//'iTANDEMCOMPUTERS

Design Methodology for System
Correctness: Lessons From The
Tandem NonStop CLX

Peter L. Fu

Technical Repoft 87.7
November 1987
Part Number 11642

Design Methodology For System Correctness:
Lessons From The Tandem NonStop CLX

Peter L. Fu

Technical Report 87.7
Noyember 1987
Part Number 11642

Table of Contents

Abstract L L Lo 1
Introductiono oL 1
System Design Correctness 1
Areas of Correctness 1
Correctness Responsibilities. 1
Common Design Errors 2
Design Methodology forthe CLXCPU. 2
Conceptual Design 2
LogicDesign 2
Microcode Design 2
Integration3
Two Levels of Modeling 3
Verification3
Design Commitment 3
Hardware Debugging 3
Production Tests4
A Fault-Tolerant Design Methodology. 4
Graceful Degradation. 4
Design for Testability 4
High Fault Coverage Self-Tests 4
Modularity e .4
Fault Avoidance e e e e e e . 4
FaultMasking 4
Fault Secureness5
Self-checking Design 5

DESIGN METHODOLOGY FOR SYSTEM CORRECTNESS:
LESSONS FROM THE TANDEM NONSTOP CLX

Peter L. Fu

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014

Abstract

This paper presents a methodology which allows a small design
group to quickly produce a highly integrated processor. The
methodology presented here is based on the design experience of
the CPU for the Tandem NonStop CLX. The first section
focuses on system design correctness, who shares the
correctness responsibilities and some of the likely design errors.
The second section gives an account of the design and
verification process of the NonStop CLX CPU. The last section
draws lessons from this process and introduces parallels
between the techniques for implementing highly reliable or fauit-
tolerant system and the design methodology for system
correctness.

Introduction

Most of today's system projects, though modest in size and
scope, use aggressive circuit technology for performance and
competitiveness. To be successful, these projects must seek an
optimal investment in time, people and design tool resources.
There is a need for system design environments which enable a
small number of system designers to define, implement, verify
and deliver such a product on time. Most of today's silicon
compilation, standard cell and gate-array vendors are striving to
provide such an environment.

The methodology presented here is based on the design
experence of the Tandem NonStop CLX™ CPU [1]. It grew
out of planning, on-the-job decisions and lessons learned in
retrospect. Examples, taken from the design and verification
process of the CLX CPU, are used for illustration. Although
the processor was designed using silicon compilation, the
methodology applies equally well to other forms of ASIC
designs.

System Design Correctness

This section of the paper focuses first on the particulars of what
design correctness encompasses. This is followed by a
discussion on whom design correctness responsibilities fall, in
the context of a layered technology partnership between vendors
or groups within a company. Finally, a discussion on common
design errors concludes this section.

Areas of Correctness

The designer should be aware of the following areas of
correctness:

» Feature correctness and completeness. [tis

obvious that in a fully functional design, each feature
~ must be impiemented and perform as specified.

« Correctness should also be viewed in context. External
interface correctness is as important as internal
design correctness.

Cost, Performance and Flexibility. A design is
not correct if it costs too much to manufacture or does
not meet performance or capacity requirements. Beyond
mere meeting specifications to the letter, a good design
should also consider some flexibilities in its
implementation. Such flexibility might be needed later
on in the project to make up for some lost performance in
other areas.

« A design is not correct if it exceeds specified physical
constraints such as size, weight and power
consumption.

A design is also not correct if the intended testability
coverage is not implemented. This is important for
manufacturability and system maintenance.

Data Integrity Coverage. System designer must
consider the appropriate amount of protection from
component failures as a correctness issue, since error
detection and recovery techniques are difficult to be
retrofitted into systems.

.

.

