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1. SCANDI Bladet 2. SCAN TMs1

3. SCANDO ' 4.  SCANTMS2

5. SCANCLK GND 6. IRLO[1]

7. IRLO[O] 8. IRLO[3]

8. IRLO[2] GND 10.  INTOUT*
11.  MADI0] 12.  MAD[1]
13.  MAD[2] GND 14.  MAD[3]
15. MAD[4] 16. MAD[5]
17. MAD[6] GND 18.  MAD([7]
19. MAD[8] 20. MAD(9]
21.  MADI[10] Blade2 22.  MAD[11]
23. MAD[12] 24.  MAD[13]
25. MAD[14] +5V 26. MAD[15]
27. MADI[16] 28. MAD[17]
29. MADI[18] +5V 30. MAD[19]
31.  MAD[20] 32.  MAD[21]
33. MAD[22] +5V 34.  MAD([23]
35. MAD[24] 36. MAD([25]
37. MAD[26] Y., 38. MAD[27]
39. MAD[28] | 40. MAD([29]
41.  MAD[30] Blade3 42.  MADI[31]
43. MBRO* 44.  MSH*
45. MBGO* GND 46. MIH*
47. MCLKO. 48. MRTY*
49. MCLK1 GND 50. , MRDY*
51. MCLK2 52.- MERR*
53. MCLK3 GND 54. MAS*
55. MBR1* 56. MBB*
57. MBG1* GND 58. RESERVED1
59. MAD[32] 60. MAD(33]
61. MAD(34] Blade4 62. MADI(35]
63. MAD([36] 64. MADI[37]
65. MAD(38] +5V 66. MAD[39]
67. MAD[40] 68. MAD[41]
69. MAD[42] +5V 70.  MAD[43]
71.  MAD[44] 72.  MAD[45]
73.  MAD[46] +5V 74.  MAD[47]
75. MAD[48] 76.  MADI[49)
77.  MAD[50] +5V 78. MAD[51]
79. MAD[52] 80. MAD(53]
81. MAD[54] Blade5 82. MADI[55]
83. MAD[56] 84. MAD[57]
85. MAD[58] GND 86. MAD[59]
87. MAD[60] 88. MAD[61]
89. MADI[62] GND 90. MAD(63]
91. RESERVEDZ2 92. IRL1[0]
93. IRL1[1] GND 94. IRL1[2]
95. IRL1[3] - 96. AERR*
§7. RSTIN~* GND g8. ID[1]
Q9. 10(2] 100, 1D(3]

Table 12 - MBus pin out
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|——-283.82 {3.300]——

3.7 (.125])— 77.47 (3.050)
5.08 (.200] I

PIN 1 OF CONNECTOR
(CONNECTOR ON FAR SIDE)
SEE DETAIL A

[ 2.54 (.100]

"

4/10/91

COMPONENTS OR LEADS
ARE TO REMAIN WITHIN
INDICATED ENVELOPE

f ! L T
2x 4.65 [.18 100-PIN -
70.89 53.34 65 [-183] ' 1 CONNECTOR MALE
{2.791] {2.100] ' ' 16.45 [.647] HICH
68.58 2X 4.65 [.183] I i\ AMP P/N 1213544
14670 78,36 [2~27)?°l 2% 9.30 [.365) ! - fggp%:%?s OR LEADS
'3.085 ' MAIN WITHIN
{5.776] [3.085] :r_T 2% 8.00 [315] | INDICATED ENVELQPE
B ___E ° g )
1
f |
137.16 B \ COMPONENT KEEPQUT v
[5.400] coMPONENTS OR LEADS—’l ;;RS'DE ONLY 1
2.00 [.079] MAX HEIGHT l |
IN THIS AREA (FAR SIDE) [ e
REF | 2x 9.30 [.366] ro 4.00 [.157]
_____-____ f __JJ_.E .00 (. )
\f I f
6% 33.81 [ (L
465 [183)— — UNPJTBEL (-150] 2.00 [.079)
— }— 4.00 (.157]
72.82 {2.867] —
15.32 [603] - |}—
COMPONENT AND TRACE KEZPOUT
8OTH SIDES
6%
COMPONENTS OR LEADS ARE
TO REMAIN WITHIN INDICATED
ENVELCPE
15.32 [.603)
e f e FogaFF .
L ]
N A - ———— — }
4.00 [.157]3 H )
REF
COMPCNENTS OR LEADS ARE
TO REMAIN WITHIN INDICATED
ENVELOPE ; .
2.54 [.100
ve [-100]
120X ¢0.64 [.025]
1.27 [.050]
TYp
PIN 2
S=obs =—7.4:~—:-.—:~::f
3% 1.27 [os0]] t‘_-r-v_—s—:"—_—-z:'—-_.z-"._—_-',?:s_%{_
PIN 1
DETAIL A
SCALE: 2/1
N N! TH PECIFT

1. METRIC DIMENSIONS ARE PRIMARY QOIMENSIONS. ENGUSH
DIMENSIONS, ENCLOSED IN BRACKETS, ARE REFERENCE ONLY.

2. ALL HOLES TO BE PLATED THRU. HOLE DIAMETERS REFER
TO FINISHED HOLE SIZE.

Figure 17 - Full Size MBus module
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83.82 [3.3c0]——
77.47 [3.050}

