4 sun

microsystems

Sun™ Common Lisp
Reference Guide

Part Number 800-1518-10
Revision: A February 2, 1987

Credits and Trademarks

Sun Workstation is a registered trademark of Sun Microsystems, Inc.

SunStation, Sun Microsystems, SunCore, SunWindows, SunView, DVMA, and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX System V zre trademarks of AT&T Information Systems, Inc.
Intel and Multibus are registered trademarks of Intel Corporation.

DEC, PDP, VT, and VAX are registered trademarks of Digital Equipment Corporation.

Copyright © 1986 by Sun Microsystems, Inc.

Copyright © 1986 by Lucid, Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. Published with modifications by Sun
Microsystems, Inc., under license from Lucid, Inc. No part of this publication may be reproduced, stored in a retrieval
system, translated, transcribed, or transmitted, in any form, or by any means—manual, electric, electronic, electromagnetic,
mechanical, chemical, optical, or otherwise—without prior explicit written permission from Sun Microsystems, Inc. and
Lucid, Inc.

About This Book

This book presents a complete technical description of Sun Common Lisp. It is designed as
a reference tool. Programmers who use this book should have some knowledge of general
Lisp programming concepts. This book is not intended to be a tutorial on Common Lisp.
Rather, it is a comprehensive description and specification of the Common Lisp language
and extensions to Common Lisp by Lucid, Inc.

About This Book iii

Organization of This Book

The Sun Common Lisp Reference Manual has twenty-four chapters and two appendixes.

Chapter 1. “Introduction” contains a brief overview of Common Lisp. It also describes
the notational conventions used throughout this book.

Chapter 2. “Data Types” introduces the data types provided by Common Lisp.
Chapter 3. “Type Specifiers” describes the use of type specifiers in designating types.

Chapter 4. “Program Structure” describes the organization of Common Lisp programs
in terms of forms and functions.

Chapter 5. “Control Structure” describes the constructs available for controlling the
flow of program execution and evaluation.

Chapter 6. “Macros” describes the use of macros and the macro text replacement
facility.

Chapter 7. “The Evaluator” discusses the evaluation of Common Lisp programs.

Chapter 8. “Declarations” describes the use of declarations in tailoring a program to
the needs of the user and the system.

Chapter 9. “Predicates” describes the use of predicate functions and logical operations.
Chapter 10. “Symbols” describes the use of symbol data objects.

Chapter 11. “Packages” describes the use of packages in organizing the program name
space.

Chapter 12. “Numbers” describes the numerical data types and operations on numbers.

Chapter 13. “Characters” describes the character data type and operations on
characters.

Chapter 14. “Sequences” describes the sequence data type and operations on sequences.
Chapter 15. “Lists” describes the list data type and operations on lists.

Chapter 16. “Arrays” describes the array data types and operations on arrays and
vectors. '

Chapter 17. “Strings” describes the string data type and operations on strings.

Chapter 18. “Hash Tables” describes the hash table data type and operations on hash
tables.

Chapter 19. “Structures” describes the creation of user-defined data types and the
operations upon them.

Chapter 20. “Streams” describes the use of streams in program input and output
operations.

iv Sun Common Lisp Reference Manual

Chapter 21. “Input/Output” describes the reading and printing operations of Common
Lisp, including formatting options.

Chapter 22. “File System Interface” describes the facilities for accessing files and
communicating with the file system.

Chapter 23. “Errors” describes error-signaling operations.

Chapter 24. “Environmental Features” briefly describes facilities for compilation,
debugging, documentation, and other functions that interface with the environment.
For a complete technical description of Sun Common Lisp, the user is referred to the
Sun Common Lisp User’s Guide.

Appendix A. “Alphabetical Listing of Common Lisp Functions” is a list of all Common
Lisp functions, macros, constants, variables, and special forms, including all extensions
to Common Lisp described in this manual.

Appendix B. “Extensions to Common Lisp” lists the extensions to Common Lisp
described in this manual.

About This Book v

Related Publications

The following books contain related information that the user may find helpful.
Sun Common Lisp User’s Guide is a guide to using the special features and functions of
Sun Common Lisp.

Common Lisp: The Language by Guy L. Steele Jr. (Digital Press) is the basic
implementation specification for the language.

Programming in Common Lisp by Rodney A. Brooks (John Wiley & Sons) is an
introductory text for those who are new to Lisp.

vi Sun Common Lisp Reference Manual

Contents

Chapter 1. Introduction 1-1
About Common Lisp. 1-3
Notational Conventions and Syntaxuuo.... 1-4
Chapter 2. Data Types 2-1
About Data Types e 2-3
Relationships Among Common Lisp Data Types 2-9
Hierarchy of Data Types. e 2-10
Printed Representations of Data Types 2-11
Chapter 3. Type Specifiers 3-1
About Type Specifiers. 3-3
Categories of Operations. it 3-8
COBTCR . . . ot e et et et e e e e e e 3-9
FeTa3 ¢4 o ¢} 200 3-11
defbype 3-12
SUD Y PED e 3-13
BYPe-Of . . 3-14
Y PEP - - e 3-15
Chapter 4. Program Structure 4-1
About Program Structure 4-5
Forms....... e 4-6
FURCHIONSttt e e e 4-9
Categories of Operationst 4-13
APPIY . .. 4-15
bounAD 4-16
call-arguments-limit. 4-17
compiled-function-p. 4-18
ConStanbD 4-19
defconstant e 4-20

Contents vii

A4

i

i

i

define-function 4-21

defparameter 4-22
defun 4-23
defvar e 4-25
eval-When 4-26
fboundpo e e 4-27
fmakunbound 4-28
funcall 4-29
function 4-30
fUNCHIOND o e 4-31
Identity 4-32
lambda-list-keywords 4-33
lambda-parameters-limit 4-34
makunbound 4-35
QUOBE . . .t e e 4-36
sredefinition-action® 4-37
special-form-p 4-39
symbol-function 4-40
symbol-value 4-41
Chapter 5. Control Structure 5-1
About Control Structure B8
Categories of Operations0ttt 5-9
bloCK . . e 5-11
o7 T 5-12
catCh ... e 5-13
compiler-let 5-14
COMA . . . 5-16
define-modify-macro 5-18
define-setf-method 5-19
defsetf e 5-21
do, do% 5-23
dolist 5-25
dotimes 5-26
CCABE, CCBSBE . . . vttt ee e ettt et e e e e e e 5-27
etypecase, ctypecase 5-28
et . . 5-29
get-setf-method, get-setf-method-multiple-value. 5-30
o 5-31
5 5-32
Jabels . . . o 5-33
e, et . .. 5-34
JoOD . o 5-35

Sun Common Lisp Reference Manual

macrolet 5-36

multiple-value-bind 5-37
multiple-value-call 5-38
multiple-value-list 5-39
multiple-value-progl 5-40
multiple-value-setq 5-41
multiple-values-limit 5-42
PIOE, PTOBX . . . ottt et e e e e e e 5-43
PrOgl . . e 5-45
PIOBZ . . e e 5-46
03 0. + 5-47
PrOBY o e 5-48
return, return-from 5-49
rotatef 5-50
BEb . . 5-51
setf, psetf 5-52
Setq, PSetq e 5-53
shiftf 5-54
tagbody 5-55
ChroW . . . 5-56
BYPECASE e e 5-57
Unless 5-58
unwind-protect e 5-59
ValUeS e 5-60
values-list 5-61
When ... 5-62
Chapter 6. Macros 6-1
About Macros 6-3
Categories of Operations e 6-8
define-macro e 6-9
defmacro 6-10
macro-function 6-12
macroexpand, macroexpand-1. 6-13
xmacroexpand-hooks*. 6-15
Chapter 7. The Evaluator 7-1
About the Evaluator 7-3
Categories of Operations. i 7-4
By HE) KB L L e 7-5
A 7-6
- 7-7

Contents ix

T 7-8

decache-eval T-9
LY 7-10
evalhook, applyhook 7-11
xevalhook#, *applyhook#. 7-13
grindef 7-15
ADLOINP Gk 7-16
BOULCE-COUC\ttt e ittt ettt e e et e 7-17
Chapter 8. Declarations 8-1
About Declarations 8-3
Categoriesof Operations, 8-5
declare 8-6
locally 8-7
PrOClalm.o 8-8
the 8-9
Chapter 9. Predicates 9-1
About Predicates. 9-3
Categoriesof Operations. i 94
AN 9-5
<o 9-6
eqQl L e 9-7
equal ... 9-8
eqQUAlD ... e 9-9
Dl . 9-10
DOb . . e e 9-11
) 9-12
b 9-13
Chapter 10. Symbols 10-1
About Symbols 10-3
Categories of Operations i 104
copy-symbol 10-5
BONSYINL. . . ottt et e e e e e e e e e e e e 10-6
BEMbEINID L e e e 10-7
BEb . 10-8
getf, get-properties 10-9
keywordp 10-10
make-symbol e 10-11

x Sun Common Lisp Reference Manual

53 041 o) oo« J0 P 10-13
symbol-name 10-14
symbol-package 10-15
symbol-plist 10-16
symbolp 10-17
Chapter 11. Packages 11-1
About Packages 11-3
Categories of Operations i, 11-7
delete-package 11-8
do-symbols, do-external-symbols, do-all-symbols 11-9
EXPOTE . .. e 11-11
find-all-symbols 11-12
find-package 11-13
find-symbol 11-14
IMPOTrt 11-15
in-package 11-16
1 (= « R 11-17
list-all-packages 11-18
maKe-package 11-19
smodules® 11-20
¥packages 11-21
PACKAGE-NAMEttt 11-22
package-nicknames 11-23
package-shadowing-symbols L Lol 11-24
package-use-list 11-25
package-used-by-list. 11-26
PACKABED . . . oot 11-27
PrOVIde 11-28
rename-package 11-29
FEQUITE oottt ettt e e e e e e 11-30
shadow 11-32
shadowing-import 11-33
UNEXPOTE . . oottt e e e 11-34
100111 01 -3 o + 11-35
UNUSE-PACKAZE 11-36
USE-PACKAEE i 11-37

Contents xi

Chapter 12. Numbers 12-1

About Numbers. 12-5
Categoriesof Operations i 12-7
K e e 12-11
S 12-12
e 12-13
L 12-14
e 12-15
K, Koy >y Do e 12-16
T 12-17
AbS . . 12-18
ash . .. 12-19
asin, acos, atan 12-20

boole, boole-clr, boole-set, boole-1, boole-2, boole-c1, boole-c2, boole-and,
boole-ior, boole-xor, boole-eqv, boole-nand, boole-nor, boole-andc1,

boole-andc2, boole-orcl, boole-orc2 L. 12-21
byte, byte-size, byte-position. L 12-24
CI8 Lo e 12-25
COMMIPLEX e e 12-26
COMPIEXD . . o oottt e 12-27
COMJUBAbEottt e 12-28
decode-float, integer-decode-float L. 12-29
deposit-field 12-31
Apb . 12-32
evenp, OddP e e e 12-33
XD, EXPb . .. e e e e 12-34
BXOUmD e 12-35
Hoat 12-36
float-digits, float-precision, float-radix 12-37
fBoat-sign e 12-38
Hoatp e 12-39
floor, ceiling, flloor, feceiling 12-40
O . o 12-41
incf, deck 12-42
integer-length 12-43
11 (173 .3 oo 12-44
lem . . 12-45
Idb .. 12-46
Idb-test e 1247
108 « o e e 12-48
logand, logandcl, logandc2, logeqv, logior, lognand, lognor, logorcl, logorc2,

JOEXOT . . 12-49
logbitpo 12-51

xii Sun Common Lisp Reference Manual

logecount 12-52

lognot. 12-53
logtest, 12-54
make-random-state 12-55
mask-field 12-56
INAX, T . o oottt e et et e e e e e e e e 12-57
minusp, Plusp 12-58
MOd, TEIMt 12-59
most-positive-fixnum, most-negative-fixnum. 12-60

most-positive-short-float, most-positive-single-float, most-positive-
double-float, most-positive-long-float, least-positive-short-float,
least-positive-single-float, least-positive-double-float,
least-positive-long-float, least-negative-short-float, least-negative-
single-float, least-negative-double-float, least-negative-long-float,
most-negative-short-float, most-negative-single-float,

most-negative-double-float, most-negative-long-float 12-61
NUMDbBEID 12-63
numerator, denominator 12-64
Phase 12-65
s S 12-66
FADNdOINo 12-67
srandom-state* 12-68
random-state-p 12-69
rational, rationalize 12-70
rationalp 12-71
realpart, imagpart 12-72
scale-float. 12-73

short-float-epsilon, single-float-epsilon, double-float-epsilon,
long-float-epsilon, short-float-negative-epsilon, single-float-negative-epsilon,

double-float-negative-epsilon, long-float-negative-epsilon 12-74
SIGIUIMLttt et e et e e e 12-76
BIN, COS, bAN 12-77
sinh, cosh, tanh, asinh, acosh, atanh 12-78
BQrt, ISQEt 12-79
truncate, round, ftruncate, fround L 12-80
ZETOP - o vt ettt e e e e e 12-81
Chapter 13. Characters 13-1
About Characters 13-3
Categories of Operations. 13-5
alpha-char-p. e 13-7
alphanumericp 13-8
char-bit e 13-9

Contents xiii

char-bits-limit 13-11
char-code L 13-12
char-code-limit. 13-13
char-control-bit, char-meta-bit, char-super-bit, char-hyper-bit 13-14
char-font e 13-15
char-font-limit 13-16
char-int e 13-17
char-name, name-char 13-18
char-upcase, char-downcase. 13-20
char=, char/=, char<, char<=, char>, char>=, char-equal, char-not-equal,

char-lessp, char-not-greaterp, char-greaterp, char-not-lessp 13-21
character e e 13-23
characterp e 13-24
code-char 13-25
digit-char 13-26
digit-char-p e 13-27
graphic-char-p 13-28
Int-char e 13-29
make-char 13-30
set-char-bit 13-31
standard-char-p 13-32
string-char-p 13-33
upper-case-p, lower-case-p, both-case-p 13-34
Chapter 14. Sequences 14-1
About Sequences e 14-3
Categoriesof Operations. it 144
concatenate e 14-6
COPY=BOQ - &+ o e v et ettt et e e e e e e e e e e e e e e e e e 14-7
count, count-if, count-if-not 14-8
) 14-9
every, some, notevery, NOtanyttt 14-10
1 14-11
find, find-if, find-if-not 14-12
length. 14-13
MaKe-SEQUEIICEttt 14-14
44T o 14-15
¢4 1<) -4 14-16
mismatch e 14-17
position, position-if, position-if-not L Lo o 14-18
TedUCE 14-20
remove, remove-if, remove-if-not, delete, delete-if, delete-if-not 14-21

xiv Sun Common Lisp Reference Manual

remove-duplicates, delete-duplicates 14-23

replace 14-24
TEVETSBE, NTEVETSE . . . o . vt ettt e et e et e e e et e e e et et e e e e 14-25
Search 14-26
sort, stable-sort L. 14-27
subseq 14-28
substitute, substitute-if, substitute-it-not, nsubstitute, nsubstitute-if,

nsubstitute-if-not 14-29
Chapter 15. Lists 15-1
About Lists e 15-5
Categories of Operationsttt 15-6
ACOMIBttt ettt e e e e e e e e e 15-9
Ad)OIN e 15-10
append 15-11
assoc, assoc-if, assoc-if-not 15-12
T o 15-13
Yo+ 15-14
butlast, nbutlast 15-15
CaL, CAT e 15-16
o3 Y- O 15-18
L 1T o Y 15-19
copy-alist e 15-20
copy-list 15-21
COPY-tE e e e e e 15-22
=3 + Yo § » 2 15-23
first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth......... 15-24
intersection, nintersection 15-25
Jast . . e 15-26
I . . 15-27
Bist, BBt . o o oo 15-28
list-length 15-29
list-reverse, list-nreverse il i 15-30
717 o P 15-31
make-list e 15-32
mapcar, maplist, mapc, mapl, mapcan, mapcon 15-33
member, member-if, member-if-not o ol 15-35
¢ (=) ¢ o Lo [15-36
TICOMIC . o v ot e et et e e e e e e e e e e e e e 15-37
13 =T o o) + U 15-38
017 ¢ T 15-39
nthedr e 15-40
null. e 15-41

Contents xv

POP -+t e e e 15-43
PUSh . . 15-44
pushnew 15-45
rassoc, rassoc-if, rassoc-if-not L L 15-46
TSt . . . 15-47
FEVAPPENA e 15-48
rplaca, rplacd. 15-49
set-difference, nset-difference. 15-50
set-exclusive-or, nset-exclusive-or 15-51
sublis, nsublis 15-52
subsetp 15-53
subst, subst-if, subst-if-not, nsubst, nsubst-if, nsubst-if-not 15-54
Ballp . . 15-56
tree-equal. 15-57
URION, MUMIOI ottt e et e et e et e e e e e 15-58
Chapter 16. Arrays 16-1
About Arrays 16-3
Categories of Operations. i 16-5
adjust-arTay 16-7
adjustable-array-p 16-10
arel .. 16-11
array-dimensiont 16-12
array-dimension-limit 16-13
array-dimensions 16-14
array-element-type 16-15
array-has-fill-pointer-p. 16-16
array-in-bounds-p 16-17
array-rank 16-18
array-rank-limit 16-19
array-row-major-indeX 16-20
array-total-size. 16-21
array-total-size-limit 16-22
- o £ T 16-23
bit, 8bit 1624
bit-and, bit-andcl, bit-andc2, bit-eqv, bit-ior, bit-orcl, bit-orc2, bit-nand,

bit-nor, bit-Xor 16-25
bit-not e 16-27
bit-vector-p L. P 16-28
fill-pointer 1629
MAKe-ATITaY e 16-30
simple-bit-vector-p 16-33

xvi Sun Common Lisp Reference Manual

BVEES . . . e 16-35
VECHOT L e e 16-36
VECHOT-POP . . . o vttt ettt et e e e 16-37
vector-push, vector-push-extend 16-38
D27 o) o » J5S 16—40
Chapter 17. Strings 17-1
About Strings 17-3
Categoriesof Operations. 174
char, schar e e 17-6
make-String e 17-7
SIMPle-String-P e e 17-8
BUTIII g e 17-9
string<, string<=, string>, string>=, string/=, string-lessp,

string-not-greaterp, string-greaterp, string-not-lessp, string-not-equal 17-10
string=, string-equal 17-12
string-trim, string-left-trim, string-right-trim 17-13
string-upcase, string-downcase, string-capitalize, nstring-upcase,

nstring-downcase, nstring-capitalize 17-14
11 0 414 o 17-16
Chapter 18. Hash Tables 18-1
About Hash Tables 18-3
Categories of Operations it 18-4
clrthash 18-5
gethash 18-6
hash-table-count 18-7
hash-table-p 18-8
make-hash-table. 18-9
maphash e 18-11
remhash 18-12
sxhash 18-13
Chapter 19. Structures 19-1
About Structures. 19-3
Categories of Operations.ottt .. 19-10
defstruct 19-11

Contents xvii

Xv

i

i

i

Chapter 20. Streams 20-1
About Streams 20-3
Categories of Operations.ttt 20-4
CloBe . . . 20-6
*debug-10% 20-7
kerror-outpub® 20-8
get-output-stream-string 20-9
Input-stream-p. 20-10
make-broadcast-stream 20-11
make-concatenated-stream 20-12
make-echo-stream 20-13
make-string-input-stream 20-14
make-string-output-stream 20~-15
make-Synonym-stream 20-16
make-two-Way-Stream 20-17
output-stream-p. e 20-18
xquery-io* e e e e e e e e 20-19
xstandard-input® 20-20
#standard-outpub* 20-21
stream-element-type 20-22
SETEAIMID e e e 20-23
FEETIMILAI-I0%ot e 20-24
ktrace-outputb® e 20-25
with-input-from-string. 20-26
with-open-stream 20-27
with-output-to-string. 20-28
Chapter 21. Input/Output 21-1
About Input/Output 21-5
The Printed Representation of Common Lisp Objects 21-6
Reading the Representations of Common Lisp Objects 21-11
Formatted OQutput 21-22
Summary of Format Directives 21-38
Categoriesof Operationst 21-42
clear-Input e 21-45
clear-outputb 21-46
copy-readtable 21-47
finish-output, force-output 21-48
format 2149
get-dispatch-macro-character 21-50
get-macro-character. 21-51

Sun Common Lisp Reference Manual

xignore-extra-right-parens* 21-52

listen 21-53
make-dispatch-macro-character. 21-54
Parse-Integer 21-55
Peek-char 21-56
KPEINE-BITAY* oot e 21-57
sprint-base*, *print-radix* 21-58
KPFINE-CASE* 21-60
sprint-circlex 21-61
KPIING-@8CAPEE i 21-62
*PLIN-GENSYIN¥ttt 21-63
sprint-level, print-length* 21-64
sprint-pretty*, *pp-line-length* 21-65
*PFINt-StTUCtUTE® 21-66
read, read-preserving-whitespace 21-67
sread-base* 21-69
read-byte 21-70
read-char 21-71
read-char-no-hang 21-72
sread-default-float-format* 21-73
read-delimited-list 21-74
read-from-string. 21-75
read-line. 21-76
H1EAd-SUPPIESS, 21-77
xreadtable* 21-79
readtablep 21-80
set-dispatch-macro-character. 21-81
set-macro-character 21-82
set-syntax-from-char 21-83
terpri, fresh-line. 21-84
unread-char 21-85
write, prinl, princ, print, pprint 21-86
write-byte 21-90
write-char 21-91
write-line, write-string. 21-92
write-to-string, prinl-to-string, princ-to-string 21-93
Y-OI-D-P, YES~OT-NIO-P . . . ¢ s et ettt et e et et e e e e 21-96
Chapter 22. File System Interface 22-1
About the File System Interface 22-3
Categoriesof Operations.0, 22-4
xdefault-pathname-defaults* 22-6
delete-file e 22-7

Contents xix

AIeCtOTY i e 22-8

enough-namestring 22-9
file-author e 22-10
file-length e 22-11
file-posSition e 22-12
file-write-date 22-13
load, *load-verbosex [P 22-14
make-pathname 22-16
" merge-pathnames 22-17
namestring, file-namestring, directory-namestring, host-namestring 22-19
(<3 <3 + K 22-20
Parse-NamestIINgttt e 22-22
pathname. RN 22-24
pathname-host, pathname-device, pathname-directory, pathname-name,
pathname-type, pathname-version 22-25
pathnamep. 22-26
probe-file 22-27
rename-file 22-28
TrUENAINE e 22-29
user-homedir-pathname 22-30
with-open-file. 22-31
Chapter 23. Errors 23-1
About Errors e 23-3
Categoriesof Operations. it 234
BSSETt e e e e 23-5
break 23-6
=3 4) 23-7
check-type 23-8
=3 9 L) 23-9
warn, *break-on-warnings* L 23-10
Chapter 24. Environmental Features 24-1
About Environmental Features 24-3
Categoriesof Operations. it 24-5
AbOrt 24-7
apropos, apropos-list L. L 24-8
arglist. e 24-9
compile 24-10
compile-file 24-11
decode-universal-time 24-13
describe 24-14

xx Sun Common Lisp Reference Manual

documentation. 24-16
dribble 24-17
ed . .. e 24-18
encode-universal-time 24-20
*features® 24-21
get-decoded-time 24-22
get-internal-real-time. 24-23
get-internal-run-time 24-24
get-universal-time 24-25
INSPeCt o 24-26
internal-time-units-per-second 24-27
lisp-implementation-type, lisp-implementation-version. 24-28
machine-type, machine-version, machine-instance 24-29
QUIb .. 24-30
oY ¢ O 24-31
short-site-name, long-site-name. 24-32
sleep 24-33
software-type, software-version 24-34
BE D . . e e e e 24-35
131 ++ L= 24-36
trace, untrace e 24-37

Appendix A. Alphabetical Listing of Common Lisp

Functions A-1
Appendix B. Extensions to Common Lisp B-1
Program Structure B-1
MaCTos . . .o e B-1
The Evaluator B-1
PacKages i B-1
NUumbers o e B-2
LSS o e B-2
Input/Output B-2
Environmental Features e B-2
Index X-1

Contents xxi

xxii Sun Common Lisp Reference Manual

Figures

2-1. Relationships among the Common Lisp data types 2-10
3-1. Table of Atomic Type Specifiers 3-3
4-1. Common Lisp Special Forms 4-7
5-1. Table of Place Constructors 5-6
13-1. 7-bit ASCII Table e 13-3
13-2. Printing Characters 13-4
19-1. Syntax for Defstruct 19-3
21-1. Standard Character Syntax Types 21-13
21-2. Standard Constituent Character Attributes 21-14
21-3. Standard # Dispatching Macro Character Syntax 21-21

Figures xxiii

xxiv Sun Common Lisp Reference Manual

Chapter 1. Introduction

Introduction 1-1

Chapter 1. Introduction

About Common Lisp. e 1-3
The Languagettt e 1-3
The Environment e 1-3

Notational Conventions and Syntax i 1-4
Syntactic Descriptions e 14
Examples and Code. 1-6

*1-2 Sun Common Lisp Reference Manual

About Common Lisp

Sun Common Lisp is a complete implementation of the Common Lisp language. It includes
all of the Common Lisp functions, constants, variables, macros, and special forms. In
addition, Sun Common Lisp provides many functions as extensions to Common Lisp and
as enhancements to the user environment.

