

SunDiagnostic Executive[™] User's Guide

The Sun logo, Sun Microsystems, and Sun Workstation are registered trademarks of Sun Microsystems, Incorporated.

Diagnostic Executive, Sun, Sun-2, Sun-3, Sun-4, SunIPC, and SunOS are trademarks of Sun Microsystems, Incorporated.

UNIX is a registered trademark of AT&T.

•

All other products or services mentioned in this document are identified by the trademarks or service marks of their respective companies or organizations.

Copyright © 1988 by Sun Microsystems, Inc. - Printed in U.S.A.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of the publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmitted, in any form, or by any means: manual, electric, electronic, electromagnetic, mechanical, chemical, optical, or otherwise.

Contents

Chapter 1 Introduction	
1.1. Glossary	
1.2. Conventions	
Fonts	
Hexadecimal Values	
1.3. References	
1.4. The Exec Tape	
1.5. Required Equipment	
Serial Port Loopback Connectors	
Serial Port Loopback Connector	
RS-232 Loopback Cable	
Configuring a Terminal	
Chapter 2 Using the SunDiagnostic Executive	
2.1. History	
2.2. Hardware Requirements	
2.3. Software Requirements	
The Exec Tape	
2.4. Loading and Booting the Exec	
Halting the System	
Booting from Tape	
Installing the Exec	15
/usr/stand	
	15
Servers vs Local Disk and Tape	

Booting from Disk	17
2.5. The Exec Environment	19
The Menu Perspective	19
The Operating System Perspective	20
2.6. Using the Network Console	22
2.7. User Interface	22
Menu and Invisible Commands	22
Command Line Syntax	24
Command Parameters	24
Special Characters	25
2.8. Exec Menus	26
The Main Menu	26
The Environment Menu	29
The Options Menu	33
Diagnostic Menu	35
Starting a Diagnostic	36
Status Menu	37
Log Menu	38
Chapter 3 Sun-2 Color Board Diagnostic	43
3.1. General Description	43
3.2. Required Equipment	43
3.3. User Interface	43
3.4. The Main Menu	44
3.5. Manual Test Menu	45
3.6. Control Register Menu	46
Register Test Sub-Menu	47
3.7. Interrupt Test Menu	50
3.8. Color Map Test Menu	50
3.9. Frame Buffer Test Menu	52
3.10. ROPC Test Menu	55
3.11. Error messages	56
3.12. Glossary	58

Chapter 4 Sun-3 Color Board Diagnostic	61
4.1. General Description	61
4.2. Required Equipment	61
4.3. User Interface	61
4.4. The Main Menu	62
4.5. Manual Test Menu	63
4.6. Control Register Menu	64
Register Test Sub-Menu	65
4.7. Interrupt Test Menu	68
4.8. Color Map Test Menu	68
4.9. Frame Buffer Test Menu	70
4.10. ROPC Test Menu	73
4.11. DAC Test Menu	73
4.12. Error messages	74
4.13. Glossary	75
Chapter 5 Sun CPU Diagnostic	79
5.1. General Description	79
5.2. Hardware Requirements	79
5.3. Command-line Parameters	79
5.4. Looping on Read and Write	80
5.5. Main Menu	81
5.6. Clock Tests Menu	82
5.7. System Enable Tests Menu	86
5.8. FPC Tests Menu	88
FPC Monadic Tests Sub-menu	90
FPC Dyadic Tests Sub-menu	93
5.9. Interrupt Tests Menu	95
5.10. PROM Tests Menu	97
5.11. Serial Port Tests Menu	101
Asynchronous Tests Sub-menu	102
Modem Tests Sub-menu	104
Register Tests Sub-menu	108

5.12. Glossary	109
Chapter 6 The EEPROM Editing Tool	113
6.1. Introduction	113
6.2. Hardware Requirements	113
6.3. Hardware-Related Information	113
6.4. Loading And Starting The EEPTOOL	113
6.5. The Main Menu	114
6.6. Sub-Menus	114
Primary Terminal Type	114
Monitor Resolution	115
Board Slot Data	115
Board Type Defaults	117
Boot Paths And Devices	117
EEPROM Operating System Boot Device	118
Diagnostic Boot Device	118
High Resolution Monitor Columns And Rows	119
Initialization	119
6.7. EEPROM Reset	120
6.8. Show EEPROM Fields	120
6.9. Show All Write Counts	120
6.10. Recommended Procedure	120
Chapter 7 Sun Ethernet Diagnostic	123
7.1. General Description	123
7.2. Hardware Requirements	123
Test Overview	123
Aborting an Ethernet Test	124
7.3. The Main Menu	124
7.4. The Control Interface Menu	126
7.5. The Ethernet Menu	127
7.6. The Memory Path Menu	129
7.7. The Debugging Aids Menu	132

