (

printf("ERROR: initpl = ~d\n", result);
8XitCO);

}

, ,
I· CONFIGURE THE INPUT'OUTPUT ., , , .

if((result=set_nl(512») printf("ERROR: set_nl=~d\n".result);

if((result=set_n2C5») printf("ERROR: set_n2=~d\n".result);

H((resul t=set_t1(255») printf("ERROR: set_t1=~d\n", result);
H((resulo t=set_window(2») printfC"ERROR: set_window=~d\n",result);

TEKELEC 8.4-12 Version 2.4

Chameleon 32 C Manual Appendix 8.4: Auto HOLC Library

}

, ,
,. WAIT FOR THE LINK ., ,•.............. ,
while(status()1=4) ,. wait until link is up .,

{
put.s(CLEARS) :
printf(·link status=~d\n·,status(»;
if({c=getch(_stdvt)} == '0' II c aa 'q') { slof(): exit(O): } ,. fail safe .,
}

printf(·\n~sHit RETURN to send data\n~s·,FRED,FWHITE}:
getchar() ;

, ,
,. SEND OUT SOME DATA ., ,• ,
result=transmit("WXYZ·,4}: ,. transmit ABCD & get result .,
printf(·\nresult=~d\n·,result): ,. result of transmit .,

, .. ,
,. WAIT FOR SOME DATA FROM ANOTHER DEVICE ., , .. ,
do {

receive(rxbuf); ,. if rxlen=O then no data was received .,
if«cagetcb(_stdvt» == '0' II c ~. 'q') { slof(); exit(O); }

} wbile (rxlen==O);

for(i=O;i<rxlen;i++)
printf("~x ·,rxbuf[i]); ,. print results of data transfer .,

printf("\n~sHit RETURN to exit program\n~s·,FRED,FWHITE):
getchar() ;

slof(): ,. bring link down .,

TEKELEC 8.4-13 Version 2.4

Chameleon 32 C Manual Appendix B.4: Auto HOLC Library

HDLCB.C This sample program demonstrates transmitting and receiving
on Port B over a V.24 interface using the libhdlc.a library.

Ninclude <stdio.h>
Ninclude <video.h>
Ninclude <cham.h>

maine)
{

extern long _stdvt;
extern unsigned int rxlen; ,. global variable for receive data length .1
int i,resu1t;
unsigned char rxbuf[100],c; ,. recieve frame data .,

, ,
,. SETUP PORT B .,

,················1
if ((resu1t=setport(PORTB» != 0) {

printf("ERROR: setport = ld\n", result);
exit(O);

}

I······································,
I· INITIALIZE THE FRONT END PROCESSOR ·1 , ,
if ((resu1t=initpl(DTE,SUBSCRIBER,NRZ,96001}) != 0) {

printf("ERROR: initpl = ld\n", result);
exit(O);

}

I······························,
,. CONFIGURE THE INPUT'OUTPUT ., , ,
if((resu1t=set_nl(51Z») printf("ERROR: set_nl=ld\n",result);
if((resu1t=set_nZ(5)}) printf("ERROR: set_nZ=ld\n" ,result);
if((result=set_tl(Z55») printf("ERROR: set_tl=ld\n",result};
if((result=set_window(Z») printf("ERROR: set_window=Xd\n",result);

, ,
,. ESTABLISH A LINK .,

I····················,
slon() ;

TEKELEe 8.4-14 Version 2.4

Chameleon 32 C Manual Appendix B.4: Auto HOLC Library

}

, ,
,. W~IT FOR THE LINK ., , ,
while(status()!=4) ,. wait until link is up .,

{
puts(CLEARS) ;
p~intf(·link status=ld\n",status(»:
if«c=getch(_stdvt» == '0' II c == 'q') { slof(); exit(O); }
if(status()==O) ,. link cannot be established - exit routine .,

{
p~intf(·\nLink has been disconnected\n"):
slof(); exit(O);
'}

}

p~intf(·\nWaiting to ~eceive\n·);

,•................................ ,
,. WAIT FOR SOME DATA FROM ANOTHER DEVICE ., , .. ,
do {

~eceive(~xbuf); ,. if ~xlen=O then no data was received *'
;f«c=getchLstdvt» == '0' II c 'q') { slof(); exit(O); }

} while (~xlen==O);

fo~(i=O;i<rxlen;i++)

printf(·Sx ·,rxbuf[i]}; ,. print ~esults of data transfe~ .,

p~intf(·\nSsHit RETURN to send data\nls·,FRED,FWHITE):
getcha~();

, ,
I· SEND OUT SOME DATA ., , ,
~esult=transmit("ABCD·,4); ,. t~ansmit ABCD & get result *'
p~intf(·\n~esult=ld\n·.~esult); ,. ~esult of t~ansmit .,

p~intf(~\nlsHit RETURN to exit program\nls",FRED,FWHITE);
getcha~();

slof(); ,. b~ing link down *'

TEKELEC B.4-15 Version 2.4

Chameleon 32 C Manual Appendix 8.4: Auto HOLC Library

HDLCAB.C This sample program demonstrates transmitting and receiving
on Dual Port machine over a V.24 interface using the libhdlc.a
library.

'include <stdio.h>
'include <video.h>
#include <cham.h>

config()
{
int result;

printf(FRED);

}

if((result=set_nl(512») printf(·ERROR: set_nl=~d\n",result);

if((result=set_n2(5}) } printf(·ERROR: set_n2=~d\n·.result};

if((result=set_tl(255») printf(·ERROR: set_tl=~d\n·,result);

if((result=set_window(2») printf(·ERROR: set_window=ld\n" ,result);
printf(FWHITE);

in it_ports()
{
int result; , /

/. SETUP PORT A .,
/, /
printfe~sS.tting up P.ORT A\n~s" ,FGREEN,FWHITE);
if ((result=setport(PORTA» 1= 0) (

printf(·ERROR: setport = ~d\n", result);
. exit(O};

}

if { (result=initpl(DCE,NETWORK,NRZ,9SOOl}) != 0) {
printf(·ERROR: initpl = ~d\n". result);
exit(O);

}

config(); /. CONFIGURE THE PORT ./

/ /
/. SETUP PORT B ./
/ /
printf(·~sSetting up PORT B\n~s".FGREEN,FWHITE);
if ((result=setport(PORTB» != 0) {

printf("ERROR: setport = ~d\n". result};
•• it(O);

}

TEKELEC 8.4-16 Version 2.4

Chameleon 32 C Manual Appendix B.4: Auto HOlC Library

}

if ((result=initpl(DTE,SUSSCRISER,NRZ,9600l» != 0) (
printf("ERROR: initpl = ~d\n", result);
exit(O);

)

config(); ,. CONFIGURE THE PORT .,

main()
(

extern long _stdvt;
extern unsigned int rxlen; ,. global variable for receive data length .,
int i,result;
unsigned char rxbuf[lOO],c,txbuf[25]; ,. recieve frame data .,

puts(CLEARS); /. clear the screen .,

, ,
,. INITIALIZE THE FRONT END PROCESSORS .,
/ ,

, ,
,. ESTABLISH A LINK ., , ,
slon(); ,. since the last setport was PORTS, PORTS establishes the link .,

,. WAIT FOR THE LINK ., , ,
whi1e((resu1t=status()1=4)) ,. wait until link is up .,

(
puts(CLEARS) ;
printf("link status=~d\n",result);
if«c=getch(_stdvt» == 'Q' II c == 'q') (slof(); exit(O);}'· fail safe .,
if(status()==O) ,. link cannot be established - exit routine ./

}

(
printf("\nLink has been disconnected\n");
slof(); exit(O);
}

for(i=O;i(=24;i++)
txbuf(i] = 33 + i; ,. fill transmit buffer with characters .,

printf(·\n~sHit RETURN to send data: PORTA to PORTS\n\s",FYELLOW,FWHITE);
getchar();

setport(PORTA); ,. select the port to use .,

TEKELEC B.4-17 Version 2.4

Chameleon 32 C Manual Appendix 8.4: Auto HOlC library

}

f······················f
f· SEND OUT SOME DATA ·f , ..•................... ,
result=tr~nsmit(txbuf.Z5); f· transmit data & get result ·f
printf("Xs\nTransmit result=Xd\nXs".FBLUE.result,FWHITE); f· result of transmit ·f

setport{PORTB); f· select the port to use ·f

f·································f
f· WAIT FOR SOME DATA FROM PORTA ·f

f·································f
do {

receive(rxbuf); f· if rxlen=O then no data was received ./
if{(c=getch(_stdvt» == '0' II c == 'q') { slof{); exit{O); }

} while (rxlen==O)~

for(i=O;i<rxlen;i++)
printf("Xc ",rxbuf[i]); /. print results of data transfer ·f

printf(·\nXsHit RETURN to send data: PORTB to PORTA\nXs",FYELLOW,FWHITE)i
getchar()i

f· SEND OUT SOME DATA ·f

f······················/
result=transmit(txbuf.25); f· transmit data & get result ·f
printf(·Xs\nTransmit result=Xd\nXs~,FBLUE.result,FWHITE)i f· result of transmit ·fo

setport(PORTA); f· select the port to use ./

f·································f
f· WAIT FOR SOME DATA FROM PORTB .f , ,
do {

receive(rxbuf); /. if rxlen=O then no data was received ./
if«c=getchLstdvt» == '0' II c == 'q') {slof(); exit(O);}

} while (rxlen==O)i

for(i=O;i<rxlen;i++)
printf("Xc ".rxbuf[i]); /. print results of data transfer ·f

printf("\nXsHit RETURN to exit program\nXs",FRED,FWHITE);
getchar();

slof(); f· bring link down ·f

TEKELEC 8.4-18 Version·2.4

Chameleon 32 C Manual Appendix 8.S: SOLC Library

B.5 SOLC SIMULATION C LIBRARY

Introduction

Note

TEKELEC

The SOLe. Simulation C Library is valid for the SNA automatic
frame level. It is called libsdlc.a and is in the Vib directory.
The functions are described in alphabetical order, one function
per page, beginning on the following page.

FUNCTION PAGE

INITP1 8.5-2

RECEIVE 8.5-3

SET ADR 8.5-4 -
SET N2 8.5-5

SET T1 8.5-6

SET T2 8.5-7 -
SLOF 8.5-8

SLON 8.5-9

STATUS 8.5-10

TRANSMIT 8.5-11

TRNSI 8.5-12 .

TRSIFR 8.5-13
TRTST 8.5-14

TRUI 8.5-15 .

XID 8.5-16

Also refer to Appendix 8.1 for a description of common library
functions.

N1 (maximum packet size in bytes) is set to 512 and cannot
be changed.

A sample program using the SOLC library is provided at the
end of this section.

B.S-1 Version 2.4

Chameleon 32 C Manual

INITP1

Declaration

Range

Description

Returns

TEKELEC

Appendix 8.5: SOLC library

int initp 1 (type 1 ,type2,encode,bitrate)
int type1 ;
int type2;
int encode;
unsigned long bitrate;

type 1 0 DeE
1 DTE
2 ISDN

type2 0 Primary
1 Secondary

encode 0 NRZ
1 NRZI

bitrate 50L - 64000L

This function. initializes' the Front End Processor and loads its
simulation software.

o Successful
-1 Parameter error
-2 Front End Processor simulation programs cannot be

loaded

See also the global error codes on page 8.1-1.

8.5-2 Version 2.4

Chameleon 32 C Manual

RECEIVE

Declaration

Description

Returns

Example

TEKELEC

int receive(packet)
char *packet;

Appendix B.5: SOLC Library

This function receives an I-frame from P1 and places the I-field
frame starting at the address pointed to by the passed variable
*packet.

The external global variable rx/en will be set to the length of·
the received frame. If rx/en = 0, then no I-frame Was received.

o
1
2

Successful
Unk not established
initp 1 not performed

See also the global error co~es pn page 8.1-1.

do {
receive(frame) ;

} while (rxlen == 0);

B.5-3 Version 2.4

Chameleon 32 C Manual

SET ADR -
Declaration

Range

Description

Returns

TEKELEC

int set adr(val)
int val;

val 0 - 255

Appendix 8.5: SOLC Library

This function sets the transmit and receive address; It should
be used before transmitting or receiving frames.

o Successful
-1 Parameter error

See also the global error codes on page 8.1-1.

8.5-4 Version 2.4

Chameleon 32 C Manual

SET N2 -
Declaration

Range

Returns

TEKELEC

Appendix 8.5: SOLC Library

int set n2(val)
int val;

val· 1-255

This function sets the value of N2 (number of re
transmissions). This function is available only if the
Chameleon 32 is configured as a primary station.

o Successful
-1 val outside of range
5 Not configured as a primary station

See also the global error codes on page 8.1-1.

8.5-5 Version 2.4

Chameleon 32 C Manual

SET T1 -
Declaration

Range

Description

Returns

TEKELEC

Appendix 8.5: SOLC Library

int set t1 (val)
int val;

val 1 - 255 seconds

This function sets the value of the T1 frame level timer in units
of seconds. This function is available only if the Chameleon
32 is configured as a primary station.

o Successful
-1 val outside of range
5 Not configured as a primary station

I

See also the global error codes on page 8.1-1.

8.5-6 Version 2.4

Chameleon 32 C Manual

SET T2 -
Declaration

Range

Description

Returns

TEKELEC

Appendix 8.5: SOLC Library

int set t2(val)
int val;

val 0 - 255 seconds

This function sets the value of the T2 frame level timer, which
is the maximum number of seconds allowed between the
transmission of frames. This function is valid only when the
Chameleon is simulating a Primary station (see initp1).

o Successful
-1 Error
5 Not configured as a primary station

See also the global error codes on page 8.1-1. . .

B.S-7 Version 2.4

Chameleon 32 C Manual

SLOF

Declaration

Description

Returns

TEKELEC

Appendix 8.5: SOLC Library

int slofO

This function disconnects the link at the frame level by sending
a DISCONNECT. Be sure to check the link status f.or the
result of this command.

o
5

Successful
Not configured as a primary station

See also the global error codes on page B.1-1.

·8.5-8 Version ~.4

Chameleon 32 C Manual

SLON

Declaration

Description

Returns

TEKELEC

Appendix 8.S: SOLC Library

int slonO

This function attempts to establish a link at the frame level by
sending a SARM. This function is available only if the
Chameleon 32 is configured as a primary station. Be sure to
use STATUS to ascertain that the link is established before
you use TRAN to transmit.

o
5

Successful
Not configured as a primary station

See also· the global error codes on page 8.1-1.

8.5-9 Version 2.4

Chameleon 32 C Manual

STATUS

Declaration

Description

Returns

TEKELEC

Appendix 8.5: SOLC Library

int status(}

This function returns a value indicating the status of the frame
level.

If the Chameleon 32 is configured as a primary station,
STATUS returns the following values:

o Normal Disconnected Mode
1 Link Request State
2 Disconnect Request State
3 Information Transfer State
4 Local Station Busy
5 Remote station busy
6 Local and remote stations busy

If the Chameleon 32 is configured as. a secondary station,
STATUS returns the following values:

o Normal Disconnected Mode
1 Initialization Mode
2 Frame Reject Mode
3 Information Transfer State
4 Local Station Busy
5 Remote Station busy
6 Local and remote stations busy

See also the global error codes on page B.1-1.

8.5-10 Version 2.4

Chameleon 32 C Manual

TRANSMIT

Declaration

Description

Returns

TEKELEC

Appendix 8.5: SOlC Library

transmit (packet,length)
char *packet;
int length;

This function transmits an I-frame with the I-field set to the
number of bytes specified by the passed variable length,
starting at the address pointed to by the passed pointer
*packet.

o
1
2
3
4

Successful
P1 busy (transmitting previous packet)
initp1 not performed
Link not established
Length error (if length > 510)

See also the global error codes on page 8.1-1.

8.5-11 Version 2.4

Chameleon 32 C Manual

TRSIFR

Declaration

Description

Returns

TEKELEC

Appendix 8.S: SOlC Library

trsifr (packet,length)
char *packet;
int length;

This function transmits a sequenced I-frame with the I-field set
to the number of bytes specified by the passed variable
length, starting at the address pointed to by the passed
pointer *packet.

o
1
2
3
4

Successful
P1 busy (transmitting previous packet)
initp 1 not performed
Link not established
Length error (if length > 510)

See also the global error codes on page 8.1-1.

8.5-12 Version 2.4

Chameleon 32 C Manual

TRNSI

Declaration

Description

Returns

TEKELEC

Appendix 8.5: SOLe Library

trnsi (packet,length)
char *packet;
int length;

This function transmits a non-sequenced I-frame with the I-field
set to the number of bytes specified by the passed variable
length, starting at the address painted to by the passed
painter *packet.

o
1
2
3
4

Successful
P1 busy (transmitting previous packet)
initp 1 not performed
Link not established
Length error (if length> 510)

See also the global error codes on page 8.1-1 .

8.5-13 Version 2.4

Chameleon 32 C Manual

TRTST

Declaration

Description

Returns

TEKELEC

Appendix 8.5: SOLC Library

trtst (packet,length)
char ·packet;
int length;

This function transmits a test frame with the I-field set to the
number of bytes specified by the passed variable length,
starting at the address pointed to by. the passed pointer
*packet. Tt;lis 'function is valid only when the Chameleon is.
simulating a Primary station (see inltp1).

o Successful
1 P1 busy (transmitting previous packet)
2 initp 1 not performed
3 Link not established
4 Length error (if length> 510)
5 Not configured as a primary station

See also the global error codes on page 8.1-1.

8.5-14 Version 2.4

Chameleon 32 C Manual

TRUI

Declaration

Description

Returns

TEKELEC

Appendix 8.5: SOLC Library

trui (packet,length)
char *packet;
int length;

This function transmits an unnumbered I-frame with the I-field
set to the number of bytes specified by the passed variable
length, starting at the address pointed to by the passed
pointer *packet.

o
1
2
3
4

Successful
P1 busy (transmitting previous packet)
initp1 not performed
Link not established
Length error (if length> 510)

See also the global error codes on page 8.1-1.

B.5-15 Version 2.4

Chameleon 32 C Manual

XIO

Declaration

Description

Note

Returns

TEKELEC

extern char ident(]; / * 6 bytes*/
int xidO;

Appendix 6.S: SOLC Library

This function transmits an XID frame containing the data in the
externally available character array ident[], starting at ident[1],
if an XID command is received. This array will be used to
transmit the XID response.

This function can be used only when the link is in the Normal
Disconnected mode (the link is not running).

o
1
2
3
4

Successful
P1 not initialized
P1 fails to responds
Not in normal response mode
Illegal frame (if secondary)

See also the global error codes on page 8.1-1.

6.5-16 Version 2.4

Chameleon 32 C Manual Appendix 8.5: SOLC Library

Sample Programs There are three sample SDLC programs on the C Sample
Program Disk. They are:

• sdlca.c

• sdlcb.c

• sdlcab.c

SDLCA.C This sample program demonstrates transmitting and receiving
on Port A over a V.24 interface using the libsdlc.a library.

#include <stdio.h)
#include <video.h)
#include <cham.h)

main()
(

extern long _stdvt;
extern unsigned int rxlen; /. ~lobal variable for receive data length ./
int i,result;
unsigned char rxbuf[100],c; /. receive frame data ./

/ /
/. SETUP PORT A ./
/ /
if-((result=setport(PORTA» 1= 0) (

printf("ERROR: setport = 1d\n", result);
exit(O) ;

}

/ /
/. INITIALIZE THE FRONT END PROCESSOR ./ , ,
if ((result=initpl(DCE,PRIMARY,NRZ,9600l» \= 0) (

printf("ERROR: initp1 = Id\n", result);
exit(O);

}

/ ,
/. CONFIGURE THE INPUT/OUTPUT ./
/•..................... /
set_adr(l); /. sets transmit & receive addresses ./
se~_n2(10); /. set ~umber of retransmissions to 10 ./
set_tl(4); /. set t1 frame level timer to 4ms ./

TEKELEC 8.5-17 Version 2.4

Chameleon 32 C Manual Appendix 8.S: SOLC Library

set_t2(40); ,. set t2 frame level timer to 40 ./

, ,
,. ESTABLISH A LINK ., , ,
slonO;

, ,
,. WAIT FOR THE LINK ., , ~ ,
while(status()!-3) ,. wait until link is up .,
{
puts(CLEARS) ;
printf("status = ld ",status(»;
if«c=getch(_stdvt» ~= '0' II c == 'q') (slof(); exit(O);},· fail safe .,
}

fore;;)
{ , ,
,. SEND OUT SOME DATA ., , ~ ,
printf("\nlsSelect which type of transmit function to use\nls",FRED,FWHITE);
printf("\t 1. Transmit\n\t2. Trsifr\n");
printf("ls\t 3. EXIT THE PROGRAM\nls",FCYAN,FWHITE);

while((c-getcwt(_stdvt)-48) > 3 && c < 1)
; ,. wait for a valid choice .,

switch(C)
{
case 1:

result=transmit("transmit",8); ,. transmit data & get result .,
printf("ls\nTransmit Result=~d\nls",FYELLOW,result,FWHITE);
break;

case 2:
result=trsifr("trsifr",6); ,. trans.it data & get result .,
printf(""s\nTrsifr Result=~d~n~s",FYELLOW,resu1t,FWHITE);
break;

case 3:
slofO;
exit(O) :

}

, /
,. WAIT TO RECEIVE SOME DATA ./
/ /
printf("\nWaiting to receive\n"):
printf(""sPress 'q' to return to the MENU\nls",FRED,FWHITE);

TEKELEC 8.5-18 Version 2.4

Chameleon 32 C Manual

}

do{
receive(rxbuf); /* if rxlen=O then no data was received *'

if«c=getchLstdvt» == '0' II c == 'q') break; '* fail safe */
} while (rxlen==O);

for(i=O;i(rxlen;i++)
printf(-'c -,rxbuf[i]); '* print results of data transfer *'

} /* end forever */

I I

TEKELEC 8.5-19

Appendix 8.S: SOLC Library

Version 2.4

Chameleon 32 C Manual Appendix 8.5: SOLC Library

SDLCB.C This sample program demonstrates transmitting and receiving
on Port B over a V.24 interface using the libsdlc.a library.

/ include <stdio.h>
#include <video.h>
#include <cham.h>

main()
{

extern long _stdvt;
extern unsigned int rxlen; ,. global variable for receive data length .,
int ,i, result;
unsigned char rxbuf[100],c; I· receive frame data ·1

, ,
,. SETUP PORT B .,

1················1
if ((result=setport(PORTB» != 0) {

printf(-ERROR: setport = ~d\n·, result);
exit(O);

}

, /
,. INITIALIZE THE FRONT END PROCESSOR ., , ,
'if ((result=initpl(DTE.SECONDARY,NRZ,96001» != 0) {

printf(-ERROR: initpl = ~d\n·, result);
exit(O);

}

, ,
,. CONFIGURE THE INPUTIOUTPUT ., , ,
set_adr(l); ,. sets transmit & receive addresses .,

, ,
,. WAIT FOR THE LINK ., , ,
while(status()!=3) ,. wait until link is up .,

{
puts(CLEARS) ;
printf("status = ~d ",status(»;
if«c=getchLstdvt» == 'Q' II c
}

'q') exit(O); /. fail safe .,

TEKELEC 8.5-20 Version 2.4

Chameleon 32 C Manual Appendix 8.5: SOlC Library

}

for(::)
{ , ,
/. WAIT TO RECIEVf SOME DATA */ , ,
printf("\nWaiting to receive\n");.
printf("~sPress 'q' to return to the MENU\n%s",FRED,FWHITE);

do
{
receive(rxbuf); /. if rxlen=O then no data was received *'
if«c=getch(_stdvt» == '0' II c == 'q') break; /* fail safe ./

} while (rxlen==O):

fore i =0; i<rx 1 en; i++),
pri~tf("~c ",rxbuf[i); /. print results of data transfer ./

/ /
/. SEND OUT SOME DATA ./

printf("\n%sSelect which type of transmit function to use\n~s",FRED,FWHITE);
printf("\t 1. Transmit\n\tZ. Trsifr\n"):
printf("~s\t 3. EXIT THE PROGRAM\nis",FCYAN,FWHITE);

while((c=getcwt(_stdvt)-48) > 3 && c < 1)
; /. wait for a valid choice ./

switch(c)
{
case 1:

result=transmit("transmit" ,8); /. transmit data & get result ./
printf("~s\nTransmit Result=~d\n%s",FYEllOW,result,FWHITE);

break;
case Z:

result=trsifr("trsifr",6); /. transmit data & get result ./
printf("~s\nTrsifr Result=%d\n%s",FYElLOW,result,FWHITE);
break;

case 3:
exit(O):

}

} /. end forever ./

TEKELEC B.5-21 Version 2.4·

Chameleon 32 C Manual Appendix 8.5: SOLC Library

SOLCAB.C This sample program demonstrates transmitting and receiving
on a Dual Port machine over a V.24 interface using the
libsdlc.a library.

Ninclude <stdio.h>
Ninclude <video.h>
Ninclude <cham.h>

init_ports()
{
int result: , ,

,. SETUP PORT A ., , ,
jf ((result=setport(PORTA» 1= 0) (

printf("ERROR: setport = 1d\n", result):
exit(O):

}

, ,
,. INITIALIZE THE FRONT ENO PROCESSOR ., , ,
if ((result=initpl(DCE,PRIMARY,NRZ,9600l» != 0) (

printf("ERROR: initpl = 1d\n", result):

}

exit(O):
}

,. SETUP PORT B ., , ,
if ((result=setport(PORTB» != 0) (

printf("ERROR: setport = 1d\n", result):
exit(O):

}

,. INITIALIZE THE FRONT END ·PROCESSOR ., , ~ ,
if ((result=initpl(DTE,SECONDARY,NRZ,96001» != 0) (

printf("ERROR: initpl = 1d\n", result):
exit(O):

}

TEKELEC B.5-22 Version 2.4

, Chameleon 32 C Manual Appendix 8.5: SOLC Library

send_data(port)
unsigned char port;
{
unsigned char c;
int result;

}

setport(port); ,- select which port is active -,

if(port)
printf("SENOING FROM PORT 8\n");

else
printf("SENOING FROM PORT A\n");

printf("\n~sSelect which transmit function to use.\n%s",FREO,FWHITE);
printf("\t 1. Transmit\n\t2. Trsifr\n");
printf("~s\t 3. EXIT THE PROGRAM\n~s",FCYAN,FWHITE);

while((c=getcwt(_stdvt)-48) > 3 && c < 1)
; /- wait f~r a valid choice -,

switch(C)
{
case 1:

result=transmit("transmit",8); ,- transmit data & get result -,
printf("~s\nTransmit Result=~d\n%s",FYELLOW,result,FWHITE);

break;' '
case 2:

result=trsifr("trsifr",6); ,- transmit data & get result -,
printf("~s\nTrsifr Resu1t=~d\n%s",FYELLOW,result,FWHITE);
break;

case 3:
slof();
exit(O);

}

get_data(port)
unsigned char port;
{
unsigned char rxbuf[100],c; ,- receive frame data -,
extern unsigned int rxlen; ,- global variable for receive data length -,
int i;

setport(port); ,- select which port is active -,

if(port)
printf("\n\nWaiting to receive on port 8\n");

else
printf{"\n\nWaiting to receive on port A\n");

printf("~sPress 'q' to return to the MENU\n%S",FRED,FWHITE);

TEKELEC B.5-23 Version 2.4

Chameleon 32 C Manual

}

do{
receive(rxbuf); I· if rxlen=O then no data was received ·1
if«c=getchLstdvt» == 'Q' II c == 'q') break: I· fail safe ·1

} while (rx en==O);

for(i=O:i<rxlen;i++)
printf("~c ",rxbuf(i]): I· print results of data transfer ·1

printf("\n\n");

main()

~
unsigned char c:

1·························1
I· INITIALIZE BOTH PORTS ·1
1·························1
initJ)orts():

setport(PORTA); I· select which port is active ·1

1······························1
I· CONFIGURE THE INPUT/OUTPUT ·1

1······························1
set_adr(l): I· sets transmit & receive addresses ·1
set_nZ(lO); ,. set number of retransmissions to 10 ·1
set U(4); ,. se't U frame level timer to 4ms ·1 - ,
set_tZ(40); ,. set tZ frame' level timer to 40 .,

1····················1
,. ESTABLISH A LINK ·1

1····················1
slon() :

,·····················1
I· WAIT FOR THE LINK ·1

1·····················1
while(status()!=3) ,. wait until link is up ·1

{
puts(CLEARS);

Appendix 8.5: SOLC Library

printf("status = ~d·".status(»;
if«c=getchLstdvt» == 'Q' II c
}

'q') (slof(); exit(O);}/· fail safe ·1

for(;;)
(

/ /
,. SEND OUT SOME DATA FROM PORT A ·1 , ,
send_data(PORTA):

TEKELEC 8.5-24 Version 2.4

Chameleon 32 C Manual Appendix 8.5: SOLC Library

,•.................................. ,
,. WAIT TO RECEIVE SOME DATA ON PORT B .,
/•................................. /
get_data(PORTB);

, /
,. SEND OUT SOME DATA FROM PORT B ., , /
send_data(PORTB);

, /
,. WAIT TO RECEIVE SOME DATA ON PORT A ./ , ,
get_data(PORTA);

} ,. end forever .,
}

TEKELEC 8.5-25 Version 2.4

Chameleon 32 C Manual Appendix B.6: Basic Rate Interface Library

B.6 BASIC RATE INTERFACE LIBRARY

Introduction

Note

TEKELEC

The Basic Rate Library enables you to use the Chameleon 32
ISDN Basic Rate Interface hardware with the C environment.
The library is called libbri.a and is in the llib directory.

In general, your application should include BRI library routines
which enable you to set up and modify the Basic Rate
Interface from within your application. However, when you
start a C application from the Applications Selection menu, you
must set up the BRI before you can access the Applications
Selection menu to start the application. This can be
accomplished in two ways:

• You can access the BRI Setup menu before starting the
C application. This is done by pressing F7 Physic/ in the
main configuration menu.

• You can save the BRI Setup menu as part of the
DEFAULT configuration file. The BRI is then
automatically set up when the Chameleon is booted or
reset.

When the C app.lication is then started, it ,,!ses the BRI Setup
menu paramete~s. Your application can then use other
routines to modify the setup or use BRI functions, as required
by your test. If the application contains a BRI library setup
routine, the application setup overrides the menu setup.

When starting an application from the C Shell, if your
application contains a valid BRI setup routine, it is not
necessary to access the BRI Setup menu prior to starting your
application.

Chapter 3.1 describes he procedure for starting applications
from the C Shell and from the· Applications Selection menu

You cannot use the C BRI library and the BASIC application at
the same time. (The BASIC application enables the user to
monitor and modify the BRI at run time.) The BASIC
application is useful for Monitoring applications and non-C
simulation applications, but results in an error message when
used simultaneously with the C BRI library. The BASIC
application is described in the Chameleon Protocol
Interpretation Manual, Chapter 12.

B.6-1 Version 2.5

Chameleon 32 C Manual

TEKELEC

Appendix B.6: Basic Rate Interface Library

The BRI functions are described on the following pages:

FUNCTION

Bas version

Set8asic

PAGE

B.6-2

8.6-3

Also refer to Appendix 8.1 for a description of common library
functions and error codes.

Several sample programs using the Basic Rate Interface
library are provided at the end of this section.

8.6-2 Version 2.5

Chameleon 32 C Manual

Bas version

Declaration

Description

TEKELEC

Appendix B.6: Basic Rate Interface Library

char *Bas_versionO

This function returns a pointer to a string which indicates the
date of the Basic Rate C Library version.

B.6-3 Version 2.5

Chameleon 32 C Manual .

SetBasic

Declaration

Description

TEKELEC

Appendix B.6: Basic Rate Interlace library

int SetBasic(cmdblock, resblock)
int cmdblock [51;
int resblock [5];

This function has two parameters blocks that are integer
arrays. The minimum size currently needed is 4.

The cmdblock (command block) parameter contains the input
values neede~. The first item in cmdblock (index 0) is the
command. The arguments, if any, are given as subsequent
entries in the table.

The resblock (result block) parameter is an array containing
the results, if any, of the operation requested in the cmdblock.

The first entry in. the result block (resblock[Of) indicates if the
command in cmdblock was completed successfully. The error
code in resblocklO} is the same for all Basic Rate Library
commands and is listed on the next page. Other values that
are returned are given in subsequent result block elements,
and are described with each command.

·When the requested operation cannot be done because of an
existing selection, the currently selected values are returned.

This is illustrated in the figure below:

COMMAND RESULT

Argument 1 Result 1

Argument 2 Result 2

etc. etc.

8.6-4 Version 2.5

Chameleon 32 C Manual

resblock[O]
Error Codes

TEKELEC

Appendix B.6: Basic Rate Interface Library

The commands listed below are available as the first item in
cmdblock. Note that the commands are different for Basic
Rate Interface boards 0 and 1 to accomodate a dual port
Chameleon 32 with two Basic Rate Interface boards installed.

There are some hardware differences between board 0 and
board 1. If you have only one Basic Rate Interface board
installed on your Chameleon 32, you must use the commands
that correspond to the board you are using. Generally, if you
have only one Basic Rate Interface board installed, it will be
board o.

Board 0 Board 1 Command

1 101 Setup
2 102 Reactivate
3 103 Reset
4 104 Channel functions
5 105 Signal functions
6 106 Get status
9 Select trace option
10 110 NT Power
11 111 BRI Board Version
12 112 Bit Inversion
13 113 DTMF Tone Selection
14 114 Generate DTMF Tone

The commands are described on the following pages.

The error codes for resblock[Oj are the same for all Basic Rate
Library commands and are listed below.

Code

00
01
02

03
04
05
06
07
09

10

Meaning

Successful
Hardware has already been set up
Requested function is not available for this
configuration
Requested channel is invalid (for B1, S2 and D)
Requested function is not available for this channel
Invalid command or request
DTMF tone position out of range
SRI parameters not set
SRI Menu is running (cannot access SRI from the
BRI C library)
Basic Rate Interface board is not installed

8.6-5 Version 2.5

Chameleon 32 C Manual Appendix 8.6: 8asic Rate Interface Library

cmdblock[O] = 1
cmdblock[O] = 101
Setup This command must be given before any other commands can

be used.

cmdblock[O] = 2
cmdblock[O] = 102

cmdblock[11 mode 1 Monitor
2 Simulate NT
3 Simulate TE

resblock[O] See page B.6-4.
resblock[1] Returns current mode, if unsuccessful

Reactivate This command reactivates the line.

cmdblock[O] = 3
cmdblock[O] = 103

Argument None

. resblock[O] See page 8.6-4.

Reset This command resets the current setup and BRI board.

Argument None

resblock[O] See page B.6-4.

TEKELEC 8.6-6 Version 2.S

Chameleon 32 C Manual

cmdblock[O] = 4
cmdblock[O] = 104
Channel

Appendix B.6: Basic Rate Interface Library

Functions cmdblock[1] mode o Do not override current setup.
Requested action is done only if
it does not conflict with an
existing selection.

cmdblock[O] = 5
cmdblock[O] = 105
Signal Functions

TEKELEC

1

cmdblock[2] channel 1
2
3

cmdblock[3] selection 1
2
3
4
5

Override current setup. If there
is a conflicting setup, it is reset.

81 channel
82 channel
D channel

System
Milliwatt
Codec
External interface
Idle

resblock[O] See page B.6-4.

resblock[1] Channel as defined above (If resblock[O] == 0)
resblc;>ck[2] Selection as defined above (If resblock[O] = 0)

cmdblock[1] For NT 1
2
3
4
5
6
7
8
9

For TE 1
2
3
4
5
6
7
8
9
10

Deactivate request
Sendinfo-2
Send info-4
Activate NT
Reserved
Send single pulses
Send continuous pulses
Send info-2, test loop 2
Send info-4, test loop 2

Deactivate
Activate at priority 8
Activate at priority 1 0
Activate TE
Reserved
Reserved
Reset PE8 2080
Send single pulses
Send continuous pulses
Activate test loop 3

resblock[O] See page 8.6-4.

B.6-7 Version 2.5

Chameleon 32 C Manual

cmdblk[O] = 6
cmdblk[O] = 106
Get Status

TEKELEC

Appendix B.6: Basic Rate Interface Library

Argument None

resblock[O] See page B.6-4.
resblock[1] Control byte received from PEB 2080.

If Simulating an NT:

resblock[2] 1. No clock signal
2 Lost signal level
3 Receiver not synchronous
4 Error
5 Info~ 1 received
6 Receiver synchronized
7 Deacitvation complete
8 Undefined

If Simulating aTE:

resblock[2] 1 Power up
2 Deactivate request
3 Slip detected
4 Disconnected
5 Error
6 Resynchronizing
7 Info-2 received
8 Test mode
9 Level received during test loop
10 Info-4 received, D channel priority 8 or 9
11 In10-4 received, D channel priority 10 or

11
12 Quiescent state
13 Undefined

If in Monitor mode:

resblock(1]
resblock(2]
resblock[3]

Control byte received from PEB 2080.
same as resblock(2] from NT
same as resblock(2] from TE

B.6-8 Version 2.5

Chameleon 32 C Manual Appendix B.G: Basic Rate Interface Library

cmdblk[O] = 9
Select Trace
Option This function is useful for debugging your programs.

cmdblk[O] = 10
cmdblk[O] = 110
NT Power

cmdblk[O] = 11
cmdblk[O] = 111
Board Version

cmdblk[O] = 12
cmdblk[O] = 112
B.it Inversion

TEKELEC

cmdblock[1] 0 Turns off the trace.
Command/result display
Detailed trace

resblock[O]

1
2

See page 8.6-4

This function enables you to specify the type of power
provided from the NT to the TE.

cmdblock[1] Mode
1 Power source 1 under normal conditions
2 Power source 1 under emergency

conditions (reverses polarity)
3 Power source 2 under normal conditions
4 Power source 2 under emergency

conditions (reverses polarity)
5 Off (NT power lines are off)

This function returns the version number of the BRI board, if
available.

resblock[O]
resblock[1]

See page B.6-4
BRI board version number

This function inverts the data bits on the B-Channel.

cmdblock[1] 1
2

Bit inversion on
Bit inversion off

resblock[O] See page B.6-4

B.6-9 Version 2.5

Chameleon 32 C Manual

cmdblk[O] = 13
cmdblk[O] = 113
DTMFTone
Selection

cmdblk[O] = 14
cmdblk[O] = 114
Generate .
DTMFTone

TEKELEC

Appendix B.6: Basic Rate Interface Library

This is used in conjunction with Generate DTMF Tone (see
below) to generate the Dual Tone Multi-Frequency tones when
using Codec on a B-channel. This function sets up the DTMF
tone array. You can select a maximum of 20 digits. The final
digit must be zero.

cmdblock[1]
cmdblock[2]

resblock[O]

Position of the tone in the array.
DTMF tone (valid ASCII digit)

See page 8.6-4

This is used in· conjur;1ction with the DTMF Tone Selection
function to generate the Dual Tone Multi-Frequency tones
when using Codec on a B-channel. This function dials the
numbers in the DTMF ~one array.

resblock[O] See page B.6-4

B.6-10 Version 2.5

Chameleon 32 C Manual Appendix B.6: Basic Rate Interface library

Sample Programs There are three sample SRI programs on the C Sample
Program Disk. They are:

• bria.c
• brib.c
• briab.c

SRIA.C This sample program demonstrates sending and receiving
data on Port A using the SRI and the Iiblapd.c library.

#include <stdio.h>
#include <video.h>
#include <cham.h>
#define MOD128 1

int resblock [5];
int cmdblock [5];

init_basic_rate()
{

, ,
;. set basic rate to simulate NT ./

/····~····························I
cmdblock[O] = 1;
cmdblock[l] ="2;

/* port A */ .

/* NT type */

SetBasic(cmdblock,resblock);
if(resblock[O] != 0)

printf("ERROR: result from SetBasic to NT 1d\n",resblock[O]);

}

/ /
;* set channel functions to D-channel .; , ,
cmdblock[O] 4; /* channel */

cmdblock[l] 0; /* keep current setup */

cmdblock[2] 3; /* use D channel */

cmdblock[3] 1; /* system */

SetBasic(cmdblock,resblock);
if(resblock[O] != 0)

printf("ERROR: result from SetBasic to D-Channel = 1d\n",resblock[O]);

resetbasic()
{

}

cmdblock[O]=3; /* reset current setup */

SetBasic(cmdblock,resblock);

TEKELEC 8.6-11 Version 2.5

Chameleon 32 C Manual Appendix B.6: Basic Rate Interface Library

init_lapd()
{
i nt result;

}

/ ••••••••••• SETUP PORT "A" ••••••••••• /
if ((result=setport(PORTA» != 0) {

printf("ERROR: setport = 1d\n",result);
resetbasic();
exit(O);

}

if((result=initpl(ISON,NETWORK,NRZ,160001» != 0)
printf("ERROR: initpl = 1d\n",result);

/. configure LAPO parameters ./
if((result=setflg(FILLFF» != 0

printf("result from setflag = 1d\n",result);
if((result=set_net{» != 0)

printf("ERROR: result from set_net = 1d\n",result);
if((result=set_mod (M00128» != 0)

printf{"ERROR: result from set_mod == 1d\n",result);
if((result=set_nZ (3» != 0)

printf("ERROR: result from set_nZ == %d\n",result);
if((result=set_nl (260» != 0)

.printf("ERROR: result from set_nl == %d\n", result).;
if{ (result=set_sapi (0» != 0)

printf("ERROR: result from set_sap; == 1d\n",result);
if((result=set_tei (10» != 0)

printf("ERROR: result from set_tei == %d\n",result);
if((result=set_tl (10» != 0)
printf("ERROR: result from set_tl == %d\n",result);

if((result=set_tZ (20» != 0)
printf("ERROR: result from set_t2 == %d\n",result);

if((result=set_window (3» != 0)
printf("ERROR: result from set_window == 1d\n",result);

if((result=set_rsapi (1,0» != 0)
printf("ERROR: result from set_rntei

if((result=set_rntei (1,10» != 0)
printf("ERROR: result from set_rntei

1d\n", result);

1d\n", result);

TEKELEC B.6-12 Version 2.5

Chameleon 32 C Manual . Appendix B.6: Basic Rate Interface Library

main()
{
unsigned char rxbuf[100], txbuf[30], c:
extern unsigned int rxlen:
int result,i:
char frame [10]:

for(i=O:i<10:i++)
frame[i] = i + 48:

1·······································/
/- Initialize tha Basic Rate Interface -/ , ,

, ... /
/- Initialize the Front End Processor (FEP) for LA PO -,
, ••• I

, ,
/- Wait for the link to come up -/
/ ,
while «status(» != 4) ,- check for information transfer stat~ -/
(
puts(CLEARS):
printf (·'nResult from status ==~d\n·,status(»:
if«c=getch(_stdvt» == 'Q' I I c == 'q') (slof(): resetbasic(): exit(O):}

)

/ ••• I

/- Transmit a UI frame after the link is established -/
,- to see if their is a fixed TEl value.
, ••• I

printf(·'nPress RETURN to transmit a UI frame\n·):
getchar():
if((result=trans(UI,frame,10» != 0

printf("Result from the UI transmit = ~d\n",result):

/ ,
/- transmit data -/ , ,
for(i=O:i<=25:i++)

tXbuf[i] = i + 65;
/- upper case letters -/

printf("\nPress RETURN to send data from port A\n"):
getchar():

if((result=transmit(txbuf,i» != 0) /- transmit data & get result -/
printf("TRANSMIT ERROR: result=~d\n",result):

TEKELEC B.6-13 Version 2.5

Chameleon 32 C Manual Appendix 8.6: Basic Rate Interface Library

}

/ /
/. receive data ./
/ /
printf("\nWaiting to receive data on port A\n");

do (
receive(rxbuf); /. if rxlen=O then no data was received ./
if«c=getch(_stdvt» == 'Q' II c == 'q') (slof(); resetbasic(); exit(O);}

} while (rxlen==O);

if(rxlen != 0)
~pr1ntf("\nReceive status = ~d\n",rxbuf[O]);

for(i=l;i<rxlen;i++)
printf("~c ·,rxbuf[i]); /- print results of data transfer -/

slOf(); ,. bring link down ./
resetbasic();

printf("\nPress RETURN to end the program\n");
getchar();

TEKELEC 8.6-14 Version 2.5

Chameleon 32 C Manual Appendix B.6: Basic Rate Interface Library

BRIS.C This sample program demonstrates sending and receiving
data on Port B using the SRI and the liblapd.c library.

