SYSGEN SC5500 TAPE CONTROLLER INTERFACE

Applications Manual

SYSGEN, Inc. 47853 Warm Springs Blvd. Fremont, CA 94539 Phone: (415) 490-6770 Telex: 4990843

November 1985

87-01150-01 Rev. B

Copyright notice

Manual Copyright (C) 1985, SYSGEN, Inc.

All Rights Reserved.

Printed in U.S.A.

SYSGENTM is a trademark of SYSGEN, Inc.

IBM^R is a registered trademark of International Business Machines Corporation.

SYSGEN, Inc. reserves the right to make changes or improvements to the equipment, software, and documentation described herein at any time and without notice.

Every possible effort was made to ensure accuracy in this manual. However, SYSGEN, Inc. cannot accept responsibility for any manual errors or consequences resulting from such errors. Unless you receive written permission from SYSGEN, Inc., you may not reproduce or transmit any part of this document in any form by any electronic or mechanical means, including photocopying and recording, or by any information storage and retrieval system.

How to Use This Manual

This manual describes the features and operation of the SYSGEN SC5500 Tape Controller Interface for IBM PC, XT, AT, and compatible computers. The interface consists of the SC5500 Tape Controller board and the Software Interface Module containing the SC5500 control commands. The interface module gives the user complete command of tape operations from his system or application program.

The SC5500 Tape Controller interfaces with an industry-standard QIC-36 cartridge or DCAS cassette streaming tape drive. The interface described in this manual is the cartridge tape drive. For information about the cassette interface, please contact SYSGEN Incorporated.

Chapter 1 discusses the features and operation of the SC5500 Tape Controller board, including functions of the read/write registers and the tape controller pulses, jumper selections, and the action of the Programmable Array Logic (PAL). Summary tables are included for easy reference.

Chapter 2 describes the SYSGEN Software Interface Module, including subroutine entry points, command protocols for NEAR CALLS in both ASSEMBLY and C language, and control commands. An alternate set of FAR CALL entry points is provided for users of the LATTICE C Large Memory Model. The chapter includes reference tables on the subroutine entry points and the control commands.

SC5500 Tape Controller specifications, pin assignments for the SC5500 50-pin tape drive interface connector, and error codes are provided in the appendixes.

COPYRIGHT (C) SYSGEN, INC. 1985

iii

Compliance with FCC Regulations

This equipment generates and uses radio frequency energy and if not installed and used properly; i.e., in strict accordance with the Owner's Manual, may cause harmful interference to radio communications. It has been tested and found to comply with the limits for a Class A computing device pursuant to Subpart J or Part 15 of FCC Rules, which are designed to provide reasonable protection against such interference when operated in a commercial environment.

Operation of this equipment in a residential area is likely to cause interference in which case the user at his own expense will be required to correct the interference.

Contents

CHAPTER 1 SC5500 Tape Controller Board	
Registers and Control Pulses	
Read Operation	
Write Operation	
Hard File Mark	
Diagnostic Operation	
Jumper Functions	
Programmable Array Logic	1-
CHAPTER 2 Software Interface Module	2-
Subroutines	
Calling Protocol	
_INITCMD	
WAITCMD	
_GETDAT	
_PUTDAT	2-*
_POLLCMD	2-
_DORSET	2-
Alternate Entry Points	2-
Command Description	
Deselect Tape Drive	2-
Select Tape Drive	
Rewind Tape to BOT	
Erase Tape Data	2-
Retension Tape	
Write Tape Data	2-
Write Tape File Mark	2-
Read Data Block	
Read Tape File Mark	2-
Position to EOT Data	2-
Request Sense Bytes	2-
Request Statistics Bytes	2-
Request Tape Block ID	

COPYRIGHT (C) SYSGEN, INC. 1985

v

SC5500 External Tape Controller Board

Interface with the tape drive is by means of the SC5500 50-pin internal or external connector. The internal version of this connector interfaces the control board with a tape drive mounted inside the host computer housing. Pin assignments for the 50-pin connector are given in Appendix B. Signal definition is dictated by the tape drive specifications.