3.17 (.125]—}

PIN 1 QF CONNECTOR
(CONNECTOR ON FAR SIOE})
SEE DETAIL A

2,54 [.100]

s.08 [.200]

|

Lax 465 [.183] ‘I

|
|
i I = Esg){[.gxg:g] (.366] l\
ﬁ_'—”——'— l:f_r [_

4X 23.81 {.150] UNPLATED

70.87 {2.790]
5334 {2.100]

2x 4.65 (.183] ~ —
15.32 [.603]

COMPONENT AND TRACE KEEPOUT
BOTH SICES
4x

COMPONENTS OR LZADS ARE
TO REMAIN WITHIN INDICATED
ENVELOPE

~ 15,32 [.503]
REF

- - i
4.00 [.157] 2 [ SR, W S
REF )
COMPONENTS OR LEADS ARE

TO EMAIN WITHIN INDICATED
ENVELOPE

2.54 [.100]] ‘-—
P
—

1 27 {.050])

i "

4/10/91

CCMPQONENTS OR LEADS
ARE TO REMAIN WITHIN
INDICATED ENVELCPE

100-PIR
CONNECTOR" MALE
16.45 [.647] HIGH
AMP B/N 121354-4

ccvpo»asms‘oa LEACS
Z TO REMAIN WITHIN
mo:carso ENVELOPE

-“—400 (.157]

120X <Q.64 [.025]

3x 1.27 [oso]-*

Ni NLE! THERW! PECIFICD:

1. METRIC DIMENSICNS ARE PRIMARY DIMENSICNS. EN(.iUSH
DIMENSIONS, ENCLOSED IN BRACKETS, ARE REFZRENCE ONLY.

2. ALL HOLES TO BE PLATED THRU. HOLE DIAMETEZRS REFER
TO FINISHED HOLE SIZE.

Figure 18 - Half Size MBus module
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Chapter 8

8. - Timing Diagram Examples

The following idealized wave-form diagrams are included in order to assist in understanding the
operations of the MBus. In most of the waveforms, the bus is shown already granted to one of the
masters. All waveforms also show MBB* asserting with MAS™ and de-asserting immediately after the
last acknowledgment is received. This is not a requirement of the MBus protocol. It should also be noted
that only two masters are depicted using the MBus (MBR1~, MBR2"). However, this can be extended to
as many masters as can be supported electrically (this was discussed in Chapter 6). A line intermediate
between high and low is shown on MAD(63:0]. This indicates the time that the MAD lines are driven by
holding amplifiers and does not indicate that an indeterminate voltage leve! is permitted on MAD([63:0].
The cross hatched areas indicate the bus is being driven to valid logic levels but the data is indetermi-
nate.

t 31 33 3 C3 33 43 313 2

C1 3 €3

3 3 3
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8.1. Word Read

w11 L i .1

MAS~

00 S

AN

MAD[63:0]

MROY*

MRTY™

MERR~"

mMmBB*

© MBRI1”

MBR2°

MBG1~

MBG2*

o wld o =] klw = |a f o] je =

LT BT B o Bl L Bl I

T
]
1}
]
3
L
]
[}
T
1]
]

[ B A

Waveform 1 - Word Read

Waveform 1 depicts a simple word read transaction by a master who has already been granted
the bus (master 1). The number of cycles between the address cycle and the data cycle(s) of all the
waveforms in this section is implementation dependent. Waveform 1 shows a minimum memory latency

of 2 cycles.

8.2. Word Write

e [T L[ L [ L[ L____

MAS*~

ol

ADDR X 00

N

MAD{63:0]

yd
——y

MROY*

MRTY~

MERR"~

\Vi=1=0e

MBR1~*

MBR2~

MBG1-

MBG2-

o old o ale b o] « jJo 4 «|lele -

4
]
T
J
L3
1]
L
L
L]
Ll
T
1]
.

-« o]l « o]l ke « | -

t

!

]

t
—
13

]

1]

[

]

]

L
—
1

1)

Waveform 2 - Word Write

Waveform 2 depicts a simple word write transaction by a master who has already been granted
the bus (master 1). Note how the data is immediately driven onto the MAD lines after the address cycle
and that the bus has been granted to master 1 prior to the beginning of the transaction. The slave
response time is implementation dependent. Waveform 2 depicts the minimum write tirr'xq‘of 2 cycles.

