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Abstract

The NonStop CLX, a highly integrated version of Tandem
Computers' fault-tolerant NonStop architecture, is described.
An overview of the system block diagram and a detailed
description of the CLX processor is given. The processor is
based on a custom CMOS chip-set developed using silicon
compilation techniques. The CPU micro architecture is a hybrid
of traditional minicomputer and high performance micro-
processor architectures. This merging leads to a number of
novel structures including a single static RAM array that is used
as writeable control store, data cache and page table cache. The
processor includes a high degree of fault checking in order to
assure data integrity and fault-tolerant operation.

System Organization

The block diagram for the CLX™ is shown in Figure 1. The
structure is that of a private memory multiprocessor and is
similar to that of earlier Tandem NonStop™ systems (TNS) [1].
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Figure 1. System Block Diagram

- Each CPU communicates to other CPU's over two high speed

Interprocessor buses (IPB's). Each bus operates synchronously
on 16 bit wide data providing a peak bandwidth of 20 Mbytes /
sec. The two buses transfer independently providing a total of
40 Mbyte / sec of bandwidth to the maximum of six processors
in a CLX system.

CPU's communicate with I/O devices either through a local VO
bus or through the IPB to another CPU and its /O bus. Each
CPU contains a single asynchronous, burst multiplexed I/O bus
which transfers data at a maximum rate of 3.7 Mbyte / sec. to a
maximum of 16 controllers. /O controllers are dual-ported and
can be driven by either of the CPU's to which they are attached.

The CLX utilizes a Multi-Function Controller (MFC) based on a
Motorola 68010 to control dual Small-Computer-System-
Interfaces (SCSI) containing up to five disk drives and one tape
drive. The MFC also contains 2 asynchronous and 1
synchronous communication lines together with a dedicated
maintenance communication line. The MFC runs it’s own real-
time operating system kernel that coordinates the independent
disk, tape, comm. and maintenance tasks.

Not shown in Figure 1 are the system maintenance buses.
These buses allow maintenance and diagnostic information to
travel between the system control panel, the processors, the
multifunction controllers and the power and environmental
monitors.

A fully populated single cabinet system contains two CPU
boards with optional expansion memory, six I/O controllers,
five 145 Mbyte disk drives and one cartridge tape drive. Fauit-
Tolerant (dual) power supplies and cooling fans are also
provided within the cabinet. The entire system is designed to
operate within the power, noise and size requirements of an
office environment. Expansion beyond a single cabinet is
handled with additional I/O or CPU cabinets.

The message based Guardian 90™ operating system [2] provides
all processes with a seamless interface to all CPU's and
peripherals. All resources are viewed in a uniform way
regardless of their physical position within the system.
Networking software extends this transparency between
systems. Enhanced diagnostic software together with careful
mechanical and electrical design of each customer replaceable
unit allows 98% of all component failures to be serviced by the
user.

The system is optimized for On-Line Transaction Processing.



The best measure of performance of such an OLTP system is
Transactions Per Second (TPS) {3]. For a specific benchmark
environment, the TPS rating gives a true measure of system
performance that is independent of processor type and includes
the performance of the /O subsystem, the operating system and
application code. The most widely used transaction benchmark
is debit-credit (ET1). Each transaction in the ET1 benchmark
represents a typical bank teller account update. The CLX system
has demonstrated a performance of 2.5 TPS per processor on
this benchmark (with less than 2 second response time for 90%
of all transactions). This rating includes the use of a full SQL
relational database and transaction logging. For OLTP
applications it has also been demonstrated that the NonStop
architecture shows linear performance growth in excess of 32
processors[4]. For the CLX this implies a 1-6 processor system
can deliver between 2.5 to 15 TPS. o

Fault-Tolerance is provided through module redundancy and
fail-fast module operation. Module redundancy implies that each
unit must be replicated so that the system can continue operation
in the face of a failure of one module. The system as a whole
will only fail if there is a second failure within the window of
time it takes to repair an initial failure. This increases the mean
time to failure of the system orders of magnitude greater than
any individual module. Note that redundancy does not imply
replicated units need to be idle. In the case of NonStop CPU’s,
checkpointing [S] allows CPU's to work independently, but still
have all the necessary state to recover in the event of a failure of
a primary CPU. . Likewise, under normal conditions IPB's
transfer data simultaneously and mirrored disks perform inde-
pendent reads.