#include <stdio.h)
lIinclude <video.h)
#include (cham.h)
#define MOO128

lnt resbloc~ [5];
int cmdbloc~ [5];

init_basic_rate()
{

1

, /
1* set basic rate to simulate TE ·1
/ ,
cmdblock(O] = 101; 1* port B *'
cmdblock[l] = 3; '* TE type *'
SetBasic(cmdbloc~,resbloc~);

if(resblock[O] 1= 0)
printf("ERROR: result from SetBasic to NT ~d\n",resblock[O]);

}

1······································/
'*set channel functions to O-channel *'

I···································~··/
cmdblock[O] =·104; '* channel *'
cmdblock[1] 0; '* keep current setup *'
cmdblock[2] = 3; '* use 0 channel *'
cmdblock[3] = 1; '* system *'
SetBasic(cmdblock,resblock);
if(resbloCk(O] != 0)

printf("ERROR: result from SetBasic to D-Channel ~d\n·,resblock[O]);

resetbasic()
{

}

cmdblock[0]=103; '* reset current setup *'
SetBasic(cmdblock,resblock);

TEKELEC B.6-15 Version 2.5

Chameleon 32 C Manual Appendix B.6: Basic Rate Interlace Library

io~t_lapd()

{
iot result;

}

, ••••••••••• SETUP PORT "8" ••••••••••• ,
if ((result=setport(PORT8» != 0) (

printf("ERROR: setport = ld\o",result);
resetbasic();
exit(O);

}

if((result=initpl(ISDN,SUBSCRIBER,NRZ,16000l» != 0)
printf("ERROR: initp1 = %d\o",result);

,e configure LAPD parameters .,
if((result=setflg(FILLFF» != 0

printf("result from setflag = %d\n",result);
if((result=set_mod (MOD128» 1= 0)

printf("ERROR: result from set_mod == %d\n",result);
if((result=set_n2 (3» != 0)

printf("ERROR: result from set_n2 == %d\n",result);
if((result=set_nl (260» 1= 0)

printf("ERROR: result from set_n1 == %d\n",result);
if((result=set_sapi (0» != 0)

printf("ERROR: result from set_~api =='ld\n",r~sult);
if((result-set_tei (1.0» != 0.)

printf("ERROR: result from set_tei == %d\n",result);
if((result=set_tl (10» 1= 0)

printf("ERROR: result from set_tl == %d\n",result);
if((result=set_t2 (20» 1= 0)

printf("ERROR: result from set_t2 == %d\n",result);
if((result=set_window (3» != 0)

printf("ERROR: result from set_window == %d\n",result);
if((result=set_rsapi (1,0» != 0)

printf("ERROR: result from set_rntei == ld\n",result);
if((result-set_rntei (1,10» != 0)

printf("ERROR: result from set_rntei == %d\n",result);

main()
{
unsigned char rxbuf[100], txbuf[30], c;
extern unsigned int rxlen;
iot result,i,j;

, ,
,e Initialize the Basic Rate Interface .,

I·······································,

TEKELEC 8.6-16 Version 2.5

Chameleon 32 C Manual Appendix B.6: Basic Rate Interface Library

}

I···/
1* Initialize the Front End Processor (FEP) for LAPD .,

I···I

, .. ,
,. establish information transfer state *' , .. ,
if((result=slon(» != 0)

printf("result from slon() = ~d\n",result);

, ,
/. Wait for the link to come up ., , ,
while «status(» != 4) ,. check for information transfer state .,
{

puts(CLEARS) ;
printf (·\nResult from status ==~d\n·.status(»;
if«c=getch(_stdvt» == '0' II c == 'q') {slof(); resetbasic(); exit(O):}

}

for(j=0:j<2;j++) (

}

, ,
,. receive data ., , ,
printf("\nWaiting to receive data on port B\n·);

.do {
'receive(rxbuf): ,. if rxlel1=O then no data was recei"ved .,
if«c=getch(_stdvt» == '0' II c == 'q') {slof(): resetbasic(): exit(O):}

} while (rxlen=mO):

if(rxlen != 0)
printf(·\nReceiv~ status

for(i=l;i<rxlen;i++)

~d\n",rxbuf[O]);

printf("~c ",rxbuf[i]); ,. print results of data transfer ./

, ,
,. transmit data ., , ,
for(i=O;i<=25;i++)

txbuf[i] = i + 91;
,. lower case letters .,

printf("\nPress RETURN to send data from port B\n");
getchar() ;

if((result=transmit(txbuf,i» != 0) ,. transmit data & get result .,
printf("TRANSMIT ERROR: result=~d\n·,result);

resetbas i c () :

printf("\nPress RETURN to end the program\n");
getchar();

TEKELEC B.6-17 Version 2.5

'hameleon 32 CManual Appendix B.6: Basic Rate Interface1.ibrary

BRIAB.C This sample program demonstrates sending and receiving
data using a Dual Port Machine with the BRI and the liblapd.c
library.

#include <stdio.h>
#include <video.h>
#include <cham.h>
#define MOD128 1

int cmdblock [5], resblock (5];
int result:

init_basic_rate()
(, ,

,. set port A to simulate NT ., , ,
cmdblock(O] = 1: ,. port A .,
cmdblock[l] = 2; ,. NT type .,
SetBasic(cmdblock,resblock):
if(resblock[O] != 0)

printf("ERROR: result from SetBasic to NT ~d\n·,resblock[O]);

,•........................ ,
,. set channel functions·t~ D-channel ., , ,
cmdblock(O] = 4; ,. channel·,
cmdblock[l] = 0; ,. keep current setup .,
cmdblock[2] = 3; ,. use 0 channel·,
cmdblock[3] = 1; ,. system .,
SetBasic(cmdblock,resblock);
if(resblock[O] != 0)

printf("ERROR: result from SetBasic to D-Channel = ~d\n",resblock[O]);

/ ,
;. set port B to simulate TE .,
; ,
cmdblock[O] = 101; ;. port B .,
cmdblock[l] = 3: ,. TE type .,
SetBasic(cmdblock,resblock);
if(resblock[O] 1= 0)

printf("ERROR: result from SetBasic to NT = ~d\n·,resblock[O]);

TEKELEC B.6-18 Version 2.S

Chameleon 32 C Manual Appendix B.6: Basic Rate Interface Library

}

, /
/* set channel functions to D-channel */ , ,
cmdblock[O] 104: /* channel */

cmdblock[l] 0: /* keep current setup */

cmdblock[2] 3: /* use 0 channel */

cmdblock[3] 1: /* system */

SetBasic(cmdblock,resblock):
if(resblock[O] 1= 0)

printf("ERROR: result from SetBasic to D-Channel %d\n",resblock[O]):

resetbasic()
{

cmdblock[O]=3: /* reset port A's current setup */

SetSasic(cmdblock,resblock):
cmdblock[O]=103; /* reset port S's current setup ./
SetSasic(cmdblock,resblock):

}

confi9-lapd()
{

}

, ,
/. configure LAPD parameters ./ , ,
if((result=setflg(FILLFF» 1= 0

printf("result from setflag = %d\n",result):
if((result=set_mod (Ma0128» 1= 0)

printf("ERROR: result from set_mod == %d\n",result):
if((result=set_n2 (3» != 0)

printf("ERROR: result from set n2
if((result=set_nl (260» != 0)

%d\n",result):

printf("ERROR: result from set_n1 == %d\n",result):
if((result=set_sapi (0» != 0)

printf("ERROR: result from set_sapi == %d\o",result);
if((result=set_tei (10» != 0)

printf("ERROR: result from set_tei == %d\n",result):
if((result=set_tl (10» != 0)

printf("ERROR: result from set_tl
if((result=set_t2 (20» != 0)

%d\n",result):

printf("ERROR: result from set_t2 == %d\n",result):
if((result=set_window (3» != 0)

printf("ERROR: result from set_window == %d\n",result):
if ((re s u 1 t = set _ r s ap i (1, 0 » ! = 0)

printf("ERROR: result from set_rntei
if((result=set_rnte; (1,10» != 0)

%d\n", result);

printf("ERROR: result from set_rntei == %d\n",result):
if((result = set_sub(}) !=O)

printf(-ERROR: result from set_sub == %d\n",result);

TEKELEC 8.6- 19 Version 2.6

Chameleon 32 C Manual Appendix B.6: Basic Rate Interface Library

}

, ••••••••••• SETUP PORT "A" ••••••••••• ,
if ((result=setport(PORTA}) != 0) {

printf("ERROR: setport = ~d\n",result};
resetbasic() ;
exit(O);

}

if((result=initpl(ISDN,NETWORK,NRZ,16000l» != 0)
printf("ERROR: initpl = ~d\n",result);

if((result=set_net(» != 0)
printf("ERROR: result from set_net ~d\n·,result);

config_lapd();

, ••••••••••• SETUP PORT "8" ••••••••••• ,
if ((rasult=setport(PORT8» 1= 0) {

printf("ERROR: setport = ~d\n·,result);
resetbas iC() ;

exit(O);
}

if((result=initpl(ISDN,SU8SCRIBER,NRZ,160001» != 0)
printf("ERROR: initpl = ~d\n·,result);

config_lapd();

send_data(port.buf,buf_size)
unsigned char port, ·buf;
int buf_size;
{

}

setport(port);
if (port)

/. select which port to use .,

printf("\n\n\nPress RETURN to send data from port 8\n");
else

printf("\n\n\nPress RETURN to send data from port A\n");

getchar();
puts(CLEARS); ,. clear the screen .,
if((result=transmit(buf,buf_size» != 0)'. transmit data & get result .,

printf("TRANSMIT ERROR: result=~d\n",result);

TEKELEC 8.6-20 Version 2.6

Chameleon 32 C Manual Appendix B.6: Basic Rate Interface Library

get_data(port)
unsigned char port;
(
unsigned char rxbuf[100], c;
extern unsigned int rxlen;
i nt i;

}

setport(port);
if(port)

/- select which port to use -/

printf("\nData received on port B:\n");
else

printf("\nData received on port A:\n");

do {
receive(rxbuf); /- if rxlen=O then no data was received -/
if«c=getch(_stdvt» == 'Q' II c == 'q') {slof(); resetbasic(); exit(O);}

} while (rxlen==O);

if (rx 1 en ! = 0)
printf("\nReceive status

for(i=l;i(rxlen;i++)

~d\n",rxbuf[O]);

printf("~c ",rxbuf[i]); /- print results of data transfer -/

mainO
{
unsigned char txbuf[30], c;
int i;

char frame [10];

for(i=O;i(10;i++) /- setup the data for the UI frame, ascii 0 - g -/
frame[i] = i + 48;

/ ,
/- Initialize the Basic Rate Interface -/

I·······································,

I···/
/- Initialize the Front End Processor (FEP) for LAPD -/ , ... /

/ .. ,
/- The subscriber establishs the information transfer state -/

I··· ,
if((result=slon(» != 0)

printf("result from slone) = ~d\n",result);

TEKELEC 8.6-21 Version 2.5

Chameleon 32 C Manual Appendix 8.6: Basic Rate Interface Library

}

/ /
,. Wait for the link to come up .,
/ ,
while «status(» != 4) ,. check for information transfer state .,
(
puts(CLEARS) :
printf ("\nResult from status ==~d\n·.status(»:
if«c=getch(_stdvt» == '0' I I c == 'q') (slof(): resetbasic(): e~it(O):}

}

/ .. /
/. Transmit a UI frame after the link is established ./
/. from port A to port B.
/ ... /
printf("\nPress RETURN to transmit a UI frame from port A\n"):
getchar():

setport(PORTA) ;
if((result=trans(UI.frame.l0» != 0)

printf(·Result from the UI transmit = Sd\n".result);

get_data(PORTB); /. Receive the UI Frame on port B ./

/ /
/. Transmit data from port A to port B ./
/ /
for(i=O;1(=25;i++)

txbuf[i] • 1 + 65:
/. upper case letters .,

send_data(PORTA.txbuf.i);

get_data(PORTB); ,. recelve data on port B ./

, /
/. Transmit data from port B to port A ., , ,
for(i=O;i(=25:i++)

tXbuf[i] = i + 97:
,. lower case letters .,

send_data(PORTB.t~buf.i):

get_data(PORTA): ,. receive data on port A *'
slof(); /. bring link down .,
resetbasic();

printf("\n\n\nPress RETURN to end the program\n·):
getchar():

TEKELEC B.6-22 Version 2.S

Chameleon 32 C Manual App. B.7: BSC Library

B.7 BSC C LIBRARY

Introduction

TEKELEC

The BSC C Library (Iibbsc.a) is valid for IBM's Binary
Synchronous Communications protocol. It is in the \lib
directory.

The functions are described on the following pages:

FUNCTION PAGE

IDLE MODE B.7-2

INITP1 B.7-3

RECEIVE B.7-4

TRANSMIT B. 7-5

TREADY B. 7-6

Also refer to Appendix B.1 for a description of common
library functions and error codes.

A sample program using the BSC library is provided at
the end of this section.

B.7·' Version 2.4

Chameleon 32 C Manual

IDLE MODE -
Declaration

Range

Description

Returns

TEKELEC

#include < cham.h >
int idle mode(mode)
int moCe;

App.8.7: BSC Library

mode IDLE or 0 Transmits the idle character (FF)
SYNC or 1 Transmits the SYN character

This function specifies the character to be transmitted while
the line is idle.

o Successful

See also the global error codes on page B.1-1.

B.7-2 Version 2.4

Chameleon 32 C Manual

INITP1

Declaration

Range

Description

Returns

TEKELEC

int initp1 (type,encode, bitrate, crc, data)
int type;
struct BSC CTRL encode;
unsigned rang bitrate;
int crc;
int data;

type o
1

DCE
DTE

App. B.7: BSC Library

encode This is a structure that defines the control
characters for the BSC protocol. It is defined as
follows:

bitrate

struct BSC CTRL
{ -
unsigned char eot;
unsigned char syn;
unsigned char dIe;
unsigned char stx;
unsigned char etx;
unsigned char soh;
unsigned char etb;
unsigned char itb;
unsigned char enq;
};

50L - 64000L

ere o
1

CRC16 block check algorithm
CCID -CRC block check algorithm

data Ox10
Ox04
OX01
OxOO

EBCDIC data
ASCII data (no parity)
ASCII data (even parity)
ASCII data (odd parity)

This function initializes P1 and loads its simulation software.

o Successful
-1 One or more parameter errors
-2 Front End Processor program could not be loaded

See also the global error codes on page B.1-1.

8.7-3 Version 2.4

Chameleon 32 C Manual

RECEIVE

Declaration

Description

Returns

Example

TEKELEC

int receive(frame)
char 'rame;

App. B.7: BSC Library

This function receives a frame from P1 and places the frame
starting at the address pointed to by the passed variable
frame.

The external . global variable rx/en is set to the length of the
received frame. If rx/en = 0, then no frame was received.

o
1
2
3

Good Bee or no frame waiting
Bad BCe
initp 1 not performed
Overflow

Se~ also the global error codes on page B.1-1.

do {
receive(frame);

} while (rxlen == 0);

B.7-4 Version 2.4

Chameleon 32 C Manual App. B.7: BSC Library

"

TRANSMIT

Declaration

Description

int transmit(mode, frame, length)
int mode;
char *frame;
int length;

This function transmits the number of bytes specified by the
passed variable length, starting at the address pOinted to by
the passed pointer *frame, with the control characters and
block check as specified by the passed value mode. The
mode parameter is defined as follows:

7 6 5 432 1 0

L Start Framing Character
O=SOH
1 =STX

'----'----+ End Framing Character
OO=EOT .
01 =ETB
10=ETX
11 = Illegal

Transparent Text Enable
o = Normal Text
1 = Transparent Text

Transparent Mode
0= Transparent mode 0 (no OLE insertion)
1 = Transparent mode 1 (OLE insertion)

'------------+ Text Mode
0= Control Mode
1 = Text Mode

'---~--------.... Block Check Character (BCC)
0= Good BCC
1 = Bad BCC

'--____________ -+ Reserved (must be 1)

Returns

TEKELEC

o
1
2
3
4

Successful
P1 busy (transmitting previous frame)
initp1 not performed
Parameter error
Buffer overflow

See also the global error codes on page 8.1-1

B.7-5 Version 2.4

.. Chameleon 32 C Manual

TREADV

Declaration

Description

Returns

TEKELEC

App. B.7: BSC Library

int treadyO

This function returns the status of the Front End Processor
transmitter.

o
1
2
3

Transmitter is ready for next frame
Transmitter is busy (sending previous frame)
Initp 1 not performed
Overflow

See also the global error codes on page 8.1-1

B.7-6 Version 2.4

Chameleon 32 C Manual App. B.7: BSC Library

Sample Programs There are three sample SSC programs on the C Sample
Program Disk. They are:

• bsca.c

• bscb.c

• bscab.c

SSCA.C This sample program demonstrates transmitting and receiving
on Port A over a V.24 interface using the libbsc.a library.

'include <stdio.h>
'include <cham.h>
'include <video.h>
struct BSC_CTRl;

mainJ)
(
char ch,crc;
struct BSC_CTRl encode;
extern unsigned int rxlen; Ie global variable for receive data length el
unsigned char atrans[100],rxbuf[128]; Ie transmit & revieve arrays el
int result,i;

encode.eot 55;
encode.syn 50;
encode.dle = 16;
encode.stx 02;
encode.etx 03;
encode.soh 01;
encode.etb 38;
encode.itb 31;

·encode.enq 45;

, ,
Ie SET THE ACTIVE PORT TO "A" el , ,
if((result=setport(PORTA» l= 0) (

printf("ERROR: setport = ~d\n". result);
exit(O);

}

, ,
Ie INITIALIZE THE FRONT END PROCESSOR ·1 , ,
if((result=initpl(DCE,&encode.eot.9600l,CCITT,ASCII_EVEN_DATA») (

printf("ERROR: initpl = ~d\n·, result);
exit(O) ;

}

TEKELEC B.7-7 Version 2.4

Chameleon 32 C Manual

}

for (i=O; i<=99; i++)
atrans[i]=Ox66: ,. store hex 66 into transmit array *'
/ .. ,
,. WAIT UNITL THE SYSTEM IS READY TO TRANSMIT ., , .. ,
while«tready()}I=O){ ,. loop while transmitter not ready·'

puts(CLEARS); ,. clear screen .,
printf("PRESS ANY KEY TO ABORT \n"):
printf("TREADY STATUS =%d\n".tready(»:
if«Ch = getch (_stdvt» 1= -1) ,. check for key pressed .,

exit(O);
}

, ,
,. SEND OUT SOME DATA ., , ,
printf("\n hit RETURN to send the data out of port 'A'\n");
getchar();

result=transmit(Ox80.atrans.l00): ,. transmit 100 hex 66 & get result .,
printf("\nRESULT OF TRANSMIT=%d\n".result):

, .. ,
,. WAIT FOR SOME DATA FROM THE OTHER DEVICE ., , .. ,
printf("\nWaiting to receive\n");

do {
receive(rxbuf): ,. if rxlen=O then no data was received .,

} while (rx1en==0);

fore i"O: i<rxlen: i++)
printf("%d)=%x ".i.rxbuf[i]): ,. print results of data transfer .,

printf("\nPress RETURN to exit the program\n"):
getchar():

TEKELEC 8.7-8

App. B.7: BSC Library

Version 2.4

Chameleon 32 C Manual App. B.7: BSC Library

BSCB.C This sample program demonstrates transmitting and receiving
on Port B over a V.24 interface using the libbsc.a library.

#include <stdio.h>
'include <cham.h>
'include <video.h>
struct BSC_CTRL:

maine)
{
char ch,crc;
struct BSC_CTRL encode:
extern unsigned int rxlen: ,. global variable for receive data length .,
unsigned char atrans[100],rxbuf[128]: ,. transmit & revieve arrays .,
int result,i:

encode.eot 55;
encode.syn 50:
encode.dle = 16:
encode.stx = 02:
encode.etx 03;
encode. soh 01:
encode.etb = 38;
encode.itb 31;
encode.enq 45;

, ,
,. SET THE ACTIVE PORT TO "S" .,
/ /
if((result=setport(PORTS» 1= 0) {

printf("ERROR: setport = ~d\n·, result);
exit(O);

}

, ,
/. INITIALIZE THE FRONT END PROCESSOR ., , ,
if((result=initp1(DTE,&encode.eot,g600l,CCITT,ASCII_EVEN_DATA») {

printf("ERROR: initp1 = ~d\n·, result);
exit(O):

}

for (i=0;i<=99;i++)
atrans[i]=Ox22; ,. store hex 22 into transmit array ./

TEKELEC 8.7-9 Version 2.4

Chameleon 32 C Manual

}

/ .. /
,. WAIT UNITL THE SYSTEM IS READY TO TRANSMIT ., , .. ,
while«tready(»)I=O){ ,. loop while transmitter not ready·'

puts(CLEARS): /. clear screen ./
printf(WPRESS ANY KEY TO ABORT \n"):
printf(WTREADY STATUS =Xd\n",tready(»;
if«ch = getch (_stdvt» 1= -1) /. check for key pressed .,

exit(O):
}

, .. /
,. WAIT FOR SOME DATA FROM THE OTHER DEVICE ./
/ .. /
printf("\nWaiting to receive\n");

do (
receive(rxbuf): /. if rxlen=O then no data was received ./

} while (rxlen==O):

for(i=O;i<rxlenii++)
printf("Xd)=Xx ",i,rxbuf[i]); ,. print results of data transfer .,

,. SEND OUT SOME DATA .,

printf("\n hit RETURN to send the data out of port 'S'\n");

getchar();

result=transmit(Ox80,atrans,100): ,. transmit 100 hex ZZ & get result·/
printf("\nRESULT OF TRANSMIT=~d\n",result):

printf("\nPress RETURN to exit the program\n"):
getchar();

TEKELEC B.7-10

App. B.7: BSC Library

Version 2.4

Chameleon 32 C Manual App. B.7: BSC Library

BSCAB.C This sample program demonstrates transmitting and receiving
on a Dual Port machine over a V.24 interface using the
libbsc.a library.

'include <stdio.h>
'include <cham.h>
'include <video.h>
struct BSC_CTRL:

/.

• SETUP BOTH OF THE PORTS
./

init_ports()
{
struct BSC_CTRL
int result;

encode.eot
encode.syn
encode.dle
encode.stx
encode.etx
encode.soh
encode.etb
encode.itb
encode.enq

encode:

=

=

/ /
/. SET THE ACTIVE PORT TO "A" ./
/ /

55:
50:
16:
02:
03:
01;

38;
31:
45:

if((result=setport(PORTA» != 0) {
printf("~RROR: setport = ~d\n", result):
exit(O):

}

, ,
/. INITIALIZE THE FRONT END PROCESSOR ./
/ /
if((result=initpl(DCE.&encode.eot,9600l.CCITT,ASCII_EVEN_DATA») {

printf("ERROR: initpl = ~d\n", result):
exit(O):

}

/ ,
,. SET THE ACTIVE PORT TO "B" ./ , ,
if((result=setport(PORTB» != 0) {

printf("ERROR: setport = ~d'n", result):
exit(O):

}

TEKELEC B.7-11 Version 2.4

Chameleon 32 C Manual

/ ~./
/* INITIALIZE THE FRONT END PROCESSOR */ , ,
if((result=initp1(DTE.&encode.eot.96001.CCITT.ASCII_EVEN_DATA)}) (

printf("ERROR: initp1 = ~d\n". result);
uit(O};

}
}

/*

• RECEIVE DATA
*/

get_data(port}
unsigned char port;
(
extern unsigned int rxlen;
int i;
unsigned char rxbuf[128];

/. global variable for receive data length ./

setport(port); /. determine which port to use ./
printf("\nWaiting to receive\n"}:

do {
receive(rxbuf}; /. if rxlen=O the~ no data was received */

} while (rxlen==O):

for(i=O;i<rxlen;i++) {
if(i ~ 15 == 0 } printf("\n"}:
printf("%x ".rxbuf[i]); /. print results of data transfer .,

}
.}

/.

* TRANSMIT DATA OUT
*/

send_data(port.buf.~uf_size}

unsigned char port.*buf;
int buf_size:
(

setport(port); /* determine which port to use */
printf("\nRESULT OF TRANSMIT=~d\n".transmit(Ox80.buf.buf_size)};

}

TEKELEC B.7-12

App. B.7: BSC Library

Version 2.4

Chameleon 32 C Manual

main()
{
char ch;
unsigned char atrans[100]; ,. transmit array·'
int i;

, ,
,. INITIALIZE BOTH PORTS ., , ,

setport(PORTA):

, .. ,
,. WAIT UNITL THE SYSTEM IS READY TO TRANSMIT .,
/ .. ,
whlle«tready(»I=O){ ,. loop while transmitter not ready·'

puts(CLEARS): ,. clear screen .,
printf("PRESS ANY KEY TO ABORT \nO):
printf("TREADY STATUS =~d\n",tready(»:
if«ch = getch (_stdvt» 1= -1) ,. check for key pressed .,

exit(O):
}

, ,
,. SEND OUT SOME DATA ., , ,
for (1"0; ;,<"99; i++)

atrans[i]=Ox66; ,. store hex 66 into the transmit array·'

printf("\nPress RETURN to send data from port 'A' to port '8'\n"):
getchar():

send_data(PORTA.atrans,i):

, ,
,. WAIT FOR SOME DATA ., , ,
get_data(PORTB);

, ,
,- SEND OUT SOME DATA -,
/ ,
for (i=0:;<=99:i++)

atrans[i]=Ox22: ,- store hex 22 into the transmit array -,

printf("\nPress RETURN to send data from port 'B' to port 'A'\n"}:
getchar():

send_data(PORTB,atrans,i):

TEKELEC B.7-13

App. B.7: BSe Library

Version 2.4

Chameleon 32 C Manual

}

/ /
/. WAIT FOR SOME DATA ./
/ ~ /
get_data(PORTA):

printf("\nPress RETURN to exit the program\n"):
getchar():

TEKELEC B.7-14

App. B.7: BSC Library

Version 2.4

Chameleon 32 C Manual Appendix B.8: Primary Rate Interface Library

B.8 PRIMARY RATE INTERFACE LIBRARY

Introduction

Note

TEKELEC

The Primary Rate Library enables you to use the Chameleon
32 Primary Rate Interface hardware with the C environment. It
is valid for both the ANSI and CEPT Primary Rate Interfaces.
The library is called IibprLa and is in the llib directory.

In general, your application should include PRI library routines
which enable you to set up and modify the Primary Rate
Interface from within your application. However, when you
start a C application from the Applications Selection menu, you
must set up the PRI before you can access the Applications
Selection menu to start the application. This can be
accomplished in two ways:

• You can access the PRI Setup menu before starting the
C application. This is done by pressing F7 Physicl in the
main configuration menu.

• You can save the PRI Setup menu as part of the
DEFAULT configuration file. The PRI is then
automatically set up when the Chameleon is booted or
reset.

When the C application is then started, it uses the PRI Set"up
menu parameters. Your application can then use other
routines to modify the setup or use PRI functions, as required
by your test. If the application contains a PRI library setup
routine, the application setup overrides the menu setup.

When starting an application from the C Shell, if your
application contains a valid PRI setup routine, it is not
necessary to access the PRI Setup menu prior to starting your
application.

Chapter 3.1 describes he procedure for starting applications
from the C Shell and from the Applications Selection menu

You cannot use the C PRI library and the PRIMARY application
at the same time. (The PRIMARY application enables the user
to monitor and modify the PRI at run time.) The PRIMARY
application is useful for Monitoring applications and non-C
simulation applications, but results in an error message when
used simultaneously with the C PRI library. The PRIMARY
application is described in the Chameleon Protocol
Interpretation Manual, Chapter 11.

B.8-1 Version 2.S

Chameleon 32 C Manual

TEKELEC

Appendix 8.8: Primary Rate Interface Ubrary

The functions are described on the following pages:

FUNCTION

Pri version

SetPrimary

PAGE

8.8-3

8.8-4

Also refer to Appendix 8.1 for a description of common library
functions and error codes.

Several sample programs using the PRI library are provided at
the end of this section.

8.8-2 Version 2.5

· Chameleon 32 C Manual

Pri version -
Declaration

Description

TEKELEC

Appendix B.8: Primary Rate Interface Library

char *Pri_versionO

This function returns a pointer to a string which indicates the
date of the Primary Rate Interface library version.

B.8-3 Version 2.5

Chameleon 32 C Manual

SetPrimary

Declaration

Description

TEKELEC

Appendix B.8: Primary Rate Interface Library

int SetPrimary(cmdblock, resblock)
int cmdblock [14];
jnt resblock [14];

This function has two parameters that are integer arrays. The
size of the arrays must be at least 14.

The cmdblock (command block) parameter contains the input
values needed. The first item in cmdblock (index 0) is an
integer specifying the requested function. The remaining
entries in the command block are the arguments required for
the function. Choices for selections which are not available in
a given configuration are ignored (eg., Data Rate in CEPT).
For details of the Primary Rate Interface, refer to the
Chameleon 32 Monitoring Reference Manual, Chapter 11.

The resblock (result block) parameter is an array containing
the results, if any, of the operation requested in the cmdblock.

The first entry in the result block (index 0) indicates whether or
not the command- in cmdblQck was completed successfully.
Zero indicates a successful completion. Other. values that are
returned are given in the next result block elements.

When the requested operation cannot be done because of an
existing selection, the currently selected values are returned.

This is illustrated in the figure below:

COMMAND RESULT

Argument 1 Result 1

Argument 2 Result 2

etc. etc.

Figure 8.8-1: SetPrimary Function

8.8-4 Version 2.S

Chameleon 32 C Manual

Channel Number/
Time Slot

TEKELEC

Appendix B.8: Primary Rate Interlace Library

The commands listed below are available as the first item in
cmdblock. Note that the commands are different for Primary
Rate Interface boards A and B. Currently only board A is
available.

Board A Board B Command

1 101 Setup
2 102 Resynchronize
3 103 Reset
4 104 Channel functions
5 105 Signal functions
6 106 Get status
7 107 Change status
8 108 Reserved
9 Enable trace

Each command is described on the following pages.·

When selecting a channel number (ANSI) or time slot (CEPT)
for a command. the ,following convention applies:

• Enter the channel number itself to select a channel or
time slot for line 1 (T1 or R1). For example, for ANSI,
the argument 24 would select channel number 24 on line
1.

• Enter the channel number + 100 to select a channel or
time slot for line 2 (T2 or R2) For example, for ANSI, the
argument 124 would select channel number 24 on line 2.

B.8-5 Version 2.5

· Chameleon 32 C Manual Appendix 8.8: Primary Rate Interface Ubrary

Error Codes
resblock[O]

CODE

0

1

2

3

4

5

10

TEKELEC

The error codes for resblock[Oj are the same for all Primary
Rate Interface Ubrary commands, and are listed below.

If a command is successful, the current configuration is
returned as resblock[1] - resblock[11]. The result reflects the
structure of the cmdblock[1] - cmdblock[11] of the Setup
command.

If a command fails because of an invalid parameter, the invalid
parameter is returned in cmdblock[1]. If a command fails for
something other than an invalid parameter, the current
configuration is returned.

MEANING NOTES

Successful resblOck[1] - resblock[11] retum the current
configuration

Primary Rate Interface board
not installed

Setup already done To change the setup, first use the Reset
comman~ to reinitialize, and then use the
Setup command

Invalid channel numberltime resblock[1] returns the invalid channel or
slot time slot

Selection already in use resblock[1] - resblock[11] return the current
conflQuration

Channel already assigned resblock [1] - resblock[11] return the current
configuration

Command not implemented

Figure 8.8-2: resblock[O] Error Codes

8.8-6 Version 2.5

Chameleon 32 C Manual

Setup
cmdblock[O] = 1

Appendix B.8: Primary Rate Interface Library

cmdblock[O] = 101 This command is used to initialize all parameters. The Reset
command (cmdblock[O] = 3/103) must be used before using
Setup again.

TEKELEC

cmdblock[l] mode 1 Monitor
2 Simulate

cmdblock[2] framing 1 04
2 ESF
3 SL96
4 CEPT

cmdblock[3] idle data
8 bit value

cmdblock[4] idle signal
2 or 4 bit value

cmdblock[5] DSOx receive
Channel/time slot

cmdblock[6]" Codec receive
Channel/time slot

cmdblock[7]" DSOy receiver/transmitter
Channelltime slot

cmdblock[8t Codec transmitter
Channel/time slot (This parameter is irrelevant
for Monitor mode and is ignored.)

cmdblock[9]" Milliwatt transmitter
Channel/time slot (This parameter is irrelevant
for Monitor mode and is ignored.)

cmdblock[101- status line 1
One byte (See Figure 8.8-3 on the next page)

cmdblock[ll] status line 2
One byte (See Figure 8.8-3 on the next page)

* These functions are available on Line 1 only.

NOTE: When the system is in Monitor Mode, no
Transmit facilities are available

8.8-7 Version 2.6

Chameleon 32 C Manual

Resynchronize
cmdblock[O] = 2

Bit

Appendix B.8: Primary Rate Interface Library

7 6 543 2 1 0
x x x x x x x x

III ~~r"lon
1 =On

Reserved
Signalil1Q

0=00
1 =On

L..-_____ Data rate (ANSI only)
O=64k
1 =56k

'-------- Milliwatt tone (CEPT only),
0=820
1 = 1020

L..-_______ 050 Bit Inversion
O=Off
1 =On

CRC Enable (CEPT only)
0= CRC Enable off
1 = CRC Enable on

'----------- Reserved

• Available on Une 1 only

Figure B.8-3: Status Byte Interpretation

If you use the Setup command and the setup has already
been done, you will receive the error resblock[O] = 2 (Setup
already done). In this case, use the Reset command
(cmdblock[O] = 3) to reinitialize, and then use the Setup
command with the new configuration.

cmdblock[O] = 102 Argument None

Reset
cmdblock[O] = 3

This command resets the Primary Rate Interface and
reconfigures with the current setup.

cmdblock[O] = 103 Argument None

TEKELEC

This command resets the Primary Rate Interface and puts the
lines in repeater mode. The interface can then be
reconfigured using the Setup command.

B.8-8 Version 2.6

Chameleon 32 C Manual

Channel Functions
cmdblock[O] = 4

. Appendix B.8: Primary Rate Interface Library

cmdblock[O] = 104 cmdblock[1] mode o Retain current setup.
1 Override current setup. (See

TEKELEC

below)

cmdblock[2] selection 1 DSOx receive
2 Codec receive
3 DSOy transmit
4 DSOy receive
5 Codec transmit
6 Milliwatt transmit
7 Reset transmit channel
8 Reset receive channel
9 Idle data
10 Idle signal

cmdblock[3] channel number (if cmdblock[2] = 1 - 8)
1 - 24 D4/ESF line 1

. 1 - 31 CEPT line 1

cmdblock[3] Idle bits (if cmdblock[2] = 9 or 10)
8,4,2 bits

If there is an existing selection which conflicts with the new
request, cmdblock[1] (mode) determines whether the
command is executed. For example, if the request is for
. Codec transmitter on channel 2, but channel 2 is already being
used by Milliwatt transmitter, the following occurs:

• If mode 1 is selected, the old selection is reset. For this
example, the Milliwatt transmitter is reset, and channel 2
assigned to Codec transmitter.

• If mode 0 is selected, the old selection is retained and the
command request is not executed. For this example,
Milliwatt transmitter is retained on channel 2 and the error
code resblock[O] = 4 (Selection already in use) and the
current configuration are returned.

In general, if you wish to execute channel functions regardless
of their previous selection or non-selection, use mode 1
(cmdblock[1] = 1).

B.8-9 Version 2.5

Chameleon 32 C Manual

cmdblock[O] = 5
cmdblock[O] = 105
Signal Functions

TEKELEC

Appendix B.8: Primary Rate Interface Library

cmdblock[1] selection 1 Resynchronize
This selection resets and
resynchronizes the line.

2 Normal
This selection puts the line back
to normal mode of operation after
selecting any other choice of this
command.

3 Repeater
This selection loops the receive
line back to the transmit line.

4 Alarm
This selection transmits the Yellow
alarm signal in D4/ESF mode, or
the Remote alarm in CEPT.

5 Transparency (for line 1)
This selection causes all channels
from the received line to be
looped back as channels in the
transmit line.· For channels with
transmit functions (codec,
Milliwatt, Data Y), the incoming
traffic is replaced by the signal
from the selected transmitter.

cmdblock[2] line number 1.
2

Line 1
Line 2

B.8-10 Version 2.5

Chameleon 32 C Manual

Get Status
cmdblock[O] = 6

Appendix B.8: Primary Rate Interface Library

cmdblock[O] = 106 Argument None

Change Status
cmdblock[O] = 7
cmdblock[O] = 107

TEKELEC

This command returns the status of the line.

resblock[1] 0 Synchronized
1 Loss of signal
2 Yellow Alarm
4 Loss of framing

cmdblock[1] line 1 ar 2

cmdblock[2] status xxxxxxxx (see below)

This command changes the oper~ting modes of different
selections, for example, zero suppression and DSO bit
inversion. The choices are coded in bits, as shawn' in Figure
8.8-4.

B.8-11 Version 2.5

Chameleon 32 C Manual

Enable trace
cmdblock[O] = 9

TEKELEC

Appendix B.8: Primary Rate Interlace Library

7 6 5 432 1 0
B" x x x x x x x x

II I z~ ~&\,resslon
1 =On

Reserved
Signaling

O=Olf
1 =On

"------ Data rate (ANSI only)
O=64k
1 =56k

"------- Milliwatt tone (CEPT only)
0=820
1 = 1020

'--------- DSO B" Inversion
O=Off
1 =On

CRC Enable (CEPT only)
0= CRC E:nable off
1 = CRe Enable on

'------------ Reserved (must be 1)

Figure B.8-4: Status Byte Interpretation

This command is useful f?r debugging your programs.·

cmdblock[1] 8 trace bits (see be/ow)

7 6 543 2 1 0
Bit xxxxxxxx L=" Trace 110 to the hardware

O=Off
1 =On

Trace Command Block
0= Off
1 =On

"----- Trace Result Block
O=Off
1=On

"------ Trace Configuration
O=Off "
1 =On

L.-..r.-....... -'-_______ Reserved

B.8-12 Version 2.S

Chameleon 32 C Manual Appendix 8.8: Primary Rate Interface Library

Sample Programs There are four sample PRI programs on the C Sample
Program Disk. They are:

•
•
•
•

pria.c

prib.c

cepta.c

ceptb.c

Sets up an ANSI PAl on Port A.

Sets up an ANSI PAl on Port 8.

Sets up a CEPT PAl on Port A.

Sets up a CEPT PAl on Port 8.

PAIA.C This sample program demonstrates transmitting and receiving
over a PAl on Port A using the libbop.a and the libpri.a
libraries.

#inc1ude <stdio.h>
#inc1ude <cham.h>
#inc1ude <video.h>
#inc1ude <.tosux.h>

'* inita1ize cmd array for set primary function - setup as follows:
1

2
3
4

5
6
7

8
9

10 & 11

mode simulate
framing 04
idle data hex 55
idle signal a 11 binary
050x rec channel 15
codec rec
050y x.it ,.
codec x.it =
!Ii IIawatt =
status '1&2 =
zero suppression on
signaling off
data rate 64000
mi11awatt tone 820hz
OSO bit inversion off
CRC enable off
line 2 off

channel 1
channel 15
channel 1
channel 4
hex 01

o 123 4 5 6 7 8 9 10 11 12 13 *'
int cad []= {1. 2, 1. Ox55. 3, 15. 1, 15, 1, 4, OxOl, OxOl, O. 0 };
int rsp []= {O. O. O. OxOO, 0, 00. O. 00. O. 0, OxOO. OxOO. O. 0 };

exit.J)rogram()
{

printf(-\n\nP<ress RETURN to end this program\n-);
getchar();
exit(O);

}

TEKELEC 8.8-13 Version 2.5

-- Chameleon 32 C Manual Appendix B_8: Primary Rate Interface Library

maine)
{
e~tern unsigned int rxlen: /. global variable for receive data length ./
int i,result;
unsigned char atrans[30),rxbuf[1Z8),c: /. transmit & revieve arrays ./

/ .. /
/. initialize the ISDN PRIMARY RATE (layer 1) interface ./
/ .. /
SetPrimary (cmd,rsp):
if(rsp[O) 1= 0) {

printf(-\nERROR: RESULT SETPRIMARY
exitJrogram() :

~d\nW, rsp[O»;

}

pause(125+MS): /. wait for the primary (layer 1) to initialize ./

/ ... /
,. initialize the front end processor for port A ./ , ... /
if ((result=setport(PORTA)) 1= 0) {

pr1ntf(WERROR: setport = ~d\nw. result);
exitJrogram() :

}
if((resu1t=initpl(ISDN,NRZ,640001,FILL7E» 1= 0) {.

printf(-ERROR: initp1 • ~d\n·, result);
exitJrogr_O;

}

,•......... /
,. store data into the transmit array·' , ,
for(i=O:i<=Z5;i++)

atrans[i) = 65 + i: ,. fill transmit buffer with upper case letters ./

/ /
,. transmit data & get result ./ , /
printf(-Press Return to send data from port A\n W):
getchar();

if((result=transmit(GOOD_CRC,atrans,i» 1= 0) {
printf(W\nERROR: result=~d\n·,result);

e~itJrogram() :
}

/ .. /
/. receive the data from the the other device or port ./ , .. /
printf(W\nWaiting to receive data, (press 'q' to quit)\nW);

TEKELEC B_8-14 Version 2.S

Chameleon 32 C Manual Appendix B.8: Primary Rate Interface Library

}

do {
receive(rxbuf); '* if rxlen=O then no data was received *'
if({c=getchLstdvt» == 'Q' II c == 'q') exit(O);

} while (rxlen==O);

for(i=O;i(rxlen;i++)
printf(·~c ·,rxbuf[i]): '* print results of data transfer *'

TEKELEC 8.8-15 Version 2.5

Chameleon 32 C Manual Appendix B.8: Primary Rate Interface Library

PRIB.C This sample program demonstrates transmitting and receiving
over a PAl on Port B using the libbop.a and the libpri.a
libraries .

• include <stdio.h)
.include <ch ... h)
.include <video.h)
.include <mtosux.h)

'* initalize cmd array for set primary function - setup as follows:.
1

2
3
4
5
6
7
8
9
10 .. 11

mode .. simulate
framing 04
idle data = hex 55
idle signal .. 11 binary
OSOx rec ..
codec rec =
OSOy x ... it ..
codec xm1t •
.illawatt ..
status .1&2 •
zero suppression on
signaling off
data rate 64009
millawatt tone 820hz
OSO bit inversion off
CRC enable ()ff
line·2 off

channel 15
channel 1
channel 15
channel 1
channel 4

hex 01

o 1 2 3 4 5 6 7 8 9 10 11 12 13 *'
int cad (]a {lOl, 2, I, Ox55, 3, IS, I, 15, I, 4, OxOl, OxOl, 0, 0 };
1nt rsp (]= {O, 0, 0, OxOO, 0, 00, 0, 00, 0, 0, OxOO, OxOO, 0, 0 };

exitJrogru()
(

printf(-\n\nPr~ss RETURN to terminate this program\n-);
getchar();
exit(O);

}

TEKELEC B.8-16 Version 2.S

Chameleon 32 C Manual Appendix B.8: Primary Rate Interface Library

main()
{
extern unsigned int rx1en; ,. global variable for receive data length .,
int i. result:
unsigned char atrans(30].rxbuf(lZ8].c: ,. transmit & revieve arrays .,

, .. ,
,. initialize the ISDN PRIMARY RATE (layer 1) interface ., , .. ,
SetPrimary (cmd.rsp):
if(rsp(O] 1= 0) {

}

printf("\nERROR: RESULT SETPRIMARY
exitJrogram() :

~d\n". rsp[O]):

pause(125+MS): ,. wait for the primary (layer 1) to initialize .,

, ... ,
,. initialize the front end processor for port B ., , .. ~ ,
if ((resu1t=setport(PORTB» 1= 0) {

printf(·ERROR: setport = ld\n·, result):
exit_program():

}
if((result~initp1(ISDN.NRZ,640001,FILL7E» 1= 0) {

printf(·ERROR: initpl.: U\n·, result):
exitJrogram() ;

}

I··~········*'
,. receive the data from the the other device or port ., , .. ,
printf("\nWaiting to receive data. (press 'q' to quit)\n"):

do {
receive(rxbuf): ,. if rx1en=0 then no data was received .,
if«c=getch(_stdvt» == '0' II c == 'q') exit(O) ;

} while (rx1en==0):

for(i=0:i<rx1en:i++)
printf{·lc ".rxbuf(i]); ,. print results of data transfer .,

, ~ ,
,. store data into the transmit array·' , ,
for(i=O: i<=Z5: i++)

atrans[i] = 97 + i; ,. fill transmit buffer with lower case letters .,

TEKELEC B.8-17 Version 2.5

Chameleon 32 C Manual Appendix B.8:. Primary Rate Interface Library

}

, ,
,. transmit data & get result ., , ,
printf(W\n\nPress Return to send data from port 8\n");
getchar() :

if((result=transmit(GOOD_CRC,atrans,i» 1= 0)
printf(W\nERROR: result=~d\nW,result);

TEKELEC B.8-18 Version 2.5

Chameleon 32 C Manual . Appendix B.8: Primary Rate Interface Library

CEPT.C This sample program demonstrates transmitting and receiving
over a CEPT PRI using the libbop.a and the IibprLa libraries.