REGISTERS AND CONTROL PULSES

The SC5500 write and read registers transfer information between the host computer and the tape controller. Control pulses, triggered by the host computer, reset tape error, generate the single-step clock, and initiate read transfer from tape to computer. Tables 1-1 and 1-2 define the write and read registers, respectively. Table 1-3 defines the computer-triggered control pulses.

Name	2							Address	Function
WTTP	PIN	TF*						290 hex	Tape interface
Bit	ma	p:							
7	6	5	4	3	2	1	0		
							L		Track O Track I Track 2 Track 3 Go Reverse Erase enable

Table 1-1. Write Registers

*Denotes active low level. Single-step mode permits only one DMA operation; dual-step mode permits two concurrent operations.

COPYRIGHT (C) SYSGEN, INC. 1985

Name	Address	Function
CONTROL*	292 hex	Control signals
Bit map:		
7 6 5 4 3 2 1 0		
	- DMAENO - ENTPWRCNTR	PCDMA3 enable; active high Tape write counter enable;
	— FILEMARKEN	File mark enable; active high
	- WRITE	Write enable; active high
	- DMAENI - TPRDGATE	PCDMAl enable; active high
	- TPRDSQEN	Tape read sequencer enable;
		active high
	- ENIPINIF	lape interface enable; active high
MODE	293 hex	Mode register, interrupt enable
Bit map:		
7 6 5 4 3 2 1 0		
	- INTEN	Interrupt enable; active high
	- TPDIAG	Diagnostic mode; active high
	- DUAL/SINGLE	mode: active high sets
		dual-step mode*
	- MODE	Reserved for future
		application; switching DMARQ
	- CSELSSCLK	Single-step clock enable;
		active low enables single-step
	- CNTSFI	clock, disable TPCLK
	OHI DEL	selects 10-mb drive, active
		high selects 20/45-mb drive
L	- RESERVED	
· · · · · · · · · · · · · · · · · · ·	RESERVED	

Table 1-1. Write Registers (Continued)

*Denotes active low level. Single-step mode permits only one DMA operation; dual-step mode permits two concurrent operations.

Name	Address	Function
RDTPINTF*	290 hex	Read tape interface
Bit map:		
7 6 5 4		
	- UTH* - LTH* - CIN* - USF*	Upper tape hole Lower tape hole Cartridge in Unsafe
RDTPST*	293 hex	Read tape status
Bit map:		
7 6 5 4 3 2 1 0		
	- TPWDA	Writing tape write data; active high
	- TPERRFLG*	Tape error flag; active low
	- TPRDXFDONE*	Tape read transfer done; active low latched signal
	- FILEMARK	Filemark block; active high
	- CARCHANGE	Cartridge change; active high
	- INT*	Interrupt; active low
	- DRQ I	Internal DMA request 1; active high
	- DRQO	Internal DMA request 0; active high

Table 1-2. Read Registers

*Denotes active low level.

COPYRIGHT (C) SYSGEN, INC. 1985

Name	Address (hex)	Mode	Function
RSTERR*	291	Write	Resets tape error
RDSTRXF*	291	Read	Starts read transfer from tape to computer
TPSSCLK*	292	Read	Generates single-step clock when the clock enable (CSELSSCLK*) is low.

Table 1	-3.	Control	Pulses
---------	-----	---------	--------

*Denotes active low level.

READ OPERATION

The read operation is accomplished in the following steps. (Refer to Tables 1-1 through 1-3):

- 1. Set the mode register (MODE, active high).
- 2. Set the tape interface register (WTTPINTF, active low).
- 3. Set the control register (CONTROL, active low).
 - a. Enable the DMA (DMAEN0 and DMAEN1, active high).
 - b. Enable the tape read gate (TPRDGATE, active high).
 - c. Enable the tape read sequencer (TPRDSQEN, active high).
 - d. Enable the read transfer pulse (RDSTRXF*, active low) to start the read operation.

In single-step mode (single operation), DMAEN0 high enables PC DMA signal PCDRQ3 for a read, write, or read-after-write operation. In dual-step mode (two concurrent operations), DMAEN0 high enables PCDRQ3 for a write operation and DMAEN1 high enables PCDRQ1 for a read operation.