Fail-fast or fail-safe operation is required of each module so that
the integrity of data is not compromised by an undetected faulty
module. This implies that replicated components must fail in
such a way as to stop operating. This assures that faulty outputs
do not corrupt the module's back-up or both sections of a
redundant system interface.

Processor Organization

The TNS processor architecture is optimized to support OLTP
and a message based OS environment. In this environment
operations such as interprocessor bus transfers and block moves
are more important than in typical processors. Conversely,
operations such as floating point arithmetic are not as critical to
overall performance.

The CLX supports the entire instruction set of the TNS
architecture[6]. The architecture defines a stack based CISC
processor together with its interprocessor and /O buses. The
definition includes an explicit register stack used to accelerate
stack computations and to hold array indices. Sixteen and thirty-
two bit operations with thirty-two bit addressing are defined by
the instruction set. The machine includes complex instructions
that support OS operations, block operations, and decimal and
floating point data types.
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Figure 2. Processor Block Diagram

The processor block diagram is shown in Figure 2. The
processor logic is implemented primarily within six custom
CMOS chips. The chip set is fabricated in a 2|t drawn gate,
n-well CMOS process and was designed using a silicon com-
piler supplied by Silicon Compiler Systems Corporation [7].
Some of the relevant statistics of chip set are shown in Table 1.
The four chip types were implemented, inclusive of definition
through to functionally correct silicon in the laboratory, by 6 en-
gineers in 15 months.

Table 1. CPU Chip-Set Statistics

CPU MC 10C IPB
Vertical (mils) 495 352 309 300
Horizontal (mils) 496 367 311 300
Transistor Sites 78,301 29,408 14,785 19,565
Transistors 60,469 25,653 12,177 18,872
Power Dissipation 20W  13W 09W 09W
VO pins 110 95 71 95
Power pins 15 13 11 10
Ground pins 15 12 11 10

The two CPU chips are identical and run in lock-step to form a
totally self-checked module. These chips include the complete
CPU function, and work together with a single bank of static
RAM (HRAM) that functions as the microcode control store,
page table cache and data/instruction cache. The pRAM is
realized with thirty 16k x 4, 35ns SRAM parts organized as two
banks of 16k by 60 bit words. This provides for 14k words of
microcode and scratch pad memory, 2k words of page table
cache with two entries per word, and 16k words of instruction /
data cache with four bytes per word.



The MC chip includes the control and ECC logic (SEC/DED) to
interface to the 4 Mbytes of on-board dynamic memory and 8
Mbytes of expansion memory. This chip also includes FIFO's
to buffer data to and from main memory using nibble mode
accesses. The part also features a wrap around mode for high-
spe2d memory to memory block transfers.

There is one IPB chip per interprocessor bus. Each chip
contains a sixteen word in-queue and a sixteen word out-queue.
These queues work with on-chip state machines to permit the
sending and receiving of interprocessor message packets
asynchronous to processor execution.

The 10C chip contains the data latches and control logic to
contol a burst-multiplexed, asynchronous /O bus. The /O bus
is primarily controlled directly by the microengine, but can
hancle DMA transfer polling and selection without microcode
intervention. It also includes priority encoding logic to aid in
servicing I/O interrupts.

The final component of the processor is a maintenance and
diagnostic processor (Motorola 6803). This processor provides
overall control of the main processor, and a diagnostic and error
reporting path for the main processor through the maintenance
buses.