'include <stdio.h>
'include <cham.h>
'include <video.h>
'include <mtosux.h>

,. initialize cmd array for set primary function - setup as follows:
1

2

3
4

5
6
7

8
9
10 & 11

..

int clDd
int rsp

mode
framing
idle data
idle signal

DSOx rec
codec rec

DSOy xmit
codec xlllit ..

=

millawatt =
status .1&2 ..
zero suppression on
signaling off
data rate 64000
millawatt tone 820hz
DSO bit inversion off
CRC enable off
line 2 off

0 1 2 3 4

(]= {1, 2, 3, Ox55, 3,

(]= {D. 0, 0, OxOO, 0,

exitJrogram()
{

simulate
CEPT
hex 55
11 binary
channel 15
channel 1

channel 15
channel 1
channel 4
hex 01

5 6 7

15, 1, 15,
00, 0, 00,

8 9 10

1, 4, OxOl,
0, 0, OxOO,

printf(-\n\nPress RETURN to end this program\n-);
getchar();
exit(D);

}

TEKELEC B.8-19

11 12 13 .,

OxOl, 0, o };
DxOO, O. o };

Version 2.5

Chameleon 32 C Manual Appendix 8.8: Primary Rate Interface Library

main(}
{

extern unsigned int rx1en; I· global variable for receive data length ·1
int i,resu1t:
unsigned char atrans[30],rxbuf[128],c; I· transmit & revieve arrays .,

I··· ... ,
I. initialize the ISDN PRIMARY RATE (layer I) interface .,

I··1
SetPrimary (cmd,rsp);
if(rsp[O] l~ O} {

printf(-\nERROR: RESULT SETPRIMARY
ex i t_p rog ram(} :

~d\n-, rsp[O]):

}

pause(125+MS}; ,. wait for the cept to initialize .,

I···,
I~ initialize the front end processor for port A ·1 , ... ,
if ((result-setport(PORTA}) l~ 0) {

printf(·ERROR: setport = %d\n·, result};
ex it_program();

}
if((result=initpl(ISDN,NRZ,640001,FILL7E}) 1= 0 } (

printf(-ERROR: initpl = %d\n-, result);
ex i tJ rog r8lll() ;

}

1······································1
,. store data into the transmit array ·1

,······································1
for(i=O;i<=25;i++)

atrans[i] = 65 + i; I· fill transmit buffer with upper case letters ·1

I······························,
,. transmit data & get result ·1

I······························,
printf(-\nPress Return to send data from port A\n-):
getchar();

if((result~transmit(GOOD_CRC,atrans,i)} 1= 0) {
printf(-\nERROR: result=~d\n-,result);

exitJrogram() ;
}

TEKELEC 8.8-20 Version 2.S

Chameleon 32 C Manual Appendix B.8: Primary Rate Interface Library

, •.....................•.............................. *'
/. receive the data from the the other device or port ./
/ .. /
printf("\nWaiting to receive data, (press 'q' to quit)\n"):

do' {
receive(rxbuf); /. if rxlen=O then no data was received ./
1f({c=getchLstdvt» == '0' II c == 'q') exit(O);

} while (rxlen==O);

for(i=O;i<rxlen;i++)
printf("~c ",rxbuf[i]); /. print results of data transfer ./

}

TEKELEC B.8-21 Version 2.S

· Chameleon 32 C Manual Appendix B.8: Primary Rate Interface Library

CEPTB.C This sample program demonstrates transmitting and receiving
over a CEPT PRI on Port B using the libbop.a and the IibprLa
libraries.

'include <stdio.h>
'include <cham.h>
'include <video.h>
'include <mtosux.h>

\

,- initialize cmd array for set primary function - setup as follows:
1

2
3
4

5
6
7
8
9

mode . simulate
framing CEPT
idle data hel! 55
idle signal = 11 binary
DSOx rec = channel 15
codec rec channel 1

channel 15
channel 1
channel 4

10 & 11

DSOy xlDit
codec xmit ..
mi11awatt •
status '1&2 .. hex 01

}

zero suppression on
signaling off
data rate 64000
mil1awatt tone 820hz
DSO bit inversion off
CRC enable off
line 2 off

o 1 2 3 4 5 6 7 8 9 10 11

int cmd []= {lOl, Z, 3, Ox55, 3, 15, I, 15, I, 4, OxOl, OxOl, 0, 0 };
int rsp []= {O, 0, 0, OxOO, 0, 00, 0, 00, 0, 0, OxOO, OxOO, 0, 0 };

printf(-\n\nPress RETURN to terminate this program\n-);
getchar();
exit(O);

TEKELEC B.8-22 Version 2.5

Chameleon 32 C Manual . Appendix B.8:. Primary Rate Interface Library

maine)
{
extern unsigned int rxlen; ,. global variable for receive data length .,
int i,result;
unsigned char atrans[30],rxbuf[128],c; ,. transmit & revieve arrays .,

, .. ,
,. initialize the ISDN PRIMARY RATE (layer 1) interface ., , .. ,
SetPrimary (cmd,rsp);
if(rsp[O] 1= 0) {

}

printf(W\nERROR: RESULT SETPRlMARY
exi t_program();

~d\n", rsp[O]);

pause(125+MS); ,. wait for the cept to initialize .,

, ... ,
,. initialize the front end processor for port B ., , ... ,
if ((result=setport(PORTB)) 1= 0) {

printf(WERROR: setport = ~d\nW, result);
exit-program() ;

}
if((result-initpl(ISDN,NRZ,64000l,FILL7E» 1= 0) {

printf(·ERROR: initpl = ~d\nW, result);
exit-pr.ogrllll() ;

}

, ••..•..•.••.•••••.•••••.•...•....•.•..••.......•..... *'
,. receive the data from the the other device or port ., , .. ,
printf(W\nWaiting to receive data, (press 'q' to quit)\n");

do {
receive(rxbuf); ,. if rx1en=0 then no data was received .,
if«c=getch(_stdvt» == 'Q' II c == 'q') exit(O);

} while (rx1en==O);

for(i=O;i<rxlen;i++)
printf(W~c w,rxbuf[i]); ,. print results of data transfer -,

, ,
,. store data into the transmit array·' . , ,
for(i=0;i<=25;i++)

atrans[i] = 97 + i; ,. fill transmit buffer with lower case letters .,

TEKELEC . B.8-23 Version 2.5

· Chameleon 32 C Manual - Appendix B.8: Primary Rate Interlace Ubrary

}

, ,
,. transmit data & get result ., , ,
printf(-\n\nPress Return to send data from port B\n-);
getchar();

if((result=transmit(GOOD_CRC,atrans,i» 1= 0)
printf(-\nERROR: result=ld\n-,result);

exitJrogr8l8() ;

TEKELEC B.8-24 Version 2.5

Chameleon 32 C Manual App. B.9: Async library

B.9 ASYNC C LIBRARY

Introduction

TEKELEC

The Async C Library (Iibasc.a) is valid for asynchronous
simulation. It is in the \Iib directory.

The functions are described on the following pages:

FUNCTION PAGE

INITP1 8.9-2

RECEIVE 8.9-4

T8REAK 8.9-5

TRANSMIT 8.9-6

TREADY 8.9-7

Also refer to Appendix 8.1 for a description of the common
library functions and error codes.

B.9-1 Version 2.4

Chameleon 32 C Manual

INITP1

Description

Declaration ,

Range

TEKELEC

App. B.9: Async Library

This function initializes the Front End Processor arid loads its
simulation software.

int initp1 (type, encode)
int type;
struct ASC CTRL ·encode;

type o
1

DCE
DTE

encode This is a structure that defines the control
characters for the Async protocol. It it defined as
follows:

struct ASC CTRL.
{b· -.
Int Itrate;
int parity;
int stop;
int data;
int duplex;
int block;
unsigned char eob;
};

bitrate 1
2
3
4
5
6

parity 0
1
2

stop 0
1
2

data 5
6
7
8

8.9-2

50 7
75 8

110 9
150 10
300 11
600

None
Odd
Even

1 Stop bit
1.5 Stop bits

2 Stop bits

5 Data bits
6 Data bits
7 Data bits
8 Data bits

1200
2400
4800
9600

19200

Version 2.4

Chameleon 32 C Manual App. B.9: Async Library

Returns

TEKELEC

duplex 0 Full Duplex
1 Half Duplex

block 0 Block mode
1 Character mode

eob (End of block character)
Range: 0 - OxFF

o Successful
-1 One or more parameter errors
-2 Front End Processor program could not be loaded
-3. Port is busy

See also the global error codes on page B.1-1.

B.9-3 Version 2.4

Chameleon 32 C Manual

RECEIVE

Declaration

Description

Returns

Example

TEKELEC

int receive(frame)
char *frame;

App. B.9: Async Library

This function receives a block or a character from P1, and
places the frame starting at the address pointed to by the
passed variable frame. The external global variable rx/en is
set to the length of the received frame. If rx/en = 0, then no
data was received. .

The block parameter of the initp 1 function enables you to
select either block or character mode. In block mode, a block
of data is returned only when the end of block character is
received. The end of block character is defined with the eob
parameter in the initp1 function. If the end of block character
is not received, rx/en = zero.

o
1
2
3

Good Bee or no frame waiting
Bad Bee '
initp 1 not performed
Overflow

See also the global error codes 'On page B.1-1.

do {
receive(frame) ;

} while (rxlen == 0);

B.9-4 Version 2.4

Chameleon 32 C Manual App. B.9: Async Library

TBREAK

Declaration int tbreakO

Description This function transmits a break sequence.

Returns See the global error codes on page 8.1-1.

TEKELEC B.9-5 Version 2.4

Chameleon 32 C Manual

TRANSMIT

Declaration

Description

Returns

TEKELEC

int transmit(frame, length)
char 'rame;
int length;

.. App. B.9: Async Library

This function transmits the number of bytes specified by the
. passed variable length, starting at the address pointed to by
the passed pointer *frame.

o
1
2
3
4

Successful
Front End Processor busy (transmitting previous frame)
initp 1 not performed
Parameter error
Buffer overflow

See the global error codes on page B.1-1.

8.9-6 Version 2.4

Chameleon 32 C Manual

TREADY

Declaration

Description

Returns

TEKELEC

App. B.9: Async Library

int treadyO

This function returns the status of the Front End Processor
transmitter.

o
1
2
3

Transmitter is ready for next frame
Transmitter is busy (sending previous frame)
initp1 not performed
Overflow

See the global error codes on page B.1-1.

B.9-7 Version 2.4

Chameleon 32 C Manual

SAMPLE PROGRAMS

TEKELEC

App. B.9: Async Library

There are three sample Async programs on the C
Sample Program Disk. They are:

• ascach.c

• ascbch.c

• ascasch.c

B.9-8 Version 2.4

Chameleon 32 C Manual· App. B.9: Async Library

ASCACH.C This sample program demonstrates transmitting and receiving
in character mode on Port A over a V.24 interface using the
libasc.a library.

#include <stdio.h>
#include <cham.h>
#include <video.h>
struct ASC_CTRL:

main{)
{
char ch;
struct ASC_CTRL encode:
extern unsigned int rxlen: /. global variable for receive data length ./
unsigned char atrans[30],rxbuf[2]; /. transmit & receive arrays ./
int result,i:

encode.bitrate
encode.parity
encode.stop
encode.data
encode. dup 1 ex.
encode.block
encode.eob

89600:
EVEN:
STOPt;
DATABIT7;
HALF:
CHARMODE;
Ox40; /. only used in block mode ./

rxbuf[l] = '\0'; /. initialize position t ./

/ /
/. SET THE ACTIVE PORT TO "A" ./
/ /
if((result=setport(PORTA» != 0) (

printf("ERROR; setport = ~d\n", result):
exit(O):

}

, ,
/. INITIALIZE THE FRONT END PROCESSOR ./
/•...•.................. /

. if((result=initpt(DCE,&encode») (
printf("ERROR: initpt = ~d\n·, result);
exit(O):

}

TEKELEC

, ,

8.9-9 Version 2.4

. Chameleon 32 C Manual . App. B.9: Async Library

}

I·······························~··············I
,. WAIT UNITL THE SYSTEM IS READY' TO TRANSMIT *' , .. ,
whfle(tready()!=O)(,. loop while transmitter not ready·'

puts(CLEARS): ,. clear screen .,
printf("TREADY STATUS =Xd\n",tready(»;
printf("PRESS 'q' TO ABORT \n"):
if«ch = getch (_stdvt» == 'q') ,. fail safe .,

exit(O) :
}

, ,
,. SEND OUT SOME DATA ., , ,
for (i=0:i<=25:i++).

atrans[i]= ~5 + i:
atrans[i]=Ox40:

,. store upper case letters into the transmit array·'
,. sentinel with a~ @ character .,

printf("\n hit RETURN to send the data out of port 'A'\n"):
getchar():

for(i=0:i<=26:i++) {
while(tready() 1= 0){

}

if«ch = getch (_stdvt» ==
axit(O) :

,. wait for the previous frame to send .,
'q') ,. fail safe .,

printf("RESULT .OF TRANSMIT Xd)=Xd\n",i,transmit(atrans+i,l»:
}

, .. ,
,. WAIT FOR SOME DATA FROM THE OTHER DEVICE .,
, •• , I I

printf("\nWaiting to receive\n"):

do {
do {

receive(rxbuf):
if«ch = getch (_stdvt»

exit(O):
} while (rxlen==O):

,. if rxlen=O then no data was received .,

printf("Xs ",rxbuf): ,. print results of data transfer .,
} while (rxbuf[O] != '.'): ,. transfer complete? .,

printf("\nPress RETURN to exit the program\n"):
getchar();

TEKELEC 8.9-10 Version 2.4

Chameleon 32 C Manual App. B.9: Async Library

ASCBCH.C This sample program demonstrates transmitting and receiving
in character mode on Port B over a V.24 interface using the
libasc.a library.

'include <stdio.h>
'include <cham.h>
'include <video.h>
struct ASC_CTRL;

main()
{
char chi
struct ASC_CTRL encode;
exter~.unsigned int rxlen; ,. global variable for receive data length ./
unsigned char atrans[30],rxbuf[2]; ,. transmit & receive arrays ./
int result,i;

encode.bitrate
encode.parity
encode.stop
encode. data
encode.duplex
encode.block
encode.eob

=

B9600;
EVEN;
STOP1;
DATABIT7;
HALF;
CHARMOOE;
Ox23: ,. only used in block mode .,

rxbuf[l] = '\0': /. initi.lize pOSition' 1 ./

/ /
,. SET THE ACTIVE PORT TO "B" ./ , /
if((result=setport(PORTB» != 0) (

printf("ERROR: setport = ~d\n", result);
exit(O) ;

}

, /
/. INITIALIZE THE FRONT END PROCESSOR ./
/ /
if((result=initpl(DTE,&encode») {

printf("ERROR: initpl = ~d\n·, result);
exit(O):

}

TEKELEC B.9-11 Version 2.4

Chameleon 32 C Manual App. B.9: Async Library

}

/ .. /
,. WAIT UNITl THE SYSTEM IS READY TO TRANSMIT ./ , .. ,
while(tready()!=O)(

puts(ClEARS);
/. loop while transmitter not ready·'
/. clear the screen ./

printf("PRESS 'q' TO ABORT \n");
printf("TREADY STATUS ='1d\n", tready(»;
if«ch = getch Lstdvt» == 'q')

exit(O);
}

,•................. ,

}

,. WAIT FOR SOME DATA FROM THE OTHER DEVICE .,
/ .. ,
printf("\nWaiting to receive\n");

do {
do (

/. if rxlen=O then no data was received ., rece1ve(rxbuf);
if«ch = getch

exit(O);
(_stdvt» == 'q') ,. fail safe ./

} while (rxlen==O);
printf(""s ",rxbuf);

} while (rxbuf[O] 1= 'I');

, /
,. SEND OUT SOME DATA .,
/' ,
for (1=0;i<=Z5;i++)

,. print results of data transfer .,
,. transfer complete ? ./

atrans[i]= 97 + 1; /. store lower case letters into the transmit array */

atrans[i]=OxZ3; ,. sentinel with a # character *'
printf("\n hit RETURN to send the data out of port 'B'\n"):
getchar{);

for(i=O;i<=Z6;i++)'{
while(tready()1= 0){

if«Ch = getch (_stdvt»
exit(O);

}

,. wait for the previous frame to s.end .,
'q') ,. fail safe *'

printf("RESUlT OF TRANSMIT '1d)='1d\n",i,transmit(atrans+i,l»;

printf("\nPress RETURN to exit the program\n"):
getchar();

TEKELEC B.9-12 Version 2.4

Chameleon 32 C Manual App. B.9: Async Library

ASCABCH.C This sample program demonstrates transmitting and receiving
in character mode on a Dual Port machine over a V.24
interface using the libasc.a library.

Ninc1ude <stdio.h>
'include <cham.h>
#inc1ude <video.h>
struct ASC_CTRL:

int result:
encode:

89600:
EVEN:
STOP1:

encode.bitrate
encode.parity
encode.stop
encode.data
encode.dup1ex
encode.b1ock
encode.eob

=
=

DATABIT7:
'HALF:
CHARMODE:
Ox40:

, ,
/. SET THE ACTIVE PORT TO "A" ./

I·····················~········I
if((result=setport(PORTA)} != 0 } {

printf("ERROR: setport = Id\n" , result):
exit(O):

}

, ,
/. INITIALIZE THE FRONT END PROCESSOR ./ , ,
if((result=initpl(DCE,&encode») {

printf{"ERROR: initpl' = Xd\n", result);
exit(O) ;

}

/ ,
/e SET THE ACTIVE PORT TO "S" ./
/ /
if((result=setport(PORTB» != 0) {

printf("ERROR: setport = ld\n", result);
exit(O);

}

TEKELEC

/. only used in block mode ./

8.9-13 Version 2.4

Chameleon 32 C Manual App. B.9: Async Library

)

, ,
,. INITIALIZE THE FRONT EN~ PROCESSOR ., ,•.............................. ,
if((result=initpl(DTE.&encode») (

printf("ERROR: initpl = Id\n". result):
exit(O):

)

send_data(port.buf.buf_size)
unsigned char port. ·buf:
int buf_size:
(
int i.result:
unsigned char chi

}

setport(port):
for(i-O:i(=buf_size;i++) (

while(tready() 1= 0)(

}

if«ch = getch (_stdvt» ==
exit(O);

,. t.he port sending the data .,

,. wait for the previous frame to send .,
'q') ,. fail safe .,

if((result=transmit(buf+i.l» 1= 0
printf("ERROR: RESULT OF TRANSMIT %d)=%d\n",i.result):

}

get_data(port)
unsigned char port;
(
extern unsigned int rxlen; ,. global variable for receive data length .,
unsigned char ch. rxbuf[2]; ,. receive array·'

)

rxbuf[l]·· '\0'; ,. initialize position 1 .,

printf("\nWaiting to receive\n"):

setport(port) ; ,. the port receiving the data .,

do {
do {

receive(rxbuf): ,. if rxlen=G then no data was received .,
if«ch = getch (_stdvt» == 'q') ,. fail safe .,

exit(O):
} while (rxleR==O):
printf("ls ".rxbuf):

} while (rxbuf[O] != '@'):
,. print results of data transfer .,
,. transfer complete? .,

TEKELEC B.9-14 Version 2.4

Chameleon 32 C Manual App. B.9: Async Library

main()
(
char chi
unsigned char atrans[30]; /. transmit array ·1

int i;

/ /
I· INITIALIZE BOTH PORTS ./ , /

, .. /
/. WAIT UNITL THE PORT A IS READY TO TRANSMIT ./ , ... '.,
setport(PORTA) ;
while(tready()!=O){ /. loop while transmitter not ready·/

puts(CLEARS); /. clear screen ./
printf("TREADY STATUS =~d\n",tready(»;
printf("PRESS 'q' TO ABORT \n");
if«ch = getch (_stdvt)}.== 'q') /. fail safe ./

uit(O);

}

/ ~ /
/. SEND OUT SOME DATA OUT PORT A ./
/ /
for (i=0;1<=25;i++)

atrans[1]= 65 + ,i; /. store upper case letters into the transmit array ./
atrans[i]=Ox40; /- sentinel with an @ character ./

printf("\n hit RETURN to send the data out of port 'A'\n");
getchar();

send_data(PORTA,atrans,i);

, ,
;. WAIT FOR SOME DATA FROM PORT A ·1 , ,
get_data(PORTB);

, ,
1* SEND OUT SOME DATA OUT PORT B */

I·································,
for ·(i=0;;<=25;i++)

atranS(i]= 97 + i; /* store lower case letters into the transmit array *1

atrans[i]=Ox40; /* sentinel with an @ character *1

printf("\n hit RETURN to send the data out of port 'B'\n");
getchar() ;

send_data(PORTB,atrans,i);

TEKELEC B.9-15 Version 2.4

Chameleon 32 C Manual

}

, ,
,. WAIT FOR SOME DATA FROM PORT B ., , ,
get_data(PORTA):

printf("\nPress RETURN to exit· t~e program\n"):
getchar() ;

TEKELEC B.9-16

App. B.9: Async Library

Version 2.4

Chameleon 32 C Manual Appendix B. 1 0: Analysis Library

B.1 0 ANALYSIS LIBRARY

Introduction

TEKELEC

The C Analysis Library enables you to design custom analysis
programs using the C language on the Chameleon 32. The
name of the library is Iibanal.a and is located in the llib
directory.

The functions are described on the following pages:

FUNCTION

INIT ANAL

GETEVENT

RESET ANAL

PAGE

B.10-2

B.10-5

B.10-7

Also refer to Appendix B.1 for a description of the common
library functions and error codes.

A sample program is provided following the functions.

B. 10-1 Version 2.5

Chameleon 32 C Manual

INIT ANAL

Declaration

Description

Range

Note

TEKELEC

#include < cham.h >
int init anal(port, protocol, par}
int port,protocol;
union PARBLOCK ·par;

Appendix B.10: Analysis Library

This function initializes the hardware and loads the analysis
software. Events are returned only for the port(s} selected by
port.

Port o
1
2

Protocol 1
2
7
8

Par:

Port A
Port B
Port A and B

BOP
ISDN
ASYNC
SSC

union PARBLOCK and the parameters are defined in
a:\include\cham.h

union P ARBLOCK { 1* BOP parameter block */
struct {

};

unsigned short encode;
} pbop;

struct {
unsigned short
unsigned short
char sync1;
char sync2;
unsigned short

}pbisync;

struct {
unsigned short
unsigned short
unsigned short

}pasync;

B.10-2

1* Bisync parameter block *j
table;
bcc;

parity;

/* Async parameter block *j
baud;
parity;
databit;

Version 2.5

Chameleon 32 C Manual Appendix 8.10: Analysis Library

BOP/ISDN. If Protocol = 1 (BOP) OR 2 (ISDN), the following
parameter must be initialized:

ASVNC

0,

BSC

TEKELEC

par- > pbop.encode a NRZ
1 NAZI

If Protocol = 7 (Async), the following three parameters
must be initialized:

par- > pasync.baud 2 75 baud rate
3 110
5 300
6 600
7 1200
8 2400
9 4800
10 9600
11 19200

par- > pasync.parity a None
1 Odd
2 Even

p~r-: > pasyn~.databit ·5 5 data bit
6 6 data bits
7 7 data bits
8 8 data bits

If Protocol = 8 (BSC), the following parameters must be
initialized:

par- > pbsync.table a
1

par- > pbsync.bcc a
1
2

ASCII
EBCDIC

CRC16
LRC
CCITT

par- > pbsync.sync1 Range: a -Oxff
par- > pbsync.sync2 Range: a -Oxff

AND if par- > pbsync.table is initialized to ASCII the
following parameter must also be initialized:

par- > pbsync.parity a None
1 Odd
2 Even

8.10-3 Version 2.S

Chameleon 32 C Manual - Appendix B.l0: Analysis Library

Returns· o Successful
-1 Parameter error
-2 Port 8 not available (Not a Dual Port machine)
-3 Cannot load analysis files
-4 Simulation is running
-5 Port is busy

See also the global error codes on page 8.1-1.

TEKELEC B.10-4 Version 2.5

· Chameleon 32 C Manual .. Appendix B.10: Analysis Library

GETEVENT

Declaration

Description

Note

BIT

I 10 = Good
1 =Bad I

I 10= Good
1 =Abort I

10 =DTE I
1 =DCE I

TEKELEC

#include < cham.h >

15

int getevent(pevent)
event "pevent;

This function gets an event from the line,· if available. The
structure below will be filled with the event information upon
returning from the function call.

typedef struct {
unsigned short type;
unsigned short length;
unsigned short butlen;
unsigned char *pdata;
long seconds;
long ms20;
unsigned short special;
unsigned short crc;
unsigned short flags;

} event;

The getevent function copies event.buflen bytes at the frame
data to the user data buffer (event.pdata). event- > pdata and
event- > butlen must be initialized before calling the routine. If
the length of the frame data received is greater than the data
buffer length, the data will be truncated.

event.type

14 1"3

A bit-mapped information element
described in the figure below.

12 11 10 9-2 1 0

FCS Abort DeE! Data Reserved Port AMII'M
DTE

I I I
1

Binary Meaning
10 = Port A
1 = Port B 1

000 Reserved
001 Lead Transition
010 Async characte
011 Baud Rate
100 BOP Data
101 Reserved
110 Bisync Data
111 Reserved

8.10-5 Version 2.5

Chameleon 32 C Manual

Returns

TEKELEC

event.length

event.pdata

event.ampm

event.seconds

event.ms20

event.buflen

event.crc

event.flags

event.special

Bits 7 6

Appendix B.l0: Analysis Library

The length of the data

Data buffer address that points to the
frame (must be initialized by user)

The time stamp flag for morning or evening

The number of seconds elapsed since
12:00 midnight or noon

The number of 20 microsecond units
elapsed since the second, which wraps
around at 50,000

Data buffer length (must be initialized by
user)

Contains the crc value of the frame

For BOP only, contains the number of
flags.

Contains different· information based on
bits 10 - 12, as follows;

If a baud rate event, the baud rate change
event will contain the new baud rate value.

If a lead transition event, the bits are
interpreted as follows:

5 4 3 2 1 o

DeE CTS DSR oeD RI I SDeD I
DTE RTS DTR

Otherwise the value in special should be
ignored.

a Successful
-1 No new events
-2 Data overwitten (buffer wrapped)
-3 Wrong port selected

See also the global error codes on page B.1-1.

B.10-6 Version 2.5

Chameleon 32 C Manual Appendix B.10: Analysis Library

RESET ANAL -
Declaration

Range

Description

Returns

TEKELEC

int reset anal(port)
int port; -

port o
1
2

Port A
Port B
Ports A and B

This function resets the acquisition processor (Front End
Processor board).

See the global error codes on page B.1-1.

B.10-7 Version 2.5

Chameleon 32 C Manual AppendixB. 1 0: Analysis Library

Sample Program The program below (bscanal) configures the Chameleon 32 to
analyze BSC traffic over the Basic Rate Interface. When an
event is received, the main program calls the dispframe
function, which interprets and displays the event. It displays
the following information:

• Port (A or B) is displayed in white
• DCE (red) or DTE (green) event
• Event type in hex
• Timestamp
• Length, if data frame > 0
• Data in hex, if any

'include
.include
'include

(clt_.It>
(video. II)
(stdio.b>

eaterolon. _stdvt;
eatern cbar getcll();
cur cb;
'fAt len:

#defiAe SP SetBasic(c,rsp);
.define setup() c[O]=l;c[l]=l; SP
#define Cllu_fuACO' .c[O]=4;c[l]=0;c[2]=3;c[3]=1; SP
#define .reset() c[Dl-3; SP .
Mine)
{
eve.t ·pevent, eventst;
cbar bu"er[Z56]:
'fAt val;
'fAt c [5], rsp [5];

uAiOll PAR8LOCI *par:

reset():
setup():
reset_ual0;
cllu_'uncO:

printf(·setting SET-UP ••• ·\n);
disablecur(_stdvt): /* disables cursor */

pevent a leventst; '* allocates event space */
val=init_ualCPORTA,ISDI,&par):

if (val 1= 0) { '* check return status *'
printfC·'fnit_ual failed, error code =Id\n·,val):
exitCD);}

puts(·Hit <q> to abort, bit space bar to balt\n-);
pevent-)pdata .. (unsigned cltare)buffer; /* initialize buffer address */

pevent->buflen .. 250; /* initialize buffer length */

TEKELEC B.10-8 Version 2.5

Chameleon 32 C Manual Appendix B: 10: Analysis Library

}

while «ch = getch(_stdvt» !='q'){
if (ch== ' ')

}

getcha .. ();
if (getevent (pevent)== 0) {

dispf (pevent);
}

.. eset_anal(PORTA);
enablecu .. (_stdvt);

dispf (pe)
event *pe;
{

if ((pe-)type & EM_SIDE) == EM_SIDE

'* If q is pressed. aborted *'

puts(-\033[3Z.\nDCE Event-); '* displays oCE events in red *'
else

/* displays oTE events in g .. een */

p .. lntf(-Type = S04x Sec S5ld Usec(20) S51d\n-. pe-)type. pe-)seconds. pe->-s20);

}

{

}

if (pe-) length){ /* determines if event was a data frame *'

p .. intf(-length = ~\n-. pe-)length);
len=«uasigned int)pe-)lengtb) (unsigned i~t)pe-)b~flen) ? pe-)buflen

h.a_d~(len. pe-)pdata};
}
p .. 1ntf(-\033[o.\n-); /* restores the screen color -/

b.a_d~(len. data)
int len;
unsi9h~J cha .. *data;

unsigned int a.b;

/* displays data in ASCII */

fo .. (a=O .b=O; al=len; a++) {
if (b == 0)

}

p .. intf(-\nS4a\t- • a);
p"intf(-S02a -.data[a]);
if (++b == 1&)

b = 0;

TEKELEC 8.10-9

pe-)length;

Version 2.S

Chameleon 32 C Manual App. B.11: Multi-Link LAPD Library

B.11 MULTI-LINK LAPD LIBRARY

Note

TGIByte

Link Selection

TfKELEC

The Multi-Link LAPD library is an optional C library which must
be purchased in addition to the Chameleon 32 C Development
System.

The Multi-Link LAPD library supports a total of 64 logical links.
The library is named libmlapd.a and is located in the a:\lib
directory of the hard disk.

Some functions in the Multi-Link LAPD library provide a degree
of compatibility with the single-link LAPD library. These
functions enable you to quickly upgrade your existing code to
take advantage of the Multi-Link LAPD features without having
to rewrite your program. However, these f~.mctions should not
be used in new programs, and should be eventually taken out
of upgraded program, as they may be removed in some future
library version.

Multi-Link LAPD includes the option of using the TGI (Terminal
Group Identifier) address byte. (If used, the TGI is the third
byte of the LAPD Address field.) The set tgiO function
assigns a TGI value to the currently selected liriK in the range
o - 14. The simulator handles the TGI byte as follows:. .

• If a valid TGI value is assigned to a link, the TGI byte is
used.

• If a TGI value > 14 is assigned to a link, the TGI byte is
not used.

• If an invalid TGI value (0 or 14, depending on LAPD
implementation) is assigned to a link, it enables you to
test the recovery of the Device Under Test to an invalid
TGI value.

The Multi-Link LAPD library includes functions which enable
you to control the use of 64 logical links. Each of the 64 links
is referred to by a unique link number in the range 0 - 63.
Each of the 64 logical links has its own SAPI and TEl value,
which are assigned as follows:

1. Select one of the 64 links (0 - 63) using set link. All
links default to state 9, disabled. -

2. Assign the link, a SAPI value using set_ sapi.

3. Assign the link a TEl value using set_ tei.

B.11-1 Version 2.5

Chameleon 32 C Manual App. B. 11: Multi-link LAPO Library

Frame Status
Word

General Notes

Note

TEKELEC

4. If applicable, assign the link a TGI value using the
set_tgi function.'

5. When you select a link using set link, you can then use
the other functions to set the linK on (slon), set the link
off (slof), and transmit and receive messages.

A twO-byte frame status (frstat) which is attached at the
beginning of each received message provides access to the
following information: .

• Frame type
• Number of link which received the frame
• Command or response frame
• Poll/Final bit value

The get rxstat function returns the low order byte of frstat.
The get_rlink function returns the high order byte of frstat.

If two or more links have the same address (SAPIITEI or
SAPIITEIITGI combination), received frames will be considered
to belong to the highest link number matChing that address.

A link is disabled by selecting the link and setting the· SAPI or
TEl to an invalid value. You should ensure that the link is in
the disconnected state before you disable it. If a link is
disabled while in a connected (multi-frame) state, the device
under test will see it as a Layer 1 failure.

Using an invalid TGI value disables the use of the TGI byte. "It
does not disable the link.

Setting the SAPI and/or TEl value to an invalid value sets the
link to the disabled state (9). This provides an easy means of
testing lost link recovery and providing a means of ignoring
unused links.

There are two functions which get the state of a link. The
status function gets the state of the selected link. The
link_stat function gets the state of any specified link.

get freelink returns the number of the lowest numbered
disaoled link. search link returns the number of the lowest
link matching a speCified SAPIITEI combination. find link
returns the number of the lowest link matching a speCified
SAPIITEIITGI combination.

B.11-2 Version 2.5

Chameleon 32 C Manual App. B.l1: Multi-Link LAPD Library

Functions The following functions are in the Multi-Link LAPD library. Also
refer to the common functions and error codes described in
Appendix B.1. Programming tips and examples are provided
beginning on page B.11-52.

find link
get freelinkO
get-fwaiting
get-linkO
get -Inksapi
get-Inktei
get -Inktgi
get-meswaiting
get-riinkO
get-rntei
get-rsapi
get-rxstatO
get-sapiO
get - sconfig 0
get-sim ()
get-teiO
get-tgiO
get-window
initp1
link stat
receive
s n200 , ,
s-n201
s -t200 '
s -t203
set sconfig
set-link
set-net 0
set-mtei
set-rsapi
set-sapi
set-sub 0
set-tei
set-tgi
set-window
setflg
slof 0
slon 0
srch Ink
start-sim
status(}
trans
transmit ... '
trui
trxcni
trxidc
trxidr
trxrni

TEKELEC 8.11-3

B.11-4
B.11-5
B.11-6
B.11-7
B.11-8
B.11-9

B.11-10
B.11-11
B.;1-12
B.11-13
B.11-14
B.11-15
B.11-16
B.11-17
B.11-18
B.11-19
B.11-20
B.11-21
B.11-22
B.11-23
B.11-24
B.11-25
B.11-26
B.11-27
B.11-28
B.11-29
B.11-30
B.11-31
B.11-32
B.11-33
B.11-34
B.11-35
B.11-36
B.11-37
B.11-38
B.11-39
B.11-4O
B.11-41
B.11-42
B.11-43
B.11-44
B.11-45
B.11-46
B.11-47
B.11-48
B.11-49
B.11-50
B.11-51

Version 2.5

Chameleon 32 C Manual

find link() -
Declaration

Description

Returns

TEKELEC

int find link(sapi,tei,tgi)
int sapi,'1ei, tgi;

App. B.11: Multi:Unk LAPO Ubrary

sapi SAPI value of the link, in the range 0 - 255 (SAPI > 63 is
invalid, resulting in don't care value)

tei TEl value of the link, in the range 0 - 255 (TEl > 127 is
invalid, resulting, in don.:t care value)

tgi TGI value of the link, in the range 0 - 255 0 - 255 (TGI
> 15 is invalid, resulting in don't care value)

This function returns the number of the lowest link matching
the SAPIITElrrGI values specified. An invalid SAPI, TEl, or
TGI value is treated as a don't care value for that parameter,
so that setting a parameter to an invalid value returns the first
link matching the valid parameters.

0-63
-1

Matching link number
No match found

B.11-4 Version 2.5 .

Chameleon 32 C Manual

get freelink() -
Declaration

Description

Returns

TEKELEC

App. B.ll: Multi-Link LAPD Library

int get_freelinkO

This function gets the link number (0 - 63) of the first disabled
link.

0-63
-1
-2

Disabled link number
No free links available
initp 1 not performed

B.11-5 Version 2.5

Chameleon 32 C Manual

get fwaiting -
Declaration

Range

Description

" Returns

TEKELEC

int get fwaiting (Inkn)
char lrl'Kn;

Inkn 0-63

App. B.ll: Multi-Link LAPD Library

This function gets the" number of I-frames waiting to be
transmitted on link Inkn.

0-7 Number of I-frames waiting to be sent by link Inkn

See also the global error codes on page 8.1-1.

B.11-6 Version 2.5

. Chameleon 32 C Manual

get link() -
Declaration

Description

Returns

. TEKELEC

App. B.ll: Multi-Link LAPD Library

int get_linkO

This function gets the number of the link which is currently
under user control.

0-63
-1

Current link number
initp1 not performed

B.11-7 Version 2.5

Chameleon 32 C Manual

get Inksapi -
Declaration

Range

Description

Returns

TEKELEC

App. B. 11: Multi-Link LAPD Library

int get Inksapi (Inkn)
char InKn;

Inkn. 0-63

This function gets the SAPI value for link Inkn.

0-63
> 63

SAPI value assigned to link Inkn
SAPI value disabling link Inkn

See also the global error codes on page 8.1-1.

8.11-8 Version 2.5

Chameleon 32 C Manual

get Inktei -
Declaration

Range

Description

Returns

TEKELEC.

App. B. 11: Multi-Link LAPD Library

int get Inktei (Inkn)
char InKn;

Inkn 0-63

This function gets the TEl value for link Inkn.

0-127
> 127

TEl value assigned to link Inkn
TEl value disabling link Inkn

See also the global error codes on page 8.1-1.

B.11-9 Version 2.5

Chameleon 32 C Manual

get Inktgi -
Declaration

Range

Description

Returns

TEKELEC

App. B.l1: Multi-Link LAPD Library

int get Inktgi (Inkn)
char InKn;

Inkn 0-63

This function gets the TGI value for link Inkn.

o - 14 TGI value assigned to link Inkn
15 - 255 TGI value disabling use of TGI on Inkn (the link is

not disabled)

See also the global error codes on page 8.1-1.

B.11-10 Version 2.5

· Chameleon 32 C Manual App. B. 11: Multi-Link LAPD Library

get meswaiting -
Declaration

Description

Note

Returns

TEKELEC

int get_ meswaiting ()

This function gets the number of messages waiting to be
received from the Front End Processor (FEP).

This function returns the number of messages buffered by the
FEP. The library buffers one additional message.

0-32 Number of messages waiting to be received from
the FEP

See also the global error codes on page 8.1-1.

B.11-11 Version 2.5

Chameleon 32 C Manual

get rlink() -
Declaration

Description

Returns

TEKELEC

-App. B. 11: Multi-Link LAPD Library

int get_rlinkO

This function gets the number of the link which sent the last
received message. This is the high order byte of the frame
status word frstat passed by the FEP.

0-63
-1
-2

Current link number
No messages received yet
initp1 not performed

B.11-12 Version 2.S

Chameleon 32 C Manual

get rntei -
Declaration

Range

Description

Returns

TEKELEC

int get rntei (val)
int val;

Range of val is untested

App. B.l1: Multi-Link LAPD Library

This is a dummy function to maintain compatibility with existing
single link LAPD programs that are being upgraded to Multi
Link LAPD; Refer to the LAPD library in Appendix B.3 for
more information.

This function always returns zero.

B.11-13 Version 2.5

Chameleon 32 C Manl!al

get rsapi -
Declaration

Range

Description

Returns

TEKELEC

int get rsapi (val)
int val;

Range of val is untested

App. B. 11 : Multi-Link LAPD Library

This is a dummy function to maintain compatibility with the
existing single link LAPD programs that are being upgraded to
Multi-Link LAPD. Refer to the LAPD library in Appendix B.3 for
more information.

This function always returns zero.

B.11-14 Version 2.5

Chameleon 32 C Manual

get rxstat() -
Declaration

Description

Returns

App. B.11: Multi-Link LAPD Library

char get_rxstatO

This function gets the low order byte of the frame status word
frstat, which contains the frame type, C/R bit and P/F bit of
the last received message.

0- OxC3
OxFF
OxFE

frstat value (interpreted as shown below)
No messages received yet
initp 1 not performed

I 7 I 6 I 5 I 4 I 3 121 1 1 0 1
High bit/low bit

Examples

TEKELEC

Ox41
Ox02
OxC3

I I 00 = UI frame
01 = XID frame
10 = I-frame
1.1 = FRMR

Reserved

o = Command frame
1 = Response frame

o = PolI:Final bit clear
1 = Poll/Final bit set

Non-final XID response
I-frame command
Final FRMR response

B.11-15 Version 2.5

Chameleon 32 C Manual

get sapi() -
Declaration

Description

Returns

TEKELEC

Ap~ B.11: Multi-Link LAPD Ubrary

int get_ sapiO

This function gets the SAPI value of the link currently under
user control.

0-255 SAPI for current link

Also see global error codes on page 8.1-1.

B.11-16 Version 2.5

Chameleon 32 C Manual App .. B.11: Multi-Link LAPD Library

get sconfig 0 -
Declaration

Description

176543210

I

TEKELEC

int get_sconfig 0

This function returns a copy of the current control configuration
byte, which can be interpreted as shown in the figure below.

I Bit

Reserved

Interframe Fill o = Set interframe fill to value 7E
1 = Set interframe fill to value FF

Reserved

Status Changin~ Frames a = Poll normal Set poll bit normal on status changi ng
frames SABM(EI and DISC.} .

1 = Poll set)set pol bit on status changing frames .
SABM(E ana DISC.)

SABM(E) Response
o = UA on~. Stop ~enerating SABM(E) collisions.
1 = UA an SABM(). Generate SABM(E) collisions.

XIO Poll Bit
00 = No XID frames polled.
01 = Poll only XID frames without I-fields.
10 = Poll only XID frames with I-fields.
11 = Poll all XID frames

XIO Exchange
a = Stop transmitting XID's on T203 timeout.
1 = Transmit XID command on T203 timeout.

B.11-17 Version 2.5

Chameleon 32 C Manual

get sim () -
Declaration

Description

Returns

TEKELEC '

App. B.11: Multi-link LAPD library

int get_sim 0

This function returns a copy of of the network/subscriber
selection.

o
1

Network
Subscriber

B.11-18 Version 2.5

Chameleon 32 C Manual

get tei() -
Declaration

Description

Returns

TEKELEC

App. B.ll: Multi-Link LAPD Library

int get_teiO

This function gets the TEl of the link currently under user
control.

0-255 TEl for current link number

Also see global error codes on page 8.1-1.

