
Symbolics Common Lisp Language Concepts

Organization of Symbolics Common Lisp Documentation

Symbolics Common Lisp (SCL) is the Symbolics implementation of the Lisp lan-

guage. Lisp is a powerful and complex tool that can be used at many levels, by

people with widely varying programming experience. SCL is therefore intended to

serve a user spectrum that ranges from the novice programmer to the experienced

Lisp developer. These two facts motivate the organization of this documentation in-

to several parts, each reflecting a different stage of familiarity with Lisp.

For an overview of Symbolics Common Lisp, see the section "Overview of Symbol-

ics Common Lisp". This section is intended primarily as a learning aid  to give

the new user an introduction to key SCL concepts. The Overview does not present

topics in any detail. Rather, it is aimed at giving the new user a general sense of

each topic, including definitions of basic terms and simple examples of important

concepts. It is designed to be read sequentially, in a single sitting if desired.

If you are unfamiliar with the Symbolics notation conventions for Lisp documenta-

tion, see the section "Understanding Notation Conventions".

Your reference guide to Symbolics Common Lisp (SCL), the Symbolics implementa-

tion of the Lisp language, consists of the following volumes:

Symbolics Common Lisp Language Concepts

Documents the basic language concepts of Lisp, including data types, type

specifiers, functions and dynamic closures, inline functions and macros, eval-

uation, scoping, flow of control, declarations, and compatibility issues.

Symbolics Common Lisp Programming Constructs

Documents the higher-level programming constructs of Lisp, including

structures, CLOS, Flavors, conditions, packages, and input/output facilities

(including the reader, printed representation, input and output functions,

and streams).

Symbolics Common Lisp Dictionary

An alphabetic dictionary of all Lisp objects documented in the previous two

volumes.�

The first two volumes give a conceptual presentation of Symbolics Common Lisp,

and provide in-depth coverage of topics presented in the Overview. The Dictionary

is the most detailed part of the documentation. This is a true dictionary of refer-

ence entries for all Symbolics Common Lisp symbols. Each entry provides a com-

plete description of a single Lisp object. For example, the entry for a given SCL

function would include its syntax, what it returns, examples of its use and cross-

references to related functions or topics. The entries are alphabetized and thumb

tabs are provided for rapid access to information about an individual symbol when

you need it. Because the dictionary entries appear in alphabetical order, this vol-

ume of Symbolics Common Lisp is not indexed; the other volumes are fully in-

dexed. 
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Understanding Notation Conventions

You should understand several notation conventions before reading the documenta-

tion.

Lisp Objects

Functions

A typical description of a Lisp function looks like this:

function-name arg1 arg2 &optional arg3 (arg4 (foo3)) function 

Adds together arg1 and arg2, and then multiplies the result by arg3. If arg3

is not provided, the multiplication is not done. function-name returns a list

whose first element is this result and whose second element is arg4. Exam-

ples:�

(function-name 3 4) => (7 4)

(function-name 1 2 2 ’bar) => (6 bar)�

The word "&optional" in the list of arguments tells you that all of the arguments

past this point are optional. The default value of an argument can be specified ex-

plicitly, as with arg4, whose default value is the result of evaluating the form (foo

3). If no default value is specified, it is the symbol nil. This syntax is used in

lambda-lists in the language. (For more information on lambda-lists, see the sec-

tion "Evaluating a Function Form".) Argument lists can also contain "&rest",

which is part of the same syntax.

Note that the documentation uses several fonts, or typefaces. In a function de-

scription, for example, the name of the function is in boldface in the first line, and

the arguments are in italics. Within the text, printed representations of Lisp ob-

jects are in the same boldface font, such as (+ foo 56), and argument references

are italicized, such as arg1 and arg2. 

Other fonts are used as follows:

"Typein" or "example" font (function-name)

Indicates something you are expected to type. This font is also

used for Lisp examples that are set off from the text and in

some cases for information, such as a prompt, that appears on

the screen.

"Key" font (RETURN, c-L)

For keystrokes mentioned in running text.�

Macros and Special Forms

The descriptions of special forms and macros look like the descriptions of these

imaginary ones:
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do-three-times form Special Form 

Evaluates form three times and returns the result of the third evaluation.�

with-foo-bound-to-nil form... Macro 

Evaluates the forms with the symbol foo bound to nil. It expands as follows:�

(with-foo-bound-to-nil

form1

form2 ...) ==>

(let ((foo nil))

form1

form2 ...)�

Since special forms and macros are the mechanism by which the syntax of Lisp is

extended, their descriptions must describe both their syntax and their semantics;

unlike functions, which follow a simple consistent set of rules, each special form is

idiosyncratic. The syntax is displayed on the first line of the description using the

following conventions.

• Italicized words are names of parts of the form that are referred to in the de-

scriptive text. They are not arguments, even though they resemble the italicized

words in the first line of a function description.

• Parentheses ("( )") stand for themselves.

• Brackets ("[ ]") indicate that what they enclose is optional. 

• Ellipses ("...") indicate that the subform (italicized word or parenthesized list)

that precedes them can be repeated any number of times (possibly no times at

all).

• Braces followed by ellipses ("{ }...") indicate that what they enclose can be re-

peated any number of times. Thus, the first line of the description of a special

form is a "template" for what an instance of that special form would look like,

with the surrounding parentheses removed.�

The syntax of some special forms is too complicated to fit comfortably into this

style; the first line of the description of such a special form contains only the

name, and the syntax is given by example in the body of the description.

The semantics of a special form includes not only its contract, but also which sub-

forms are evaluated and what the returned value is. Usually this is clarified with

one or more examples.

A convention used by many special forms is that all of their subforms after the

first few are described as "body...". This means that the remaining subforms con-

stitute the "body" of this special form; they are Lisp forms that are evaluated one

after another in some environment established by the special form.

This imaginary special form exhibits all of the syntactic features:
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twiddle-frob [(frob option...)] {parameter value}... Special Form 

Twiddles the parameters of frob, which defaults to default-frob if not speci-

fied. Each parameter is the name of one of the adjustable parameters of a

frob; each value is what value to set that parameter to. Any number of

parameter/value pairs can be specified. If any options are specified, they are

keywords that select which safety checks to override while twiddling the pa-

rameters. If neither frob nor any options are specified, the list of them can

be omitted and the form can begin directly with the first parameter name.

frob and the values are evaluated; the parameters and options are syntactic

keywords and are not evaluated. The returned value is the frob whose pa-

rameters were adjusted. An error is signalled if any safety check is violated.�

Flavors, Flavor Operations, and Init Options

Flavors themselves are documented by the name of the flavor. 

Flavor operations are described in three ways: as methods, as generic functions,

and as messages. When it is important to show the exact flavor for which the

method is defined, methods are described by their function specs. Init options are

documented by the function spec of the method. 

When a method is implemented for a set of flavors (such as all streams), it is doc-

umented by the name of message or generic function it implements. 

The following examples are taken from the documentation.

sys:network-error Flavor

This set includes errors signalled by networks. These are generic network errors

that are used uniformly for any supported networks. This flavor is built on error. 

(flavor:method :clear-window tv:sheet) Method

Erases the whole window and move the cursor position to the upper left corner of

the window. 

:tyo char Message

Puts the char into the stream. For example, if s is bound to a stream, then the

following form will output a "B" to the stream:

(send s :tyo #\B)�

For binary output streams, the argument is a nonnegative number rather than

specifically a character. 

dbg:special-command-p condition special-command Function
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Returns t if command-type is a valid Debugger special command for this condition

object; otherwise, returns nil.

The compatible message for dbg:special-command-p is:

:special-command-p

For a table of related items, see the section "Basic Condition Methods and Init Op-

tions". 

(flavor:method :bottom tv:sheet) bottom-edge Init Option

Specifies the y-coordinate of the bottom edge of the window. 

Variables

Descriptions of variables ("special" or "global" variables) look like this: 

*typical-variable* Variable 

The variable *typical-variable* has a typical value....�

Macro Characters

Macro characters are explained in detail in the documentation. See the section

"How the Reader Recognizes Macro Characters".

The single quote character (’) and semicolon (;) have special meanings when typed

to Lisp; they are examples of what are called macro characters. It is important to

understand their effect.

When the Lisp reader encounters a single quote, it reads in the next Lisp object

and encloses it in a quote special form. That is, ’foo-symbol turns into (quote

foo-symbol), and ’(cons ’a ’b) turns into (quote (cons (quote a) (quote b))). The

reason for this is that "quote" would otherwise have to be typed in very frequently

and would look ugly.

In Lisp, quoting a character means inhibiting what would otherwise be special pro-

cessing of it. Thus, in Common Lisp, the backslash character, "\", is used for quot-

ing unusual characters so that they are not interpreted in their usual way by the

Lisp reader, but rather are treated the way normal alphabetic characters are

treated. So, for example, in order to give a "\" to the reader, you must type "\\",

the first "\" quoting the second one. When a character is preceded by a "\" it is

said to be slashified. Slashifying also turns off the effects of macro characters such

as single quote and semicolon. Note that in Zetalisp syntax, the slash, "/", is the

quoting character and must be doubled.

The following characters also have special meanings, and cannot be used in sym-

bols without slashification. These characters are explained in detail elsewhere: See

the section "How the Reader Recognizes Macro Characters".

" Double-quote delimits character strings.



Page 10

# Sharp-sign introduces miscellaneous reader macros.

‘ Backquote is used to construct list structure.

, Comma is used in conjunction with backquote.

: Colon is the package prefix.

| Characters between pairs of vertical bars are quoted.

⊗ Circle-X lets you type in characters using their octal codes. (Zetalisp only)�

The semicolon is used as a commenting character. When the Lisp reader sees one,

the remainder of the line is ignored. 

Character Case

All Lisp code in the documentation is written in lowercase. In fact, the Lisp reader

turns all symbols into uppercase, and consequently everything prints out in upper-

case. You can write programs in whichever case you prefer.

Packages and Keyword Names

For an explanation of packages: See the section "Packages".

Various symbols have the colon (:) character in their names. By convention, all

keyword symbols in the system have names starting with a colon. The colon char-

acter is not actually part of the print name, but is a truncated package prefix indi-

cating that the symbol belongs to the keyword package. (For more information on

colons: See the section "Introduction to Keywords".

For now, just pretend that the colons are part of the names of the symbols.)

The document set describes a number of internal functions and variables, which

can be identified by the "si:" prefix in their names. The "si" stands for "system-

internals". These functions and variables are documented because they are things

you sometimes need to know about. However, they are considered internal to the

system and their behavior is not as guaranteed as that of everything else.

Maclisp

Because Symbolics Common Lisp is descended from Maclisp, some Symbolics Com-

mon Lisp functions exist solely for Maclisp compatibility; they should not be used

in new programs. Such functions are clearly marked in the text.

Examples

The symbol "=>" indicates Lisp evaluation in examples. Thus, "foo => nil" means

the same thing as "the result of evaluating foo is nil". 

The symbol "==>" indicates macro expansion in examples. Thus,

"(foo bar) ==> (aref bar 0)" means the same thing as "the result of expanding the

macro (foo bar) is (aref bar 0)".
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The Character Set

The Genera character set is not the same as the ASCII character set used by most

operating systems. For more information: See the section "The Character Set".

Unlike ASCII, there are no "control characters" in the character set; Control and

Meta are merely things that can be typed on the keyboard.

Overview of Symbolics Common Lisp

This chapter provides you with a sense of the basic concepts and terms in Symbol-

ics Common Lisp, in a form that you can read at a single sitting. New users

should find this material of particular interest. 

If you are unfamiliar with the Symbolics notation conventions for Lisp documenta-

tion, see the section "Understanding Notation Conventions".

The Lisp dialect documented here is Symbolics Common Lisp. Symbolics Common

Lisp is based on Common Lisp, and includes Common Lisp, as well as all the ad-

vanced features of Zetalisp. For details about the relationship between these di-

alects, see the section "Lisp Dialects Available in Genera".

General information about two topics, Cells and Locatives and Special Forms, ap-

pears exclusively in this Overview, the former because the topic does not require

further coverage, the latter because special forms are scattered throughout the

documentation and are covered in the context of various other topics. See the sec-

tion "Cells and Locatives". See the section "Special Forms and Built-in Macros".

The term form is ubiquitous in any discussion of the Lisp language and so is

worth mentioning here. A form is a data object that is meant to be evaluated. 

Overview of Data Types

Overview of Data Types and Type Specifiers

Lisp is a typed language; Lisp programs manipulate data structures of a given

type, using them to build more complex structures. The term Lisp object refers to

the collectivity of basic data types that programs can create. Some examples of

Lisp objects are symbols, characters, and structure and flavor instances.

Symbolics Common Lisp provides a wide variety of data object types, as well as fa-

cilities for extending the type hierarchy. It is important to note that in Lisp it is

data objects that are typed, not variables. Any variable can have any Lisp object as

its value.

In Symbolics Common Lisp, a data type is a (possibly infinite) set of Lisp objects.

The defined data types are arranged into a hierarchy (actually a partial order) de-

fined by the subset relationship. We say that an object is "of" a datatype if the ob-

ject is a member of the set that makes up the type.
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A type called common encompasses all the data types required by the Common

Lisp language. Symbolics Common Lisp provides several additional data types, such

as flavors, which represent an extension to the Common Lisp type system. The set

of all objects in Symbolics Common Lisp is specified by the symbol t. The empty

data type, which contains no objects, is denoted by nil.

The type hierarchy can be conceptualized as a tree whose root is t. The following

terminology is useful for expressing the basic relationships among the branches

and sub-branches of this tree.

A given type is a supertype of those data types it encompasses. For example, the

type number is a supertype of all other numeric types such as rational, integer,

complex, and so on. These numeric types are called subtypes of number. They can,

in turn, have supertype-subtype relationships with each other; for example, the

type rational is a supertype of the type integer, which is a supertype of the type

signed-byte, and so forth.

The type t is a supertype of every type whatsoever: Every object belongs to type t.

The type nil is a subtype of every type whatsoever: No object belongs to type nil.

Two or more data types can be disjoint, that is, no object can simultaneously be-

long to more than one of these types. For example, the types float and rational

are disjoint subtypes of the type number.

Subtypes of a common supertype form an exhaustive union formed by the supertype

if every object belonging to the supertype belongs to at least one of the subtypes.

For example, the type common denotes an exhaustive union of, among others, the

types cons, symbol, readtable, pathname, and all types created by the user with

defstruct or defflavor. If the types belonging to a common supertype are disjoint,

they form a partition. For example, the types bignum and fixnum form a partition

of the type integer, since every integer is either a fixnum or a bignum but not

both. If all elements of a supertype are members of one of the mutually disjoint

subtypes, this forms an exhaustive partition.

For a complete list of Symbolics Common Lisp data types, see the section "Hierar-

chy of Data Types".

Types of data objects, such as numbers or arrays, are identified by symbolic names

or lists, called type specifiers, that are associated with them. Type specifiers serve

as arguments to predicates that perform type-checking; they are also used by vari-

ous functions whose operation requires arguments or results of a specific data

type.

Examples of some major type specifier symbols are number, character, list,

array, table, flavor, and generic-function. These and many others are discussed

in individual chapters in the documentation.

Type specifier lists let you refine type distinctions and define your own types. For

example, the type specifier list (integer low high) lets you define an integer type

whose range is restricted to the limits indicated by the arguments low and high. 

Since many Lisp objects belong to more than one group of data types, it does not

always make sense to ask what the type of an object is; instead, one usually asks
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only whether an object belongs to a given type. The predicate typep tests a Lisp

object against one of the standard type specifiers to determine if it belongs to that

type. The function type-of returns the most specific type that can be conveniently

computed and is likely to be useful to the user. For example:

(type-of 5/7) => RATIO

See the section "Type-checking Differences Between Symbolics Common Lisp and

Zetalisp".

Other basic operations with data types are: 

• Converting an object of one type to an equivalent object of another type

(coerce).

• Testing relationships between objects in the type hierarchy (subtypep).

• Determining a type to which an object belongs (type-of).

• Getting the type specifier list for standard data types (sys:type-arglist).

Overview of Numbers

Symbolics Common Lisp includes several types of numbers, with different charac-

teristics. These are:

• Rational Numbers are used for exact mathematical calculations. These include: 

° Integers are rational numbers without a fractional part, such as 0, 1, 2.

° Ratios are pairs of integers, representing the numerator and denominator of a

number, for example, 15/16, -26/3.

• Floating-point Numbers are used for approximate mathematical calculations.

Symbolics Common Lisp supports two forms:

• ° Single-floats are single-precision floating-point numbers, for example, 1.0e-45.

° Double-floats are double-precision floating-point numbers, for example, 5.0d-

324.

• Complex Numbers are used to represent the mathematical concept of the same

name, for example, #c(4.0 10).

In conventional computer systems, considerations such as number length, base, or

internal representation are important, and numbers therefore have "computer"

properties. In Symbolics Common Lisp, rational numbers are represented as num-

bers since their representation is not limited by machine word width, but only by

total memory limitations. Thus, rational numbers in Symbolics Common Lisp have

more familiar mathematical properties.
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For internal efficiency, Symbolics Common Lisp also has two primitive types of in-

tegers: fixnums and bignums. Fixnums are a range of integers that the system can

represent efficiently, while bignums are integers outside the range of fixnums.

When you compute with integers, the system automatically converts back and forth

between fixnums and bignums based solely on the size of the integer. With the ex-

ception of some specialized cases, the distinctions between fixnums and bignums

are invisible to you, in computing, printing or reading of integers.

The system canonicalizes numbers, that is, it represents them in the lowest form.

Rational canonicalization is the automatic reduction and conversion of ratios to in-

tegers, if the denominator evenly divides the numerator.

Integer canonicalization is the automatic internal conversion between fixnums and

bignums to represent integers.

Complex canonicalization is the matching of complex number types and the conver-

sion of a complex number to a noncomplex rational number when necessary.

Typically, functions that operate on numeric arguments are generic, that is, they

work on any number type. Moreover, arithmetic and numeric comparison functions

also accept arguments of dissimilar numeric types and coerce them to a common

type by conversion. When these functions return a number, the coerced type is al-

so the type of the result. Coercion is performed according to specific rules.

Functions are available to let you force specific conversions of numeric data types

(for example, convert numbers to floating-point numbers, convert noncomplex to

rational numbers).

When comparing numbers, note that although the predicates eq, eql, equal, and

equalp accept numbers as arguments, they don’t always produce the expected re-

sults. It is therefore preferable to use = to test numeric equality.

Integer division returns an exact rational number result, that is, it does not trun-

cate the result. (Integer division in Zetalisp truncates the result.)

Operations with numbers include type-checking (rationalp), arithmetic, numeric

comparison (=), and transcendental functions (exp); you can also do bit-wise opera-

tions (logior, byte-position), random number generation, and machine-dependent

arithmetic.

Some other terminology associated with numbers:

Radix An integer that denotes the base in which a rational number

prints and is interpreted by the reader. The default radix is 10

(decimal), and the range is from 2 to 36, inclusive. Current

radix for printing and reading is controlled by the variables

*print-base* and *read-base*, respectively.

Radix specifier A convention for displaying a rational number with its current

radix. For example, #2r101 is the binary representation of 5.

Controlled by the value of the variable *print-radix*.
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Exponent marker A character that indicates the floating-point format (double,

long, single, short) of a floating-point number. Controlled by

the value of the variable *read-default-float-format* for print-

ing and reading.

Overview of Symbols

A symbol is a Lisp object in the Lisp environment. A symbol has a print name, a

value (or binding), a definition (or the contents of its function cell), a property list,

and a package. It is important to understand that a symbol can be any Lisp object,

for example a variable, a function, or a list. It is also important to keep in mind

that while we sometimes say that a symbol is the name of some object, a name is

actually the printed representation of that object. A symbol is the object itself.

Two kinds of symbols should be mentioned explicitly here: keywords and variables.

Keywords are implemented as symbols whose home package is the keyword pack-

age. (See the section "Package Names".) The only aspects of symbols significant to

keywords are name and property list; otherwise, keywords could just as easily be

some other data type. (Note that keywords are referred to as enumeration types in

some other languages.)

There are three kinds of variables: special (or global), local (or lexical), and in-

stance. A special variable has dynamic scope: any Lisp expression can access it

simply by referring to its name. A local variable has lexical scope: only Lisp ex-

pressions lexically contained in the special form that binds the local variable can

access it. See the section "Overview of Dynamic and Lexical Scoping". An instance

variable has a different kind of lexical scope: only Lisp expressions lexically con-

tained in methods of the appropriate flavor can access it. Instance variables are

explained in another section. See the section "Overview of Flavors".

Overview of Lists

This section introduces the concepts of Lisp lists, the components of lists, and oth-

er data structures that are composed of lists.

Lists and list-like structures exist to organize data in tabular structures. The sim-

plest such structure is just a collection of items. For example:

scallop

clam

oyster

mussel�

The kinds of things a program might do with such a structure are, for example:

• Find a given - first, last, second - item in the collection/table/list 

• See if a given item is included
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• Add an item to or remove an item from the structure

• Copy the structure�

These are just a few of the possible operations. The above collection, which is just

a plain list of items, approximately models the mathematical concept of a set. Since

the need for this kind of structure and these operations is ubiquitous in the type

of programming that the Lisp language was designed for, Lisp has an enormous

collection of functions for performing these types of operations.

The Cons

The basic data type upon which all tabular structures are based is a record struc-

ture called a cons. A cons has two components: the head of the cons, which is

called the car, and the rest, or tail, of the cons, which is called the cdr. See figure

! for an illustration of a single cons cell.

car cdr

half half

Figure 1.  Single Cons Cell�

The basic operations on the cons data type are: 

cons and xcons Create a cons with a specified car and cdr.

consp Determines if an object is a cons.

car Determines the car of the cons.

cdr Determines the cdr of the cons.�

With the cons data type and its associated operations, it is possible to create an

unlimited variety of tabular structures. The simplest such structure is the list. 

Simple Lists

A list is not a primitive Lisp data type; rather, it is a record structure created out

of conses. The method by which lists are constructed allows the many special list

operations to be defined recursively. The key to the construction of a list using

conses is the object called nil, which is, by definition, the empty list. nil is also

represented as (). nil has its own special data type, null, which includes nil as its

only case.
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Having this special object to denote an empty list, it is now easy to define a list in

terms of conses: 

A list is either nil or it is a cons whose tail (cdr) is a list. 

The list of the above example can thus be created by:

(cons ’scallop (cons ’clam (cons ’oyster (cons ’mussel

’nil)))) => (SCALLOP CLAM OYSTER MUSSEL)

which is equivalent to 

(list ’scallop ’clam ’oyster ’mussel)

Note that the printed form of the list is enclosed within parentheses. This struc-

ture could be diagrammed as:

                 first cons

                 car   cdr

                  |     |

                SCALLOP |

                        |

                   second cons

                     car   cdr

                      |     |

                    CLAM    |

                            |

                        third cons

                         car   cdr

                          |     |

                        OYSTER  |

                                |

                            fourth cons

                             car   cdr

                              |     |

                            MUSSEL  |

                                    |

                                   nil�

Note that only the heads (cars) of the conses of this structure contain the ele-

ments of the list. The tail (cdr) of each cons contains the rest of the list, except

for the last cdr, which contains nil.

The form of this structure and its recursive generation, make it easy to generate

functions to search through lists, extract various parts of lists, and the like.

Special Kinds of Lists

• Property Lists�

A table in which each of the items has some property associated with it is called a

property list. For example, a property list for a scallop might be:
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outer-color blue-black

interior-color mother-of-pearl

shell thin

culinary-value high�

The kinds of operations that might be performed on a structure like this are

adding and removing properties and finding a property, given an item. For these

simple operations, a special kind of simple list, called a property list is sufficient. A

property list is just a list that has an even number of elements that are alternate-

ly items and the items’ properties. For example, the above list would be represent-

ed as

(OUTER-COLOR BLUE-BLACK INTERIOR-COLOR MOTHER-OF-PEARL SHELL THIN

CULINARY-VALUE HIGH) �

The first members of the pairs in the list are called indicators and the second

members are called values or properties. 

The functions for manipulating property lists are side-effecting operations; they

have the result of altering the property list itself, rather than of creating a new

list.

• Dotted Lists�

A cons whose tail (cdr) is not the empty list is called a dotted list. This term is a

misnomer, since a dotted list is not a true list at all. The "dotted" part of the

name stems from the way a dotted list is represented in print with the car and

cdr separated by a dot:

(cons ’scallop ’clam) => (SCALLOP . CLAM)

Conses are the building blocks for a another structure called an association list.

• Association Lists�

Another type of table is one in which each of the items in the table is identified

according to some key. For example:

pectinidae scallop

pelecypoda clam

ostrea oyster

mytilus mussel�

The structure used to represent this sort of table is called an association list, or

alist. An association list is a list, the elements of which are conses. The conses

that compose an association list are not required to be dotted pairs, but they can

be. The car of one of these conses is called the indicator, and the cdr is called the

value. The table above is represented as:

((PECTINIDAE . SCALLOP)(PELECYPODA . CLAM)(OSTREA . OYSTER)(MYTILUS .

MUSSEL)) �
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The same kinds of abstract operations that can be performed on property lists can

be performed on association lists, but because of their more complicated structure,

additional operations can also be performed on them. You can, for example, search

on an indicator through an association list to find a value or on a value to find an

indicator. The function pairlis creates an association list by pairing elements from

each of two lists.

Association lists can be incrementally updated by adding new entries to the front.

• Trees�

Trees are structures composed of one cons and possibly other conses that are asso-

ciated with that cons, as in these examples:

 ((PECTINIDAE . SCALLOP)(PELECYPODA . CLAM))

 ((MYTILUS . MUSSEL)(WHELK PERIWINKLE (FAMILIES . 5) SHELLS)(7 . 4)) �

Figure ! is a diagram of this structure.

MYTILUS MUSSEL

WHELK nil

nil

PERIWINKLE

7

4

FAMILIES 5 SHELLS

Figure 2.  Diagram of a Tree Structure�

• Circular Lists�
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A circular list is a simple list whose last cons’s tail points either to the first cons

of the list, or another cons in the list. The conses are linked together in a ring

with the cdr of each cons being the next cons in the ring. This list type is useful

especially for those functions that perform a specified operation on all the ele-

ments of a list, for example, mapcar. Circular lists must be used carefully, howev-

er, for they can cause many list functions to get into infinite loops.

Cdr-Coding Lists

Symbolics Common Lisp uses a special internal representation called cdr-coding for

conses and lists that effects a substantial reduction in the storage required for

these structures. Cdr-coded lists require, in the optimum case, only half the space

that regular lists use. The disadvantage of cdr-coded lists is that, once they have

been altered by operations like rplacd, nconc, and nreverse, access to them can

be slowed down considerably.

Cdr-coded lists are created by list, list-in-area, make-list, or append.

Normal, that is, not-cdr-coded lists are created by cons, xcons, or ncons, and their

in-area variants.

The copylist function can be used to convert a normal list into a cdr-coded list.

Overview of Arrays

Basic Concepts of Arrays

An array is a Lisp object that consists of a group of elements. Each array element

is a Lisp object. General arrays allow the elements to be any type of Lisp object.

Specialized arrays place constraints on the type of Lisp objects allowed as array

elements. 

The individual elements of an array are identified by numerical subscripts. When

accessing an element for reading or writing, you use the subscripts that identify

that element. The number of subscripts used to refer to one of the elements of the

array is the same as the dimensionality of the array. Thus, in a two-dimensional

array, two subscripts are used to refer to an element of the array.

The lowest value for any subscript is 0; the highest value is a property of the ar-

ray. Each dimension has a size, which is the lowest integer that is too great to be

used as a subscript. For example, in a one-dimensional array of five elements, the

size of the one and only dimension is five, and the acceptable values of the sub-

script are 0, 1, 2, 3, and 4. 

The number of dimensions of an array is called its dimensionality, or its rank. The

dimensionality can be any integer from zero to seven, inclusive. A zero-dimensional

array has exactly one element. 

A one-dimensional array is known as a vector. A general vector allows its elements

to be any type of Lisp object. Strings are vectors that require their elements to be
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of type string-char or character. Bit-vectors are vectors that require their ele-

ments to be of type bit.

For more information on the types of arrays: See the section "Data Types and

Type Specifiers".

Zetalisp Note: Zetalisp uses a different terminology for array types. A general ar-

ray is called a Zetalisp sys:art-q array. Zetalisp has many types of specialized ar-

rays, such as sys:art-fixnum and sys:art-boolean. These types are used by

zl:make-array, which is supported for compatibility with previous releases. For a

complete list of Zetalisp array types, see the section "Zetalisp Array Types".

The basic functions related to arrays enable you to create arrays (make-array), ac-

cess elements (aref), and alter elements (setf used with aref). 

There are many types of array operations. Most of these can be done with special-

ized array functions, while some can be done with more general-purpose sequence

functions. 

Several advanced and more specialized programming practices are also supported.

See the section "Advanced Concepts of Arrays".

Simple Use of Arrays

The following brief example illustrates the syntax of the basic functions for creat-

ing arrays, reading and writing their elements, and getting information on arrays.

First, we create and initialize an array that could be used to represent an 8-puzzle

game. The first argument represents the array’s dimensions; this is a two-

dimensional array, with three elements in each dimension. The keyword argument

:initial-contents is the mechanism for initializing the elements of the array.

(setq *8-puzzle* 

      (make-array ’(3 3) 

  :initial-contents

  ’((3 8 1) 

    (4 5 nil)

    (2 7 6))))

�

=>#<ART-Q-3-3 44003776>�

make-array returns the array. Its printed representation is #<ART-Q-3-3

44003776>. 

The next two forms read the elements specified by subscripts (0 2) and (1 2): 

(aref *8-puzzle* 0 2) => 1 

(aref *8-puzzle* 1 2) => NIL�

To play the first move in the game, we switch the position of the nil with any ad-

joining element. When setf is used with aref as follows, the element changes to

the new value given.
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(setf (aref *8-puzzle* 0 2) nil) => NIL

(setf (aref *8-puzzle* 1 2) 1) => 1 �

Instead of continuing with the game, we request information on the *8-puzzle* ar-

ray:

• What is the rank of the array, or how many dimensions does it have?

(array-rank *8-puzzle*) => 2�

The array has 2 dimensions, or a rank of 2. 

• What are the dimensions of the array? 

(array-dimensions *8-puzzle*) => (3 3)�

The elements of the returned list (3 3) are the dimensions of the array. 

• What is the type of the elements in the array?

(array-element-type *8-puzzle*) => T �

The returned value, t, indicates that the array elements can be of any type. �

Advanced Concepts of Arrays

This section introduces some of the advanced topics of arrays, as well as terminol-

ogy associated with those topics. 

Array leader Typically, the elements of an array are a homogeneous set of

objects. Sometimes, however, it is desirable to store a few non-

homogeneous pieces of data attached to the array. You can use

an array leader to do this. An array leader is similar to a gen-

eral one-dimensional array that is attached to the main array.

You can create a leader using the :leader-length or :leader-list

option for make-array, and examine and store elements in the

array leader using numeric subscripts. Alternatively, you can

construct the leader using the :array-leader option for

defstruct, and then use automatically generated constructor

functions to access the slots of the leader.

Fill pointer By convention, element zero of the array leader of an array is

used to hold the number of elements in the array that are

"active" in some sense. When the zeroth element is used this

way, it is called a fill pointer. Many array-processing functions

recognize the fill pointer. For instance, if a string has seven

elements, but its fill pointer contains the value 5, then only el-

ements zero through four of the string are considered to be
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"active". This means that the string’s printed representation is

five characters long, string-searching functions stop after the

fifth element, and so on.

Displaced array Normally, an array is represented as a small amount of header

information, followed by the contents of the array. However,

sometimes it is desirable to have the header information re-

moved from the array’s contents. A displaced array is such an

array. You can create one with the :displaced-to option to

make-array. 

Indirect array This is an array whose contents are defined to be the contents

of another array. You can create one by giving an array as the

value of the :displaced-to option to make-array. 

Index offset Both indirect and displaced arrays can be created in such a

way that when an element is referenced or stored, a constant

number is added to the subscript given. This number is called

the index offset, and it is specified by giving an integer as the

value of the :displaced-index-offset option to make-array. 

Raster This is a two-dimensional array that is conceptually a rectan-

gle of bits, pixels, or display items. A variety of raster opera-

tions is available. 

Plane This is an array whose bounds, in each dimension, are plus-

infinity and minus-infinity. All integers are valid as subscripts.

A variety of plane operations is available. 

Array register When performance is especially important, you can use the ar-

ray register feature to optimize your code. 

Adjusting an array You can adjust an existing array to give it a new dimensionali-

ty. To ensure that an array will be adjustable after it is creat-

ed, use the :adjustable option to make-array. 

Array storage In all Lisp dialects supported by Genera, arrays are stored in

memory in row-major order. This is an implementation detail

that does not concern most programmers. However, if you use

some of the advanced array practices, such as displaced arrays

or adjusting the array size dynamically, you need to understand

how arrays are stored in memory. 

Overview of Sequences

A sequence is a data type that contains an ordered set of elements. It subsumes

the types list and vector (one-dimensional arrays).

Symbolics Common Lisp provides a range of general sequence functions that oper-

ate on both lists and vectors. These functions perform basic operations on se-

quences, irrespective of their underlying representation. The advantage of using a
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sequence operation, rather than one specifically for lists and vectors, is that you

need not know how the sequence has been implemented. It makes sense to reverse

a sequence or extract a range of sequence elements, whether the sequence is im-

plemented as a vector or a list.

The principal operations on sequences fall into the following categories: 

• Constructing and accessing

• Predicates 

• Mapping 

• Modifying

• Searching

• Sorting and merging�

Argument keywords extend the power of the sequence functions. For example, the

keywords :test, :test-not, and :key allow you to set up arbitrarily complex tests for

customizing the operation of the sequence functions. See the section "Testing Ele-

ments of a Sequence".

Overview of Characters

A character is a type of Lisp object. A character object is used to represent letters

of the alphabet and numbers, among other things. Characters are the building

blocks of strings; a string is a one-dimensional array of characters.

The reader recognizes characters by the #\ prefix followed by the character. For

example: #\A is read as the character A; #\1 is read as the character 1. Non-

printing characters have names; the reader recognizes them by the #\ prefix fol-

lowed by a name, such as #\Space. 

Each character object has the following attributes: the character code, the charac-

ter set, the character bits, and the character style. 

A character set is a group of related characters. All characters in a character set

are recognized as belonging together, even if they are different sizes or styles. 

Genera supports three character sets: the Symbolics standard character set, the

mouse character set, and the arrow character set. Characters that are in character

sets other than the Symbolics character set are represented by the #\ prefix fol-

lowed by the name of the character set, a colon, and the name of the character.

For example: 

#\mouse:scissors

#\arrow:eye�

Two characters of different character sets can never be char-equal. 

The character code is the attribute of a character that identifies the particular

character in the same way that ASCII codes represent particular characters. Two

characters in different sets never have the same code. For example, the Symbolics

standard character set a and the Greek character set α have different character

codes. (Note that Genera does not support a Greek character set.) 
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The character bits are an attribute of characters. The bits represent the HYPER, SU-

PER, META, and CONTROL keys; they make it possible to distinguish between the

character "A" and the character "control A", for example. 

Characters that have bits set are read by the reader in the same way that other

characters are read: the #\ prefix is followed by the character’s name. For example,

#\control-A or #\c-A is read as the character "control A". Other examples are: #\c-

m-Return, #\hyper-Space, #\meta-B. 

Using Modifier Keys

When any of the modifier bits (control, meta, super, or hyper) is set in conjunction

with a letter, the letter is always uppercased.

The Control-Shift- characters are encoded separately. c-sh-A is not a synonym for

c-A; they are distinct compound keystrokes. c-A names a gesture meaning to hold

down the CONTROL key which pressing the A key.

In addition to the four modifier keys HYPER, SUPER, CONTROL, and META, the SHIFT

key is a modifier key for letters when used in combination with one of the other

modifiers. The CAPS LOCK key is not a modifier key and is always ignored in com-

pound keystrokes. Thus typing CONTROL and A at the same time gives c-A; pressing

CONTROL and SHIFT and / at the same time gives c-?, not c-sh-/.

The names for compound keystrokes always show a letter as capitalized. This does

not mean that you have to use the SHIFT key; use the SHIFT key as a modifier on-

ly when sh- appears in the same name.

In addition, printing names of characters have case in them. Case is ignored on

input. Some new synonyms for existing characters are accepted. In particular,

names of the following form have these synonyms: 

Name Equivalent to

#\c-sh-B #\c-shift-B

#\mouse-L #\mouse-L-1�

A character style is a combination of three characteristics that describe how a

character appears. These characteristics are the family, face, and size. 

Family Characters of the same family have a typographic integrity, so

that all characters of the same family resemble one another.

Examples: SWISS, DUTCH, and FIX. 

Face A modification of the family, such as BOLD or ITALIC. 

Size The size of the character, such as NORMAL or VERY-SMALL.

�

The character style is the grouping of the family, face, and size fields. A character

style is often represented by the convention: 
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family.face.size

An example of a fully specified character style is: 

SWISS.ITALIC.LARGE�

Each element of the character style can be specified or left unspecified. A family,

face, or size of NIL means to use the default value. Most characters have the fol-

lowing character style: 

NIL.NIL.NIL

Characters of style NIL.NIL.NIL are displayed in the default character style estab-

lished for the current output device. 

Genera distinguishes between thin and fat characters: 

Thin character A character whose character style is NIL.NIL.NIL and whose

bits are all zero. Thin characters are of type string-char. For

example: #\A 

Fat character A character that has a character style other than NIL.NIL.NIL

or whose modifier bits are set to something other than zero.

Fat characters are of type character. For example: #\c-A �

describe is useful for getting information about a character. It responds with the

character’s bits, style, code, and character set; it returns the character itself. 

The following example shows the result of describing a thin character representing

the letter A. 

(describe #\A) =>

#\A is a character with bits #b0, style NIL.NIL.NIL, and code 65

This is offset 65 in character set #<STANDARD-CHARACTER-SET 204000540>

#\A�

The following example shows the result of describing a fat character that repre-

sents the letter A. This character has the Meta bit set and has the style

NIL.ROMAN.NIL. However, the character code of this fat character is the same as

the character code of the thin character representing the letter A.

(describe (make-character #\A :bits char-meta-bit 

                              :style ’(nil :roman nil))) =>

#\m-sh-A is a character with bits #b10, style NIL.ROMAN.NIL, and code 65

This is offset 65 in character set #<STANDARD-CHARACTER-SET 204000540>

#\m-sh-A �

Character styles are device independent. When you want to display a character on

a specific device (such as the black and white console, or the LGP3 printer), a spe-

cific font must be chosen to represent the character. The font is chosen depending

on: the character code, the character set, the character style, and the device type.

The system has a set of predefined mappings between character sets, character

styles, device types and specific fonts.
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Common Lisp has a font field instead of a character style field. As implemented in

SCL, characters have no font field and the char-font-limit is 1. This is in compli-

ance with Common Lisp. 

In Symbolics documentation the word font is used in two contexts: to describe a

font that is specific to a device for representing characters, and to refer to the

font of a character as implemented in releases of Symbolics software prior to Gen-

era 7.0. 

Mouse characters and the functions that manipulate them are described elsewhere.

See the section "Mouse Characters".

Overview of Strings

The Lisp data type, string, is a specialized type of vector, or one-dimensional array,

whose elements are characters. 

Common Lisp defines a string as a vector whose elements are characters of type

string-char. Symbolics Common Lisp extends this definition by recognizing an ad-

ditional string type, namely a vector whose elements are of type character.

Strings of type string-char are called thin strings; they are made up of thin char-

acters. Strings of type character are called fat strings; they are made up of fat

characters.

Thin string An array whose elements are thin characters (standard charac-

ters of type string-char with no character style or modifier

bits attributes). For example, "any string". The predicate

string-char-p tests for thin characters.

Fat string An array whose elements are fat characters (of type character,

with fields holding information about character style and modi-

fier bits.) For example, "any string". The predicate string-

fat-p tests strings for fatness.�

Characters and their attributes are discussed elsewhere in this Overview: See the

section "Overview of Characters".

The function stringp lets you test any Lisp object to determine if it is a string.

Zetalisp Note: Zetalisp uses a different terminology for string types. A thin string

is called sys:art-string, and a fat string is called sys:art-fat-string.

Common Lisp also distinguishes between the type string and a subtype of it called

simple-string. A simple-string is a simple-array, that is, an array that has no fill

pointer, is not adjustable after creation, and whose contents are not displaced

(shared with another array). A string is an array that can have a fill pointer, can

be adjusted after creation, and can be displaced. The types of arrays are discussed

elsewhere in this Overview: See the section "Advanced Concepts of Arrays".

The predicates string-p and simple-string-p test if an object is a string or a sim-

ple-string. The distinction between strings and simple strings is not especially im-

portant in Symbolics Common Lisp.
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The individual elements of strings are identified by numeric subscripts; when ac-

cessing portions of a string for reading or writing, you use the subscript to identi-

fy the elements. The subscript count always begins at zero. In many cases, string

operations also return an integer that is an index into the string array (as, for ex-

ample, to indicate the position of a character found in a string search).

As vectors, strings constitute a subtype of the type sequences. Hence, many string

operations can use general purpose array or sequence functions; a large number of

string-specific functions are also available.

The basic functions relating to strings let you create strings (make-string or

make-array), access a single string element (char or aref), modify strings or por-

tions of them (setf used with char or aref), and get information about string size

(string-length). Other typical string operations, for which a variety of functions

are provided, include comparing two strings, altering string case, removing por-

tions of a string, combining strings, and searching a string for a character or a

string of characters.

String comparisons and searches examine every individual element of the string.

The case-sensitivity of the comparison determines which attributes of a character

are respected or ignored.

A case-sensitive operation takes into account every single attribute of the charac-

ters compared, whereas a case-insensitive operation ignores the attributes specify-

ing character style and character case. Both case-sensitive and case-insensitive op-

erations compare attribute fields such as character code and modifier bits. 

For example:

(string= "sail" "SAIL") => NIL

; case-sensitive comparison fails 

�

(string-equal "sail" "SAIL") => T

; case-insensitive comparison succeeds

�

The case-sensitive string comparison functions are distinguished by their use of al-

gebraic comparison symbols as suffixes (for example, string=); the case-insensitive

string comparison functions have alphabetic symbols as suffixes (for example,

string-equal, string-lessp). 

The case-sensitive string search functions often use the suffix -exact (for example

string-search-exact-char); the case-insensitive string search functions omit this

suffix (for example, string-search-char).

Many string functions can be destructive or non-destructive with respect to their

argument(s). Functions beginning with the character "n" modify their argument so

that its original form is destroyed (for example, string-nreverse, which reverses

the characters of its argument and does not preserve it). Destructive functions

have a non-destructive counterpart, which preserves the original argument and re-

turns a modified copy of it (for example string-reverse).

Examples:
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; non-destructive lowercasing operation preserves

; the original argument

(setq original "THREE BLIND MICE")  => "THREE BLIND MICE"

(string-downcase original) => "three blind mice"

original => "THREE BLIND MICE"

�

; destructive lowercasing - original argument is lost

(setq original "THREE BLIND MICE")  => "THREE BLIND MICE"

(nstring-downcase original)  => "three blind mice"

original  => "three blind mice"�

Most string operations use keyword arguments to help you customize the extent

and the direction of the operation. Keyword arguments are prefixed by a colon (:).

The most important are keyword arguments :start, :end, and :from-end.

:start and :end must be non-negative integer indices into the string array, and

:start must be smaller than or equal to :end. These keywords operate only on the

"active" portion of the string, that is, the portion below the limit specified by the

fill pointer, if there is one. :start indicates the start position for the operation

within the string. It defaults to zero (the start of the string). :end indicates the

position of the first element in the string beyond the end of the operation. It de-

faults to nil (the length of the string). If both :start and :end are omitted, the en-

tire string is processed by default.

For example:

; to capitalize the last four characters in "applejack"

(string-upcase "applejack" :start 5)   => "appleJACK"

�

; to reverse the middle three characters of "doodle"

(string-reverse "doodle" :start 1 :end 4)  => "ddoole"�

If two strings are involved, the keyword arguments :start1, :end1, :start2, and

:end2 are used to specify substrings for each separate string argument.

For example:

; to compare the first three characters of two strings

(string= "apple" "applejack" :end1 3 :end2 3) => T�

For operations such as searches, it can be useful to specify the direction in which

the string is conceptually processed. This is controlled by the keyword argument

:from-end.

Where this keyword is present in the argument list, the function normally process-

es the string in the forward direction, but if a non-nil value is specified for :from-

end, processing starts from the reverse direction. Regardless of the direction of

processing, the count indicating the position of the item found always starts from

the beginning of the string.

For example:
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(string-search-exact #\e "heavenly") => 1

       ; normal search, returns the position of the

       ; first (leftmost) occurrence

       ; of the character "e"

�

(string-search-exact #\e "heavenly" :from-end t) => 4

       ; reverse search, returns the position of the last

       ; (rightmost) occurrence of the character "e"

       ; counting from the beginning of the string�

Cells and Locatives

A cell is a machine word that can hold a (pointer to a) Lisp object. For example, a

symbol has five cells: the print name cell, the value cell, the function cell, the

property list cell, and the package cell. The value cell holds (a pointer to) the

binding of the symbol, and so on. Also, an array leader of length n has n cells, and

a sys:art-q array of n elements has n cells. (Numeric arrays do not have cells in

this sense.)

A locative is a type of Lisp object used as a pointer to a single memory cell any-

where in the system; it lets you refer to a cell, so that you can examine or alter

its contents. Locatives are inherently a more "low-level" construct than most Lisp

objects; they require some knowledge of the nature of the Lisp implementation.

Most programmers never need them.

Here is a list of functions that create locatives to cells:

zl:aloc

zl:ap-leader

zl:car-location

zl:value-cell-location

sys:function-cell-location�

Each function is documented with the kind of object to which it creates a pointer.

The macro locf can be used to convert a form that accesses a cell to one that cre-

ates a locative pointer to that cell.

For example:

(locf (fsymeval x)) ==> (sys:function-cell-location x)�

locf is very convenient because it saves the writer and reader of a program from

having to remember the names of all the functions that create locatives. See the

section "Generalized Variables".

The contents of a cell can be accessed by location-contents and updated by (setf

(location-contents ...)).

Access to and modification of the contents of locatives is currently implemented by

the system using the operations cdr and rplacd. Therefore, these instructions may

appear in the disassembly of compiled programs which operate on locatives. Also,
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you may sometimes see these functions used to manipulate locatives in old code.

This usage is obsolete and should not be employed in new software.

Table of Functions That Operate on Locatives

location-boundp location Tests if the cell at location is bound to a value.

location-contents locative Returns the contents of the cell pointed to by

locative.

location-makunbound loc &optional variable-name 

Causes the cell at loc to become unbound.

locativep x Tests if x is a locative.

locf reference Converts reference to a new form that creates a

locative pointer to that cell.

Overview of Table Management

A table is a data structure that consists of some number of entries, each containing

one or more objects. The number of objects per entry is fixed and uniform in any

given table. The simplest tables consist of entries that are keys. In the most com-

mon table, the first object in each entry of a table is the key, and the second ob-

ject is the value. More complex tables can have some combination of multiple keys

and multiple values.

This sample table is made up of key and value pairs, where the key is the bird

type and the value is a list of foods that a bird of that type eats:

KEY (bird) VALUE (diet)

blue-heron (frogs snakes turtles)

ENTRY horned-owl (mice snakes)

pelican (fish)

 ...  ...�

The principal operations on tables are:

• Searching by key

• Inserting and deleting entries

• Examining all entries

• Deleting all entries�

Some tables also support the additional operations of retrieving the first entry, re-

trieving the last entry, and possibly retrieving the entries in order, by key.
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Genera’s table management facility performs these operations on tables of many

forms, using one common interface. Thus, you need not worry about the internal

representation of the data or other properties of the table. If you create tables

with this facility, your code is easily ported to Common Lisp, and you take advan-

tage of the efficiencies provided by the facility. If you create tables that do not use

the Symbolics extensions to the make-hash-table function, your code is already

compatible with Common Lisp.

Note: In figuring out the best internal representation for the given data, the table

management facility uses a small amount of overhead. Thus, if you know before-

hand that you need a simple table, for instance a property list or an association

list, it may be more efficient to create your own list rather than use the table

management facility to do it. 

You create table objects with the make-hash-table function, and add new entries

by using a combination of the gethash function and the setf macro. Here is a sim-

ple example:

(setq bird-table (make-hash-table :size 10))

   => #<Table 0/0 63151256>

�

(setf (gethash ’wader bird-table) ’flamingo) => FLAMINGO

�

(setf (gethash ’raptor bird-table) ’bald-eagle) => BALD-EAGLE

�

(hash-table-count bird-table) => 2

�

(describe bird-table)

   => #<Table 2/2 63151256> is a table with 2 entries.

   Do you want to see the contents of the hash table? (Y or N) Yes.

   Do you want it sorted? (Y or N) Yes.

   Test function for comparing keys = EQL, hash function =

        CLI::XEQLHASH

      RAPTOR → BALD-EAGLE

      WADER → FLAMINGO

   #< #<Table 2/2 63151256> �

In this example, the keys are wader and raptor, and the associated values are

flamingo and bald-eagle. Each entry in the table associates a bird type to a bird

name.

The table management facility is based on Flavors. It defines a large family of ta-

ble flavors, with generic functions for accessing them. This makes it easy to use,

as well as flexible and extensible.

Overview of Functions

Functions are the basic building blocks of Lisp programs. A function is a Lisp ob-

ject that, when applied to arguments, performs some action and returns a value.

You can manipulate functions in the same ways you manipulate other Lisp objects;
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you can pass them as arguments, return them as values, and make other Lisp ob-

jects refer to them.

There are four kinds of functions, classified by how they work:

• Interpreted functions, which are defined with defun, represented as list struc-

tures, and interpreted by the Lisp evaluator.

• Compiled functions, which are defined by compiling forms from a file or an edi-

tor buffer or by loading a binary file, are represented by a special Lisp data

type, and are executed directly by the machine.

• Various types of Lisp objects that can be applied to arguments, but when ap-

plied, call another function and apply it instead. These include symbols, dynamic

and lexical closures, and instances.

• Various types of Lisp objects that, when used as functions, do something special

related to the specific data type. These include arrays and stack groups.

Lisp has several functions known as function-defining special forms, which are used

in programs to define functions. For example, defun is a common function-defining

special form. Function-defining special forms typically take as arguments a func-

tion spec (see below) and a description of the function to be made.

Function-defining special forms include defun, defsubst, macro, defselect, deff,

and def.

A general programming-style rule of thumb: Anything that is used at top level (not

inside a function) and starts with def should be a function-defining special form so

that the editor can find it in your source file and show it to you whenever you ask

for a definition.

For more information on function-defining special forms, see the section "Function-

Defining Special Forms".

The name of a function is usually a symbol, but does not have to be a symbol. A

function can be represented by a function spec, which serves to name a function

and specifies a place to find and remember a function. Spec is short for specifica-

tion.

Function specs are not functions. You cannot apply a function spec to arguments.

You use function specs when you want to do something to the function, such as

define it, look at its definition, or compile it. Both function specs and functions

can be defined. To define a function spec means to make that function spec re-

member a given function  a task accomplished by the fdefine function. To define

a function means to create a new function and define a given function spec as that

new function  a task accomplished by the defun special-form. Several other spe-

cial forms, such as defmethod and defselect, also define functions. 

A function spec’s definition generally consists of a basic definition surrounded by

encapsulations. The basic definition is what defun creates. See the section "How

Programs Manipulate Definitions". The encapsulation is composed of function-
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altering functions, such as trace and advise. See the section "Encapsulations".

When the function is called, the function’s definition plus the alterations are exe-

cuted.

For more information on function specs: See the section "Function Specs".

There are several operations a user would typically want to perform on functions.

These operations are:

• Print out the definition of the function spec with indentation. (This works only

with interpreted functions.)

• Find out about a function by looking at its documentation and its arguments.

• Look at the function’s debugging information.

• Trace the calling history and customize the definition of a function while de-

bugging.

• Examine the compiled code, if the function is compiled.�

For more information on these operations: See the section "Operations the User

Can Perform on Functions".

A Lisp definition is a Lisp expression that appears in a source program file and

has a name to which a user can refer. Two definitions with the same name and

different types can exist simultaneously, but two definitions with the same name

and the same type redefine each other when evaluated. There are four basic types

of definitions:

• functions

• variables

• flavors

• structures�

Many types of Lisp special forms, such as defun and defvar, can define these four

types of definitions. For more information about definitions: See the section "How

Programs Manipulate Definitions".

A Lisp declaration is an optional Lisp expression that provides the Lisp system

with information about your program, for example, documentation. Many Lisp

forms, such as defun, have declarative aspects. See the section "Declarations".

A dynamic closure is a Lisp functional object for implementing certain advanced

access and control structures. Closures give you more explicit control over the en-

vironment, by allowing you to save the environment created by the entering of a

dynamic contour, and then use that environment elsewhere, even after the contour

has been exited. There are several functions that manipulate dynamic closures, for
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example, zl:closure. For more information on dynamic closures: See the section

"Dynamic Closures".

Overview of Predicates

A predicate is a function that tests for some condition involving its arguments and

returns some non-nil value if the condition is true, or the symbol nil if it is not

true. Many predicates return the symbol t, instead of another non-nil value, if the

condition is true.

Predicate names usually end in the letter "p". The way the "p" is added to the end

of the predicate depends on whether or not there is an existing hyphen in the

name. For example, the predicate that tests for integers is integerp, while the

predicate that checks for compiled functions is compiled-function-p.

Predicates fall into several logical categories. These include: type-checking predi-

cates, which test an object for membership in a particular data type such as num-

bers, arrays, and so on; property-checking predicates, which determine whether an

object has certain properties (such as whether a number is odd or even); compari-

son predicates, which compare objects of the same type; and a few others.

For a complete list of predicates: See the section "Predicates". A full description of

each predicate is available in the dictionary of Lisp functions.

Overview of Macros

The macro facility allows the user to define arbitrary functions that convert cer-

tain Lisp forms into different forms before evaluating or compiling them.

This is done at the expression level, not at the character-string level, as in most

other languages. Macros are important in the writing of good code: they make it

possible to write code that is clear and elegant at the user level, but that is con-

verted to a more complex or more efficient internal form for execution.

When eval is given a list whose car is a symbol, it looks for local definitions of

that symbol; if that fails, it looks for a global definition. If the definition is a

macro, it contains an expander function. eval applies the expander function to two

arguments: the form that eval is trying to evaluate, and an object representing the

lexical environment. The expander function returns a new form. This is the expan-

sion of the macro call. eval evaluates this expansion in lieu of the original form. 

An example of a macro expansion would be as follows:

(macroexpand ’(return x))

 => (RETURN-FROM NIL

      X) and T�

Macros are used for a variety of purposes, the most common being extensions of

the Lisp language. Note that macros are not functions, and cannot be applied to

arguments.
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The defmacro construct provides a convenient way to define new macros, and the

backquote facility helps to increase their readability. Backquote (‘) is a reader

macro that generates lists. In simple cases, the backquote is just like the regular

single quote macro: it creates a form that when evaluated produces the form fol-

lowing the backquote. For example:

‘(1 2 3) => (1 2 3)

’(1 2 3) => (1 2 3)�

If you include a comma (,) inside the form following a backquote, that form gets

evaluated even though it is inside the backquote. For example:

(setq b 1) 

‘(a b c) => (A B C)

‘(a ,b c) => (A 1 C)�

In other words, backquote quotes everything except things preceded by a comma;

those things get evaluated.

If an at-sign character follows the comma (,@), it has a special meaning. This con-

struct should be followed by a form whose value is a list; then each of the ele-

ments of the list is appended to the list being created by the backquote. For ex-

ample:

(setq a ’(x y z)) 

‘(1 ,a 2)  => (1 (X Y Z) 2)

‘(1 ,@a 2) => (1 X Y Z 2)�

Here is a simple macro definition using the backquote facility:

(defmacro onep (num)

   ‘(zerop ,(- 1 num))) => ONEP

(onep 1) => T

(onep 0) => NIL�

Inline functions are somewhat similar to macros. An inline function executes like a

function; if it is called by another function that is being compiled, the inline

function’s definition is substituted into the code being expanded. In this respect,

an inline function is like a macro. If something can be implemented as either a

macro or an inline function, it is generally better to make it an inline function.

Special Forms and Built-in Macros

In order to define the terms "special form" and "macro" it is necessary first to re-

view some basic concepts.

The form is the standard evaluation unit in Lisp. It is a data object that is meant

to be evaluated as a program to produce one or more values (which are also data

objects). See the section "Introduction to Evaluation". There are three categories of

forms:

• self-evaluating forms, such as numbers, characters, strings, and bit-vectors
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• symbols, which stand for variables 

• lists�

The evaluator, when applied to a list, performs the operation specified by the first

element of the list, in order to produce a value to return. The first element of the

list is referred to as an operator. There are two categories of operators:

• functions

• special operators�

Functions are explained at length in their own chapter. See the section

"Functions".

There are two kinds of special operators:

• special forms

• macros�

A special form is a special operator that is "built in" to the Lisp language; that is,

this type of special operator is contained within the compiler and interpreter.

(Sometimes special forms are referred to as primitive special operators. This latter

term more accurately expresses the concept, since a special form is not really a

"form" at all. The term "special form" is the one that has been in use in the Lisp

literature heretofore, so the current documentation retains it for the sake of con-

sistency.)

Most special forms are either control constructs (for example, case, do, loop) or

environment constructs (for example, let, defconstant). Evaluation of some special

forms calls for a nonlocal exit rather than returning a value. An example is

throw. There is no general syntax for a special form; each special form has its

own syntax.

A built-in macro is also defined and available within the language, but unlike spe-

cial forms, macros can also be defined by the user.

A macro call is a list whose first element is the name of a macro. Each macro has

its own expander function. When a macro call is made, the expander function com-

putes a new form that is to be evaluated in place of the original form. The result-

ing value is returned as the value of the original form. See the section "Introduc-

tion to Macros".

The definition of a special form can not be moved from one symbol to another,

while the definition of macro, or a function, can. Whether a particular special op-

erator is a special form or a macro is implementation dependent. An implementa-

tion is free to implement any special form as a macro and vice versa. The user

can define new functions and macros, but the set of special forms is fixed by the

implementation.
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Overview of Evaluation

Evaluation is the process of recursively executing Lisp forms and returning their

values. Simply put, evaluation is the computation performed by a program. A form

is passed to the evaluator. If the form is a symbol, the evaluator returns the bind-

ing (value) of the symbol. If the symbol has no binding, the evaluator signals an

error. If the form is a list, the evaluator looks first at the car of the list. If the

car is a symbol, it retrieves the functional value of that symbol. If that functional

value is a function definition, the remaining forms in the list are evaluated in turn

and then the function is applied to the result to produce the final value of the list.

If the symbol has no functional value, an error is signaled. If the car of the list is

another list, the car of that list is evaluated, and so on. 

For example, if the evaluator is given (+ 4 5), it determines first that the form is

a list. Then it looks at the +. It retrieves the functional value of this symbol,

which is the addition function. It next looks at the 4, which has as its value 4;

then it looks at 5, which is 5; and finally it applies the addition function to 4 and

5 which produces 9. It then returns 9 as the value of (+ 4 5). This is indicated in

the documentation like this:

(+ 4 5) => 9

Overview of Dynamic and Lexical Scoping

Scoping refers to the range of the environment in which a variable exists and can

be used in computation. There are two kinds of scoping, dynamic scoping and lexi-

cal scoping. If a variable has dynamic scope (that is, has been declared special) it

can be used in computation anywhere for as long as it exists, that is, from the

time it is bound until it is explicitly unbound. (See the section "Special Forms for

Defining Special Variables".) If a variable has lexical scope, it can only be used in

computation within the textual confines of the Lisp form that defines it.

For example: 

(defun mapc (funct list)

  (loop for x in list do   ;x is bound here

    (funcall funct x)))

�

(defun print-long-strings (strings x)   ;x is bound here

  (mapc #’(lambda (str)

            (if (> (length str) x)   ;which x is this?

              (print str)))

        strings))�

In the definition of mapc, x is defined. Another x is defined as one of the argu-

ments to print-long-strings. In the computation performed by the lambda there is

a reference to x.

If x has dynamic scope, the reference to x in the function print-long-strings refers

to the x in mapc because the loop in mapc is executing when the reference to x

is made and the x in that loop is thus the most recently bound x. (This is probably

not what the programmer intended.)
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If x is lexically scoped, the x in mapc only exists as x inside the textual definition

of mapc. Inside the textual definition of print-long-strings, the x refers to the ar-

gument to print-long-strings.

User-defined variables in Symbolics Common Lisp are lexically scoped unless you

explicitly declare them special.

Overview of Flow of Control

Symbolics Common Lisp provides a variety of structures for controlling program

flow. A conditional construct is one that allows a program to make a decision, and

do one thing or another based on some logical condition. Local and nonlocal exits

allow the transfer of control from one section of a program to another. Iteration

permits a programmer to execute a command multiple times. 

The simplest conditional form is the if-then form, which can be extended to the if-

then-else form. An example of this two-way conditional is:

(if (= 1 2) "equal" "not equal") => "not equal"�

The logical forms and, or, and not let you build multi-way conditional constructs.

A multi-way conditional is often equivalent to an if-then-else-else... form, but it can

be clearer, more compact, and easier to read than a long line of else statements.

The most basic multi-way conditional is cond, consisting of the symbol cond fol-

lowed by several clauses. Each clause represents a case that is selected if its an-

tecedent is satisfied and the antecedents of all preceding clauses were not satis-

fied. 

For example:

(cond ((and (equal "day" "day") (= 1 2)) "star light")

      ((> 1 2) "prefix or postfix")

      (t "drop out")) => "drop out"�

Note the use of t in the last clause as a "use if all else fails" provision. 

Premature exit from a piece of code is another mechanism for controlling program

flow. Depending on their scope (the spatial or textual region or the program within

which references can occur), exits can be local or nonlocal.

block and return-from are the primitive special forms for local exit from a piece

of code. block defines a program portion that can be safely exited at any point,

and return-from does an immediate transfer of control to exit from block. Local

exits have lexical scope, that is, block and return-from can only operate within

the portion of code textually contained in the construct that establishes them.

catch and throw are the special forms used for nonlocal exits. catch evaluates

forms; if a throw is executed during the evaluation, the evaluation is immediately

aborted at that point and catch immediately returns a value specified by throw.

Nonlocal exits have dynamic scope, that is, the catch/throw mechanism works even

if the throw form is not textually within the body of the catch form.
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The repetition of an action (usually with some changes between repetitions) is

called iteration, and is provided as a basic control structure in most languages. Re-

cursion is one alternative to iteration. This programming method has the function

call itself, thus causing an iteration. Recursion is analogous to mathematical in-

duction. 

Here is a very simple example of recursion:

;; Two things are defined as EQUALX if they are either EQ, or if

;; they are lists containing EQUALX elements.

;; Therefore EQUALX calls EQUALX recursively.

�

(defun equalx (a b)

  (cond ((eq a b) t)

(t

 (and (listp a)

      (listp b)

      (equalx (car a) (car b))

      (equalx (cdr a) (cdr b))))))�

This example uses recursion to traverse a tree:

(defun max-fringe (tree)

  (if (atom tree)

      tree

    (max (max-fringe (car tree))

 (max-fringe (cdr tree)))))�

Symbolics Common Lisp provides three styles of iteration: mapping, do and loop. 

Mapping is a type of iteration in which a function is successively applied to pieces

of a list. The result of the iteration is a list containing the respective results of

the function application.

Mapping is used when a problem is easily expressed by a function followed by any

number of lists. 

For example:

(map ’list #’+ ’(1 2 3 4) ’(2 3 1 4)) => (3 5 4 8)�

The use of mapping results in clear and concise code. 

For more general iteration than mapping, you can use the simplest form of itera-

tion, the do form. do provides a generalized iteration facility, with an arbitrary

number of "index variables" whose values are saved when the do is entered and

restored when it is left, that is, they are bound by the do. do is simple to use;

however, it is often quite hard to read later.

For example:
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(do  ((i 0 (+ 1 i)) ; searches list for Dan.

      (names ’(Fiona Tiffany Jen Kristen Wendy Sandy Dan Tom)

        (cdr names)))

     ((null names))

  (if (equal ’Dan (car names))

      (princ "Hi Jen"))) => Hi Jen

NIL�

Even more simple and flexible than do is the loop macro which provides a pro-

grammable iteration facility. The basic structure of a loop is as follows:

(loop iteration clauses

          do

      body)  ; loop alone returns nil�

The iteration clauses control the number of times the body will be executed. When

any iteration clause finishes, the body stops being executed. The word do is the

keyword that introduces the body of loop. 

The general approach is that a form introduced by the word loop generates a sin-

gle program loop, into which a large variety of features can be incorporated. These

features work by means of keywords, of which there is a large number. Note that

loop keywords are not prefixed with a colon (:) character. Keywords like repeat or

(for x from ...), for instance, let you control the number of times through an iter-

ation. Other keywords, such as (collect x into num) let you accumulate a return

value for the iteration. All of the keywords for loop are Symbolics Common Lisp

extensions to the language specification in Guy L. Steele’s Common Lisp: the Lan-

guage.

Here are some examples showing how loop keywords can be used:

(loop repeat 5

      do 

  (princ "hi ")) => hi hi hi hi hi 

NIL

�

(loop for x from 1 to 5 by 1

      with y = 9

      initially (princ y)

      do 

  (princ x))  => 912345

NIL

�

(loop for x in ’(a d c e)

      do

  (princ x)) => ADCE

NIL�

The order of loop keywords is mostly a matter of taste and style. Many of them

are accepted in several synonymous forms (for example, collect and collecting), to

let you write code that looks like stylized English. Using the appropriate keywords

helps you to write code that is easier to read.
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Not so clear:

(loop as x to 4 by 1 from 1

      collect x into num

      finally (return num))  => (1 2 3 4)

�

Better:

(loop for x from 1 to 4 by 1

      collect x into num

      finally (return num)) => (1 2 3 4)�

In more advanced uses of iteration it is possible to define your own iteration

paths, that is, to build your own iteration-driving clauses.

Overview of Structure Macros

Symbolics Common Lisp offers a variety of built-in data types, such as symbols,

lists, and arrays. You can use Lisp functions to create a new symbol, set the value

of the symbol, read its value, and alter its value. The same functionality is avail-

able for lists and arrays.

The structure macro facility enables you to extend Lisp’s data types by defining

new types of data structures. Once you have defined a new type of data structure,

you can create new structures of that type, and then read and set the values of

their elements.

The newly defined data structure is a convenient, concise, and high-level way to

represent an object. For example, if your program simulates an ocean environment,

you might need to represent boats. You can use structure macros to define a high-

level representation of boats. The elements of the data structure are called slots.

Further on, we define a sample boat structure that has slots for the boat’s x-posi-

tion, y-position, x-velocity, and y-velocity.

To define new structures, you use defstruct or zl:defstruct. These macros provide

a similar functionality. defstruct adheres to the Common Lisp standard, with sev-

eral extensions derived from useful features of zl:defstruct. zl:defstruct is sup-

ported for compatibility with previous releases.

In brief, the structure macro facility gives you the following features: 

• Ability to define new aggregate data structures with named slots. 

(defstruct boat

  x-position

  y-position

  x-velocity

  y-velocity)�

• Constructor functions (generated automatically) for making objects of the newly-

defined type of structure. 
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(setq boat-1 (make-boat))�

• Slot-initialization capabilities, including a way to initialize slot values when con-

structing new objects, and to specify default slot values in the defstruct form.

(setq boat-2 (make-boat :x-position 12 

:y-position 73

:x-velocity 0

:y-velocity 25)) �

• Accessor functions (generated automatically) for reading the value of a slot. 

(boat-x-position boat-2)�

• Alterant macros (generated automatically) for changing the value of a slot. 

�

(setf (boat-x-position boat-2) 12.5)�

By creating a new, high-level data structure to represent the objects of a program,

you gain several advantages over using lower-level data structures, such as lists or

arrays. The program should be more readable and understandable. 

For example, if you represent a boat with lists or arrays, it would not be obvious

when reading the program that an expression such as (fifth boat-1) or (aref

boat-2 4) means "the y component of the boat’s velocity". 

The main purpose of using defstruct to define new structures is to increase the

clarity of a program that deals in some kind of objects. The clarity is a result of

named slots and automatically-generated constructor, accessor, and alterant

macros. 

defstruct offers other features, such as the ability to control the internal represen-

tation of the structure. You can use the :type option to indicate that the structure

should be implemented as a list, an array, a named-array, and so on. 

You can also create new structures that inherit slots from another structure. For

example, you might define a structure to represent a person. You might then de-

fine structures to represent astronauts, which could include the slots of the person

structure.

defstruct structures are useful and appropriate for many application programs.

Flavors is an alternate method of writing programs that need to represent objects.

Flavors offers greater flexibility in program development and several programming

practices that are not available with defstruct structures. 

For related information: 

See the section "Structure Macros".

See the section "Overview of Flavors".

See the section "Comparing defstruct Structures and Flavors".



Page 44

Overview of CLOS

Introduction to CLOS

The Common Lisp Object System (CLOS) enables users to program in an object-

oriented style within Common Lisp. CLOS is part of the draft ANSI specification

of Common Lisp.

Symbolics continues to support New Flavors, another object-oriented language. The

primary advantage of CLOS over Flavors is that CLOS is a standard part of ANSI

Common Lisp, and thus CLOS programs can be ported to other platforms. CLOS

offers some extra functionality which users will find valuable, and omits some of

the less vital functionality of Flavors. Users can continue to develop programs in

Flavors if they are not interested in developing portable code, do not need the ex-

tra features that CLOS offers, or have programs that need to access flavors. 

We do not support programming in a style that mixes use of CLOS and Flavors.

That is, CLOS classes cannot inherit from flavors (and vice versa), and you cannot

call a CLOS generic function on a Flavors instance (and vice versa).

Classes, Types, and Instances�

You can define new classes to represent objects that your program is modeling.

Each individual object is represented by an instance of the class. Each class has a

type associated with it. 

In CLOS, every Lisp object is an instance of a class. You can use clos:class-of to

determine the class of any Lisp object. 

In addition to user-defined classes, CLOS has a set of predefined classes. CLOS de-

fines classes that correspond to many Lisp types, including classes named array,

integer, list, t, and others. (Note that not all types have associated classes.) Since

methods can specialize on these predefined classes, CLOS enables the object-

oriented programming style to encompass many useful Lisp types as well as user-

defined types.

Slots�

All instances of a class have the same structure, which is represented by its slots.

A slot has a name and a value. Slots are used to store state information about an

object. 

CLOS enables you to read and write the value of a slot using accessors. A reader is

an accessor function that returns the value of a slot. A writer is an accessor func-

tion that sets the value of a slot. 

CLOS supports two kinds of slots: 

Local slot Each instance of the class stores its own value for a local slot.

In other words, the storage for the slot is allocated on a per-

instance basis. Local slots are used for state information which

should be associated with each individual instance.
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Shared slot All instances of the class share the value of a shared slot. The

storage for the slot is allocated on a per-class basis. Shared

slots are used for state information which should be associated

with all instances of the class.�

Class Inheritance�

CLOS enables you to define classes that inherit from other classes. Inheritance is a

key aspect of the object-oriented paradigm; it enables you to conveniently model

similar kinds of objects that have minor differences. You can identify shared as-

pects of these objects, and isolate each aspect in a discrete module, which you

might consider a "building block" class. You can then combine these modules to

create new classes. The sharable aspects are defined and implemented once, and

are included in the classes that should exhibit those behaviors. 

CLOS supports multiple inheritance, which means that a class can inherit from any

number of "parent" classes. In contrast, note that defstruct supports only single

inheritance; there can only be one parent structure included in the definition of a

new type defined by defstruct. 

When you define a class, you specify its direct superclasses. The new class inherits

from all its direct superclasses, and from all their direct superclasses, and so on.

The set of classes that the class inherits from is called its superclasses. The com-

plementary terms are direct subclasses and subclasses.

Suppose:

  Class-A inherits from Class-B and Class-C.

  Class-C inherits from Class-D.

  Class-B inherits from Class-E.

Then:

  Class-A is a direct subclass of Class-B and Class-C.

  Class-A is a subclass of Class-B, Class-C, Class-D, and Class-E.

  Class-B and Class-C are direct superclasses of Class-A.

  Class-B, Class-C, Class-D, and Class-E are superclasses of Class-A.�

A class inherits slots and other characteristics from its superclasses. 

CLOS computes a class precedence list for each class. The purpose of the class

precedence list is to ensure an orderly and predictable inheritance behavior, espe-

cially in cases of potential conflict, where more than one class specifies a certain

characteristic. 

The class precedence list is a list of the class itself and all its superclasses, in a

precedence order from most specific to least specific. Each class has precedence

over the classes that follow it in the class precedence list. In other words, each

class is more specific than the classes that follow it in the class precedence list.

The class precedence list for Class-A is:
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  (Class-A Class-B Class-E Class-C Class-D clos:standard-object t)�

Notice the classes clos:standard-object and t, which appear at the end of the

class precedence list. The predefined class clos:standard-object is automatically

included as a superclass of each user-defined class; it supports the default behavior

of user-defined classes. The predefined class t is automatically a superclass of ev-

ery class (both user-defined classes and predefined classes); it appears as the last

class in every class precedence list. 

Generic Functions�

A generic function is called with the same syntax as an ordinary Lisp function. The

difference lies in what happens when the function is called. An ordinary function

has a single body of code that is always executed when the function is called.

When a generic function is called, the body of code that is executed depends on

the arguments to the generic function.

A generic function can have several methods, each with its own body of code; the

arguments to the generic function cause one or more of the methods to be in-

voked. The combined body of code (which consists of one or more methods) is the

effective method, sometimes called the "handler". When a generic function is called,

the CLOS generic dispatch mechanism automatically chooses and executes the ap-

propriate effective method for each generic function call. 

The CLOS model focuses on generic functions, which is an important difference

from other object-oriented systems, which focus on a class and methods for that

class. In many object-oriented systems (including Flavors), the effective method of

a generic function is chosen based on a single argument to the generic function,

which means that each method is associated with a single class. Another way to

think about this is that Flavors is "class-centric" and CLOS is "generic-function-

centric".

In CLOS, any one or more of the required arguments to the generic function can

select methods to be combined into the effective method. Each method can be asso-

ciated with a number of classes, up to the number of required arguments. 

Methods�

Methods perform the work of generic functions. The important concepts of CLOS

methods are: 

• The method’s applicability. The lambda-list of the method states the sets of ar-

guments for which the method is applicable. Each required parameter can be

specialized. Each specialized parameter is an applicability test; a method is ap-

plicable if all the specialized parameters are satisfied by the arguments to the

generic function. 

A parameter can be specialized in two ways:
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° With a class name. To satisfy this applicability test, the argument must be an

instance of the class or an instance of any subclass.

° With a list such as (eql form). To satisfy this applicability test, the argument

must be eql to the Lisp object that is the value of form. Note that the form

is evaluated once, at the time that the clos:defmethod form is evaluated. The

form is not evaluated each time the generic function is called.

Note that generic functions can accept optional, rest, and keyword arguments as

well as required arguments, but only required arguments participate in method

applicability. 

• The method’s role. Each method has a qualifier that states the role that the

method plays in the generic function, and how it fits in with other methods. We

discuss some of the common method roles: 

The role of a primary method is to perform the main work of the generic func-

tion. 

There might be other methods that perform additional or auxiliary work; these

include before-methods and after-methods. Before-methods run before the primary

method, to do preparatory or initialization work. After-methods run after the pri-

mary method, to do clean-up work.

An around-method has special control; it can decide whether the primary method

should be executed; it can provide code that runs before the before-methods and

code that runs after the after-methods; and it can bind state around the call of

the other methods.

In addition to these roles, users can define new roles customized for a particular

application. For more information: See the section "CLOS Method Combination".

CLOS supports both the declarative style of programming (where before-methods,

primary methods, and after-methods are used, and each method is called auto-

matically when appropriate) and the imperative style (where the body of an

around-method uses clos:call-next-method to call a method imperatively). For a

discussion of these two styles, see "Controlling the Generic Dispatch" in the

book Object-Oriented Programming in COMMON LISP.

• The method’s body. The method’s body consists of Lisp forms that perform some

work of the generic function. 

Method-Combination Types�

Each generic function has a method-combination type, which controls the interac-

tion between different kinds of methods. The method-combination type controls:

• Which method roles are supported.
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• How the methods of the different roles work together in the generic function.

• How the value or values of the generic function are calculated.�

The default method-combination type is called clos:standard. It supports primary

methods, before-methods, after-methods, and around-methods, as described above. 

CLOS provides a set of predefined method-combination types (in addition to

clos:standard), and it also provides a mechanism for users to define new method-

combination types.

Generic Dispatch�

The generic dispatch ties together all of the concepts mentioned above; it controls

the behavior of generic functions. The generic dispatch is an automatic mechanism

of CLOS that selects and executes the appropriate effective method of a generic

function based on the arguments to the generic function. 

When a generic function is called, the CLOS generic dispatch does the following:

1. Finds the set of applicable methods. A method is applicable if each of its re-

quired parameters is satisfied by the corresponding argument to the generic

function. 

2. Arranges the applicable methods in precedence order. The precedence order of

methods is calculated based on the parameter specializers of the methods, and

the class precedence lists of the required arguments to the generic function. 

3. Uses the method-combination type of the generic function to determine how

the applicable methods should be combined into an effective method. (The ef-

fective method is the body of code that CLOS constructs to perform the

generic function for the given arguments.) The method-combination type uses

the sorted list of applicable methods as its input. It decides which methods

should be executed, and in what order. 

4. Executes the effective method and returns its values.�

Note that the Symbolics CLOS implementation optimizes the generic dispatch, so

that some of the steps of the generic dispatch are not executed on each generic

function call. The optimizations, however, do not change the semantic effect of the

generic dispatch procedure as described above. 

CLOS Objects and Meta-Objects�

The basic elements of CLOS programs are implemented by first-class objects; for

example, there are class objects, generic function objects, and method objects. These

objects are distinct from their names. Most operators in the CLOS Programmer In-

terface enable you to deal with objects by using the names of the objects; for ex-

ample, you can refer to generic functions and classes by their names.
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Underlying the CLOS Programmer Interface is another level called the Meta-object

Protocol. The Meta-object Protocol is not currently part of the draft ANSI standard

for Common Lisp. Symbolics CLOS does not implement the complete Meta-object

Protocol, but it does support some of its features. The purpose of the Meta-object

Protocol is to define CLOS itself in an extensible, object-oriented way, such that

users can develop different object-oriented paradigms, or paradigms that modify or

extend CLOS.

In the Meta-object Protocol, class objects, generic function objects, and method ob-

jects (among others) are implemented as instances of classes. Instances of these

classes are called meta-objects. Here are some of the predefined meta-objects: 

• The default class of user-defined classes is clos:standard-class. 

• The default class of generic functions is clos:standard-generic-function.

• The default class of methods is clos:standard-method.�

A class whose instances are classes is called a metaclass. The class clos:standard-

class is a metaclass, because its instances are user-defined classes. There are two

other metaclasses of interest:

• The class of most of the predefined classes that correspond to Common Lisp

types (such as list) is clos:built-in-class.

• The class of classes defined by defstruct is clos:structure-class. 

Basic Use of CLOS

This section introduces the basic CLOS operators and shows a brief example of us-

ing them.

Basic CLOS Operators

When developing an object-oriented program, the most common things you will

need to do include defining classes, defining generic functions, defining methods,

and creating new instances. 

clos:defclass class-name superclass-names slot-specifiers &rest class-options 

Defines a class named class-name, and returns the class object. 

clos:defgeneric function-name lambda-list &body options-and-methods 

Defines a generic function and returns the generic function object. 

clos:defmethod function-name {method-qualifier}* specialized-lambda-list &body

body 

Defines a method for a generic function and returns the method object. 
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clos:make-instance class &allow-other-keys 

Creates, initializes, and returns a new instance of the given class.

Simple Example of Using CLOS

This section presents a simple example of using the basic CLOS operators to de-

fine classes, make instances, call accessors, define generic functions and methods.

Each of these subjects is covered in detail elsewhere in the documentation; this

section is intended only to give you an idea of what a CLOS program looks like. 

Defining a Class�

We might define a new class called person as follows:

(defclass person ()

  ((name :initarg :name :accessor name-of)

   (ssn :initarg :ssn :accessor soc-sec-number 

:documentation "social security number")

   (address :initarg :address :accessor address)))�

The class person has no superclasses (the second subform of clos:defclass is an

empty list). It has three local slots, named name, ssn, and address. Each slot has

some slot options. The slot options used here have the following effect:

:initarg Enables us to initialize this slot when making an instance.

Here, the initialization arguments are :name, :ssn, and

:address.

:accessor Defines two methods: a method for a reader and a method for

a writer generic function, which we can use to access the val-

ue of the slot. Here, the readers are named name-of, soc-sec-

number, and address. We can write the value of one of these

slots by using setf with the reader.

:documentation Documents the slot.�

For more information on defining classes: See the macro clos:defclass. See the

section "CLOS Classes and Instances".

Making an Instance�

We can make an instance of person as follows:

(setq *constance*

      (make-instance ’person :name "Constance McGill" 

                             :ssn "012-34-5678"))�

Notice that we initialized the value of the name slot by providing the :name ini-

tialization argument to clos:make-instance. Similarly, we initialized the value of

the ssn slot by providing the :ssn initialization argument. 

We did not initialize the value of address, so that slot’s value is unbound. 
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For more information on making instances: See the section "Creating and Initializ-

ing CLOS Instances".

Calling Accessor Generic Functions�

We can read the value of the name and ssn slots of the instance by calling the

readers as follows:

(name-of *constance*) => "Constance McGill"

(soc-sec-number *constance*) => "012-34-5678"�

The writers are setf generic functions that must be called with the setf syntax.

Here, we write the value of the address slot:

(setf (address *constance*) "44 Pine St")�

For more information on accessing slots: See the section "Accessing Slots of CLOS

Instances".

Defining Classes that Inherit from Other Classes�

We can define the class employee in such a way that it inherits from the class

person:

(defclass employee (person)

  ((salary :initarg salary :accessor salary)

   (vacation-time :initform 0 :accessor vacation-time)

   (phone :reader phone-extension)

   (rank :initarg rank :accessor rank)))�

The class person is a direct superclass of employee. Conversely, the class

employee is a direct subclass of person. 

The class employee inherits three local slots from person, and specifies four addi-

tional slots of its own. 

We see two new slot options in this definition:

:initform Gives a default initial value for the slot. 

:reader Defines a reader method, but no writer method. �

The slot vacation-time has no initialization argument, so we cannot initialize it by

giving an argument in the call to clos:make-instance. Instead, this slot is always

initialized to the value of its initform, which is 0.

We might need a class to represent employees who are in the Human Resources

staff. We can define the class H-R-staff as a subclass of employee:

(defclass H-R-staff (employee) ()

  (:documentation "H-R-staff have authority to alter records."))�

This class inherits four slots from employee, and three slots from person, but

adds no other slots. It uses the :documentation class option to document the class

as a whole. 
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For more information on how class inheritance works: See the section "CLOS In-

heritance".

Defining a Generic Function and Methods�

Here we define a generic function called change-name:

(defgeneric change-name (employee staff new-name)

  (:documentation "Ensures that name change is done by authorized staff."))�

At this point, the generic function is defined, but there are no methods defined for

it. If it is called with any set of arguments, an error will be signaled, stating that

there are no applicable methods. Thus, the next step is to define methods for this

generic function. 

H-R staff people are authorized to change an employee’s name. The following

method for change-name is applicable when the first argument is of the type

employee and the second argument is of the type H-R-staff. The body of the

method changes the value of the employee’s name to a new name. 

;;; Method intended to be called when an H-R person

;;; tries to change an employee’s name.

(defmethod change-name ((emp employee) (h-r H-R-staff) new-name)

  (setf (name-of emp) new-name))�

The following method for change-name is applicable when the first argument is of

the type employee. The second and third arguments set no restrictions on the ap-

plicability of the method. The intention is for this method to be called when the

second argument is a person who is not authorized to change an employee’s name;

it signals an error instead of changing the employee’s name. 

;;; Method intended to be called when a non-h-r person

;;; tries to change an employee’s name.

(defmethod change-name ((emp employee) non-h-r new-name)

  (declare (ignore non-h-r new-name))

  (error "You aren’t authorized to change an employee’s name."))�

If change-name is called with an employee as its first argument and a H-R-staff

person as its second argument, then both methods are applicable. The first method

is more specific than the second. Thus, only the first method is called, and it

changes the name of the employee. 

If change-name is called with an employee as its first argument and a non-H-R-

staff person as its second argument, only the second method is applicable. That

method signals an error, because it is enforcing the principle that only authorized

staff can change an employee’s name. 

At present, our model is that only H-R staff people are authorized to change an

employee’s name. Thus we have two methods: one intended to be called for H-R

staff people, and the other for other employees. Later on, we might decide that

people in the accounting department are also authorized to change an employee’s

name. We could define a primary method applicable for people in the accounting

department which would do the same thing that the method for H-R-staff does.
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Note that we assume that users do not call setf of name-of directly, because it is

not part of the advertised interface; calling it directly would bypass this error-

checking. CLOS does not include any protection features that would guard against

users calling setf of name-of directly.

For more information on methods and generic functions:

See the section "CLOS Methods and Generic Functions".

See the section "CLOS Method Combination".

See the macro clos:defmethod.

See the macro clos:defgeneric.

Overview of Flavors

Flavors is the part of Symbolics Common Lisp that supports object-oriented pro-

gramming. Flavors is a powerful and flexible tool for programming in a modular

style. 

If you are developing code with the intention of porting it to other Lisps, you

should use CLOS instead, The primary advantage of CLOS over Flavors is that

CLOS is a standard part of ANSI Common Lisp, and thus CLOS programs can be

ported to other platforms. CLOS offers some extra functionality which users will

find valuable, and omits some of the less vital functionality of Flavors. Users can

continue to develop programs in Flavors if they are not interested in developing

portable code, do not need the extra features that CLOS offers, or have programs

that need to access flavors.

We do not support programming in a style that mixes use of CLOS and Flavors.

That is, CLOS classes cannot inherit from flavors (and vice versa), and you cannot

call a CLOS generic function on a Flavors instance (and vice versa).

For an introduction to CLOS, see the section "Overview of CLOS". For reference

information on CLOS, see the section "Symbolics CLOS".

The basic concepts of Flavors are simple to understand and it is easy to begin ex-

perimenting with Flavors. On the other hand, Flavors is a complex system that of-

fers many advanced options and programming practices. These advanced topics are

not presented here, but are covered in the reference documentation: See the sec-

tion "Flavors".

Concepts of Flavors

It is often convenient to organize programs around objects, which model real-world

things. Each object has some state, and a set of operations that can be performed

on it. Object-oriented programming is a technique for organizing very large pro-

grams. This technique makes it practical to manage programs that would other-

wise be impossibly complex.

An object-oriented program consists of a set of objects and a set of operations on

those objects. The design of such a program consists of three major tasks:
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• Choosing the kinds of objects to provide in the program.

• Defining the characteristics of each kind of object.

• Determining what operations can be performed on each kind of object.�

Using Flavors terminology, an object-oriented program is built around: 

Flavors Each kind of object is implemented as a flavor. A flavor is a

template for objects. In other words, a flavor is an abstraction

of the characteristics that all objects of this flavor have in

common. 

Instances of a flavor

Each object is implemented as an instance of a flavor. In fact,

the term object is used interchangeably with instance. 

Instance variables Each flavor specifies a set of state variables for objects of that

flavor. These are called instance variables. 

Generic functions The operations that are performed on objects are known as

generic functions. 

Methods The code that performs a generic function on instances of a

certain flavor is called a method. Typically, one generic func-

tion has several methods defined for it. �

Often a flavor is defined by combining several other flavors, called its components.

The new flavor inherits instance variables, methods, and additional component fla-

vors from the components. In a well-organized program, each component flavor de-

fines a single facet of behavior. When two types of objects have some behavior in

common, they each inherit it from the same flavor. This code need not be dupli-

cated.

In summary, each real-world object is modelled by a single Lisp object. The ob-

ject’s flavor defines the inherent structure of the object. The state of each individ-

ual object is stored in its instance variables. Generic functions are used to perform

operations on flavor instances. Each generic function is implemented with one or

more methods; each method performs the operation on objects of a certain flavor. 

Concept of Generic Functions

Like ordinary functions, generic functions take arguments, perform an operation,

and perhaps return useful values. The first argument to a generic function is an

object (an instance of a flavor). Unlike ordinary functions, generic functions be-

have a certain way for objects of one flavor, and behave in another way for objects

of another flavor. 

For example, in writing a text editor we might define two flavors: character and

paragraph. It is important to be able to erase characters and paragraphs, so we

define a generic function called erase. When we use erase on a character object,
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we want the character to disappear from view, and not to be saved anywhere.

However, when we use erase on a paragraph object, we want the paragraph to

disappear, and we also want to save the paragraph in a buffer somewhere. This

feature aids users in restoring large bodies of text to their buffers.

Using Flavors terminology, we implement the generic function by writing two

methods. Both methods are associated with the generic function erase. One method

is associated with the character flavor; the other is associated with the

paragraph flavor. When the generic function erase is called on an object, the fla-

vor of the object determines which method is used.

Generic functions differ from ordinary functions in that each generic function can

have several methods associated with it, and Flavors chooses which one to use on

any given call by the flavor of the first argument. An ordinary function has a sin-

gle body of code that is always executed when the function is called. 

For further discussion: See the section "Generic Functions". See the section "Using

Message-Passing Instead of Generic Functions".

Concept of Message-passing

In previous versions of Flavors, the only mechanism for operating on objects was

called message-passing. Using message-passing, you can operate on an object by

sending it a message. The object receives the message and selects the appropriate

method to execute. You use the function send to send the message and defmethod

to write methods for messages. In most cases the name of the message is a key-

word. 

Generic functions are the preferred way to operate on objects. Generic functions

are smoothly integrated into the Lisp environment. Ordinary functions and generic

functions are called with the same syntax. Making generic functions syntactically

and semantically compatible with ordinary functions has the following advantages:

• The caller of a function need not know whether it is generic. 

• The Common Lisp package system can be used to isolate modules and to distin-

guish between public and private interfaces by exporting the names of public

generic functions.

• Debugging tools such as trace can be used on generic functions.

• They are true Lisp functions that can be passed as arguments and used as the

first argument to funcall and mapcar: 

(mapc #’reset counters)�

It is important to continue to support message-passing because a large body of cus-

tomer code and Symbolics system code has been developed using message-passing.

There is generally not much point to converting existing code from message-

passing to generic functions. However, when writing new programs, it is good

practice to use generic functions instead of message-passing.
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For more information on message-passing: See the section "Using Message-Passing

Instead of Generic Functions".

Simple Use of Flavors

This section illustrates the basic concepts of using flavors. For a lengthier exam-

ple: See the section "Example of Programming with Flavors: Life".

Representing Objects

The program we are writing deals with ships. We must first determine a way to

represent ships. If the important things to know about a ship are its name, x-ve-

locity, y-velocity, and mass, we can represent ships as follows: 

(defflavor ship (name x-velocity y-velocity mass)

   ()                         ; no component flavors

  :readable-instance-variables

  :writable-instance-variables

  :initable-instance-variables)�

This defflavor form defines a flavor that represents ships. The name of the flavor

is ship. The instance variables are x-velocity, y-velocity, and mass. The empty

list could contain component flavors to be mixed into the definition of ship; in this

case, ship has no component flavors. The form contains three options, which have

the following effects: 

:readable-instance-variables

Defines accessor functions that enable you to query the object

for the value of instance variables. In this case four functions

are automatically generated: ship-name, ship-x-velocity, ship-

y-velocity, and ship-mass. 

:writable-instance-variables

Enables you to alter the value of instance variables using setf

and the accessor functions. When this option is supplied, the

instance variables are also made :readable-instance-variables. 

:initable-instance-variables

Enables you to initialize the value of an instance variable when

you make a new instance.�

The ship flavor is a framework, and many ships will fit into that framework. We

represent each real-life ship as an instance of the ship flavor. Each instance stores

information about one particular ship in its instance variables. 

To create instances, we use make-instance as follows:

(setq my-ship (make-instance ’ship :name "Titanic"

                                   :mass 14

                                   :x-velocity 24

                                   :y-velocity 2))�
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As a result of giving the :initable-instance-variables option to defflavor, we were

able to initialize the values of the instance variables when making the instance of

ship. The symbol my-ship is now bound to the newly created instance.