CPU Architecture

The CLX CPU architecture is a hybrid of minicomputer and
microcomputer architectures. The CPU chip's external interface
is similar to a microprocessor. It contains one address bus, one
data bus and one status bus along with miscellaneous signals
such as an interrupt request, memory wait controls and tri-state
input controls. A closer look, however, reveals that the address
bus is only 18 bits wide, and the data bus is 60 bits wide. This
structure is actually more akin to that found in minicomputer
architectures. The CLX CPU external interface is the merging
of many buses that would normally be separate in a
minicomputer architecture. In particular, an external cycle on the
CLX can have the following meanings:

» Microcode control store access.

« Instruction or Data cache access.

« Page Table cache (TLB) access.

« Main Memory access.

» Microcode Scratch Pad Memory access.

* Special Module (IPB, I0C, MDP) access.

This merging of buses reduces the cost of the processor in terms
of the number of static RAM parts and their associated support
logic, and the pins and packaging of the CPU chip itself. If
implemented blindly however, this merging would lead to a
significant degradation in performance. In order to reduce the
bandwidth required on these buses and thus the performance
impact, a variety of techniques were used. These include:

« Utilization of a small on-chip microcode ROM.

« Use of a virtually addressed cache.

« Use of nibble mode DRAM with block
operations to the main memory controller.

+ Higher-level control operations for special
modules.

The on-chip ROM (UROM) has the biggest effect on reducing
the performance impact of the merged buses. The HROM
contains 160, 54 bit words of microcode with an identical
encoding as external microcode. This ROM is addressed by
either the microcode PC (LPC) or through an explicit index
specified in the previous line of microcode. The WPC
addressing is used to implement the inner loops of IPB and I10C
transfers, cache filling routines and block memory moves.

The index addressing is used throughout the microcode to
implement short common sequences such as instruction
prefetch, interrupt testing, and cache loads and stores to the top
of the register stack. The explicit indexing acts like a microcode
call, but does not modify the pPC. It simply overlays the
microcode that would have been fetched from external control
store with a line from the uROM. The index specifier of the
overlaying line does not conflict with other microficlds (unlike a
call to the PROM). Index addressing is also used in critical
instructions where such a micro branch would be costly. The
explicit addressing provides for maximal sharing of small
amount of LROM code without the overhead of a pCode call and
return.

The virtually addressed cache reduces the number of page table
accesses, and thus the required band-width to the shared URAM.
Likewise the use of block-mode commands to the memory
controller reduces the number of memory commands needed
during cache filling and block moves. Finally, the use of
higher-level commands to the IPB and IOC reduce the control
transfers needed to receive and transmit data to these devices.
The on-chip LROM together with these other features reduces
the penalty of using a single bus approach from over 50% to less
than 12%.

The primary alternative to the tROM used on the CLX is an
emulation scheme where a set of emulation instructions and a
subset of the CISC instructions are implemented entirely by an
internal ROM. The tROM scheme has two primary benefits
when compared with the numerous emulation schemes that have
been reported in the literature[8]{9]. First, it provides much
higher performance when the amount of ROM space is limited
relative to the number of instructions that must be implemented.
Second, the dispatch of each instruction is to external writeable
control store enabling any ROM code errors to be corrected
externally (albeit with some performance penalty).



CPU Chip Internal Architecture
The block diagram of the CPU chip is shown in Figure 3. This

structure supports concurrent ALU execution, address
formation, external access and microcode branching in a

pipelined fashion.
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Figure 3. CPU Chip Block Diagram

The lower section of Figure 3 shows the main execution datap-
ath with its two 16 bit ALU's. The primary ALU operates on
the architecturally defined register stack along with other mis-
cellaneous registers external to the datapath. This primary ALU
supports arithmetic and logical operations along with multiply
and divide step operations. The other ALU (DALU) is used in
memory address formation. This includes the formation of in-
struction specified stack or frame pointer relative addresses, PC
incrementing, and limit checking of TNS extended addresses.
The main datapath also includes two 3-port register files, one
which is 10 locations deep and the other which is 3 deep.