The Language

Common Lisp is a functional, or applicative, language. It has two salient features—a
list-based representation of data and an evaluator, or interpreter, that treats some lists as

programs.

Lisp functions are equivalent to subroutines or procedures in other languages. In contrast
to most other languages, Lisp functions can create and return arbitrary data objects as
their values. These data objects can then be passed as arguments to other functions.

Programs and data have the same form in Lisp, and thus Lisp programs can easily process
other Lisp programs. Programs are sequences of expressions composed of function calls.

While iteration, or looping, as a control structure is common in most programming
languages, Lisp makes extensive use of recursion.

The Environment

The Lisp system is an interactive one. When the user types an expression at the terminal,
Lisp evaluates it and displays the result automatically. Most other programming languages
compute by compiling and running programs. Lisp computes by evaluating the expressions
that are typed to it.

Sun Common Lisp has a compiler that compiles Lisp code into machine code. User
programs may run more efficiently as a result.

Debugging in Lisp can be done as a program is written. Every expression typed to Lisp
is evaluated, and therefore at each stage of testing, the Lisp environment is available for
examining the state of a program and its data structures. Large, complex programs can
be incrementally built and tested.

Lisp manages storage for the user by providing a dynamic heap of storage that is
automatically allocated as needed and then reclaimed, or garbage collected, when no
longer needed.

The process of compiling and debugging programs is discussed at length in the Sun
Common Lisp User’s Guide.

Introduction 1-3

Notational Conventions and Syntax

This manual adheres to a number of notational conventions.

Syntactic Descriptions

The names of all Common Lisp functions, macros, special forms, constants, and variables
are in boldface (max, for example). Names of the parameters are in italics (number, for
example).

The syntactic descriptions of Common Lisp functions are presented using the Common

Lisp lambda list syntax. Lambda lists consist of a series of arguments and lambda list

keywords. The lambda list keywords indicate how arguments are processed; they do not
appear in the actual function call form. In the syntactic descriptions of functions, they

appear in a typewriter font.

m Required parameters appear first, immediately following the function name.

m Any optional parameters are specified next. They are preceded by the &optional
lambda list keyword. Use of the &optional lambda list keyword indicates that
arguments that follow it are optional.

An &rest parameter may be specified next. It is preceded by the &rest lambda list
keyword. Use of the &rest parameter indicates that an indefinite number of arguments
may appear in the function call form and are bound to that parameter.

m The lambda list keyword &key indicates that the function accepts keyword arguments.
The lambda list keyword &key is followed by the keywords that are permitted.
Keywords are symbols preceded by a colon (:start, :end, : count, and so forth). When
the function is called, a keyword argument is specified by giving the keyword itself,
followed by the value that the keyword argument is to have. The keyword-value pairs
may occur in any order in the argument list; they are not constrained by the order of
the keyword parameters in the lambda list.

The first box illustrates the syntactic description of a Common Lisp function. When a
function is called, its name and arguments, except for keyword arguments, must be typed
in the order shown. Arguments may appear across several lines, since carriage-returns and
linefeeds can occur wherever a space can occur and do not have any special meaning to
the Lisp reader (the input-handling part of the Lisp system).

max number &rest more-numbers [Function)]

1-4 Sun Common Lisp Reference Manual

The expressions

(max 1)

(max 2)

(max 1 2 3)

represent syntactically correct calls to the function max.

The syntactic descriptions of Common Lisp macros and special forms are given in an
extended Backus-Naur form (BNF) notation.

A word in italics indicates a syntactic category (for example, symbol, argument,
variable).

Braces, brackets, stars, plus signs, and vertical bars are metasyntactic marks.

Braces, { and }, group what they enclose. Braces may be followed by a star (), which
indicates that what they enclose may appear any number of times or not at all, or they
may be followed by a plus sign (+), which indicates that what is enclosed may appear
any nonzero number of times (that is, must appear at least once).

{z}* zero or more occurrences of z
{z}t one or more occurrences of z

Brackets, [and], indicate that what they enclose is optional and can appear only once.
[z] Zero or one occurrences of z

A vertical bar (|) separates mutually exclusive alternatives.

The symbol ::= means “is defined by.” It indicates that the term on the left side is
defined by the expression on the right.

The boxed examples that follow illustrate the syntactic descriptions for macros and special
forms. While functions are called according to a uniform syntax, the syntax of macros and
special forms tends to vary widely.

This box shows the syntax of a macro:

prog ({var | (var [init])}*) {declaration}* [Macro]
{tag | statement}*

Introduction 1-5

The following is a syntactically correct use of the prog macro:
(prog (x)
(setq x 2)

(return x))

This box shows the syntax of a special form:

if test then [else] [Special Form]

The expressions shown below are syntactically correct calls to the if special form.
Gf t 1 2)
(if t 1)

The next box illustrates the documentation of a global variable. Note that global variables
in Common Lisp by convention have names that begin and end with an asterisk.

sprint-radixs [Variable]

The following box illustrates the documentation of a constant:

pi [Constant]

Examples and Code

The examples represent what is displayed on the screen during interaction with Lisp. The
Common Lisp prompt is given by >. The expression that follows it displays what the user
has entered at the keyboard. This in turn is followed by the response of the Lisp system.
Examples are printed in a typewriter font.

Lisp code in this manual is in lowercase. In general, the Lisp reader converts symbols
into uppercase, and the Lisp system displays its responses in uppercase. Users can write
programs in either uppercase or lowercase, or a combination of the two, whichever is

preferred.

In the text of this manual, everything that would be typed at the keyboard or that would
appear on the terminal screen is typeset in a typewriter font with this exception: an

1-6 Sun Common Lisp Reference Manual

argument or parameter is printed in italics, indicating that it serves as a placeholder for a
real argument value that the user is to supply.

Normal text is set in a roman font.

Numbers, including those appearing in examples, are in decimal format unless explicitly
noted otherwise.

Parentheses stand for themselves. Parentheses enclose lists. Lists may contain zero or
more items, including other lists. Calls to functions, special forms, and macros are lists
and are therefore enclosed in parentheses.

The single quote character (*) is an abbreviation for the Lisp function quote. Thus,
evaluating the Lisp expression ’form is the same as evaluating the expression (quote
form). It means that the form following quote is not evaluated.

The semicolon character (;) indicates the beginning of a comment. A comment extends
from the semicolon to the end of the line.

The #| and |# characters are nested comment characters that may appear in examples of
code. They comment out sections of code.

The #° character is an abbreviation for the Lisp function function. Thus, evaluating
the Lisp expression #’function is the same as evaluating the Lisp expression (function
function). It indicates that the form that follows it is to be interpreted as a function
object.

The # syntax is used in the printed representation of many data types. This syntax and
the Common Lisp data types are introduced in the following chapter.

Introduction 1-7

1-8 Sun Common Lisp Reference Manual

Chapter 2. Data Types

Data Types 2-1

Chapter 2. Data Types

About Data Types 2-3
NUmbers e 2-3
Characters e e e 2-4
Symbols 2-5
Packages 2-5
S eQUEIICES ottt e e e 2-6
LSS e e 2-6
ALY S e e e e e e 2-6
57 41 11 O 2-7
Hash Tables e 2-7
S TUCHUTeS e e e e e 2-7
Readtables e e 2-7
Streammns e e e 2-8
Pathnames e e e 2-8
Random States e 2-8
Functions e 2-8

Relationships Among Common Lisp Data Types. 2-9

Hierarchy of Data Types. i e e 2-10

Printed Representations of Data Types iiiiiuennn.. 2-11
Integers e e e 2-11
RabiOB e 2-11
Floating-Point Numbers e 2-11
Complex Numbers e e 2-11
Characters e e e 2-11
Symbols 2-12
5T 2-12
8 o ¢ T 2-12
2 7 < T 2-12
Bit Vectors e e 2-13
S o'+ V-4 J 2-13
SrUCHUTES 2-13
Pathnames e 2-13
Random States e 2-13
Other Data Types e e 2-13

2—-2 Sun Common Lisp Reference Manual

About Data Types

A data type is a set of objects that satisfy certain criteria or possess certain properties.
Unlike the data types of many programming languages, the data types of Common Lisp
are properties of objects rather than of variables. Types are associated with the objects to
which variables are bound, not with the variables themselves.

Common Lisp data types form a type hierarchy. An object may belong to more than one
such set, and hence to more than one data type. For example, a string of characters is
also a vector and therefore an array; since the vector data type is a subtype of sequence,
a character string is also a sequence. The type t is a supertype of all other types and a
proper subtype of none; it contains all objects. The type nil is a subtype of all other types
and a proper supertype of none. It represents the empty type. There are no objects of
type nil. The type t should not be confused with t, the Lisp object; similarly, the type nil
should not be confused with the object nil. The common data type is a supertype that
contains all of the objects required by the Common Lisp language.

The functions typep and type-of may be used to determine the type of a particular
object. The predicate typep indicates whether an object belongs to a particular type.
The function type-of returns one of the types to which the object belongs. Common Lisp
provides numerous data type predicates to test objects for membership in particular types.

The most common and useful Common Lisp data types are introduced below. Figure 2-1
shows the hierarchical relationship of these types. Associated with each data type is a set
of operations for creating and manipulating objects of that type. The user is referred to
individual chapters of this manual for a more detailed discussion.

Numbers

Integers, ratios, floating-point numbers, and complex numbers are provided as separate
data types. Integers and ratios together constitute a subtype of numbers called rational
numbers. Numbers and numerical operations are discussed in Chapter 12.

Integers

The integer data type consists of fixnums and bignums. The fixnum data type is designed
to allow integers in the range from most-negative-fixnum to most-positive-fixnum to
be represented efficiently, using a fixed number of bits. The fixnum data type is the default
for the representation of integers. The bignum data type is provided to allow for the
representation of integers of arbitrary magnitude. The distinction between fixnums and
bignums is generally not visible to the user. In Sun Common Lisp, the more appropriate
representation is used automatically.

Data Types 2-3

Ratios

Ratios give an exact representation of the mathematical quotient of two integers. Ratios
can be used to avoid the loss of precision that can result from using floating-point numbers.

Rational numbers are represented in canonical form. If the ratio is not an integer,
the canonical representation is a pair of integers, the numerator and denominator, that
represent the rational as a fraction in reduced form. The denominator is always positive.
If the denominator evenly divides the numerator, the rational number is converted to the
resulting integer.

Floating-Point Numbers

Floating-point numbers constitute the type float. Four floating-point number formats
are provided: short-float, single-float, double-float, and long-float. These formats
differ in the precision they provide and in the range of exponents they allow. Sun Common
Lisp represents all four types of floating-point numbers in the single-float format.

When an operation involves both a rational and a floating-point argument, the rational
number is first converted to floating-point format, and then the operation is performed.
This conversion process is called floating-point contagion.

Complex numbers are represented as composite objects consisting of a real part and an
imaginary part. The two parts of a complex number must be of the same noncomplex
type; if they are not, they are automatically converted to the same type, in accordance
with the principle of floating-point contagion. Complex numbers are represented in
canonical form. If a complex number whose components are of type integer or ratio has
an imaginary part whose value is zero, the canonical representation is an integer or ratio
whose value is the same as that of the real part.

Characters

Characters in Common Lisp are data objects that represent printed symbols, such as
letters, or operations for formatting text. Each character has three attributes: code, bits,
and font.

Common Lisp defines a standard character set as a subtype of characters called standard
characters. The standard character set consists of 95 printing characters and the newline
character. The font and bits attributes of all standard characters are zero.

2—4 Sun Common Lisp Reference Manual

String characters are a subtype of characters that can be contained in strings. Strings
are vectors of characters. A string character is any character whose bits and font attributes
are zero. The standard character data type is thus a subtype of the string character data
type, and all of the standard characters can be stored in strings.

The character data type is discussed in Chapter 13.

Symbols

Symbols are data objects with five components: a print name, a value cell, a function
cell, a property list, and a package cell.

Symbols are named data objects. The print name of a symbol is a string that is used to
identify and locate the symbol. Symbols are organized into name spaces called packages.
Symbol names are unique within a package.

The value cell is the cell that holds the current value of the dynamic variable named
by the symbol. A value may be associated with this cell by assignment functions or by
constructs that establish new variable bindings.

The function cell contains the global function definition associated with the symbol.
A function object may be associated with the function cell through the various function
definition constructs.

A property list allows an extensible set of named components to be associated with
a symbol. A component may be any Lisp object. Each successive two elements of the
property list constitute an entry. The first element of an entry is the indicator, or
property name, and the second element is the property value. When a symbol is created,
its property list is empty.

The package cell refers to a package object. A package is a catalogue containing an
index of print names. It is used to locate a symbol.

An important use of symbols is to name other objects, that is, to serve as variables.
Symbols are discussed in Chapter 10.

Packages

A package is a Common Lisp object that specifies a correspondence between print name
strings and symbols. The package facility may be used to create a hierarchical program
name space and to increase program modularity. Packages enable the user to avoid name
conflicts that may arise when separate modules become part of the same system. Packages
are discussed in Chapter 11.

Data Types 2-5

Sequences

Sequences are ordered sets of elements and include both lists and vectors (one-dimensional
arrays). Operations on sequences are provided as general operations that are relevant for
both of these types. The sequence data type is discussed in Chapter 14.

Lists

Lists are sequences of linked elements, called conses (dotted pairs). The list data type
consists of the data types cons and null. The empty list, nil, is the only list object of the
type null. The type null should not be confused with the predicate null. The list data
type includes both true lists and dotted lists.

A cons is an object containing two components, a car and a cdr, which can be any Lisp
objects. Conses in a list are linked by their cdr components. The car components become
the elements of the list. An ordinary, or true, list is terminated by nil, the empty list. A
dotted list is terminated by some non-nil data object.

An association list is a list whose elements are conses. Each cons is regarded as a pair
of associated objects. The car is called the key and the cdr the datum. An association
list can be treated as a mapping from keys to data.

The list data type is discussed in Chapter 15.

Arrays

Arrays are structured objects whose components can be directly accessed by means of
index values. An array can have many dimensions. It is indexed by a sequence of integers
called subscripts. Arrays can share their contents with other arrays and have their size
altered dynamically. Arrays may be general or specialized. A general array can have
elements that are members of any Common Lisp data type. A specialized array is an
array whose elements must all be members of a particular data type.

A vector is a one-dimensional array. Since the vector data type is a subtype of the
sequence data type, a vector is also a sequence. A general vector can have elements
that are members of any Common Lisp data type. A specialized vector is a vector
whose elements must all be members of a particular data type. Strings and bit vectors
are important types of specialized vectors. Strings are vectors whose elements are of the
string character data type. Bit vectors are one-dimensional arrays whose elements are of
the bit data type. A vector can have a fill pointer. A fill pointer is an index that is used
to incrementally fill in the elements of the vector and thus vary the length of the active
portion.

2-6 Sun Common Lisp Reference Manual

A simple array is an array that does not share cells with another array, has no fill
pointer, and whose size cannot be dynamically adjusted. A simple vector is a vector that

is not displaced to another array, has no fill pointer, and whose size cannot be dynamically
adjusted.

Arrays are discussed in Chapter 16.

Strings

Strings are specialized vectors of characters. The string type is identical to the type
(vector string-char). Like all vectors, strings may have fill pointers. Strings are discussed
in Chapter 17.

Hash Tables

Hash tables are Common Lisp objects that provide mappings between other objects.
Each hash table entry is a pair of associated objects, a key and a value. Hash table
functions use keys to look up their associated values. Common Lisp provides hash table
functions to add entries, delete entries, and look up the values associated with given keys.
Chapter 18 discusses the use of hash tables and hashing functions.

Structures

Common Lisp allows the user to create record structures with a fixed number of named
components. These structures are, in effect, user-defined data types. When these data
types are defined, constructs to manipulate them are normally automatically defined by
the system as well. These constructs include type predicates and access, constructor, and
copier functions. Structures are created with the defstruct macro.

The definition of structures and the creation and manipulation of structure instances are
discussed in Chapter 19.

Readtables

A readtable is a data object that is used to guide the action of the Lisp reader. It contains
information about the syntax of Lisp characters that is used in parsing. Readtables are
discussed in Chapter 21.

Data Types 2-7

Streams

Streams are Common Lisp objects from which data can be read and to which data can be
sent. Normally, the system reads characters from a character input stream, parses these
characters as Lisp forms, evaluates each form as it is read, and prints representations of
the results of the evaluation to a character output stream. The operations that can be
performed on a stream depend on what type of stream it is. A stream may be input-only,
output-only, or bidirectional. It may be a character stream or a binary stream.

There are several stream-value variables that are used by default by many Common Lisp
system functions. These are known as standard streams.

The use of streams is closely connected to the file system. Streams may also be created
through the file system constructs for opening files.

Streams are discussed in Chapter 20. Chapter 21 discusses the use of streams in the
context of the input/output system. The interaction between streams and the file system
is discussed in Chapter 22.

Pathnames

Pathnames are objects that are used to represent file names in a way that is general
enough to accommodate a diverse range of file system implementations. Pathnames have
six components: host, device, directory, file name, type, and version. Pathnames and the

file system interface are discussed in Chapter 22.
Random States
Random state objects are used to represent the internal state of the random number

generator. They are manipulated by the random number generation facility. Random
states are discussed in Chapter 12.

Functions
Functions are executable objects that may be applied to arguments to produce values.

Functions in Common Lisp may be named or unnamed. Functions are discussed in
Chapter 4.

2—-8 Sun Common Lisp Reference Manual

Relationships Among Common Lisp Data Types

Figure 2-1 shows the relationships among the Common Lisp data types. An arrow from
one data type to another indicates that the data type on the left of the arrow is a subtype
of the data type on the right. Operations for testing the relationship between two types
are discussed in Chapter 3.

Data Types 2-9

Hierarchy of Data Types

single-float

double-float

long-float

/—*I complex } /
standard-char

symbol |

A

N

\——4 simple-vector } ~ + vector
\—{ simple-bit-vector |——{ bit-vector]—/{

array

~—{stream | d
—{hash-table | /
—{package] -
N—{function | d
~—{random-state| 4

Figure 2-1. Relationships among the Common Lisp data types

2-10 Sun Common Lisp Reference Manual

Printed Representations of Data Types

In Common Lisp, each data type has its own printed (displayed) representation. This
section provides a brief and partial overview of the most common formats that occur in the
examples in the following chapters. For a detailed discussion of the printed representation
of data types, the user is referred to Chapter 21.

Integers
An integer is printed as a sequence of digits in a particular base, or radix. For the
decimal base, the radix indicator is a decimal point following the number. For other bases,

the radix indicator is one of the following forms preceding the number: #o (octal), #x
(hexadecimal), #b (binary), or #nr (other base n; the base n is printed in decimal).

Ratios

Ratios are always printed in lowest reduced form, with the numerator printed, then a slash
(/), and then the denominator. In a negative ratio, the numerator is preceded by a minus
sign.

Floating-Point Numbers
Floating-point numbers are printed as one or more digits on each side of a decimal point,

sometimes followed by an exponent marker. If the number is negative, it is preceded by a
minus sign.

Complex Numbers

A complex number is printed as #C(r 7), where r is the printed representation of the
number’s real part and 1 is the printed representation of the number’s imaginary part.

Characters

A character is printed as #\ followed by the character, if it is a printing character, or by
the name of the character, if it is not.