COPYRIGHT (C) SYSGEN, INC. 1985

Read-transfer-done is indicated by an active low latched signal on the tape read transfer done line (TPRDXFDONE) of the status register and also by an active high signal on the interrupt enable line (INTEN) of the mode register. To use the interrupt line to indicate the read done, you must enable INTEN (active high). Any error condition during read is also indicated on the interrupt line. Reset pulse RSTERR*, triggered by the host computer, will clear this interrupt.

WRITE OPERATION

The write operation is accomplished in the following steps. (Refer to Tables 1-1 and 1-2):

- 1. Set the mode register (MODE, active high).
- 2. Set the tape interface register (WTTPINTF, active low).
- 3. Set the control register (CONTROL, active low):
 - a. Enable the DMA (DMAEN0 and DMAEN1, active high).
 - b. Enable the tape interface (ENTPINTF, active high).
 - c. Enable the write signal (WRITE, active high).
 - d. Enable the tape write counter signal (ENTPWRCNTR, active high).

In single-step mode (single operation), DMAEN0 high enables PC DMA signal PCDRQ3 for a read, write, or read-after-write operation. In dual-step mode (two concurrent operations), DMAEN0 high enables PCDRQ3 for a write operation and DMAEN1 high enables PCDRQ1 for a read operation.

The write done is indicated by an active high signal on the interrupt enable line (INTEN) of the mode register.

HARD FILE MARK

The hard file mark is written by enabling the FILEMARKEN signal on the Control register (active high) and writing the data FF hexadecimal. The data FF is subsequently converted into a unique Group Code Recording (GCR): 00101,00101. During read operation in dual mode, the GCR is decoded as a hard file mark and FILEMARKEN is enabled on the status line (active high). In dual mode, the GCR is transferred via Channel 3 and the I.D. is transferred via Channel 0.

DIAGNOSTIC OPERATION

In the diagnostic mode, the LSI chip gives the data AA hexidecimal for read operation only. The single-step clock is enabled by an active low signal on the single-step clock enable line (CSELSSCLK) of the mode register. This signal disables the TPCLK signal and stops the 110-nsec clock. The TPCLK signal is reenabled when the computer triggers the TPSSCLK pulse.

JUMPER FUNCTIONS

Jumper W1 selects PC address 290. Jumpers W2 through W4 are only used to test the four boards simultaneously. Table 1-4 summarizes the jumper functions.

Jumper W5 currently selects IRQ3* (interrupt channel 3). If you want to make the default IRQ5 (interrupt channel 5), you must change the jumper. On some versions of the board, you must also cut the trace as shown in Figure 1-2. If your board does not look like figure 1-2, you do not need to cut the trace, just change the jumper.

Table 1-4. Jumper Functi

Jumper	Function
W 1	Selects PC address 290
W2	Selects PC address 2A0
W3	Selects PC address 2B0
W4	Selects PC address 2CO
W5	Selects IRQ3. (See Figure 1-2 to select IRQ5.)

Figure 1-2. Selecting IRQ5

PROGRAMMABLE ARRAY LOGIC

Table 1-5 describes the action of the Programmable Aray Logic (PAL). By using the combinations shown in the table, you can transfer data in dual mode, single mode, or diagnostic mode. The diagnostic mode is for internal testing only.

Signal		Transfer to PC		
WRITE	SINGLE*/ DUAL	DMAENO	DMAEN I	SC5500> PC
ON	Don 't care	ON	OFF	DMARQO PCDRQ3
OFF	Don't care	ON	OFF	DMARQ1 PCDRQ3
Don't care	DUAL	OFF	ON	DMARQ3 PCDRQ1
Don't care	SINGLE*	OFF	ON	DMARQ1> PCDRQ1

Table 1-5. PAL Action

*Denotes default. PAL also transfers the tape interrupt to PCINT.

COPYRIGHT (C) SYSGEN, INC. 1985

Software Interface Module

The Software Interface Module described in this chapter is a highly intelligent PCDOS/MSDOS relocatable object module that the user can incorporate in his system or application program to command the SYSGEN SC5500 Tape Controller. The interface consists of six access subroutines that are callable with ASSEMBLY language, LATTICE^R C, and other high-level languages compatible with LATTICE C.

Note:

Microsoft^R C Version 2.XX is fully compatible, but not Version 3.XX. Users of Version 3 should consult their user's manual to find out how to achieve compatability.