Operating on Objects

We can query my-ship for the value of any of its instance variables by using a

function that was automatically generated as a result of the :readable-instance-

variables option to defflavor. For example: 

 

(ship-name my-ship)

=> "Titanic"�

Similarly, because we included the :writable-instance-variables option, we can

change the value of an instance variable. For example: 

(setf (ship-mass my-ship) 100)

=> 100�

We can examine the instance by using describe:

(describe my-ship)

  

#<SHIP 54157652>, an object of flavor SHIP,

    has instance variable values:

    NAME                       "Titanic"

    X-VELOCITY:                24

    Y-VELOCITY:                2

    MASS:                      100�

We can define new operations (called generic functions) for instances of the ship

flavor, using defmethod. Inside the body of the method, we can access the in-

stance variables of the object by name. For example: 

(defmethod (speed ship) () 

  (sqrt (+ (expt x-velocity 2)

   (expt y-velocity 2))))�

To the caller, a generic function is just like any other Lisp function:

(speed my-ship)

=>24.083189�

Operating on Different Kinds of Objects with One Generic Function

Generic functions are more interesting when they can be used to operate on differ-

ent kinds of objects. Let’s introduce a new flavor, comet, and create an instance of

it:

(defflavor comet (x-velocity y-velocity z-velocity) 

   ()

  :initable-instance-variables)



Page 58

�

(setq my-comet (make-instance ’comet 

     :x-velocity 312

     :y-velocity 23.5

     :z-velocity 26))�

We can define a new method that implements the speed generic function on in-

stances of comet:

(defmethod (speed comet) () 

  (sqrt (+ (expt x-velocity 2)

   (expt y-velocity 2)

           (expt z-velocity 2))))�

To find the speed of my-comet:

(speed my-comet)

=>313.9622�

The generic function speed now has two different methods defined for it. One

method implements speed on ship objects, the other on comet objects. When you

call the generic function speed on an object, Flavors determines the flavor of that

object and chooses the appropriate method for it. 

Mixing Flavors

For a simple example of mixing flavors, we can represent a passenger ship. A pas-

senger ship has the same characteristics as the ship flavor, with one additional

attribute: a list of passengers. We can use the ship flavor as a building block for

the new flavor, as follows:

(defflavor passenger-ship (passenger-list) 

   (ship)

  :initable-instance-variables)�

The ship flavor is called a component flavor of passenger-ship. passenger-ship in-

herits instance variables and methods from ship. For example, when we make an

instance of passenger-ship, we can initialize name, mass, x-velocity, and

y-velocity, all instance variables inherited from ship:

(setq my-passenger-ship 

(make-instance ’passenger-ship 

                            :name "QE2"

    :mass 450 

    :x-velocity 12

    :y-velocity 0

    :passenger-list ’(Brown Jones Lee))) �

Similarly, we can use the generic function speed on passenger-ship; the method

was inherited from the component flavor ship. 

(speed my-passenger-ship)

=>12�
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Motivation for Using Flavors

The motivation for using flavors usually arises in large programs. Flavors enable

you to organize programs around objects, which model real-world things. An object

has a state and operations that can be performed on it. Flavors can be considered

an extension of the Common Lisp facility for defining new structures with

defstruct.

Here are some guidelines for using flavors:

• When you would consider using defstruct. 

• When your program contains lots of particular kinds of objects.

• When different kinds of objects share some characteristics.

• When one operation is appropriate for different kinds of objects.

• When you want to define a protocol that different programs can use.�

The last item illustrates an important strength of Flavors. For example, we could

implement output streams as flavors. The "protocol" consists of a set of functions

that are guaranteed to work on any output stream. These functions might include

output-char, output-string, and output-line, among others.

This protocol makes it easy to write programs that appear device-independent, by

using the generic functions available for output streams. The use of the generic

functions is the same, no matter how the actual output is implemented. 

From the other perspective, you can implement a new kind of output device by im-

plementing all the operations handled by output streams. Then all existing pro-

grams that deal with output streams work on the new device. 

      Various                                               Various

      Programs                Single Protocol           Output Devices 

                        +-------------------+                         

     User programs      |    output-char    |     Console              

     Hardcopy           |    output-string  |     Laser printer

     Document Examiner  |    output-line    |     ...

                        +-------------------+�

Using Flavors frees programs from needing to understand how each output opera-

tion is implemented on the different devices. This style of programming is modu-

lar, easy to extend, and easy to maintain.

Comparing defstruct Structures and Flavors

This section compares and contrasts defstruct structures and flavors. 

Flavors and defstruct enable you to: 
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• Use object-oriented programming in the Lisp environment, encouraging a modu-

lar style of programming.

• Create and use new aggregate data types. 

° Elements of the new data types are named. 

• Specify that functions should be automatically generated to read and write the

elements of the new data types. 

• Include the definition of one new data type in another: 

° Elements are inherited from an existing structure. 

° Functions for reading and writing elements are inherited.�

The major differences between flavors and defstruct structures are as follows: 

defstruct Structures Flavors

Each structure can have only You can mix flavors liberally,

one component structure and include many flavor components

(given with :include). in the definition of a new flavor. 

A structure does not inherit A flavor inherits methods for 

operations from its operations from its component

component structure. flavors.  

It is difficult, inconvenient, It is easy and convenient to

and sometimes impossible to add, delete, and rename instance

add, delete, or rename slots. variables, or to change other

flavor characteristics.

You can control the You cannot control the

internal representation internal representation

of the structure, such of a flavor.

as a list, array, or

other representation.

It is somewhat faster to It is somewhat slower to

reference a slot of a access instance variables

defstruct structure. than slots.  

You can cache a You cannot cache an 

defstruct structure in instance in an

an array register. array register.

Flavors offers many advanced 
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features and programming 

practices that are not

available using defstruct.�

Overview of Conditions

Conditions is an advanced topic geared to programmers who want to customize the

error handling mechanism.

The documentation describes the following major topics: 

• Mechanisms for handling conditions that have been signalled by system or appli-

cation code.

• Mechanisms for defining new conditions.

• Mechanisms that are appropriate for application programs to use to signal con-

ditions.

• All of the conditions that are defined by and used in the system software.�

Symbolics Common Lisp condition handling is based on flavors, which are an ex-

tension of the Common Lisp language. Here are some basic topics and the termi-

nology associated with them.

Event An event is "something that happens" during the execu-

tion of a program. It is some circumstance that the sys-

tem can detect, such as the effect of dividing by zero.

Some events are errors  which means something hap-

pened that was not part of the contract of a given func-

tion  and some are not. In either case, a program can

report that the event has occurred, and it can find and

execute user-supplied code as a result.

Condition Each standard class of events has a corresponding flavor

called a condition. For example, occurrences of the event

"dividing by zero" correspond to the condition sys:divide-

by-zero. Sets of conditions are defined by the flavor in-

heritance mechanism. The symbol condition refers to all

conditions, including simple, error, and debugger condi-

tions.

Simple conditions These are built on the basic flavor condition.

error conditions A base flavor for many conditions. Refers to the set of all

error conditions.

Debugger conditions Conditions built on the flavor dbg:debugger-condition.

They are used for entering the Debugger without neces-
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sarily classifying the event as an error. This is intended

primarily for system use.

Signalling The mechanism for reporting the occurrence of an event.

The signalling mechanism creates a condition object of the

flavor appropriate for the event. The condition object is

an instance of that flavor, which contains information

about the event, such as a textual message to report, and

various parameters of the condition. For example, when a

program divides a number by zero, the signalling mecha-

nism creates an instance of the flavor sys:divide-by-zero.

You can signal a condition by calling either signal or

error.

Handling The processing that occurs after an event is signalled.

Handler A piece of user-supplied code that is bound with a pro-

gram for a particular condition or set of conditions. When

an event occurs, the signalling mechanism searches all of

the currently bound handlers to find the one that corre-

sponds to the condition. The handler can then access the

instance variables of the condition object to learn more

about the condition and hence about the event. Genera in-

cludes default mechanisms to handle a standard set of

events automatically.

Proceeding After a handler runs, the program might be able to con-

tinue execution past the point at which the condition was

signalled, possibly after correcting the error.

Restart Any program can designate restart points. After a handler

runs, the restart facility allows a user to retry an opera-

tion from some earlier point in the program.

Overview of Packages

Lisp programs are made up of function definitions. Each function has a name to

identify it. Names are symbols. (See the section "Overview of Symbols".) Each sym-

bol can have only one function definition associated with it, so names of functions

must be unique or else the behavior of a program would be completely unpre-

dictable.

For example, if the compiler has a function named pull, and you load a program

that has its own function named pull, the function definition of the symbol pull

gets redefined to be that of the program just loaded, probably breaking the com-

piler. (Of course, Genera displays a warning message when such a redefinition

happens.)

Now, if two programs are to coexist in the Lisp world, each with its own function

pull, then each program must have its own symbol named "pull". The same rea-

soning applies to any other use of symbols to name things. Not only functions but
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variables, flavors, and many other things are named with symbols, and hence re-

quire that a program have its own collection of these symbols.

Since programs are written by many different people who do not get together to

insure that the names they choose for functions are all unique, programs are iso-

lated from each other by packages.

A package is a mapping from names to symbols. Two programs can use separate

packages to enable each program to have a different mapping from names to sym-

bols. In the example above, the compiler can use a package that maps the name

pull onto a symbol whose function definition is the compiler’s pull function. Your

program can use a different package that maps the name pull onto a different

symbol whose function definition is your function. When your program is loaded,

the compiler’s pull function is not redefined, because it is attached to a symbol

that is not affected by your program. The compiler does not break. 

� For example, if both your program and the compiler have a function called pull,

the compiler has its symbols in the compiler package, so its pull function would

be compiler:pull. If you have defined a package mypackage for your program,

your pull function is mypackage:pull. Functions within each package can just

refer to pull and get the right function, since the other pull would need its pack-

age prefix.

Two programs that are closely related might need to share some common func-

tions. For example, a robot control program might have a function called arm that

moves the robot arm to a specified location. A second program, a blocks world

program, might want to call arm as part of its clear function that removes blocks

from the top of a block to be picked up. If the robot control program is in the

robot package, and the blocks world program is in the blocks package, the blocks

world program can refer to the arm function by calling it as robot:arm. However,

the blocks world is likely to need arm frequently, and calling it as robot:arm is

tedious for a programmer. The blocks world program really needs to have the

function arm in its own package. In fact, the robot package probably contains

many functions the blocks world program needs, so the blocks world program

wants to have the robot package available in its own blocks package.

The package a symbol is defined in is called its home package. The symbols in a

package can be designated as internal (belonging only to that package) or external

(available to other packages, as in the robot:arm example). External symbols are

said to be exported. Symbols that are exported can be imported by another package.

If a program needs to share most or all of the external symbols in another pack-

age, it can import all the external symbols of that package. This is called using

the package.

Sharing does have some disadvantages, however. To continue with the robot:arm

example, if the blocks world program were to decide to define its own arm func-

tion while it was using the robot package, this would redefine arm in the robot

package as well. This is because sharing symbols means that now the robot pack-

age and the blocks have the same pool of symbols. For more details on sharing

and its consequences: See the section "Qualified Package Names".
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Genera sets up a package for you called cl-user. This is the default package of

your Lisp Listener. cl-user uses common-lisp-global so all the functions of Com-

mon Lisp are available to your program. When you define your own package for

your program, you can designate, using the use-package function or the import

function, those symbols from other packages that your program needs. For infor-

mation about packages defined in Genera: See the section "System Packages". You

can also declare which symbols in your package are external (can be imported or

used by other packages) and which are internal (for your program alone). For in-

formation about defining your own package: See the function make-package.

Since using another package might possibly result in a name conflict (the package

you are using might have a symbol of the same name as one in your package), the

system checks and warns you of any conflicts. You can select which symbol your

program uses. This process is called shadowing. The shadow or shadowing-import

functions control whether the symbol in your package or the imported symbol is

the one to be used. Shadowing is a complex process. For more information about

it: See the section "Shadowing Symbols". 

Overview of the I/O System

Symbolics Common Lisp provides a powerful and flexible system for performing in-

put and output to peripheral devices. To allow device-independent I/O (that is, to

allow programs to be written in a general way so that the program’s input and

output may be connected with any device), the I/O system provides the concept of

an "I/O stream". What streams are, the way they work, and the functions to create

and manipulate streams, are described in this document. This document also de-

scribes the Lisp "I/O" operations zl:read and print.

Data Types

Data Types and Type Specifiers

Symbolics Common Lisp provides a variety of data object types, as well as facilities

for extending the type hierarchy. It is important to note that in Lisp it is data ob-

jects that are typed, not variables: any variable can have any Lisp object as its

value.

Hierarchy of Data Types

In Symbolics Common Lisp, a data type is a (possibly infinite) set of Lisp objects.

The data types defined in Symbolics Common Lisp are arranged into a hierarchy

(actually a partial order) defined by the subset relationship. 

A type called common encompasses all the data objects required by the Common

Lisp language. The set of all objects in Symbolics Common Lisp is specified by the

symbol t. The empty data type, which contains no objects, is denoted by nil.
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The following terminology expresses the defined relationships between data types.

If x is a supertype of y, then any object of type y is also of type x, and y is said to

be a subtype of x. For example, the type integer is a subtype of rational. The type

t is a supertype of every type whatsoever: every object belongs to type t. The type

nil is a subtype of every type whatsoever: no object belongs to type nil.

If type x and y are disjoint, then no object can be both of type x and of type y. For

instance, the types integer and ratio are disjoint subtypes of rational.

Types a1 through an are an exhaustive union of type x if each aj is a subtype of x,

and any object of type x is necessarily of at least one of the types aj; a1 through

an are furthermore an exhaustive partition if they are also pairwise disjoint. The

types cons and null form an exhaustive partition of the type list.

Figure ! shows the data type hierarchy for Symbolics Common Lisp as a tree

whose root is the type t. Data types linked by connecting lines are related in a su-

pertype-subtype relationship. Data types with no explicit connecting lines are not

necessarily disjoint. 

symbol sequence array hash-table character stream

structure

locative

pathname

function

instance

random state

package

readtable

t

keyword null cons vector simple-array rational float complex

numberstring-char

standard-charlist

double

float

long

float

andratiointeger

bignumsigned-bytefixnum

single

float

and

short

float

unsigned-byte

bit

simple-vectorbit-vectorstring

simple-bit-vector

simple-string 1

1

compiled-function

generic-function

dynamic-closure

lexical-closure

Figure 3.  Symbolics Common Lisp Data Types

Certain objects such as the set of numbers or the set of strings are identified by

associated symbolic names or lists, called type specifiers. See the section "Type

Specifiers".
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Since many Lisp objects belong to more than one such set, it doesn’t always make

sense to ask what the type of an object is; instead, one usually asks only whether

an object belongs to a given type. The predicate typep tests a Lisp object against

one of the standard type specifiers to determine if it belongs to that type.

Some Major Data Types

Here are brief descriptions of the top level and a few lower-level Symbolics Com-

mon Lisp data types. Most of the remainder of this manual covers the complete set

of data types and their operations in detail.

• Numbers are provided in several forms and representations. Symbolics Common

Lisp provides a true integer data type: Any integer, positive or negative, has, in

principle, a representation as a Symbolics Common Lisp data object, subject only

to total memory limitations, rather than to machine word width. A true rational

data type is provided: The quotient of two integers, if not an integer, is a ratio.

Floating-point numbers of single and double precision are also provided, as well

as Cartesian complex numbers.

• Characters represent printed glyphs, such as letters or text, formatting opera-

tions. Strings are one-dimensional arrays of characters. Symbolics Common Lisp

provides for a rich character set, including ways to represent characters of vari-

ous type styles.

• Symbols are named the data objects. Lisp provides machinery for locating a sym-

bol object, given its name (in form of a string). Symbols have property lists,

which in effect, allow them to be treated as record structures with an extensible

set of named components, each of which may be any Lisp object. Symbols also

serve to name functions and variables within programs.

• Cons is a primitive Lisp data type that consists of a car and a cdr. Linked cons-

es are used to represent a non-empty list.

• Sequences are instances of the sequence type. A sequence is a supertype of the

list and vector (one-dimensional array) types. These types have the common prop-

erty that they are ordered sets of elements. Sequence functions can be used on

either lists or vectors.

• Lists are represented in the form of linked cells called conses. The car of the

list is its first element; the cdr is the remainder of the list. There is a special

object (the symbol nil) that is the empty list. Lists are built up by recursive ap-

plication of their definition.

• Arrays are dimensioned collections of objects. An array can have a non-negative

number of dimensions, up to eight, and is indexed by a sequence of integers. A

general array can have any Lisp object as a component; other types of arrays

are specialized for efficiency and can hold only certain types of Lisp objects. It
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is possible for two arrays, possibly with differing dimension information, to

share the same set of elements (such that modifying one array modifies the oth-

er also) by causing one to be displaced to the other. One-dimensional arrays of

any kind are called vectors. One-dimensional arrays specialized to hold only

characters are called strings. One-dimensional arrays specialized to hold only

bits (that is, of integers whose values are 0 or 1) are called bit-vectors.

• Tables provide an efficient way of associating Lisp objects. This is done by asso-

ciating a key with a value. Some tables are hashed, which is a method for stor-

ing the association between the key and the value; this permits faster associa-

tion in exchange for some storage overhead.

• Readtables are data structures used to control the parsing of expressions. This

structure maps characters into syntax types. This is extensively used by macro

characters to read their definitions. You can reprogram the parser to a limited

extent by modifying the readtable.

• Packages are collections of symbols that serve as name spaces. The parser rec-

ognizes symbols by looking up character sequences in the current package. 

• Pathnames represent names of files in a fairly implementation-independent man-

ner. They are used to interface to the external file system. For a discussion of

pathnames, see the section "Naming of Files".

• Streams represent sources or sinks of data, typically characters or bytes. They

are used to perform I/O, as well as for internal purposes such as parsing

strings. For a discussion of streams, see the section "Streams".

• Random-states are data structures used to encapsulate the state of the built-in

random number generator. 

• Flavors are user-defined data structures. defflavor is used to define new flavors.

The name of the new flavor becomes a valid type symbol; it is a subtype of

instance. When flavors are built from components, the more specific flavors are

subtypes of their component flavors.

• Structures are user-defined record structures, objects that have named compo-

nents. The defstruct facility is used to define new structure types. The name of

the new structure type becomes a valid type symbol.

• Functions are objects that can be invoked as procedures; these may take argu-

ments and return values. (All Lisp procedures return values, and therefore every

procedure is a function.) Such objects include compiled-functions (compiled code

objects). Some functions are represented as a list whose car is a particular sym-

bol, such as lambda. Symbols can also be used as functions. 

• Compiled-functions are the usual form of compiled, executable Lisp code. A com-

piled function contains the code for one function. Compiled functions are pro-
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duced by the Lisp Compiler and are usually found as the definitions of symbols.

The printed representation of a compiled function includes its name, so that it

can be identified. About the only useful thing to do with compiled functions is

to apply them to arguments. However, some functions are provided for examin-

ing such objects, for user convenience.

• Generic functions are functions that operate on flavor instances. They can be de-

fined explicitly with defgeneric, or implicitly with defmethod.

• Lexical Closure is a functional object that contains a lexical evaluation environ-

ment, for example, an internal lambda in an environment containing lexical

variables. These variables can be accessed by the environment of the internal

lambda; the closure is said to be a closure of the free lexical variables. Invoca-

tion of a lexical closure provides the necessary data linkage for a function to

run in the environment in which the closure was made.

• Dynamic Closure is a functional object that contains a dynamic evaluation envi-

ronment. Dynamic closures are created by the zl:closure function and the zl:let-

closed special form. Dynamic closures are closures over special variables. Invo-

cation of a dynamic closure causes special variables to be bound around the

closed-over function.

• Locative is a Lisp object used as a pointer to a single memory cell in the sys-

tem. Locatives are a low-level construct, and as such, are never used by most

programmers.

These data types are not always mutually exclusive. 

Type Specifiers

A type specifier is a symbol or a list naming Lisp objects. Symbols represent prede-

fined classes of objects, whereas lists usually indicate combinations or specializa-

tions of simpler types. Symbols or lists can also be abbreviations for types that

could be specified in other ways. The various type-checking functions can be ap-

plied to type specifiers, regardless of whether they are symbols or lists. See the

section "Determining the Type of an Object".

Note that although type specifiers and functions sometimes share the same name,

they work differently and should not be confused with each other. 

Type Specifier Symbols

The predefined Symbolics Common Lisp type symbols include those shown in the

table below. In addition, when a structure type is defined using defstruct, or a fla-

vor is defined using defflavor, the name of the structure type and the flavor name

respectively become valid type symbols. For more on individual symbols, see the

document Symbolics Common Lisp Dictionary.
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array instance short-float

atom integer simple-array

bignum keyword simple-bit-vector

bit list simple-string

bit-vector sys:lexical-closure simple-vector

character locative single-float

common long-float signed-byte

compiled-function nil standard-char

complex null stream

cons number string

double-float package string-char

sys:dynamic-closure pathname structure

fixnum random-state symbol

float ratio t

function rational unsigned-byte

sys:generic-function readtable vector

hash-table sequence

�

Type Specifier Lists

Type specifier lists allow further combinations or specializations of existing data

types. For example:

• Denoting a list of objects that satisfy a type-checking predicate.

• Declaring and/or defining specialized forms of data types.

• Constructing abbreviated forms of type specifiers.�

Type Specifier List Syntax

If a type specifier is a list, the first element of the list is a symbol, and the rest

of the list is subsidiary type information. The symbol can be one of the standard

type specifier symbols previously listed, but other symbols can also be used: Sym-

bols like mod, or member, for example, work as type specifiers when used in type

specifier lists, even though the symbols themselves are not type specifiers.

In many cases, a subsidiary item can be unspecified. The unspecified subsidiary

item is indicated by the symbol *. For example, to completely specify a vector type,

one must mention the type of the elements and the length of the vector, as in:

(vector double-float 100)�

To leave the length unspecified, you would write:

(vector double-float *)�
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To leave the element type unspecified, you would write:

(vector * 100)�

Suppose that two type specifiers are the same, except that the first has an asterisk

(*) where the second has a more explicit specification; then the second denotes a

subtype of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end, such

items can simply be dropped, rather than writing an explicit * for each one. If

dropping all occurrences of * results in a singleton list, the parentheses can be

dropped as well (the list can be replaced by the symbol in its car). For example,

(vector double-float *) can be abbreviated to (vector double-float), and (vector

* *) can be abbreviated to (vector) and then simply to vector.

Predicating Type Specifiers

A type specifier list of the following form lets you define the set of all objects that

satisfy the predicate named by predicate-name:

(satisfies predicate-name)�

predicate-name can be a symbol whose global function definition is a one-argument

predicate, or a lambda-expression. (Note: Allowing a lambda-expression for predi-

cate-name is a Symbolics Common Lisp extension to Common Lisp.)

For example, the following type is the same as the type number:

(satisfies numberp)�

The call (typep x ’(satisfies p)) results in applying p to x and returning t if the

result is true and nil if the result is false.

As an example, the type string-char could be defined as follows:

(deftype string-char ()

  ’(and character (satisfies string-char-p)))�

Type Specifier Lists That Combine

It is possible to define a data type in terms of other data types or objects. The fol-

lowing functions make up appropriate type specifier lists for this purpose:

(member &rest list) Denotes the objects that are eql to one of the

specified objects in list. 

(not type) Denotes objects that are not of the specified

type.

(and &rest types) Denotes the intersection of the specified types. 

(or &rest types) Denotes the union of the specified types. 

Type Specifier Lists That Specialize
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You can construct type specifier lists that let you declare specialized forms of data

types named by symbols. Such declarations allow optimization by the system. If the

system actually creates that specialized form, the type specifier declaration results

in further discrimination among existing data types. 

Here is an example where the type specifier list serves for both declaration and

discrimination: 

(array single-float)

�

This list format permits the creation of a type of array whose elements are of type

single-float. In other words, it declares to the array-creating function, make-array

that elements will always be of the type single-float. Since Symbolics Common

Lisp does create such specialized arrays, a test (using the predicate typep) of

whether the array is actually of type (array single-float) returns t.

The valid list format names for data types are listed below. Unless annotated to

the contrary, each of the list format names denotes specialized data types that can

be created by Symbolics Common Lisp.

(array element-type dimensions) Denotes specialized arrays of the type element-type,

and whose dimensions match dimensions, a list of

integers.

(sequence type) Denotes the sequences of the type type. This is a

Symbolics Common Lisp extension to Common

Lisp.

(simple-array element-type dimensions)

Similar to (array...), additionally specifying that

objects of the type are simple arrays.

(vector element-type size) Denotes the specialized one-dimensional arrays of

type element-type, and whose lengths match size.

(simple-vector size) The same as (vector ...), additionally specifying

that objects of the type are simple vectors. Declar-

ative use only.

(complex type) Every element of this type is a complex number

whose real part and imaginary part are each of

type type.

(function (arg1-type arg2-type ...) value-type) 

Use this syntax for declaration. Every element of

this type is a function that accepts arguments at

least of the types specified by the argn-type forms,

and returns a value that is a member of the types

specified by the value-type form.

(values value1-type value2-type ...)

Use only as the value-type in a function type spec-

ifier or in a the special form. Specifies individual

types when multiple values are involved.
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Type Specifier Lists That Abbreviate

You can use type specifier list format to construct type specifiers that are abbrevi-

ations for other type specifiers. This is useful when the resulting type specifiers

would be far too verbose to write out explicitly.

For those formats that specify a range such as low and high, each of these limits

can be represented as an integer, a list of integers, or as the symbol *, meaning

unspecified. The exact interpretation of the lower and upper limits depends on

their representation: An integer is an inclusive limit; a list of an integer is an ex-

clusive limit; the symbol * means that a limit does not exist and so effectively de-

notes minus or plus infinity, respectively.

Here are the valid formats:

(number low-limit high-limit) Denotes the numbers between low-limit and high-

limit. This is a Symbolics Common Lisp extension

to Common Lisp.

(integer low high) Denotes the integers between high and low.

(mod n) Denotes the non-negative integers less than n.

(ratio low high) Denotes the ratios between low and high. This is a

Symbolics Common Lisp extension to Common

Lisp.

(signed-byte s) Denotes the integers that can be represented in

two’s-complement form in a byte of s bits. This is

equivalent to (integer -2s-1 2s-1 - 1). (signed-byte�

*) is the same as integer.

(unsigned-byte s) Denotes the set of non-negative integers that can

be represented in a byte of s bits. This is equiva-

lent to (integer 0 2s-1). (unsigned-byte *) is the

same as (integer 0 *), the set of non-negative in-

tegers.

(rational low high) Denotes the rational numbers between low and

high, exclusive.

(float low high) Denotes the floating-point numbers between low

and high exclusive.

(string size) Denotes the strings of the indicated size.

(simple-string size) Denotes the simple strings of the indicated size.

(bit-vector size) Denotes the set of bit-vectors of the indicated size.

(simple-bit-vector size) Denotes the simple-bit-vectors of the indicated size.

(sequence type) Denotes the sequences of the type type. type is a

Symbolics extension to Common Lisp. 

(sequence type) 
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is the same as:

(or vector list)

The following examples, which are equivalent, cre-

ate a vector that contains only string-chars: 

(sequence string-char) �

and:

(or (declare (vector string-char))

     list)

The following are subtypes of (sequence string-char):

list

(vector string-char)

(vector character)

(vector t)�

� Type Modifiers for Vector and Array Types

The type specifier declare indicates a type specifier list used for identifying a spe-

cific kind of array. For example:

(setq array (make-array 5 :element-type ’(integer 0 99)))

(array-element-type array) => (unsigned-byte 8)

�

(unsigned-byte 8) is the smallest size for an array that can contain integers from

0 to 99. (integer 0 99) is a subtype of (unsigned-byte 8). For example:

(typep array

        ’(vector (integer 0 99))) =>nil 

�

The vector type, as specified in Common Lisp, indicates an array specialized to

contain only elements of the type (integer 0 99). This is only sometimes what you

want. In this example, array is not specialized to hold only (integer 0 99), it is

specialized to hold (unsigned-byte 8):

(typep array

        ’(declare (vector (integer 0 99)))) => t

In this example, array is capable of containing (vector (integer 0 99)). 

Defining New Type Specifiers

New type specifiers can come into existence in three ways. First, defining a new

structure type with defstruct automatically causes the name of the structure to be

a new type specifier symbol. Second, defining a new flavor with defflavor automat-

ically causes the name of the flavor to be a new type specifier symbol. Third, the

deftype special form can be used to define new type-specifier abbreviations.
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Type Conversion Function

The function coerce can be used to convert an object to an equivalent object of

another type.

It is not generally possible to convert any object to be of any type whatsoever; only

certain conversions are permitted, as summarized below. The dictionary entry for

this function illustrates its operation more fully.

• Any sequence type can be converted to any other sequence type, provided the

new sequence can contain all actual elements of the old sequence.

• Some strings, symbols, and integers, can be converted to characters.

• Any noncomplex number can be converted to a single- or double-floating-point

number.

• Any number can be converted to a complex number.

• Any object can be coerced to type t.

Determining the Type of an Object

These general type-checking functions make it possible to test relationships be-

tween objects in the type hierarchy, determine if an object belongs to a given data

type, get the type specifier list for standard data types, and identify equivalent da-

ta type descriptions.

Type-checking functions are useful in, among other things, controlling program

flow and error-checking.

There are also numerous specialized predicates for type-checking. See the section

"Predicates". That section contains summary tables for all type-checking predicates.

The individual chapters for each data type further discuss these predicates.

type-of object Returns the most specific type specifier de-

scribing a type of which object is a member.

sys:type-arglist type Returns a lambda-list for specifiers for type, if

type is a defined Common Lisp type; returns a

second boolean value, t, if type is a defined

Common Lisp type, nil otherwise.

commonp object Returns t if object is an object of a type speci-

fied by a Common Lisp.

typep object type Returns t if object is of type type.

subtypep type1 type2 Returns t if type1 is a subtype of type2.

equal-typep type1 type2 Returns t if type1 and type2 are equivalent type

specifiers, denoting the same data type.
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typecase object &body body Selects a clause for evaluation by determining

if the type of an object matches a given data

type. See the section "Conditionals".

ctypecase object &body body "Continuable exhaustive type case." Like

typecase, but signals a proceedable error if no

clause is satisfied. See the section

"Conditionals".

etypecase object &body body "Exhaustive case." Like typecase, but signals a

non-proceedable error if no clause is satisfied.

See the section "Conditionals".

check-type place type &optional type-string

Signals an error if the contents of place are

not of the specified type. See the section "Con-

ditions".

Type-checking Differences Between Symbolics Common Lisp and Zetalisp

Type-checking in Zetalisp and Symbolics Common Lisp does not completely overlap

for typep and zl:typep, since these two functions differ in their syntax and in the

number of types each recognizes. (typep recognizes a much larger set of data

types than zl:typep.)

typep accepts a type specifier in symbol or list form as its second argument, while

zl:typep (the two-argument version) accepts a keyword symbol denoting a type

specifier as its second argument. Since correspondences between the keyword sym-

bols and the type specifiers are not always obvious, the list below shows the valid

keywords accepted by zl:typep and their equivalent type specifiers accepted by

typep. Note, in particular, the equivalences for :closure, :fix, :list, :list-or-nil, and

:rational.
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Zetalisp keyword Corresponds to 

(2-argument version type specifier for

of zl:typep) typep

____________________ ____________________

:array  array

:atom  atom

:bignum  bignum

:closure  dynamic-closure

:compiled-function  compiled-function

:complex  complex

:double-float  double-float

:fix  integer

:fixnum  fixnum

:float  float

:instance  instance

:list  cons

:list-or-nil  list

:locative  locative

:non-complex-number (and number (not complex))

:null  null

:number  number

:rational  ratio

:select-method  -----

:single-float  single-float

:stack-group  sys:stack-group

:string  string

:symbol  symbol

�

Declaring the Type of an Object

It is frequently useful to declare that objects should take on values of a specified

type. The declaration specifiers type and ftype allow this for variable bindings and

for functions. This feature is currently ignored, but is useful for programmers de-

veloping portable programs. See the section "Declarations".

� Type Specifiers in the CL Package with SCL Extensions

Here are the type specifiers that have Symbolics Common Lisp extensions:

Type specifier Extension(s)

number low-limit, high-limit
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ratio low, high

sequence type

Numbers

This chapter covers three main topics: 

• types of numbers

• representation of numbers for printing and reading

• numeric functions

Zetalisp-only features, if any, are pointed out within the discussion of each topic.

Throughout this chapter, digit strings without qualifiers in running text are deci-

mal.

Types of Numbers

Symbolics Common Lisp includes three main types of numbers: rational, floating-

point, and complex. Their characteristics are described below.

Rational Numbers

Rational numbers are used for exact mathematical calculations. These are numbers

like 0, 1, 2, -27, 15/16, -26/3, and 13/100000000000000000000. Rational numbers

with no fractional part are called integers, and those with a non-zero fractional

part are called ratios. There is no restriction on the size of rational numbers, oth-

er than the memory available to represent them, so computations cannot "overflow"

as they do on conventional computers.

Operations with rational numbers follow the normal rules of arithmetic and are al-

ways exact. Hence, when your program uses rational numbers, you do not have to

be concerned with loss of accuracy or precision as would be the case if you used

floating-point numbers.

The system automatically reduces ratios into the lowest terms. If the denominator

evenly divides the numerator, Symbolics Common Lisp converts the result to an

integer. This automatic reduction and conversion of ratios is called rational canoni-

calization.

(+ 1 1) => 2

(+ 5/6 19/3) => 43/6

(/ 1 3) => 1/3

(/ 140 -120) => -7/6

(* 12/5 10/3) => 8

(* 1000000000000 1000000000000000000) => 1000000000000000000000000000000�

Programmers familiar with conventional computer systems and languages will no-

tice that integer division in Symbolics Common Lisp is true mathematical division.
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The truncate function performs Fortran-style integer division. Other functions per-

form related kinds of division. See the section "Functions that Divide and Convert

Quotient to Integer".

Integers

The integer data type represents mathematical integers. Symbolics Common Lisp

imposes no limit on the magnitude of an integer; storage is automatically allocated

as necessary to represent large integers.

Division in Zetalisp is not like mathematical division. See the section "Integer Di-

vision in Zetalisp".

Efficiency of Implementation Note

In general, you need not be concerned with the details of integer representation.

You simply compute in integers. Symbolics Common Lisp does, however, have two

primitive types of integers, fixnums and bignums. Fixnums are a range of integers

that the system can represent efficiently; bignums are integers outside the range

of fixnums.

When you compute with integers, the system represents some as fixnums and the

rest (less efficiently) as bignums. The system automatically converts back and

forth between fixnums and bignums based solely on the size of the integer. This

automatic conversion is referred to as integer canonicalization.

You can ignore distinctions between fixnums and bignums in reading and printing

integers. The reader uses the same syntax for fixnums and bignums, and both

types have the same printed representations.

A few "low-level" functions work only on fixnums, and some built-in system func-

tions require fixnums; we note this requirement in the dictionary entries for these

functions.

The constants most-negative-fixnum and most-positive-fixnum give the range of

fixnums on the machine. In Symbolics Common Lisp the range is from -2147483648

to 2147483647 (-231 to 231-1).

Ratios

Rational numbers that are not integers are represented as the mathematical ratio

of two integers, the numerator and the denominator. The ratio is always "in lowest

terms", meaning that the denominator is as small as possible. If the denominator

evenly divides the numerator, the system applies the rule of rational canonicaliza-

tion, converting the result to an integer. 

The denominator is always positive; the sign of the number is carried by the nu-

merator.

Examples:
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6/7 => 6/7 ;in canonical form

6/8 => 3/4 ;converted to canonical form

-3/9 => -1/3 ;converted to canonical form

6/2 => 3 ;converted to canonical form

(/ 4 -16) => -1/4 ;denominator is always positive

�

Floating-Point Numbers

Floating-point numbers are used for approximate mathematical calculations. Float-

ing-point numbers use a restricted form of representing numbers, so that they are

more efficient in some cases than rational numbers. Floating point is appropriate

for situations where there is no exact rational answer to a problem (for instance

pi or, (sqrt 2)), or where exact answers are not required. When using floating

point, the approximate nature of the representation must be kept in mind. See the

section "Non-mathematical Behavior of Floating-point Numbers".

The internal representation of floating-point numbers uses a mathematical sign s

ε {+1,-1}, a significand (fraction part) f, and a signed exponent e. The mathemat-

ical value of the number represented is s * f * 2e. The values of f and e are re-

stricted to a certain number of (binary) digits. Symbolics Common Lisp supports

two forms of floating-point numbers, corresponding to particular sizes of f and e.

These are the IEEE standard single- and double-precision formats. See the section

"IEEE Floating-point Representation".

Single-float Single-precision floating-point numbers have a precision of 24

bits, or about 7 decimal digits. They use 8 bits to represent

the exponent. Their range is from 1.0e-45, the smallest positive

denormalized single-precision number, to 3.4028235e38, the

largest positive normalized single-precision number.

Double-float Double-precision floating-point numbers have a precision of 53

bits, or about 16 decimal digits. They use 11 bits to represent

the exponent. Their range is from 5.0d-324, the smallest posi-

tive denormalized double-precision floating-point number, to

1.7976931348623157d308, the largest positive normalized dou-

ble-precision floating-point number.

These two forms subsume the four floating-point forms supported by Common

Lisp: Single-float serves also as short-float and the system treats 1.0s0 and 1.0f0 as

identical single-precision formats. Similarly, double-float serves also as long-float,

with 1.0l0 and 1.0d0 treated as identical double-precision formats.

See the section "Numeric Type Conversions".

Floating-point Efficiency Note

Single-precision floating-point is significantly more efficient than double-precision

floating-point. In particular, double-precision numbers take up more memory than

single-precision numbers. 
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IEEE Floating-point Representation

Genera uses IEEE-standard formats for single-precision and double-precision float-

ing-point numbers. Number objects exist that are outside the upper and lower lim-

its of the ranges for single and double precision. Larger than the largest number

is +1e∞ (or +1d∞ for doubles). Smaller than the smallest number is -1e∞ (or -1d∞
for doubles). Smaller than the smallest normalized positive number but larger than

zero are the "denormalized" numbers. Some floating-point objects are Not-a-

Number (NaN); they are the result of (/ 0.0 0.0) (with trapping disabled) and like

operations.

IEEE numbers are symmetric about zero, so the negative of every representable

number is also a representable number. Zeros are signed in IEEE format, but +0.0

and -0.0 act the same arithmetically as 0.0. However, they are distinguishable to

non-numeric functions. For example:

(= +0.0 -0.0) => T

(minusp -0.0)  => NIL

(plusp 0.0)   => NIL

(plusp -0.0)  => NIL

(zerop -0.0)  => T

(eql 0.0 -0.0) => NIL�

See "IEEE Standard for Binary Floating-Point Arithmetic," ANSI/IEEE Standard

754-1985, An American National Standard, August 12, 1985.

The constants below indicate the range for single- and double-floating-point num-

bers. Constants for short- and long-floating-point formats appear in the Dictionary

of Numeric Functions and Variables; these constants have the same values as sin-

gle- and double-floating-point formats, respectively. 

Constants Indicating the Range of Floating-point Numbers

Constant Value

least-positive-single-float  1.4e-45

least-positive-normalized-single-float  1.1754944e-38

most-positive-single-float  3.4028235e38

least-negative-single-float -1.4e-45    

least-negative-normalized-single-float -1.1754944e-38

most-negative-single-float -3.4028235e38

least-positive-double-float  5.0d-324 

least-positive-normalized-double-float  2.2250738585072014d-308

most-positive-double-float  1.7976931348623157d308

least-negative-double-float -5.0d-324

least-negative-normalized-double-float -2.2250738585072014d-308 

most-negative-double-float -1.7976931348623157d308�
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Since the exponent in floating-point representation has a fixed length, some num-

bers cannot be represented. Thus floating-point computations can get exponent

overflow or underflow, if the result is too large or small to be represented. Expo-

nent overflow always signals an error. Exponent underflow normally signals an er-

ror, unless the computation is inside the body of a without-floating-underflow-

traps. Any time a floating-point error occurs, you are offered a way to proceed

from it, by substituting the IEEE floating-point standard result for the mathemati-

cal result.

Example:

(* 4e-20 4e-20) ;evaluating this signals an error

(without-floating-underflow-traps  (* 4e-20 4e-20)) => 1.6e-39�

Non-mathematical Behavior of Floating-point Numbers

The restricted representation of floating-point numbers leads to much behavior

which can be confusing to users unfamiliar with the concept. This behavior is

characteristic of floating-point numbers in general, and not of any particular lan-

guage, machine, or implementation.

Floating-point operations don’t always follow normal mathematical laws. For exam-

ple, floating-point addition is not associative:

(+ (+ 1.0e10 -1.0e10) 1.0) => 1.0

(+ 1.0e10 (+ -1.0e10 1.0)) => 0.0

This follows from the restricted representation of floating-point, since 1.0 is in-

significant relative to 1.0e10.

Much of the confusion surrounding floating-point comes from the problem of con-

verting from decimal to binary and vice versa.

Consider that the binary representation of 1/10 repeats infinitely:

.0001100110011001100110011001100110011001100110011001100 ...

Since we can’t represent this exact value of 1/10, we would like to find the mathe-

matically closest number which is representable. We do that by rounding to the

appropriate number of binary places:

Single precision:  (24 significant bits)

.000110011001100110011001101

�

(describe (float 1/10 0.0)) => 

0.1 is a single-precision floating-point number.

 Sign 0, exponent 173, 23-bit fraction 23146315  (not including hidden bit)

 Its exact decimal value is 0.100000001490116119384765625

0.1

�

Double precision:  (53 significant bits)

.00011001100110011001100110011001100110011001100110011010
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�

(describe (float 1/10 0.0d0)) => 

0.1d0 is a double-precision floating-point number.

 Sign 0, exponent 1773, 52-bit fraction 114631463146314632  (not including hidden bit)

 Its exact decimal value is 0.1000000000000000055511151231257827021181583404541015625d0

0.1d0

Already we see some anomalies. The single-precision number closest to 1/10 has a

different mathematical value from the double-precision one. So a decimal number,

when represented in different floating-point precisions, can have different values.

Yet the printer prints both as "0.1".

Why do the printed representations hide the difference in values? Every binary

number has an exact, finite, decimal representation, which can be printed. The

describe function does that, as shown in the example above. From that example,

you can see that printing exact values would be cumbersome without giving useful

information. So the printer prints the shortest decimal number that is properly

rounded (from the actual decimal value), and whose rounded binary value (in that

precision) is identical to the original.

Here is an example of the rule used to derive the shortest decimal number:

(describe 1.17) => 

1.17 is a single-precision floating-point number.

Sign 0, exponent 177, 23-bit fraction 05341217  (not including hidden bit)

Its exact decimal value is 1.16999995708465576171875

1.17

The correctly rounded decimal values for this single-precision number are:

1, 1.2, 1.17, 1.16999996, 1.169999957, 1.1699999571, 1.16999995708, etc.

Rounded to single-precision (binary), the first three printed representations are all

different, but after 1.17, they are all the same. Thus, 1.17 is the "best" representa-

tion to print.

Since the printing rule is sensitive to floating-point precision, it hides the differ-

ence between the exact mathematical values of 1.17 and 1.17d0.

The interactions between the printing rule and the finite representation of num-

bers (both as read in and as computed) can lead to some interesting anomalies:

(- 6 5.9) => 0.099999905

(- 2 1.9) => 0.100000024

(- 2 1.9d0) => 0.10000000000000009d0

(- 1000000.1d0 1000000) => 0.09999999997671694d0

(- 100000.1d0 100000) => 0.10000000000582077d0

(* .001 10) => 0.010000001

(* .0003d0 10) => 0.0029999999999999996d0

(/ 1.0 3) => 0.33333334

(/ 1.0d0 3) => 0.3333333333333333d0

(/ 1.0 6) => 0.16666667

(/ 1.0d0 6) => 0.16666666666666666d0

These are all "correct", as we can verify by doing the exact (rational) arithmetic.
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(rational 6) => 6

(rational 5.9) => 12373197/2097152

(- 6 12373197/2097152) => 209715/2097152

(float 209715/2097152 0.0) => 0.099999905

Complex Numbers

A complex number is a pair of noncomplex numbers, representing the real and

imaginary parts of the number. The real and imaginary parts can be rational, sin-

gle-float, or double-float, but both parts always have the same type. Hence we dis-

tinguish between complex rational and complex floating-point numbers.

In Symbolics Common Lisp a complex rational number can never have a zero

imaginary part. The system matches up the real and imaginary parts of a complex

number operand or result; if the real part is rational and the imaginary part is a

zero integer, the system converts the complex number to a noncomplex rational

number. This matching of types and conversion is called the rule of complex canon-

icalization.

Conversion does not occur if the result is a complex floating-point number with a

zero imaginary part. For example, #C(5.0 0.0) is not automatically converted to 5.0.

In this case, if you want to convert to a noncomplex number, you must call the ap-

propriate conversion function. See the section "Numeric Type Conversions".

Complex numbers are used when mathematically appropriate.

(sqrt -1) => #C(0 1)

(log -1) => #C(0.0 3.1415927)

(+ #C(4 10) #C(5 -10)) => 9

(+ #C(4.0 10) #C(5.0 -10)) => #C(9.0 0.0)�

Zetalisp Note: In Zetalisp, the functions sqrt and log signal an error if given a

negative argument, instead of returning a complex number as they do in Common

Lisp examples.

Type Specifiers and Type Hierarchy for Numbers
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The type specifiers relating to numeric data types are:

number integer short-float

rational ratio long-float

float single-float fixnum

complex double-float signed-byte   

bignum unsigned-byte bit

�

Details about each type specifier appear in its dictionary entry.

Figure ! shows the relationships between numeric data types. For more on data

types, type specifiers, and type checking in Symbolics Common Lisp, see the sec-

tion "Data Types and Type Specifiers".

rational float complex

number

double

float

long

float

and

ratiointeger

bignumsigned-bytefixnum

single

float

and

short

float

unsigned-byte

bit

t

... ... ...

Figure 4.  Symbolics Common Lisp Numeric Data Types�

How the Printer Prints Numbers

Numbers can be printed in a variety of ways determined by the values of control

variables.

"Escape" characters, such as the backslash (or slash in Zetalisp), do not affect the

printing of numbers.
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Printed Representation of Rational Numbers

Rational numbers can print in any radix between 2 and 36 (inclusive), depending

on the value you assign to the control variable *print-base*. The default value is

10. (Zetalisp uses the value of zl:base to control printing.)

When *print-base* has a value over 10, digits greater than 9 are represented by

means of alphabetical characters.

If an integer is negative, a minus sign is printed, followed by the absolute value of

the integer. The integer zero is represented by the single digit 0 and never has a

sign. Integers in base ten print with or without a trailing decimal point, depending

on the value of *print-radix*. See the section "Radix Specifiers for Rational Num-

bers".

To allow printing of integers in other than Arabic notation, *print-base* can be

set to a symbol that has a si:princ-function property (such as :english or

:roman). The value of the property is applied to two arguments:

• - of the number to be printed

• The stream to which to print it�

The printer prints ratios in the following sequence:

• A minus sign if the ratio is negative

• The absolute value of the numerator

• A slash (/) character (Zetalisp uses a backslash, \) 

• The denominator

Ratios print in canonical form.

Radix Specifiers for Rational Numbers

You can specify that a radix specifier be used to show in what radix a number is

being printed. To do so, set the control variable *print-radix* to t (default value is

nil). The radix specifier is always printed with a lowercase letter.

Radix Specifier Format

The general format of a radix specifier is a sequence of the following characters:

• #
• A non-empty sequence of decimal digits representing an unsigned decimal inte-

ger n (must be in the range 2 - 36 inclusive)

• r

immediately followed by:

• An optional sign

• A sequence of digits in radix n�
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There are special abbreviations for commonly used radices such as binary, octal,

and hexadecimal.

Radix         Normal         Abbreviated   Uppercase Form

               Form            Form          (Reader only)

Binary        #2r            #b            #2R  or #B

Octal         #8r            #o            #8R  or #O

Hexadecimal   #16r           #x            #16R or #X

For integers in base ten the radix specifier uses a trailing decimal point instead of

a leading radix specifier. When *print-radix* is set to nil, integers in base ten are

printed without a trailing decimal point.

To print a ratio with a radix specifier, the printer uses the same notation as for

integers, except in the case of decimals. Ratios in decimal are printed using the

#10r notation.

Examples (integers):

(+ 2 3) => 5

(setq *print-base* 2) => 10

(+ 2 3) => 101

(setq *print-radix* t) => T

(+ 2 3) => #b101

(setq *print-base* 16) => #x10

(* 6 2) => #xC

(setq *print-base* 10) => 10.

(* 5 8) => 40.

(setq *print-radix* nil) => NIL

(* 5 8) => 40

(setq *print-base* ’:roman)  => :ROMAN

(* 5 8)  => XL�

Examples (ratios):

4/5 => 4/5

(setq *print-radix* t) => T

4/5 => #10r4/5

(setq *print-base* 8) => #o10

4/12 => #o1/3

5/9 => #o5/11

(setq *print-base* 5) => #5r10

7/30 => #5r12/110

�

Printed Representation of Floating-point Numbers
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Floating-point numbers are always printed in decimal. For a single-precision float-

ing-point number, the printer first decides whether to use ordinary notation or ex-

ponential notation. If the magnitude of the number is so large or small that the

ordinary notation would require an unreasonable number of leading or trailing ze-

roes, exponential notation is used. A floating-point number is printed in the follow-

ing sequence:

• An optional leading minus sign

• One or more digits

• A decimal point

• One or more digits

• Optionally an exponent marker, described below, an optional minus sign, and the

power of ten�

The exponent marker (also referred to as the exponent character or letter) indi-

cates the number’s floating-point format. The printer uses one of the following

characters: s, f, l, d, or e. These indicate short-, single-, long-, and double-

floating-point numbers respectively. e indicates a number format that corresponds

to the current value of the variable *read-default-float-format*. This variable

takes a value denoting one of the valid floating-point formats, namely short-float,

single-float, long-float, or double-float.

To decide whether to print an exponent marker, and if so, of which type, the print-

er checks the value of *read-default-float-format* and applies the rules summa-

rized below.

Notation               Does number’s format                  Exponent 

used                    match current value of                     marker

                    *read-default-float-format*?

Ordinary           Yes                                   Don’t print

                                                         marker

                   No                                    Print marker

                                                         and zero               

Exponential        Yes                                   Print e

                   No                                    Print marker

Examples:
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(setq *read-default-float-format* ’single-float) => SINGLE-FLOAT

1.0s0 => 1.0

1.0s7 => 1.0e7

1.0d0 => 1.0d0

1.0d7 => 1.0d7

(setq *read-default-float-format* ’double-float) => DOUBLE-FLOAT

1.0s0 => 1.0f0

1.0s7 => 1.0f7

1.0d0 => 1.0

1.0d7 => 1.0e7

�

The number of digits printed is the "correct" number; no information present in

the number is lost, and no extra trailing digits are printed that do not represent

information in the number. Feeding the printed representation of a floating-point

number back to the reader should always produce an equal floating-point number. 

The printed representation for floating-point "infinity" is in the following sequence:

• A plus or minus sign

• The digit "1"

• The appropriate exponent mark character

• An infinity sign: ∞�

Examples:

(setq *read-default-float-format* ’double-float) => DOUBLE-FLOAT

+1s∞ => +1f∞
+1d∞ => +1e∞
(setq *read-default-float-format* ’single-float) => SINGLE-FLOAT

-1s∞ => -1e∞
-1l∞ => -1d∞�

Control Variables for Printing Numbers

*print-base* Specifies radix for printing numbers (range 2-36, default 10).

*print-radix* Determines the printing or suppression of radix specifier (value

t or nil).

*read-default-float-format*

Guides the printer in choice of exponent marker for floating-

point number.

Note: The following Zetalisp variable is included to help you read old programs. In

your new programs, use the Common Lisp version of this variable. 

zl:base The value of zl:base is a number that is the radix in which in-

tegers and ratios are printed in, or a symbol with a si:princ-

function property. The Common Lisp equivalent of this vari-

able is *print-base*.
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Printed Representation of Complex Numbers

The printed representation for complex numbers is:

#C(realpart imagpart)�

The real and imaginary parts of the complex number are printed in the manner

appropriate to their type.

Examples:

(+ #C(3.4 5) 6) => #C(9.4 5.0)

(* 4 #C(2.0d0 5)) => #C(8.0d0 20.0d0)

�

(setq *print-radix* t) 

(setq *print-base* 16) 

(+ #C(3 4) #C(8 9)) => #C(#xB #xD)�

How the Reader Recognizes Numbers

The Symbolics Common Lisp reader accepts characters, accumulates them into a

token, and then interprets the token as a number or a symbol. In general, the to-

ken is interpreted as a number if it satisfies the syntax for numbers. Often, the

interpretation is determined by the values of control variables, as explained below.

How the Reader Recognizes Rational Numbers

The reader determines the radix in which integers and ratios are to be read in the

following manner:

• If the number is preceded by a radix specifier, the reader interprets the rational

number using the specified radix. The reader accepts radix specifier syntax in

both upper and lowercase characters. See the section "Radix Specifier Format".

• If the number is an integer with a trailing decimal point, the reader uses a

radix of ten.

• In the absence of a radix specifier, or a trailing decimal point for integers, the

reader determines the radix by checking the current value of the control vari-

able *read-base*. (Zetalisp uses the value of zl:ibase.)

Examples:

(+ #2r101 #2r11) => 8

(+ #3r11 #5r101) => 30

(* #b100 #xC) => 48

(* #o15 #8r5) => 65

(* #b11/10 40) => 60 ;*read-base* is 10

(setq *read-base* 2) => 2

(+ 100 1101) => 17

(* #x10/a 101) => 8�
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How the Reader Recognizes Integers

The syntax for a simple integer is the following sequence:

• An optional plus or minus sign

• A string of digits

• An optional decimal point�

If the trailing decimal point is present, the digits are interpreted in decimal radix.

Otherwise, they are considered as a number whose radix is the value of the vari-

able *read-base* (or zl:ibase in Zetalisp). Valid values are between 2 and 36, in-

clusive; default value is 10.

read understands simple integers, as well as a simple integer followed by an un-

derscore (_) or a circumflex (^), followed by another simple integer. The two sim-

ple integers are interpreted in the usual way, and the character between them in-

dicates an operation to be performed on the two integers. 

• The underscore indicates a binary "left shift"; that is, the integer to its left is

doubled the number of times indicated by the integer to its right. For example,

645_6 means 64500 (in octal). 

• The circumflex multiplies the integer to its left by *read-base* the number of

times indicated by the integer to its right. (The second integer is not allowed to

have a leading minus sign.) For example, 645^3 means 645000.�

Here are some examples of valid representations of integers to be given to read: 

4  => 4 

23456.  => 23456 

-546  => -546

+45^+6  => 45000000

2_11   => 4096�

Reading Integers in Bases Greater Than 10

The reader uses letters to represent digits greater than 10. Thus, when *read-

base* is greater than 10, some tokens could be read as either integers, floating-

point numbers, or symbols. The reader’s action on such ambiguous tokens is deter-

mined by the value of si:*read-extended-ibase-unsigned-number* and si:*read-

extended-ibase-signed-number*. Setting these variables to t causes the tokens to

be always interpreted as numbers. A nil setting causes the tokens to be interpret-

ed as symbols or floating-point numbers. The above variables can have two other,

intermediate settings, as explained in the Dictionary entry.

Examples:

(setq *read-base* 16) => 16

(+ 10 5) => 21 ;this works as expected 

(+ c 2) => signals an error because c is an unbound symbol

(setq si:*read-extended-ibase-signed-number* t) => T

(+ c 2) => 14   ;now c is read as a number

(+ #xc 2) => 14 ;always safe �
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Compatibility Note: The fact that the reader depends on the value of these vari-

ables to tell it how to interpret tokens when the value of *read-base* is greater

than ten, rather than just automatically interpreting them as numbers, is an in-

compatible difference from the language specification in Common Lisp: The Lan-

guage.

How the Reader Recognizes Ratios

The syntax of a ratio is the following sequence:

• An optional sign

• A string of digits

• A / (slash character)

• A string of digits

The Zetalisp syntax is identical, except that a backslash character (\), is used in-

stead of a slash.

A ratio can also be prefixed by a radix specifier. See the section "Radix Specifiers

for Rational Numbers".

Ratios written with a radix specifier are read in the radix specified. Ratios written

without a radix specifier are always read in the current *read-base* (or zl:ibase

in Zetalisp).

Examples:

-14/32 => -7/16

22/7 => 22/7

#o24/17 => 4/3 ;20/15 => 4/3

#x4f/10 => 79/16

(setq *read-base* 2) => 2

101/10 => 5/2

 #10r101/10 => 101/10�

How the Reader Recognizes Floating-Point Numbers

Floating-point numbers are always read in decimal radix.

The syntax for floating-point numbers has two possible formats:

• An optional plus or minus sign

• Some optional digits

• A decimal point

• One or more digits

• An optional exponent marker, consisting of an exponent letter, an optional mi-

nus sign, and digits representing the power of ten�

or 

• An optional sign
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• A string of digits

• An optional decimal point followed by optional digits

• An exponent marker

Note that in the first format a decimal point is mandatory, but the exponent mark-

er is optional. In the second representation the decimal point can be omitted, but

the exponent marker is always present. Moreover, the optional sign is always fol-

lowed by at least one digit.

Here are some examples of floating-point numbers in both formats:

Format 1          Format 2

�

20.2e-4         20.2e-4

.202e-2         202.e-5

.00202          202e-5

�

If no exponent is present, the number is a single-float. If an exponent is present,

the exponent letter determines the type of the number.

Floating-point Exponent Characters

Following is a summary of floating-point exponent characters and the way numbers

containing them are read.

Character Floating-point precision

D or d double-precision

E or e depends on value of

*read-default-float-format*

F or f single-precision

L or l double-precision

S or s single-precision

�

The variable *read-default-float-format* controls how floating-point numbers with

no exponent or an exponent preceded by "E" or "e", are read. Here is a summary

of how different values cause these numbers to be read.

Value Floating-point precision

single-float single-precision

short-float single-precision
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double-float double-precision

long-float double-precision�

The default value is single-float.

As a special case, the reader recognizes IEEE floating-point "infinity". The syntax

for infinity is the following sequence:

• A required plus or minus sign

• The digit "1"

• Any of the exponent mark characters

• The exponent character, which must be an infinity sign: ∞�

Here are some examples of printed representations that read as single-floats:

�

0.0  => 0.0

1.5  => 1.5

14.0  => 14.0

0.01 => 0.01

.707  => 0.707

-.3  => -0.3

+3.14159  => 3.14159

6.03e23  => 6.03e23 ;only when *read-default-float-format* 

1E-9  => 1.0e-9 ;  is ’single-float

1.e3  => 1000.0

+1e∞   => +1e∞
(setq *read-default-float-format* ’double-float) => DOUBLE-FLOAT

3.14159s0  => 3.14159

1.6s-19  => 1.6e-19�

Here are some examples of printed representations that read as double-floats (cur-

rent value of *read-default-float-format* is single-float).

�

0d0   => 0.0d0

1.5d9  => 1.5d9   

-42D3  => -42000.0d0  

1.d5  => 100000.0d0

-1d∞   => -1d∞
(setq *read-default-float-format* ’double-float) => DOUBLE-FLOAT

0.0  => 0.0

6.03e23  => 6.03e23

-1e∞  => -1e∞�

Control Variables for Reading Numbers

*read-base* Holds radix for reading of rational numbers (2-36, default 10).
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*read-default-float-format*

Controls reading of floating-point number with no exponent or

exponent e (or E).

si:*read-extended-ibase-unsigned-number*

Controls reading of unsigned integers in bases greater than

ten.

si:*read-extended-ibase-signed-number*

Controls reading of signed integers in bases greater than ten.

Note: The following Zetalisp variable is included to help you read old programs. In

your new programs, use the Common Lisp equivalent of this variable.

Zetalisp Common Lisp

zl:ibase The value of zl:ibase is a number that is the radix in

which integers and ratios are read. The Common Lisp

equivalent of this variable is *read-base*.�

How the Reader Recognizes Complex Numbers

The reader recognizes #C(number1 number2) as a complex number. number1 and

number2 can be of any noncomplex type (coercion is applied if necessary). number1

is used as the real part and number2 is used as the imaginary part. The resulting

Lisp object is represented in complex canonical form.

Examples:

#C(3.0 4.0) ==> #C(3.0 4.0)

#C(1 0) ==> 1

#C(1/2 3) ==> #C(1/2 3)

#C(1/2 3.0) ==> #C(0.5 3.0)

�

Numeric Functions

As stated earlier, most numeric functions in Symbolics Common Lisp are generic,

rather than applicable to a specific number type. Generic functions include: 

• Predicates that check numeric type and properties.

• Functions which perform numeric comparison.

• Arithmetic functions allowing numeric data conversions.

• Transcendental functions and a pseudo-random number generator facility.
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• Functions that do machine-dependent arithmetic.

Two groups of functions work for integers only. One group performs logical opera-

tions on integers, the other is a group of byte-manipulation functions. For purposes

of logical and byte manipulation operations, an integer is treated as a sequence of

bits, with the low bit in the rightmost position. The byte-manipulation functions

let you operate on any number of contiguous bits within the integer.

Coercion Rules for Numbers

When arithmetic and numeric comparison functions of more than one argument re-

ceive arguments of different numeric types, these must be converted to a common

type. Symbolics Common Lisp does the conversion by following uniform coercion

rules. For functions returning a number, the coerced argument type is also the

type of the result. Note: The functions max and min are two notable exceptions

where no conversion is performed.

Here are the coercion rules for the different argument types.

Argument Types                       Converted to        Result Type

Single-float     Rational      Single-float        Single-float

Double-float     Rational      Double-float        Double-float

Single-float     Double-float        Double-float        Double-float

Complex          Non-complex         Complex             Complex

Since rational computations are always exact, you need not be concerned with coer-

cions among rational number types.

Since floating-point computations with different precisions can lead to inefficiency,

inaccuracy, or unexpected results, Symbolics Common Lisp does not automatically

convert between double-floats and single-floats if all the arguments are of the

same floating-point type.

Thus, if the constants in a numerical algorithm are written as single-floats (as-

suming this provides adequate precision), and if the input is a single-float, the

computation is done in single-float mode and the result is a single-float. If the in-

put is a double-float the computations are done in double precision and the result

is a double-float, although the constants still have only single precision. For most

algorithms, it is desirable to have two separate sets of constants to maintain accu-

racy for double precision and speed for single precision.

This means that a single-float computation can get an exponent overflow error

even when the result could have been represented as a double-float. For example,

1.0e18 * 1.0e22 would create an exponent overflow error, even though the result

could be represented by the valid double-float number 1.0d40. You can prevent this

type of error by converting one, or both of the arguments to a larger data type.

In general then, floating-point number computations yield a floating-point result of

the type corresponding to the largest floating-point type in the argument list. Com-

putations with rational numbers yield a rational number result.
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Examples:

(+ 1 3.0) => 4.0

(+ 2 4d0) => 6.0d0

(+ 3s0 4d0) => 7.0d0

(+ #C(6 8) 2) => #C(8 8)

(+ #C(4 9) 7.0d1) => #C(74.0d0 9.0d0)

(+ #C(3.4s5 9.2s3) #C(6.2d4 0.8d4)) => #C(402000.0d0 17200.0d0)

(+ #C(4 -3) #C(6 3)) => 10

(+ #C(3.0 8.0) #C(4.5 -8.0)) => #C(7.5 0.0)

�

Numeric Function Categories

The following groups of numeric functions are available: 

• Numeric Predicates

• Numeric Comparisons

• Arithmetic Functions

• Transcendental Functions

• Numeric Type Conversions

• Logical Operations on Numbers

• Byte Manipulation Functions

• Random Number Generation

• Machine-dependent Arithmetic Functions

The discussion for each function group is followed by a summary table of the func-

tions in that category. The alphabetized Dictionary provides complete coverage of

each individual function. See the document Symbolics Common Lisp Dictionary.

Numeric Predicates

Numeric predicates test the data types of numbers, as well as some numeric prop-

erties, such as whether the number is odd or even. The summary tables below

group numeric predicates by function. 

Numeric Type-checking Predicates

These predicates test a number to see if it belongs to a given type. General type-

checking functions such as typep and subtypep can also be used to determine re-

lationships within the hierarchy of numeric types and for similar purposes. For

more on these functions, see the section "Determining the Type of an Object". 

complexp object Tests for complex number.

floatp object Tests for floating-point number of any precision.

integerp object Tests for integer.
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numberp object Tests for number of any type.

rationalp object Tests for rational number.

sys:double-float-p object

Tests for double-precision floating-point number.

sys:single-float-p object

Tests for single-precision floating-point number.

sys:fixnump object Tests for fixnum.

Note: The following Zetalisp predicates are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

predicates.

zl:bigp object Tests for bignum.

zl:fixp object Tests for integer (same as integerp).

zl:flonump object Tests for single-precision floating-point number (same as

sys:single-float-p).

zl:rationalp object Tests for ratio.

Numeric Property-checking Predicates

evenp integer Tests for even integers.

oddp integer Tests for odd integers.

minusp number Tests if number is less than zero.

plusp number Tests if number is greater than zero.

zerop number Tests if number is zero.�

Note: The following Zetalisp predicate is included to help you read old programs. In

your new programs, if possible, use the Common Lisp equivalent of this predicate.

zl:signp test number Tests if the sign of number matches test.

Numeric Comparisons

Symbolics Common Lisp supports eight numeric comparison functions in which the

values of two or more arguments are compared with respect to equality, inequality,

less-than, greater-than, and so on.

All of these functions require that their arguments be numbers, and signal an er-

ror if given a nonnumber. They work on all types of numbers, automatically per-

forming any required coercions. Note that no coercion takes place for functions

max and min.
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= and ≠ work for complex number comparisons. All other comparison functions re-

quire non-complex numbers as arguments.

Types of Equality

In general we can distinguish two types of equality: 

• Equality of two Lisp objects, tested by predicates eq, eql, equal, and equalp.

See the section "Comparison-performing Predicates".

• Numeric equality, tested by =.

Although predicates eq, eql, equal, and equalp can take numbers as arguments,

they cannot be used interchangeably with =, because they don’t work the same

way:

• eq produces unreliable results on numbers.

• eql and equal and are true for numeric arguments of the same numeric value

and type. (No coercion is performed.) In addition, floating-point zeros of differ-

ing signs do not satisfy any of these predicates.

• = takes only numbers as arguments; it is true if its arguments are of the same

numeric value, regardless of type. Floating-point zeros are = to any other zero

values, regardless of sign.

For comparing numeric values, = is therefore the preferred function.

Examples:

�

(eql 3 3.0) => NIL

(= 3 3.0) => T

�

(eq 10.0d0 (* 5.0d0 2)) => NIL

(= 10.0d0 (* 5.0d0 2))  => T

�

(equal #C(5.0 0) 5.0) => NIL

(= #C(5.0 0) 5.0) => T

�

(eql 0.0 -0.0)  => NIL

(= 0.0 -0.0)  => T

�

(= 3 nil)   ;generates an error

(eql 3 nil)  => NIL

�

The following function can return either t or nil.
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�

(defun foo ()

   (let ((x (float 5)))

     (eq x (car (cons x nil))))) 

�

�

Numeric Comparison Functions

Function Synonyms Comparison/Returned Value

≠ number &rest numbers /= Not equal

< number &rest more-numbers zl:lessp Less than

≤ number &rest more-numbers <= Less than or equal

= number &rest more-numbers Equal

> number &rest more-numbers zl:greaterp Greater than

≥ number &rest more-numbers >= Greater than or equal

max number &rest more-numbers Greatest of its arguments

min number &rest more-numbers Least of its arguments

Arithmetic

All of these functions require that their arguments be numbers, and signal an er-

ror if given a nonnumber. With a few exceptions that require integer arguments,

arithmetic functions work on all types of numbers, automatically performing any

required coercions. See the section "Coercion Rules for Numbers".

Integer Division in Zetalisp

Integer division in Zetalisp returns an integer rather than the exact rational-

number result. The quotient is truncated toward zero rather than rounded. The ex-

act rule is that if A is divided by B, yielding a quotient of C and a remainder of

D, then A = B * C + D exactly. D is either zero or the same sign as A. Thus the

absolute value of C is less than or equal to the true quotient of the absolute val-

ues of A and B. This is compatible with Maclisp and conventional computer hard-

ware. However, it has the serious problem that it does not obey the rule that if A
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divided by B yields a quotient of C and a remainder of D, then dividing A + k * B

by B yields a quotient of C + k and a remainder of D for all integers k. The lack

of this property sometimes makes Zetalisp integer division hard to use. For a more

detailed discussion of truncation and rounding off operations: See the section "Nu-

meric Type Conversions".
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Arithmetic Functions

Function Action

+  &rest numbers Returns the sum of its arguments.

-  number &rest more-numbers First argument minus the sum of the rest 

of the arguments, or negative of single 

argument.�

abs  number Returns the absolute value of number.�

conjugate  number Returns the complex conjugate of number.�

*  &rest numbers Returns the product of its arguments.�

/  number &rest more-numbers Returns the first argument divided by the 

product of the rest of the arguments, or  

reciprocal of single argument. Returns  

integer or ratio, as appropriate, when 

arguments are rational.�

1+  number Adds 1 to number.�

1-  number Subtracts 1 from number�

gcd &rest integers Returns the greatest common divisor of all its

arguments.�

lcm  &rest integers Returns the least common multiple of

all its arguments.�

*print-exact-float-value* When this variable is set to 

t, it prints the exact number 

represented by a floating-point

number, not the rounded number, 

which is normally printed by the 

printer.  �

rem number divisor Returns remainder of number divided by

divisor.�

mod  number divisor Performs floor on its arguments (divides 

number by divisor, truncating result 

toward negative infinity), but only returns  

the second result of floor, the remainder.�

expt  base-number power-number Returns base-number raised 

to the power power-number.�

sqrt  number Returns the square root of number.�

isqrt  integer Returns the greatest integer less than or  

equal to the square root of its argument.�

signum  number If number is rational, returns -1, 0, or 1,

to indicate that the argument is negative, 

zero or positive. Floating-point and

complex arguments produce different
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results.�

Note: The following Zetalisp functions are included to help you read

old programs.  In your new programs, where possible, use the Common

Lisp equivalents of these functions.

zl:+$ Synonyms for +.

zl:plus�

zl:-$ Synonym for -.�

zl:difference  number &rest more-numbers

Returns the first argument minus the  

sum of the rest of the arguments.�

zl:minus  number Returns the negative of number.�

zl:*$ Synonyms for *.

zl:times �

zl:/  number &rest more-numbers Returns the first argument 

zl:/$ divided by the product of the rest of 

the arguments, or reciprocal of single 

argument. Truncates results for integer 

arguments.�

zl:quotient  number &rest more-numbers

With more than one argument, same as

zl:/. With single argument, returns the

reciprocal of number; truncates result for 

integer arguments. �

zl:1+$ Synonyms for 1+.

zl:add1 �

zl:1-$ Synonyms for 1-.

zl:sub1 �

zl:gcd  integer1 integer2 &rest more-integers

zl:\\\\ Returns greatest common divisor of all its

arguments.�
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zl:\\ Synonyms for rem.

zl:remainder �

zl:expt num expt Returns num raised to

zl:^ the expt power.

zl:^$�

zl:sqrt  n Returns the square root of n.�

Transcendental Functions

This group includes four subsets of transcendental functions: powers of e (where e�

is the base of natural logarithms), logarithmic functions, trigonometric and related

functions, and hyperbolic functions.

These functions are only for floating-point arguments: Given an integer, they con-

vert it to a single-float and return a single-float; Given a double-float, they return

a double-float.

Powers of e and Log Functions

exp number Returns e raised to power number.

log number &optional base

Returns the natural logarithm of number, or optionally, the

logarithm of number in the base base.

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, use the Common Lisp version of this function. 

zl:log x Returns the natural logarithm of x.

Trigonometric and Related Functions

sin radians Returns the sine of its argument.

cos radians Returns the cosine of its argument.

tan radians Returns the tangent of its argument.

tand degrees Returns the tangent of degrees.

sind degrees Returns the sine of degrees.

cosd degrees Returns the cosine of degrees.
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cis radians Returns (complex (cos radians) (sin radians)).

asin number Returns the arc sine of number in radians.

acos number Returns the arc cosine of number in radians.

atan y &optional x Returns the angle between -π and π radians whose tangent is

y/x.

phase number Returns the angle part (in radians) of the polar representation

of a complex number. (The function abs returns the radius

part of the complex number.)

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:atan y x Returns angle between 0 and 2π in radians.

zl:atan2 y x Returns angle in radians (same as atan).�

Hyperbolic Functions

sinh number Returns the hyperbolic sine of number.

cosh number Returns the hyperbolic cosine of number.

tanh number Returns the hyperbolic tangent of number.

asinh number Returns the hyperbolic arc sine of number.

acosh number Returns the hyperbolic arc cosine of number.

atanh number Returns the hyperbolic arc tangent of number.�

Numeric Type Conversions

These functions are provided to allow specific conversions of data types to be

forced when desired. When converting to an integer, you can select any of the fol-

lowing:

• Truncation toward negative infinity (floor, ffloor, zl:fix).

• Truncation toward positive infinity (ceiling, fceiling).

• Truncation toward zero (truncate, ftruncate).

• Rounding to the nearest integer (round, fround, zl:fixr).�

See the section "Comparison of floor, ceiling, truncate and round".
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In addition, there are functions that extract specific components of ratios, floating-

point, and complex numbers such as the denominator of a ratio, or the imaginary

part of a complex number.

Functions that Convert Noncomplex to Rational Numbers

rational number Converts a noncomplex number to an equivalent rational num-

ber.

rationalize number Converts a noncomplex number to a rational number in best

available approximation of its format.

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, use the Common Lisp equivalent of this function. 

zl:rational x Converts a noncomplex number to an equivalent rational num-

ber. rationalize is the Common Lisp equivalent of this func-

tion.

Functions that Convert Numbers to Floating-point Numbers

float number &optional other

Converts number to floating point with the precision of other;

with single argument, converts number (if non-floating) to sin-

gle-precision floating point, else returns number.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:dfloat x Converts a number to double-precision floating-point number.

zl:float x Converts a number to a single-precision floating-point number. 

Functions that Divide and Convert Quotient to Integer

floor number &optional (divisor 1)

Divides number by divisor, truncates result toward negative

infinity*.

ceiling number &optional (divisor 1)

Divides number by divisor, 

truncates result toward positive infinity*.

truncate number &optional (divisor 1)

Divides number by divisor, 

truncates result toward zero*.
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round number &optional (divisor 1)

Divides number by divisor, rounds the result*.�

*See the section "Comparison of floor, ceiling, truncate and round". Note: The fol-

lowing Zetalisp functions are included to help you read old programs. In your new

programs, where possible, use the Common Lisp equivalents of these functions. 

zl:fix x Converts x from a floating-point number to an integer by trun-

cating (similar to floor).

zl:fixr x Converts x from a floating-point number to an integer by

rounding (similar to round). 

Functions that Divide and Return Quotient as Floating-point Number

ffloor number &optional (divisor 1)

Like floor, except result is a floating-point 

number instead of an integer.

fceiling number &optional (divisor 1)

Like ceiling, except result is a floating-point 

number instead of an integer.

ftruncate number &optional (divisor 1)

Like truncate, except result is floating-point number instead of

an integer.

fround number &optional (divisor 1)

Like round, except result is a floating-point number instead of

an integer.

Functions that Extract Components From a Rational Number

numerator rational If the argument is a ratio, returns the numerator of rational. 

For an integer argument, returns rational.

denominator rational

If the argument is a ratio, returns denominator of rational. 

For an integer argument, returns 1.�

Functions that Decompose and Construct Floating-point Numbers

decode-float float Returns values representing the significand, the exponent, and

the sign of the argument.

integer-decode-float float

Similar to decode-float except it scales the significand so as to

be an integer.
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float-digits float Returns the number of radix digits used in the representation

of the argument.

float-precision float

Returns the number of significant radix digits in the argu-

ment.

float-radix float Returns integer radix of floating-point argument.

float-sign float1 &optional float2

Returns a floating-point number of the same sign as float1 and

of the same absolute value as float2; float2 defaults to a float-

ing-point of the same precision as float1.

scale-float float integer

Returns (float * 2integer).�

Functions that Decompose and Construct Complex Numbers

complex realpart &optional imagpart

Builds a complex number from real and imaginary noncomplex

parts.

realpart number If number is complex, returns the real part of number. 

If number is noncomplex, returns number.

imagpart number If number is complex, returns its imaginary part. 

If number is noncomplex, returns zero of the same type as

number.

Comparison of floor, ceiling, truncate and round



Page 108

floor, ceiling, truncate, and round all produce two values. The second result, the

remainder, is omitted from the table below. Examples:

(floor 1.8) => 1 and 0.79999995

(floor -1.8) => -2 and 0.20000005

(floor 5 3) => 1 and 2

(ceiling 5 3) => 2 and -1

(truncate 5 3) => 1 and 2

(round 5 3) => 2 and -1

(round -5 3) => -2 and 1

(round 5 -3) => -2 and -1�

Argument floor ceiling truncate round

1.8 1 2 1 2

1.5 1 2 1 2

1.3 1 2 1 1

0.9 0 1 0 1

0.5 0 1 0 0

0.2 0 1 0 0

-0.2 -1 0 0 0

-0.9 -1 0 0 -1

-1.3 -2 -1 -1 -1

-1.5 -2 -1 -1 -2

-1.8 -2 -1 -1 -2�

Logical Operations on Numbers

The logical functions described here are bit-wise operations which require integers

as arguments; a non-integer argument signals an error. Logical operations on inte-

gers operate on the internal binary representation of the integer. Moreover, inte-

gers are treated as though they were "sign-extended". That is, negative integers

have all one-bits on the left, and non-negative integers have all 0-bits on the left.

As described below, this provides a convenient way of representing infinite vectors

of bits, as well as sets.

The functions fall into three main logical groupings: those that perform a specified

bit-wise logical operation on their arguments and return the result, those that re-

turn specific components or characteristics of their argument, and a group of pred-

icates based on bit-testing.

Infinite Bit-vectors and Sets Represented by Integers

It is noteworthy that these logical operations can be applied to infinite bit-vectors,

if these are represented by integers. This applies to infinite bit-vectors in which

only a finite number of bits are one, or only a finite number of bits are zero.

Suppose that the bits in such a vector are indexed by the non-negative integers

j=0,1,..., and that bit j is assigned a "weight" 2j. Then, a vector with only a finite
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number of one-bits is represented by the positive integer corresponding to the sum

of the weights of the one-bits. Similarly, a bit-vector with only a finite number of

zero bits is represented as -1 minus the sum of the weights of the zero-bits, a neg-

ative integer. For example, the infinite bit-vector #*01011... can be represented by

the integer -6. Hence, logical operations on infinite bit-vectors with a finite num-

ber of one-bits or zero-bits can be performed by applying similar logical operations

on their integer representations using the functions described below.

The above method of using integers to represent bit-vectors can also be used to

represent sets. Suppose that set S is a subset of the universal set U. Then set S

can be represented by a bit-vector in which each bit represents an element of U,

and bit j is a one-bit if the corresponding element is also an element of S. In this

way, all finite subsets of U can be represented by positive integers. Similarly, all

sets whose complements are finite can be represented by negative integers. The

functions logior, logand, and logxor can then be used to compute the union, in-

tersection, and symmetric difference operations on sets represented in this way.

Functions Returning Result of Bit-wise Logical Operations

The logical operations performed by sixteen of the functions in this group can also

be performed by the single function boole. This can be useful when it is necessary

to parameterize a procedure so that it can use one of several logical operations.

logior &rest integers

Returns the bit-wise logical inclusive or of its arguments*.

logxor &rest integers

Returns the bit-wise logical exclusive or of its arguments*.

logand &rest integers

Returns bit-wise logical and of its arguments*.

logeqv &rest integers

Returns the bit-wise logical equivalence (exclusive nor) of its

arguments*.

lognand integer1 integer2

Returns the logical not-and of its arguments*.

lognor integer1 integer2

Returns the logical not-or of its arguments*.

logandc1 integer1 integer2

Returns the and complement of argument 1 with argument 2*.

logandc2 integer integer2

Returns the and of argument 1 with the complement of ar-

gument2*.

logorc1 integer1 integer2

Returns the or complement of integer1 with integer2*.
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logorc2 integer1 integer2

Returns the or of integer1 with the complement of integer2*.

boole op integer1 &rest more-integers

Generalization of other logical operations, such as logand,

logior, and logxor.

lognot integer Returns the logical complement of integer.

ash number count Shifts number count bits left or right depending on sign of

count.�

*See the section "Comparison of Bit-wise Logical Operations".

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:logand number &rest more-numbers

Returns the bit-wise logical and of its arguments.

zl:logior number &rest more-numbers

Returns the bit-wise logical inclusive or of its arguments.

zl:logxor number &rest more-numbers

Returns the bit-wise logical exclusive or of its arguments.

Functions Returning Components or Characteristics of Argument

integer-length integer Returns the number of significant bits in

integer

logcount integer Returns the number of one-bits in integer

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:haipart x n Depending on sign of n, returns the high or

the low n bits of x.

zl:haulong x Returns the number of significant bits in x

(similar to integer-length).

Predicates for Testing Bits in Integers

logbitp index integer

Returns t if index bit in integer (the bit whose weight is 2index)

is a one-bit.
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logtest integer1 integer2

Returns t if any 1-bits in integer1 are 1-bits in integer2.

Note: The following Zetalisp predicate is included to help you read old programs. In

your new programs, use the Common Lisp equivalent of this predicate. 

zl:bit-test x y Returns t if any 1 bits in x are 1 bits in y. Use the Common

Lisp function, logtest.

Comparison of Bit-wise Logical Operations

Argument1 0 0 1 1

Argument2 0 1 0 1 Operation Name

logior 0 1 1 1 inclusive or

logxor 0 1 1 0 exclusive or

logand 0 0 0 1 and

logeqv 1 0 0 1 equivalence (exclusive nor)

lognand 1 1 1 0 nand (complement of and)

lognor 1 0 0 0 nor (complement of inclusive or)

logandc1 0 1 0 0 and complement of arg1 with arg2

logandc2 0 0 1 0 and arg1 with complement of arg2

logorc1 1 1 0 1 or complement of arg1 with arg2

logorc2 1 0 1 1 or arg1 with complement of arg2�

Byte Manipulation Functions

Like logical operations, byte-manipulation functions are bit-wise operations that re-

quire integers as arguments. These functions operate on the internal binary repre-

sentation of the integers, which are treated as though they were "sign-extended".

Byte manipulation functions deal with an arbitrary-width field of contiguous bits

appearing anywhere in an integer. Such a contiguous set of bits is called a byte.

Note that we are not using the term byte to mean eight bits, but rather any num-

ber of bits within a number. These functions use byte specifiers to designate a spe-

cific byte position within any word. A byte specifier consists of the size (in bits)

and position of the byte within the number, counting from the right in bits. A po-

sition of zero means that the byte is at the right end of the number. Byte speci-

fiers are built using the byte function.

For example, the byte specifier (byte 8 0) refers to the lowest eight bits of a

word, and the byte specifier (byte 8 8) refers to the next eight bits. 

Bytes are extracted from and deposited into 2’s complement signed integers. Treat-

ing the integers as signed means that negative numbers conceptually have infinite-

ly many one-bits on the left. Bytes, being a finite number of bits, are never nega-

tive. 
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Summary of Byte Manipulation Functions

byte size position Creates a byte specifier.

byte-position bytespec

Extracts the position field of its argument.

byte-size bytespec Extracts the size field of its argument.

dpb newbyte bytespec integer

Deposit byte; returns a copy of integer that is the same as inte-

ger, except in the bits specified by bytespec.

deposit-field newbyte bytespec integer

Like dpb, except that newbyte is not taken to be right-justified.

ldb-test bytespec integer

Returns true if the designated field is nonzero.

ldb bytespec integer Load byte; extracts byte of integer as specified by bytespec.

mask-field bytespec integer

Similar to ldb, except for the position of the returned byte.

deposit-byte into-value position size byte-value

Like dpb, except that byte specifier information is passed in

separate arguments.

load-byte from-value position size

Like ldb, except that byte specifier information is passed in

separate arguments.

Random Number Generation

The functions in this section provide a pseudorandom number generator facility.

The basic function is random n &optional state. This function accepts a positive

number n (integer or floating-point), and returns a pseudorandom number of the

same type between zero (inclusive) and n (exclusive). The pseudorandom numbers

generated are nearly uniformly distributed. If n is an integer, each of the possible

results occurs with a probability very close to 1/n.

Between calls, the state of the pseudo random number generator is saved in a data

structure of type random-state, stored in the variable *random-state*. If you call

random without supplying a value for state, random uses the value of *random-

state*.

Usually there is only one random-state, but there are functions that allow manipu-

lation of this object to let you generate a reproducible sequence of random num-

bers within a program. *random-state* can be bound to any random-state object;

it can also be printed out and successfully read back in.

Function make-random-state creates a new random-state data structure, which

can be used as the value of state. To copy the current random-number state object

rather than create a new one, call make-random-state without an argument.
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Use the predicate random-state-p to test whether a given object is of type

random-state.

To reproduce sequences of random numbers within a program, you can create a

random-state object and write it to a file with print; before running the program,

read a copy of the random-state object from the printed representation in the file,

then use this object to initialize the random-number generator for the program.

Or, you can copy the random state directly via make-random-state.

Examples:

(random 2) => 0

(random 2) => 1

(random 3.0) => 1.1938573

(random 3.0) => 2.1395636

(random 1.0d0) => 0.5454759425745741d0

�

(setq base-random-state (make-random-state)) => #.(RANDOM-STATE...)

(setq copy1-base

      (make-random-state base-random-state)) => #.(RANDOM-STATE...)

(+ 1 (random 6 copy1-base)) => 3 ;simulate a roll of a die

(+ 1 (random 6 copy1-base)) => 6

(+ 1 (random 6 copy1-base)) => 4

(+ 1 (random 6 copy1-base)) => 2

�

(setq copy2-base 

      (make-random-state base-random-state)) => #.(RANDOM-STATE...)

(+ 1 (random 6 copy2-base)) => 3 ;the same results

(+ 1 (random 6 copy2-base)) => 6

(+ 1 (random 6 copy2-base)) => 4

(+ 1 (random 6 copy2-base)) => 2�

� Random Numbers in Zetalisp

This section describes the pseudorandom number generator facility in Zetalisp. The

function zl:random returns a new pseudorandom number each time it is called.

Between calls, its state is saved in a data object called a random-array. Usually

there is only one random-array; however, if you want to create a reproducible

series of pseudorandom numbers, and be able to reset the state to control when

the series starts over, then you need some of the other functions here.

A random-array consists of an array of numbers, and two pointers into the array.

The length of the array is denoted by length and the distance between the pointers

by offset. This algorithm produces well-distributed random numbers if length and

offset are chosen carefully, so that the polynomial x^length+x^offset+1 is irreducible

over the mod-2 integers. The system uses 71 and 35.

The contents of the array of numbers should be initialized to anything moderately

random, to make the algorithm work. The contents get initialized by a simple ran-

dom number generator, based on a number called the seed. The initial value of the
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seed is set when the random-array is created, and it can be changed via function

si:random-initialize. To have several different controllable resettable sources of

random numbers, you can create your own random-arrays with function si:random-

create-array. If you don’t care about reproducibility of sequences, just use

zl:random without the random-array argument.

Random Number Functions

make-random-state &optional state

Returns a new object of type random-state from the uniform

distribution over [0, number).

random-normal &optional mean standard-deviation state

Returns a random number from the normal distribution with

the specified mean and standard-deviation.

random number &optional state

Returns a noncomplex number of the same kind as number.

random-state-p object

Returns t if object is of type random-state.

si:random-create-array length offset seed &optional (area nil)

Creates, initializes, and returns an object of type random-array.

si:random-initialize array &optional new-seed

Reinitializes the contents of array from seed.�

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, where possible, use the Common Lisp equivalent of this

function.

zl:random &optional arg random-array Returns a random integer.

Machine-Dependent Arithmetic

Sometimes it is desirable to have a form of arithmetic that has no overflow check-

ing (which would produce bignums), and truncates results to the word size of the

machine. In Symbolics Common Lisp, this is provided by the following set of func-

tions.

These functions should not be used for "efficiency"; they are probably less efficient

than the functions that do check for overflow. They are intended for algorithms

that require this sort of arithmetic, such as hash functions and pseudo-random

number generation.

Machine-Dependent Arithmetic Functions
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sys:%32-bit-plus fixnum1 fixnum2

Returns the sum of fixnum1 and fixnum2 in two’s complement

arithmetic.

sys:%32-bit-difference fixnum1 fixnum2

Returns the difference of fixnum1 and fixnum2 in two’s comple-

ment arithmetic.

lsh number count Returns number shifted count bits, left or right, depending on

the sign of count; bits shifted at either end are lost; requires

fixnum arguments.

rot x y Returns x rotated y bits in a 32-bit field.

sys:%logdpb newbyte bytespec integer

Like dpb, except that it returns fixnums, thus reflecting

changes in the sign bit.

sys:%logldb bytespec integer

Like ldb, except that it only loads out of fixnums and allows

up to 32-bit byte size; thus the result can be negative.

Symbols, Keywords, and Variables

Overview of Symbols

A symbol is a Lisp object in the Lisp environment. A symbol has a print name, a

value (or binding), a definition (or the contents of its function cell), a property list,

and a package. It is important to understand that a symbol can be any Lisp object,

for example a variable, a function, or a list. It is also important to keep in mind

that while we sometimes say that a symbol is the name of some object, a name is

actually the printed representation of that object. A symbol is the object itself.

Two kinds of symbols should be mentioned explicitly here: keywords and variables.

Keywords are implemented as symbols whose home package is the keyword pack-

age. (See the section "Package Names".) The only aspects of symbols significant to

keywords are name and property list; otherwise, keywords could just as easily be

some other data type. (Note that keywords are referred to as enumeration types in

some other languages.)

There are three kinds of variables: special (or global), local (or lexical), and in-

stance. A special variable has dynamic scope: any Lisp expression can access it

simply by referring to its name. A local variable has lexical scope: only Lisp ex-

pressions lexically contained in the special form that binds the local variable can

access it. See the section "Overview of Dynamic and Lexical Scoping". An instance

variable has a different kind of lexical scope: only Lisp expressions lexically con-

tained in methods of the appropriate flavor can access it. Instance variables are

explained in another section. See the section "Overview of Flavors".



Page 116

The Print Name of a Symbol

Every symbol has an associated string called the print-name, or pname for short.

This string is used as the external representation of the symbol: if the string is

typed in to read, it is read as a reference to that symbol (if it is interned), and if

the symbol is printed, print displays the print-name. 

How the Reader Recognizes Symbols

A string of letters, numbers, and "extended alphabetic" characters is recognized by

the reader as a symbol, provided it cannot be interpreted as a number. See the

section "How the Reader Recognizes Numbers". When a token could be read as ei-

ther a symbol or an integer in a base larger than ten, the reader’s action is deter-

mined by the value of si:*read-extended-ibase-unsigned-number* and si:*read-

extended-ibase-signed-number*.

Alphabetic case is ignored in symbols; lowercase letters are translated to upper-

case. When the reader sees the printed representation of a symbol, it interns it in

a package. See the section "Packages".

Symbols can start with digits; for example, read accepts one named "345T". If you

want to put strange characters (such as lowercase letters, whitespace, parentheses,

or reader macro characters) inside the name of a symbol, put a backslash before

each strange character. If you want to have a symbol whose print-name looks like

a number, put a backslash before some character in the name. You can also en-

close the name of a symbol in vertical bars, which quotes all characters inside, ex-

cept vertical bars and backslashes, which must be quoted with backslash. Examples

of symbols: 

�

foo ab.cd

bar\(baz\) ab\ cd

34w23 car54

\123 123+

|XY-hsiang Kitty| |and\|or|�

Printed Representation of Symbols

If slashification is off, the printed representation of a symbol is simply the succes-

sive characters of the print-name of the symbol. If slashification is on, two changes

must be made.

1. The symbol might require a package prefix for read to work correctly, assum-

ing that the package into which read reads the symbol is the one in which it

is being printed. (See the section "System Packages".)

2. If the printed representation would not read in as a symbol at all (that is, if

the print-name looks like a number, or contains special characters), the print-

ed representation must have one of the following kinds of quoting for those

characters.
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• Backslashes ("\") before each special character

• Vertical bars ("|") around the whole name�

The decision whether quoting is required is made using the readtable, so it is al-

ways accurate provided that *readtable* has the same value when the output is

read back in as when it was printed. See the variable *readtable*.