Data Types 2-11

Symbols

A symbol is printed as its print name along with any character quoting or name
qualification necessary to identify the symbol uniquely. This may include backslashes (\),
vertical bars (1), a colon (:), a package name and one or two colons (:), or a leading #:
(for uninterned symbols). If the print name could be interpreted as a potential number,
then backslashes or vertical bars are included to prevent such interpretation.

If the symbol is in the keyword package, it is printed with a leading colon. If the symbol
is not accessible in the current package, it is printed with a leading package name and one
or two colons. A leading #: is printed if the symbol is uninterned (has no home package).

Lists

A true list is printed as follows: first a left parenthesis, then the elements of the list in
order, and finally a right parenthesis. The list elements are separated by white space
(space, tab, carriage-return, or newline characters).

A dotted list is printed as follows: first a left parenthesis, then the car of the list, a dot,
the cdr of the list, and finally a right parenthesis. The dot is separated from the car and
the cdr of the list by white space.

Conses are printed with list notation rather than dot notation whenever possible.

Arrays

An array is printed with the #nA(...) syntax. In this case, the output starts with #nA,
where n is the number of dimensions of the array, and then the contents of the array are
printed in row-major order with parentheses indicating the structure of the array. The
length of the top-level list printed is the size of the first dimension, and the lengths of the
subsequent deeper levels are the sizes of the second dimension, the third dimension, and
80 on.

If the array has elements that are either bits or string characters, then the deepest level
printed may take the form of a bit vector or string.

Vectors
A vector is printed as #(and) enclosing the elements of the vector, which are separated

by white space. For a vector with a fill pointer, only those elements before the fill pointer
are printed.

2—-12 Sun Common Lisp Reference Manual

Bit Vectors

A printed bit vector consists of #* followed by the bits in the bit vector. For a bit vector
with a fill pointer, only those bits before the fill pointer are printed.

Strings
A string is preceded and followed by a double quote (*), and any double-quote or single

escape character in the string is preceded by a backslash (\). A string with a fill pointer is
printed only up to the fill pointer.

Structures
A structure is printed as #8 immediately followed by a list in the form (name slot1 valuel
slot2 value? ...), where name is the name of the structure, slot! is the name of one of
the structure’s slots, and valuel is the corresponding value.

Pathnames
A printed pathname consists of #P followed immediately by the pathname enclosed in
double quotes.

Random States

An object of type random state is printed like a structure, with the #8 syntax.

Other Data Types

An object that is a hash table, a readtable, a package, a stream, or a function object is
printed with the #<...> syntax. This form describes the data type and may give some
indication of the particular instance (such as a memory address where it appears).

Data Types 2-13

2—-14 Sun Common Lisp Reference Manual

Chapter 3. Type Specifiers

Type Specifiers 3—-1

Chapter 3. Type Specifiers

About Type Specifiers. e e 3-3
Atomic System-Defined Type Specifiers 3-3
Syntax for Type Specifiers 34
Type Specifier Lists. e 3-5

Categories of Operations i e 3-8
Defining and Manipulating Types. i e 3-8
Discriminating Among Types e 3-8

COBTCR . . o v vt e e et e e et e e e e e e e e e e e 3-9

a3 44 o0 e) 11 o X PP 3-11

deftyPeo 3-12

SUD Y PED e 3-13

Y PE-Of . . e e e e 3-14

1772 o » 3-15

3—2 Sun Common Lisp Reference Manual

About Type Specifiers

Common Lisp objects called type specifiers are used to designate types. Type specifiers
can be atomic type specifiers or lists. Type specifier lists designate specialized types in
terms of simpler types. The user may define new atomic type specifiers in terms of existing
types and type specifier lists.

New type specifier identifiers are defined by means of the deftype special form and the
defstruct macro. The deftype special form can be used to define a new type specifier
name in terms of existing type specifiers. Creating a new structure with the defstruct
macro automatically creates a new type specifier identifier that designates instances of the
structure type.

Type specifiers are used in declarations and as arguments to many functions that construct
new objects.

The predicate typep uses type specifiers for type discrimination. Only objects that are
actually members of the given type satisfy the predicate.

Atomic System-Defined Type Specifiers

array integer short-float
atom keyword signed-byte
bignum list simple-array
bit long-float simple-bit-vector
bit-vector mod simple-string
character nil simple-vector
common null single-float
compiled-function number standard-char
complex package stream

cons pathname string
double-float random-state string-char
fixnum ratio symbol

float rational t

function readtable unsigned-byte
hash-table sequence vector

Figure 3—-1. Table of Atomic Type Specifiers

Type Specifiers 3-3

Syntax for Type Specifiers

typespec::= atomic-type-specifier
| (satisfies predicate-name)
| (member {object}*)
| (not typespec)
| (sna {tgpespec)*)
| (or {typespec}*)
| (array [{typespec | * } [dimensions]])
| (simple-axray [{typespec | * } [dimensions|])
| (vector [{typespec | * } [{size | *}]1)
| (simple-vector [size])
I (string [size [*])
| (simple-string [size | *1)
| (bit-vector [size | *1)
| (simple-bit-vector [size | *])
| (integer [integer-limit [integer-limit]])
| (fixoum [fiznum-limit [fiznum-limit]])
| (mod [integer | *1)
| (signed-byte [size | *1)
| (unsigned-byte [size | *1)
| (rational [rational-limit [rational-limit]])
| (float [float-limit [float-limit]])
| (short-float [short-float-limit [short-float-limit]])
| (single-float [single-float-limit [single-float-limit]])
| (double-float [double-float-limit [double-float-limit]])
| (Long-float [long-float-limit [long-float-limit]])
| (complex [typespec | *1)
| (function [arg-typespec-list [value-typespec|l)
arg-typespec-list::= ({typespec}* [&optional typespec] [&rest typespec]
[kkey {typespec}*])

value-typespec::= typespec | (values . arg-typespec-list)
dimensions::= integer | * | ({integer | * }¥)

size::= integer
integer-limit::= integer | * | (integer)
fiznum-limit::= fiznum | * | (fiznum)

3—4 Sun Common Lisp Reference Manual

rational-limit::= rational | * | (rational)
float-limit::= float | * | (float)

short-float-limit::= short-float | * | (short-float)
single-float-limit::= single-float | * | (single-float)
double-float-limit::= double-float | + | (double-float)
long-float-limit::= long-float | * | (long-float)

Type Specifier Lists

A type specifier may be defined to denote the set of all objects that satisfy a particular
predicate by use of the construct (satisfies predicate-name), where the symbol
predicate-name has a global function definition as a predicate of one argument.

A type specifier may be defined to denote the set of all objects that are members of a
certain set by use of the (member {object}*) construct. The objects in this set are precisely
those given in the list.

Other type specifier lists define combinations or specializations of existing type specifiers.

Specializations of atomic type specifiers indicate that only a specific subset of the objects
that satisfy the atomic type specifier is designated. Use of such type specifiers may enable
the system to represent or access objects more efficiently.

Many of these lists allow arguments to be unspecified. An unspecified argument is denoted
by #. Unspecified arguments occurring at the end of a type specifier list may be omitted
entirely. If all arguments are omitted, the type specifier name itself may be used (instead
of a list).

Logical Combinations of Type Specifiers
The logical operators and, or, and not may be used to define type specifiers as logical
combinations of other type specifiers.

The type specifier (not typespec) denotes the set of all objects that are not of the specified
type.

The type specifier (and {typespec}*) denotes the set of all objects that are members of all
of the specified types.

The type specifier (or {typespec}*) denotes the set of all objects that are members of at
least one of the specified types.

Type Specifiers 3—5

Type Specifiers for Array Subtypes

There are several ways of specifying subtypes of arrays.

The type specifier (array typespec dimensions) denotes the set of arrays that have the
given dimensions and whose elements are of the specified type. The dimensions argument
may be either an integer or a list. If the dimensions argument is a nonnegative integer,
it indicates the number of dimensions of the array. If it is a list, the number of elements
implicitly indicates the number of dimensions of the array; the elements of the list indicate
the length of each dimension. Any of the arguments may be unspecified.

The type specifier (simple-array typespec dimensions) is identical to (array typespec
dimensions) except that it designates a set of simple arrays. A simple array is an array
that is not displaced to another array, that has no fill pointer, and whose size cannot be
dynamically adjusted.

The type specifier (vector element-type size) designates the set of one-dimensional arrays
whose elements are of the specified type and whose lengths are of the given size. The size
argument is a nonnegative integer or is unspecified.

The type specifier (simple-vector size) is identical to (vector t size) except that it
designates a set of simple vectors. A simple vector is a vector that is not displaced to
another array, that has no fill pointer, and whose size cannot be dynamically adjusted.

Vectors whose elements are restricted to string characters or bits are termed strings and
bit vectors respectively.

The type specifier (string size) is an abbreviation for (array string-char (size)).
Likewise, (simple-string size) is an abbreviation for (simple-array string-char (size)).

The type specifier (bit-vector size) is an abbreviation for (array bit (size)), and
(simple-bit-vector size) is an abbreviation for (simple-array bit (size)).

Type Specifiers for Numerical Subranges

Numerical subrange types may also be denoted by the type specifiers.

The type specifier (integer integer-limit integer-limit) denotes the set of integers in the
given range. Either argument may be specified as an integer, a list of an integer, or . An
integer argument specifies an inclusive limit; a list argument specifies an exclusive limit;
and * means that there is no limit on the value. The type (integer 0 1) is equivalent to
the type bit.

The type specifier (mod integer) denotes the set of nonnegative integers whose values are
less than integer. It is equivalent to (integer 0 (integer)).

3-6 Sun Common Lisp Reference Manual

Type

The type specifier (signed-byte size) denotes the set of integers that can be represented
in two’s complement format in a byte of size bits or less. The type (signed-byte *) is
equivalent to integer.

The type specifier (unsigned-byte size) denotes the set of nonnegative integers that can
be represented in a byte of size bits or less. The type specifier (unsigned-byte *) is
equivalent to (integer 0 *).

The type specifier (fixnum fiznum-limit fiznum-limit) is like (integer tnteger-limit
integer-limit) except it denotes fixnums in the given range. The arguments must be
fixnums, lists of fixnums, or unspecified.

The type specifier (rational rational-limit rational-limit) denotes the set of rational
numbers in the given range. Either argument may be specified as a rational, a list of a
rational, or #. A rational argument denotes an inclusive limit; a list argument denotes an
exclusive limit; and * means that there is no limit on the value.

The type specifiers (float float-limit float-limit), (short-float short-float-limit short-
float-limit), (single-float single-float-limit single-float-limit), (double-float double-
float-limit double-float-limit), and (long-float long-float-limit long-float-limit) denote
subranges of floating-point numbers of the given types. Either argument may be specified
as a floating-point number, a list of a floating-point number, or #. A floating-point number
argument denotes an inclusive limit; a list argument denotes an exclusive limit; and *
means that there is no limit on the value. The arguments must be of the appropriate
floating-point format. In Sun Common Lisp, all floating-point numbers are represented in
single-float format.

The type specifier (complex typespec) denotes the set of complex numbers whose real and
imaginary parts are of the given type.

Specifiers for Functions
The type specifier (function arg-typespec-list value-typespec) is used in declaring functions.

It denotes the set of functions that accept arguments of the given types and produce results
that belong to the specified value type. The function type specifier is not acceptable to

typep.

Type Specifiers 3—7

Categories of Operations

This section groups operations on type specifiers according to functionality.

Defining and Manipulating Types

coerce deftype

These functions define type specifiers and manipulate the types of objects.

Discriminating Among Types

subtypep type-of
typep commonp

These functions discriminate among types.

3-8 Sun Common Lisp Reference Manual

coerce

Purpose:

Syntax:

Remarks:

Examples:

The function coerce is used to convert an object from one data type to another;
the resulting object is returned. If such a coercion is not possible, an error is
signaled. If it is already of the required result-type, the original object is returned.

The coercions listed below are the only ones that are possible.
coerce object result-type [Function]

The following conversions are performed by coerce.

A sequence type may be converted to any other sequence type, provided that the
resulting sequence is of a type that is compatible with the types of the elements of
the original sequence. Elements of the new sequence will be eql to corresponding
elements of the original sequence.

Certain objects may be converted to characters: strings of length 1, symbols whose
print names are of length 1, and nonnegative integers n for which (int-char n)
is defined. Coercing a string of length 1 results in the character contained in that
string. Coercing a symbol whose print name is of length 1 results in the character
contained in that print name string. Coercing a nonnegative integer for which
(int-char n) is defined results in the character defined by (int-char n).

Any number may be converted to a complex number.
Any noncomplex number may be converted to a floating-point number.

Any object may be converted to type t.

> (setq *print-array* t)

T

> (coerce ’(a b ¢) ’vector)
#(A B C)

> (coerce ’a ’character)
#\A

> (coerce 4.56 ’complex)
#0(4.56 0.0)

> (coerce (cons 1 2) t)
(1.2

Type Specifiers 3-9

coerce

See Also: rational
rationalize
char-code

char-int

3-10 Sun Common Lisp Reference Manual

commonp

Purpose:

Syntax:

Examples:

The predicate commonp is true if its argument is a member of any standard

Common Lisp data type; otherwise it is false.

commonp object

> (commonp *query-io*)
T

> (commonp nil)

T

> (commonp (expt 2 130))
T

[Function]

Type Specifiers 3-11

deftype

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The deftype macro is used to define a name for a new type specifier.

The deftype macro is like the defmacro macro in that the form arguments of its
body constitute an expansion function for the type specifier definition.

The name of the new type specifier is returned as the value of the deftype form.
deftype name lambda-list {declaration | documentation}* {form}* [Macro)

The lambda list may contain &optional and &rest keywords.

If no initform is specified for an &optional lambda-list argument, the default
value # is used.

If the type name is used as an atomic type specifier, it is treated as a list with no
arguments.

A documentation string may be attached to the name of the type by use of the
optional documentation argument; the documentation type for this string is type.

> (deftype modd2 (%optional (limit 2)) ‘(integer O ,limit))
MODD2

> (typep 0 ’(modd2))

T

> (typep 3 ’(modd2))

NIL

> (typep 3 ’'(modd2 5))

T

defmacro

3-12 Sun Common Lisp Reference Manual

subtypep

Purpose:

Syntax:

Remarks:

Examples:

The function subtypep compares two type specifiers. It returns two values. If

typel is definitely a subtype of type2, then true and true are returned. If typel

is definitely not a subtype of type2, then false and true are returned. In all other
cases, false and false are the values returned.

subtypep typel type2 [Function]

Type arguments of subtypep must be type specifiers that are acceptable to
typep.
The type typel may be a proper subtype of type2.

> (subtypep ’compiled-function ’function)
T

T

> (subtypep 'integer ’string)

NIL

INTEGER

> (subtypep ’(satisfies foo) nil)

NIL

NIL

Type Specifiers 3-13

type-of

Purpose:
Syntax:

Remarks:

Examples:

See Also:

The function type-of returns a type of which its object argument is a member.
type-of object [Function]

If the object is an instance of a structure created by the use of the defstruct
construct, type-of returns the type name for the structure. In all other instances,
type-of is probably useful only for debugging purposes. The action of type-of can
be implementation dependent.

> (type-of ’a)

SYMBOL .

> (type-of "abc")
SIMPLE-STRING

> (type-of *(1 . 2))
CONS

> (type-of #c(0 1))
COMPLEX

> (defstruct foo x y z)
FOO

> (type-of (make-foo))
FOO

typep
typecase
defstruct

3-14 Sun Common Lisp Reference Manual

typep

Purpose: The predicate typep tests an object for membership in a particular data type.
Syntax: typep object type-specifier [Function)]

Remarks: The type-specifier argument may be any type specifier except function, values,
or a list whose first element is either of these.

Examples: > (typep 12 ’integer)
T

> (typep nil t)

T

> (typep nil nil)

NIL

> (typep 1 ’(mod 2))
T

Type Specifiers 3—-15

3-16 Sun Common Lisp Reference Manual

Chapter 4. Program Structure

Program Structure 4-1

Chapter 4. Program Structure

About Program Structure 4-5
Forms e 4-6
Self-evaluating Forms 4-6
Variables e 4-6
Special Forms 4-7
MacCTOs e e e e 4-8
Function Calls e 4-8
Functions e e 4-9
Named Functions. i e e e 4-9
Lambda EXpressionsttt e 4-9
Lambda Lists. e 4-9
Lexical Closures. e 4-11
Categories of Operations. e 4-13
Data Type Predicates 4-13
Declaring Global Variables and Named Constants 4-13
Function Definition 4-13
Function Calls 4-13
Accessing Variable and Function Bindings 4-14
Controlling Evaluation 4-14
Identity Operator 4-14
ADPlY - e 4-15
boundp 4-16
call-arguments-limit. e 4-17
compiled-function-p. e 4-18
COmSt ANt e 4-19
defconstant 4-20
define-function e 4-21
defparameter 4-22
defun e 4-23
defVar 4-25
eval-When e 4-26
Tboundp e e 4-27
fmakunbound 4-28
funcall 4-29
UNC I ON e 4-30
fUnCHIOND 4-31
Mdentity 4-32
lambda-list-keywords 4-33
lambda-parameters-limit 4-34
makunbound 4-35
QUOB . . .ttt e e 4-36
sredefinition-action® 4-37

4-2 Sun Common Lisp Reference Manual

special-form-p 4-39
symbol-function e 4-40
symbol-value 4-41

Program Structure 4-3

4-4 Sun Common Lisp Reference Manual

About Program Structure

Common Lisp programs are built from forms. A form is any data object that can be
evaluated to produce values and, possibly, side effects. In particular, certain forms call
functions to perform computations upon other forms. Some of these forms also define
functions. Not all data objects can be evaluated; hence not all data objects are valid forms.

A function is a data object that performs computations upon forms. When a function
is called, the function’s arguments are bound to values, and the forms contained within
the function body are evaluated in the context of these bindings. Normally functions also
return one or more values.

Program Structure 4-5

Forms

There are five basic categories of forms: self-evaluating forms, variables, special forms,
macro calls, and function calls.

Self-evaluating Forms

Self-evaluating forms are forms that evaluate to themselves. The value of a self-
evaluating form is that object itself. The following are self-evaluating forms: numbers,
characters, strings, bit vectors, keywords, t, and nil. The predicate constantp is true of
any self-evaluating form.

Variables

Variables provide symbolic references to the objects of a Lisp form. Variables can be
either lexical or special, depending on the program context.

A variable is an association of an identifier with a location. The location is the cell or
cells where the value associated with the variable is stored. The association between the
variable name and the location is termed a binding. Depending on the type of binding
that is current for the given identifier, this location may be a register, a stack location, or
some other memory location. In particular, for certain types of variables, it may be the
value cell of a symbol.

Bindings may be either lexical or dynamic. Correspondingly, a given variable is either a
lexical or a dynamic variable, depending on the program context. Dynamic variables are
also called special variables.

The scope of a binding is that portion of a program in which the binding is in effect. The
scope of a variable thus determines when and where the variable may be referenced.

A lexical variable is a variable whose scope is lexical or textual. That is, the variable
may be accessed only by expressions that lie textually within the same construct in which
the variable was established. Lexical variables are created by lambda expressions, let
forms, function definitions, and a number of other basic forms. The control structures that
create lexical variables are discussed in the chapter “Control Structure.”

A special variable consists of the binding of an identifier to the value cell of a symbol.
This binding may temporarily alter the value of the symbol. Variables created by let and
similar constructs may be declared special. The scope of a special variable is dynamic.
This means that until the construct that establishes the variable binding terminates,
references to the variable name access the special variable, even though such references
may not be textually within the scope of the establishing construct. The declaration of
special variables is discussed in the chapter “Declarations.”

4-6 Sun Common Lisp Reference Manual

When new variable bindings are created, existing variable bindings may be shadowed.
Shadowing occurs when a name or identifier that is meaningful at a given point is
re-used there for a different item. In this case, the newly created item shadows the older
item, causing references to the common name to refer to the new item.

The context of bindings that are visible at a given point in a program is termed the
environment. The lexical environment consists of those lexical bindings that are
visible at a particular point in the program, as determined by the structure of the program
text. The lexical environment of a top-level form is termed the null lexical environment.
This environment has no lexical bindings. The dynamic environment consists of those
dynamic bindings that are visible at a particular point during program execution, as
determined by the dynamic execution of the program. The dynamic environment is also
referred to as the global environment.

Special Forms
A special form is a list form whose first element is one of a limited set of symbols. No
new special forms may be defined by the user.

Special forms are processed in a special manner by the evaluator and the compiler. Special
evaluation rules are invoked for these forms.

Like functions and macros, special forms may return one or more values or cause nonlocal
exits.

The following table lists all of the Common Lisp symbols that have definitions as special

forms.
block if progv
catch labels quote
compiler-let let return-from
declare lets setq
eval-when macrolet tagbody
flet multiple-value-call the
function multiple-value-progl throw
go progn unwind-protect

Figure 4-1. Common Lisp Special Forms

Program Structure 4-7

Macros

A macro call is a list form whose first element is the name of a macro. A macro call
returns a Lisp expression to be evaluated in place of the macro call. Macros thus provide a
text replacement facility. They enable the user to write forms that do not obey the usual
rules for evaluation. Macros are discussed in the chapter “Macros.”

Function Calls

A function call is a list form whose first element is either the name of a function or an
anonymous function definition (lambda expression). The remaining elements of the list

form are considered to be the arguments to the function. The arguments are evaluated

as forms in the order in which they occur, and the function is invoked upon them. This
process is called applying the function to the arguments.

The actual function arguments are all evaluated before the function is invoked, and the
formal function parameters are bound to the resulting values. (If any function argument
results in more than one value, only the first of these values is used.) If the resulting values
are pointers to objects and the function modifies its arguments, the original data objects
may be modified as a side effect of the function call.

The function invocation may result in one or more values, or it may cause a nonlocal exit.
The result of the function call form is the result returned by the function.

4-8 Sun Common Lisp Reference Manual

Functions

A function may be specified in a function call form in one of two ways: by the function
name or by a lambda expression.

Named Functions

A named function is a function object to which a name has been given either by use of the
defun macro or by the flet or labels special form. The use of a name to name a function
is completely independent of any association it may have as a variable identifier.

Lambda Expressions

A lambda expression defines an anonymous function.

A lambda expression acts just like a function, but it is not associated with a function
name.