’

- 40 -




3

[

J U3

(

[ 1

]

t

t 3

t 3 € 3

—/
——d

L

( 3

-3

3] 31 3 (3

SPARC MBus =/

Interface Specification A oaT
8.3. Burst Read with No Delays
0 1 2 3 s 5 8 7
ew L[ L L L L L LI
mass + v L« T ' : ' : :

MAD(63:0} D0 X o1 X 0z X 03 Y
MRDY* : : : ¢ L : : : : —
MARTY- g g T r : . .
e ——
mes* ' L ' : : : ' I
veA- | : : . : : i
MBR2" § : ' ' ' : v :
meG1- | : : 'r ' ' ! !
vac2” 7 . 3 : : I : :

Waveform 3 - Burst Read with No Delays
Waveform 3 depicts a burst read operation of 32 bytes where the slave device supplies the data

at the maximum rate possible. Note again that the bus has been granted to master 1 prior to the begin-
ning of the transaction. :

8.4. Burst Read with Delays

4] 1 2 3 4 5 6 7 8 9 10 11 12
MAS® s l t f ] 3 ] ' ] ] ' s ] [
MAD[63:0] - L (AGOR ) : e " =
L ] 4 1 ’ [ 0 1) 4
MRDY* s ' ' ' ' ' ' | ' l ' [
N‘RTY. L L3 L3 13 L 1] T 11 T T L 3 L 11
(] 1 ] 1 3 1] 1] lJ \] 1] ] ’ J
MERR. L 1 1] L t L] 1] ] 1 % 1] 1] ]
MBB8* ¢ T [ t [ t v t [ t t ' ' ' r"—
L (] 1 1 1 & 1 L L 1 L ) S 1
MBR1*
] L] ] 13 ] 1] L] ] 11 [} L} 1] ]
MB8R2~" 1] t ] . t ] ] ] ] B} ] [}
] ] t ] L3 1] 1] ] L 1] 14 1] ]
MBG1~*
& 14 { 11 1 1 i 13 1 14 i L3 T
MBG2° ' 1 [ [ 1 ' [} ' ' ¢ ' '
. ' t ' ' . [ t ' ' ¢ ' '

Waveform 4 - Burst Read with Delays

Waveform 4 depicts a burst read operation of 32 bytes where the slave device cannot supply the
data at the maximum rate possible. Wait states are inserted between each 8-byte quantity by simply
de-asserting MRDY "™ for an arbitrary number of cycles (Wavefarm 4 shows 1 cycle of delay inserted
between each 8-byte transfer as well as 3 wait states before the burst response begins). Note again that
the bus has been granted to master 1 prior to the beginning of the transaction. )

R

’
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8.5. Burst Write with No Delays
0 1 2 3 4 5 6
e [ 1 [ L | [ [ L L L
MAS*® | Tl | : : : ;

MAD(63:0] - L AR X 00 X D1 ) GERT )4 03 ——
MRDY*~ : : : ] : : : : —
MATY" ¢ i ’ ' ' ¥ T
p— : ; l = , ,

mas- i | ; ! ' 4 v
meRI~ | . , . N ) :
MBR2" : ) : : : .
MBG1® : : : : : : '
MBG2® | . : ) ) . :

Waveform 5 - Burst Write with No Delays

Waveform 5 depicts a burst write operation of 32 bytes where the slave device accepts the data
at the maximum rate paossible. Note again that the bus has been granted to master 1 prior to the begin-
ning of the transaction. Note also how the next double word to be written is driven in the cycle immedi-
ately after MRDY " asserts. '

8.6. Burst Write with Delays

0 1

2
o [T L L]
Mass T L [

MAD(63:0] ———————( ADCR X

w
)
)
~N
®
©
=
=

1

- -

8
<
9
5
8
>
8

O
1

L1

MRDY~

]

L}
MRTY=- ©
MESR* :
]

|

meg-

MBR1~

MBR2~

MBG1*

M8G2-

o wld o wa]le b o = Je o4 =i~

)
3
t
L}
]
&
L
1)
]
L3
1
L]

w mled o mle kle o | o «f-
w o]ld @« wle ble == o «|-

0 0
[} )
T T
! 3
] 1}
] 1
1 L
] s
] t
. ]
T T
L] ]
L} L}

T
13
L}
L}
k4
]
1}
13
LY
L}
L}

* old » wle |l o |- <

Waveform 6 - Burst Write with Delays

Waveform 6 depicts a burst write aperation of 32 bytes where the slave device cannot accept
the data at the maximum rate possible. Wait states are inserted between each 8-byte quantity by simply
de-asserting MRDY~ for an arbitrary number of cycles (Waveform 6 shows 1 cycle of delay inserted
between each 8-byte transfer as well as 2 wait states before the beginning of the burst). Note again that
the bus has been granted to master 1 prior to the beginning of the transaction. Also note how the next
double word to be written is driven in the cycle immediately after MRDY ™~ asserts. ~r

3
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8.7. Relinquish and Retry
0 1 2 a 4 5 5 7 8 9 10
ew LI L L L L L L Lt
Mas® v L« f : : ' v | ) ) '
MAD(53:0] : : : ‘ : : " :J__\‘ADDR‘ - : e
MROY* . ' ‘ p ' ' ' ‘ :
MRTY> 7 T 4 T ] | ¥ ’ i T 7
mens T, : . . T
mes- ' L : ' : L ' : ' W
oy
MBR2" ' ' ' ' ] ] t ' ' s
MeGT : ————————————————.,
MBG2* | . : : . ! ‘ ' ' ' :

Waveform 7 - Relinquish and Retry

Waveform 7 depicts a Read operation in which the addressed slave needed to inform the master
that it should relinquish the bus and retry the operation again once bus ownership has been attained. In
the case shown above, the master in question maintained ownership as no one else wanted the bus.
Thus, only one dead cycle is present between the Read transactions.