B.11-19 Version 2.5

Chameleon 32 C Manual

get tgi() -
Declaration

Description

Returns

TEKELEC

App. B.l1: Multi-Link LAPD Library

This function returns the TGI value of the link currently under
user control.

o - 14 TGI for current link number
15 - 255 TGI value disabling use of TGI on the link (the link

is not disabled)

Also see global error codes on page B.1-1.

B.11-20 Version 2.S

Chameleon 32 C Manual

get window -
Declaration

Range

Description

Returns

TEKELEC

int get window (Inkn)
char InKn;

Inkn 0-63

_ App. B.l1: Multi-Link LAPD Library

This function gets the number of outstanding I-frames on link
number Inkn.

0-7 Number of unacknowledged I-frames of link Inkn

See also the global error codes on page 8.1-1.

B.11-21 Version 2_5

Chameleon 32 C Manual

initp1

Declaration

Description

Note

Ranges

Returns

TEKELEC

App. 8.11 : Multi-Link LAPO Library

int initp1 (interface J staJ encode J bitrt)
int interface J staJ encode;
long bitrt;

initp1 loads the Front End Processor (FEP) code for the library
and starts simulation. Predefined values exist in mlklib.h to aid
in setting up the call to this function. sta is the station .type
and selects the initial sense of the command/response bit. The
library permits reselection of the station type at any time.
encode selects the physical data encoding. bitrt sets the
data rate when simulating a DC~ device.

This function is identical to and interchangeable with the
start sim function. It has been included in the Multi-Link
LAPo- library for downward compatibility with the single link
LAPD library.

interface 0 V-type interface (DCE)
1 V-type interface (DTE)
2 ISDN interface

sta 0 NETWORK
1 SUBSCRIBER

encode 0 NAZ
1 NRZI

bitrt Any long integer value from 50 - 64000.

See the global error codes on page B.1-1.

8.11-22 Version 2.S

Chameleon 32 C Manual

link stat -
Declaration

Range

Description

Returns

TEKELEC

App. B.ll: Multi-Link LAPD Library

int link stat(n)
charn;

n 0-63

This function gets the current state of link n.

0-9 Current state of link (see table below)

See also the global error codes on page 8.1-1.

STATE LINK STATUS

0 Unk Disconnected

1 Unk Connection Requested

2 Frame Rejected

3 Disconnect Requested

4 Information Transfer

5 Local Station Busy

6 Remote Station Busy

7 Local and Remote Station Busy

8 Remote Station not Responding

9 Unk Disabled

B.11-23 Version 2.5

Chameleon 32 C Manual

receive

Declaration

Description

TEKELEC

int receive(dest addr)
char *dest_ addf;"

App. B. 11: Multi-Link LAPD Library

This function receives a message from the FEP by performing
the following tasks:

• It polls the FEP' to see if any received messages are
available

• It transfers the message contents to the user defined
buffer pOinted to by dest_ addr

• The total length of the message (including the frame
status bytes frstat) is placed in the global variable rxlen

The frstat word is accessible by calling get rUnk and
get rxstat so that you can interpret and respond to a
meSsage quickly. The frstat bytes are attached to the
beginning of each received message so that several
messages ,may be received, sorted, interpreted, and
individual respons"es made.

It is up to, the user to ensure that the destination buffer is long
enough to contain the message. Generally, a length equal to
N201 + 2 is adequate.

B.11-24 Version 2.5

Chameleon 32 C Manual

s n200 -
Declaration

Range

Description

Returns

TEKELEC

int s n200 (val)
int vaT;

val 1 - 255

App. B.11: Multi-Link LAPD Library

This function sets the maximum number of retries (N200).

o Successful

. See also global error codes on page 8.1-1.

B.11-25 Version 2.5

Chameleon 32 C Manual

s n201

Declaration

Range

Description

Returns

TEKELEC

int s n201 (val)
int vaT;

val 1 - 512

. App. B.l1:. Multi-Link LAPD Library

This function sets the maximum length for an I-frame (N201).

o Successful

See also global error codes on page 8.1-1.

B.11-26 Version 2.5

Chameleon 32 C Manual

s t200

Declaration

Range

Description

Returns

TEKELEC

int s t200 (val)
int val;

val 0 - 255

_ App. S.11: Multi-Link LAPD Library

This function sets the time allowed for the remote station to
respond (T200). Setting this value to 0 disables the T200
timer.

o Successful

See also global error codes on page 8.1-1.

8.11-27 Version 2.5

· Chameleon 32 C Manual

s t203

Declaration

Range

Description

Returns

TEKELEC

int s t203 (val)
int vaT;

val 0 - 255

App .. B.11: Multi-Link LAPD Library

This function sets the maximum time between frames (T203).
On time out, a polled RR or XID command is transmitted,
depending on the configuration selection. Setting this value to
o disables the T203 timer.

o Successful

See also global error codes on page 8.1-1.

8.11-28 Version 2.S

Chameleon 32 C Manual

set link

Declaration

Range

Description

Returns

TEKELEC

App. B.l1: Multi-Link LAPD Library

int set link(n)
char n;

n 0-63

This function puts link n under user control. Only one link at a
time can be under user control.

o
-1
-2
-3

Successful
Parameter out of range
initp1 not performed
Timeout

B.11-29 Version 2.5

Chameleon 32 C Manual

set net () -
Declaration

Description

TEKELEC

App. B.11: Multi-Link LAPD Library

int set_net 0

This function sets the simulation side to NETWORK. The
Chameleon can simulate either a network or subscriber
device.

When the Chameleon 32 emulates a network, it sends
commands with the C/R bit set to one, and responds with the
C/R bit set to zero. It sends the selected SAPI and TEl with
the C/R bit automatically set in accordance with CCITT Q. 921.

B.11-30 Version 2.5

Chameleon 32 C Manual

set rntei -
Declaration

Range

Description

Returns

TEKELEC

int set rntei (val, tei)
int val;tei;

Range of val and tei is untested

App. B. 11: Multi-Link LAPD Library

This is a dummy function to maintain compatibility with existing
LAPD single-link programs that are being upgraded to Multi
Link LAPD. Refer to the LAPD library in Appendix B.3 for
more information.

This function always returns zero.

B.11-31 Version 2.S

Chameleon 32 C Manual

set rsapi -
Declaration

Range

Description

Returns

TEKELEC

App. B.ll: Multi·link LAPD Library

int set rsapi (val, sapi)
int val;5api;

Range of val and sap; is untested

This is a dummy function to maintain compatibility with existing
LAPD programs that are being upgraded to Multi-Link LAPD.
Refer to the LAPD library in Appendix 8.3 for more
information.

This function always returns zero.

8.11-32 Version 2.5

Chameleon 32 C Manual

set sapi -
Declaration

Range

Description

Returns

TEKELEC

App. B.11: Multi-Link LAPD Library

int set sapi(v)
char v;

Accepted range of v is 0 - 255. A value over 63 disables the
selected link.

This function sets the SAP I value for the link under user
control. The SAPI (Service Access Point Identifier) indicates
the layer two service type requested or supported. Normal
values are:

o
-1
-2
-3

o
16
63

Call Control procedures
Packet communication procedures
Management procedures

64 - 255 Disable link

Successful
Parameter out of range
initp 1 not performed
Timeout

8.11-33 Version 2.5

Chameleon 32 C Manual

set sconfig -
Declaration

Description

int set sconfig (byte)
int byte;

App. B.11: Multi-link LAPD Library

This function sets the value of the control configuration byte,
interpreted as shown in the figure below.

176543210 I Bit

I Reserved

Interframe Fill
o = Set interframe fill to value 7E
1 = Set interframe fill to value FF

Reserved

Status Changin~ Frames
o = Poll normal Set poll bit normal on status changing

frames SABM(EI and DISC.)
1 = Poll set ~Set pol bit on status changing frames .

.. SABM(E ana DISC.)

SABM(E) Response· .
o = UA on~. Stop ~enerating SABM(E) collisions.
1 = UA an SABM(). Generate SABM(E) collisions.

XIO Poll Bit
00 = No XID frames polled.
01 = Poll only XID frames without I-fields.
10 = Poll only XID frames with I-fields.
11 = Poll all XID frames

XIO Exchange
o = Stop transmitting XID's on T203 timeout.
1 = Transmit XID command on T203 timeout.

Returns o Successful

See also global error codes on page 8.1-1.

TEKELEC B.11-34 Version 2.5

Chameleon 32 C Manual

set sub () -
Declaration

Description

TEKELEC

App. 8.11: Multi-Link LAPD Library

int set_sub 0

This function sets the simulation side to SUBSCRIBER. The
Chameleon can simulate either a network or subscriber
device.

When .. the Chameleon 32 emulates a LAPD subscriber, it
sends commands with the C/R bit set to zero, and responds
with the C/R bit set to one. It sends the selected SAPI and
TEl with the C/R bit automatically set in accordance with
CCITT Q. 921.

8.11-35 Version 2.5

Chameleon 32 C Manual

set tei -
Declaration

Range

Description

Returns

TEKELEC

App. B.ll: Multi-Link LAPD Library

int set tei(value)
char value;

value The TEl value to use for the link, as follows:

o - 127 Valid TEl values

128 - 255 Invalid TEl value, which causes the link
to be disabled

This function sets the TEl value for the link under user control.
The TEl (Terminal Endpoint Identifier) is a value assigned to
and may be associated with a single terminal and a given
point-to-point data link connection. At any time, a given
terminal endpoint (TE) may contain one or more TEls.

This value may be assigned by the carrier at the time of
equipment installation, or may be automatically- assigned on a
call-by-caH basis. The broadcast value is associated with all
user-side data link entities with the same SAPI, regardless of
other assigned value(s).

Normal values are:

o
-1
-2
-3

0-63
64 - 126
127

Non-Automatically assigned values
Automatically assigned values
Broadcast value

128 - 255 Disable link

Successful
Parameter out of range
initp 1 not performed
Timeout

B.11-36 Version 2.5

Chameleon 32 C Manual

set tgi -
Declaration

Range

Description

Returns

TEKELEC

App. B.l1: Multi-Link LAPD Library

int set tgi(value)
char value;

value The TGI value to use for the link, as follows:

o - 14 Valid TGI values

15 - 255 Disables the use of the TGI byte

This function sets the TGI (Terminal Group Identifier) value for
the link under user control. If used, the TGI is the third byte of
the LAPD Address field.

If an invalid TGI value (0 or 14, depending on LAPD
implementation) is assigned to a link, it enables you to test the
recovery of the Device Under Test to an invalid TGI value.

o
-1
-2
-3

Successful
Parameter out of range
initp1 not performed
Timeout

B.11-37 Version 2.5

Chameleon 32 C Manual

set window -
Declaration

Range

Description

Note

Returns

TEKELEC

int set window (val)
int val;

val 1 - 7

App. B.ll: Multi-Link LAPD Library

This function sets the maximum number of outstanding frames
on each link.

The total of outstanding frames + the number of frames
passed to the FEP waiting to be transmitted + the number of
messages over 16 bytes long waiting to be received from the
FEP may not exceed 80.

o Successful

See also' global error codes on page 8.1-1.

B.11-38 Version 2.5

Chameleon 32 C Manual

setflg

Declaration

Range

Description

Returns

TEKELEC

App. B.ll: Multi-LinkLAPD Library

int setflg (flag)
int flag;

flag 1
a

ax7E fill
axFF fill

This function selects an interframe fill pattern.

o Successful

See also global error codes on page B. 1-1 .

B.11-39 Version 2.5

. , Chameleon 32 C Manual

slof ()

Declaration

Description

Returns

TEKELEC

. App. B. 11: Multi-Link LAPO Library

int slof 0

This function sends a DISC and waits for a UA 'frame. This is
equivalent to the CCITT primitive OL RELEASE.

o Successful

Also see global errOr codes on page 8.1-1.

B.11-40 Version 2.5

Chameleon 32 C Manual

slon ()

Declaration

Description

Returns

TEKELEC

App. B.ll: Multi-Link LAPD Library

int slon 0

This function sends a SA8ME and waits for a UA frame. This
is equivalent to the CCITT primitive DL ESTABLISH.

o Successful

Also see global error codes on page 8.1-1.

B.11-41 Version 2.5

Chameleon 32 C Manual

srch Ink -
Declaration

Description

Note

Returns

TEKELEC

int srch Ink(sapi,tei)
int sapi;tei;

App. B.l1: Multi-link LAPD library

This function returns the number of lowest link matching the
specified SAPlffEI. If you set one parameter to an invalid
value, it returns the first link matching the valid parameter. In
other words, any invalid value is a don't care.

To search for a link by specifying SAPI, TEl, and TGI, refer to
the find link function.

0-63
-1

Number of lowest link matching parameters
No match found

B.11-42 Version 2.S

Chameleon 32 C Manual

start sim

Declaration

Description

Note

Ranges

Returns

TEKELEC

App. B.11: Multi-Link LAPD Library

int start sim (interface, sta, encode, bitrt)
int interface, sta, encode;
long bitrt;

start sim loads the Front End Processor (FEP) code for the
library and starts simulation. Predefined values exist in
mlklib.h to aid in setting up the call to this function. sta is the
station type and selects the initial sense of the
command/response bit. The library permits reselection of the
station type at any time. encode selects the physical data
encoding. bitrt sets the data rate when simulating a DeE
device.

This function is identical to and interchangeable with the initp 1
function. initp1 is included for downward compatibility with the
single link LAPD library.

interface 0 V-type interface (DCE)
1 V-type interface (DTE)
2 ISDN interface

sta 0 NETWORK
1 SUBSCAIBEA

encode 0 NAZ
1 NAZI

bitrt Any long integer value from 50 - 64000.

See the global error codes on page B.1-1.

B.11-43 Version 2.5

Chameleon 32 C Manual App. B.ll: Multi-Link LAPD Library

status()

Declaration int statusO

Description This function gets the current state of link under user control.

Returns 0-9 Current state of link (see table below)

See also the global error codes on page 8.1-1.

STATE LINK STATUS

0 Link Disconnected

1 Link Connection Requested

2 Frame Rejected

3 DisConnect Requested

4 Information Transfer

5 Local Station Busy

6 Remote Station Busy

7 Local and Remote Station Busy

8 Remote Station not Responding

9 Link Disabled

TEKELEC B.11-44 Version 2.5

Chameleon 32 C Manual

trans

Declaration

Description

Returns

TEKELEC

- App. B. 11: Multi-Link LAPD Library

int trans (frame,address,len)
int frame, len;
char *address;

This function transmits a frame, as follows:

frame selects type of frame to transmit:

OxBO
OxB1
OxB2
OxB3

I-frame
UI
XIDC
XIDR

Sequenced (numbered) I-frame
Unnumbered I-frame (NSI)
XID command frame
XID response frame

address is a pointer to the first byte of the message to be
transmitted.

len is the actual length of the message to be transmitted.
There are two restrictions on the message length:

• I-frames should not exceed the value set in N201
(maximum length of an I-frame)

• The total length of the frame cannot exceed 512 bytes.

o Successful

Also see global error codes on page 9.1-1.

B.11-45 Version 2.5

Chameleon 32 C Manual

transmit

Declaration

Description

Note

Returns

TEKELEC

int transmit (xloc, xlen)
char *xloc;
int xlen;

App .. B.ll: Multi-Link LAPD Library

This function transmits a message. in a sequenced (numbered)
I-frame.

xloc is a pointer to the first byte of the message to be
transmitted.

xlen is the actual length of the message to be transmitted.
There are two restrictions on the message length:

• I-frames should not exceed the value set in N201
(maximum length of an I-frame)

• The total length of the frame cannot exceed 512 bytes.

The transmit function is provided for user convenience. If
. extremely high data rates are requ!red, the trans function
should be used, as it is somewhat faster.

o Successful

Also see global error codes on page B.1-1.

B.11-46 Version 2.5

Chameleon 32 C Manual

trui

Declaration

Description

Note

Returns

TEKELEC

int trui (xloc, xlen)
char '"xloc;
int xlen;

App. B.ll: Multi-link LAPD Library

This function transmits a message in an unnumbered I-frame
(UI frame). .

xloc is a pOinter to the first byte of the message to be
transmitted.

xlen is the .actual length of the message to be transmitted.
The total length of the frame must not exceed 512 bytes.

The trui function is provided for user convenience. If extremely
high data' rates are required, the trans function should be
used, as it is somewhat faster.

.0 Successful .

Also see global error codes on page 9.1-1.

B.11-47 Version 2.S

Chameleon 32 C Manual

trxcni

Declaration

Description

Returns

TEKELEC

App. B. 11: Multi-Link LAPD Library

int trxcni 0

This function transmits an XID command frame with no data
field.

o Successful

See also global error codes on page 8.1-1.

B.11-48 Version 2.5

"Chameleon 32 C Manual

trxidc

Declaration

Description

Note

Returns

TEKELEC

int trxidc (xloc, xlen)
char "xloc;
int xlen;

App. B.l1;" Multi-Link LAPD Library

This function transmits a message in an X1D command frame.

xloc is a pOinter to the first byte of the message to be
transmitted.

xlen is the actual length of the message to be transmitted.
The total length of the frame must not exceed 512 bytes.

The trxidc function is provided for user convenience. If
extremely high data rates are required, the trans function
should be used, as it is somewhat faster.

o Successful

Also see global error codes on page 8.1-1.

B.11-49 Version 2.5

Chameleon 32 C Manual

trxidr

Declaration

Description

Note

Retur.ns

TEKELEC

App. B.l1: Multi-Link LAPD library

int trxidr (xloc, xlen)
char *xloc;
int xlen;

Transmit a message in an XID response frame.

xloc is a pOinter to the first byte of the message to be
transmitted.

xlen is the actual length of the message to be transmitted.
The total length of the frame must not exceed 512 bytes.

The trxidc function is provided for user convenience. If
extremely high data rates are required, the trans function
should be used, as it is somewhat faster.

o Successful

Also see global error codes on page 8.1-1.

B.11-50 Version 2.5

Chameleon 32 C Manual

trxrni

Declaration

Description

Returns

TEKELEC

. App. B.11~ Multi-Link LAPD Library

int trxrni O.

This function transmits an XIO response frame with no data
field.

o Successful

See also global error codes on page 8.1-1.

. B. 11-51 Version 2.5

Chameleon 32 C Manual . App. B. 11: Multi-Link LAPD library

PROGRAMMING NOTES AND EXAMPLES

General Notes

Interpreting
Received
Messages

TEKELEC

This section provides general information about using the
Multi-Link LAPD library. Following these general notes is a
section on converting currerit LAPD C programs to Multi-Link
LAPD programs.

In your program, specify the Chameleon port being used by a
call to the set port function. This is not necessary when
using a Single POrt Chameleon, but it should be done to make
your application portable.

A call to initp 1 must be made to start the Front End Processor
(FEP). This loads the FEP operating code and starts the
simulation. The Chameleon is then ready to begin testing.

Before frames can be transmitted or received, at least one link
must be enabled. This is done by:

a. Selecting a link (default is 0) using the set_link function

b. Setting the SAPI and TEl to valid values. This is done by
calling set_sapi and set_tei.

To interpret a received message, you must know the SAP I
value and the frame type of the received message. This
information is available to you from the frame status bytes, and
can be accessed using the technique shown below:

receive(pointr):
if(rxlen==O)

return(O):
frtype=(get_rxsta()&3):
lnk=get_rlink();
sapval=get_lnksap(lnk);

'-get the fra.e type status bits-'
'-get nu.ber of the link sending .assage-'
'-get the SAPI for that link-'

In this example, the frame type may be interpreted from frtype
as follows:

o = UI frame
1 = XID frame
2 = I-frame
3 = FRMR

sapva/ is the SAPI value· aSSigned to the link on which the
message was received.

B.11-52 Version 2.5

Chameleon 32 C Manual

Optimizing
Transmit Speed

Transmitting
Responses

TEKELEC

App. B.ll: Multi-Link LAPD Library

To optimize speed for applications such as load generators,
follows these guidelines:

• The trans function is faster than the other transmit
functions such as transmit, trui, trxidr, and trxidc.

• If you are not concerned with the contents of the
received messages, use the following technique to keep
the receive buffer empty. This is faster than a call to the
receive function in the transmit loop.

if(get_8eswtg(»=6)
flusb();

• Minimize input, output, and screen print operations in all
tasks. Since the processor that runs the C shell also
manages many of the I/O tasks, this will result in your
simulation program running faster . . '

• Run your program in background mode. This is done by
adding an ampersand (&) at the end of the file name
when starting the test from the C shell. For example:

test&

will run the program test in background mode. This
causes the program to run at a higher priority and frees
the C shell for other uses. This technique also reduces
the number of windows available for other tasks, since a
separate window is opened for each program running in
background mode.

In a test environment, the actual information content of a given
message type is often fixed. In such cases, only the message
type must be known in order to select the proper response.
To simplify responding to message, predefine the content of
responses in a message array.

In the following program fragment, the following is assumed:

• A set of responses and pOinters to the responses has
been defined earlier

• SAPlfTEI combinations have been set up

The program fragment uses a defined value TYPEOS, which is
the offset to the byte in the message containing the message
type. The call to fix cref extracts the call reference value
from the received message and copies it into the selected
response message.

B.11-53 Version 2.5

Chameleon 32 C Manual

TEKELEC

App. B. 11: Multi-Link LAPD Library

respond()
{

char .astyp.·resp;
int resp_len;
ralen=O; ,. prepare to loop until .assage received .,
while(I ralen)

receive(&rx.as[O);

if«get_rxstat()&3)=2) '·on1y respond to Ifra.es·'
{
.. styp=rx.as[TYPEOS); '·get .. ssage type fra. rcvd .assage·'
switch(.astyp)

•
•
•

{
'-if asg is call setup·'
'-respond setup ack-'

resp=&su_ack;
resp_len=SU_AC1_LEN;
break;

case RELEASE:

}

'-respond release ca.plete-'
resp=&rel_c.plt;
resp_len=REL_CMPLT_LEI;

fix_cref(resp); '-set response call ref value-'
set_link(get_rlink(»; '-select link to send response-'
trans.it(resp.resp_len); ,- send response-'
}

fix_cref(dest)
char -dest;

{

}

int ref_val;
refva1=rx..s[CREF_OS];
-(dest+CREF_OS-2)=refval; '*-2 to al10. for frstat bytes*'

B.11-54 Version 2.S

Chameleon 32 C Manual

Simulating an
ASP

TEKELEC

App. B.l.1: Multi-Link LAPD Library

The following program fragment demonstrates how to use t!:'le
Multi-Link LAPD library to simulate an Assignment Source
Point (ASP). The fragment selects a random TEl value and
returns it to be assigned to the Device Under Test.

This assignment function consists of two nested loops. The
inner loop requests a random number until it gets one greater
than 63 (64 to 126 are available for auto-assignment). It then
exits to the outer loop where a search is made to see if the
value is in use. This assumes that each assigned TEl is set in
an active link on the Chameleon.

assign_tei()
{
claar tei_val;

.bile(l) ,. start outer loop .,
{

.lIile(l) ,. start inner loop .,
{

tei_val=rnd(126);
if(tei_val)63) ,. aait if good value .,

break;
}
if(srcla_lnk(64.tei_val)<O) ,. invalid sapi=don't care .,

break; ,. eait if no .. tcll. tei is ok to use .,
}

return(tei_val);
}

B.11-55 Version 2.5

Chameleon 32 C Manual App. B.l1: Multi-Link LAPD Library

UPGRADING PROGRAMS TO MULTI-LINK LAPD

Troubleshooting

Problem

Problem

TEKELEC

Upgrading existing LAPD programs to Multi-Link LAPD has
been made as simple as possible. Many such programs can
be run with little or no modification. This section contains hints
and suggestions to aid in modifying existing user programs
that have problems with the Multi-Link LAPD library, and
upgrading to take advantage of the new library features.

This section lists typical problems and solutions when
converting LAPD. C program to Multi-Link LAPD. It is assumed
that the program will run when relinked with the LAPD library.

You cannot establish a link because a SABME is not
transmitted by the Chameleon on a slonO call.

Solution 1: The selected link is probably disabled. Multi-Link
LAPD defaults all SAPIITEI combinations to an
invalid value, thus disabling the link. With the
LAPD library, the SAPI and TEl are assigned
default values of o. To enable a link, add
set_sapi and set_ tei calls using valid values.

Solution 2: If you are using a V-type interface, and simulating
a DTE, the Chameleon may not be receiving a
clock from the Device Under Test. To determine
this, set the interframe fill (setflg) to Ox7E. If the
clock is being received, the Chamelelon front
panel red and green Data LEOs should both
illuminate.

You cannot establish a link because the Chameleon does not
respond when a SABME is received.

Solution 1: The SAPlfTEI combination is not assigned to a
link. This occurs in programs that set receive
SAPI (RSAPI) and receive TEl (RTEI) values
without setting the transmit SAPI and TEl to the
same value. A call to set Iink(get freelnkO) will
select an unused link. TIlen use set sapi and
set tei to assign the SAPIITEI comBination to
thanink. This must be done for each SAP lITE I
combination that might be received.

Solution 2: The subscriber/network selection is incorrect.
Your program may change this selection as
desired, but remember that it is a global selection
which affects all 64 links.

B.11-56 Version 2.5

.. Chameleon 32 C Manual App. B.l1: Multi-Link LAPD Library

Problem The Chameleon rejects frames on some SAPI/TEI
combinations because of an incorrect N(r) value.

Problem

Problem

TEKELEC

Solution 1: More than one link is assigned the same
SAPIITEI, and the library is transmitting on one
while the FEP is receiving on another. This can
be avoided by adding a call to srch Ink before
assigning SAPI and TEl values to-determine
whether the combination already exists.

Solution 2: There is a modulus mismatch. The Multi-Link
LAPD FEP codes run only Mod 128.

Timeout problems. Timeout (T200,T203) problems will nearly'
always be caused by changing the SAPIITEI combination on a
link after it is established and in multi-frame mode.

Solution 1: The preferred solution is to assign all SAPIITEI
combinations to different links. Subsequent
SAPIITEI changes can then be replaced with
set link calls.

Solution 2: A second option is to disable- the T200 and T203
timers in the Chameleon and the Device Under
Test, and then re-establish the link at intervals to
purge unacknowledged I-frames.

This solution is not good practice and should be
used temporarily while debugging a program.

The Chameleon sends response messages' on the wrong link.

Cause 1:

Cause 2:

Cause 3:

The correct link was not selected prior to
transmitting the response.

The link was selected based on the single-link
LAPD frstat interpretation.

The link selection was based on the wrong
received message.

There are two possible solutions. If your program
receives and responds to messages one at a
time, either solution will work. If a number of
messages are received, then interpreted as time
permits, use the second solution.

B.11-57 Version 2.5

Chameleon 32 C Manual App. B.l1: Multi-Link LAPD Library

TEKELEC

Solution 1: When a messag"e is received (and a response is
needed), call set link(get rlinkO). This selects
the link from wliich the last message·. was
received.

Solution 2: Set the link to the value of the first byte of frstat in
the received message. This selects the proper
link regardless of the number of messages
received after the one being interpreted.

B.l1-s8 Version 2.5

Chameleon 32 C Manual App. B.11: Multi-Link LAPD Library

SAMPLE PROGRAM 1: ASSIGNMENT SOURCE POINT (ASP) SIMULATOR

The ASP
Simulator

The Message
Interpreter

TEKELEC

This sample program causes the Chameleon to simulate an
Assignment Source Point (ASP) which generates random TEl
values and assigns them on demand. The program has three
major parts:

• Part one starts the Multi-Link LAPO simulator and
initializes the Front End Processor (FEP).

• Part two is the actual ASP simulator.

• Part three is an exit routine that scans the state of all 64
links, sends a disconnect to any that are in a multiple
frame state, removes any assigned TEl's, and then stops
simulation.

Fully simulating an ASP is more complex than it first appears.
A number of tasks must be performed which, in this program,
involve nested loops and subroutines. The outermost loop
tests for user input, specifically the letter a, and exits when it
is typed and the c~rrent cycle is finished. Until this happens,
it prepares the next inner loop by setting a one second

. resolution countdown timer to 30 seconds.

The second loop contains a third loop which waits for the ti"mer
to count down to zero. While it is waiting for the timer, it is
also waiting to receive a message from the FEP. If a
message is received, a message interpreter routine is called
to decide what to do with it.

When the timer reaches zero, another loop is entered that
scans links 1 - 63 for valid TEl values. For each valid TEl, an
10 check message is sent. If an 10 check response is
received, a second wait loop is entered to see if another
response is received. If two responses are received, the AI
and AI values are compared. If the Als match and the Rls do
not, two users have the same TEl, so that TEl is removed.

There are three calls to this subroutine, which returns values
indicating the received message type. The actions taken
depend on the message type, as follows:

• If the message is not from link zero, it is not from a UI
frame, or it has a MEl other than 15, it is ignored.

• If it is an id request, the assignO function is called.

B.11-59 Version 2.5

Chameleon 32 C Manual

Aemoving a TEl

The Assignment
Subroutine

TEKELEC

•

App. B.ll: Multi-Link LAPD Library

If it is an id check response; the following occurs:

~ If the call is from the thirty second time loop, an id
check response message is ignored. This is based
on the asumption that it was either sent in error, or
was sent so late that, by the time the loop has
started, the timeout routine has already removed
the TEL

At call 2, the RI value is extracted from the
message and saved, then a second timed receive
loop is entered. If another id check response is
received at call 3, the AI value is compared with the
one from call 2, and if it is different, the TEl is in
use by two subscribers and it is removed.

To remove or unassign a TEl, the following occurs:

• An 10 remove message is sent.

• The local link to which the TEl was assigned is disabled
by giving it an invalid TEl.

To assign a TEl, the following sequence occurs:

• A call is made to get freelnkO to see if there is a link
available for assignment. If a link is not available, the
request is denied.

• The AI value is examined. If the AI is 127, a counter is
started in the range 64 to 126.

• A search is made to see if this value has been assigned
to any link, and if so, another number is generated.

• Once an unassigned TEl value is found, it is assigned to
the link obtained by the get freelnkO call and then sent
in an 10 assigned message.-

• If the AI value is less than 127, a request for a specific
TEl, a check is made to see if it was already assigned. If
so, it is denied, otherwise it is assigned.

B.11-60 Version 2.5

Chameleon 32 C Manual App. B.11: Multi-Link LAPD Library

#include <stdio.h>
#include <cham.h>
#include <ctype.h>
#include <fcntl.h>
#include <init.h>
#include <video.h>

#define T201 20

extern int rxlen; I-this
char rmes[260],tmes[5];

maine)
{
int reti,lnkno;

is where receive puts the message length-;
;-Messages are stored in character arrays
because it is easier to interpret the message and
make a response.·;

reti=startup(); ;·cal1 the startup routine below·;
if(reti) I-if any problems, quite;

exit(O);

'-while all the links are still disabled, set up the layer 2 parameters-;

reti=s_t200(0);
reti=s_t203(0);

'-timers t200,t203 disabled to reduce ir~elevent traffic-;

reti=s_n200(3);
reti=s_n201(260);
reti=set_window(3);

'-Initialize the xmit message array. This will be used for id check ·and remove-;
tmes[O]=15;
tmes[l]=O;
tmes[2]=O;

;- Set up 1 link for broadcast management procedures-;

reti=set_link(O);
reti=set_sapi(63);
reti=set_tei(127);

,- go do the ASP simulation until the user wants to quit .,
aspsim();

,- go stop things as gracefully as possible -,
shut_down():

} -

startup()
{
int rets;

TEKELEC B.11-61 Version 2.5

Chameleon 32 C Manual App. B.11 :. Multi-Link LAPD Library

I-attempts to start the FEP on port A and returns the results. Setup is
DeE Simulation, network, NRZ encoding, 16000 BPS. -I

}

rets=setport(PORTA); I-run this program on port a-/
return(initp1(0.0,O,16000l»;

,aspsim()
(
int rets,rivall,riva12;
char lnkno,answer,tei,ail,ai2,stop_flag;

rets=inittime(); I-initialize the timers-/
stop_flag=1;

while (stop_flag) '-loop until 'Q' typed-I
{

settimer(2,T201);
while(timer(2)&&stop_flag)

{ .

if (toupper(getch(_stdvt»=='Q')'-stop loop if 'Q' typed-/
stop_flag=O;

rets=receive(&rmes[O]);
if(rxlen)

(
rets=interp();
}

}

I-scan links for assigned TEIs and see if they are still in use-I
for(lnkno=1;lnkno<64;lnkno++)

{
tei=get_lnktei(lnkno);
if{tei>63 && tei(127)'-if link has a valid TEl -/

{
I-build and send an id check message-I

tmes[3]=4;/-id check message type-I
tmes[4J=(tei«1)+1:
settimer(O,500):
rets=l;
while(rets&&timer(O»
rets=trui(&tmes[O],5);I-send check message-I

I-wait 2 seconds for an id response-'

TEKELEC

answer=O;
settimer(2.2); 1-2 seconds is long enough-'

while(timer(2})
{
rets=receive(&rmes[O]): I-see if any messages-I

rets=O;
if{rxlen)

{
rets=interp{);I- if so, see what to do·'
}

B.11-62 Version 2.5

Chameleon 32 C Manual App. B.": Multi-Link LAPD Library

if(rets) ;*if id check response*;
{
riva11=rmes[4]+Z56*rmes[3];
ail=rmes[6]; I· get ai byte*/
answer=1; l*f1ag TEl in use·1

}
if(rets==l) I*if id check response-'

break; '*then exit first timer 100p*'
}

'·resend check message if no response received*1

}

if (! answer)
{
settimer(D,5DD);
rets=1;
while(rets&&timer(D»
rets=trui(&tmes[O],5);
}

;* start second wait loop*'
settimer(Z,Z); '*2 seconds is long enough*;

while(t imer(2»
{
rets=receive(&rmes[O]); I*see if any messages*1
if(rx1en)

rets=interp();I· if so, see what to doe,
if(rets==1) '*if id check response*'

{- .

answer++;'* add 1 to·answer*'
riva12=rmes[4]+256*rmes[3];'*get RI va1ue*'
ai2=rmes[6]; '* get ai byte*'
}

if(rets==1) '*if id check response*;
break; I-then exit first timer loop*'

}

switch(answer)
{
case O:'·no response, TEl no longer in usee,

rmvtei(get_'nktei(lnkno»;
break;

case 1:;*1 response, TEl in usee;
break;

case 2:;*2 responses*;
/*if different ri values and same ai, two entities have same TEl */

if«riva11!=riva12)&&(ail==aiZ»
rmvtei(get_1nktei(lnkno»;

}
}

}
}

rmvtei(tei)

TEKELEC 8.1'-63 Version 2.5

.. Chameleon 32 C Manual App. B.l1: Multi-Link LAPD Library

char tei;
{
int rets;

}

tmes[3]=6;'-id remove message type-'
'*ri = tei shifted left 1 bit and the lsb set-'

tmes[4]=(tei«1)+1;
set_1ink(srch_1nk(Z55,tei»;
if(get_link(»O)

{
set_tei(255) ;
set_sapi(Z55);
set_link(O);'*back to management 1ink*'
xyp1ot(O,O);
printf("removing tei ~d
settimer(O,500);
rets=1 ;

\n",tei);

whi1e(rets&&timer(O»
rets=trui(&tmes[O],5);'*send id remove message*'
}

interp()
{
int rets;

'-return 0 if message not from link 0, not a UI frame, or not ASP entity id code*'
if(get_r1ink()II(get_rxstat()&3)llrmes[Z]!=15)

• . return(O);
switch{rmes[5])

(.
case 1: '*id request-'

rets"assign();
break;

case 5: '-id check response-'
rets=1;
break;

default: rets=O;
}

return(rets);
}

xyp10t (x, y)
{

}

printf (·\033[~d;~df·, y, x);
ff1ush (stdout);

assign()
{
int rets;
char mestyp,ai,lnkno;

TEKELEC B.11-64 Version 2.5

Chameleon 32 C Manual App. B.ll: Multi-Link LAPD Library

ai=(rmes[6]&Oxfe»>1;/-get requested TEl value-/
lnkno=get_freelink();/-get a link to assign to the requestor*/

if(lnkno<O) /*if no links available-/
{
retmes(3.ai);/-deny TEl assignment-/
return(O); /* and leave-/
}

if(ai<127) I-if specific TEl value requested-/
{
if(srch_'nk(255,ai)(O)/-;f requested TEl not in use*/

(
give_tei(lnkno,ai);/-go make assignment-/
return(O) ;
}

I-if requested TEl is already in use-/
retmes(3,ai);/*deny TEl assignment-'
return(O);/- and leave*'
}

feat this pOint, the request is for any TEl , and since there is a
link free. there are at least 2 TEl values not in use. All we have to
do is"find one. While random number generation is more in complience
with CCITT recomendations. the following code is simpler and yields
more repeatable results.-/

for(ai=64;ai<127;ai++)/-100p until an unassigned TEl value reached*'
{
rets=src~_lnk(255.ai)~'-see if TEl in use-/
if(rets<O)'-if not, break out of loop*/

break;
}

give_tei(lnkno.ai);/*go make assignment-'
return(O) ;

}

give_tei(lnkno.tei)
char lnkno.tei;
(
int rets;

'*setup the local link first*'
rets=set_'ink('nkno);
rets=set_sapi(O);
rets=set_tei(tei);

/*next, assign the TEl to the device under test and exit*/
xyplot(O.O);
printf("assigning tei ~d 'n",tei);

rets=set_link(O);
retmes(2.tei);

/* return();-'
}

retmes(mestyp.ai)

TEKELEC B.11-65 Version 2.5

Chameleon 32 C Manual App. B.11: Multi-Link LAPD library

char mestyp.ai;
(
int rets;
/- send return message generated by inserting new message type and
ai values into the last received message. This saves transferring the
ri value into a new message.-/

}

rmes[5]=mestyp;
rmes[6]=(ai«1)+1;
settimer(O.500);
rets=l;
while(rets&&timer(O»
rets=trui(&rmes[2].5);

Shut_down()
(
int rets;
char lnkno;

for(lnkno=1;lnkno<64;lnkno++)

}

TEKELEC

{
rets=set_link(lnkno);
if(status(»O&&status()<9)

slof();
if(get_tei()<127)

rmvtei(get_tei(»;

}

B.11-66 Version 2.S

Chameleon 32 C Manual App. B.ll: Multi-Link LAPD Library

SAMPLE PROGRAM 2: ASSIGNMENT SOURCE POINT (ASP) TESTER

The User
Interface

TEKELEC

This program (asp2) displays a menu which enables the user
to select one of the following:

• Request a TEl

• Discontinue use of randomly selected TEls

• Simulate two subscribers with the same TEl

• Discontinue use of all TEls

This program is intended to be run against sample program 1
so that you can see the Multi-link LAPD sample program in
action. For this reason, the startupO routine sets up the
program to run on Port B, so that the two programs· can be run
against each other on a Dual Port machine.

However, this program can be used as an independent test in
an actual test environment. To use the program on Port A, or
on a single port Chameleon, simply change the port selection
in the startup routine.

In this program, the following sequence occurs:

• The Front End Processor (FEP) is initialized

• A loop is entered that assigns a pseudo-random RI value
to each link. This value is made up of the link number in
the MSB and a random number in the LSB. This
accomplishes two things:

.. Each RI is guaranteed to be unique without a
second loop to verify it

It gives each RI a tag so the user can more easily
track the results of a test run.

A selection menu is printed on the upper part of the screen.
The 'getch(stdvt)' call scans the keyboard for any key
stroke. The Tower part of the screen has two fields, the most
recent user selection is described in the upper one, and the
lower field describes the latest TEl assignment, denial, or
removal.

B.11-67 Version 2.5

· Chameleon 32 C Manual App. B.11: Multi-Link LAPD Lib-rary

'include <stdio.h>
'include <cham.h>
'include <ctype.h>
'include <fcntl.h>
'include <init.h>
'include <video.h>

'define T20130

extern int rxlen; '-this is where receive puts the message length-'

char rmes[260],tmes[5],lnk_ri[64];
'-Character arrays are used for storing the messages because it is easier to see what is being

done to interpret the message and make aresponse.-'

mainO
{
int reti,lnkno;

reti=startup(); '-call the startup routine-'
1f(reti) '-if any problems, quit-'

exit(O);

'-while all the links are still disabled, setup the layer 2 parameters-'

_ reti=s_t200(0);
ret i =s_ t203(0) ;

'-timers t200,t203 disabled to reduce irelevent traffic-' .

reti=s_n200(3);
reti=s_n201(260);
reti-set_window(3);

'-initialize the xmit message array. this will be used for id messages.-'
tmes[0]=15;
tmes[l]=O;
tmes[2]=O;

,- setup 1 link for broadcast management procedures-'

reti=set_link(O);
reti=set_sapi(63);
reti=set_tei(127);

,- go do the ASP test until the user wants to quit -,
asptes() ;

,- go undo everything before simulation is stopped -,
shut_down() ;

}

startup()

TEKELEC B.11-68 Version 2.S

Chameleon 32 C Manual App. B. 11: Multi-Link LAPD Library

{
int rets;
I-attempt to start the FEP on port B and return the results. Setup is
OTE simulation, subscriber, NRZ encoding, 16000 BPS. -,

}

rets=setport(PORTB); I-run this program on port b-/
return(initpl(1,1,O,16000L»: .

asptes()
{
int rets,riva11;
char 1 nkno, answer, tei , tes 1 nk, act_fl ag, qu it_fl ag;

/- set up RI value table -/
for(lnkno=1;lnkno<64;lnkno++)

lnk_ri(lnkno]=5+Z-1nkno;

I-list user selections-/
print_men();

quit_flag=1:
while(quit_flag) I-loop until quit selected by user-/

{

answer=toupper(getch(_stdvt»;/eget user command -,

rets=receive(&rmes[O]);
if(rxlen)/-if mesSage received-/

{
rets=interp();/-see what Kindel
t8i=(rmes[6]&Oxfe»>1;
xyplot(5,1Z);
switch(rets)
(
case 0: I-message does not concern use,

break;

case 1:/-tei assigned message-/
printf("TEI 1d assigned to link 1d
set_link(lnkno);
set_sapi(O) ;
set_tei(tei);
set_link(O);
break;

case 2:/-tei denied message-'
printf("TEI 1d denied for link 1d
break;

case 3:'-id check message-/
lnkno=srch_lnk(Z55,tei);
if(l(lnkno<O»
(
tmes[1]=lnkno;

TEKELEC B.11-69

\n",tei,lnkno);

\n", tei ,lnkno);

Version 2.5

ChameleQn 32 C Manual App.' B. 11: Multi-Link LAPD Library

tmes[2]=lnk_ri[lnkno];
tmes[3]=5;
tmes[4]=(tei«1}+1;
settimer(O,500): /- if fep busy, keep trying 1/2 sec*'
rets"l;
while(rets&&timer(O»
rets=trui(&tmes[O],5):

I*if user selection 0, fake 2 users on same tei*'
H(act_flag== 1)

(
tmes[1]=O;
tm8s[2]=lnk_ri[O]:
tmes[3]=5;
tmes[4]=(tei«I)+1;
settimer(O,500): '* if fep bUSy, keep trying l'Z sec-'
rets=l:
while(rets&&timer(O»
rets=trui(&tmes(O],5):
act_flag=O:
}

}
break;

case 4:'*te; removed message-'
printf("TEI td removed
set_link(srch_lnk(Z55,tei}):
if(get_link(»O)

}
}

se~..:.tei(Z55):
set_link(O);
break:

\n",tei):

;f«answer>='A')&&(answer<='H'»
(

llyplot(5 ,10);
swi tch (answe r)

(
case 'A':'*request any tei*1

lnkno=get_freelink():
tmes[I]= (lnkno<O? 90:1nkno):
tmes[Z]=(lnkno<O? 90:lnk_ri(lnkno]):
tmes[3]=1;
tmes(4]=255:

printf("requesting any tei for link td \n",tmes(I]):
settimer(O,500): ;* if fep busy, keep trying 1'2 sec*'
rets=l:
while(rets&&timer(O)}
rets=trui(&tmes[O],5);
break:

case 'B':'-request specific tei*'
for(tei=64;tei<127;tei++}

TEKELEC

{
if(srch_lnk(255,tei)<O)

B.11-70 Version 2.S

Chameleon 32 C Manual App. B~ 11: Multi-Link LAPD Library

break;
}

1nkno=get_free1ink();
tmes[l]= (lnkno<O? 90:1nkno);
tmes[2]=(lnkno<0? 90:1nk_ri[lnkno]);
tmes[3]=1;
tmes[4]=(tei«1)+l:

printf("requesting tei Xd for link Xd \n",tei,tmes[l]);
settimer{O,500); ;- if fep busy, keep trying 1/2 sec-;
rets=1;
whi1e(rets&&timer(O»
rets=trui(&tmes[O),5);

break;
case 'C':/~request, an e~isting tei-;

for(tei=126;tei>63;tei--)
{
if(srch_1nk(255,tei»=0)

break;
}

1nkno=get_free1ink();
tmes[l]= (lnkno<O? 90:1nkno);
tmes[2]=(lnkno<0? 90:1nk~ri[lnkno]);
tmes[3]=1;
tmes[4]=(tei«1)+1;

printf("requesting e~isting tei Xd for link %d \n",tei,lnkno);
settimer(O,500); Ie if fep busy, keep trying 1/2 sec-;
rets=1;
whi1e(rets&&timer(O»
rets=trui(&tmes[O].5);

break;

case 'O':I·simulate 2 users with same tei-I
act_flag=1;

printf("Next 10 check will get 2 different responses\n"};
break;

case 'E':'-ki11 1 tei-I

TEKELEC

for(tei=126;tei>63:tei--)
{
1nkno=srch_1nk(255,tei);
if(lnkno>=O)

break;

}
if(lnkno(O)

printf("No TEl's assigned
else

{
printf("TEI Xd no longer in use

set_1ink(lnkno);
set_tei(255) ;
set_1ink(O);
}

break;

B.11-71

\n") ;

'n",tei);

Version 2.S

Chameleon 32 C Manual

case 'F' ;,. kill all TEl's·'
for(lnkno=1;lnkno<64;lnkno++)

{
set_link(lnkno);
set_tei(255) ;
}

printf("All TEl's no longer in use
set_link(O);

}

}

break;

case 'G': '·stop test·,
quitjlag=O;
break;

case 'H': ,. print help menu·'
print_men();

}
}

xyplot (xpos, ypos)
int xpos,ypos;
{

}

printf ("\033[%d;%df",ypos,xpos);
fflush (stdout);

clear_screen()
{

}

printf ("\033[2J");
fflush (stdout);

clear_screen();
printf("A - request any TEI\n");
printf("S - request specific TEI\n");
printf("C - request a TEl that is in use~n");
printf("O - simulate 2 users with same TEI\n");
printf("E - stop using a TEI\n");
printf("F - stop using all TEI's\n");
printf("G - stop test\n");
printf("H - reprint screen\n");

xyplot(5,10);
}

interpel
{
int rets;

TEKELEC 8.11-72

App. B.11: .. Multi-Link LAPD Library

\n"};

Version 2.5

Chameleon 32 C Manual . App. B. 11: Multi-Link LAPD Library

/*return 0 if message not from link 0 ,not a UI frame,or not ASP
entity id code-'

if(get_rlink()II(get_rxstat()&3)llrmes[2]!=lS)

switch(rmes[S])
{
case 2 :

case 3:

case 4:

case 6:

default:
}

return(r~ts);
}

retmes(mestyp.ai)
char .lIestyp. ai;
{
int rets;

return(0) ;

'·id assigned*'
rets=1;
break;

'·id denied*'
rets=2;
break;

'*id check*'
rets=3;
break;

'*id removed*'
rets=4;
break;

rets=O;

'* send return message generated by inserting new message type and
ai values into the last received message.*'

rmes[S]=mestyp;
rmes[6]=(ai«1)+1;
settimer(O.SOO); '* if fep busy. keep trying 1'2 sec*'
rets=1;
while(rets&&timer(O»
rets=trui(&rmes[2],5);

}

shut_down()
{
int rets;
char lnkno;

for(lnkno=1;lnkno<64;lnkno++}

}

TEKELEC

(
rets=set_link(lnkno);
if(status(»O && status()<9)

rets=slof(); .
}

B.ll-73 Version 2.5

Chameleon 32 C Manual App.B.12: V.120 Library

B.12 V.120 LIBRARY

V.120 Address

TEKELEC

The V.120 library is an optional C library which must be
purchased in addition to the Chameleon 32 C Development
System. It supports a total of 64 independent links and
adheres to the following V.120 protocol requirements:

• The C/R bit is set to 0 for all commands, and to. 1 for all
responses, regardless of the sending station

• I-Frames can be command or response frames
• When a command reject (CMDR) occurs the link is

automatically restarted

The library is named Iibv120.a and is located in the a:\lib
directory of the hard disk.