The syntax for lambda expressions is the following:

(lambda lambda-list {declaration | documentation}* {form}*)

lambda-list::= ({var}*
[&optional {var | (var [initform [supplied-p-parameter] 1)}*]
[&rest var]
[&key {var | ({var | (keyword var)} [initform [supplied-p-parameter] 1)}*
[¢allow-other-keys]]
[&aux {var | (var [initform])}*])

Lambda Lists

Lambda lists are used in the specification of named functions and lambda expressions.
The lambda list specifies the parameters of the function. When the function is applied
to arguments, the parameters specified in the lambda list are bound to actual argument
values, and the forms in the body of the lambda expression or function are executed in the
context of these bindings.

m All required parameters must be specified first. All parameters preceding the first
lambda list keyword are required parameters. They are bound to actual argument
values in the order in which they occur. There must be at least as many actual
argument forms as there are required parameters. If no lambda list keywords are
specified, there must be exactly as many actual arguments as parameters.

Program Structure 4-9

m Any optional parameters must be specified next. They are preceded by the lambda
list keyword &optional. If optional parameters are specified, they are bound in
order to the corresponding remaining values in the argument list. If there are no
remaining arguments at any point in the processing of optional parameters, then any
remaining optional parameter is bound to the value that results from the evaluation of
its associated tnitform, if the latter is given, or to nil, if not. A supplied-p-parameter
variable may be used in conjunction with an initform. Its purpose is to indicate
whether an actual argument value was supplied. It is bound to true if an actual
argument was supplied; otherwise (if the initform was evaluated) it is bound to nil.

m One rest parameter may be specified next. It is preceded by the &rest lambda list
keyword. If a rest parameter has been specified, it is bound to a list consisting of all
the actual arguments that have not yet been processed. If no arguments remain, the
rest parameter is bound to nil.

s The use of the lambda list keyword &key and keyword parameter specifiers allows
keyword arguments to be used in function calls. If any keyword parameters are to
appear in the function call, they must be preceded by &key in the lambda list. These
keyword parameters may be followed by the lambda list keyword &allow-other-keys.

A keyword parameter may be specified in one of three ways. These forms differ in
whether the name for the keyword to be used in the actual argument list is specified
explicitly or implicitly and whether an initial value is to be used if such a keyword
argument is not given.

If a variable, var, specifies the keyword parameter, the keyword argument to be used in
the argument list consists of a keyword (in the keyword package) with the same name
as var. If such a keyword does not appear in the argument list, var is bound to nil.

If the form (var [initform [supplied-p-parameter]]) specifies the keyword parameter,
the keyword argument to be used is specified in the same way as in the simpler case
discussed above. This construct, however, allows the variable to be bound to an initial
value if the keyword is not specified in the argument list. The supplied-p-parameter
may be used to test whether such an argument value was given.

The form ((keyword var) [initform [supplied-p-parameter]]) allows the explicit
specification of the argument list keyword that is associated with var. It also allows the
variable to be bound to an initial value if the keyword is not specified in the argument
list.

There must be an even number of actual keyword arguments. Keyword arguments
are considered to occur in pairs. The first argument in the pair is a keyword; the
second is the value to which the corresponding keyword parameter is to be bound.
The keyword-value pairs may occur in any order in the argument list; they are not
constrained by the order of the keyword parameters in the lambda list. If a given
keyword argument is specified more than once, however, only the first keyword-value
pair is used in the binding of the keyword parameter. If a rest parameter has been

4-10 Sun Common Lisp Reference Manual

specified, the arguments used in processing keyword parameters are the same as those
used in processing the rest parameter.

m The &allow-other-keys lambda list keyword is used to specify that the argument list
may contain a keyword that does not correspond to a lambda list keyword parameter.
Otherwise it is an error if such an argument pair occurs unless the argument list
contains a keyword-value pair whose key is :allow-other-keys and whose value is
non-nil. The &rest keyword parameter may be used to access values specified by
means of the &allow-other-keys and :allow-other-keys constructs.

It is an error if there are remaining arguments and neither a rest parameter nor a
keyword parameter has been specified.

m Finally, the &aux lambda list keyword may be used to specify auxiliary variables.
These serve as local variables within the lambda expression or function. Auxiliary
variables are not bound to argument list values. An auxiliary variable may be bound
within the lambda expression itself or by specifying a corresponding initform in the
lambda list.

Since the lambda list elements are processed in the order in which they occur, any initform
may reference a parameter variable (including a supplied-p-parameter variable) that is
bound earlier in the processing of the lambda list.

After the lambda list parameters are bound to actual argument values, the forms contained
in the body of the lambda expression or function are evaluated in sequence in the context
of these bindings. The result returned by the lambda expression or function is the result
of the last form evaluated. If no forms are evaluated, nil is returned.

The variable bindings in effect before the function invocation are restored when the
function exits.

Lexical Closures

A closure is a function along with a binding context. When a function or lambda
expression is created, it is created within a context of lexical bindings. Creating a lexical
closure means retaining this lexical environment of bindings through the lifetime of the
function (closure) object. The function is thus able to reference these same bindings in
different invocation contexts. With closures it is thus possible to create objects that retain
separate contexts that can be manipulated.

Program Structure 4-11

The following example shows a function that returns a lexical closure in which the variable
z is bound to 20. When the closure function is itself invoked, this binding is referenced.

> (defun foo ()
(let ((x nil) (fn mnil))
(setq fn #’(lambda (y) (setq x (coms x y))))

(setq x 20)
fn))
FOO
> (funcall (foo) 1)
(20 . 1)

Functions that are intended to generate a series of new values for consumption by other
functions are called generators. The following example shows a generator that is written
as a lexical closure. It generates the positive integers. Each time it is called, it produces a
new integer in the series. The internal state of the generator is maintained in the lexical
closure.

> (setq closure (let ((x 0)) #’(lambda () (incf x) x)))
#<Interpreted-Function (LAMBDA NIL (INCF X) X) 40FC97>
(funcall closure)

v

(funcall closure)

4-12 Sun Common Lisp Reference Manual

Categories of Operations

This section groups operations related to program structure according to functionality.

Data Type Predicates

functionp compiled-function-p

These predicates determine whether an object is a function object.

Declaring Global Variables and Named Constants

defconstant defvar
defparameter

These constructs proclaim special variables and constants.

Function Definition

defun lambda-list-keywords
define-function lambda-parameters-limit
sredefinition-actions

These constructs are used in defining functions.

Function Calls

apply call-arguments-limit
funcall

These constructs are used in applying functions to arguments.

Program Structure 4-13

Accessing Variable and Function Bindings

symbol-value makunbound
symbol-function fmakunbound
boundp function
fboundp special-form-p
constantp

These operations access variable and function bindings.

Controlling Evaluation

quote eval-when

These functions affect the evaluation process.

Identity Operator

identity

This function returns its argument unchanged.

4-14 Sun Common Lisp Reference Manual

apply

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function apply applies its function argument to a list of arguments.

The function argument must be a function object. It may be a compiled code
object, a lambda expression, or a symbol that has a global definition as a function
(not a macro or special form).

apply function arg &rest more-args [Function]
The last argument specified must be a list. It is appended to a list of all the other
arguments except function.

If the function uses keyword arguments, the keywords must also be given in the
argument list.

The macro setf may be used with apply if the function argument is a function
that is acceptable to setf.

> (apply #'+ 1 2 3 (4 5 6))

21

> (apply #’(lambda (x y z) (+ x (- y z))) (1 2 3))
0

funcall

function

Program Structure 4-15

boundp

Purpose: The predicate boundp is true if the dynamic variable associated with its symbol
argument has a value; otherwise it is false.

Syntax: boundp symbol [Function|

Examples: (setq sym 1)

>
1
> (boundp ’sym)
T
>

(makunbound °’sym)
SYM
> (boundp ’sym)
NIL

> (let ((sym 2)) (boundp ’sym))
NIL

See Also: set
setq
symbol-value

makunbound

4-16 Sun Common Lisp Reference Manual

call-arguments-limit

Purpose: The constant call-arguments-limit defines the upper exclusive bound on the
number of arguments that may be passed to any Common Lisp function.

The value of call-arguments-limit in Sun Common Lisp is 2°.
Syntax: call-arguments-limit [Constant]

Examples: > call-arguments-limit
512

See Also: lambda-parameters-limit

multiple-values-limit

Program Structure 4-17

compiled-function-p

Purpose: The predicate compiled-function-p is true if its argument is a compiled code
object; otherwise it is false.

Syntax: compiled-function-p object [Function)
Examples: > (compiled-function-p (symbol-function *append))
T

> (compiled-function-p #’(lambda (x) x))
NIL

4-18 Sun Common Lisp Reference Manual

constantp

Purpose: The predicate constantp is true if its argument is a constant; otherwise it is false.
A constant is an object that always evaluates to the same value.

The following objects are constants: numbers, characters, strings, keywords, t,
nil, bit vectors, symbols declared by means of defconstant, and lists whose first
element is quote.

Syntax: constantp object [Function]
Examples: > (constantp 1)

T

> (constantp °’’foo)

T

> (defconstant this-is-a-constant ’never-changing)
THIS-IS-A-CONSTANT .

> {constantp ’'this-is-a-constant)

T

> (constantp "foo")

T

See Also: defconstant

Program Structure 4-19

defconstant

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The defconstant macro is used to proclaim a special variable. The variable is
initialized to the result of evaluating the initial-value argument. Once such a
variable has been defined using defconstant, its value is constant and may not be
changed by assignment or binding.

The defconstant macro returns name as its result.
defconstant neme initial-value [documentation)] [Macro]

The name argument is a symbol; it is not evaluated.
No special binding of the variable may already exist when defconstant is called.

Note that a constant defined by defconstant may be changed with defconstant,
but functions compiled using the old value may be incorrect.

A documentation string may be attached to the name of the global variable by
the optional documentation argument; the documentation type for this string is
variable.

> (defconstant this-is-a-constant 'never-changing "for a test")
THIS-IS-A-CONSTANT

> this-is-a-constant

NEVER-CHANGING

> (documentation ’'this-is-a-constant ’variable)

"for a test"

> (constantp ’this-is-a-constant)

T

defvar
defparameter
proclaim

documentation

4-20 Sun Common Lisp Reference Manual

define-function

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function define-function is used by the macro defun to do the actual
defining of a new function. It replaces the function cell of the named symbol with
the specified function object.

If the function is currently traced, it remains traced, but with the new definition.
define-function name function [Function|

The name argument is a symbol.

The function define-function is an extension to Common Lisp.

> (defun foo () 101)
FOO
> (fo0)
101
> (define-function "foo #°'+)
F0O
(foo0)

>
0
> (foo 1 2 3)
6
>

(define-function *foo #’(lambda () 202))
FOO
> (foo0)
202

defun
symbol-function

sredefinition-actions

Program Structure 4-21

defparameter

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The defparameter macro is used to proclaim a special variable. The variable is
initialized to the result of evaluating the tnitial-value argument.

The defparameter macro returns name as its result.
defparameter name initial-value [documentation] [Macro]

The name argument is a symbol; it is not evaluated.

A documentation string may be attached to the name of the global variable by
the optional documentation argument; the documentation type for this string is
variable.

> (defparameter *p* 1)
P

> *p*

1

> (constantp ’#*px)
NIL

> (setq *p* 2)

2

> (defparameter *p* 3)
P

> *p*

3

defvar
defconstant
proclaim

documentation

4-22 Sun Common Lisp Reference Manual

defun

Purpose:

Syntax:

Remarks:

Examples:

The defun macro is used to define a new function.

The name argument of defun must be a symbol; it is not evaluated. The function
defun causes a global function definition to be attached to the symbol name as
the contents of the symbol’s function cell. This function definition is given by the
expression that follows:

(lambda lambda-list {declaration | documentation}* {form}*)
The name of the new function is returned as the value of the defun form.

The body of the function consists of the forms specified by the form arguments;
they are executed in order when the function is called.

The function body is enclosed in a block construct. This block bears the same
name as the function itself. Thus the return-from construct may be used to cause
an exit from the function as well as the block.

defun name lambda-list {declaration | documentation}* {form}* [Macro]

The definition of functions and the syntax of lambda lists are discussed in the
section “Functions.”

The function is defined in the lexical environment in which the defun form is
executed. Normally, the defun macro occurs as a top-level form. If it is a top-level
form, the null lexical environment is used.

A documentation string may be attached to the name of the function by use of
the optional documentation argument; the documentation type for this string is
function.

The defun macro may be used to redefine a function or to replace a macro
definition with a function definition. The Common Lisp special forms may not be
redefined.

> (defun ex (a b &optional c (d 66) &rest keys &key test (start 0))
(list a b ¢ d keys test start))

EX

> (ex 1 2)

(1 2 NIL 66 NIL NIL 0)

> (ex 1 2 3 4 :test ’equal :start 50)

(1 2 3 4 (:TEST EQUAL :START 50) EQUAL 50)

> (ex :test 1 :start 2)

(:TEST 1 :START 2 NIL NIL 0)

Program Structure 4-23

defun

See Also: flet
labels
block
return-from

documentation

4-24 Sun Common Lisp Reference Manual

defvar

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The defvar macro is used to proclaim a special variable.

If an tnitial-value argument is specified, the variable is initialized to the result
of evaluating instial-value. If the variable already has a value, this value is not

changed and initial-value is not evaluated.

The defvar macro returns name as its result.
defvar name [initial-value [documentation] |

The name argument is a symbol; it is not evaluated.

[Macro]

A documentation string may be attached to the name of the global variable by use
of the optional documentation argument; the documentation type for this string is

variable.

> (defvar *v* ’'global)

*V%

> ky*

GLOBAL

> (let ((*v* 'local))
(symbol-value ’*vx))

LOCAL

> (setq should-stay-nil nil)

NIL

> (defvar *v* (setq should-stay-nil t))

*Vak

> *yxkx

GLOBAL

> should-stay-nil

NIL

defparameter
proclaim

documentation

Program Structure 4-25

eval-when

Purpose:

Syntax:

Examples:

The special form eval-when is used to specify when a particular body of code is
to be executed.

This time is defined by the situation arguments. Each situation argument must be
either compile, load, or eval.

If eval is specified, the evaluator evaluates the form arguments at execution time.
If compile is specified, the compiler evaluates the form arguments at compilation
time. If load is specified and the file containing the eval-when is compiled, then
the forms are compiled; they are executed when the output file produced by the
compiler is loaded.

The form arguments are executed in order. The value of the last form evaluated is
returned as the result of eval-when. If no forms are executed, eval-when returns
nil.

eval-when ({situation}*) {form}* [Special Form)|

> (setq foo 3)

3

> (eval-when (compile) (setq foo 2))
NIL

> foo

3

> (eval-when (eval) (setq foo 2))

2

> foo

2

4-26 Sun Common Lisp Reference Manual

fboundp

Purpose:

Syntax:
Remarks:

Examples:

See Also:

The predicate fboundp is true if its symbol argument has an associated global

function definition; otherwise it is false.

fboundp symbol

[Function]

The function definition may be that of a function, a macro, or a special form.

> (defun foo (x) x)

FOO

> (fboundp ’'foo)

T

> (fmakunbound ’foo)

FOO

> (fboundp ’'foo)

NIL

> (flet ((foo #'(lambda (x) x)))
(fboundp ’foo))

NIL

symbol-function
fmakunbound

Program Structure 4-27

fmakunbound

Purpose:

Syntax:

Examples:

See Also:

The function fmakunbound causes its symbol argument to have no associated

global function definition. It returns symbol as its result.

fmakunbound symbol

> (defun foo (x) x)

FOO

> (fboundp ’foo)

T

> (fmakunbound ’foo)

FOO

> (fboundp ’foo)

NIL

> (flet ((foo (x) (1+ x)))
(fmakunbound *'foo)
(foo 1))

2

fboundp

4-28 Sun Common Lisp Reference Manual

[Function]

funcall

Purpose:

Syntax:

Examples:

See Also:

The function funcall applies its function argument to the specified arguments.

The function argument must be a function object. It may be a compiled code
object, a lambda expression, or a symbol that has a global definition as a function
(not a macro or special form).

funcall function &rest args [Function|
> (funcall #°'+ 1 2 3)

6

> (funcall ’car "(1 2 3))

1

> (funcall ’position 1 (1 2 3 2 1) :start 1)
4

> (funcall #°’(lambda () 101))

101

apply

function

Program Structure 4-29

function

Purpose: The special form function returns the function object associated with its argument.

If the function argument is a symbol, this object is the function definition that
is associated with the symbol’s function cell. If function is a lambda expression,
function returns a lexical closure for that lambda expression.

Syntax: function function [Special Form)]

Remarks: The notation #’function may be used as an abbreviation for (function function).

The function argument is not evaluated.

Examples: > (defun foo () ’'top-level)
FOO
> (funcall (function foo))
TOP-LEVEL
> (flet ((foo () ’shadow))

(funcall (function foo)))

SHADOW

(eq (function foo) #’foo0)

\4

T
> (eq (function foo) (symbol-function ’foo))
T
> (flet ((foo () ’shadow))

(eq (function foo) (symbol-function °foo)))
NIL

4-30 Sun Common Lisp Reference Manual

functionp

Purpose:

Syntax:

Remarks:

Examples:

The predicate functionp is true if its argument is of a form that is appropriate for
applying to arguments, as with the funcall or apply function; otherwise it is false.

functionp object [Function]

The predicate functionp is true of symbols, any list whose first element is
lambda, values returned by function, and values returned by compile when its
first argument is nil.

(functionp ’sss)

(functionp (symbol-function ’append))

>

T

>

T

> (functionp :test)
T

> (functionp nil)
T
>

(functionp 12)
NIL

Program Structure 4-31

identity

Purpose: The function identity returns its argument unchanged. It is intended for use with
functions that require a function as an argument.

Syntax: identity object [Function|

Examples: > (identity 101)
101
> (let ((f #’identity))
(funcall £ 101))

101
> (mapcan #’identity *((1 2 3) (4 5 6)))
(123465 6)

4-32 Sun Common Lisp Reference Manual

lambda-list-keywords

Purpose:

Syntax:

Remarks:

Examples:

The constant lambda-list-keywords defines the lambda list keywords that are
available for use in lambda expressions, function definitions, and macro definitions.
Its value is a list. This list contains the symbols &optional, &rest, &key, &aux,
&allow-other-keys, &body, &whole, and &environment.

lambda-list-keywords [Constant]

The lambda list keywords &body, &whole, and &environment may be used
only in macro definitions.

The use of lambda list keywords in function definitions is discussed in the section
“Functions.” The use of lambda list keywords in macro definitions is discussed in
the chapter “Macros.”

> lambda-list-keywords
(£0PTIONAL &REST &KEY &AUX &ALLOW-OTHER-KEYS &BODY &WHOLE &ENVIRONMENT)

Program Structure 4-33

lambda-parameters-limit

Purpose: The constant lambda-parameters-limit defines the upper exclusive bound on
the number of distinct parameter names in a lambda list.

The value of lambda-parameters-limit in Sun Common Lisp is 2°.
Syntax: lambda-parameters-limit [Constant]

Examples: > lambda-parameters-limit
512

See Also: call-arguments-limit

4-34 Sun Common Lisp Reference Manual

makunbound

Purpose: The function makunbound causes the dynamic variable associated with its symbol
argument to be unbound (have no value). It returns symbol as its result.

Syntax: makunbound symbol [Function]
Examples: (setq foo 1)

(boundp ’foo)

V=V YV

(makunbound ’foo)
FOO

> (boundp ’foo)
NIL

See Also: boundp

Program Structure 4-35

quote

Purpose:

Syntax:

Remarks:

Examples:

The special form quote returns its object argument. The object is not evaluated.
The special form quote is used when it is desirable not to evaluate an object or
form, but rather to manipulate it as a constant.

quote object [Special Form)|

The single-quote character may be used as an abbreviation for quote. The
construct ®object is equivalent to (quote object).

> (setq a 1)

i

> (quote (setq a 1))
(SETQ A 1)

> a

1

> 'a

A

> "’a

(QUOTE A)

4-36 Sun Common Lisp Reference Manual

sredefinition-actionx*

Purpose:

Syntax:
Remarks:

Examples:

The global variable sredefinition-action# is only used in the functions define-
function and define-macro. It is used to specify what action will be taken when
a redefinition occurs.

If sredefinition-action# is set to :warn, the user is warned when a function or
macro is redefined. If the variable is set to :query, the user is asked whether he
wishes to proceed with the redefinition. If sredefinition-action# is set to any
other value, no warning is given.

The default value of sredefinition-actions is twarn.
sredefinition-actions [Variable]
The variable sredefinition-actions is an extension to Common Lisp.

> *redefinition-action*

:WARN

> (defun foo ())

FOO

> (defmacro bar ())

BAR

> (defun foo ())

;i3 Warning: Redefining FOO

FO0O0

> (defmacro bar ())

;:: Warning: Redefining BAR

BAR

> (define-function ’foo #’car)

;:; Warning: Redefining FOO

FOO

> (define-macro ’bar #’do)

;i; Warning: Redefining BAR

BAR

> (let ((*redefinition-action* :quiet))
(defun foo ()))

FOO

> (let ((*redefinition-action* :quiet))
(define-macro ’'bar #'do))

BAR

> (setq *redefinition-action* :quiet)

:QUIET

> (defun foo ())

F0O

> (defmacro bar ())

BAR

Program Structure 4-37

sredefinition-action#*

> (define-function ’foo #’car)
F0O

> (define-macro ’bar #’do)
BAR

See Also: define-function

define-macro

4-38 Sun Common Lisp Reference Manual

special-form-p

Purpose: The predicate special-form-p is true if its symbol argument has an associated
global function definition that is a special form; otherwise it is false.

Syntax: special-form-p symbol [Function]

Examples: > (special-form-p ’if)
T
> (special-form-p 'car)
NIL
> (special-form-p 1)
NIL

Program Structure 4-39

symbol-function

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function symbol-function returns the contents of the function cell named by
its symbol argument. This function definition may be a function, a special form, or
a macro. An error is signaled by symbol-function if the function definition does
not exist.

symbol-function symbol [Function]

The existence of a function definition associated with a symbol may be tested with
fboundp.

The macro setf may be used with symbol-function to replace the contents of the
function cell.