Chapter 8 Sun-3 FPA Diagnostic	137
8.1. Required Hardware	137
8.2. Tests	137
Test Syntax	138
Default Parameters	138
Batching Commands	138
Test Menus	139
8.3. Main Menu	140
Test Sequence 1 Menu	141
Test Sequence 2 Menu	145
. Test Sequence 3 Menu	148
8.4. Utilities Menu	151
Chapter 9 Graphics Processor1 Diagnostic	155
9.1. Introduction	155
9.2. The Main Menu	155
9.3. The Scope Loop Menus	156
s — Shared Memory	156
M — Micstor Scope Loop	157
A — Microstore Address Register	158
v — VP Scope Loop Menu	158
P — PP Scope Loop Menu	161
D — DRAM Scope Loop Menu	164
9.4. Error Messages	164
9.5. Abortion Message Interpretation.	186
Chapter 10 Sun-2 and Sun-3 Keyboard Diagnostic	191
10.1. Requirements	191
10.2. Description	191
Chapter 11 MCP/ALM2 Diagnostic	197
11.1. Introduction	197
11.2. Hardware Requirements	197
· · · · · · · · · · · · · · · · · · ·	

	Loopback Connectors	197
11.3.	Limitations	200
11.4.	Operating Instructions	200
	Loading And Starting	200
11.5.	The User Interface	200
	Recommended Test Procedure	200
	The Main Menu	201
	The Basic Test Menu	202
	Test Menu SL Option	202
	Test Menu DLF Option	202
	The Middle Test Menu	203
	The Advanced Test Menu	203
11.6.	Error Handling	203
11.7.	Message Interpretation And Failure Analysis.	204
11.8.	Status In DEVVEC Patterns	218
11.9.	Glossary	219
Chapte	er 12 Sun Memory Diagnostic	225
Chapte 12.1.	er 12 Sun Memory Diagnostic	225 225
Chapte 12.1. 12.2.	er 12 Sun Memory Diagnostic General Description	225 225 225
Chapte 12.1. 12.2. 12.3.	er 12 Sun Memory Diagnostic General Description Hardware Requirements The Main Menu	225 225 225 226
Chapte 12.1. 12.2. 12.3.	er 12 Sun Memory Diagnostic	 225 225 225 226 226
Chapte 12.1. 12.2. 12.3. 12.4.	er 12 Sun Memory Diagnostic	 225 225 225 226 226 230
Chapte 12.1. 12.2. 12.3. 12.4.	er 12 Sun Memory Diagnostic	 225 225 226 226 230
Chapte 12.1. 12.2. 12.3. 12.4. Chapte	er 12 Sun Memory Diagnostic	 225 225 226 226 230 233
Chapte 12.1. 12.2. 12.3. 12.4. Chapte 13.1.	er 12 Sun Memory Diagnostic	 225 225 226 226 230 233 233
Chapte 12.1. 12.2. 12.3. 12.4. Chapte 13.1. 13.2.	er 12 Sun Memory Diagnostic	 225 225 226 226 230 233 233 233
Chapte 12.1. 12.2. 12.3. 12.4. Chapte 13.1. 13.2. 13.3.	er 12 Sun Memory Diagnostic	 225 225 226 226 230 233 233 233 233
Chapte 12.1. 12.2. 12.3. 12.4. Chapte 13.1. 13.2. 13.3. 13.4.	er 12 Sun Memory Diagnostic	 225 225 226 226 230 233 233 233 233 233 233
Chapte 12.1. 12.2. 12.3. 12.4. Chapte 13.1. 13.2. 13.3. 13.4. 13.5.	er 12 Sun Memory Diagnostic	 225 225 226 226 230 233 233 233 233 233 233 233 233 235
Chapte 12.1. 12.2. 12.3. 12.4. Chapte 13.1. 13.2. 13.3. 13.4. 13.5.	er 12 Sun Memory Diagnostic	 225 225 226 226 230 233 233 233 233 233 235
Chapte 12.1. 12.2. 12.3. 12.4. Chapte 13.1. 13.2. 13.3. 13.4. 13.5. Chapte	er 12 Sun Memory Diagnostic	 225 225 226 226 230 233 233 233 233 233 235 239