8.8. Retry
0 1 2 3 4 5 6 7 8 9 10
ew L L LI LT
MAS~ ] [ ] l ] [ ' ' I ' l t ' '
[l [ ' - 3 '
MAD(63:0] %

t 1} O 1 1] [ t [ i
MROY™ . ' ¢ e | s ' ' v ' [
MRTY" T T T T T l ) [ T T T T T

1 ' ) [ ) t t [} ' ] '
MEAR™ ¢ t ¢ ' }—-&—I [ t t [ '

Mes~ c"——u'l ] [ t [ ' 1 ' ' * r—

L 1 1 1 1 2 ! 1 ! I It
MBR1*

] [ ' [ ] ' ' [l ' ' [
MBR2~ 3 ' 1 ' ' ' I : ' '

' . ' ' t ' ' [ [ [ '
MBG1~

| + L8 14 13 13 ¥ 13 T L3 13
MBG2<° ) ' [ ' ' ' t s ' ]

' [ ' ' t [ ' [ [ [} '

Waveform 8 - Retry

Waveform 8 depicts a Read operation in which the addressed slave needed to inform the master
that it should retry the operation immediately. The master must always keep MBB~ asserted upon a
Retry acknowledgment. However, there must be at least one dead cycle between the Retry acknowledg-
ment and the ensuing MAS™ as is shown in Waveform 8. This dead cycle must be present for both read
and write operations which were Retried. ~

2
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8.9. ERROR1 (Bus Error)
] 1 2 3 4 5 8 7
L L LI 1

cuw | L P ! 1 ] L
ast T ]
MAD(63:0] =————————{ ADDOR (i

MROY*

1
'
MRTY"
'
'
i

- =ld = == Fl~ =~ 4 =]-]- ~|-

T T
' ]
Lo L} 14
t [ '
MERR" ' ' N A B
mas- ' s s I
L L 1 1 | T
MBR1~
t 1 [} 13 [}
MBR2~ 3 ' ] ]
' ' ' [ s
MBG1~
— | S— T T T T
MBG2~ , ' ' s ' [
0 [ ' [

Waveform 9 - ERROR1 (Bus Error)

Waveform 9 depicts an operation in which the addressed slave detected some sort of a bus
error or other system implementation dependent error.

8.10. ERROR2 (Timeout)

o} 1 2 3 n-1 n n+1
ewfp oL -4 7 - +— t— L1
MAS~ s [ ' ! ' ] [ ' '
MaD(63:0] —————(ADOR Y RE
1] L] 0 ] [ O 0 []
MRDY~ ' ' ' ' [ ' t
MARTY~ r T T T T T T L____.__[—_—‘
' ' t [ ' ' ' s
MEAR™ | ] [ s [ [ [ L__._a__r_——
IYEER g [ ' ] s t s ] r—__'
t ! 2 ' : 1 It 1
MBR1"
' v [ ' i . ' [
MBR2" @ ] ] ¢ [ t ] 1}
¢ [ t [ [ [ [l ¢
MBG1-
r T T T T Y T T
MBG2~ ' ' ' t [ ' [l
[ [} ' ' ) ' s s

Waveform 10 - ERROR2 (Timeout)

Waveform 10 depicts an operation in which a timeout or other system implementation depen-
dent error occurred.
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8.11. ERROR3 (Uncorrectable)

MAS*
MAD(63:0]
MRDY*
MRTY*
MERR"
MmBs*
MBR1~
MBR2*
MBG1®

MBG2~

Rev 1.2

4/10/91

o 1 4 8 7 » 8 9
o L { N NN L SR ) S N S .
I——I—L_ll i [} [} ] 3 } t
:———-—-—(: : i ')C 00 X © X" b2 »——
' ' ' . [ . v L v . . l
, , , , , , , , o SR
f———n—[ t ' ' ] ' t [ . l_—

Waveform 11 - ERROR3 (Uncorrectable)

Waveform 11 depicts an operation in which an uncorrectable or other system implementation
dependent error occurred. Note how the Uncorrectable acknowledgment came on the third data trans-
fer of a burst operation. The transaction must be immediately aborted upon detection of an error ac-
knowledgment. This also applies to ERROR1 and ERROR2 acknowledgements to burst transactions.

8.12.

MAS*~
MAD(63:0]
MRDY~
MRTY*
MERR"
mBea*
MSR1*

MBR2*

MBG1*

MBG2~ .

Initial Bus Arbitration

] 1 2 3 4 5 3 8 g
TS s W s AN s S s N s A s S s A B |
' [ ' v | ' s ' ' '
! ! ! d @_—_—'_Q FECE O o 06—
s ! ' ' ' ' ' ¢ ' l ' !
i 0 T T [ . ' ' ' - [——
. gy : : : i : : :

Waveform 12 - Initial Bus Arbitration

Waveform 12 depicts a master requesting an idle bus in order to perform a word read. This
actually depicts the first transaction after reset, as there is no grant initially, a condition that can only
occur at that time.
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8.13. Arbitration from Master 1 to Master 2
Q 1 2 3 ~4 5 8 7 8 9 10 .
ew [ L4 L4 L L o 4 LI 7 71T 1L_
MAS* -——n—l__-] ' ' ' v | ' ' s
MAD(63:0] - - : - -
MRDY" : : : . : ] : | : : : : [—:]_—'
MRTY~ ° r r ’ T T T T v T T
vERR" | , , A—— , , I , , :
mess T ' | ! ' ' L I ' ' ' il B
e
MBR2" v O ' | ' ' ' : ' :
MeG1* ' ' | : - = *
MBG2° : : : : L ,,g?;'égg;gg . ;ccwtg;agfggﬂigg : : :