Correctness Responsibilities

Any state-of-the-art system project requires expertise from
multiple disciplines. From project management and efficiency
points of view, it is desirable to partition project responsibilities
according to these disciplines, where there can be well-defined
interfaces and accountable shares of design correctness
responsibilities. A multi-vendor partnership may involve a
system manufacturer doing the system design, a tools vendor
providing silicon compilation or other ASIC tools and a
semiconductor foundry providing fabrication and testing
services. An inter-group partnership may consist of a design
group, a CAD group and the fab-line of the same company.

System designers must have a full understanding of the
system requirements and the technology base. - The full
flexibility and limitations of the tools and technology capabilities
must be taken into account in assessing design implementation

and design process options. Appropriate aggressiveness and
conservativeness need to be weighed against system correctness
in the final product.

Technology/CAD tools suppliers must fully understand
and be able to exploit the capavilities of the underlying circuit
technology. The overall responsibility to the system designer is
to present a level of abstraction, which facilitates the system
design process. To maintain design correctness, all tools must
be carefully verified. To enhance design correctness, all tools
should be made extensible where appropriate, especially
simulation tools. Tool development must stay ahead of intended
usage. Size and other limits in the tools should be aggressively
tested in advance of usage.

Semiconductor foundries or fab-line services form the third
partner in creating correct systems. Besides maintaining
correctness internally in their manufacturing process, they must
ensure correctness in their interfaces with the CAD tools.
Further responsibilities include correlating the performance of
their process with the tools supplier so that the latter can calibrate
their performance prediction tools for the system designers.

Common Design Errors

Given the capabilities of the current CAD tools and fab-line
automation, many of the more obvious design errors such as
inconsistent netlists, electrical and physical design rule violations
are automatically screened out. Aside from errors within CAD
tools or the fabrication process itself, imperfect designs tend to
be due to errors such as:

+ mis-communicated specifications
« interface/protocol mismatch
« incomplete or erroneous error/exception handling

» mishandling of boundary conditions for some operations
or algorithms

- missing feature

incorrect initialization or unresettable state

no source on bus under certain conditions

unintended and undesirable side effects of some
functions

missed testability coverage

.

Design Methodology for the CLX CPU

System design methodologies to ensure correctly designed
products are evolving. Not long ago, the standard procedure
was to first produce a careful paper design, reducing concepts to
good practical implementations. Prototypes were then built,
debugged, revised and debugged again. The advent of VLSI
made this obsolete. With its inherent complexities and high cost
of making revisions to a design, it is paramount that the
confidence in design correctness be high before commitment to
silicon.

The current approaches span a spectrum ranging from full
system modeling and simulation [2][3], to hierarchically
structured design validation and correct-by-construction
techniques [4], to proof of hardware design correctness [5]. But
for most projects with few designers, using highly leveraged
tools to manage complexity, the former two approaches may be

too costly, in terms of time and resources. On the other hand,
the proof of design correctness tools are not yet available
commercially. The methodology used at Tandem for the design
of the NonStop CLX CPU is an example of utilizing available
tools to the fullest, under the constraints of time, human and
machine resources. This methodology is based on the
GENESIL® design system from Silicon Compilers Systems
Corporation. In addition, complementary tools for design
verification, firmware development, lab debug and chip test
support were developed by Tandem.

Conceptual Design

The design goal of the NonStop CLX was to build a fault-
tolerant, high performance and low-cost minicomputer
compatible with the existing line of Tandem NonStop
computers. The investigation of the micro-architecture and-the
target technology was an interactive process, started in early
1985. Various ASIC alternatives were evaluated, with key
sections of logic serving as test design vehicles. It was decided
that silicon compilation based on GENESIL provided the best
leverage for integration, performance and design efficiency from
a rich set of high-level functional blocks. Much effort was
applied to understand the capabilities and limitations of the tools
before logic design was begun. The result was an architecture
that matches well with the technology, thus enhancing the
probability of a correct implementation.