SUBROUTINES

The Software Interface Module subroutines are summarized in Table 2-1. This table gives the sequence of execution for data and nondata commands. The subroutines can be linked directly into the user's application program or incorporated into a standard DOS device driver.

Table	2-1.	Interface	Module	Subroutines
-------	------	-----------	--------	-------------

Subroutine	Function
DORESET	Initialize controller hardware
_INITCMD	Start a tape command
GETDAT	Start data transfer, tape to computer memory
PUTDAT	Start data transfer, computer memory to tape
POLLCMD	Check for completion of DMA transfer
_WAITCMD	Wait for command to terminate

Command execution is in two or three phases as follows:

Nondata transfer commands (ex., Rewind):

- 1. _INITCMD 2. _WAITCMD

Data input commands (ex., Read Tape Data):

- 1. _INITCMD
- 2. GETDAT
- 3. WAITCMD

Data output commands (ex., Write Tape Data):

- 1. _INITCMD 2. _PUTDAT 3. _WAITCMD

COPYRIGHT (C) SYSGEN, INC. 1985

The subroutines __DORESET and __POLLCMD are supplemental. __DORESET initializes the controller hardware, and __POLLCMD checks for completion of the DMA operation.

CALLING PROTOCOL

All calls included in this section are Intel 8088 microprocessor NEAR CALLS. For users of the LATTICE C Large Memory Model, a special set of FAR CALL entry points is provided in Table 2-2 (see the following section, "Alternate Entry Points").

Note that on entry to all the subroutines, DS must be set to the C data segment DGROUP.

_INITCMD

_INITCMD starts the command execution and returns control to the caller immediately, without waiting for a command to terminate. It must be followed by a call to _GETDAT, _PUTDAT, or _WAITCMD.

An _INITCMD call will only return an ERROR if the controller does not respond properly to the command initiation. In this case the command protocol should be aborted, since the controller cannot continue.

C Language Protocol

The C language NEAR CALL protocol is as follows:

status = __initcmd(cmd__code)

where:

cmd_code = integer specifying the command to execute
status = integer: -1 for ERROR, anything else for OK.

Specific command codes are described under "Command Description" in this chapter.

ASSEMBLY Language Protocol

The ASSEMBLY language NEAR CALL protocol has the following stack arrangement:

Return Address	Stack point	
Cmd_code	Stack point + 3	2

(Only CS, DS, ES, SS and BP registers are unmodified.)

Example of Assembly language usage:

PUSH	word ptr cmd_code	;push parameter onto stack
CALL	_initcmd	;call routine
ADD	sp,2	;remove parameter from stack ;result returned in AX

_WAITCMD

This call waits for an ERROR to occur or for the command in progress to terminate before returning control to the caller. If an ERROR is returned, the user should send a Request Sense command to determine the nature of the error. Request Sense is described under "Command Description" in this chapter.

COPYRIGHT (C) SYSGEN, INC. 1985

C Language Protocol

The C language NEAR CALL protocol is as follows:

status = _waitcmd()

where status is an integer: -1 for ERROR and anything else for OK.

ASSEMBLY Language Protocol

ASSEMBLY language NEAR CALL protocol has the following stack arrangement:

Return Address

Stack point

(Only CS, DS, ES, SS and BP registers are unmodified.)

Example of Assembly language usage:

CALL waitemd

;call routine ;result returned in AX

_GETDAT

If no ERROR condition is detected, __GETDAT starts the DMA data input from tape to computer memory, then returns control to the caller without waiting for the data transfer to complete. The user can call _POLLCMD to check for completion; however, he must terminate __GETDAT properly with __WAITCMD, whether or not he calls __POLLCMD.

This command returns an ERROR only when the controller is unable to continue operation. In this case, the user should abort the command protocol. Any error in the operation will be reported by __WAITCMD or __POLLCMD. The type of error can be determined by initiating a Request Sense command.

C Language Protocol

GETDAT has the following C language NEAR CALL protocol:

status =_getdat(boff,bseg,nbytes)

where:

- **boff** = unsigned integer with the offset portion of the data buffer address
- bseg = unsigned integer with the segment portion of the data buffer address
- nbytes = long integer byte count; must be a multiple of 512

status = integer: -1 for ERROR, anything else for OK.