Waveform 13 — Arbitration from Master 1 to Master 2

Waveform 13 depicts how the bus ownership is turned over to another master. It was assumed
that the bus was already parked on master 1 and module 1 decides to start a cycle during cycle 1 by
asserting MBB~ and MAS~. Later Master 2 requests and is granted the bus. After MBB" is de-asserted
Master 2 drives MAS~™ and MBB". At this time the grant is parked on master 2.

8.14. Arbitration with Multiple Requests

o] 1 2 3 4 S 5 7 3 9 10 11 12
MAS”™ s [ : l t ] t l t I t ] [l [ t l . t
MAD(s3:0] RO (B8 RO Yo B0 (RO Y 5
' t T [ 0 [ T [ T [ T t T
MRDY™ t . [ [ ) I v t ' l ' I [ t [ ! . [
MRTY. 12 L3 L3 L3 L3 T T L3 T i L3 T T
[ [ [ [ 3 ' ' [ ' ' ' 1 '
MERR™ ' [ ' 1 t s [ ' t ' t '
meg* @ O l [ ' ' r——t—L e ' ] r_lL . ' ' l'_
L s ! 1 ' t ' 1 1 3 (- [ '
M8R1 ] t ] ] ] - [ ] [} t t L +
MBR2" s [} [ ' ' ! ] 3 v b ' ' ] s | 3 [}
MBG- ' : [ f 1 ] t . ' I . —
r T T 1 ' N T T T T 13 [} 1]
MBG2” , . [l [ » [ |'r ' ' ' 3 ] t 3 1
' v t [ [ . t v [ ' [ s v

Waveform 14 - Arbitration with Multiple Requests

Waveform 14 depicts arbitration when two masters are continually requesting bus ownership.
Initially the bus has been parked on master 1 who then performs a transaction by asserting MBB~ and
MAS*. Master 2 then acquires the bus followed by master 1 again. Note how the requests must be
de-asserted once the grants are abtained. .
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8.15. Locked Cycles

bt

MAS*® ' [ t I ] ' ' [ [ ] l . l ' ] ] t
MAO(63:0] - —(oor)———C Y00 y———(FooA X 50 —
' [ T ' g T ' T T O T T
MRDY~ ' ' ' ' ' [} ! ' l ' 3 1 [} ] l ] I
MRTY" | Sma— T T T T L T T T 13 T T T T
' ' ' [ ' ' ' ' t ' ] 3 t [
MERR"™ ] s t ' ' t s 1 ' ' s t '
mas* |—_—;—L ] ¢ ' ] ] ' [ ] 3 3 t ] '_—
1 L & L 1 1 ) 4 1 1 L ] 1 1 1
MBR1"
3 ' t ' ' t ' v [ ' [ [ ' :
MBR2" : t [ l 3 . [ ] [ ] s ] s [} [
[ ' — ~
meGi- | ' ‘T
r T T T T T ' ' ' s [ ] s [
MBG2® ' ' ] s L ' ' ' ' ' ' v ' '
' t [ ] t ' [ [ ' ' s [ ' '

Waveform 15 - Locked Cycles
Waveform 15 depicts a read cycle followed by a locked write cycle. Note how MBB”* does not

de-assert until the completion of the write operation, despite re-arbitration of the bus as in the above
case. .

8.16. Coherent Read of Shared Data

0 1 2 3 4 5 6 7 8 9 10 11 12 13
MAS*® e l t [ [ ¢ t ] ' [} ] t ] . T
MAD({63:0] - ~—(AGORA y—— X o0 X 01 X 02 X 03 »—m—
] 1] 3 1] . 0 0 : 0 ¢ 0 1 O 4
MROY= v . ' ' i ' [ ' o | ' ' ] ' ‘
MRW- 4 + LY L3 T v L3 T 11 L4 14 1) 13 13
' { ' 3 ' ' v 1 ] [ [} t ' '
MERR™ | ' [} ' ' ' v ' ' : t ' ' T
mes- ¢ 0 [ [ t ' ] t ' . t ' ' [ ] I——
L 1 L 1 L L 1 4 3 L L L L. )
MBR1~
¢ t s ' [ ' ' ' ' [ ' ' [ [
MBR2" ' ] t . s t ) ' ' [} [} ) '
' [ [ s s ' [ t [ ' [ ' s [
MBG1°
| S— T T T T =7 T T T T Y T T
MBG2* ' ' [ [ ' t [ [ ' [ ' 3 [
MSH" 1—! ' [ T T T T T T v
' ' ' ¢ ' 1 [ ] ' [ ] v ' 1
MIH® ' ' t [ ' Au v ¢ s ' t ' '
¢ [l [ ' 3 [ 1 ' [ . [ ' ] t

Waveform 16 - Coherent Read of Shared Data

Waveform 16 depicts a Coherent Read in which the requested data actually exists in one (or
mare) other cache(s) in the system, but is not owned by any cache(s). These caches wi!l assert MSH-
on cycle A+2 (or A+7 - refer to Appendix B) as shown.
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8.17. Coherent Read of Owned Data (long-latency memory)
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Waveform 17 — Coherent Read of Owned Data (long-latency memory)

Waveform 17 depicts a Coherent Read operation in which the requested data is owned by anoth-
er cache in the system. The owning cache (as well as any other cache with the same data) will assert
MSH™ during cycle A+2 (or A+7 - refer to Appendix B}). Only the owning cache will assert MIH~.