Uninterned symbols are printed preceded by #:. You can turn this off by evaluating

(setf (si:pttbl-uninterned-prefix *readtable*) "").

Functions Relating to the Print Name of a Symbol

symbol-name symbol 

Returns the print name of symbol.

string= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Checks to see if string1 and string2 are the same.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:get-pname symbol 

Returns the print-name of symbol.

zl:samepnamep x y 

Returns t if the printed representation of the two symbols x

and y is the same.�

The Value Cell of a Symbol

Each symbol has associated with it a value cell, which refers to one Lisp object.

This object is called the symbol’s binding or value, since it is what you get when

you evaluate the symbol. The binding of symbols to values allows symbols to be

used as the implementation of variables in programs.

The value cell can also be empty, referring to no Lisp object, in which case the

symbol is said to be unbound. This is the initial state of a symbol when it is cre-

ated. An attempt to evaluate an unbound symbol causes an error.

Symbols are often used as special variables. See the section "Kinds of Variables".

The symbols nil and t are always bound to themselves; they cannot be assigned,

bound, or otherwise used as variables. Attempting to change the value of nil or t

(usually) causes an error.

The functions described here work only on symbols. Thus they work on special

variables but not on local or instance variables.

Functions for assigning a value to a symbol 
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set symbol value Assign value to symbol�

Functions for retrieving the value of a symbol 

symbol-value sym Returns the current value of sym.

symbol-value-globally var Returns the value of global variable var re-

gardless of its current binding.�

Functions for removing the value of a symbol 

makunbound sym Remove the value from sym.

makunbound-globally var Remove the value from global variable var.

variable-makunbound variable Remove the value from variable.�

Predicates for checking if a symbol has a value 

boundp sym Returns t if the special variable sym has a

value.

variable-boundp variable Returns t if variable has a value. Works on any

kind of variable. Does not evaluate variable.�

Functions for locating the value cell of a symbol 

sys:variable-location variable Return a locative pointer to the value cell of

variable.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:set-globally var value Assign value to var as a global variable.

zl:symeval sym Like symbol-value.

zl:symeval-globally var Like symbol-value-globally.

zl:value-cell-location sym Returns a locative pointer to sym’s internal

value cell. Obsolete on local and instance vari-

ables. 

The Function Cell of a Symbol

Every symbol has associated with it a function cell. The function cell is similar to

the value cell; it refers to a Lisp object. When a function is referred to by name,

that is, when a symbol is applied or appears as the car of a form to be evaluated,

that symbol’s function cell is used to find its definition, the functional object that

is to be applied. For example, when evaluating (+ 5 6), the evaluator looks in +’s

function cell to find the definition of +, in this case a compiled function, to apply

to 5 and 6.

Like the value cell, a function cell can be empty, and it can be bound or assigned.

(However, to bind a function cell you must use the zl:bind subprimitive.) The fol-
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lowing functions are analogous to the similar value-cell-related functions. See the

section "The Value Cell of a Symbol".

Functions Relating to the Function Cell of a Symbol

fboundp sym Checks to see if sym is defined.

fmakunbound sym Removes the definition from sym.

symbol-function sym Returns the function definition of sym.

sys:function-cell-location sym Returns a locative pointer to sym’s function

cell.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:fset sym definition Stores definition in the function cell of sym.

zl:fsymeval sym Zetalisp equivalent of symbol-function.�

Since functions are the basic building block of Lisp programs, the system provides

a variety of facilities for dealing with functions. See the section "Functions".

The Property List of a Symbol

Every symbol has an associated property list. See the section "Property Lists".

When a symbol is created, its property list is initially empty.

The Lisp language itself does not use a symbol’s property list for anything. (This

was not true in older Lisp implementations, where the print-name, value-cell, and

function-cell of a symbol were kept on its property list.) However, various system

programs use the property list to associate information with the symbol. For in-

stance, the editor uses the property list of a symbol that is the name of a function

to remember where it has the source code for that function, and the compiler uses

the property list of a symbol which is the name of a special form to remember

how to compile that special form.

Functions Relating to the Property List of a Symbol

symbol-plist symbol 

Returns the list that represents the property list of symbol.

getf plist indicator &optional default 

Searches for the property indicator on plist.

get-properties plist indicator-list 

Searches the property list stored in plist for any of the indica-

tors in indicator-list.
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remprop symbol indicator 

Removes indicator from the property list in symbol.

remf place indicator 

Removes indicator from the property list stored in place.

sys:property-cell-location symbol 

Returns a locative pointer to symbol’s property list cell.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:plist symbol Returns the property list of symbol.

zl:putprop sym value indicator 

Gives sym an indicator-property of value.

zl:setplist symbol list 

Sets the property list of symbol to list.

The Package Cell of a Symbol

Every symbol has a package cell that is used, for interned symbols, to point to the

package to which the symbol belongs. For an uninterned symbol, the package cell

contains nil.

Functions That Find the Home Package of a Symbol 

symbol-package symbol 

Return the package in which symbol resides.

sys:package-cell-location symbol 

Return a locative pointer to symbol’s package cell.

keywordp object Check if object is a symbol in the keyword package.

Creating Symbols

The functions in this section are primitives for creating symbols. However, before

discussing them, it is important to point out that most symbols are created by a

higher-level mechanism, namely the reader and the intern function. Nearly all

symbols in Lisp are created by virtue of the reader’s having seen a sequence of in-

put characters that looked like the printed representation of a symbol. When the

reader sees such a printed representation, it calls intern, which looks up the se-

quence of characters in a big table and sees whether any symbol with this print-

name already exists. If it does, read uses the existing symbol. If it does not exist,

then intern creates a new symbol and puts it into the table, and read uses that

new symbol.
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A symbol that has been put into such a table is called an interned symbol. In-

terned symbols are normally created automatically; the first time someone (such as

the reader) asks for a symbol with a given print-name, that symbol is automatical-

ly created.

These tables are called packages. In Symbolics Common Lisp, interned symbols are

handled by the package system.

An uninterned symbol is a symbol used simply as a data object, with no special

cataloging. An uninterned symbol prints the same as an interned symbol with the

same print-name, but cannot be read back in.

The following functions can be used to create uninterned symbols explicitly.

Functions for Creating Symbols

make-symbol print-name &optional permanent-p 

Creates an uninterned symbol with print-name print-name.

copy-symbol symbol &optional copyprops 

Creates an uninterned symbol with the same print-name as

symbol.

gensym &optional arg 

Invents a print-name and creates a symbol with that print-

name.

gentemp &optional (prefix "t") package 

Like gensym but also interns the new symbol.

sys:gensymbol &optional (prefix "g") count 

Invents a print-name using prefix and creates a symbol with

that print-name.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:copysymbol symbol &optional copyprops 

Like copy-symbol.

zl:gensym &optional arg 

Like gensym.

Keywords

Introduction to Keywords

Keywords are disjoint from ordinary symbols. They are implemented as symbols

whose home package is the keyword package, which has the empty string as a
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nickname. See the section "Package Names". Hence the printed representation of a

keyword, a symbol preceded by a colon, is actually just a qualified name. As a mat-

ter of style, keywords are never imported into other packages and the keyword

package is never inherited (used) by another package.

The only aspects of symbols significant to keywords are name and property list;

otherwise, keywords could just as easily be some other data type. (Note that key-

words are referred to as enumeration types in some other languages.)

The set of keywords is user-extensible; simply reading the printed representation

of a new keyword is enough to create it. As a syntactic convenience, every keyword

is a constant that evaluates to itself (just like numbers and strings). This elimi-

nates the need to write a lot of " ’ " marks when calling a function that takes

&key arguments, but makes it impossible to have a variable whose name is a key-

word. However, there is no desire to use keywords as names of variables (or of

functions), because the colon would look ugly. In fact, no syntactic words of the

Lisp language are keywords. Names of special forms, the otherwise that can be

used with a case, the lambda that identifies an interpreted function, names of

declarations such as special and arglist, all are not keywords.

Using Keywords

Keywords can be used as symbolic names for elements of a finite set. For example,

when opening a file with the open function you must specify a direction. The vari-

ous directions are named with keywords, such as :input and :output.

One of the most common uses of keywords is to name arguments to functions that

take a large number of optional arguments and therefore are inconvenient to call

with arguments identified positionally. Each argument is preceded by a keyword

that tells the function how to use that argument. When the function is called, it

compares each keyword that was passed to it against each of the keywords it

knows, using eq.

Another common use for keywords is as names for messages that are passed to ac-

tive objects such as instances. When an instance receives a message, it compares

its first argument against all the message names it knows, using eq. The practice

of performing operations on flavor instances by sending messages to them has

been superseded by generic functions. However, sending messages is still supported

for compatibility. See the section "Using Message-Passing Instead of Generic Func-

tions".

Since two distinct keywords cannot have the same name, keywords are not used for

applications in which name conflicts can arise. For example, suppose a program

stores data on the property lists of symbols. The data are internal to the program

but the symbols can be global. An example of this would be a program-

understanding program that puts some information about each Lisp function and

special form on the symbol that names that function or special form. The indicator

used should not be a keyword, because some other program might choose the same

keyword to store its own internal data on the same symbol, causing a name con-

flict.
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It is permissible, and in fact quite common, to use the same keyword for two dif-

ferent purposes when the two purposes are always separable by context. For in-

stance, the use of keywords to name arguments to functions does not permit the

possibility of a name conflict if you always know what function you are calling.

To see why keywords are used to name &key arguments, consider the function

make-array, which takes one required argument followed by any number of key-

word arguments. For example, the following specifies, after the first required ar-

gument, two options with names :leader-length and :type and values 10 and

sys:art-string.

(make-array 100 :leader-length 10 :type ’sys:art-string)�

The file containing make-array’s definition is in the system-internals package,

but the function is accessible to everyone without the use of a qualified name be-

cause the symbol make-array is itself inherited from common-lisp-global. But all

the keyword names, such as type, are short and should not have to exist in

common-lisp-global where they would either cause name conflicts or use up all

the "good" names by turning them into reserved words. However, if all callers of

make-array had to specify the options using long-winded qualified names such as

system-internals:leader-length and system-internals:type (or even si:leader-

length and si:type) the point of making make-array global so that one can write

make-array rather than system-internals:make-array would be lost. Furthermore,

by rights one should not have to know about internal symbols of another package

in order to use its documented external interface. By using keywords to name the

arguments, we avoid this problem while not increasing the number of characters

in the program, since we trade a "’" for a ":".

The data type names used with the typep function and the typecase and zl:check-

arg-type special forms are sometimes keywords and sometimes not keywords. The

names of data types that are built into the machine, such as :symbol, :list,

:fixnum, and :compiled-function, are keywords. In some cases, Zetalisp uses key-

words as type specifiers. However, Common Lisp does not use keywords as type

specifiers. For example, when given an array object, zl:typep returns the keyword

:array, whereas type-of returns array. The type specifiers corresponding to fla-

vors and structures are not keywords. In Genera, keywords are used as Zetalisp

type specifiers only for historical reasons. See the section "Type-checking Differ-

ences Between Symbolics Common Lisp and Zetalisp".

When in doubt as to whether or not a symbol of the language is supposed to be a

keyword, check to see whether it is documented with a colon at the front of its

name.

Variables

Changing the Value of a Variable

There are two different ways of changing the value of a variable. One is to set the

variable. Setting a variable changes its value to a new Lisp object, and the previ-

ous value of the variable is forgotten. Setting of variables is usually done with the

setq special form.
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The other way to change the value of a variable is with binding (also called "lamb-

da-binding"). When a variable is bound, its old value is first saved away, and then

the value of the variable is made to be the new Lisp object. When the binding is

undone, the saved value is restored to be the value of the variable. Bindings are

always followed by unbindings. This is enforced by having binding done only by

special forms that are defined to bind some variables, then evaluate some sub-

forms, and then unbind those variables. So the variables are all unbound when the

form is finished. This means that the evaluation of the form does not disturb the

values of the variables that are bound; their old value, before the evaluation of the

form, is restored when the evaluation of the form is completed. If such a form is

exited by a nonlocal exit of any kind, such as throw or return, the bindings are

undone whenever the form is exited.

Binding Variables

The simplest construct for binding variables is the let special form. The do and

prog special forms can also bind variables, in the same way let does, but they also

control the flow of the program and so are explained elsewhere. See the section

"Iteration".

let* is just a sequential version of let.

Binding is an important part of the process of applying functions to arguments.

See the section "Evaluating a Function Form".

Kinds of Variables

In Symbolics Common Lisp, there are three kinds of variables: local, special, and

instance. A special variable has dynamic scope: any Lisp expression can access it

simply by mentioning its name. A local variable has lexical scope: only Lisp expres-

sions lexically contained in the special form that binds the local variable can ac-

cess it. An instance variable has a different kind of lexical scope: only Lisp expres-

sions lexically contained in methods of the appropriate flavor can access it. In-

stance variables are explained in another section. See the section "Overview of Fla-

vors".

Variables are assumed to be local unless they have been declared to be special or

they have been implicitly declared to be instance variables by defmethod. Vari-

ables can be declared special by the special forms defvar and defconstant, or by

explicit declarations. See the section "Declarations". The most common use of spe-

cial variables is as "global" variables: variables used by many different functions

throughout a program, that have top-level values. Named constants are considered

to be a kind of special variable whose value is never changed.

When a Lisp function is compiled, the compiler understands the use of symbols as

variables. However, the compiled code generated by the compiler does not actually

use symbols to represent nonspecial variables. Rather, the compiler converts the

references to such variables within the program into more efficient references that

do not involve symbols at all. The interpreter stores the values of variables in the
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same places as the compiler, but uses less specialized and efficient mechanisms to

access them.

The value of a special variable is stored in the value cell of the associated symbol.

Binding a special variable saves the old value away and then uses the value cell of

the symbol to hold the new value.

When a local variable is bound, a memory cell is allocated in a hidden, internal

place (the Lisp control stack) and the value of the variable is stored in this cell.

You cannot use a local variable without first binding it; you can only use a local

variable inside a special form that binds that variable. Local variables do not have

any "top-level" value; they do not even exist outside the form that binds them.

The value of an instance variable is stored in an instance of the appropriate fla-

vor. Each instance has its own copy of the instance variable. You are not allowed

to bind an instance variable.

Local variables and special variables do not behave quite the same way, because

"binding" means different things for the two of them. Binding a special variable

saves the old value away and then uses the value cell of the symbol to hold the

new value. Binding a local variable, however, does not do anything to the symbol.

In fact, it creates a new memory cell to hold the value, that is, a new local vari-

able.

A reference to a variable that you did not bind yourself is called a free reference.

When one function definition is nested inside another function definition, using

lambda, flet, or labels, the inner function has access to the local variables bound

by the outer function. An access by the inner function to a local variable of the

outer function looks like a free reference when only the inner function is consid-

ered. However, when the entire surrounding context is considered, it is a bound

reference. We call this a captured free reference. When a function definition is nest-

ed inside a method, it can refer to instance variables just as the method can.

You cannot use a local variable without first binding it. Another way to say this is

that you cannot ever have an uncaptured free reference to a local variable. If you

try to do so, the compiler complains and assumes that the variable is special, but

was accidentally not declared. The interpreter also assumes that the variable is

special, but does not print a warning message.

Here is an example of how the compiler and the interpreter produce the same re-

sults, but the compiler prints more warning messages.

(setq a 2)          ;Set the special variable a to the value 2.

                    ;But don’t declare a special.

�

(defun foo ()       ;Define a function named foo.

  (let ((a 5))      ;Bind the local variable a to the value 5.

    (bar)))         ;Call the function bar.

�

(defun bar ()       ;Define a function named bar.

  a)                ;It makes a free reference to the special variable a.
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�

(foo) => 2          ;Calling foo returns 2.

�

(compile ’foo)      ;Now compile foo.

                    ;This warns that the local variable a was bound,

                    ;but was never used.

�

(foo) => 2          ;Calling foo still returns 2.

�

(compile ’bar)      ;This warns about the free reference to a.

�

(foo) => 2          ;Calling foo still returns 2.�

When bar was compiled, the compiler saw the free reference and printed a warn-

ing message: Warning: a declared special. It automatically declared a to be spe-

cial and proceeded with the compilation. It knows that free references mean that

special declarations are needed. But when a function, such as foo in the example,

is compiled that binds a variable that you want to be treated as a special variable

but that you have not explicitly declared, there is, in general, no way for the com-

piler to automatically detect what has happened, and it produces incorrect output.

So you must always provide declarations for all variables that you want to be

treated as special variables.

When you declare a variable to be special using defvar rather than declare inside

the body of a form, the declaration is "global"; that is, it applies wherever that

variable name is seen. After fuzz has been declared special using defvar, all fol-

lowing uses of fuzz are treated as references to the same special variable. Such

variables are called "global variables", because any function can use them; their

scope is not limited to one function. The special forms defvar and defconstant are

useful for creating global variables; not only do they declare the variable special,

but they also provide a place to specify its initial value, and a place to add docu-

mentation. In addition, since the names of these special forms start with "def" and

since they are used at the top level of files, the editor can find them easily. 

Standard Variables

Standard variables are special variables that are used to control some aspect of the

Lisp environment. Their initial (standard) values are stored in si:*standard-

bindings*. If something binds one of the standard variables, the binding is stored

in si:*interactive-bindings*. si:*interactive-bindings* is never set, only bound and

si:*standard-bindings* is never bound, only set.

When a breakpoint of some kind is entered, the system finds out the standard val-

ues for all the symbols defined with sys:defvar-standard. It then compares these

values against the current bindings for these symbols. If the current bindings do

not match the standard bindings, you are warned, and the symbols are bound to

the standard values. The standard binding for a variable is gotten by looking on

si:*interactive-bindings*. If no binding is found on si:*interactive-bindings*, then

si:*standard-bindings* is checked. For example, zwei:com-break puts the value of
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*package*, *read-base*, and *print-base* from the file attribute list onto

si:*interactive-bindings* so that they become the standard binding for Zmacs.

zl:pkg-goto puts the new value of *package* onto si:*standard-bindings*. Evalua-

tion of forms in Zmacs, for example, Evaluate Into Buffer (m-X), also binds the

symbols to their standard values.

As a result, whenever you enter a breakpoint you are guaranteed predictable, con-

sistent behavior with regard to the bindings of these variables.

Standard variables are reset to their standard values after a warm boot.

These are the currently defined standard variables and their standard values.

symbol standard value

gprint:*inspecting* nil

cp:*command-table* User Command Table

neti:*inhibit-obsolete-information-warning* t

*package* common-lisp-user

*read-suppress* nil

*read-default-float-format* single-float

*print-pretty-printer* gprint:print-object

*print-structure-contents* t

*print-bit-vector-length* nil

*print-string-length* nil

*print-array-length* nil

*print-readably* nil

*print-array* nil

*print-gensym* t

*print-case* :upcase

*print-length* nil

*print-level* nil

*print-circle* nil

*print-base* 10

*print-radix* nil

*print-abbreviate-quote* nil

*print-pretty* t

*print-escape* t

sys:default-cons-area 4

*readtable* Common-Lisp Readtable

*read-base* 10

prin1 nil�

Notes: 

1. The value of *package* must be an unlocked package in si:*reasonable-

packages* that uses one of the packages in si:*reasonable-packages*.

2. The *readtable* must be one of the readtables on the list si:*valid-

readtables*.
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3. The value of sys:default-cons-area must be an allocated area.�

The following functions and variables pertain to standard variables:

sys:defvar-standard var initial-value

Defines a standard value that the variable should be

bound to in command and breakpoint loops. 

sys:standard-value-p symbol

Returns t if symbol has a standard value.

sys:standard-value symbol Returns the standard value of symbol.

(setf (sys:standard-value symbol))

Changes the standard value of symbol.

zl:setq-standard-value name form

Sets the standard value of name to the value of form.�

Standard variables are particularly useful in command loops. The following func-

tions are useful for writing your own Lisp style command loops. 

sys:standard-value-let vars-and-vals &body body

Like let except that it pushes the values in vals onto

the si:*interactive-bindings*, causing them to become

standard values.

sys:standard-value-let* vars-and-vals &body body

Like let* except that it pushes the values in vals onto

the si:*interactive-bindings*.

sys:standard-value-progv vars-and-vals &body body

Causes all of the symbols in vars to have their corre-

sponding value in vals pushed onto the si:*interactive-

bindings*.�

si:standard-readtable Variable

The value is that readtable to use when typing forms interactively to the Lisp in-

terpreter. When a distribution world is cold booted, the value of si:standard-

readtable is a copy of si:initial-readtable. If you wish to customize the syntax of

forms typed to the Lisp interpreter, you should make your customizations to

si:standard-readtable. *readtable* is bound to si:standard-readtable whenever a

break loop or debug loop is entered. *readtable* is set to si:standard-readtable

using the standard variable mechanism whenever the machine is warm booted.

If warm booting the machine were impossible, si:standard-readtable would not be

necessary. The top-level value of *readtable* could be used instead. However, if

the machine is warm booted while *readtable* is bound, the top-level value of

*readtable* is lost.

Examples: 
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• This example illustrates the use of binding *readtable* in order to implement a

special syntax. Forms are to be read from a file while preserving the case of

symbols.

(defvar *case-sensitive-readtable* (copy-readtable))

�

(loop for code from (char-code #/a) to (char-code #/z)

      as char = (code-char code)

      do (setf (si:rdtbl-trans *case-sensitive-readtable* code) char))

�

(defun read-case-sensitive-file (file)

  (with-open-file (stream file :direction :input)

    (let ((*readtable* *case-sensitive-readtable*))

      (loop do (process-form (read stream))))))�

In case an error occurs while inside process-form or inside a reader macro in-

voked by read, *readtable* is bound to si:standard-readtable, which is most

useful for debugging.

• This example illustrates the use of si:standard-readtable and si:initial-

readtable to customize the environment for typing expressions interactively. "@"

is defined as an abbreviation for location-contents, in the same manner that "’"

is an abbreviation for quote.

(defun at-sign-macro (ignore stream)

  (values (list ’location-contents (read stream)) ’list))

�

(defvar *my-readtable* (copy-readtable))

(set-syntax-macro-char #/@ ’at-sign-macro *my-readtable*)

�

(defun enable-my-readtable ()

  (setq si:standard-readtable *my-readtable*)

  (setq *readtable* *my-readtable*))

�

(defun disable-my-readtable ()

  (setq si:standard-readtable si:initial-readtable)

  (setq *readtable* si:initial-readtable))�

While it is useful for the user to set the values of *readtable* and si:standard-

readtable, the value of si:initial-readtable should never be changed. In addition,

the readtable that is the value of si:initial-readtable should never be modified,

modifications should be made only to the readtable that is the value of

si:standard-readtable. See the function copy-readtable.

See the section "The Readtable". 

Special Forms for Setting Variables
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setf reference value &rest more-pairs 

Takes a form that accesses something, and "inverts" it

to produce a corresponding form to update the thing.

When used with aref, stores a value into the specified

array element. 

psetf &rest pairs Similar to setf, except that psetf performs all the as-

signments in parallel, that is, simultaneously, instead

of from left to right.

setq &rest vars-and-vals Sets variable(s) to value(s).

psetq &rest pairs Similar to setq, except that psetq performs all the as-

signments in parallel, that is, simultaneously, instead

of from left to right.

multiple-value-setq vars value 

For calling a function that is expected to return more

than one value. value is evaluated, and the vars are

set (not lambda-bound) to the values returned by

value.�

Note: The following Zetalisp special form is included to help you read old programs.

In your new programs, if possible, use the Common Lisp equivalent of this special

form. 

zl:psetq &rest rest Just like a setq form, except that the variables are

set "in parallel"; first all the value forms are evaluat-

ed, and then the variables are set to the resulting

values.

Special Forms for Binding Variables

let ((var value)...) body Binds some variables to some objects, and eval-

uates body in the context of those bindings.

let* ((var value)...) body... Like let, except that the binding is sequential.

compiler-let bindlist body... Like let with variables declared special when

interpreted. For compiled code, compiles the

body with the bindings specified by bindlist in

effect.

letf places-and-values &body body Like let, except it binds any storage cells not

just variables.

letf* places-and-values body... Like let, except that it does the binding se-

quentially.

let-if condition ((var value)...) body...

Like let except the binding of variables is con-

ditional.

let-globally varlist &body body Saves the old values and sets the variables, set-

ting up an unwind-protect.

let-globally-if predicate varlist body...

Binds the variables only if predicate evaluates

to something other than nil.
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progv vars vals &body body Binds vars to vals and evaluates body. vars and

vals are computed quantities.

progw vars-and-vals &body body Like progv except the evaluation is sequential.

destructuring-bind pattern datum &body body

Binds variables to values, using defmacro’s de-

structuring facilities, and evaluates the body

forms in the context of those bindings.

multiple-value-bind vars value &body body

�

Note: The following Zetalisp special forms are included to help you read old pro-

grams. In your new programs, where possible, use the Common Lisp equivalents of

these special forms.

zl:desetq Lets you assign values to variables through de-

structuring patterns.

zl:dlet Binds variables to values, using destructuring,

and evaluates the body forms in the context of

those bindings. The bindings happen in paral-

lel.

zl:dlet* Like zl:dlet except the bindings happen se-

quentially.

Special Forms for Defining Special Variables

defvar var initial-value Declares var to be a global variables. defvar

should be used only at top level in a program,

never in a function definition.

sys:defvar-resettable var initial-value warm-boot-value

Like defvar, except that it also accepts a

warm-boot value.

defconstant variable initial-value Declares the use of a named constant in a pro-

gram.

defparameter variable initial-value The same as defvar, except that variable is al-

ways set to initial-value regardless of whether

variable is already bound.�

Note: The following Zetalisp special form is included to help you read old programs.

In your new programs, use the Common Lisp equivalent of this special form. 

zl:defconst variable initial-value The same as defvar, except that variable is al-

ways set to initial-value regardless of whether

variable is already bound.�
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Lists

Introduction to Lists

The basic concepts and terminology associated with lists are described elsewhere.

See the section "Overview of Lists". In brief, lists and list-like structures exist to

organize data in tabular structures. The basic data type upon which all tabular

structures are based is a structure with two components, called a cons; the head

(car) of the cons can hold any Lisp object, and the tail (cdr) of the cons points to

another Lisp object.

In a list, the car of the cons points to an element in the list and the cdr of the

cons points to a list containing the rest of the list. The cdr of the last cons of the

list points to nil. The car components of the conses in a list are called the ele-

ments of the list. For each element of the list there is a cons. A true list, then, is

a chain of conses linked by their cdr components and terminated by nil. See figure

! for an illustration of the list (a b c d e).

nil

A B C D E�

Figure 5.  A List With Multiple Elements�

A list is built recursively by adding a new element to the front of an existing list.

This is done by creating a new cons whose car holds the element being added, and

whose cdr points to the first element of the original list. For example, if you add a

new cons whose car is the symbol f to the list (a b c d e), the new list (f a b c d

e) is built. See figure ! for an illustration of the list (f a b c d e).

A B C D EF

nil

�

Figure 6.  List With An Added Element�

The symbol nil is used to represent the empty list, which is a list without any el-

ements. The symbol nil and the list () are equivalent. 
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This chapter surveys the data types associated with lists, then discusses a variety

of lists that can be built out of conses: simple lists, property lists, dotted lists, as-

sociation lists, and trees, and their specialized operations. There is a brief discus-

sion of the way the printer and the reader deal with lists; lastly we present the

concept of cdr-coding, a special internal representation of conses for storage re-

duction.

Type Specifiers and Type Hierarchy for Lists

The data types associated with lists are:

null     cons     list    sequence

Here are descriptions of these Symbolics Common Lisp data types:

null A primitive Lisp data type whose sole object is nil, the empty

list.

cons A primitive Lisp data type that consists of a car and a cdr. If

the car and cdr of the cons are both nil, then the cons is the

representation of the empty list, and can be reduced to a list

with the symbol nil as its only object:

(nil)�

For more information about conses: See the section "Overview

of Lists".

list A sequence of linked conses, built by recursively adding new

conses to an existing list. A list can be recursively defined to

be the symbol nil, or a cons whose cdr is a list. There is a

special object (the symbol nil) that is the empty list. Note that

list, which is not a primitive Lisp data type, is taken to mean

the union of the cons and null data types; therefore, it encom-

passes both true lists and dotted lists (described below).

sequence A supertype of the list and vector (one-dimensional array)

types. These types have the common property that they are or-

dered sets of elements. Functions that can be used on se-

quences can also be used on lists.�

In summary: Objects of the type list are a subset of objects of the type sequence,

and the subsets of the type list are the types cons and null.

Here are descriptions of other concepts related to lists, either being represented by

them or being part of their structure:

alist An association list, or alist, is a data structure consisting of a

list of conses, where each cons is an association. The car of

the cons is called the key (or indicator), and the cdr is called

the datum (or value). For more information about association

lists, see the section "Association Lists".
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car This is the first element of a cons. It can be any Lisp object,

for example, a number, symbol, array, or flavor instance. It is

the item returned when you use the car function on a cons.

cdr This is the second element of a cons. It is the next cons in a

list, or the symbol nil, representing the end of the list. How-

ever, it can also be any other Lisp object, as in the case of a

dotted list such as (a . b). It is also the item returned when

you use the cdr function on a cons.

circular list A circular list is like a list, except that the cdr of the last

cons, instead of being nil, is another cons from the list. This

means that the conses are all hooked together in a ring, with

the cdr of each cons being the next cons in the ring. While

these are valid Lisp objects, and there are functions to deal

with them, many other functions have trouble with them.

Functions that expect lists as their arguments often iterate

down the chain of conses, waiting to see a nil; when handed a

circular list, they compute forever. The *print-circle* variable

is useful for printing circular lists. When the value of this

variable is set to nil, the printing process proceeds by recur-

sive descent. When the value is non-nil, the printer uses #n=

and #n# syntax to indicate the circularities.

dotted list A dotted list is like a list, except that the last element of the

list does not have to be nil. This name comes from the printed

representation, which includes a "dot" character, such as (a .

b). The car of this dotted list is the symbol a, and the cdr of

the list is the symbol b. In a dotted list such as (a b . c), the

car is the symbol a and the cdr is the dotted pair (b . c).

plist A property list, or plist, is a tabular data structure consisting

of a list of alternating keyword symbols (called indicators) and

Lisp objects (called values or properties). For example:

(color red flavor hot container-type bottle)�

Indicators cannot be duplicated, since a property list can only

have one property at a time with a given name. A property list

is represented as an even-numbered list of elements. For more

information about plists: See the section "Property Lists".

set Set is a logical term that refers to a one-dimensional list with

no repetitions. Therefore, both the lists (a b c) and (a (b c) d)

are sets. The list (a b a c) would not be a set, since one char-

acter is repeated. There are functions that allow a list of items

to be treated as a set, for example, functions to add, remove,

and search for specific items in a list based on various criteria.

tree A tree is any data structure made up of conses whose cars and

cdrs are other conses. At the bottom of a tree, the cars and

cdrs can be any Lisp object, not only to conses. Another way of
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looking at a tree is as a list of lists. For example:

((a . b) . (c . d))�

Note that lists, dotted lists, trees, association lists, property lists, and circular lists

are not mutually exclusive data structure types; they are different ways of looking

at structures composed of conses.

� Printed Representation of Lists

The printer could print all conses in the dotted form (car . cdr), but since lists are

a common type in Lisp, there is a compact format for printing them. The printed

representation of a cons favors the list representation over the dotted representa-

tion.

When the printer begins to print a list, it first sees a cons. The printer has no

way of telling whether a list or a tree is going to be printed. print starts by print-

ing an open-parenthesis. Then it prints the car of the cons and examines the cdr

of the cons. If the cdr is a cons, the printer prints a space, using this new open-

parenthesis and this new cons. If the cdr is anything other than a cons or nil,

print prints "space dot space", followed by that object, followed by a close-

parenthesis. If the cdr is nil, it prints a close-parenthesis. When the car and cdr

are printed, the printer recurses to the initial cons. Thus, a list is printed as an

open-parenthesis, the printed representations of its elements, separated by spaces,

and a close-parenthesis.

This is how typical printed representations such as (a b (foo bar) c) are produced.

To print or write the printed representation of a list or tree, you can use the func-

tions print and write. print returns a specified object, for example:

(print ’(a b c)) => 

(A B C)

(A B C)�

write returns a specified object, for example:

(write ’(a b c)) => (A B C)

(A B C)�

To prevent the printed representation of a cons from growing to an unmanageable

length, or depth of recursion, when printing lists the print function keeps track of

the length and the depth of recursion of a list as it prints it and limits them.

The number of list elements printed is controlled by the value of the variable

*print-length*. If the list length exceeds the value of *print-length*, print termi-

nates the printed representation of the list with an ellipsis (three periods) and a

close-parenthesis. For example:

(setq list ’(a b (c) (d (e f) g))) => (A B (C) (D (E F) G))

�

(let ((*print-length* 2))

(print list) nil) => (A B ...) NIL�



Page 136

If the value of the variable *print-length* is nil, or is equal to, or greater than,

the number of elements in the list, *print-length* prints the entire list:

(setq list ’(a b (c) (d (e f) g))) => (A B (C) (D (E F) G))

�

(let ((*print-length* nil))

(print list) nil) => (A B (C) (D (E F) G)) NIL

�

(setq list ’(a b (c) (d (e f) g))) => (A B (C) (D (E F) G))

�

(let ((*print-length* 6))

(print list) nil) => (A B (C) (D (E F) G)) NIL�

The depth of recursion printed is controlled by the value of the variable *print-

level*.

If the depth of recursion exceeds the value of *print-level*, the portion of the list

beyond the specified depth is printed as "#". For example:

(setq list ’(a (b c) (d (e f) g))) => (A (B C) (D (E F) G))

�

(let ((*print-level* 2))

(print list) nil) =>  (A (B C) (D # G)) NIL�

If the value of the variable *print-level* is nil, or is equal to or greater than the

depth of recursion, *print-level* prints the entire list:

(setq list ’(a (b c) (d (e f) g))) => (A (B C) (D (E F) G))

�

(let ((*print-level* nil))

(print list) nil) => (A (B C) (D (E F) G)) NIL

�

(setq list ’(a (b c) (d (e f) g))) => (A (B C) (D (E F) G))

�

(let ((*print-level* 4))

(print list) nil) =>  (A (B C) (D (E F) G)) NIL

�

These two features allow an abbreviated printing, which is more concise and sup-

presses detail. Of course, neither the ellipsis nor the "#" can be interpreted by

read, since the relevant information is lost.

In general, print tries to print conses so that read can read them.

Zetalisp Note: The printing functions no longer use zl:prinlevel and zl:prinlength

to control printing.

How the Reader Recognizes Lists

When the reader sees an open parenthesis, it knows that the printed representa-

tion of a cons is starting. The reader reads the next object as the car. If the next

token is a single dot, the reader reads the token following the dot as a cdr, and

expects it to be followed with a closed parenthesis. If the next token is not a dot,
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the reader builds a list, making the cdr of this cons the cons it gets by recursing

to the initial cons.

The dot that separates the two elements of a dotted-pair printed representation for

a cons, for example (a . b), is only recognized if it is surrounded by delimiters

(typically spaces). Thus, a dot can be freely used in other contexts, for example

within print-names of symbols and within numbers.

Zetalisp Note: 

1. Tokens that consist of more than one dot, but no other characters, are valid

symbols in Zetalisp but errors in Common Lisp.

2. The circle-X (⊗) character is read as an octal escape: The next three charac-

ters are read and interpreted as an octal number which is, in turn, interpret-

ed as the character whose character code is that number. This character is

always taken to be an alphabetic character, just as if it had been preceded by

a slash. Thus, circle-X can be used to include unusual characters in the input.�

Special Types of Lists

Conses are the building blocks for several types of more complex lists. Two of

these are special, in the sense that Lisp contains a number of functions intended

to operate specifically on them. These are property lists and association lists.

Property Lists

Lisp has another kind of tabular data structure called a property list (plist for

short) in which each of the items has some property associated with it. The imple-

mentation of a property list is a memory cell containing a list with an even num-

ber (possibly zero) of elements. Usually this memory cell is the property-list cell of

a symbol, but any memory cell acceptable to setf can be used if getf and remf are

used to manipulate it. (The functions get and remprop provide a shorthand nota-

tion for manipulating a property list referenced by the memory cell of a symbol.)

In each pair of elements, the first of the pair is a keyword symbol called the indi-

cator and the second is a Lisp object called the value (or sometimes the property).

The elements of a property list are always processed pair-wise.

A property list looks like this:

(indicator value indicator value indicator value)�

Note that the term "property list" refers to the property list itself, rather than the

list of entries inside the property list.

Here is an example of a property list with actual indicators and values:

(manufacturer vw model gti color black miles 15000)�

See figure ! for a cons representation of this list:

Duplication of indicators is not allowed: A property list can have only one indicator
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indicator value indicator value

nil

�

Figure 7.  The Cons Representation of a (Property) List�

at a time with a given name.

The kinds of operations that might be performed on property lists are adding and

removing properties, and finding a property, given an item. The functions for ma-

nipulating property lists are side-effecting operations that have the result of alter-

ing the property list itself, rather than of creating a new list.

Zetalisp Note:

Symbolics recommends that you avoid the use of disembodied property lists in new

code. The documentation below is provided only to help you read old code.

Symbolics Lisp (Zetalisp, and other older Lisp dialects) do not provide for the rep-

resentation of property lists by ordinary lists. Instead, older Lisp dialects provide

the ability to pass around property lists independent of symbols. In order to delete

elements from property lists with zl:remprop, it is necessary to have not just a

property list, but also an object with a cell pointing to the property list so that the

result, after deletion, can be stored back.

Zetalisp and the Zetalisp property list functions generalize this to allow the proper-

ty list to live in any cell by means of locatives.

A typical way to construct a disembodied property list is to make a list whose first

element is anything and whose cdr is the property list.

(setq a ‘(foo :a b :c d :e f)) => (FOO :A B :C D :E F)�

List-style disembodied property lists fit into this model because the functions get,

getl, putprop, and remprop operate on a locative as well as a symbol. Given a

symbol, these functions manipulate the property list stored in a symbol’s property

list cell. Given a locative, they manipulate the property list referenced by

(location-contents locative). This usage is called "disembodied property lists."

To get a locative to a location, use the function locf:

(setq a-plist (locf (cdr a))) => (FOO:A B :C D :E F)�

Note that the result is not a locative. Due to considerations of cdr-coding, there is

no unique location for the cdr of a cons. Instead, all the primitives that manipu-

late locatives treat a cons as a locative to its cdr. Thus, we can use this list as a

locative and write:

(zl:get a-plist :c) => :D�
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When reading old code, then, you may see the code use the list directly, without

bothering with the (locf (cdr list)) construct.

To see locatives in active use, consider a property list stored in a defstruct slot:

(defstruct b-struct b) => B-STRUCT

�

(setq b-1 (make-b-struct :b ’(:a fred :q q? :alfred hitchcock))) =>

#S(B-STRUCT :B NIL)

�

(setq b-plist (locf (b-struct-b b-1))) => #<DTP-LOCATIVE 60326752>

�

(zl:get b-plist :q) => Q?�

Note that the :init keyword message protocol in the flavor system uses a locative

to a property list to pass the flavor init keywords to the methods. Instead of using

:get though, you can reference the property list with Symbolics Common Lisp func-

tions by using the location-contents function to get an ordinary property list.

Then you can use getf to retrieve individual values.

getf takes a setf’able reference rather than an object. Reference serves as a place

to store back the modified result. Continuing the example above:

(setq b-modern-plist (location-contents b-plist)) =>

(:A FRED :Q Q? :ALFRED HITCHCOCK)

�

(getf b-modern-plist :alfred) => HITCHCOCK�

Creating and Modifying Property Lists

In general, you can perform the same operations on the property lists of symbols

as on those that are referenced by an arbitrary setf, but the function names differ

depending on the type of property list. Here is a table showing the differences:

Operation on For Property List For Generalized

Property List of Symbol, use Property List, use

Create/expand setf with get setf with getf

Access a value get getf

Remove a value remprop remf

Display symbol-plist symbol-value�

You can use any of the property list manipulating functions on property lists creat-

ed with defvar. For a summary of all such functions: See the section "Functions

That Operate on Property Lists".

We use property lists of symbols to illustrate the various creation and manipula-

tion operations.
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A symbol is an object that has room for five components: a print name, a value

binding, a property list, a function binding, and a package. When a symbol is cre-

ated, its property list is nil. For example:

(defvar *colors*) => *COLORS*�

For more information about property lists of symbols: See the section "The Proper-

ty List of a Symbol".

You can also use defvar to create a property list with several indicator and value

pairs. 

(defvar *city* ’(name portland state maine size 100000)) => *CITY*

�

(symbol-value ’*city*) => name portland state maine size 100000)) => *CITY*�

To associate a property list with a symbol, you can use setf with get. This limits

you to creating an initial property list with only one pair of elements.

(setf (get ’artist ’name) ’monet) => MONET

�

(symbol-plist ’artist) => (NAME MONET)�

You can associate other indicator-value pairs to a symbol’s property list by repeat-

ed use of setf with get.

(symbol-plist ’artist) => (NAME PICASSO)

�

(setf (get ’artist ’style) ’cubism) => CUBISM

�

(symbol-plist ’artist) => (NAME PICASSO STYLE CUBISM)

�

(setf (get ’artist ’nationality) ’nil) => ARTIST

�

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO STYLE CUBISM)�

As the last example shows, an indictor can have a value of nil. You can also use

setf and get to replace an old indicator-value pair with a new value. Changes to

property values are destructive; once a change is made to the property list it is

permanent, and the former indicator and value pair is gone.

To change the value of the indicator style:

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO STYLE CUBISM)

�

(setf (get ’artist ’style) ’expressionism)) => EXPRESSIONISM

�

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO STYLE EXPRESSIONISM)�

You can remove values from a property list using the function remprop. This

function destructively removes an indicator and its value from the property list:

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO STYLE EXPRESSIONISM)
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�

(remprop ’artist ’style) => T

(symbol-value ’artist) => (NATIONALITY NIL NAME PICASSO)�

You can retrieve values from a property list using get. get searches the property

list for an indicator that is eq to the indicator sought, and returns the value cor-

responding to that indicator. For example:

�

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO)

�

(get ’artist ’name) => PICASSO�

Note: get returns nil if it cannot find the requested indicator, or if the indicator

found has a value of nil. 

In the property list artist, the indicator medium does not exist:

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO)

�

(get ’artist ’medium) => NIL�

In the property list artist, the indicator nationality exists, but its value is nil:

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO)

�

(get ’artist ’nationality) => NIL�

Alternately, you can specify a message to be returned instead of nil. For example:

(symbol-plist ’artist) => (NATIONALITY NIL NAME PICASSO)

�

(get ’artist ’medium "indicator is absent, or has a value of nil") =>

"INDICATOR IS ABSENT, OR HAS A VALUE OF NIL"�

You can display the contents of a symbol’s property list with the function symbol-

plist. Note that this function does not return the property list itself; you cannot do

get on it. You must give the symbol itself to get, or use getf.

(symbol-plist ’artist)  => (NATIONALITY NIL NAME PICASSO)�

Note that if you use symbol-plist with setf you can destructively replace the en-

tire property list of a symbol. This is a dangerous operation that should be used

with care since other applications may be sharing the property list with you.

Here are examples to create and manipulate property lists referenced by an arbi-

trary setf. As already stated, the operations themselves are analogous to those

used to manipulate the property list of symbols, the only difference being in the

function names. The restriction is that the place or property list argument of these

functions be acceptable to setf.

To associate a property list with a symbol, use defvar:

(defvar horse nil) => HORSE�

You can associate indicator-value pairs to a property list by repeated use of setf

with getf.
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(setf (getf horse ’color) ’brown) => BROWN

�

(symbol-value ’horse) => (COLOR BROWN)

�

(setf (getf horse ’hair) ’short)  => SHORT

�

(symbol-value ’horse) => (HAIR SHORT COLOR BROWN)�

To replace a property in a property list use setf and getf:

(symbol-value ’horse) => (HAIR SHORT COLOR BROWN)

�

(setf (getf horse ’color) ’black)  => BLACK

�

(symbol-value ’horse) => (HAIR SHORT COLOR BLACK)�

To destructively remove a property from a property list use remf:

(symbol-value ’horse) => (HAIR SHORT COLOR BLACK)

�

(remf horses ’hair) =>  T

�

(symbol-value ’horse) => (COLOR BLACK)�

To retrieve a value, given an indicator, from a property list, use the function getf:

(symbol-value ’horse) => (COLOR BLACK)

�

(getf horse ’color) => BLACK�

To display a property list, use the function symbol-value, which returns the cur-

rent value of a symbol.

(symbol-value ’horse) => (COLOR BLACK)

Functions That Operate on Property Lists

The following functions add to, modify, or search property lists.

All of these functions use eq as the test. 

defprop sym value indicator Gives sym’s property list an indicator-property

corresponding to value. defprop is a special

form.

defprop is a Symbolics extension to Common

Lisp.

get symbol indicator &optional (default nil) 

Searches the property list of symbol for an in-

dicator that is eq to indicator. If the search

fails, default is returned.
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getf plist indicator Searches for the property indicator on plist.

get-properties plist indicator-list Searches for a property (of indicator-list) on

plist. get-properties returns three values. If

none of the indicators is found, all three values

are nil. If the search is successful, the first

two values are the property found and its value

and the third value is the tail of the property

list whose car is the property found.

remprop symbol indicator Removes symbol’s indicator property, by slicing

it out of the property list. If the property list

is associated with a symbol, use remf.

remf place indicator Removes indicator from the property list stored

in place. If it cannot find indicator, it returns

nil. If the property list is associated with a

symbol, use remprop.

symbol-plist sym Returns the property list of sym.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions.

zl:get symbol indicator Looks up indicator on symbol’s property list. If

it finds such a property, it returns the value;

otherwise, it returns nil.

zl:getl symbol indicator-list Searches down symbol’s property list for any of

the indicators in indicator-list until it finds a

property whose indicator is one of the elements

of indicator-list.

zl:plist sym Returns the property of sym.

zl:putprop sym value indicator Gives sym an indicator-property of value.

zl:setplist sym list Sets the property list of sym to list.

zl:remprop sym indicator Removes sym’s indicator property, by slicing it

out of the property list. It returns that portion

of the list inside sym of which the form indica-

tor-property was the car.

Note: You can do property list operations on flavor instances by including the mix-

in flavor sys:property-list-mixin in the definition of the flavor. For information on

the methods provided by that mixin flavor, see the section "Property List

Methods".

Dotted Lists
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A dotted list is a special case of a list. It is not a true list, since it does not termi-

nate in nil, but it is more like a list than any other data structure type. A dotted

list is one whose last cons does not have nil for its cdr, but has some other data

object (which is also not a cons) as its cdr. A dotted list looks like this:

((a . b) (c . d))�

It is called "dotted" because of its special notation, that is, a left parenthesis, the

printed representation of the car of the cons, a space, a period, a space, the print-

ed representation of the cdr of the cons, and a right parenthesis. See figure ! for

the cons representation of a dotted list.

A

B

�

Figure 8.  A Dotted List�

Association Lists

Conses are the building blocks for a more complicated structure called an associa-

tion list or alist.

This structure is a list of pairs (or conses) in which each pair is an association.

The car of each pair is the key (or indicator), and the cdr is the datum (the value

associated with that key). 

An association list looks like this:

((indicator . value) (indicator . value) (indicator . value))�

Here is an example of an association list with actual indicators and values:

((dog . poodle) (cat . coon) (bird . parrot))�

See figure ! for the cons representation of an association list:

It is permissible for nil to be an element of an association list in place of an indi-

cator and value pair.

An indicator or value can appear more than once in an association list. Duplica-

tions are allowable, since the function that adds elements to an association list al-

ways adds to the front of the list, and the function used for searching an associa-

tion list always finds the first instance of a cons whose car matches the indicator.

Creating and Modifying Association Lists
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valueindicator valueindicator valueindicator

nil

�

Figure 9.  The Cons Representation of an Association List�

You can create an association list using setq with acons. In this example, the as-

sociation list gems is created with an initial indicator and value pair (jade and

green):

(setq gems (acons ’jade ’green nil)) 

=> ((JADE . GREEN))�

Using defvar, you can create an association list with a number of elements (indi-

cator and value pairs) at one time.

(defvar *flowers* ’((rose . red) (mum . yellow) (lily . white))) 

=> ((ROSE . RED) (MUM . YELLOW) (LILY . WHITE))�

Sometimes you might want to create an initial association list with all of its ele-

ments in place. At other times you might not know what the elements in the asso-

ciation list will be, so you might initially want to create an empty list. To create

an empty association list, use defvar:

(defvar *flowers* nil) 

=> *FLOWERS*�

This allows you to create an association list before you put any elements into it.

An advantage of association lists is that they can be expanded simply by adding

new entries to the front; that is, adding new indicator-value pairs is a non-

destructive activity. 

To expand the association list gems, for example, we can add one indicator-value

pair at a time, using setq and acons:

(symbol-value ’gems) 

=> ((JADE . GREEN))

�

(setq gems (acons ’onyx ’black gems)) 

=> ((ONYX . BLACK) (JADE . GREEN))

�

(setq gems (acons ’ruby ’red gems)) 

=> ((RUBY . RED) (ONYX . BLACK) (JADE . GREEN))
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�

(setq gems (acons ’jade ’black gems)) 

=> ((JADE . BLACK) (RUBY . RED) (ONYX . BLACK) (JADE . GREEN))�

In this last expansion we’ve modified the value of an existing indicator, jade; the

resulting list contains the duplicated indicators.

It is also possible to create or expand an association list by pairing elements from

two lists, using pairlis. For example:

(pairlis ’(one two) ’(1 2)) 

=> ((ONE . 1) (TWO . 2))�

You can use the function assoc to retrieve pairs of indicator and value associations

from a list. assoc searches the association list and returns the value of the first

pair in the association list whose car satisfies the predicate specified by :test, or

nil if no such pair is found. eql is the default value of :test. assoc returns both

the indicator and the value (that is, the entire cons cell). To find the association

between the indicator ruby and its value in the association list called gems:

(symbol-value ’gems) 

=> ((JADE . BLACK) (RUBY . RED) (ONYX . BLACK) (JADE . GREEN))

�

(assoc ’ruby gems)) 

=> (RUBY . RED)�

In some cases, it is desirable to regard an association list as mapping in the re-

verse direction, that is, mapping from a value to an indicator. The function rassoc

is useful for searching a list using this mapping. It does a reverse association and

gets the indicator given the value. To find the association between the value red

and its indicator in the list called gems:

(symbol-value ’gems) 

=> ((JADE . BLACK) (RUBY . RED) (ONYX . BLACK) (JADE . GREEN))

�

(rassoc ’red gems)) 

=> (RUBY . RED) �

You can use the generalized sequence function remove to remove an indicator and

value pair from an association list. remove finds the first instance of a cons whose

car is eql to the indicator, and removes the pair from the association list. This

function is non-destructive (the removal is not permanent) as the returned se-

quence is a copy of the sequence, save that some elements are not copied. Ele-

ments that are not removed occur in the same order in the result as they did in

the original sequence.

For example, to remove the indicator-value pair ruby and red:

�

(symbol-value ’gems) 

=> ((JADE . BLACK) (RUBY . RED) (ONYX . BLACK) (JADE . GREEN))

�

(remove ’ruby gems :key #’car) 

=> ((JADE . BLACK) (ONYX . BLACK) (JADE . GREEN))�
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remove takes the keyword :test, which tests the elements according to a specified

criterion. For example, suppose a list contains both an indicator and a value with

the same symbol name. In order to remove the right indictor-value pair from the

list, you can use the :test and :key keywords. :test provides the criterion to test

the element against, and :key specifies the position of the indicator to remove. For

example:

(symbol-value ’letters) 

=> ((a .b) (b . d) (c . f))

�

(remove ’b letters :test #’eql :key #’car) 

=> ((c. f) (a . b))

Note that only the indicator-value pair where b is the car is removed.

To make this modification permanent, we must change the value of the symbol

gems, using the functions assoc and setq in addition to remove:

(setq gems (remove (assoc ’ruby gems) gems) 

=> ((JADE . BLACK) (ONYX . BLACK) (JADE . GREEN))�

Functions that Operate on Association Lists

All of the Common Lisp functions below use eql as the test.

The first two functions are used to construct association lists. The remainder are

used to extract a cons pair, or list of pairs, from an association list, in accordance

with some specified test. The generalized sequence function remove excises indica-

tor and value pairs from the association list. 

acons key datum alist 

Constructs a new association list by adding the pair (key . da-

tum) onto the front of alist.

pairlis keys data &optional a-list 

Takes two lists and associates elements of the first list to cor-

responding elements of the second list, creating an association

list.

assoc item a-list &key (:test #’eql) :test-not (:key #’identity) 

Searches the association list a-list. The value returned is the

first pair in a-list whose car satisfies the predicate specified by

:test, or nil if no such pair is found. 

assoc-if predicate a-list &key :key 

Searches the association list a-list. Returns the first pair in

a-list whose car satisfies predicate, or nil if there is no such

pair in a-list.

assoc-if-not predicate a-list &key :key 

Searches the association list a-list. The value returned is the

first pair in a-list whose car does not satisfy predicate, or nil if

there is no such pair in a-list. 
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rassoc item a-list &key (:test #’eql) :test-not (:key #’identity) 

Searches the association list a-list. Returns the first pair in

a-list whose cdr satisfies the predicate specified by :test. 

rassoc-if predicate a-list &key :key 

Searches the association list a-list. Returns the first pair in

a-list whose cdr satisfies predicate.

rassoc-if-not predicate a-list &key :key 

Searches the association list a-list. The value returned is the

first pair in a-list whose cdr does not satisfy predicate.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:assoc item in-list 

Looks up item in the association list in-list.

zl:ass pred item list 

Looks up item in the association list list.

zl:assq item list Looks up item in the association list in-list.

zl:memass pred item list 

Looks up item in the association list list.

zl:pairlis vars vals Takes two lists and makes an association list which associates

elements of the first list with corresponding elements of the

second list.

zl:rass pred item in-list 

Looks up item in the association list in-list.

zl:rassoc item in-list 

Looks up item in the association list in-list.

zl:rassq item in-list 

Looks up item in the association list in-list.

zl:sassoc item in-list else 

Looks up item in the association list in-list.

zl:sassq item in-list else 

Looks up item in the association list in-list.

Trees

You can build data structures other than lists out of conses. In general, these are

called trees. A tree is a cons and all other conses transitively accessible to that

cons through car and cdr links, going down through the links until non-conses are

reached at the end of the branches. The non-conses so reached are called the
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leaves of the tree. See figure ! for the cons representation of the tree ((a . b) . (c .

d))

nil

A

B

C

D

�

Figure 10.  The Cons Representation of A Tree�

See figure ! for a diagram of a tree.

A B C D�

Figure 11.  Diagram of a Tree

�

Operations with Lists

There are many types of list operations. Most of these can be done with special-

ized list functions, while some can be done with more general-purpose sequence

functions. The majority of list functions require true lists as arguments.

The list operations fall logically into nine major groups, as follows:

• Operating on Lists with Predicates

• Finding Information about Lists and Conses

• Constructing Lists and Conses

• Copying Lists

• Extracting from Lists
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• Modifying Lists

• Comparing Lists

• Searching Lists

• Sorting Lists�

� Controlling List Operations with Keyword Arguments

Some functions that operate on lists let you specify the portion of the list to be op-

erated on. Such functions have keyword arguments :start and :end, which must be

non-negative integers as follows:

:start indicates the position for beginning an operation within the list.  It

defaults to zero (the first element in the list).  If :start and

:end are both present, :start must be less than or equal to

:end, or an error is signalled.

:end indicates the position of the first element in the list

beyond the end of the operation.  It defaults to nil (the end of

the list).�

For search operations, you can specify the direction to search through the list by

using the keyword :from-end. Where :from-end is present, the function normally

processes the list in the forward direction, but if a non-nil value is specified for

this keyword, processing is performed in the reverse direction.

In some functions, the keyword :count is used to specify how many occurrences of

an item should be affected. If :count is nil, or not supplied, all matching items are

affected.

Several functions used to create conses or lists use the keyword argument :area.

The value of this keyword specifies which area the object should be created in. See

the section "Areas". :area should be either an area number (an integer), or nil to

mean the default area.

Some functions that create lists allow you to specify the items in the list. The key-

word :initial-element (or in Zetalisp, :initial-value) can be used for this.

Most Common Lisp functions for searching through, or otherwise operating on

lists, allow you to specify the kind of predicate to be used to identify a matching

element. They also allow you to apply a function to an element before the predi-

cate test. The keywords :test, :test-not and :key are used for these purposes.

You can use :test to specify a binary operation to be applied to an argument, and

each of the elements of the target list, in turn. If you do not supply :test, the de-

fault matching operation is eql. For example,

(adjoin item list)

returns a copy of list with item added to it, if list did not already contain an ele-

ment that was eql to item.

(adjoin item list :test equal)
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returns a copy of list with item added to it, if list did not already contain an ele-

ment that was equal to item.

To reverse the sense of :test you can use :test-not. For example,

(adjoin item list :test-not equal)

returns a copy of list with item added to it, if list did already contain an element

that was equal to item.

If an operation tests elements of a list in any manner, the keyword argument :key

should be one of the following: 

• nil

• A function of one argument that extracts from an element the part to be tested

in place of the whole element.�

Note that operations that test elements include both those that use the :test and

:test-not keywords and those that have -if and -if-not versions, for example,

nsubst-if and nsubst-if-not.

In the following scenarios, a target element of a list satisfies the test if:

• A basic function was called, test-function was specified by :test, key-function was

specified by :key, and the following is true:

 (funcall test-function target (funcall key-function item))�

• A basic function was called, test-function was specified by :test-not, key-function

was specified by :key, and the following is false:

 (funcall test-function target (funcall key-function item))�

• An -if function was called, and the following is true:

(funcall predicate (funcall key-function item))�

• An -if-not function was called, and the following is false:

(funcall predicate (funcall key-function item))�

Predicates that Operate on Lists

Two groups of predicate functions operate on lists. The first group test the data

type of their arguments. The first five entries in the following list are in this

group. The remaining predicates test members of lists for some quality (except for

tree-equal) which is used for comparisons. 

atom object Returns t if object is not a cons, otherwise nil.

consp object Returns t if object is a cons, otherwise nil.
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endp object Tests for the end of a list. Returns nil when applied to a cons,

and t when applied to nil.

every predicate &rest sequences 

Tests each element in sequences against predicate. Returns nil

as soon as any element fails to satisfy the test of predicate.

Otherwise returns non-nil.

listp object Returns t if object is a cons or the empty list (), otherwise nil.

listp returns nil if object is a dotted list, since it only looks at

the first cons, not the last cons of a list. 

nlistp x Returns t if x is not a cons, otherwise nil. Equivalent to atom.

nlistp is a Symbolics extension to Common Lisp.

some predicate &rest sequences 

Tests each element in sequences against predicate. Returns

whatever value predicate returns as non-nil, as soon as any ele-

ment satisfies the test of predicate. Otherwise returns nil.

subsetp list1 list2 &key (test #’eql) test-not (key #’identity) 

Checks if list1 is a subset of list2. With default test eql,

subsetp returns t if every element of list1 appears in list2, oth-

erwise nil.

tailp tail list Returns t if tail is an ending sublist of list, otherwise nil.

tree-equal x y &key test test-not 

Compares two trees of conses x and y. With default test eql re-

turns t if x and y are isomorphic trees with identical leaves,

otherwise returns nil.�

Note: The following Zetalisp predicates are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these pred-

icates. 

zl:listp object Returns t if its argument is a cons or not the empty list (),

otherwise nil. Note that listp and zl:listp are not equivalent.

zl:some list predicate &optional (step #’cdr) 

Tests each element in list against predicate. Returns the tail of

the list. Otherwise returns nil.

zl:every list pred &optional (step #’Each) 

Tests each element in list against the pred. Extraction from

the list can be changed by the step function. Returns t if pred

returns non-nil when applied to every element of list, other-

wise nil if predicate returns nil for some element.

Functions for Finding Information About Lists and Conses

These functions return the length of a list, the position of an item in a list, or the

location of a cons’s car. 
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length sequence Returns the number of elements in sequence as a non-negative

integer. sequence can be either a list or a vector (one-

dimensional array). 

list-length list Returns, as an integer, the length of list. list-length differs

from length when list is circular. 

position item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start

0) :end 

If sequence contains an element satisfying the predicate speci-

fied by the :test keyword, then position returns the index

within the sequence of the leftmost such element as a non-

negative integer; otherwise nil is returned. sequence can be ei-

ther a list or a vector (one-dimensional array).

position-if predicate sequence &key :key :from-end (:start 0) :end 

If sequence contains an element satisfying predicate, then

position returns the index within the sequence of the leftmost

such element as a non-negative integer; otherwise nil is re-

turned. sequence can be either a list or a vector (one-

dimensional array). 

position-if-not predicate sequence &key :key :from-end (:start 0) :end 

If sequence contains an element that does not satisfy predicate,

then position returns the index within the sequence of the

leftmost such element as a non-negative integer; otherwise nil

is returned. sequence can be either a list or a vector (one-

dimensional array). 

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions. 

zl:length x Counts the number of elements in x. Returns a non-negative

integer. The Symbolics Common Lisp equivalent of this func-

tion is length.

zl:find-position-in-list item list 

Looks down list for an element that is eq to item and returns

the numeric index of the first element that is eq to item. Re-

turns nil if it does not find one.

zl:find-position-in-list-equal item list 

Same as zl:find-position-in-list, except that the comparison is

done with equal instead of eq.

zl:car-location cons 

Returns a locative pointer to the cell containing the car of

cons.�
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Functions for Constructing Lists and Conses

This group includes functions that construct conses and lists from scratch, as well

as functions that make new lists by adding to, or combining, existing lists.

The functions that create conses, cons, ncons, and xcons, and their in-area vari-

ants can be used to construct normal, that is, not cdr-coded lists. The higher-level

functions, list, make-list, append, and their variants, construct cdr-coded lists

(cdr-coding is the internal data format used to store conses inside a Symbolics

computer.) For more information, see the section "Cdr-Coding".

Whenever you create a new object, you can also specify an area of virtual memory,

with the keyword :area. An area is a location in virtual memory where objects and

their references (or more generally, any pieces of related information), can be lo-

cated near each other, that is, located at nearby addresses in virtual memory.

When this is true, the paging system can avoid thrashing: swapping many pages in

and out of main memory in order to access relatively few data.

For more background information about areas, see the section "Areas".

cons x y Adds a new element to the front of a list. Re-

turns the new cons. It is the primitive function

to create a new cons whose car is x and whose

cdr is y. 

ncons x Creates a cons whose car is x and whose cdr is

nil. ncons is a Symbolics extension to Common

Lisp.

xcons x y Creates an exchanged cons, one whose car is y

and whose cdr is x. xcons is a Symbolics exten-

sion to Common Lisp.

cons-in-area x y area Creates a cons in a specific area.

ncons-in-area x area Creates a cons with a car of x in a specific

area. ncons-in-area is a Symbolics extension to

Common Lisp.

xcons-in-area x y area Creates an exchanged cons in a specific area.

xcons-in-area is a Symbolics extension to Com-

mon Lisp.

list &rest elements Constructs and returns a list of its arguments.

list* &rest args Constructs a list whose last cons is "dotted."

Takes at least one argument. 

list-in-area area &rest elements Same as list, except that it takes an area ar-

gument, and creates the list in that area. list-

in-area is a Symbolics extension to Common

Lisp.

list*-in-area area &rest args Same as list*, except that it takes an area ar-

gument, and creates the list in that area. list*-
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in-area is a Symbolics extension to Common

Lisp.

make-list size &key :initial-element :area 

Creates and returns a list containing size ele-

ments. This function has the optional argument

area, which is a Symbolics extension to Com-

mon Lisp.

circular-list &rest args Constructs a circular list whose elements are

args, repeated infinitely. Often used with map-

ping. circular-list returns a list whose last cdr

is is a list, instead of nil. circular-list is a

Symbolics extension to Common Lisp.

nconc &rest arg Takes lists as arguments. Destructively con-

catenates and returns args in a list. See the

function concatenate.

nreconc l tail Creates a list that is the first argument re-

versed concatenated with the second argument.

append &rest lists Concatenates the lists, returning the resulting

list.

revappend x y Concatenates x and y, returning the resulting

list in reverse order.

adjoin item list &key (:test #’eql) :test-not (:key #’identity) (:area sys:default-cons-

area) :localize :replace 

Adds item to list, provided that it is not already

on the list. Returns a new list.

push item reference &key :area :localize 

With the list held in reference viewed as a

push-down stack, push pushes item onto the

top of the stack. This function has the optional

argument area, which is a Symbolics extension

to Common Lisp.

pushnew item reference &key :test :test-not :key :area :localize :replace 

With the list held in reference viewed as a

push-down stack, pushnew pushes item onto

the top of the stack, unless it is already a

member of the list.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions.
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zl:make-list length &key area initial-value 

Creates and returns a list containing length el-

ements. Use the Common Lisp function make-

list.

zl:push item list Adds item to the front of list, which should be

stored in a generalized variable. Use the Com-

mon Lisp function push.

zl:push-in-area item list area Adds item to the front of list, which should be

stored in a generalized variable.

Functions for Copying Lists

This group includes functions that copy conses, lists, or trees, including some sys-

tem functions that help improve locality of reference.

copy-list list &optional area force-dotted 

Makes a copy of list that is equal to list, but

not eq. (Only the top level of list structure is

copied). copy-list can be used to convert a list

into compact, cdr-coded form. This function has

the optional argument area, which is a Symbol-

ics extension to Common Lisp.

copy-list* list &optional area Same as copy-list, except that the last cons of

the resulting list is never cdr-coded. copy-list*

is a Symbolics extension to Common Lisp.

copy-alist al &optional area Makes a copy of the association list al that is

equal to al, but not eq (only the two top levels

of list structure are copied). This function has

the optional argument area, which is a Symbol-

ics extension to Common Lisp.

copy-tree tree &optional area Copies a tree of conses. This function has the

optional argument area, which is a Symbolics

extension to Common Lisp.

sys:copy-if-necessary thing &optional (default-cons-area working-storage-area) 

Moves thing from a temporary storage area, or

stack list, to a permanent area. Thing can be a

list. sys:copy-if-necessary checks whether

thing is in a temporary area of some kind, and

moves it if it is. If thing is not in a temporary

area, it is simply returned.

sys:localize-list list &optional area Improves locality of incrementally-constructed

lists and association lists.
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sys:localize-tree tree &optional (n-levels 100) area 

Improves locality of incrementally-constructed

lists and trees.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions. 

zl:copylist list &optional area force-dotted 

Makes a copy of list that is equal to list, but

not eq. zl:copylist does not copy any elements

of the list, only the conses of the list.

zl:copylist converts a list into compact, cdr-

coded form. Use the Common Lisp function

copy-list.

zl:copylist* list &optional area Same as zl:copylist, except that the last cons

of the resulting list is never cdr-coded. Use the

Common Lisp function equivalent to copy-list*.

zl:copyalist al &optional area Copies the conses, but not elements, in associa-

tion list al. In addition, each element of al that

is a cons is replaced in the copy by a new cons

with the same car and cdr. You can optionally

specify the area in which to create the new

copy. The default is to copy the new list into

the area occupied by the old list. Returns an

association list that is equal to al, but not eq.

Use the Common Lisp function copy-alist.

zl:copytree tree &optional area Copies a tree of conses. Use the Common Lisp

function copy-tree. 

zl:copytree-share tree &optional area (cl:make-hash-table :test #’equal :locking

nil :number-of-values 0)) cdr-code 

zl:copytree-share is similar to zl:copytree.

However, it also assures that all lists or tails

of lists are optimally shared when equal. 

Functions for Extracting from Lists

This group includes functions that return a specified item or items from a list.

The item is specified by its position in the list.

car x Returns the first element of x, called the car.

cdr x Returns the rest of the list after the first ele-

ment, called the cdr.

c{a,d}*r x An abbreviation for sequences of cars and cdrs,

for example, caar and caddr. This represents
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the number of levels cars and cdrs that are

defined as separate functions. These car and

cdr functions can represent up to four car and

cdr operations.

first list Returns the first element of list. first is equiv-

alent to car. 

second list Returns the second element of list.

third list Returns the third element of list.

fourth list Returns the fourth element of list.

fifth list Returns the fifth element of list.

sixth list Returns the sixth element of list.

seventh list Returns the seventh element of list.

eighth list Returns the eighth element of list.

ninth list Returns the ninth element of list.

tenth list Returns the tenth element of list.

last list Returns the last cons of list.

nleft n l &optional tail Returns the result of taking the cdr of l

enough times so that taking n more cdrs would

yield tail. When tail is nil, nleft simply returns

the last n elements of list. nleft is a Symbolics

extension to Common Lisp.

nth n object Returns the nth element of object, where the

zeroth element is the car of the list.

nthcdr n list Takes the cdr of list n times, and returns the

result.

rest x Returns the cdr of x. rest is the equivalent of

cdr and complements first, as cdr complements

car.

some predicate &rest sequences Tests eache element in sequences against predi-

cate. Returns whatever value predicate returns

as non-nil, as soon as any element satisfies the

test of predicate. Otherwise returns nil.

pop list Returns the car of the contents of list, and as

a side effect, the cdr of contents is stored back

into list. �

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions.
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zl:firstn n list Returns a list whose elements are the first n

elements of list.

zl:rest1 list Returns the rest of the elements of list, start-

ing with element 1 (counting the first element

as the zeroth).

zl:rest2 list Returns the rest of the elements of list, start-

ing with element 2 (counting the first element

as the zeroth).

zl:rest3 list Returns the rest of the elements of list, start-

ing with element 3 (counting the first element

as the zeroth).

zl:rest4 list Returns the rest of the elements of list, start-

ing with element 4 (counting the first element

as the zeroth).

Functions for Modifying Lists

This group contains functions that either modify list structures or return modified

copies of a list structure. Those functions that change the original structure rather

than make copies are referred to as "destructive." Their names begin with the let-

ter n except for delete, which can be considered a destructive version of remove.

rplaca cons x Changes the car of cons to x and returns (the

modified) x.

rplacd cons x Changes the cdr of cons to x and returns (the

modified) x. 

pop list Returns the car of list, and as a side effect, the

cdr is stored back into list. 

butlast x &optional (n 1) Creates and returns a list with the same ele-

ments as x, excepting the last element.

remove item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start

0) :end :count

Non-destructively removes items matching item

from sequence. Returns the new sequence.

delete item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start 0)

:end :count 

Destructively removes items matching item

from sequence. Returns the modified sequence. 

sublis alist tree &rest args &key (:test #’eql) :test-not (:key #’identity) 

Non-destructively substitutes elements from al-

ist for ojects in tree.
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nsublis alist tree &rest args &key (:test #’eql) :test-not (:key #’identity) 

Destructive version of sublis.

subst new old tree &rest args &key (:test #’eql) :test-not (:key #’identity) 

Makes a copy of tree, substituting new for ev-

ery subtree or leaf of tree such that old and

the subtree or leaf satisfy the predicate speci-

fied by the :test keyword.

subst-if new predicate tree &rest args &key :key 

Makes a copy of tree, substituting new for ev-

ery subtree or leaf of tree such that old and

the subtree or leaf do not satisfy predicate. It

returns the modified copy of tree, and the orig-

inal tree is unchanged, although it can share

with parts of the result tree. 

subst-if-not new predicate tree &rest args &key :key 

Makes a copy of tree, substituting new for ev-

ery subtree or leaf of tree such that old and

the subtree or leaf do not satisfy the test speci-

fied by predicate.

nsubst new old tree &rest args &key (:test #’eql) :test-not (:key #’identity) 

Destructive version of subst.

nsubst-if new predicate tree &rest args &key :key 

Destructive version of subst-if.

nsubst-if-not new predicate tree &rest args &key :key 

Destructive version of subst-if-not.

reverse sequence Reverses the elements of sequence. Returns a

new, reversed sequence.

nreverse sequence Destructive version of reverse. Returns a modi-

fied sequence.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions.

zl:pop list &optional dest Returns the car of the contents of list, and as

a side effect, the cdr of contents is stored back

into list. 

nbutlast list &optional (n 1) Destructive version of butlast.

zl:remove item list &optional (ntimes most-positive-fixnum) 

Non-destructive version of zl:delete. Use the

Common Lisp function remove.
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zl:rem predicate item list &optional (ntimes most-positive-fixnum) 

Non-destructively removes occurrences of item

that satisfy predicate from list.

zl:delete item list &optional (ntimes most-positive-fixnum) 

Deletes the first ntimes occurrences of item in

list (equal is used for the comparison). Returns

list with all occurrences of item removed. Use

the Common Lisp function delete.

zl:rem-if pred list &rest extra-lists Means "remove from list if this condition is

true." See zl:subset-not.

zl:del-if pred list Just like zl:rem-if, except that it modifies list,

rather than creating a new list and it does not

take an extra-lists &rest argument.

zl:rem-if-not pred list &rest extra-lists 

Means "remove from list if this condition is not

true." See subset.

zl:del-if-not pred list Just like zl:rem-if-not except that it modifies

list rather than creating a new list and it does

not take an extra-lists &rest argument.

zl:del pred item list &optional (ntimes -1) 

Returns list with all occurrences of item re-

moved. pred is used for the comparison (pred

should take two arguments).

zl:delq item list &optional (ntimes -1) 

Returns list with all occurrences of item re-

moved. eq is used for the comparison.

zl:remq item list &optional (times most-positive-fixnum) 

Similar to zl:delq, except that the list is not

altered; rather, a new list is returned.

zl:subset pred list &rest extra-lists Means "remove from list if this condition is not

true." zl:subset refers to the function’s action

if list is considered to represent a mathemati-

cal set. See zl:rem-if-not.

zl:subset-not pred list &rest extra-lists 

Means "remove from list if this condition is not

true." zl:subset-not refers to the function’s ac-

tion if list is considered to represent a mathe-

matical set. See zl:rem-if.

zl:sublis alist form Non-destructively substitutes elements from al-

ist for ojects in form.

zl:nsublis alist form Destructive version of zl:sublis.
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zl:subst new old tree Substitutes new for all occurrences of old in

tree, and returns the modified copy of tree.

zl:nsubst new old s-exp Destructive version of zl:subst.

zl:reverse list Reverses the elements of list. Returns a new

reversed list.

zl:nreverse l Destructive version zl:reverse. Returns a modi-

fied list.

Functions for Comparing Lists

This group contains functions that compare the elements of list structures and re-

turn lists of those elements that are similar, or of those elements that are differ-

ent, according to specified tests. Note that the predicate function tree-equal can

also be used to compare lists. All but the last of these functions perform set opera-

tions on lists.

union list1 list2 &key (test #’eql) test-not (key #’identity) 

Takes two lists and returns a new list contain-

ing everything that is an element of either of

the lists.

nunion list1 list2 &key (test #’eql) test-not (key #’identity) 

Destructive version of union.

intersection list1 list2 &key (test #’eql) test-not (key #’identity) 

Takes two lists and returns a new list contain-

ing everything that is an element of both lists.

nintersection list1 list2 &key (test #’eql) test-not (key #’identity) 

Destructive version of intersection.

set-difference list1 list2 &key (test #’eql) test-not (key #’identity) 

Non-destructively returns a list of elements of

list1 that do not appear in list2. You can also

use the sequence function mismatch. For in-

formation, see the section "Searching for Se-

quence Items".

nset-difference list1 list2 &key (test #’eql) test-not (key #’identity) 

Destructive version of set-difference.

set-exclusive-or list1 list2 &key (test #’eql) test-not (key #’identity) 

Non-destructively returns a list of elements

that appear in exactly one of list1 and list2.

nset-exclusive-or list1 list2 &key (test #’eql) test-not (key #’identity) 

destructive version of set-exclusive-or.

ldiff list sublist Returns a new list, whose elements are those

elements of list that appear before sublist.�
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Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions.

zl:union &rest lists Takes two lists and returns a new list contain-

ing everything that is an element of either of

the lists, using eq for comparison.

zl:nunion &rest lists Destructive version of zl:union.

zl:intersection &rest lists Takes two lists and returns a new list contain-

ing everything that is an element of both lists,

using eq for comparison.

zl:nintersection &rest lists Destructive version of zl:intersection.�

Functions for Searching Lists

Functions in this group search for a specified item within a list.

member item list &key (test #’eql) test-not (key #’identity) 

Searches list for an element that matches item

according to the predicate supplied for :test.

member-if predicate list &key key Searches for an element in list that satisfies

predicate.

member-if-not predicate list &key key 

Searches for the first element in list that does

not satisfy predicate.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions.

zl:member item in-list Searches in-list for an element, using equal for

the comparison.

zl:memq item in-list Returns nil if item is not one of the elements

of in-list. Otherwise, it returns the sublist of

list beginning with the first occurrence of item.

zl:mem pred item list Same as zl:memq except that it takes an extra

argument that should be a predicate of two ar-

guments, which is used for the comparison in-

stead of eq.

Functions for Sorting Lists
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Several functions are provided for sorting arrays and lists. These functions use al-

gorithms that always terminate, no matter what sorting predicate is used, as long

as the predicate is one that terminates. The main sorting functions are not stable;

that is, equal items might not stay in their original order. If you want a stable

sort, use the stable versions. But if you do not care about stability, do not use

them, since stable algorithms are significantly slower.

After sorting, the argument (either list or array) has been rearranged internally to

be completely ordered. In the case of an array argument, this is accomplished by

permuting the elements of the array, while in the list case, the list is reordered by

rplacds in the same manner as nreverse. Thus, if you do not want the argument

affected, you must sort a copy of the argument, obtainable by zl:fillarray or copy-

list, as appropriate. Furthermore, sort of a list is like zl:delq in that it should not

be used for effect; the result is conceptually the same as the argument but, in

fact, is a different Lisp object.

Should the comparison predicate cause an error, such as a wrong type argument

error, the state of the list or array being sorted is undefined. However, if the er-

ror is corrected, the sort proceeds correctly.

The sorting package is smart about compact lists; it sorts compact sublists as if

they were arrays. See the section "Cdr-Coding". An explanation of compact lists is

in that section.

sort sequence predicate &key key Destructively modifies sequence by sorting it

according to an order determined by predicate.

stable-sort sequence predicate &key key 

Same as sort, however stable-sort guarantees

that elements considered equal by predicate will

remain in their original order.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions.

zl:sort x sort-lessp-predicate Destructively modifies x by sorting it according

to an order determined by sort-lessp-predicate.

zl:stable-sort x sort-lessp-predicate-on-car 

Same as zl:sort, however zl:stable-sort guaran-

tees that elements considered equal by sort-

lessp-predicate will remain in their original or-

der.

zl:sortcar x sort-lessp-predicate-on-car 

zl:sortcar is the same as zl:sort except that

the predicate is applied to the car of the ele-

ments of x, instead of directly to the elements

of x.
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zl:stable-sortcar x sort-lessp-predicate-on-car 

Like zl:sortcar, but if two elements of x are

equal, then those two elements remain in their

original order.�

Cdr-Coding

This section explains the internal data format used to store conses inside the Sym-

bolics machine. It is only important to read this section if you require extra stor-

age ef ficiency in your program.

The usual and obvious internal representation of conses in any implementation of

Lisp is as a pair of pointers, contiguous in memory. If we call the amount of stor-

age that it takes to store a Lisp pointer a "word," then conses normally occupy two

words. One word (say it is the first) holds the car, and the other word (say it is

the second) holds the cdr. To get the car or cdr of a list, you just reference this

memory location, and to change the car or cdr, you just store into this memory lo-

cation.

Very often, conses are used to store lists. If the above representation is used, a

list of n elements requires two times n words of memory: n to hold the pointers to

the elements of the list, and n to point to the next cons or to nil. To optimize this

particular case of using conses, the Symbolics machine uses a storage representa-

tion called cdr-coding to store lists. The basic goal is to allow a list of n elements

to be stored in only n locations, while allowing conses that are not parts of lists to

be stored in the usual way.

The way it works is that there is an extra two-bit field in every word of memory,

called the cdr-code field. This field can have three meaningful values: cdr-normal,

cdr-next, and cdr-nil. The regular, noncompact way to store a cons is by two con-

tiguous words, the first of which holds the car and the second of which holds the

cdr. In this case, the cdr-code of the first word is cdr-normal. (The cdr-code of the

second word does not matter; it is never looked at.) The cons is represented by a

pointer to the first of the two words. When a list of n elements is stored in the

most compact way, pointers to the n elements occupy n contiguous memory loca-

tions. The cdr-codes of all these locations are cdr-next, except the last location

whose cdr-code is cdr-nil. The list is represented as a pointer to the first of the n

words.

Now, how are the basic operations on conses defined to work, based on this data

structure? Finding the car is easy: You just read the contents of the location ad-

dressed by the pointer. Finding the cdr is more complex. First you must read the

contents of the location addressed by the pointer, and inspect the cdr-code you find

there. If the code is cdr-normal, then you add one to the pointer, read the location

it addresses, and return the contents of that location; that is, you read the second

of the two words. If the code is cdr-next, you add one to the pointer, and simply

return that pointer without doing any more reading; that is, you return a pointer

to the next word in the n-word block. If the code is cdr-nil, you simply return nil.
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If you examine these rules, you find that they work fine even if you mix the two

kinds of storage representation within the same list. There is no problem with do-

ing that.

How about changing the structure? Like car, rplaca is very easy; you just store

into the location addressed by the pointer. To do a rplacd you must read the loca-

tion addressed by the pointer and examine the cdr-code. If the code is cdr-normal,

you just store into the location one greater than that addressed by the pointer;

that is, you store into the second word of the two words. But if the cdr-code is

cdr-next or cdr-nil, a problem arises: No memory cell is storing the cdr of the

cons. That is the cell that has been optimized out; it just does not exist.

This problem is resolved by the use of "invisible pointers". An invisible pointer is a

special kind of pointer, recognized by its data type (Symbolics pointers include a

data type field as well as an address field). The way they work is that when the

Symbolics Lisp Machine reads a word from memory, that word is an invisible

pointer, it proceeds to read the word pointed to by the invisible pointer and use

that word instead of the invisible pointer itself. Similarly, when it writes to a lo-

cation, that contains an invisible pointer, then it writes to the location addressed

by the invisible pointer instead. (This is a somewhat simplified explanation; actual-

ly there are several kinds of invisible pointer that are interpreted in different ways

at different times, used for things other than the cdr-coding scheme.)

Here is how rplacd is done when the cdr-code is cdr-next or cdr-nil. Call the loca-

tion addressed by the first argument to rplacd l. First, you allocate two contiguous

words (in the same area that l points to). Then you store the old contents of l (the

car of the cons) and the second argument to rplacd (the new cdr of the cons) into

these two words. You set the cdr-code of the first of the two words to cdr-normal.

Then you write an invisible pointer, pointing at the first of the two words, into lo-

cation l. (It does not matter what the cdr-code of this word is, since the invisible

pointer data type is checked first.)

Now, whenever any operation is done to the cons (car, cdr, rplaca, or rplacd), the

initial reading of the word pointed to by the Lisp pointer that represents the cons

finds an invisible pointer in the addressed cell. When the invisible pointer is seen,

the address it contains is used in place of the original address. So the newly allo-

cated two-word cons is used for any operation done on the original object.

Why is any of this important to users? In fact, it is all invisible to you; everything

works the same way whether or not compact representation is used, from the point

of view of the semantics of the language. That is, the only difference that any of

this makes is in efficiency. The compact representation is more efficient in most

cases. However, rplacd is used on the conses, then invisible pointers are created,

extra memory is allocated, and use the compact representation is seen to degrade

storage efficiency rather than improve it. Also, accesses that go through invisible

pointers are somewhat slower, since more memory references are needed. So if you

care a lot about storage efficiency, you should be careful about which lists get

stored in which representations.

You should try to use the normal representation for those data structures that are

subject to rplacd operations, including nconc and nreverse, and the compact rep-
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resentation for other structures. The functions cons, xcons, ncons, and their area

variants make conses in the normal representation. The functions list, list*, list-in-

area, make-list, and append use the compact representation. The other list-

creating functions, including read, currently make normal lists, although this

might get changed. Some functions, such as sort, take special care to operate effi-

ciently on compact lists (sort effectively treats them as arrays). nreverse is rather

slow on compact lists, since it simply uses rplacd.

(copy-list list) is a suitable way to copy a list, converting it into compact form.

See the function copy-list.

List Functions and Macros in the CL Package with SCL Extensions

Here are the list functions and macros that have Symbolics Common Lisp exten-

sions:

Function/Macro Extension(s)

assoc-if :key

assoc-if-not :key

copy-alist area

copy-list area, force-dotted

copy-tree area

make-list :area

push :area, :localize

pushnew :area, :localize, :replace

rassoc-if :key

rassoc-if-not :key

Arrays

The basic concepts and terminology associated with arrays are described elsewhere:

See the section "Overview of Arrays".

In brief, an array is a Lisp object that consists of a group of elements, each of

which is a Lisp object. General arrays allow the elements to be any type of Lisp

object. Specialized arrays place constraints on the type of Lisp objects allowed as

array elements.

The basic array functions enable you to create arrays (make-array), access ele-

ments (aref), and alter elements (setf used with aref). 

There are many types of array operations. Most of these can be done with special-

ized array functions, while some can be done with more general-purpose sequence

functions. 
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The individual elements of an array are identified by numerical subscripts. When

accessing an element for reading or writing, you use the subscripts that identify

that element. The number of subscripts used to refer to one of the elements of the

array is the same as the dimensionality of the array. Thus, in a two-dimensional

array, two subscripts are used to refer to an element of the array. The lowest val-

ue for any subscript is 0; the highest value depends on the array. 

The number of dimensions of an array is called its dimensionality, or its rank. The

dimensionality can be any integer from zero to seven, inclusive. 

Type Specifiers and Type Hierarchy for Arrays

The type specifiers related to arrays include:

array All arrays are of type array. 

simple-array An array that is not displaced, has no fill pointer, and is not

adjustable after creation. 

simple-string A simple array whose elements are of type character or

string-char. 

vector A one-dimensional array.

bit-vector A vector whose elements are bits.

simple-vector A vector that is not displaced, has no fill pointer, and is not

adjustable after creation. 

simple-bit-vector A simple vector whose elements are bits. �

Figure ! shows the relationships among the various array types. 

� Basic Array Functions

Symbolics Common Lisp provides the following basic operations for arrays:

make-array dimensions &key (:element-type t) :initial-element :initial-contents :ad-

justable :fill-pointer :displaced-to :displaced-index-offset :dis-

placed-conformally :area :leader-list :leader-length :named-

structure-symbol 

Creates and returns a new array. 

aref array &rest subscripts 

Returns the element of array selected by the subscripts.

setf reference value &rest more-pairs 

Takes a form that accesses something, and "inverts" it to pro-

duce a corresponding form to update the thing. When used

with aref, stores a value into the specified array element. 

locf reference Converts reference to a new form that creates a locative pointer

to that cell.
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sequence array

null cons vector simple-array

list

simple-vectorbit-vector

simple-bit-vectorsimple-string

string

... ...

t

Figure 12.  Symbolics Common Lisp Array Types

�

These constants contain implementation-specific limits on arrays: 

array-rank-limit Represents the exclusive upper bound on the rank of an array.

array-dimension-limit 

Represents the upper exclusive bound on each individual di-

mension of an array.

array-total-size-limit 

Represents the exclusive upper bound on the number of ele-

ments of an array.

array-leader-length-limit 

This is the exclusive upper bound of the length of an array

leader.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:make-array dimensions &key :area :type :displaced-to :displaced-index-offset :dis-

placed-conformally :adjustable :leader-list :leader-length :named-

structure-symbol :initial-value :fill-pointer 

Creates and returns a new array. 
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zl:aset element array &rest subscripts 

Stores element into the element of array selected by the sub-

scripts.

zl:aloc array &rest subscripts 

Returns a locative pointer to the element of array selected by

the subscripts. Note that the Common Lisp combination locf of

aref is preferred.

For summaries of additional array operations: See the section "Common Operations

on Arrays".

Creating Arrays

Use make-array to create new arrays. 

make-array dimensions &key (:element-type t) :initial-element :initial-contents :ad-

justable :fill-pointer :displaced-to :displaced-index-offset :displaced-conformally :area

:leader-list :leader-length :named-structure-symbol Function

Creates and returns a new array. dimensions is the only required argument. di-

mensions is a list of integers that are the dimensions of the array; the length of

the list is the dimensionality, or rank of the array. 

;; Create a two-dimensional array 

(make-array ’(3 4) :element-type ’string-char) �

You can use these element types: bit, string-char, (unsigned-byte 8), (unsigned-

byte 16), (signed-byte 8), and (signed-byte 16). 

For convenience when making a one-dimensional array, the single dimension can

be provided as an integer rather than a list of one integer.

;; Create a one-dimensional array of five elements.

(make-array 5)�

The initialization of the elements of the array depends on the element type. By

default, the array is a general array, the elements can be any type of Lisp object,

and each element of the array is initially nil. However, if the :element-type option

is supplied, and it constrains the array elements to being integers or characters,

the elements of the array are initially 0 or characters whose character code is 0

and style is NIL.NIL.NIL. You can specify initial values for the elements by using

the :initial-contents or :initial-element options.

Compatibility Note: The optional arguments :displaced-conformally, :area,

:leader-list, :leader-length, and :named-structure-symbol are Symbolics exten-

sions to Common Lisp, and are not available in CLOE.

For a table of related items: See the section "Basic Array Functions".

See the section "Examples of make-array".

If you are using CLOE, see the section "Keyword Options for make-array". 
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Keyword Options for make-array

The keyword options for make-array can be any of the following:

:element-type

Enables you to specify the type of Lisp objects allowed as elements of the

array. The value should be a symbolic name of a type. The default type is

t, which yields a general array that can contain elements of any type. For a

list of allowed array types: See the section "Common Lisp Array Element

Types".

The initialization of the elements of the array depends on the element type.

If the array is of a type whose elements can only be integers or characters,

the elements of the array are initially 0, or characters whose character

code is 0 and style is [nil.nil.nil]. Otherwise, every element is initially nil.

To create a string, the :element-type option should be specified as string-

char or character. Alternatively, you could use make-string instead of

make-array. 

Note that if :element-type is string, this creates a general array, just as if

:element-type were t. This is because Genera does not have specialized ar-

rays that hold just strings.

Note: The following is not the correct way to make a string:

(make-array 5 :element-type ’string)

This specifies an array whose elements are themselves strings (which is a

generalized array, because Genera does not have specialized arrays that on-

ly hold strings). See the section "Strings". 

:initial-element

Initializes each element in the array to the supplied value. The value must

be of the type specified by the :element-type argument, if that keyword

was supplied. Example:

(make-array 5 :element-type ’string-char :initial-element #\a)

                   => "aaaaa"�

:initial-contents

Initializes the contents of the array. The value is a nested structure of se-

quences with values that correspond to the elements of the array. Exam-

ple:

(make-array ’(2 3 4) :initial-contents

    ’(((a b c d) (1 2 3 4) (m n o p))

      ((e f g h) (5 6 7 8) (q r s t))))
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�

=> #<ART-Q-2-3-4 34166170>

�

:adjustable

If not nil, specifies that the array’s size can be altered dynamically after it

has been created. The default is nil. The Genera implementation makes

most arrays adjustable whether or not you use this option.

The following functions can be used to modify the size of an existing array:

adjust-array Changes the size of an array. 

Note: The following Zetalisp functions are included to help you read old pro-

grams. In your new programs, where possible, use the

Common Lisp equivalents of these functions.

zl:adjust-array-size

Resizes or reshapes the first dimension of an array. Use

the Common Lisp function adjust-array.

zl:array-grow Creates a new array of the same type as the specified

array, and forwards the old array to the new. �

:fill-pointer

Specifies that the array should have a fill pointer and initializes the fill

pointer to the value following the keyword. Note that :fill-pointer can only

be used for one-dimensional arrays. Use this instead of :leader-length or

:leader-list when you are using the leader only for a fill pointer. This argu-

ment defaults to nil. Fill pointers are discussed elsewhere: See the section

"Array Leaders". 

:displaced-to

Specifies that the array will be a displaced array, if the value is not nil. If

the value is a fixnum or a locative, make-array creates a regular displaced

array that refers to the specified section of virtual address space. If the val-

ue is an array, make-array creates an indirect array. See the section "Dis-

placed Arrays". See the section "Indirect Arrays". 

:displaced-index-offset

If this is present, the value of the :displaced-to option should be an array,

and the value of this should be a non-negative integer; it is made to be the

index-offset of the created indirect or displaced array. See the section "Indi-

rect Arrays".
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The function array-row-major-index can aid in constructing the desired

value for multidimensional arrays. 