The format of the V.120 address field can be viewed as a
single 13-bit Logical Link Identifier (LLI) field or as two
separate fields (LUO and LU1). This is shown as follows:

8 7 6 5 4 3 2 1 Bits

CIA E
LLIO, A

0
Octet 2 (Address Octet 1)

, .
E

LLll A
1

Octet 2 (Address Octet 1)

I I

The LUO is the high order 6 bits of the LU. The LLl1 is the
low order 7 bits of the LLI. The LU is a. concatenation of the
LUO field with the LU1 field. The LLI can take on values in the
range 0 - 8191, with the following reserved values:

LLI
FUNCTION

(In Decimal)

0 In-channel signaling

1 - 255 Reserved for future standardization

256 Default LlI

257-2047 For LLI assignment

2048-8190 Reserved for future standardization

8191 In-channel layer management

LLI Values

B.12-1 Version 2.4

Chameleon 32 C Manual

Link Selection

Frame Status
Word

TEKELEC

App. B.12: V.120 Library

EAO is the octet 2 address extension bit, which is set to O.
EA 1 is the octet 3 address extension bit, which is set to 1 for
two octet address field.

With the V.120 library, you select one of the 64 links (0 - 63)
using the set link function. You then assign the link an LLI
with the set nr function as a single decimal value as shown in
the figure on the previous page. All links default to state 9,
disabled.

When you select a link using set link, you can then use the
other library functions to set the link on (slon), set the link off
(slof), and transmit and receive messages.

A two-byte frame status (frstat) which is attached at the
beginning of each received message provides access to the
following information:

• Link number over which message was received
• Frame type
• Command or response frame
• Poll/Final bit value

The get rxstat function returns the low order byte of frstat.
The get rlink .function returns the high order byte of frstat.

B.12-2 Version 2.4

Chameleon 32 C Manual App.8.12: V.120 Library

Functions The V.120 library provides the functions listed below. Also
refer to the common functions and error codes described in
Appendix B.1.

TEKELEC

get freelinkO
get-fwaiting
get-linkO•........
get-mo
get Inklli
get meswaiting
get rlinkO
get rxstatO
get - sconfig ()
get-window•.......
initp1
link stat
receive•...........
s n200
s-n201
s-t200
s-t203
set link•...........
set-iii

. set-sconfig
set-window " .•.....•...
setflg '
slof () .•....•••••••••.••.•.
slon ()•....
srch Ink ~
start sim
statusO
trans •..•...•..••.......•.
transmit "
trans _resp
trui "
trxcni
trxidc
trxidr
trxmi

8.12-3

8.12-4
8.12-5
8.12-6
8.12-7
8.12-8
8.12-9

8.12-10
8.12-11
8.12-12
8.12-13
8.12-14
8.12-15
8.12-16

" 8.12-17
8.12-18
8.12-19
8.12-20
8.12-21
8.12-22
8.12-23
8.12-24
8.12-25
8.12-26
8.12-27
8.12-28
8.12-29
8.12-30
8.12-31
8.12-32
8.12-33
8.12-34
8.12-35 .
8.12-36
8.12-37
8.12-38

Version 2.4

Chameleon 32 C Manual

get freelinkO -
Declaration

Description

Returns

TEKELEC

App. B.12: V.120 Library

int get_freelinkO

This function gets the number of the first disabled link.

0-63
-1
-2

Disabled link number
No free links available
initp1 not performed

8.12-4 Version 2.4

Chameleon 32 C Manual

get fwaiting -
Declaration

Range

Description

Returns

TEKELEC

int get fwaiting (Inkn) ,
char IriKn;

Inkn 0-63

App. B.12: V.120 Library

This function gets the number of I-frames waiting to be
transmitted on link Inkn.

0-7 Number of I-frames waiting to be sent by link Inkn

See also the global error codes on page B.1-1.

B.12-5 Version 2.4

Chameleon 32 C Manual

get link() -
Declaration

Description

Returns

TEKELEC

App. B.12: V.120 library

int get_linkO

This function gets the number of the link which is currently
under user control.

0-63
-1

Current link number
initp 1 not performed

See also the global error codes on page 8.1-1.

B.12-6 Version 2.4

Chameleon 32 C Manual

get lIi() -
Declaration

Description

Returns

TEKELEC

App. B.12: V.120 Library

This function gets the LLI of the link currently under user
control.

0- Ox1FFF
-1

LLI of· current link
initp 1 not performed

See also the global error codes on page B.1-1.

B.12-7 Version 2.4

Chameleon 32 C Manual

get Inklli -
Declaration

Range

Description

Returns

TEKELEC

App. B.12: V.120 Library

int get Inklli (Inkn)
char InKn;

Inkn 0-63

This function gets the LLivalue for link Inkn.

0- Ox1FFF
> Ox1FFF

LLI value assigned to link n
Link Inkn is disabled

See also the global error codes on page 8.1-1.

B.12-8

•

Version 2.4

Chameleon 32 C Manual App. B.12: V. 120 Library

get meswaiting -
Declaration

Description

Note

Returns

TEKELEC

int get_ meswaiting 0

This function gets the number of messages waiting to be
received from the Front End Processor (FEP).

An additional received message is buffered by the library.

0-32 Number of messages waiting to be received from
the FEP

See also the global error codes on page 8.1-1.

8.12-9 Version 2.4

Chameleon 32 C Manual

get rlink() -
Declaration

Description

Returns

TEKELEC

App.B.12: V.120Library

This function gets the number of the link which sent the last
received message. This is the high order byte of the frame
status word frstat passed by the FEP.

0-63
-1
-2

Current link number
No messages received yet
initp1 not performed

See also the global error codes on· page 8.1-1.

B.12-10 Version 2.4

Chameleon 32 C Manual

get rxstat() -
Declaration

Description

Returns

App. B.12: V.120 Library'

char get_rxstatO

This function gets the low order byte of the frame status word
frstat, which contains the frame type etc. for the last received
message.

0- OxC3
OxFF
OxFE

1rstat value (interpreted as shown below)
No messages received yet
initp1 not performed

See also the global error codes on page 8.1-1.

I 7 I 6 I 5 I 4 I 3 I 2 J 11 0 I
High bit'low bit

Examples

TEKELEC

Ox41
Ox02
OxC3

I I 00 = UI frame
01 = XID frame
10 = I-frame
11 = FRMR

Reserved

o = Command frame
1 = Response frame

o = PolVFinal bit clear
1 = Poll/Final bit set

Non-final XID response
I-frame command
Final FRMR response

B.12-11 Version 2.4

Chameleon 32 C Manual App. B.12: V.120 Library

get sconfig () -
Declaration

Description

int get_ sconfig ()

This function returns a copy of the current control configuration
byte, which can be interpreted as shown in the figure below.

176543210 I Bit

I Reserved

Interframe Fill
o = Set interframe fill to value 7E
1 = Set interframe fill to value FF

Reserved
Status Changin~ Frames o = Poll normal Set poll bit normal on status changing

frames SABM(El and DISC.) .
1 = Poll set ~set p'ol bit on status changi ng frames

SABM(E ana DISC.)

SABM(E) Response
o = UA on~. StoP. ~enerating SABM(E) collisions.
1 = UA an SABM(). Generate SABM(E) collisions.

XlD Poll Bit
00 = No XID frames polled.
01 = Poll only XID frames without I-fields.
10 = Poll onl~ XID frames with I-fields.
11 = Poll all 10 frames

XID Exchange .
o = Stop transmitting XIO's on T203 timeout.
1 = Transmit XID command on T203 timeout.

TEKELEC B.12-12 Version 2.4

Chameleon 32 C Manual

get window -
Declaration

Range

Description

Returns

TEKELEC

int get window (Inkn)
char In1<n;·

Inkn 0-63

App. B.12: V.120 Library

This function gets the number of outstanding I-frames on link
number Inkn.

0-7 Number of unacknowledged I-frames of link Inkn

See also the global error codes on page 8.1-1.

~.12-13 Version 2.4

Chameleon 32 C Manual

initp1

Declaration

Description

Note

Ranges

Returns

TEKELEC

. App. B.12: V.120 Library

int initp1 (interface, sta, encode, bitrt)
int interface, sta, encode;
long bitrt;

initp1 loads the Front End Process (FEP) code for the
selected library and starts simulation. Predefined values exist
in mlklib.h to aid in setting up the call to this function. sta is
the station type and selects the initial sense of the
command/response bit. The library permits reselection of the
station type at any time. encode selects the physical data
encoding. bitrt sets the data rate when simulating a DCE
device.

This function is identical to and interchangeable with the
start sim function. It is included to provide downward
compatibility with the single link LAPD library.

interface 0 V-type interface (DCE)
1 V-type interface (DTE)
2 ISDN interface

sta 0 V.120

encode 0 NRZ
1 NRZI

bitrt Any long integer value from 50 - 64000.

See the global error codes on page B.1-1.

B.12-14 Version 2.4

Chameleon 32 C Manual

link stat

Declaration

Range

Description

Returns

TEKELEC

App.8.12: V.120 Library

int link stat(n)
charn;

n 0-63

This function gets the current state of link n.

0-9 Current state of link (see table below)

See also the global error codes on page 8.1-1.

STATE LINK STATUS

0 Wnk Disconnected
,

1 Wnk Connection Requested

2 Frame Rejected

3 Disconnect Requested

4 biformation Transfer ,

5 Local Station Busy

6 Remote Station Busy

7 Local and Remote Station Busy

8 Remote Station not Responding

9 Wnk Disabled

8.12-15 Version 2.4

Chameleon 32 C Manual

receive

Declaration

Description

TEKELEC

int receive(dest addr)
char *dest_ add;:;

App. B.12: V.120 Library

This function receives a message from the FEP by performing
the following tasks:

• It polls the FEP to see if any received messages are
available

• It transfers the message, contents to the user defined
buffer pOinted to by dest addr

, -
• The total length of the message (including the frame

status bytes frstat) is placed in the global variable rxlen

The frstat word is accessible by calling get rlink and
get rxstat so that you can interpret and reSPond to a
message quickly. The frstat bytes are attached to the
beginning of each received message so that several
messages may be received, sorted, interpreted, and
individual responses made. '

It is up to the user to assure that the destination buffer is long
enough to contain the message. Generally, a length equal to
N201 + 2 is adequate.

I I

B.12-16 Version 2.4

Chameleon 32 C Manual

s n200

Declaration

Range

Description

Returns

TEKELEC

int s n200 (val)
int vaJ;

val 1 - 255

App. B.12: V.120 Library

This function sets the maximum number of retries (N200).

o Successful

See also global error codes on page 8.1-1.

B.12-17 Version 2.4

Chameleon 32 C Manual

s n201

Declaration

Range

Description

Returns

TEKELEC

int s n201 (val)
int vaT;

val 1 - 512

App. B.12: V.120 Library

This function sets the maximum length for an I-frame (N201).

o Successful

See also global error codes on page B.1-1.

B.12-18 Version 2.4

Chameleon 32 C Manual

s t200

Declaration

Range

Description

Returns

TEKELEC

int s t200 (val)
int val";

val 0-255

App. B.12: V.120 Library

This function sets the time allowed for the remote station to
respond (T200). Setting this value to 0 disables the T200
timer.

o Successful

. See al~o global error codes on page 8.1-1.

B.12-19 Version 2.4

Chameleon 32 C Manual

s t203 -
Declaration

Range

Description

Returns

TEKELEC

int s t203 (val)
int vaT;

val 0-255

App. B.12: V.120 Library

This function sets the maximum time between frames (T203).
On time out, a polled RR or XIO command is transmitted,
depending on the configuration selection. Setting this value to
o disables the T203 timer.

o Successful

See also global error codes on page B.1-1.

B.12-20 Version 2.4

Chameleon 32 C Manual

set link

Declaration

Range

Description

Returns

TEKELEC

int set link(n)
charn;

n 0-63

App. B.12: V.120 Library

This function puts link n under user control. Only one link at a
time can be under user control. Initp1 must be performed
prior to this function.

o Successful
-1 Parameter out of range
-2 initp 1 not· performed
-3 Timeout

See also the global error codes on p'age 8.1-1.

B.12-21 Version 2.4

Chameleon 32 C Manual

set sconfig -
Declaration

Description

176543210

I

,

Returns

TEKELEC

App. B.12: V.120 Library

int set sconfig (byte)
int byte; .

This function sets the value of the control configuration byte,
interpreted as shown in the figure below.

I Bit

Reserved

Interframe Fill
o = Set interframe fill to value 7E
1 = Set interframe fill to value FF

Reserved
Status Changin~ Frames o = Poll normal Set poll bit normal on status changi ng

frames SABM(El and DISC.)
1 = Poll set ~set pol bit on status changi ng frames

SABM(E. ana DISC.)

SABM(E) Response
o = UA o~. Stop ~enerating SABM~ collisions.
1 = UA a SABM(). Generate SAB (E) collisions.

XID Poll Bit
00 = No XID frames polled.
01 = Poll only XID frames without I-fields.
10 = Poll only XID frames with I-fields.
11 = Poll all XID frames

XID Exchange
o = Stop transmitting XID's on n03 timeout.
1 = Transmit XID command on T203 timeout.

o Successful

See also global error codes on page 8.1-1.

B.12-22 Version 2.4

Chameleon 32 C Manual

set IIi

Declaration

.. Range

Description

Returns

TEKELEC

App. B.12: V.120 Library

int set lIi(val)
int val;

val OxOO - OxFFFF hex

A value > Ox1 FFF disables the link

This function sets the LlI (Logical Link Identifier) value for the
link under user control.

o Successful
-1 Parameter out of range
-2 initp1 not performed
-3 Timeout

See also the global error codes on page 8.1-1.

8.12-23 Version 2.4

Chameleon 32 C Manual

set window -
Declaration

Range

Description

Note

Returns

TEKELEC

int set window (val)
int val;

val 1 - 7

App. B.12: V.120 Library

This function sets the. maximum number of outstanding frames
on each link.

The total of outstanding frames + the number of frames
passed to the FEP waiting to be transmitted + the number of
messages over 16 bytes long waiting to be received from the
FEP may not exceed 80.

o Successful

See also global error codes on page B.1-1.

B.12-24 Version 2.4

Chameleon 32 C Manual

setflg

Declaration

Range

Description

Returns

TEKELEC

App. B.12: V.120 Library

int setflg (flag)
int flag;

flag o
1

Ox7E fill
OxFF fill

This function selects an interframe fill pattern.

o Successful

See also global error codes on page 8.1-1.

8.12-25 Version 2.4

Chameleon 32 C Manual

sl01 ()

Declaration

Description

Returns

TEKELEC

App.8.12: V.120 Library

int slof 0

This function sends a DISC and waits for a UA frame. This is
equivalent to the CCITT primitive OL RELEASE.

o Successful

Also see global error codes on page 8.1-1.

8.12-26 Version 2.4

Chameleon 32 C Manual

slon 0

Declaration

Description

Returns

TEKELEC

App.8.12: V.120 Library

int slon 0

This fun'ction sends a SABME and waits for a UA frame. This
is equivalent to the CCITT primitive OL ESTABLISH.

o Successful

Also see global error codes on' page B.1-1.

8.12-27 Version 2.4

Chameleon 32 C Manual

srch Ink -
Declaration

Description

Returns

TEKELEC

int srch Ink(lIi)
int iii; -

App. B.12: V.120 Library

This function returns the number of highest link matching the
specified LLI. .

0-63
-1

Number of highest link matching parameters
No match found

See also the global error codes on page B.1-1.

B.12-28 Version 2.4

Chameleon 32 C Manual

start sim -
Declaration

Description

Note

Ranges

Returns

TEKELEC

App. B.12: V.120 Lib~ary

int start sim (interface, sta, encode, bitrt)
int interrace, sta, encode;
long bitrt;

start sim loads the Front End Process (FEP) code for the
seleCfed library and starts simulation. Predefined values exist
in mlklib.h to aid in setting up the call to this function. sta is
the station type and selects the initial sense of· the

. command/response bit. The library permits reselection of the
'station type at any time. encode selects the physical data
encoding. bitrt sets the data rate when simulating a DCE
device.

This function is identical to and interchangeable with the initp 1
function. The initp 1 function. is provided for downward
compatibility with the single link LAPD library.

interface 0 V-type interface (DCE)
1 V-type interface (DTE)
2 ISDN interface

sta 0 V.120

encode 0 NAZ
1 NAZI

bitrt Any long integer value from 50 - 64000.

See the global error codes on page B.1-1.

B.12-29 Version 2.4

Chameleon 32 C Manual App. B.12: V.120 Library

status()

Declaration int statusO

Description This function gets the current state of link under user control.

Returns 0-9 Cu~rent state of link (see table below)

See also the global error codes on page 8.1-1.

STATE LINK STATUS

0 Link Disconnected

1 Link Connection Requested

2 Frame Rejected

3 Disconnect Requested

4 Information Transfer

5 Local Station Busy

6 Remote Station Busy

7 Local and Remote Station Busy

8 Remote Station not Responding

9 Link Disabled

TEKELEC B.12-30 Version 2.4

Chameleon 32 C Manual

trans

Declaration

Description

Returns

TEKELEC

int trans (frame,address,len)
int frame, len;
char *address;

App. B.12: V.120 Library

This functions transmits a frame as follows:

frame selects type of frame to transmit:

Ox80 I-frame Sequenced (numbered)
I-frame

Ox81 UI Unnumbered I-frame
(NSI)

Ox82 XIDC XID command frame
Ox83 XIDR XID response frame
Ox84 RESP IFRAME IFRAME response

address is a pointer to the first byte of the message to be
transmitted.

len is the actual length of the message to be transmitted.
There are two restrictions on the messaQe length:

• . I-frames must not exceed the value set in N201
• The total length of the frame cannot exceed 512 bytes

o Successful

Also see global error codes on page 8.1-1.

B.12-31 Version 2.4

Chameleon 32.C Manual

transmit

Declaration

Description

Note

Returns

TEKELEC

int transmit (xloc, xlen)
char *xloc;
int xlen;

App. B.12: V.120 Library

This function transmits a message in a sequenced (numbered)
I-frame.

xloc is a pOinter to the first byte of the message to be
transmitted.

xlen is the actual length of the message to be transmitted.
The length of an I-frame must not exceed the value set in
N201.

The transmit function is provided for user convenience. If
extremely high data rates are required, the trans function
should be used, as it is somewhat faster.

o Successful

Also see global error codes on page 8.1-1.

•
B.12-32 Version 2.4

Chameleon 32 C Manual

trans resp -
Declaration

Description

Note

Returns

TEKELEC

int trans resp (xloc, xlen)
char '"xloc;
int xlen;

App.B.12: V.120Library

This function transmits a message in a sequenced (numbered)
I-frame response.

xloc is a pointer to the first byte of the message to be
transmitted.

xlen is the actual length of the message to be transmitted.
The length of an I-frame must not be more than the value set
in N201.

The trans resp function is provided for user convenience. If
extremelynigh data rates are required, the trans function
should be used, as it is somewhat fas~er.

o Successful

Also see global error codes on page 8.1-1.

B.12-33 Version 2.4

Chameleon 32 C Manual

trui

Declaration

Description

Note

Returns

TEKELEC

int trui (xloc, xlen)
char *xloc;
int xlen;

App. B.12: V.120 Library

Transmit a message in an unnumbered I-frame (UI frame).

xloc is a pointer to the first byte of the message to be'
transmitted.

xlen is the actual length of the message to be transmitted.
The lenght of an I-frame must not exceed the value set in
N201.

The trui function is provided for user convenience. If extremely
high data rates are required, the trans function should be
used, as it is somewhat faster.

0, Successful

Also see global error codes on page 8.1-1.

B.12-34 Version 2.4

· Chameleon 32 C Manual

trxcni

Declaration

Description

Returns

TEKELEC

App. B.12: V.120 Library

int trxcni 0

This function transmits an XID command frame with no data
field.

o Successful

See also global error codes on page B. 1-1 .

B.12-35 Version 2.4

Chameleon 32 C Manual

trxidc

Declaration

Description

Note

Returns

TEKELEC

int trxidc (xloc, xlen)
char "'xloc;
int xlen;

App. B.12: V.120 Library

This function transmits a message in an XIDcommand frame.

xloc is a pointer to the first byte of the· message to be
transmitted.

xlen is the actual length of the message to be transmitted.
The total length of the frame must not exceed 512 bytes

The trxidc function is provided for user convenience. If
extremely high data rates are required, the trans function
should be used, as it is somewhat faster.

o Successful

Also see global error codes on page 8.1-1.

B.12-36 Version 2.4

Chameleon 32 C Manual

trxidr

Declaration

Description

Note

Returns

TEKELEe

App. B.12: V.120 Library

int trxidr (xloc, xlen)
char *xloc;
int xlen;

Transmit a message in an XID response frame.

xloc is a pointer to the first byte of the message to be
transmitted.

xlen is the actual length of the message to be transmitted.
The total length of the frame must not exceed 512 bytes.

The trxidc function is provided for user convenience. If
extremely high data rates are required, the trans function
should be used, as it is somewhat faster.

o Successful

Also see global error codes on page 8.1-1.

B.12-37 Version 2.4

Chameleon 32 C Manual

trxrni

Declaration

Description

Returns

TEKELEC

App. B.12: V.120 Library

int trxrni 0

This function transmits an XID response frame with no data
field.

o Successful

See also. global error codes on page 8.1-1.

B.12-38 Version 2.4

Chameleon 32 C Manual

Sample
Programs

Makefile

Test1.c

TEKELEC

App. B.12: V.120 Library

The following are two sample SIMP IL V.120 programs which
can be run against each other on a Dual Port Chameleon 32.
Program test1.c uses Port B; test2.c uses Port A. The two
programs interact as follows:

• T est1 sets up 64 links and randomly transmits on one of
the links.

• T est2 receives the message and returns the message on
the same link as was received.

The program terminates when the letter Q is pressed, or the
link is lost. .

The following is the makefile for the two sample programs:

tests : test1 test2
testl : testl.o

cc -0 test1 test1.0 -lv120
tes t2 : test2. 0

cc -0 test2 test2.0 -lv120

The sample program test1.c is as follows:

#inc1ude <stdio.h>
.inc1ude <chaa.h>
.inc1ude <ctype.h>
.inc1ude <fcnt1.h>
.inc1ude <init.h>
.inc1ude <video.h>

char t.sg[48].nasg[48];

uin()
(

char insit.te8pc.answer.·tadr.·radr;
extern char;
extern int rxlen;
int result.t"pi;
long int count;

printf(-C prograa started.\n-);
tadr=&t.sg[O]:
radr=&nasg[O] :
s_start():

/ ••••• uke and display trans.it .. ssage ••••• /

B.12-39 Version 2.5

Chameleon 32 C Manual

TEKELEC

for(insit=O;insit<=16;insit++)
tasg[insit] = 15 - insit;

printf(-trans.it .assage = e);

for(insit=O;insit<=16;insit++)
printf(W lOx -.~sg[insit]);
printf(-\nW);

, ••••• do fra.e level setup ••••• ,

result=set_8Od(1);
result=s_t200(O);
result=s_t203(O);
result=s_n20t(20);
result=set_window(3);

, ••••• setup lli for 64 links ••••• ,

fore;;)
{

}

ta.pi=get_freelink();
H(tapi<O)

break;
prin~f(·free link = Sd\n-.te.pi);
result=set_linkttellpi);
result=set_lli(ta.pi·3);

wbile(status()<4);
result=set_link(2);
result=trans(Oa80,tadr,16);
count=O;
result=get_link();
clear _screen 0 ;
printf(-Current link is Sd\n-,result);

App.8.12: V.120 Library

, ••••• send and receive until link state is less than 4 •••••
•••••• 01' user types -0- •••• ,

fore;;)
{

answer = toupper(getcb(_stdvt»;
if«status()<4)II(answer=='O'»

break;

result=receive(radr);
if(rxlen>O)

{

8.12-40 Version 2.5

Chameleon 32 C Manual

TEKELEC

App. B.12: V.120 Library

xyplot(5,5);
printf(-received 8essage = a);

for(insit=O;insit<rxlen;insit++)
printf(- lOx -,n.sg[insit]);

printf(-\n·);
printf(aReclink = %d, frstat = %x

\n·,get_rlink(),get_rxstat(»;

,. select a link at randa- and, if it is not busy, send a ~ssage .,

ta.pc=63·rand();
result=set_link(teapc);
if (status()<5)

}

result=trans(Ox80,tadr, 16);
count++;
printf(-Tbat's %ld.\n-,count);

}

, ••••• if link still connected, disconnect it, tben exit ••••• ,

}

if(status(»O)
{

}

result=slof();
printf(-slof result lOd\n-,result);
wbile(status(»l);

xyplot (xpos, ypos)
int Itpos,YPos;
{

}

printf (·\033[%d;1df·,ypos,xpos);
fflush (stdout);

clear_screen()
{

}

printf (-\033[2J-);
fflusb (stdout);

s_start()
{
i nt rets, ret2;

rets=setport(PORTB);
printf(·Trying to start PI-);
rets= initpl(l.l,O,6400L);
printf(· result = %Ox\n-,rets);
}

B.12-41 Version 2.5

Chameleon 32 C Manual App. B.12: V.120 library

Test2.c The sample program test2.c is as follows:

TEKELEC

#include <stdio.h>
#include <chaa.h)
.include <ctype.h)
#include <fcntl.h)
#include <init.h)
#inc1ude <video.h>

,. aake buffers for tx and rx ~ssages .,
char tasg(48],nasg[48];

aain()
{

char insit,answer,·tadr,·radr;
extern char;
extern int rxlen:
int result,te~i;
long int count;

printf(-C prograa started.\n-);
tadr=&tIIsg[O];
radr=&rasg(O];
s_start();

, ••••• aake and display trans.it ~ssage ••••• ,

for(insit=O;insit<=16;insit++)
tasg[insit] = ins it;

printf(-tranS.it ~ssage = .);
for(insit=O;insit<=16;insit++)

printf(- %Ox ·,tIIsg[insit]);
printf(-\n-);

, ••••• do fraae level setup ••••• ,

result=set_aQd("l);
result=s_t200(O);
result=s_t203(O);
resu1t=s_n201(20);
result=set_window(3);

, ••••• setup 11i for 64 links and set the. on ••••• ,

fore;;)
{

teapi=get_free1ink();
if(teapi<O)

break;
printf(·free link = ~d\n-.te~i);
result=set_link(te.pi);
result=set_lli(teapi*3);

B.12-42 Version 2.S

Chameleon 32 C Manual

TEKELEC

App. B.12: V.120 Library

}

result=slon();
while(status()<4);

, •••• test get link stats ••• ,

for(te.pi=O;te.pi<64;te.pi++)
(

result=link_stat(te.pi);
printf(· link= ~d ·,te.pi);
printf(· state = ~d.\n·,result);
result=get_window(te.pi);
printf(· window = ~d.\n·,result);
result=get_fwaiting(te.pi);
printf(·fra.es to be sent = ~d.\n·,result);
result=get_.aswaiting();
printf(· .assages to be received = ~d.\n·,result);
result=get_lnklli(ta.pi);
printf(· lli = ~.\n·,result);

}

, ••••• test link search function
search 12 should return 4
search 66 should return 22
search 189 should return 63
search 11 should return 'not found' •••• ,

printf(-result of search 12 = ~d\n·,result);
result=srth_lnk(66);
printf(-result of search 66 = ~\n·,result);
result=srch_lnk(189);
printf(-result of search 189 = ~d\A·,result);
result=srch_lnk(11);
printf(-result of search 11 = ~\n·,result);

, ••••• send and receive untill link state is less than 4 •••••
•••••• or user types .Q ••••• ,

result=set_link(2);
te.pi=O;
count=O;
result=get_link();
clear _screen();
printf(-Current link is ~\n·,result);

fore;;)
(

answer = toupper(getch(_stdvt»;
if«status()<4)II(answer=='Q'»

break;
result=receive(radr);
if(rxlen>O)
(

xyplot(5,5);
printf(·received .assage .);

B.12-43 Version 2.5

Chameleon 32 C Manual

TEKELEC

App. B.12: V.120 Library

for(insit=O;insit<rxlen;insit++)
printf(- ~OX -,rmsg[irisit]);

printf(-\n-);
printf(-Reclink = ~d, frstat = ~x

\n-,get_rlink(),get_rxstat(»;
result=set_link(get_rlink(»;
if(status()<5)

result=trans(Ox80,tadr, 15);
count++;
printf(-That's ~ld.\n-,count);

}
}

/ ••••• if link still connected, disconnect it, then exit ••••• /

}

if(status(»O)
{

}

result=slof();
printf(-slof result ~Od\n-,result);
while(status(»l);

xyplot (xpos, ypos)
int xPOS,1POS;
{

printf (-\033[~d;~fw.1POS,xpos);
fflush (stdout);

clear_screen()
{

}

printf (W\033[ZJW);
fflush (stdout):

s_start()
{
int rets, retZ;

rets=setport(PORTA):
printf(-Trying to start PIW):
rets= initpl(O,O,O,6400l);
printf(- result = ~x\n-,rets);
}

8.12-44 Version 2.S

Chameleon 32 C Manual Appendix B.13: Multi-Link HOLC Library

B.13 MULTI-LINK HDLC C LIBRARY

Introduction The Multi-Link HOLC C Library (libmhdlc.a) is located in the \lib
directory. It can be used only on a Oual Port Chameleon 32.

Port

TEKELEC

Unk A

The Multi-Link HOLC library enables a Oual Port Chameleon
32 to simulate two links using the HOLC protocol. With the
Multi-Link HOLC library, each port is configured as a
permanent virtual circuit, providing two links for testing a multi
path network.

Multi-path
Network

Unk A

Link B

.,

\$ Ii i Ii Ii Ii II i lij
Dual Port

Chameleon 32

The Multi-Link HOLC library is an enhanced version of the
HOLC library described in Appendix B.3. The HOLC library
provides single link simulation, whereas the Multi-Link HDLC
library provides dual link simulation

B.13-1 Version 2.5

Chameleon 32 C Manual Appendix 8.13: Multi-Link HOLC Library

Applications The library provides a high degree of flexibility while providing
solutions to the problems of simulating an HOLC system with
multiple physical links. The library provides functions for
initializing both ports with the automatic layer 2 FEP software,
establishing links, and transmitting, and receiving data on
either port.

TEKELEC

Some applications of the library include:

• Simulating a multi-circuit device by connecting the
Chameleon to two Permanent Virtual Circuits (PVCs) of a
multi-path packet switching network. .,

• Testing a single circuit by inserting the Chameleon into
the middle of a single circuit and running simulation in
both directions to the devices on either end. This
provides a divide and diagnose test to find a circuit fault.

• Use "the Chameleon as a emergency adaptor. This
library was not intended for such an application; however,
it is possible to use the Chameleon as an adaptor
between two incompatible HOLC devices.

For example, use the Chameleon between two OTE
terminals or as a rate adaptor between two devices that
run at different data rates. In this context, it is possible
to connect an ISDN Basic Rate Interface to an ISDN
Primary Rate Interface.

• Use the Chameleon to compare two devices or
networks. The Chameleon can be set to transmit in
redundant mode so that the same data is transmitted
over both ports. The responses of the two
devices/networks can then be evaluated.

8.13-2 Version 2.5

Chameleon 32 C Manual

TEKELEC

FUNCTION

flush
flush all
init a
init-b
initp1
mlh flush
mlh -receive
mlh-set n1
mlh-set-n2
mlh - set-net
mlh - set-sub
mlh-set-n
mlh-set-t2
mlh - set-window
mlh-slor
mlh-slon
mlh~status
mlh-trans -.-
receive
set n1
set-n2
set-net ()
set-pat
set-ratio
set-n
set-t2
set-sub 0
set-window
sloil)
slon ()
status ()
transmit

Appendix B. 1 3: Multi-Link HOLC Library

PAGE

B.13-9
B.13-10
B.13-11
B.13-12
B.13-13
B.13-14
8.13-15
B.13-16
B.13-17
B.13-18
B.13-19
B.13-20
B.13-21
B.13-22
B.13-23
B.13-24
8.13-25
8.13-26
8.13-27
8.13-28
8.13-29
B.13-30
B.13-31·
B.13-32
B.13-33
B.13-34
B.13-35
B.13-36
B.13-37
B.13-38
8.13-39
B.13-40

Also refer to Appendix B.1 for a description of common library
functions and error codes.

Sample programs using the Multi-Link HDLe library are
provided at the end of this section.

B.13-3 Version 2.S .

Chameleon 32 C Manual Appendix 8.13: Multi-Link HOLC Library

Simulator
Initialization The library provides three functions for initializing the

Chameleon ports to run the Multi-Link HOLC simulator. These
functions are:

Note

TEKELEC

initp1

init a
in ito

This function initializes both Ports A and B with
identifical configuration parameters with a single
call. For example, both ports are initialized as
OCEs with a bit rate of 56000. For most testing
applications, both ports will be the same.

If the testing application requires that Port A and
Port B configuration differ, each port can be
initialized independently using the init a and
init b functions. -

There are some unique applications for the
init aO/init bOfunctions. Programs with an
autOmatic send/receive/respond function can test
themselves by temporarily inserting init a() and
init b() calls and connecting the two portS-together
as TICE and OTE, network and subscriber.

It is also· possible, using a fairly simple
receive/resend program ... to use the Chameleon 32
as a data rate or side translator to link incompatible
equipment such as two OCE devices or two
devices with no common data rate selection.

When configured as a OTE or for ISDN, timeout errors may
occur when the Chameleon is configured for a data rate that is
significantly higher than what is actually being received. This
is more likely to occur when very long packets are being
exchanged because the timeout interval is adjusted to the data
rate to minimize delays. If unwarranted timeout errors occur
consistently, initialize the port using a lower data rate.

B.13-4 Version 2.5

Chameleon 32 C Manual Appendix 8.13: Multi-Link HOLC Library

Transmitting
Data There are two transmit functions in the library:

Global
Variables

TEKELEC

transmit

mlh trans

This function transmits a packet over a
specified port.

This function transmits a packet to a port
depending on a specified distribution pattern
which is defined using one of the following
functions:

• set ratio specifies the distribution
pattern of the packets being transmitted
over the two ports. The ratio can be set
so that all, none, or a, specified
percentage of packets is transmitted
over Port A or Port B.

• set pat specifies a user-defined
disffi5ution pattern if set ratio does not
provide the distribution required by the
testing application.

Each time a call is made to mlh trans, the
simulator determines over· whiCfi port to
transmit the packet.

mlh trans() should be used to transmit
information packets only. Other packet types
should be sent using the transmitO function.

When the two physical ports are used for different Logical
Channel Numbers (LCNs), it is important that the application
has a means of determining which port will transmit the next
packet. This can be determined using tWo global variables
and a pointer:

This is a variable which Indicates which port
provided the last received data packet:

o Port A
1 Port B

This counter is used by the function
mlh trans to determine which port will be
useOlo transmit the next packet. This counter
is the offset into the pattern table pointed to
by pat_'oco

8.13-5 Version 2.5

Chameleon 32 C Manual

TEKELEC

Appendix 8.13: Multi-Unk HOLC Library

This is a pointer to the pattern table used by
mlh transO to determine how transmitted
pacKets are to be distributed to· Ports A and B.
Reading the character located at *(pat loc +
tpat ptr) provides a means of determining
whiCfi' port will transmit the next packet. The
possible values of the character are:

1 Port A
2 Port B
o End of pattern table

The following program fragment demonstrates the use of
these variables:

cllar neatJ0rt;

if (IneatJOrt) '-if end of pattern flag -,
neatJ0rt = -patloc; ,- use start of pattern -,

switcb(neatJOrt){
case 1: ,- port A is neat -,

u_lcgn • lcgn_a;
u_len = len_a;
uJS a ps_a+t-;
uJr • pr _a;
break; .

case 2: ,- port 8 is neat -,
u_lcgn .. lcgn_b;
u_len • lcn_b;
uJs = ps_b+t-;
UJr .. pr_b;
break;

default: ob_ob_error(BAD_PATRI);
}

The packet is then assembled using the tx components and
transmitted using mlh _ transO. -

8.13-6 Version 2.5

Chameleon 32 C Manual Appendix B.13: Multi-Link HOLC Library

Reception When the Front End Processor (FEP) for either port receives a
frame, the simulator automatically generates a response
frame, if applicable. If an information frame is received, the
packet is passed to a FIFO "(first in-first out) message buffer
and is given to the program by calling one of the following

TEKELEC

receive functions: "

receive This function causes the Chameleon to check
the reception buffer of the specified port.

mlh receive This function checks both ports for received
packets and returns one packet on each call,
if one is available. It remembers which port
provided the last packet, and gives preference
to the other port on the next call. If the
preferred port has no packet available, the
other port is then queried.

For example, assume three packets were
received on Port A and one packet on Port B.
If the current preferred port is A, successive
calls to mlh receive will return packets in this
order: -

Port A
Port B
Port A
Port A

packet 1·
packet 1
packet 2
packet 3

After Port A packet 2 is returned, Port B is
queried, and since it has no packet available,
Port A packet 3 is returned.

With either receive function, the following occurs:

• The packet is transferred from the message reception
buffer to a user defined buffer

• The global variable rxlen is set to the length of the
received packet

• If mlh receive was called to receive the packet, it sets
the glOOal variable ree port to indicate from which port
the packet was receive a

B.13-7 Version 2.5

Chameleon 32 C Manual

Set Functions

TEKELEC

Appendix B.13: Multi-Link HOlC Library

In applications where packets are transmitted in redundant
mode by the remote device, receiveO should be used. This
simplifies the process of comparing a packet from Port A with
the same packet from Port B.

In applications where packets are being distributed over both
physical links by the remote unit, using mlh receive(} makes
it easier to quickly generate response packeTs and send them
on the correct port.
For applications where the Chameleon-32 is being used as a
rate adapter, DTE/DTE or DCE/DCE translator, or an interface
translator (eg. V.35 to BRI), using receiveO provides a quick
turnaround, as shown in the following program fragment:

.hile(1) { ,. endless loop. there should be sa.e
exit code included such as break if the
, q' is typed or if the state of one
link goes to O. *'

receive (PORT_A,·buffer);
if (rx1en)

'* receive on port A *'
'* if packet received *'

tran~it (PORT_B.·buffer.rxlen); '* resend it on
port B .,

receive(PORT_B.*buffer);
if (rx1en)

'* now receive port B *'
'* if packet received *'

. tran~it "(PORT_A.*buffer.rxlen) . '* resend it on

port A *'
}

There are two types of functions which enable you to change
protocol parameters:

mlh set xxx

set xxx

These functions set the parameter for
the specified port. For example, the
mlh set t1 sets the value of the T1
timer-for"ffie specified port.

These functions set the parameter to an
identical value for both ports. For
example, set t1 sets the value of the T1
timer to the same value for both ports.

B.13-8 Version 2.S

Chameleon 32 C Manual

flush

Declaration

Description

Returns

See Also

TEKELEC

Appendix 8.13: Multi-Link HOLC Library

flush 0

This function clears the receive buffer of the currently selected
port. .

The set port function enables you to select a port. (See
AppendiXB.1 for a description of set_port.)

None

set_portO. flush _ allO. mlh _flushO

8.13-9 Version 2.5

Chameleon 32 C Manual Appendix 8.13: Multi-Link HOLC Library

flush all -
Declaration

Description This function clears the reception buffer of both ports.

Returns None

See Also flushO, mlh _ flus~O .