14.2.	Hardware Requirements	239
14.3.	Operating Instructions	239
	Recommended Test Procedure	239
	The Main Menu	240
	Configuration Selection Sub-Menu	241
14.4.	Test Descriptions	242
	Character Data Test	242
	Block Data Test	242
	Baud Rate Test	242
	Stop Bit Test	243
•	Word Length Test	243
	Parity Test	243
	Modem Lines Test	243
14.5.	Error Handling	243
14.6.	Glossary	244
14.7.	References	245
Chapte 15.1.	er 15 SCSI Subsystem Diagnostic	249 249
Chapte 15.1. 15.2.	er 15 SCSI Subsystem Diagnostic Introduction Problem Specification	249 249 250
Chapte 15.1. 15.2. 15.3.	er 15 SCSI Subsystem Diagnostic	249 249 250 250
Chapte 15.1. 15.2. 15.3.	er 15 SCSI Subsystem Diagnostic	249 249 250 250 250
Chapte 15.1. 15.2. 15.3.	er 15 SCSI Subsystem Diagnostic Introduction Problem Specification Requirements Performance Requirements Functional Requirements	249 249 250 250 250 250
Chapte 15.1. 15.2. 15.3.	er 15 SCSI Subsystem Diagnostic	 249 250 250 250 250 250 251
Chapte 15.1. 15.2. 15.3.	er 15 SCSI Subsystem Diagnostic	249 249 250 250 250 250 251 251
Chapte 15.1. 15.2. 15.3. 15.4. 15.5.	er 15 SCSI Subsystem Diagnostic	249 249 250 250 250 250 251 251 251
Chapte 15.1. 15.2. 15.3. 15.4. 15.5. 15.6.	er 15 SCSI Subsystem Diagnostic	249 249 250 250 250 250 251 251 251 251
Chapte 15.1. 15.2. 15.3. 15.4. 15.5. 15.6. 15.7.	er 15 SCSI Subsystem Diagnostic	249 249 250 250 250 250 251 251 251 251 251
Chapte 15.1. 15.2. 15.3. 15.4. 15.5. 15.6. 15.7.	er 15 SCSI Subsystem Diagnostic	249 249 250 250 250 250 251 251 251 251 252 252
Chapte 15.1. 15.2. 15.3. 15.4. 15.5. 15.6. 15.7.	er 15 SCSI Subsystem Diagnostic	249 249 250 250 250 250 251 251 251 251 251 252 252 253
Chapte 15.1. 15.2. 15.3. 15.4. 15.5. 15.6. 15.7.	er 15 SCSI Subsystem Diagnostic	249 249 250 250 250 251 251 251 251 252 252 253 253
Chapte 15.1. 15.2. 15.3. 15.4. 15.5. 15.6. 15.7.	er 15 SCSI Subsystem Diagnostic Introduction Problem Specification Requirements Performance Requirements Functional Requirements Hardware Requirements General Information Operating Instructions Operating Instructions Overview of the Diagnostic The User Interface The Main Menu SCSI Tests Menu SCSI3 Menu	249 249 250 250 250 251 251 251 251 252 252 253 253 255
Chapte 15.1. 15.2. 15.3. 15.4. 15.5. 15.6. 15.7.	er 15 SCSI Subsystem Diagnostic	249 249 250 250 250 250 251 251 251 251 251 251 252 252 252 253 255 256