:displaced-conformally

Can be used with the :displaced-to option. If the value is t and make-

array is creating an indirect array, the array uses conformal indirection.

See the section "Conformal Indirection". 

:area

The value specifies in which area the array should be created. It should be

either an area number (an integer), or nil to mean the default area. This

argument defaults to nil. See the section "Areas". 

:leader-length

The value should be an integer. The array has a leader with that many el-

ements. The elements of the leader are initialized to nil unless the :leader-

list, :fill-pointer, or :named-structure-symbol option is given.

The leader-length must be less than array-leader-length-limit, which is

1024 on Symbolics 3600-family computers and 256 on Ivory-based machines. 

:leader-list

The value should be a list. Call the number of elements in the list n. The

first n elements of the leader are initialized from successive elements of

this list. If the :leader-length option is not specified, then the length of the

leader is n. If the :leader-length option is given, and its value is greater

than n, the extra leader elements are initialized to nil. If its value is less

than n, an error is signalled. The leader elements are filled in forward or-

der; that is, the car of the list is stored in leader element 0, the cadr in el-

ement 1, and so on. :fill-pointer overrides element 0, and :named-

structure-symbol overrides element 1. 

:named-structure-symbol

If this is not nil, it is a symbol to be stored in the named-structure cell of

the array. The array is tagged as a named structure. See the section

"Named Structures". If the array has a leader, this symbol is stored in lead-

er element 1, regardless of the value of the :leader-list option. If the array

does not have a leader, this symbol is stored in array element 0. 

Common Lisp Array Element Types

This section lists the types that can be given as the :element-type option for

make-array. 
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Element Type Contents of Array

t Any Lisp object

(unsigned-byte n) n is 1, 2, 4, 8 or 16. The array elements are positive integers

limited in size to the number of bits indicated by n. Storing a

larger fixnum, or a negative one, truncates it to the specified

number of bits. Array elements are packed into 32-bit words. If

n is given as 1 and the array is one-dimensional, this is a bit-

vector. 

fixnum Any fixnum, positive or negative.

character Any character. If the array is one-dimensional, it is a fat

string. 

string-char Characters in the Symbolics standard character set of charac-

ter style NIL.NIL.NIL and bits field of zero. Array elements

are packed four per word. If the array is one-dimensional, it is

a thin string. 

boolean t or nil. Storing anything non-nil converts it to t. Elements are

packed 32 per word.�

Examples of make-array

This section presents some examples of using make-array.

;; Create a one-dimensional array of five elements 

(make-array 5)

�

;; Create a two-dimensional array

(make-array ’(3 4)) 

�

;; Create an array with a three-element leader 

(make-array 5 :leader-length 3)

�

;; Create an array of fixnums with a leader, 

;; providing initial values for the leader elements 

(setq a (make-array 100 :element-type ’fixnum

:leader-list ’(t nil)))

(array-leader a 0) => T

(array-leader a 1) => NIL�
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;; Create a named-structure with five leader

;; elements, initializing some of them 

(setq b (make-array 20 :leader-length 5 

       :leader-list ’(0 nil foo)

       :named-structure-symbol ’bar))

(array-leader b 0) => 0

(array-leader b 1) => BAR

(array-leader b 2) => FOO

(array-leader b 3) => NIL

(array-leader b 4) => NIL

�

;; Create a string with a fill pointer

(make-array 10 :element-type ’string-char

    :fill-pointer 5) => "•••••"
�

;; Create a fat-string 

(make-array 2 :element-type ’character 

    :initial-element #\control-c) �

Array Leaders

Any array can have an array leader. An array leader is similar to a one-

dimensional general array that is attached to the main array. An array that has a

leader acts like two arrays joined together. The leader can be stored into and ex-

amined with setf and array-leader. The leader is always one-dimensional and can

always hold any kind of Lisp object, regardless of the type or dimensionality of the

main part of the array. array-leader-length-limit is the exclusive upper bound on

the length of an array leader.

Often, the main part of an array is a homogeneous set of objects, while the leader

is used to remember a few associated nonhomogeneous pieces of data. In this case,

the leader is not used like an array; each slot is used differently from the others.

Explicit numeric subscripts should not be used for the leader elements of such an

array; instead the leader should be described by using the :array-leader option to

defstruct: See the macro defstruct.

By convention, element zero of the array leader of an array is used to hold the

number of elements in the array that are "active" in some sense. When the zeroth

element is used this way, it is called a fill pointer. Many array-processing functions

recognize the fill pointer. For instance, if a string has seven elements, but its fill

pointer contains the value 5, then only elements zero through four of the string

are considered to be "active". This means that the string’s printed representation

is five characters long, string-searching functions stop after the fifth element, and

so on. 

The system does not provide a way to turn off the fill-pointer convention; any ar-

ray that has a leader must reserve element 0 for the fill pointer or avoid using

many of the array functions. If array leader element 0 contains a non-integer, such

as nil, most functions act as if the array did not have a fill-pointer. 
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Leader element 1 is used in conjunction with the "named structure" feature to as-

sociate a "data type" with the array. See the section "Named Structures". Leader

element 1 is treated specially only if the array is flagged as a named structure.

If there is no leader, and the array is a named structure, the symbol goes in array

element 0. 

Operations on Array Leaders

The following functions are available for use with arrays that have leaders: 

array-has-leader-p array 

Returns t if array has a leader; otherwise it returns nil.

array-leader array index 

Returns the indexed element of array’s leader. You can use

setf and locf of array-leader. 

array-leader-length array 

Returns the length of array’s leader if it has one, or nil if it

does not.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:ap-leader array index 

Returns a locative pointer to the indexed element of array’s

leader. Use the Common Lisp combination, locf of array-

leader.

zl:store-array-leader value array index 

Stores value in the indexed element of array’s leader. Use the

Common Lisp combination, setf of array-leader.

Displaced Arrays

Normally, an array is represented as a small amount of header information, fol-

lowed by the contents of the array. However, sometimes it is desirable to have the

header information removed from the actual contents. Such an array is known as a

displaced array. One example of the usefulness of displaced arrays is when the

contents of the array must be located in a special part of the Symbolics computer’s

address space, such as the area used for the control of input/output devices, or the

bitmap memory that generates the TV image.

To create a displaced array, give make-array a fixnum or a locative as the value

of the :displaced-to option. make-array creates a displaced array referring to that

location of virtual memory and its successors.
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References to elements of the displaced array access that part of storage, and re-

turn the contents. The normal array accessor functions (aref, and setf with aref)

are used on displaced arrays.

If the array’s elements are Lisp objects, caution should be used: If the region of

address space does not contain typed Lisp objects, the integrity of the storage sys-

tem and the garbage collector could be damaged. If the array’s elements are bytes,

there is no problem. It is important to know, in this case, that the elements of

such arrays are allocated from right to left within the 32-bit words.

Indirect Arrays

It is possible to have an array whose contents, instead of being located at a fixed

place in virtual memory, are defined to be those of another array. Such an array is

called an indirect array, and is created by giving make-array an array as the val-

ue of the :displaced-to option. 

The effects of this are simple if both arrays have the same type; the two arrays

share all elements. An object stored in a certain element of one can be retrieved

from the corresponding element of the other. This, by itself, is not very useful.

However, if the arrays have different dimensionality, the manner of accessing the

elements differs. Thus, by creating a one-dimensional array of nine elements that

is indirected to a second, two-dimensional array of three elements by three, you

make it possible to access elements in two different ways, either using aref on the

one-dimensional array with one subscript, or using aref on the two-dimensional ar-

ray with two subscripts. 

To understand how the same element can be accessed two ways it is important to

know that arrays are stored in row-major order in memory. 

(setq a (make-array ’(3 3) :initial-contents

   ’((one two three)

     (four five six)

     (seven eight nine))))

 

(setq b (make-array 9 :displaced-to a))

�

(aref b 0) => ONE  

(aref a 0 0) => ONE

�

(aref b 1) => TWO

(aref a 0 1) => TWO

�

(aref b 6) => SEVEN

(aref a 2 0) => SEVEN�

Unexpected effects can be produced if the new array is of a different type than the

old array; this is not generally recommended. Indirecting an (unsigned-byte-m) ar-

ray to an (unsigned-byte-n) array does the "obvious" thing. For instance, if m is 4

and n is 1, each element of the first array contains four bits from the second ar-

ray, in right-to-left order.
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Displaced and Indirect Arrays with Offsets

It is possible to create an indirect or displaced array in such a way that when an

attempt is made to reference it or store into it, a constant number is added to the

subscript given. This number is called the index offset, and is specified at the time

the indirect array is created, by giving an integer to make-array as the value of

the :displaced-index-offset option. Similarly, the length of the indirect array need

not be the full length of the array it indirects to; it can be smaller. The

nsubstring function creates such arrays. When you use index offsets with multidi-

mensional arrays, there is only one index offset; it is added in to the "linearized"

subscript that is the result of multiplying each subscript by an appropriate coeffi-

cient and adding them together.

(setq a (make-array ’(4 3)))

�

(setq b (make-array 5 :displaced-to a

      :displaced-index-offset 2))�

The second array is displaced to the first array. Also, the second array has an in-

dex offset of 2. This affects the mapping of elements, which is illustrated below.

(aref b 0) is the same as (aref a 0 2)

(aref b 1) is the same as (aref a 1 0)

(aref b 2) is the same as (aref a 1 1)

(aref b 3) is the same as (aref a 1 2)

(aref b 4) is the same as (aref a 2 0)�

Conformal Indirection

Multidimensional arrays remember their actual dimensions, separately from the co-

efficients by which to multiply the subscripts before adding them together to get

the index into the array.

Multidimensional indirect arrays can have conformal indirection. If A is indirected

to B, and they do not have the same number of columns, then normally the part of

B that is shared with A does not have the same shape as A. If conformal indirec-

tion is used, the shape of array A changes. For example:

(setq b (make-array ’(10. 20.)))

(setq a (make-array ’(3 5) :displaced-to b 

                           :displaced-index-offset

       (array-row-major-index b 1 2)))�

Now:

(aref a 0 1) = (aref b 1 3) and (aref a 1 1) = (aref b 1 8)�

In contrast:

(setq a (make-array ’(3 5) :displaced-to b 

   :displaced-index-offset 

                             (array-row-major-index b 1 2)

   :displaced-conformally t))�
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(aref a 0 1) = (aref b 1 3) still, but (aref a 1 1) = (aref b 2 3). Each row of A

corresponds to part of a row of B, always starting at the same column (2).

A graphic illustration:

(setq a (make-array ’(6 20.))

      b (make-array ’(3 5) :displaced-to a 

                           :displaced-index-offset

                               (array-row-major-index a 1 2))

      c (make-array ’(3 5) :displaced-to a 

                           :displaced-index-offset

                               (array-row-major-index a 1 2)

                           :displaced-conformally t))

�

Normal case Conformal case

0    19 0    19

+--------------------+ +--------------------+

       0|aaaaaaaaaaaaaaaaaaaa|        0|aaaaaaaaaaaaaaaaaaaa|

|aaBBBBBBBBBBBBBBBaaa| |aaCCCCCaaaaaaaaaaaaa|

|aaaaaaaaaaaaaaaaaaaa| |aaCCCCCaaaaaaaaaaaaa|

|aaaaaaaaaaaaaaaaaaaa| |aaCCCCCaaaaaaaaaaaaa|

|aaaaaaaaaaaaaaaaaaaa| |aaaaaaaaaaaaaaaaaaaa|

       5|aaaaaaaaaaaaaaaaaaaa|        5|aaaaaaaaaaaaaaaaaaaa|

+--------------------+ +--------------------+�

See the function array-row-major-index. See the section "Rasters".

The meaning of adjust-array for conformal indirect arrays is undefined. 

All operations that treat a multidimensional array as if it were one-dimensional do

not work on conformally displaced arrays:

copy-array-contents

copy-array-contents-and-leader

copy-array-portion

math:invert-matrix

zl:fillarray

zl:listarray�

Vectors

A one-dimensional array is known as a vector. You can use the :fill-pointer option

to make-array when making a vector, but not when making a multidimensional

array. Several of the functions for vectors enable you to use the fill pointer capa-

bility of vectors. 

A general vector allows its elements to be any type of Lisp object. 

A simple vector is a general vector that is not displaced, is not adjustable, and has

no fill pointer. In Genera, predicates such as simple-vector-p and simple-bit-

vector-p can return t for adjustable vectors. Genera does not enforce the condition
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that a simple array must not be adjustable, and, in fact, most Genera arrays are

adjustable.

Bit vectors are vectors that require their elements to be of type bit. SCL provides

functions that operate on arrays of bits (which are not constrained to be vectors):

See the section "Arrays of Bits".

Strings are vectors that require their elements to be of type character or string-

char. Strings and string operations are described elsewhere: See the section

"Strings".

Operations on Vectors

Symbolics Common Lisp provides the following functions for performing operations

on vectors: 

vector &rest objects 

Creates a simple vector with specified initial contents.

array-has-fill-pointer-p array 

Returns t if the array has a fill pointer; otherwise it returns

nil.

fill-pointer array Returns the value of the fill pointer.

sys:vector-bitblt alu size from-array from-index to-array to-index 

Copies a linear portion of from-array of length size starting at

from-index into a linear portion of to-array starting at to-index.

vector-push new-element vector 

Stores new-element in the element designated by the fill pointer

and increments the fill pointer by one.

vector-push-extend new-element vector &optional extension 

Stores new-element in the element designated by the fill pointer

and increments the fill pointer by one.

vector-push-portion-extend to-array from-array &optional (from-start 0) from-end 

Copies a portion of one array to the end of another, updating

the fill pointer of the second to reflect the new contents.

vector-pop array &optional default 

Decreases the fill pointer by one and returns the vector ele-

ment designated by the new value of the fill pointer.

Symbolics Common Lisp provides the following predicate functions for determining

if a given object is a vector, or a specialized vector: 

vectorp object Tests whether the given object is a vector. 

simple-vector-p object 

Tests whether the given object is a simple general vector.
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bit-vector-p object Tests whether the given object is a bit vector.

simple-bit-vector-p object 

Tests whether the given object is a simple bit vector.

bit-vector-zero-p bit-vector &key (:start 0) :end 

Tests whether the bit vector is a bit vector of zeros in a range

specified by :start and :end.

bit-vector-cardinality bit-vector &key (:start 0) :end 

Tests how many of the bits in the range are one’s and returns

the number found.

bit-vector-position bit bit-vector &key (:start 0) :end 

If bit-vector contains an element satisfying bit, returns the in-

dex within the bit vector of the leftmost such element as a

non-negative integer; otherwise nil is returned.

bit-vector-equal bit-vector-1 bit-vector-2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if two bit vectors are equal in a range specified by

:start1 :end1 :start2 :end2.

bit-vector-subset-p bit-vector-1 bit-vector-2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if one bit-vector is a subset of another bit-vector in a

range specified by :start1 :end1 :start2 :end2.

bit-vector-disjoint-p bit-vector-1 bit-vector-2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if two bit vectors are disjoint in a range specified by

:start1 :end1 :start2 :end2.

Rasters

A raster is a two-dimensional array that is conceptually a two-dimensional rectan-

gle of bits, pixels, or display items. Rasters are accessed in (x,y) fashion, rather

than in (row,column) fashion. Rasters conceptually have width and height, while

non-rasters have numbers of columns and rows. In a row-major system, row corre-

sponds to y and column corresponds to x; therefore a row of raster elements repre-

sents a row of the array.

Screen arrays, sheet arrays, bit arrays of the window system, fonts, and BFDs are

rasters. Programs that access these items should use raster primitives rather than

array primitives.

When using rasters, you should use setf to store into a raster element. Use locf to

get a locative when the raster is a general array; locf is not allowed on arrays of

bytes or of characters. 

Operations on Rasters

The functions and methods for raster operations should be used only on rasters;

they should not be used on non-rasters. User programs that provide an (x,y) style
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interface to rasters should use the raster functions to actually operate on the

rasters.

For a table of related low-level raster functions: See the section "The Paging Sys-

tem". 

bitblt alu width height from-array from-x from-y to-array to-x to-y 

Copies a rectangular portion of from-raster into a rectangular

portion of to-raster.

decode-raster-array raster 

Returns the following attributes of the raster as values: width,

height, and spanning width. 

make-raster-array width height &key (:element-type t) :initial-element :initial-

contents :adjustable :fill-pointer :displaced-to :displaced-index-

offset :displaced-conformally :area :leader-list :leader-length

:named-structure-symbol 

Makes rasters; this should be used instead of make-array

when making arrays that are rasters.

raster-aref raster-array x y 

Accesses the (x,y) graphics coordinate of raster.

raster-index-offset raster x y 

Returns a linear index of the array element referenced by the

(x,y) coordinate of the raster.

raster-width-and-height-to-make-array-dimensions width height 

Creates an argument that can be used to call make-array.�

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, use the Common Lisp version of this function. 

zl:make-raster-array width height &rest make-array-options 

This function is provided for compatibility with previous re-

leases. Use the Common Lisp function, make-raster-array. 

Planes

A plane is an array whose bounds, in each dimension, are minus-infinity and plus-

infinity; all integers are valid as indices. Planes are distinguished not by size and

shape, but by number of dimensions alone. When a plane is created, a default val-

ue must be specified. At that moment, every element of the plane has that value.

As you cannot ever change more than a finite number of elements, only a finite

region of the plane need actually be stored.

The regular array accessing functions do not work on planes. You can use make-

plane to create a plane and plane-aref to get the value of an element. setf and

locf work on plane-aref. array-rank works on a plane.
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A plane is actually stored as an array with a leader. The array corresponds to a

rectangular, aligned region of the plane, containing all the elements in which data

has been stored (and others, in general, that have never been altered). The lowest-

coordinate corner of that rectangular region is given by the zl:plane-origin in the

array leader. The highest coordinate corner can be found by adding the zl:plane-

origin to the array-dimensions of the array. The plane-default is the contents of

all the elements of the plane that are not actually stored in the array. The plane-

extension is the amount to extend a plane by in any direction when the plane

needs to be extended. The default is 32.

If you never use any negative indices, the zl:plane-origin is all zeroes and you can

use regular array functions, such as aref to access the portion of the plane that is

actually stored. This can be useful to speed up certain algorithms. In this case,

you can even use the 2d-array-blt function on a two-dimensional plane of bits or

bytes, provided you don’t change the plane-extension to a number that is not a

multiple of 32.

Operations on Planes

The following functions are available for using with planes:

make-plane rank &key (:type ’sys:art-q) :default-value (:extension 32) :initial-

dimensions :initial-origins 

Creates and returns a plane.

plane-aref plane &rest point 

Returns the contents of a specified element of a plane.

plane-default plane 

Returns the contents of the infinite number of plane elements

that are not actually stored.

plane-extension plane 

Returns the amount to extend the plane by in any direction

when zl:plane-store is done outside of the currently stored

portion.

zl:plane-aset datum plane &rest point 

Stores datum into the specified element of a plane, extending

it if necessary, and returns datum. Use the Common Lisp

equivalent, setf of plane-aref.

zl:plane-origin plane 

Returns a list of numbers, giving the lowest coordinate values

actually stored.

zl:plane-ref plane point 

Returns the contents of a specified element of a plane.

zl:plane-store datum plane point 

Stores datum into the specified element of a plane, extending

it if necessary, and returns datum.
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Array Registers

The aref, setf of aref, and zl:aset operations on arrays consist of two parts:

1. They "decode" the array, determining type, rank, length, and the address of

its first data element.

2. They read or write the requested element. �

The first part of this operation does not depend on the particular values of the

subscripts; it is a function only of the array itself.

When you write a loop that processes one or more arrays, the first part of each ar-

ray operation is invariant if the arrays are invariant inside the loop. You can im-

prove performance by moving this array-decoding overhead outside the loop, doing

it only once at the beginning of the loop, rather than repeating it on every trip

around the loop. 

You can do this by using the sys:array-register and sys:array-register-1d decla-

rations. sys:array-register is used for one-dimensional arrays, and sys:array-

register-1d for multidimensional arrays. See the section "Function-body Declara-

tions".

Array Registers and Performance

The array-register feature makes optimization possible and convenient. Here is an

example:

(defun foo (array-1 array-2 n-elements)

  (let ((a array-1)

(b array-2))

    (declare (sys:array-register a b))

    (dotimes (i n-elements)

      (setf (aref b i) (aref a i)))))�

This function copies the first n-elements elements of array a into array b. If the

declaration is absent, it does the same thing more slowly. The variables a and b

are compiled into "array register" variables rather than normal, local, variables. At

the time a and b are bound, the arrays to which they are bound are decoded and

the variables are bound to the results of the decoding. The compiler recognizes

aref with a first argument that has been declared to be an array register, and setf

of aref with a first argument that has been declared to be an array register; it

compiles them as special instructions that do only the second part of the operation.

These instructions are fast-aref and fast-aset.

If you want to verify that your array register declarations are working, follow

these steps:

1. Compile the function.

2. Disassemble it: (disassemble ’foo).



Page 185

3. Look for fast-aref and fast-aset instructions. For example, note instructions

11 and 13:�

 0  ENTRY: 3 REQUIRED, 0 OPTIONAL

 1  PUSH-LOCAL FP|0            ;ARRAY-1

 2  BUILTIN SETUP-1D-ARRAY TO 4        ;creating A(FP|3)

 3  PUSH-LOCAL FP|1            ;ARRAY-2

 4  BUILTIN SETUP-1D-ARRAY TO 4        ;creating B(FP|7)

 5  PUSH-LOCAL FP|2            ;N-ELEMENTS creating FP|11 (unnamed)

 6  PUSH-IMMED 0               ;creating I(FP|12)

 7  BRANCH 15

10  PUSH-LOCAL FP|12           ;I

11  FAST-AREF FP|4             ;A

12  PUSH-LOCAL FP|12           ;I

13  FAST-ASET FP|8             ;B

14  BUILTIN 1+LOCAL IGNORE FP|12       ;I

15  PUSH-LOCAL FP|12           ;I

16  PUSH-LOCAL FP|11

17  BUILTIN INTERNAL-< STACK 

20  BRANCH-TRUE 10

21  RETURN-NIL 

FOO�

The performance advantage of array registers over the simplest types of array (for

example, no leader or no displacement) is fairly small, since the normal aref and

zl:aset operations on those arrays are quite fast. The real advantage of array reg-

isters is that they are equally as fast for the more complicated arrays, such as in-

direct arrays and those with leaders, as they are for simple arrays.

The performance advantage to be gained through the use of array registers de-

pends on the type of the array. Using an array register is never slower, except for

one peculiar case: an indirect byte array with an index offset that is not a multiple

of the number of array elements per word; in other words, an array whose first el-

ement is not aligned on a word boundary. An example of this case is:

(setq a (make-array 100 :element-type ’string-char))

(setq b (make-array 99 :element-type ’string-char  

                       :displaced-to a 

                       :displaced-index-offset 1))�

If the :displaced-index-offset had been a multiple of 4, array registers would en-

hance performance. 

Hints for Using Array Registers

The expansion of the loop macro’s array-elements path copies the array into a

temporary variable. In order to get the benefits of array registers, you must write

code in the following way:

Right:
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(defun tst1 (array incr)

  (declare (sys:array-register a))

  (loop for elt being the array-elements of array 

                using (sequence a)

sum (* elt incr)))�

Wrong:

(defun tst (array incr)

  (let ((a array)) (declare (sys:array-register a))

       (loop for elt being the array-elements of a

     sum (* elt incr))))�

loop generates a temporary variable; the "using" clause forces the temporary vari-

able to be named a. Since the user gets to control the name of the variable, it is

possible to assign a declaration to the variable.

The other way to do it is to avoid the array-elements path, and instead use:

(defun tst (array incr)

  (let ((a array)) (declare (sys:array-register a))

    (loop for i from 0 below (array-total-size a)

  sum (* (aref a i) incr))))�

This is a bit more efficient because it does not have the overhead of setting up

the variable elt. 

Array Register Restrictions

It is not valid to declare a variable simultaneously to be special and to be

sys:array-register. You cannot declare a parameter (a variable that appears in the

argument-list of a defun or a lambda) to be an array register; you must bind an-

other variable (perhaps with the same name) to it with let and declare that vari-

able. For example:

(defun tst (x y)

  (let ((x x) (y y))

    (declare (sys:array-register x y))

    ...))�

An array-register variable cannot be a free lexical variable; it must be bound in

the same function that uses it. 

Note that the array-register declaration is in the system package (also known as

sys), and therefore the declaration is sys:array-register or sys:array-register-1d.

Be sure to type sys:array-register and not just array-register to gain compile-

time advantages such as checking for misspelled declarations. Also, if you type ar-

ray-register, the code generated by the compiler runs slower. Note that if you

type sys:array-registar instead of the correct spelling, the package system catches

the misspelling because the system package is locked.

If the array decoded into an array register is altered (for example, with adjust-

array) after the array register is created, the next reference through the array

register re-decodes the array.
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Matrices and Systems of Linear Equations

Matrices are represented as two-dimensional Lisp arrays. These functions that op-

erate on matrices are part of the mathematics package rather than the kernel ar-

ray system, hence the "math:" in the names.

math:decompose and math:solve are used to solve sets of simultaneous linear

equations. math:decompose takes a matrix holding the coefficients of the equa-

tions and produces the LU decomposition; this decomposition can then be passed to

math:solve along with a vector of right-hand sides to get the values of the vari-

ables. If you want to solve the same equations for many different sets of right-

hand side values, you need to call math:decompose only once. In terms of their

argument names, these two functions exist to solve the vector equation A x = b for

x. A is a matrix. b and x are vectors.

Operations on Matrices

The following functions perform some useful matrix operations: 

math:decompose a &optional lu ps ignore 

Computes the LU decomposition of matrix a.

math:determinant matrix 

Returns the determinant of matrix.

math:fill-2d-array array list 

The opposite of math:list-2d-array. list should be a list of

lists, with each element being a list corresponding to a row.

math:invert-matrix matrix &optional into-matrix 

Computes the inverse of matrix.

math:list-2d-array array 

Returns a list of lists containing the values in array, which

must be a two-dimensional array.

math:multiply-matrices matrix-1 matrix-2 &optional matrix-3 

Multiplies matrix-1 by matrix-2.

math:solve lu ps b &optional x 

Takes the LU decomposition and associated permutation array

produced by math:decompose, and solves the set of simultane-

ous equations defined by the original matrix a and the right-

hand sides in the vector b.

math:transpose-matrix matrix &optional into-matrix 

Transposes matrix.

� Common Operations on Arrays
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Getting Information About an Array

The following functions can be used to get information about arrays:

array-dimension array axis-number 

Returns the length of the dimension numbered dimension-

number of array.

array-dimensions array 

array-dimensions returns a list whose elements are the di-

mensions of array.

array-has-leader-p array 

Returns t if array has a leader; otherwise it returns nil.

array-in-bounds-p array &rest point 

Checks whether subscripts is a valid set of subscripts for array,

and returns t if they are; otherwise it returns nil.

array-leader-length array 

Returns the length of array’s leader if it has one, or nil if it

does not.

length sequence Returns the number of elements in sequence as a non-negative

integer. sequence can be either a list or a vector (one-

dimensional array). 

array-rank array Returns the number of dimensions of array.

array-row-major-index array &rest subscripts 

Takes an array and valid subscripts for the array and returns

a single positive integer, less than the total size of the array,

that identifies the accessed element in the row-major ordering

of the elements.

array-total-size array 

Returns the total number of elements in array.

array-element-type array 

Returns the type of the elements of array.

adjustable-array-p array 

Returns t if array is adjustable, and nil if it is not.

sys:array-row-span array 

Returns the number of array elements spanned by one of its

rows, given a two-dimensional array.

sys:array-displaced-p array 

Tests whether the array is a displaced array.

sys:array-indexed-p array 

Returns t if array is an indirect array with an index-offset.

sys:array-indirect-p array 

Returns t if array is an indirect array.�
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Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:array-active-length array 

Returns the number of active elements in array. Use the Com-

mon Lisp function, length.

zl:array-dimension-n n array 

Returns the size for the specified dimension of the array. Use

the Common Lisp equivalent, array-dimension.

zl:array-length array 

Returns the number of elements in an array. Use array-total-

size which is the Common Lisp equivalent of zl:array-length.

zl:array-#-dims array 

Returns the dimensionality of an array. Use the Common LIsp

function, array-rank.

Changing the Size of an Array

The following function can be used to modify the size of an existing array: 

adjust-array array new-dimensions &key :element-type :initial-element :initial-

contents :fill-pointer :displaced-to :displaced-index-offset :dis-

placed-conformally 

Changes the dimensions of an array. Returns an array of the

same type and rank as array, but with the new-dimensions. The

number of new-dimensions must equal the rank of the array.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:adjust-array-size array new-index-length 

Resizes or reshapes the first dimension of an array. Use the

Common Lisp function adjust-array.

zl:array-grow array &rest dimensions 

Creates a new array of the same type as array, with the speci-

fied dimensions. 

Arrays of Bits

The following functions are available for use with arrays of bits:

bit array &rest subscripts 

Returns the element of array selected by the subscripts.



Page 190

sbit array &rest subscripts 

Returns the element of array selected by the subscripts.

bit-and first second &optional third 

Performs logical and operations on bit arrays. 

bit-ior first second &optional third 

Performs logical inclusive or operations on bit arrays.

bit-xor first second &optional third 

Performs logical exclusive or operations on bit arrays. 

bit-eqv first second &optional third 

Performs logical exclusive nor operations on bit arrays. 

bit-nand first second &optional third 

Performs logical not and operations on bit arrays. 

bit-nor first second &optional third 

Performs logical not or operations on bit arrays. 

bit-not source &optional destination 

Returns a bit-array of the same rank and dimensions that con-

tains a copy of the argument with all the bits inverted.

bit-andc1 first second &optional third 

Performs logical and operations on the complement of first

with second on bit arrays.

bit-andc2 first second &optional third 

Performs logical and operations on first with the complement

of second on bit arrays

bit-orc1 first second &optional third 

Performs logical or operations on the complement of first with

second on bit arrays.

bit-orc2 first second &optional third 

Performs logical or operations on first with the complement of

second on bit arrays.

bit-vector-p object Tests whether the given object is a bit vector.

Adding to the End of an Array

The following functions can be used to add to the end of an array:

vector-pop array &optional default 

Decreases the fill pointer by one and returns the vector ele-

ment designated by the new value of the fill pointer.

vector-push new-element vector 

Stores new-element in the element designated by the fill pointer

and increments the fill pointer by one.
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vector-push-extend new-element vector &optional extension 

Stores new-element in the element designated by the fill pointer

and increments the fill pointer by one.

vector-push-portion-extend to-array from-array &optional (from-start 0) from-end 

Copies a portion of one array to the end of another, updating

the fill pointer of the second to reflect the new contents.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions. 

zl:array-pop array &optional default 

Decreases the fill pointer by one. Use the Common Lisp equiv-

alent, vector-pop. Use the Common Lisp function, vector-pop.

zl:array-push array x 

Attempts to store x in the element of the array designated by

the fill pointer and increase the fill pointer by one. Use the

Common Lisp function, vector-push.

zl:array-push-extend array data &optional extension 

This function is similar to zl:array-push, except that if the fill

pointer gets too large, the array is grown to fit the new ele-

ment. Use the Common Lisp function, vector-push-extend.

zl:array-push-portion-extend to-array from-array &optional (from-start 0) from-end 

Copies a portion of one array to the end of another, updating

the fill pointer of the other to reflect the new contents. Use

the Common Lisp function, vector-push-portion-extend.

Copying an Array

The following functions can be used to copy the contents of arrays:

2d-array-blt alu nrows ncolumns from-array from-row from-column to-array to-row

to-column 

Copies a rectangular portion of from-array into a portion of to-

array.

bitblt alu width height from-array from-x from-y to-array to-x to-y 

Copies a rectangular portion of from-raster into a rectangular

portion of to-raster.

copy-array-contents from-array to-array 

Copies the contents of from-array into the contents of to-array,

element by element.

copy-array-contents-and-leader from-array to-array 

Copies the contents and leader of from-array into the contents

of to-array, element by element.
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copy-array-portion from-array from-start from-end to-array to-start to-end 

Copies the portion of the array from-array with indices greater

than or equal to from-start and less than from-end into the por-

tion of the array to-array with indices greater than or equal to

to-start and less than to-end, element by element.

list-array-leader array &optional limit 

Creates and returns a list whose elements are those of array’s

leader.

replace sequence1 sequence2 &key (:start1 0) :end1 (:start2 0) :end2 

Destructively modifies sequence1 by copying into it successive

elements from sequence2.

Converting Between Arrays and Lists

The following functions convert between arrays and lists: 

zl:fillarray array source 

Fills up array with the elements of source.

zl:listarray array &optional limit 

Creates and returns a list whose elements are those of array. 

Accessing Multidimensional Arrays as One-dimensional

The sys:array-register-1d declaration is used together with the following functions

to access multidimensional arrays as if they were one-dimensional. See the section

"Function-body Declarations".

This declaration allows loop optimization of multidimensional array subscript cal-

culations. The user must do the reduction from multiple subscripts to a single

subscript.

For an example: See the function sys:%1d-aref.

sys:%1d-aref array i0 

Returns the element of array selected by the index.

sys:%1d-aloc array i0 

Like zl:aloc except that it ignores the the number of dimen-

sions of the array and acts as if it were a one-dimensional ar-

ray.

sys:array-row-span array 

Returns the number of array elements spanned by one of its

rows, given a two-dimensional array.

Accessing Arrays Specially
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The function sys:array-row-span is for users of sys:%1d-aref and the sys:array-

register-1d declaration is for users who need to perform their own subscript calcu-

lations and do special loop optimizations.

sys:array-row-span array Function

Returns the number of array elements spanned by one of its rows, given a two-

dimensional array. Normally, this is just equal to the length of a row (that is, the

number of columns), but for conformally displaced arrays, the length and the span

are not equal.

(sys:array-row-span (make-array ’(4 5))) => 5

(sys:array-row-span (make-array ’(4 5)

:displaced-to (make-array ’(8 9))

:displaced-conformally t))

=> 9�

Note: If the array is conceptually a raster, it is better to use decode-raster-array

than sys:array-row-span.

For a table of related items: See the section "Getting Information About an Array".

See the section "Accessing Multidimensional Arrays as One-dimensional".

Array Representation Tools

The following functions and variables are primitives.

sys:*array-type-codes* 

A variable that is a list of all the array type symbols.

sys:array-bits-per-element 

An association list that associates array type and symbols with

size.

sys:array-bits-per-element array-type 

A function that returns the number of bits per cell for un-

signed numeric arrays.

sys:array-element-size array 

Given an array, returns the number of bits that fit in an ele-

ment of that array.

sys:array-element-byte-size array 

Given an array, returns the number of bits that fit into an ele-

ment of that array.

sys:array-elements-per-q 

An association list that associates each array type symbol with

the number of array elements stored in one word.

sys:array-elements-per-q array-type 

A function that returns the number of array elements stored in

one word.
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sys:array-types index 

Returns the symbolic name of the array type.

Other Array Functions

sys:return-array array 

This function attempts to return array to free storage. This is

a subtle and dangerous feature.

sys:with-stack-array (var length &key :type :element-type :initial-element :initial-

contents :displaced-to :displaced-index-offset :displaced-

conformally :leader-list :leader-length :named-structure-symbol

:initial-value :fill-pointer) &body body 

Like with-stack-list, but makes an array.

Row-major Storage of Arrays

This section describes how arrays are stored in memory. This is an implementation

detail that does not concern most programmers. However, if you use some of the

advanced array practices, such as displaced arrays or adjusting the array size dy-

namically, you need to understand how arrays are stored in memory.

Genera stores multi-dimensional arrays in row-major order. The following 2 by 3

two-dimensional array illustrates row-major order. Two-dimensional arrays have

rows and columns. The number of rows is the span of the first dimension and the

number of columns is the span of the second dimension. When accessing a two-

dimensional array, the row is the first subscript and the column is the second

subscript.

 

                              Column

                          0    1      2

               Row

               0        0,0   0,1    0,2

        

               1        1,0   1,1    1,2

 �

In row-major order, the array elements are arranged in memory in the following

order:

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2)�

In other words, the sequence is determined by going across the row from column

to column. Thus, the first, or row, index remains constant while the second, or

column, index changes as you follow the linear sequence in memory. 

Compatibility Operations for Arrays
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Zetalisp Array Types

This section describes the Zetalisp array types. Zetalisp array types are known by

a set of symbols whose names begin with "art-" (for ARray Type). For example, a

general array is called a Zetalisp sys:art-q array. Zetalisp has many types of spe-

cialized arrays, such as sys:art-fixnum and sys:art-boolean. This terminology is

being phased out in favor of Common Lisp terminology.

sys:art-q Array Type

The most commonly used type is sys:art-q. A sys:art-q array simply holds Lisp ob-

jects of any type. This array type can store single-precision floating-point numbers

without any storage overhead.

sys:art-q-list Array Type

Similar to the sys:art-q type is sys:art-q-list. Its elements can be any Lisp object.

The difference is that a sys:art-q-list array "doubles" as a list; the function g-l-p

takes a sys:art-q-list array and returns a list whose elements are those of the ar-

ray, and whose actual substance is that of the array. If you either rplaca the ele-

ments of the list or setf the car of a sublist, the corresponding element of the ar-

ray changes, and if you store into the array, the corresponding element of the list

changes the same way. An attempt to either rplacd the list or setf the cdr of a

sublist causes an error, since arrays cannot implement that operation.

The following function manipulates sys:art-q-list arrays:

g-l-p Returns a list that stops at the fill pointer.�

You cannot use make-array to create a sys:art-q-list array. If you need to create

such an array, use zl:make-array.

sys:art-nb Array Type

There is a set of types called sys:art-1b, sys:art-2b, sys:art-4b, sys:art-8b, and

sys:art-16b. These names are short for "1 bit", "2 bits", and so on. Each element of

a sys:art-nb array is a nonnegative integer, and only the least significant n bits

are remembered in the array; all the others are discarded. Thus sys:art-1b arrays

store only 0 and 1, and if you store a 5 into a sys:art-2b array and look at it later,

you find a 1 rather than a 5.

These arrays are used when you know beforehand that the integers stored are non-

negative and limited to a certain number of bits. They occupy less storage than

sys:artq arrays, because more than one element of the array is kept in a single

machine word. (For example, 32 elements of a sys:art-1b array, or 2 elements of a

sys:art-16b array, fit into one word).

sys:art-string Array Type
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A sys:art-string array is one whose elements are simple characters. One-

dimensional arrays of this type are character strings.

sys:art-fat-string Array Type

A sys:art-fat-string array is a string whose elements are fat characters. For a de-

scription of fat strings: See the section "Introduction to Strings".

sys:art-boolean Array Type

A sys:art-boolean array is one whose elements can take on the values t and nil. It

uses only one bit of storage per element.

sys:art-fixnum Array Type

A sys:art-fixnum array is one that stores fixnums only. It is similar to the

sys:art-1b, array types, except that sys:art-fixnum arrays can also store negative

fixnums. In contrast, sys:art-nb arrays always store the low n bits and return pos-

itive fixnums when read.

For example, the following example creates a square, 2-dimensional array of

fixnums with 1024 elements on a side:

(make-array ’(1024 1024) :element-type ’fixnum)�

locf and zl:aloc are invalid on sys:art-fixnum arrays, as that would provide a

means to store something other than a fixnum into the array. 

sys:art-fixnum arrays are similar to sys:art-q arrays except that storing a non-

fixnum signals an error. sys:art-fixnum arrays can be used as the array argu-

ments to bitblt and 2d-array-blt arrays (as can sys:art-q arrays whose elements

are fixnums), and the error checking ensures all the entries are fixnums. They can

also be used for disk-arrays.

Zetalisp Array-Accessing Primitives

You should use the basic array functions: aref, setf of aref, and locf of aref.

There is no reason for any program to call the array primitives zl:ar-1, zl:as-1,

zl:ar-2, and so forth explicitly. These primitives are documented because many old

programs use them.

The compiler turns aref into zl:ar-1 and zl:ar-2 according to the number of sub-

scripts specified. It also turns zl:aset into zl:as-1 and zl:as-2 and zl:aloc into

zl:ap-1 and zl:ap-2. 

Array Functions in the CL Package with SCL Extensions

Here are the array functions that have Symbolics Common Lisp extensions:
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Function Extension(s)

make-array :displaced-conformally, :area, :leader-list, :leader-length, :named-

structure-symbol

adjust-array :displaced-conformally

Sequences

Introduction to Sequences

A sequence is a data type that contains an ordered set of elements. It embraces

both lists and vectors (one-dimensional arrays).

Depending on your specific application, you might choose to represent ordered sets

as lists or strings. Symbolics Common Lisp provides generic sequence functions

that operate on both lists and vectors. These functions perform basic operations on

sequences of Lisp objects, irrespective of their underlying representation. It makes

sense to reverse a sequence or extract a range of sequence elements, whether the

sequence is implemented as a vector or a list. The following sequence functions

are defined in Symbolics Common Lisp:

concatenate copy-seq count

count-if count-if-not delete

delete-duplicates delete-if delete-if-not

elt every fill

find find-if find-if-not

length make-sequence map

merge mismatch notany

notevery nreverse nsubstitute

nsubstitute-if nsubstitute-if-not position

position-if position-if-not reduce

remove remove-duplicates remove-if

remove-if-not replace reverse

search some sort

stable-sort subseq substitute

substitute-if substitute-if-not�

Zetalisp has analogous functions for some of these operations:

zl:delete zl:every zl:length

zl:map zl:nreverse zl:remove

zl:reverse zl:some zl:sort

zl:stable-sort �

Some of these functions have variants formed by a prefix or a suffix, for example,

reverse and nreverse, and position, position-if, and position-if-not.
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In addition, many functions accept keyword arguments that modify the sequence

operations. 

How the Reader Recognizes Sequences

The reader does not recognize a sequence as such; it recognizes its component

types, lists and vectors. 

See the section "How the Reader Recognizes Lists".

A vector can be denoted by surrounding its components by #( and ), as in #(a b c).

The most common kind of vector is a string. A string is a vector whose elements

are characters. The reader knows that a string is being entered when it receives a

sequence of characters enclosed in double quotes ("). See the section "How the

Reader Recognizes Strings".

Printed Representation of Sequences

The printed representation of a list starts with an open parenthesis, as in:

(foo bar baz)�

See the section "Printed Representation of Lists".

The printed representation of a vector (a one-dimensional array) is not very mean-

ingful. It describes the symbolic type of the array, the size of the dimension, and

the memory location of the array. The display begins with a pound sign and is en-

closed by angle brackets, as in:

#<ART-Q-10 28423710>�

Type Specifiers and Type Hierarchy for Sequences

The type specifiers relating to sequences are:

array vector list symbol

simple-array bit-vector cons null

simple-vector simple-bit-vector keyword structure�

Details about each type specifier appear in its dictionary entry.

Figure ! shows the relationships between the various data types relating to se-

quences. For more on data types, type specifiers, and type-checking in Symbolics

Common Lisp: See the section "Data Types and Type Specifiers".

Sequence Operations

The sequence operations fall into six major categories: 

• Constructing and accessing

• Predicates 
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symbol sequence array

keyword null cons vector

list

simple-vectorbit-vector

simple-bit-vector structure

simple-array

... ...

t

Figure 13.  Symbolics Common Lisp Sequence Data Types�

• Mapping 

• Modifying 

° Reducing

° Replacing�

• Searching

• Sorting and merging�

Whenever a sequence function constructs or returns a new vector, it always re-

turns a simple vector; similarly, any strings constructed are simple strings.

The sequence functions accept a number of keyword arguments. For the sake of

efficiency, some of these arguments delimit and direct sequence operations. These

keywords include the following:

:start

:end

:start1, :start2

:end1, :end2

:from-end

:count�

These arguments are explained in the appropriate dictionary entries. Other key-

word arguments, including :test, :test-not, and :key, allow you to selectively per-

form operations on the elements of a sequence according to some stated criterion.
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Testing Elements of a Sequence

Elements of a sequence can be tested either by using the appropriate keyword

(:test, :test-not, :key) or by using one of the -if or -if-not variants of the basic se-

quence operations (for example, remove, remove-if, remove-if-not).

If an operation requires testing elements of the sequence according to some crite-

rion, the criterion can be specified in one of the following ways:

• The operation accepts an item argument, and sequence elements are tested for

being eql to item. (Note: eql is the default test.) For example, remove returns a

copy of sequence from which all elements eql to item have been removed:

(remove item sequence)�

• The variants formed by appending -if and -if-not to the function name accept a

one-argument predicate (not an item), and sequence elements are tested for sat-

isfying and not satisfying the predicate. For example, remove-if returns a copy

of sequence from which all numbers have been removed.

(remove-if #’numberp sequence)�

• The operation accepts the :test or :test-not keywords, which allow you to specify

a test other than the default, eql. (Note: it is not valid to use both :test and

:test-not in the same call.) For example, the remove operation returns a copy of

sequence from which all elements equal to item have been removed.

(remove item sequence :test #’equal)�

• You can modify sequence elements before they are passed to the testing function

by using the :key keyword argument. In this way you can create arbitrarily

complicated tests for operating on sequences. :key takes a function of one argu-

ment that will extract from an element the part to be tested in place of the

whole (original) element. For example, the lambda expression below decrements

each element in the vector before the element is tested for being eql to 0.

(delete 0 #(1 2 1) :key #’(lambda (x) (- x 1))) => #(2)�

Another example: find searches for the first element of sequence whose car is eq

to item.

(find item sequence :test #’eq :key #’car)�

In the sequence operations that require a test, an element x of a sequence satisfies

the test if any of the following conditions is true. (keyfn is the value of the :key

keyword argument, whose default is the identity function):

• A basic function is called, testfun is specified by :test, and (funcall testfun item

(keyfn x)) is true.

• A basic function is called, testfun is specified by :test-not, and (funcall testfun�

item (keyfn x)) is false.

• An -if function is called, and (funcall predicate (keyfn x)) is true.
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• An -if-not function is called, and (funcall predicate (keyfn x)) is false.�

Similarly, two elements x and y of a sequence match if either of the following is

true.

• testfun is specified by :test, and (funcall testfun (keyfn x) (keyfn y)) is true.

• testfun is specified by :test-not, and (funcall testfun (keyfn x) (keyfn y)) is

false.�

The order in which arguments are given to testfun corresponds to the order in

which those arguments (or the sequence containing those arguments) were passed

to the sequence function in question. If a sequence function gives two elements

from the same sequence argument to testfun, the elements are passed in the same

order in which they appear in the sequence.

Sequence Construction and Access

The following functions perform simple operations on sequences. make-sequence,

concatenate, and copy-seq create new sequences. Whenever a sequence function

constructs and returns a new vector, that vector is always a simple vector; any

new strings returned are simple strings.

elt sequence index Extracts an element from sequence at position

index. Returns that element.

subseq sequence start &optional end 

Non-destructively creates a subsequence of the

argument sequence. Returns a new sequence.

copy-seq sequence &optional area Non-destructively copies sequence. Returns a

new sequence which is equalp (not eq) to se-

quence.

concatenate result-type &rest sequences 

Combines the elements of the sequences in the

order the sequences were given as arguments.

Returns the new, combined sequence.

length sequence Counts the number of elements in sequence.

Returns a non-negative integer.

make-sequence type size &key :initial-element :area 

Creates and returns a sequence. �

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, use the Common Lisp equivalent of this function. 

zl:length x Counts the elements in the list x. Returns a

non-negative integer. Use Common Lisp func-

tion, length.�
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Predicates that Operate on Sequences

The predicates take as many arguments as there are sequences provided. The ar-

gument predicate is first applied to the elements with index 0 in each of the se-

quences, and perhaps then to the elements with index 1, and so on, until a criteri-

on for termination is met, or the end of the shortest sequence is reached. 

some predicate &rest sequences Each element in sequences is tested against

predicate. Returns whatever value predicate re-

turns as non-nil, as soon as any invocation of

predicate returns a non-nil value. Otherwise re-

turns nil.

every predicate &rest sequences Each element in sequences is tested against

predicate. Returns nil as soon as any invocation

of predicate returns nil. Otherwise returns

non-nil.

notany predicate &rest sequences Each element in sequences is tested against

predicate. Returns nil as soon as any invocation

of predicate returns a non-nil value. Otherwise

returns non-nil.

notevery predicate &rest sequences Each element in sequences is tested against

predicate. Returns non-nil as soon as any invo-

cation of predicate returns nil. Otherwise re-

turns nil.�

Note: The following Zetalisp predicates are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalent of these

predicates. 

zl:some list pred &optional (step #’cdr)

Each element in list is tested against pred. Re-

turns a tail of list such that the car of the tail

is the first element that pred returns non-nil

when applied to, or nil if pred returns nil for

every element.

zl:every list pred &optional (step #’cdr) 

Each element, default step, in list is tested

against pred. Returns t if pred returns non-nil

when applied to every element of list, or nil if

pred returns nil for some element.�

Mapping Sequences
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Mapping is a type of iteration in which a function is successively applied to pieces

of one or more sequences. The result is a sequence containing the respective re-

sults of the function applications. The function map can be applied to any kind of

sequence, but the other map-type functions operate only on lists. The function

reduce is included here because of its conceptual relationship to mapping.

map result-type function &rest sequences 

Applies function to sequences. Returns a new

sequence, such that element i of the new se-

quence is the result of applying function to ele-

ment i of each of the argument sequences.

map-into result-sequence function &rest sequences 

Destructively modifies the result-sequence to

contain the results of applying the function to

each element in the argument sequences in

turn.

reduce function sequence &key from-end (start 0) end (initial-value nil initial-

value-p) 

Combines the elements of sequence, using a bi-

nary operation. Returns the result of using

function on sequence.�

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, use the Common Lisp equivalent of this function. 

zl:map fcn list &rest more-lists Applies fcn to list and to successive sublists of

that list. Returns a new list, such that sublist i

of the new list is the result of applying func-

tion to sublist i of each of more-lists. Use the

Common Lisp function mapl.

Sequence Modification

Each of these modifying operations alters the contents of a sequence or produces

an altered copy of a given sequence. Some of these functions have separate "de-

structive" versions, prefixed by the letter "n", for example, nreverse. Others have

"-if" and "-if-not" variants of the basic sequence operation. Many of the searching

functions accept the testing keywords: :test, :test-not, and :key.

reverse sequence Returns a new sequence of the same type as

sequence,containing the same elements in re-

verse order.
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nreverse sequence Returns a sequence containing the same ele-

ments as sequence, but in reverse order. This is

a destructive version of reverse.

fill sequence item &key (:start 0) :end 

Destructively modifies sequence by replacing

each element of the subsequence specified by

the :start (which defaults to zero) and :end

(which defaults to the length of the sequence)

arguments with item.

replace sequence1 sequence2 &key (:start1 0) :end1 (:start2 0) :end2 

Destructively modifies sequence1 by copying in-

to it successive elements from sequence2.

remove-duplicates sequence &key :from-end (:test #’eql) :test-not (:start 0) :end :key 

Compares the elements of sequence pairwise,

and if any two match, then the one occurring

earlier in the sequence is discarded.

delete-duplicates sequence &key (:test #’eql) :test-not (:start 0) :end :from-end :key

:replace 

Compares the elements of sequence pairwise,

and if any two match, then the one occurring

earlier in the sequence is discarded. This is a

destructive function.

substitute newitem olditem sequence &key (:test #’eql) :test-not (:key #’identity)

:from-end (:start 0) :end :count 

Returns a sequence of the same type as se-

quence that has the same elements, except that

those in the subsequence delimited by :start

and :end and satisfying the predicate specified

by the :test keyword are replaced by newitem. 

substitute-if newitem predicate sequence &key :key :from-end (:start 0) :end :count 

Returns a sequence of the same type as se-

quence that has the same elements, except that

those in the subsequence delimited by :start

and :end and satisfying predicate arereplaced

by newitem.

substitute-if-not newitem predicate sequence &key :key :from-end (:start 0) :end

:count 

Returns a sequence of the same type as se-

quence that has the same elements, except that

those in the subsequence delimited by :start

and :end that do not satisfy predicate are re-

placed by newitem.

nsubstitute newitem olditem sequence &key (:test #’eql) :test-not (:key #’identity)

:from-end (:start 0) :end :count 
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Returns a sequence of the same type as the ar-

gument sequence which has the same elements,

except that those in the subsequence delimited

by :start and :end and satisfying the predicate

specified by the :test keyword have been re-

placed by newitem. This is a destructive ver-

sion of substitute.

nsubstitute-if newitem predicate sequence &key :key :from-end (:start 0) :end :count 

Returns a sequence of the same type as the ar-

gument sequence which has the same elements,

except that those in the subsequence delimited

by :start and :end and satisfying predicate

have been replaced by newitem. This is a de-

structive version of nsubstitute.

nsubstitute-if-not newitem predicate sequence &key :key :from-end (:start 0) :end

:count 

Returns a sequence of the same type as the ar-

gument sequence which has the same elements,

except that those in the subsequence delimited

by :start and :end which do not satisfy predi-

cate have been replaced by newitem. This is a

destructive version of substitute-if-not.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:reverse list Creates a new list whose elements are the ele-

ments of list taken in reverse order. Returns a

new list.

zl:nreverse l Reverses a list l. Returns a reversed list. This

is a destructive version of zl:reverse.

Reducing Sequences

remove item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start

0) :end :count 

Non-destructively removes occurrences of item

in sequence. Returns the new sequence.

remove-if predicate sequence &key :key :from-end (:start 0) :end :count 

Non-destructively removes those items from the

sequence that satisfy predicate. Returns the new

sequence.

remove-if-not predicate sequence &key :key :from-end (:start 0) :end :count 

Non-destructively removes those items from se-
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quence that do not satisfy predicate. Returns

the new sequence.

remove-duplicates sequence &key :from-end (:test #’eql) :test-not (:start 0) :end :key

Non-destructively removes duplicate elements

from sequence. Returns the new sequence.

delete item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start 0)

:end :count 

Destructive version of remove. Returns the

modified sequence.

delete-if predicate sequence &key :key :from-end (:start 0) :end :count 

Destructive version of remove-if. Returns the

modified sequence.

delete-if-not predicate sequence &key :key :from-end (:start 0) :end :count 

Destructive version of remove-if-not. Returns

the modified sequence.

delete-duplicates sequence &key (:test #’eql) :test-not (:start 0) :end :from-end :key

:replace 

Destructive version of remove-duplicates. Re-

turns the modified sequence.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:remove item list &optional (times most-positive-fixnum) 

Non-destructive version of zl:delete. Use the

Common Lisp function remove.

zl:delete item list &optional (ntimes -1) 

Deletes occurrences of item from list (equal is

used for the comparison). Returns the list with

all occurrences of item removed. Use the Com-

mon Lisp function delete.

� Replacing Sequences

fill sequence item &key (:start 0) :end 

Destructively replaces each element of sequence

with item. Returns the modified sequence.

replace sequence1 sequence2 &key (:start1 0) :end1 (:start2 0) :end2 

Destructively modifies sequence1 by copying in-

to it successive elements from sequence2. 



Page 207

substitute newitem olditem sequence &key (:test #’eql) :test-not (:key #’identity)

:from-end (:start 0) :end :count 

Non-destructively replaces olditem for newitem

in sequence. Returns the new sequence.

substitute-if newitem predicate sequence &key :key :from-end (:start 0) :end :count 

Non-destructively replaces elements in sequence

that satisfy predicate with newitem. Returns the

new sequence.

substitute-if-not newitem predicate sequence &key :key :from-end (:start 0) :end

:count 

Non-destructively replaces elements in sequence

that do not satisfy predicate with newitem. Re-

turns the new sequence.

nsubstitute newitem olditem sequence &key (:test #’eql) :test-not (:key #’identity)

:from-end (:start 0) :end :count 

Destructive version of substitute. Returns the

modified sequence. 

nsubstitute-if newitem predicate sequence &key :key :from-end (:start 0) :end :count 

Destructive version of substitute-if. Returns

the modified sequence.

nsubstitute-if-not newitem predicate sequence &key :key :from-end (:start 0) :end

:count 

Destructive version of substitute-if-not. Re-

turns the modified sequence. 

Searching for Sequence Items

Each of the searching functions searches a sequence to locate one or more ele-

ments satisfying some test.

find item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start 0)

:end 

Finds the leftmost item in sequence. Returns

item if found, otherwise nil.

find-if predicate sequence &key :key :from-end (:start 0) :end 

Finds the leftmost element in sequence that

satisfies predicate. Returns said element if

found, otherwise nil.

find-if-not predicate sequence &key :key :from-end (:start 0) :end 

Finds the leftmost element in sequence that

does not satisfy predicate. Returns said element

if found, otherwise nil.
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position item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start

0) :end 

Finds the leftmost item in sequence. Returns

the index of the item if found, otherwise nil.

position-if predicate sequence &key :key :from-end (:start 0) :end 

Finds the leftmost element in sequence that

predicate. Returns the index of the element if

found, otherwise nil. 

position-if-not predicate sequence &key :key :from-end (:start 0) :end 

Finds the leftmost element in sequence that

does satisfy predicate. Returns the index of the

element if found, otherwise nil.

count item sequence &key (:test #’eql) :test-not (:key #’identity) :from-end (:start 0)

:end 

Counts the elements in the specified subse-

quence of sequence that satisfy predicate speci-

fied by :test. Returns the result.

count-if predicate sequence &key :key :from-end (:start 0) :end 

Counts the elements in the specified subse-

quence of sequence that satisfy predicate. Re-

turns the result.

count-if-not predicate sequence &key :key :from-end (:start 0) :end 

Counts elements in the specified subsequence

of sequence that do not satisfy predicate. Re-

turns a non-negative integer.

mismatch sequence1 sequence2 &key :from-end (:test #’eql) :test-not :key (:start1 0)

(:start2 0) :end1 :end2 

Compares the specified subsequences of se-

quence1 and sequence2 element-wise. Returns

nil if they are of equal length and match at ev-

ery element. Otherwise, the result is a non-

negative integer representing where the se-

quences failed to match.

search sequence1 sequence2 &key :from-end (:test #’eql) :test-not :key (:start1 0)

(:start2 0) :end1 :end2 

Looks for a subsequence of sequence2 that ele-

ment-wise matches sequence1. Returns nil if no

such subsequence exists. Otherwise, it returns

the index into sequence2 of the leftmost ele-

ment of the leftmost such matching subse-

quence.
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Sorting and Merging Sequences

The sorting and merging functions destructively modify argument sequences in or-

der to place a sequence into a sorted order or to merge two previously sorted se-

quences.

sort sequence predicate &key key Destructively modifies sequence by sorting it

according to an order determined by predicate.

Returns a modified sequence.

stable-sort sequence predicate &key key 

Same as sort, however stable-sort guarantees

that elements considered equal by predicate will

remain in their original order. 

merge result-type sequence1 sequence2 predicate &key key 

Destructively merges sequence1 and sequence2

according to an order determined by predicate.

Returns merged sequences.�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:sort x sort-lessp-predicate Sorts the contents of the array or list x by the

order determined by sort-lessp-predicate. Re-

turns a modified list or array x. Use the Com-

mon Lisp function sort.

zl:stable-sort x lessp-predicate Same as zl:sort, however zl:stable-sort guaran-

tees that elements considered equal by predi-

cate will remain in their original order. Use

the Common Lisp function stable-sort.�

Sequence Functions in the CL Package with SCL Extensions

Here are the sequence functions that have Symbolics Common Lisp extensions:

Function Extension(s)

copy-seq area

delete-duplicates :replace

make-sequence :area

Characters
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For an introduction to characters, see the section "Overview of Characters".

How the Reader Recognizes Characters

The reader recognizes characters by the #\ prefix followed by the character’s name.

For example: 

#\A is read as the character A

#\1 is read as the character 1

#\Space is read as the character Space

#\control-A is read as the character c-A

�

The following examples show how to represent the character A with various bits

set:

Meta bit: #\meta-A or #\m-A

Hyper bit: #\hyper-A or #\h-A

Super bit: #\super-A or #\s-A

Control bit: #\control-A or #\c-A

Control and meta bits: #\c-m-A or #\m-c-A

All bits set: #\h-s-m-c-A (or other combinations)�

For more information on bit keys, see the section "Using Modifier Keys".

The reader recognizes characters that are in character sets other than the Symbol-

ics character set by the #\ prefix followed by the name of the character set, a

colon, and the name of the character. For example:

#\mouse:nw-arrow nw-arrow character in mouse character set

#\mouse:scissors scissors character in mouse character set

#\arrow:eye eye character in arrow character set�

Type Specifiers and Type Hierarchy for Characters

Characters are Lisp objects of type character. character has two subtypes: string-

char and standard-char. 

character All characters are of type character. 

string-char This is a subtype of character. Characters that are in the

Symbolics standard character set with bits field of zero and

style of NIL.NIL.NIL are of type string-char. 

standard-char This is a subtype of string-char. Characters that are in the

Common Lisp standard character set are of type standard-

char. �

The Common Lisp standard character set includes: 



Page 211

! @ " # $ % & ’ ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _

‘ a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

�

Genera also supports the following semi-standard Common Lisp characters: 

#\Backspace #\Tab #\Linefeed #\Page #\Return #\Rubout #\Space #\Newline�

Genera calls any character that is of type string-char a thin character because it

can be represented with less storage space. A character that is not of type string-

char because it is in a character set other than the Symbolics character set, or be-

cause it contains non-zero bits or style information is called a fat character.

For a complete list of characters supported in the Symbolics standard character

set, see the section "The Character Set".

For a list of character type-checking predicates, see the section "Character Predi-

cates".

Character Objects

A character is a type of Lisp object. A character object is used to represent letters

of the alphabet and numbers, among other things. Characters are the building

blocks of strings; a string is a one-dimensional array of characters.

Each character object has the following attributes: the character code, the charac-

ter set, the bits, and the character style. 

Character code Identifies this character, such as "uppercase A". 

Character style Specifies how the character should appear. For example:

FIX.ROMAN.NORMAL 

Bits Indicates whether any of these bits are set for the character:

Control, Meta, Super, and Hyper. �

Fields of a Character

The following diagram depicts the fields of a character: 

|<-----------------Entire character---------------->|

|<---Bits--->|<--Style--->|<-------Char code------->|

                          |<-Char set->|<-Subindex->|�

This diagram makes it clear that a character object is composed of three indepen-

dent attributes: the bits, the character style, and the character code. The character

code can be broken down into the character set and a subindex into that character

set.

Genera provides functions that access the various fields of a character: 

Function Field accessed�
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char-int Entire character 

char-code Character code field

char-bits Bits field

sys:char-subindex Subindex field

si:char-style Returns the character style object that is associated

with the integer stored in the Style field. �

There is a one-to-one correspondence between each character style (such as

NIL.NIL.NIL and SWISS.BOLD.NORMAL) and the character style index, which is

the integer stored in the style field. This association is maintained in a system ta-

ble, and it is different from one machine to another, and can be different when

you cold boot your machine. Do not write programs that depend on a character

style index representing the same character style from one cold boot to another, or

from one machine to another.

Common Lisp has a font field instead of a character style field. As implemented in

SCL, characters have no font field and the char-font-limit is 1. This is in compli-

ance with Common Lisp. 

In Symbolics documentation the word font is used in two contexts: to describe a

font that is specific to a device, for representing characters; to refer to the font of

a character as implemented in releases of Symbolics software prior to Genera 7.0.

Character Sets

The code field of a character can be broken down into a character set and an in-

dex into that character set. 

A character set is a set of related characters that are recognizably different from

other characters. Genera supports the standard Symbolics character set, which is

an upward-compatible extension of the 96 Common Lisp standard characters and

the 6 Common Lisp semi-standard characters. It is nearly an upward-compatible

extension of ASCII; it uses a single Newline character and omits the ASCII control

characters. See the section "The Character Set".

Another example of a character set is the Cyrillic alphabet; this is not implement-

ed in Genera. 

When comparing characters, there is no intrinsic ordering between characters in

different character sets. Two characters of different character sets are never

equal. Less-than is not well defined between them. Within a single character set,

less-than is defined so that characters (and strings) can be sorted alphabetically. 

Genera supports three character sets: the Symbolics standard character set; the

mouse character set, and the arrow character set. Figure ! shows the characters in

the mouse character set. Figure ! shows the characters in the mouse character set.

Characters that are in character sets other than the Symbolics character set are

represented by the #\ prefix followed by the name of the character set, a colon,

and the name of the character. For example:
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#\mouse:nw-arrow

#\mouse:scissors

#\mouse:trident

#\arrow:center-dot

#\arrow:eye

#\arrow:circle-cross�

Figure 14.  Mouse Character Set�

�

Character Code, Bits, and Style
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Figure 15.  Arrow Character Set

The character code is a field of the character that identifies that character. Other

systems use an ASCII code to identify a character. Characters that are recogniz-

ably distinct always have different character codes. For example, the Roman a and,

the Greek α have two different character codes.

A character can be modified by the bits field and the character style field. These

two modifications of a character leave it recognizably the same; it does not change

the character code. 

The bits field describes whether the hyper, super, control, or meta key is part of

this character. The character #\A has character code 65 and a bits field of 0. The

character #\c-A also has character code 65, but the bits field is set to char-

control-bit, which means that this is a control character. For a list of constants

that represent the control, hyper, super, and meta bits, see the section "Character

Bit Constants".

The character style describes how a character should appear. For example, the Ro-

man a, the bold a, and the italic a all have the same character code. The style

field also expresses such attributes of a character as its displayed size and the

typeface used. 

An operational definition of the difference between the code and style fields is pro-

vided by the char-equal function, which compares the character code and bits but

ignores the style. 

eq and Character Objects

Instead of using eq on character objects, use char-equal or char=. char= com-

pares characters exactly, according to all fields including code, bits, character

style, and alphabetic case. char-equal compares characters according to their code

and bits, ignoring case and character style. 

eq is not well defined on character objects. Changing a field of a character object

gives you a "new copy" of the object; it never modifies somebody else’s "copy" of

"the same" character object. In this way character objects are similar to integers

with fields accessed by ldb and changed by dpb. Because eq is not well defined on

character objects, you should use eql to compare characters for identity, not the eq

function. Currently on the 3600 family of machines, eq and eql are equivalent for
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characters, just as they are equivalent for integers, but programs should not be

written to depend on this.

Note that eq might not work for characters in other implementations of the Com-

mon Lisp dialect. 

Character Styles

What is a Character Style?

A character style is a combination of three characteristics that describe how a

character appears. These characteristics are the family, face, and size. 

Family Characters of the same family have a typographic integrity, so

that all characters of the same family resemble one another.

Examples: SWISS, DUTCH, and FIX. 

Face A modification of the family, such as BOLD or ITALIC. 

Size The size of the character, such as NORMAL or VERY-SMALL.

�

The character style is the grouping of the family, face, and size fields. A character

style is often represented by the convention: 

family.face.size

An example of a fully specified character style is: 

SWISS.ITALIC.LARGE�

Each element of the character style can be specified or left unspecified. A family,

face, or size of NIL means to use the default value. Most characters have the fol-

lowing character style: 

NIL.NIL.NIL

Characters of style NIL.NIL.NIL are displayed in the default character style estab-

lished for the current output device. 

Default Character Styles

The appearance of a character depends on two things: the character style of the

character, and the default character style. The default character style is a global

parameter of an output device. It applies for all processes. Windows, buffers, files,

and printers each have default character styles for output. The default character

style specifies the appearance of a character whose character style is NIL.NIL.NIL.

The character’s style is merged against the default character style to produce the

final appearance of the character. A default character style must be fully specified.
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We recommend that you use character styles by making good use of the default

character styles. You preserve the most flexibility by keeping the character style of

the characters themselves as unspecified as possible. If you want to change the ap-

pearance of all characters in a Zmacs buffer, a Zmail message or a window, you

can change the default character style instead of changing the character style of

each character. 

The default character style affects the appearance of a character on output. There

is also a typein character style for each interactive stream, which is normally

NIL.NIL.NIL. The typein character style affects the character style in which char-

acters are entered as input. If the typein character style is NIL.BOLD.NIL, any

characters you enter at the keyboard have the character style NIL.BOLD.NIL. It is

important to be sure that the application program can handle characters whose

character style is something other than NIL.NIL.NIL, if you are going to use a

typein character style other than NIL.NIL.NIL. 

If you only want to change the way that characters echo, but not the way they are

entered as input, you can change the echo character style. See the section "Using

Character Styles in the Input Editor".

Merging Character Styles

This section gives some examples of how the character style of a character is

merged against the default character style to produce a final result. 

In general, we advise that you specify as little as possible when changing a char-

acter style. That is, if you want the character’s face to be italic, specify only the

face component and let the family and size come from the default character style. 

Character Style Default Result of 

of a Character Character Style Merging

NIL.NIL.NIL FIX.ROMAN.NORMAL FIX.ROMAN.NORMAL

NIL.ITALIC.LARGE FIX.ROMAN.NORMAL FIX.ITALIC.LARGE

NIL.ITALIC.SMALLER FIX.ROMAN.NORMAL FIX.ITALIC.SMALL

SWISS.BOLD.LARGER FIX.ROMAN.NORMAL SWISS.BOLD.LARGE

SWISS.BOLD.SAME FIX.ROMAN.NORMAL SWISS.BOLD.NORMAL�

The family and face components are either NIL or the name of a family or face. 

The size component can be NIL, an absolute size (such as LARGE or VERY-

SMALL) or a relative size (such as LARGER or SMALLER). A relative size is

merged against the default size such that when you merge LARGER against NOR-

MAL, the result is the next size larger than NORMAL. 

The ordered hierarchy of sizes is:
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TINY

VERY-SMALL

SMALL

NORMAL

LARGE

VERY-LARGE

HUGE�

If you try to merge SMALLER against the smallest size, TINY, the result is TINY.

Similarly, if you try to merge LARGER against the largest size, HUGE, the result

is HUGE.

Available Character Styles

This section lists the most commonly used character families, faces, and sizes. For

a mapping of each style to a specific font for the black and white console, see the

section "Character Styles for TV Fonts". For a mapping of styles for the

LGP2/LGP3 printer, see the section "Character Styles for LGP2/LGP3 Fonts".

The following families, faces, and sizes are available and are mapped to fonts in

all combinations, for the black and white console and the LGP2/LGP3 printer. 

Families DUTCH, SWISS, FIX 

Faces ROMAN, BOLD, ITALIC, BOLD-ITALIC 

Sizes VERY-SMALL, SMALL, NORMAL, LARGE, VERY-LARGE�

The black and white console device supports these additional character styles: 

• The family JESS in all combinations of faces ROMAN, ITALIC, BOLD, and sizes

NORMAL and LARGE. 

• The family EUREX in face ITALIC and size HUGE.�

The LGP2 printer device supports this additional character style:

• The family HEADING in all combinations of faces ROMAN, ITALIC, BOLD,

BOLD-ITALIC, and sizes VERY-SMALL, SMALL, NORMAL, LARGE, and VERY-

LARGE.�

The following figures show how a character appears in different families, faces,

and sizes. This output came from a black-and-white screen, so it displays TV fonts.

Figure ! shows how the characters of the five most common sizes appear for a

given family and face. The faces of the displayed characters from left to right are:

NORMAL, ITALIC, BOLD, BOLD-ITALIC.

Figure ! shows how the characters of the four most common faces appear for a

given family and size. The families of the displayed characters from left to right

are: FIX, SWISS, DUTCH, and JESS.



Page 218

Figure 16.  Varying Character Sizes: VERY-SMALL to VERY-LARGE

�

Figure 17.  Varying Character Faces: ROMAN, ITALIC, BOLD, BOLD-ITALIC

�

Figure ! shows how the characters of the four most common families appear for a

given face and size. The sizes of the displayed characters from left to right are:

very-small, small, normal, large, and very-large.

Figure 18.  Varying Character Families: FIX, SWISS, DUTCH, JESS

�

Using Character Styles

Genera offers facilities for using character styles to specify how a character should

appear. You can use commands in Zmacs, Zmail, and the input editor to change

the character style of a character, or to change the default character style associ-

ated with a buffer, mail message, or window. Similarly, you can change the default

character style associated with a printer, for a particular print request. 
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Refer to the following sections for descriptions of facilities for using character

styles: 

See the section "Using Character Styles in the Input Editor".

See the section "Character Styles and the Lisp Listener".

See the section "Using Character Styles in Zmail".

See the section "Using Character Styles in Hardcopy".

See the section "Using Character Styles in Zmacs".�

Refer to the following sections for descriptions of facilities for programming with

character styles: 

See the function with-character-style.

See the function with-character-family.

See the function with-character-face.

See the function with-character-size.

�

Mapping a Character Style to a Font

A character style is device-independent. However, when a character is displayed on

a device, somehow a specific font must be chosen to represent the character. The

final appearance of the character depends on: the character code, the character

set, the character style, and the device. 

The associations between character styles and fonts that are specific to a device

are contained in si:define-character-style-families forms. 

You can use si:get-font to determine which font is chosen for a given device, char-

acter set, and character style. 

If you want to use a private font, you can either use it via device fonts, or use

si:define-character-style-families to explicitly associate one or more character

styles with that font. Using si:define-character-style-families has the advantage

of hooking the new font into the character style system, but it has the disadvan-

tage that any user who reads in a file using the newly defined character style

must already have that style defined in the world. Using device fonts has the ad-

vantage that users can conveniently read in files that use private fonts (there is

no need to have a form defining new character styles). The disadvantages of device

fonts are: they circumvent the character style system and they are not device-

independent. That is, a device font can work for characters to be displayed on the

screen, or on some other device, but not both.

si:get-font device character-set style &optional (error-p t) inquiry-only Function

Given a device, character-set and style, returns a font object that would be used to

display characters from that character set in that style on the device. This is use-

ful for determining whether there is such font mapping for a given device/set/style

combination. 

A font object may be various things, depending on the device.
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If error-p is non-nil, this function signals an error if no mapping to a font is

found. If error-p is nil and no font mapping is found, si:get-font returns nil.

If inquiry-only is provided, the returned value is not a font object, but some other

representation of a font, such as a symbol in the fonts package (for screen fonts)

or a string (for printer fonts). 

(si:get-font si:*b&w-screen* si:*standard-character-set* 

             ’(:jess :roman :normal))

�

=> #<FONT JESS13 154102066>

�

(si:get-font lgp:*lgp2-printer* si:*standard-character-set* 

             ’(:swiss :roman :normal) nil t)

�

=> "Helvetica10"�

For related information: See the section "Mapping a Character Style to a Font".

si:define-character-style-families device character-set &rest plists Function

The mechanism for defining new character styles, and for defining which font

should be used for displaying characters from character-set on the specified device.

plists contain the actual mapping between character styles and fonts.

It is necessary that a character style be defined in the world before you access a

file that uses the character style. You should be careful not to put any characters

from a style you define into a file that is shared by other users, such as

sys.translations.

It is possible for plists to map from a character style into another character style;

this usage is called logical character styles. It is expected that the logical style

used has its own mapping, in this si:define-character-style-families form or an-

other such form, that eventually is resolved into an actual font.

plists is a nested structure whose elements are of the form:

(:family family

         (:size size

                (:face face target-font

                 :face face target-font

                 :face face target-font)

          :size size

                (:face face target-font

                 :face face target-font)))�

Each target-font is one of:

• A symbol such as fonts:cptfont, which represents a font for a black and white

Symbolics console. 

• A string such as "furrier7", which represents a font for an LGP2 or LGP3

printer. 
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• A list whose car is :font and whose cadr is an expression representing a font,

such as (:font ("Furrier" "B" 9 1.17)). This is also a font for an LGP2/LGP3

printer. 

• A list whose car is :style and whose cdr is a character style, such as: (:style�

family face size). This is an example of using a logical character style (see

ahead for more details). �

Each size is either a symbol representing a size, such as :normal, or an asterisk *

used as a wildcard to match any size. The wildcard syntax is supported for the

:size element only. When you use a wildcard for size the target-font must be a

character style. The size element of target-font can be :same to match whatever

the size of the character style is, or :smaller or :larger. 

If you define a new size, that size cannot participate in the merging of relative

sizes against absolute sizes. The ordered hierarchy of sizes is predefined. See the

section "Merging Character Styles".

The elements can be nested in a different order, if desired. For example:

(:size size

       (:face face

              (:family target-font)))�

The first example simply maps the character style BOX.ROMAN.NORMAL into the

font fonts:boxfont for the character set si:*standard-character-set* and the de-

vice si:*b&w-screen*. The face ROMAN and the size NORMAL are already valid

faces and sizes, but BOX is a new family; this form makes BOX one of the valid

families. 

;;; -*- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 10 -*-

(define-character-style-families *b&w-screen* *standard-character-set* 

  ’(:family :box

    (:size :normal (:face :roman fonts:boxfont))))�

Once you have compiled this form, you can use the Zmacs command Change Style

Region (invoked by c-X c-J) and enter BOX.ROMAN.NORMAL. This form does not

make any other faces or sizes valid for the BOX family. 

The following example uses the wildcard syntax for the :size, and associates the

faces :italic, :bold, and :bold-italic all to the same character style of

BOX.ROMAN.NORMAL. This is an example of using logical character styles. This

form has the effect of making several more character styles valid; however, all

styles that use the BOX family are associated with the same logical character

style, which uses the same font. 

;;; -*- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 10 -*-

(define-character-style-families *b&w-screen* *standard-character-set*

  ’(:family :box

    (:size * (:face :italic (:style :box :roman :normal)



Page 222

    :bold (:style :box :roman :normal)

    :bold-italic (:style :box :roman :normal)))))�

For lengthier examples: See the section "Examples of si:define-character-style-

families".

For related information: See the section "Mapping a Character Style to a Font".

Examples of si:define-character-style-families

The use and syntax of si:define-character-style-families is best explained by ex-

ample. 

The following example maps character styles for the standard Symbolics character

set (which is bound to si:*standard-character-set*) on the device

si:*b&w-screen*:

;;; -*- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 10 -*-

(define-character-style-families *b&w-screen* *standard-character-set*

  ’(:family :fix

    (:size :normal (:face :roman fonts:cptfont

  :italic fonts:cptfonti

  :bold fonts:cptfontcb

  :bold-italic fonts:cptfontbi

  :bold-extended fonts:cptfontb

  :condensed fonts:cptfontc

  :extra-condensed fonts:cptfontcc)

   :small (:face :roman fonts:tvfont

 :italic fonts:tvfonti

 :bold fonts:tvfontb

 :bold-italic fonts:tvfontbi)

   :very-small (:face :roman fonts:einy7

      :italic fonts:einy7

      :bold fonts:einy7

      :bold-italic fonts:einy7

      :uppercase fonts:5x5)

   :tiny (:face :roman fonts:tiny

:italic fonts:tiny 

:bold fonts:tiny 

:bold-italic fonts:tiny) 

   :large (:face :roman fonts:medfnt

 :italic fonts:medfnti

 :bold fonts:medfntb

 :bold-italic fonts:medfntbi)

   :very-large (:face :roman fonts:bigfnt

      :italic fonts:bigfnti

      :bold fonts:bigfntb

      :bold-italic fonts:bigfntbi))))�
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The following example maps character styles for the standard Symbolics character

set (which is bound to si:*standard-character-set*) on the device lgp:*lgp2-

printer*:

;;; -*- Package:SYSTEM-INTERNALS; Mode:LISP; Base: 10 -*-

(define-character-style-families lgp:*lgp2-printer* 

                                 *standard-character-set* 

  ’(:family :fix 

    (:size  :small (:face :roman "Furrier7"

  :italic "Furrier7I"

  :bold "Furrier7B"

  :bold-italic "Furrier7BI")

    :normal (:face :roman "Furrier9"

   :italic "Furrier9I"

   :bold "Furrier9B"

   :bold-extended (:font ("Courier" "B" 9 1.17))

   :bold-italic "Furrier9BI")

    :large (:face :roman "Furrier11"

  :italic "Furrier11I"

  :bold "Furrier11B"

  :bold-italic "Furrier11BI"))))

�

Device Fonts

This section describes the facility for using device fonts to display characters. If

you use device fonts you circumvent the character style system; device fonts ignore

the default character style of the output device, and no merging is supported for

them. Unlike character styles, device fonts are not device independent. If a charac-

ter is displayed in a device font, it cannot be displayed on two different devices.

For example, if a character is in a device font intended for the screen, it cannot

be hardcopied. 

The main reason for using device fonts is to compensate for a possible problem in

using si:define-character-style-families. Suppose you define new character styles

using si:define-character-style-families and write a file that contains the newly

defined character styles. If anyone else reads that file, it is necessary that the

character styles have already been defined in that world, by virtue of the si:define-

character-style-families form having been evaluated in that world. 

In contrast, if you use device fonts to specify how characters appear in the file,

and the font is stored in the SYS:FONTS;TV;*.*.* directory, other users can read the

file, and characters appear in the correct font. Note that you cannot hardcopy that

file because the characters in the screen device font cannot be directed to another

device such as an LGP2/LGP3 printer. We strongly discourage using device fonts

in electronic mail. If the device font is intended for the black and white console,

the message cannot be hardcopied. 
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A secondary reason for using device fonts is for convenience when developing fonts

intended for the screen. You can simply display characters in the new font by us-

ing device fonts, and skip the step of defining character styles for the font until

you are ready to do so. 

To use device fonts, you use character style commands and enter DEVICE-FONT

as the family. You are then prompted for the name of the font, which must be a

symbol in the font package. 

For example, in Zmacs, when you use c-X c-J to change the style of a region, you

can enter DEVICE-FONT for the family. You can then press HELP for a list of

fonts defined for the screen. Choose one of the fonts. There is no need to enter a

size. The characters are then displayed in the chosen device font.

Two presentation types also accept device fonts: character-face-or-style and

character-style-for-device. 

Character Styles for TV Fonts

This section shows the mapping from a character style to a font for the black and

white console device. Each family has its own table. The rows are the various

faces and the columns are the sizes. If no font is available for a family.face.size

triple, "--" is shown in that spot.

Family FIX

                TINY VERY-SMALL SMALL    NORMAL    LARGE    VERY-LARGE

ROMAN           TINY EINY7      TVFONT   CPTFONT   MEDFNT   BIGFNT

ITALIC          TINY EINY7      TVFONTI  CPTFONTI  MEDFNTI  BIGFNTI

BOLD            TINY EINY7      TVFONTB  CPTFONTCB MEDFNTB  BIGFNTB

BOLD-ITALIC     TINY EINY7      TVFONTBI CPTFONTBI MEDFNTBI BIGFNTBI

UPPERCASE       --   5X5        --       --        --       --

BOLD-EXTENDED   --   --         --       CPTFONTB  --       --

CONDENSED       --   --         --       CPTFONTC  --       --

EXTRA-CONDENSED --   --         --       CPTFONTCC --       --

Family SWISS

                    VERY-SMALL SMALL  NORMAL         LARGE  VERY-LARGE

ROMAN               HL8        HL10   HL12           HL14   SWISS20

ITALIC              HL8I       HL10I  HL12I          HL14I  SWISS20I

BOLD                HL8B       HL10B  HL12B          HL14B  SWISS20B

BOLD-ITALIC         HL8BI      HL10BI HL12BI         HL14BI SWISS20BI

BOLD-CONDENSED-CAPS --         --     SWISS12B-CCAPS --     --

CONDENSED-CAPS      --         --     SWISS12-CCAPS  --     --

Family DUTCH

            VERY-SMALL SMALL  NORMAL LARGE     VERY-LARGE
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ROMAN       TR8        TR10   TR12   DUTCH14   DUTCH20

ITALIC      TR8I       TR10I  TR12I  DUTCH14I  DUTCH20I

BOLD        TR8B       TR10B  TR12B  DUTCH14B  DUTCH20B

BOLD-ITALIC TR8BI      TR10BI TR12BI DUTCH14BI DUTCH20BI

Family JESS

        NORMAL  LARGE

ROMAN  JESS13  JESS14

ITALIC JESS13I JESS14I

BOLD   JESS13B JESS14B

Family EUREX

       HUGE

ITALIC EUREX24I

�

Character Styles for LGP2/LGP3 Fonts

Family FIX: Fonts are supported for all combinations of faces ROMAN, ITALIC,

BOLD, and BOLD-ITALIC and sizes TINY, VERY-SMALL, SMALL, NORMAL,

LARGE, VERY-LARGE. 

Face LGP2/LGP3 Font

ROMAN Courier

ITALIC Courier-Oblique

BOLD Courier-Bold

BOLD-ITALIC Courier-Bold-Oblique

Size LGP2/LGP3 Font Size

TINY 4 point

VERY-SMALL 6 point

SMALL 7 point

NORMAL 9 point

LARGE 11 point

VERY-LARGE 14 point�

Also, FIX.BOLD-EXTENDED.NORMAL maps to font Courier-Bold 9 point. 

Family SWISS: Fonts are supported for all combinations of faces ROMAN, ITAL-

IC, BOLD, and BOLD-ITALIC and sizes VERY-SMALL, SMALL, NORMAL,

LARGE, VERY-LARGE. 
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Face LGP2/LGP3 Font

ROMAN Helvetica

ITALIC Helvetica-Oblique

BOLD Helvetica-Bold

BOLD-ITALIC Helvetica-Bold-Oblique

Size LGP2/LGP3 Font Size

VERY-SMALL 7 point

SMALL 8 point

NORMAL 10 point

LARGE 12 point

VERY-LARGE 16 point

�

Family DUTCH: Fonts are supported for all combinations of faces ROMAN,

ITALIC, BOLD, and BOLD-ITALIC and sizes VERY-SMALL, SMALL, NORMAL,

LARGE, VERY-LARGE. 

Face LGP2/LGP3 Font

ROMAN Times-Roman

ITALIC Times-Oblique

BOLD Times-Bold

BOLD-ITALIC Times-Bold-Oblique

Size LGP2/LGP3 Font Size

VERY-SMALL 7 point

SMALL 8 point

NORMAL 10 point

LARGE 12 point

VERY-LARGE 16 point�

Family Heading: Fonts are supported for all combinations of faces ROMAN,

ITALIC, BOLD, and BOLD-ITALIC and sizes VERY-SMALL, SMALL, NORMAL,

LARGE, VERY-LARGE. 

Face LGP2/LGP3 Font

ROMAN Times-Roman

ITALIC Times-Oblique

BOLD Times-Bold

BOLD-ITALIC Times-Bold-Oblique

Size LGP2LGP3 Font Size
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VERY-SMALL 8 point

SMALL 9 point

NORMAL 12 point

LARGE 15 point

VERY-LARGE 19 point�

Tables of Character Functions

Making a Character

make-character Constructs a character, enabling you to set the bits and style. 

set-char-bit Changes a bit of a character and returns the new character. 

code-char Constructs a character given its code and bits fields.

make-char Sets the bits field.�

ASCII Characters

ascii-code Returns the ASCII code for the argument.

char-to-ascii Converts a character object with zero bits and style informa-

tion to the corresponding ASCII code.

ascii-to-char Converts an ASCII code to the corresponding character object.�

Character Fields

For a diagram of the fields of a character, see the section "Fields of a Character".

The following functions can be used on characters:

char-code Returns the value of the code field.

char-bits Returns the value of the bits field.

char-font Returns the value of the font field; since Genera characters

have no font field this always returns zero. 

sys:char-subindex Returns the subindex field.

char-bit Returns t if the specified bit is set.

si:char-style Returns a character style object. �

Character Predicates
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The following predicates can be used on characters: 

graphic-char-p Checks whether the character is a printing character. Returns

t if the character has no control bits set and is not a format

effector. 

upper-case-p Returns t for uppercase characters.

lower-case-p Returns t for lowercase characters.

both-case-p Returns t for characters that exist in both cases.

alpha-char-p Returns t for characters that are letters of the alphabet. 

digit-char-p Returns the "weight" of the digit character; for example, re-

turns the integer 9 for the character #\9. 

alphanumericp Returns t for characters that are either letters or base-10 dig-

its.

char-fat-p Returns t if its argument is a fat character, otherwise nil. 

characterp Returns t for objects of type character.

standard-char-p Returns t for objects of type standard-char.

string-char-p Returns t for objects of type string-char. �

For more information on the character types, see the section "Type Specifiers and

Type Hierarchy for Characters".

Character Comparisons

None of the character comparisons ignore the character’s bits. 

Character Comparisons Affected by Case and Style

The following functions are used to compare characters exactly according to the

code, case, character style, and bits fields. 

char= Returns t if the characters match.

char≠ or char/= Returns t if the characters differ.

char< Returns t if the first character is less than the second.

char> Returns t if the second character is less than the first.

char≤ or char<= Returns t if the first character is less than or equal to the

second. 

char≥ or char>= Returns t if the second character is less than or equal to the

first. �
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Character Comparisons Ignoring Case and Style

The following functions are used to compare characters according to the code and

bits only, ignoring case and character style. 

char-equal Returns t if the characters match.

char-not-equal Returns t if the characters differ.

char-lessp Returns t if the first character is less than the second.

char-greaterp Returns t if the second character is less than the first.

char-not-greaterp Returns t if the first character is less than or equal to the

second.

char-not-lessp Returns t if the second character is less than or equal to the

first.�

Character Conversions

The following functions are used in changing the case of characters. 

character Coerces its argument to be a single character, if possible.

char-int Converts a character to an integer.

int-char Converts an integer to a character.

char-upcase Returns the uppercase form of a character.

char-downcase Returns the lowercase form of a character.

char-flipcase Flips the case of a character.

digit-char Returns the character that represents the specified "weight".

For example, returns the character #\9 for the integer 9. �

Character Names

char-name Given a character object that has a name, returns the string

that is the character’s name. 

name-char Given a string that is the name of a character, returns the

character object of that name. �

Character Attribute Constants

The following constants represent the exclusive upper limits for the values of

character attributes.
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char-bits-limit Upper limit for the value of the bits field.

char-code-limit Upper limit for the value of the code field.

char-font-limit Upper limit for the value in the font field; Genera characters

do not have a font field so the value of char-font-limit is 1. �

Character Bit Constants

char-control-bit The control key bit; the value is 1.

char-hyper-bit The hyper key bit; the value is 8.

char-meta-bit The meta key bit; the value is 2.

char-super-bit The super key bit; the value is 4.�

The Character Set

Characters in the Symbolics standard character set whose codes are less than 200

octal (with the 200 bit off), and only those, are "printing graphics"; when output to

a device they are assumed to print a character and move the "cursor" one charac-

ter position to the right. (All software provides for variable-width character styles,

so the term "character position" should not be taken too literally.)

Characters in the range of 200 to 236 inclusive are used for special characters.

Character 200 is a "null character", which does not correspond to any key on the

keyboard. The null character is not used for anything much. Characters 201

through 236 correspond to the special function keys on the keyboard such as RE-

TURN. Some characters are reserved for future expansion.

It should never be necessary for a user or a source program to know these numer-

ical values. Indeed, they are likely to be changed in the future. There are symbolic

names for all characters; see below.

When characters are written to a file server computer that normally uses the

ASCII character set to store text, Symbolics characters are mapped into an encod-

ing that is reasonably close to an ASCII transliteration of the text. When a file is

written, the characters are converted into this encoding, and the inverse transfor-

mation is done when a file is read back. No information is lost. Note that the

length of a file, in characters, will not be the same measured in original Symbolics

characters as it will measured in the encoded ASCII characters.

In TOPS-20, Tenex, and ITS, in the currently implemented ASCII file servers, the

following encoding is used. All printing characters and any characters not men-

tioned explicitly here are represented as themselves. Codes 010 (lambda), 011

(gamma), 012 (delta), 014 (plus-minus), 015 (circle-plus), 177 (integral), 200 through

207 inclusive, 213 (delete/vt), and 216 and anything higher, are preceded by a 177;

that is, 177 is used as a "quoting character" for these codes. Codes 210 (over-

strike), 211 (tab), 212 (line), and 214 (page), are converted to their ASCII cognates,
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namely 010 (backspace), 011 (horizontal tab), 012 (line feed), and 014 (form feed)

respectively. Code 215 (return) is converted into 015 (carriage return) followed by

012 (line feed). Code 377 is ignored completely, and so cannot be stored in files.

Most of the special characters do not normally appear in files (although it is not

forbidden for files to contain them). These characters exist mainly to be used as

"commands" from the keyboard.

A few special characters, however, are "format effectors" which are just as legiti-

mate as printing characters in text files. The following is a list of the names and

meanings of these characters:

Return The "carriage return" character which separates lines of text.

Note that the PDP-10 convention that lines are ended by a pair

of characters, "carriage return" and "line feed", is not used.

Page The "page separator" character which separates pages of text.

Tab The "tabulation" character which spaces to the right until the

next "tab stop". Tab stops are normally every 8 character posi-

tions.

The Space character is considered to be a printing character whose printed image

happens to be blank, rather than a format effector.