A zero value for bseg has the special meaning that the data buffer is in the segment specified by the DS register (default data segment in C).

ASSEMBLY Language Protocol

The ASSEMBLY language NEAR CALL protocol has the following stack arrangement:

Return Address	Stack point
Buffer Offset	Stack point + 2
Buffer Segment	Stack point + 4
(LSW) Nbytes	Stack point + 6
(MSW) Nbytes	Stack point + 8

(Only CS, DS, ES, SS, and BP registers are unmodified.)

COPYRIGHT (C) SYSGEN, INC. 1985

Example of Assembly language usage:

PUSH	word ptr nbytes[2]	;msw of byte count
PUSH	word ptr nbytes[0]	;lsw of byte count
MOV	ax,seg buffer	
PUSH	ax	;segment of data buffer
MOV	ax,offset buffer	
PUSH	ax	;offset of data buffer
CALL	getdat	;call routine
ADD	sp,8	;remove parameters from stack ;result returned in AX

Note:

If the cmd_code specified to the previous _INITCMD is either a Request Sense or Request Statistics command, then 8 bytes will be transferred, regardless of the value of nbytes.

_PUTDAT

If no ERROR condition is detected, __PUTDAT initiates DMA data output from computer memory to tape, then returns control to the caller without waiting for data transfer to complete. The user can call __POLLCMD to check for completion of the data transfer; however, he must terminate __PUTDAT properly with WAITCMD, whether or not he calls __POLLCMD.

This routine returns an ERROR only when the controller is unable to continue operation. In this case, the user should abort the command protocol. If there is an error in the operation, it will be reported by -WAITCMD or _POLLCMD. The type of error can be recovered by means of a Request Sense command.

C Language Protocol

The C language NEAR CALL protocol for this command is as follows:

status = __putdat(boff,bseg,nbytes)

where:

- boff = unsigned integer with the offset portion of the data buffer address
- bseg = unsigned integer with the segment portion of the data buffer address
- nbyte = long integer byte count; must be a multiple of 512
- status = integer: -1 for ERROR, anything else for OK

A zero value for bseg has the special meaning that the data buffer is in the segment specified by the DS register (default data segment in C).

ASSEMBLY Language Protocol

The ASSEMBLY language NEAR CALL protocol has the following stack arrangement:

Return Address	Stack point
Buffer Offset	Stack point + 2
Buffer Segment	Stack point + 4
(LSW) Nbytes	Stack point + 6
(MSW) Nbytes	Stack point + 8

(Only CS, DS, ES, SS, and BP registers are unmodified.)

Example of Assembly language usage:

PUSH	word ptr nbytes[2]	;msw of byte count
PUSH	word ptr nbytes[0]	;lsw of byte count
MOV	ax,seg buffer	
PUSH	ax	;segment of data buffer
MOV	ax,offset buffer	
PUSH	ax	;offset of data buffer
CALL	_putdat	;call routine
ADD	sp,8	;remove parameters from stack ;result returned in AX

_POLLCMD

__POLLCMD checks for completion of DMA transfer and termination of nondata transfer commands. Unlike __WAITCMD, it returns control to the caller immediately to facilitate concurrent operation. This call is for inspection only; __WAITCMD must be called to terminate the command properly. __WAITCMD

must be called even if an ERROR is indicated by the polling.

C Language Protocol

The C language NEAR CALL protocol is as follows:

status = _pollcmd()

where status is an integer: -1 for ERROR, 0 for not done, and anything else for done.

ASSEMBLY Language Protocol

The ASSEMBLY language NEAR CALL protocol has the following stack arrangement:

Return Address Stack point

(Only CS, DS, ES, SS, and BP registers are unmodified.)

Example of Assembly language usage:

CALL __pollcmd

;call routine ;result returned in AX

COPYRIGHT (C) SYSGEN, INC. 1985

_DORSET

_____DORSET initializes the SC5500 Tape Controller hardware. It reports an error only if controller reset fails and the controller is therefore unable to continue operating.

C Language Protocol

This command has the following C language NEAR CALL protocol:

status = _dorset()

where status is an integer: -1 for ERROR and anything else for OK.