Logic Design

A careful top-down paper design was made, resulting in a
detailed block diagram of the functions of a chip-set, the major
blocks within, and all the major buses. Since there were few
designers — three for the most complex of the four chips —
communication problems on design interfaces were minimal.
Actual logic implementation and data entry proceeded bottom-

up.
Micro-code Design

When the micro-architecture crystallized, the micro-word field
definitions were documented. Key micro-instruction sequences
were written to verify the capabilities of the micro-engine to
support the functionality and performance of the macro-
architecture. Firmware designers then customized a universal
macro-assembler to generate CLX micro-code. In order to
manage the inter-field dependencies, parameterized templates
were used to ensure consistency. The multi-stage pipeline also
involved many multi-line interactions, and a post-processing
constraint checker was built to monitor possible conflicts
between sequentially executed lines of micro-code. This was
possible with the help of a network builder program, which
finds all paths of execution the micro-code could take.

Special hardware features deserved special attention. The micro-
ROM within the CPU chip cannot be changed once the design
was committed to fab. Besides having a need to be correct (and
complete), it needed to avoid hard-coded references to

. relocatable sections of code or data. Also, as an optimizing

feature, the first lines of each macro-instruction were to reside in
a skipping region (see [1]) and do not sequence like normal
micro-instructions. Instead of fragmenting the code, source"
reorganization was chosen. as a postprocessing step, relieving

firmware designers from this complexity. Overall, automation
was used wherever possible to enhance code correctness.

Integration

The integration of sub-blocks into chips happened rather rapidly,
partly due to many of the high-level functional blocks available
from the GENESIL. A tradeoff was made in the areas of control
and decoding logic, which would take more time to optimize.
Many of these design details such as logic partiioning and state
assignment problems (for size and timing), are still best handled
by human designers. Rather than waiting for time consuming
optimizations, preliminary functional designs were made such
that the whole system could be modeled to obtain global
functonality, timing analysis and chip sizing feedback as soon
as possible.

In rerospect, this was instrumental for functional simulation,
but these early estimates for size and timing were too optimistic.

Two Levels of Modeling

There were two simulaton efforts, one for hardware and the
other for firmware development. The hardware simulation
modeled as much of the processor as possible at the functional
level with logic strengths and don't-cares. This included full
functional models of all custom chips, full control store, address
and data caches, full-sized main memory and interface logic,
which were all done on the GENESIL functional simulator.
Models for the chips were automatically generated when the
designs were entered into the system. Off-chip TTL interface
logic was also constructed within GENESIL, as if they were
other chips.

This modeling effort was notably streamlined by the full
programming language and underlying operating system
interface support in the very extensible GENESIL simulator.
For example, the full 16 MBytes address space of main memory
with ECC and nibble-wide don't-cares was modeled without t00
much effort (see Appendix A).

The firmware simulation model was extracted from the hardware
structure and was kept up-to-date as the design changed. The
firmware simulator used behavioral modeis of hardware blocks,
optimized for speed. Its primary purpose was for low-level
diagnostic program development and verification. The firmware
simulator ran on a Tandem system and was more than 100 times
faster than the GENESIL simulator. Given that the firmware
model tracked that of the hardware, a translation tool was built
such that the extraction and updating could be automated and
errors minimized. This was possible because the GENESIL
design information was accessible and presented in a well-
defined and parsable table format. This eliminated the problem
ot‘oéhi two groups verifying their design to an inconsistent
model.

Verification

Extensive simulation is key to design verification. Limited
interactive simulation of individual functional areas was
done to flush out local design errors. Exhaustive testing was
used for some critical areas. For example, all 64K possible
macro-instructions were simulated to check the address

formation logic against a behavioral model. The most thorough
verification were achieved when the whole or at least a major
part of the system was simulated using the hardware model.
The logic was then simulated in context, revealing a number of
interface problems. Micro-coded diagnostics were written
10 test the low-level functionality of specific portions of the
chips. These tests were first checked out using the firmware
simulator. Since these were self-contained micro-programs,
they were loaded directly into the full control store model, and
were executed by the simulated processor.