There are some characters which are not typeable as keys on a Symbolics 3600

console, even though there are codes and names for such characters. Those charac-

ters are:

205 Macro 220 Stop-Output 231 Hand-Up

216 Quote 223 Status 233 Hand-Left

217 Hold-Output 230 Roman-IV 234 Hand-Right�

The Symbolics standard character set consists of mappings for the octal codes 000-

241. The codes 242-377 are unused in this character set. The names of the charac-

ters are in the table in sys:io;rddefs.lisp. Figure ! is a table of the code mappings.

Strings

Introduction to Strings

Strings are a type of one-dimensional array (a vector) whose elements are charac-

ters.

Symbolics Common Lisp supports two types of strings whose elements are of of

type string-char, or of type character. This is an extension of Common Lisp,

where strings are arrays with elements restricted to type string-char.

The two types of Symbolics Common Lisp strings are also referred to as thin

strings and fat strings.
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000 ⋅ Center-Dot 040 Space 100 @ 140 ‘

001 ↓ Down-Arrow 041 ! 101 A 141 a

002 α Alpha 042 " 102 B 142 b

003 β Beta 043 # 103 C 143 c

004 ∧ And-sign 044 $ 104 D 144 d

005 ¬ Not-sign 045 % 105 E 145 e

006 ε Epsilon 046 & 106 F 146 f

007 π Pi 047 ’ 107 G 147 g

010 λ Lambda 050 ( Open 110 H 150 h

011 γ Gamma 051 ) Close 111 I 151 i

012 δ Delta 052 * 112 J 152 j

013 ↑ Up-Arrow 053 + Plus-sign 113 K 153 k

014 ± Plus-Minus 054 , 114 L 154 l

015 ⊕ Circle-Plus 055 - Minus-sign 115 M 155 m 

016 ∞ Infinity 056 . 116 N 156 n

017 ∂ Partial-Delta 057 / 117 O 157 o

020 ⊂ Left-Horseshoe 060 0 120 P 160 p

021 ⊃ Right-Horseshoe 061 1 121 Q 161 q

022 ∩ Up-Horseshoe 062 2 122 R 162 r

023 ∪ Down-Horseshoe 063 3 123 S 163 s

024 ∀ Universal-Quantifier 064 4 124 T 164 t

025 ∃ Existential-Quantifier 065 5 125 U 165 u

026 ⊗ Circle-X 066 6 126 V 166 v

027 ↔ Double-Arrow 067 7 127 W 167 w

030 ← Left-Arrow 070 8 130 X 170 x

031 → Right-Arrow 071 9 131 Y 171 y

032 ≠ Not-Equals 072 : 132 Z 172 z

033 ◊ Lozenge 073 ; 133 [ 173 {

034 ≤ Less-Or-Equal 074 < Less-sign 134 \ 174 |

035 ≥ Greater-Or-Equal 075 = Equal-sign 135 ] 175 }

036 ≡ Equivalence 076 > Greater-sign 136 ^ 176 ~

037 ∨ Or-sign 077 ? 137 _ 177 ∫ Integral
200  Null 210 Back-Space 220 Stop-Output 230 Roman-IV

201  Suspend 211 Tab 221 Abort 231 Hand-Up

202  Clear-Input 212 Line 222 Resume 232 Scroll

203  Reserved 213 Refresh 223 Status 233 Hand-Left

204  Function 214 Page 224 End 234 Hand-Right

205  Macro 215 Return 225 Square 235 Select

206  Help 216 Quote 226 Circle 236 Network

207  Rubout 217 Hold-Output 227 Triangle 237 Escape

240  Complete

241  Symbol-Help�

Figure 19.  The Symbolics Standard Character Set�

Thin strings These are arrays whose elements are standard characters, of

type string-char, with zero modifier bit and style fields. (In

Zetalisp, this is the array type sys:art-string.)
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Fat strings These are arrays whose elements are wider characters, of type

character with bits holding information about modifier bits,

style, and character code. (In Zetalisp, this is the array type

sys:art-fat-string.) Some string operations ignore these extra

bits. A fat string can hold any character, including characters

which are too large to be elements of a thin string.�

Examples:

(make-string 3 :initial-element #\s)  => "sss"    ; a thin string

�

(make-string 3 :initial-element #\s :element-type ’character)

=> "sss"   ; a fat string

�

(make-array 3 :element-type ’character :initial-element #\hyper-super-s)

 => "<H-S-S><H-S-S><H-S-S>"   ; a fat string

�

See the section "The Character Set". The way characters work, including multiple

fonts and the extra bits from the keyboard, is explained in that section. 

A further distinction between string types is based on array structure: the type

simple-array holds a subtype of string called simple-string. This distinction is

part of the Common Lisp standard, but is not very important for Symbolics ma-

chines.

string An array, possibly with a fill pointer, whose contents are possi-

bly shared with other array objects. Depending on the type of

its elements, string can be thin or fat.

simple-string A subtype of string: an array without a fill pointer, and whose

contents are not shared with other array objects. Depending on

the type of its elements, simple-string can be thin or fat.�

See the section "Array Leaders". See the section "Displaced Arrays". Fill-pointers

and the concept of shared arrays are discussed in those sections.

The string-specific function make-string creates a simple string that can be either

thin or fat. The more general function make-array creates all types of strings.

Examples:

�

(make-string 3 :initial-element #\s)  => "sss"   

(simple-string-p *) => T           ; a thin, simple, string

�

(string-fat-p (make-string 3 :initial-element #\super-s)) => T

                                   ; a fat, simple string

�

(make-array 3 :element-type ’character) => "DDD"

(simple-string-p *) => T           ; a fat, simple string
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�

(make-array 3 :element-type ’string-char 

              :initial-element #\$ 

              :fill-pointer 2) => "$$"

�

(stringp *) => T                   ; a thin, but not simple, string

�

(make-array 3 :element-type ’character  :fill-pointer 2) => "DD" 

(simple-string-p *) => NIL         ; a fat, but not simple, string

�

The printed representation of a string is its characters enclosed in quotation

marks, for example, foo bar. Strings are constants, that is, evaluating a string re-

turns that string. Strings are the right data type to use for text processing.

Since strings are arrays, the usual array-referencing function aref is used to ex-

tract the characters of a string. For example:

(aref "frob" 1)  => #\r�

Note that the character at the beginning of the string is element zero of the array

(rather than one); as usual in Symbolics Common Lisp, everything is zero-based.

It is also valid to store into strings, using setf of aref. As with rplaca on lists,

this changes the actual object; one must be careful to understand where side ef-

fects propagate to. When you are making strings that you intend to change later,

you probably want to create an array with a fill-pointer so that you can change the

length of the string as well as the contents. See the section "Array Leaders". The

length of a string is always computed using length, so that if a string has a fill-

pointer, its value is used as the length.

Strings can be used to create symbols. The function intern, for example, given a

string, returns "the" symbol with that print name. Similarly, make-symbol creates

and returns an uninterned symbol with that print name.

How the Reader Recognizes Strings

The reader recognizes strings, written as a sequence of the characters contained

in the string, and enclosed in double quotes (" ").

Any double quote or escape character, for example, the \ (backslash), in the se-

quence must be preceded by another \ escape character.

Zetalisp Note: In Zetalisp, the / (slash) is the escape character, and it must be

doubled when it occurs inside a string in Zetalisp code.

Examples of strings:

"This is a typical string."

"That is known as a \"cons cell\" in Lisp."�

Any | (vertical bar) inside a string need not be preceded by a backslash. Similarly,

any double quote in the name of a symbol written using vertical-bar notation need

not be preceded by a \.
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The characters contained by the double quotes, taken from left to right, occupy lo-

cations with increasing indices within the string. The leftmost character is string

element number 0, the next one is element number 1, and so on.

Note that the function prin1 prints any string (not just a simple one) using this

syntax, but the function read always constructs a simple string when it reads this

syntax. The reader creates thin strings whenever it can.

� Type Specifiers and Type Hierarchy for Strings

The type specifiers relating to strings are as follows:

character string array

string-char simple-string simple-array

standard-char sequence vector�

Details about each type specifier appear in its dictionary entry.

Figure ! shows the relationships between the various data types relating to strings.

For more on data types, type specifiers, and type-checking in Symbolics Common

Lisp: See the section "Data Types and Type Specifiers".

t

simple-string

string standard-char

sequence array character

vector simple-array string-character

... ...

...

... ...

Figure 20.  Symbolics Common Lisp String Data Types

A string is a specialized vector, or one-dimensional array, whose elements are of

type character, or string-char.

In Lisp terms: string ≡ (or (vector string-char)(vector character)).

The type string can, therefore, be a subtype of the type vector.
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Fat strings, that is strings of type (vector character), are a Symbolics Common

Lisp extension of Common Lisp.

The types (vector string-char) and (vector character) are disjoint; that is, a

string cannot simultaneously be thin and fat.

The type simple-string is a subtype of the types string, and simple-array. simple-

string is not, however, a subtype of the type simple-vector.

Any Lisp object can be tested to see whether it is a string whose elements are of

type character or string-char, and whether it is a simple or a more complex

string. See the section "String Type-Checking Predicates".

Some of the type specifier symbols for strings can be used also in type specifier

lists for specialization and abbreviation of string data types. For example:

(typep (make-string 6 :initial-element #\b) ’(simple-string 3)) => NIL�

See the section "Type Specifier Lists".

Operations with Strings

Several types of string operations can be done with specialized string functions or

with more general-purpose sequence functions. The majority of these functions

take any type of string argument. Note that whenever a sequence function must

construct and return a new string, it always returns a simple string.

String-specific functions whose names begin with string accept a symbol instead of

a string argument, provided that the operation never modifies that argument. The

print name of the symbol is used. On the other hand, the more general sequence

functions that can be applied to strings never accept symbols as sequences. (You

can, however, apply the coercion function string to any argument to make it ac-

ceptable to a sequence function.)

The string-specific operations fall logically into nine major groups, as follows:

• Type-checking Predicates

• Access and Information

• Construction

• Conversion (case changes and pluralizing)

• Manipulation (trimming and reversing)

• Comparison Predicates (case-sensitive and case-insensitive comparisons)

• Searches (case-sensitive and case-insensitive searches)

• ASCII Conversion

• Input and Output�

Generic counterparts of string-specific functions are listed in the summary tables

of string functions. For more on sequence functions: See the section "Sequence Op-

erations".

Several string functions, notably those involving searches and comparison, are fur-

ther subdivided into groups that either respect or ignore string characteristics

such as character style and alphabetic case.
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See the section "Case-Sensitive and Case-Insensitive String Comparisons".

When strings have fill-pointers, string functions generally operate only on the ac-

tive portion of the string (beyond the fill pointer).

String operations can be performed on specific portions of a string argument, and,

where appropriate, in either direction. These user options are controlled by key-

word arguments to the functions, as explained below. See the section "Keyword Ar-

guments Delimit and Direct String Operations".

Many string functions have "destructive" as well as non-destructive versions. Func-

tions beginning with the character "n" (for example, string-nreverse) destroy the

original argument while operating on it; functions that do not have the "n" prefix

(for example, string-reverse), return a modified copy of the original argument.

Such pairs always appear together in the tables, with the non-destructive version

listed first. Since it is highly undesirable to modify a string being used as the

print name of a symbol, destructive functions cannot take symbols as arguments.

Case-Sensitive and Case-Insensitive String Comparisons

String comparisons compare every individual element of the string arrays by exam-

ining the various attributes of each character. The specific character attributes ex-

amined (or ignored) depend on whether the comparison is case-sensitive or case-

insensitive. 

Case-sensitive comparison takes into account every single attribute of the charac-

ters compared, whereas case-insensitive comparison ignores the attributes specify-

ing character style and character case.

Both case-sensitive and case-insensitive comparison functions compare attribute

fields such as character code and modifier bits.

The string comparison and string searching functions call on character comparison

functions, char= and char-equal for case-sensitive and case-insensitive comparison

respectively.

Character objects and operations are explained elsewhere in detail. See the section

"Characters". Here, for convenience, is a summary of some pertinent character at-

tribute information: 

Character style A combination of three characteristics that describe how a

character appears: family, face, and size. The family field is a

grouping that has typographic integrity, for example, "Sans-

Serif" and "Fix". The face field is a modification, such as bold

or italic. The size field is the size of the character.

Character case Refers to the use of lower (small) and upper (capital) case for

alphabetic characters.

Character code Identifies the character within its character set, in the same

way that ASCII codes represent particular characters.
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Modifier bits Refer to the hyper, super, meta, and control keys on the key-

board.�

The case-sensitive string comparison functions are distinguished by their use of al-

gebraic comparison symbols as suffixes (for example, string≠, string≥); the case-

insensitive string comparison functions have alphabetic suffixes (for example,

string-equal, string-not-equal, string-not-lessp).

The case-sensitive string search functions often use the term -exact as part of

their name; for example, string-search-exact-char; the case-insensitive string

search functions omit this term, for example, string-search-char.

Here is an example of case-sensitive and case-insensitive character comparisons for

various combinations of character style, character case, and modifier bits:

�

(let ((victims (list #\A #\a #\c-A 

                 (make-character #\A :style ’(nil :italic nil)))))

  (loop for first-victims on victims

        for first-victim = (first first-victims)

        do

    (loop for second-victim in first-victims

          do

      (format T "~%~8<~c~;~> ~8<~c~;~> char= ~3s char-equal ~3s"

              first-victim

              second-victim

              (char= first-victim second-victim)

              (char-equal first-victim second-victim)))))

�

=>

�

A        A        char= T   char-equal T  

A        a        char= NIL char-equal T  

A        c-A      char= NIL char-equal NIL

A        A        char= NIL char-equal T  

a        a        char= T   char-equal T  

a        c-A      char= NIL char-equal NIL

a        A        char= NIL char-equal T  

c-A      c-A      char= T   char-equal T  

c-A      A        char= NIL char-equal NIL

A        A        char= T   char-equal T  

NIL

�

Keyword Arguments Delimit and Direct String Operations

For the sake of efficiency, the majority of string-specific functions let you operate

on a portion of a string. Such functions have keyword arguments called :start and

:end.
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:start and :end must be non-negative integer indices into the string array. These

keywords operate only on the "active" portion of the string, that is, the portion be-

yond the limit specified by the fill pointer, if there is one.

:start must be smaller than, or equal to, :end, otherwise an error is signalled.

:start indicates the start position for the operation within the string. It defaults to

zero (the start of the string).

:end indicates the position of the first element in the string beyond the end of the

operation. It defaults to nil (the length of the string).

If you omit both :start and :end, the entire string is processed by default.

If two strings are involved, you can use the keyword arguments :start1, :end1,

:start2, and :end2 to specify substrings for each separate string argument.

For operations such as searches it can be useful to specify the direction in which

the string is conceptually processed. You can reverse the conceptual direction of a

search by using the keyword argument :from-end.

Search functions normally process strings in the forward direction, but if you spec-

ify a non-nil value for :from-end, processing starts from the reverse direction. See

the section "Case-Insensitive String Searches".

For some functions, you can specify how many occurrences of an item should be

affected with the keyword :count. If :count is nil, or is not supplied, all matching

items are affected.

String Type-Checking Predicates

These predicates test whether an object is a string of the recognized string types.

The general type-checking predicate typep can also be used to test for strings. See

the section "Determining the Type of an Object".

simple-string-p object Determines if object is a simple string array

(one with no fill pointer and no displacement),

returning t if it is, and nil otherwise. Accepts

any object as an argument.

string-char-p char Determines if char can be stored into a thin

string (that is, if it is a standard character),

returning t if it can, and nil otherwise. Accepts

a character argument only.

string-fat-p string Determines if string is an array of fat charac-

ters, returning t if it can, and nil otherwise.

Accepts a string argument only.

stringp object Determines if if object is either type of string,

returning t if it is, and nil otherwise. Accepts

any object as an argument.�
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String Access and Information

This group includes functions that access a string either to extract a one or more

characters (a substring), or to return information, such as the length of the string.

In Symbolics Common Lisp, the array-accessing function aref is useful for extract-

ing a character from a string. If portability of your programs is a consideration,

you might use the function char instead of aref, since in many cases char is more

efficient than aref. Another advantage of using char is that readers of your code

can tell that you are working with a string.

You can use the function setf with char (or aref) to destructively replace a char-

acter within a string.

char array &rest subscripts Accesses a single character element of a string.

char and aref are equivalent in Symbolics

Common Lisp.

schar array &rest subscripts Same as char.

substring string from &optional to area

Extracts a substring from string. See also

subseq.

nsubstring string from &optional to area

Extracts a substring from string but makes a

displaced array instead of copying string.

string-length string Returns the number of characters in string.

See also length.

string-a-or-an string &optional (both-words t) (case :downcase) 

Computes whether the article "a" or "an" is

used when introducing a noun. If both-words is

true, the result is the concatenation of the ar-

ticle, a space, and the noun; otherwise, the ar-

ticle is returned.

parse-integer string &key (start 0) (end nil) (radix 10) (junk-allowed nil) (sign-

allowed t)

"Reads" a number from string. Returns nil, or

a number found in string, plus the character

position of the next unparsed character in

string.

sys:number-into-array array n &optional (radix zl:base) (at-index 0) (min-columns

0)

Deposits the printed representation of number

into array. �

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, if possible, use the Common Lisp equivalent this function. 
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zl:parse-number string &optional (from 0) to radix fail-if-not-whole-string

"Reads" a number from string. Returns nil, or

a number found in string, plus the character

position of the next unparsed character in

string. Use the Common Lisp parse-integer.�

String Construction

These string-specific functions coerce arguments to strings, construct simple, thin

string arrays, or create strings by concatenation.

More complex character arrays can be constructed using the generic function

make-array.

string, the first function listed in the table, works on strings, symbols, or charac-

ters, but does not work on lists or other sequences. The general function coerce

converts a sequence of characters to a string, but does not accept symbols.

To get the string representation of a number or any other Lisp object, use prin1-

to-string, princ-to-string, or format.

string x Coerces x into a string. Returns a string if x is

a string, or the print name of the symbol if x

is a symbol; if x is a character, a string con-

taining that character is returned.

make-string size &key initial-element element-type area

Creates a simple string of thin or fat charac-

ters, of length size, initialized as specified by

initial-element, and created in the area speci-

fied by area. See also make-sequence and

make-array.

string-append &rest strings Concatenates copies of its string arguments in-

to a single string and returns that string. See

also concatenate.

string-nconc modified-string &rest strings

The destructive version of string-append.

string-nconc-portion to-string {from-string from to} ...

Adds information onto a string without consing

intermediate substrings.

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, use the Common Lisp equivalent of this function. 

zl:string-nconc to-string &rest strings

Returns a concatenated string but modifies its

first argument instead of copying it. Use the

Common Lisp function string-nconc.�
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String Conversion

The specialized functions in this group pluralize a (sub)string, or change string

case for the entire string, specified portions of the string, or for initial characters

in words within the string. The keywords :start and :end delimit the portion of

the string to be operated on. :start defaults to 0 (the beginning of the string);

:end defaults to nil (the length of the string). :start must be ≤ :end. Note that al-

though only a portion of the string may be affected, the functions return a result

of the same length as the entire string argument.

In the case of functions that operate on words, a word is defined as a consecutive

subsequence of alphanumeric characters or digits, delimited at both ends either by

a non-alphanumeric character, or by the beginning or the end of the string.

Most of these functions have separate "destructive" versions, prefixed by the letter

"n", for example, nstring-upcase.

string-pluralize string Creates and returns a string that is the plural of

string.

string-upcase string &key (start 0) (end nil)

Creates and returns a copy of string with all lower-

case characters capitalized.

nstring-upcase string &key (start 0) (end nil)

Returns string with all lowercase characters capital-

ized.

string-downcase string &key (start 0) (end nil)

Creates and returns a copy of string with all upper-

case characters replaced by lowercase.

nstring-downcase string &key (start 0) (end nil)

Returns string with all uppercase characters replaced

by lowercase.

string-capitalize string &key (start 0) (end nil)

Creates and returns a copy of string with initial capi-

tals for each case-modifiable word.

nstring-capitalize string &key (start 0) (end nil)

Returns string with initial capitals for each case-

modifiable word.

string-capitalize-words string &key (start 0) (end nil)

Creates and returns a copy of string with initial capi-

tals for each word, and with hyphens changed to

spaces.

nstring-capitalize-words string &key (start 0) (end nil)

Returns string with initial capitals for each word and

with hyphens changed to spaces.



Page 243

string-flipcase string &key (start 0) (end nil)

Creates and returns a copy of string with uppercase

characters replaced by lowercase, and vice versa.

nstring-flipcase string &key (start 0) (end nil)

Returns string with uppercase characters replaced by

lowercase, and vice versa.

The Zetalisp versions of these functions have optional starting and ending argu-

ments. A further Zetalisp argument, copy-p, controls the function’s effect on its

argument: if copy-p is not nil, the function returns a copy of its argument; if

copy-p is nil, the function alters the argument itself (it works destructively).

Note: These Zetalisp functions are included to help you read old programs. In your

new programs, where possible, use the Common Lisp equivalents of these functions. 

zl:string-pluralize string Returns a string containing the plural of the word in

string. Use the Common Lisp string-pluralize.

zl:string-upcase string &optional (start 0) to (copy-p t)

Returns a copy of string with lowercase characters

capitalized or the string itself is modified and re-

turned. Use the Common Lisp functions string-upcase

and nstring-upcase.

zl:string-downcase string &optional (start 0) to (copy-p t)

Returns a copy of string with uppercase characters re-

placed by lowercase or string itself is modified and re-

turned. Use the Common Lisp functions string-

downcase and nstring-downcase.

zl:string-capitalize-words string &optional (copy-p t) keep-hyphen

Returns string with initial capitals for each word or

the string itself is modified and returned. Use the

Common Lisp functions string-capitalize-words and

nstring-capitalize-words.

zl:string-flipcase string &optional (from 0) to (copy-p t)

Returns a copy of string with uppercase characters re-

placed by lowercase, and vice versa; returns modified

string, if copy-p is nil. Use the Common Lisp functions

string-flipcase and nstring-flipcase.�

String Manipulation

The functions in this group reverse the characters in a string, or trim off specified

portions of a string; trimming can occur either from a specified location within the

string or from either extremity.

Some string manipulation functions take the argument char-set. This argument can

be a list of characters, or a string of characters.
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Several sequence functions are available for replacing or removing specified string

portions. See the section "Sequence Modification".

string-trim char-set string Strips the characters char-set off the beginning

and end of string, and returns the resulting

substring.

string-thin string &key (:start 0) :end (:remove-style t) :remove-bits :error-if :area

Strips the specified character-style information

and bucky bits from string, and returns the re-

sulting substring. (Hyper, meta, super, and

control are bits.) String is an array of charac-

ters.

string-left-trim char-set string Strips the characters in char-set of the begin-

ning of string. Returns a substring of string.

string-right-trim char-set string Strips the characters in char-set off the end of

string. Returns a substring of string.

string-reverse string &key (start 0) (end nil)

Creates and returns a copy of string with the

order of characters reversed. See also reverse.

string-nreverse string &key (start 0) (end nil)

Returns string with the order of characters re-

versed. See also nreverse.

In Zetalisp, char-set can be a list of characters, array of characters, or a string of

characters.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:string-trim char-set string Strips the characters in char-set off the begin-

ning and end of string, and returns the result-

ing substring. Use the Common Lisp function

string-trim.

zl:string-left-trim char-set string Strips the characters in char-set off the begin-

ning of string. Returns a substring of string.

Use the Common Lisp function string-left-trim.

zl:string-right-trim char-set string Strips the characters in char-set from the end

of string. Returns a substring of string. Use

the Common Lisp function string-right-trim.

zl:string-reverse string Creates and returns a copy of string with the

order of characters reversed. Use the Common

Lisp function string-reverse.

zl:string-nreverse string Returns string with the order of characters re-

versed. Use the Common Lisp function string-

nreverse.�
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Case-Sensitive String Comparison Predicates

These predicates compare two strings, or substrings of them, exactly, depending on

all fields including character style, and alphabetic case. See the section "Case-

Sensitive and Case-Insensitive String Comparisons".

The keywords :start1 0 and :start2 0 specify the character position (counting from

0) from which to begin the comparison; the keywords :end1 and :end2 specify the

character position immediately after the end of the comparison. The start argu-

ments default to 0 (compare strings in their entirety); the end arguments default

to the length of the string nil. The start arguments must be ≤ the end arguments.

The predicates compare the strings in dictionary order. They return either the

symbol nil or, generally, the position of the first character at which the strings

fail to match; this index is equivalent to the length of the longest common portion

of the strings. 

string= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if two strings are are identical in all character fields, in-

cluding modifier bits, character set, character style, and alpha-

betic case; it is false otherwise.

string≠ string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the characters in the two strings are not identical

(same as user::string////=).

user::string////= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

A synonym of string≠.

string< string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char<, or if string1 is a proper substring of string2.

string≤ string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char≤, or if string1 is a substring of string2 (same

as string<=).

string<= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

A synonym of string≤.

string> string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char>, or if string2 is a proper substring of string1.

string≥ string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char≥, or if string2 is a substring of string1 (same

as string>=).

string>= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

A synonym of string≥.
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string-exact-compare string1 string2 &key (:start1 0) (:start2 0) :end1 :end2

Returns a positive number if string1 > string2, zero if string1 =

string2, and a negative number if string1 < string2.

sys:%string= string1 index1 string2 index2 count

A low-level, possibly more efficient string comparison.

sys:%string-exact-compare string1 index1 string2 index2 count

A low-level, possibly more efficient string comparison. Returns

a positive number if string1 > string2, zero if string1 = string2,

and a negative number if string1 < string2.

string-exact-compare string1 string2 &optional idx1 idx2 lim1 lim2

Returns a positive number if string1 > string2, zero if string1 =

string2, and a negative number if string1 < string2. Use string-

exact-compare instead.

For the Zetalisp versions of these predicates, the optional arguments, idx1 and idx2�

specify the start point for the comparison, while lim1 and lim2 specify the charac-

ter immediately after the end of the comparison. These Zetalisp predicates general-

ly return either t or nil.

Note: These Zetalisp predicates are included to help you read old programs. In your

new programs, where possible, use the Common Lisp equivalents of these predicates. 

zl:string-exact-compare string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2

Returns a positive number is string1 > string2, zero if string1 =

string2, and a negative number if string1 < string2. Use the

Common Lisp function string-exact-compare.

zl:string= string1 string2 &optional idx1 idx2 lim1 lim2

Like string=, but returns t or nil.

zl:string≠ string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 

Like string≠, but returns t or nil.

zl:string< string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 

Like string<, but returns t or nil.

zl:string> string1 string2 &optional idx1 idx2 lim1 lim2

Like string>, but returns t or nil.

zl:string≤ string1 string2 &optional idx1 idx2 lim1 lim2

Like string≤, but returns t or nil.

zl:string≥ string1 string2 &optional idx1 idx2 lim1 lim2

Like string≥, but returns t or nil. 

Case-Insensitive String Comparison Predicates

These predicates test strings, ignoring character case and character style. See the

section "Case-Sensitive and Case-Insensitive String Comparisons".
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The keywords :start1 and :start2 specify the character position (counting from 0)

from which to begin the comparison; the keywords :end1 and :end2 specify the

character position immediately after the end of the comparison. The start argu-

ments default to 0 (the beginning of the string); the end arguments default to nil

(the length of the string). The start arguments must be ≤ the end arguments.

The predicates compare the strings in dictionary order. They return either the

symbol nil or, generally, the position of the first character at which the strings

fail to match; this index is equivalent to the length of the common portion of the

strings.

These predicates ignore the character fields for character style and alphabetic case

for the comparison. 

string-equal string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if two strings are are identical in all character fields, in-

cluding modifier bits, character set, and character style; other-

wise it is false. Case-insensitive version of string=.

string-not-equal string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Test if string1 is not equal to string2. If the condition is satis-

fied, string-not-equal returns the position within the strings of

the first character at which the strings fail to match. Case-

insensitive version of user::string////=.

string-lessp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char<, or if string1 is a proper substring of string2.

Case-insensitive version of string<.

string-greaterp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char>, or if string2 is a proper substring of string1.

Case-insensitive version of string>.

string-not-greaterp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if string1 is less than or equal to string2. If the condition

is satisfied, string-not-greaterp returns the position within the

strings of the first character at which the strings fail to

match. Case-insensitive version of string<=.

string-not-lessp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if string1 is greater than or equal to string2. If the con-

dition is satisfied, string-not-lessp returns the position within

the strings of the first character at which the strings fail to

match. Case-insensitive version of string>=.

string-compare string1 string2 &key (:start1 0) (:start2 0) :end1 :end2 

Returns a positive number if string1 > string2, zero if string1 =

string2, and a negative number if string1 < string2. Case-

insensitive version of string-exact-compare.
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sys:%string-equal string1 index1 string2 index2 count

A low-level, possibly more efficient string comparison. Case-

insensitive version of sys:%string=.

sys:%string-compare string1 index1 string2 index2 count

A low-level, possibly more efficient string comparison. Returns

a positive number if string1 > string2, zero if string1 = string2,

and a negative number if string1 < string2. Case-insensitive

version of sys:%string-exact-compare.

For the Zetalisp versions of these predicates, the optional arguments idx1 and idx2�

specify the start point for the comparison, while lim1 and lim2 specify the charac-

ter immediately after the end of the comparison. These Zetalisp predicates general-

ly return either t or nil.

These predicates ignore the character fields for character style and alphabetic case

for the comparison.

Note: These Zetalisp predicates are included to help you read old programs. In your

new programs, where possible, use the Common Lisp equivalents of these predicates.

zl:string-equal string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings, returning t if they are equal and nil if

they are not. Case-insensitive version of zl:string=. Use the

Common Lisp function string-equal.

zl:string-not-equal string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings or substrings of them. Case-insensitive

version of zl:string≠. Like string-not-equal but returns t or

nil.

zl:string-lessp string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings using alphabetical order. Case-insensitive

version of zl:string<. Like string-lessp but returns t or nil.

zl:string-greaterp string1 string2 &optional idx1 idx2 lim1 lim2

Case-insensitive version of zl:string>. This compares two

strings or substrings of them. Like string-greaterp but returns

t or nil.

zl:string-not-lessp string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings, or substrings of them. Like string-not-

lessp but returns t or nil.

zl:string-not-greaterp string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings or substrings of them. Like string-not-

greaterp but returns t or nil.

zl:string-compare string1 string2 &optional idx1 idx2 lim1 lim2

Compares the characters of string1 starting at idx1 and ending

just below lim1 with the characters of string2 starting at idx2

and ending just below lim2. Case-insensitive version of

zl:string-exact-compare. Use the Comon Lisp function string-

compare.
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Case-Sensitive String Searches

The following string-specific functions search a string argument, looking for the

presence (or absence) of a specified character (char), or of a string (key). The

functions use char=, and, as denoted by the fact that they all contain the word ex-

act as part of their name, the functions compare all fields of the character, includ-

ing character style and alphabetic case. See the section "Case-Sensitive and Case-

Insensitive String Comparisons". The keywords :start1 and :start2 specify the char-

acter position (counting from 0) from which to begin the comparison; the keywords

:end1 and :end2 specify the character position immediately after the end of the

comparison. The start arguments default to 0 (the beginning of the string); the

end arguments default to nil (the length of the string). The start arguments must

be ≤ the end arguments.

The functions return either nil (unsuccessful), or the position of the first success-

ful occurrence of the item sought. Typically, this is the position of the leftmost oc-

currence. If the keyword argument :from-end is present and has a non-nil value,

the function returns the position of the rightmost element satisfying the test, as

though the search direction had been reversed. Position is always counted from the

beginning of the string.

Generic sequence functions can also be used to locate one or more string elements

satisfying some test. See the section "Searching for Sequence Items".

The case-sensitive search functions have parallel versions that work in case-

insensitive fashion. For a comparison of the case-sensitive and case-insensitive

versions, see the section "Summary of String Searching Functions". 

string-search-exact-char char string &key :from-end (:start 0) :end 

Searches string, or a specified substring, for char. Returns nil,

or the position of the first occurrence of char.

string-search-not-exact-char char string &key :from-end (:start 0) :end 

Searches string, or a specified substring, for occurrences of any

character other than char. Returns nil, or the position of the

first character that does not match char.

string-search-exact key string &key :from-end (:start1 0) :end1 (:start2 0) :end2 

Searches for key in string. Substrings of either argument can

be specified. Returns nil, or the position of the first character

of key occurring in string.

sys:%string-search-exact-char char string start end

A low-level search, possibly more efficient than other searching

functions.�

For the Zetalisp versions of case-sensitive search functions, the optional arguments

from and to let you specify the character position, (counting from 0) from which to

begin and end the search, respectively. The optional arguments key-start and key-

end let you specify substrings of the string searched for.
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from defaults to 0 (the beginning of the string), while to defaults to nil (the length

of the string). key-start and key-end default in analogous fashion.

Zetalisp has separate reverse-search functions. These return a string position

counted from the beginning of the string, even though the search begins at the

end of the string.

Note: These Zetalisp functions are included to help you read old programs. In your

new programs, where possible, use the Common Lisp equivalents of these functions.

zl:string-search-exact-char char string &optional (from 0) to

Searches string, or a specified substring, for char. Re-

turns nil, or the position of the first occurrence of

char. Use equivalent function string-search-exact-

char instead.

zl:string-search-not-exact-char char string &optional (from 0) to

Searches string, or a specified substring, for occur-

rences of any character other than char. Returns ei-

ther nil, or the position of the first character that

does not match char. Use Common Lisp function

string-search-not-exact-char.

zl:string-reverse-search-exact-char char string &optional from (to 0)

Searches string, or a specified substring, starting from

the end of the string. Returns nil, or the position of

the last occurrence of char.

zl:string-reverse-search-not-exact-char char string &optional from (to 0)

Searches string, or a specified substring, for occur-

rences of any character other than char, starting from

the end of the string. Returns nil, or the position of

the last occurrence of a character other than char.

zl:string-search-exact key string &optional (from 0) to (key-start 0) key-end

Searches for key in string. Substrings of either argu-

ment can be specified. Returns nil, or the position of

the first character of key occurring in string. Use

Common Lisp function string-search-exact.

zl:string-reverse-search-exact key string &optional (from 0) to (key-start 0) key-end

Searches for key in string, starting from the end of

string. Substrings of either argument can be specified.

Returns nil, or the position of the last occurrence of

the first character of key in string.

Case-Insensitive String Searches

These functions search a string argument, looking for the presence or absence of a

specified character (char), string key, or a character that is part of a character set

(char-set). The functions use char-equal, which ignores character style and alpha-
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betic case. See the section "Case-Sensitive and Case-Insensitive String

Comparisons".

The keywords :start1 and :start2 specify the character position (counting from 0)

from which to begin the comparison; the keywords :end1 and :end2 specify the

character position immediately after the end of the comparison. The start argu-

ments default to 0 (the beginning of the string); the end arguments default to the

length of the string. The start arguments must be ≤ the end arguments.

Several functions take the argument char-set, which can be a list of characters, an

array of characters, or a string of characters.

The functions return either nil (unsuccessful), or the position of the first success-

ful occurrence of the item sought for. Typically, this is the position of the leftmost

occurrence. If the keyword argument :from-end is given with a non-nil value, the

function returns the position of the rightmost element satisfying the test, as

though the search direction had been reversed. Position is always counted from the

beginning of the string.

Except for the functions that search for char-set, the case-insensitive search func-

tions have parallel versions that work in case-sensitive fashion. For a comparison

of the case-sensitive and case-insensitive versions, see the section "Summary of

String Searching Functions".

General sequence functions can also be used to locate one or more string elements

satisfying some test. See the section "Searching for Sequence Items".

Note that the sequence functions use eql to perform the test. We recommend that

in specifying the :test keyword argument you use a specific comparison function

such as char-equal. 

string-search-char char string &key :from-end (:start 0) :end 

Searches string, or a specified substring, for char. Returns nil,

or the position of the first occurrence of char.

string-search-not-charchar string &key :from-end (:start 0) :end 

Searches string, or a specified substring, for occurrences of any

character other than char. Returns either nil, or the position of

the first character that does not match char.

string-search key string &key :from-end (:start1 0) :end1 (:start2 0) :end2 

Searches for the string key in string. Substrings of either argu-

ment can be specified. Returns nil, or the position of the first

character of key occurring in string.

string-search-set char-set string &key :from-end (:start 0) :end 

Searches string, or a specified substring, for a character that is

in char-set. Returns nil, or the position of the first character

that is char-equal to some element of char-set.

string-search-not-set 0) char-set string &key :from-end (:start 0) :end 

Searches string, or a specified substring, for occurrences of any

character that is not in char-set. Returns nil, or the position of
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the first character that is not char-equal to some element of

char-set.

sys:%string-search-char char string start end

A low-level, possibly more efficient search.�

For the Zetalisp versions of case-insensitive string searching functions, the option-

al arguments from and to let you specify the character position (counting from 0)

from which to begin and end the search, respectively. The optional arguments key-

start and key-end let you specify substrings of the string searched for.

from defaults to 0 (the beginning of the string), while to defaults to nil (the length

of the string). key-start and key-end default in analogous fashion. 

The Zetalisp argument char-set can be represented in Zetalisp as a list of charac-

ters or a string of characters.

Zetalisp has separate reverse-search functions. These return a string position from

the beginning of the string, even though the search begins at the end of the

string.

Note: These Zetalisp functions are included to help you read old programs. In your

new programs, where possible, use the Common Lisp equivalents of these functions. 

zl:string-search-char char string &optional (from 0) to

Searches string, or a specified substring, for char. Returns nil,

or the position of the first occurrence of char. Use Common

Lisp function string-search-char.

zl:string-search-not-char char string &optional (from 0) to

Searches string, or a specified substring, for occurrences of any

character other than char. Returns either nil, or the position of

the first character that does not match char. Use Common Lisp

function string-search-not-char.

zl:string-reverse-search-char char string &optional from (to 0)

Searches string, or a specified substring, starting from the end

of the string. Returns nil, or the position of the first occur-

rence of char in string.

zl:string-reverse-search-not-char char string &optional from (to 0)

Searches string, or a specified substring, for occurrences of any

character other than char, starting from the end of the string.

Returns nil, or the position of the first occurrence of a charac-

ter other than char.

zl:string-search key string &optional (from 0) to (key-start 0) key-end

Searches for key in string. Substrings of either argument can

be specified. Returns nil, or the position of the first character

of key occurring in string. Use Common Lisp function string-

search.
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zl:string-reverse-search key string &optional from (to 0) (key-start 0) key-end

Searches for key in string, starting from the end of string. Sub-

strings of either argument can be specified. Returns nil, or the

position of the first occurrence of the first character of key in

string.

zl:string-search-set char-set string &key from-end (start 0) (end nil)

Searches through string, or a specified substring, for a charac-

ter that is in char-set. Returns nil, or the position of the first

character that is char-equal to some element of char-set. Use

Common Lisp function string-search-set.

zl:string-search-not-set char-set string &key from-end (start 0) (end nil)

Searches string, or a specified substring, for occurrences of any

character that is not in char-set. Returns nil, or the position of

the first character that is not char-equal to some element of

char-set. Use Common Lisp function string-search-not-set.

zl:string-reverse-search-set char-set string &optional from (to 0)

Searches through string, or a specified substring, in reverse

order, looking for a character that is in char-set. Returns nil,

or the position of the first character that is char-equal to

some element of char-set.

zl:string-reverse-search-not-set char-set string &optional from (to 0)

Searches through string, or a specified substring, in reverse

order, looking for a character that is not in char-set. Returns

nil, or the position of the first character that is not char-

equal to some element of char-set.�

Summary of String Searching Functions

Case-sensitive Case-insensitive

Version Version

string-search-exact-char string-search-char

string-search-not-exact-char string-search-not-char

string-search-exact string-search

sys:%string-search-exact-char sys:%string-search-char

[None] string-search-set

[None] string-search-not-set�
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ASCII Conversion String Functions

string-to-ascii lispm-string

Converts lispm-string to a sys:art-8b array containing ASCII

character codes.

ascii-to-string ascii-array

Converts ascii-array, a sys:art-8b array representing ASCII

characters, into a Lisp string.

See the section "ASCII Characters". 

String Input and Output

The generic functions read and write can be used in conjunction with several spe-

cialized functions that operate on character streams. These functions let you create

I/O streams that input from or output to a string rather than to a real I/O device.

String input and output functions, and the two variables that control the printing

of strings, are summarized elsewhere. See the section "String Input and Output

Functions". See the section "Control Variable for Printing Strings".

String Input and Output Functions

write-string string &optional output-stream &key (:start 0) :end 

Writes the characters of the specified substring of string to

output-stream. Returns the string, not the substring. See the

section "Output Functions".

with-input-from-string (stream string &key :index (:start 0) :end) &body body 

Executes body with stream bound to a character input stream

that supplies successive characters from the value of string.

See the function with-open-file.

with-output-to-string (stream &optional string &key :index) &body body 

Executes body with stream bound to a character output stream;

all output to that stream is saved in a string. See the function

with-open-file.

make-string-input-stream string &optional (start 0) end

Returns an input stream that supplies the characters in the

substring of string delimited by start and end. See the section

"Stream Operations".

make-string-output-stream

Returns an output stream that accumulates output for get-

output-stream-string. See the section "Stream Operations".

get-output-stream-string stream

Using a stream produced by make-string-output-stream, re-

turns a string containing all characters output to the stream

so far. See the section "Stream Operations".
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write-to-string object &key :escape :radix :base :circle :pretty :level :length :case :gen-

sym :array :integer-length :array-length :string-length :bit-vector-

length :abbreviate-quote :readably :structure-contents :exact-float-

value 

Returns the object, printed as if by write, with the characters

that would be output made into a string. The keywords specify

values for controlling the printed representation; each defaults

to the value of the corresponding global variable. See the sec-

tion "Output Functions".

read-from-string string &optional (eof-errorp t) eof-value &key (start 0) end pre-

serve-whitespace

Gives the characters of string successively to the Lisp reader,

and returns the Lisp object built by the reader. Returns the

object read, and the index of the first character in the string

not read (if the entire string was read, returns the length of

the string). See the section "Input Functions".�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:with-input-from-string (var string &optional index limit) &body body 

Evaluates the forms in body with var bound to a stream that

reads characters from the string string. See the function with-

open-file.

zl:with-output-to-string (var &optional string index) &body body 

Provides a variety of ways to send output to a string through

an I/O stream. See the function with-open-file.

zl:read-from-string string &optional (eof-option ’si:no-eof-option) (start 0) end (pre-

serve-whitespace zl:read-preserve-delimiters) 

Gives the characters of string successively to the reader, and

returns the Lisp object built by the reader. See the section "In-

put Functions".

Control Variable for Printing Strings

*print-string-length* Controls the number of string characters to

print. See the section "Output Functions".

Table Management

Introduction to the Table Management Facility
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A table is a data structure that consists of some number of entries, each containing

one or more objects. The number of objects per entry is fixed and uniform in any

given table. The simplest tables consist of entries that are keys. In the most com-

mon table, the first object in each entry of a table is the key, and the second ob-

ject is the value. More complex tables can have some combination of multiple keys

and multiple values.

This sample table is made up of key and value pairs, where the key is the bird

type and the value is a list of foods that a bird of that type eats:

KEY (bird) VALUE (diet)

blue-heron (frogs snakes turtles)

ENTRY horned-owl (mice snakes)

pelican (fish)

 ...  ...�

The principal operations on tables are:

• Searching by key

• Inserting and deleting entries

• Examining all entries

• Deleting all entries�

Some tables also support the additional operations of retrieving the first entry, re-

trieving the last entry, and possibly retrieving the entries in order, by key.

Genera’s table management facility performs these operations on tables of many

forms, using one common interface. Thus, you need not worry about the internal

representation of the data or other properties of the table. If you create tables

with this facility, your code is easily ported to Common Lisp, and you take advan-

tage of the efficiencies provided by the facility. If you create tables that do not use

the Symbolics extensions to the make-hash-table function, your code is already

compatible with Common Lisp.

Note: In figuring out the best internal representation for the given data, the table

management facility uses a small amount of overhead. Thus, if you know before-

hand that you need a simple table, for instance a property list or an association

list, it may be more efficient to create your own list rather than use the table

management facility to do it. 

Using this scheme for both simple and complex tables has advantages.

For the user who will only be making simple tables, this facility has the advantage

of being portable to any other Common Lisp implementation, while the underlying

structure is invisible.

For the more advanced uses of tables the facility offers there are other advan-

tages. It is easy, for example, to extend this facility to create tables with your own

mixins for customization.
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In addition, tables created with the Common Lisp function, make-hash-table, have

a number of performance benefits. They use the internal representation best suited

to the data in the table and they have a number of optimizations built in which

make them highly efficient.

The Zetalisp function zl:make-hash-table is obsolete. The table management facili-

ty is a replacement for Zetalisp hash tables, and provides the same functionality in

a more efficient way. If you have code which uses these functions, you should con-

sider converting them to the new facility.

The Lisp functions that operate on lists, arrays, and other structures that are used

as tables remain the same. The traditional creation functions can still be used to

make any tables that you do not want to make with this facility. Even though

tables made from these structures can be constructed and managed via the table

management facility, old-style tables can be more useful at times. These features

are covered elsewhere. See the section "Other Data Types Used as Tables".

Table Management Interface

This section covers the table management operations and interface. The interface

you use to create and access tables is the Common Lisp hash table interface. It

has been extended to support more functionality, but the basic framework is the

same.

It is called the "hash table interface" because it uses the Common Lisp hash table

functions, such as make-hash-table, gethash, and hash-table-count. Genera hash

tables do not necessarily hash, they only use hashing when the table requires it.

Hash Table Interface to the Table Management Facility

For the most common types of tables, a table object is similar to an association

list. Every table object has a set of entries, each of which associates a particular

key with a particular value. The basic functions that operate on table objects cre-

ate entries, delete entries, and find the value that is associated with a given key.

A given table object can only associate one value with a given key; if you try to

add a second value, it replaces the first. A table object may have zero values asso-

ciated with it, if the value of :number-of-values is 0.

You create table objects with the make-hash-table function, which takes various

initialization options. You can add new entries to table objects by using the setf

macro with the gethash function. To look up a key and find the associated value,

use the gethash function.

Note: If you need to access each entry of a table in succession, there are provi-

sions for iterating over entries in tables with the loop iteration macro. See the

section "loop Iteration Over Hash Tables or Heaps". Here is an example of how to

create and work with a table that describes a plant:
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(setq plant (make-hash-table :size 10))

   => #<Table 0/0 71065203>

�

(setf (gethash ’name plant) ’african-violet) => AFRICAN-VIOLET

�

(setf (gethash ’genus plant) ’saintpaulia) => SAINTPAULIA

�

(setf (gethash ’flowers plant) t) => T

�

(setf (gethash ’flower-colors plant) ’(violet white pink))

   => (VIOLET WHITE PINK)

�

(hash-table-count plant) => 4

�

(describe plant)

   => #<Table 4/4 71065203> is a table with 4 entires.

        Test function for comparing keys = EQL, hash function =

        CLI::XEQLHASH

   Do you want to see the contents of the hash table? (Y or N) Yes.

   Do you want it sorted? (Y or N) Yes.

      FLOWER-COLORS → (VIOLET WHITE PINK)

      FLOWERS → T

      GENUS → SAINTPAULIA

      NAME → AFRICAN-VIOLET

   #<Table 4/4 71065203>�

In this example we first create a table with a :size of 10, then bind it to the sym-

bol plant. The next four forms add information about the new plant to the new

table. Each of these forms creates an association between two lisp objects. The

function hash-table-count returns the number of entries in the table. The function

describe, when given a table object prints some useful information about that ob-

ject.

This table object has four entries in it: the first associates from the symbol name

to the symbol african-violet, the second associates from the symbol genus to the

symbol saintpaulia, the third associates from the symbol flowers to the symbol t,

and the last associates from the symbol flower-colors to the list (violet white

pink). The symbols name, genus, flowers and flower-colors are keys, and the

symbols african-violet, saintpaulia, and t, and the list (violet white pink) are

their associated values. Keys do not have to be symbols; they can be any Lisp ob-

ject. Likewise, values can be any Lisp object.

(gethash ’flower-colors plant)

   => (VIOLET WHITE PINK) and T and FLOWER-COLORS

�

(gethash ’name plant)

   => AFRICAN-VIOLET and T and NAME

�

(gethash ’leaves plant)

   => NIL and NIL and NIL
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The three values returned by gethash are the value associated with the key, a

boolean value for whether or not the key was found, and the key itself (if found).

The third value (the key) is a Symbolics extension to Common Lisp. 

Table Functions

Here is a list of functions that operate specifically on tables:

clrhash table Returns table after removing all of its entries.

gethash key table &optional default Finds the value associated with a particular

key. Returns three values: the value; t or nil

depending on whether key was found; and key

if it was found. (This is the key with which the

table was originally created.)

hash-table-count table Returns the number of entries currently in ta-

ble.

hash-table-p object Returns t if object is a table object.

make-hash-table &rest options &key (:test ’eql) (:size

cli:*default-table-size*) (:area default-cons-

area) :hash-function :rehash-before-cold :rehash-

after-full-gc (:number-of-values 1) :store-hash-

code (:mutating t) :initial-contents :ignore-gc

:growth-factor :growth-threshold :rehash-size :re-

hash-threshold 

Creates a new table object.

maphash function table For every entry in table, calls function on the

key of the entry and the value of the entry.

modify-hash table key function Finds the value associated with key in table,

then calls function with key, this value, a flag

indicating whether or not the value was found,

and args; and puts whatever is returned by the

call to function into table, associating it with

key. (The key is the one with which the table

was originally created.)

remhash key table Tries to remove the entry associated with key,

and returns t if the entry was removed, or nil

if none was found.

setf place newvalue Used in combination with gethash to create a

new entry in a table.

swaphash key value hash-table Creates an entry in hash-table, associating key

to value. If an entry for key already exists, it

replaces the value of that entry with value.

swaphash returns two values: the old value
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and a flag. If there is an old value, the flag is

t.

When a table object is created, it has a size, which is the number of entries it can

hold. This number, however, is simply an estimate used to set up the internal rep-

resentation of the table; if the number of entries exceeds the current size, the ta-

ble object automatically grows.

One of the new features of this facility is that tables change internal representa-

tion based on the initial keywords to make-hash-table, the current size of the ta-

ble, and type of the data set. This means that the table changes at run-time as the

table grows and shrinks. For example, if the internal representation of the table is

an association list, and it grows past an efficient size for association lists, the ta-

ble management facility automatically changes it to a hash or block array table,

unless otherwise specified in the call to make-hash-table.

Table objects may be saved into files since they support the :fasd-form methods

required to dump their data to a binary file using the function sys:dump-forms-to-

file. See the function sys:dump-forms-to-file.

Creating Table Objects

You use make-hash-table to make a new table.

Many initialization options to make-hash-table are available for customizing a ta-

ble to your application.

make-hash-table &key :name (:test ’eql) (:size cli:*default-table-size*) (:area

sys:default-cons-area) :hash-function :rehash-before-cold :rehash-after-full-gc (:num-

ber-of-values 1) :store-hash-code (:gc-protect-values t) (:mutating t) :initial-contents

:optimizations (:locking :process) :ignore-gc (:growth-factor cli::*default-table-

growth-factor*) (:growth-threshold cli::*default-table-growth-threshold*) :rehash-

size :rehash-threshold Function

Creates and returns a new table object. This function calls make-instance using a

basic table flavor and mixins for the necessary additional flavors as specified by

the options.

make-hash-table takes the following keyword arguments: 

:name A symbol that identifies the table in progress notes.

:test Determines how keys are compared. Its argument can be any

function; eql is the default. If you supply one of the following

values or predicates the hash table facility automatically sup-

plies a :hash-function: eq, eql, equal, char-equal, char=,

string-equal, #’string-equal, string=, zl:equal, zl:string-equal,

zl:string=. If you supply a value or predicate that is not on

this list, you must supply a :hash-function explicitly. Note: the

:test and :hash-function interact closely, and must agree with

each other.
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:size An integer representing the initial size of the table. The table

will be made large enough to hold this many entries without

growing.

:area If :area is nil (the default), the *default-cons-area* is used.

Otherwise, the number of the area that you wish to use. This

keyword is a Symbolics extension to Common Lisp.

:hash-function Specifies a replacement hashing function. The default is based

on the :test predicate. This keyword is a Symbolics extension

to Common Lisp.

:rehash-before-coldCauses a rehash whenever the hashing algorithm has been in-

validated, during a Save World operation. Thus every user of

the saved world does not have to waste the overhead of rehash-

ing the first time they use the table after cold booting.

For eq tables, hashing is invalidated whenever garbage collec-

tion or world compression occurs because the hash function is

sensitive to addresses of objects, and those operations move ob-

jects to different addresses. For equal tables, the hash function

is sensitive to addresses of some objects, but not to others. The

table remembers whether it contains any such objects.

Normally a table is automatically rehashed "on demand" the

first time it is used after hashing has become invalidated. This

first gethash operation is therefore much slower than normal.

The :rehash-before-cold keyword should be used on tables that

are a permanent part of your world, likely to be saved in a

world saved by Save World, and to be touched by users of that

world. This applies both to tables in Genera and to tables in

user-written subsystems saved in a world.

This keyword is a Symbolics extension to Common Lisp.

:rehash-after-full-gc

Similar to :rehash-before-cold. Causes a rehash whenever the

garbage collector performs a full gc. This keyword is a Symbol-

ics extension to Common Lisp.

:entry-size This keyword is obsolete. :entry-size 2 is equivalent to

:number-of-values 1. :entry-size 1 is equivalent to :number-of-

values 0. This keyword is a Symbolics extension to Common

Lisp.

:number-of-values Specifies the number of values associated with the key to be

stored in the table. Currently, the only valid values are 0 and

1. If 0 is specified, the table functions return t for the value of

the entry. This keyword is a Symbolics extension to Common

Lisp.

:store-hash-code Specifies that the table system store the hash code for each

key with the key. This keyword makes make-hash-table run
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faster, since its use avoids the need to run a test function, un-

less the hash codes are the same. Use of this keyword increas-

es the size of the table. Since gethash searches for keys equiv-

alent to the supplied key under the supplied value of the :test

argument, :store-hash-code t improves performance if the :test

function pages or is slow. This keyword is a Symbolics exten-

sion to Common Lisp.

:mutating Turns mutation on and off. The overhead involved with specify-

ing this keyword is relatively higher for small tables than for

large ones. The default value is t. This keyword is a Symbolics

extension to Common Lisp.

:initial-contents Set the initial contents for the new table. It can be either a ta-

ble object to be copied, or a sequence of keys and values, for

example:

’(KEY1 VALUE1 ... KEYn VALUEn)

This keyword is a Symbolics extension to Common Lisp.

:locking One of the following locking strategies: :process, :without-

interrupts, nil, or a cons consisting of a lock and an unlock

function. The default is to lock against other processes. This

keyword is a Symbolics extension to Common Lisp.

:ignore-gc By default, if the hash function is sensitive to the garbage col-

lector, the table is protected against GC flip. If you supply this

keyword, the table is not protected.

If the hash function utilizes the address of a Lisp object that

might be changed by the GC, the hash function must recom-

pute the hash code if that address is changed. :ignore-gc as-

serts that the hash function never uses such addresses, so that

it need not recompute the codes. The default depends on the

hash function: if it’s one of a small set of functions that Lisp

knows do not depend on addresses, this defaults to t (meaning

yes, it can ignore the GC). Otherwise, it chooses nil, which is

always safe. t might make your program run faster (avoiding

rehashes at GC time) but might also break your program (if

the hash function depends on address values). This keyword is

a Symbolics extension to Common Lisp.

:gc-protect-values The default is t. If nil, table entries are automatically deleted

if a value becomes unreachable other than through the table.

This keyword is a Symbolics extension to Common Lisp.

:growth-factor A synonym for :rehash-size. If the keyword is an integer, it is

the number of entries to add, and if it is a floating-point num-

ber, it is the ratio of the new size to the old size. If the value

is neither an integer or a floating-point number, an error is

signalled. This keyword is a Symbolics extension to Common

Lisp.
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:growth-threshold A synonym for :rehash-threshold. If it is an integer greater

than zero and less than the :size, it is related to the number

of entries at which growth should occur. The threshold is the

current size minus the :growth-threshold. If it is a floating-

point number between zero and one, it is the percentage of en-

tries that can be filled before growth will occur. If the value is

neither an integer or a floating-point number, an error is sig-

nalled. This keyword is a Symbolics extension to Common Lisp.

:rehash-size The growth factor of the table when it becomes full. If the val-

ue of the keyword is an integer, it is the number of entries to

add, and if it is a floating-point number, it is the ratio of the

new size to the old size. If the value is neither an integer or a

floating-point number, an error is signalled.

:rehash-threshold How full the table can become before it must grow. If it is an

integer greater than zero and less than the value of :size, it is

related to the number of entries at which growth should occur.

The threshold is the current size minus the :growth-threshold.

If it is a floating-point number between zero and one, it is the

percentage of entries that can be filled before growth will oc-

cur. If the value is neither an integer nor a floating-point

number, an error is signalled.

If you are using CLOE, zl:make-hash-table returns a newly created hash table

with size entries. Argument test must be eq, eq1 or equal expressed as either sym-

bols or as the function-quoted objects. Argument rehash-size can be an integer that

provides the number of entries to add, or a floating point number that indicates

the portion of the previous size to grow the hash table. Argument rehash-threshold

also may be an integer or floating point number, and indicates the maximum ca-

pacity of the hash table before it should grow.

(setq hash-table-1 (make-hash-table))

�

(setq hash-table-2

      (make-hash-table :size (* number-of-my-symbols 100)

                       :rehash-size 2.0

                       :rehash-threshold 0.8

                       :test ’eq))�

Compatibility Note: The following keywords are Symbolics extensions to Common

Lisp: :area, :hash-function, :rehash-before-cold, :rehash-after-full-gc, :entry-size,

:number-of-values: :store-hash-code:, :mutating, :initial-contents, :optimizations,

:locking, :ignore-gc, :gc-protect-values, :growth-factor, and :growth-threshold.

For a table of related items: See the section "Table Functions". 

See the section "Hash Table Interface to the Table Management Facility".

Table Internals
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More About Tables

Many types of table objects are available, but only four basic differences exist

among them:

Mutability You can make a table that changes internal representation at

run time, with the :mutating keyword argument to make-

hash-table. :mutating t is the default. It is usually better for

the table to be free to change its internal representation, since

the representation is picked to be the most efficient for the da-

ta currently stored in the table. If you are sure you have a

representation that is efficient, it might be a good idea to turn

off mutation.

Predicate The predicate is some symbol or function that is called to

check the keys. The default predicate is eql, however, optimiza-

tions are available for using eq and equal also. The predicate

symbol should be picked very carefully if the default is not

used, as some types of tables are optimized for certain predi-

cates. For instance, tables with property list internal represen-

tations are optimized for eq, and tables with array internal

representations have a char-equal optimization.

Representation The internal representation of the table can change if the

:mutating keyword argument is t (the default). The represen-

tation changes when the size of the data passes some size

threshold, either upward or downward. Some of the representa-

tions are: hash array, association list and set.

Locking When the table is read or updated, the data are subject to cor-

ruption. This could happen because the table changes represen-

tation as another entry is added, or because the garbage collec-

tor starts just as an entry is being read. To prevent this sort

of problem, the table can be locked against interrupts and oth-

er processes. Some tables are sensitive to garbage collection;

for example, those with an internal representation of hash ar-

ray, which use hash functions based on pointer information.

These tables are automatically locked against garbage collec-

tion by the table facility.

The facility can be changed and customized beyond the scope of the differences

discussed here.

Improving the Performance of Table Flavors 

Here is a list of ways to improve the performance of flavor tables: 

• Set :locking to nil to improve table performance, if the table is only accessed on

one process.
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• Set :number-of-values to 0 to improve table paging performance if only the key

is needed.

• Use the function sys:page-in-table to bring back into main memory any

swapped pages in a flavor table that have been swapped out to disk. See the

function sys:page-in-table.

• Use the function sys:page-out-table to take all of the swapped pages in a flavor

table out to main memory. See the function sys:page-out-table.

• Use the macro sys:with-table-locked to lock a table around some specified code.

See the function sys:with-table-locked.�

Hash Functions

Hashing is a technique used to provide fast retrieval of data in large tables. A

function, known as a hash function, is created, which takes a key, and produces a

number to be associated with that key. This number, or some function of it, can be

used to specify where in a table to look for the value associated with the key. It is

always possible for two different objects to "hash to the same value"; that is, for

the hash function to return the same number for two distinct objects. Good hash

functions are designed to minimize this by evenly distributing their results over

the range of possible numbers. However, hash table algorithms must still antici-

pate this problem by providing a secondary search, sometimes known as a rehash.

For more information, consult a textbook on computer algorithms.

sxhash provides what is called "hashing on zl:equal"; that is, two objects that are

zl:equal are considered to be "the same" by sxhash. In particular, if two strings

differ only in alphabetic case, sxhash returns the same object for both of them be-

cause they are zl:equal. The value returned by sxhash does not depend on the

case of any strings. Therefore, sxhash is useful for retrieving data when two keys

that are not the same object, but are zl:equal, are considered the same.

If you consider two such keys to be different, then you need "hashing on eq or

eql", where two different objects are always considered different. This is done by

returning the virtual address of the storage associated with the object. eq and eql

hash tables function properly, even though the address associated with an object

can be changed by the relocating garbage collector. When copying, if the garbage

collector changes the addresses of objects, it lets the hash facility know, so that

gethash rehashes the table based on the new object addresses.

For related information, see the section "Defining Hash Functions and Hash-Test

Functions".

Defining Hash Functions and Hash-Test Functions

A hash-test function determines how to compare hash table keys. Common Lisp

supports these three: eq, eql, and equal. Symbolics Common Lisp also supports the
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following: char-equal, char=, string-equal, string=, zl:equal, zl:string-equal,

zl:string=.

If you use any of these hash-test functions, then you don’t need to write your own

hash function. However, if you use a test function that the system doesn’t know

about, you need to write your own hash function.

A hash function takes one argument and returns an integer. If the returned value

might change when the garbage collector runs, then the hash function must return

a second value telling when to rehash the function. A hash function must return

the same integer for equivalent keys, and it should try to return different integers

for non-equivalent keys.

A hash-test function takes two arguments. It compares them for some definition of

equivalency. It returns nil if they are not equivalent, and it returns a non-nil val-

ue if they are equivalent.

For example, assume you are building a knowledge-base system in which facts con-

sisted solely of (attribute object value) triples. You might want to be able to hash

on the attribute and the object to give yourself a pointer to the currently stored

value. You wouldn’t want to hash on the entire list because if you were asserting a

new value, hashing on the new list wouldn’t find the old value. You wouldn’t want

to hash on just the object, or just the attribute, because these buckets would get

very large.

The following code supports the example described above:

(defvar triple-hash-table nil)

�

(defun triple-hash-function (triple)

  (multiple-value-bind (hash-first gc-first) 

      (cli::xeqhash (first triple))

    (multiple-value-bind (hash-second gc-second) 

(cli::xeqhash (second triple))

      (values (logxor hash-first hash-second) 

      (max gc-first gc-second)))))

�

(defun triple-equal-test (first-triple second-triple)

  (and

    (eq (first first-triple) (first second-triple))

    (eq (second first-triple) (second second-triple))))

�

(setq triple-hash-table 

      (make-hash-table :hash-function ’triple-hash-function

       :test ’triple-equal-test))�

The following definition is taken from the source code:

(defsubst xeqhash (x)

  ;; Must compute gc-dependence before calling %pointer

  (let ((gc-dependence (gc-dependence x)))

    (values (sys:%pointer x) gc-dependence)))�
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Note that sys:%pointer takes an object and returns its address as a fixnum. You

must consider the garbage-collection dependence only if your hash function uses

sys:%pointer. The garbage-collection dependence must be calculated before the

call to sys:%pointer.

The form (sys:gc-dependence object) returns a value corresponding to what level

of garbage collection you need to worry about for the object. Returning this as the

second value of the hash function indicates that the hash table must be rehashed

if this level of garbage collection runs.

Other Data Types Used as Tables

Sometimes it is easier or more convenient to make tables without the table man-

agement facility. For example, if you have an application that requires a very

small table of relatively static size, or a lookup table that never changes after it’s

created, you might find that the overhead involved in the table management facili-

ty slows down your application too much. For those situations, traditional tables,

made from lists and arrays, are useful. This section covers various types of non-

mutating tables.

A number of tools are currently available for creating and using various types of

specialized tables. These tools include functions that operate on sequences, associa-

tion lists, property lists, general lists, arrays and hashed arrays. Though these data

types have different (incompatible) interfaces, they all store data in a tabular

fashion. 

Sequences as Tables

The simplest table is one whose entries contain one element. This type of table is

a sequence, which is either a set or a vector. A set is a list of items and a vector is

a one-dimensional array.

There are functions to add (adjoin union), remove (delete, remove), and search

for (find, position) items in a set. An example of a simple table made up of a se-

quence might be a set of bird names. Its list representation would be:

(heron turkey eagle pelican loon stork)�

A more abstract way of thinking about it as a table would be:

KEY

heron

turkey

eagle

pelican

loon

stork

 ...�
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A table of this type would quickly become inefficient as more entries were added,

because sequential searching through the keys would take increasingly longer.

Vectors are very similar to sets, but they are array structures instead of list

structures. Therefore, the functions used to add, remove, and search through the

structure are different, even though the general principles remain the same.

The two major differences between vectors and sets are:

• The time it takes to access an element of a one-dimensional array is constant,

whereas the time it takes to access an element of a set depends on the length

of the set and where that element resides in the set.

• The time it takes to add new element to the front of a set is constant, whereas

the time it takes to add a new element to the front of an array is proportional

to the length of the array.�

For more information on sequences and sequence functions, see the section "Se-

quences".

Lists as Tables

You can build more complex tables out of sets and vectors. Tables made from gen-

eral lists, association lists, property lists, and arrays are examples of this.

A table whose entries each contain two elements is an association list. Association

lists, or alists, are lists of conses, and are very commonly used for tabular data.

The car of each cons is a key and the cdr is a value. This value can be a symbol,

a list of associated data, or any other structure. The functions assoc retrieve the

value from an association list, given the key. An example of a table of this type is:

KEY VALUE

heron wader

loon diver

eagle raptor

�

Its association list representation would be:

((heron . wader) (loon . diver) (eagle . raptor))�

Given this association list, you could retrieve the class of any bird in the list.

Another type of table with two elements is the property list. The main difference

between an association list and a property list is the internal representation. An

association list is represented by dotted pairs, while a property list is represented

as a list of conses, or logical pairs.

Each property in a property list has an indicator and a value. An example of a

property list would be a set of properties that belong to a bird, say an eagle.
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INDICATOR VALUE

color (brown white)

food (mice snakes)

activity-period day

�

The representation for this property list would be:

(color (brown white) food (mice snakes) activity-period day)�

You would then say that "the value of the color property is the list (brown

white)." You can retrieve the value of an indicator with the getf function.

For more information on lists, see the section "Lists".

Arrays as Tables

If the values you are working with can be stored in a fixed number of rows and

columns, arrays can be more efficient than lists. An example of an array might be

a table of animal types expanded to include exactly five examples of animals in

each of 100 families. It might look like this:

KEY VALUE1 VALUE2 VALUE3 VALUE4 VALUE5

bird heron turkey eagle pelican loon

mammal cat dog monkey whale elephant

reptile python basilisk turtle monitor crocodile

 ...  ...  ...  ...  ...  ...�

To pick elements out of arrays, use the aref function.

For more information on arrays, see the section "Arrays".

Zetalisp Hash Tables

Zetalisp hash tables are an older implementation of tables which is being phased

out in favor of the table management facility. Keep in mind that although they are

still part of Genera, they are now considered obsolete. You should think about

changing your current hash tables over to the new facility.

Zetalisp hash tables are implemented as instances of flavors of two types, the dif-

ference being whether the keys are compared using eq or zl:equal.

You can create a new hash table using the predicate eq for comparisons of the

keys with the function zl:make-hash-table. You can create a new hash table using

the predicate zl:equal for comparisons of the keys with the function zl:make-

equal-hash-table.

You can add new entries to a hash table with the zl:puthash function. To look up

a key and find the associated value, use the gethash function. To remove an entry,

use remhash. Here is a simple example:
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(setq a (zl:make-hash-table))

   => #<EQ-HASH-TABLE 40053062>

�

(zl:puthash ’color ’brown a) => BROWN

�

(zl:puthash ’name ’fred a) => FRED

�

(gethash ’color a) => BROWN and T

�

(gethash ’name a) => FRED and T�

Heaps

A heap is a data structure in which each item is ordered by some predicate (for

example, less-than) on its associated key. You can add an item to the heap, delete

an item from it, or look at the top item. The :top operation is guaranteed to re-

turn the first item in the heap. In the less-than example, this would be the small-

est item. Heaps are useful for keeping ordered tables in general, and for maintain-

ing priority queues, in particular.

Heap Functions and Methods

:clear Removes all entries from the heap. 

:delete-by-item item &optional (equal-predicate #’=)

Finds the first item whose key satisfies equal-predicate

and deletes it. The first argument to equal-predicate is

the current item from the heap and the second argument

is item.

:delete-by-key key &optional (equal-predicate #’=)

Finds the first item whose key satisfies equal-predicate

and deletes it. The first argument to equal-predicate is

the current key from the heap and the second argument

is key.

:describe Gives the predicate, number of elements, and optionally

the contents of the heap.

:empty-p Tests whether the heap is empty, returning t if is, other-

wise nil.

:find-by-item item &optional (equal-predicate #’=)

Finds the first item in the heap that matches item.

:find-by-key key &optional (equal-predicate #’=)

Finds the first item in the heap whose key matches key.

:insert item key Inserts item into the heap based on key.
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make-heap Creates a new heap.

:remove Removes the top item from the heap.

:top Returns the value and key of the top item on the heap.�

Converting Zetalisp Hash Tables to Table Objects

This section illustrates how the syntax of the new table management facility dif-

fers from the old Zetalisp hash tables. The hash table syntax still works in Gen-

era, but is considered obsolete. Changing over to the new facility is a very

straightforward process.

New Table Objects Versus Old Zetalisp Hash Tables

New applications should make tables with the table management facility’s make-

hash-table function, rather than calling make-instance, zl:make-equal-hash-table,

or zl:make-hash-table. For example:

�

Old syntax: (setq table (zl:make-equal-hash-table :size 20))

Old syntax: (setq table (make-hash-table :test #’zl:equal :size 20))

Old syntax: (setq table

  (make-instance ’si:eq-hash-table :size 20))

�

New syntax: (setq table (make-hash-table :test #’eq :size 20))�

Inserting New Entries

Wherever :put-hash, zl:puthash, or zl:puthash-equal are used, the equivalent setf

form should be used instead. For example:

Old syntax: (send table ’:put-hash ’color ’brown)

Old syntax: (zl:puthash ’color ’brown table)

Old syntax: (zl:puthash-equal ’color ’brown table)

�

New syntax: (setf (gethash ’color table) ’brown)�

Generic Functions Versus Table Messages

All instances of messages should be changed to the equivalent generic function.

For example:

Old syntax: (send table ’:describe)

�

New syntax: (describe table)�

The old messages and their new equivalents follow:
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:clear-hash clrhash

:describe describe

:filled-elements hash-table-count

:get-hash gethash

:map-hash maphash

:modify-hash modify-hash

:rem-hash remhash

:swap-hash swaphash �

New Table Facility Functions Versus Zetalisp Functions

Zetalisp functions should be changed over to their Symbolics Common Lisp equiva-

lent. The old functions and their equivalents follow:

zl:clrhash-equal clrhash

zl:gethash gethash

zl:gethash-equal gethash

zl:maphash-equal maphash

zl:remhash-equal remhash

zl:swaphash-equal swaphash �

Table Functions in the CL Package with SCL Extensions

Here is the table function that has Symbolics Common Lisp extensions:

Function Extension(s)

make-hash-table optional arguments :area, :hash-function, :rehash-before-cold, :re-

hash-after-full-gc, :number-of-values, :store-hash-code, :mutating,

:initial-contents, :locking, :ignore-gc, :growth-factor, :growth-

threshold

Functions and Dynamic Closures

Functions

What is a Function?

Functions are the basic building blocks of Lisp programs. There are many differ-

ent kinds of functions in Symbolics Common Lisp. Here are the printed representa-

tions of examples of some of them:
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foo

(lambda (x) (car (last x)))

(si:digested-lambda (lambda (x) (car (last x)))

    (foo) 2049 262401 nil (x) nil (car (last x)))

#<dtp-compiled-function append 1424771>

#<lexical-closure (lambda ** **) 7371705>

#<lexical-closure (:internal foo 0) 7372462>

#<dtp-closure 1477464>        �

These all have one thing in common: a function is a Lisp object that can be ap-

plied to arguments. All of the above objects can be applied to some arguments and

will return a value. Functions are Lisp objects and so can be manipulated in all

the usual ways: you can pass them as arguments, return them as values, and make

other Lisp objects refer to them. See the function functionp. 

Function Specs

The name of a function does not have to be a symbol. Various kinds of lists de-

scribe other places where a function can be found. A Lisp object that describes a

place to find a function is called a function spec. ("Spec" is short for "specifica-

tion".) Here are the printed representations of some typical function specs:

foo

(:property foo bar)

(flavor:method speed ship)

(:internal foo 1)

(:within foo bar)

(:location #<dtp-locative 7435216>)�

Function specs have two purposes: they specify a place to remember a function,

and they serve to name functions. The most common kind of function spec is a

symbol, which specifies that the function cell of the symbol is the place to remem-

ber the function. Function specs are not the same thing as functions. You cannot,

in general, apply a function spec to arguments. The time to use a function spec is

when you want to do something to the function, such as define it, look at its defi-

nition, or compile it.

Some kinds of functions remember their own names, and some do not. The "name"

remembered by a function can be any kind of function spec, although it is usually

a symbol. (See the section "What is a Function?".) In that section, the example

starting with the symbol si:digested-lambda and the one whose printed represen-

tation includes sys:dtp-compiled-function, remember names (the function specs

foo and append respectively). The others do not remember their names, except

that the ones starting with sys:lexical-closure and sys:dtp-closure might contain

functions that do remember their names. The second sys:lexical-closure example

contains the function whose name is (:internal foo 0).

To define a function spec means to make that function spec remember a given

function. This is done with the fdefine function; you give fdefine a function spec

and a function, and fdefine remembers the function in the place specified by the
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function spec. The function associated with a function spec is called the definition

of the function spec. A single function can be the definition of more than one

function spec at the same time, or of no function specs.

To define a function means to create a new function, and define a given function

spec as that new function. This is what the defun special form does. Several other

special forms such as defmethod and defselect do this too.

These special forms that define functions usually take a function spec, create a

function whose name is that function spec, and then define that function spec to

be the newly created function. Most function definitions are done this way, and so

usually if you go to a function spec and see what function is there, the function’s

name is the same as the function spec. However, if you define a function named

foo with defun, and then define the symbol bar to be this same function, the

name of the function is unaffected; both foo and bar are defined to be the same

function, and the name of that function is foo, not bar.

A function spec’s definition in general consists of a basic definition surrounded by

encapsulations. Both the basic definition and the encapsulations are functions, but

of recognizably different kinds. What defun creates is a basic definition, and usu-

ally that is all there is. Encapsulations are made by function-altering functions

such as trace and advise. When the function is called, the entire definition, which

includes the tracing and advice, is used. If the function is "redefined" with defun,

only the basic definition is changed; the encapsulations are left in place. See the

section "Encapsulations".

A function spec is a Lisp object of one of the following types:

a symbol

The function is remembered in the function cell of the symbol. See the sec-

tion "The Function Cell of a Symbol". Function cells and the primitive func-

tions to manipulate them are explained in that section.

(:property symbol property)

The function is remembered on the property list of the symbol; doing (get

symbol property) would return the function. Storing functions on property

lists is a frequently used technique for dispatching (that is, deciding at run-

time which function to call, on the basis of input data).

(flavor:method generic-function flavor-name options...)

This function spec names the method implemented for generic-function on

instances of flavor-name. (generic-function can be the name of a generic

function or a message.) The function is remembered inside internal data

structures of the flavor system. 

(:handler generic-function flavor-name)

This is a name for the function actually called when generic-function is

called on an instance of the flavor flavor-name. (generic-function can be the

name of a generic function or a message.) A handler is different than a

method in the following way: you define one or more methods in source

files, but it is the flavor system that consults all the available methods and

constructs a handler from them. In the simplest case, the handler is the
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method written to perform generic-function on instances of flavor-name. In

other cases, the handler might be a method inherited from a component

flavor, or a combined method that includes several methods combined in a

manner prescribed by the type of method combination. Note that redefining

or encapsulating a handler affects only the named flavor, not any other fla-

vors built out of it. Thus :handler function specs are often used with trace

and advise.

(flavor:wrapper generic-function flavor)

This function spec names a wrapper. If you trace a wrapper, note that

wrappers are executed at compile time, being macros. 

(flavor:whopper generic-function flavor)

This function spec names a whopper. 

(:location pointer)

The function is stored in the cdr of pointer, which can be a locative or a

list. This is for pointing at an arbitrary place which there is no other way

to describe. This form of function spec is not useful in defun (and related

special forms) because the reader has no printed representation for locative

pointers and always creates new lists; these function specs are intended for

programs that manipulate functions. See the section "How Programs Manip-

ulate Definitions".

(:within within-function function-to-affect)

This refers to the meaning of the symbol function-to-affect, but only where

it occurs in the text of the definition of within-function. If you define this

function spec as anything but the symbol function-to-affect itself, then that

symbol is replaced throughout the definition of within-function by a new

symbol which is then defined as you specify. See the section "Encapsula-

tions".

(:internal function-spec number)

Some Lisp functions contain internal functions, created by (function

(lambda ...)) forms. These internal functions need names when compiled,

but they do not have symbols as names; instead they are named by

:internal function-specs. function-spec is the containing function. number is

a sequence number; the first internal function the compiler comes across in

a given function is numbered 0, the next 1, and so on.

(:internal function-spec number name)

Some Lisp functions contain internal functions, created by flet or labels

forms. function-spec is the containing function. number is a sequence num-

ber; the first internal function the compiler comes across in a given func-

tion is numbered 0, the next 1, and so on. name is the name of the internal

function.�

Here is an example of the use of a function spec that is not a symbol:

(defun (:property foo bar-maker) (thing &optional kind)

  (set-the ’bar thing (make-bar ’foo thing kind)))�
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This puts a function on foo’s bar-maker property. Now you can say:

(funcall (get ’foo ’bar-maker) ’baz)�

Unlike the other kinds of function spec, a symbol can be used as a function. If you

apply a symbol to arguments, the symbol’s function definition is used instead. If

the definition of the first symbol is another symbol, the definition of the second

symbol is used, and so on, any number of times. But this is an exception; in gen-

eral, you cannot apply function specs to arguments.

A keyword symbol that identifies function specs (can appear in the car of a list

that is a function spec) is identified by a sys:function-spec-handler property

whose value is a function which implements the various manipulations on function

specs of that type. The interface to this function is internal and not documented

here.

For compatibility with Maclisp, the function-defining special forms defun, macro,

and defselect (and other defining forms built out of them, such as defmacro) and

zl:defunp, also accept a list:

(symbol property)�

as a function name. This is translated into:

(:property symbol property)�

symbol must not be one of the keyword symbols which identifies a function spec,

since that would be ambiguous.

Simple Function Definitions

See the section "Function-Defining Special Forms". Information on defining func-

tions, and other ways of doing so, are discussed in that section.

Operations the User Can Perform on Functions

Here is a list of the various things a user (as opposed to a program) is likely to

want to do to a function. In all cases, you specify a function spec to say where to

find the function.

To print out the definition of the function spec with indentation to make it legible,

use grindef. This works only for interpreted functions. If the definition is a com-

piled function, it cannot be printed out as Lisp code, but its compiled code can be

printed by the disassemble function.

To find out about how to call the function, you can ask to see its documentation,

or its argument names. (The argument names are usually chosen to have mnemon-

ic significance for the caller). Use arglist to see the argument names and

documentation to see the documentation string. There are also editor commands

for doing these things: the c-sh-D and m-sh-D commands are for looking at a

function’s documentation, and c-sh-A is for looking at an argument list. c-sh-A

does not ask for the function name; it acts on the function that is called by the in-

nermost expression that the cursor is inside. Usually this is the function that is

called by the form you are in the process of writing.
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You can also find out about the function using describe-function. It shows the ar-

glist, values, and any Common Lisp proclaims for a function spec.

You can see the function’s debugging info alist by means of the function

debugging-info.

When you are debugging, you can use trace to obtain a printout or a break loop

whenever the function is called. You can customize the definition of the function,

either temporarily or permanently, using advise.

Kinds of Functions

There are many kinds of functions in Symbolics Common Lisp. This section briefly

describes each kind of function. Note that a function is also a piece of data and

can be passed as an argument, returned, put in a list, and so forth.

Before we start classifying the functions, we will first discuss something about

how the evaluator works. When the evaluator is given a list whose first element is

a symbol, the form can be a function form, a special form, or a macro form. If the

definition of the symbol is a function, then the function is just applied to the re-

sult of evaluating the rest of the subforms. If the definition is a list whose car is

special, then it is either a macro form or a special form. For more information

about macro forms: See the section "What is a Macro?".

Conceptually, the evaluator knows specially about all special forms (hence their

name). However, the Symbolics Common Lisp implementation actually uses the def-

inition of symbols that name special forms as places to hold pieces of the evalua-

tor. The definitions of such symbols as prog, do, and, and or actually hold Lisp

objects, which we call special functions. Each of these functions is the part of the

Lisp interpreter that knows how to deal with that special form. Normally you do

not have to know about this; it is just part of how the evaluator works. 

Many of the special forms in Zetalisp are implemented as macros. They are imple-

mented this way because it is easier to write a macro than to write both a new

part of the interpreter (a special function) and a new ad hoc module in the com-

piler. However, they are sometimes documented as special forms, rather than

macros, because you should not in any way depend on the way they are imple-

mented.

There are four kinds of functions, classified by how they work.

1. Interpreted functions, which are defined with defun, represented as list struc-

ture, and interpreted by the Lisp evaluator.

2. Compiled functions, which are defined by compile or by loading a bin file, are

represented by a special Lisp data type, and are executed directly by the ma-

chine.

3. Various types of Lisp objects that can be applied to arguments, but when they

are applied they dig up another function somewhere and apply it instead.

These include symbols, dynamic and lexical closures, and instances.
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4. Various types of Lisp objects that, when used as functions, do something spe-

cial related to the specific data type. These include arrays and stack groups.�

Interpreted Functions

An interpreted function is a piece of list structure that represents a program ac-

cording to the rules of the Lisp interpreter. Unlike other kinds of functions, an in-

terpreted function can be printed out and read back in (it has a printed represen-

tation that the reader understands), and it can be pretty-printed. See the section

"Functions for Formatting Lisp Code". It can also be opened up and examined with

the usual functions for list-structure manipulation.

There are two kinds of interpreted functions: lambdas and si:digested-lambdas. A

lambda function is the simplest kind. It is a list that looks like this:

(lambda lambda-list form1 form2...)�

The symbol lambda identifies this list as a lambda function. lambda-list is a de-

scription of what arguments the function takes. See the section "Evaluating a

Function Form". The forms make up the body of the function. When the function

is called, the argument variables are bound to the values of the arguments as de-

scribed by lambda-list, and then the forms in the body are evaluated, one by one.

The value of the function is the value of its last form.

An si:digested-lambda is like a lambda, but contains extra elements in which the

system remembers the function’s name, its documentation, a preprocessed form of

its lambda-list, and other information. Having the function’s name there allows the

Debugger and other tools to give the user more information. This is the kind of

function that defun creates. The interpreter turns any lambdas it is asked to apply

into digested-lambdas, using rplaca and rplacd to modify the list structure of the

original lambda-expression. 

Compiled Functions

The Lisp function compiler converts lambda functions into compiled functions. A

compiled function’s printed representation looks like:

#<dtp-compiled-function append 1424771>�

The object contains machine code that does the computation expressed by the

function; it also contains a description of the arguments accepted, any constants

required, the name, documentation, and other things. Unlike Maclisp "subr-

objects", compiled functions are full-fledged objects and can be passed as argu-

ments, stored in data structure, and applied to arguments. 

Other Kinds of Functions

A dynamic closure is a kind of function that contains another function and a set of

special variable bindings. When the closure is applied, it puts the bindings into ef-

fect and then applies the other function. When that returns, the closure bindings

are removed. Dynamic closures are created by the zl:closure function and the

zl:let-closed special form. See the section "Dynamic Closures".
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A lexical closure is a kind of function that contains another function and a set of

local variable bindings. A lexical closure is created by reference to an internal

function. Invocation of a lexical closure simply provides the necessary data linkage

for a function to run in the environment in which the closure was made. See the

section "Lexical Scoping".

An instance is a message-receiving object that has some state and a table of mes-

sage-handling functions (called methods). See the section "Flavors".

An array can be used as a function. The arguments to the array are the indices

and the value is the contents of the element of the array. This works this way for

Maclisp compatibility and is not recommended usage. Use aref instead.

A stack group can be called as a function. This is one way to pass control to an-

other stack group. See the section "Stack Groups".

Function-Defining Special Forms

defun is a special form that is put in a program to define a function. defsubst

and macro are others. This section explains how these special forms work, how

they relate to the different kinds of functions, and how they connect to the rest of

the function-manipulation system.

Function-defining special forms typically take as arguments a function spec and a

description of the function to be made, usually in the form of a list of argument

names and some forms that constitute the body of the function. They construct a

function, give it the function spec as its name, and define the function spec to be

the new function. Different special forms make different kinds of functions. defun

and defsubst both make an si:digested-lambda function. macro makes a macro;

though the macro definition is not really a function, it is like a function as far as

definition handling is concerned.

These special forms are used in writing programs because the function names and

bodies are constants. Programs that define functions usually want to compute the

functions and their names, so they use fdefine.

All of these function-defining special forms alter only the basic definition of the

function spec. Encapsulations are preserved. See the section "Encapsulations".

The special forms only create interpreted functions. There is no special way of

defining a compiled function. Compiled functions are made by compiling interpret-

ed ones. The same special form that defines the interpreted function, when pro-

cessed by the compiler, yields the compiled function. 

Note that the editor understands these and other "defining" special forms (for ex-

ample, defmethod, defvar, defmacro, and defstruct) to some extent, so that when

you ask for the definition of something, the editor can find it in its source file and

show it to you. The general convention is that anything that is used at top level

(not inside a function) and starts with def should be a special form for defining

things and should be understood by the editor. defprop is an exception.
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defun The defun special form (and the zl:defunp macro that expands

into a defun) are used for creating ordinary interpreted func-

tions. See the section "Function-Defining Special Forms".

For Maclisp compatibility, a type symbol can be inserted be-

tween name and lambda-list in the defun form. The following

types are understood: 

zl:expr The same as no type.

zl:fexpr Defines a special form that operates like a

Maclisp fexpr. The special form can only be

used in interpreted functions and in forms

evaluated at top-level, since the compiler

has not been told how to compile it.

macro A macro is defined instead of a normal

function.�

If lambda-list is a non-nil symbol instead of a list, the function

is recognized as a Maclisp lexpr and it is converted in such a

way that the zl:arg, zl:setarg, and zl:listify functions can be

used to access its arguments.

defsubst The defsubst special form is used to create inline functions. It

is used just like defun but produces a function that acts nor-

mally when applied, but can also be open-coded (incorporated

into its callers) by the compiler. See the section "Inline Func-

tions".

macro The macro special form is the primitive means of creating a

macro. It gives a function spec a definition that is a macro

definition rather than an actual function. A macro is not a

function because it cannot be applied, but it can appear as the

car of a form to be evaluated. Most macros are created with

the more powerful defmacro special form.

defselect The defselect special form defines a select-method function.

deff Unlike the above special forms, deff does not create new func-

tions. It simply serves as a hint to the editor that a function is

being stored into a function spec here, and therefore if some-

one asks for the source code of the definition of that function

spec, this is the place to look for it.

def Unlike the above special forms, def does not create new func-

tions. It simply serves as a hint to the editor that a function is

being stored into a function spec here, and therefore if some-

one asks for the source code of the definition of that function

spec, this is the place to look for it.�
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Lambda-List Keywords

This section lists all the keywords that can appear in the lambda-list (argument

list) of a function, a macro, or a special form. Some of these keywords are allowed

in the lambda-list of all three of these, while others are only allowed in one; those

are so indicated. Some of these keywords are obsolete and should not be used in

new code.

Keyword Use Restrictions

&optional Introduces optional None

arguments

&rest Introduces rest arguments Only one arg.

All supplied arguments are

stored in a list.  Caution:  

In Genera

this is not guaranteed

to be a "real" list.  Under 

CLOE it is 

a real list unless you request 

that it be stack consed.

&key Separates positional and Parameters

rest parameters from keyword must be

parameters. pairs.

&allow-other-keys &key must

also be used.

&aux Separates arguments None

from auxiliary variables.�

The following keywords work for macros defined by defmacro or macrolet only:

&body

&whole

&environment �

The following keywords are obsolete, and not available in CLOE:

zl:&special

zl:&local

zl:&eval

zl:&quote

zl:&functional

zl:&quote-dontcare

zl:&list-of�



Page 282

For more information on how lambda-list keywords are treated: See the section

"Evaluating a Function Form".

Although symbols with names prefaced by an ampersand, lambda-list keywords are

not elements of the the keyword package . Unlike symbols which name parameters,

these keywords indicate how to interpret arguments in function or macro calls.

Keywords &body, &environment, and &whole can only be used with defmacro.

The other keywords can be used with defun, as well as defmacro. A list of lamda-

list keywords follows:

• &whole When present, this keyword must be first in the lambda-list or compo-

nent lambda-list. In the following example, the variable is bound to the entire

macro call form, or to the analogous form at the component level.

�

(defmacro fred (&whole all x y)

  (list (if pred all) x y))�

The variable all is bound to the entire call

(fred a b)�

but, if the macro definition and call are

(defmacro fred (z (&whole all x y))

  (list (if pred all) x y z))

�

(fred 6 (foo b))�

then variable all is bound to

(foo b).�

• &environment Used to explicitly pass an environment to explicit calls to

macroexpand in a macro definition.

• &optional This keyword is followed by a list of variable names, or lists that in-

clude a variable name, an initialization form for the variable when an argument

is not supplied, and an optional third element. The first element of the list or

the variable name is an optional parameter bound to a supplied value in the ar-

gument list, or initialized to nil (or the second component of the list when no

argument is supplied). The third element of the list is a parameter with a not

nil initialized value (in the event an argument was already supplied as the first

parameter name in the list).�

How Programs Examine Functions

These functions take a function as argument and return information about that

function. Some also accept a function spec and operate on its definition. The oth-

ers do not accept function specs in general but do accept a symbol as standing for

its definition. (Note that a symbol is a function as well as a function spec).
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documentation name &optional (type ’defun) 

Finds the documentation string of the symbol, name, which is

stored in various different places depending on the symbol

type.

debugging-info function 

Returns the debugging info alist of function.

arglist function &optional real-flag arglist-finder 

Returns a representation of the lambda-list of function.

args-info fcn Returns an integer called the "numeric argument descriptor" of

the function, which describes the way the function takes argu-

ments.

How Programs Manipulate Definitions

A definition is a Lisp expression that appears in a source program file and has a

name by which a user would like to refer to it. Definitions come in a variety of

types. The main point of definition types is that two definitions with the same

name and different types can exist simultaneously, but two definitions with the

same name and the same type redefine each other when evaluated. Some examples

of definition type symbols and special forms that define such definitions are:

Type symbol Type name in English Special form names

defun function defun, defmacro, defmethod

defvar variable defvar, defconstant, zl:defconst

defflavor flavor defflavor

defstruct structure defstruct�

Things to note: More than one special form can define a given kind of definition.

The name of the most representative special form is typically chosen as the type

symbol. This symbol typically has a si:definition-type-name property of a string

that acts as a prettier form of the name for people to read.

(defprop feature "Feature" si:definition-type-name)

(defprop defun "Function" si:definition-type-name)�

record-source-file-name and related functions take a name and a type symbol as

arguments. The editor understands certain definition-making special forms, and

knows how to parse them to get out the name and the type. This mechanism has

not yet been made user-extensible. Currently the editor assumes that any top-level

form it does not know about that starts with (def must be defining a function (a

definition of type defun) and assumes that the cadr of that form is the name of

the function. The starting left parenthesis must be at the left margin (not indent-

ed) for the editor to recognize the (def form. Heuristics appropriate for defun are

applied to this name if it is a list.

In general, a definition whose name is not a symbol and whose type is not defun

does not work properly. 
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The declaration sys:function-parent is of interest to users. The function with the

same name is probably not of interest to users; it is part of the mechanism by

which the Zmacs command Edit Definition (m-.) figures out what file to look in.