8.18. Coherent Read of Owned Data (fast memory)
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Waveform 18 - Coherent Read of Owned Data (fast memory)

Waveform 18 depicts a Coherent Read operation in which the requested data is owned by anoth-
er cache in the system. The owning cache (as well as any other cache with the same data) will assert
MSH~ during cycle A+2 (or A+7 - refer to Appendix B). Only the owning cache will assert MIH™ and then
supply the data. In this case above, memory has already begun to respond and thus must get off the bus
immediately to allow the cache which owns the data to drive the bus.
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Waveform 19 - Coherent Write and Invalidate

Waveform 19 depicts a Coherent Write and Invalidate operation in which one or more other
caches in the system actually contained the data. The other cache(s) will not assert MSH™ during this
transaction, but will always invalidate the block.

8.20. Coherent Invalidate
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Waveform 20 - Coherent Invalidate

Waveform 20 depicts a Coherent Invalidate operation. Memory (or second level cache), in this
case, will assert MRDY~ during A+2 (or later - refer to Appendix B). System caches which contain the
data being invalidated will not assert MSH" during this transaction.
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8.21. Coherent Read and Invalidate (of shared data)
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Waveform 21 - Coherent Read and Invalidate (of shared data)

Waveform 21 depicts a Coherent Read and Invalidate operation in w.hich' no system cache
owned the piece of data. All caches in the system will invalidate their copies of the block upon detection
of a Coherent Read and Invalidate transaction. Note how the MSH™ line does not assert for CRI.

8.22. Coherent Read and Invalidate (of owned data)
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Waveform 22 - Coherent Read and Invalidate (of owned data)

Waveform 22 depicts a Coherent Read and Invalidate operation in which a system cache owned
the piece of data and so supplied it. It then invalidated its copy. Other caches also invalidated their
copies.
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Chapter 9

9. Revision History

Revision Date Comments
0.7 1-20-89 First Revision of document. Preliminary copy release exter-
nally.
0.7.1 3-20-89 LEVEL 1:

changed to a "SPARC" MBus.

fixed block size to 328

distinguished between LOCK and MBB

added more wavefarms

LEVEL 2:

incorparated intoc one physical document w/ L1
added invalidate and excl rd and replace xaction
changed to a write-invalidate protocot

split flush into TLB and cache flush

added more waveforms

0.8 7-5-89 Temporary Document. Never made it to release.

0.9 7-9-89 Interspersed both Level 1 and Level 2 information throughout
entire document as opposed to separate chapters for each.
Added several new chapters. Added more transaction types
and changed scme transacticn type names. Removed all
bus-based flushing from the document. Refined the electri-
cal specs for Level 1 systems. Added address map and con-
cept of MPR. Added MID lines. SUP bit. Removed dbiwd
wrapping support.

1.0 7-31-89 ° Put dblwd wrapping backin. Separated IRL/ID lines. Added
more definitions. implementation notes {Appendix B). clari-
fied MBB* semantics as well as LOCK. General clarification
addition. '

1.1 3-29-90 Constrained R&R to first ack in L-2 systems. Only MBB*
needs to go from driven high to tri-state in one cycle. Wave-
forms were re-done. Added Tl to appendix A. Miscella-
neous clarifications throughout document.

1.2 1-18-91 Modified timecut mechanism toinclude MAS*. Defined Invali-
date acknowledgement more accurately. Covered R&R on
write-back case. Added Scanand INTOUT * signals. General
clarifications. Extended Electrical Spec and added Mechani-
cal Spec.

Table 13 - Revision History
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Appendix A

A. MBus Port Register Assignments

MVEND Vendor

0x0 Fujitsu

Ox1 Cypress/Ross

0x2 Reserved

0x3 LS! Logic

Ox4 Ti

OxF reserved
for systems

Table 14 - MPR Vendor Assignment
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Appendix B

B. Notes to Implementors

There are many things of significance to the design of MBus components scattered throughout
the specification or implied by the specification. These notes are to help clarify some of these issues for

implementors.
B.1. Memory_ Controllers

Memory controllers will probably only be slave devices and so should not need to connect MBR™,
MBG™ or MBB". Memoary controllers will not issue R&R acknowledgments, although Retry acknowledg-
ments may prove useful to ECC memory controllers. Memory controllers must accommodate wrapped
requests and it is recommended that far compatibility they accommaodate all transfer sizes allowed for by
the specification. The only signals muitiplexed on MAD during the address phase of interest to most
controllers are TYPE and SIZE. :