Above the main ALU in Figure 3 is an additional three port
register file that is used to hold microcode temporary values and
memory segment addresses. One read port and one write port of
this RAM is accessed by the main ALU. The other read port is
used to access segment addresses. Memory addresses are
pipelined by the address datapath shown to the right of the
register file in Figure 3 for subsequent cache hit and breakpoint
detection. This datapath also contains the first level of
multiplexing logic used in choosing between cache and page
table cache addresses for use in external accesses.

The pROM discussed in the previous section is shown at the top
of Figure 3 with the micro sequencer and instruction pipeline
just below it.

The micro sequencer supports a variety of microcode addressing
functions. These include a sequential address, a microcode

explicit address (call or goto), a return address, a main datapath
computed address (case) or a macro instruction dispatch
address. All branch decisions are conditional on the true or
complement state of 32 test conditions and are delayed by one
micro instruction that can be conditionally NOP'd. Microcode
call and return is provided through the use of a six deep micro-
address stack. '

The Instruction Pipeline holds two fixed length, TNS macro-
instructions. Together with microcode pipelining this implies
that up to four macro-instructions can be executing concurrently.
The pipeline timing will be described in the next section, but the
structure includes the two instruction registers and a number of
PLA's that decode the next instruction register.

Along with the interface to the tROM, another unique feature of
the micro sequencer is it's use of two sequential addressing
mechanisms. Unlike most minicomputers that use an entry
point RAM to determine the starting microcode address for each
macro-instruction, the CLX implements this dispatch with a hard
coded PLA within the CPU chip. This presents a problem be-
cause it is undesirable to force a microcode branch to occur on
the first microcode line of an instruction simply to get to the rest
of the microcode for that instruction. Likewise, if the dispatch
address is shifted left and padded with zeros this will reserve
more than 1 microcode line per instruction, but would either still
have the branch problem or would be wasteful of control store
space because most instructions would not fit in the 27 words
reserved by this mechanism. The solution used on CLX is to
have a second sequential increment equal to the number of entry
points (512 in the CLX). The use of a second increment allows
there to be any number of microcode lines reserved per entry
point and for the total number of words reserved for dispatching
to be any multiple of the 512. An instruction will execute one
line in each block of 512 and continue to execute one line per
block until it has reached the end of the "Skipping” region
(which is 3k deep on CLX, i.e. six microcode lines per instruc-
tion). In addition to the freedom of the number of reserved mi-
crocode lines per instruction, the "Skipping"” scheme allows
more freedom of branching when the end of the "Skipping" re-
gion is reached. In the 21 scheme, an instruction with more than
20 lines of microcode must branch after the initial 27 lines. In
the "Skipping” scheme an instruction that has not branched after
six increments of 512 will simply sequence into the location one
after its seventh line. This location is normally reserved for
seventh line of another instruction, but by separating critical en-
try points this line and subsequent lines of microcode can be ar-
ranged to be empty. The multi-mode incrementing requires only
a small amount of logic since it amounts to a simple decode of
the current microcode address and an assertion of one of two
carries into the uPC incrementer.

CPU Chip Internal Timing

Internal to the CPU chip both microcode and macrocode
execution are pipelined. The microcode pipeline is 3.5 stages.
The pipelined execution of the main ALU and the micro
sequencer are shown in Figure 4 (the a and b refer to individual
clock phases of the non-overlapping clock):



o2y o yta g, te g2, 2 4333
1

<4————p Fetch uCode from Control Store

<4——» Decode ALU sources and access Reg. File

<«4——p Transfer Operands to ALU

<+—— ALU Execution

<4—— Transfer ALU resulls

“4——»  Store ALU
— results in RF

<4—— Decoda BR target and select,
Incremant Current pAddress.

<4——>» Form Branch Condition and Mux
equen Target or Seq. address to Pads.
Astivity
<——— Form NOP'ing Coditions

<4——— Adjust pStack Pntr.