Once instruction-set micro-code was loaded into the simulated
control store, macro-code could be directly simulated. Simple
programs or segments of compiled object code were used as
macro-instruction based tests. The program and data
segments were loaded into cither the cache or main memory
models. At this point, the ability to generate meaningful tests
that simultaneously stressed many area of the design was greatly
improved. For example, the many cache operations and
memory interactions, such as cache fill, write-through, address
translation and cache conflicts, were exercised. Throughout
each stage of the verification process, and especially when many
memory clements were involved, the use of the don't-care or
indeterminate state proved to be extremely helpful. Many
errors, from reset or initialization problems, to unintentional
operations, to subtle non-deterministic behavior showed up as
indeterminate outputs. Still more design errors were caught
early because they accessed uninitialized locations in control
store, cache or memory.

Design Commitment

Aside from functional verification, other aspects of design
comrectness needed attention before committing chips to silicon.
Much time was spent on optimizing the speed performance of
the CPU chip. GENESIL provided a static timing analyzer, as
opposed to timing simulation. Indeed, worst-case timing under
all logic conditions, not just the iming under normal operations,
was required due to pseudo-random testing.

The NonStop CLX includes many fault-detection mechanisms
such as parity, ECC, cross-coupled checking, and testability
mechanisms such as non-destructive freeze and scan, single-
stepping, built-in pseudo-random self-test support [6]. All of
these were tested before design commitment. Freeze and scan
were ‘especially critical for hardware debugging (seec below).
Hence, in addition to free-running mode, most tests were
executed in freeze-step mode and some were executed in freeze-
scan-step mode. Routines written in the GENESIL simulation
environment simulated this debugging environment.

The length of the regression test suite. totaled over 250,000
clocks. Before the design commitment of the second revision of
the CPU chip, this regression test was done in one and 2 half
weeks.

Hardware Debugging

The CLX CPU contains a maintenance microprocessor which
can interrogate and set all register and memory elements through
the freeze, scan and single-step mechanisms. When all the
components were realized in hardware, the exact same tests
created earlier were loaded and used for initial system bring-up.

Without exception, all tests ran exactly as simulated. All four
chips were functional on first pass, but there were indeed minor
design errors that escaped simulation, forcing small changes in
micro-code. Only the CPU chip was revised, primarily for
speed improvements.

Production Tests

The system simulation model was leveraged to generate test
vectors for production chip tests. Micro-coded diagnostics and
segments of macro-instruction tests were cxecuted on the
simulator and signals at the chip boundaries were captured to use
as test vectors. Even hand-generated and specialized scan-
related test vectors were simulated and recaptured, giving them
full chip pin coverage on every vector.

Finally, the GENESIL simulator's list-processing capability (a la
LISP) even allowed partial fault-coverage analysis. A toggle
analysis of most simulator visible nodes ran only a few times
slower than normal (see Appendix B). After the chips were
released, idle time on the GENESIL CAD system was used to
run stuck-at-fault simulation on the same nodes. It took a few
months, but the results provided the first basis for improving
fault coverage of the test vectors (see Appendix C),

A "Fault-Tolerant" Design Methodology

It is every designer's ideal to achieve perfection, to do it right the
first time and on time. But given the time pressure of the
comrmercial competitive environment, it is practically impossible
to be 100% thorough in the design verification process. The
task of building "perfect” systems is likened to the reliability of
computer systems. Each single Tandem processor is designed
to be no less failure-prone than other vendors' processors, being
built with similar components. But because of two key features
of Tandem NonStop systems — data integrity and fault-
tolerance — the probability of a Tandem NonStop system being
unavailable or delivering an erroneous result is substantially
reduced. Likewise, providing some degree of “fault-tolerance”
in the design process points to solutions to deal with real-life
design for correctness problems, just as a fault-tolerant computer
deals with real life component failures.

It is perhaps wiser to address the system design correctness
problem in terms of a cost measure of design errors in each
feature. A priority for verification can be established based on
this cost. This error cost is often not binary — complete success
versus catastrophic failure. In many cases, especially for
computer systems, there are alternate means or workarounds to
do a certain function, possibly causing some performance or
cost penalty, but without requiring the complete removal of the
error.