To enhance compatibility, it is recommended that memory controllers accommodate Level 2
functionality. This means they should recognize all Coherent transactions. Generally this does not add
complexity beyond identifying the transaction, as most Coherent transactions are simple reads and
writes from the memory controllers perspective. Beyond this, Level 2 compatibility involves two signifi-
cant details. First, during Coherent Read and Coherent Read and Invalidate transactions the MIH " signal
may be asserted. Memory controllers interpret this signal as telling them to immediately abort the
transaction. Secondly, the Caherent Invalidate Transaction must be acknowledged by memory. This
means that if multiple memory controller configurations or systems with coherent bus adaptors and
memory controllers are allowed, there must be 2 means to disable memory controllers as the source of
acknowledgment. This might be through a pin or a bit in a configuration register. Also the acknowledg-
ment should occur on A+2 or later. Memory Controllers may choose to provide a programmable cycle
count for the invalidate acknowledgments in order to accommodate a wider range of modules and sys-
tem configurations. There is no need for memory controllers to observe MSH". Write and Coherent
Write and Invalidate transactions are identical to Memory controllers i.e. all sizes are supported. Also, to
support modules with non-standard MIH™ and MSH*® timing and coherent bus adaptors, memaory control-
lers should consider providing a programmable means to vary the minimum acknowledgement timing to
Caoherent Read and Ccherent Read and Invalidate Transactions.

A detail of memory controiler design is how errors are handled, and how data is delivered in the
presence of errors. MBus does not specify system details of this nature. A conservative memary design
will always ensure that incorrect data is never transferred across the MBus. This may cost perfarmance
as generally it takes time to detect errors. Less conservative designs may report errors after incarrect
data is delivered, either synchronously with an error acknowledgment, or asynchronously via the AERR~
signal. This approach may not be acceptable to many computer vendors. Processor Modules that are
using the “wrapping” feature to re-start the processor early will have no error recovery mechanism with
either the late synchronous or asynchronous error reponting approach.

Nz
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B.2. /O Adapters

An MBus I/0 adapter can be broken down into 2 Master section and a Slave section , the MBus
I/0 adapter slave part being the processor to I/0 bus connection for programmed I/0, and the MBus 1/Q
adapter master port being the /O bus to memory connection for DMA. Most of the complexity is in the
I/0 adapter MBus master section. A generic MBus I/O master port requires an /0 MMU (probably a
SPARC reference MMU or a derivative) and, possibly an I/O cache.

A central issue in I/O adapter design is I/0 consistency i.e. ensuring that both I/0 and processors
do not obtain stale data. I/0 consistency must be handled by software cache flushing in Level 1 MBus
systems, as there is no Invalidate transaction for level 1 MBus. For level 2 systems, data consistency
can be handled completely by hardware, or by a combination of hardware and software, depending on
the sophistication of the I/O adapter MBus master interface. Complete hardware handling of data con-
sistency can be accomplished in several ways, depending on the performance and complexity goals.
The highest performance (and highest complexity) design uses an I/O cache that has control logic and
dual directories similar to a Level 2 processor module. A simpler design does not use dual directories
and implements consistency by using locked read modify write sequences for DMA write transfers with
SIZE other than 32-bytes. This design provides efficient cache consistent transfer for 32-byte DMA
transactions and less efficient cache consistent transfer for DMA transactions of less than 32-bytes.

The MBus /O adapter slave port will generally turn MBus transactions into equivalent 1/O bus
transactions. A typical /0O bus might be VMEbus or SBus. I/0 adapter slave ports will probably issue R&R
acknowledgments to deal with slow devices and “deadlocks”, and so will need the circuitry to handle
R&R time-out and ID capture. 1/0 adapter slave ports will also probably need to observe the LOCK bit on
MAD in conjunction with MBB~, and forward a LOCK indication to the “other” bus interface. MBus IO
adapter slave ports may also choose to buffer MBus write transactions (i.e. return an immediate ac-
knowledgment to the MBus master before completing the write transaction}. If they do, it is desirable
that there be a means to turn off this feature, and also a means to flush the write buffers.

B.3. Reflective Memory Support

Reflective Memory operaticns, where memory is updated with the new data that appears on
MBus during Coherent Read transactions that assert MiH~, are permitted but not required. Itis recom-
mended that caches have the ability to perform their part of Reflective transactions as an‘option that can
be enabled when they are installed in a system where the memory supports this feature. (This implies the
ability of the cache asserting MIH™ during a Coherent Read transaction to ensure the cache line be
marked as clean after it has supplied the data, because memory will be updated with the most recently
modified data). Memory controllers, by observing MIH*, and waiting for the subsequent data, can obtain
the most recent data and update memory. The memory controller design will probably need a queue,
and the system designer should ensure that this queue can never overflow. i.e. the maximum rate at
which reflected data is delivered to memory should not exceed the memory system’s abitity to absorb it.
MBus has no mechanism for memory to control the arrival rate of data transactions when caches are
supplying the data.
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B.4. Second Level Cache Issues