Example:

We have functions called "frobulators" that are stored on the property list of sym-

bols and require some special bindings wrapped around their bodies. Frobulator

definitions are not considered function definitions, because the name of the frobu-

lator does not become defined as a Lisp function. Indeed, we could have a frobula-

tor named list and Lisp’s list function would continue to work. Instead we make a

new definition type.

(defmacro define-frobulator (name arg-list &body body)

  ‘(progn 

     (add-to-list-of-known-frobulators ’,name)

     (record-source-file-name ’,name ’define-frobulator)

     (defun (:property ,name frobulator) (self ,@arg-list)

       (declare (sys:function-parent ,name define-frobulator))

       (let (,(make-frobulator-bindings name arg-list))

 ,@body))))

�

(defprop define-frobulator "Frobulator" si:definition-type-name)�

Here we would tell the editor how to parse define-frobulator if its parser were

user-extensible. Because it is not, we rely on its heuristics to make m-. work ade-

quately for frobulators.

Next we define a frobulator. This is not an interesting definition, for we do not ac-

tually know what the word "frobulate" means. We could always recast this example

as a symbolic differentiator: We would define the + frobulator to return a list of +

and the frobulations of the arguments, the * frobulator to return sums of products

of factors and derivatives of factors, and so forth.

(define-frobulator list ()

  (frobulate-any-number-of-args self))�

In define-frobulator, we call record-source-file-name so that when a file contain-

ing frobulator definitions is loaded, we know what file those definitions came from.

Inside the function that is generated, we include a function-parent declaration be-

cause no definition of that function is apparent in any source file. The system

takes care of doing (record-source-file-name (:property list frobulator) defun),

as it always does when a function definition is loaded. Suppose an error occurs in

a frobulator function  in the list example above, we might try to call frobulate-

any-number-of-args, which is not defined  and we use the Debugger c-E com-

mand to edit the source. This is trying to edit (:property list frobulator), the

function in which we were executing. The definition that defines this function does

not have that name; rather, it is named list and has type define-frobulator. The

sys:function-parent declaration enables the editor to know that fact.

If your definition-making special form and your definition type symbol do not have

the same name, you should define the special form’s zwei:definition-function-spec-

type property to be the definition type symbol. This helps the editor parse such
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special forms. This is useful when several special forms exist to make definitions

of a single type.

For another example, more complicated but real, use Show Expanded Lisp Code,

mexp or the Zmacs command Macro Expand Expression (c-sh-M) to look at the

macro expansion of:

(defstruct (foo :conc-name) one two)

�

:Show Expanded Lisp Code (defstruct (foo :conc-name) one two) 

�

(eval-when (eval compile zl:load)

  (record-source-file-name ’foo ’zl:defstruct)

  (record-source-file-name ’foo ’si:deftype)

  (when (zl:get ’foo ’dw:presentation-type-descriptor)

    (dw:check-type-redefinition ’foo ’defstruct))

  (defprop foo-two (foo . two) si:defstruct-slot)

  (sys:defsubst-with-parent foo-two (foo zl:defstruct) (foo)

    (aref foo 2))

  (defprop foo-one (foo . one) si:defstruct-slot)

  (sys:defsubst-with-parent foo-one (foo zl:defstruct) (foo)

    (aref foo 1))

  (sys:defsubst-with-parent make-foo (foo zl:defstruct)

    (&key one two)

    ((lambda (#:g3153) (zl:aset two #:g3153 2)

     (zl:aset one #:g3153 1) #:g3153)

     (zl:make-array 3 ’:named-structure-symbol ’foo)))

  (defprop foo

           (si:one :named-array nil

            ((one 0 nil si:%%defstruct-empty%% t nil foo-one)

     (two 1 nil si:%%defstruct-empty%% t nil foo-two)) t

            ((make-foo)) nil nil 2 nil foo nil 0

    (eval compile zl:load)

    nil foo- t nil nil foo-p copy-foo nil nil)

           si:defstruct-description)

  (defun copy-foo (si:x)

    (declare (sys:function-parent foo zl:defstruct))

    ((lambda (#:g3152) (zl:aset (aref si:x 1) #:g3152 1)

     (zl:aset (aref si:x 2) #:g3152 2) #:g3152)

     (zl:make-array 3 ’:named-structure-symbol ’foo)))

  (defsubst foo-p (si:x)

    (zl:typep si:x ’foo))

  ’foo)�

The macro sys:defsubst-with-parent that it calls is just defsubst with a

sys:function-parent declaration inside. It exists only because of a bug in an old

implementation of defsubst that made doing it the straightforward way not work.

Encapsulations
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The definition of a function spec actually has two parts: the basic definition, and

encapsulations. The basic definition is what functions like defun create, and encap-

sulations are additions made by trace, advise, or breakon to the basic definition.

The purpose of making the encapsulation a separate object is to keep track of

what was made by defun and what was made by trace. If defun is done a second

time, it replaces the old basic definition with a new one while leaving the encapsu-

lations alone.

Only advanced users should ever need to use encapsulations directly via the primi-

tives explained in this section. The most common things to do with encapsulations

are provided as higher-level, easier-to-use features: trace, advise, and breakon.

The way the basic definition and the encapsulations are defined is that the actual

definition of the function spec is the outermost encapsulation; this contains the

next encapsulation, and so on. The innermost encapsulation contains the basic def-

inition. The way this containing is done is as follows. An encapsulation is actually

a function whose debugging info alist contains an element of the form:

�

(si:encapsulated-definition uninterned-symbol encapsulation-type) �

You recognize a function to be an encapsulation by using si:function-

encapsulated-p. An encapsulation is usually an interpreted function, but it can be

a compiled function also, if the application that created it wants to compile it.

uninterned-symbol’s function definition is the thing that the encapsulation contains,

usually the basic definition of the function spec. Or it can be another encapsula-

tion, which has in it another debugging info item containing another uninterned

symbol. Eventually you get to a function that is not an encapsulation; it does not

have the sort of debugging info item that encapsulations all have. That function is

the basic definition of the function spec.

Literally speaking, the definition of the function spec is the outermost encapsula-

tion, period. The basic definition is not the definition. If you are asking for the

definition of the function spec because you want to apply it, the outermost encap-

sulation is exactly what you want. But the basic definition can be found mechani-

cally from the definition, by following the debugging info alists. So it makes sense

to think of it as a part of the definition. In regard to the function-defining special

forms such as defun, it is convenient to think of the encapsulations as connecting

between the function spec and its basic definition.

An encapsulation is created with the macro si:encapsulate.

You can test for an encapsulation with the function si:function-encapsulated-p.

It is possible for one function to have multiple encapsulations, created by different

subsystems. In this case, the order of encapsulations is independent of the order in

which they were made. It depends instead on their types. All possible encapsula-

tion types have a total order and a new encapsulation is put in the right place

among the existing encapsulations according to its type and their types.

Every symbol used as an encapsulation type must be on the list si:encapsulation-

standard-order. In addition, it should have an si:encapsulation-grind-function

property whose value is a function that grindef calls to process encapsulations of
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that type. This function need not take care of printing the encapsulated function,

because grindef does that itself. But it should print any information about the en-

capsulation itself that the user ought to see. Refer to the code for the grind func-

tion for advise to see how to write one. See the special form advise.

To find the right place in the ordering to insert a new encapsulation, it is neces-

sary to parse existing ones. This is done with the function si:unencapsulate-

function-spec.

Rename-Within Encapsulations

One special kind of encapsulation is the type si:rename-within. This encapsulation

goes around a definition in which renamings of functions have been done.

How is this used?

If you define, advise, or trace (:within foo bar), then bar gets renamed to

altered-bar-within-foo wherever it is called from foo, and foo gets a si:rename-

within encapsulation to record the fact. The purpose of the encapsulation is to en-

able various parts of the system to do what seems natural to the user. For exam-

ple, grindef notices the encapsulation, and so knows to print bar instead of

altered-bar-within-foo, when grinding the definition of foo.

Also, if you redefine foo, or trace or advise it, the new definition gets the same re-

naming done (bar replaced by altered-bar-within-foo). To make this work, every-

one who alters part of a function definition should pass the new part of the defini-

tion through the function si:rename-within-new-definition-maybe. 

Dynamic Closures

A closure is a type of Lisp functional object useful for implementing certain ad-

vanced access and control structures. Closures give you more explicit control over

the environment, by allowing you to save the environment created by the entering

of a dynamic contour (that is, a lambda, do, prog, progv, let, or any of several

other special forms), and then use that environment elsewhere, even after the con-

tour has been exited.

What is a Dynamic Closure?

We use a particular view of lambda-binding in this section because it makes it eas-

ier to explain what closures do. In this view, when a variable is bound, a new val-

ue cell is created for it. The old value cell is saved away somewhere and is inac-

cessible. Any references to the variable get the contents of the new value cell, and

any setqs change the contents of the new value cell. When the binding is undone,

the new value cell goes away, and the old value cell, along with its contents, is

restored.

For example, consider the following sequence of Lisp forms:
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(setq a 3)

�

(let ((a 10))

  (print (+ a 6)))

�

(print a)�

Initially there is a value cell for a, and the setq form makes the contents of that

value cell be 3. Then the let is evaluated. a is bound to 10: the old value cell,

which still contains a 3, is saved away, and a new value cell is created with 10 as

its contents. The reference to a inside the let evaluates to the current binding of

a, which is the contents of its current value cell, namely 10. So 16 is printed.

Then the binding is undone, discarding the new value cell, and restoring the old

value cell, which still contains a 3. The final print prints out a 3.

The form (zl:closure var-list function), where var-list is a list of special variables

and function is any function, creates and returns a closure. When this closure is

applied to some arguments, all the value cells of the variables on var-list are saved

away, and the value cells that those variables had at the time zl:closure was called

(that is, at the time the closure was created) are made to be the value cells of the

symbols. Then function is applied to the arguments.

Here is another, lower level explanation. The closure object stores several things

inside of it. First, it saves the function. Secondly, for each variable in var-list, it

remembers what that variable’s value cell was when the closure was created. Then

when the closure is called as a function, it first temporarily restores the value

cells it has remembered inside the closure, and then applies function to the same

arguments to which the closure itself was applied. When the function returns, the

value cells are restored to be as they were before the closure was called.

Now, if we evaluate the form (assuming that x has been declared special):

(setq a 

      (let ((x 3))

(zl:closure ’(x) ’frob)))�

what happens is that a new value cell is created for x, and its contents is an inte-

ger 3. Then a closure is created, which remembers the function frob, the symbol

x, and that value cell. Finally the old value cell of x is restored, and the closure is

returned. Notice that the new value cell is still around, because it is still known

about by the closure. When the closure is applied, say by doing (funcall a 7), this

value cell is restored and the value of x is 3 again. If frob uses x as a free vari-

able, it sees 3 as the value.

A closure can be made around any function, using any form that evaluates to a

function. The form could evaluate to a lambda expression, as in (lambda () x), or

to a compiled function, as would (function (lambda () x)). In the example above,

the form is ’frob and it evaluates to the symbol frob. A symbol is also a good

function. It is usually better to close around a symbol that is the name of the de-

sired function, so that the closure points to the symbol. Then, if the symbol is re-

defined, the closure uses the new definition. If you actually prefer that the closure

continue to use the old definition that was current when the closure was made,
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then close around the definition of the symbol rather than the symbol itself. In the

above example, that would be done by:

(zl:closure ’(x) (function frob))�

Because of the way dynamic closures are implemented, the variables to be closed

over must be declared special. This can be done with an explicit declare, with a

special form such as defvar, or with zl:let-closed. In simple cases, a declare just

inside the binding does the job. Usually the compiler can tell when a special decla-

ration is missing, but in the case of making a closure the compiler detects this af-

ter already acting on the assumption that the variable is local, by which time it is

too late to fix things. The compiler warns you if this happens.

In Symbolics Common Lisp’s implementation of dynamic closures, lambda-binding

of special variables never really allocates any storage to create new value cells.

Value cells are created only by the zl:closure function itself, when they are need-

ed. Thus, implementors of large systems need not worry about storage allocation

overhead from this mechanism if they are not using dynamic closures.

Symbolics Common Lisp dynamic closures are not closures in the true sense, as

they do not save the whole variable-binding environment; however, most of that

environment is irrelevant, and the explicit declaration of which variables are to be

closed allows the implementation to have high efficiency. They also allow you to

explicitly choose for each variable whether it is to be bound at the point of call or

bound at the point of definition (for example, creation of the closure), a choice

which is not conveniently available in other languages. In addition, the program is

clearer because the intended effect of the closure is made manifest by listing the

variables to be affected.

Symbolics Common Lisp also offers lexical closures, which save the variable bind-

ings of all accessible local and instance variables. Lexical closures do not affect

the bindings of special variables. There is no function to create a lexical closure;

one is created automatically wherever you use a function with captured free refer-

ences. See the section "Kinds of Variables". See the section "Funargs and Lexical

Closure Allocation".

The implementation of dynamic closures (which is not usually necessary for you to

understand) involves two kinds of value cells. Every symbol has an internal value

cell, which is where its value is normally stored. When a variable is closed over by

a closure, the variable gets an external value cell to hold its value. The external

value cells behave according to the lambda-binding model used earlier in this sec-

tion. The value in the external value cell is found through the usual access mecha-

nisms (such as evaluating the symbol, calling symbol-value, and so on), because

the internal value cell is made to contain an invisible pointer to the external value

cell currently in effect. A symbol uses such an invisible pointer whenever its cur-

rent value cell is a value cell that some closure is remembering; at other times,

there is not an invisible pointer, and the value just resides in the internal value

cell. 

Most special variables that live in A-memory cannot be closed over. 
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Examples of the Use of Dynamic Closures

One thing we can do with dynamic closures is to implement a generator, which is

a kind of function that is called successively to obtain successive elements of a se-

quence. We will implement a function make-list-generator, which takes a list and

returns a generator that returns successive elements of the list. When it gets to

the end it should return nil.

The problem is that in between calls to the generator, the generator must some-

how remember where it is up to in the list. Since all of its bindings are undone

when it is exited, it cannot save this information in a bound variable. It could save

it in a global variable, but the problem is that if we want to have more than one

list generator at a time, they all try to use the same global variable and get in

each other’s way.

Here is how we can use dynamic closures to solve the problem:

(defun make-list-generator (l)

  (declare (special l))

  (closure ’(l)

   (function (lambda ()

       (prog1 (car l)

      (setq l (cdr l)))))))�

Now we can make as many list generators as we like; they do not get in each

other’s way because each has its own (external) value cell for l. Each of these val-

ue cells was created when the make-list-generator function was entered, and the

value cells are remembered by the closures. We could also use lexical closures to

solve the same problem. 

�

(defun make-list-generator (l)

  (function (lambda ()       

      (prog1 (car l)      

     (setq l (cdr l)))))) �

The following example uses closures to create an advanced accessing environment:

�

(declare (special a b))

�

(defun foo ()

   (setq a 5))

�

(defun bar ()

   (cons a b))

�

(let ((a 1)

      (b 1))

   (setq x (closure ’(a b) ’foo))

   (setq y (closure ’(a b) ’bar)))�



Page 291

When the let is entered, new value cells are created for the symbols a and b, and

two closures are created that both point to those value cells. If we do (funcall x),

the function foo is run, and it changes the contents of the remembered value cell

of a to 5. If we then do (funcall y), the function bar returns (5 . 1). This shows

that the value cell of a seen by the closure y is the same value cell seen by the

closure x. The top-level value cell of a is unaffected.

To do this example with lexical closures, foo and bar would have to be defined

with flet or labels so that they would share a lexical environment and contain cap-

tured free references to the same local variables a and b. 

Dynamic Closure-Manipulating Functions

make-dynamic-closure symbol-list function

Creates a dynamic closure function over symbol-list.

closure-function closure Returns the closed function closure.

symbol-value-in-closure closure symbol

Returns the binding of symbol in closure.

dynamic-closure-alist closure

Returns an alist of (symbol . value) pairs describing

the bindings that the dynamic closure closure performs

when it is called.

let-and-make-dynamic-closure ((variable value...)) function

Binds variable to value and creates a closure over the

(variable value) pairs, declaring them special in func-

tion.

copy-dynamic-closure closure

Creates and returns a list of all the variables in the

dynamic closure closure.

dynamic-closure-variables closure

Creates and returns a list of all the variables in the

dynamic closure closure.

boundp-in-closure closure symbol

Returns t if symbol is bound in the environment of

closure.

makunbound-in-closure closure symbol

Makes symbol unbound in the environment of closure.�

A note about all of the xxx-in-closure functions (set-, symeval-, boundp-, and

makunbound-): if the variable is not directly closed over, the variable’s value cell

from the global environment is used. That is, if closure A closes over closure B,

xxx-in-closure of A does not notice any variables closed over by B.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, use the Common Lisp equivalents of these functions.
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zl:closure var-list function Creates and returns a dynamic closure of function

over varlist.

zl:symeval-in-closure closure symbol

Like symbol-value-in-closure.

zl:set-in-closure closure symbol x

Sets the binding of symbol to x in the environment

closure.

zl:locate-in-closure closure symbol

Returns the location of the place in closure where the

saved value of symbol is stored.

zl:closure-alist closure Like dynamic-closure-alist.

zl:let-closed ((variable value...)) function

Like let-and-make-dynamic-closure.

zl:copy-closure closure Like copy-dynamic-closure.

zl:closure-variables closure Like dynamic-closure-variables. 

Predicates

A predicate is a function that tests for some condition involving its arguments and

returns some non-nil value if the condition is true, or the symbol nil if it is not

true. Predicates such as and, member and special-form-p return non-nil values

when the condition is true, while predicates such as numberp, listp and functionp

return the symbol t if the condition is true. An example of the non-nil return val-

ue is the predicate special-form-p. It returns a function that can be used to evalu-

ate the special form. 

By convention, the names of predicates usually end in the letter "p" (which stands

for "predicate"). The way the "p" is added to the end of the predicate is dependent

on whether or not there is an existing hyphen in the name. For instance, the list

predicate is listp, while the predicate that checks for compiled functions is

compiled-function-p.

The summary tables below group predicates by function for a quick overview. For

a full description of individual predicates, see the document Symbolics Common

Lisp Dictionary.

Numeric Type-checking Predicates

These predicates test a number to see if it belongs to a given type. General type-

checking functions such as typep and subtypep can also be used to determine re-

lationships within the hierarchy of numeric types and for similar purposes. For

more on these functions, see the section "Determining the Type of an Object". 

complexp object Tests for complex number.
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floatp object Tests for floating-point number of any precision.

integerp object Tests for integer.

numberp object Tests for number of any type.

rationalp object Tests for rational number.

sys:double-float-p object

Tests for double-precision floating-point number.

sys:single-float-p object

Tests for single-precision floating-point number.

sys:fixnump object Tests for fixnum.

Note: The following Zetalisp predicates are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

predicates.

zl:bigp object Tests for bignum.

zl:fixp object Tests for integer (same as integerp).

zl:flonump object Tests for single-precision floating-point number (same as

sys:single-float-p).

zl:rationalp object Tests for ratio.

Array Type-Checking Predicates

adjustable-array-p array tests if the array size is dynamically change-

able

array-has-fill-pointer-p array tests if array has a fill pointer (array must be

one-dimensional)

array-has-leader-p array tests if array has a leader

array-in-bounds-p array &rest subscripts

tests whether all of the subscripts are legal for

array

arrayp array tests if array is any type of array

sys:array-displaced-p array tests if array is any kind of displaced array (in-

cluding indirect)

sys:array-indexed-p array tests if array is an indirect array with an in-

dex-offset

sys:array-indirect-p array tests if array is an indirect array�
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Vector Type-Checking Predicates

bit-vector-p object Tests if object is a one-dimensional array of

bits.

simple-bit-vector-p object Tests if object is a simple bit-vector.

simple-vector-p object Tests if object is a simple vector.

vectorp object Tests if object is a one-dimensional array.�

Character Type-Checking Predicates

alpha-char-p char Tests if char is an alphabetic character.

alphanumericp char Tests if char is either alphabetic or numeric.

char-fat-p char tests if char is a character that has non-zero

bits or font attribute.

characterp object Tests if object is a character.

digit-char-p char &optional (radix 10)

Tests if char is a digit of the radix specified by

radix and returns a non-negative integer that

is the "weight" of char in radix.

formatting-char-p char Tests if char is invisible and should be printed

as its name rather than itself (such as #\Line).

graphic-char-p char Tests if char is a printing character.

standard-char-p char Tests if char is one of the Common Common

Lisp standard characters.

mouse-char-p char Tests if char is a mouse-character representing

the clicking of a mouse button.�

Character Case-Checking Predicates

both-case-p char Tests if char is a character for which there is

both an uppercase and corresponding lowercase

character equivalent.

lower-case-p char Tests if char is a lowercase character.

upper-case-p char Tests if char is an uppercase character.�

Input/Output Type-Checking Predicates
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input-stream-p stream Tests if stream can handle input operations.

output-stream-p stream Tests if stream can handle output operations.

pathnamep object Tests if object is a pathname.

readtablep object Tests if object is a readtable.

streamp object Tests if object is a stream.�

String Type-Checking Predicates

These predicates test whether an object is a string of the recognized string types.

The general type-checking predicate typep can also be used to test for strings. See

the section "Determining the Type of an Object".

simple-string-p object Determines if object is a simple string array

(one with no fill pointer and no displacement),

returning t if it is, and nil otherwise. Accepts

any object as an argument.

string-char-p char Determines if char can be stored into a thin

string (that is, if it is a standard character),

returning t if it can, and nil otherwise. Accepts

a character argument only.

string-fat-p string Determines if string is an array of fat charac-

ters, returning t if it can, and nil otherwise.

Accepts a string argument only.

stringp object Determines if if object is either type of string,

returning t if it is, and nil otherwise. Accepts

any object as an argument.�

Non-numeric Data Type-Checking Predicates

atom object Tests if object is not a cons.

consp object Tests if object is a cons.

instancep object Tests if object is an instance of a flavor.

listp object Tests if object is a cons or the empty list.

locativep object Tests if object is a locative.

nlistp object Tests if object is anything but a cons (same as

atom).

nsymbolp object Tests if object is not a symbol.
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symbolp object Tests if object is a symbol.�

Other Type-Checking Predicates

commonp object Tests if object is any valid Common Lisp data

type.

compiled-function-p object Tests if object is any compiled code object.

constantp object Tests if object always evaluates to the same

thing.

errorp object Tests if object is an error object.

functionp object Tests if object is a function.

named-structure-p object tEsts if object is a named structure and returns

object’s named structure symbol.

special-form-p symbol Tests if symbol is a globally-named special

form.

subtypep type1 type2 Tests if type1 is definitely a subtype of type2

(for exact return values see the dictionary en-

try).

typep object type Tests if object is of type type.�

Note: The following Zetalisp predicates are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

predicates.

zl:closurep object Tests if object is a closure.

zl:subrp arg Tests if arg is a compiled code object.

zl:typep arg &optional type Tests for type specified (two arguments) and

returns argument type (one argument).

Numeric Property-checking Predicates

evenp integer Tests for even integers.

oddp integer Tests for odd integers.

minusp number Tests if number is less than zero.

plusp number Tests if number is greater than zero.

zerop number Tests if number is zero.�

Note: The following Zetalisp predicate is included to help you read old programs. In

your new programs, if possible, use the Common Lisp equivalent of this predicate.
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zl:signp test number Tests if the sign of number matches test.

Numeric Comparison Functions

Function Synonyms Comparison/Returned Value

≠ number &rest numbers /= Not equal

< number &rest more-numbers zl:lessp Less than

≤ number &rest more-numbers <= Less than or equal

= number &rest more-numbers Equal

> number &rest more-numbers zl:greaterp Greater than

≥ number &rest more-numbers >= Greater than or equal

max number &rest more-numbers Greatest of its arguments

min number &rest more-numbers Least of its arguments

Case-Sensitive Character Comparison Predicates

user::char////////= char &rest more-chars

Not the same.

char≠ char &rest more-chars Not the same (same as user::char////////=).

char< char &rest more-chars Less-than.

char<= char &rest more-chars Less-than-or-equal.

char≤ char &rest more-chars Less-than-or-equal (same as char<=).

char= char &rest more-chars The same.

char> char &rest more-chars Greater-than.

char>= char &rest more-chars Greater-than-or-equal.

char≥ char &rest more-chars Greater-than-or-equal (same as char>=).

Case-Insensitive Character Comparison Predicates

These predicates test characters using a different ordering scheme that accounts

for differences in font information, but ignores differences in bits attributes and

case.
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char-equal char &rest more-chars Like char=.

char-not-equal char &rest more-chars Like user::char////=.

char-lessp char &rest more-chars Like char<.

char-greaterp char &rest more-chars Like char>.

char-not-greaterp char &rest more-chars Like char<=.

char-not-lessp char &rest more-chars Like char>=.

Case-Sensitive String Comparison Predicates

These predicates compare two strings, or substrings of them, exactly, depending on

all fields including character style, and alphabetic case. See the section "Case-

Sensitive and Case-Insensitive String Comparisons".

The keywords :start1 0 and :start2 0 specify the character position (counting from

0) from which to begin the comparison; the keywords :end1 and :end2 specify the

character position immediately after the end of the comparison. The start argu-

ments default to 0 (compare strings in their entirety); the end arguments default

to the length of the string nil. The start arguments must be ≤ the end arguments.

The predicates compare the strings in dictionary order. They return either the

symbol nil or, generally, the position of the first character at which the strings

fail to match; this index is equivalent to the length of the longest common portion

of the strings. 

string= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if two strings are are identical in all character fields, in-

cluding modifier bits, character set, character style, and alpha-

betic case; it is false otherwise.

string≠ string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the characters in the two strings are not identical

(same as user::string////=).

user::string////= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

A synonym of string≠.

string< string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char<, or if string1 is a proper substring of string2.

string≤ string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char≤, or if string1 is a substring of string2 (same

as string<=).

string<= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

A synonym of string≤.
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string> string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char>, or if string2 is a proper substring of string1.

string≥ string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char≥, or if string2 is a substring of string1 (same

as string>=).

string>= string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

A synonym of string≥.

string-exact-compare string1 string2 &key (:start1 0) (:start2 0) :end1 :end2

Returns a positive number if string1 > string2, zero if string1 =

string2, and a negative number if string1 < string2.

sys:%string= string1 index1 string2 index2 count

A low-level, possibly more efficient string comparison.

sys:%string-exact-compare string1 index1 string2 index2 count

A low-level, possibly more efficient string comparison. Returns

a positive number if string1 > string2, zero if string1 = string2,

and a negative number if string1 < string2.

string-exact-compare string1 string2 &optional idx1 idx2 lim1 lim2

Returns a positive number if string1 > string2, zero if string1 =

string2, and a negative number if string1 < string2. Use string-

exact-compare instead.

For the Zetalisp versions of these predicates, the optional arguments, idx1 and idx2�

specify the start point for the comparison, while lim1 and lim2 specify the charac-

ter immediately after the end of the comparison. These Zetalisp predicates general-

ly return either t or nil.

Note: These Zetalisp predicates are included to help you read old programs. In your

new programs, where possible, use the Common Lisp equivalents of these predicates. 

zl:string-exact-compare string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2

Returns a positive number is string1 > string2, zero if string1 =

string2, and a negative number if string1 < string2. Use the

Common Lisp function string-exact-compare.

zl:string= string1 string2 &optional idx1 idx2 lim1 lim2

Like string=, but returns t or nil.

zl:string≠ string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 

Like string≠, but returns t or nil.

zl:string< string1 string2 &optional (idx1 0) (idx2 0) lim1 lim2 

Like string<, but returns t or nil.

zl:string> string1 string2 &optional idx1 idx2 lim1 lim2

Like string>, but returns t or nil.
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zl:string≤ string1 string2 &optional idx1 idx2 lim1 lim2

Like string≤, but returns t or nil.

zl:string≥ string1 string2 &optional idx1 idx2 lim1 lim2

Like string≥, but returns t or nil. 

Case-Insensitive String Comparison Predicates

These predicates test strings, ignoring character case and character style. See the

section "Case-Sensitive and Case-Insensitive String Comparisons".

The keywords :start1 and :start2 specify the character position (counting from 0)

from which to begin the comparison; the keywords :end1 and :end2 specify the

character position immediately after the end of the comparison. The start argu-

ments default to 0 (the beginning of the string); the end arguments default to nil

(the length of the string). The start arguments must be ≤ the end arguments.

The predicates compare the strings in dictionary order. They return either the

symbol nil or, generally, the position of the first character at which the strings

fail to match; this index is equivalent to the length of the common portion of the

strings.

These predicates ignore the character fields for character style and alphabetic case

for the comparison. 

string-equal string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if two strings are are identical in all character fields, in-

cluding modifier bits, character set, and character style; other-

wise it is false. Case-insensitive version of string=.

string-not-equal string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Test if string1 is not equal to string2. If the condition is satis-

fied, string-not-equal returns the position within the strings of

the first character at which the strings fail to match. Case-

insensitive version of user::string////=.

string-lessp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char<, or if string1 is a proper substring of string2.

Case-insensitive version of string<.

string-greaterp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if the first characters that differ between string1 and

string2 are char>, or if string2 is a proper substring of string1.

Case-insensitive version of string>.

string-not-greaterp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if string1 is less than or equal to string2. If the condition

is satisfied, string-not-greaterp returns the position within the

strings of the first character at which the strings fail to

match. Case-insensitive version of string<=.
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string-not-lessp string1 string2 &key (:start1 0) :end1 (:start2 0) :end2 

Tests if string1 is greater than or equal to string2. If the con-

dition is satisfied, string-not-lessp returns the position within

the strings of the first character at which the strings fail to

match. Case-insensitive version of string>=.

string-compare string1 string2 &key (:start1 0) (:start2 0) :end1 :end2 

Returns a positive number if string1 > string2, zero if string1 =

string2, and a negative number if string1 < string2. Case-

insensitive version of string-exact-compare.

sys:%string-equal string1 index1 string2 index2 count

A low-level, possibly more efficient string comparison. Case-

insensitive version of sys:%string=.

sys:%string-compare string1 index1 string2 index2 count

A low-level, possibly more efficient string comparison. Returns

a positive number if string1 > string2, zero if string1 = string2,

and a negative number if string1 < string2. Case-insensitive

version of sys:%string-exact-compare.

For the Zetalisp versions of these predicates, the optional arguments idx1 and idx2�

specify the start point for the comparison, while lim1 and lim2 specify the charac-

ter immediately after the end of the comparison. These Zetalisp predicates general-

ly return either t or nil.

These predicates ignore the character fields for character style and alphabetic case

for the comparison.

Note: These Zetalisp predicates are included to help you read old programs. In your

new programs, where possible, use the Common Lisp equivalents of these predicates.

zl:string-equal string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings, returning t if they are equal and nil if

they are not. Case-insensitive version of zl:string=. Use the

Common Lisp function string-equal.

zl:string-not-equal string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings or substrings of them. Case-insensitive

version of zl:string≠. Like string-not-equal but returns t or

nil.

zl:string-lessp string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings using alphabetical order. Case-insensitive

version of zl:string<. Like string-lessp but returns t or nil.

zl:string-greaterp string1 string2 &optional idx1 idx2 lim1 lim2

Case-insensitive version of zl:string>. This compares two

strings or substrings of them. Like string-greaterp but returns

t or nil.

zl:string-not-lessp string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings, or substrings of them. Like string-not-

lessp but returns t or nil.
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zl:string-not-greaterp string1 string2 &optional idx1 idx2 lim1 lim2

Compares two strings or substrings of them. Like string-not-

greaterp but returns t or nil.

zl:string-compare string1 string2 &optional idx1 idx2 lim1 lim2

Compares the characters of string1 starting at idx1 and ending

just below lim1 with the characters of string2 starting at idx2

and ending just below lim2. Case-insensitive version of

zl:string-exact-compare. Use the Comon Lisp function string-

compare.

Comparison-performing Predicates

eq x y Tests for identical object (implementationally).

eql x y Tests for identical object (conceptually).

equalp x y Tests for similar objects.

neq x y Not eq.

not x Tests for the symbol nil.

null object Tests for the empty list nil ().

alphalessp string1 string2 Like string-lessp, but also works on numbers,

lists and other objects.�

Note: The following Zetalisp predicates are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

predicates.

zl:equal x y Tests for similar objects (differs from equal on

arrays and characters)

zl:samepnamep sym1 sym2 Like string=; tests if the two symbols have

string= printed representations�

Predicates for Testing Bits in Integers

logbitp index integer

Returns t if index bit in integer (the bit whose weight is 2index)

is a one-bit.

logtest integer1 integer2

Returns t if any 1-bits in integer1 are 1-bits in integer2.

Note: The following Zetalisp predicate is included to help you read old programs. In

your new programs, use the Common Lisp equivalent of this predicate. 
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zl:bit-test x y Returns t if any 1 bits in x are 1 bits in y. Use the Common

Lisp function, logtest.

Flavor Predicates

flavor-allows-init-keyword-p flavor-name keyword

Tests if keyword is a valid init option for fla-

vor-name and returns the component flavor

name that handles the keyword or the symbol

nil if it is not a valid init option.

operation-handled-p object message-name &rest arguments

Tests if the flavor associated with object has a

method defined for message-name.�

Note: The following Zetalisp predicate is included to help you read old programs. In

your new programs, if possible, use the Common Lisp equivalent of this predicate.

zl:instance-variable-boundp var Tests if var is a bound instance variable�

Package Predicates

boundp sym Tests if sym is bound.

fboundp sym Tests if sym’s function cell is not empty.

location-bound-p location Tests if cell pointed to by locative pointer loca-

tion is bound.

variable-boundp variable Tests if local, special, or instance variables are

bound.

fdefinedp function-spec Tests if function-spec has a definition.

List and Table Predicates

endp object Tests for the end of a list.

subsetp list1 list2 &key :test :test-not :key

Tests if every element of list1 is in list2.

tree-equal x y &key :test :test-not Tests for isomorphic trees with identical

leaves.

Time Predicates
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time-elapsed-p increment initial-time &optional (final-time (time))

Tests if increment 60ths of a second have

elapsed between initial-time and final-time

time-lessp time1 time2 Tests if time1 is earlier than time2

Inline Functions and Macros

Inline Functions

An inline function is a function that compiles as an open subroutine. Thus, an in-

line function, also known as a substitutable function, is open-coded by the compiler.

This means that when a call to some function that calls an inline function is com-

piled, the compiler incorporates the body forms of the inline function into the func-

tion being compiled, substituting the argument forms for references to the vari-

ables in the function’s lambda-list. This is in contrast to normal functions, which

compile as closed subroutines. For these, the compiler generates code to compute

the values of the arguments and then applies the function to those values.

Whether a function is inline or not makes no difference in interpreted code; the

difference is effected only in compiled code.

An inline function can be applied just as any function can be applied. The result

of applying the inline function is the same as the result of applying a normal

function.

Here is an example to illustrate the difference between inline functions and ordi-

nary functions. Suppose there is a function called square-sum that calls another

function, square:

(defun square-sum (a b)(square (+ a b)))

(defun square (x) (* x x))

If square is an ordinary function, then compiling square-sum produces code simi-

lar to the following:

  0  ENTRY: 2 REQUIRED, 0 OPTIONAL

  1  PUSH-LOCAL FP|0            ;A

  2  BUILTIN +-INTERNAL STACK FP|1      ;B

  3  CALL-1-RETURN #’SQUARE

Note the function call to square. 

If square is an inline function, however, then compiling square-sum produces

something like:
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  0  ENTRY: 2 REQUIRED, 0 OPTIONAL

  1  PUSH-LOCAL FP|0            ;A

  2  BUILTIN +-INTERNAL STACK FP|1      ;B      creating X(FP|2)

  3  PUSH-LOCAL FP|2            ;X

  4  PUSH-LOCAL FP|2            ;X

  5  BUILTIN *-INTERNAL STACK 

  6  RETURN-STACK 

Note that there is no function call here: the compiled code for square-sum incor-

porates the code that accomplishes square. The call to square-sum has been open-

coded by substituting the inline function’s definition into the code being compiled.

This substitution is referred to as expansion of the inline function. Inline functions

and macros are similar in this respect: they both result in expansions. 

� When to Use Inline Functions

Inline functions are used to produce faster code. This is because they avoid the

overhead of function calls. Their use can also help produce code that is clearer

and more readable than it would be without them. Compare forms A and B below:

A.

�

(defun square-sum (a b)(square (+ a b)))

B.

�

(defun square-sum (a b)(* (+ a b)(+ a b)))

A is more readable than B, and will run faster.

The disadvantages of inline functions are that: 

• They cannot be detected by trace or the stepper in compiled code.

• When redefining an inline function, you must recompile every function whose

source contains a call to it in order for the redefinition to take effect.

In general, however, if something can be implemented either as an inline function

or as a macro, it is better to make it an inline function. Inline functions have the

following advantages over macros: 

• Inline functions can be passed as functional arguments. (For example, you can

pass them to mapcar.)

• Inline functions can be applied to arguments, while macros cannot.

• The compiler binds the argument variables to the argument values of an inline

function with let, so they get evaluated only once and in the correct order.

When possible, the compiler then optimizes out the variables. Macros do not

provide the simultaneous guarantee of argument evaluation order and generation

of code with no unnecessary temporary variables.
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� Writing Inline Functions

The easy way to define an inline function is to use the SCL special operator

defsubst. It is used just like defun and does almost the same thing. For example,

the inline version of square is defined by

(defsubst square (x) (* x x))

The general syntax for defsubst is

(defsubst name lambda-list . body)

The argument, name, can be any function spec, but the inline expansion will occur

only when name is a symbol.

You can define an inline function without relying on Symbolics Common Lisp ex-

tensions by using the Common Lisp inline proclamation in conjunction with a nor-

mal defun:

(defun square (x) (* x x))

(proclaim ’(inline square))

See the declaration inline. 

� What is a Macro?

A macro is a special operator. It takes a form, or forms, and translates those

forms into a new form. It then evaluates this new form. Macros can be defined by

users. Like all special operators, macros do not evaluate their arguments.

Macros resemble inline functions in that, in compiled code, there is a substitution

or expansion of forms. Macros, however, are much more powerful than inline func-

tions, since they take effect (albeit differently) in interpreted code as well as in

compiled code and because the way they and their arguments are treated is much

more complicated. 

� When to Use Macros

Like inline functions, macros can be used to produce faster code than normal func-

tions because they avoid the overhead of function calls. The primary use of

macros, though, is to define new syntactic constructs. The fact that the arguments

of macros are not evaluated makes this possible. Here is a simple example to

demonstrate this:

Suppose you want to define your own version of unless. You might write this

function:

(defun new-unless (condition result)

       (cond ((not condition) result)))

This definition works for simple cases: if condition evaluates to nil, the value of

result is returned; otherwise nil is returned. For example,

(new-unless t 2) => nil

(new-unless nil 2) => 2

A more complicated case reveals problems:



Page 307

(new-unless t (print 2))

This form returns nil, but before that it goes ahead and prints 2. This is not the

correct behavior; the second argument should be evaluated only on condition.

Macros solve this kind of problem.

Using macros to create new syntactic constructs allows you to extend Lisp and to

create your own embedded languages within Lisp. Using macros also has the ad-

vantage of increased speed and clarity of code. 

The disadvantages to using macros are: 

• Code using macros can be difficult to debug because macros in compiled code

cannot be detected by trace or zl:step.

• Because macros are not functions, they can not be used with zl:apply, funcall,

or mapping functions.

• In order for a change in a macro to take effect, any function that uses that

macro must be recompiled after that change is made.

• Macros, because Lisp treats them in a relatively complex way, can be tricky to

use. (The section "Avoiding Common Macro-Writing Pitfalls" treats this issue.)

Because of these drawbacks, the usual order of preference for how to write a pro-

cedure in Lisp is: 

1. Use a simple function for ordinary purposes and ease in debugging.

2. Use an inline function for extra speed where possible. Note that a procedure

can be an inline function only if it has the exact semantics of a function,

rather than a special form.

3. Use a macro for extra speed where an inline function is not possible, or for

creating an extension to the language.

� Writing Simple Macros

The most important thing to keep in mind as you learn to write macros is that

you should first figure out what the macro form is supposed to expand into, and

only then should you start to actually write the code of the macro. If you have a

firm grasp of what the generated Lisp program is supposed to look like from the

start, you will find the macro much easier to write. 

Introduction to defmacro

The easiest way to create a macro is to use the macro defmacro, which is similar

in syntax to defun. The syntax of defmacro is:
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(defmacro name pattern . body)

Here is an explanation of the arguments: 

• The macro’s name is the symbol whose macro definition is being created. It can

be any symbol.

• The pattern constitutes the macro’s lambda-list (that is, its argument list). It

can be anything made up of symbols and conses; it need not be a list, the way a

function’s lambda-list must.

• The forms in body specify the code into which the macro call is to expand. They

constitute the body of the macro’s expander function.�

Here is how to write a simple macro using defmacro: 

1. Figure out what the expansion of the macro should be. For example, the ex-

pansion of the new-unless macro should look like:

(cond ((not condition) result))

2. Devise a body form that, when evaluated, produces the expansion you want.

For example:

(list ’cond (list (list ’not condition) result)))

    => (cond ((not condition) result))

Do not quote the arguments condition and result, as they are not evaluated in

the macro expansion and do not need quotes.

3. Write the macro using that body form. Here is one way to write the new-

unless macro:

(defmacro new-unless (condition result)

   (list ’cond (list (list ’not condition) result)))

Here is a sample call to the macro new-unless: 

(new-unless (symbolp 2)(print 10))

causes the following things to happen: 

• condition gets bound to the first argument, which is the list (symbolp 2). result

gets bound to the second argument, the list (print 10). Note that this is not the

same kind of binding that would occur with a function call; the argument forms

are not evaluated.

• The body of the macro:

(list ’cond (list (list ’not condition) result))

evaluates with the above bindings in place. The result of that evaluation is the

result of the macro expansion:

(cond ((not (symbolp 2))(print 10)))�
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• The bindings used for the evaluation of the body are undone; they are not used

in the evaluation of the result of the macro expansion.

• The macro expansion is evaluated and the result returned. In this case, 10 is

printed and 10 is returned.

Basically, defmacro matches the symbols in pattern against variables within body.

Non-nil symbols in pattern are bound to the parts of body to which they corre-

spond. This is called destructuring.

Destructuring provides you with the ability to "simultaneously" assign or bind mul-

tiple variables to components of some data structure. Here the macro destruc-ex is

defined:

(defmacro destruc-ex ((horn light-r light-l)

                      ((wheel-1 size-1) (wheel-2 size-2))  

                      hood-ornament)

...)

destruc-ex is called this way:

(destruc-ex (h (car lights) (cdr lights))

            ((w1 (measure-size w1)) (w2 (measure-size w2)))

            winged-victory)

The destruct-ex macro causes the expansion function to receive the following val-

ues for its parameters: 

Parameter Value

horn h

light-r (car lights)

light-l (cdr lights)

wheel-1 w1

size-1 (measure-size w1) . . . 

defmacro installs the expander function as the global macro definition of name

and returns name as its (the defmacro form’s) value. When a macro that has been

created this way is called, the expander function replaces the macro call with new

code specified by the body of the expander function.

In the definition of new-unless given earlier in this section, it would be helpful if

the body of the macro looked more like its expansion. The backquote-comma syntax

allows you to write a macro so that its body clearly reflects its own expansion. See

the section "Backquote-Comma Syntax".

For more information on defmacro: See the section "Using Advanced Features of

defmacro". 

� Backquote-Comma Syntax
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The backquote-comma syntax lets you create a template for macro expansion. This

template makes the form of the body of a macro clearly reflect its own expansion.

For example, consider the following macro definition:

(defmacro new-unless (condition result)

   (list ’cond (list (list ’not condition) result)))

It becomes much easier to understand when rewritten with the backquote-comma

syntax:

(defmacro new-unless (condition result)

‘(cond ((not ,condition) ,result)))

Backquote (‘), when used before a form, has an effect similar to single-quote (’), in

that it prevents the form that follows it from being evaluated. For example:

’(a b c) => (a b c)

‘(a b c) => (a b c)

Backquote is different from single quote in that it causes items within the form

that are preceded by commas to be evaluated. For example:

(setq b 1) => 1

‘(a b c)  => (a b c)

‘(a ,b c) => (a 1 c)

‘(abc ,(+ b 4) ,(- b 1) (def ,b)) => (abc 5 0 (def 1))

In other words, backquote quotes everything except things preceded by a comma:

those things get evaluated. (Hint: A way to remember which character is the quote

and which is the backquote is to remember that the quote character, which is used

more frequently, is placed on a key that is more easily accessible than the back-

quote key when in the normal touch-typing position.)

A list following a backquote can be thought of as a template for some new list

structure. The parts of the list that are preceded by commas are forms that fill in

slots in the template; everything else is just constant structure that appears in the

result. This is usually what you want in the body of a macro: some parts of the

form generated by the macro are constant, that is, expansion generates the same

thing on every invocation of the macro. Other parts are different every time the

macro is called, often being functions of the form that the macro appeared in, that

is, often being the "arguments" of the macro. These latter parts are the ones you

put the commas in front of.

As an aside, note that you can use the backquote-comma syntax in other situations

besides writing macros. For example, it is often used to make item lists for menus,

where an item list consists of several items that remain constant along with a few

things that will change. In general, in many places where you might write some-

thing like A, below, you could instead write B:

A.

�

(list first-arg second-arg)

you could instead write

B.
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�

‘(,first-arg ,second-arg)

Here are more examples of simple macros. The symbol ==> means "results in

something like the following macro expansion." (The actual macro expansions pro-

duced by Common Lisp are slightly more complicated than those we show here as

examples.) 

A macro that lets you call new-first in place of car:

(defmacro new-first (the-list)

   ‘(car ,the-list)) 

�

(new-first some-list) ==> (car some-list)

A macro that translates a form resembling (addone x) into (+ 1 x):

(defmacro addone (symbol)

   ‘(+ 1 ,symbol))

A macro that translates (increment x) into (zl:setf x (1+ x)):

(defmacro increment (symbol)

   ‘(setf ,symbol (1+ ,symbol)))

�

(increment a) ==> (setq a (1+ a))

(No, that’s not a typo. setq is really what it expands into.)

Finally, here is a macro that creates an iteration construct that increments a vari-

able by one until it exceeds a limit (like the FOR statement of the BASIC lan-

guage). The syntax of this construct is

(for a 1 100 (print a) (print (* a a)))

We want it to expand into something like

(do a 1 (1+ a) (> a 100) (print a) (print (* a a)))

Here is the macro definition, using backquote-comma syntax:

(defmacro for (var lower upper &body body)

   ‘(do ,var ,lower (1+ ,var) (> ,var ,upper) ,@body))

As an exercise, you might try writing this same macro without the backquote-

comma syntax. Your answer should look something like:

(defmacro for (var lower upper &body body)

   (cons ’do

      (cons var

         (cons lower

            (cons (list ’1+ var)

               (cons (list ’> var upper)

                  body))))))

You can see how much easier the backquote-comma syntax makes this.

Remember that the pattern argument need not be a list. In the above example, the

pattern was a "dotted list", since the symbol &body was supposed to match the

cddddr of the macro form. Suppose you wanted a different syntax, say:
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(for a (1 100) (print a) (print (* a a)))

then you could accomplish the change in the macro simply by modifying the pat-

tern of the defmacro above, as:

(defmacro for (var (lower upper) &body body)

   ‘(do ,var ,lower (1+ ,var) (> ,var ,upper) ,@body))

For more information: See the section "Extensions to the Backquote-Comma

Syntax". 

� Extensions to the Backquote-Comma Syntax

When an at-sign, @, follows a comma in a backquoted list (,@) it means that the

following item evaluates to a list that is to be spliced into the current list. For

example, if a is bound to (x y z), then:

‘(1 ,a 2) => (1 (x y z) 2)

But:

‘(1 ,@a 2) => (1 x y z 2)

You can use this construct, for example, to rewrite a function that takes &rest ar-

guments so that, instead of a list, it takes any number of arguments. That is, you

can rewrite a function whose syntax is:

(function &rest argument-list)

as a macro:

(defmacro new-function (&rest argument-list)

   ‘(function ,@list-of-arguments))

which can be called with the syntax:

(new-function arg1 arg2 arg3 arg4 ...)

When a dot . follows a comma in a backquoted list (,.) it means the same thing as

the @, except in this case the list to be inserted can be destructively modified.

That is, if ,@ can be thought of as generating a call to the append function, then

,. can be thought of as generating a call to nconc. As with other types of destruc-

tive modification, use of the ,. syntax can produce more efficient code, but it is

dangerous. 

� Writing More Complicated Macros: Common Techniques

Using Advanced Features of defmacro

defmacro can have one or more declarations between the pattern argument and

the body argument. For more information, see the section "Declarations"

defmacro also takes an optional documentation string between pattern and body.

This string is attached to the macro’s name, and serves as the documentation

string. You can see the documentation string of any macro (or symbol) by using

the function documentation, which returns the documentation string stored with

the macro. (See the function documentation.)
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For example, suppose you define:

(defmacro for (var lower upper . body)

   "Iteration construct with syntax (for a 1 100 (do-body-things))"

   ‘(do ,var ,lower (1+ ,var) (> ,var ,upper) ,@body))

then when users do:

(documentation ’for ’function)

they see the documentation string:

 Iteration construct with syntax (for a 1 100 (do-body-things))

The documentation string and any declarations present can be in any order, unless

there are no body forms in your macro. In this case, the documentation string

must be followed by at least one declaration.

defmacro destructures all levels of patterns in a consistent way. The inside pat-

terns can also contain &-keywords. defmacro checks the lengths of the pattern

and subform for matching. (See the special form destructuring-bind.)

This behavior exists for all of defmacro’s parameters, except &environment,

&whole, and &aux.

A defmacro pattern argument can contain the lambda-list keywords &optional,�

&rest, &key, &allow-other-keys, &aux, &body, &whole, and &environment. For

&optional and &key parameters, initialization forms and "supplied-p" parameters

can be specified, just as for defun.

Here are descriptions of the keywords unique to macro definition:

&body

This is identical in function to &rest, but it tells the pretty printer to indent the

remainder of the form as a body. You can use either &rest or &body in one sub-

list, but you cannot use both in one macro. This, for example, is permissible:

((x &rest y) &body z)

&whole

This is followed by a single variable, var, that is bound to the entire macro-call

form. var is the value that the macro-expander function receives as its first argu-

ment. &whole is allowed only in the top-level pattern, not in inner patterns.

&whole and its variable must appear first in pattern, before any other parameter

or keyword.

&environment

This is followed by a single variable, env, which is bound to an object representing

the lexical environment where the macro call is to be interpreted. This environ-

ment might not be the complete lexical environment. env should be used only with

the functions macroexpand and macroexpand-1 for the sake of any local macro

definitions that the macrolet construct may have established within that lexical

environment. See the section "Controlling Macro Expansion" and the special form

macrolet. &environment is allowed only in the top-level pattern, not in inner pat-

terns. It is useful primarily in cases where a macro definition must explicitly ex-
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pand any macros in a subform of the macro call before computing its own expan-

sion. Here is an example:

(defmacro cxx (x) ‘(car ,x))

  => cxx

�

(defmacro car-or-cdr (any-list &environment env)

  (macroexpand ‘(cxx ,any-list) env))

  => car-or-cdr�

(defun Stooges ()

  (macrolet ((cxx (x) ‘(cdr ,x)))

    (car-or-cdr ’(Larry Moe Curly))))

  => Stooges

�

(Stooges)

  => (Moe Curly)

When Stooges calls car-or-cdr, car-or-cdr uses the definition of cxx given in the

macrolet, which is car-or-cdr’s lexical environment. If &environment and env are

omitted, car-or-cdr uses the global definition of cxx:

(defmacro car-or-cdr (any-list)

  (macroexpand ‘(cxx ,any-list)))

  => car-or-cdr�

(defun Stooges ()

  (macrolet ((cxx (x) ‘(cdr ,x)))

    (car-or-cdr ’(Larry Moe Curly))))

  => Stooges

�

(Stooges)

  => Larry

� Writing Macros That Expand into Multiple Forms

Ordinarily, a macro expands into only one form. This is inconvenient because often

a macro is required to expand into several things, all of which should happen se-

quentially at run time. The progn special form takes care of this difficulty, since

its use at the top level causes the compiler to consider all forms within the progn

to be top-level forms.

To illustrate the use of progn in macros, here is an example. Suppose

defparameter does not exist and you want to implement it as a macro. Your

macro must do two things: declare the variable to be special and set it to its ini-

tial value. To keep the example simple, the new definition does only these two

things and has no options. The call:

(defparameter a (+ 4 b))

should be equivalent to the two forms:
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(proclaim ’(special a))

(setq a (+ 4 b))

The macro definition

(new-defparameter (variable init-form)

   ’(progn

      (proclaim ‘(special ,variable))

      (setq ,variable ,init-form)))

produces this same result whether interpreted or compiled; each subform is pro-

cessed just as if it had appeared at the top level.

Here is another example that illustrates the use of progn and also illustrates how

you can use Lisp to write a customized language for your own application. In this

example, we create a macro that defines commands for a new embedded language.

The macro lets you put documentation strings next to the code they document.

This way, the code and documentation can be updated and maintained together in

the same manner as Lisp defun and defmacro. The way the Lisp environment

works, with load-time evaluation able to build data structures, lets the documenta-

tion database and the list of commands be constructed automatically.

The macro, called define-my-command, defines commands in an interactive user

system. For each command, define-my-command provides a function that executes

the command and a text string to be used as interactive online documentation.

(This macro is a simplified version of a macro that is actually used in the Zwei

editor.) In our system, commands are always functions of no arguments, documen-

tation strings are placed on the help property of the name of the command, and

the names of all commands are put on a list. A typical call to define-my-command

looks like this:

(define-my-command move-to-top

   "This command moves you to the top."

   (do ()

      ((at-the-top-p))

          (move-up-one)))

This expands into:

(progn

      (defprop

   move-to-top

        "This command moves you to the top."

help)

      (push ’move-to-top *command-name-list*)

      (defun move-to-top ()

   (do ()

      ((at-the-top-p))

   (move-up-one))))

�

define-my-command expands into three forms: the first sets up the documentation

string, the second puts the command name onto the list of all command names,

and the third is the defun that actually defines the function. Note that defprop,�
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zl:push, and defun all happen when the file is loaded. (See the function eval-

when.) The macro definition is:

(defmacro define-my-command (name doc-string definition)

   ‘(progn

       (defprop ,name ,doc-string help)

       (push ’,name *command-name-list*)

       (defun ,name ()

         ,definition)))

� Nesting Macros

We have seen how to write macros that define functions. Now consider writing

macros that define other macros. To do this, we need to extend the backquote-

comma syntax so that we can nest a backquote for a macro. This macro is defined

inside a backquote used by the defining macro.

The following rules specify the evaluation of an item which is preceded by a com-

ma, and is within nested backquotes.

1. A single comma always matches the innermost backquote. The form following

the comma is evaluated once, when the form starting with the inner back-

quote is expanded.

2. A quote in front of a comma means to quote the result of the evaluation indi-

cated by the comma.

3. Two commas matching two backquotes means evaluate once the form follow-

ing the comma when the form starting with the outer backquote is evaluated.

The result of this evaluation is then evaluated when the form starting with

the inner backquote is expanded.

4. Comma-quote-comma preceding an item means evaluate the item once, when

the form starting with the outer backquote is expanded.

5. In general, commas match backquotes such that the leftmost comma matches

the innermost backquote, and so on.

6. Unlike the evaluation of Lisp forms, macro expansion works from outer to in-

ner expressions. 

Here are examples to illustrate these rules. 

Nested Backquotes and Single Commas (Rule 1)

Use this to create a macro-definer in the simplest case: no arguments are passed

from the defining call through to the defined macro.
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The defining macro takes an argument, name, and creates a new macro with that

name.

(defmacro simplest-defstruct (name)

       ‘(defmacro ,name (x) ‘(aref ,x 0)))

       ↑          ↑         ↑      ↑
     this   ↔   this      this  ↔  this

   backquote    comma   backquote  comma

Expanding a form like:

(simplest-defstruct test)

results in a form like:

(defmacro test (x)

   ‘(aref ,x 0))

� Quoting a Comma (Rule 2)

Use this to pass an argument through to the defined macro, while preventing its

evaluation.

The defining macro, given argument mac-name, produces a macro named mac-

name that puts its own name on a list.

(defmacro make-a-list (mac-name)

    ‘(defmacro ,mac-name () ’(list ’,mac-name)))

Expanding (make-a-list groceries) results in:

(defmacro groceries ()

‘(list ’groceries))

and (groceries) returns (groceries). 

� Nested Backquotes and Double Commas (Rule 3)

Use this to put a list structure template inside a defmacro form. For example:

(defmacro put-on-list (a-list key element)

    ‘(setf ,a-list (nconc  ,a-list ‘((,,key . ,,element)))))

((,,key . ,,element)) within the back-quoted setf form is equivalent to (,(cons ,key

. ,element)).

Here is another, peculiarly contrived, example in which the defining macro takes

an argument, m-name, and creates a new macro with that name. The new macro

assigns to its argument the value of the symbol used as the name of the macro. 

                        This backquote↔these commas.

(defmacro make-mac-2 (m-name)    ↓      ↓      ↓
      ’(defmacro ,m-name (m-arg) ’(setq ,m-arg ,,m-name)))

      ↑          ↑                              ↑
This backquote↔this comma and ...              this comma.

Expanding a form like (make-mac-2 test) in a form like:
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(defmacro test (m-arg)

   ‘(setq ,m-arg ,test))

�

(setq test 4) => 4

(test a) => 4

a => 4

� Comma-Quote-Comma (Rule 4)

Use this to pass an argument through from the defining macro to the defined

macro. The argument is evaluated only once when the form starting with the outer

backquote is expanded.

The new macro prints a list containing its own name and the argument with

which it is called:

                       This backquote↔these commas.

(defmacro make-mac-1a (name)  ↓         ↓       ↓
       ‘(defmacro ,name (arg) ‘(print ’(,’,name ,arg ))))

       ↑          ↑                       ↑
   This backquote↔this comma and this comma.

Expanding a form like (make-mac-1a test) results in a form like:

(defmacro test (arg)

   ‘(print ’(,’test ,arg)))

and the expansion of (test a) looks like:

(print ’(test a))

and so forth. 

Quote-Comma-Quote Syntax (Rules 5 and 6)

Use this to pass an argument through from the defining macro to the defined

macro. The argument is not evaluated.

In the following example, a defining macro creates another macro whose operation

is to create a list that includes its own name and its argument. This illustrates

the rules 5 and 6:

                      This backquote↔these commas.

(defmacro defmac (name)       ↓       ↓        ↓
       ‘(defmacro ,name (arg) ‘(list ’,’,name ’,arg )))

       ↑          ↑                     ↑
  This backquote↔this comma and this comma.

Expanding a form like (defmac test) results in a form like:

(defmacro test (arg)

   ‘(list ’test ’,arg))

and the expansion of (test a) looks like:
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(list ’test ’a)

Finally,

(test a) => (test a)

� Writing Macros to Surround Code

When you want the evaluation of a piece of Lisp code to happen in a specified

context, you can place a macro "around" that piece of code. This is called a sur-

rounding macro. You write the macro so it specifies the context. The following is a

simple example:

Suppose we want to evaluate a number of forms such that any output is written

with a specified base. Here is a macro that executes the forms within its body in

the desired context:

(defmacro with-output-in-base ((base-form) &body body)

    ’(let ((base ,base-form))

        ,body))

A call such as:

(with-output-in-base (*default-base*)

    (print x)

    (print y))

Expands to:

(let ((base *default-base*))

  (print x)

  (print y))

The preceding example is too simple to be useful, but it does illustrate the style of

surrounding macros. 

Here are some style conventions for macros that surround code: 

• Begin the macro with with-, in the style of such special forms as with-open-file

and zl:with-output-to-string. Macros so named mean "do this with the following

things true."

• Put the parameters for the macro in a list that is the first subform of the

macro. The rest of the subforms in the macro make up a body of forms that are

evaluated sequentially with the last one returned. In the example above, base-

form is the sole parameter, and it appears as the single element of a list that is

the first subform of the macro. The extra level of parentheses in the printed

representation serves to separate the parameter forms from the body forms so

that it is textually apparent which is which. It also provides a convenient way to

specify default parameters.

• Use the &body keyword in the defmacro form to tell the editor how to indent

the macro. See the lambda list keyword &body.
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You should write the macro in such a way that everything is cleaned up appropri-

ately whether control leaves the macro by the last form’s returning or by a nonlo-

cal exit (that is, with something doing a throw). In the example above, there is no

problem because nonlocal exits undo lambda bindings. More complicated cases re-

quire the use of an unwind-protect form. The macro must expand into an

unwind-protect that surrounds the body, with cleanup forms that undo the context

setting-up that the macro did. For example, using-resource is a macro that does

an allocate-resource and then performs the body inside of an unwind-protect that

has a deallocate-resource in its cleanup forms. Whenever control leaves using-

resource, the allocated resource is deallocated.

� Nesting Macros That Surround Code: macrolet and compiler-let

You can write a macro that is intended to be invoked only within a specified envi-

ronment. The way you guarantee that this special environment will be in effect is

by enclosing the macro inside a code-surrounding macro written especially for the

purpose. Very often in this kind of structure you want the surrounded macro to be

able to use variables associated with the surrounding macro. The special form

macrolet makes the creation of this kind of structure easy, as the following simple

example shows.

We are going to write two macros: the outer, surrounding one is called with-

collection and the inner, included one is called collect. with-collection just has a

body, whose forms it evaluates sequentially; collect takes one subform, which it

evaluates. with-collection returns a list of all of the values that were given to col-

lect during the evaluation of with-collection’s body. For example:

(with-collection

   (dotimes (i 5)

      (collect i)))

�

=> (0 1 2 3 4)

To take the first step in writing a macro, write down what the expansion should

look like:

(let ((#:g0005 nil))

   (dotimes (1 5)

      (push i #:g0005))

   (nreverse #:0005))

From this expansion, we can see that with-collection should be defined by:

(defmacro with-collection (&body body)

   (let ((var (gensym)))

     ‘(let ((,var nil))

        ,@body

        (nreverse ,var))))

We might try to define collect by:

(defmacro collect (argument)

   ‘(push ,argument ,var))
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But this will not work because this definition of collect is making use of var as a

free variable, and var is unbound. The expander function of with-collection does

bind var but then unbinds it when the expansion is finished before the collect

form is expanded.

Since collect is only required to be defined within the body of with-collection, and

it needs to use the variable var, we can use a macrolet form to define collect.

macrolet is similar to flet but it defines local macros using the same format and

keywords as defmacro; that is to say, wrapping a macrolet around some body

forms within an enclosing definition is similar to using a let with the additional

specification, "Evaluate these forms using the macro definition(s) listed within this

macrolet."

The example becomes:

(defmacro with-collection (&body body)

   (let ((var (gensym)))

     ‘(let ((,var nil))

        (macrolet ((collect (argument)

           ‘(push ,argument ,’,var)))

                ,@body)

        (nreverse ,var))))

Note that the body of with-collection is evaluated within the macrolet. Also, note

that the backquote-comma syntax is used, since we are defining a macro within a

macro.

A good practice to follow when writing local macros like collect is to define a

global macro with the same name nearby in the source. Doing so makes your

macro known to the editing tools and gives you a better error message if the

macro is used in the wrong place. The global macro will of course be shadowed by

the local macro when it is used correctly within its surrounding form. Here is a

global macro to accompany the above example:

(defmacro collect (argument)

  (compiler:warn () "~S used outside of ~S"

’collect ’with-collection)

 ‘(ferror "~S used outside of ~S"

           ‘(collect ,,argument) ’with-collection))

The message for misuse of collect comes out both at compile time and at run

time.

The macro-expander functions of macrolet are closed in the global environment;

that is, no variable or function bindings are inherited from any environment. This

means that macros defined by macrolet cannot be used in the expander functions

of other macros defined by macrolet within the scope of the outer macrolet. This

does not prohibit either of the following:

• Generation of code by the inner macro that refers to the outer one.

• Explicit expansion (by macroexpand or macroexpand-1), by the inner macro, of

code containing calls to the outer macro. Note that explicit environment man-
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agement must be utilized if this is done. See the section "Lexical Environment

Objects and Arguments".

Here is another way to write with-collection and collect. This way is not as good

as using macrolet because it introduces an unnecessary global variable and allows

use of collect outside of with-collection, but it may prove instructive:

(defvar *collect-variable*)

�

(defmacro with-collection (&body body)

   (let ((var (gensym)))

     ‘(let ((,var nil))

         (compiler-let ((*collect-variable* ’,var))

        ,@body)

        (nreverse ,var))))

�

(defmacro collect (argument)

   ‘(push ,argument ,*collect-variable*))

The compiler-let form ensures that these macros work correctly when they are

compiled. compiler-let tells the compiler to bind the variables it specifies  in

this case *collect-variable* and the variable created by zl:gensym  and to com-

pile its body with these bindings in effect. Thus the compiler works in this case

just the same as the interpreter would.

� Writing Macro-Expander Functions

A macro-expander function is a Lisp program like any other Lisp program, so it

can benefit in all the usual ways by being broken down into a collection of func-

tions that do various parts of its work. If you find yourself writing a five-page ex-

pander function, you should probably try to break your function down into modular

parts. Several features of Symbolics Common Lisp, including flavors and the loop

and defstruct macros, are implemented using very complex macros, which are bro-

ken down into modular functions. Studying the code of, for example, defstruct can

suggest how to go about building a complex, modular macro.

A particular thing to note when writing macro-expander functions is that any func-

tions that they use must be available at compile time. You can make a function

available at compile time by surrounding its defining form with (eval-when

(compile load eval ) ...). Doing this means that at compile time the definition of

the function is interpreted, not compiled, and thus runs more slowly. Another ap-

proach is to separate macro definitions and the functions they call during expan-

sion into a separate file, often called a "defs" (definitions) file. This file defines all

the macros but does not use any of them. It can be separately compiled and loaded

up before compiling the main part of the program, which uses the macros. The

System Construction Tool helps keep these various files straight, compiling and

loading things in the right order.

See the section "System Construction Tool". 
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� Controlling Macro Expansion

The following functions and variable allow you to control expansion of macros.

They are often useful for writing advanced macro systems or examining code that

contains macros.

macroexpand-1 macro-call &optional env dont-expand-special-forms Function

If macro-call is a macro form, macroexpand-1 expands it (once) and returns the

expanded form and t. Otherwise, it returns macro-call and nil. The optional env

environment parameter is conveys information about local macro definitions as de-

fined via macrolet. 

(defmacro nand (&rest args) ‘(not (and ,args)))

�

(macroexpand-1 ’(nand foo (eq bar baz)(> foo bar)))

�

 ==> (not (and foo (eq bar baz)(> foo bar))) T

�

(defmacro and-op (op &rest args) ‘(,op ,args))

�

(macroexpand-1 ’(and-op or (eq bar baz)(> foo bar)))

�

 ==> (or (eq bar baz) (> foo bar)) T�

(See the section "Lexical Environment Objects and Arguments".)

Compatibility Note: The optional argument dont-expand-special-forms, is a Symbol-

ics extension to Common Lisp, which prevents macro expansion of forms that are

both special forms and macros. dont-expand-special-forms will not work in other im-

plementations of Common Lisp including CLOE. See the variable *macroexpand-

hook*.

macroexpand macro-call &optional env dont-expand-special-forms for-declares 

Function

If macro-call is a macro form, macroexpand expands it repeatedly by making as

many repeated calls to macroexpand-1 as required until it is not a macro form,

and returns two values: the final expansion and t. Otherwise, it returns macro-call

and nil. The optional env environment parameter conveys information about local

macro definitions that are defined via macrolet. (See the section "Lexical Environ-

ment Objects and Arguments".)

Compatibility Note: The optional argument dont-expand-special-forms, is a Symbol-

ics extension to Common Lisp, which prevents macro expansion of forms that are

both special forms and macros. dont-expand-special-forms will not work in other im-

plementations of Common Lisp including CLOE.

(defmacro nand (&rest args) ‘(not (and ,args)))
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�

(macroexpand ’(nand foo (eq bar baz)(> foo bar)))

�

 ==> (not (and foo (eq bar baz)(> foo bar)))�

The following example shows the probable results of three calls to macroexpand-1

from within a call to macroexpand:

(defmacro and-op (op &rest args) ‘(,op ,args))

�

(macroexpand ’(and-op or (eq bar baz)(> foo bar))) =

�

     (macroexpand-1 (and-op or (eq bar baz) (> foo bar)))

      ==> (or (eq bar baz) (> foo bar)) t

�

     (macroexpand-1 (or (eq bar baz) (> foo bar)))

      ==> (cond ((eq bar baz)) (t (> foo bar))) t

�

     (macroexpand-1 (cond ((eq bar baz)) (t (> foo bar))))

      ==> (if (eq bar baz) (eq bar baz) (> foo bar)) t

�

      ==> (if (eq bar baz) (eq bar baz) (> foo bar)) t�

*macroexpand-hook* Variable

The value is used as the expansion interface hook by macroexpand-1. When

macroexpand-1 determines that a symbol names a macro, it obtains the expansion

function for that macro. The value of *macroexpand-hook* is called as a function

of three arguments: the expansion function, form, and env. The value returned

from this call is the expansion of the macro call.

The initial value of *macroexpand-hook* is funcall, and the net effect is to in-

voke the expansion function, giving it form and env as its two arguments.

This special variable allows for more efficient interpretation of code, for example,

by allowing caching of macro expansions. Such efficiency measures are unneces-

sary in compiled environments such as the CLOE runtime system.

� Avoiding Common Macro-Writing Pitfalls

As powerful and convenient as macros are, writing them can be tricky. This sec-

tion gives you some hints on how to avoid the most common problems. 

Avoiding Problems with Backquote

Do not write programs that depend on the actual form resulting from evaluation of

a backquoted form. Backquote makes no guarantees about how it does what it

does. For example, when the reader sees ‘(a ,b c) it is actually generating a form

such as (list ’a b ’c) The actual form generated might use list, cons, or
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append, or  as is actually the case  it might use some special function so that

grindef can figure out how to print out a backquoted form just the way it was

typed in. More problematically, the reader might create constant forms that cause

sharing of the list structure at run time, or create forms that create new list

structure at run time. For example, if the reader sees ‘(r . ,nil) it might pro-

duce the same thing as (cons ’r nil) that is, ’(r . nil), as opposed to just (r). Be

careful that your program does not depend on a particular outcome. 

� Avoiding Name Conflicts

An accidental name conflict can happen in any macro that has to create a new

variable. If that variable ever appears in a context in which user code might ac-

cess it, it might conflict with some other name that is in the user’s program. The

best way to avoid name conflicts is to use an uninterned symbol as the variable in

the generated code. You can create an uninterned symbol either with make-

symbol (the preferred way) or with zl:gensym (an older way). Here is an example

of a typical name-conflict problem and its solution:

Suppose we want to write our own zl:dolist macro. Step one is to write down the

expansion for a typical call, such as:

(new-dolist (element ’(a b))

   (push element *big-list*)

   (foo-function element 3))

The expansion should look like:

(do ((operand ’(a b) (cdr operand))

     (element))

    ((null operand))

  (setq element (car operand))

  (push element *big-list*)

  (foo-function element 3))

We write a macro that generates the above code in the obvious way, and this code

works fine until a user happens to call our macro as follows:

(new-dolist (operand ’(a b))

   (push element *big-list*)

   (foo-function operand 3))

Here the user has decided to name the looping variable operand rather than ele-

ment. Expansion of this call results in:

(do ((operand ’(a b) (cdr operand))

     (operand))

    ((null operand))

  (setq operand (car operand))

  (push operand *big-list*)

  (foo-function operand 3))

This does not work at all. It is not even a valid program because it uses the same

variable in two different iteration clauses of do.
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Or, suppose the user happens to use the macro this way:

(let ((operand nil))

   (dolist (element ’(a b))

      (push element operand)

      (foo-function element 3)))

Then the expansion actually contains two variables named operand. The user

means to refer to the outer one, but the generated code for the zl:push uses the

inner one.

Here is the solution. Use the uninterned symbol #:LIST, generated by the make-

symbol function, as the variable in the generated code. The expansion is now:

(do ((#:LIST ’(a b) (cdr #:LIST))

     (element))

    ((null #:LIST))

  (setq element (car #:LIST))

  (push element *big-list*)

  (foo-function element 3))

Now we can write the macro:

(defmacro new-dolist ((var form) . body)

   (let ((dummy (make-symbol "LIST")))

      ‘(do ((,dummy ,form (cdr ,dummy))

            (,var))

           ((null ,dummy))

           ,@body)))

Be careful of the case implications involved in using the reader. For example,

(make-symbol "list") returns #:|list|, which might not be what you want.

Because many system macros use symbols whose print names begin and end with a

dot for internal variables, you should not name your user variables using this con-

vention. A name like .object. is meaningful for people reading generated code or

looking at the state of computation in the debugger; this is why the system uses

the convention. Before there was make-symbol, the alternative solution was to use

zl:gensym, which returns a new, meaningless, internal symbol such as #:g0005 ev-

ery time it is invoked. Now, since you can give meaningful strings to make-

symbol for your internal variable names, there is no need to resort to a .xxx.-type

naming convention. 

� Avoiding prog-Context Conflicts

A problem can occur when you write a macro that expands into a prog (or a do,

or something that expands into prog or do). If you use prog with nil (or use

named do’s), return passes through the error and returns from the prog as it

ought to. But, a way to avoid potential problems with prog and do is to rewrite

your programs to use block instead. block evaluates each form in sequence and

normally returns the (possibly multiple) values of the last form. See the special

form block.
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� Avoiding Multiple and Out-of-Order Evaluation

In any macro, you should always pay attention to the problem of multiple or out-

of-order evaluation of user subforms. 

Here is an example of a macro with such a problem. This macro defines a special

form with two subforms. The first is a reference, and the second is a form. The

special form is defined to create a cons whose car and cdr are both the value of

the second subform, and then to set the reference to be that cons. Here is a possi-

ble definition:

(defmacro test (reference form)

   ‘(setf ,reference (cons ,form ,form)))

Simple cases work all right:

(test foo 3) ==>

  (setf foo (cons 3 3))

But a more complex example, in which the subform has side effects, can produce

surprising results:

(test foo (setq x (1+ x))) ==>

  (setf foo (cons (setq x (1+ x))

                  (setq x (1+ x))))

The resulting code evaluates the setq form twice, and so x is increased by two in-

stead of by one. A better definition of test which avoids this problem is:

(defmacro test (reference form)

   (let ((value (gensym)))

     ‘(let ((,value ,form))

         (setf ,reference (cons ,value ,value)))))

With this definition, the expansion works as follows:

(test foo (setq x (1+ x))) ==>

  (let ((#:g0005 (setq x (1+ x))))

     (setf foo (cons #:g0005 #:g0005)))

In general, when you define a new special form that has some forms as its sub-

forms, you have to be careful about when those forms get evaluated. If you are not

careful, they can get evaluated more than once, or in an unexpected order, and

this can be semantically significant if the forms have side effects. There is nothing

fundamentally wrong with multiple or out-of-order evaluation if that is really what

you want and if it is what you document your special form to do. However, it is

very common for special forms to behave like functions, and when they are doing

things like what functions do, it is natural to expect them to be function-like in

the evaluation of their subforms. Function forms have their subforms evaluated,

each only once, in left-to-right order. You should try to make special forms that

are similar to function forms work that way too, for clarity and consistency.

The macro once-only makes it easier for you to follow the principle just explained.

It is most easily explained by example. The way you write test using once-only is

as follows:
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(defmacro test (reference form &environment env)

  (once-only (form &environment env)

    ‘(setf ,reference (cons ,form ,form))))

This defines test in such a way that the form is evaluated only once, and refer-

ences to form inside the macro body refer to that value. once-only automatically

introduces a lambda-binding of a generated symbol to hold the value of the form.

Actually, it is more clever than that; it avoids introducing the lambda-binding for

forms whose evaluation is trivial and may be repeated without harm or cost, such

as numbers, symbols, and quoted structure. This is just an optimization that helps

produce more efficient code.

The once-only macro makes it easier to follow the principle, but it does not com-

pletely nor automatically solve the problems of multiple and out-of-order evalua-

tion. It is just a tool that can solve some of the problems, some of the time; it is

not a panacea.

The following describes what once-only does. Note, however, that you can easily

use once-only simply by imitating the example above. 

A once-only form looks like this:

(once-only (variable-name &environment environment)

  form1

  form2

  ...)�

variable-name is a list of variables. once-only is usually used in macros where the

variables are Lisp forms. &environment should be followed by a single variable

that is bound to an environment representing the lexical environment in which the

macro is to be interpreted. Typically this comes from the &environment parame-

ter of a macro. The forms are a Lisp program that presumably uses the values of

the variables to construct a new form to be the value of the macro. When a call to

the macro that includes the once-only form is macroexpanded, the form produced

by that expansion will be evaluated.

The macro that includes the once-only form will be macroexpanded. The form pro-

duced by that expansion is then evaluated. In the process, the values of each of

the variables in variable-name are first inspected. These variables should be bound

to subforms, that probably originated as arguments to the defmacro or similar

form, and will be incorporated in the macro expansion, possibly in more than one

place.

Each variable is then rebound either to its current value, if the current value is a

trivial form, or to a generated symbol. Next, once-only evaluates the forms, in this

new binding environment, and when they have been evaluated it undoes the bind-

ings. The result of the evaluation of the last form is presumed to be a Lisp form,

typically the expansion of a macro. If all of the variables had been bound to trivial

forms, then once-only just returns that result. Otherwise, once-only returns the

result wrapped in a lambda-combination that binds the generated symbols to the

result of evaluating the respective nontrivial forms.
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The effect is that the program produced by evaluating the once-only form is coded

in such a way that it only evaluates each of the forms that are the values of vari-

ables in variable-name once, unless evaluation of the form has no side effects. At

the same time, no unnecessary lambda-binding appears in the program. The body

of the once-only is not cluttered up with extraneous code to decide whether or not

to introduce lambda-binding in the program it constructs.

Note well: once-only can be used only with an &environment keyword argument.

If this argument is not present, a compiler warning will result.

For more information about using once-only with &environment: See the lambda

list keyword &environment. Also, refer to the definitions of the macro defining

forms: defmacro, macrolet, and defmacro-in-flavor.

(defmacro double (x &environment env)

  (once-only (x &environment env)

    ‘(+ ,x ,x)))

=> DOUBLE

�

(double 5)

==> (+ 5 5)

�

(double var)

==> (+ VAR VAR)

�

(double (compute-value var))

==> (LET ((#:ONCE-ONLY-X-3553 (COMPUTE-VALUE VAR)))

      (+ #:ONCE-ONLY-X-3553 #:ONCE-ONLY-X-3553))

Note that in the first three examples, when the argument is simple, it is duplicat-

ed. In the last example, when the argument is complicated and the duplication

could cause a problem, it is not duplicated.

For information about avoiding problems with evaluation: See the section "Avoiding

Multiple and Out-of-Order Evaluation".

once-only evaluates its subforms in the order they are presented. If it finds any

form which is non-trivial, it rebinds the earlier variables to temporaries, and eval-

uates them first. In the following example, the order of evaluation is x, then y,

even though the y appears before the x in the body of the once-only:

(defmacro my-progn (x y &environment env)

  (once-only (x y &environment env)

    ;; We willfully try to make it evaluate in the wrong order.

    ‘(progn ,y ,x))) => MY-PROGN

�

;;Macro expansion shows code that would be produced by the

;; once-only form in the macro.

�

(my-progn (print x) (setq x ’foo)) =>

(LET ((#:ONCE-ONLY-X-7614 (PRINT X))) 

(PROGN (VALUES (SETQ X ’FOO)) #:ONCE-ONLY-X-7614))
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In the next example, once-only evaluates y, then x, because y appears before x in

once-only’s variable list. In actuality, this style is an example of poor program-

ming practice as it is confusing. Always list variables in the order in which the

forms they are bound to appear in the source that produced them. In a macro, this

is normally the order they appear in the macro’s argument list. 

(defmacro backward-progn (x y &environment env)

  (once-only (y x &environment env)

    ;; We willfully try to make it evaluate in the wrong order. 

    ;; But this time we tell once-only to evaluate y before x.

    ‘(progn ,y ,x))) => BACKWARD-PROGN

�

    (backward-progn (print x) (setq x ’foo)) => FOO

                FOO

�

    (PROGN (VALUES (SETQ X ’FOO)) (VALUES (PRINT X))) => FOO

 FOO

Caution: A number of system macros, zl:setf for example, fail to follow this con-

vention. Occurrences of unexpected multiple evaluation and out-of-order evaluation

are possible. This implementation was done for the sake of efficiency and is promi-

nently mentioned in the documentation of these macros. It would be best not to

compromise the semantic simplicity of your own macros in this way. (setf and re-

lated macros follow the convention correctly.)

� Special Kinds of Macros

Symbol Macros

A symbol macro translates a symbol into a substitute form. When the Lisp evalua-

tor is given a symbol, it checks whether the symbol has been defined as a symbol

macro. If so, it evaluates the symbol’s replacement form instead of the symbol it-

self. 

define-symbol-macro name form Special Form

Defines a symbol macro. name is a symbol to be defined as a symbol macro. form

is a Lisp form to be substituted for the symbol when the symbol is evaluated. A

symbol macro is more like an inline function than a macro: form is the form to be

substituted for the symbol, not a form whose evaluation results in the substitute

form.

Example:

(define-symbol-macro foo (+ 3 bar))

(setq bar 2)

foo => 5�



Page 331

A symbol defined as a symbol macro cannot be used in the context of a variable.

You cannot use setq on it, and you cannot bind it. You can use setf on it: setf

substitutes the replacement form, which should access something, and expands into

the appropriate update function.

For example, suppose you want to define some new instance variables and methods

for a flavor. Then, you want to test the methods using existing instances of the

flavor. For testing purposes, you might use hash tables to simulate the instance

variables, using one hash table per instance variable with the instance as the key.

You could then implement an instance variable x as a symbol macro:

(defvar x-hash-table (make-hash-table))

(define-symbol-macro x (gethash self x-hash-table)

To simulate setting a new value for x, you could use (setf x value), which would

expand into (setf (gethash self x-hash-table) value). 

� Lambda Macros

Lambda macros are similar to regular Lisp macros, except that regular Lisp

macros replace and expand into Lisp forms, whereas lambda macros replace and

expand into Lisp functions. They are an advanced feature, used only for certain

special language extensions or embedded programming systems.

To understand what lambda macros do, consider how regular Lisp macros work.

When the evaluator is given a Lisp form to evaluate, it inspects the car of the

form to figure out what to do. If the car is the name of a function, the function is

called. But if the car is the name of a macro, the macro is expanded, and the re-

sult of the expansion is considered to be a Lisp form and is evaluated. Lambda

macros work analogously, but in a different situation. When the evaluator finds

that the car of a form is a list, it looks at the car of this list to figure out what to

do. If this car is the symbol lambda, the list is an ordinary function, and it is ap-

plied to its arguments. But if this car is the name of a lambda macro, the lambda

macro is expanded, and the result of the expansion is considered to be a Lisp func-

tion and is applied to the arguments.

Like regular macros, lambda macros are named by symbols and have a body, which

is a function of one argument. To expand the lambda macro, the evaluator applies

this body to the entire lambda macro function (the list whose car is the name of

the lambda macro), and expects the body to return another function as its value.

Use the special form deflambda-macro to deal with lambda macros. deflambda-

macro works like defmacro to provide easy parsing of the function into its compo-

nent parts. It defines a lambda macro instead of a normal macro.

deflambda-macro name pattern &body body Function

Like defmacro, but defines a lambda macro instead of a normal macro.

name is the name of the lambda macro to be defined; it can be any function spec.

See the section "Function Specs". The pattern can be anything made up out of sym-
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bols and conses. It is matched against the body of the lambda macro form; both

pattern and the form are car’ed and cdr’ed identically, and whenever a non-nil

symbol occurs in pattern, the symbol is bound to the corresponding part of the

form. If the corresponding part of the form is nil, it goes off the end of the form.

&optional, &rest, &key, and &body can be used to indicate where optional pat-

tern elements are allowed.

All of the symbols in pattern can be used as variables within body. 

body is evaluated with these bindings in effect, and its result is returned to the

evaluator as the expansion of the macro.

Here is an example of deflambda-macro used to define a lambda macro:

(deflambda-macro ilisp (arglist &rest body)

    ‘(lambda (&optional ,@arglist) ,@body))

This defines a lambda macro called ilisp. After it has been defined, the following

list is a valid Lisp function:

(ilisp (x y z) (list x y z))

deffunction fspec lambda-type lambda-list &body rest Special Form

Defines a function using an arbitrary lambda macro in place of lambda. A

deffunction form is like a defun form, except that the function spec is immediate-

ly followed by the name of the lambda macro to be used. deffunction expands the

lambda macro immediately, so the lambda macro must already be defined before

deffunction is used. For example, suppose the ilisp lambda macro were defined as

follows:

(lambda-macro ilisp (x)

  ‘(lambda (&optional ,@(second x) &rest ignore) . ,(cddr x)))�

Then the following example would define a function called new-list that would use

the lambda macro called ilisp:

(deffunction new-list ilisp (x y z)

  (list x y z))�

new-list’s arguments are optional, and any extra arguments are ignored. Examples:

(new-list 1 2) => (1 2 nil)

(new-list 1 2 3 4) -> (1 2 3)�

Lambda macro-expander functions can be accessed with the (:lambda-macro name)

function spec.

� Displacing Macros

Every time the evaluator sees a macro form, it must call the macro to expand the

form. If this expansion always happens the same way, then it is wasteful to expand

the whole form every time it is reached; why not just expand it once? A macro is

passed the macro form itself, and it can change the car and cdr of the form to
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something else by using rplaca and rplacd. This way the first time the macro is

expanded, the expansion is put where the macro form used to be, and the next

time that form is seen, it is already expanded. A macro that does this is called a

displacing macro, since it displaces the macro form with its expansion.

The major problem with this is that the Lisp form gets changed by its evaluation.

If you were to write a program that used such a macro, call grindef to look at it,

then run the program and call grindef again, you would see the expanded macro

the second time. Presumably the reason the macro is there at all is that it makes

the program look nicer; we would like to prevent the unnecessary expansions, but

still let grindef display the program in its more attractive form. This is done with

the function zl:displace.

Another thing to worry about with displacing macros is that if you change the def-

inition of a displacing macro, then your new definition does not take effect in any

form that has already been displaced. If you redefine a displacing macro, an exist-

ing form using the macro uses the new definition only if the form has never been

evaluated.

zl:displace form expansion Function

Replaces the car and cdr of form so that it looks like:

(si:displaced original-form expansion)�

form must be a list. original-form is equal to form but has a different top-level

cons so that the replacing mentioned above does not affect it. si:displaced is a

macro, which returns the caddr of its own macro form. So when the si:displaced

form is given to the evaluator, it "expands" to expansion. zl:displace returns ex-

pansion. 

The grinder knows specially about si:displaced forms, and grinds such a form as

if it had seen the original form instead of the si:displaced form.

So if we wanted to rewrite our addone macro (see the section "Introduction to

Macros") as a displacing macro, instead of writing:

�

(macro addone (x) 

   (list ’plus ’1 (cadr x)))�

we would write:

�

(macro addone (x)    

   (displace x (list ’plus ’1 (cadr x))))�

Of course, we really want to use defmacro to define most macros. Since there is

no convenient way to get at the original macro form itself from inside the body of

a defmacro, another version of it is provided:

zl:defmacro-displace name pattern &body body Macro
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Like defmacro, except that it defines a displacing macro, using the zl:displace

function. 

Now we can write the displacing version of addone as:

(defmacro-displace addone (val)

   (list ’plus ’1 val))�

All we have changed in this example is the defmacro into zl:defmacro-displace.

addone is now a displacing macro.

� Finding Out About and Debugging Macros

Expanding Macros

Sometimes a program bug appears to stem from unexpected behavior by a macro.

Seeing how a macro form expands can help find the bug. To be sure that a macro

does what you want it to, you might also want to create and expand a macro form

soon after defining the macro and compiling the definition.

In Zmacs, you can use the following commands: 

Macro Expand Expression (c-sh-M) 

Expands the macro form following point. Does not expand sub-

forms within the form.

Macro Expand Expression All (m-sh-M)

Expands the macro form following point and all subforms with-

in the form.

Without a numeric argument, these commands type their results in the typeout

window; with a numeric argument, the commands pretty-print their results in the

buffer immediately after the expression.

You can also expand macros with the following special form: 

(mexp) Enters a loop: prompts for a macro form to expand, expands it,

and prompts for another macro form. Exits from the loop on

END.

Macro expansion is particularly useful when trying to understand the workings of

a macro that someone else wrote, such as a system macro. For example:

(mexp) =>

Type End to stop expanding forms
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�

Macro form → (define-presentation-type Pinocchio ()

:abbreviation-for string) → 

(ZL:LOCAL-DECLARE ((SYS:FUNCTION-PARENT PINOCCHIO

 DEFINE-PRESENTATION-TYPE)

                   (DW::PRESENTATION-TYPE-ARGLIST PINOCCHIO NIL))

  (DW::INITIALIZE-PRESENTATION-TYPE ’PINOCCHIO :ARGLIST ’NIL)

  (DEFTYPE PINOCCHIO NIL

    ’(DW::PRESENTATION-ONLY-TYPE PINOCCHIO))

  (DEFUN (DW::PRESENTATION-FUNCTION PINOCCHIO 

             DW::DATA-TYPE-EQUIVALENT) (#:TYPE)

    (DECLARE (COMPILER:DO-NOT-RECORD-THESE-MACROS 

                 DW:WITH-PRESENTATION-TYPE-ARGUMENTS))

    (DW:WITH-PRESENTATION-TYPE-ARGUMENTS (PINOCCHIO #:TYPE)

      STRING))) → 

(COMPILER-LET ((SYS:LOCAL-DECLARATIONS

                (APPEND ’((SYS:FUNCTION-PARENT PINOCCHIO 

                              DEFINE-PRESENTATION-TYPE)

                          (DW::PRESENTATION-TYPE-ARGLIST PINOCCHIO

                              NIL))

                        SYS:LOCAL-DECLARATIONS)))

  (DW::INITIALIZE-PRESENTATION-TYPE ’PINOCCHIO :ARGLIST ’NIL)

  (DEFTYPE PINOCCHIO NIL

    ’(DW::PRESENTATION-ONLY-TYPE PINOCCHIO))

  (DEFUN (DW::PRESENTATION-FUNCTION PINOCCHIO

             DW::DATA-TYPE-EQUIVALENT) (#:TYPE)

    (DECLARE (COMPILER:DO-NOT-RECORD-THESE-MACROS

                 DW:WITH-PRESENTATION-TYPE-ARGUMENTS))

    (DW:WITH-PRESENTATION-TYPE-ARGUMENTS (PINOCCHIO #:TYPE)

      STRING)))

� Hints for Debugging Macros

Here are a couple of hints to make debugging easier: 

• When writing long macros, you might find it helpful to capitalize the Lisp to-

kens to be returned and keep the active code of the macro in lowercase. For ex-

ample:

(defmacro round-sqrt (foo)

‘(ROUND (SQRT ,foo)))

This practice helps you to distinguish between the two levels of code evaluation.

• With very complicated macros, you can simplify the debugging process by defin-

ing a helper function for the body of the macro. The macro simply calls the

helper function, which can be debugged in the same manner as any other func-

tion. With this method, the above example becomes:



Page 336

(defun helper (foo)

‘(ROUND (SQRT ,foo)))

�

(defmacro round-sqrt (foo)

(helper foo))

Declarations

Declarations are optional Lisp expressions that provide the Lisp system, typically

the interpreter and the compiler, with information about your program. With the

exception of the special declaration, all declarations are only advisory. They do not

affect the meaning of an otherwise correct program. The compiler uses them to

provide error checking or to produce more efficient code. Declarations can also

provide documentation in code.

The special declaration affects the meaning of a program by affecting the inter-

pretation of variable bindings and references. All special (global) variables must be

declared special.

The special operator declare is the most common mechanism for making declara-

tions. Global declarations and declarations that a program computes are made with

the function proclaim. The special operator, zl:local-declare should not be used

for new code.

Operators for Making Declarations

declare &rest ignore

Provides additional information (declarations) to the Lisp system (inter-

preter and compiler).

proclaim declaration

Puts the declaration specifier declaration into effect globally.

locally &body body

Makes local pervasive declarations.

the type form

Declares that the value of form is of type type.

zl:local-declare declarations &body body

Obsolete. Use locally instead.

Symbolics Common Lisp provides a form for removing declarations made with

proclaim: remove-proclaims fspec.

Declaration Specifiers

declaration name1 name2 ...