ASSEMBLY Language Protocol

The ASSEMBLY language NEAR CALL protocol has the following stack arrangement:

Return Address

Stack point

(Only CS, DS, ES, SS, and BP registers are unmodified.)

Example of Assembly language usage:

CALL __dorset

;call routine ;result returned in AX

COPYRIGHT (C) SYSGEN, INC. 1985

ALTERNATE ENTRY POINTS

Table 2-2 lists alternate entry points so that users of the LATTICE C Large Memory Model can invoke the subroutines as FAR CALLS. The corresponding NEAR CALLS are provided for reference.

FAR CALLS	NEAR CALLS
_SLRESET	_DORESET
SLINITC	_INITCMD
_SLGETD	_GETDAT
_SLPUTD	_PUTDAT
_SLPOLLC	_POLLCMD
_SLWAITC	WAITCMD

Table 2-2. Alternate Entry Points

COMMAND DESCRIPTION

The SC5500 Tape Controller recognizes the commands summarized in Table 2-3. The data transfer commands -- Tape Data, Write Tape Data, Request Sense, Request Statistics, and Request ID -- have special protocol requirements, which are discussed under "Calling Protocol" in this chapter.

Command	Address (hex)
DESELECT TAPE DRIVE	ООН
SELECT TAPE DRIVE	01H
REWIND TAPE TO BOT	21H
ERASE TAPE DATA	22Н
RETENSION TAPE	24H
WRITE TAPE DATA	40H
WRITE TAPE FILE MARK	60н
READ TAPE DATA	80H
READ TAPE FILE MARK	АОН
POSITION TO EOT DATA	АЗН
REQUEST SENSE BYTES	СОН
REQUEST STATISTICS BYTES	СІН
REQUEST TAPE BLOCK ID	С2Н

Table 2-3. SC5500 Commands

DESELECT TAPE DRIVE (00H)

After receiving this command, the SC5500 Tape Controller removes the tape drive selection signal. On most tape drives, the drive selection light switches off.

When the drive has been deselected, the tape controller cannot sense tape removal. But it proceeds as if the tape were changed when the drive is reselected with SELECT TAPE DRIVE.

SELECT TAPE DRIVE (01H)

This command causes the SC5500 Tape Controller to activate the drive selection signal. On most tape drives, the drive selection indicator light switches on. The tape drive must be selected before any tape operation can be performed.

REWIND TAPE TO BOT (21H)

Upon receiving this command, the SC5500 Tape Controller positions the tape to the beginning (BOT). When a tape is inserted in the tape drive, a REWIND TAPE TO BOT command must be received before any tape read or write operation can be performed.

ERASE TAPE DATA (22H)

When it receives an ERASE TAPE DATA command, the SC5500 removes all data from the tape by writing an END OF DATA MARK at the beginning of the tape. The data is not actually erased, but the controller has no means of recovering it.

RETENSION TAPE (24H)

The tape controller retensions the tape by repositioning it to the beginning, running it once to the end, and then reversing it to the beginning again. This operation restores even tension over the entire length of the tape. Retensioning is recommended when a tape is first installed in the tape drive.

WRITE TAPE DATA (40H)

This command causes the SC5500 to write data from computer memory to tape in increments of 512-byte blocks. Writing continues as long as the _PUTDAT subroutine is called in succession. Writing terminates when an ERROR occurs or the _WAITCMD subroutine is called. Note that _PUTDAT and _POLLCMD are the only permissable calls prior to termination of this write mode.

WRITE TAPE FILE MARK (60H)

After receiving a WRITE TAPE FILE MARK, the tape controller writes a special End-of-File (EOF) mark on the tape. An EOF mark can be used to separate logically related blocks of data, such as text files. This enables the user to skip files with the READ TAPE FILE MARK command (See the READ TAPE FILE MARK description below.)

The user should be sure to write an EOF mark after the last block of data, otherwise the last few blocks might be unreadable.

READ DATA BLOCK (80H)

On receipt of a READ DATA BLOCK command, the SC5500 reads data from the tape into computer memory in increments of 512-byte blocks. Reading continues as long as the __GETDAT subroutine is called in succession. Reading terminates when an ERROR occurs or the __WAITCMD subroutine is called. Note that __GETDAT and __POLLCMD are the only permissible calls prior to termination of this Read Mode.