Following are known techniques used in building highly reliable

systems, and their parallels applied to a "fauit-tolerant” design
for correctness methodology. {7](8]

Graceful Degradation

The ability to isolate a failure, while operating the system at
reduced performance, is called graceful degradation.

In the context of design correctness, wherever possible and
especially for complex arcas of the design, some fall-back
strategy could make the difference between a non-functional
system or a reduced performance system. Examples include
patchable ROMs or optimized sequences that could be run non-
optimized. In the NonStop CLX, most of the micro-code lincs
in ROM within the CPU chip can be run in the external control
store, with reduced performance.

Design for Testability

Just as a physical system that is highly testable enhances
manufacturing efficiency, if a designer considers how the
unfinished design is to be verified, overall design time is
reduced. There is often some flexibility in partiioning and
structuring a design. Choosing the more intuitive alternatives
could help the design debug effort, thus enhancing correctness.

High Fault Coverage Self-Tests

Periodic self-tests improve system reliability and availability, by
spotting failures before they actually cause the system to shut
down or run at reduced performance or reduced fault-tolerance.
Similarly, in system design verification, it helps to have a set of
high fault coverage regression tests, such that as the design
moves closer to full implementation, the validity of earlier
designed modules can be assured. In general, the sooner lower
level models can be integrated into a more complete model, the
sooner more leveraged tests can be written for the subsystem, in
terms of fault coverage and future conversion into production
system tests, For this reason, integration happened early in the
design cycle of the CLX CPU.

Modularity

Modularity encourages localization of complexity, simplification
of inter-module interfaces and reduction of error detection
latency. The same applies to the design process.

Fault Avoidance

Fault avoidance seeks to increase system reliability by reducing
the possibility of failures. If a particular fault can cause a total
system failure, it deserves critical analysis. In the design for
correctness realm, selective exhaustive testing should be applied
in critical areas intolerant of design errors. In the CLX, macro-
instructions are dispatched to starting micro-addresses with a
hard-coded PLA in the CPU chip. A serious performance
penalty would be incurred if certain high frequency instructions
were involved in any incorrect mapping. Consequently, this
PLA was exhaustively tested with all possible opcodes.

Fault Masking

Fault masking as used constructively in a fault-tolerant system is
employed to prevent erroneous outputs. Conversely, fault
masking is to be avoided in system verification. Care must be
taken not to certify correctness of a design prematurely just
because a program or diagnostic has run successfully. Consider
a fault which causes a whole section of the test to be skipped.
The test may not be designed with such a fault in mind, and
indicates no errors found at the end. At least for the first time
such a test is run, the entire execution should be followed in

detail. In many cases, it is true that such tests have coverage of
faults beyond its intended fault set. Careful tracing may reveal
such design flaws in logic unrelated to a particular test.

Anotl_icr potentially more serious type of fault masking is
unintended side-effects. If possible, as much state information
in the system as practical should be checked after each diagnostic
test.

Fault Secureness

Fault secure techniques used in reliable systems ensure that the
outputs are correct unless an error is indicated. Error-detecting
and correcting codes are typically used to implement a fault-
secure system. In the context of design verification, system
tests and diagnostics are most often included in a regression test
- suite for future retesting as the design progresses. When these
are rerun, there will not be an opportunity to trace the execution
in detail again, as suggested above. It would be highly desirable
to strengthen these tests with error detection or watchdog
mechanisms separate from the actual tests. One effective yet
simple mechanism is to associate with each test 2 measure of
teasonableness. For example, the number of simulated clock
cycles as well as the final system state for each test can be
captured. These can then be compared against the carefully
monitored first run.