Proclaims names to be valid but non-standard declarations.
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ftype type function-name-1 function-name-2 ...

Specifies that the functions function-names are of type type.

function name arglist result-type1 result-type2 ...

Equivalent to ftype type function-name-1 function-name-2 but might be

more convenient.

ignore var1 var2 ...

Specifies that bindings of the vars are never used.

inline function1 function2 ...

Specifies that calls to functions should be open-coded.

notinline function1 function2 ...

Specifies that the functions should not be open-coded.

optimize (option1 value1) (option2 value2) ...

Specifies that the options (compilation-speed, safety space, and speed)

should be optimized according to values.

special var1 var2 ...

Specifies that vars are to be considered special.

type type var1 var2 ...

Specifies that the variables vars only take on values of type type.�

Many forms, such as defun, defvar, and defconstant, have declarative aspects.

For example, defun tells the system that a function of a certain name and number

of arguments is defined and where it is defined. defvar and defconstant (and

zl:defconst) tell the system that certain symbols are special.

Function-body Declarations

Function-body declare forms understand the following declarations. The first group

of declarations can be used only at the beginning of a function body, for example,

defun, defmacro, defmethod, lambda, or flet.

(arglist . arglist)

This declaration saves arglist as the argument list of the function, to be

used instead of its lambda-list if c-sh-A or the arglist function need to de-

termine the function’s arguments. The arglist declaration is used both for

documentation purposes and as information for the compiler.

Example: 

(defun example (&rest options)

  (declare (arglist &key x y z))

  (lexpr-funcall #’example-2 "Print" options))�

The compiler checks keyword arguments supplied in a function call against

the keyword arguments accepted by the called function. As with checking

the number of arguments in a function call, this checking does not work if

the function call is earlier in the file or group of files than the definition of
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the called function. If there is an arglist declaration, it is used in place of

the actual lambda-list to determine what keywords are accepted, since often

the declared lambda-list contains &key but the actual lambda-list contains

just &rest. The variable compiler:*inhibit-keyword-argument-warnings*

can be set to t to disable this checking, for example if you have a lot of de-

clared arglists that are malformed.

(values . values)

This declaration saves values as the return values list of the function, to be

used if c-sh-A or the arglist function asks what values it returns. The

values declaration is used purely for documentation purposes.

(sys:function-parent name type)

Helps the editor and source-finding tools (like m-.) locate symbol definitions

produced as a result of macro expansion. (The accessor, constructor, and al-

terant macros produced by a defstruct are an example.)

The sys:function-parent declaration should be inserted in the source defi-

nition to record the name of the outer definition of which it is a part. name

is the name of the outer definition. type is its type, which defaults to

defun. See the section "How Programs Manipulate Definitions".

(sys:downward-function)

� This declaration, in the body of an internal lambda, guarantees to the sys-

tem that lexical closures of the lambda in which it appears are only used as

downward funargs, and never survive the calls to the procedure that pro-

duced them. This allows the system to allocate these closures on the stack.

(defun special-search-table (item)

  (block search

    (maphash

      #’(lambda (key object)

  (declare (sys:downward-function))

  (when (magic-function key object item)

    (return-from search object)))

      *hash-table*)))�

Here maphash calls the closure of the internal lambda many times, but

does not store it into permanent variables or data structure, or return it

"around" special-search-table. Therefore, it is guaranteed that the closure

does not survive the call to special-search-table. It is thus safe to allow

the system to allocate that closure on the stack.

Stack-allocated closures have the same lifetime (extent) as &rest arguments

and lists created by with-stack-list and with-stack-list*, and require the

same precautions. See the section "&rest Lambda-List Keyword". 

(sys:downward-funarg var1 var2 ...) or (sys:downward-funarg *)

� This declaration (not to be confused with sys:downward-function) permits

a procedure to declare its intent to use one or more of its arguments in a

downward manner. For instance, sort’s second argument is a funarg, which

is only used in a downward manner, and is declared this way. The second
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argument to process-run-function is a good example of a funarg that is

not downward. Here is an example of a function that uses and declares its

argument as a downward funarg.

(defun search-alist-by-predicate (alist predicate)

  (declare (sys:downward-funarg predicate))

  ;; Traditional "recursive" style, for variety.

  (if (null alist)

      nil

      (let ((element (car list))

            (rest (cdr list))

        (if (funcall predicate (car element))

            (cdr element)

            (search-alist-by-predicate rest predicate))))))�

This function only calls the funarg passed as the value of predicate. It

does not store it into permanent structure, return it, or throw it around

search-alist-by-predicate’s activation.

The reason you so declare the use of an argument is to allow the system to

deduce guaranteed downward use of a funarg without need for the

sys:downward-function declaration. For instance, if search-alist-by-

predicate were coded as above, we could write

(defun look-for-element-in-tolerance (alist required-value tolerance)

  (search-alist-by-predicate alist

    #’(lambda (key)

        (< (abs (- key required-value)) tolerance))))�

to search the keys of the list for a number within a certain tolerance of a

required value. The lexical closure of the internal lambda is automatically

allocated by the system on the stack because the system has been told that

any funarg used as the first argument to search-alist-by-predicate is used

only in a downward manner. No declaration in the body of the lambda is

required.

All appropriate parameters to system functions have been declared in this

way.

There are two possible forms of the sys:downward-funarg declaration:

(declare (sys:downward-funarg var1 var2 ... )

Declares the named variables, which must be parame-

ters (formal arguments) of the function in which this

declaration appears, to have their values used only in a

downward fashion. This affects the generation of clo-

sures as functional arguments to the function in which

this declaration appears: it does not directly affect the

function itself. Due to an implementation restriction,

var-i cannot be a keyword argument.
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(declare (sys:downward-funarg *))

Declares guaranteed downward use of all functional ar-

guments to this function. This is to cover closures of

functions passed as elements of &rest arguments and

keyword arguments.�

The following group of declarations can be used at the beginning of any body, for

example, a let body.

(special sym1 sym2 ...)

The symbols sym1, sym2, and so on, are treated as special variables within

the form containing the declare; the Lisp system (both the compiler and

the interpreter) implements the variables using the value cells of the sym-

bols.

(zl:unspecial sym1 sym2 ...)

The symbols sym1, sym2, and so on, are treated as local variables within

the form containing the declare.

Example:

(defun zl:print-integer (number zl:base)

  (declare (zl:unspecial zl:base))

  (when (≥ number zl:base)
    (zl:print-integer (floor number zl:base) zl:base))

  (tyo (digit-char (mod number zl:base) zl:base)))�

(sys:array-register variable1 variable2 ...)

Indicates to the compiler that variable1, variable2, and so on, are holding

single-dimensional arrays as their values. Henceforth, each of these vari-

ables must always hold a single-dimensional array. The compiler can then

use special faster array element referencing and setting instructions for the

aref and user::aset functions. Whether or not this declaration is worth-

while depends on the type of array and the number of times that referenc-

ing and setting instructions are executed. For example, if the number of

referencing instructions is more than ten, this declaration makes your pro-

gram run faster; for one or two references, it actually slows execution.

(sys:array-register-1d variable1 variable2 ...)

Indicates to the compiler that variable1, variable2, and so on, are holding

single- or multidimensional arrays as their values, and that the array is go-

ing to be referenced as a one-dimensional array. Henceforth, each of these

variables must always hold an array. The compiler can then use special

faster array element referencing and setting instructions for the sys:%1d-

aref and sys:%1d-aset functions. Whether or not this declaration is worth-

while depends on the type of array and the number of times that referenc-

ing and setting instructions are executed. For example, if the number of

referencing instructions is more than ten, this declaration makes your pro-

gram run faster; for one or two references, it actually slows execution.
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Evaluation

Introduction to Evaluation

The following is a complete description of the actions taken by the evaluator,

given a form to evaluate.

form Result

A number form

A string form

A symbol The binding of form. If form is unbound, an error is signalled.

See the section "Variables". Some symbols can also be con-

stants, for example: t, nil, keywords, and objects created with

defconstant. 

A list The evaluator examines the car of the list to figure out what

to do next. There are three possibilities: the form can be a spe-

cial form, a macro form, or a function form.

Conceptually, the evaluator knows specially about all the sym-

bols whose appearance in the car of a form make that form a

special form, but the way the evaluator actually works is as

follows. If the car of the form is a symbol, the evaluator finds

the function definition of the symbol in the local lexical envi-

ronment. If no definition exists there, the evaluator finds it in

the global environment, which is in the function cell of the

symbol. In either case, the evaluator starts all over as if that

object had been the car of the list. See the section "Symbols,

Keywords, and Variables".

If the car is not a symbol, but a list whose car is the symbol

special, this is a macro form or a special form. If it is a "spe-

cial function", this is a special form. See the section "Kinds of

Functions". Otherwise, it should be a regular function, and this

is a function form.

A special form It is handled accordingly; each special form works differently.

See the section "Kinds of Functions". The internal workings of

special forms are explained in more detail in that section, but

this hardly ever affects you.

A macro form The macro is expanded and the result is evaluated in place of

form. See the section "What is a Macro?".

A function form It calls for the application of a function to arguments. The car

of the form is a function or the name of a function. The cdr of

the form is a list of subforms. Each subform is evaluated, se-

quentially. The values produced by evaluating the subforms are

called the "arguments" to the function. The function is then
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applied to those arguments. Whatever results the function re-

turns are the values of the original form.

See the section "Variables". The way variables work and the ways in which they

are manipulated, including the binding of arguments, is explained in that section.

See the section "Evaluating a Function Form". That section contains a basic expla-

nation of functions. See the section "Multiple Values". The way functions can re-

turn more than one value is explained there. See the section "Functions". The de-

scription of all of the kinds of functions, and the means by which they are manip-

ulated, is there. The evalhook facility lets you do something arbitrary whenever

the evaluator is invoked. See the section "A Hook Into the Evaluator". Special

forms are described throughout the documentation set.

Evaluating a Symbol

In Symbolics Common Lisp, variables are implemented using symbols. Symbols are

used for many things in the language, such as naming functions, naming special

forms, and being keywords; they are also useful to programs written in Lisp, as

parts of data structures. But when the evaluator is given a symbol, it treats it as

a variable. If it is a special variable, it uses the value cell to hold the value of the

variable. If it is not special, it looks it up in the local lexical environment. If you

evaluate a symbol that has no binding in the lexical environment, you get back the

contents of the symbol’s value cell.

Generalized Variables

In Lisp, a variable is something that can remember one piece of data. The main

operations on a variable are to recover that piece of data, and to change it. These

might be called access and update. The concept of variables named by symbols can

be generalized to any storage location that can remember one piece of data, no

matter how that location is named. See the section "Variables".

For each kind of generalized variable, there are typically two functions that imple-

ment the conceptual access and update operations. For example, symbol-value ac-

cesses a symbol’s value cell, and set updates it. array-leader accesses the contents

of an array leader element, and zl:store-array-leader updates it. car accesses the

car of a cons, and rplaca updates it.

Rather than thinking in terms of two functions that operate on a storage location

somehow deduced from their arguments, we can shift our point of view and think

of the access function as a name for the storage location. Thus (symbol-value

’foo) is a name for the value of foo, and (aref a 105) is a name for the 105th ele-

ment of the array a. Rather than having to remember the update function associ-

ated with each access function, we adopt a uniform way of updating storage loca-

tions named in this way, using the setf special form. This is analogous to the way

we use the setq special form to convert the name of a variable (which is also a

form that accesses it) into a form that updates it.
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setf is particularly useful in combination with structure accessors, such as those

created with defstruct, because the knowledge of the representation of the struc-

ture is embedded inside the accessor, and you should not have to know what it is

in order to alter an element of the structure.

setf is actually a macro that expands into the appropriate update function. 

setf Takes a form that accesses something, and "inverts" it to pro-

duce a corresponding form to update the thing.�

Besides the access and update conceptual operations on variables, there is a third

basic operation, which we might call locate. Given the name of a storage cell, the

locate operation returns the address of that cell as a locative pointer. See the sec-

tion "Cells and Locatives". locative pointer is a kind of name for the variable that

is a first-class Lisp data object. It can be passed as an argument to a function that

operates on any kind of variable, regardless of how it is named. It can be used to

bind the variable, using the zl:bind subprimitive.

Of course this can only work on variables whose implementation is really to store

their value in a memory cell. A variable with an update operation that encrypts

the value and an access operation that decrypts it could not have the locate opera-

tion, since the value as such is not directly stored anywhere.

locf Takes a form that accesses some cell and produces a corre-

sponding form to create a locative pointer to that cell.�

Both setf and locf work by means of property lists. When the form (setf (aref q

2) 56) is expanded, setf looks for the setf property of the symbol aref. The value

of the setf property of a symbol should be a cons whose car is a pattern to be

matched with the access-form, and whose cdr is the corresponding update-form,

with the symbol si:val in place of the value to be stored. The setf property of aref

is a cons whose car is (aref array . subscripts) and whose cdr is (zl:aset si:val

array . subscripts). If the transformation that setf is to do cannot be expressed as

a simple pattern, an arbitrary function can be used: When the form (setf (foo bar)

baz) is being expanded, if the setf property of foo is a symbol, the function defini-

tion of that symbol is applied to two arguments, (foo bar) and baz, and the result

is taken to be the expansion of the setf.

Similarly, the locf function uses the locf property, whose value is analogous. For

example, the locf property of aref is a cons whose car is (aref array . subscripts)

and whose cdr is (zl:aloc array . subscripts). There is no si:val in the case of

locf.

incf Increments the value of a generalized variable.

decf Decrements the value of a generalized variable.

rotatef Exchanges the value of one generalized variable with that of

another.�

Note: The following Zetalisp macro is included to help you read old programs. In

your new programs, if possible, use the Common Lisp equivalent of this macro. 
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zl:swapf Exchanges the value of one generalized variable with that of

another.�

Evaluating a Function Form

Evaluation of a function form works by applying the function to the results of

evaluating the argument subforms. What is a function, and what does it mean to

apply it? Symbolics Common Lisp contains many kinds of functions, and applying

them can do many different kinds of things. This section explains the most basic

kinds of functions and how they work, and in particular, lambda lists and all their

important features.

The simplest kind of user-defined function is the lambda-expression, which is a list

that looks like:

(lambda lambda-list body1 body2...)�

The first element of the lambda-expression is the symbol lambda; the second ele-

ment is a list called the lambda list, and the rest of the elements are called the

body. The lambda list, in its simplest form, is just a list of variables. Assuming

that this simple form is being used, here is what happens when a lambda-

expression is applied to some arguments.

1. The number of arguments and the number of variables in the lambda list

must be the same, or else an error is signalled.

2. Each variable is bound to the corresponding argument value.

3. The forms of the body are evaluated sequentially.

4. The bindings are all undone and the value of the last form in the body is re-

turned.�

This might sound something like the description of let. The most important differ-

ence is that the lambda-expression is a function, not a form. A let form gets eval-

uated, and the values to which the variables are bound come from the evaluation

of some subforms inside the let form; a lambda-expression gets applied, and the

values are the arguments to which it is applied.

The variables in the lambda list are sometimes called parameters, by analogy with

other languages. Some other terminologies refer to these as formal parameters, and

to arguments as actual parameters.

Lambda lists can have more complex structure than simply being a list of vari-

ables. Additional features are accessible by using certain keywords (which start

with &) and/or lists as elements of the lambda list.

The principal weakness of the simple lambda lists is that any function written

with one must only take a certain fixed number of arguments. As we know, many

very useful functions, such as list, append, +, and so on, accept a varying number
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of arguments. Maclisp solved this problem by the use of lexprs and lsubrs, which

were somewhat inelegant since the parameters had to be referred to by numbers

instead of names (for example, (zl:arg 3)). (For compatibility reasons, Symbolics

Common Lisp supports lexprs, but they should not be used in new programs). Sim-

ple lambda lists also require that arguments be matched with parameters by their

position in the sequence. This makes calls hard to read when there are a great

many arguments. Keyword parameters enable the use of other styles of call which

are more readable.

In general, a function in Symbolics Common Lisp has zero or more positional pa-

rameters, followed if desired by a single rest parameter, followed by zero or more

keyword parameters. The positional parameters can be required or optional, but all

the optional parameters must follow all the required ones. The required/optional

distinction does not apply to the rest parameter.

Keyword parameters are always optional, regardless of whether the lambda list

contains &optional. Any &optional appearing after the first keyword argument

has no effect. &key and &rest are independent. They can both appear and they

both use the same arguments from the argument list. The only rule is that &rest

must appear before &key in the lambda list.

This is the ordering rule for lambda-list keywords. The following keywords must

appear in this order, any or all of them can be omitted, and they cannot appear

multiple times:

&optional &rest &key &allow-other-keys &aux�

There are some other keywords in addition to those mentioned here. See the con-

stant lambda-list-keywords.

The caller must provide enough arguments so that each of the required parame-

ters gets bound, but extra arguments can be provided for some of the optional pa-

rameters. Also, if there is a rest parameter, as many extra arguments can be pro-

vided as desired, and the rest parameter is bound to a list of all these extras. Op-

tional parameters can have a default-form, which is a form to be evaluated to pro-

duce the default value for the parameter if no argument is supplied.

Positional parameters are matched with arguments by the position of the argu-

ments in the argument list. Keyword parameters are matched with their argu-

ments by matching the keyword name; the arguments need not appear in the same

order as the parameters. If an optional positional argument is omitted, no further

arguments can be present. Keyword parameters allow the caller to decide indepen-

dently for each one whether to specify it. If a keyword is duplicated among the

keyword arguments, the leftmost occurrence of the keyword takes precedence.

Binding Parameters to Arguments

When apply (the primitive function that applies functions to arguments) matches

up the arguments with the parameters, it follows this algorithm:

1. The positional parameters are dealt with first.
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2. The first required positional parameter is bound to the first argument. apply

continues to bind successive required positional parameters to the successive

arguments. If, during this process, there are no arguments left but some re-

quired positional parameters remain that have not been bound yet, it is an er-

ror ("too few arguments").

3. After all required parameters are handled, apply continues with the optional

positional parameters, if any. It binds successive parameters to the next ar-

gument. If, during this process, there are no arguments left, each remaining

optional parameter’s default-form is evaluated, and the parameter is bound to

it. This is done one parameter at a time; that is, first one default-form is

evaluated, and then the parameter is bound to it, then the next default-form

is evaluated, and so on. This allows the default for an argument to depend on

the previous argument.

4. If there are no remaining parameters (rest or keyword), and there are no re-

maining arguments, we are finished. If there are no more parameters but

some arguments still remain, an error is signalled ("too many arguments"). If

parameters remain, all the remaining arguments are used for both the rest

parameter, if any, and the keyword parameters.

5. a. First, if there is a rest parameter, it is bound to a list of all the remain-

ing arguments. If there are no remaining arguments, it gets bound to

nil.

b. If there are keyword parameters, the same remaining arguments are

used to bind them.�

6. The arguments for the keyword parameters are treated as a list of alternating

keyword symbols and associated values. Each symbol is matched with the key-

word parameter names, and the matching keyword parameter is bound to the

value that follows the symbol. All the remaining arguments are treated in

this way. The keyword symbols are compared by means of eq, which means

they must be specified in the correct package. The keyword symbol for a pa-

rameter has the same print name as the parameter, but resides in the key-

word package regardless of what package the parameter name itself resides

in. (You can specify the keyword symbol explicitly in the lambda list if you

must.)

If any keyword parameter has not received a value when all the arguments

have been processed, the default-form for the parameter is evaluated and the

parameter is bound to its value. The default form can depend on parameters

to its left in the lambda-list.

There might be a keyword symbol among the arguments that does not match

any keyword parameter name. An error is signalled unless &allow-other-keys

is present in the lambda list, or there is a keyword argument pair whose key-

word is :allow-other-keys and whose value is not nil. If an error is not sig-
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nalled, then the nonmatching symbols and their associated values are ignored.

The function can access these symbols and values through the rest parameter,

if there is one. It is common for a function to check only for certain key-

words, and pass its rest parameter to another function using zl:lexpr-funcall;

then that function checks for the keywords that concern it.

The way you express which parameters are required, optional, and rest is by

means of specially recognized symbols, which are called &-keywords, in the lambda

list. All such symbols’ print names begin with the character "&". A list of all such

symbols is the value of the symbol lambda-list-keywords. 

Examples of Simple Lambda Lists

The keywords used here are &key, &optional and &rest. The way they are used

is best explained by means of examples; the following are typical lambda lists, fol-

lowed by descriptions of which parameters are positional, rest, or keyword, and

those that are required or optional.

(a b c)

a, b, and c are all required and positional. The function must be passed three ar-

guments.

(a b &optional c) a and b are required, c is optional. All three are positional.

The function can be passed either two or three arguments.

(&optional a b c) a, b, and c are all optional and positional. The function can be

passed any number of arguments between zero and three, in-

clusive.

(&rest a) a is a rest parameter. The function can be passed any number

of arguments.

(a b &optional c d &rest e)

a and b are required positional, c and d are optional position-

al, and e is rest. The function can be passed two or more ar-

guments.

(&key a b) a and b are both keyword parameters. A typical call looks like

(foo :b 69 :a ’(some elements))�

This illustrates that the parameters can be matched in either

order.

(x &optional y &rest z &key a b)

x is required positional, y is optional positional, z is rest, and

a and b are keywords. One or more arguments are allowed.

One or two arguments specify only the positional parameters.

Arguments beyond the second specify both the rest parameter

and the keyword parameters, so that

(foo 1 2 :b ’(a list))�
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specifies 1 for x, 2 for y, (:b (a list)) for z, and (a list) for b.

It does not specify a.

(&rest z &key a b c &allow-other-keys)

z is rest, and a, b and c are keyword parameters. &allow-

other-keys says that absolutely any keyword symbols can ap-

pear among the arguments; these symbols and the values that

follow them have no effect on the keyword parameters, but do

become part of the value of z.�

Specifying Default Forms in Lambda Lists

If not specified, the default-form for each optional or keyword parameter is nil. To

specify your own default forms, instead of putting a symbol as the element of a

lambda list, put in a list whose first element is the symbol (the parameter itself)

and whose second element is the default-form. Only optional and keyword parame-

ters can have default forms; required parameters are never defaulted, and rest pa-

rameters always default to nil. For example:

(a &optional (b 3))

The default-form for b is 3. a is a required parameter, and so

it doesn’t have a default form.

(&optional (a ’foo) &rest d &key b (c (symeval a)))

a’s default-form is ’foo, b’s is nil, and c’s is (symbol-value a).

Note that if the function whose lambda list this is were called

with no arguments, a would be bound to the symbol foo, and c

would be bound to the binding of the symbol foo; this illus-

trates the fact that each variable is bound immediately after

its default-form is evaluated, and so later default-forms can

take advantage of earlier parameters in the lambda list. b and

d would be bound to nil.�

Occasionally it is important to know whether or not a certain optional or keyword

parameter was defaulted. You cannot tell from just examining its value, since if

the value is the default value, there is no way to tell whether the caller passed

that value explicitly, or whether the caller did not pass any value and the parame-

ter was defaulted. The way to tell for sure is to put a third element into the list:

the third element should be a variable (a symbol), and that variable is bound to nil

if the parameter was not passed by the caller (and so was defaulted), or t if the

parameter was passed. The new variable is called a supplied-p variable; it is bound

to t if the parameter is supplied.

For example:

(a &optional (b 3 c))

The default-form for b is 3, and the supplied-p variable for b

is c. If the function is called with one argument, b is bound to
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3 and c is bound to nil. If the function is called with two ar-

guments, b is bound to the value that was passed by the caller

(which might be 3), and c is bound to t.

(&key a (b (1+ a) c))

This is the same as the example above, except that it demon-

strates use of a supplied-p variable for a keyword parameter.

This example also shows the default value of one keyword pa-

rameter depending on a previous keyword parameter.�

Specifying a Keyword Parameter’s Symbol in Lambda Lists

It is possible to specify a keyword parameter’s symbol independently of its parame-

ter name. To do this, use two nested lists to specify the parameter. The outer list

is the one that can contain the default-form and supplied-p variable. The first ele-

ment of this list, instead of a symbol, is again a list, whose elements are the key-

word symbol and the parameter variable name. For example:

(&key ((:a a)) ((:b b) t))

This is equivalent to (&key a (b t)).

(&key ((:foo foo-value)))

This allows a keyword that the caller knows under the name

:foo, without making the parameter shadow the value of a

variable foo.

(&key ((:foo foo-value) 10 foo-supplied))

When the foo keyword is supplied, the default value of 10 is

ignored and foo-supplied is bound to t. If the keyword is not

supplied, foo-value is bound to 10 and foo-supplied is bound to

nil.�

Specifying Aux-variables in Lambda Lists

It is also possible to include in the lambda list some other symbols that are bound

to the values of their default-forms upon entry to the function. These are not pa-

rameters, and they are never bound to arguments; they just get bound, as if they

appeared in a let* form. (Whether you use these aux-variables or bind the vari-

ables with let* is a stylistic decision.)

To include such symbols, put them after any parameters, preceded by the &-

keyword &aux. For example:

(a &optional b &rest c &aux d (e 5) (f (cons a e)))�

d, e, and f are bound, when the function is called, to nil, 5, and a cons of the first

argument and 5. Note that aux-variables are bound sequentially rather than in

parallel. 
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Safety of &rest Arguments

It is important to realize that the list of arguments to which a rest-parameter is

bound is set up in whatever way is most efficiently implemented, rather than in

the way that is most convenient for the function receiving the arguments. It is not

guaranteed to be a "real" list. Sometimes the rest-args list is stored in the func-

tion-calling stack, and loses its validity when the function returns. If a rest-

argument is to be returned or made part of permanent list-structure, it must first

be copied, as you must always assume that it is one of these special lists. See the

function copy-list.

The system does not detect the error of omitting to copy a rest-argument; you sim-

ply find that you have a value that seems to change behind your back. At other

times the rest-args list is an argument that was given to apply; therefore it is not

safe to rplaca this list, as you might modify permanent data structure. An attempt

to rplacd a rest-args list is unsafe in this case, while in the first case it signals

an error, since lists in the stack are impossible to rplacd. 

Some Functions and Special Forms

Functions for Function Invocation

apply function argument &rest arguments 

Applies the function function to arguments.

funcall fn &rest args (funcall fn a1 a2 ... an) applies the function fn to the

arguments a1, a2, ..., an.

send object message-name &rest arguments 

Sends a message to a flavor instance. 

lexpr-send object message argument &rest arguments 

Like send, except that the last argument should be a

list. All elements of that list are passed as arguments.�
�

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions. 

zl:apply fn args Applies the function fn to the list of arguments args.

zl:lexpr-funcall function argument &rest arguments 

This is the Zetalisp equivalent of the Common Lisp

apply function.

zl:call fn &rest alternates Offers a very general way of controlling what argu-

ments you pass to a function.

Functions and Special Forms for Constant Values
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quote object Returns object. It is useful specifically because object

is not evaluated.

function fn The functional interpretation of fn.

lambda fn Provided, as a convenience, to obviate the need for us-

ing the function special form when the latter is used

to name an anonymous (lambda) function.

false Takes no arguments and returns nil.

true Takes no arguments and returns t.

ignore Takes any number of arguments and returns nil.

constantp object Returns t if object, when considered as a form to be

evaluated, always evaluates to the same thing.�

Note: The following Zetalisp special form is included to help you read old programs.

In your new programs, use the Common Lisp equivalent of this special form. 

zl:comment form Ignores its form and returns the symbol zl:comment.�

Special Forms for Sequencing

progn &body body The body forms are evaluated in order from left to

right and the value of the last one is returned.

prog1 value &rest ignore Similar to progn, but it returns value (its first form)

rather than its last.

prog2 ignore value &rest ignore 

Similar to progn and prog1, but returns its second

form. It is included largely for compatibility with old

programs.

progv vars vals &body body 

First evaluates vars and vals, then binds each symbol

to the corresponding value, and finally evaluates body.

This provides the user with extra control over bind-

ing. 

progw vars-and-vals &body body 

Like progv except it evaluates and binds the vars-and-

vals sequentially.

Function for Explicit Evaluation

eval form Evaluates form, and returns the result. Mainly useful

in Lisp systems, not application programs.�
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Functions for Compatibility with Maclisp Lexprs

zl:arg (zl:arg nil), when evaluated during the application of a lexpr,

gives the number of arguments supplied to that lexpr.

zl:setarg i x Used only during the application of a lexpr. (setarg i x) sets

the lexpr’s i’th argument to x

zl:listify n Manufactures a list of n of the arguments of a lexpr.�

Multiple Values

Symbolics Common Lisp includes a facility by which the evaluation of a form can

produce more than one value. In most Lisp function calls, multiple values are not

used. However, when a function needs to return more than one result to its caller,

multiple values are a cleaner way of doing this than returning a list of the values

or using setq to assign special variables to the extra values.

A function must request multiple values. If the calling function does not request

multiple values, and the called function returns multiple values, only the first val-

ue is given to the calling function. The extra values are discarded. Special syntax

is required both to produce multiple values and to receive them.

Functions can return as many values as the value of multiple-values-limit. In

Symbolics Common Lisp multiple-values-limit is 128.

Primitives for Producing Multiple Values

The primitive for producing multiple values is values, which takes any number of

arguments and returns that many values. If the last form in the body of a function

is a values with three arguments, then a call to that function returns three val-

ues. Many system functions produce multiple values, but they all do it via the

values primitive.

values Returns multiple values, its arguments.

values-list list Returns multiple values, the elements of the list.

Special Forms for Receiving Multiple Values

The special forms for receiving multiple values are multiple-value-setq, multiple-

value-bind, multiple-value-list, multiple-value-call, and multiple-value-prog1.

These consist of a form and an indication of where to put the values returned by

that form. With the first two of these, the caller requests a certain number of re-

turned values. If fewer values are returned than the number requested, then it is

exactly as if the rest of the values were present and had the value nil. If too many

values are returned, the rest of the values are ignored. This has the advantage

that you do not have to pay attention to extra values if you don’t care about them,

but it has the disadvantage that error-checking similar to that done for function

calling is not present. 
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multiple-value-setq (variable...) form

Calls a function that is expected to return more than

one value.

multiple-value-bind (variable...) form body...

Similar to multiple-value-setq, but locally binds the

variables that receive the values, rather than setting

them, and has a body.

multiple-value-list form Evaluates form and returns a list of the values it re-

turned.

multiple-value-call function body...

First evaluates function to obtain a function. It then

evaluates all the forms in body.

multiple-value-prog1 first-form body...

Like prog1, except that if its first form returns multi-

ple values, multiple-value-prog1 returns those values.�

Note: The following Zetalisp special form is included to help you read old programs.

In your new programs, use the Common Lisp equivalent of this special form. 

zl:multiple-value (variable...)

The Zetalisp name for multiple-value-setq. �

Passing-Back of Multiple Values

Due to the syntactic structure of Lisp, it is often the case that the value of a cer-

tain form is the value of a subform of it. For example, the value of a cond is the

value of the last form in the selected clause. In most such cases, if the subform

produces multiple values, the original form also produces all of those values. This

passing-back of multiple values of course has no effect unless eventually one of the

special forms for receiving multiple values is reached. The exact rule governing

passing-back of multiple values is as follows:

If X is a form, and Y is a subform of X, then if the value of Y is unconditionally

returned as the value of X, with no intervening computation, then all the multiple

values returned by Y are returned by X. In all other cases, multiple values or only

single values can be returned at the discretion of the implementation; users should

not depend on whatever way it happens to work, as it might change in the future

or in other implementations. The reason we do not guarantee nontransmission of

multiple values is because such a guarantee is not very useful and the efficiency

cost of enforcing it is high. Even setting a variable to the result of a form using

setq, then returning the value of that variable might be made to pass multiple val-

ues by an optimizing compiler that realized that the setting of the variable was

unnecessary.

Note that use of a form as an argument to a function never receives multiple val-

ues from that form. That is, if the form (foo (bar)) is evaluated and the call to



Page 354

bar returns many values, foo is still only called on one argument (namely, the

first value returned), rather than called on all the values returned. We choose not

to generate several separate arguments from the several values, because this

makes the source code obscure; it is not syntactically obvious that a single form

does not correspond to a single argument. Instead, the first value of a form is

used as the argument and the remaining values are discarded. Receiving of multi-

ple values is done only with the special forms. See the section "Special Forms for

Receiving Multiple Values".

Interaction of Some Common Special Forms with Multiple Values

The interaction of special forms with multiple values can be deduced from the rule

mentioned in another section: See the section "Passing-Back of Multiple Values".

Note well that when it says that multiple values are not returned, it really means

that they might or might not be returned, and you should not write any programs

that depend on which way it works.

• The body of a defun or a lambda, and variations such as the body of a func-

tion, the body of a let, and so on, pass back multiple values from the last form

in the body.

• eval, apply, funcall, and zl:lexpr-funcall pass back multiple values from the

function called. Example:

(apply #’floor ’(3.4)) => 3 and 0.4000001�

• progn passes back multiple values from its last form. progv and progw do so

also. prog1 and prog2, however, do not pass back multiple values (though

multiple-value-prog1 does).

Examples:

(progn (values 1 2)

       (values 3 4)) => 3 and 4

�

(prog1 (values 1 2)

       (values 3 4)) => 1�

• Multiple values are passed back from the last subform of an and or or form,

but not from previous forms since the return is conditional. Remember that

multiple values are only passed back when the value of a subform is uncondi-

tionally returned from the containing form. For example, consider the form (or

(foo) (bar)). If foo returns a non-nil first value, then only that value is re-

turned as the value of the form. But if it returns nil (as its first value), then or

returns whatever values the call to bar returns.

Examples:

(or (numberp ’x) (values nil 4 5 6) (values 3 4)) => 3 and 4

(or (numberp ’x) (values 1 2) (values 3 4)) => 1�
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• cond passes back multiple values from the last form in the selected clause, but

not if the clause is only one long (that is, the returned value is the value of the

predicate) since the return is conditional. This rule applies even to the last

clause, where the return is not really conditional (the implementation is allowed

to pass or not to pass multiple values in this case, and so you should not depend

on what it does). t should be used as the predicate of the last clause if multiple

values are desired, to make it clear to the compiler (and any human readers of

the code!) that the return is not conditional.

Examples:

(cond ((numberp 4) (values 1 2))) => 1 and 2

(cond ((oddp 4) ’foo) ((values 1 2))) => 1 and 2

;; Confusion reigns�

• The variants of cond such as if, when, select, zl:selectq, and zl:dispatch pass

back multiple values from the last form in the selected clause.

Examples:

(if (numberp ’x) (values 1 2) (values 3 4)) => 3 and 4

(if (numberp 82) (values 1 2) (values 3 4)) => 1 and 2�

• The number of values returned by prog depends on the return form used to re-

turn from the prog. prog returns all of the values produced by the subform of

return. (If a prog drops off the end it just returns a single nil.)

• do behaves like prog with respect to return. All the values of the last exit-form

are returned.

• unwind-protect passes back multiple values from its protected form. Example:

(unwind-protect (values 1 2 3)) => 1 and 2 and 3�

• catch passes back multiple values from the last form in its body when it exits

normally.

• The obsolete special form zl:*catch does not pass back multiple values from the

last form in its body, because it is defined to return its own second value to tell

you whether the zl:*catch form was exited normally or abnormally. This is

sometimes inconvenient when you want to propagate back multiple values but

you also want to wrap a zl:*catch around some forms. Usually people get

around this problem by using catch or by enclosing the zl:*catch in a prog and

using return to pass out the multiple values, returning through the zl:*catch.�

Scoping

Lexical Scoping
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Symbolics Common Lisp has a lexically scoped interpreter and compiler. The com-

piler and interpreter implement the same language.

Consider the following example:

(defun fun1 (x)

  (fun2 3 x)

  (fun3 #’(lambda (y) (+ x y)) x 4))�

This function passes an internal lambda to fun3. Observe that the internal lambda

references the variable x, which is neither a lambda variable nor a local variable

of this lambda. Rather, it is a variable local to the lambda’s lexical parent, fun1.

fun3 receives as an argument a lexical closure, that is, a presentation of the inter-

nal lambda in an environment where the variable x can be accessed. x is a free lex-

ical variable of the internal lambda; the closure is said to be a closure of the free

lexical variables, specifically in this case, x.

Lexical closures, created by reference to internal functions, are to be distinguished

from dynamic closures, which are created by the zl:closure function and the zl:let-

closed special form. Dynamic closures are closures over special variables, while

lexical closures are closures over lexical, local variables. Invocation of a dynamic

closure, as a function, causes special variables to be bound. Invocation of a lexical

closure simply provides the necessary data linkage for a function to run in the en-

vironment in which the closure was made. 

Both the compiler and the interpreter support the accessing of lexical variables.

The compiler and interpreter also support, in Symbolics Common Lisp as well as

Zetalisp, the Common Lisp lexical function and macro definition special forms, flet,

labels, and macrolet.

Note that access to lexical variables is true access to the instantiation of the vari-

able and is not limited to the access of values. Thus, assuming that map-over-list

maps a function over a list in some complex way, the following function works as

it appears to, and finds the maximum element of the list.

(defun find-max (list)

  (let ((max nil))

    (map-over-list

      #’(lambda (element)

  (when (or (null max)

    (> element max))

    (setq max element)))

      list)

    max))�

� Lexical Environment Objects and Arguments

Macro-expander functions, the actual functions defined by defmacro, macro, and

macrolet, are called with two arguments  form and environment. Special form

implementations used by the interpreter are also passed these two arguments.

Macro-expander functions defined by files created prior to the implementation of

lexical scoping are passed only a form argument, for compatibility.
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The environment argument allows evaluations and expansions performed by the

macro-expander function or the special form interpreter function to be performed

in the proper lexical context. The environment argument is utilized by the macro-

expander function in certain unusual circumstances:

• A macro-expander function explicitly calls macroexpand or macroexpand-1 to

expand some code appearing in the form which invoked it. In this case, the envi-

ronment argument must be passed as a second argument to either of these

functions. This is quite uncommon. Most macro-expander functions do not ex-

plicitly expand code contained in their calls: setf is an example of a macro that

does this kind of expansion.

• A macro-expander function explicitly calls eval to evaluate, at macro time, an

expression appearing in the code which invoked it. In that case, the environment

argument must be passed as a second argument to eval. This explicit evaluation

is even more unusual: almost any use of eval by a macro is guaranteed to be

wrong, and does not work or do what is intended in certain circumstances. The

only known legitimate uses are:

• ° A macro determines that some expression is in fact a constant, and com-

putable at macro expand time, and evaluates it. Here, there are no variables

involved, so the environment issue is moot.

° A macro is called with some template code, expressed via backquote, and is

expected to produce an instantiation of that template with substitutions per-

formed. Evaluation is the way to instantiate backquoted templates.�

The format of lexical environments is an internal artifact of the system. They can-

not be constructed or analyzed by user code. It is, however, specified that nil rep-

resents a null lexical environment.

A macro defined with defmacro or macrolet can accept its expansion lexical envi-

ronment (if it needs it for either of the above purposes) as a variable introduced

by the lambda-list keyword &environment in its argument list.

A macro defined with macro receives its lexical environment as its second argu-

ment.

Funargs and Lexical Closure Allocation

A funarg is a function, usually a lambda, passed as an argument, stored into data

structure, or otherwise manipulated as data. Normally, functions are simply called,

not manipulated as data. The term funarg is an acronym for functional argument.

In the following form, two functions are referred to, sort and <.

(defun number-sort (numbers)

  (sort numbers #’<))�

sort is being called as a function, but < (more exactly, the function object imple-

menting the < function) is being passed as a funarg.
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The major feature of the lexical compiler and interpreter can be described as the

support of funargs that reference free lexical variables. Funargs that do not refer-

ence free lexical variables also work. For example,

(defun data-sort (data)

  (sort data #’(lambda (x y) (< (fun x) (fun y)))))�

The internal lambda above makes no free lexical references. data-sort would have

worked prior to lexical scoping, and continues to work.

The remainder of this discussion is concerned only with funargs that make free

lexical references. 

The act of evaluating a form such as 

#’(lambda (x) (+ x y))�

produces a lexical closure. (Of course, if we are talking about compiled code, the

form is never evaluated. In that case, we are talking about the time in the execu-

tion of the compiled function that corresponds to the time that the form would be

evaluated.) It is that closure that represents the funarg that is passed around. 

Funarg closures can be further classified by usage as downward funargs and up-

ward funargs. A downward funarg is one that does not survive the function call

that created the closure. For example:

(defun magic-sort (data parameter)

  (sort data #’(lambda (x y) (< (funk x parameter) 

(funk y parameter)))))�

In this example, sort is passed a lexical closure of the internal lambda. sort calls

this closure many times to do comparisons. When magic-sort returns its value, no

function or data structure is referencing that closure in any way. That closure is

being used as a downward funarg; it does not survive the call to magic-sort.

In this example,

(defun make-adder (x)

  #’(lambda (y) (+ x y))) => MAKE-ADDER

�

(setq adder-4 (make-adder 4))

  => #<SYS:LEXICAL-CLOSURE (LAMBDA # #) 61115544>

(funcall adder-4 5) => 9

�

the closure of the internal lambda is returned from the activation of make-adder,

and survives that activation. The closure is being used as an upward funarg.

The creation of lexical closures involves the allocation of storage to represent

them. This storage can either be allocated on the stack or in the heap. Storage al-

located in the heap remains allocated until all references to it are discarded and it

is garbage collected. Storage allocated on the stack is transient, and is deallocated

when the stack frame in which it is allocated is abandoned. Stack-allocated clo-

sures are more efficient, and thus to be desired. Stack-allocated closures can only

be used when a funarg is used as a downward funarg. Closures of upward funargs

must be allocated in the heap.
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Funargs can be passed to any functions. These functions might well store them in

permanent data structure, or return them nonlocally, or cause other upward use.

Therefore, the compiler and interpreter, in general, must and do assume potential

upward use of all funargs. Thus, they cause their closures to be allocated in the

heap unless special measures are taken to convey the guarantee of downward-only

use. Note that the more general (heap-allocated) closure is guaranteed to work in

all cases.

The ephemeral garbage collector substantially reduces the overhead of heap alloca-

tion of short-lived objects. Thus, you might be able to ignore these issues entirely,

and let the system do as well as it can without additional help.

The sys:downward-function and sys:downward-funarg Declarations

There are two ways to convey the guarantee of downward-only use of a funarg.

These are the sys:downward-function and sys:downward-funarg declarations.

sys:downward-function Declaration

This declaration, in the body of an internal lambda, guarantees to the system that

lexical closures of the lambda in which it appears are only used as downward fu-

nargs, and never survive the calls to the procedure that produced them. This al-

lows the system to allocate these closures on the stack.

(defun special-search-table (item)

  (block search

    (maphash

      #’(lambda (key object)

  (declare (sys:downward-function))

  (when (magic-function key object item)

    (return-from search object)))

      *hash-table*)))�

Here maphash calls the closure of the internal lambda many times, but does not

store it into permanent variables or data structure, or return it "around" special-

search-table. Therefore, it is guaranteed that the closure does not survive the call

to special-search-table. It is thus safe to allow the system to allocate that closure

on the stack.

Stack-allocated closures have the same lifetime (extent) as &rest arguments and

lists created by with-stack-list and with-stack-list*, and require the same precau-

tions. See the section "&rest Lambda-List Keyword".

sys:downward-funarg Declaration

This declaration (not to be confused with sys:downward-function) permits a pro-

cedure to declare its intent to use one or more of its arguments in a downward

manner. For instance, sort’s second argument is a funarg, which is only used in a

downward manner, and is declared this way. The second argument to process-run-
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function is a good example of a funarg that is not downward. Here is an example

of a function that uses and declares its argument as a downward funarg.

(defun search-alist-by-predicate (alist predicate)

  (declare (sys:downward-funarg predicate))

  ;; Traditional "recursive" style, for variety.

  (if (null alist)

      nil

      (let ((element (car list))

            (rest (cdr list))

        (if (funcall predicate (car element))

            (cdr element)

            (search-alist-by-predicate rest predicate))))))�

This function only calls the funarg passed as the value of predicate. It does not

store it into permanent structure, return it, or throw it around search-alist-by-

predicate’s activation.

The reason you so declare the use of an argument is to allow the system to deduce

guaranteed downward use of a funarg without need for the sys:downward-

function declaration. For instance, if search-alist-by-predicate were coded as

above, we could write

(defun look-for-element-in-tolerance (alist required-value tolerance)

  (search-alist-by-predicate alist

    #’(lambda (key)

        (< (abs (- key required-value)) tolerance))))�

to search the keys of the list for a number within a certain tolerance of a required

value. The lexical closure of the internal lambda is automatically allocated by the

system on the stack because the system has been told that any funarg used as the

first argument to search-alist-by-predicate is used only in a downward manner.

No declaration in the body of the lambda is required.

All appropriate parameters to system functions have been declared in this way.

There are two possible forms of the sys:downward-funarg declaration:

(declare (sys:downward-funarg var1 var2 ... )

Declares the named variables, which must be parameters (for-

mal arguments) of the function in which this declaration ap-

pears, to have their values used only in a downward fashion.

This affects the generation of closures as functional arguments

to the function in which this declaration appears: it does not

directly affect the function itself. Due to an implementation

restriction, var-i cannot be a keyword argument.

(declare (sys:downward-funarg *))

Declares guaranteed downward use of all functional arguments

to this function. This is to cover closures of functions passed

as elements of &rest arguments and keyword arguments.�
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Notes: 

The special forms flet and labels (additions to Zetalisp from Common Lisp) gener-

ate lexical closures if necessary. The compiler decides how to allocate a closure

generated by flet or labels after analysis of the use of the function defined by the

use of flet or labels.

It is occasionally appropriate to introduce the sys:downward-funarg and

sys:downward-function (as well as other) declarations into the bodies of functions

defined by flet and labels.

There is no easy way to see if code allocates lexical closures on the heap or on the

stack; if disassembly of a compiled function reveals a call to sys:make-lexical-

closure, heap allocation is indicated. 

flet, labels, and macrolet Special Forms

flet functions &body body Special Form

Defines named internal functions. flet (function let) defines a lexical scope, body,

in which these names can be used to refer to these functions. functions is a list of

clauses, each of which defines one function. Each clause of the flet is identical to

the cdr of a defun special form; it is a function name to be defined, followed by

an argument list, possibly declarations, and function body forms. flet is a mecha-

nism for defining internal subroutines whose names are known only within some

local scope.

Functions defined by the clauses of a single flet are defined "in parallel", similar

to let. The names of the functions being defined are not defined and not accessible

from the bodies of the functions being defined. The labels special form is used to

meet those requirements. See the special form labels.

Here is an example of the use of flet:

(defun triangle-perimeter (p1 p2 p3)

  (flet ((squared (x) (* x x)))

    (flet ((distance (point1 point2)

     (sqrt (+ (squared (- (point-x point1) 

  (point-x point2)))

      (squared (- (point-y point1) 

  (point-y point2)))))))

      (+ (distance p1 p2)

 (distance p2 p3)

 (distance p1 p3)))))�

flet is used twice here, first to define a subroutine squared of triangle-perimeter,

and then to define another subroutine, distance. Note that since distance is de-

fined within the scope of the first flet, it can use squared. distance is then called

three times in the body of the second flet. The names squared and distance are

not meaningful as function names except within the bodies of these flets.
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Note that functions defined by flet are internal, lexical functions of their contain-

ing environment. They have the same properties with respect to lexical scoping

and references as internal lambdas. They can make free lexical references to vari-

ables of that environment and they can be passed as funargs to other procedures.

Functions defined by flet, when passed as funargs, generate closures. The alloca-

tion of these closures, that is, whether they appear on the stack or in the heap, is

controlled in the same way as for internal lambdas. See the section "Funargs and

Lexical Closure Allocation".

Here is an example of the use, as a funarg, of a closure of a function defined by

flet.

(defun sort-by-closeness-to-goal (list goal)

  (flet ((closer-to-goal (x y)

   (< (abs (- x goal)) (abs (- y goal)))))

    (sort list #’closer-to-goal)))�

This function sorts a list, where the sort predicate of the (numeric) elements of

the list is their absolute distance from the value of the parameter goal. That pred-

icate is defined locally by flet, and passed to sort as a funarg.

Note that flet (as well as labels) defines the use of a name as a function, not as a

variable. Function values are accessed by using a name as the car of a form or by

use of the function special form (usually expressed by the reader macro #’).

Within its lexical scope, flet can be used to redefine names that refer to globally

defined functions, such as sort or cdar, though this is not recommended for stylis-

tic reasons. This feature does, however, allow you to bind names with flet in an

unrestricted fashion, without binding the name of some other function that you

might not know about (such as number-into-array), and thereby causing other

functions to malfunction. This occurs because flet always creates a lexical binding,

not a dynamic binding. Contrast this with let, which usually creates a lexical

binding, unless the variable being bound is declared special, in which case it cre-

ates a dynamic binding.

flet can also be used to redefine function names defined by enclosing uses of flet

or labels.

In the following example, eql is redefined to a more liberal treatment for charac-

ters. Note that the global definition of eql is used in the local definition (this

would not be possible with labels). Note also that member uses the global defini-

tion of eql.

(flet ((eql (x y)

         (if (characterp x)

           (equalp x y)

           (eql x y))))

  (if (member foo bar-list)              ;uses global eql

    (adjoin ’baz bar-list :test #’eql)   ;uses flet’d eql

    (eql foo (car bar-list))))�
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labels functions &body body Special Form

Identical to flet in structure and purpose, but has slightly different scoping rules.

It, too, defines one or more functions whose names are made available within its

body. In labels, unlike flet, however, the functions being defined can refer to each

other mutually, and to themselves, recursively. Any of the functions defined by a

single use of labels can call itself or any other; there is no order dependence. Al-

though flet is analogous to let in its parallel binding, labels is not analogous to

let*.

labels is in all other ways identical to flet. It defines internal functions that can

be called, redefined, passed as funargs, and so on.

Functions defined by labels, when passed as funargs, generate closures. The allo-

cation of these closures, that is, whether they appear on the stack or in the heap,

is controlled in the same way as for internal lambdas. See the section "Funargs

and Lexical Closure Allocation".

Here is an example of the use of labels:

(defun combinations (total-things at-a-time)

  ;; This function computes the number of combinations of

  ;; total-things things taken at-a-time at a time.

  ;; There are more efficient ways, but this is illustrative.

  (labels ((factorial (x)

             (permutations x x))

   (permutations (x n) ;x things n at a time

     (if (= n 1)

 x

 (* x (permutations (1- x) (1- n))))))

    (/ (permutations total-things at-a-time)

(factorial at-a-time))))�

In the following example, we use labels to locally define a function that calls it-

self. If we instead use flet, an error will result because the call to my-adder in

the body would refer to an outer (presumably non-existent) my-adder instead of

the local one.

(defun example-labels (operand-a operand-b)

  (labels ((my-adder (accumulator counter)

     (if (= counter 0)

         accumulator

         (my-adder (incf accumulator) (decf counter)))))

    (my-adder operand-a operand-b)))

�

(example-labels 6 4)  => 10�

macrolet macros &body body Special Form

Defines, within its scope, a macro. It establishes a symbol as a name denoting a

macro, and defines the expander function for that macro. defmacro does this



Page 364

globally; macrolet does it only within the (lexical) scope of its body. A macro so

defined can be used as the car of a form within this scope. Such forms are expand-

ed according to the definition supplied when interpreted or compiled.

The syntax of macrolet is identical to that of flet or labels: it consists of clauses

defining local, lexical macros, and a body in which the names so defined can be

used. macros a list of clauses each of which defines one macro. Each clause is

identical to the cdr of a defmacro form: it has a name being defined (a symbol), a

macro pseudo-argument list, and an expander function body.

The pseudo-argument list is identical to that used by defmacro. It is a pattern,

and can use appropriate lambda-list keywords for macros, including &environment.

See the section "Lexical Environment Objects and Arguments".

The following example of macrolet is for demonstration only. If the macro square

needed to be open-coded, was long and cumbersome, or was used many times, then

the use of macrolet would be suggested.

(defun square-coordinates (point)

  (macrolet ((square (x) ‘(* ,x ,x)))

    (setf (point-x point) (square (point-x point))

  (point-y point) (square (point-y point)))))

�

(defstruct point x y) => POINT

(setq p1 (make-point :x 3 :y 4)) => #S(POINT :X 3 :Y 4)

(square-coordinates p1) => 16

�

(defun foo (x)

  (macrolet ((do-it (var n)

       ‘(case ,var

  ,(do ((i 0 (+ i 1))

 (l ’()))

((= i n)(nreverse l))

      (push (list i (format nil "~R" i))

    l)))))

    (do-it x 100)))

�

(foo 12) => "twelve"�

The following example implements a macro to establish a context where items can

be added to the end of list. This is similar to the way push adds to the beginning

of a list. We use macrolet to ensure that push-onto-end has access to the pointer

until the last cons of the list.
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(defmacro with-end-push2 (list &body body)

  (let ((lastptr (gensym)))

    ‘(let ((,lastptr (last ,list)))

       (macrolet ((push-onto-end (val)

    ‘(rplacd ,’,lastptr

     (setq ,’,lastptr (cons ,val nil)))))

 ,body))))

�

(defun example-3 ()

  (let ((mylist (list 1 2 3))

(a-list (list ’a ’b ’c ’d)))

    (with-end-push2 mylist

      (dolist (l a-list mylist)

(push-onto-end l)))))

�

(example-3)�

It is important to realize that macros defined by macrolet are run (when the com-

piler is used) at compile time, not run-time. The expander functions for such

macros, that is, the actual code in the body of each macrolet clause, cannot at-

tempt to access or set the values of variables of the function containing the use of

macrolet. Nor can it invoke run-time functions, including local functions defined

in the lexical scope of the macrolet by use of flet or labels. The expander func-

tion can freely generate code that uses those variables and/or functions, as well as

other macros defined in its scope, including itself.

There is an extreme subtlety with respect to expansion-time environments of

macrolet. It should not affect most uses. The macro-expander functions are closed

in the global environment; that is, no variable or function bindings are inherited

from any environment. This also means that macros defined by macrolet cannot

be used in the expander functions of other macros defined by macrolet within the

scope of the outer macrolet. This does not prohibit either of the following:

• Generation of code by the inner macro that refers to the outer one.

• Explicit expansion (by macroexpand or macroexpand-1), by the inner macro, of

code containing calls to the outer macro. Note that explicit environment man-

agement must be utilized if this is done. See the section "Lexical Environment

Objects and Arguments".�

Flow of Control

Introduction to Flow of Control

Symbolics Common Lisp provides a variety of structures for flow of control.
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Function application is the basic method for construction of programs; operations

are written as the application of a function to its arguments. Usually, Lisp pro-

grams are written as a large collection of small functions, each of which imple-

ments a simple operation. These functions operate by calling one another, and so

larger operations are defined in terms of smaller ones.

A function can always call itself in Lisp. The calling of a function by itself is

known as recursion; it is analogous to mathematical induction.

The performing of an action repeatedly (usually with some changes between repe-

titions) is called iteration, and is provided as a basic control structure in most lan-

guages. The do statement of PL/I, the for statement of ALGOL/60, and so on are

examples of iteration primitives. Symbolics Common Lisp provides two general iter-

ation facilities: do and loop, as well as a variety of special-purpose iteration facili-

ties. (loop is sufficiently complex that it is explained in its own section. See the

section "The loop Iteration Macro".) There is also a very general construct to al-

low the conventional "goto" control structure, called prog.

A conditional construct allows a program to decide to do one thing or another

based on some logical condition. Lisp provides the simple one-way conditionals and

and or, the simple two-way conditional if, and more general multi-way conditionals

such as cond and case. The choice of which form to use in any particular situa-

tion is a matter of personal taste and style.

Premature exit from a piece of code is another mechanism for controlling program

flow. Depending on their scope (the spatial or textual region or the program within

which references can occur), exits can be local or nonlocal.

block and return-from are the primitive special forms for local exit from a piece

of code. block defines a program portion that can be safely exited at any point,

and return-from does an immediate transfer of control to exit from block. Local

exits have lexical scope, that is, block and return-from can only operate within

the portion of code textually contained in the construct that establishes them.

catch and throw are the special forms used for nonlocal exits. catch evaluates

forms; if a throw is executed during the evaluation, the evaluation is immediately

aborted at that point and catch immediately returns a value specified by throw.

Nonlocal exits have dynamic scope, that is, the catch/throw mechanism works even

if the throw form is not textually within the body of the catch form.

Symbolics Common Lisp also provides a coroutine capability and a multiple-process

facility. See the section "Scheduler Concepts". There is also a facility for generic

function calling using message passing. See the section "Flavors".

Conditionals

Conditional Functions

if condition true &rest false

The simplest conditional form. Corresponds to the if-then-else
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construct. Returns whatever evaluation of the selected form

returns. For a description of if’s incompatibility with Common

Lisp: See the special form if.

cond &rest clauses Selects and evaluates the first clause whose test evaluates to

non-nil.

cond-every &body clauses

Like cond, but executes every clause whose predicate is satis-

fied, not just the first. Returns the value of the last form in

the last clause executed.

and &rest body Evaluates each form in body; returns nil if any form evaluates

to nil. Returns the value of the last form if every form evalu-

ates to non-nil values.

or &rest body Evaluates each form in body until it encounters a form that

evaluates to a non-nil value; returns the value of that form, or

nil if all forms evaluate to nil.

not (x) not returns t if x is nil, otherwise nil. null is the same as not;

both functions are included for the sake of clarity. Use null to

check whether something is nil; use not to invert the sense of

a logical value.

when condition &rest body

Evaluates the forms in body when condition returns non-nil,

and returns the value(s) of the last form evaluated. Returns nil

when condition returns nil.

unless condition &rest body

Evaluates the forms in body when condition returns nil, and

returns the value of the last form evaluated. Returns nil when

condition returns a non-nil value.

select test-object &body clauses

Selects one of its clauses for execution by comparing the value

of a form against various constants. Returns nil or the value of

the last clause evaluated. Same as zl:selectq, except that the

elements of the tests are evaluated before they are used.

selector test-object test-function &body clauses

The same as select, except that instead of using eq as the

comparison function, selector allows the user to specify the

test function to use.

selectq-every object &body clauses

Executes every selected clause, not just the first one. Returns

only the value of the last form in the last selected clause.

case test-object body clauses

Selects one of its clauses for execution by comparing a value to

various constants. Allows an explicit t clause. Returns nil, or

the value of the last clause evaluated.
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ccase object &body body

"Continuable exhaustive case." Similar to case, but does not al-

low an explicit t clause. Signals a proceedable error if no

clause is satisfied; can continue from error by accepting new

value from user and restarting tests. 

ecase object &body body

"Exhaustive case," or "error-checking case." Similar to case,

but does not allow an explicit t clause. Signals an error if no

clause is satisfied. It is not permissible to continue from this

error.

typecase object &body body

Selects one of its clauses by examining the type of an object.

Returns nil, or the value of the last clause evaluated. Allows

explicit otherwise or t clause.

ctypecase object &body body

"Continuable exhaustive type case." Like typecase, but does

not allow an explicit otherwise or t clause. Signals a proceed-

able error if no clause is satisfied. 

etypecase object &body body

"Exhaustive type case," or "error-checking type case." Like

typecase, but does not allow an explicit otherwise or t clause.

Signals an error if no clause is satisfied. It is not permissible

to continue from this error.

Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp equivalents of these

functions.

zl:selectq test-object &body clauses

Selects a clause for execution by comparing the value of a

form against various constants. Does not evaluate its test ele-

ments. Returns nil, or the value of the last clause evaluated.

Accepts otherwise or t.

zl:caseq test-object &body clauses

The same as zl:selectq, but does not allow otherwise or t

clauses.

zl:typecase object &body body

Selects forms to evaluate depending on the type of some object.

Returns nil, or the value of the last clause evaluated. Allows

otherwise clause.

zl:dispatch ppss word &body clauses

Selects one of its clauses for execution by comparing the value

of a form against various constants. The same as select but

the key is obtained by evaluating (ldb byte-specifier number).

Returns nil, or the value of the form evaluated.�
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Also see defselect, a special form for defining a function whose body is like a

zl:selectq.

Blocks and Exits

block and return-from are the primitive special forms for premature exit from a

piece of code. block defines a place that can be exited, and return-from transfers

control to such an exit.

block and return-from differ from catch and throw in their scoping rules. block

and return-from have lexical scope; catch and throw have dynamic scope. For in-

formation about scoping: See the section "Scoping".

Blocks and Exits Functions and Variables

block name &body body

Evaluates each form in body in sequence and normally returns

the (possibly multiple) values of the last form in body.

return-from block-name values

Exits from a named block or a construct like do or prog that

establishes an implicit block around its body. Returns nil, zero

values, or multiple values, depending on the syntax used when

invoking the function.

return &optional values

Exits from a construct like do or an unnamed prog that estab-

lishes an implicit block around its body. Returns nil, zero val-

ues, or multiple values depending on the syntax used when in-

voking the function.

compiler:*return-style-checker-on*

Controls the display of compiler messages for invalid formats

of return and return-from.

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, use the Common Lisp versions of this function. 

zl:return-list form Like return except that the block returns all of the elements

of list as multiple values. Note that the Common Lisp form

(return(values-list list)) is preferred.

See the section "Nonlocal Exits".

Transfer of Control

tagbody and go are the primitive special forms for unstructured transfer of con-

trol. tagbody defines places that can receive a transfer of control, and go trans-

fers control to such a place.
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Transfer of Control Functions

go tag Transfers control within a tagbody form, or a

construct like do or prog that uses an implicit

tagbody. tag can be a symbol or an integer.

tagbody &body forms Processes each element of the body in se-

quence, ignoring tag(s) and evaluating state-

ment(s). If a (go tag) form is evaluated, during

evaluation of a statement, tagbody transfers

control to the innermost tag that is equal to

the tag in the go form. A tag can be a symbol

or an integer. 

Iteration

Two basic iteration functions in Symbolics Common Lisp are do and prog. Another

iteration macro is documented elsewhere: See the macro loop.

Iteration Functions

do vars endtest &body body

Provides a generalized iteration facility using index variables to

control the number of iterations and an end-test to determine

when the iteration terminates. The index variable clauses are

evaluated in parallel, rather than sequentially. You can option-

ally specify a return value for do.

do* vars endtest &body body 

Like do, except that the index variable clauses are evaluated

sequentially, rather than in parallel.

dolist (var listform &optional resultform) &body forms

Performs forms once for each element in the list that is the

value of listform, with var bound to the successive elements.

Returns value of resultform, if specified.

dotimes (var countform &optional resultform) &body forms

Performs forms the number of times given by the value of

countform, with var bound to 0, 1, and so forth, on successive

iterations. Returns value of resultform, if specified.

prog (vars-and-vals) &body body 

Provides temporary variables, sequential evaluation of forms

and a "goto" facility using tags. The binding of the temporary

initialization variables is done in parallel. The do, catch, and

throw forms are preferred over prog.
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Note: The following Zetalisp functions are included to help you read old programs.

In your new programs, where possible, use the Common Lisp versions of these func-

tions.

prog* (vars-and-vals) &body body

Just like prog, except that the binding of the temporary ini-

tialization variables is done sequentially. 

zl:do-named block-name (vars) (endtest) &body body 

Works like do, but allows a return from a named outer do

form while you are within an inner do. As in do, the index

variable clauses are evaluated in parallel.

zl:do*-named block-name (vars) (endtest) &body body 

Works like zl:do-named in allowing a return from a named

outer do form while within an inner do. As in do*, the index

variable clauses are evaluated in sequence.

zl:dolist (var form) &body body

Performs body once for each element in the list that is the val-

ue of form, with var bound to the successive elements. Similar

to dolist.

zl:dotimes (var form) &body body

Performs body the number of times given by the value of form,

with var bound to 0, 1, and so on, on successive iterations.

Similar to dotimes.

zl:keyword-extract keylist keyvar keyword &optional flags &body otherwise

Obsolete. Use the &key lambda-list keyword to create func-

tions that take keyword arguments.

Nonlocal Exits

catch and throw are special forms used for nonlocal exits. catch evaluates forms;

if a throw occurs during the evaluation, catch immediately returns (possibly mul-

tiple) values specified by throw.

catch and throw differ from block and tagbody in their scoping rules. catch and

throw have dynamic scope; block and tagbody have lexical scope. For information

on scoping, see the section "Scoping".

For example:

(catch ’done

  (ask-database <pattern>

#’(lambda (x) (when (nice-p x)

(throw ’done x)))))�

See the section "Blocks and Exits". 
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Nonlocal Exit Functions

catch tag &body body

Used with throw for nonlocal exits. Evaluates tag to obtain an

object that is the "tag" of the catch. Then, unless catch en-

counters a throw, it evaluates body forms in sequence, and re-

turns the value(s) of the last form in the body.

throw tag value Used with catch for nonlocal exits. Evaluates tag to obtain an

object that is the "tag" of the throw. Evaluates value; finds the

innermost catch whose "tag" is eq to the "tag" of the throw.

Causes catch to abort the evaluation of its body forms and to

return all values that result in evaluating value.

unwind-protect protected-form &rest clean-up forms

Evaluates protected-form and when protected-form attempts to

exit out of the unwind-protect, evaluates clean-up forms. Re-

turns the value(s) of protected-form.

unwind-protect-case (&optional aborted-p-var) body-form &rest cleanup-clauses

Executes body-form; generates cleanup forms from cleanup-

clauses and executes them depending on the condition specified

by the keywords :normal, :abort, and :always.

sys:without-aborts ([identifier] reason format-args ...) body ...

Encloses code that should not be aborted. A sys:without-

aborts is wrapped around all unwind-protect cleanup han-

dlers. Intercepts abort attempts by user (not abort attempts by

program), and interacts with the user to postpone or execute

the abort attempt. Can be nullified with sys:with-aborts-

enabled.

sys:with-aborts-enabled (identifiers ...) body ...

Cancels out one or more invocations of sys:without-aborts.�

Mapping

Mapping is a type of iteration in which a function is successively applied to pieces

of a list. There are several options for the way in which the pieces of the list are

chosen and for what is done with the results.

In general, the mapping functions take two or more arguments. The first argu-

ment must be a function, and the second and subsequent arguments must be lists.

(The function map is a special case, discussed elsewhere. See the section "Se-

quences".)

For example:

(mapcar f x1 x2 ... xn)�

In this case f must be a function of n arguments. mapcar proceeds down the lists

x1, x2, ..., xn in parallel. The first argument to f comes from x1, the second from

x2, and so on. The iteration stops as soon as any of the lists is exhausted. 
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If you want to call a function of many arguments where one of the arguments suc-

cessively takes on the values of the elements of a list and the other arguments are

constant, you can use a circular list for the other arguments to mapcar. The func-

tion circular-list is useful for creating such lists.

Sometimes a do or a straightforward recursion is preferable to a mapping func-

tion; however, the mapping functions should be used wherever they naturally apply

because this increases the clarity of the code.

Often, f is a lambda-expression, rather than a symbol. For example:

(mapcar (function (lambda (x) (cons x something)))

some-list)�

The functional argument to a mapping function must be a function, acceptable to

apply  it cannot be a macro or the name of a special form.

Mapping Functions

map result-type function &rest sequences

Applies function to sequences; returns a new sequence, such

that element j of the new sequence is the result of applying

function to element j of each of the argument sequences. re-

sult-type specifies the type of the result sequence.

mapcar fcn list &rest more-lists

Applies fcn to list and to successive elements of that list. Accu-

mulates and returns the results of successive calls to fcn using

list.

mapcan fcn list &rest more-lists

Like mapcar, except that it uses nconc instead of list to accu-

mulate and return its results.

mapc fcn list &rest more-lists

Like mapcar, except that it does not return any useful value.

maplist fcn list &rest more-lists

Applies fcn to list and to successive sublists of that list rather

than to successive elements. Accumulates and returns the re-

sults of successive calls to fcn using list.

mapcon fcn list &rest more-lists

Like maplist, except that it uses nconc instead of list to accu-

mulate and return its results.

mapl fcn list &rest more-lists

Like maplist, except that it does not return any useful value.�

Note: The following Zetalisp function is included to help you read old programs. In

your new programs, use the Common Lisp equivalent of this function.
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zl:map fcn list &rest more-lists

Applies fcn to list and to successive sublists of that list rather

than to successive elements. Does not return any useful value.

The same as mapl.�

Here is a table showing the relations between the six map functions.

                              applies function to

                         |  successive  |   successive  |

                         |   sublists   |    elements   |

          ---------------+--------------+---------------+

              its own    |              |               | 

              second     |     map      |     mapc      |

             argument    |              |               |

          ---------------+--------------+---------------+

            list of the  |              |               |

Returns      function    |    maplist   |    mapcar     |

              results    |              |               |

          ---------------+--------------+---------------+

            nconc of the |              |               |

              function   |    mapcon    |    mapcan     |

              results    |              |               |

          ---------------+--------------+---------------+�

There are also functions (zl:mapatoms and zl:mapatoms-all) for mapping over all

symbols in certain packages. See the section "Package Iteration".

You can also do what the mapping functions do in a different way by using loop.

See the section "The loop Iteration Macro".

The loop Iteration Macro

The loop macro provides a programmable iteration facility.

The basic structure of a loop is:

(loop iteration-clauses

   do

   body)  ; loop alone returns nil�

The iteration-clauses control the number of times the body will be executed. When

any iteration clause finishes, the body stops being executed. do is the keyword that

introduces the body of the loop, and as such, must be placed between the iteration

clauses and the body.

The general approach is that a loop generates a single program loop, into which a

large variety of features can be incorporated. The loop consists of some initializa-

tion (prologue) code, a body that can be executed several times, and some exit (epi-
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logue) code. Variables can be declared local to the loop. The features you can in-

corporate using loop are: deciding when to end the iteration, putting user-written

code into the loop, returning a value from the construct, and iterating a variable

through various real or virtual sets of values.

The loop macro works identically in both Symbolics Common Lisp and CLOE. The

Symbolics implementation of loop is an extension of the Common Lisp specification

for this macro, as specified in Guy L. Steele’s Common Lisp: the Language. The

loop version of this macro allows its body to be a sequence of lists, whereas Com-

mon Lisp’s version of loop does not.

Note that loop forms are intended to look like stylized English rather than Lisp

code. They contain a notably low density of parentheses, and many of the keywords

are accepted in several synonymous forms to allow writing of more euphonious and

grammatical English. 

The basic discussion of loop covers:

• loop Clauses

• loop Synonyms�

The advanced discussion of loop deals with the following topics: 

• Destructuring

• The Iteration Framework

• Iteration Paths�

loop Clauses

Internally, loop constructs a prog that includes variable bindings, preiteration

(initialization) code, postiteration (exit) code, the body of the iteration, and step-

ping of variables of iteration to their next values (which happens on every itera-

tion after executing the body).

A clause consists of the keyword symbol and any Lisp forms and keywords with

which it deals. For example: 

�

(loop for x in l

    do (print x))�

contains two clauses, "for x in l" and "do (print x)". Certain parts of the clause

are described as being expressions, such as (print x) in the example above. An ex-

pression can be a single Lisp form, or a series of forms implicitly collected with

progn. An expression is terminated by the next following atom, which is taken to

be a keyword. This syntax allows only the first form in an expression to be atomic,

but makes misspelled keywords more easily detectable.

loop uses print-name equality to compare keywords so that loop forms can be

written without package prefixes; in Lisp implementations that do not have pack-

ages, eq is used for comparison.
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Bindings and iteration variable steppings can be performed either sequentially or

in parallel, which affects how the stepping of one iteration variable can depend on

the value of another. The syntax for distinguishing the two is described with the

corresponding clauses. When a set of things is "in parallel", all of the bindings

produced are performed in parallel by a single lambda binding. Subsequent bind-

ings are performed inside that binding environment.

The following groups of loop clauses are available: 

• Iteration-Driving Clauses

• loop Initialization Bindings

• Entrance and Exit

• Side Effects

• Accumulating Return Values for loop

• End Tests for loop

• Aggregated Boolean Tests for loop

• loop Conditionalization

• Miscellaneous Other Clauses for loop �

Clause Keywords

---------- ------------

Iteration-driving repeat, for, as

Initialization bindings with, nodeclare

Entrance and Exit initially, finally

Side Effects do[ing]

Accumulating Return Values collect[ing], nconc[ing]

append[ing], count[ing]

sum[ming], maximize

minimize

End Tests until, while, loop-finish 

always, never, thereis

Conditionalization when, if, unless

Miscellaneous named, return

The dictionary entry for each individual keyword covers it in detail.

Iteration-Driving Clauses

These clauses all create a variable of iteration, which is bound locally to the loop

and takes on a new value on each successive iteration. Note that if more than one
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iteration-driving clause is used in the same loop, several variables are created that

all step together through their values; when any of the iterations terminates, the

entire loop terminates. Nested iterations are not generated; for those, you need a

second loop form in the body of the loop. In order to not produce strange interac-

tions, iteration-driving clauses are required to precede any clauses that produce

"body" code: that is, all except those that produce prologue or epilogue code

(initially and finally), bindings (with), the named clause, and the iteration termi-

nation clauses (while and until).

The following kinds of iteration are possible: 

• Iteration in series and in parallel

• Joining iteration clauses with and

• Iterating with repeat

• Iterating with for and as

� Iteration in Series and in Parallel

Clauses that drive the iteration can be arranged to perform their testing and step-

ping either in series or in parallel. They are grouped in series by default, which

allows the stepping computation of one clause to use the just-computed values of

the iteration variables of previous clauses. They can be made to step "in parallel",

as is the case with the do special form, by "joining" the iteration clauses with the

keyword and. The form this typically takes is something like:

(loop ... for x = (f) and for y = init then (g x) ...)�

which sets x to (f) on every iteration, and binds y to the value of init for the first

iteration, and on every iteration thereafter sets it to (g x), where x still has the

value from the previous iteration. Thus, if the calls to f and g are not order-

dependent, this would be best written as:

(loop ... for y = init then (g x) for x = (f) ...)�

because, as a general rule, parallel stepping has more overhead than sequential

stepping. Similarly, the example:

(loop for sublist on some-list

      and for previous = ’undefined then sublist

  ...)�

which is equivalent to the do construct:

(do ((sublist some-list (cdr sublist))

     (previous ’undefined sublist))

    ((null sublist) ...)

  ...)�

in terms of stepping, would be better written as:

(loop for previous = ’undefined then sublist

      for sublist on some-list

  ...)�
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Joining Iteration-Driving Clauses with and

When iteration-driving clauses are joined with and, if the token following the and

is not a keyword that introduces an iteration-driving clause, it is assumed to be

the same as the keyword that introduced the most recent clause; thus, the above

example showing parallel stepping could have been written as:

(loop for sublist on some-list

      and previous = ’undefined then sublist

  ...)�

Here is now evaluation in iteration-driving clauses works: 

• Those expressions that are only evaluated once are evaluated in order at the be-

ginning of the form, during the variable-binding phase.

• Those expressions that are evaluated each time around the loop are evaluated in

order in the body.

Iterating with Repeat

One common and simple iteration-driving clause is repeat, which causes a speci-

fied number of iterations through the loop.

For example:

(defun ex-loop ()

  (loop repeat 4

for x from 1 to 10 

do 

    (princ x)(princ " "))) => EX-LOOP

�

(ex-loop) => 1 2 3 4 

NIL�

Iterating with for and as

All remaining iteration-driving clauses are subdispatches of the keyword for, which

is synonymous with as. In all of them, a variable of iteration is specified. Note

that, in general, if an iteration-driving clause implicitly supplies an endtest, the

value of this iteration variable as the loop is exited (that is, when the epilogue

code is run) is undefined. See the section "The Iteration Framework".

Iteration Keywords and for Clauses

Here are the iteration keywords and all the varieties of for clauses. Optional parts

are enclosed in braces. The optional argument, data-type, is reserved for data type

declarations. It is currently ignored.
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The optional by phrase specifies the size of the step by which to increment or

decrement the expression serving as the loop counter. Default step is 1.

repeat expression Causes the loop to iterate the number of times specified by

the value of expression. Expression is expected to evaluate to an

integer.

for var {data-type} from expr1 {to expr2} {by expr3} 

Iterates upward. Performs numeric iteration. var is initialized

to expr1, and on each succeeding iteration is incremented by

expr3. If the to phrase is given, the iteration terminates when

var becomes greater than expr2.

for var {data-type} from expr1 downto expr2 {by expr3} 

Iterates downward. Performs numeric iteration. var is initial-

ized to expr1, and on each succeeding iteration is decremented

by expr3. The iteration terminates when var becomes less then

expr2.

for var {data-type} from expr1 {below expr2} {by expr3} 

Iterates upward. Iteration terminates when the variable of it-

eration, expr1, is greater than or equal to some terminal value,

expr2.

for var {data-type} from expr1 {above expr2} {by expr3} 

Iterates downward. Iteration terminates when the variable of

iteration is less than or equal to some terminal value.

for var {data-type} downfrom expr1 {by expr2} 

Used to iterate downward with no limit.

for var {data-type} upfrom expr1 {by expr2} 

Used to iterate upward with no limit.

for var {data-type} in expr1 {by expr2} 

Iterates over each of the elements in the list, expr1, (its car).

for var on expr1 {by expr2} 

Iterates over successive sublists of the list, expr1, (its cdr).

for var {data-type} = expr 

On each iteration, expr is evaluated and var is set to the re-

sult.

for var {data-type} = expr1 then expr2 

var is bound to expr1 when the loop is entered, and set to ex-

pr2 (reevaluated) at all but the first iteration. 

for var {data-type} first expr1 then expr2 

Sets var to expr1 on the first iteration, and to expr2 (reevalu-

ated) on each succeeding iteration. 

for var {data-type} being expr and its path ...
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for var {data-type} being {each|the} path ...

Provide a user-definable iteration facility. path names the man-

ner in which the iteration is to be performed. The ellipsis indi-

cates where various path-dependent preposition/expression pairs

can appear. See the section "Iteration Paths for loop".�

loop Initialization Bindings

To declare local variables and constants in a loop, use the keyword with. 

For example:

�

(defun ex-loop-1 ()

  (loop for x from 0 to 4

with (one four)

with three = "three"

doing

    (princ x)(princ " ")

     (setq four x)(setq one "one")

finally (return (values  one three four)))) => EX-LOOP-1

�

(ex-loop-1)  => 0 1 2 3 4 one and three and 4�

Keywords for loop Initialization Bindings

with var {data-type} {= expr1} {and var2 { data-type} { = expr2}}... 

The with keyword can be used to establish initial bindings,

that is, variables that are local to the loop but are only set

once, rather than on each iteration. The optional argument, da-

ta-type, is currently ignored.

nodeclare variable-list 

The variables in variable-list are noted by loop as not requir-

ing local type declarations. This is for compatibility with other

implementations of loop. Symbolics Common Lisp never uses

type declarations.

Entrance and Exit in loop

To introduce initialization (prologue) code in loop use the keyword initially.�

For example:
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(loop for x from 1 to 4

      initially (princ "let’s count... ")

      doing (princ x)) => let’s count... 1234

NIL�

To introduce exit (epilogue) code in loop use the keyword finally.

For example:

(loop for x from 1 to 4

      finally (princ "let’s count... ")

      doing (princ x)) => 1234let’s count... 

NIL�

Entrance and Exit Keywords for loop

initially expression The initially keyword introduces preiteration or entrance code.

The expression following initially is evaluated only once, after

all initial bindings are made, but before the first iteration. 

finally expression The finally keyword introduces postiteration or exit code. The

form following finally is evaluated only once, after the loop

has terminated for some reason, but before the loop returns. It

is not run when the loop is exited with the return special form

or the return loop keyword.

Side Effects in loop

The word do is the keyword which introduces the body of the loop, and as such

must be placed between the iteration clauses and the body. 

For example:

(loop for x from 1 to 4 

      do

  (princ x)) => 1234

NIL�

do[ing] expression expression is evaluated each time through the loop. do and

doing are equivalent keywords.

Accumulating Return Values for loop

The following clauses accumulate a return value for the iteration in some manner.

The general form is:

type-of-collection expr {data-type} {into var}�

where type-of-collection is a loop keyword, and expr is the thing being "accumulat-

ed" somehow. (The optional argument, data-type, is currently ignored.) If no into is
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specified, then the accumulation is returned when the loop terminates. If there is

an into, then when the epilogue of the loop is reached, var, (a variable automati-

cally bound locally in the loop) has been set to the accumulated result and can

be used by the epilogue code. In this way, a user can accumulate and somehow

pass back multiple values from a single loop, or use them during the loop. It is

safe to reference these variables during the loop, but they should not be modified

until the epilogue code of the loop is reached.

For example:

(loop for x in list

      collect (foo x) into foo-list

      collect (bar x) into bar-list

      collect (baz x) into baz-list

      finally (return (list foo-list bar-list baz-list)))�

has the same effect as:

(do ((g0001 list (cdr g0001))

     (x) (foo-list) (bar-list) (baz-list))

    ((null g0001)

     (list (nreverse foo-list)

   (nreverse bar-list)

   (nreverse baz-list)))

  (setq x (car g0001))

  (setq foo-list (cons (foo x) foo-list))

  (setq bar-list (cons (bar x) bar-list))

  (setq baz-list (cons (baz x) baz-list)))�

except that loop arranges to form the lists in the correct order, obviating the

nreverses at the end, and allowing the lists to be examined during the computa-

tion.

Not only can there be multiple accumulations in a loop, but a single accumulation

can come from multiple places within the same loop form. Obviously, the types of

the collection must be compatible. collect, nconc, and append can all be mixed, as

can sum and count, and maximize and minimize. 

For example:

(loop for x in ’(a b c) for y in ’((1 2) (3 4) (5 6))

      collect x

      append y)

  => (a 1 2 b 3 4 c 5 6)�

The following computes the average of the entries in the list list-of-frobs:

(loop for x in list-of-frobs

      count t into count-var

      sum x into sum-var

      finally (return (quotient sum-var count-var)))�

Keywords for Accumulating Return Values for loop
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Where present in a keyword name, the square brackets indicate an equivalent form

of the keyword. For example, you can use collect or collecting, nconc or

nconcing, and so on.

collect[ing] expr {into result} Causes the values of expr on each iteration to

be collected into a list, result.

nconc[ing] expr Causes the values of expr on each iteration to

be concatenated together.

append[ing] expr {into var} Causes the values of expr on each iteration to

be appended together.

count[ing] expr {into var} {data-type} 

If expr evaluates non-nil, a counter is incre-

mented. 

sum[ming] expr {data-type} {into var} 

Evaluates expr on each iteration, and accumu-

lates the sum of all the values.

maximize expr {data-type} {into var} 

Computes the maximum of expr over all itera-

tions.

minimize expr {data-type} {into var} 

Computes the minimum of expr over all itera-

tions.

End Tests for loop

The following clauses can be used to provide additional control over when the iter-

ation gets terminated, possibly causing exit code (due to finally) to be performed

and possibly returning a value (for example, from collect).

until might be needed, for example, to step through a strange data structure, as

in:

(loop until (top-of-concept-tree? concept)

      for concept = expr then (superior-concept concept)

  ...)�

Note that the placement of the until clause before the for clause is valid in this

case because of the definition of this particular variant of for, which binds

concept to its first value rather than setting it from inside the loop.

loop-finish can also be of use in terminating the iteration.

End Test Keywords for loop

while expr If expr evaluates to nil, the loop is exited, performing exit code

(if any), and returning any accumulated value.
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until expr If expr evaluates to t, the loop is exited, performing exit code

(if any), and returning any accumulated value.

loop-finish Causes the iteration to terminate "normally"; epilogue code (if

any) is run.�

Aggregated Boolean Tests for loop

All of these clauses perform some test, and can immediately terminate the itera-

tion depending on the result of that test.

For example:

(defun example-using-always (my-list)

  (loop for x in my-list

always (numberp x)

finally (return "made it"))) => EXAMPLE-USING-ALWAYS

�

(example-using-always ’(1 2 3)) => "made it"

(example-using-always ’(a b c)) => NIL �

always expr Causes the loop to return t if expr always evaluates to some-

thing other than nil If expr evaluates to nil, the loop immedi-

ately returns nil, without running the epilogue code.

never expr Causes the loop to return t if expr never evaluates to some-

thing other than nil.

thereis expr If expr evaluates to something other than nil, the iteration is

terminated and that value is returned, without running the

epilogue code. If the loop terminates before expr is ever evalu-

ated, the epilogue code is run and the loop returns nil.

loop Conditionalization

The keywords when and unless can be used to "conditionalize" the following

clause. Conditionalization clauses can precede any of the side-effecting or value-

producing clauses, such as do, collect, always, or return.

Multiple conditionalization clauses can appear in sequence. If one test fails, then

any following tests in the immediate sequence, and the clause being conditional-

ized, are skipped.

The format of a conditionalized clause is typically something like:

when expr1 keyword expr2�

For example:

keyword can be a keyword introducing a side-effecting or value-producing clause.
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If expr2 is the keyword it, a variable is generated to hold the value of expr1 and

that variable is substituted for expr2. See the section "Conditionalizing with the

Keyword it".

Conditionalizing Multiple Clauses with and 

Multiple clauses can be conditionalized under the same test by joining them with

and, as in:

(loop for i from a to b

      when (zerop (remainder i 3))

collect i and do (print i))�

which returns a list of all multiples of 3 from a to b (inclusive) and prints them

as they are being collected.

Conditionalizing with if-then-else

If-then-else conditionals can be written using the else keyword, as in:

(loop for i from 1 to 9

      if (oddp i)

        collect i into odd-numbers

      else collect i into even-numbers

      finally (return even-numbers)) => (2 4 6 8)�

Multiple clauses can appear in an else-phrase, using and to join them in the same

way as above.

Nesting Conditionals

Conditionals can be nested. For example:

(loop for i from a to b

      when (zerop (remainder i 3))

do (print i)

and when (zerop (remainder i 2))

      collect i)�

returns a list of all multiples of 6 from a to b, and prints all multiples of 3 from

a to b.

When else is used with nested conditionals, the "dangling else" ambiguity is re-

solved by matching the else with the innermost when not already matched with an

else. Here is a complicated example.
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(loop for x in l

      when (atom x)

when (memq x *distinguished-symbols*)

  do (process1 x)

      else do (process2 x)

      else when (memq (car x) *special-prefixes*)

  collect (process3 (car x) (cdr x))

  and do (memorize x)

      else do (process4 x))�

Conditionalizing the return Clause

The return clause is useful with the conditionalization clauses. It causes an explic-

it return of its "argument" as the value of the iteration, bypassing any epilogue

code. That is, the two clauses below are equivalent:

when expr1 return expr2�

when expr1 do (return expr2)�

Conditionalizing an Aggregated Boolean Value Clause

Conditionalization of one of the "aggregated boolean value" clauses simply causes

the test that would cause iteration to terminate early from being performed unless

the condition succeeds. For example:

(loop for x in l

      when (significant-p x)

do (print x) (princ "is significant.")

and thereis (extra-special-significant-p x))�

In this case, the extra-special-significant-p check does not happen unless the

significant-p check succeeds.

Conditionalizing with the Keyword it

In the typical format of a conditionalized clause such as the one below, expr2 can

be the keyword it.

when expr1 keyword expr2�

If that is the case, a variable is generated to hold the value of expr1, and that

variable gets substituted for expr2. Thus, the two clauses below are equivalent:

when expr return it�

thereis expr�

Similarly you can collect all non-null values in an iteration by saying:

when expression collect it�
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If multiple clauses are joined with and, the it keyword can only be used in the

first. If multiple whens, unlesses, and/or ifs occur in sequence, the value substi-

tuted for it is that of the last test performed. The it keyword is not recognized in

an else phrase.

loop Conditionalizing Keywords

when expr If expr evaluates to nil, the following

clause is skipped, otherwise not.

If expr {else expr else expr ...} If expr evaluates to nil, the following

clause is skipped, otherwise not.

unless expr {else expr else expr ...} If expr evaluates to t, the following

clause is skipped, otherwise not. This is

equivalent to (when (not expr)).

Miscellaneous Other Clauses for loop

named name Gives the prog that loop generates a name of

name, so that you can use the return-from

form to return explicitly out of that particular

loop.

return expression Immediately returns the value of expression as

the value of the loop, skipping the epilogue

code.�

See the section "Conditionalizing with the Keyword it".

Multiple clauses can be conditionalized under the same test by joining them with

and, as in:

(loop for i from a to b

      when (zerop (remainder i 3))

collect i and do (print i))�

which returns a list of all multiples of 3 from a to b (inclusive) and prints them

as they are being collected. 

� If-then-else conditionals can be written using the else keyword, as in:

(loop for i from 1 to 9

      if (oddp i)

        collect i into odd-numbers

      else collect i into even-numbers

      finally (return even-numbers)) => (2 4 6 8)�

Multiple clauses can appear in an else-phrase, using and to join them in the same

way as above. 
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� Conditionals can be nested. For example:

(loop for i from a to b

      when (zerop (remainder i 3))

do (print i)

and when (zerop (remainder i 2))

      collect i)�

returns a list of all multiples of 6 from a to b, and prints all multiples of 3 from

a to b.

When else is used with nested conditionals, the "dangling else" ambiguity is re-

solved by matching the else with the innermost when not already matched with an

else. Here is a complicated example.

(loop for x in l

      when (atom x)

when (memq x *distinguished-symbols*)

  do (process1 x)

      else do (process2 x)

      else when (memq (car x) *special-prefixes*)

  collect (process3 (car x) (cdr x))

  and do (memorize x)

      else do (process4 x))�

� The return clause is useful with the conditionalization clauses. It causes an explic-

it return of its "argument" as the value of the iteration, bypassing any epilogue

code. That is, the two clauses below are equivalent:

when expr1 return expr2�

when expr1 do (return expr2)�

� Conditionalization of one of the "aggregated boolean value" clauses simply causes

the test that would cause iteration to terminate early from being performed unless

the condition succeeds. For example:

(loop for x in l

      when (significant-p x)

do (print x) (princ "is significant.")

and thereis (extra-special-significant-p x))�

In this case, the extra-special-significant-p check does not happen unless the

significant-p check succeeds. 

� In the typical format of a conditionalized clause such as the one below, expr2 can

be the keyword it.

when expr1 keyword expr2�

If that is the case, a variable is generated to hold the value of expr1, and that

variable gets substituted for expr2. Thus, the two clauses below are equivalent:

when expr return it�

thereis expr�

Similarly you can collect all non-null values in an iteration by saying:
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when expression collect it�

If multiple clauses are joined with and, the it keyword can only be used in the

first. If multiple whens, unlesses, and/or ifs occur in sequence, the value substi-

tuted for it is that of the last test performed. The it keyword is not recognized in

an else phrase. 

loop Synonyms

The define-loop-macro macro can be used to make its argument, keyword, a loop

keyword such as for, into a Lisp macro that can introduce a loop form.

This facility exists primarily for diehard users of a predecessor of loop. We do not

recommend its unconstrained use, as it tends to decrease the portability of your

code.

Destructuring

Destructuring provides you with the ability to simultaneously assign or bind multi-

ple variables to components of some data structure. Typically this is used with list

structure. For example:

(loop with (foo . bar) = ’(a b c) ...)�

This form has the effect of binding foo to a and bar to (b c).

Here’s how this might work:

�

(defun ex-destructuring ()

  (loop for x from 1 to 4 

with (one . rest) = ’(1 2 3)

do

    (princ x)(princ " ")

finally (print one)(print rest)))  => EX-DESTRUCTURING

�

(ex-destructuring) => 1 2 3 4 

1 

(2 3) 

NIL�

Consider the function map-over-properties, defined in the next example:

(defun map-over-properties (fn symbol)

  (loop for (propname propval) on (plist symbol) by ’cddr

do (funcall fn symbol propname propval)))�

map-over-properties maps fn over the properties on symbol, giving it arguments

of the symbol, the property name, and the value of that property.

The Iteration Framework
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Understanding how loop constructs iterations is necessary if you are writing your

own iteration paths, and can be useful in clarifying what loop does with its input.

loop, for the purpose of stepping, has four possible parts. Each iteration-driving

clause has some or all of these four parts, which are executed in this order: 

pre-step-endtest

This is an endtest that determines if it is safe to step to the next value of

the iteration variable.

steps Variables that get stepped. This is internally manipulated as a list of the

form (var1 val1 var2 val2 ...); all of those variables are stepped in parallel,

meaning that all of the vals are evaluated before any of the vars are set.

post-step-endtest

Sometimes you cannot see if you are done until you step to the next value;

that is, the endtest is a function of the stepped-to value.

pseudo-steps

Other things that need to be stepped. This is typically used for internal

variables that are more conveniently stepped here, or to set up iteration

variables that are functions of some internal variable(s) that are actually

driving the iteration. This is a list, that of steps, but the variables in it do

not get stepped in parallel.�

The above alone is actually insufficient to describe just about all iteration-driving

clauses that loop handles. What is missing is that in most cases, the stepping and

testing for the first time through the loop is different from that of all other times.