TEKELEC 8.13-10 Version 2.5

Chameleon 32 C Manual

init a

Declaration

Range

Description

Returns

See Also

TEKELEC

.Appendix B.13: Multi-Link HOLC Library

int init a (interface, sta, encode, bitrt)
int iiiferface, sta, encode;
long bitrt;

interface

sta

encode

bitrt

0 DCE
1 DTE
2 ISDN

0 Network
1 Subscriber

0 NRZ
1 . NRZI

50 to 64000 bps

The bit rate selection is used to optimize some
functions, so it should be set to the correct value
even when the Chameleon is Simulating a DTE or
when an ISDN interface is being' used. If you are
unsure of the appropriate bit rate, use 50.

This function initializes Port A according to the passed
parameters. Port 8 must. then be initialized using the init b
function. If both Ports A and 8 are to be initialized usTng
identical parameters, use the initp1 function.

o Operation successfuly completed
-1 Parameter error

Also see the common error codes in Appendix 8.1.

initp10, init_ b()

B.13-11 Version 2.5

Chameleon 32 C Manual

init b -
Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B.13: Multi-Link HOLC Library

int init b (interface, sta, encode, bitrt)
int ffiferface, sta, encode;
long bitrt;

interface 0
1
2

sta 0
1

encode 0
1

DCE
DTE
ISDN

Network
Subscriber

NRZ
NAZI

bitrt 50 to 64000 bps

The bit rate selection is used to optimize some
functions, so it should be set to the correct value
-even when the Chameleon is simulating a DTE or
when ~n ISDN interface is being used. If you are
unsure of the approp~iate bit rate, use 50. -

This function initializes Port B according to the passed
parameters. Port A must then be initialized using the init a
function. If both Ports A and B are to be initialized usTng
identical parameters, use the initp1 function.

o Operation successfuly completed
-1 Parameter error

Also see the common error codes in Appendix B.1.

initp10, init_ aO

8.13-12 Version 2.5

Chameleon 32 C Manual

initp1

Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B.13: Multi-Link HOLC Library

int initp1 (interface, sta, encode, bitrt)
int interface, sta, encode;
long bitrt;

interface 0
1
2

sta 0
1

encode 0
1

DCE
DTE
ISDN

Network
Subscriber

NAZ
NAZI

bitrt 50 to 64000 bps

The bit rate selection is used to optimize· some
functions, so it should be set to the correct. value
even when the Chameleon is simulating a DTE or·
when an ISDN interface is being used. If you are
unsure of the appropriate bit rate,. use· 50.·

This function initializes both Ports A and B according to the
passed parameters. If the two ports must be initialized with
different parameters, use init a and init b to set each port
independently. --

o Operation successfuly completed
-1 Parameter error

Also see the common error codes in Appendix B.1.

8.13-13 Version 2.5

Chameleon 32 C Manual

mlh flush

Declaration

Range

Description

Returns

See Also

TEKELEC

mlh flush (port)
int port;

port o
1

Port A
Port B

Appendix B. 13: Multi-Link HOLC Library

This function clears the receive buffer of the specified port.

None

flush(), flush_ aliO

B.13-14 Version 2.5

Chameleon 32 C Manual

mlh receive -
Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix 8.13: Multi-Link HOLC Library

int mlh receive (lac)
char 'oc;

lac A painter to the user defined buffer.

This function causes the Chameleon to check for a received
packet. An internal flag is maintained to indicate which port
supplied the last packet. This flag gives priority to the other
port on the next call so that one port does not dominate the
system during heavy traffic. If the currently preferred port
does not have a received packet to pass, the port that
received the last packet is then queried.

For example, if a packet is received from Port A, the next call
checks the Port 8 reception buffer. If Port 8 does not have a
packet, it then queries Port A.

. . .
When a packet is detected in the reception buffer:

• The packet is transferred from the message reception
buffer to a user defined buffer pointed to by 'oc.

• The global variable rxlen· is set to the length of the
received packet.

• It sets the global variable rec port to indicate from
which port the packet was receiveo, as follows:

o
2
128

o No packet was received
1 Packet received from Port A
2 Packet received from Port 8

No packet in the reception buffer
FEP not initialized
Packet received

Also see the common error codes in Appendix 8.1.

receive()

8.13-15 Version 2.5

Chameleon 32 C Manual

mlh set n1

Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B. 13: Multi-Link HOLC Library

int mlh set n1 (port,val)
int porf,Val; -

port o
1

Port A
Port B

val N1 value in the range 1 to 512.

This function sets the N 1 value for the specified port.

The set_ n 1 function sets both ports to the identical N 1 value.

o Successful
. -1 . Parameter error

Also see the common error codes in Appendix B.1.

B.13-16 Version 2.5

Chameleon 32 C Manual

mlh set n2

Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B.13: Multi-Link HOLC Library

int mlh set n2 (port, val)
int porf,V'al; -

port o
1

Port A
Port B

val N2 value in the range 1 to 512.

This function sets the N~ value for the specified port.

The set_ n2 function sets both ports to the identical N2 value.

o Successful
-1 Parameter error

Also see the common error codes in Appendix B.1.

B.13-"17 Version 2.5

Chameleon 32 C Manual Appendix B.13: . Multi-Link HOLC Library

mlh set net - -
Declaration int mlh set net (port)

int porf,'Val; -

Range

Description

Returns

See Also

TEKELEC

port o
1

Port A
Port B

This function sets the specified port to act as a network.

The set_net function configures both ports to act as networks.

o Successful

Also see the common error codes in Appendix B.1.

B.13-18 Version 2.5

Chameleon 32 C Manual

mlh set t1

Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B.13: Multi-Link HOLC Library

int mlh set t1 (port,val)
int porf,Val; -

port o
1

Port A
Port 8

val T1 value in the range 1 to 255 seconds.

This function sets the value of the T1 timer for the specified
port.

The set_t1 function sets both ports to the identical T1 value.

o Successful
-1 Parameter error

Also see the common error codes in Appendix 8.1.

set_t1 0

B.13-19 Version 2.5

Chameleon 32 C Manual

mlh set t2 -
Declaration

Range

Description

. Returns

See Also

TEKELEC

Appendix B.13: Multi-Link HOLC Library

int mlh set t2 (port, val)
int porf,Val; -

port o
1

Port A
Port B

val T2 value in the range 1 to 255 seconds.

This function sets the value of the T2 timer for the specified
port.

The set_ t2 function sets both ports to the identical T2 value .

o Successful
-1 Parameter error

Also see the common error codes in Appendix B.1.

B.13-20 Version 2.5

Chameleon 32 C Manual

mlh slof

Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B.13: Multi-Link HOLC Library

int mlh slot (port)
int POn;

port o
1

Port A
Port B

This function disconnects the link on the specified port by
sending a DISC frame.

The slof function disconnects the link on both ports .

. See the common error codes in Appendix B.1.

slofO

B.13-21 Version 2.5

Chameleon 32 C Manual

mlh 510n

Declaration

Range

Description

Returns

See Also

TEKELEC

int mlh slon (port)
int pon;

port o
1

Port A
Port B

Appendix B.13: Multi-Link HOLe Library

This function attempts to establish a link on the specified port
by sending a SABM.

The slon function attempts to establish links on both ports.

See the common error codes in Appendix B.1.

slonO

B.13-22 Version 2.5

Chameleon 32 C Manual

mlh status -
Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B.13: Multi-Link HOlC Library

int mlh status (port)
int pon;

port o
1

Port A
Port B

This function returns the link status of the specified port.

o
1
2
3
4
5
6
7

Disconnected
Link connection requested
Frame reject state
Link disconnection requested
Information transfer state
Local station busy
Remote station busy .
Local, and remote stations busy

Also see the common error codes in Appendix B.1.

status{)

B.13-23 Version 2.5

Chameleon 32 C Manual Appendix 8.13: Multi-Link HOLC Library

mlh set sub

Declaration

Range

Description

Returns

See" Also

TEKELEC

int mlh set sub (port)
int pon; -

port o
1

Port A
Port 8

This function sets the specified port to act as a subscriber.

The set_sub function sets both ports to act as subscribers.

o Successful

Also see the common error codes in Appendix 8.1.

B.13-24 Version 2.5

Chameleon 32 C Manual Appendix 8.13: Multi-Link HOlC Library

mlh set window

Declaration

Range

Description

Returns

See Also

TEKELEC

int mlh set window (port, val)
int port, val;

port o
1

Port A
Port B

val Window size in the range 1 to 7 frames

This function sets the window size (maximum number of
outstanding unacknowledged frames) for the specified port.

The set window function sets the window size of both ports
to the iaentical value.

o Successful
-1 Parameter error

. .
Also see the common error codes in Appendix B.1.

set_windowO

8.13-25 Version 2.5

Chameleon 32 C Manual

mlh trans -
Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B.13: Multi-Unk HOLC Ubrary

int mlh trans (xloc,xlen)
char *XlOc;
int xlen;

x/OC Pointer to the user defined packet to be transmitted

x/en Length of the packet to be transmitted

This function transmits a data packet on Port A or B as
determined by the distribution pattern set by a call to the
set_pat or the set_ratio function.

mlh transO should be used to transmit information packets
onlY:- Other packet types should be sent using the transmitO
function, which has a passed argument selecting the port. The .
only time it is safe to send non-info packets using mlh transO
is when the distribution pattern is specified as reaundant
(set_r~tio(-1) is selecte~).

o Successful

Also see the common error codes in Appendix B.1.

transmitO, set_patO, set_ratioO

B.13-26 Version 2.5

Chameleon 32 C Manual

.
receive

Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix 8.13: Multi-link HOLC library

int receive (port,loc)
char 'oc;
int port;

port o
1

Receive from Port A
Receive from Port B

loc A pointer to the user defined destination buffer.

This function checks the reception buffer of the specified port
for a received packet. If a packet has been received:

• The packet is transferred from the message reception
buffer to a user defined buffer

• The global variablerxlen is set to the length of the
.received packet

The mlh receive function is another receive function. It
alternates between Ports A and B when called. Calling
receiveO does not affect the alternating pattern of
mlh receive.

o
2
128

No packet in the reception buffer
FEP not initialized
Packet received

Also see the common error codes in Appendix B.1.

mlh _receiveO

8.13-27 Version 2.5

Chameleon 32 C Manual

set n1 -
Declaration

Range
.,

Description

Returns

See Also

TEKELEC

Appendix 8.13: Multi-Link HOLC Library

int set n1 (val)
int val;

val N1 value in the range 1 to 512

This function sets the N 1 value for both ports.

The mlh set n1 function sets the N1 value of a specified
port.

o Successful
-1 Parameter error

Also see the common error codes in Appendix B.1.

8.13-28 Version 2.S

Chameleon 32 C Manual

set n2 -
Declaration

Range

Description

Returns

See Also

TEKELEC

. Appendix B.13: Multi-Link HOlC Library

int set n2 (val)
int val;

val N2 value in the range 1 to 512

This function sets the N2 value for both ports.

The mlh set n2 function sets the N2 value of a specified
port.

o Successful
-1 Parameter error

Also see the common error codes in Appendix B.1.

B.13-29 Version 2.S

Chameleon 32 C Manual

set net

Declaration

Description

Returns

See Also

TEKELEC

Appendix 8.13: Multi-Link HOLC Library

int set net

This function configures both ports to act as networks.

The mlh set net function configures the specified port to act
as a network.-

o Successful

Also see the common error codes in Appendix B.1.

8.13-30 Version 2.5

Chameleon 32 C Manual

set pat -
Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix 8.13: Multi-Link HOLC Library

int set pat (pat ptr)
char *pat_ptr; -

A pointer to a user defined table which specifies the
distribution pattern the for mlh transO transmit
function -

This function enables you to specify a user defined distribution
pattern for transmitting packets using the mlh _trans function.

The distribution pattern is defined in a table which contains the
following values:

o End of table
1 Send on Port A
2 Send on Port 8

The table· may ·be of any length, but it must be. a charact$r
(byte) oriented table which contains at least one port selection
code and terminates with an end of table code (0).

With each packet transmitted, mlh trans increments a pOinter
into the pattern table. When the pOinter lands on a zero entry
in the table, or a new pattern selection is made, the pointer is
reset.

The set ratio function provides an alternate means of defining
a distriblffion pattern.

See the common error codes in Appendix 8.1.

mlh _ transO, set_ratioO, transmitO

8.13-31 Version 2.S

Chameleon 32 C Manual

set ratio -
Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B.13: Multi-Link HOLC Library

int set ratio (pct a)
int pct a; -

The percentage of packets to be transmitted over
Port A. Valid values are 0 to 100 in increments of
10, and -1.

-1 All packets· are transmitted over both Ports A
and B. This is also referred to as redundant
mode.

o 0% of the packets are transmitted over Port A.
(All packets are transmitted over Port B.)

10 10% of the packets are transmitted over Port
A. 90% are transmitted over Port B.

20 20% on Port A, 80% on Port B .
• • ..

90 90% on Port A, 10% on Port B.

100 All packets sent on Port A

This function selects a distribution pattern for transmitting
packets using the mlh trans function. It specifies the
percentage of packets to oe transmitted over Port A.

The set pat function provides an alternate means of defining
a distribution pattern.

o Successful
-1 Parameter error

Also see the common error codes in Appendix B.1.

mlh_transO, set_patO

B.13-32 Version 2.S

Chameleon 32 C Manual

set sub

Declaration

Description

Returns

See Also

TEKELEC

Appendix B.13: Multi-Link HOLC Library

This function configures both ports to act as subscribers.

The mlh set sub function configures the specified port to
act as a SUbscriber.

o Successful

Also. see the common error codes in Appendix B.1.

B.13-33 Version 2.5

Chameleon 32 C Manual

set t1 -
Declaration

Range

Description

Returns

See Also

TEKELEC

int set t1 (val)
int val;

Appendix B.13: Multi-Link HOLC Library

val T1 timeout value in the range 1 to 255 seconds.

This function sets the T1 timer to an identical value for both
ports.

The mlh set t1 function sets the value of the T1 timer of the
specifieOpon.

o Successful
-1 Parameter error

Also see the common error codes in A~pendix B.1.

B.13-34 Version 2.5

Chameleon 32 C Manual

set t2 -
Declaration

Range

Description

Returns

See Also

TEKELEC

int set t2 (val)
int val;

Appendix 8.13: Multi-Link HOLC Library

val T2 timeout value in the range 1 to 255 seconds.

This function sets the T2 timer to an identical value for both
ports.

The mlh set t2 function sets the value of the T2 timer of the
specifieOport:-

o Successful
-1 Parameter error

Also see the common error codes in Appendix B.1.

8.13-35 Version 2.5

Chameleon 32 C Manual

set window

Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix 9'.13: Multi-Link HOLC Library

int set window (val)
int val;

val Window size in the range 1 to 7 frames.

This function sets the window size (maximum number of
outstanding unacknowledged frames) to an identical value for
both ports.

The mlh set window function sets the window value of the
specifieaport:-

o Successful
-1 Parameter error

Also see the common error codes in Appendix B.1.

mlh _ set_windowO

8.13-36 Version 2.S

Chameleon 32 C Manual

slof

Declaration

Description

Returns

See Also

TEKELEC

Appendix 8.13:' Multi-Link HOLC Library

int slof 0

This function disconnects the link on both ports by sending a
DISC frame.

The mlh_ slot function disconnects the link on -a specified port.

See the common error codes in Appendix B.1.

mlh_sloto

8.13-37 Version 2.5

Chameleon 32 C Manual

slon

Declaration

Description

Returns

See Also

TEKELEC

Appendix B. 13~ Multi-Link HOLC Library

int sian 0

This function attempts to establish a link on both ports by
sending a SABM.

The mlh sian function at.tempts., to establish a link on a
specifieOport.

See the common error codes in Appendix B.1.

8.13-38 Version 2.S

Chameleon 32 C Manual

status

Declaration

Description

Returns

See Also

TEKELEC

Appendix 8.13:··Multi-Link HOLC Library

int status 0

This function returns the link status of the currently selected
port.

Use the set_port function to select a port (Appendix B.1).

o
1
2
3
4
5
6
7

Disconnected
Link connection requested
Frame reject state
Link disconnection requested
Information transfer state
Local station busy
Remote station busy
Local and remote stations busy

Also see the common error codes in Appendix B.1.

set_portO, mlh_statusO

8.13-39 Version 2.S

Chameleon 32 C Manual

transmit

Declaration

Range

Description

Returns

See Also

TEKELEC

Appendix B.13:·Multi-Link HOLC Library

int transmit (port,xloc,xlen)
char port,*xloc;
int xlen;

port o
1

Port A
Port B

x/oc Pointer to the user defined packet to be transmitted

x/en Length of the packet to be transmitted

This function transmits a packet over the. specified port.

The mlh trans function is an alternate function which
transmits packets over Ports A and B as determined by a
specified pattern. The transmit function does not affect the
mlh_ trans pattern.

o Successful

Also see the common error codes in Appendix B.1.

B.1-3-4O Version 2.5

Chameleon 32 C Manual

Sample
Program 1

TEKELEC

Appendix B.13: Multi-Link HOLC Library

This program starts port to port simulation on a Dual Port
Chameleon. To use the program, connect Port A to Port B.
The program initializes the ports and runs continuous
transmit/receive on alternate ports until stopped by the user or
the link goes down. It counts and displays the content and
number of frames received on each port.

#include (stdio.h>
#include (ch ... h)
#include (ctype.h>
#include (fcntl.h)
#include (init.h>

char t.sg[48].nasg[48];

.in()
{
cbar answer.insit.·tadr.·radr;
extern cbar ·.lloc();
extern int rx1en;
int resu1t.ta.pi;
long int count.countb;

printf(-C progr .. started.\n·);
tadr--&t.sg[O] ;
rad r--&nasg [0] ;
s_start(O);
s_start(l);

, ••••• aake and display trans-it wessage ••••• ,

for(insit=0;insit(=16;insit++)
t.sg(insit] = insit;

printf(-.. ssage = .);
for(insit=0;insit(=16;insit++)
printf(W lOx ·.t.sg[insit]);
printf(W\n·);

, ••••• do frawe level setup ••••• ,

result=set_nl(Ox50);
printf(·set nl result= %d\n·.resu1t);

resu1t=set_tl(10);
resu1t=set_nZ(4);
resu1t=set_windo-(3);

.1h_set_net(O); ,. Port A is network .,

.1h_set_sub(1); ,. Port B is subscriber .,

B.13-41 Version 2.5

Chameleon 32 C Manual

TEKELEC

Appendix B.13: Multi-Link HOLC Library

,····start link fr~ port a, wait for port A state 4····'
.1b_slon(l);
while(.lh_status(O)<4);

, ••••• send and receive untill port A link state ;5 less than 4
or user types '0' key·····,

count=countb=O;

for(;;)(
if(status()<4) break;

answer = getch(_stdvt);
if (toupper(answer)=='O')

break;

result=trans(1.0x80,tadr.l0);
result=receive(O.radr);

1f(rxlen)O)
{

printf(·port A received wessage = .);
for(insit=O;1nsit<rxlen;insit++)

printf(· SOx ·.~g[insit]);
printf(e\n\ne);
count++;

}
result=trans(O.Ox80,tadr.l0);
result=receive(l,radr);

1f(rxlen)O)
{

printf(·port a received wessage = .);
for(insit=O;insit<rxlen;insit++)

printf(· SOx ·,~g[insit]);

}
if(.lh_status(1)==4)

result=trans(1.0x80,tadr, 15);
countb++;

printf(-\033[1d;1df·.l1,15); ,. xyplot .,
printf(·\033[31.That's %ld on A. %ld on b.\n·.count,countb);
}

for(count=O;count<Oxfff;count++);

, ••••• if link still connected, disconnect it. then exit ••••• ,

B.13-42 Version 2.5

.. Chameleon 32 C Manual

TEKELEC

Appendix B. 13: Multi-Link HOLC Library

}

if(status(»O)
{
result=slof();
while(status(»O);
}

s_start(port)
int port;
{
int rats,ret2,waiter;
long int rate;

rate=64000;
printf(-Trying to start Pl-);
if(Jport)
rats= init_a(O,O,O,rate);
else
rats= init_b(l,l,O,rate);

printf(- rasult = SOd\n-,rets);
for(ret2=O;ret2<Oxffff;ret2++)

for(rets=O;rets<Oxffff;rets++)
for(waiter=O;waiter<Oxffff;waiter++);

}

8.13-43 Version 2.5

Chameleon 32 C Manual

Sample
Program 2

TEKELEC

Appendix B.13: Multi-Link HOLC Library

This program starts port to port simulation. It runs continuous
transmit/receive on both ports using mlh trans and set ratio
until stopped by the user or the link goesaown. It counlS and
displays the content, number of frames, and ratio of frames
received on each port. Note. that the displayed ratio is only
aproximate, as it is calculated using integers .

• include <stdio.h>
.include <ch ... h>
.include <ctype.h>
.include <fcntl.h>
.include <init.h>
.include <video.h>
.include <-ath.h>

char ~g[48].nasg[48];

.in()
{
char insit,ans .. r,*tadr,·radr;
extern cbar *al1oc(}.rec-port,pat_tbl,·pat_loc,tpat-ptr;
extern int rxlen;
int ab_ratio,result,ta.pi;
long int count,countb;"
claar ·p1ace;

tad.-&~g[O] ;
radr g[O];
s_start(O};
s_start(1);

/ ••••• .ake and display trans.it .. ssage ••••• /

for(insit=O;insit<=16;insit++)
~g[insit] = insit;

printf(-.. ssage = e);

for(insit=O;insit<=16;insit++)
printf(- 1ax -,t.sg[insit]);
printf(-\n-);

/ ••••• do fra.. level setup ••••• /

result=set_n1(Ox50);
printf(-set n1 result= ~ -,result);

result=set_t1(10);
printf(-set tl result= ~ -,result);

result=set_nZ(4);
printf(·set nZ result= ~ -,result);

B.13-44 Version 2.S

Chameleon 32 C Manual

TEKELEC

Appendix B.13: Multi-Link HOLC Library

resu1t=set_windo-(3);
printf(-set windo- resu1t= %d\n-,result);

.1h_set_net(O);
printf(-set net port A result= %d ·,result);

.lb_set_sub(1);
printf(-set sub port a result= %d\n-,result);

ab_ratio=-1;
set_ratio(ab_ratio);

printf(-set ratio resu1t= %d\n-,r~su1t);

printf(-Press space bar to change port ratio, Q to e.it\n-);

I····start link fr~ port a, wait for botb ports state 4 •••• ,

.lh_s10n(1);
wbi1e(.lb_status(O)<4);
wbile(.lb_status(1)<4);

I····· send and receive untill port A link state is less than 4 ••••• ,

count=countb=O:

for(::)(
if(status()<4) break;
result=-lh_trans(tadr, 12):
result=-lh_receive(radr):

if(ralen>o)
{
if(recJort==1)

{
printf(-port A received .. ssage = -):
for(insit=O:insit<r.1en:insit++)

printf(- SO. -,r.sg[insit]);
prinU(-\n\n-);

if«count>O)I&(countb>O»
{
printf(-Ratio of fr ... s on ports A:a = -):

count>countb? printf(-%ld:1
\n-.countb/count);

\n-.count/countb):printf(-1:%ld

}

count++;
}

if(recJort==2)
{

printf(-\nport B received .. ssage = -):
for(insit=O;insit<r.len;insit++)

printf(- SO. -,r.sg[insit]);

8.13-45 Version 2.5

Chameleon 32 C Manual

TEKELEC

Appendix B.13:Multi-Link HOLC Library

printf(-\n-);
count~;

}

}

answer = getch(_stdvt);

{

if (toupper(answer)=='Q')
break;

if(answer==' ')

1f(ab_ratio==-1)
ab_ratio=O;

else

if(ab_ratio>100)
ab_ratio--l;

count=countb=O;
flush_all 0;

printf(-\nset ratio result %d \n-.set_ra~io(ab_ratio»:

printf(-\nRatio selection = %d\n-,ab_ratio):
}

pr1ntf(-\033(Id;ldf-, 11,13):
pr1ntf(-\033[31.Tbat's %ld on A. Sld on B.
\n-.count,countb);
}

/ ••••• if link still connected, disconnect it, then exit ••••• /

}

if(status(»O)
{
result=slofO;
wbi1e(status(»O);
}

s_start(port)
int port;
{
int rets,ret2,waiter;
long int rate;

rate=64000;
printf(-Trying to start Pl-);
if(lport)

B.13-46 Version 2.S

.Chameleon 32 C Manual

TEKELEC

Appendix 8.13:· Multi-LinkHDLC Library

rets= init_a(O,D,D,rate)i
else
rets= init_b(l.l.D,rate)i

printf(- result = %Od\n-,rets);
for(ret2=D;ret2<Oxffff;ret2++)

for(rets=O;rets<Dxffffirets++)
for(waiter=Oiwaiter<Dxffff;waiter++);

}

8.13-47 Version 2.S

Chameleon 32 C Manual

Sample
Program 3

TEKELEC

Appendix B.13: Multi-:Link HOlC Library

This program demonstrates the use of many of the Multi-Link
HOLC library functions. To run the program as a Chameleon
self-test, connect Port A to Port B on a Dual Port Chameleon.

#iaclude <stdio.b>
#iaclude <cb ... b>
#iaclude <ctype.b>
#iaclude <fcntl.b>
#include <init.b>
#include <video.b>
#iaclude <-atb.b>

cbar ~g[48],r.sg[48],ans .. r;

_inC)
{
char iasit,·tadr.·radr;
extern int rxlea;
int result;
loog iat count,countb;

tadr=&tasg[O];
rad r=&l'iIsg [0] ;
s_start(O);
s_start(1) ;

,ake aad display tran~it .. ssage ••••• ,

for(insitc O;insit<=16;insit++)
~g[iasit] = insit;

priatf(-.. ssage = e);

for(iasit=0;insit<=16;iasit++)
priatf(- lOx -,~g[insit);
printf(-\n-);

, ••••• do fra.e level setup ••••• ,

result=set_nl(Ox50);
printf(-set nl result= %d -,result);

result=set_tl(10);
printf(-set tl result= %d -,result);

. result=set_nZ(4);
printf(-set nZ result= %d -,result);

result=set_window(3);
priatf(-set window result= %d\n-,result);

result=-lh_set_net(O);
priatf(-set net port A result= %d -,result);

8.13-48 Version 2.5

Chameleon 32 C Manual

TEKELEC

Appendix B.13: Multi-Link HOLC Library

result=alh_set_sub(l);
printf(-set.sub port B result= %d\n-.result);

, ••••• run test until finished or user quits ••••• ,
while (l)
{
reJaint() ;
if (toupper(answer}=='Q')
break;

printf(-\033[40a\033[%d;%df-.ll.13);'· xyplot .,
printf(e\033[35aalh_slon'alh_slof test. Next test: flush~alle);

printf(e\033[%d;%dfe.13.l3);'· xyplot .,
printf(-\033[35aResult of alh_slon'alh_slof test: \ne);

while(l)
{
.1h_slon(O);
while(alh_status(O)==l);
if (.lh_status(O)==O)

{
no-'loodO;
break;
}

.1h_slof(O);
seUi.r(2.2);
while (ti.r(2»;
if (.lh_status(O)I=O)

{
no-'lood(};
break;
}

alh_slon(l);
while(alh_status(l)==l);
if (alh_status(l)==O)

{
no-'lood();
break;
}

alh_slof(l);
setti.er(2.2) ;
while (ti.er(2»;
if (alh_status(l)I=O)

{
nO-'lood() ;
break;
}

testJassed();
break;
}

B.13-49 Version 2.5

Chameleon 32 C Manual

TEKELEC

Appendix B.13: Multi-Link HOLC Library

reJaintO;

printf(-'033[%d;%df-.13.13);I- xyplot -I
printf(-'033[35aResult of flush_all test: 'n-);

set_ratio(-l); ,-so 1 trans call will send on both ports-'
.1h_slon(1);
while(.lh_status(l)==l);

result=-lh_trans(tadr'.12) ;
flush_ano;

result=-lh_receive(radr);
if(rx1en>O) '-sIb no fra.. on either port-'

nO-llood() ;
else

testJassed() ;

printf(-'033[%d;%df-.ll.13);I- xyp10t -,
pri ntf (-'033[40.\033[3s..1 h _ f1 ush (port) Last test -) ;

printf(-'033[%d;%df-.13.13);'- xyplot -,
printf(-'033[3s.Resu1t of .1h_flush(port) test: \n-);

while(l)
{

result=-lh_trans(tadr.12);'· send fra.es.both ports·'
.1h_flush(O); '-flush port A-'

resu1t=receive(O.radr);
it(rx1en) ,. fail if port A not flushed .,

{
nO-llood() ;
printf(-port A failed to flush-);
break;
}

result=receive(l.radr);
if(lrx1en) ,- fail if port B is flushed -,

{
nO-lloodO;
printf(-port B flushed with A-);
break;
}

B.13-50

-
Version 2.5

Chameleon 32 C Manual

TEKELEC

. ·Appendix B.13:·Multi-Link HOLC Library

.1h_flush(1): '·flush port 8·'
result=receive(l,radr):

if{rxlen) ,. fail if port 8 not flushed .,
{
nOJood{):
printf(-port B failed to flush-);
break;
}

result=receive(O,radr);
if{lrxlen) ,. fail if port A is flushed .,

{
nOJood{);
printf{-port A flushed .ith port B-);
break;
}

testJassed() ;
break;
}

printf(-\033[40.\033[3~Press 0 to exit, space to restart \n-);
answer=O;
while «answerl=' ')&&(toupper(answer)l='Q'»

answer z getcb(_stdvt);
1f (toupper(answer)=='O')
break;

printf(-\033[OJ·);

}

, ••••• if link still connected, disconnect it, then exit ••••• ,

}

if(status{»O)
{
result=slof();
while(status(»O);
}

reJaint()
{
printf(-\033[1d;ldf·,9,13);'· xyplot .,

printf(·\033[4o.\033[3~ress space bar to run test
answer=O;
while (answerl=' ')

{
answer = getch{_stdvt);

B.13-51 Version 2.5

Chameleon 32 C Manual

TEKELEC

Appendix 8.13: Multi-Link HOLC Library

}
printf(-\033[OJ-);
}
nO-llood()
{

printf(-\033[Sd;Sdf-.14.13);I· xyplot .,
printfC-\033[30.\033[41.FAILED a);

}

testjassed()
{
printfC-\033[Sd;Sdf-.14.13);I· xyplot .,
printfC-\033[30.\033[4~ASSED a);

}

s_start(port}
int port;
{
1nt rats.retZ ... itar;
long 1nt rate;

rata=&4000;
printfC-Trying to start Pl-);
U(Iport}
rets= init_aCO.O.O.rata};
alsa
rats- init_b(1.1.0.rata);

print'(- result • IOd\n-.rats};
for(ratZ=O;retZ<Oxffff;ret2++)

for(rets=O;rets<Oaffff;rets++)
for(.. it8r=O;.aitar<Oaffff; .. it8r++);

}

8.13-52 Version 2.5

Chameleon 32 C Manual Appendix 6.14: U-Interface Library

B.14 U-INTERFACE LIBRARY'

Introduction

SetU

Declaration

Description

Teke/ec

The U-interface library function enables you to use the Chameleon
32 U-interface hardware (the U-board) in the C environment. The
library is called libu.a, and is in the \lib directory. The function call
described below interfaces the U-interface library from C
programs.

Two sample programs are given beginning on page B.14-14.

int SetU (cmdblock, resblock);
char cmdblock[];
char resblock[];

int SetU is the function call for .accessing the U-board from the C
Shell.

Th!s function has two parameters blocks that are character (char)
arrays. The size depends upon the requested function.

The cmdblock (command block) parameter contains the input
parameters needed. The first item, cmdblock [OJ, is a character
specifying the requested function. The remaining items are
function-specific parameters.

The resblock (result block) parameter contains the results of the
operation requested in the cmdblock. The first item, resblock[OJ, is
a character indicating whether or not the command was completed
successfully. The remaining items are function-specific results.

The commands listed on the next page are available as the first item
in cmdblock. The commands are different for U-boards 0 and 1 to
distinguish between the two boards installed in your Chameleon.
However, if you have only one U-board in your Chameleon, you
must use the commands that correspond to that board.

6.14-1 Version 2.6

Chameleon 32 C Manual

resblock[O)
Error Codes

Tekelec

Appendix a 14: U-Interiace Ubrary

Board 0 Board 1 Command

0 100 Initialize Interface
1 101 Configure
2 102 Set Transceiver State
3 103 Get Transceiver State
4 104 Set Transceiver Activation
5 105 Get Transceiver Connection
6 106 Set Transceivei ::ilv;;;
7 107 Get Transceiver Errors
8 108 Get HW Version
9 109 Get Link Status
11 111 Transceiver Transmit
12 112 Transceiver Receive
13 113 EOC Processing
14 114 EOC Mode Control
15 115 M4 Mode Control
16 116 M5I6 Mode Control
30 130 • Shutdown Interface

The commands are described on the following pages.

The error codes for resblock[O] are the same for all u-Jnterface
Library commands.

Code Meaning

00 Successful
01 Invalid Command
02 Invalid Command Parameters
03 Requested board is not responding
04 U-board physical error
05 U-board interface is not initialized
10 Requested board is not installed

B.14-2 Version 2.6

Chameleon 32 C Manual

cmdblock[O] = 0
cmdblock[01 =100
Initialize

cmdblock[O] = 1
cmdblock[O] = 101
Configure

Tekelec

Appendix 8.14: U-Interface Library

This command is used to initialize the C Library interface. This
includes actions such as allocating memory, getting unit identifiers,
enabling reception, etc. This command should be the first
command issued when using the U Interface.

The response parameter for this function is resblock[OJ. See Error
Codes.

This command is used to set up the U board for monitoring or
simulating the M channel and the 28+0 channels. It also specifies
the routing of the 28+D-channel data.

Configuration for the M channel:
cmdblock[1] Mode of operation .

00000000 Customer Equipment (NT) Simulation.
00000001 Network Equipment (LT) Simulation.
00000010 Monitoring

Configuration for the 28+0 channels:

cmdblock[2] Mode of operation
00000000 Customer Equipment (NT) Simulation.
00000001 Network Equipment {LT} Simulation.
00000010 Monitoring

cmdblock[3] Codec encode
00000000 ~-Law
00000001 A-Law

cmdblock[4] Clocking (Valid only in LT simulation)
00000000 External
00000001 Internal
00000010 NT -Recovered

cmdblock[5] 81-Channel Routing
00000000 None
00000001 Port A
00000010 Port 8
00000011 Idle pattern
00000100 X1
00000101 X2
00000110 Codec Handset

8.14-3 Version 2.6

Chameleon 32 C Manual Appendix B.14: U-Interface Ubrary

Teke/ec

00000111 Codec 600-0hm.
cmdblock[6] 82-Channel Routing

00000000 None
00000001 Port A
00000010 Port B
00000011 Idle pattern
00000100 X1
00000101 X2
00000110 Codec Handset
00000111 Codec 600-0hm.

cmdblock[7] D-Channel Routing
00000000 None
00000001 Port A
00000010 Port 8
00000011 Idle pattern
00000100 X1
00000101 X2

cmdblock[8] 81-Channelldle Pattern

cmdblock[9] 82-Channel Idle Pattern
cmdblock[1 0] D-Channel Idle Pattern

The response parameter for this function is resblock[O). See Error .
Co~~ .

B.14-4 Version 2.6

Chameleon 32 C Manual Appendix B.14: U-Interface Ubrary

cmdblock[O] = 2
cmdblock[O] = 102
Set Transceiver State

This command is used to set up the state of the specified
transceiver.

cmdblock[1] Transceiver specifier
o NT Xcvr
1 LTXcvr

cmdblock[2] Transceiver state
1 Reset
2 Power down
3 Absolute
4 Normal

The response parameter for this function is resblock[Oj. See Error
Codes.

cmdblock[O] =.3
cmdblock[O] = 103
Get Transceiver State

Teke/ec

This command is used to set up the state of the specified
transceiver.

cmdblock[1] Transceiver specifier
o NTXcvr
1 LT Xcvr

The response parameters for this function are:

resblock[O] See Error Codes
resblock[1] Transceiver state

o Reset
1 Power down
2 Absolute
3 Normal

B.14-5 Version 2.6

Chameleon 32 C Manual

cmdblock[O] = 4
cmdblock[O] = 104

Appendix 6.14: u-Interface Ubrary

Set Transceiver Activation

. cmdblock[O] = 5
cmdblock[O] = 105

This command is used to start transceiver activation or
deactivation.

cmdblock[1] Transceiver specifier
o NTXcvr
1 LTXcvr

cmdblock[2] Transceiver activation
1 Start activation
2 Start deactivation

The response parameter for this function is resblock[Oj. See Error
Codes .

Get Transceiver Connection

Teke/ec

This command is used to get the connection status of the specified
transceiver~

cmdblock[1] Transceiver specifier
o NTXcvr
1 LT Xcvr

The response parameters for this function are:

resblcck[O] See Error Codes
resblock[1] Transceiver connection

o None
1 Port A
2 Port B
3 Ports A and B

6.14-6 Version 2.6

Chameleon 32 C Manual

cmdblock[O] = 6
cmdblock[O] = 106

Appendix 6.14: U-Intertace Ubrary

Set Transceiver Errors

cmdblock[O] = 7
cmdblock[O] = 107

This command is used to reset the error counters of the specified
transceiver.

cmdblock[1] Transceiver specifier
o NTXcvr
1 LT Xcvr

The response parameter for this function is resblock[O]. See Error
Codes.

Get Transceiver Errors

Teke/ec

This command is used to retrieve the 32-bit error counters of the
specified transceiver.

cmdblock[1] Transceiver specifier
o NT Xcvr
1 LT Xcvr

The response parameters for this function are:

resblock[O] See Error Codes

resblock[1-4] 32-bit FEBE count. MSBs followed by LSBs.
resblock[5-8] 32-bit NEBE count. MSBs followed by LSBs.

resblock[9-12] 32-bit NoSyn count. MSBs followed by LSBs.

resblock[13-16] 32-bit NoAct count. MSBs followed by LSBs.

6.14-7 Version 2.6

Chameleon 32 C Manual

cmdblock[O] = 8
cmdblock(O] = 108
Get HW Version

cmdblock[O] = 9
cmdblock[O] = 109
Get Link Status

Tekelec

Appendix B.14: U-Interface Ubrary

This command is used to get the version numbers of the transceiver
pair.

The response parameters for this function are:

resblock[O] See Error Codes

resblock[1] NT transceiver version number.

resblock[2] LT transceiver version number.

This command is used to get the link status of the transceiver pair.

The response parameters for this function are:

resblock[O] See Error Codes

resblock[1] NT Link Status
bitO link up
bit1 superframe sync recognized
bit2 transceiver activation in progress
bit3 error indicator

resblock[21 LT Link Status
bitO link up
bit1 superframe sync recognized
bit2 transceiver activation in progress
bit3 error indicator

B.14-8 Version 2.6

-
Chameleon 32 C Manual Appendix 6.14: U-Interface Library

There is no function cmdblock [0] = 10,110

cmdblock[O] = 11
cmdblock[O] = 111
Transceiver Transmit

Tekelec

This command is used to transmit data on the M channel. Four
types of information are allowed: EOC, M4, M5 and M6.

cmdblock[1] Transceiver specifier
o NT Xcvr
1 LT Xcvr

cmdblock[2] Channel specifier
1 EOC
2 M4
3 M5IM6

EOC Message

cmdblock[3] EOC address, EOC OM bit.

cmdblock[4] EOC Information

M4 Message

cmdblock[S] M41nformation

MS/6 Messages

cmdblock[6] MS/6 Information

The response parameter for this function is resblock[OJ. See Error
Codes.

6.14-9 Version 2.6

Chameleon 32 C Manual

cmdblock[O] = 12
cmdblock[O] = 112
Transceiver Receive

Tekelec

Appendix B.14: U-Interface library

This command is used to receive the M-Channel information for a
superframe, including two EOC messages and one M4 and M5/M6
message each. Table 8.6.2-1 illustrates the coding/decoding
format of the M-Channel superframe and how this corresponds to
re~ponse parameters of this function.

cmdblock[1] Transceiver specifier
o NT Xcvr
1 LT Xcvr

The response parameters for this function are:

resblock[O]

resblock[1]

See Error Codes

Message Length
o - No data available
1 - 6 data bytes follow

resblock[2]

resblock[3]

resblock[4]

resblock[5]

resblock[6]

EOC address, EOC OM bit (byte 0 in the table).

EOC Information (byte 1 in the table).

EOC address, EOC OM bit (byte 2 in the table).

EOC Information (byte 3 in the table).

M41nformation (byte 4 in the table).

resblock[7] M5/6 Information (byte 5 in the table).

BYTE# \ Brr# 7 6 S 4 3 2 1 0

o (resblock{2)) x· x x x a3 a2 a1 dm

1 (resblock[3]) is i7 i6 is i4 i3 i2 i1

2 (resblock[4]) x x x x a3 a2 a1 dm

3 (resblock[S]) is i7 i6 is i4 i3 i2 i1

4 (LT ~NT) [6] ACT DEA RSV· RSV RSV RSV UOA AlB

4 (NT ~LT) [6] ACT PS1 PS2 NTM eso RSV SAl RSV

S (resblock[7]) MSO M60 MS1 FEBE x x x x

Notes: • = spare bit
ASV = reserved bit

Table B.6.2-1: M-Channel Superframe Byte/Bit Format.

B.14-10 Version 2.6

Chameleon 32 C Manual

crndblock[O] = 13
crndblock[O] = 113
EOC Processing

crndblock[O] = 14
crndblock[O] = 114
EOC Mode Control

Teke/ec

Appendix 6.14: U-Interface Ubrary

This command is used to configure the U board for automatic EOc
processing.

cmdblock[1] Transceiver specifier
o NT Xcvr
1 LT Xcvr

cmdblock[2] Automatic Processing Mode
o No action
1 Operate 28+D Loopback
2 Operate 81 Loopback
3 Operate 82 Loopback
4 Send Corrupted CRC
5 Return to Normal

The response parameter for this function is resblock[O]. See Error
Codes.

This command is used to configure the U board for EOC reception.

cmdblock[1] Transceiver specifier
o NTXcvr
1 LT Xcvr

cmdblock[2] EOC Reception Mode
o No action
1 Handle every EOC
2 Handle EOC passing trinal checks
3 Handle EOC passing trinal checks with

automatic EOC ·processing

The response parameter for this function is resblock[O]. See Error
Codes.

8.14-11 Version 2.6

Chameleon 32 C Manual

cmdblock[O] = 15
cmdblock[O] = 115
M4 Mode Control

cmdblock[O] = 16
cmdblock[O] = 116
M5I6 Mode Control

Tekelec

AppenalX 6.14: lJ-Interface Ubrary

This command is used to configure the tJ board for M4 reception.

cmdblock(1] Transceiver specifier
o NTXcvr

cmdblock(2]

1 LT Xcvr

M4 Reception Mode
o No action
1 Handle Dual-Consecutive M4 with Verified

act/dea~
2 Handle Dual-Consecutive M4
3 Handle Delta M4
4 Handle every M4

The response parameter for this function is resblock[O}. See Error
Codes.

This command is used to configure the U board for M5/6 reception.

cmdblock(1] Transceiver specifier
o NTXcvr
1 LTXcvr

cmdblock[2] M5I6 Reception Mode
o No action
1 Handle Dual-Consecutive M5/6
3 Handle Delta M5/6
4 Handle every M5/6

The response parameter for this function is resblock[O}. See Error
Codes.

6.14-12 Version 2.6

Chameleon 32 C Manual

cmdblock[Ol = 30
cmdblock[O] = 130
Shutdown

Tekelec

Appendix 8.14: U-Interface Library

This command is used to shut the C-Library interface down. This
includes freeing memory, disabling reception capability, etc. When
done with the U interface, this command should be the last one
issued.

The response parameter for this function is resb/ock[O]. See Error
Codes.