Second level caches are implicitly supported by MBus transactions. There are several kinds of
systems with second level caches envisaged using MBus. The most generic system uses the Lavel 2
protocols and can support several CPU modules at the first level sharing a common second level cache
as shown in Figure 19. This requires a complex second level cache which has two competing ports and
must resolve deadlock situations. There are several complexities that these designs must deal with. .
R&R on Write (write-back) and R&R on Coherent Invalidate both produce a similar problem, in that a
temporary state is created where thers is no "owner”. Memory is assumed the default owner, which
causes a failure of consistency. A uniform solution is for interfaces that issue R&R 6n coherent transac-
tions to assume temporary ownership of the line until the R&R is resolved. This circuitry would detect
accesses to the line the R&R was outstanding against, and R&R those accesses. Another problem con-
cerns Coherent Read and Invalidate. Should a Coherent Read and Invalidate transaction result in MIH~
being asserted from a cache on the same bus, the second level cache must capture the Coherent
Invalidate in a queue and forward it to other caches when appropriate..

processor processor processor processor
cache 1 cache 1 cache 1 cache 1
MBus 1 MBus 2
cache 2 cache 2
MBus 3
Memory

Figure 19 - Genefio Multi-Level Cache System

A simpler use of second level caches has one processor per second level cache and does not
use the complete level 2 protocal. This type of system is shown in Figure 20. It requires MBus CPU
modules that can support a “write through” cache made and accept an Invalidate transaction. With this
level of support it is possible to ensure that lines that are in the First level cache are always present in the
second level cache (inclusion), and so all logic associated with coherence will be included at the second

’
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level cache. The Invalidate exceeds Level 1 requirements and the write through capability is additional to
the minimum requirements of Level 2.This design point is useful where the size of the first level cache is
constrained and the system performance would otherwise be limited by the resulting miss rates and a

saturated MBus.

O 3 C3 3 33 t3a 3

Processor Processor Processor Processor
Cache 1 Cache 1 Cache 1 Cache 1
restricted MBus restricted MBus
Cache 2 Cache 2 Cache 2 Cache 2

MBus
Memory I/O

Figure 20 - Simple Second-Level Cache System

Another simple use of a2 second leve! cache is shown in Figure' 21. Because MBus is a circuit
switched bus, its ultimate performance is limited by memory latency. When designing large memory
systems, it is difficult to achieve low latency. A solution is to use a large second level cache in front of
memory that essentially acts as a buffer to memory. This allows latencies close to the minimum MBus
latency to be achieved. :
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Processor Processor Processor Processor

Cache Cache Cache Cache

MBus

Cache 2 /0

Large
Memory
System

Figure 21 - Simple Second-Level Cache Example 2
B.5. Timing of MSH* and MIH*

MBus timing is specified with MSH™ and or MIH* assertion on A+2 i.e. 2 cycles after MAS™ is
received. This assumes a *dual directory” structure where there is a dedicated duplicated set of tags as
part of the MBus “snoop” logic. and operation synchronous to the MBus clock. If itis desired not to have
a dual directory or there is a need to synchronize from a clock other than the MBus clock, then the A+2
timing need not be met as long as some restrictions apply. The basic restriction is that memory acknowl-
edgements should never occur before MIH™. This restriction limits the minimum latency of MBus memory
systems to the MIH™ timing. Systems that wish to accommodate modules with non-standard MIH~ timing
need to guarantee minimum memoaory latencies relative to these modules via a programmable minimum
memory CR or CRI latency mechanism implemented in the memory contraller(s).

In general, modules with variable MSH"/MIH” timing will also need to restrict the maximum rate at
which Coherent Invalidates might arrive. This is accomplished via a programmable delay on acknowl-
edgements to Cl transacticns, implemented in the memory controller(s).

Supporting variable timing condenses to a few rules. If you are a cache performing a CR or CHt,
then source MIH* and MSH" for a single cycle as soon as you can and at the same time. Specify the
worst case MIH™/MSH™ timing from MAS*® (e.g. A+7) in order that system designers know what minimum
read latency to program memory controllers with. If you are a snooping cache(either intervening or
non-intervening), then observe MIH*/MSH" in the interval from MAS™+2, to when you cbserve your first
MRDY". If you are memory, do not issue MRDY " (ar any acknowledgement) to CR and CRI transactions
before you can observe MIH" from the slowest module in a system.
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B.6. Compatibility Issues

A number of compatibility issues are covered in the specification. Here are just a few compatibili-
ty issues which might easily be overlooked:

Lo

L

@ Wrapping: Generally, compatibility on wrapping is an issue between a module and
memory or I/O devices. Memory should support wrapped requests and this resolves
most compatibility issues. An exception is Level 2 Processor Modules that do not issue
wrapped requests and do not wish to deliver data to wrapped Coherent Read transac-
tions when they assert MIH". Modules that issue wrapped Coherent Read transactions
will clearly not mix in a system with modules of this nature.

® MSH=* and MIH”* Timing: For madules that generate MIH* and MSH" on other than
A+2, Memory must have a minimum latency greater than or equal to the MIH™ and MSH~
timing. Modules with A+2 timing should mix with modules with variable timing.

@ Virtual Address bits in MAD: Modules that do not generate the Virtual Address “sup-
er-set” bits on Coherent transactions cannot mix with modules that use direct mapped
virtual addressed caches.
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