Controller Tests Menu	258
Diagnostic Command Menu	259
Controller Write Command Menu	260
Controller Read Command Menu	261
Miscellaneous Command Menu	262
Disk Drive Tests Menu	264
Disk Write Test Menu	266
Disk Read Test Menu	267
Disk Seek Test Menu	268
Tape Drive Tests Menu	269
15.8. Error Handling	270
15.9. Message Interpretation	271
15.10. Failure Analysis	272
15.11. Glossary	273
Chapter 16 Sun-2 Sky FFP Diagnostic	277
16.1. Sky Board General Description	277
16.2. Sky Board Functional Overview	277
16.3. Sky Diagnostic Test Overview	277
16.4. Hardware Requirements	278
16.5. The Main Menu	278
16.6. Main Help Menu	280
16.7. The Arithmetic Selection Menu	281
16.8. Arithmetic Help Menu	282
16.9. Error Handling	282
16.10. Recommended Test Procedure	282
16.11. Glossary	283
Chapter 17 Sun SMD Diagnostic	287
17.1. General Description	287
17.2. Hardware Requirements	288
17.3. Set-Up Procedures	288
17.4. Main Menu	290

17.5. Controller Tests Menu	
17.6. Drive Tests Menu	
17.7. Utilities Menu	
17.8. Controller Errors and Their Interpretation	
17.9. Program Reported Errors	
17.10. Diagnostic Variables	
17.11. Glossary	
Chapter 18 1/2-Inch Tape Diagnostic	
18.1. General Description	
18.2. Hardware Requirements	
18.3. Set-Up Procedures	
18.4. Menus	
Main Menu	
Controller Tests Menu	
Transport Tests Menu	
Utilities Menu	
18.5. Error Reporting	
Error Messages	
Procedural Error Messages	
Xylogics 472 status codes	
18.6. Glossary	
Chapter 19 Sun Video Diagnostic	
19.1. General Description	
Map of Video Frame Buffers	
19.2. Menus	
19.3. Sun-2 Main Menu	
Video Control Register	
Serial Communications Controller(SCC)	
Video Memory	
19.4. Frame Buffer Menu	
Patterns (Sun-3/60, 3/110 Only)	
•	

19.5.	Glossary	337
Chapte	er 20 Sun Video Monitor Diagnostic	341
20.1.	General Description	341
20.2.	Hardware Requirements	342
20.3.	User Interface	342
20.4.	Standard Patterns	343
20.5.	Main Menu	344
20.6.	Monochrome Menu	345
20.7.	Grayscale Menu	347
20.8.	Color Menu	350
20.9.	Error Messages	353
Chapte	er 21 Sun VME Interface Diagnostic	357
21.1.	General Description	357
21.2.	Hardware Requirements	357
21.3.	Hardware Set-Up	358
	UUT/TSCPU configuration	358
	Jumper Placement	358
	UUT EEPROM	358
	TSCPU EEPROM	358
21.4.	User Interface	358
	Command Line Description	359
	Starting the Diagnostic	359
	Start-up Procedure	359
21.5.	The Main Menu	360
21.6	The Master Tests Menu	362
21.7	The Slave Tests Menu	367
21.8	The Asynchronous Tests Menu	371
21.9	The Debugging Aids Menu	379
21.1	0. The Options Menu	382
	Local Environment	385
21.1	1. Glossary	387

21.12. VME Map Table	389
Appendix A SunDiagnostic Executive Bug Report Form	397
A.1. Overview	397
A.2. Who to Send the report to	397
A.3. Who we can contact	397
A.4. Description of Problem	398
Appendix B Standalone Cache and ECC Tests	403
B.1. Introduction	403
B.2. Standalone Cache Test	403
How the Cache Functions	403
B.3. Diagnostic Function	404
B.4. Hardware Requirements	404
B.5. Limitations	404
B.6. Loading and Starting	404
User Command Interface	404
Option Menu	407
The Cache Data Tests Menu	407
Cache Tags Tests Menu	408
The Cache Read Hit Tests Menu	408
The Cache Writeback Error Tests Menu	409
The Cache Write Hit Tests Menu	409
The Cache Read Miss Tests Menu	410
The Cache Write Miss Tests Menu	411
The Cache Block Copy Tests Menu	411
The Cache Flush Tests Menu	412
The Cache Physical Address Compare Tests Menu	413
The Exerciser Tests Menu	414
Exerciser Test Sequence	414
B.7. Test Descriptions	414
Cache Data Write/Read Test	415
Error Description	415