> (defun foo () "this function returns this string")
FOO

> (funcall (symbol-function ’foo))

"this function returns this string"

> (setf (symbol-function ’foo)

#’(lambda () "this function is a replacement"))
#<Interpreted-Function (LAMBDA NIL "this function is a replacement") 3B85AF>
> (funcall (symbol-function °foo))

"this function is a replacement"

fboundp

4-40 Sun Common Lisp Reference Manual

symbol-value

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function symbol-value returns the contents of the value cell of the variable
associated with its symbol argument. An error is signaled if this variable is
unbound.

The function symbol-value may also be applied to named constants and keywords.
Applying symbol-value to a keyword returns that keyword.

symbol-value symbol [Function]
The predicate boundp may be used to test the existence of a value associated
with a symbol.

The macro setf may be used with symbol-value to replace the contents of the
value cell.

> (setq a 1)
1
> (symbol-value ’'a)
1
> (let ((a 2)) (symbol-value 'a))
1 ;only the global value is given by symbol-value
> (let ((a 2))
(setf (symbol-value ’a) 3)
a)
2
> a
3
> (symbol-value 'a)
3
boundp
set
setq

Program Structure 4-41

4-42 Sun Common Lisp Reference Manual

Chapter 5. Control Structure

Control Structure 5—-1

Chapter 5. Control Structure

About Control Structure 5-5
Assignment Constructs 5-5
Blocks and SeqUenCIng i 5-6
Tteration 5-7
Conditionals 5-7
Control Transfer 5-7
Multiple Values 5-8

Categories of Operations 5-9
Assignment 5-9
SeQUENICIIE oottt 5-9
Iteration. e 5-10
Conditionals 5-10
Control Transfer e 5-10
Multiple Values 5-10

BIOCK . ottt e 5-11

CASE . o L i e e 5-12

catch ... 5-13

compiler-let, 5-14

Cond . .. 5-16

define-modify-macro 5-18

define-setf-method 5-19

defsetf 5-21

A0, dO% . o o 5-23

dolist 5-25

dotimes 5-26

€CASE, CCABEt ettt et et et e e et e e e e e e e e e e 5-27

etypecase, CLYPeCase e 5-28

et .. 5-29

get-setf-method, get-setf-method-multiple-value. 5-30

B0 o it e e 5-31

1 5-32

labels . .. e 5-33

let, let P 5-34

JoOD . . 5-35

MacTOlet 5-36

multiple-value-bind 5-37

multiple-value-call 5-38

multiple-value-list 5-39

multiple-value-progl 5-40

multiple-value-setq 5-41

multiple-values-limit 542

PTOE, PTOZH* .« . o o ettt e et e e e e 5-43

5—2 Sun Common Lisp Reference Manual

PIOB 2 . o e 5-46
o3 oo + 5-47
PIOBY . ottt e 5-48
return, return-from 5-49
rotatel e 5-50
T 5-51
setf, psetf 5-52
Setq, Psetq 5-53
Shiftf e 5-54
tagbody 5-55
Bhrow 5-56
Y PECASEo e e 5-57
unless PSP 5-58
unwind-protect e 5-59
ValUes 5-60
values-list, 5-61
When e 5-62

Control Structure 5-3

5—4 Sun Common Lisp Reference Manual

About Control Structure

Common Lisp provides many different constructs for controlling the flow of program
execution and evaluation. This collection of functions, macros, and special forms
encourages the design of clear, understandable programs.

The available programming constructs include assignment to lexical, dynamic, and
generalized variables; various forms of iteration; conditionals; blocks; function calls;
nonlocal transfers and exits; and function returns with multiple values.

Assignment Constructs

Common Lisp provides both simple and generalized assignment constructs.

Simple Assignment

The set, setq, and psetq constructs are used to alter the values of variables. The set
function is used to alter the value of a dynamic variable. The setq and psetq forms may
be used to assign values to both lexical and dynamic variables.

Generalized Variables

A simple variable is a binding of an identifier with a location. It is accessed by name.
Common Lisp also provides a more general notion of variable. A generalized variable is
a binding of an accessing formula with a location.

Like simple variables, generalized variables can be updated. The syntax for updating
generalized variables requires, in place of the variable name, a specification of the accessing
formula for the variable.

In the syntactic descriptions of operations on generalized variables, this accessing formula
is referred to as a place form. It may be any one of the following:

m The name of a lexical or dynamic variable.

m A call to a selector function created by means of defstruct.

m A call to any of the functions listed in Figure 5-1.

m A the type declaration.

m Calls to access forms defined by defsetf or define-setf-method.

m Calls to apply that also have special meaning to setf.

m A macro call that expands into one of these forms.

Control Structure 5-5

symbol-value aref car caaadr
symbol-function - svref cdr caadar
symbol-plist get caar caaddr
macro-function elt cadr cadaar
documentation getf cdar cadadr
first gethash cddr caddar
second fill-pointer caaar cadddr
third char caadr cdaaar
fourth schar cadar cdaadr
fifth bit caddr cdadar
sixth sbit cdaar cdaddr
seventh subseq cdadr cddaar
eighth char-bit cddar cddadr
ninth 1db cdddr cdddar
tenth mask-field caaaar cddddr
nth rest

Figure 5-1. Table of Place Constructors

The macro setf takes a generalized place specifier and a value and stores the value in
the specified location. It is intended to be used for all operations that need to update a

piece of data. Using setf uniformly to update such data eliminates the need for numerous
different functions to do updating on different types of data locations.

Blocks and Sequencing

The forms progn, progl, and prog2 provide the primitive sequencing constructs of
Common Lisp. They cause a series of forms to be executed in the order in which they are
listed as arguments.

The block special form acts in a similar way but allows a name to be associated with the
series of forms. The execution of a block may be terminated by the use of the return and
return-from constructs. The defun macro provides an implicit block around the body
of the defined function. This block bears the same name as the funtion. The iteration
forms loop, do, dos, dolist, and dotimes also provide implicit blocks.

The prog, progs, progv, let, let+, and compiler-let constructs establish new variable
bindings and execute a series of forms using these bindings. These constructs differ in
the types of bindings they provide and in how the bindings are made. In addition, the
prog and progs constructs provide implicit tagbodies and thus allow for control transfer
operations.

5—6 Sun Common Lisp Reference Manual

The flet, labels, and macrolet constructs establish new function definition bindings and
execute a series of forms using these bindings.

Iteration

Common Lisp provides several forms of iteration.
The loop construct provides a primitive indefinite iteration facility.

The do, dos, dolist, and dotimes constructs provide structured means of definite
iteration. These forms all create bindings for iteration variables and provide for the
execution of a series of forms within the context of these bindings. Explicit termination
conditions may be specified for the iteration. The dolist construct is tailored for iterating
over the elements of a list. The dotimes construct allows for iteration over a sequence of
integers.

Conditionals

Conditional control structures allow the execution of forms to be contingent on the results
of evaluating other forms.

The if, when, and unless constructs allow for the execution of a form to be dependent
on the results of another form. The cond construct is a generalization of if. It provides a
multibranch if facility.

The various case and typecase forms provide for the selective execution of one group of
forms out of a set of many such groups. The selection is made on the basis of the value or
type of a key associated with the set.

Control Transfer

The most common form of control transfer is the function call. Functions and the function
call mechanism are discussed in the chapter “Program Structure.”

A simple “goto” facility is provided by the go and tagbody constructs. The tagbody
special form allows for control transfer within a body of code by means of tags, or
statement labels. The go form is used to cause control to transfer to the statement labeled
by the tag. The forms do, do#, dolist, dotimes, prog, and progs all have implicit
tagbodies. Tagbody tags have lexical scope. A go form may thus transfer control only to
a tag in a lexically surrounding tagbody.

The return and return-from constructs provide for structured exits from blocks. They
are used in conjunction with the block construct. Block names have lexical scope.
A return or return-from form may transfer control only to the end of a lexically

surrounding block.

Control Structure 5-7

The catch and throw facility provides a means of control transfer in which the destination
is determined by the dynamic environment.

The unwind-protect construct guarantees that a series of cleanup forms will be executed
before a nonlocal exit occurs.

Multiple Values

Normally, a Lisp function returns a single value, although the single value might be a
list or a vector of many objects. In certain cases, however, it is natural for a function to
compute and return more than one value. Common Lisp provides a straightforward way
of doing this.

Unless explicit requests are made both to return multiple values and to receive them, a
function call supplies only a single value. If the function returns multiple values, but the
caller expects only a single value, the result is the first value, and the remaining multiple
values are discarded. If the function returns no values, but the caller expects a single
value, the result is nil.

Many constructs that select a form to be returned will return multiple values if the
selected form returns multiple values. These include progn and constructs where forms
are executed in order. Constructs such as defun, defmacro, eval-when, progv, let,
when, block and forms containing implicit blocks, catch, case, and typecase behave as
if a progn had been wrapped around the series of forms that they execute.

Other forms that return any supplied multiple values are eval, apply, funcall, multiple-
value-call, if, return, return-from, multiple-value-progl, unwind-protect, and
the. The macros and and or return multiple values only from the last subform. The
macro cond returns multiple values unless the clause selected contains only a single form
(the test itself). In that case, the single non-nil value of the test is returned.

Forms that always return only a single value include setq, progl, and prog2.

5-8 Sun Common Lisp Reference Manual

Categories of Operations

This section groups operations related to control structure according to functionality.

Assignment

set shiftf

setq define-modify-macro

psetq defsetf

setf define-setf-method

psetf get-setf-method

rotatef get-setf~-method-multiple-
value

These constructs are used for assignment to simple variables and generalized

variables.

Sequencing
block prog
compiler-let progs*
flet progl
labels prog2
let progn
lets progv
macrolet

These constructs enable a group of statements to be executed sequentially. Some
of them provide for the introduction of new variable bindings.

Control Structure 5-9

Iteration

loop dolist
do dotimes
dos

These constructs provide facilities for definite and indefinite iteration.

Conditionals
cond ecase
if ccase
when typecase
unless etypecase
case ctypecase

These conditional constructs allow selective execution of a form or groups of forms.

Control Transfer

go catch

tagbody throw

return unwind-protect
return-from

These constructs provide for local and nonlocal exits.

Multiple Values

multiple-value-bind multiple-value-setq
multiple-value-call multiple-values-limit
multiple-value-list values
multiple-value-progl values-list

These constructs manipulate multiple values.

5—-10 Sun Common Lisp Reference Manual

block

Purpose: The block special form names and evaluates a series of forms. The forms are
evaluated in the order in which they are given in the argument list. The result
returned by block is the result returned by evaluating the last of the form
arguments.

The execution of a block may be terminated by the use of return or return-from.
In this case, the value returned is that specified by the return or return-from
form.

If the last form of the block, a return form, or a return-from form returns
multiple values, those multiple values are returned by block. If there are no form
arguments, block returns nil.

Syntax: block name {form}* [Special Form]
Remarks: The name argument is a symbol; it is not evaluated. It has lexical scope.

Examples: > (block empty)
NIL
> (block foo 1 2 (return-from foo) 3 4)
NIL
> (block foo 1 2 (block bar 3 4 (return-from foo (values 5 6)) 7 8) 9 10)
5
6

See Also: return

return-from

Control Structure 5-11

case

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The case macro allows the execution of a group of forms to be dependent on
selection by a key match.

The keyform argument is evaluated and matched against the key arguments; the
key arguments are not evaluated. If the keyform value matches a key, then the
forms associated with that key are executed in order.

The case macro returns the value of the last form executed. If no key matches or
the matching key has no associated forms, case returns nil.

case keyform {({({key}*) | key} {form}*)}* [Macro)

A given key may appear only once. Keys are compared using eql.

If only one key is associated with a group of forms, it is not necessary to include

that key in a list unless the key is nil, t, otherwise, or a cons. If t or otherwise
is not enclosed in a list, it has special meaning to case; if nil is not enclosed in a
list, it is treated as the empty list, not as a key.

Either the symbol t or the symbol otherwise may be used as the last key. If no
other key match succeeds, the forms associated with the t or otherwise key are
executed.

> (dolist (k '(1 2 3 :four #\v () t ’other))
(format t ""8 "
(case k ((1 2) ’clausel)

(3 ’clause2)
((nil) ’nilslot)
((:four #\v) °’claused)
((t) ’tslot)
(otherwise ’others))))

CLAUSE1 CLAUSE1 CLAUSE2 CLAUSE4 CLAUSE4 NILSLOT TSLOT OTHERS

NIL

cond
ecase
ccase
typecase
etypecase

ctypecase

5-12 Sun Common Lisp Reference Manual

catch

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The catch special form is used as the destination of a nonlocal control transfer by
throw.

The tag argument is evaluated first. It serves as the name of the catch. The form
arguments are then evaluated in order. If a throw occurs during the execution
of one of the forms, control is transferred to the catch construct whose tag is eq
to the tag argument of the throw. The results of the throw are returned as the
results of the catch.

Catch tags have dynamic scope. If several catch tags match the tag argument of a
throw, control is transferred to the most recently occurring such catch.

If the catch exits normally, the value or values returned by the last form are
returned as the results of the catch. If no form arguments are specified, catch
returns nil.

catch tag {form}* [Special Form)|

Catch tags are compared using eq. Characters and numbers should therefore not
be used as tags.

> (catch 'foo 1 2 (throw 'foo 3) 4)

3

> (catch 'foo 1 2 3 4)

4

> (defun throw-back (tag) (throw tag t))
THROW-BACK

> (catch ’'foo (throw-back ’'foo) 2)

T

> (catch ’foo (catch ’foo (throw-back ’foo) 2) 3)
3

throw

Control Structure 5-13

compiler-let

Purpose:

Syntax:
Remarks:

Examples:

The compiler-let special form is used to create new variable bindings and to
execute a series of forms that use these bindings. These variable bindings have
lexical scope.

The value arguments are evaluated first, in the order in which they are given. The
var arguments are then bound to the corresponding values in parallel. If no value
is specified for a given var argument, that variable is bound to nil.

Unlike the variable bindings created by let, the bindings in compiler-let take
effect during compilation instead of at run-time; no code is generated for them.
The compiler-let construct is used for communication between macros.

If a compiler-let is evaluated by the Lisp interpreter, the effect is identical to that
of a let whose variables are all declared special.

The form arguments are executed in order. The result returned by compiler-let
is the value or values returned by the last form executed. If no form arguments are
specified, compiler-let returns nil.

compiler-let ({var | (var value)}*) {form}* [Special Form)|

No declarations may be specified in a compiie
> (defvar *collect-var#* nil)
COLLECT-VAR=
> (defmacro with-collecting (&body body)
(let ((var (gensym)))
‘(compiler-let ((*collect-var* ’,var))
(let ((,var *()))
, @body
(nreverse ,var)))))
WITH-COLLECTING
> (defmacro collect (value)
(if *collect-var*
‘ (push ,value ,*collect-var*)
(error "COLLECT can only be used inside WITH-COLLECTING")))
COLLECT
> (collect 1)
>>Error: COLLECT can only be used inside WITH-COLLECTING

IF:
Original code: (IF *COLLECT-VAR+ # #)

5—14 Sun Common Lisp Reference Manual

compiler-let

A Abort to Lisp Top Level
=> :a
Back to Lisp Top Level

> (with-collecting (collect 1) (collect 2) (collect 3))
(123)

See Also: let

Control Structure 5-15

cond

Purpose: The cond macro allows the execution of a group of forms to be dependent on a
test form.

The test arguments are evaluated one at a time in the order in which they are
given in the argument list until a test is found that evaluates to a non-nil value.

The form arguments associated with this test are then evaluated in order. The
cond returns immediately after the evaluation of the last of these forms. No
additional test or associated form arguments are evaluated. The cond returns the
results of the last form evaluated. If no forms were associated with the given test,
cond returns the value of the test argument. '

If none of the test arguments is non-nil, cond returns nil.

Syntax: cond {(test {form}*)}* [Macro]

Remarks: If a test succeeds and its associated form argument returns multiple values, the
multiple values are returned from the cond. Only a single value is returned in the
case where a test succeeds and has no associated forms.

Examples: > (defun foo ()
(cond ((= a 1) (setq a 2))
((= a 2) (setq a 3))
((and (= a 3) (floor a 2)))
(t (floor a 3))))
F0O0
(setq a 1)

(foo)
a

(foo0)

(foo0)

H VWVWOWVNVNYRYV

5-16 Sun Common Lisp Reference Manual

cond

See Also:

> (setq a b)
5

> (foo)

1

2

if

case

Control Structure 5-17

define-modify-macro

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The macro define-modify-macro is used to define a macro to access and update
a generalized variable.

The arguments to the new macro will be a reference to the generalized variable,
followed by the arguments that are specified in the lambdae-list argument of
define-modify-macro.

When the macro is invoked, the function specified by the function argument of
define-modify-macro is applied to these arguments to obtain the new value, and
the generalized variable is updated to contain the result.

The macro define-modify-macro returns name as its result.
define-modify-macro name lambda-list function [documentation) [Macro]

The name argument is a symbol; it is not evaluated.
The function argument is not evaluated; it should be the name of a function.
The lambda list may contain the &optional and &rest keywords only.

A documentation string may be attached to the name of the new macro by the
optional documentation argument; the documentation type for this string is setf.

> (define-modify-macro appendf (&rest args) append "Append onto list")
APPENDF

> (setq x *(a b c) y x)

(A BC)

> (appendf x *(d e £f) (1 2 3))

(ABCDEF123)

> x

(ABCDEF123)

>y

(ABC)

defsetf
define-setf-method

5—18 Sun Common Lisp Reference Manual

define-setf-method

Purpose:

Syntax:

Remarks:

The macro define-setf-method is used to specify the means by which setf is to
update a generalized variable that is referenced by a given access function.

When setf is given a generalized variable that is specified in terms of this access
function and a new value for the variable, it is expanded into a call on the update
function. The arguments of the access function and the new value are passed to
the update function, and the update function is invoked to modify the value of the
variable.

The lambda-list argument specifies the arguments of the access function. When
setf is called with the access function, the lambda list parameters are bound to
the corresponding access function arguments in the call form.

The form arguments must compute the expansion for a call on setf that references
the generalized variable by means of the given access function.

The evaluation of the form arguments must result in the following five values:

a list of the temporary variables used; a list of the value forms to whose values
the temporary variables are bound; a list consisting of the store variable (the
temporary variable that is bound to the new value); the store form (the form that
is used to update the generalized variable and return the resulting value); and the
access form (the form that is used to access and return the value of the generalized
variable).

The define-setf-method macro returns the name of the access function as its

result.

define-setf-method access-fn lambda-list [Macro]
{declaration | documentation}* {form}*

The access-fn argument is the name of a function or macro; it is not evaluated.

A documentation string may be attached to the name of the new macro by the
optional documentation argument; the documentation type for this string is setf.

Control Structure 5-19

define-setf-method

Examples: > (defun lastguy (x) (car (last x)))
LASTGUY
> (define-setf-method lastguy (x)
"Set the last element in a list to the given value."
(multiple-value-bind (dummies vals newval setter getter)
(get-setf-method x)
(let ((store (gensym)))
(values dummies
vals
‘(,store)
‘(progn (rplaca (last ,getter) ,store) ,store)
* (lastguy ,getter)))))
LASTGUY
> (setq a (list ’a 'b ’'c °’d)
b (list ’x)
c (list 1 2 3 (list 4 5 6)))
(123 (456))
> (setf (lastguy a) 3)
3
> (setf (lastguy b) 7)
7
> (setf (lastguy (lastguy c)) 'foo)
Foo
> a
(ABC3)
>b
¢))
> c
(1 2 3 (4 5 F00))

See Also: setf
defsetf
get-setf-method

5-20 Sun Common Lisp Reference Manual

defsetf

Purpose:

Syntax:

The macro defsetf is used to specify the means by which setf is to update a
generalized variable that is referenced by a given access function. It specifies an
update function that is to be used in conjunction with the given access function.

When setf is given a generalized variable that is specified in terms of this access
function and a new value for the variable, it is expanded into a call on the update
function. The arguments of the access function and the new value are passed to
the update function, and the update function is invoked to modify the value of the
variable.

The defsetf macro returns the name of the access function as its result.

The arguments to defsetf include the access function and either the name of an
update function or a body of code that will expand the setf call, update the given
location, and return the new value that was stored.

In the first of these methods, an update function is specified by use of the update-fn
argument. The update-fn argument is the name of a function or macro; it is not
evaluated. The update function must take one more argument than the access
function. This last argument corresponds to the new value that is to be assigned
to the generalized variable. The update function must return the new value as its
result.

In the second method, the form arguments must compute the expansion for a
call on setf that references the generalized variable by means of the given access
function. This expansion must also return the new value assigned to the variable
as its result.

The lambda-list argument specifies the arguments of the access function. The
store-variable corresponds to the value that is to be used to update the generalized
variable.

The forms in the body may assume that the lambda list parameters and the store
variable are bound to the corresponding arguments in the call to setf. When
the forms in the body are evaluated, the lambda list parameters and the store
variable are actually bound to the names of temporary variables, which, when setf
is expanded, are bound to the actual argument values.

defsetf access-fn { update-fn [documentation] | [Macro]

lambda-list (store-variable)
{declaration | documentation}* {form}*}

Control Structure 5—21

defsetf

Remarks: The access-fn argument is the name of a function or macro; it is not evaluated. The
access function must be a function or a macro that evaluates all of its arguments.

The lambda-list argument may use the &optional, &rest, &key keywords,
default values, and supplied-p parameters.

A documentation string may be attached to the name of the new macro by the
optional documentation argument; the documentation type for this string is setf.

Examples: > (defun middleguy (x) (nth (truncate (1- (list-length x)) 2) x))
MIDDLEGUY
> (defun set-middleguy (x v)
(unless (null x)

(rplaca (nthcdr (truncate (1- (list-length x)) 2) x) v)

v))
SET-MIDDLEGUY
> (defsetf middleguy set-middleguy)
MIDDLEGUY
> (setq a (list ’a 'b ’'c 'd)

b (list ’x)

c (list 1 2 3 (1ist 4 6 6) 7 8 9))
(123 ((456)7809)

(setf (middleguy a) 3)

>
3
> (setf (middleguy b) 7)
7
>

(setf (middleguy (middleguy c)) °*foo)

>c
(123 (4Fo06)789)

See Also: setf
define-setf-method
get-setf-method

5-22 Sun Common Lisp Reference Manual

do, do+*

Purpose:

Syntax:

The do macro is used to iterate over a group of forms while a test condition holds.

It provides for a series of local iteration variables that may be stepped each time
through the iteration loop.