Seif-checking Design

A self-checking circuit produces an error indication when there
is an intemnal fault or inconsistency. In data or transaction
processing, data integrity is just as important as availability.
Many systems today try to provide both features, particularly in
memory systems or communication subsystems where parity,
error-detecting and correcting codes are used. Including these
built-in fault detection mechanism in the modeling during system
verification will improve design error sensitivity. For example,
enabling the checksum mechanism in a receiver may reveal
errors in a data packet early, before further error propagation,
saving the time necessary to backtrack. In the CLX lab debug
phase, the totally self-checked duplicate and compare cross-
coupled checking scheme was very sensitive to uninitialized state
in the CPU chips. Some otherwise difficult to trace operating
system support micro-code problems were uncovered early.

Conclusions

As computer-aided design technology progresses, a greater
portion of the task of mapping design concepts to appropriate
implementations is being automated. The focus of design
correctness issues are moving away from the mechanical aspects
of the design process into more global and complex aspects.
This paper presented the strategy taken by the Tandem NonStop
CLX design team to manage these issues, resulting in the
successful introduction of the system. Further analysis of this
process revealed many parallels with the techniques used in
fault-tolerant computing. It is hoped that lessons leamed here
will result in further improvements of future design
methodologies for system design correctness.

References

{1} Lenoski, D. E., A Highly Integrated, Fault-Tolerant Minicomputer:
The NonStop CLX,” Digest of Papers, Compcon Spring 1988.

[2) Bak, D.T. and C. Wiecek, “VAX 8800 Design Tools and
Methodology,” Digest of Papers, Compcon Spring 1987, pp. 329-332.

(3] Ohno, Y., et al, “Principles of Design Automation System for Very
Large Scale Computer Design,” The 23rd Design Awomation
Conference Proceedings, 1986, pp. 354-359.

[4] Ryan, R.J., “The CLIPPER™ CAD System Integrated Hierarchical
VLSI Design,” Diges:s of Papers, Compcon Spring 1986, pp. 186-190.

{5] Barrow, H. G., “Proving the Correctness of Digital Hardware Design,”
VLSI Design, July 1984, pp. 64-77.

[6] Garcia, D. 1., “Built-In-Self-Test for the Tandem NonStop CLX
Processor,” Digest of Papers, Compcon Spring 1988.

{7] McCluskey, E.] “Hardware Fault Tolerance”, Digest of Papers.
Compcon Spring 1985, pp. 260-263.

(8] Siewiorek, D. P, et al., The Theory and Praciice of Reliable System
Design, 1982,

Appendices

The following GENIE™ code segments were developed at
Tandem and used for design verification of the CLX. GENIE is
the programatic interface of the GENESIL functional simulator
for advanced simulation. It has C-like statements and LISP-like
prefix operators or commands and list-processing support.
Binary numeric values have 3 states: 0, 1 and indeterminate.

Appendix A
/t

** Functions to Model Arbitrary Sized RAM
** Written by: Peter Fu, Charles Spirakis.
*x Tandem Computers, Inc.
x %k
** These functions use a UNIX™ file to model
** a3 22 bit wide RAM, each RAM location takes up
** exactly 10 bytes, as modeled by the C string:
*x = QOxhhhhhh\n®, where h is a hex digit or 'X'
** for a nibble-wide indeterminate value.
** The file seek function allows random access.
% In most UNIX systems, locations that have not
*%x yet been written to are "holes™ in the file
** and do not occupy unnecessary disk space.
** If read, these unwritten locations return
** ASCII NULs. Remember to remove apparently
*% huge files when done!
* %
** Ram_Init: initialize the details of the RAM
*/
func Ram_Init {

set ram_width 22

set ram_hexwidth 6

set ram offset 10

/* Now open RAM file for reading and writing. */
open ram_file "RAM model” r+

"

/* Define a 22-bit indeterminate value to */

/= present on errors. */
set ram_indeterminates Obiiijiiiiiiiidsidiidiii
set ram_status 1 /* 1 == status ok */
return @ram_status

}

/Q

*+ Pam_Write: writes to the ram file. Accepts an
b address and a value, and deposits the value
Lhd in the location defined by the address.

®® If the address has any indeterminate bits,
kx no write is performed, and RAM status is set
** to corrupted.