An EOF ERROR is sometimes generated immediately after the controller reads the last data block before a file mark. However, the last data block is always transferred in its entirety before the ERROR is signaled.

READ TAPE DATA commands received after the controller has reached EOF will generate more EOF ERROR conditions. The only way to pass over a file mark is to send a READ TAPE FILE MARK command.

READ TAPE FILE MARK (A0H)

A READ TAPE FILE MARK permits the tape controller to skip from file to file. After receiving this command, the controller skips over data blocks until it reaches the next EOF mark. Then it passes over the file mark to the first block of data it encounters (beginning of the next file).

POSITION TO EOT DATA (A3H)

This command sends the tape controller to the last recorded block on the tape, which must be an EOT File Mark. Additional data may be written on the tape when the controller is at EOT.

This command must be sent before a WRITE TAPE DATA or WRITE TAPE FILE MARK, unless the previous command was a WRITE TAPE DATA or WRITE TAPE FILE MARK.

The number of File Marks encountered can be obtained from the Block Count returned by a REQUEST SENSE BYTE command. To obtain the File Mark count, the user must clear the Block Count to zero with a REWIND or REQUEST SENSE command before sending the POSITION TO EOT DATA command.

REQUEST SENSE BYTES (C0H)

The REQUEST SENSE BYTES command must be sent immediately after an ERROR occurs. Upon receiving this command, the SC5500 sends eight bytes of sense data to the buffer. The sense data contains the error code and other information, as described below. Error codes are listed in Appendix D.

Immediately after receiving the REQUEST SENSE BYTES command, the tape controller clears the error code and sets the cumulative block count to zero.

A REQUEST SENSE BYTES command can also be sent when no ERROR has occurred. While the error code will be zero, the other fields will contain valid status information.

	_
Error Code	Buffer + O
MSB Block Count	Buffer + 1
Block Count	Buffer + 2
LSB Block Count	Buffer + 3
Status Bits	Buffer + 4
(reserved)	Buffer + 5
(reserved)	Buffer + 6
(reserved)	Buffer + 7

The sense bytes are arranged as follows:

Status Bits are arranged as follows:

7 5 2 6 4 3 1 0

where Bit 7 is TAPE CHANGED (no read/write possible before rewind), and Bits 6 to 0 are reserved.

Block Count is a cumulative count of blocks that were successfully read or written. This count can be used to determine how many blocks were processed before a given ERROR occurred. Note that during a POSITION TO END OF DATA command, the Block Count reflects the number of file marks encountered, not the number of data blocks.

REQUEST STATISTICS BYTES (C1H)

When the tape controller receives this command, it sends eight bytes of statistics data to the buffer and then clears the count. The statistics data accumulates until the next command is received.

The statistical bytes are arranged as follows:

MSB Reread Count	Buffer + O
LSB Reread Count	Buffer + 1
MSB Rewrite Count	Buffer + 2
LSB Rewrite Count	Buffer + 3
MSB Overrun Count	Buffer + 4
LSB Overrun Count	Buffer + 5
MSB Underrun Count	Buffer + 6
LSB Underrun Count	Buffer + 7

Reread Count is the total number of read retries in tape read operations.

Rewrite Count is the total number of data block rewrites in response to an ECC error in the read-after-write process during tape write operations.

Overrun Count is the total number of times transmission of data from the tape was halted because the controller did not receive a request for data from the host software.

Underrun Count is the total number of times the tape was stopped and backed up over a blank space because the host software failed to transmit data for a prolonged period of time.

REQUEST TAPE BLOCK ID (C2H)

When the tape controller receives this command, it sends to the buffer four bytes of Tape Block ID and the first four bytes of Block Data from the last successfully processed tape block. These eight bytes are arranged as follows:

Track Address	В
Control Block Address	В
Block Address	В
LSB Block Address	В
Data Byte O	В
Data Byte 1	B
Data Byte 2	В
Data Byte 3	В

Buffer + 0 Buffer + 1 Buffer + 2 Buffer + 3 Buffer + 4 Buffer + 5 Buffer + 6 Buffer + 7

The Track Address is 0 for the first track, 1 for the second track, and so on.

The Control Nibble is 0 for a Data Block and 1 for a File Mark or End of Data Mark.