An initial value may be specified for each iteration variable by use of the tnit form.
The nit forms are all evaluated first. The iteration variables are then bound in
parallel to the corresponding values. If an snit form is not specified for a given
variable, that variable is bound to nil.

The step form arguments may be used to specify how the variables should be
updated on succeeding iterations through the loop. The step forms are all evaluated,
and then the iteration variables are bound in parallel to the corresponding values.
If a step form is not specified for a given variable, that variable is not stepped.

The end-test form is evaluated at the beginning of each iteration. The do
terminates when the result of end-test is non-nil. It is only when end-test results
in a non-nil value that the forms associated with the end test are evaluated. They
are evaluated in order. The do then returns the value of the last of these forms. If
no such forms are specified, do returns nil.

The body of the do is like a tagbody. It consists of a series of tags and statements.
The tag and statement arguments are processed in the order in which they occur.
The tag arguments are not evaluated; they must be symbols or integers. The tags
serve the purpose of labeling statements and have lexical scope. The statement
forms are evaluated. The go special form may be used within the body of the do
to transfer control to a statement labeled by a tag.

The do* macro is identical to do except that the iteration variables are bound
to the initial values and the values of the step forms sequentially. A variable may
thus refer to the value to which a variable occurring earlier in the variables list has
just been bound.

do ({var | (var [init [step]])}*) (end-test {form}*) [Macro]
{declaration}* {tag | statement}*
dos ({var | (var [init [step]])}*) (end-test {form}*) [Macro]

{declaration}* {tag | statement}*

Control Structure 5-23

do, do+*

Remarks: Declarations may be specified for the iteration variables, the init and step forms,
the end-test, the result form, and statements in the body of the do construct.

If a declaration is specified for a variable, the initial value of that variable must be
consistent with the declaration.

A block with the name of nil encloses the do construct. The return macro may
thus be used to exit from the do. -

Examples: > (do ((fool 1 (1+ fool))
(foo2 0 (1- fo02)))
((> (- fool foo2) 5) fool))
4
> (do ((fool 1 (1i+ fool))
(foo2 0 (1+ fool)))
((= 3 foo02) fool))
3
> (do* ((fool 1 (1+ fool))
(foo2 0 (1+ fool)))
((= 3 foo02) fool))
2

See Also: dolist
dotimes
loop
tagbody

return

5—24 Sun Common Lisp Reference Manual

dolist

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The macro dolist is used to iterate over the elements of a list.

The listform argument is evaluated first; it should result in a list. The variable var
is bound to each element of the list in turn, and the body of dolist is executed for
that element.

When all the list elements have been processed, the result form is evaluated, and
its value is returned as the result of the dolist. If a result form is not specified,
dolist returns nil.

The body of the dolist is like a tagbody. It consists of a series of tags and
statements. The tag and statement arguments are processed in the order in
which they occur. The tag arguments are not evaluated; they must be symbols or
integers. The tags serve the purpose of labeling statements and have lexical scope.
The statement forms are evaluated. The go special form may be used within the
body of the dolist to transfer control to a statement labeled by a tag.

dolist (var listform [result]) {declaration}* {tag | statement}* [Macro]

At the time the result form is processed, var is bound to nil.

A block with the name of nil encloses the dolist construct. The return macro
may thus be used to exit from the dolist.

> (setq foo2 ’())

NIL

> (dolist (fool *(1 2 3 4) foo2) (push fool foo2))
(4321)

> (setq foo2 0)

0

> (dolist (fool (1 2 3 4)) (incf foo2))

NIL

> foo2

4

do

Control Structure 5—25

dotimes

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The dotimes macro is used to iterate over a fixed number of integer values.

The countform argument is evaluated first; it should result in an integer. The
variable var is bound in turn to each integer from O up to but not including the
value of countform, and the body of the dotimes is executed for that value. When
all such integer values have been processed, the result form is evaluated, and its
value is returned as the result of the dotimes. If a result form is not specified,
dotimes returns nil.

The body of the dotimes is like a tagbody. It consists of a series of tags and
statements. The tag and statement arguments are processed in the order in
which they occur. The tag arguments are not evaluated; they must be symbols or
integers. The tags serve the purpose of labeling statements and have lexical scope.
The statement forms are evaluated. The go special form may be used within the
body of the dotimes to transfer control to a statement labeled by a tag.

dotimes (var countform [result]) {declaration}* {tag | statement}* [Macro]

At the time the result form is processed, var is bound to the number of times the
body was executed.

A block with the name of nil encloses the dotimes construct. The return macro
may thus be used to exit from the dotimes.

If the countform argument is zero or negative, the body is not executed.

> (dotimes (fool 10 fool))

10

> (setq foo2 0)

0

> (dotimes (fool 10 t) (incf foo2))
T

> foo2

10

do

5-26 Sun Common Lisp Reference Manual

ecase, ccase

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The ecase and ccase macros allow the execution of a group of forms to be
dependent on selection by a key match.

The ecase macro evaluates its keyform argument and matches it against the key
arguments; the key arguments are not evaluated. If the keyform value matches a
key, the forms associated with that key are executed in order.

The ecase macro returns the value of the last form executed. If the matching key
has no associated forms, ecase returns nil. If there is no matching key, ecase
signals a fatal error.

The ccase macro matches the value contained in its keyplace argument against
the key arguments; the key arguments are not evaluated. If the value in keyplace
matches a key, the forms associated with that key are executed in order.

If the object in keyplace does not match any of the keys, ccase signals a continuable
error and enters the debugger. If the user continues from this error, ccase prompts
for a new value to store in keyplace and tries the key matching again.

The macro ccase returns the value of the last form executed. If the matching key
has no associated forms, ccase returns nil.

ecase keyform {({({key}*) | key} {form}*)}* [Macro]
ccase keyplace {({({key}*) | key} {form}*)}* [Macro]

A given key may appear only once. Keys are compared using eql.

If only one key is associated with a group of forms, it is not necessary to include
that key in a list unless the key is nil, t, otherwise, or a cons.

> (setq k 'foo)

FOO

> (ecase k ((foo bar) (setq k 3000))
(2000 (setq k ’bar)))

3000

case

Control Structure 5-27

etypecase, ctypecase

Purpose: The etypecase and ctypecase macros allow the execution of a group of forms to
be dependent on selection by a type match.

The etypecase macro evaluates its keyform argument and matches it against the
type arguments in turn. The type arguments must be type specifiers; they are not
evaluated. If the object specified by the keyform argument is an instance of a given
type, then the forms associated with that type are executed in order. If the object
is an instance of more than one such type, only the forms associated with the first
of these types are executed.

The etypecase macro returns the value of the last form executed. If the matching
type has no associated forms, it returns nil. If no type matches, etypecase signals
a fatal error.

The ctypecase macro matches the value contained in its keyplace argument
against the type arguments in turn. The type arguments must be type specifiers;
they are not evaluated. If the object contained in the keyplace argument is an
instance of a given type, then the forms associated with that type are executed
in order. If the object is an instance of more than one such type, only the forms
associated with the first of these types are executed.

If the object in keyplace does not match any of the types, ctypecase signals a
continuable error and enters the debugger. If the user continues from this error,
ctypecase prompts for a new value to store in keyplace and tries the type matching
again.

The ctypecase macro returns the value of the last form executed. If the matched
type has no associated forms, ctypecase returns nil.

Syntax: etypecase keyform {(type {form}*)}* [Macro]
ctypecase keyplace {(type {form}*)}* [Macro)

Remarks: The type arguments are not evaluated.

It is not permitted to use t or otherwise as a type argument.
Examples: > (etypecase nil (cons "it’'s a cons")
(1ist "it’s nil")
(symbol "it's a symbol"))

"it’s nil"

See Also: typecase

5-28 Sun Common Lisp Reference Manual

flet

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The special form flet is used to define functions whose names are meaningful only
locally and to execute a series of forms with these function definition bindings.
Any number of such local functions may be defined.

The names of functions defined by flet have lexical scope; they retain their local
definitions only within the body of the flet. Any references within the body of the
flet to functions whose names are the same as those defined within the flet are
thus references to the local functions instead of to any global functions of the same
names. The scope of these function definition bindings, however, includes only the
body of flet, not the definitions themselves. Within the function definitions, local
function names that match those being defined refer to global functions defined
outside the flet. It is thus not possible to define recursive functions with flet.

The form arguments are executed in order. The result returned by flet is the value
or values returned by the last form executed. If no form arguments are specified,
flet returns nil.

flet ({ (name lambda-list {declaration | documentation}* [Special Form]

{form}*)}*) {form}*

An flet local function definition is identical in form to the function definition
part of a defun. It contains a name, argument list, optional declarations and
documentation string, and a body. ’

> (flet ((fleti (n) (+ n n)))
(flet ((fleti (n) (+ 2 (fletl n))))
(flet1 2)))

6

> (flet ((+ (&rest args) ’crossed-out))
(+123))

CROSSED-0UT

labels

let

defun

Control Structure 5-29

get-setf-method, get-setf-method-multiple-value

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function get-setf-method returns a multiple value result that characterizes

the setf method for a given form.

The result consists of the following five values: a list of the temporary variables; a
list of the value forms to whose values the temporary variables are bound; a list

consisting of the store variable; the store form; and the access form.

The function get-setf-method-multiple-value is like get-setf-method except

that a list containing more than one store variable may be returned.

get-setf~-method form

get-setf-method-multiple-value form
The form argument must be a reference to a generalized variable.

> (get-setf-method 'x)
NIL
NIL
(#:G50)
(SETQ X #:G50)
X
> (define-setf-method multivalue (x)
(values '() *'() ‘(,(gensym) , (gensym)) °(setq ,x 3) ’4))
MULTIVALUE
> (get-setf-method-multiple-value ’(multivalue foo))
NIL
NIL
(#:G59 #:G660)
(SETQ FOO 3)
4

defsetf
define-setf~-method
setf

5—-30 Sun Common Lisp Reference Manual

[Function]

[Function|

g0

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The go special form is used to transfer control to a location within a tagbody.

Control is transferred to the statement labeled by a tag that is eql to the tag
argument. Tags have lexical scope. If several tags match the tag argument of the
go, control is transferred to whichever matching tag is contained in the tagbody
form that most immediately contains the go.

No value is returned.
go tag [Special Form)|

The tag argument is not evaluated. It must be a symbol or an integer.

It is an error if there is no matching tag.

> (tagbody
(setq val 2)
(go 1p)
(incf val 3)
1p (incf val 4))
NIL
> val
6

tagbody

Control Structure 5-31

Purpose:

Syntax:

Examples:

See Also:

The if special form allows the execution of a form to be dependent on a single test
form.

First, the test argument is evaluated before either the then or the else argument.
Next, either the then or the else argument is evaluated, depending on the result of
test.

If the test argument is non-nil, the ther form is evaluated. The results of the then
form are returned as the results of if.

If the test argument is nil, the else form is evaluated. The results of the else
form are returned as the results of if. If an else argument is not specified, nil is
returned.

if test then [else] [Special Form)|

> (if t 1)

1

> (if nil 1 2)
2

and

when

unless

or

5—32 Sun Common Lisp Reference Manual

labels

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The special form labels is used to define functions whose names are meaningful
only locally and to execute a series of forms with these function definition bindings.
Any number of such local functions may be defined.

The names of functions defined by labels have lexical scope; they retain their local
definitions only within the body of the labels construct. Any references within
the body of the labels construct to functions whose names are the same as those
defined within the labels form are thus references to the local functions instead of
to any global functions of the same names. The scope of these function definition
bindings includes the definitions themselves as well as the body of the labels
construct.

The form arguments are executed in order. The result returned by labels is the
value or values returned by the last form executed. If no form arguments are
specified, labels returns nil.

labels ({ (name lambda-list {declaration | documentation}* [Special Form]

{form}*)}*) {form}*

A labels local function definition is identical in form to the function definition

‘part of a defun. It contains a name, argument list, optional declarations and

documentation string, and a body.

> (defun recursive-times (k n)
(1abels ((foo (n) (if (zerop m) 0 (+ k (foo (1- n))))))
(foo n)))
RECURSIVE-TIMES
> (recursive-times 2 3)
6

flet
let

defun

Control Structure 5-33

let, letx

Purpose:

Syntax:

Remarks:

Examples:

The let special form is used to create new variable bindings and to execute a series
of forms that use these bindings.

The variable bindings created are lexical bindings unless the appropriate special
declarations are specified. The bindings have lexical scope.

The value arguments are evaluated first, in the order in which they are given. The
var arguments are then bound to the corresponding values in parallel. If no velue
is specified for a given var argument, that variable is bound to nil.

The form arguments are executed in order. The result returned by let is the value
or values returned by the last form executed. If no form arguments are specified,
let returns nil.

The special form let* is identical to let except that the variables are bound to
the values sequentially. A variable may thus refer to the value to which a variable
occurring earlier in the variables list has just been bound.

let ({var | (var value)}*) {declaration}* {form}* [Special Form)|
let ({var | (ver value)}*) {declaration}* {form}* [Special Form)|

If a declaration is specified for a variable, the initial value of that variable must be
consistent with the declaration.

> (setq a ’top)
TOP
> (defun foo () a)
FOO
> (let ((a ’'inside) (b a))
(format t "“S S “8" a b (fo0)))
INSIDE TOP TOP
NIL
> (let* ((a 'inside) (b a))
(format t ""S "8 “S8" a b (foo0)))
INSIDE INSIDE TOP
NIL
> (let ((a ’inside) (b a))
(declare (special a))
(format t ""8 “8 “S" a b (fo00)))
INSIDE TOP INSIDE
NIL

5-34 Sun Common Lisp Reference Manual

loop

Purpose:

Syntax:

Examples:

See Also:

The loop macro is used to perform indefinite iteration.

Each form argument is evaluated in turn. After the last form is evaluated, the
evaluation starts over again with the first. The only way to exit from a loop is by
explicit termination, as by a return, go, or throw.

An implicit block named nil is created by the loop construct. It is thus possible
to return a value from loop by the use of return.

loop {form}* [Macro]

> (let ((i 0))
(loop (incf i) (if (= i 3) (returm i))))
3
> (let ((i 0)(j 0))
(tagbody
(loop (incf j 3) (incf i) (if (= i 3) (go exit)))
exit)
i)
9

do
dolist
dotimes
return
go
throw

Control Structure 5-35

macrolet

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The macrolet special form is used to define macros whose names are meaningful
only locally and to execute a series of forms with these macro definition bindings.
Any number of such local macros may be defined.

The names of macros defined by macrolet have lexical scope; they retain their
local definitions only within the body of the macrolet. Any references within the
body of the macrolet to macros whose names are the same as those defined within
the macrolet are thus references to the local macros instead of to any global
macros of the same names. The scope of these macro definition bindings, however,
includes only the body of macrolet, not the definitions themselves. Within the
macro definitions, local function names that match those being defined refer to
global macros or functions defined outside the macrolet.

The form arguments are executed in order. The result returned by macrolet is
the value or values returned by the last form executed. If no form arguments are
specified, macrolet returns nil.

macrolet ({ (rame lambda-list {declaration | documentation}* [Special Form)|

{form}*)}*) {form}*

The macro expansion functions defined by macrolet are defined in the global
environment, not in the lexical environment of the macrolet; they thus do not
have access to items within the lexical scope of the macrolet.

A macrolet local macro definition is identical in form to the macro definition
part of a defmacro. It contains a name, argument list, optional declarations and
documentation string, and a body.

> (defmacro mlets (x &environment env)
(let ((form °‘(baz ,x)))
(macroexpand form env)))
MLETS
> (macrolet ((baz (z) *‘(+ ,z ,z))) (mlets 5))
10

flet
let
defmacro

5-36 Sun Common Lisp Reference Manual

multiple-value-bind

Purpose:

Syntax:

Remarks:
Examples:

See Also:

The multiple-value-bind macro is used to create new variable bindings and to
execute a series of forms that use these bindings.

The variable bindings created are lexical bindings unless the appropriate special
declarations are specified. The bindings have lexical scope.

The values-form argument is evaluated first. The var arguments are then bound to
the values that it returns. If there are more variables than results, the remaining
variables are bound to nil. If there are more results than variables, the remaining
values are discarded.

The form arguments are executed in order. The value returned by multiple-
value-bind is the value or values returned by the last form executed. If no form
arguments are specified, multiple-value-bind returns nil.

multiple-value-bind ({var}*) values-form {declaration}* {form}* [Macro]

If a declaration is specified for a variable, the value to which that variable is bound
must be consistent with the declaration.

> (multiple-value-bind (f r) (floor 130 11) (list f r))
(11 9)

let

Control Structure 5-37

multiple-value-call

Purpose: The multiple-value-call special form applies a function to the values collected
from groups of multiple values.

The function argument is evaluated first. All of the form arguments are then
evaluated. The values they produce are passed to the function as arguments. The
result of applying the function to these arguments is returned as the result of the
multiple-value-call form.

Syntax: multiple-value-call function {form}* [Special Form|

Examples: > (multiple-value-call #°'list 1 °/ (values 2 3) ’/ (values) °/ (floor 2.5))
(1/23//2.6)

5—38 Sun Common Lisp Reference Manual

multiple-value-list

Purpose: The multiple-value-list macro returns as a list the multiple values that are
produced as a result of evaluating a given form.

Syntax: multiple-value-list form [Macro]

Examples: > (multiple-value-list (values 1 2 3))
(123)

See Also: values-list

Control Structure 5-39

multiple-value-progl

Purpose: The multiple-value-progl special form evaluates a series of forms. The forms are
evaluated in the order in which they are given in the argument list. The multiple
values returned by multiple-value-progl are the results returned by evaluating
the first of the form arguments.

Syntax: multiple-value-progl form {form}* [Special Form|

Examples: > (setq foo '(1 2 3))
(123)
> (multiple-value-progi
(values-list foo)
(setq foo nil)
(values-list foo))

N =

See Also: progl

5-40 Sun Common Lisp Reference Manual

multiple-value-setq

Purpose: The macro multiple-value-setq is used to assign values to a list of variables.

The form argument is evaluated first. The values it returns are then assigned to
the corresponding variables of the list.

If there are more variables than results, nil is assigned to the remaining variables.
If there are more results than variables, the remaining values are discarded.

The result of multiple-value-setq is the first value returned by form. If form
returns no values, the result is nil.

Syntax: multiple-value-setq vars form [Macro]
Remarks: The vars argument is a list of variables.
Examples: > (multiple-value-setq (a b c) (values 1 2))

VINVFEV P
o

0

NIL

See Also: setq

Control Structure 5—41

multiple-values-limit

Purpose: The constant multiple-values-limit defines the upper exclusive bound on the
number of values that any function may return.

The value of multiple-values-limit in Sun Common Lisp is 2°.
Syntax: multiple-values-limit [Constant]

Examples: > multiple-values-limit
512

5—42 Sun Common Lisp Reference Manual

Prog, progx

Purpose:

Syntax:

Remarks:

Examples:

The prog macro is used to create a block, new variable bindings, and an implicit
tagbody, and to execute a series of forms that use these items.

The variable bindings created are lexical bindings unless the appropriate special
declarations are specified.

The #nit arguments are evaluated first, in the order in which they are given. The
var arguments are then bound to the corresponding values in parallel. If no init
value is specified for a given ver argument, that variable is bound to nil.

The body of the prog is like a tagbody. It consists of a series of tags and
statements. The tag and statement arguments are processed in the order in
which they occur. The tag arguments are not evaluated; they must be symbols or
integers. The tags serve the purpose of labeling statements. The statement forms
are evaluated. The go special form may be used within a prog body to transfer
control to a statement labeled by a tag. The tags have lexical scope.

A block with the name of nil encloses the prog construct. The return macro may
thus be used to exit from the prog.

The progs* macro is identical to prog except that variables are bound to the initial
values sequentially. A variable may thus refer to the value to which a variable
occurring earlier in the variables list has just been bound.

The prog and prog#* macros return nil.

prog ({var | (var [init])}*) {declaration}* {tag | statement}* [Macro]
progs ({var | (var [init])}*) {declaration}* {tag | statement}* [Macro]

If a declaration is specified for a variable, the initial value of that variable must be
consistent with the declaration.

> (setq a 1)

: (prog ((a 2) (b a)) (zreturn (if (= a b) ’= */=)))
£=(prog* ((a 2) (b a)) (return (if (= ab) ’'= '/=)))
: (prog () ’no-return-value)

NIL

Control Structure 5-43

prog, prog#

See Also: block
let
tagbody
go

return

5—44 Sun Common Lisp Reference Manual

progl

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The progl macro evaluates a series of forms. The forms are evaluated in the order
in which they are given in the argument list. The result returned by progl is the
result returned by evaluating the first form argument.

progl first {form}* [Macro]

If the first form returns multiple values, only the first of these values is returned
by progl. If the first form returns no values, progl returns nil.

> (setq fool 1)

1

> (progl fool (setq fool nil))
1

> fool

NIL

> (progl (values t t))

T

progn
prog2
multiple-value-progl

Control Structure 5-45

prog2

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The prog2 macro evaluates a series of forms. The forms are evaluated in the order
in which they are given in the argument list. The result returned by prog2 is the
result returned by evaluating the second form argument.

prog2 first second {form}* [Macro]

If the second form returns multiple values, only the first of these values is returned
by prog2. If the second form returns no values, prog2 returns nil.

> (setq foo t)

T

> (prog2 nil foo (setq foo nil))

T

> foo

NIL

> (prog2 (coms ’x ’y) (values t t))
T

progn

progl

5—46 Sun Common Lisp Reference Manual

progn

Purpose: The progn special form evaluates a series of forms. The forms are evaluated in
the order in which they are given in the argument list. The result returned by
progn is the result returned by evaluating the last of the form arguments. If the
last form returns multiple values, those multiple values are returned as the result
of progn. If no form arguments are specified, progn returns nil.

Syntax: progn {form}* [Special Form)|
Examples: > (progn)

NIL
> (progn 1 2 3)

3

> (progn (values 1 2 3))
1

2

3

> (setq a 1)

1

> (if a

(progn (setq a nil) °’true)
(progn (setq a t) ’false))
TRUE

Control Structure 5-47

progv

Purpose:

Syntax:
Remarks:

Examples:

See Also:

The progv special form is used to create new dynamic variable bindings and to
execute a series of forms that use those bindings.

The symbols argument specifies a list of dynamic variables. The values argument
specifies a list of values. The symbols and values arguments are evaluated, and
the variables are bound to the corresponding values. If there are more variables
than values, the remaining variables are unbound. If there are more values than
variables, the remaining values are discarded.