8.14-13 Version 2.6

Chameleon 32 C Manual Appendix.6.14: U-Interface Library

Sample Programs There ·are two sample U-Interface programs on the C Sample
Program Disk:

• testlt.c
• testnt.c

TESTLT.C This program verifies activation of the LT U transceiver and
reception of EOC messages: i.e., that there is data flowing over the
M channel.

tinclude <stdio.h>
tinclude <mtosUX.h>

tdefine NT
tdefine LT
tdefine L:INIWP
tdefine ERROR
tdefine ERR NOSTAT

0
1
1
8
6

unsigned char Command[20],Response[20];
long . febe,nebe:

/*
* init U
* :Initializes and configs U-Board for NT s~ulation

*

Command [0] ,. 0: /* :Initialize U Library */

Tekelec

SetU(Command,Response);
if (Response[O])

printf(WERROR:Init - %x\nW,Response[O]);

Command [0] ... 1;
Command [1] = 0;
Command [2] == 0:
Command [3] = 0:
Command [4] == 1;
Command (5] == 0:
Command (61 ... 0:
Command (7] ... 0;
Command [8] = 0:
Command [9] ... 0:
Command [10] =- 0;
SetU(Command,Response);
if (Response[O])

/* Config command */
/* NT simulation */
/* NT simulation */
/* U-law */
/* Internal Clocking */
/* No B1 routing */
/* No B2 routing */
/* No 0 routing */
/* Idle patterns */

printf(MERROR:Config'" %x\nW,Response[O]):

6.14-14 Version 2.6

Chameleon 32 C Manual Appendix 6.14: u-Interiace Library

/*
* reset U
* Shuts down U-Board

*

/*
* main

Command [0] = 30: /* shut down U Library */
SetU(Command,Response);
if (Response[O])

printf("ERROR:Shut Down = %x\n",Response[O]):

* Entry point

*
*/

main()
{

Teke/ec

/*
* Initialize for NT s~ulation
*/

init_U () :

/*
* Update receive EOC for trinal checks only
*/

Command [0] = 14;
Command [1] = NT;
Command [2] = 2;
SetU(Command,Response);
if (Response[O])

printf("ERROR:EOC Processing = %x\n",Response(O]);

/*
* Issue Activation Command
*/

printf("Activating ••• "):
fflush (stdout) :
Command [0] 4:
Command [1] = NT;
Command[2J = 1;
SetU(Command,Response);
if (Response[O])

printf("ERROR:Activate = %x\n",Response[O]);

/*
* Wait 'till Link is up or Error
*j

Command [0] = 9;
do {

SetU(Command,Response);
if (Response [O]==ERR_NOSTAT)

6.14-15 Version 2.6

Chameleon 32 C Manual Appendix B.14: U-Interface Ubrary

Teke/ec

continue;
if (Response[O» {

printf("ERROR:Link Status = %x\n",Response[O]);
printf("Abort\n");
reset_UO;
exit(O);

} ;

} while (! (Response[l]&(LINKOPIERROR»);

/*
* Failure
*/

if (Response(l]&ERROR)
printf("Failure\n");
reset_U();
exit(O);

printf("Successful\n");

pause (SEC+1);

/*
* Flush activation EOCs
*/

Command [0] = 12;
do {

SetU(Command,Response);
if (Response [0])

printf("ERROR:Receive = %x",Response[O]);
if (Response [1])

printf("Rx'edEOC[%x%x]\n",Response[21,Response[3]);
} while (Response [1] !=O);

/*
* Issue Deactivation Command
*/

printf("Oeactivating\n");
Command [0] = 4;
Command [1] ~ NT;
Command [2] = 2;
SetU(Command,Response);
if (Response[O])

printf("ERROR:Deactivate= %x",Response[O]);

/*
* Shut down U Interface and boogie
*/

reset_U() ;

exit(O);

B.14-16 Version 2.6

Chameleon 32 C Manual Appendix 8.14: u-Interface Ubrary

TESNT.C This program verifies activation of the NT U transceiver and
reception of EOC messages: Le., that there is data flowing over the
M channel.

#include <stdio.h>
#include "mtosux.h"
#define NT 0
tFdefine LT 1
: define LINKUP 1

#define ERROR 8
#define ERR NOS TAT 6

unsigned char Command[20],Response[20];

/*
* init U
* Initializes and configs U-Board for LT s~ulation

*

/*

. Command[O] = 0;
SetU(Command,Response);
if (Response[O])

printf("ERROR:Init

Command [0] 1;
Command [1] = 1;
Command [2] = 1;
Command [3] = 0;
Command [4] = 1;
Command [5] = 0;
Command [6] 0;
Command [7] = 0;
Command [8] = 0;
Co~nd[9] = 0;
Command [10] = 0;
SetU(Command,Response);
if (Response[O])

/* Initialize U Library */

%x\n",Response[O]);

/* Config command */
/* LT s~ulation */
/* LT simulation */
/* U-law */
/* Internal Clocking */
/* No B1 routing */
/* No B2 routing */
/* No D routing */
/* Idle patterns */

printf("ERROR:Config %x\n",Response[O]);

* reset U
* Shuts down U-Board

*

Tekelec

Command [0] = 30; /* shut down U Library */
SetU(Command,Response);
if (Response[O])

printf("ERROR:Shut Down = %x\n",Response[O]);

B.14-17 Version 2.6

Chameleon 32 C Manual Appendix B.14: U-tnterface Ubrary

/*
* main
* Entry point

*
*/

main ()
(

Tekelec

/*
* Ini~ia~ize for LT s~u~ation
*/

init_U () ;

/*
* Update receive EOC for trina~ checks on~y
*/

Command [0] = 14;
Command [1] = LT;
Command [2] = 2;
SetU(Command,Response);
if (Response [0])

printf("ERROR:EOC Processing = %x\n",Response[O]);

/*
* Issue Activation Command
*/

printf("Activating •.. ");
fflush (stdout) ;
Command [0] = 4;
Command{1] = LT;
Command [2] = 1;
SetU(Command,Response);
if (Response[O])

printf("ERROR:Activate = %x\n",Response[O]);

/*
* Wait 'ti~~ Link is up or Error
*/

Command [0] = 9;
do (

SetU(Command,Response);
if (Response [O]==ERR_NOSTAT)

continue;
if (Response[O]) (

printf("ERROR:Link Status
printf("Abort\n");
reset_U () ;

%x\n",Response[O]);

exit(O);

} whi~e (! (Response[2]&(LINKUPIERROR»);

/*
* Fai~ure
*/

if (Response [2] &ERROR)

B.14-18 Version 2.6

Chameleon 32 C Manual Appendix 8.14: lJ-Interface Library

Teke/ec

printf(nFailure\n");
reset_U ();
exit(O):

printf("Successful\n"):

/*
* Send a 2B+O Loopback EOC
*/

printf("Transmitting
Command [0] == 11:

EOC [150]\n"):

Command [1] = LT:
Command [2] = 1:
Command [3] = 1:
Command (4] = Ox50:
SetU(Command,Response):
if (Response[O])

/ * EOC address, dm * /
/* EOC info */

printf("ERROR:Transmit = %x\nn,Response[O]):

/*
* Send a Return to Nor.mal EOC
*/

printf(nTransmitting EOC [lFF]\nn):
Command [0] == 11:
Command [1] =- LT:
Command [2] = 1:
Command [3] = 1:
Command [4] == OxFF:

/* EOC address,dm */
/* EOC info */

SetU(Command,Response):
if (Response[01)

printf("ERROR:Transmit - %x\n",Response[O]):

pause(SEC+1):

/*
* Flush the received EOCs (two of which are 150 and 1FF)
*/

Command [01 = 12;
do {

SetU(Command,Response):
if (Response[O]) {

printf (nERROR:'Receive = %xn ,Response [0]) :
break:

if (Response[l])
printf("Rx'edEOC[%x%x]\n",Response[2],Response[3]):

} while (Response [1] !=O);

/*
* Issue Deactivation Command
*/

printf("Deactivating\nn):
Command [0] == 4:
Command [1] == LX:
Command [2] == 2:

8.14-19 Version 2.6

Chameleon 32 C Manual

SetU(Command,Response);
if (Response[O])

printf("ERROR:Deactivate

/*
* Shut down U Interface
*/

reset_U();

exit(O);

Appendix 6.14: u-tnterface Library

%x",Response[O]);

Teke/ec 6.14-20 Version 2.6

Chameleon 32 'C' Manual App. B.15: ETSI Ubrary

8.15 ETSI LIBRARY

. Link Selection

Frame Status
Word

Addressing

TEKELEC

The ETSllibrary is an optional C library which must be purchased
in addition to the Chameleon 32 'C' Development System. This
library supports a total of 64 iogical links. The library is named
libetsi.a and resides in the a:\lib directory of the hard disk .

The ETSllibrary includes functions which enable you to control the
use of 64 logical links. Each of the 64 links is referred to by a unique
link number in the range 0 - 63. Each of the 64 logical links has its
own SAPI and L1C values, which are assigned as follows:

When you select a link using saLlink, you can then use the other
functions to set the link on (slon), set the link off (slof), and transmit
and receive messages.

1. Use saLlink to salect one of the· 64 links (0 - 63). All links
default to state 9, disabled.

2. Use seLsapi to assign the link a SAPI value.

3. Use seLlie1, 2 and 3 to assign the link a L1C value.

A two-byte, frame status (frstat) word is attached to the beginning
of each received message. This field provides the following
information:

• Frametype
• Number of link which received the frame
• Command or response frame
• PolVFinal bit value

The geLrxstat function returns the low-order byte of frstat. The
geLriink function returns the high-order byte of frstat.

- -- - . __ . ---

This library allows variable-length frame addressing, The range,
conforming to CCITT Q.921 standards, is two (2) to four (4) octets.
You can freely mix addressing modes in the 64 available logical
links.

To select 2-octet addressing,
set LIC2 Ito any invalid value (>127)

To select 3-octet addressing,
set L1C3 to any invalid value

To select 4-octet addressing,
set all L1Cs to valid values.

B.15-1 Version 1.0, November 1992

Chameleon 32 'C' Manual

SIMAN

TEKELEC

App. B.15: ETSI Ubrary

If two or more links have the same address (SAPI/LIC combination),
received frames will be considered to belong to the highest link
number matching that address.

A link is disabled by selecting the link and setting the SAPI or L1C1
to an invalid value. You should ensure that the link is in the
disconnected state before you disable it. If a link is disabled while
in a connected (multi-frame) state, the device under test will see it
as a Layer 1 failure.

Setting the SAPI and/or LJC1 value to an invalid value sets the link
to the disabled state (9). This provides an easy means of testing
lost-link recovery and ignoring unused links.

The Frame Address format may be modified by the values in LlC2
and LlC3. If an invalid value (> 127) is set in LlC2, only the SAPI and
LlC1 will be used. If LlC3 is set to an invalid value and LlC2 is valid,
SAPI, LlC1 and LlC2 will be used.

There are two ·functions which get the state of a link: status() gets
the state of the selected link; linlLstatgets the state of any specified
link.

geLfreelink retums the number of the lowest-numbered, disabled
link. find link retums the number of the lowest link matching a
specified SAPVLlC combination.

This library functions with Simultaneous Analysis (SIMAN) only if
your Chameleon is equipped with a P5 board of revision level K33 or
higher. Jf your Chameleon has an older P5 board (rev. K32 or
lower), this feature is automatically disabled. You can obtain an
upgrade kit from Tekelec which - when installed - will enable these
older machines to run SIMAN with this library.

8.15-2 Version 1.0, November 1992

Chameleon 32 'C' Manual App. 6.15: ETSI Ubrary

Functlons The following functions are in the ETSI library. Also refer to the
common functions and error codes described in Appendix B.1.
Programming tips and examples are provided beginning on page
B.15-51.

TEKELEC

find_linkO .. 6.15-4
geCfreelinkO 6.15-5
get_fwalting .. 6.15-6
get_lic1 () 6.15-7
get_lic20 6.15-8
geUic3() 6.15-9
get_linkO 6.15-10
get_lnksapi ... 6.15-11
get_lnklic1 ... 6.15-12
get_lnklic2 .. B.15-13
get_lnklic3 6.15-14
get_meswaiting .. 6.15-15
get_rlinkO ... 8.15-16
geCrxstatO .. 6.15-17
get_sapiO ... 6.15-18
get_sconfig 0 , .. B.15-19
get_sim 0 ... 6.15-20
get_window .. 6.15-21
initp1 ... B.15-22
link_stat .. 6.15-23
receive .. B.15-24
5_n2oo '. .. 6.15-25
5_n201 .. B.15-26
5_1200 : 6.15-27
5_1203 6.15-28
set Iic1 ... B.15-29
se(~Iic2 ... B.15-30
set_lic3 ,............... B.15-31
set_link ... B.15-32
set_net 0 .. B.15-33
set_sapi .. , B.15-34
set_sconfig .. B.15-35
set_sub 0 ... B.15-36
set_tei() .. B.15-37
set_window .. B.l5-38
setflg•.. B. 15-39
slot () B. 15-40
slon () .. B.15-41
start_sim•.................................. B.15-42
statu50 ... B.l5-43
tran5•.. B.15-44
transmit " • • • • B. 15-45
troi •. • • : B. 15-46
trxcni :...................... B.15-47
trxidc•.••........•.......•.............. B.15-48
trxidr•......•••....•..•.......•............... B. 15-49
trxmi•••....•...•......••...•.......... B. 15-50

B.15-3 Version 1.0, November 1992

Chameleon 32 'C' Manual

find_linkO

Declaration

. Description

Returns

TEKELEC

jnt find_link(sapi, lic1, lic2, lic3)
int sapi, tei, tgi;

App. 8.15: ETSI Library

sapi SAPI value of the link, in the range 0-63 (SAPI > 63 is invalid,
resulting in don't care value)

lic LIes 1,2 and 3 values of each link, in the range 0 -127 (LIen>
127 is invalid, resulting in don't care value)

This function returns the number of the lowest link matching the
specified SAPI/LlC values. An invalid SAPI or LIe value is treated
as a don't care for that parameter and returns the first link matching
the valid parameters.

0-63
-1

Matching link number
No match found

8.15-4 Version 1.0, November 1992

Cilameleon 32 'C' Manual

get_freelinkO

Declaration

Description

Returns

TEKELEC

App. B.15: ETSI Library

int get_freelinkO

This function gets the link number (0 - 63) of the first disabled link.

0-63
-1
-2

Disabled link number
No free iinks available
initp1 not performed

B.15-5 Version 1.0, November 1992

Chameleon 32 'C' fll1anua\

Declaration

Range

Description

Returns

TEKELEC

int geCfwaiting (Inkn)
char Inkn;

Inkn

App. 8.15: ETSI Ubrary

0-63

This function gets the number of I-frames waiting to be transmitted
on link Inkn. .

0-7 Number of l-frames waiting to be sent by link
Inkn

See also the global error codes on page B.1-1 .

8.15-6 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Description

Returns

TEKELEC

App. B.15: ETSI Library

int getJic1 0

This function gets the L1C1 of the link currently under user control.
Any value greater than 127 disables the link.

0-127
128 - 255

L1C1 for current link number
L1C 1 value that disables link.

Also see global error codes on page 8.1-1 .

8.15-7 Version 1.0, November 1992

Chameleon 32 'C' Manual

get_lic2()

Declaration

Description

Returns

TEKELEC

App. B.15: ETSI Library

int geClic20

This function returns the L1C2 value of the link currently under user
control.

0-127
128 - 255

LiC2 for current link number
L1C2 value that disables use of L1C2 on the link
(the link is not disaoled)

Also see global error codes on page 8.1-1.

8.15-8 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Description

Returns

TEKELEC

App. B.15: ETSI Library

int getJic3()

This function returns the L1e3 value of the link currently under user
control.

0-127
128 - 255

L1C3 for current link number
L1e3 value disabling use of L1C3 on the link (the
link is not disabled)

Also see global error codes on page 8.1-1 .

B.15-9 Version 1.0, November 1992

· Chameleon 32 'C' Manual

Declaration

Description

Returns

TEKELEC

App. B.15: ETSI Library

int get_linkO

This function gets the number of the link which is currently under
user control.

0-63
-1

Current link number
initp1 not performed

B.15-10 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Range

Description

Returns

TEKELEC

int getJnksapi (Inkn)
char Inkn;

Inkn

App. B.15: :rSI library

0-63

This function gets the SAPI value for link Inkn.

0-63
>63

SAPI value assigned to link Inkn
SAPI value disabling link Inkn

See also the global error codes on page 8.1-1.

B.15-11 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Range

Description

Returns

TEKELEC

int getJnklic1 (Inkn)
char Inkn;

Inkn

App. 8.15: ETSI Ubrary

0-63

This function gets the LlC1 value for link Inkn.

0-127
> 127

LlC1 value aSSigned to link Inkn
L1C1 value disabling link Inkn

See also the global error codes on page 8.1-1.

8.15-12 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Range

Description

Returns

TEKELEC

int getJnkHc2(lnkn)
char Inkn;

Inkn

App. 8.15: ETSI Library .

0- 63

This function gets the LlC2 value for link Inkn. If an invalid value
(> 127) is set in LlC2, only the SAPI and LlC1 (Le., 2-byte
addressing) will be used.

0-127
>127

valid values
invalid values.

See also the g!obal error codes on page 8.1-1.

8.15-13 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Range

Description

Returns

TEKELEC

int get.Jnl<lic3(lnkn)
char Inkn;

Inkn

App.8.15: ETSI Ubrary

0- 63

This function gets the LiC3 value for link Inkn. If L1C3 is set to an
invalid value and LlC2 is valid, SAPI, L1C1 and LlC2 (Le., 3-byte
addressing) will be used.

0-127
>127

valid values
invalid values

See also the global error codes on page B.1-1.

8.15-14 Version 1.0, November 1992

Chameleon 32 IC' Manual

get_meswai1ing

Declaration

Description

Note

Returns

TEKELEC

App.6.15: ETSI Librar/ .

int geCmeswaiting 0

This function gets the number of messages waiting to be received
from the Front End Processor (FEP).

This function returns the number of messages buffered by the FEP.
The library buffers one additional message.

0-32 Number of messages waiting to be received from
the FEP

See also the global error codes on page 8.1-1.

8.15-15 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Description

Returns

TEKELEC

App. B.15: . ETSI Ubrary

int get_rlinkO

This function oets the number of the link which sent the last received
message. This is the high order byte of the frame status word frstat
passed by the FEP.

0-63
-1
-2

Current link number
No messages received yet
initp1 not performed

6.15-16 • Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Description

Returns

Examples

TEKELEC

App. 6.15: ETSi Ubrary

char get_rxstatO

T:,is function gets the low order byte of the frame status word frstat,
which contains the frame type, C/R bit and P/F bit of the last
received message.

O-Oxe3
OxFF
OxFE

Ox41
Ox02
Oxe3

frstat value (interpreted as shown below)
No messages received yet
initp 1 not performed

Non-final XID response
!-frame command
Final FR.MR response

..
8.15-·17 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Description

Returns

TEKELEC

App.8.15: ETSI Library

int get_sapiO

This function gets the SAPI value of the link currently under user
control.

0-255 SAPI for current link

Also see global error codes on page B.1-1.

8.15-18 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Description

TEKELEC

App.6.15: ETSI Ubrary

lnt geCsconfig 0

This function returns a copy of the current control configuration
byte, which can be interpreted as shown in the figure below.

B.15-19 Version 1.0, November 1992

Chamel.eon 32 'C' Manual

Declaration

Description

Returns

TEKELEC

App. 8.15: ETSI Library

int ge!_sim 0

This function returns a copy of of the network/subscriber selection.

o
1

Network
Subscriber

B.15-20 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Range

Description

Returns

TEKELEC

int get_window (Inkn)
char inkn;

Inkn

App. 8.15: ETSI Library

0-63

This function gets the number of outstanding I-frames on link
number Inkn.

0-7
Inkn

Number of unacknowledged l-frames of link

See also the global error codes on page 8.1-1.

B.15-21 Version 1.0, November 1992

Chameieon 32 'c' Manual

initp1

Declaration

Description

Note

Ranges

Returns

TEKELEC

App. B. 15:ETSI Library

int initp1 (interface, sta, encode, bitrt)
int interlace, sta, encode;
long bitrt;

initp 1 loads the Front End Processor (FEP) code for the library and
starts simulation. Predefined values exist in mlklib.h to aid in setting
up the call to this function. sta is the station type and selects the
initial sense of the command/response bit. The library permits
reselection of the station type at any time. encode selects the
physical data encoding. bitrt sets the data rate when simulating a
DCE device.

This function is identical to and interchangeable with the starLsim
function. It has been included in the ETSI library for downward
compatibility with the single link LAPD library.

interface 0 V-type interface ~DCE)
1 V-type interface DTE)
2 ISDN interface

sta 0 NETWORK
1 SUBSCRIBER

enoode 0 NRZ
1 NRZI

bitrt Any long integer value from 50 - 64000.

See the global error codes on page B.1-1.

B.15-22 Version 1.0, November 1992

Chameleon 32 'C' Manual

link stat

Declaration

Range

Description

Returns

TEKELEC

int link_stat(n)
char n;

n

App. 8.15: ETSI Library

0-63

This function gets the current state of link n.

0-9 Current state of link (see table below)

See also the- global error codes on page B.1-1 .

8.15-23 . Version 1.0, November 1992

Chameleon 32 'C' Manual

receive

Declaration

Description

TEKELEC

int receive(dest_ addr)
char *desCaddr;

App. B.15: ETS! Library

This function receives a message from the FE? by performing the
following tasks:

• It polls the FEP to see if any received messages are available

• It transfers the message contents to the user defined buffer
pointed to by dest_addr

• The total length of the message (including the frame status
bytes frsta~ is placed in the global variable rxlen

The 1rstat word is accessible by calling get_rlink and
get_rxstat so that you can interpret and respond to a
message quickly. The frstat bytes are attached to the
beginning of each received message so that several
messages may be received, sorted, interpreted, and
individual responses made.

It is up to the user to ensure that the destination buffer is long
enough to contain the message. Generally, a length equal to N201
+ 2 is adequate.

8.15-24 Version 1.0, November 1992

Chameleon 32 'C' Manual

s n200

Declaration

Range

Description

Returns

TEKELEC

int s_n200 (val)
int val;

val

App. 8.15: ETSI Library

1-255

This function sets the maximum number of retries (N200).

o Successful

See also global error codes on page 8.1-1 .

8.15-25 Version 1.0, November 1992

Chameleon 32 'C' Manual

s n201

Declaration

~ange

Description

Returns

TEKELEC

int s_n201 (val)
intval;

val

App. B.15: c.SI Ubrary

1 -512

This function sets the maximum length for an I-frame (N201).

o Successful

See also global error codes on page B.1-1.

8.15-26 Version 1.0, November 1992

Chameleon 32 'C' Manual

s t200

Declaration

Range

Description

Returns

TEKELEC

int s_t200 (val)
int val;

val

App. B.15: ETSI Library

0-255

This function sets the time allowed for the remote station to respond
(T200). Setting this value to 0 disables the T200 timer.

o Successful

See also global error codes on page B.1-1.

B.15-27 Version 1.0, November 1992

Chameleon 32 'C' Manual

s t203

Declaration

Range

Description

Returns

TEKELEC

int s_t203 (val)
intval;

val

App. 8.15: ETSI Ubrary

0-255

This function sets the maximum time between frames (T203). On
time out, a polled RR or XIO command is transmitted, depending on
the configuration selecticn. Setting this yalue to 0 disables the T203
timer.

o Successful

See also global error codes on page 8.1-1.

8.15-28 Version 1.0, November 1992

Chameleon 32 'C' Manual

set Hc1

Declaration

Range

Description

Returns

TEKELEC

int set_lic1 (value)
char value;

value

App. 8.15: ETSI Library

The Lie 1 value to use for the link, as follows:

a -127 Valid L1C1 values

128 - 255 Invalid LlC1 value, which causes
the link to be disabled

This function sets the L1C 1 value for the link under user control.
L1C1 is a value assigned to, and may be associated with, a single
link and a given point-to-point data link connection. At any time, a
given terminal endpoint (TE) may contain one or more L1Cs.

Normal values are:

o
-1
-2
-3

0-127 Valid
128 - 255 Disable link

Successful
Parameter out of range
initp 1 not performed
Timeout

8.15-29 Version 1.0, November 1992

Chame!eon 32 'C' Manual

set Iic2

Declaration

Range

Description

Returns

TEKELEC

int seClic2(value)
char value;

value

App. 8.15: ETSI Ubrary

The LlC2 value to use for the lin:" as foliows:

o - 127 Valid LlC2 values

128 - 255 Disables the use of the LlC2 and
L1e3 bytes

This function sets the L1C2 value for the link under user control. If
used, the L1C2 is the third byte of the LAPD Address field. Any value
greater than 127 disables both LlC2 and L1C3.

o
-1
-2
-3

Successful
Parameter out of range
initp1 not performed
TImeout'

8.15-30 Version 1.0, November 1992

Chameleon 32 'C' Manual

set Iic3

Declaration

Range

Description

Returns' -

TEKELEC

int setJic3(value)
char value;

value

App.6.15: ETSI Ubrary

The L1e3 value to use for the link, as follows:

o - 127 Valid Lle3 values

128 - 255 Disables the use of the L1e3 byte

This function sets the Lle3 value for the link under user control. If
used, the Lle3 is the fourth byte of the LAPD Address field. Any
value greater than 127 disables Lle3.

o
-1
-2
-3

Successful
Parameter out of range
initp1 not performed
Timeout

8.15-31 Version 1.0, November 1992

Chameleon 32 'C' Manual

set link

Declaration

Range

Description

Returns

TEKELEC

int seClink(n)
char n;

n

App. B.15: ETSI Library

0-63

This function puts link n under user control. Only one link at a time
can be under user control.

o
--1
-2
-3

Successful
Parameter out of range
initp 1 not performed·
Timeout

B.15-32 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Description

TEKELEC

App. B.15: ETSI Library

int set-net 0

This function sets the simulation side to NETWORK. The
Chameleon can simulate either a network or subscriber device.

When the Chameleon 32 emulates a network, it sends commands
with the C/R bit set to one, and responds with the C/R bit set to zero.
It sends the selected SAPI and LlC with the C/R bit automatically
set in accordance with CCITT Q. 921.

6.15-33 Version 1.0, November 1992

Chameleon 32 'C' Manual

Declaration

Range

Description

Returns

TEKELEC

int seCsapi(v)
char v;

App. B.15: ETSI Library

Accepted range of v is 0 - 255. A value over 63 disables the
selected link.

This function sets the SAPI valueforthe link under user control. The
SAPI (Service Access Point Identifier) indicates the layer two
service type requested or supported. Normal values are:

o
-1
-2
-3

o
16
63
64-255

Call Control procedures
Packet communication procedures
Management procedures
Disable link

Successful
Parameter out of range
initp 1 not performed
Timeout

8.15-34 Version 1.0, November 1992

Chameleon 32 'C' Manual

set_sconfig

Declaration

Description

Returns

TEKELEC

int set_sconfig (byte)
int byte;

App. B.15: ETSI Library

This function sets the value of the control configuration byte,
interpreted as shown in the figure below.

o Successful

See also global error codes on page B.1-1.

8.15-35 Version 1.0, November 1992

Chameleon 32 'c' Manual

Declaration

Description

TEKELEC

App. 8.15: ETSI Ubrary

int seCsub 0

This function sets the simulation side to SUBSCRIBER. The
Chameleon can simulate either a network or subscriber device.

When the Chameleon 32 emulates a LAPD subscriber, it sends
commands with the CIR bit set to zero, and responds with the CIR
bit set to one. It sends the selected SAPI and L1C with the C/R bit
automatically set in accordance with CCITT Q. 921.

8.15-36 Version 1.0, November 1992

Chamelecn 32 'C' Manual

set tei

Declaration

Range

Description

Returns

TEKELEC

int set_tei(valua)
char value;

value

App. B.15: ETSI Library

The TEl value to use for the link, as follows:

o - 127 Valid TEl values

128 - 255 Invalid TEl value, which causes
the link to be disabled

This function sets the TEl value for the link under user control. TEl
is a value assigned to, and may be associated with. a single link and
a given point-to-point data link connection. At any time, a given
terminal endpoint (TE) may contain one or more TEls.

This function is provided for the convenience of those users whose
applications use the CCITT Q.921 2-field address (SAPI TEl). Its
use is completely interchangeable with setJic10.

Normal values are:

o
-1
-2
-3

0-127 Valid
128 - 255 Disable link

Successful
Parameter out of range
initp1 not performed
Timeout

6,15-37 Version 1.0, November 1992

Chameleon 32 'C' Manuai

set window

Declaration

Range

Description

Note

Returns

TEKELEC

int set_window (val)
int val;

val

App.8.15: ETSI Library

1-7

This function sets the maximum number of outstanding frames on
each link.

'The total of outstanding frames + the number of frames passed to
the FEP waiting to be 'transmitted + the number of messages over
16 bytes long waiting to be received from the FEP may not exceed
80.

o Successful

See also global error codes on page 8.1-1 .

6.15-38 Version 1.0. November 1992

Chameleon 32 'C' Manual

setflg

Declaration

Range

Description

Returns

TEKELEC

int se11lg (flag)
int flag;

flag 1
o

Ox7E fill
OxFFfill

App. 9.15: ETSI Library

This function selects an interirame fill pattern.

o Successful

See also global error codes on page B. 1-1 .

9.15-39 Version 1.0, November 1992

Chameleon 32 'C' Manual

sl01 ()

Declaration

Description

Returns

TEKELEC

App.6.15: ETSI Ubrary

int slof 0

This function sends a DISC and waits for a UA frame. This is
equivalent to the CCITT primitive DL RELEASE.

o Successful

Also see global error codes on page 8.1-1 .

B.15-40 Version 1.0, November 1992

Chameleon 32 'C' Manual

s~on 0

Declaration

Description

Returns

TEKELEC

App.8.15: ETSI Lit,rary

int slon 0

This function sends a SA8ME and waits for a UA frame. This is
equivalent to the CCITT primitive Dl ESTABLISH.

o Successful

Also see global error codes on page B.1-1 .

B.15-41 Version 1.0, November 1992

Chameleon 32 'c' Manual

Declaration

Description

Note

Ranges

Returns

TEKELEC

App.8.15: ETSI Ubrary

int start_sim (interface, sta, encode, bitrt)
int interface, sta, encode;
long bitrt;

start_sim loads the Front End Processor (FEP) code for the library
and starts simulation. Predefined values exist in mlklib.h to aid in
setting up the call to this function. sta is the station type and selects
the initial sense of the command/response bit. The library permits
reselection of the station tYpe at any time. encode selects the
physical data encoding.' bitrt sets the data rate when simulating a
DCE device.

This function is identical to and interchangeable with the initp 1
function. initp1 is included for downward compatibility with the
single link LAPD library.

interface

sta

encode

bitrt

o
1
2

1

o
1

V-type interface (DCE)
V-type interface (DTE)
ISDN interface

o . NETWORK
SUBSCRIBER

NRZ
NRZI

Any long integer value from 50 - 64000.

See the global error codes on page B.1-1.

8.15-42 Version 1.0, November 1992

Chameleon 32 'C' Manual

status(}

Declaration

Description

Returns

TEKELEC

App. 6.15: ETSI Ubrary

int statusO

This function gets the current state of link under user control.

0-9 Current state of link (see table below)

See also the global error codes on page 8.1-1 .

8.15-43 Version 1.0, November 1992

Chameleon 32 'C' Manual

trans

Declaration

Description

Returns

TEKELEC

int trans (frame,address,len)
int frame, len;
char *address;

App. 8.15: ETSI Ubrary

This function transmits a frame, as follows:

frame selects type of frame to transmit:

Ox80
Ox81
Ox82
Ox83

I-frame
UI
XIDC
XIDR

Sequenced (numbered) l-frame
. Unnumbered I-frame (NSI)

XID command frame
XID response frame

address is a pointer to the first byte of the message to be
transmitted.

len is the actual length of the message to be transmitted. There are
two restrictions on the message length:

• l-frames should not exceed the value set in N201 (maximum
length of an I-frame)

• The total length of the frame cannot exceed 512 bytes.

o Successful

Also see global error codes on page 8.1-1.

8.15-44 Version 1.0, November 1992

Chameieon 32 'C' Manual

transmit

Declaration

Description

Note

Returns

TEKELEC

int transmit (xloc, xlen)
char ·xloc;
int xlen;

App. B:15: ETSI Library

This function transmits a message in a sequenced (numbered)
I-frame.

xloc is a pointer to the first byte of the message to be transmitted.

xlen is the actual length of the message to be transmitted. There
are two restrictions on the message length:

• I-frames should not exceed the value set in N201 (maximum
length of an I-frame)

• The total length of the frame cannot exceed 512 bytes.

The transmitfunction is provided for user convenience. If extremely
high data rates are required, the trans function should be used, as
it is somewhat faster.

o Successful

Also see global error codes on page 8.1-1.

6.15-45 Version 1.0, November 1992

Chameleon 32 'C' Manual

truD

Declaration

Description

Note

Returns

TEKELEC

int trui (xloc, xlen)
char ·~xloc;
int xlen;

App.8.15: ETSI Ubrary

This function transmits a message in an unnumbered I-frame (UI
frame).

xioc is a pointer to the first byte of the message to be transmitted.

xlen is the actual length 01 the message to be transmitted. The total
length of the frame must not exceed 512 bytes.

The truifunction is provided for user convenience. If extremely high
data rates are required, the trans function should be used, as it is
somewhat faster.

o Successful

Also see global error codes on page 9.1-1.

8.15-46 Version 1.0, November 1992

Chameleon 32 'c' Manual

trxcni

Declaration

Description

Returns

TEKELEC

App. 8.15: ETSI Library

int trxcni 0

This function transmits an XID command frame with no data field.

o Successful

See also global error codes on page B. 1-1 .

8.15-47 Version 1.0, November 1992

Chameleon 32 'c' Manual

trxidc

Declaration

Description

Note

Returns

TEKELEC

1nt trxidc (xloc, xlen)
char ·'xloc;
int xlen;

App. B.15: ETSI Ubrary

This function transmits a message in an XID command frame.

xloc is a pointer to the first byte of the message to be transmitted.

xlen is the actual length of the message to be transmitted. The total
length of the frame must not exceed 512 bytes.

The trxidc function is provided for user convenience. If extremely
high data rates are required, the trans function should be used, as it
is somewhat faster.

o Successful

Also see 'glob~ error codes. on page 8.1-t.

B.15-48 Version 1.0, November 1992

Chameleon 32 'C' Manual

trxidr

Declaration

Description

Note

Returns

TEKELEC

int trxidr (xloc, xlen)
char *xloc;
int xlen;

App. B.15: ETSI Library

Transmit a message in an XID response frame.

xloc is a pointer to the first byte of the message to be transmitted.

xlen is the actual length of the message to be transmitted. The total
length of the frame must notsxceed 512 bytes.

The trxidc function is provided for user convenience. If extremely
high data rates are required, the trans function should be used, as it
is somewhat faster.

o Successful

Also see global error codes on page 8.1-1.

8.15-49 Version 1.0, November 1992

Chameleon 32 'C' Manual

trxrni

Declaration

Description

Returns

TEKELEC

App. B.15: ETSI Library

int trxrni 0

This function transmits an XIO response frame with no data field.

o Successful

See also global error codes on page 8.1-1.

B.l5-SO Version 1.0, November 1992

Chameleon 32 'C' Manual App. 8.15: ETSI Library

PROGRAMMING NOTES AND EXAMPLES

General Notes

Interpreting
Received
Messages

TEKELEC

This section provides general information about using the ETSI
library.

In your program, specify the Chameleon port being used by a call to
the seLPortfunction. Ti1is is not absolutely necessary when using
a Single-Port Chameleon (Ch20), but should be done to make your
application portable.

A call to initp1 must be made to start the Front End Processor (FEP).
This loads the FEP operating code and starts the simulation. The
Chameleon is then ready to begin testing.

Before frames can be transmitted or received, at least one link must
be enabled. To do this:

a. Use seLl ink to select a link (default is 0)

b. Set the SAPI and LlC1 to valid values by calling seLsapi and
seLlie

c. LlC2 and LlC3 must be set to a valid value if they are to be
used.

To interpret a received message, you must know the SAPI value
and the frame type of the received message. This information is
available to you from the frame status bytes, and can be accessed
using the technique shown below:

racaive(pointr);

if(rxlan = = 0) '*exit if no message received*'
return(O);

frtype=(gat3Xsta()&3); .

Ink:get_rllnk();
sapval=gat_lnksap(lnk);

'*get the .frame type status bits*'
'*get number of the link sanding message*'

'*gat the SAPI for that link*'

In this example, the frame type maybe interpreted from frtype as
follows:

O. UI frame
1 - XID frame
2 -I-frame
3-FRMR

sapvaJ is the SAPI value aSSigned to the link on which the message
was received.

8.15-51 Version 1.0, November 1992

Chameleon 32 'C' Manual

Optimizing
'Transmit Speed

Transmitting
Responses

TEKELEC

App.6.15: ETSllibrary

To optimize speed for applications such as load generators,follows
these guidelines:

• The trans function is faster than the other transmit functions
sLich as transmit, trui, trxidr, and trxidc.

• If you are not concerned with the contents of the received
messages, use the following technique to keep the receive
buffer empty. This is faster than a cali to the receive function in
the transmit loop.

if(get_meswtgO>=6)

flush();

• Minimize input, output, and screen print operations in all
tasks. Since the processor that runs the C shell also manages
many of the I/O tasks, this will result in your simulation
program running faster.

• Run your program· in background mode. This is done by
adding an ampersand (&) at the end of the· file name when
starting the test from the C shell. For example:

test &
will run the program test in background mode. This causes
the program to run at a higher priority and frees the C shell for
other uses. This technique also reduces the number of
windows available for other tasks, since a separate window is
opened for each program running in background mode.

In a test environment, the actual information content of a given
message type is often fixed. In such cases, only the message type
must be known in order to select the proper response. To simplify
responding to message, predefine the content of responses in a
message array. .

In the following program fragment, the following is assumed:

• A set of responses and pointers to the responses has been
defined earlier

• SAPVLIC combinations have been set up

6.15-52 Version 1.0, November 1992

Chameleon 32 'C' Manual

TEKELEC

App. B.15: ETSI Ubrary

The program fragment uses a defined.value TYPEOS, which is the
offset to the byte in the message containing the message type. The
call to fix eref extracts the cali reference value from the received
message-and copies it into the selected response message.

respond()
{

char mestyp, *resp;
int res~Uen;
rxlen="; 1* prepare to loop until message received *1

while(!rxlen)
receive(&rxmes(O]);

if«getJxstat()&3)=2) I*only respond to Iframes*1
{

mestyp=rxmes[TVPEOS)i '*get message type from revd message*'
switch(mestyp)

•
•
•

{
case CALL SU:
'*If msg Is call setup·'

I*respond setup ack·'
resp=&su_ack;
resp_len=SU_ACK_LEN;
break;

case RELEASE:
'* If msg is release*1

}

'*respond release complete·,
resp=&reLcmplt;
resp_len=REL_CMPLT_LEN;

flx_cr8f(resp); '*set response call ref value·'
seUln.k!get_rll!,~()); '-select link to send response·'
transmit(resp,resp_len); ,*. send response·'
}

flx_CI'ef(dest)
char *dest;

{
IntreCval;
refval=rxmes(CREF _OS];

(dest+CREF _OS-2)=refvali '-2 to allow for frstat bytes*'

B.15-53 Version 1.0, November 1992

Chameleon 32 'Ct Manual App. B.15: ETS! Ubrary

Demonstration Programs

TEKELEC

You can run the two test programs for ETSI LAPD library
port-to-port on a dual-port CH32. You can also run them between
Chameleons - CH32-to-CH32. However, in this case you may
have to change the port selection in the function sim_start() at the
end of the program.

To compile and link these programs:

cc -0 etsia etsia.c -Ietsi
cc -0 etsib etsib.c -Ietsi

Start the 'etsia' program first.

B.15-54 Version 1.0, November 1992

Chameleon 32 'C' Manual

ETSIA.C

TEKELEC

App. B.15: ETSI Library

etsia.c is one of two sample programs to demonstrate the use of the
ETSI lapd library functions.

The Program:

mainO

#include cstdio.h>
#include ccham.h>
#include cctype.h>
#include cfcntl.h>
#Include cinit.h>
#include cvideo.h>
#Include cmtosux.h>
char tmsg[48],rmsg[48];

{
char insit, *tadr, *radr,answer;
extern char *malloc();
extern int rxlen;
int result,tempi;

long int count;

Crlntf("C program started.\n");
adr=&tmsg[O];

radr=&rmsg[O] ;
sim_startO;

1**"* make and display transmit message *****/
. for(lnslt:O;insltc=16;inslt++)

tmsg[insit] = Insit;

printf("message = ");
for(lnslt:O;insitc=16;insit++)

prlntf(" %Ox ",tmsg[inslt»;
printf("\n");

/***** do frame level setup *****/
result = setflg(O);
result = set_mod(1);
result = s_t2OO(0);
result = s_t203(O);
result: s_n201(260);
result = s_n200(26);
result = seCwlndow(3);

1**"* setup sapl and UCs for 64 links and set them on *****/
fore;;)
{

}

tempi = geCfreellnk();
If(templcO)

break;
result = set_"nk(templ);
result = set_sap'(tempi);
result = set 11c1(templ);
result = seCiIc2(templ); .
result = set 11c31templ); .
pause(5+5f2); / so other tasks can use processor */

B.15-55 Version 1.0, November 1992

Chameleon 32 'C' Manual

TEKELEC

App. 8.15: ETSI Library

while(status(} <4)
pause(5+S12); /. so other tasks can use processor */

/**.** send and receive until 'q' is entered * •• **/
result = seUink(2};
count=O;
result = geUink();

printf("Current link is %d \n" ,result);
printf("\033 [2J ");
printf(" type Q to quit\n");

for(;;H
answer=getch(stdvt);

if(anSWer == 'q') break;
result = receive(radr);

if(rxlen>O)
(

printf("\033[10;7f received message = ");
for(insit:O; insit<rxlen;insit++)

printf(" %Ox .. ,rmsg[insit»;
printf("\n\n"};

printf("Current link is %d \n",get_rllnk());

result = seUink(get_rlink());
if(status() ==4)

result = trans(Oxao,tadr, 15);
count++;
prlntf("\03310/0d ;%df" , 14,36);
printf("\033 31mThat's %ld. \n",count);

}
pause(517); /* so other tasks can use processor */
}

for(count:O ;count<Oxfff;count++);

/***** if link still connected, disconnect it, then exit *****/
if(status(»O)
{
result = sJofO;
}

}

sim_start()

fnt rets,ret2;
long Int rate;

rate=64000;
printf("Trying to start P1 ");
rets= lnltp1(O,O,O,rate);
prlntf(" result = O/OOx\n",rets);
}

8.15-56 Version 1.0, November 1992

Chameleon 32 'C' Manual

ETSIB.C

TEKELEC

App. 6.15: ETSI Library

etsib.c is one of two sample programs to demonstrate the use of the
ETSI lapd library functions.