*/

func Ram Write { args addr value
/* make sure the address does not contain */

/* any indeterminate bits x/
/* an XOR between 2 indeterminate bits */
/* does not result in a 0 */

if (== 0 (bitxor Raddr Qaddr)) {
seek ram_file (* Gram_offset @addr)
writeto @ram_f;le " 0x%s\n" (hex @value
@ra= _hexwidth)
} /* else */ |
println "diskram zapped!!"
set ram_status 0
return @ram_indeterminates

return @value
}
/*
*+ Zam_Read: reads from the RAM file. Accepts an

xx address. If it has no indeterminate bits,

** and the status of the RAM is good,

*x and there is a value for that address, that

x % value is returned. Otherwise, indeterminates
k& are returned.

*/

func Ram_Read { args addr
vars tstchr retval
if (== 1 @ram_status) /* see if corrupted */ {

/* if all address bits are determinate */
if (== 0 (bitxor @addr Raddr)) {

seek ram_file (* @Gram_offset faddr)

/* Look for an ASCII space to indicate if */
/* there is real data here */
if (== 1 (readfrom @ram file "%¢” tstchr)) |

if (== (ord " ") (ord @tstchr)) {
/* Yes, there is data */
if (== 1 (readfrom @ram_file "%x" \
retval)) {
return @retval

}
}

return @ram_indeterminate

}

Appendlx B

** Simplified version of Actlvity ‘Simulation
** Written by: Peter Fu, Tandem Computers, Inc.

. R

t* This core routine samples the nets in the

** node_list and updates in actv_list the

bl cortesponding list of ttlpletﬂ for each net.

** EZach net has as many triplets as its bit width.

** Called once each clock, Actv_Update will
** jncrement one of three counters, depending on
** the value of the bit being 0, 1 or indeterminate
** The following is an associative list, mapping
** each logic strength to the three values.)
*/
set actv_ref '((=0 0) ("1™ 1) ("i" 2) ("p" 2) \
(*%* 0) ("H™ 1) ("I" 2) \
("2* 0) ("h™ 1) ("x" 2) ("z" 2))

func Actv_Update {
vars n nw bn bv lp la bc nc
setptr la actv_list 0
foreach n @node_list {
picknet @n
set nw (netwidth)
set nv (bin (shownetvalue) @nw)
for bn 0 (- 2nw 1){
set bv (getref @actv_ref (substr @nv Gbn 1))
setptr lp la 0 @bn @bv
set nc (+ 1 (f£irst @lp))
deleteat ip
insertat i1p @nc
}
o+t la
}
return

}

Appendix C
/*
** Poor Man's Fault Simulation (simplified)
** Written by: Peter Fu, Tandem Computers, Inc.
*/
func FaultSim {
/* Process ALL simulator visible nets */
foreach n net |{
if (StuckVec &n "L") { /* found errors */
println "Net" @n "stuck-at-0 covered.”
} /* else */ {
println *"Net" @n "stuck-at-0 NOT covered!”

if (StuckVec @n "H") { /* found errors */
println ®"Net" @n "stuck-at-l covered.”
) /* else */ {
println *"Net” 8n "stuck-at-1 NOT covered!"
}
}
func StuckVec { args node val
/* Force a particular net hi or lo, then run */
/* the available tests. If there is no error */
/* the net is not covered for stuck at faults */
bindnet @net 8val
/* Insert code here to run test vectors */
/* until error or done */
return (geterrcat) /* return # of errors */

™ Tandem, NonStop and CLX are trademarks of Tandem Computers
Incorporated. UNIX is a rademark of AT&T Bell Laboratories. GENIE
is a trademark of Silicon Compiler Systems Corporation.

® GENESIL is a registered trademark of Silicon Compiler Systéms
Corporation.

Distributed by
//'|TANDEMCOMPUTERS
Corporate Information Center
19333 Vallco Parkway MS3-07
Cupertino, CA 95014-2599