The form arguments are executed in order. The value returned by progv is the
value or values returned by the last form executed. If no form arguments are
specified, progv returns nil.

progv symbols values {form}* [Special Form]

The previous bindings of the dynamic variables are restored when progv exits.

> (setq *x* 1)

1

> (progv '(*x#*) ’(2) *x*)
[]

> kX*

1

> (let ((*#x* 3)) (progv ®(*x*) ’(4) (list *x* (symbol-value ’*x*))))
3 4)

progn

5—48 Sun Common Lisp Reference Manual

return, return-from

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The return and return-from constructs are used to return from a lexically
enclosing block. Both return and return-from specify the value or values to be
returned from the block.

The name argument of return-from is a symbol; it is not evaluated. It specifies
the lexically enclosing block of the same name from which to return.

The return macro is like return-from except that it causes a return from the
lexically enclosing block whose name is nil. Such implicit blocks are created by
prog and the iteration constructs do, do#, dolist, dotimes, and loop.

return [result] [Macro]

return-from name [result] [Special Form)|

If the result argument is not specified, nil is returned.

v

(block foo 1 (return-from foo 2) 3)

v N

(let ((a 0))
(dotimes (i 10) (incf a) (when (oddp i) (return)))
a)

v N

(defun foo (x)
(if x (return-from foo ’bar))
44)

FOO

> (foo nil)

44

> (foo t)

BAR

block

Control Structure 5—49

rotatef

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The rotatef macro is used to modify the values of a series of generalized variables
by rotating values from one generalized variable into another.

First the values of all the place arguments are obtained. The location specified by
each place argument is then assigned the value corresponding to the argument that
follows it in the argument list. The location specified by the last place argument is
assigned the original value of the first argument.

The rotatef macro returns nil as its result.
rotatef {place}* [Macro]

The place arguments must be generalized variables acceptable to the macro setf.

The rotatef macro may be used to assign values to lexical as well as to dynamic
variables.

> (let ((n 0)
(x (1ist 'a ’b ’'c ’d ’e °’f ’g)))
(rotatef (nth (incf n) x)
(nth (incf n) x)
(nth (incf n) x))
x)
(ACDBEFQ)

setf
shiftf

5-50 Sun Common Lisp Reference Manual

set

Purpose:

Syntax:

Examples:

See Also:

The function set is used to modify the value of a special variable.

It causes the dynamic variable associated with the symbol argument to have the

specified value.
set symbol value

> (set 'foo 1)
1

> foo

1

setq

symbol-value

[Function]

Control Structure 5-51

setf, psetf

Purpose:

Syntax:

Remarks:

Examples:

The setf macro is used to update a generalized variable. It modifies the location
specified by the place argument to contain newvalue.

More than one generalized variable may be updated in a single setf. In this case
the pairs of place and newvalue arguments are processed sequentially.

The result returned by setf is the value of the last newvalue argument. If no
arguments are given, setf returns nil.

The macro psetf is like setf except that if multiple argument pairs are specified,
the updates are done in parallel. The result returned by psetf is nil.

setf {place newvalue}* [Macro]

psetf {place newvalue}* [Macro]

The macros setf and psetf may be used to assign values to lexical as well as to
dynamic variables.

The place arguments must be generalized variables.

If more than one of the place forms given to psetf evaluates to the same location,
the results are unpredictable.

> (setqg x (cons ’a ’'b) y (list 1 2 3))

(123)

> (setf (car x) ’x (cadr y) ’'foo (cdr x) y (cadr y) ’bar)
BAR

> (setf (third y) 7)

7

> x

(X 1 BAR 7)

>y

(1 BAR 7)

5-52 Sun Common Lisp Reference Manual

setq, psetq

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The setq and psetq constructs are used to assign values to variables.

The special form setq evaluates its form arguments sequentially. The first form
argument is evaluated, and its value is stored in the variable specified by the
first var argument before the next form argument is evaluated. Hence, if a form
references a variable in the argument list whose value has already been modified,
the new value of the variable is used.

The macro psetq is like setq except that the form arguments are all evaluated in
parallel, and the resulting values are stored in parallel in the var arguments.

The result returned by setq is the result returned by evaluating the last of the
form arguments. If this form produces multiple values, only the first value is
returned; if the form produces no values, setq returns nil.

The psetq macro returns nil.

setq {var form}* [Special Form]
psetq {var form}* [Macro]

The setq and psetq constructs may be used to assign values to both special and
lexical variables.

> (setq foo 1)
1

> foo

1

setf

set

Control Structure 5-53

shiftf

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The shiftf macro is used to modify the values of a series of generalized variables
by shifting values from one generalized variable into another.

First the values of all the place arguments and the value specified by newvalue are
obtained. The location specified by each place argument is then assigned the value
corresponding to the argument that follows it in the argument list.

The original value of the first place argument is returned as the result of shiftf.
shiftf {place}* newvalue [Macro]

The place arguments must be generalized variables acceptable to the macro setf.

The shiftf macro may be used to assign values to lexical as well as dynamic
variables.

> (setq x '(1 2 3) y ’trash)
TRASH

> (shiftf y x (cdr x) °’(hi there))
TRASH

setf

rotatef

5-54 Sun Common Lisp Reference Manual

tagbody

Purpose:

Syntax:
Remarks:

Examples:

See Also:

The tagbody special form provides for control transfers within a body of code by
means of statement labels called tags.

The tagbody consists of a series of tags and statements. The tag and statement
arguments are processed in the order in which they occur. The tag arguments are
not evaluated; they must be symbols or integers. The tags serve the purpose of
labeling statements. The statement forms are evaluated. The go special form may
be used within a tagbody to transfer control to a statement labeled by a tag.

Tags have lexical scope.

The tagbody special form returns nil.

tagbody {tag | statement}* [Special Form)|

The forms do, do#, dolist, dotimes, prog, and progs all have implicit tagbodies.

> (let (val)
(tagbody
(setq val 1)
(go point-a)
(incf val 16)
point-c
(incf val 04)
(go point-b)
(incf val 32)
point-a
(incf val 02)
(go point-c¢)
(incf val 64)

point-b
(incf val 08))
val)
15
go

Control Structure 5—-55

throw

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The throw special form is used to cause a nonlocal control transfer.

Both the tag and the result arguments are evaluated. Control is transferred to the
catch construct whose tag is eq to the tag argument. The results of throw are
returned as the results of the catch form.

Catch tags have dynamic scope. If several catch tags match the tag argument of
throw, control is transferred to the most recently occurring catch form.

throw tag result [Special Form]

The throw special form may return multiple values.

The successful execution of the throw form causes the stack to be unwound and
any dynamic variable bindings to be restored to their state as of the point of the
catch. Any intervening unwind-protect code is executed during this process.

There must be a matching tag; otherwise the stack is not unwound and an error is
signaled.

Since catch tags are compared using eq, characters and numbers should not be
used as tags.

> (catch 'foo
(setq i 0)
(loop (incf i) (when (> i 10) (throw ’foo ’'bar)))
i)

BAR

catch

unwind-protect

5-56 Sun Common Lisp Reference Manual

typecase

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The typecase macro allows the execution of a group of forms to be dependent on
selection by a type match.

The keyform argument is evaluated and matched against the type arguments in
turn. The type arguments must be type specifiers; they are not evaluated. If the
object specified by the keyform argument is an instance of a given type, then the
forms associated with that type are executed in order. If the object is an instance
of more than one such type, only the forms associated with the first of these types
are executed.

The typecase macro returns the value of the last form executed. If no type
matches or the matching type has no associated forms, typecase returns nil.

typecase keyform {(type {form}*)}* [Macro)

Either the symbol t or the symbol otherwise may be used as the last type
specifier. If no other type match succeeds, the forms associated with the t or
otherwise are executed.

> (typecase ’'(a b)
(integer "integer")
(list "list")
(t "otherwise"))
"list"
> (typecase ‘a
(integer "integer")
(list "list")
(otherwise "otherwise"))
"otherwise"

etypecase
ctypecase
case
ecase
ccase

cond

Control Structure 5-57

unless

Purpose: The unless macro allows the execution of a series of forms to be dependent on a
single test form.

If the test argument is non-nil, none of the form arguments are evaluated, and
unless returns nil.

If test is nil, then the form arguments are evaluated in order. The value or
values of the last form argument are returned as the result of unless. If no form
arguments are specified, unless returns nil.

Syntax: unless test {form}* [Macro]

Examples: > (unless nil 1)
1
> (unless t 2)
NIL
> (unless nil)
NIL

See Also: when

5-58 Sun Common Lisp Reference Manual

unwind-protect

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The unwind-protect special form is used to execute a protected form and to
guarantee that a series of cleanup forms are executed before the unwind-protect
exits.

The unwind-protect special form returns the value or values that result from the
execution of the protected form.

unwind-protect protected-form {cleanup-form}* [Special Form]

The cleanup forms are generally used to ensure that if an exit of any kind causes
the execution of the protected form to be aborted, the unwind-protect construct
is able to perform any necessary actions before it exits.

The cleanup forms are not protected.

> (defun foo (x)
(setq state ’running)
(unless (numberp x) (throw ’abort ’not-a-number))
(setq state (1+ x)))
Foo
(catch ’abort (foo 1))

>

2

> state
2

> (catch 'abort (foo ’trash))

NOT-A-NUMBER

> state

RUNNING

> (catch ’abort (unwind-protect (foo 'trash) (setq state *aborted)))
NOT-A-NUMBER

> sgtate
ABORTED

throw
catch
go

return

return-from

Control Structure 5-59

values

Purpose: The function values is used to return multiple values. It returns one value for each
of its arguments, in order.

Syntax: values &rest args [Function]

Remarks: If any argument produces more than one value, only the first of these is returned.

If no arguments are specified, values returns no values.

Examples: > (values)
> (values 1 2 3)

(values (values 1 2 3) 4 5)

= VONR

5—60 Sun Common Lisp Reference Manual

values-list

Purpose: The function values-list returns the elements of its list argument as multiple
values.
Syntax: values-list list [Function]

Examples: > (values-list nil)
> (values-list (1 2 3))

W N =

Control Structure 5-61

when

Purpose: The when macro allows the execution of a series of forms to be dependent on a
single test form.

If the test argument is nil, none of the form arguments are evaluated, and when
returns nil.

If test is non-nil, then the form arguments are evaluated in order. The value or
values of the last form argument are returned as the result of when. If no form
arguments are specified, when returns nil.

Syntax: when test {form}* [Macro]

Examples: > (when t 1)
1
> (when nil 2)
NIL
> (when t)
NIL
(setq foo t)

>
T
> (when foo (setq foo nil) 3)
3
>

(when foo 4)
NIL

See Also: unless

5—62 Sun Common Lisp Reference Manual

Chapter 6. Macros

Macros 6-1

Chapter 6. Macros

About Macros e e 6-3
Macro Evaluation 6-3
Macro Definition e e 6-3
Lambda Lists. e e 64
Destructuring Facility e 66
Backquote Facility 6-6

Categories of Operations. it 6-8
Macro Definition 6-8
Macro EXpansion.ottt e 6-8

defime-Macro e e 6-9

defmacro e e e e e e 6-10

macro-fUnNCHIOn e 6-12

macroexpand, macroexpand-1. 6-13

smacroexpand-hooKk*. e 6-15

6—2 Sun Common Lisp Reference Manual

About Macros

Macros are important tools in constructing programs. Macros enable the user to write
forms that do not obey the usual rules for evaluation. They provide facilities for data
abstraction that are potentially more efficient to use than functions.

A macro is not a function, but rather a functionlike object that returns a Lisp expression
to be evaluated in place of the macro call.

Macros are processed in a special way by the evaluator. When the evaluator encounters a
macro call form, it calls the macro whose name is the first element in this form and passes
to it the rest of the elements of the macro call form as arguments. These arguments are
passed unevaluated to the macro.

Macro Evaluation

The evaluation of the macro is a process known as macro expansion. Its result is an
expression that is to be evaluated in place of the macro call form. The result of the macro
expansion is substituted for the original macro call form. The evaluator evaluates the
results of this macro substitution and returns the results as if they were the results of the
macro call. If the result of the macro expansion is again a macro call form, the entire
macro evaluation process is repeated. The functions macroexpand and macroexpand-1
are used to perform the macro expansion operation.

When a program is compiled, the compiler manages the process of macro expansion.
Macros may thus be used to provide an efficient data abstraction facility like that provided
by functions, but without the run-time overhead involved in macro expansion. When a
program using macros is compiled, the macro definition must precede the first macro use
in the program text. Similarly, when a program is interpreted, all the macros in the body
of the program must be known; otherwise they will be interpreted as unknown functions.

Macro Definition

Macro definition is performed by use of the defmacro facility. The syntax for defining
macros is much like that for function definition.

Defining a macro causes an expansion function for the given macro to be associated with
the macro name in the global environment. The body of the macro expansion function
consists of the series of form arguments specified in the macro definition. When the
macro expansion function is applied to the macro call form, the parameters specified in
the lambda list given in the macro definition are bound to actual argument values, and
the forms in the body of the macro expansion function are executed in the context of
these bindings. The result returned by the macro expansion is the result of the last form
evaluated. If no forms are evaluated, nil is returned.

Macros 6-3

The syntax for macro definitions is the following:

(defmacro name lambda-list {declaration | documentation}* {form}*)

lambda-list::= ([&whole var]

{var}*

[&environment var]

[&optional {var | (var [initform [supplied-p-parameter] 1)}*]

[{&rest | &body} var]

[&key {var | ({var | (keyword var)} [initform [supplied-p-parameter] 1)}*
[£allow-other-keys]]

[¥aux {var | (var [initform|)}*])

Lambda Lists

The lambda list specifies the parameters of the macro expansion function. When the
macro call is processed, the parameters specified in the lambda list are bound to the
actual argument values occurring in the macro call, and the forms in the body of the
lambda expression are executed in the context of these bindings. Unlike the arguments
to functions, however, these arguments are passed unevaluated to the macro expansion
function.

. . o e . .
Tho 2rurhanla Foavward arcnmaent iea antinnal If it 1e enacrifiad 1+ mnet Arcnr Brot in +tha
2 08 SIWaARC2C ASYWOrQ Arguilieily 1S CPLItnaa. il 1L 1S SPOCULICG, 1V INUSL OCTUr arsy in wie

lambda list. It causes the following variable to be bound to the macro call form.

The specifiers for all required parameters must appear next in the list. If &whole
is not specified, all parameters preceding the first lambda list keyword are required
parameters. Otherwise all parameters following the &whole variable and preceding
the next lambda list keyword are considered to be required parameters. The required
parameters are bound to actual argument values in the order in which they occur.
There must be at least as many actual argument forms as there are required parameters.
If no further lambda list keywords are specified, there must be exactly as many actual
arguments as parameters.

The &environment lambda list keyword may be used to specify a lexical environment
in which the macro call is to be evaluated. If it is used, it must follow the required
lambda list parameters.

Any optional parameters must be specified next. They are preceded by the lambda
list keyword &optional. If optional parameters are specified, they are bound in
order to the corresponding remaining values in the argument list. If there are no
remaining arguments at any point in the processing of optional parameters, then any
remaining optional parameter is bound to the value that results from the evaluation of
its associated tnitform, if the latter is given, or to nil, if not. A supplied-p-parameter
variable may be used in conjunction with an tnitform. Its purpose is to indicate

6—4 Sun Common Lisp Reference Manual

whether an actual argument value was supplied. It is bound to true if an actual
argument was supplied; otherwise (if the initform was evaluated), it is bound to nil.

One rest parameter may be specified next. It is preceded by the &rest lambda list
keyword. If a rest parameter has been specified, it is bound to a list consisting of all
the actual arguments that have not yet been processed. If no arguments remain, the
rest parameter is bound to nil.

The &body keyword may be used instead of &rest. It performs the same function,
but it also provides information to formatting functions.

The use of the lambda list keyword &key and keyword parameter specifiers enables
keyword arguments to be used in macro calls. If any keyword parameters are to appear
in the macro call, they must be preceded by &key in the lambda list. These keyword
parameters may be followed by the lambda list keyword &allow-other-keys.

A keyword parameter may be specified in one of three ways. These forms differ in
whether the name for the keyword to be used in the actual argument list is specified
explicitly or implicitly and whether an initial value is to be used if such a keyword
argument is not specified.

If a variable, var, specifies the keyword parameter, the keyword argument to be used
in the argument list consists of a keyword (in the keyword package) with the same
name as var. Thus, for example, &key name in the lambda list corresponds to :name
in the macro call form. If such a keyword does not appear in the argument list, var is
bound to nil.

If the form (var [instform [supplied-p-parameter]]) specifies the keyword parameter,
the keyword argument to be used is specified in the same way as in the simpler case
discussed above. This construct, however, allows the variable to be bound to an initial
value if the keyword is not specified in the argument list. The supplied-p-parameter
may be used to test whether such an argument value was specified.

The form ((keyword var) [initform [supplied-p-parameter]]) allows the explicit
specification of the argument list keyword that is associated with var. It also allows the
variable to be bound to an initial value if the keyword is not specified in the argument
list.

There must be an even number of actual keyword arguments. Keyword arguments
are considered to occur in pairs. The first argument in the pair is a keyword; the
second is the value to which the corresponding keyword parameter is to be bound.
The keyword-value pairs may occur in any order in the argument list; they are not
constrained by the order of the keyword parameters in the lambda list. If a given
keyword argument is specified more than once, however, the first keyword-value pair is
used in the binding of the keyword parameter. If a rest parameter has been specified,
the arguments used in processing keyword parameters are the same as those used in
processing the rest parameter.

Macros 6-5

m The &allow-other-keys lambda list keyword is used to specify that the argument list
may contain a keyword that does not correspond to a lambda list keyword parameter.
Otherwise it is an error if such an argument pair occurs unless the argument list
contains a keyword-value pair whose key is :allow-other-keys and whose value is
non-nil. The &rest keyword parameter may be used to access values specified by
means of the &allow-other-keys and :allow-other-keys constructs.

It is an error if there are remaining arguments and neither a rest parameter nor a
keyword parameter has been specified.

m Finally, the &aux lambda list keyword may be used to specify auxiliary variables.
These serve as local variables within the macro expansion function. Auxiliary variables
are not bound to argument list values. An auxiliary variable may be bound within the
lambda expression itself or by specifying a corresponding initform in the lambda list.

Since the lambda list elements are processed in the order in which they occur, any tnitform
may reference a parameter variable (including a supplied-p-parameter variable) that is
bound earlier in the processing of the lambda list. '

When the function exits, the variable bindings in effect before the function invocation are
restored.

Destructuring Facility

The macro destructuring facility provides for a generalization of the lambda list syntax.
The destructuring facility allows a lambda list to appear wherever a parameter name (but
not a list) can appear in a lambda list. When the actual arguments are processed, the
embedded lambda list itself is bound to the form to which such a parameter would have
been bound. This binding is also performed according to the method described above.

The destructuring facility allows for a dotted lambda list that ends with a parameter
name. In this case, the last parameter is treated as if it had been preceded by the &rest
lambda list keyword instead.

Backquote Facility

The backquote (‘) mechanism is designed to simplify the writing of macro definitions.
It can be used in the macro body to create a template for the macro expansion. A
list preceded by a backquote provides a list template into which elements are spliced.
The backquote acts just like the quote (*) construct, except that it allows the following
constructs to be used.

6—6 Sun Common Lisp Reference Manual -

The comma (,) construct is used in conjunction with the backquote mechanism. If a
comma immediately precedes a form in such a template, that form is evaluated and the
result is spliced into the resulting list at the position where the comma and its associated
form occurred. The comma thus has the effect of “unquoting” the following form.

A comma may also be followed by the at-sign symbol (€). The ,@ construct specifies that
the evaluation of the following form produces a list of objects. These objects themselves
(not the list) are inserted into the resulting list at the position where the ,e@ and its
associated form occurred.

The ,. construct is like the ,@ construct, except that it may have the side effect of
modifying the list produced by evaluating the associated form.

Any other forms occurring in such a template are not evaluated. They remain at the same
position in the resulting list as they occupy in the template.

The backquote facility is discussed further in the chapter “Input/Output.”

Macros 6-7

Categories of Operations

This section groups operations on macros according to functionality.

Macro Definition

defmacro macro-function
define-macro

These functions are used to define macros.

Macro Expansion

macroexpand smacroexpand-hooks
macroexpand-1

These constructs are used to expand macros.

6-8 Sun Common Lisp Reference Manual

define-macro

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function define-macro is used by defmacro to do the actual defining of a
new macro. It replaces the function cell of the named symbol with the specified
function object.

If the function is currently traced, it remains traced, but with the new definition.
define-macro name function [Function]

The name argument is a symbol.

The function define-macro is an extension to Common Lisp.

> (define-macro ’foo #'do)

F0O

> (foo ((i 0 (1+ i))) ((> i 2) i))
3

defmacro

symbol-function

sredefinition-actions

Macros 6-9

defmacro

Purpose:

Syntax:

Remarks:

Examples:

The defmacro macro is used for macro definition. It causes an expansion function
for the given macro name to be defined in the global environment.

The name argument of defmacro is a symbol; it is not evaluated. The defmacro
macro causes a global macro expansion function to be associated with the function
cell of the symbol name.

The body of the macro expansion function is specified by the form arguments.
They are executed in order. The value of the last form executed is returned as the
result of executing the macro.

The name of the new macro is returned as the result of defmacro.
defmacro name lambda-list {declaration | documentation}* {form}* [Macro]

The definition of macros and the syntax of lambda lists are discussed in the section
“About Macros.”

A documentation string may be attached to the name of the function by use of
the optional documentation argument; the documentation type for this string is
function.

The defmacro macro can be used to redefine a macro or to replace a function
definition with a macro definition. The Common Lisp special forms may not be
redefined.

When defmacro occurs at the top level in a file, it is implicitly wrapped in the
construct (eval-when (eval compile load) ...).