So, what loop deals with is actually two versions of the sequence described above:

one for the first iteration, and one for the rest. The first can be thought of as de-

scribing code that immediately precedes the loop in the prog, and the second as

following the body code  in fact, loop does just this, but severely perturbs it in

order to reduce code duplication. Two lists of forms are constructed in parallel:

One provides first-iteration endtests and steps for the first iteration, the other, the

endtests and steps for the remaining iterations. These lists contain dummy entries

so that identical expressions appear in the same position in both. When loop is

done parsing all of the clauses, these lists are merged back together, such that

corresponding identical expressions in both lists are not duplicated unless they are

simple and it is worth doing.

Thus, you might get some duplicated code if you have multiple iterations. Alterna-

tively, loop might decide to use and test a flag variable that indicates whether one

iteration has been performed. In general, sequential iterations have less overhead

than parallel iterations, both from the inherent overhead of stepping multiple vari-

ables in parallel, and from the standpoint of potential code duplication.

Note also that, although the user iteration variables are guaranteed to be stepped

in parallel, the endtest for any particular iteration can be placed either before or

after the stepping. A notable case of this is:
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(loop for i from 1 to 3 and dummy = (print ’foo)

      collect i) => 

FOO 

FOO 

FOO 

FOO (1 2 3)

�

which prints foo four times. Certain other constructs, such as (for var on), might

or might not do this, depending on the particular construction.

This problem also means that it might not be safe to examine an iteration variable

in the epilogue of the loop form. As a rule, if an iteration-driving clause implicitly

supplies an endtest, you cannot know the state of the iteration variable when the

loop terminates. Although you can guess on the basis of whether the iteration vari-

able itself holds the data upon which the endtest is based, that guess might be

wrong. Thus:

(loop for subl on expr

  ...

      finally (f subl))�

is incorrect, but:

(loop as frob = expr while (g frob)

 ...

      finally (f frob))�

is safe because the endtest is explicitly dissociated from the stepping.

Iteration Paths for loop

Iteration paths provide a mechanism for the user to extend iteration-driving claus-

es. The interface is constrained so that the definition of a path need not depend on

much of the internals of loop. The typical form of an iteration path is

for var {data-type} being {each|the} path-name 

        {preposition1 expr1}...�

path-name is an atomic symbol defined as a loop path function. The usage and de-

faulting of data-type is up to the path function. Any number of preposi-

tion/expression pairs can be present; the prepositions allowable for any particular

path are defined by that path. For example:

(loop for x being the array-elements of my-array from 1 to 10

  ...)�

To enhance readability, path-name arguments are usually defined in both the sin-

gular and plural forms; this particular example could have been written as:

(loop for x being each array-element of my-array from 1 to 10

  ...)�

Another format, which is not so generally applicable, is:
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for var {data-type} being expr0 and its path-name 

        {preposition1 expr1}...�

In this format, var takes on the value of expr0 the first time through the loop.

Support for this format is usually limited to paths that step through some data

structure, such as the superiors of something. Thus, we can hypothesize the cdrs

path, such that:

(loop for x being the cdr of ’(a b c . d) collect x)

�

but:

(loop for x being ’(a b c . d) and its cdrs collect x)

 => ((a b c . d) (b c . d) (c . d) d)�

each can be substituted for the its keyword, as can his, her, or their, although this

is not common practice, and we do not recommend it. See the section "Predefined

Iteration Paths". This section shows some sample uses of iteration paths.

Very often, iteration paths step internal variables that you do not specify, such as

an index into some data structure. Although in most cases you may not wish to be

concerned with such low-level matters, it is occasionally useful to understand such

things. loop provides an additional syntax with which you can provide a variable

name to be used as an "internal" variable by an iteration path, with the using

"prepositional phrase".

The using phrase is placed with the other phrases associated with the path, and

contains any number of keyword/variable-name pairs:

(loop for x being the array-elements of a using (index i) (sequence s)

      ...)�

This says that the variable i should be used to hold the index of the array being

stepped through, and the variable s should be bound to the array. The particular

keywords that can be used are defined by the iteration path; the index and

sequence keywords are recognized by all loop sequence paths. See the section "Se-

quence Iteration". Note that any individual using phrase applies to only one path;

it is parsed along with the "prepositional phrases". It is an error if the path does

not call for a variable using that keyword.

Examples:

�

(setq a (make-array 4)) => #(NIL NIL NIL NIL)

(loop for x being the array-elements of a using (index i) (sequence s)

      doing

  (princ x) (princ " ") (princ i)(princ " ")

      finally (print s)) => NIL 0 NIL 1 NIL 2 NIL 3 

#(NIL NIL NIL NIL) 

NIL�

By special dispensation, if a path-name is not recognized, then the default-loop-

path path is invoked upon a syntactic transformation of the original input. Essen-

tially, the loop fragment:
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for var being frob�

is taken as if it were:

for var being default-loop-path in frob�

and:

for var being expr and its frob ...�

is taken as if it were:

for var being expr and its default-loop-path in frob�

Thus, this undefined pathname hook only works if the default-loop-path path is

defined. Obviously, the use of this hook is competitive, since only one such hook

can be in use, and the potential for syntactic ambiguity exists if frob is the name

of a defined iteration path. This feature is not for casual use; it is intended for

use by large systems that wish to use a special syntax for some feature they pro-

vide.

Predefined Iteration Paths

loop comes with four predefined iteration path functions; one implements a

mapatoms-like iteration path facility, and another is used for defining iteration

paths for stepping through sequences.

The interned-symbols Path

The interned-symbols iteration path is like a mapatoms for loop.

(loop for sym being interned-symbols ...)�

This iterates over all of the symbols in the current package and its superiors. This

is the same set of symbols that mapatoms iterates over, although not necessarily

in the same order. The particular package to look in can be specified as in:

(loop for sym being the interned-symbols in package ...)�

This is like giving a second argument to mapatoms.

In Lisp implementations such as Symbolics Common Lisp with some sort of hierar-

chical package structure, you can restrict the iteration to be over just the package

specified and not its superiors, by using the local-interned-symbols path:

(loop for sym being the local-interned-symbols  {in package}

  ...)�

Example:
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(defun my-apropos (sub-string &optional (pkg package))

  (loop for x being the interned-symbols in pkg

when (string-search sub-string x)

  when (or (boundp x) (fboundp x) (si:plist x))

    do (print x)))  ; try writing print-interesting-info

 => MY-APROPOS

(my-apropos ’car ’cl-user)  => 

CAR 

MAPCAR 

NIL

�

A package specified with the in preposition can be anything acceptable to the find-

package function. The code generated by this path contains calls to internal loop

functions, with the effect that the code is unaffected by changes to the implemen-

tation of packages.

Sequence Iteration

One very common form of iteration is over the elements of some object that is ac-

cessible by means of an integer index. loop defines an iteration path function for

doing this in a general way, and provides a simple interface to allow you to define

iteration paths for various kinds of indexable data.

The Symbolics Common Lisp implementation of loop utilizes the Symbolics Com-

mon Lisp array manipulation primitives to define both array-element and array-

elements as iteration paths:

(define-loop-sequence-path (array-element array-elements)

    aref array-active-length)�

Then, the following loop clause steps var over the elements of array, starting from

0:

for var being the array-elements of array�

The sequence path function also accepts in as a synonym for of.

The range and stepping of the iteration can be specified with the use of all the

same keywords accepted by the loop arithmetic stepper (for var from ...); they are

by, to, downto, from, downfrom, below, and above, and are interpreted in the

same manner. Thus the following form steps var over all of the odd elements of

array:

(loop for var being the array-elements of array

  from 1 by 2

  ...)�

And the following form steps in "reverse" order:

(loop for var being the array-elements of array

  downto 0

  ...)�
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The vector-elements iteration path can be defined in NIL (which it is) as follows:

(define-loop-sequence-path (vector-elements vector-element)

   vref vector-length notype notype)�

You can then do such things as:

(defun cons-a-lot (item &rest other-items)

  (and other-items

       (loop for x being the vector-elements of other-items

     collect (cons item x))))�

All such sequence iteration paths allow you to specify the variable to be used as

the index variable, by means of the index keyword with the using prepositional

phrase. You can also use the sequence keyword with the using prepositional

phrase to specify the variable to be bound to the sequence.

See the section "Iteration Paths for loop". 

Sequence Iteration Macro

define-loop-sequence-path path-name-or-names fetchfun sizefun &optional sequence-

type element-type 

Defines an iteration over the elements of some object that is

accessible by means of an integer index.�

loop Iteration Over Hash Tables or Heaps

loop has iteration paths that support iterating over each entry in a hash table or a

heap.

(loop for x being the hash-elements of new-coms ...)

(loop for x being the hash-elements of new-coms with-key k ...)

�

(loop for x being the heap-elements of priority-queue ...)

(loop for x being the heap-elements of priority-queue with-key k ...)�

This allows x to take on the values of successive entries of hash tables or heaps.

The body of the loop runs once for each entry of the hash table or heap. For

heaps, x could have the same value more than once, since the key is not necessari-

ly unique. When looping over hash tables or heaps, the ordering of the elements is

undefined.

The with-key phrase is optional. It provides for the variable k to have the hash or

heap key for the particular entry value x that you are examining.

The heap-elements loop iteration path returns the items in random order and

does not provide for locking the heap.

loop comes with two predefined iteration path functions: the interned-symbols

path and the array-elements path.
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The following loop:

(loop for sym being interned-symbols ...)�

iterates over all of the symbols in the current package and its superiors. The par-

ticular package to look in can be specified as in:

(loop for sym being the interned-symbols in package ...)�

Also, you can restrict the iteration to be over just the package specified and not

its superiors, by using the local-interned-symbols path:

(loop for sym being the local-interned-symbols  {in package}

  ...)�

A package specified with the in preposition can be anything acceptable to the find-

package function. The code generated by this path contains calls to internal

zl:loop functions, with the effect that it is transparent to changes to the imple-

mentation of packages. 

One very common form of iteration is that over the elements of some object that

is accessible by means of an integer index. zl:loop defines an iteration path func-

tion for doing this in a general way, and provides a simple interface to allow users

to define iteration paths for various kinds of "indexable" data.

(define-loop-sequence-path (array-element array-elements)

    aref array-active-length)�

Then, the loop clause:

for var being the array-elements of array�

steps var over the elements of array, starting from 0. The sequence path function

also accepts in as a synonym for of.

The range and stepping of the iteration can be specified with the use of all the

same keywords that are accepted by the zl:loop arithmetic stepper (for var from

...); they are by, to, downto, from, downfrom, below, and above, and are inter-

preted in the same manner. Thus:

(loop for var being the array-elements of array

  from 1 by 2

  ...)�

steps var over all of the odd elements of array, and:

(loop for var being the array-elements of array

  downto 0

  ...)�

steps in "reverse" order.

(define-loop-sequence-path (vector-elements vector-element)

   vref vector-length notype notype)�

is how the vector-elements iteration path can be defined in NIL (which it is). 

Defining Iteration Paths
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A loop iteration clause (for example, a for or as clause) produces, in addition to

the code that defines the iteration, variables that must be bound, and preiteration

(prologue) code.( See the section "The Iteration Framework".) This breakdown al-

lows a user interface to loop that does not have to depend on or know about the

internals of loop. To complete this separation, the iteration path mechanism parses

the clause before giving it to the user function that returns those items.

A function to generate code for a path can be declared to loop with the define-

loop-path function:

The handler is the path-function for define-loop-path. It is called with the follow-

ing arguments: 

path-name The name of the path that caused the path function to be in-

voked.

variable The "iteration variable".

data-type The data type supplied with the iteration variable, or nil if

none was supplied.

prepositional-phrases

A list with entries of the form (preposition expression), in the

order in which they were collected. This can also include some

supplied implicitly (for example, an of phrase when the itera-

tion is inclusive, and an in phrase for the default-loop-path

path); the ordering shows the order of evaluation that should

be followed for the expressions.

inclusive? Should be t if variable should have the starting point of the

path as its value on the first iteration (by virtue of being spec-

ified with syntax like (for var being expr and its pathname),

nil otherwise. When t, expr appears in prepositional-phrases

with the of preposition; for example, (for x being foo and its

cdrs) gets prepositional-phrases of ((of foo)).

allowed-prepositions The list of allowable prepositions declared for the pathname

that caused the path function to be invoked. It and data can be

used by the path function such to allow a single function to

handle similar paths.

data The list of "data" declared for the pathname that caused the

path function to be invoked. It might, for instance, contain a

canonicalized pathname, or a set of functions or flags to aid

the path function in determining what to do. In this way, the

same path function might be able to handle different paths.

The handler should return a list of either six or ten elements:

variable-bindings A list of variables that need to be bound. The entries in it can be

of the form variable, (variable expression), or (variable expression data-type).

Note that it is the responsibility of the handler to make sure the iteration

variable gets bound. All of these variables are bound in parallel; if initial-
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ization of one depends on others, it should be done with a setq in the pro-

logue-forms. Returning only the variable without any initialization expres-

sion is not allowed if the variable is a destructuring pattern.

prologue-forms

A list of forms that should be included in the loop prologue.

the four items of the iteration specification

The four items: pre-step-endtest, steps, post-step-endtest, and pseudo-steps. See

the section "The Iteration Framework".

another four items of iteration specification

If these four items are given, they apply to the first iteration, and the pre-

vious four apply to all succeeding iterations; otherwise, the previous four

apply to all iterations.

The next three routines are used by loop to compare keywords for equality. In all

cases, a token can be any Lisp object, but a keyword is expected to be an atomic

symbol. In certain implementations these functions might be implemented as

macros.

si:loop-tequal token keyword

The loop token comparison function.

si:loop-tmember token keyword-list

The member variant of si:loop-tequal.

si:loop-tassoc token keyword-alist

The assoc variant of si:loop-tequal.

si:loop-named-variable keyword 

Used by an iteration path function to make an internal vari-

able accessible to the user; use instead of gensym. Should only

be called from within an iteration path function.

define-loop-path pathname-or-names path-function list-of-allowable-prepositions da-

tum-1 datum-2 ...

This defines path-function to be the handler for the path(s)

pathname-or-names, which can be either a symbol or a list of

symbols. The arguments datum-1, datum-2, and so on, are op-

tional.�

A Sample Path Definition

Here is a sample function that defines the string-characters iteration path. This

path steps a variable through all of the characters of a string. It accepts the for-

mat:

(loop for var being the string-characters of str ...)�

The function is defined to handle the path by:

(define-loop-path string-characters string-chars-path

  (of)) => NIL�
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Here is the function:

(defun string-chars-path (path-name variable data-type

  prep-phrases inclusive?

  allowed-prepositions data

  &aux (bindings nil)

       (prologue nil)

       (string-var (gensym))

       (index-var (gensym))

       (size-var (gensym)))

�

   allowed-prepositions data ; unused variables

   ; To iterate over the characters of a string, we need

   ; to save the string, save the size of the string,

   ; step an index variable through that range, setting

   ; the user’s variable to the character at that index.

   ; Default the data-type of the user’s variable:

   (cond ((null data-type) (setq data-type ’character)))

   ; We support exactly one "preposition", which is

   ; required, so this check suffices:

   (cond ((null prep-phrases)

  (error  "OF missing in ~S iteration path of ~S"

  path-name variable)))

�

   ; We do not support "inclusive" iteration:

   (cond ((not (null inclusive?))

  (zl:ferror nil

    "Inclusive stepping not supported in ~S path ~

     of ~S (prep phrases = ~:S)"

    path-name variable prep-phrases)))

�

   ; Set up the bindings

   (setq bindings (list (list variable nil data-type)

(list string-var (cadar prep-phrases))

(list index-var 0 ’fixnum)

(list size-var 0 ’fixnum)))

�

   ; Now set the size variable

   (setq prologue (list ‘(setq ,size-var (string-length

    ,string-var))))
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�

   ; and return the appropriate items, explained below.

   (list bindings

 prologue

 ‘(= ,index-var ,size-var)

 nil 

 nil   

 (list variable ‘(aref ,string-var ,index-var)

       index-var ‘(1+ ,index-var)))) => STRING-CHARS-PATH

�

The first element of the returned list is the bindings. The second is a list of forms

to be placed in the prologue. The remaining elements specify how the iteration is

to be performed. This example is a particularly simple case, for two reasons: The

actual "variable of iteration", index-var, is purely internal (being gensymmed), and

the stepping of it (1+) is such that it can be performed safely without an endtest.

Thus index-var can be stepped immediately after the setting of the user’s variable,

causing the iteration specification for the first iteration to be identical to the iter-

ation specification for all remaining iterations. This is advantageous from the

standpoint of the optimizations loop is able to perform, although it is frequently

not possible due to the semantics of the iteration (for example, for var first expr1

then expr2) or to subtleties of the stepping. It is safe for this path to step the

user’s variable in the pseudo-steps (the fourth item of an iteration specification)

rather than the "real" steps (the second), because the step value can have no de-

pendencies on any other (user) iteration variables. Using the pseudo-steps general-

ly results in some efficiency gains.

If you wanted the index variable in the above definition to be user-accessible

through the using phrase feature with the index keyword, the function would need

to be changed in two ways. First, index-var should be bound to (si:loop-named-

variable ’index) instead of (gensym). Second, the efficiency hack of stepping the

index variable ahead of the iteration variable must not be done. This is effected by

changing the last form to be:

(list bindings prologue

      nil

      (list index-var ‘(1+ ,index-var))

      ‘(= ,index-var ,size-var)

      (list variable ‘(char-n ,string-var ,index-var))

      nil

      nil

      ‘(= ,index-var ,size-var)

      (list variable ‘(char-n ,string-var ,index-var)))�

Note that although the second ‘(= ,index-var ,size-var) could have been placed

earlier (where the second nil is), it is best for it to match up with the equivalent

test in the first iteration specification grouping.

Example:
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�

(loop for x being the string-characters of "ABCDEFG"

      doing

  (print (ascii-code x))) => 

65 

66 

67 

68 

69 

70 

71 

NIL

�

(loop for x being the string-characters "abc"

      doing 

  (print x))

 => Error: OF missing in STRING-CHARACTERS iteration path of X

�

Using future-common-lisp:loop

What is future-common-lisp:loop?

The macro future-common-lisp:loop performs iteration by executing a series of

forms one or more times. Loop keywords are symbols recognized by future-

common-lisp:loop. The provide such capabilites as control of direction of iteration,

accumulation of values inside the loop body, and evaluation of expressions that pre-

cede or follow the loop body.

For future-common-lisp:loop without clauses, each form is evaluated in turn from

left to right. When the last form has been evaluated, then the first form is evalu-

ated again, and so on, in a never-ending cycle. future-common-lisp:loop establish-

es an implicit block named nil. The execution of future-common-lisp:loop can be

terminated explicitly, by using return, throw or return-from, for example.

How future-common-lisp:loop Works

Expansion of the future-common-lisp:loop macro produces an implicit block

named nil unless named is supplied. Thus, return and return-from can be used to

return values from future-common-lisp:loop or to exit future-common-lisp:loop.

Within the executable parts of loop clauses and around the entire future-common-

lisp:loop form, variables can be bound by using regular lisp mechanisms, such as

let.

When Lisp encounters a future-common-lisp:loop form, it invokes the loop facili-

ty, which expands the loop expression into simpler, less abstract code that imple-

ments the loop. The loop facility defines clauses that are introduced by loop key-

words. The loop clauses contain forms and loop keywords.
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Loop keywords are not true keywords; they are ordinary symbols, recognized by

print name, that are meaningful only to the future-common-lisp:loop facility. Be-

cause loop keywords are recognized by their names, they may be in any package. If

no loop keywords are supplied, the loop facility repeatedly executes the loop body.

The future-common-lisp:loop macro translates the given form into code and re-

turns the expanded form. The expanded form is one or more lambda expressions

for the local binding of loop variables and a block and a tagbody that express a

looping control structure. The variables established in future-common-lisp:loop

are bound as if by let or lambda. The assignment of the initial values is always

calculated in the order specified by the user. (A variable is sometimes bound to a

meaningless value of the correct type, and then later in the prologue it is set to

the true initial value by using setq.)

After the form is expanded, it consists of three basic parts in the tagbody:

prologue

The loop prologue contains forms that are executed before iteration be-

gins, such as any automatic variable initializations prescribed by the

variable clauses, along with any initially clauses in the order they ap-

pear in the source.

body

The loop body contains those forms that are executed during iteration,

including application-specific calculations, termination tests, and variable

stepping. 

epilogue

The loop epilogue contains forms that are executed after iteration termi-

nates, such as finally clauses, if any, along with any implicit return val-

ue from an accumulation clause or an end-test clause.

Some clauses from the source form contribute code only to the loop prologue; these

clauses must come before other clauses that are in the main body of the future-

common-lisp:loop form. Others contribute code only to the loop epilogue. All other

clauses contribute to the final translated form in the same order given in the orig-

inal source form of the future-common-lisp:loop. 

Syntax of future-common-lisp:loop

Notational Conventions and Syntax for future-common-lisp:loop�

The syntax for loop constructs is represented as follows: 

• Loop keyword names are in boldface.

• Symbols are enclosed by braces { }. Braces followed by an asterix (*) indicate

that the contents enclosed by the braces can appear any number of times or not
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at all.

{z}* zero or one occurrences of z�

A plus sign (+) indicates that the contents enclosed by the braces must appear

at least once.

{z}+ one or more occurrences of z�

• Brackets [ ] indicate that the contents enclosed by the brackets is optional and

can appear only once.

[z] zero or more occurrences of z�

• Elements separated by a vertical bar | indicate that either of the elements can

appear, but not both.�

{for | as} var [type-spec] [{from | downfrom | upfrom} form1]

 [{to | downto | upto | below | above} form2]

 [by form3]�

An overview of loop syntax is provided in the following paragraphs. More detailed

syntax descriptions of individual clauses are provided in the section "Constructs in

future-common-lisp:loop ". Syntax for future-common-lisp:loop with keyed claus-

es:

future-common-lisp:loop [named name] [variables]* [main]

variables::= with | initial-final | for | as

initial-final::= initially | finally

main::= unconditional | accumulation | conditional | end-test | initial-final

unconditional::= do | doing | return

accumulation::= collect | collecting | append | appending 

| nconc | nconcing | count | counting | sum | summing

| maximize | maximizing | minimize | minimizing

conditional::= when | if | unless

end-test::= while | until | always | never | thereis | repeat�

Syntax for future-common-lisp:loop without clauses:

future-common-lisp:loop [tag | form}*

�

Syntax for future-common-lisp:loop-finish:
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(future-common-lisp:loop-finish)�

Parsing future-common-lisp:loop Clauses

The syntactic parts of the future-common-lisp:loop construct are called clauses.

The parsing of keywords determines the scope of clause. The following example

shows a future-common-lisp:loop construct with six clauses:

 

�

 (loop for i from 1 to (compute-top-value)       ; first clause

       while (not (unacceptable i))              ; second clause

       collect (square i)                        ; third clause

       do (format t "Working on ~D now" i)       ; fourth clause

       when (evenp i)                            ; fifth clause

         do (format t "~D is an even number" i)

       finally (format t "About to exit!"))      ; sixth clause�

Each loop keyword introduces either a compound or a simple loop clause that can

consist of a loop keyword followed by a single form. The number of forms in a

clause is determined by the loop keyword that begins the clause and by the auxil-

iary keywords in the clause. The keywords do, initially, and finally are the only

loop keywords that can take any number of forms and group them as if in a single

progn form.

Loop clauses can contain auxiliary keywords, sometimes called prepositions. For

example, the first clause in the code above includes the prepositions from and to,

which mark the value from which stepping begins and the value at which stepping

ends. 

Order of Execution in future-common-lisp:loop 

With the exceptions listed below, clauses are executed in the loop body in the or-

der in which they appear in the source. Execution is repeated until a clause termi-

nates the future-common-lisp:loop or until a return, go, or throw form is en-

countered. The following actions are exceptions to the linear order of execution:

• All variables are initialized first, regardless of where the establishing clauses

appear in the source. The order of initialization follows the order of these

clauses.

• The code for any initially clauses is collected into one progn in the order in

which the clauses appear in the source. The collected code is executed once in

the loop prologue after any implicit variable initializations.

• The code for any finally clauses is collected into one progn in the order in

which the clauses appear in the source. The collected code is executed once in

the loop epilogue before any implicit values from the accumulation clauses are
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returned. Explicit returns anywhere in the source, however, will exit the future-

common-lisp:loop without executing the epilogue code.

• A with clause introduces a variable binding and an optional initial value. The

initial values are calculated in the order in which the with clauses occur.

• Iteration control clauses implicitly initialize variables, step variables (generally

between each execution of the loop body), and perform termination tests (gener-

ally just before the execution of the loop body).

Kinds of future-common-lisp:loop Clauses

Loop clauses fall into one of the following six categories:

Variable initialization and stepping�

for, as The for and as constructs provide iteration control clauses

that establish a variable to be initialized. for and as clauses

can be combined with the loop keyword and to get parallel ini-

tialization and stepping. Otherwise, the initialization and step-

ping are sequential. The for and as constructs provide a termi-

nation test that is determined by the iteration control clause.

with The with construct is similar to a single let clause. with

clauses can be combined using the loop keyword and to get

parallel initialization.

repeat The repeat construct causes iteration to terminate after a

specified number of times. It uses an internal variable to keep

track of the number of iterations.

Value accumulation�

collect The collect construct takes one form in its clause and adds the

value of that form to the end of a list of values. By default,

the list of values is returned when the future-common-

lisp:loop finishes.
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;; Collect all the symbols in a list.

 (loop for i in ’(bird 3 4 turtle (1 . 4) horse cat)

       when (symbolp i) collect i)

=> (BIRD TURTLE HORSE CAT)

 

;; Collect and return odd numbers.

 (loop for i from 1 to 10

       if (oddp i) collect i)

=> (1 3 5 7 9)

 

;; Collect items into local variable, 

;; but don’t return them.

 (loop for i in ’(a b c d) by #’cddr

       collect i into my-list

       finally (print my-list))

(A C) 

=> NIL�

append The append construct takes one form in its clause and ap-

pends the value of that form to the end of a list of values. By

default, the list of values is returned when the future-

common-lisp:loop finishes.

;; Use APPEND to concatenate some sublists.

  (loop for x in ’((a) (b) ((c)))

        append x)

=> (A B (C))

 �

nconc The nconc construct is similar to the append construct, but

its list values are concatenated as if by the function nconc. By

default, the list of values is returned when the future-

common-lisp:loop finishes.

 

;; NCONC some sublists together.  Note that only lists 

;; made by the call to LIST are modified.

  (loop for i upfrom 0 

        as x in ’(a b (c))

        nconc (if (evenp i) (list x) nil))

=> (A (C))�

sum The sum construct takes one form in its clause that must eval-

uate to a number and accumulates the sum of all these

numbers. By default, the cumulative sum is returned when the

future-common-lisp:loop finishes.
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(loop for i fixnum in ’(1 2 3 4 5)

       sum i)

=> 15

 (setq series ’(1.2 4.3 5.7))

=> (1.2 4.3 5.7)

 (loop for v in series 

       sum (* 2.0 v))

=> 22.4�

count The count construct takes one form in its clause and counts

the number of times that the form evaluates to a non-nil value.

By default, the count is returned when the future-common-

lisp:loop finishes.

 (loop for i in ’(a b nil c nil d e)

       count i)

=> 5�

minimize The minimize construct takes one form in its clause and deter-

mines the minimum value obtained by evaluating that form. By

default, the minimum value is returned when the future-

common-lisp:loop finishes.

(loop for i in ’(2 1 5 3 4)

       minimize i)

=> 1

;; In this example, FIXNUM applies to the variable RESULT.

(loop for v float in series

minimize (round v) into result fixnum

finally (return result))

=> 1

(loop for i in ’(2 1 5 3 4)

minimize i)

=> 1�

maximize The maximize construct takes one form in its clause and de-

termines the maximum value obtained by evaluating that form.

By default, the maximum value is returned when the future-

common-lisp:loop finishes. 

 (loop for i in ’(2 1 5 3 4)

       maximize i)

 => 5

�

;; In this example, FIXNUM applies to the internal 

;; variable that holds the maximum value.

 (setq series ’(1.2 4.3 5.7))

=> (1.2 4.3 5.7)

 (loop for v in series 

       maximize (round v) fixnum)

=> 6�



Page 408

Termination conditions�

while The while construct takes one form, a condition, and termi-

nates the iteration if the condition evaluates to nil. A while

clause is equivalent to the expression (if (not condition)

(future-common-lisp:loop-finish)).

until The until construct is the inverse of while; it terminates the

iteration if the condition evaluates to any non-nil value. An

until clause is equivalent to the expression (if condition�

(future-common-lisp:loop-finish)). 

always The always construct takes one form and terminates the

future-common-lisp:loop if the form ever evaluates to nil; in

this case, it returns nil. Otherwise, it provides a default return

value of t.

never The never construct takes one form and terminates the future-

common-lisp:loop if the form ever evaluates to non-nil; in this

case, it returns nil. Otherwise, it provides a default return val-

ue of t.

thereis The thereis construct takes one form and terminates the

future-common-lisp:loop if the form ever evaluates to non-nil;

in this case, it returns that value. 

future-common:loop-finish

The future-common-lisp:loop-finish macro terminates iteration

and returns any accumulated result. Any finally clauses that

are supplied are evaluated.

Unconditional execution�

do The do construct evaluates all forms in its clause.

return The return construct takes one form and returns its value. It

is equivalent to the clause do (return it value).

;; Print numbers and their squares.

;; The DO construct applies to multiple forms.

 (loop for i from 1 to 3

       do (print i)

          (print (* i i)))

1 

1 

2 

4 

3 

9 

=> NIL�
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Conditional execution�

if The if construct takes one form as a predicate and a clause

that is executed when the predicate is true. The clause can be

a value accumulation, unconditional, or another conditional

clause; it can also be any combination of such clauses connect-

ed by the loop keyword and.

when The when construct is a synonym for the if construct.

;; Signal an exceptional condition.

 (loop for item in ’(1 2 3 a 4 5)

       when (not (numberp item))

        return (cerror "Enter a new value" "Non-numeric value: ~s" item))

Error: Non-numeric value: A

 

;; The previous example is equivalent to the following one.

 (loop for item in ’(1 2 3 a 4 5)

       when (not (numberp item))

        do (return 

            (cerror "Enter a new value" "Non-numeric value: ~s" item)))

Error: Non-numeric value: A

�

;; This example parses a simple printed string representation from 

;; BUFFER (which is itself a string) and returns the index of the

;; closing double-quote character.

(let ((buffer "\"foo\" \"bar\""))

  (loop initially (unless (char= (char buffer 0) #\")

                    (loop-finish))

        for i fixnum from 1 below (string-length buffer)

        when (char= (char buffer i) #\")

 return i))

=> 4

�

;; The FINALLY clause prints the last value of I.

;; The collected value is returned.

 (loop for i from 1 to 10

       when (> i 5)

         collect i

       finally (print i))

=> 4

(6 7 8 9 10) 
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�

;; Return both the count of collected numbers and the numbers.

 (loop for i from 1 to 10

       when (> i 5)

         collect i into number-list

         and count i into number-count

       finally (return (values number-count number-list)))

=> 5

(6 7 8 9 10)

�

 �

unless The unless construct is similar to when except that it comple-

ments the predicate.

else The else construct provides an optional component of if, when,

and unless clauses that is executed when the predicate is

false. The component is one of the clauses described under if.

end The end construct provides an optional component to mark the

end of a conditional clause.

Miscellaneous operations�

named The named construct gives a name for the block of the loop.

;; Just name and return.

 (loop named max

       for i from 1 to 10

       do (print i)

       do (return-from max ’done))

1 

=> DONE�

initially The initially construct causes its forms to be evaluated in the

loop prologue, which precedes all future-common-lisp:loop

code except for initial settings supplied by the constructs with,

for, or as.

finally The finally construct causes its forms to be evaluated in the

loop epilogue after normal iteration terminates. An uncondi-

tional clause can also follow the loop keyword finally.

Constructs in future-common-lisp:loop 

This section describes the constructs provided by future-common-lisp:loop. The

constructs are grouped according to function into the following categories:

• Iteration Control

• End-Test Control
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• Value Accumulation

• Variable Initializations

• Conditional Execution

• Unconditional Execution

• Miscellaneous Features�

Iteration Control in future-common-lisp:loop

Iteration control clauses allow direction of future-common-lisp:loop iteration. The

loop keywords for, as, and repeat designate iteration control clauses. Iteration con-

trol clauses differ with respect to the specification of termination conditions and to

the initialization and stepping of loop variables. Iteration clauses by themselves do

not cause the loop facility to return values, but they can be used in conjunction

with value-accumulation clauses to return values.

All variables are initialized in the loop prologue. The scope of the variable binding

is lexical unless it is proclaimed special; thus, the variable can be accessed only

by forms that lie textually within the future-common-lisp:loop. Stepping assign-

ments are made in the loop body before any other forms are evaluated in the body.

The variable argument in iteration control clauses can be a destructuring list. A

destructuring list is a tree whose non-null atoms are symbols that can be as-

signed a value. See the section "Destructuring in future-common-lisp:loop".

The iteration control clauses for, as, and repeat must precede any other loop

clauses, except initially, with, and named, since they establish variable bindings.

When iteration control clauses are used in a future-common-lisp:loop, termination

tests in the loop body are evaluated before any other loop body code is executed.

If multiple iteration clauses are used to control iteration, variable initialization and

stepping occur sequentially by default. The and construct can be used to connect

two or more iteration clauses when sequential binding and stepping are not neces-

sary. The iteration behavior of clauses joined by and is analogous to the behavior

of the macro do with respect to do*.

for and as Constructs

The for and as clauses iterate by using one or more local loop variables that are

initialized to some value and that can be modified or stepped after each iteration.

For these clauses, iteration terminates when a local variable reaches some supplied

value or when some other loop clause terminates iteration. At each iteration, vari-

ables can be word stepped by an increment or a decrement or can be assigned a

new value by the evaluation of a form. Destructuring can be used to assign initial

values to variables during iteration.
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The for and as keywords are synonyms; they can be used interchangeably. There

are seven syntactic formats for these constructs. In each syntactic format, the type

of var can be supplied by the optional type-spec argument. If var is a destructuring

list, the type supplied by the type-spec argument must appropriately match the ele-

ments of the list.

Syntax 1:�

{for | as} var [type-spec] [{from | downfrom | upfrom} form1]

[{to | downto | upto | below | above} form2] [by form3]�

The for or as construct iterates from the value supplied by form1 to the value

supplied by form2 in increments or decrements denoted by form3. Each expression

is evaluated only once and must evaluate to a number.

The variable var is bound to the value of form1 in the first iteration and is

stepped by the value of form3 in each succeeding iteration, or by 1 if form3 is not

provided.

The following loop keywords serve as valid prepositions within this syntax, and at

least one must be used in any for or as construct:

from form1 The loop keyword from marks the value from which stepping

begins, as supplied by form1. Stepping is incremental by de-

fault. If decremental stepping is desired, the preposition

downto or above must be used with form2. For incremental

stepping, the default from value is 0.

downfrom, upfrom form1 

The loop keyword downfrom indicates that the variable var is

decreased in decrements supplied by form3; the loop keyword

upfrom indicates that var is increased in increments supplied

by form3.

to form2 The loop keyword to marks the end value for stepping supplied

in form2. Stepping is incremental by default. If decremental

stepping is desired, the preposition downto, downfrom, or

above must be used with form2.

downto, upto form2 

The loop keyword downto allows iteration to proceed from a

larger number to a smaller number by the decrement form3.

The loop keyword upto allows iteration to proceed from a

smaller number to a larger number by the increment form3.

Since there is no default for form1 in decremental stepping, a

value must be supplied with downto.

below, above form2 

The loop keywords below and above are analogous to upto and

downto respectively. These keywords stop iteration just before

the value of the variable var reaches the value supplied by

form2; the end value of form2 is not included. Since there is
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no default for form1 in decremental stepping, a value must be

supplied with above.

by form3 The loop keyword by marks the increment or decrement sup-

plied by form3. The value of form3 can be any positive number.

The default value is 1.�

In an iteration control clause, the for or as construct causes termination when the

supplied limit is reached. That is, iteration continues until the value var is stepped

to the exclusive or inclusive limit supplied by form2. The range is exclusive if

form3 increases or decreases var to the value of form2 without reaching that val-

ue; the loop keywords below and above provide exclusive limits. An inclusive limit

allows var to attain the value of form2; to, downto, and upto provide inclusive

limits.

By convention, for introduces new iterations and as introduces iterations that de-

pend on a previous iteration specification. 

;; Print some numbers.

 (loop as i from 1 to 3

       do (print i))

1

2

3

=> NIL

 

;; Print every third number.

 (loop for i from 10 downto 1 by 3

       do (print i))

10

7 

4 

1 

=> NIL

 

;; Step incrementally from the default starting value.

 (loop as i below 3

       do (print i))

0

1

2

=> NIL�

Syntax 2:�

{for | as} var [type-spec] in form1 [by step-fun]�

The for or as construct iterates over the contents of a list. It checks for the end

of the list as if by using endp. The variable var is bound to the successive ele-

ments of the list in form1 before each iteration. At the end of each iteration, the
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function step-fun is applied to then list; the default value for step-fun is cdr. The

loop keywords in and by serve as valid prepositions in this syntax. The for or as

construct causes termination when the end of the list is reached. For example:

;; Print every item in a list.

 (loop for item in ’(1 2 3) do (print item))

1

2

3

=> NIL

 

;; Print every other item in a list.

 (loop for item in ’(1 2 3 4 5) by #’cddr

       do (print item))

1

3

5

=> NIL

 

;; Destructure a list, and sum the x values using fixnum arithmetic.

(loop for (item . x) (t . fixnum) in ’((A . 1) (B . 2) (C . 3))

unless (eq item ’B) sum x)

=> 4�

Syntax 3:�

{for | as} var [type-spec] on form1 [by step-fun]�

The for or as construct iterates over the contents of a list. It checks for the end

of the list as if by using endp. The variable var is bound to the successive tails of

the list in form1. At the end of each iteration, the function step-fun is applied to

the list; the default value for step-fun is cdr. The loop keywords on and by serve

as valid prepositions in this syntax. The for or as construct causes termination

when the end of the list is reached. The following example demonstrates the for-

as-on-list subclause:

;; Collect successive tails of a list.

 (loop for sublist on ’(a b c d)

       collect sublist)

=>((A B C D) (B C D) (C D) (D))

 

;; Print a list by using destructuring with the loop keyword ON.

 (loop for (item) on ’(1 2 3)

       do (print item))

1 

2 

3 

=> NIL�
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Syntax 4:�

{for | as} var [type-spec] = form1 [then form2]�

The for or as construct initializes the variable var by setting it to the result of

evaluating form1 on the first iteration, then setting it to the result of evaluating

form2 on the second and subsequent iterations. If form2 is omitted, the construct

uses form1 on the second and subsequent iterations. The loop keywords = and then

serve as valid prepositions in this syntax. This construct does not provide any ter-

mination conditions. For example:

;; Collect some numbers.

 (loop for item = 1 then (+ item 10)

       for iteration from 1 to 5

       collect item)

=> (1 11 21 31 41)�

Syntax 5:�

{for | as} var [type-spec] across vector�

The for or as construct binds the variable var to the value of each element in the

array vector. The loop keyword across marks the array vector; across is used as a

preposition in this syntax. Iteration stops when there are no more elements in the

supplied array that can be referenced. Some implementations might recognize a

the special form in the vector form to produce more efficient code. For example:

(loop initially (terpri) "foo"

       do (write-char char stream))

foo

=> NIL�

Syntax 6:�

{for | as} var [type-spec] being {each | the}

{hash-key[s] | hash-value[s]}

{in | of} hash-table [using ({hash-key | hash-value}

other-var)]�

The for or as construct iterates over the elements, keys, and values of a hash ta-

ble. In this syntax, a compound preposition is used to designate access to a hash

table. The variable var takes on the value of each hash key or hash value in the

supplied hash table. The following loop keywords serve as valid prepositions within

this syntax:

being The keyword being introduces either the loop method hash-

key or hash-value.

each, the The loop keyword each follows the loop keyword being when

hash-key or hash-value is used. The loop keyword the is used

with hash-keys and hash-values only for ease of reading. This

agreement isn’t required.
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hash-key, hash-keys

These loop keywords access each key entry of the hash-table. If

the name hash-value is supplied in a using construct with one

of these loop methods, the iteration can optionally access the

keyed value. The order in which the keys are accessed is un-

defined; empty slots in the hash-table are ignored.

hash-value, hash-values

These loop keywords access each value entry of a hash-table.

If the name hash-key is supplied in a using construct with

one of these loop methods, the iteration can optionally access

the key that corresponds to the value. The order in which the

keys are accessed is undefined; empty slots in the hash-table

are ignored.

using The loop keyword using introduces the optional key or the

keyed value to be accessed. It allows access to the hash key if

iteration is over the hash values, and the hash value if itera-

tion is over the hash keys

in, of These loop prepositions introduce hash-table.�

In effect the following expression is a compound preposition:

�

being [each | the] [hash-value | hash-values | hash-key |

hash-key] [in | of ]

�

Iteration stops when there are no more hash keys or hash values to be referenced

in the supplied hash table.

Syntax 7:�

{for | as} var [type-spec] being {each | the}

{symbol[s] | present-symbol[s] | external-symbol[s]}

[{in | of} package]�

The for or as construct iterates over the symbols in a package. In this syntax, a

compound preposition is used to designate access to a package. The variable var�

takes on the value of each symbol in the supplied package. The following loop key-

words serve as valid prepositions within this syntax:

being The keyword being introduces either the loop method

symbol[s], present-symbol[s], or external-symbol[s].

each, the The loop keyword each follows the loop keyword being when

symbol, present-symbol, or external-symbol is used. The loop

keyword the is used with symbols, present-symbols, and

external-symbols only for ease of reading. This agreement

isn’t required.
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present-symbol, present-symbols

These loop methods iterate over the symbols that are present

but not external in a given package. The package to be iterated

over is supplied in the same way that package arguments to

find-package are supplied. If the package for the iteration is

not supplied, the current package is used. If a package that

does not exist is supplied, an error of type package-error is

signalled.

symbol, symbols These loop methods iterate over symbols that are accessible

from a given package. The package to be iterated over is sup-

plied in the same way package arguments to find-package are

supplied. If the package for the iteration is not supplied, the

current package is used. If a package that does not exist is

supplied, an error of type conditions:package-error is sig-

nalled.

external-symbol, external-symbols

These loop methods iterate over the external symbols of the

given package. The package to be iterated over is supplied in

the same way package arguments to find-package are sup-

plied. If the package for the iteration is not supplied, the cur-

rent package is used. If a package that does not exist is sup-

plied, an error of type package-error is signalled.

in, of These loop prepositions mark the package package.�

In effect 

[being] [each | the] [[[present | external] symbol] |

[[present | external] symbols]] [in | of]

�

is a compound preposition. Iteration stops when there are no more symbols to be

referenced in the supplied package.

The repeat Construct in future-common-lisp:loop

repeat form 

The repeat construct causes iteration to terminate after a specified number of

times. The loop body executes n times, where n is the value of the expression

form. The form argument is evaluated once in the loop prologue. If the expression

evaluates to 0 or to a negative number, the loop body is not evaluated. The follow-

ing example demonstrates the repeat construct:
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(loop repeat 3

       do (format t "~&What I say three times is true.~%"))

   What I say three times is true

   What I say three times is true

   What I say three times is true

=> NIL

 

�

(loop repeat -15

   do (format t "~&What you see is what you expect.~%"))

=> NIL�

End-Test Control in future-common-lisp:loop 

The following loop keywords designate constructs that use a single test condition

to determine when loop iteration should terminate:

always, never, thereis

while, until�

The constructs always, never, and thereis provide specific values to be returned

when a looop terminates. Using always, never, or thereis in a loop with value-

returning accumulation clauses that are not into causes an error of type

conditions:program-error to be signalled. Since always, never, and thereis use

the macro return to terminate iteration, any finally clause that is supplied is not

evaluated. In all other respects these constructs behave like the while and until�

constructs.

The macro future-common-lisp:loop-finish can be used at any time to cause regu-

lar termination. In regular termination, finally clauses are executed and default

return values are returned.

always, never, thereis�

always form The always construct takes one form and terminates the

future-common-lisp:loop if the form ever evaluates to nil; in

this case, it returns nil. Otherwise, it provides a default return

value of t. If the value of the supplied form is never nil, some

other construct can terminate the iteration. Otherwise, it pro-

vides a default return value of t.

;; Make sure I is always less than 11 (two ways).

;; The FOR construct terminates these loops.

 (loop for i from 0 to 10

       always (< i 11))

=> T�
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never form The never construct terminates iteration the first time that

the value of the supplied form is non-nil; the future-common-

lisp:loop returns nil. If the value of the supplied form is al-

ways nil, some other construct can terminate the iteration. Un-

less some other clause contributes a return value, the default

value returned is t.

(loop for i from 0 to 10

       never (> i 11))

=>T�

thereis form The thereis construct takes one form and terminates the loop

if the form ever evaluates to non-nil; in this case, it returns

that value. The thereis construct terminates iteration the first

time that the value of the supplied form is non-nil; the future-

common-lisp:loop returns the value of the supplied form. If

the value of the supplied form is always nil, some other con-

struct can terminate the iteration. Unless some other clause

contributes a return value, the default value returned is nil.

 

;; If I exceeds 10 return I; otherwise, return NIL.

;; The THEREIS construct terminates this loop.

 (loop for i from 0

       thereis (when (> i 10) i) ) => 11�

There are two differences between the thereis and until constructs:

• The until construct does not contribute a return value based on the value of the

supplied form.

• The until construct executes any finally clause. Since thereis uses the macro

return to terminate iteration, any finally clause that is supplied is not evaluat-

ed.
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�

;;; The FINALLY clause is not evaluated in these examples.

 (loop for i from 0 to 10

       always (< i 9)

       finally (print "you won’t see this"))

=> NIL

 (loop never t

       finally (print "you won’t see this"))

=> NIL

 (loop thereis "Here is my value"

       finally (print "you won’t see this"))

=> "Here is my value"

  

;; The FOR construct terminates this loop, so the FINALLY clause 

;; is evaluated.

 (loop for i from 1 to 10

       thereis (> i 11)

       finally (print i))

   11

=> NIL

 

;; If this code could be used to find a counterexample to Fermat’s

;; last theorem, it would still not return the value of the

;; counterexample because all of the THEREIS clauses in this example

;; only return T.  Of course, this code does not terminate.

 

 (loop for z upfrom 2

       thereis

         (loop for n upfrom 3 below (log z 2)

               thereis

                 (loop for x below z

                       thereis

                         (loop for y below z

                               thereis (= (+ (expt x n) (expt y n))

                                          (expt z n))))))

 

; The finally clause is not evaluated.

 

 (loop never t

       finally (print "You won’t see this."))

=> NIL

 �

while, until�

while form The while construct allows iteration to continue until the sup-

plied form evaluates to nil. The supplied form is reevaluated at

the location of the while clause.
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(loop while (hungry-p) do (eat))

 

;; UNTIL (NOT...) is equivalent to WHILE.

 (loop until (not (hungry-p)) do (eat))

 

;; Collect the length and the items of STACK.

 (let ((stack ’(a b c d e f)))

   (loop while stack

         for item = (length stack) then (pop stack)

         collect item))

=> (6 A B C D E F)

 �

until form The until construct is equivalent to while (not form) dots. If

the value of the supplied form is non-nil, iteration terminates.

�

;; Use WHILE to terminate a loop that otherwise 

;; wouldn’t terminate.

;; Note that WHILE occurs after the WHEN.

 (loop for i fixnum from 3

       when (oddp i) collect i

       while (< i 5))

=> (3 5)�

The while and until constructs can be used at any point in a

future-common-lisp:loop. If an until or while clause causes

termination, any clauses that precede it in the source are still

evaluated. If the until and while constructs cause termination,

control is passed to the loop epilogue, where any finally claus-

es will be executed. �

There are two differences between the never and until constructs: 

• The until construct does not contribute a return value based on the value of the

supplied form.

• The until construct executes a finally clause. Since never uses the macro

return to terminate iteration, any finally clause that is supplied is not evaluat-

ed.

In most cases it is not necessary to use future-common-lisp:loop-finish because

other loop control clauses terminate the future-common-lisp:loop. The macro

future-common-lisp:loop-finish is used to provide a normal exit from a nested

condition inside a future-common-lisp:loop.

In normal termination, finally clauses are executed and default return values are

returned. Since future-common-lisp:loop-finish transfers control to the loop epi-

logue, using future-common-lisp:loop-finish within a finally expression can cause

infinite looping. It is implementation dependent whether or not, in a particular
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future-common-lisp:loop invocation, future-common-lisp:loop-finish is a global

macro or a local one (created as if by macrolet).

End-test control constructs can be used anywhere within the loop body. The termi-

nation conditions are tested in the order in which they appear. 

Value Accumulation in future-common-lisp:loop 

Accumulating values during iteration and returning them from a loop is often use-

ful. Some of these accumulations occur so frequently that special loop clauses have

been developed to handle them.

The following loop keywords designate clauses that accumulate values in lists and

return them: 

• append, appending 

• collect, collecting

• nconc, nconcing�

The following loop keywords designate clauses that accumulate and return numeri-

cal values: 

• count, counting

• maximize, maximizing

• minimize, minimizing 

• sum, summing�

Value-returning accumulation clauses can be combined in a loop if all the clauses

accumulate the same type of object. By default, the loop facility returns only one

value; thus, the objects collected by multiple accumulation clauses as return values

must have compatible types. For example, since both the collect and append con-

structs accumulate objects into a list that is returned from a future-common-

lisp:loop, they can be combined safely.

�

;; Collect every name and the kids in one list by using 

;; COLLECT and APPEND.

 (loop for name in ’(fred sue alice joe june)

       for kids in ’((bob ken) () () (kris sunshine) ())

       collect name

       append kids)

=> (FRED BOB KEN SUE ALICE JOE KRIS SUNSHINE JUNE)�

Multiple clauses that do not accumulate the same type of object can coexist in a

future-common-lisp:loop only if each clause accumulates its values into a differ-

ent user-specified variable.
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collect, collecting�

collect[ing] form During each iteration, the constructs collect and collecting

collect the value of the supplied form into a list. When itera-

tion terminates, the list is returned. The argument var is set

to the list of collected values; if var is supplied, the future-

common-lisp:loop does not return the final list automatically.

If var is not supplied, it is equivalent to supplying an internal

name for var and returning its value in a finally clause. The

var argument is bound as if by the construct with. A type can-

not be supplied for var; it must be of type list.

append, appending, nconc, nconcing�

append[ing] form [into var], nconc[ing] form [into var]

The constructs append, appending, nconc, and nconcing are

similar to collect except that the values of the supplied form

must be lists.

• The append keyword causes its list values to be concatenat-

ed into a single list, as if they were arguments to the func-

tion append.

• The nconc keyword causes its list values to be concatenated

into a single list, as if they were arguments to the function

nconc.�

The argument var is set to the list of concatenated values; if

var is supplied, future-common-lisp:loop does not return the

final list automatically. The var argument is bound as if by the

construct with. A type cannot be supplied for var; it must be

of type list. The construct nconc destructively modifies its ar-

gument lists. The append construct is similar to collect except

the values of the supplied form must be lists. These lists are

not modified but are concatenated together into a single list,

as if they were arguments to append. The argument var is

bound to the list of concatenated values; if var is supplied, the

loop does not return the final list automatically. The var argu-

ment is bound as if by the construct with. A type cannot be

supplied for var; it must be of type list.�

count, counting�

count[ing] form [into var] [type-spec]

The count construct counts the number of times that the sup-

plied form has a non-nil value. The argument var accumulates

the number of occurrences; if var is supplied, future-common-

lisp:loop does not return the final count automatically. The var

argument is bound as if by the construct with. If into var is
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used, a type can be supplied for var with the type-spec argu-

ment; the consequences are unspecified if a nonnumeric type is

supplied. If there is no into variable, the optional type-spec ar-

gument applies to the internal variable that is keeping the

count. The default type is implementation-dependent; but it

must be a subtype of (or integer float).

maximize, maximizing, minimize, minimizing�

maximize | maximizing form [into var] [type-spec]

The maximize construct compares the value of the supplied

form obtained during the first iteration with values obtained in

successive iterations. The maximum value encountered is deter-

mined and returned. If future-common-lisp:loop never exe-

cutes the body, the returned value is unspecified. The argu-

ment var accumulates the maximum or minimum value; if var

is supplied, future-common-lisp:loop does not return the maxi-

mum or minimum automatically. The var argument is bound as

if by the construct with. If into var is used, a type can be sup-

plied for var with the type-spec argument; the consequences are

unspecified if a nonnumeric type is supplied. If there is no

into variable, the optional type-spec argument applies to the in-

ternal variable that is keeping the count. The default type

must be a subtype of (or integer float).

minimize | minimizing form [into var] [type-spec]

The minimize construct is similar to maximize; it determines

and returns the minimum value. The minimize construct com-

pares the value of the supplied form obtained during the first

iteration with values obtained in successive iterations. The

minimum value encountered is determined and returned. If

future-common-lisp:loop never iterates, the returned value is

not meaningful. The argument var is bound to the minimum

value; if var is supplied, the future-common-lisp:loop does not

return the minimum automatically. The var argument is bound

as if by the construct with. The type-spec argument supplies

the type for var; the default type is fixnum. The consequences

are unspecified if a nonnumeric type is supplied for var.

sum, summing�

sum[ing] form [into var] [type-spec]

The sum construct forms a cumulative sum of the values of

the supplied form at each iteration. The argument var is used

to accumulate the sum; if var is supplied, future-common-

lisp:loop does not return the final sum automatically. The var

argument is bound as if by the construct with. If into var is

used, a type can be supplied for var with the type-spec argu-
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ment; the consequences are unspecified if a nonnumeric type is

supplied. If there is no into variable, the optional type-spec ar-

gument applies to the internal variable that is keeping the

count. The default type must be a subtype of number.

The loop preposition into can be used to name the variable used to hold partial

accumulations. The variable is bound as if by the loop construct with. If into is

used, the construct does not provide a default return value; however, the variable

is available for use in any finally clause. 

Local Variable Initializations in future-common-lisp:loop 

At the time when the loop facility is invoked, the local variables are bound and are

initialized to some value. These local variables exist until future-common-lisp:loop

iteration terminates, at which point they cease to exist. Implicitly, variables are al-

so established by iteration control clauses and the into preposition of accumula-

tion.

with�

with var1 [type-spec] [= form1] [and var2 [type-spec] [= form2]

The with construct initializes variables that are local to a loop.

The variables are initialized one time only. If the optional type-

spec argument is supplied for the variable var, but there is no

related expression to be evaluated, var is initialized to an ap-

propriate default value for its type. For example, for the types

t, number, and float, the default values are nil, 0, and 0.0 re-

spectively. The consequences are unspecified if a type-spec ar-

gument is supplied for var if the related expression returns a

value that is not of the supplied type. �

Sequential and Parallel Initialization�

By default, the with construct initializes variables sequentially; that is, one vari-

able is assigned a value before the next expression is evaluated. However, by using

the loop keyword and to join several with clauses, initializations can be forced to

occur in parallel; that is, all of the supplied forms are evaluated, and the results

are bound to the respective variables simultaneously.

Sequential binding is used when it is desirable for the initialization of some vari-

ables to depend on the values of previously bound variables. For example, suppose

the variables a, b, and c are to be bound in sequence:
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;; These bindings occur in sequence.

 (loop with a = 1 

       with b = (+ a 2) 

       with c = (+ b 3)

       return (list a b c))

=> (1 3 6)

�

 

;; These bindings occur in parallel.

 (setq a 5 b 10)

=> 10

 (loop with a = 1

       and b = (+ a 2)

       and c = (+ b 3)

       return (list a b c))

=> (1 7 13)

�

�

The execution of the previous example of future-common-lisp:loop is equivalent to

the execution of the following code:

�

 (let* ((a 1)

        (b (+ a 2))

        (c (+ b 3)))

   (block nil

     (tagbody

         (next-loop (return (list a b c))

                    (go next-loop)

                    end-loop))))�

;; This example shows a shorthand way to declare local variables 

;; that are of different types.

 (loop with (a b c) (float integer float)

       return (format nil "~A ~A ~A" a b c))

=> "0.0 0 0.0"

 

;; This example shows a shorthand way to declare local variables 

;; that are the same type.

 (loop with (a b c) float 

       return (format nil "~A ~A ~A" a b c))

=> "0.0 0.0 0.0"

�

If the values of previously bound variables are not needed for the initialization of

other local variables, an and clause can be used to force the bindings to occur in

parallel:
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�

(loop with a = 1 

       and b = 2 

       and c = 3

       return (list a b c))

(1 2 3)

�

The execution of the above loop is equivalent to the execution of the following

code:

 (let ((a 1)

       (b 2)

       (c 3))

   (block nil

     (tagbody

         (next-loop (return (list a b c))

                    (go next-loop)

                    end-loop))))�

Conditional Execution in future-common-lisp:loop 

If the supplied condition is true, the succeeding loop clause is executed. If the sup-

plied condition is not true, the succeeding clause is skipped, and program control

moves to the clause that follows the loop keyword else. If the supplied condition is

not true and no else clause is supplied, control is transferred to the clause or con-

struct following the supplied condition. The following keywords designate con-

structs that are useful when you want loop clauses to operate under a specified

condition:

when, if, unless�

{if | when | unless} form clause1 [and clause]* [end]

{if | when | unless} form clause1 [and clause]* 

else clause2 [and clause]* [end]

�

The constructs if and when allow execution of loop clauses

conditionally. These constructs are synonyms and can be used

interchangeably. If the value of the test expression form is

non-nil, the expression clause1 is evaluated. If the test expres-

sion evaluates to nil and an elsne construct is supplied, the

statements that follow the else are evaluated; otherwise, con-

trol passes to the next clause. If if or when clauses are nested,

each else is paired with the closest preceding if or when con-

struct that has no associated else.
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The unless construct is equivalent to when (not form) and if (not form). If the

value of the test expression form is nil, the expression clause1�

is evaluated. If the test expression evaluates to non-nil and an

else construct is supplied, the statements that follow the else

are evaluated; otherwise, no conditional statement is evaluated.

The clause arguments must be either accumulation, uncondi-

tional, or conditional clauses.

Clauses that follow the test expression can be grouped by using the loop keyword

and to produce a conditional block consisting of a compound

clause.

The loop keyword it can be used to refer to the result of the test expression in a

clause. If multiple clauses are connected with and, the it con-

struct must be the first clause in the block. Since it is a loop

keyword, it cannot be used as a local variable within future-

common-lisp:loop.

The optional loop keyword end marks the end of the clause. If this keyword is not

supplied, the next loop keyword marks the end. The construct

end can be used to distinguish the scoping of compound claus-

es.

Unconditional Execution in future-common-lisp:loop 

The following loop construct evaluates its specified expression wherever it occurs

in the expanded form of loop: 

do, doing�

The following loop construct takes one form and returns its

value. It is equivalent to the clause (do (return value)).

return�

do, doing�

do[ing] [form]*�

The form argument can be an nonatomic Common Lisp form Each form is evaluat-

ed in every iteration. The constructs do, initially, and finally

are the only loop keywords that take an arbitrary number of

forms and group them as if by using an implicity progn. 

Miscellaneous Features in future-common-lisp:loop 

future-common-lisp:loop provides the name construct to name a loop so that spe-

cial form return-from can be used.
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The loop keywords initially and finally designate loop constructs that cause ex-

pressions to be evaluated before and after the loop body, respectively. 

The code for any initially clauses is collected into one progn in the order in

which the clauses appeared in the loop. The collected code is executed once in the

loop prologue after any implicit variable initializations.

The code for any finally clauses is collected into one progn in the order in which

the clauses appeared in the loop. The collected code is executed once in the loop

epilogue before any implicit values are returned from the accumulation clauses.

Explicit returns in the loop body, however, will exit the loop without executing the

epilogue code.

Data Types in future-common-lisp:loop

Many loop constructs take a type-spec argument that allows you to specify certain

data types for loop variables. While it is not necessary to specify a data type for

any variable, by doing so you ensure that the variable has a correctly typed initial

value. The type declaration is made available to the compiler for more efficient

future-common-lisp:loop expansion. The type-spec argument has the following

syntax:

type-spec::= of-type d-type-spec

d-type-spec::= type-specifier | d-type-spec . d-type-spec�

The type-specifier argument can be any Common Lisp type specifier. The d-type-

spec argument is used for destructuring, as described in the section "Destructuring

in future-common-lisp:loop". If the d-type-spec argument consists solely of the

types fixnum, float, t, or nil, the of-type is optional.

The of-type construct is optional in these cases to provide backwards compatibili-

ty; thus, the following two expressions are the same:

�

;;; This expression uses the old syntax for type specifiers.

 (loop for i fixnum upfrom 3 ...)

 

;;; This expression uses the new syntax for type specifiers.

 (loop for i of-type fixnum upfrom 3 ...)

�

;; Declare X and Y to be of type VECTOR and FIXNUM respectively.

 (loop for (x y) of-type (vector fixnum) 

       in l do ...)

 �

Destructuring in future-common-lisp:loop
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Destructuring allows binding of a set of variables to a corresponding set of values

anywhere that a value can normally be bound to a single variable. During future-

common-lisp:loop expansion, each variable in the variable list is matched with the

values in the values list. If there are more variables in the variable list than there

are values in the values list, the remaining variables are given a value of nil. If

there are more values than variables listed, the extra values are discarded.

To assign values from a list to the variables a, b, and c, the for clause could be

used to bind the variable numlist to the car of the supplied form, and then anoth-

er for clause could be used to bind the variables a, b, and c sequentially.

�

;; Collect values by using FOR constructs.

 (loop for numlist in ’((1 2 4.0) (5 6 8.3) (8 9 10.4))

       for a integer = (first numlist)

       and b integer = (second numlist)

       and c float = (third numlist)

       collect (list c b a))

=> ((4.0 2 1) (8.3 6 5) (10.4 9 8))�

Destructuring makes this process easier by allowing the variables to be bound in

each loop iteration. Types can be declared by using a list of type-spec arguments. If

all the types are the same, a shorthand destructuring syntax can be used, as the

second example illustrates.

;; Destructuring simplifies the process.

 (loop for (a b c) (integer integer float) in

       ’((1 2 4.0) (5 6 8.3) (8 9 10.4))

       collect (list c b a)))

=> ((4.0 2 1) (8.3 6 5) (10.4 9 8))

 

�

;; If all the types are the same, this way is even simpler.

 (loop for (a b c) float in

       ’((1.0 2.0 4.0) (5.0 6.0 8.3) (8.0 9.0 10.4))

       collect (list c b a))

=> ((4.0 2.0 1.0) (8.3 6.0 5.0) (10.4 9.0 8.0))�

If destructuring is used to declare or initialize a number of groups of variables in-

to types, the loop keyword and can be used to simplify the process further.

;; Initialize and declare variables in parallel by using the AND construct.

(loop with (a b) float = ’(1.0 2.0)

and (c d) integer = ’(3 4)

 and (e f)

 return (list a b c d e f))

=> (1.0 2.0 3 4 NIL NIL)�

A type specifier for a destructuring pattern is a tree of type specifierswith the

same shape as the tree of variables, with the following exceptions: 
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• When aligning the trees, an atom in the type specifier tree that matches a cons

in the variable tree declares the same type for each variable.

• A cons in the type specifier tree that matches an atom in the variable tree is a

nonatomic type-specifer.�

If nil is used in a destructuring list, no variable is provided for its place.

(loop for (a nil b) = ’(1 2 3)

       do (return (list a b)))

=> (1 3)�

Note that nonstandard lists can specify destructuring.

�

 (loop for (x . y) = ’(1 . 2)

       do (return y))

�

 (loop for ((a . b) (c . d)) ((float . float) (integer . integer)) in

       ’(((1.2 . 2.4) (3 . 4)) ((3.4 . 4.6) (5 . 6)))

       collect (list a b c d))

=> ((1.2 2.4 3 4) (3.4 4.6 5 6))�

An error of type conditions:program-error is signalled if the same variable is

bound twice in any variable-binding clause of a single future-common-lisp:loop

expression. Such variables include local variables, iteration control variables, and

variables found by destructuring. 

Understanding Compatibility Issues

Lisp Dialects Available in Genera

Genera provides four dialects of Lisp for you to use: 

Symbolics Common Lisp

This is based on Common Lisp; it includes Common Lisp, as

well as all the advanced features of Zetalisp. Symbolics Com-

mon Lisp (SCL) is the default dialect in Genera.

Zetalisp The dialect of Lisp provided in all Symbolics releases prior to

Genera 7.0.

Common Lisp An implementation of Common Lisp as described in Common

Lisp: the Language (CLtL), by Guy Steele.

CLtL A strict, even harsh, implementation of Common Lisp as de-

scribed in Common Lisp: the Language (CLtL), by Guy Steele.

This dialect is useful when developing programs with the in-

tention of porting them to other implementations of Common

Lisp. For information on how to use this dialect, see the sec-

tion "Developing Portable Common Lisp Programs".�
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All of these dialects have some underlying features in common: 

• Both the interpreter and the compiler use lexical scoping.

• Characters are represented as character objects.

• Row-major arrays are used.�

Both Symbolics Common Lisp and Zetalisp use the interpreter, the compiler, the

same data structures, and other tools.

Syntactic differences between Common Lisp and Zetalisp are handled by Zetalisp

reader/printer control variables, such as ibase, base, readtable, and package. In

Common Lisp programs these variables appear under the names *read-base*,

*print-base*, *readtable*, and *package*. The binding of these variables is con-

trolled automatically by the system.

Most Zetalisp functions, special forms, and facilities are available in SCL. Some of

them, such as the defstruct macro, have been modified to make them compatible

with Common Lisp. 

For a description of the differences between SCL and Common Lisp as described in

Common Lisp: the Language (CLtL) by Guy Steele,see the section "Compatibility

with Common Lisp".

SCL Packages

SCL provides a separate set of packages for Common Lisp. When the two dialects

have a feature in common, some of the symbols in these packages are identical to

symbols in Zetalisp. Other symbols are specific to Common Lisp. 

The common-lisp package contains all the symbols defined in Common Lisp, while

the symbolics-common-lisp package contains those symbols, plus the symbols that

are Symbolics extensions to Common Lisp. The symbols in Common Lisp can be

found in both the common-lisp and symbolics-common-lisp packages.

The following packages are provided by SCL:

common-lisp This package exports all symbols defined by Common Lisp, oth-

er than keywords. It is also known by the names common-lisp-

global, lisp, and cl. All Common Lisp packages inherit from

the common-lisp package. The Common Lisp name for this

package is lisp.

symbolics-common-lisp

This package exports all the symbols that are either in Com-

mon Lisp or are Symbolics extensions to Common Lisp. Most of

the internals used by SCL are in this package. It is also known

by the name scl.

common-lisp-user This is the default package for user programs. It is also known

by the names user and cl-user.
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common-lisp-user inherits from symbolics-common-lisp. User

programs should be placed in the common-lisp-user package,

rather than the common-lisp package, to insulate them from

the internal symbols of SCL. The Common Lisp name for this

package is user.

common-lisp-system

This package exports a variety of 3600-specific architectural

and implementational symbols. It is also known by the name

cl-sys. In Zetalisp, some of these symbols are in global and

some are in system. common-lisp-user does not inherit from

common-lisp-system. The Common Lisp names for this pack-

age are system and sys.

gprint This package contains portions of SCL concerned with the

printing of Lisp expressions. It is not a standard Common Lisp

package.

language-tools This package contains portions of SCL concerned with Lisp

code analysis and construction. It has the nickname lt. It is not

a standard Common Lisp package.

zl The name zl can be used in a Common Lisp program to refer

to Zetalisp’s global package. The name zetalisp is synonymous

with zl.

zl-user The name zl-user can be used in a Common Lisp program to

refer to Zetalisp’s user package.

SCL and Zetalisp share the same keyword package.

Common Lisp packages can be referred to by their Common Lisp names from Com-

mon Lisp programs, but not from Zetalisp programs. These names are relative

names defined by the common-lisp package.

All Zetalisp packages can be referred to from a Common Lisp program. Those

packages that have the same name as a Common Lisp package, such as system

and user, can be referenced with a multilevel package prefix, for example,

zl:user:foo. zl-user:foo is synonymous with zl:user:foo.

Packages can be used to shadow Common Lisp global symbols. For example, if you

have a program in which you would like to use merge as the name of a function,

you put the program in its own package (separate from cl-user), specify :shadow

merge in the defpackage, and use lisp:merge to refer to the SCL merge function.

SCL and Symbolics Common Lisp Extensions

Most of the language features of Zetalisp that are not in Common Lisp are provid-

ed by SCL in the symbolics-common-lisp package. This includes such things as

processes, loop, and flavors. In some cases (string-append, for example) these Ze-

talisp features have been modified to make them implementationally or philosophi-

cally compatible with Common Lisp. In most cases, you can refer to the documen-
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tation for information about these features. See the section "Functions in the CL

Package with SCL Extensions". See the section "SCL-Specific Language

Extensions". 

SCL and Common Lisp Files

The file attribute line of a Common Lisp file should be used to tell the editor, the

compiler, and other programs that the file contains a Common Lisp program. The

following file attributes are relevant:

Syntax The value of this attribute can be Common-Lisp or Zetalisp. It

controls the binding of the Zetalisp variable readtable, which

is known as *readtable* in Common Lisp. The default syntax

is Common-Lisp.

Package user is the package most commonly used for Common Lisp

programs. You can also create your own package. Note that the

Package file attribute accepts relative package names, which

means that you can specify user rather than cl-user.

The following example shows the attributes that should be in an SCL file’s at-

tribute line:

;;; -*- Mode:Lisp; Syntax:Common-Lisp; Package:USER -*-�

Compatibility with Common Lisp

Some differences exist between the Symbolics implementation of Common Lisp in

Genera and the language specification presented in Guy Steele’s Common Lisp:

The Language manual (CLtL). This section contains tables listing Symbolics exten-

sions, incompatible functions, and implementation decisions that might be of inter-

est to you with regard to portability. When writing portable programs, use this list

as a guide to help you.

Overview:

Guy Steele’s book, Common Lisp: The Language (CLtL), describes what is required

of a Common Lisp implementation. It also leaves room for (and in some cases en-

courages or even requires) implementation-dependent extensions.

In situations where portability of Common Lisp code is important, you should take

care to avoid the use of any extensions, or to make sure that matching extensions

are available in the implementations to which you intend to port your code.

To screen out most of the Symbolics extensions, you can simply use the lisp pack-

age, rather than the scl package. However, because some function names are

shared between the lisp and scl packages, certain extended features are visible

even when you use only the lisp package. In this section, we survey some common

compatibility problems.



Page 435

Extensions are called compatible if programs written to use only what is promised

by CLtL are not adversely affected by the extension. For example, if function f

were documented by CLtL to take only one argument, and our environment extend-

ed it to take a second optional argument, the extension would be called compatible

as long as the one-argument use of f conformed to the CLtL standard.

Here is an overview of the tables included in this chapter: 

• Functions in the Common Lisp package with Symbolics Common Lisp (SCL) ex-

tensions.

• SCL-specific language extensions.

• Functions in SCL that are incompatible with Common Lisp, as specified in

CLtL.

• Incompatible language implementations.

• Compatible Differences and Clarifications with Common Lisp.

• Using package prefixes in portable programs.�

Functions in the CL Package with SCL Extensions

Some functions in the common-lisp package accept additional optional or keyword

arguments. We call these optional or keyword arguments extensions.

The following is a list of functions in the common-lisp package that have been ex-

tended in this way, and the names of the additional arguments that these func-

tions accept. These extensions are compatible.

The function name is listed in the left column, in bold, and the Symbolics Common

Lisp extension is in the right column, in italics.

Function Extension(s)

adjoin :area, :localize, :replace

adjust-array :displaced-conformally

apropos do-inherited-symbols, do-packages-used-by

apropos-list do-packages-used-by

assoc-if :key

assoc-if-not :key

cerror optional-condition-name 

compile-file :package, :load, :set-default-pathname

copy-alist area

copy-list area, force-dotted
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copy-seq area

delete-duplicates :replace 

:replace is not meaningful if 

:from-end t is also used.

describe no-complaints

disassemble from-pc, to-pc

dribble editor-p

eval env

functionp allow-special-forms

get-setf-method for-effect

get-setf-method-multiple-value

for-effect

macroexpand dont-expand-special-forms

macroexpand-1 dont-expand-special-forms

make-array :displaced-conformally, 

:area, :leader-list, :leader-length, 

:named-structure-symbol

make-hash-table :area, :hash-function, :rehash-before-cold, 

:rehash-after-full-gc, :entry-size, :number-of-values, 

:store-hash-code, :mutating, :initial-contents, :optimizations, 

:locking, :ignore-gc, :growth-factor, :growth-threshold

make-list :area

make-package :prefix-name, :shadow, :export, :import, 

:shadowing-import, :import-from, :relative-names, 

:relative-names-for-me, :size, :external-only, 

:new-symbol-function, :hash-inherited-symbols, 

:invisible, :colon-mode, :prefix-intern-function, 

:include

make-sequence :area 

make-symbol permanent-p

make-string :element-type, :area

pathname defaults

push :area, :localize

pushnew :area, :localize, :replace

rassoc-if :key 

rassoc-if-not :key

sleep :sleep-reason
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time describe-consing

write :array-length, :string-length, 

:bit-vector-length, :abbreviate-quote, 

:readably, :string-length, :structure-contents�

� SCL-Specific Language Extensions

Some functions, macros, and objects have extended semantics in Symbolics Com-

mon Lisp (SCL). For example, a function might be defined in SCL to have argu-

ment types not defined in Common Lisp: the Language (CLtL).

Following is a list of functions in the lisp package that treat their arguments in

an extended way. These extensions are compatible.

Each bulleted item contains a description of the language extension, and a refer-

ence to the chapter or section in CLtL that discusses the topic. 

• All atoms (non-lists) that are not symbols are self-evaluating, although CLtL on-

ly requires that bit-vectors, numbers, characters, and strings be so. See CLtL:

Chapter 2, Data Types.

• apply is extended to allow you to call an array as a function. CLtL does not

specify this case. See CLtL: Section 7.3, Function Invocation.

• funcall is extended to allow you to call an array as a function, with indices as

arguments. CLtL does not specify this case. See CLtL: Section 7.3, Function In-

vocation.

• if is extended to allow you to supply more than three subforms; CLtL defines

only the cases of two, or three, subforms. See CLtL: Section 7.6, Conditionals.

loop allows many SCL extensions. CLtL does not define the meaning of atoms at

the top-level of loop, so only the following is defined:

(loop ...non-atomic-forms)

You should avoid using loop’s keyword extensions in portable code, unless the

target implementation is known to provide a compatible extension. For a list of

these extensions, see the the Flow of Control chapter. See CLtL: Section 7.8.1,

Indefinite Iteration.

• shadow is extended to accept string arguments, in addition to the symbol argu-

ments specified in CLtL. See CLtL: Section 11.7, Package System Functions and

Variables.

• All arrays are adjustable in SCL. CLtL promises only that arrays created with

:adjustable t will be adjustable. CLtL does not specify what will happen if you

omit :adjustable, or even what will happen if you specify :adjustable nil. See

CLtL: Section 17.1, Array Creation.
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• In Genera the value of (char-code-limit) is 65536. CLtL does not specify a value

for this limit, but many users expect the limit to be considerably smaller (for

example, 128 or 256), and are surprised by the storage used when they do things

like (make-array char-code-limit). If you are considering a portable lookup table

for characters, you might want to consider using a hash table, rather than an

array. See CLtL: Section 13.1, Character Attributes.

• In Genera, a displaced array need not be of the same type as the array to which

it is displaced. CLtL says that it is an error if a displaced array is not the same

type as the array to which it is displaced. See CLtL: Section 17.1, Array Cre-

ation.

• The following string functions are extended to accept character arguments, in

addition to the argument types string and symbol, which are specified by CLtL:

string= string-equal

string< string-lessp

string> string-greaterp

string<= string-not-greaterp

string>= string-not-lessp

user::string//= string-not-equal

string-trim string-upcase

string-right-trim string-downcase

string-left-trim string-capitalize

See CLtL: Chapter 18, Strings.

• The value of *print-pretty* can take on values other than those defined by

CLtL. See CLtL: Section 22.2.6, What the Print Function Produces.

• open is extended in a number of ways:

Genera supports additional keywords from some file hosts. For a list of these

extensions, see the section "SCL Functions Incompatible with Common Lisp".

CLtL defines a fixed set of keywords for open: :direction, :element-type, :if-

exists, and :if-does-not-exist. The Genera implementation accepts additional

keywords. See CLtL: Section 23.2, Opening and Closing Files.

• error is extended so that its first argument may be other than just a string.

The first argument may be a condition type, in which case the rest of the argu-

ments are taken as init keywords for that condition, or the first argument may

be a condition object, in which case there should be no additional arguments.

See CLtL: Chapter 24, Errors.

• documentation is extended to allow documentation types other than those

named in CLtL. See CLtL: Section 25.2, Documentation.
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� SCL Functions Incompatible with Common Lisp

This table lists functions in SCL that are incompatible with Common Lisp, as spec-

ified in Common Lisp: the Language (CLtL).

If you write programs that you plan to port to other systems, do not use these

functions. 

Each item in this list includes a reference to the section in CLtL that discusses

the topic.

In the left column is the function name, in bold, and in the right column is an ex-

planation of the incompatibility. 

Function Reason for Incompatibility

applyhook The SCL variable applyhook is special, initially bound (its val-

ue cell is linked to that of *applyhook*,) and is dangerous to

assign without a clear understanding of what that assignment

will affect. CLtL makes no claims about this name being used

as a variable, so you might reasonably expect that this is a

variable name available for normal purposes. Unfortunately, it

is not. See CLtL: Section 20.1, Run-Time Evaluation of Forms.

char-equal Does not ignore bits; CLtL specifies that this predicate should

ignore bits. See CLtL: Section 13.2, Predicates on Characters.

char-not-equal Does not ignore bits; CLtL specifies that this predicate should

ignore bits. See CLtL: Section 13.2, Predicates on Characters.

char-lessp Does not ignore bits; CLtL specifies that this predicate should

ignore bits. See CLtL: Section 13.2, Predicates on Characters.

char-greaterp Does not ignore bits; CLtL specifies that this predicate should

ignore bits. See CLtL: Section 13.2, Predicates on Characters.

describe Returns one value (its argument) instead of none. See CLtL:

Section 25.3, Debugging Tools.

evalhook The SCL variable evalhook is special, initially bound (its value

cell is linked to that of *evalhook*,) and is dangerous to as-

sign without a clear understanding of what that assignment

will affect. CLtL makes no claims about this name being used

as a variable, so you might reasonably expect that this is a

variable name available for normal purposes. Unfortunately, it

is not. See CLtL: Section 20.1, Run-Time Evaluation of Forms.

functionp Returns t if the argument is a symbol and if the argument,

when the function fbound is used on it, returns t, (fbound re-

turns true for that symbol), or else it returns nil. CLtL says

functionp returns t for any symbol, whether it also returns

true if fbound is used on it. See CLtL: Section 6.2.2, Specific

Data Type Predicates.
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gethash Returns three values instead of two. See CLtL: Section 16.1,

Hash Table Functions.

make-echo-stream This function is not available in the Symbolics implementation

of Common Lisp, because its contract is not well enough de-

fined in our stream system. See CLtL: Section 21.1, Creating

New Streams.

open The implementation of this function is different from the speci-

fication in CLtL in a number of ways:

• CLtL defines a fixed set of keywords for open: :direction,

:element-type, :if-exists, and :if-does-not-exist. The Genera

implementation accepts additional keywords. This compatible

difference was mentioned in the section "SCL-Specific Lan-

guage Extensions"

• CLtL says that the default :element-type for open is string-

char. In the Genera implementation the default :element-

type is character. This difference is incompatible.

• CLtL says that the only valid values of the keyword

:direction are: :input, :output, :io, :probe and :direct. Gen-

era accepts a number of other values for this argument,

such as :in and :out, and device-specific values such as

:block. This compatible difference was mentioned in the sec-

tion "SCL-Specific Language Extensions"

• Genera does not support all of the :element-type options for

open promised by CLtL. CLtL says that :element-type ac-

cepts the following types: string-char, (unsigned-byte n),

unsigned-byte, (signed-byte n) signed-byte, character, bit,

(mod n), and :default. Specifically:

Element Type Status

string-char Supported by Genera (but is not the de-

fault).

character Supported by Genera (and is the default).

unsigned-byte Not supported by Genera.

(unsigned-byte 8) Supported by Genera.

(unsigned-byte 16) Supported by Genera.

(unsigned-byte 32) Supported by Genera for FEP files only.

(unsigned-byte n) Not supported by Genera (except for indi-

cated special cases).

signed-byte Not supported by Genera.
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(signed-byte n) Not supported by Genera.

bit Not supported by Genera.

(mod n) Not supported by Genera (due to a bug).

:default Supported by Genera.

See CLtL: Section 23.2, Opening and Closing Files.�

read-line Returns up to four values. CltL specifies that read-line return

only two values. See CLtL: Section 22.2.1, Input From Charac-

ter Streams.

unintern SCL specifies that this function’s second argument defaults to

symbol-package; CLtL specifies that the second argument de-

faults to package. See CLtL: Section 11.7, Package System

Functions and Variables.

� Other Incompatible Differences

Some functions, macros, and objects in Symbolics Common Lisp (SCL) have imple-

mentation specification that are incompatible with Common Lisp, as specified in

Common Lisp: The Language (CLtL).

The following is a list of implementation specifications made in SCL, which are in-

compatible with Common Lisp, as specified in CLtL.

Each item in this list includes a reference to the section in CLtL that discusses

the topic. 

• The argument list for &rest parameters has dynamic extent.

Furthermore, the list of arguments should not be modified destructively with

the rplaca or rplacd functions. If you want to save or return an &rest argu-

ment, use the copy-list function first. See the lambda list keyword &rest. See

CLtL: Section 5.2.2, Lambda Expressions.

• The declarations type, ftype, and optimize are not implemented in SCL. In

general, most Common Lisp declarations other than special are ignored. See

CLtL: Section 9.1, Declaration Specifiers.

• In Symbolics Common Lisp, as a convenience, any variable named ignore or ig-

nored is treated as if it had an implicit ignore declaration. As any use of an ig-

nored variable is an error, using a variable named ignore or ignored generates

compiler warnings and may generate incorrect code (because the compiler may

assume that the variable will never be used). Thus, code that references vari-

ables named ignore or ignored may run differently in Symbolics Common Lisp

than in other implementations of Common Lisp.
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• The scoping rules for special declarations in SCL are compatible with Zetalisp,

and incompatible with the scoping rules specified in CLtL. Some programs will

be affected by this incompatibility, but most will not.

The following three examples illustrate the differences between SCL and the

language specification in CLtL. These examples assume there is no proclamation

of b as a special variable.

Example 1:

(setq b 0)

�

(defun foo ()

  (let ((b 1))

    (let ((b b))

      (declare (special b))

      b)))

(foo) returns 1 in SCL, but returns 0 in Common Lisp. In Common Lisp, the

declaration of b applies to both references to b in (let ((b b)), but in SCL it ap-

plies only to the first reference (the binding), not the second (the initial value

form). 

Example 2:

(defun foo ()

  (let ((b 1))

    (let ((a b))

      (declare (special b))

      (+ a b))))

(foo) returns 1 in SCL, but returns 0 in Common Lisp. In (+ a b), a is 1 and b

is 0 in SCL, but both a and b are 0 in Common Lisp. In (let ((a b)), b refers to

the local variable b in SCL, but refers to the special variable b in Common

Lisp. In (+ a b), b refers to the special variable in both dialects.

Example 3:

(defun foo ()

  (let ((b 1))

    (declare (special b))

    (let ((b 2))

      (locally (declare (special b))

       b))))

(foo) returns 2 in SCL, but 1 in Common Lisp. In SCL special declarations are

pervasive, so the first declaration of b affects both let forms. In Common Lisp,

special declarations are not pervasive for bindings, so only the (let ((b 1)) is af-

fected. This example issues a compiler warning about the incompatibility. This

example also illustrates a bug in the SCL interpreter, which is compatible with

Common Lisp, rather than with the SCL compiler, in this case.
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See CLtL: Section 9.1 and 9.2, Declaration Syntax and Declaration Specifiers.

• SCL supports packages that are unavailable in other implementations. CLtL sup-

ports the user, keyword, system, and lisp packages. See CLtL: Chapter 11,

Packages

• Package-name lookup is not case-sensitive. See CLtL: Section 11.3, Translating

Strings to Symbols.

• The constructor does not evaluate defstruct slot initializations in the appropri-

ate lexical environment. See CLtL: Section 19.6, By-position Constructor Func-

tions.

• A top-level form that returns no values does not set the variable *. The variable

* remains unchanged. See CLtL: Section 20.2, The Top-Level Loop.

• Setting the value of *read-base* to greater than 10 causes tokens to fail to be

interpreted as numbers rather than symbols. For example, if *read-base* is set

to 16 (hexadecimal radix), variables with names such as a, b, and face are inter-

preted as symbols rather than numbers. You can set the values of the variables

sys:*read-extended-ibase-signed-number* and sys:*read-extended-ibase-

unsigned-number* to t to cause the tokens to always be interpreted as num-

bers. See CLtL: Section 21.1.2, Parsing of Numbers and Symbols.

• The set-syntax-from-char function can copy most character attributes rather

than being limited to the standard character syntax types shown in Table 22-1,

Standard Character Syntax Types. See CLtL: Section 21.1.5, The Readtable.

• SCL does not implement the requirements in Table 22-3, Standard Constituent

Character Attributes, about illegal character attributes. Changing the syntactic

type of space, tab, backspace, newline (also called return), linefeed, page, or

rubout to constituent or non-terminating macro type does not signal an error. See

CLtL: Section 21.1.2, Parsing of Numbers and Symbols.

• Symbols in the *features* list must be keywords in order for the reader macros

#+ and #- to work with them. The #+ and #- reader macros read the feature that

follows them in the keyword package, not in the package that is currently in ef-

fect. See CLtL: Section 22.1.4, Standard Dispatching Macro Character Syntax.

• In SCL, the concept of alphabetic case is not meaningful for a character with a

non-zero bits field. Instead, SCL has the concept of a Shift bit, which is only

meaningful for alphabetic characters with non-zero control, meta, super or hyper

bits. The Shift bit indicates whether the Shift key was pressed when the charac-

ter was typed on the keyboard. Note that the Shift bit is not affected by the

Caps Lock key, nor by any software caps lock, for example Zmacs’ Electric Shift

Lock mode. This is why the Shift bit is not the same as alphabetic case.
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In SCL, however, the printed representations #\control-meta-A and #\control-

meta-\a both read as the same character. The character whose printed represen-

tation is #\control-meta-shift-A is produced by (make-char #\a (+ char-control-

bit char-meta-bit)).

This difference is not considered a serious portability problem, since the avail-

ability of character modifier bits on keyboards is implementation-dependent. See

CLtL: Section 22.1.6, What the Print Function Produces.

• #\newline prints as #\Return. See CLtL: Section 22.1.6, What the Print Function

Produces.

• Slashification is controlled by which tokens the reader interprets as numbers.

Only symbols whose printed representations are actual numbers get slashified on

printing. A symbol whose printed representation is a potential number and not

an actual number does not get slashified. Potential numbers are described in

Section 22.1.2, Parsing of Numbers and Symbols, in CLtL. See CLtL: Section

22.1.6, What the Print Function Produces.

• Pathname components of :unspecific for the device, directory, type, and version

components are allowed in some circumstances. 

Pathname hosts are instances; they are not strings, or lists of strings. The host

component of a pathname should be considered to be a structured component.

See CLtL: Section 23.1.2, Pathname Functions.

• load uses *load-pathname-defaults* as the default for filename, rather than

*default-pathname-defaults*. *load-pathname-defaults* is a Zetalisp defaults-

alist, whereas *default-pathname-defaults* is a Common Lisp default path-

name.

load ignores the :print argument. 

See CLtL: Section 23.5, Loading Files.

• The following functions can signal an error such as "no directory":

file-author

file-length

file-namestring

file-position

file-write-date

probe-file�

See CLtL: Section 23.3, Renaming, Deleting, and Other File Operations

• The following functions may not work with all kinds of streams:
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make-broadcast-stream

make-string-input-stream

make-string-output-stream

make-synonym-stream

make-two-way-stream�

See CLtL: Chapter 21, Streams.

• The function dribble makes a new read-eval-print loop. It does not work by side-

effect, as do some other Common Lisp implementations. See CLtL: Section 25.3,

Debugging Tools. 

� Compatible Differences and Clarifications

The following is a list of implementation decisions made in SCL when Common

Lisp: The Language (CLtL) left unspecified the implementation of certain func-

tions.

If you plan to write programs to port to other systems, you should be aware of

these implementation differences. If you are unaware of these differences, you

could write a program that relies on some functionality that will not port to anoth-

er system.

Most of these implementation decisions are compatible; incompatible cases are in-

dicated.

Each bulleted item includes a description of the differences between our implemen-

tation and that of CLtL, and contains references the chapter or section in CLtL

that discusses the topic.

• The type string is implemented as a subtype of the type common. The type

string-char is not a subtype of the type common.

standard-char is a subtype of string-char, but string-char is not a subtype of

standard-char. See CLtL: Section 2.2.5, String Characters.

• Some uses of the coerce function signal errors. This is not an incompatibility

with CLtL; the following examples are provided only for clarification:

(coerce ’(1 2 3) ’(vector t 3))

Signals an error because the length is specified.

(coerce #\c-A ’string-char)

Signals an error because coerce cannot coerce to a string-char.

(coerce 22/7 ’(float 0 10))

Signals an error because coerce cannot coerce to a subrange of floats. See

CLtL: Section 4.8, Type Conversion Function.
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• The compiler ignores the value-type argument in the the special form. See CLtL:

Section 9.1, Declaration Syntax.

• The functions rename-package, intern, and find-symbol allow package names

in places where CLtL requires packages. See CLtL: Section 11.7, Package System

Functions and Variables.

• The substitute, substitute-if, and substitute-if-not functions are not optimized

for detecting the case in which they can return just their argument. See CLtL:

Section 14.3, Modifying Sequences.

• All sequence and list functions that take a two-argument predicate (such as

:test and :test-not) always keep the order of arguments to the predicate consis-

tent with the order of arguments to the sequence or list function. Thus, when

there are two sequences and the predicate is called with one item of each, the

first argument to the predicate is an element of the first sequence. When there

is an item and a sequence, the first argument to the predicate is the item.

When there is one sequence and two elements of it are compared, they are al-

ways compared in the order they appear in the sequence. See CLtL: Chapter 14,

Sequences, and Chapter 15, Lists.

• #p is used for printing pathnames and is followed by a string in double quotes.

Common Lisp does not specify a specific syntax for printing objects of type

pathname. However, every implementation must arrange to print a pathname in

such a way that, within the same implementation of Common Lisp, the function

read can construct from the printed representation an equivalent instance of the

pathname object. See CLtL: Section 22.1.3, Macro Characters.

• The read-char function echoes the character read from the input stream if it is

the terminal. See CLtL: Section 22.2.3, Formatted Output to Character Streams.

• The second value returned by read-from-string is at most the length of the

string; it is never one greater than the length of the string. See CLtL: Section

22.2.3, Formatted Output to Character Streams.

• The ~T directive does not know the column position when the output is directed

to a file. See CLtL: Section 22.2.3, Formatted Output to Character Streams.

• The directory function returns nil if no files matching pathname are found, but

still signals an error for other file lookup errors, such as not finding the direc-

tory. See CLtL: Section 23.5, Accessing Directories.

• The function dribble calls zl:dribble-start and zl:dribble-end. This means that

dribble does not return until the dribbling has been completed, because it cre-

ates a new command loop to do the dribbling. See CLtL: Section 25.3, Debug-

ging Tools.
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� Using Package Prefixes in Portable Programs

Using the cl: Package Prefix

Using the package prefix cl: in your portable programs can cause compatibility

problems. If you make a package that shadows any or all Lisp symbols, and you

then try to print some symbol from the Lisp package, it prints as cl:symbol-name.

CLtL says that it should print as lisp:symbol-name.

If you are writing a portable program, and a package prefix is needed, you should

always write lisp:symbol-name, rather than cl:symbol-name, since the compiler rec-

ognizes the package name lisp. 

Using a Genera-Specific Package

SCL supports some packages that are unavailable in other systems. CLtL commits

to supporting the following packages: user, keyword, system, and lisp. If you

write programs that you plan to port to other systems, you should not use func-

tions in a SCL-specific package.

See CLtL: Chapter 11, Packages. 