The Program:

#include <stdio.h>
#include <cham.h>
#include <ctype.h> .
#include cfcntl.h>
#include <init.h>
#include -cvideo.h>

char tmsg[481,rmsg[48];

mainO
{
char tempc,insit,user jn, ·tadr, ·radr;
extern int rxlen;
int result,tempi;
long int count;
printfC"C program started.\n");
tadr=&tmsg[O);
radr=&rmsg[O] ;
sim_startO;

/*** .. make and display transmit message *****/
for(lnsit=0;/nsitc=16;/nsit++)

tmsg(lnsit] = 16-lnsit;
printf("message = ");
for(lnsit=0;insitc=16;insit++)
prlntf(" %Ox ",tmsg[insit]);
printf("\n")j

/***** do frame level setup *****/
result=set_mod(1);
result=s_t200(O);
result=s _ t203(0);
result=s n201(20);
result=set_ window(3);

'***** setup sapi and L1Cs for 64 links and set them on *****/
__ for(;;)

{
templ=get_freellnk();
if(tempicO)

break;
prlntf("free link = %d\n",tempi);

result = seUink~tempi);
result = set saPI(templ)j
result = senIC1(tempi);
result = se()lc2(tempi);
result = seUIc3(templ);
result = slonO;
while(status() c 4)

}
pause(S13); /* so other tasks can use processor */

6.15-57 Version 1.0, November 1992

Chameleon 32 'C' Manual

TEKELEC

/* send and receive until user types 'a' *****/
result=seUink(2);
count=O;
result=geUink();

printf("Current link is %d \n",result);
result=trans(Ox80,tadr,15);

printf("\033[2J ");

App. 8.15: ETSI Library

printf(" type a to quit,S to restart link, T to transmit Iframe\n");

for(;;){
user _in=toupper(getchL stdvt»;
if(user _In== 'T')

. result=trans(Ox80,tadr,15);
If(user In=='O')

"break;
if(user_in == '5')

slonO;
. result=recelve(radr);

if(rxlen>O)
{

printf("\033[10;Sf received message = ");
for(lnsit:O;insit<fxlen;lnsit++) .

printf(" %OX" ,rmsg[insit]);
prlntf(","\n");

prlntf("Current link is %d ,"",get_rlink()};

tempc:getJlink()=:63? O:get_rllnk()+ 1 ;
resu.,t=set Ilnk(tempc);
If(statuS(Y==4)

result=trans(OxSO,tadr,15);
count++;
prlntf(,,\033[%d;%df",14,36);
printf("\033(36m That's %Id.\n",count);

}
rause(513); 1* so other tasks can use processor */

for(count:O;count<Oxfff;count++);
1**-* if link still connected, disconnect it, then exit *****/

If(status(»O)
{
resu.t=slof();
prlntf("slof result %Od\n",result);

}

sim_start()

fnt rets,ret2;
long Int rate;
reta:setport(PORTB);
rate=64000;
prlntf("Trylng to start P1 ");
rets= lnltp1(1,1,O,rate);
prlntf(" result = %Ox\n",rets);
}

8.15-58 Version 1.0, November 1992

INDEX

A ____________________ __ initporta, 5.7-7
recpa, 5.7-9
rstdrv, 5.7-10
sendpa, 5.7-8 & (Background Mode), 2.1-5

(Remark), 2.1-6
, (Echo Text), 2.1-7
abs, 5.2-1
access, 5.2-2
Activation,

Set U-Transceiver, B.14-6
Acquisition, Data, 5.1 Off
alloca, 5.2-3
Analysis Library, App. B 10

Functions:
init anal, B.10-2
ge1event, B.10-5
reset anal, B.10-7

Assigning-port functions,
AUX 1,5.7-1 thru-6
AUX 2, 5~7-7 thru -11
Debugger, 2.1-2

Async Library, App. B9
Functions:

flush, B.1-3
getphy, B.1-4
getport, B.1-5
getime, B.1-6

, , initp1, B.9-2
initime, B.1-7
p1 reset, B.1-8 ,
receive, B.9-4
setleds, B.1-9
setphy, B.1-10
setport, B.1-11
settimer, B.1-12
tbreak, B.9-5
timer, B.1-13
transmit, B.9-6
tready, B.9-7

atof,5.2-4
atoi,5.2-5
atol,5.2-5
Aux Serial Port 1

Using, 5.7-1
Functions:

initportb, 5.7-2
recpb,5.7-4
rstdrvb,5.7-5
sendpb,5.7-3

Aux Serial Port 2
Using, 5.7-1
Functions:

B __________________ _

BAS VERSION, B.6-2
BasicRate 'Interface Library, App. B6

bas version, B.6-2
setbasic, 8.6-3

batch,2.1-8
Batch Files

batch command, 2.1-8
login file, 2.1-1

bcmp, 5.2-6
bcopy, 5.2-6
BERT functions, 5.10-1 ft.

block len, 5.10-4
Boards, Command (See U-Board)
BOP Library (libbop.a), App. 81

Functions:
flush, 8.1-3
getphy, B.1-4
getport, B.1-5
getime, B.1-6
initp 1, B.2-2
initp 1_ Sk, B.2-3
initime, B.1-7
p1 reset, B.1-8
receive, B.2-4
setflg, B.2-5
setleds, B.1-9
setphy. B.1-10
setport, B.1-11
settimer, B.1-12
timer, B.1-13
transmit, B.2-6
tready, B.2-7

BSC Library (libbsc.a), App. B7

Index-1

Functions:
flush~ B.1-3
getphy, B.1-4
idle mode, B.7-2
initp1, B.7-3
initime, B.1-7
p1 reset, B.1-8
receive, B.7-4
setphy, B.1-10
setport, B.1-11
settimer, B.1-12
timer, B.1-13

transmit, 8.7-5
tready, 8.7-6

bzero,5.2-ti

c ________________ _
C Library (libc.a), Chapter 5

Error Messages, 2.1-31, 2.8-1
Control Characters. 5.6-1

Back space, 5.s-:.1
Beil,5.6-1
Carriage return, 5.6-1
Cursor down, 5.6-1
Cursor right, 5.6-1
Line feed, 5.6-1

Functions:
abs, 5.2-1
access, 5.2-2
alloca, 5.2-3
atof,5.2-4
atoi,5.2-5
atol,5.2-5
bcmp, 5.2-6
bcopy, 5.2-6
bzero, 5.2-6
calloc, 5.2-7
cap_disable, 5.10-2
cap_enable, 5.10-2

. cap_set, 5.10-3
cap_status, 5.10-3
clearerr, 5.2-8
close, 5.2-9
creat, 5.2-10
exect, 5.2-11
execv, 5.2-12
exit, 5.2-13
_exit, 5.2-13
fclose,5.2-14
ferror, 5.2-15 ----
feaf, 5.2-16
fflush, 5.2-17
fgetc, 5.2-18
fgets, 5.2-19
fileno, 5.2-20
fopen, 5.2-21
fprintf, 5.2-38
fputc, 5.2-22
fputs, 5.2-23
fread,5.2-24
free, 5.2-25
freopen, 5.2-21
fseanf,5.2-52

INDEX

Index-2

fseek, 5.2-26
ftell, 5.2-21'
fwrite, 5.2-28
getc, 5.2-29
getehar, 5.2-30
gets, 5.2-31
getw, 5.2-32
isainum, 5.2-33
isalpha, 5.2-33
isascii,5.2-33
iscntrl,5.2-33
isdigit, 5.2-33
!slower, 5.2-33
isprint, 5.2-33
ispunct, 5.2-33
isspaee, 5.2-33
isupper, 5.2-33
isxdigit, 5.2-33
loaddtd,5.10-4
longjmp, 5.2-35
lealloe, 5.2-7
Imalloe, 5.2-36
Irealloe, 5.2-49
Iseek,5.2-34
maHoc, 5.2-36
onexit, 5.2-37
open, 5.2-38
perror, 5.2-42
printf,5.2-39
pute, 5.2-43
putchar,5.2-44
puts, 5.2-45
putw, 5.2-46
qsort, 5.2-47
rand,5.2-48
read, 5.2-49
realloe, 5.2-50
rename, 5.2-51
saveaeq, 5.10-5
savedtd, 5.10-6
rewind,5.2-52
seanf,5.2-53
setbuf, 5.2-66
setbuffer, 5.2-66
setjmp, 5.2-57
setlinebuf, 5.2-66
sprintf, 5.2-39
srand, 5.2-48
sseanf,5.2-53
startdfd, 5.10-7
startdtd, 5.10-7
strcat, 5.2-58

strcmp, 5.2-58
strcpy, 5.2-58
strncat, 5.2-58
strlen, 5.2-58
strncpy, 5.2-58
strncmp, 5.2-58
stopdfd, 5.10-8
stopdtd, 5.10-8
-tolower, 5.2-60
toupper, 5.2-60
ungetc, 5.2-61
unlink, 5.2-62

. write, 5.2-63
strtol, 5.2-5
toascii, 5.2-60
tolower, 5.2-60
xtrcap, 5.2-58
xtrcpy, 5.2-58
xtrncpy, 5.2-58

Globals, 5.~ 1
C Shell, Chapter"2.1
C Shell Commands:

& (Background Mode), 2.1-5
(Remark), 2.1-6 .
'(Echo Text), 2.1-7
batch, 2.1-8
cat, 2.1-9
cd,2.1-10

. cp, 2.1-11
ctags, 2.1-12
dump,2.1-13
exit, 2.1-14
format, 2.1-15
getenv, 2.1-16
help, 2.1-17
jobs, 2.1-18
kill, 2.1-19
Is, 2.1-20
man,' 2.1-21
mkdir, 2.1-22
mkres, 2.1-23
more, 2.1-24
mv,2.1-25
pwd,2.1-26
rm,2.1-27
rmdir, 2.1-28
rmres, 2.1-29
run, 2.1-30
setenv, 2.1-31
shell, 2.1-32
size, 2.1-33
time, 2.1-34

INDEX

calloc, 5.2-7
cap_disable, 5.10-2
cap_enable, 5.10-2
cap_set, 5.10-3
cap_status, 5.10-3
cat, 2.1-9
cd,2.1-10
character arrays, B.14-1
elearerr, 5.2-8
close, 5.2-9
c!r-pream, 5.10-4
Codes, Error, B.14-2
Compiler, Chapter 2.2, 4

Commands:
cc,2.2-1
mee, 2.2-3

Limits, App. A
Machine Dependencies, 4.1-1

Data Elements, 4.1-1
External Names, 4.1-1
Include file, 4.1-2
Registers, 4.1-2

Processing, 4.2-1
Error Processing, 4.2-1
Code Generation, 4.2-1

Configuration, of Ch32, 2.1-1
Commands- .

DBGPORT, 2.1-2
REM,2.1-1

Operands,
AUX1,2.1-2
OFF,2.1-2
VT,2.1-2

Configure, U interface, B.14-3
Connection, Get Transceiver, B.14-6
cont_run, 5.10-5
cp,2.1-11 .
creat, 5.2-10

.- ctags, 2.1-12

0 _____________________ _

Debugger port, assigning (See under A)
Device files, 2.1-1
Disassembler, Chapter 2.5

dis command, 2.5-1
Error Messages, 2.5-2

double get_err_rate, 5.10-17
dump,2.1-13

Index-3

INDEX

E ________________ __

Egrep, Chapter 2.6
Error Messages, 2.6-4
Examples, 2.6-3
Introduction, 2.6-1
Usage, 2.6-1

Environmental variables, 2.1-3
getenv, 2.1-15
setevn, 2.1-28

Be (background coior) , 2.1-28
Fe (foreground color), 2.1-28
HOME, 2.1-28
PATH, 2.1-28
YEAR, 2.1-28
User-defined, 2.1-28

error off, 5.10-13
error-on, 5.10-13
Errors,

Get U- transceiver, B.14-7
Set U-transceiver, B.14-7

execl, 5.2-11
execv, 5.2-12
exit (shell command), 2.1-14
exit (C function), 5.2-13
Extensions, App. A

F·

fclose, 5.2-14
ferror, 5.2-15
feof,5.2-16
fflush, 5.2~17
fgetc, 5.2-18
fgets, 5.2-19
File Functions (low level), 5.8-1 to 5.1-8
Filename substitution, 2.1-2

·,2.1-2
[),2.1-

fileno, 5.2-192
find link, B.11-4
flush, B.1-3, B.13--9
flush all, B.13-10
Fmkdlr, 5.8-4
fopen,5.2-21
format, 2.1-15
fprintf. 5.2-38
fpute, 5.2-22
fputs. 5.2-23
fread.5.2-23
free, 5.2-25

freopen, 5.2-21
Frmdir, 5.8-5
fscanf,5.2-52
Fsearch, 5.8-6
fseek, 5.2-26
ftell, 5.2-27
fwrite, 5.2-28

G ________________ _

get freelinkO, 8.11-5, B.12-4
ge()waiting, B.11-6, B.12-5
get link, B.11-7, B.12-6
get-iii, B.12-7
get-'nkfli, B.12-8
get-'nksapi, B.11-8
get-Inktei, B.11-9
get-Inktgi, 8.11-10
get:meswaiting, B.11-11, B.12-9
get-mod, B.3-4
get rlink, B.11-12, B.12-10
get=rntei, B.3--5, B.11-13
get-rsapi, B.3-6, B.11-14
get rxstat, B.11-15, B.12-11
get-sapi, B.11-16
get=sconfig, B. 3--7 , B.11-17, B.12-12
get-sim, B.3-8, B.11-18
get_tei, B.11-19
get_tgi, B.11-20
get_window, B.11-21, 8.12-13

. getc, 5.2-29
getchar, 5.2-30
getenv, 2.1-16
getevent, B.10-5
getime, B.1-6
getphy, B.1-4
getport, B.1-5
gets, 5.2-31
getw. 5.2-32

H _______________________ _____

HOLe Library (libhdlc.a). App. B2
Functions:

Ch32, configuring, 2.1-1
flush. B.1-3
getphy. B.1-4
getport. B.1-4
getime, B.1-6
initp 1, B.4-1
inittime, B.1-7

Index-4

p1 reset, 8.1-8
receive, 8.4-3
set-n 1, 8.4-4
set-n2, 8.4-5
set-t1, 8.4-6
set-window, 8.4-7
setleds, 8.1-9
setphy, B.1-10
setport, 8.1-11
settimer. 8.1-12
slof,8.4-8
slon, 8.4-9
status, 8.4-10
timer, 8.1-13
transmit, 8.4-11

Multi-Link (See Multi-Link HOLe)
help, 2.1-17

1-----------------
init_a, 8.13-11
Initialize,U interface, 8.14-3
init_anal, 8.10-2
init b,8.13-12
initporta, 5.7-2
initp1, 8.2-2, 8.3-9, 8.4-2, 8.5-2,

8.7-2. 8.9-2, 8.11-22, -
8.12-14. 8.13-13

initp1 Sk, 8.2-3
inittime, 8.1-7
isalnum, 5.2-33
isalpha, 5.2-33
isascii, 5.2-33
iscntrl, 5.2-33
isdigit, 5.2-33
islower, 5.2-33
isprint, 5.2-33
ispunct, 5.2-33
isspace, 5.2-33
isupper, 5.2-33
isxdigit, 5.2-33
1/0 Redirection, 2.1-3

iNDEX

K ________ ~ ________ __
kill, 2.1-19

L __________________ __
Language Extensions, 4.5-1

Assembler, 4.5-1
C Objects, 4.5-2
Character Constants, 4.5-5
Defaults. 4.5-2
Forward Pointer References, 4.5-4
Global Symbols, 4.5-2
Structure Assignment, 4.5-5
Syntax, 4.5-1

LAPO Library (liblapd.a), App. 83
Functions: .

flush, 8.1-3
get-mod, 8.3-4
get-rntei,8.3-5
get-rsapi,8.3-6
get-5config, 8.3-7
get-sim, 8.3-8 .
getphy, 8.1-4
getport, 8.1-5
getime, 8.1-6
initp1, 8.3-9
inittime, 8.1-7
p1 reset, 8.1-8
receive, 8.3-10
restartsim, 8.3-12
setflg, 8.3-13
setleds, 8.1-9
set-bit-rate, 8.3-14
set-mod, 8.3-15
s-n200, 8.3-16
s-n201, 8.3-17
set-net, 8.3-18
set-mtei, 8.3-19
set-rsapi, 8.3-20
set-sapi, 8.3-21
set-sconfig, 8.3-22
set-sub, 8.3-24
s-t200, 8.3-25
s-t203, 8.3-26

J ____________________ _
set-tei, 8.3-27
set-window, 8.3-28
setleds, 8.1-9
setphy, 8.1-10
setport, 8.1-5
settimer, 8.1-12 jobs, 2.1-18
slof, 8.3-29

Index-5

INDEX

slon, 8.3-30
status, 8.3-31
stcpsim. B.3-32
timer, 8.1-"13
trans, 8.3-33
transmit, B.3-34
trlJi, 8.3-35
trxcni, 8.3-36
TRXRNI, B.3-37
TRXIDC, B.3-38
TRXIDR, 8.3-39

icalloc, 5.2-7
librarian, Chapter 2.4, App. A

ar command, 2.4-2
Error Messages, 2.4-3

Library Implementation, Chapter 4.4
Line Separators, 4.4-1
Memory Allocation, 4.4-1

link_stat, 8.11-23,8.12-15
Linker, Chapter 2.3, App. A

Errors, 2.3-3
Id command, 2.3-1
Object File Format, 2.3-5
Process, 2.3-4

Imalloc, 5.2-36
Loading C, 1.2-1
login file, 2.1-1 .
10,ng get_blkerrs, 5.10 - 17
long.get_errsec, 5.10 -18
long get_rbiterrs, 5.10 - 19
long get_rbits, 5.10 - 18
long get_tbiterrs, 5.10 - 21
long get tbits, 5.10 - 19
long get:runtime, 5.10 - 20
long get_serrsec, 5.10 - 20
long get_syncloss, 5.10 - 21
longjmp, 5.2-35
Irealloc, 5.2-49
Is, 2.1-20
Iseek,5.2-34

M _____________________________ ___

M channel,
Configuring for, 8.14-3
Receive data over U interface, 8.14-10

Transmit data over U interface 8~14-9
malloc, 5.2-36
Make Utility, 3.1-1

Dynamic dependency, 3.1-7
Examples, 3.1-11 .. ~

Macro definition, 3.1-6
Makefite structure, 3.1-3
Suffixes 'table, 3.1-8
Transformation ruies, 3.1-9

Math Library (Iibm.a). Chapter 5.5
Description, 5.5-1
Functions:

Absolute value, 5.5-2
Exponential, 5.5-2
Factorial, 5.5-2
Logarithm, 5.5-2
Matrix inverse, 5.5-3
Transcendental, 5.5-2
Square, 5.5-2
Square root, 5.5-2

man, 2.1-21
Messages, U interface, 8.14-9, -10.
mkdir, 2.1-22
mkres, 2.1-23
mlh flush, 8.13-14
mlh -receive, 8.13-15
mlh-set n1, 8.13-16
mlh-set-n2,8.13-17
mlh - set-net, 8.13-18
mlh-set-sub,8.13-19
mlh-set-t1,8.13-20
mlh -set-t2, 8.13-21
mlh -set-window, 8.13-22
mth - slo1, 8.13-23
mth -slon , 8.1 a.:-24
mth -status , 8.13-25
mlh trans, 8.13-26
Mode Control,

EOC, 8.14-11
M4,8.14-12
M5I6, 8.14-12

more, 2.1-24
Multi-Link HOLC (libmhdlc.a) App. B.13

Functions:
flush, 8.13-9
flush all,8.13-10
init i 8.13-11
iniCb,8.13-12
initp 1 , 8.13-13
mlh flush, 8.13-14

J mlh -receive, 8.13-15
mlh-set n1, 8.13-16
mlh - set-n2, 8.13-17
mlh - set-net, 8.13-18
mlh -set-sub, 8.13-19
mlh - seCt1, 8.13-20
mlh -set 12, 8.13-21

Index-6

INDEX

mlh set window, 8.13-22
mlh -slot," 8.13-23
mlh:=slon (port), 8.13-24
mlh status, 8.13-25
mlh -trans, 8.13-26
receive, B.13-27
SC3t n1, 8.13-28
seC n2, 8.13-29
seCnet 0, 8.13-30
set-pat, 8.13-31
set ratio, 8.13-32
seCt 1 , 8.13-33
seCt2, 8.13-34
set_sub 0. 8.13-35
set_window, 8.13-36
slof 0, 8.13-37
sian (), 8.13-38
status 0, 8.13-39
transmit, 8.13-40

Multi-Link LAPD (libmlapd.a) App. 8.11
Functions:

find link, 8.11-4
flush, 8.1-3
get_freelinkO, 8.11-5
geCfwaiting, 8.11-6
get_linkO, 8.11-7.
get_lnksapi, 8.11-8
get_lnktei, 8.11-9
get-,nktgi,8.11-10
geCmeswaiting, 8.11-11
geCriinkO,·8.11-12
get_rntei, 8.11-13
get_rsapi,8.11-14
get_rxstat(), 8.11-15
get_sapi(),8.11-16
get_sconfig 0, 8.11-17
get_sim 0, 8.11-18
get_teiO,8.11-19
get_tgiO.8.11-20
geCwindow, 8.11-21
getphy, 8.1-4

. getport, 8.1'-5
getime, 8.1-6
initp1. 8.11-22
inittime, 8.1-7
p1 reset, 8.1-8
link stat, 8.11-23
p1 reset, 8.1-8
receive, 8.11-24
s n200, 8.11-25
s-n201,8.11-26
s_t200, 8.11-27

~ t203, 8.11-28
set_sconfig, 8.11-29
set link, 8.11-30
seCnet 0,8.11-31
set mtei, 8.11-32
seCrsapi, 8.11-33
seCsapi, 8.11-34
seCsub 0,8.11-35
set tei, 8.11-36
seCtei. 8.11-37
seC window, 8.11-38
setffg, 8.11-39
setleds, 8.1-9
setphy, 8.1-10
setport, 8.1-11
settimer, 8.1-12
slof 0, 8.11-40
slon 0, 8.11-403
srch Ink, 8.11-42
start-sim, 8.11-43
statusO, 8.11-44
timer, 8.1-13
trans, 8.11-45
transmit. 8.11-46
trui, 8.11-47
trxcni, 8.11-48
trxidc, 8.11-49
trxidr, 8.11-50
trxmi , 8.11-51

mv,2.1-25
0 ____________________ __

onexit, 5.2-37
one_block, 5.10-5
one error, 5.10-14
open, 5.2-38
Operands for CH32 configuration, 2.1-2

p-------------------------------
P1RESET,8.1-8
Package Description, 1.1-1
perror, 5.2-42
Port(s),

AUX 1. accessing via C Shell, 5.7-1ff.
AUX 2, accessing via C Shell, 5.7-7ff.
for debugger location, 2.1-1
Selecting

SETPORT, 8.4-5
Pri version, 8.8-2
Primary Rate Interface Library, App. 8.8

Index-7

INDEX

Pri version, B.8-2
SefPrimary, B.8-3

printf, 5.2-39
Processing of EOC Messages, B.14-11
pute, 5.2-43
putct:ar, 5.2-44
puts, 5.2-45
putw, 5.2-46
pwd,2.1-26

Q,------------------------
qsort, 5.2-47

R _______________________ __

rand, 5.2-48
read. 5.2-49
realloe, 5.2-50
receive, B.2-4, B.3-1 0, B.4-3

B.5-3, B.7-3, B.9-4,
B.11-24, B.12-16,
B.13-27, B.14-10.

recpa, 5.7-4
rename, 5.2-51
reset_anal, B.10-7
reset data, 5.10-22
RESTARTSIM, B.3-12
resync, 5.10-14
rewind,5.2-52
rindex, 5.2-58
rm,2.1-27
rmdir, 2.1-28
rmres, 2.1-29
run, 2.1-30
rstdrv, 5.7-5
Run-Time, Chapter 4.3

System Library, 4.3-1
Program entry/exit, 4.3-1
Function Calls, 4.3-1

s ____________________ ___
s-n200, B.3-16, B.11-25, B.12-17
s-n201, B.3-17, B.11-26, B.12-18
S-T200, B.3-25, B.11-27, B.12-19
S-T203, B.3-26, B.11-28, B.12-20
scanf,5.2-53
SDLe Library (libsdlc.a), App. as

Functions:

flush, B.1-3
getphy, B.1-4
getport, B.1-5
gHtime, B,1-6
initp 1, 8.5-2
inittime, B.1-7
pi reset, 8.1-8
receive, 8.5-3
set~dr, 8.5-4.
set-n2, B.5-5
set-t1, B.~
set-t2, B.5-7
setleds, B.1-9
setphy, B.1-10
setport, B.1-11
settimer, 8.1-12
slof,8.5-8
slqn, B.5-9
status, B.5-11
timer, B.1-13
transmit, B.5-11
trsifr, B.5-12
trnsi, B.5-13
trtst, B.5-14·
trui i B.5-15
xid, B.5-16

sendpa, 5.7-3
set-adr, B.5-4
set-bit-rate, B.3-14
set_err_rate(sel), 5.10-6
set_link, 8.11-29, B.12-22
set iii, B.12-23
set=mod, b.3-15
set_mode, 5.10-7
set-n1, B.4-4, B.13-28
set-n2, B.4-5, B.5-5, B.13-29
set-net, B.3-21 , 8.11- 30, B.13-30
set-pat, B.13-31
set-pream, 5.10-7
set-l)trn, 5.10-8
set ratio, B.13-32
set=rntei, B.3-22, B.11-31
set-rsapi, 8.3-23, B.11-32
set-sapi, B.3-24, B.11-33
set-sconfig, B.3-25, B.11-34, B.12-21
set-sub, B.3-27 B.11-35, B.13-35
set-11 , B.3-28, B.4-6, B.5-6, B.13-33
set-t2, B.3-29, 8.5-7, B.1a:-34
set-tei, B.3-27 B.11-36
set-tgi, B.3-27 B.11-37
set-window, B.3-28 , B.4-7, B.11-38

B.12-24, B.13-36

Index-8

INDEX

setbasic, 8.6-3 .
setbuf, 5.2-56
setbuffer, 5.2-56
setenv,2.1-231
setllg, 8.2-5, 8.3-13, 8.11-39, 8.12-25
setjmp, 5.2-57
setlinebuf,5.2-56
setleds, 8.1-9
setphy,8.1-10
setport, 8.1-11
SetPrimary.8.8-3
settimer, 8.1-12
SetU, 8.14-1
shell, 2.1-32
Shutdown of U board, 8.14-13
size, 2.1-33
slot, 8.3-29, 8.4-8, 8.5-8, B:11-40,

B.12-26, B.13-37
slon, B.3-30, B.4-9, B.5-9, 8.11-41,

B.12-27, B.13-38
Specifier, U transceiver, B.14-5, -6, -

7, -9, -10, -11, -12.
sprintf, 5.2-39
srand,5.2-48
srch Ink, B.11-42, B.12-28
sscanf,5.2-53
start_async, 5.10-9
start sim, B.11-43, B.12-29
start:sync, 5.10-1 °
status, B.3-31 , B.4-1 0, B.5-11 , B.11-44,
5.10-15
stopsim, B.3-32
stop_test, 5.10-15
strcat, 5.2-58
strcmp, 5.2-58
strcpy, 5.2-58
strncat, 5.2-58
strlen, 5.2-58
strncmp, 5.2-58
strncpy, 5.2-58
strtol, 5.2-5
System Library Globals, 5.3-1

T ______________________ ___

2B+D Channel, configuring U board for,
B.14-3

tbreak, B.9-5
time, 2.1-34
timed_test, 5.10-10
timer, B.1-13
Timer Control (all libraries)

Functions:
getime, B.1-6
inittime, 8.1-7
settimer, B.1-12
timer, B.1-13

toascii, 5.2-60
tolower, 5.2·-60
-to lower, 5.2-60
toupper, 5.2-60
trans, B.3-33, B.11-45, B.12-31
trans_resp, B.12-32
Transceiver State.

Get, B.14-5 . .
Set, B.14-5

transmit, B.2-6, B.3-34, B.4-11 ,
B.5-11 , B.7-4, B.9-6,
B.5-11 , B.7-4, 8.9-6,
B.11-46, 8.12-32, B.13-
40, B.14-9

tready, B.2-7, B.7-5, B.9-7
trnsi, B.5-12
trsifr, B.5-13
trtst, B.5-14
trui, 8.3-35, 8.5-15, B.11-47,B.12-34
trxcni, B.3-36, B.11-48, B.12-35
trxidc, B.3-38, B.11-49, B.12-36
trxidr, B.3-39, B.11-50, B.12-37
trxrni, B.3-37, B.11-51, B.12-38
Tutorial, 1.3-1

u _______________________________ ~
U-board commands, B.14-2
U Library (libu.a), Appendix B.14
ungetc, 5.2-61
unlink, 5.2-62
userJ)trn, 5.10-11

v ______________________ ___
V.120 Library (libv120.a) App. B.12

Functions
flush, B.1-3
geLfreelinkO, B.12-4
geLfwaiting, B.12-5
get IinkO, B.12-6
get lIiO, B.12-7
get-'nklli, B.12-8
get_meswaiting, B.12-9
get_rlinkO, B.12-10
get_rxstat(}, B.12-11

Index-9

get_sconfig 0, B.12-12
geCwindow, B.12-13
getphy, B.1-4
getport. B.1-5
getime, B.1-6
initp1. 8.12-14
inittime, B.1-7
link stat, B.12-15
pi reset B.1-8
receive, 8.12-16
s n200, B.12-17
s-n201, B.12-18
st200, 8.12·-19
s -t203, B.12-20
seCsconfig, B.12-21
set link, B.12-22
seem, 8.12-23
seC window, B.12-24
setflg, B.12-25
setleds, B.1-9
setphy, B.1-10
setport, B.1-11
settimer, B.1-12
slof 0, B.12-26
slon 0, B.12-27
srch Ink, B.12-28
starCsim, B.12-29
statusO, B.12-30
-timer, B.1-13
trans, B.12-31
transmit , B.12-32
trans_resp, B.12-33
trui, B.12-34
trxcni, B.12-35
trxidc, B.12-36
trxidr, 8.12-37
trxmi , B.12-38

vi Editor
Abbreviation, 6.1-15
Append mode, 6.1-4
Arrow keys, 6.1-3

Autoindent , 6.1-13
Buffer, 6.1-8
Buffer commands:

",6.1-8
p,6.1-8
P,6.1-8
YP,6.1-9
Yp,6.1-9

Command Reference, Section 6.2
Control Character Table, 6.2-2
Special Character Table, 6.2-4

INDEX

Upper Case Table, 6.2-6
Lower Case Table, 6.2-8

Cursor control keys:
'N,6.1-4
b,6.1-4
e,6.1-4
S,6.1--8
spacebar. 6.1-4
backspace, 6.1-4
G,6.1-3
CTRL G, 6.1-3
"n, 6.1-3
+,6.1-.1
-,6.1-3

Delete Commands:
d,6.1-6
db, 6.1-6
dd,6.1-6
dL, 6.1-6
dw, 6.1-6

Editor options, 6.1-11
:set, 6.1-11

Editing commands:
a, 6.1-4
c,6.1-6
cC,6.1-6
cw,6.1-6
:e, 6.1-10
i, 6.1-4
0, 6.1-5
0,6.1-5
x, 6.1-5
z,6.1-10
CTRL H, 6.1-5

File manipulation commands, 6.1-16
Formfeed (CTRL L), 6.1~1 0
Help, 6.1-21
Insert mode, 6.1-4

Correction commands,6.1-18
Line Shifting commands:

»,6.1-13
«, 6.1-13

Macro commands:
:map, 6.1-14
:unmap, 6.1-14

Magic, 6.1-17
Magic commands, 6.1-18
Mark place, 6.1-9

m,6.1-9
',6.1-9
" 6.1-9

Parentheses (matching), 6.1-14

Index-10

CTRL B, 6.1-2
CTRL 0,6.1-2
CTRL E, 6.1-2

vi Editor Scrolling Commands
CTRL F, 6.1-2
CTRL U, 6.1-2
CTRL Y, 6.1-2
a;, 6.1-7
f,6.1-7
n,6.1-2
t,6.1-7
tag, 6.1-
A, 6.1-7
?,6.1-2
$,6.1-2

Softkeys, 6.1-19
Tabs: •

CTRL I, 6.1-8
CTRL V, 6.1-8

Text buffers, 6.1-8
Tags (-t options), 6.1-1
Undelete commands:

"np, 6.1-12
Undo commands:

u,6.1-7
uu,6.1-7

.. U,6.1-7
Wordwrap commands:

J,6.1-13
wm,6.1-13

INDEX

vv ____________________ _

Window Interface
Default attributes, 5.4-2
Escape sequences, 5.4-15
Form mode, 5.4-1
Functions:

assignleds, 5.4-3
closeform, 5.4-4
closevt, 5.4-4
disablecur, 5.4-6
enablecur, 5.4-7
getch, 5.4-8
getcwt, 5.4-9
openform, 5.4-10
openvt, 5.4-11
pmdata, 5.4-12
puM,5.4-13
selpm, 5.4-14

Screen Attributes, 5.4-16
VT100 format, 5.4-1

write, 5.2-63

x, ____________________ _

XID, B.5-21
xtrcap, 5.2-58
xtrcpy, 5.2-58
xtrncpy, 5.2-58

Index-tt

	000
	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	1_01-01
	1_01-02
	1_01-03
	1_01-04
	1_02-01
	1_02-02
	1_02-03
	1_02-04
	1_02-05
	1_02-06
	1_03-01
	1_03-02
	1_03-03
	1_03-04
	2_01-01
	2_01-02
	2_01-03
	2_01-04
	2_01-05
	2_01-06
	2_01-07
	2_01-08
	2_01-09
	2_01-10
	2_01-11
	2_01-12
	2_01-13
	2_01-14
	2_01-15
	2_01-16
	2_01-17
	2_01-18
	2_01-19
	2_01-20
	2_01-21
	2_01-22
	2_01-23
	2_01-24
	2_01-25
	2_01-26
	2_01-27
	2_01-28
	2_01-29
	2_01-30
	2_01-31
	2_01-32
	2_01-33
	2_01-34
	2_01-35
	2_01-36
	2_01-37
	2_01-38
	2_02-01
	2_02-02
	2_02-03
	2_02-04
	2_03-01
	2_03-02
	2_03-03
	2_03-04
	2_03-05
	2_03-06
	2_03-07
	2_03-08
	2_04-01
	2_04-02
	2_04-03
	2_04-04
	2_05-01
	2_05-02
	2_06-01
	2_06-02
	2_06-03
	2_06-04
	2_07-01
	2_07-02
	2_08-01
	2_08-02
	2_09-01
	2_09-02
	2_09-03
	2_09-04
	2_09-05
	2_09-06
	3_01-01
	3_01-02
	3_01-03
	3_01-04
	3_01-05
	3_01-06
	3_01-07
	3_01-08
	3_01-09
	3_01-10
	4_01-01
	4_01-02
	4_02-01
	4_03-01
	4_03-02
	4_04-01
	4_04-02
	4_05-01
	4_05-02
	4_05-03
	4_05-04
	4_05-05
	4_05-06
	5_01-01
	5_01-02
	5_01-03
	5_01-04
	5_01-05
	5_01-06
	5_02-01
	5_02-02
	5_02-03
	5_02-04
	5_02-05
	5_02-06
	5_02-07
	5_02-08
	5_02-09
	5_02-10
	5_02-11
	5_02-12
	5_02-13
	5_02-14
	5_02-15
	5_02-16
	5_02-17
	5_02-18
	5_02-19
	5_02-20
	5_02-21
	5_02-22
	5_02-23
	5_02-24
	5_02-25
	5_02-26
	5_02-27
	5_02-28
	5_02-29
	5_02-30
	5_02-31
	5_02-32
	5_02-33
	5_02-34
	5_02-35
	5_02-36
	5_02-37
	5_02-38
	5_02-39
	5_02-40
	5_02-41
	5_02-42
	5_02-43
	5_02-44
	5_02-45
	5_02-46
	5_02-47
	5_02-48
	5_02-49
	5_02-50
	5_02-51
	5_02-52
	5_02-53
	5_02-54
	5_02-55
	5_02-56
	5_02-57
	5_02-58
	5_02-59
	5_02-60
	5_02-61
	5_02-62
	5_02-63
	5_02-64
	5_03-01
	5_03-02
	5_04-01
	5_04-02
	5_04-03
	5_04-04
	5_04-05
	5_04-06
	5_04-07
	5_04-08
	5_04-09
	5_04-10
	5_04-11
	5_04-12
	5_04-13
	5_04-14
	5_04-15
	5_04-16
	5_05-01
	5_05-02
	5_05-03
	5_05-04
	5_06-01
	5_06-02
	5_07-01
	5_07-02
	5_07-03
	5_07-04
	5_07-05
	5_07-06
	5_07-07
	5_07-08
	5_07-09
	5_07-10
	5_07-11
	5_07-12
	5_08-01
	5_08-02
	5_08-03
	5_08-04
	5_08-05
	5_08-06
	5_08-07
	5_08-08
	5_08-09
	5_08-10
	5_09-01
	5_09-02
	5_10-01
	5_10-02
	5_10-03
	5_10-04
	5_10-05
	5_10-06
	5_10-07
	5_10-08
	5_10-09
	5_10-10
	5_10-11
	5_10-12
	5_10-13
	5_10-14
	5_10-15
	5_10-16
	5_10-17
	5_10-18
	5_10-19
	5_10-20
	5_10-21
	5_10-22
	5_10-23
	6_01-01
	6_01-02
	6_01-03
	6_01-04
	6_01-05
	6_01-06
	6_01-07
	6_01-08
	6_01-09
	6_01-10
	6_01-11
	6_01-12
	6_01-13
	6_01-14
	6_01-15
	6_01-16
	6_01-17
	6_01-18
	6_01-19
	6_01-20
	6_01-21
	6_01-22
	6_02-01
	6_02-02
	6_02-03
	6_02-04
	6_02-05
	6_02-06
	6_02-07
	6_02-08
	6_02-09
	6_02-10
	A_01
	A_02
	B_01-01
	B_01-02
	B_01-03
	B_01-04
	B_01-05
	B_01-06
	B_01-07
	B_01-08
	B_01-09
	B_01-10
	B_01-11
	B_01-12
	B_01-13
	B_01-14
	B_02-01
	B_02-02
	B_02-03
	B_02-04
	B_02-05
	B_02-06
	B_02-07
	B_02-08
	B_02-09
	B_02-10
	B_02-11
	B_02-12
	B_02-13
	B_02-14
	B_02-15
	B_02-16
	B_03-01
	B_03-02
	B_03-03
	B_03-04
	B_03-05
	B_03-06
	B_03-07
	B_03-08
	B_03-09
	B_03-10
	B_03-11
	B_03-12
	B_03-13
	B_03-14
	B_03-15
	B_03-16
	B_03-17
	B_03-18
	B_03-19
	B_03-20
	B_03-21
	B_03-22
	B_03-23
	B_03-24
	B_03-25
	B_03-26
	B_03-27
	B_03-28
	B_03-29
	B_03-30
	B_03-31
	B_03-32
	B_03-33
	B_03-34
	B_03-35
	B_03-36
	B_03-37
	B_03-38
	B_03-39
	B_03-40
	B_03-41
	B_03-42
	B_03-43
	B_03-44
	B_03-45
	B_03-46
	B_03-47
	B_03-48
	B_04-01
	B_04-02
	B_04-03
	B_04-04
	B_04-05
	B_04-06
	B_04-07
	B_04-08
	B_04-09
	B_04-10
	B_04-11
	B_04-12
	B_04-13
	B_04-14
	B_04-15
	B_04-16
	B_04-17
	B_04-18
	B_05-01
	B_05-02
	B_05-03
	B_05-04
	B_05-05
	B_05-06
	B_05-07
	B_05-08
	B_05-09
	B_05-10
	B_05-11
	B_05-12
	B_05-13
	B_05-14
	B_05-15
	B_05-16
	B_05-17
	B_05-18
	B_05-19
	B_05-20
	B_05-21
	B_05-22
	B_05-23
	B_05-24
	B_05-25
	B_05-26
	B_06-01
	B_06-02
	B_06-03
	B_06-04
	B_06-05
	B_06-06
	B_06-07
	B_06-08
	B_06-09
	B_06-10
	B_06-11
	B_06-12
	B_06-13
	B_06-14
	B_06-15
	B_06-16
	B_06-17
	B_06-18
	B_06-19
	B_06-20
	B_06-21
	B_06-22
	B_07-01
	B_07-02
	B_07-03
	B_07-04
	B_07-05
	B_07-06
	B_07-07
	B_07-08
	B_07-09
	B_07-10
	B_07-11
	B_07-12
	B_07-13
	B_07-14
	B_08-01
	B_08-02
	B_08-03
	B_08-04
	B_08-05
	B_08-06
	B_08-07
	B_08-08
	B_08-09
	B_08-10
	B_08-11
	B_08-12
	B_08-13
	B_08-14
	B_08-15
	B_08-16
	B_08-17
	B_08-18
	B_08-19
	B_08-20
	B_08-21
	B_08-22
	B_08-23
	B_08-24
	B_09-01
	B_09-02
	B_09-03
	B_09-04
	B_09-05
	B_09-06
	B_09-07
	B_09-08
	B_09-09
	B_09-10
	B_09-11
	B_09-12
	B_09-13
	B_09-14
	B_09-15
	B_09-16
	B_10-01
	B_10-02
	B_10-03
	B_10-04
	B_10-05
	B_10-06
	B_10-07
	B_10-08
	B_10-09
	B_10-10
	B_11-01
	B_11-02
	B_11-03
	B_11-04
	B_11-05
	B_11-06
	B_11-07
	B_11-08
	B_11-09
	B_11-10
	B_11-11
	B_11-12
	B_11-13
	B_11-14
	B_11-15
	B_11-16
	B_11-17
	B_11-18
	B_11-19
	B_11-20
	B_11-21
	B_11-22
	B_11-23
	B_11-24
	B_11-25
	B_11-26
	B_11-27
	B_11-28
	B_11-29
	B_11-30
	B_11-31
	B_11-32
	B_11-33
	B_11-34
	B_11-35
	B_11-36
	B_11-37
	B_11-38
	B_11-39
	B_11-40
	B_11-41
	B_11-42
	B_11-43
	B_11-44
	B_11-45
	B_11-46
	B_11-47
	B_11-48
	B_11-49
	B_11-50
	B_11-51
	B_11-52
	B_11-53
	B_11-54
	B_11-55
	B_11-56
	B_11-57
	B_11-58
	B_11-59
	B_11-60
	B_11-61
	B_11-62
	B_11-63
	B_11-64
	B_11-65
	B_11-66
	B_11-67
	B_11-68
	B_11-69
	B_11-70
	B_11-71
	B_11-72
	B_11-73
	B_11-74
	B_12-01
	B_12-02
	B_12-03
	B_12-04
	B_12-05
	B_12-06
	B_12-07
	B_12-08
	B_12-09
	B_12-10
	B_12-11
	B_12-12
	B_12-13
	B_12-14
	B_12-15
	B_12-16
	B_12-17
	B_12-18
	B_12-19
	B_12-20
	B_12-21
	B_12-22
	B_12-23
	B_12-24
	B_12-25
	B_12-26
	B_12-27
	B_12-28
	B_12-29
	B_12-30
	B_12-31
	B_12-32
	B_12-33
	B_12-34
	B_12-35
	B_12-36
	B_12-37
	B_12-38
	B_12-39
	B_12-40
	B_12-41
	B_12-42
	B_12-43
	B_12-44
	B_13-01
	B_13-02
	B_13-03
	B_13-04
	B_13-05
	B_13-06
	B_13-07
	B_13-08
	B_13-09
	B_13-10
	B_13-11
	B_13-12
	B_13-13
	B_13-14
	B_13-15
	B_13-16
	B_13-17
	B_13-18
	B_13-19
	B_13-20
	B_13-21
	B_13-22
	B_13-23
	B_13-24
	B_13-25
	B_13-26
	B_13-27
	B_13-28
	B_13-29
	B_13-30
	B_13-31
	B_13-32
	B_13-33
	B_13-34
	B_13-35
	B_13-36
	B_13-37
	B_13-38
	B_13-39
	B_13-40
	B_13-41
	B_13-42
	B_13-43
	B_13-44
	B_13-45
	B_13-46
	B_13-47
	B_13-48
	B_13-49
	B_13-50
	B_13-51
	B_13-52
	B_14-01
	B_14-02
	B_14-03
	B_14-04
	B_14-05
	B_14-06
	B_14-07
	B_14-08
	B_14-09
	B_14-10
	B_14-11
	B_14-12
	B_14-13
	B_14-14
	B_14-15
	B_14-16
	B_14-17
	B_14-18
	B_14-19
	B_14-20
	B_15-01
	B_15-02
	B_15-03
	B_15-04
	B_15-05
	B_15-06
	B_15-07
	B_15-08
	B_15-09
	B_15-10
	B_15-11
	B_15-12
	B_15-13
	B_15-14
	B_15-15
	B_15-16
	B_15-17
	B_15-18
	B_15-19
	B_15-20
	B_15-21
	B_15-22
	B_15-23
	B_15-24
	B_15-25
	B_15-26
	B_15-27
	B_15-28
	B_15-29
	B_15-30
	B_15-31
	B_15-32
	B_15-33
	B_15-34
	B_15-35
	B_15-36
	B_15-37
	B_15-38
	B_15-39
	B_15-40
	B_15-41
	B_15-42
	B_15-43
	B_15-44
	B_15-45
	B_15-46
	B_15-47
	B_15-48
	B_15-49
	B_15-50
	B_15-51
	B_15-52
	B_15-53
	B_15-54
	B_15-55
	B_15-56
	B_15-57
	B_15-58
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11