> (defmacro fooi (a b) ‘(+ ,a (* ,b 3)))

FOO1

> (fool 4 5)

19

> (defmacro foo2 (&optional (a 2 b) (c 3 d) &rest x) “'(,a ,b ,c ,d ,x))

F002

> (foo2 6)

(6 T 3 NIL NIL)

> (fo02 6 3 8)

(6 T3T(8))

> (defmacro foo3 (&whole r a &optional (b 3) &rest x &key c (d a))
‘*(,r ,a ,b ,c ,d ,x))

F003

> (foo3 16 :d 8 :c 9 :d 10)

((FO03 16 :D8 :C9 :D10) 1698 (:D8 :9 :D 10))

6-10 Sun Common Lisp Reference Manual

defmacro

> (defmacro food
(&whole (su &rest (p &rest q)) a &optional (b 3) &rest x &key c (d a))
**(,su ,p ,a ,b ,c ,d ,x))

F004

> (foo4 16 :d 8 :c 9 :d 10)

(FOo4 1 16 98 (:D8 :C9 :D 10))

See Also: macrolet

' Macros 6-11

macro-function

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function macro-function is used to determine whether a given symbol has a
global function definition that is a macro definition. If it does, the macro expansion
function is returned. If the symbol has no global function definition or is not a
macro, macro-function returns nil.

macro-function symbol [Function]

The function macro-function examines global definitions only.

The macro setf can be used with macro-function to replace the global macro
definition associated with a symbol. The function definition argument to setf must
be a function of two arguments, a macro call form and an environment. It should
compute the macro expansion for the call.

> (defmacro foo (x) ’'(macro-function ’foo))
FOO

> (not (macro-function ’foo))

NIL

> (and (setf (macro-function ’foo) #’equal)

(equal (macro-function ’foo) #’equal))
-

> (macrolet ((foo (x) "local"))

(equal (macro-function ’foo) #’equal))
T
defmacro

6—12 Sun Common Lisp Reference Manual

macroexpand, macroexpand-1

Purpose:

Syntax:

Remarks:

Examples:

The functions macroexpand and macroexpand-1 are used to expand macros.

If the form argument is a macro call, the function macroexpand-1 expands the
macro call once. It returns the macro expansion and t as its results. If the form
argument is not a macro call, macroexpand-1 returns form and nil as its results.

The function macroexpand is like macroexpand-1 except that it causes the
form argument to be expanded until it is no longer a macro call. It returns the
macro expansion and t as its results. If the form argument is not a macro call,
macroexpand returns form and nil as its results.

macroexpand form &optional env [Function]

macroexpand-1 form &optional env [Function]

The env argument specifies a lexical environment. It may be used to specify an
environment in which local macro definitions exist. If it is not specified, the null
lexical environment is used.

> (defmacro outer (x y) ‘(inmer ,x ,y))

OUTER

> (defmacro inner (x y) ‘(aa ,x ,y))
INNER

> (defun not-a-macro (x y) x)
NOT-A-MACRO

> (defmacro env-sens (x y &environment e)
* (macroexpand ’(inner ,x ,y) ’,e))

ENV-SENS

> (macroexpand-1 ’(outer a b))

(INNER A B)

T

> (macroexpand °’ (outer a b))

(AA A B)

T

> (macroexpand ’(not-a-macro a b))

(NOT-A-MACRO A B)

NIL

> (macroexpand-1 ’not-a-macro)
NOT-A-MACRO

NIL

> (env-sens a b)

(AA A B)

T

Macros 6-13

macroexpand, macroexpand-1

> (macrolet ((inmer (x y) ‘(+ ,x ,y))) (env-sens a b))
(+ A B)
T

See Also: smacroexpand-hooks#

6-14 Sun Common Lisp Reference Manual

smacroexpand-hookx*

Purpose:

Syntax:
Remarks:

Examples:

See Also:

The variable smacroexpand-hooks is used to control the macro expansion

process.

When a macro is expanded, the function to which *smacroexpand-hooks# is
bound is called with three arguments: the macro expansion function, the macro
call form, and the environment in which the expansion is to take place.

smacroexpand-hooks
The initial value of smacroexpand-hooks# is funcall.
> (defun hook (expander form env)

(format t "Now expanding: ~“S™%" form)
(funcall expander form env))

HOOK

> (defmacro foo (x y) ‘(/ (+ ,x ,y) 2))
FGoo

> (macroexpand ’(foo 1 2))

(/ (+12)2)

T

> (let ((*macroexpand-hook#* #'hook)) (macroexpand ’'(foo 1 2)))
Now expanding: (FOO 1 2)

(/ (+12) 2)

T

macroexpand
macroexpand-1

funcall

[Variable]

Macros 6-15

6—16 Sun Common Lisp Reference Manual

Chapter 7. The Evaluator

The Evaluator 7-1

Chapter 7. The Evaluator

About the Evaluator 7-3
Categoriesof Operations. 7-4
By k) KKK L e e e e e 7-5
e i oS e 7-6
e e 7-7
F O R P 7-8
decache-eval 7-9
eval L e e e 7-10
evalhook, applyhook 7-11
xevalhooks*, sapplyhook#*. 7-13
grindel 7-15
KPPOIMIPE® . . o L e e e e 7-16
BOULCE-COAR ittt e ittt et e e e e e e e 7-17

7-2 Sun Common Lisp Reference Manual

About the Evaluator

The evaluator executes programs by evaluating forms.

The evaluator is invoked automatically in the top-level read-eval-print loop. This is the
normal interpretive mode of interaction with the system in which the user types in a form,
the form is read by the Lisp reader, it is evaluated by the evaluator, and the resulting
value or values are printed out for the user’s inspection. The read-eval-print loop then
automatically re-enters a state in which it is again waiting for the user to enter a form.
The top-level loop also maintains a number of global variables that enable the user to
examine recent forms that have been entered and the results of their evaluation.

The evaluator may also be invoked explicitly by means of the function eval. The expression
(eval form) applies the function eval to the form argument. Because eval is itself a
normal function (and not a special form), the form argument is evaluated before it

is passed to eval. When eval itself is explicitly invoked, the result of this argument
evaluation is itself evaluated.

Before any form is executed, all the macros in it are expanded. The first time that an
interpreted function is called, it is replaced by a function object; all the macros in the
function body of this function object have been expanded.

The normal action of the evaluator may be modified by means of the variables sevalhook#
and sapplyhooks and the functions evalhook and applyhook. These allow the user to
specify evaluation functions that may be useful for special purposes, such as debugging.

The Evaluator 7-3

Categories of Operations

These functions and variables are used in evaluation.

* applyhook
% sapplyhooks
1T decache-eval
+ eval

++ evalhook
44+ sevalhooks
- grindef

/ sprompts*
// source-code
/1]

7—4 Sun Common Lisp Reference Manual

%y ¥k, dkk

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The global variables #, #*, and ### are maintained by the top-level read-eval-print
loop to save the values of results that were printed at the end of the loop.

The variable # is bound to the last result printed, the variable ## is bound to the
previous value of #, and the variable ### is bound to the previous value of #=.

* [Variable]
% [Variable]
#4% [Variable]

If more than one value is produced, * is bound to the first value only. If no value
is produced, # is bound to nil.

The values of these variables are not updated when the evaluation of a form is
aborted.

>3

3

> ”two "

”two "

> (values ’star "second value not retained by *")
STAR

"gsecond value not retained by *"

> (format t "% => "8"Yxk => TG Ykkk => “ETYM % *¥ *¥x)
* => STAR

*%x => Wgyol

**%k => 3

NIL

/
/1
/1]

The Evaluator 7-5

+, 4, F++

Purpose: The global variables 4+, +4, and ++4+4 are maintained by the top-level
read-eval-print loop to save forms that were recently evaluated.

The variable + is bound to the last form that was evaluated, the variable 4+ is
bound to the previous value of +, and the variable 4+ is bound to the previous
value of ++.

Syntax: + [Variable]
+4 [Variable]
+++ [Variable]

Examples: (third *(1 2 3))

(second '(1 2 3))
(first (1 2 3))

(format t "+ =>"8 Y++ => "8 %+++ => "S"E" + ++ +++)
=>(FIRST (QUOTE (1 2 3)))

++ => (SECOND (QUOTE (1 2 3)))

+++ => (THIRD (QUOTE (1 2 3)))

NIL

>
3
>
2
>
1
>
+

See Also: -

7—6 Sun Common Lisp Reference Manual

Purpose: The variable — is bound to the form that is currently being evaluated by the
read-eval-print loop.

Syntax: - [Variable]
Examples: > (format t "- => “§"%" -)

- => (FORMAT T "- => “§~%" -)
NIL

See Also: +

++
+++

The Evaluator 7-7

/>11s 111/

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The global variables /, //, and /// are maintained by the top-level read-eval-print
loop to save the values of results that were printed at the end of the loop.

The variable / is bound to a list of the values that were last printed, the variable
// is bound to the previous value of /, and the variable /// is bound to the
previous value of //.

/ [Variable]
/] [Variable]

/1] [Variable]

The values of these variables are not updated when the evaluation of a form is
aborted.

> (values 1 2 3)

(floor 300/14 23)

O VWN R

150/7

> "gingleton"

"gingleton"

> (format t "/ => “8°%// => "8~%/// => "87U" [/ /] ///)
/ => ("singleton")

// => (0 150/7)

/// => (12 3)

NIL

E
3

%%

7-8 Sun Common Lisp Reference Manual

decache-eval

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The function decache-eval forces the re-expansion of all function bodies when
they are next executed.

decache-eval [Function)]
The function decache-eval should normally be used only in exceptional situations

or in the debugging of macros.

The first time that an interpreted function is called, it is replaced by a function
object; all the macros in the function body of this function object have been
expanded. After a macro has been redefined or a function has been redefined as a
macro, the re-expansion of the function body will occur automatically when the
body of the function is next entered. The function decache-eval need not be
invoked in this situation.

Redefinition of a function while that function is running may cause unpredictable
results.

The function decache-eval is an extension to Common Lisp.
> (defvar *expand-counter* 0)
EXPAND-COUNTER+
> (defmacro return-counter () (incf *expand-counter#))
RETURN-COUNTER
> (defun use-return-counter () (return-counter))
USE-RETURN-COUNTER

expand-counter

(use-return-counter)

expand-counter

(use-return-counter)
expand-counter

(use-return-counter)

>
1

>

2

>

2

>

2

> (decache-eval)
T

>

2

>

3

> (use-return-counter)
3

eval

The Evaluator 7-9

eval

Purpose:

Syntax:

Remarks:

Examples:

The function eval evaluates its form argument and returns the result.

The evaluation takes place in the current dynamic environment and a null lexical
environment.

eval form [Function]

The function eval handles its arguments in the normal way. That is, the argument
is evaluated before it is passed to the function eval. Two levels of evaluation thus
take place.

> (setq form ’(1+ a) a 999)

999

> (eval form)
1000

> (eval ’'form)
(1+ A)

> (let ((a ’(this would break if eval used local value))) (eval form))
1000

7-10 Sun Common Lisp Reference Manual

evalhook, applyhook

Purpose:

Syntax:

Examples:

The functions evalhook and applyhook rebind the variables sevalhooks
and sapplyhooks for the course of the execution of one form or one function
respectively.

The function evalhook temporarily rebinds the sevalhooks variable to the
evalhookfn function and the sapplyhooks variable to the applyhookfn function
and then evaluates the specified form.

The function applyhook operates similarly. It temporarily rebinds the
sevalhooks variable to the evalkookfn function and the sapplyhooks# variable to
the applyhookfn function and then applies the function argument to the argument
list specified by args.

Both the evalhook and applyhook functions rebind the sevalhooks and
sapplyhooks variables for the evaluation of the top-level form or function only
and not for the evaluation of subforms.

The optional env argument may be used to specify the lexical environment in
which the evaluation is to occur. If it is nil or not specified, the null lexical
environment is used.

evalhook form evalhookfn applyhookfn koptional env [Function]
applyhook function args evalhookfn applyhookfn &optional env [Function|

> (defvar *foo*)
F00
> (defun hookl (x)
(let ((*evalhook* #’eval-hook-function))
(eval x)))
HOOK1
> (defun eval-hook-function (form &optional env)
(setq *foo* form)
(evalhook form #’eval-~hook-function nil env))
EVAL-HOOK-FUNCTION
> (defun hook2 (x) .
(let ((*applyhook* #’apply-hook-function))
(eval x)))
HOOK2
> (defun apply-hook-function (fun args &optional env)
(setq *foo* (car args)))
APPLY-HOOK-FUNCTION

The Evaluator 7-11

evalhook, applyhook

> (let ((*foo* nil)) (hookl t) *foo*)
(QUOTE T)
> (let ((*foo* nil)) (hook2 '(car (cons t 2))) *foo*)

(CAR (CONS T 2))

See Also: eval
sevalhooks

sapplyhooks

7-12 Sun Common Lisp Reference Manual

xevalhookx*, *applyhookx*

Purpose:

Syntax:

Remarks:

Examples:

The global variables sevalhooks and sapplyhooks are used to modify the
behavior of eval.

If the values of tevalhooks and sapplyhooks# are nil, eval has its usual behavior.
By rebinding sevalhooks or sapplyhooks, users can replace the evaluator with
their own functions for evaluating forms and functions.

The tevalhooks variable may be rebound to a function of two arguments: a form
and an environment. When any form is to be evaluated, this hook function is
invoked instead of eval to evaluate the form. The form to be evaluated is passed
to the hook function without any prior evaluation. The results of executing the
hook function are returned as if they were the results of having executed eval.

The sapplyhooks# variable may be rebound to a function of three arguments:

a function, a list of arguments, and an environment. The applyhook function is
invoked whenever a function is to be applied to arguments. The results of executing
the hook function are returned as if they were the results of having applied the
function to its arguments in the usual way.

Whenever either of the hook functions is itself invoked, the values of both
sevalhooks and sapplyhooks# are nil. The functions specified by the hooks are
thus invoked in the normal way.

sevalhooks [Variable]

sapplyhooks [Variable]

An environment argument may be used to specify the lexical environment in which
the evaluation is to occur. If it is nil or not specified, the null lexical environment
is used.

The hook function is only relevant to interpreted calls to functions.

If there is a throw back to the top level, both *evalhooks and sapplyhook# are
automatically reset to nil.

> (defvar *last-form*)

LAST-FORM

> (defun ehook (form &optional env)
(setq *last-form* form)
(eval form))

EHOOK

> (let ((*evalbook* #’ehook)) (+ 1 2 3))

6

The Evaluator 7-13

*evalhooks, *agplyhook*

> *last-form#

(+123)

> (defun ahook (f args &optional env) (cdr args))
AHOOK

> (let ((*applyhook#* #’ahook)) (+ 1 2 3))

(2 3)

See Also: eval
evalhook
applyhook

7-14 Sun Common Lisp Reference Manual

grindef

Purpose: The grindef macro pretty-prints the source code associated with the name of an
interpreted function. The macro grindef returns no values.

Syntax: grindef &rest function-name [Macro)

Remarks: The function-name argument is not evaluated.

The macro grindef is an extension to Common Lisp.

Examples: > (defun grist (x y)
(let ((a 1)(b 2)(c 3))(+ x a b ¢)))
GRIST
> (grindef grist)

(DEFUN GRIST
xY)
(LET ((A 1)
(B 2)
(c 3))
(+ X A B C)))

The Evaluator 7-15

promptx

Purpose: The global variable *prompt# is used to specify the string to be used as a prompt
in the top-level read-eval-print loop. Initially, *prompts* is unbound and the
default prompt string (>) is used.

Syntax: sprompts# [Variable]
Remarks: The variable sprompt#* is an extension to Common Lisp.

Examples: > (setq *prompt* "at your service! " dummy nil)
NIL
at your service! 999
999
at your service! (makunbound °’*prompt*)
PROMPT
> 999
999

7—-16 Sun Common Lisp Reference Manual

source-code

Purpose: The function source-code returns the source code of an interpreted function.

The function argument may be a function object or a symbol. If the argument
is an interpreted function or a symbol that has a function definition that is an
interpreted function, the source code of the function is returned. Otherwise
source-code returns nil.

Syntax: source-code function [Function]
Remarks: The function source-code is an extension to Common Lisp.

Examples: > (source-code #’car)
NIL
> (source-code #'(lambda (x) (1+ x)))
(LAMBDA (X) (1+ X))
> (defun ink (x) (1+ x))
INK
> (source-code #'ink)
(NAMED-LAMBDA INK (X) (BLOCK INK (1+ X)))

The Evaluator 7-17

7-18 Sun Common Lisp Reference Manual

Chapter 8. Declarations

Declarations 8-1

Chapter 8. Declarations

About Declarations 8-3
Syntax for Declaration Specifiers 8-3
Types of Declarations e 8-3

Categories of Operations. 8-5

declare e 86

locally 8-7

PrOClaIII e 8-8

Bhe L o e e 8-9

8—2 Sun Common Lisp Reference Manual

About Declarations

Declarations are used to affect the status of variable bindings, to provide advice to the
compiler, and to add documentation to a program.

With the exception of special declarations, declarations are optional and are used as
advice to the compiler. The meaning of a correct program is not affected by declarations
other than special declarations.

The use of declarations, however, may have a significant impact on the efficiency of
compiled code. The user is referred to the Sun Common Lisp User’s Guide for more
information about compiled code.

The proclaim function is used to make global declarations. Such global declarations are
also called proclamations. The declare special form is used for local declarations within
other Common Lisp forms. Unless explicitly noted, the term “declaration” is used to refer
to both declarations and proclamations.

Syntax for Declaration Specifiers

decl-spec::= (special {var}¥)
| (type type-specifier {var}*)
| (ftype type-specifier {function-name}*)
| (function function-name ({type-specifier}*) {type-specifier}*)
| (inline {function-name}*)
| (notinline {function-name}*)
| (ignore {var}*)
| (optimize {quality value}*)
| (declaration {declaration-name}*)

quality::= speed I space | safety | compilation-speed

value:= 0| 1|23

Types of Declarations

A special declaration specifies that the given variables are all special variables. References
to the variables thus refer to the dynamic binding of the variables. If the declare special
form is used to make a special declaration, the declaration observes the rules of lexical
scope. If, however, a special proclamation is made, all bindings of variables with the
given name are special.

Declarations 8-3

A type declaration asserts that the given variables will only have values of the specified
type. A short form of this declaration, (type-specifier {var}*), may be used if the type
specifier is one of the atomic types listed in Figure 3—1. The type declaration applies only
to those variables whose bindings are established by the form in which the declaration
occurs. Type proclamations take effect only for special bindings of such variables. The
type declaration is used to enable the compiler to produce more efficient code.

An ftype declaration is used to specify that a series of functions are of a given function
type. This means that whenever the arguments of these functions are of the indicated
types, the results of the functions will also be of the types specified in the ftype declaration.
A function declaration is equivalent to an ftype declaration of the form (ftype (function
arglist (values result-typel result-type2 ...) name)). This abbreviated form is provided
for convenience. An ftype or function declaration obeys the rules of lexical scoping. The
ftype and function declarations are used to enable the compiler to produce more efficient
code.

An inline declaration specifies that it is desirable that the code for a given function be
compiled in-line, rather than as a function call. An inline declaration obeys the rules
of lexical scoping. A notinline declaration specifies that the code for the given function
is not to be compiled in-line, but rather as a function call. The inline and notinline
declaration types apply to all occurrences of the specified function in the body of the form
in which the declaration occurs. Both inline and notinline declarations are ignored by
the interpreter.

An ignore declaration applies only to those variables whose bindings are established by
the form in which the declaration occurs. An ignore declaration prevents the compiler
from issuing a warning if any of the given variables are not referenced in the body of code.

An optimize declaration provides advice to the compiler about what trade-offs should be
made in optimizing code. There are four optimization classes: speed, safety, space, and
compilation-speed. Each class may be assigned an integer value between 0 and 3. This
value indicates the priority assigned to that type of optimization; the highest priority is 3,
the lowest is 0. In Sun Common Lisp, the default values are speed 3, safety 1, space
0, and compilation-speed 0. An optimize declaration applies to all of the code in the
body of the form in which it occurs.

A declaration proclamation specifies that the given declaration names are not names of
standard declarations, although they may be used as such. A declaration proclamation
advises the compiler that warnings are not to be issued if the given names are used as
declaration specifiers. The declaration declaration specifier may be used in proclamations
only.

8—4 Sun Common Lisp Reference Manual

Categories of Operations

These constructs are used to specify declarations.

declare locally
proclaim the

Declarations 8-5

declare

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The declare special form may be used to make declarations within certain forms.
Declarations may occur in lambda expressions and in the following forms:

defmacro do-symbols macrolet

defsetf / dolist multiple-value-bind
deftype dotimes prog

defun flet progs#

do labels with-open-stream

dos= let with-open-file
do-all-symbols lets with-output-to-string
do-external-symbols locally with-input-from-string
declare {decl-spec}* [Special Form)]

Declarations may only occur where specified by the syntax of these forms.
Macro calls may expand into declarations as long as this syntax is observed.

The declaration specifier argument is not evaluated.

> (defun foo (y) ;this y is regarded as special
(declare (special y))
(let ((y t)) ;this y is regarded as lexical
(list y

(locally (declare (special y)) y)))) ;this y refers to the
;special binding of y
FOO
> (foo nil)
(T NIL)

proclaim

8—6 Sun Common Lisp Reference Manual

locally

Purpose: The locally macro is used to make local declarations that affect only the form
arguments in its body.

Syntax: locally {declaration}* {form}* [Macro]
Examples: > (defun foo (y) ;this y is regarded as special
(declare (special y))
(let ((y t)) ;this y is regarded as lexical
(list y

(locally (declare (special y)) y)))) ;this y refers to the
;special binding of y
Foo
> (foo nil)
(T NIL)

Declarations 8-7

proclaim

Purpose:

Syntax:

Remarks:

Examples:

See Also:

The proclaim function is used to make a global declaration or proclamation.

A proclamation whose declaration specifier declares a variable to be special causes
all occurrences of that variable name to be special references.

proclaim decl-spec [Function]

Although the effect of the proclamation is global, it may be overridden by a local
declaration.
Type proclamations take effect only for special bindings of variables.

The argument of proclaim is evaluated. It may therefore be a computed
declaration specifier.

(proclaim ’(special prosp))

>
T
> (setq prosp 1 reg 1)
1
>

(let ((prosp 2) (reg 2)) ;the binding of prosp is special
(set ’prosp 3) (set ’reg 3) ;due to the preceding proclamation,
(list prosp reg)) ;whereas the variable reg is lexicail

(3 2

> (list prosp reg)
(13)

declare

defvar
defparameter

8-8 Sun Common Lisp Reference Manual

the

Purpose:

Syntax:

Remarks:

Examples:

The the special form is used to specify that the value produced by a form will be
of a certain