L <4——» Push Return
Address

Figure 4. Microcode Pipeline

The macrocode pipeline is controlled by microcode and executes
at a maximum rate of one macro instruction per two micro
cycles. The general flow of macro instructions is illustrated in
Figure 5.
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Figure 5. Macroinstruction Pipeline

This macro pipeline is not fully realizable, however, because
there is not enough resources to perform the operand calculation
and fetch of the instruction in parallel with the instruction
address calculation and fetch for the instruction two
downstream. One solution to this problem would be to increase
the number of microcycles per macropipeline stage, but this
would result in a penalty for simple instructions that do not use
memory operands. Another solution would be to allow short
instructions to omit the operand fetch, but this would require that
the microcode for short instructions control the operand fetch
part of the macropipeline. This, in turn, would require a deeper
microcode pipeline with the undesirable increase in the penalty
for pipeline breaks and interlocks. The final solution used in the
CLX is to have the contents of the next macro instruction
register modify the semantics of certain microcode operations.
In particular, when the microcode sequence of the instruction
preceding a short instruction specifies the operand calculation
and fetch for the short instruction this operation is modified to
actually do an instruction calculation and fetch of the instruction
two downstream from the short instruction. Since these two
operations are similar (both have an address calculation using the
DALU and a memory fetch from cache) the only additional logic
is a decode of the next instruction register to single out all short
instructions.

The overall result is a fast pipelined micro engine which controls
the macro pipeline, but whose operations can be altered by the
contents of the macro pipeline. This configuration gives high
speed execution of complex instructions without penalizing
simple instructions. Some sample timing for simple instructions
is given in Table 2.

Table 2. Simple Instruction Execution Times.

Register Stack Operations 2 microcycles
Memory to Stack 3 microcycles
Stack to Memory 5 microcycles
Branch Taken’Not Taken  3/3 microcycles

Data Integrity Features

As stated earlier, fail-fast operation of hardware modules is
essential to NonStop execution to be effective in providing fault-
tolerance at the system level. Fail-fast operation requires that
faults are detected and that the processor is halted upon detection
of an fault. The CLX CPU supports a very high degree of fault
coverage using a variety of error checking strategies.

The CPU chip itself is covered by a duplicate and compare
scheme. This scheme was chosen because it minimizes the
amount of internal logic required for a high degree of coverage,
and it maximizes the utilization of existing library elements in the
silicon compiler CAD system. The implementation of the
CPU's duplicate and compare logic is shown in Figure 6.
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This scheme improves the fauit coverage of other duplicate and
compare schemes reported in the literature[10][11] by providing
for z cross-coupling of data and parity outputs. One chip is
designated the data master and drives all data outputs while the
other is designated the parity master and drives all parity
outputs. This insures that both chips’ outputs and checking
logic are active, and that latent errors in the checking logic can
not lead to an undetected double failure. The parity out of the
CPU also functions to cover the address and data lines
connecting the CPU to other parts of the processor and the
HRAM.

Within the memory system ECC with encoded address parity is
used to provide checking of all memory system data paths. In
addizion, redundant state machines are used within the MC chip
and in the external RAS/CAS generation logic. The state
transitions of these machines are encoded into CRC registers
whose outputs are compared. The resulting structure contains a
high degree of fault coverage for both the data and control
sections of main memory.

The 10C and IPB provide for parity protection of the data and
control lines that they are interfaced to. In addition, they are
protected by end-to-end checksums supported in software that
guarantee the integrity of their respective buses, I/O controllers
and cevices.

Conclusion

The NonStop CLX is a prime example of the benefits of using
high density ASIC technologies in the design of high perfor-
mance minicomputers. The architecture of such machines must
blend the structures used on previous board level minicomputers
as well as the structures used in VLSI microprocessors in order
to be effective. This includes the matching of the pin limits of

VLSI to the wide buses utilized on minicomputers, and the use.

of a high degree of pipelining throughout the design. The
machines resulting from this merger can provide low-cost
through integration while maintaining or increasing the perfor-
mance, data-integrity and fault-tolerance of previous machines.
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