The 20-bit Block Address is 0 for the first block on the tape, 1 for the second block, and so on. Each block on the tape (data or control block) has a unique block address.

For control blocks (File or End of Data Mark), Data Byte 0 specifies the total number of tracks on the tape drive. Data Byte 1 is a 3 for a File Mark and a 2 for an End of Data Mark.

Detailed descriptions of these bytes can be found in any QIC-24 reference document.

Appendix A

SC5500 Specifications

The specifications given in this appendix are for operation of an industry-standard QIC-36 cartridge tape drive with the SC5500 Tape Controller. For information about a DCAS cassette tape drive interface, contact SYSGEN Incorporated.

Tape Interface:	QIC-36
Tape Track:	9
Capacity:	60 MB
Tape Used:	600A (3M ^R Data Cartridge)
Tape Length:	600 ft
Tape Speed:	90 ips
Transfer Rate at Streaming:	5 mb/min
Recording Density, bpi:	8000
Recording Density, ftpi:	10000
Recording Method:	GCR
Recording Format:	QIC-24
Tape Block Size:	512 bytes
Power Drawn from +5V:	1.0 Amp
Temperature:	Conforms to IBM PC, XT, and AT standards.
Dimensions:	Conforms to IBM PC, XT, and AT short slot standards
Tape Interface Connector:	50-pin 3M 3596 male connector (internal or external)

COPYRIGHT (C) SYSGEN, INC. 1985

A-1

Interface Pin Assignments

Table B-1 gives the SC5500 50-pin connector pin assignments for a QIC-36 cartridge tape drive interface. For information about the DCAS cassette tape drive interface, contact SYSGEN Incorporated.

Note:

. ...

All odd-numbered pins are GND except 15, 17, 19, and 21.

		-	
Pin number	Signal	Pin number	Signal
JT-2	GO_	JT-28	UTH_
JT-4	REV_	JT-30	LTH_
JT-6	TR3_	JT-32	Not connected
JT-8	TR2_	JT-34	CIN_
JT-10	TR I	JT-36	USF_
JT-12	TRO	JT-38	Not connected
JT-14	RST_	JT-40	WDA
JT-15		JT-42	WDA+
JT-17	Not connected	JT-44	Not connected
JT-20	Not connected	JT-46	Not connected
JT-22	DS0_	JT-48	WEN_
JT-24	нс_	JT-50	EEN_
JT-26	RDP		

Table B-1. 50-Pin Connector Pin Assignments

COPYRIGHT (C) SYSGEN, INC. 1985

B-1

Appendix **C**

SC5500 Error Codes

Table C-1 lists the error codes returned by Request Sense.

Error	Code (hex)	Description An undefined command code was specified.		
Undefined command	20			
Escessive rewrite	40	More than 16 retries failed in attempt to write a single data block.		
Tape write protected	41	A write operation was attempted on a read-only tape.		
Tape not inserted	42	Cartridge not installed.		
Tape full	43	Read or write operation failed because the end of tape was reached before the operation completed.		
Mission block detected	44	Operation failed because next block is missing, according to sequence number of blocks being read. This error can occur even in a tape positioning command.		

Table C-1. SC5500 Error Codes

Error	Code (hex)	Description		
Missing BOT/EOT hole detected	45	Controller failed to detect expected BOT and EOT hole.		
End of data	46	Normal end of tape reached; tape is positioned for appending.		
EOF Mark detected	48	Next block on tape is a file mark, which can be passed only with a Read Tape File Mark command. Use Request Sense to determine number of data blocks actually transferred		
Parity error during command	49	SCSI bus parity error was detected during execution of the command.		
Tape change dtected	4A	The operation can't be performed unitl rewind/erase/retention is done.		
Controller failure	4 B	Controller rejected command and is in unknown state. Call _DORESET, then rewind tape.		
Timeout error	4C	Controller found abnormal length of blank tape or did not respond within expected time. (In the latter case, the tape changed flag will be set.) Note that an entirely blank tape immediately following a file mark will usually return error 46h, not 4Ch.		
Unrecognized control block	4F	Control block other than a Tape File Mark or EOT Data Mark was read. Tape may have been written by a different type of controller.		

•				
Table C-1.	SC5500	Error	Codes	(Continued)