Cache Data Address Test	415
Error Description	415
Cache Inverse Data Address Test	415
Error Description	416
Cache Data 3-Pattern Test	416
Error Description	416
Cache Data Pattern Write/Read Test	416
Error Description	416
Cache Data Walking Ones Test	416
Error Description	416
Cache Data Walking Zeros Test	416
Error Description	416
Cache Tags Write/Read Test	417
Error Description	417
Cache Tags 3-Pattern Test	417
Cache Inverse Tag Address Test	417
Error Description	417
Cache Tags Pattern Write/Read Test	417
Error Description	417
Cache Tags Walking Ones Test	417
Error Description	418
Cache Tags Walking Zeros Test	418
Error Description	418
Cache Read Hit Test	418
Error Description	418
Cache Read Hit (context different) Test	418
Error Description	418
Cache Read Hit User Violation Test	419
Error Description	419
Cache Read Byte Hit Byte Alignment (within block) Test	419
Error Description	419
Cache Read Longword Hit Byte Alignment (Within Block)	
Test	419

Cache Read Miss/No Writeback (invalid) Test	420
Error Description	420
Cache Read Miss/No Writeback (not dirty) Test	420
Error Description	420
Cache Read Miss/Writeback (valid & dirty) Test	421
Error Description	421
Cache Modify Write Hit Test	421
Error Description	422
Cache Write Hit/ Write Protect Violation Test	422
Error Description	422
Cache Write Byte Hit Byte Alignment (within block) Test	422
Error Description	422
Cache Write Longword Hit Byte Alignment (within block)	
Test	422
Error Description	423
Cache First Write Hit Test	423
Error Description	423
Cache Write Miss Tests	423
Cache Write Miss/No Writeback (not dirty) Test	423
Error Descriptions	424
Cache Write Miss/No Writeback (invalid) Test	424
Error Description	425
Cache Write Miss/Writeback (valid & dirty) Test	425
Error Description	425
Exerciser Tests	426
Cached Memory Write/Read test	426
Error Description	426
Cached Execution/Memory Write/Flush/Read Test	426
Error Description	427
Cache Block Copy Tests	427
Bcopy (src & des blks invalid) Test	427
Error Description	428
Bcopy (src valid, des invalid) Test	428

•

Error Description	428
Bcopy (src invalid, des valid) Test	428
Error Description	429
Bcopy (src valid, des valid) Test	429
Error Description	429
Cache Exerciser Tests	430
Cached Memory Write/Read Test	430
Error Description	430
Cached Memory Write/Flush/Read Test	430
Error Description	430
Cached Fetch NOP Test	430
Cached Execution Memory Write/Read Test	430
B.8. Test Sequences	430
Quick Test	431
Default Test	431
Single Pass Default Test	431
Long Test	431
Exerciser Test	431
Cache RAM Memory Test	431
B.9. Glossary	431
B.10. Standalone ECC Memory Diagnostic	433
B.11. Hardware Requirements	434
B.12. Overview Of The Diagnostic	434
Memory Interface	434
Error Checking Correction Interface	435
Refresh	435
Initialization	436
B.13. Loading And Starting	436
B.14. User Interface	437
The Command Line Language	437
Main Menu	438
Option Menu	440
Memory Data Menu	443

	ECC Test Menu	449
	Utility Menu	453
B.15.	Error Handling	454
	ECC Errors	454
	ECC Test Error Messages	455
	ECC Data Compare Error	455
	EDC Forced Error	455
	Refresh Scrub Errors	455
	Bus Errors	456
	Data Compare Errors	456
B .16.	Special Problems	456
B.17.	Replacing the Memory Board	456
B .18.	Recommended Test Procedure	457
B .19.	Glossary	457
B.20.	Syndrome Decode Table	459

Tables

Table 2-1 SunDiagnostic Executive Tape Contents	13
Table 3-1 Color2 Error Message Table	57
Table 4-1 Color3 Error Message Table	75
Table 7-1 Intel Ethernet Chip Status Levels	133
Table 7-2 AMD Ethemet Chip Status Levels	133
Table 8-1 Index Values	142
Table 8-2 Testnum Values	149
Table 8-3 Index Values	151
Table 17-1 Supported Disk Drives	287
Table 17-2 Disk Controller Boards	287
Table 17-3 Test Parameter Values	294
Table 17-4 Num Parameter Values	295
Table 17-5 Pattern Test Values	297
Table 17-6 Xylogics 450/451 Error Numbers (in Hex)	301
Table 18-1 Tape Diagnostic Error Messages	319
Table 18-2 Xylogics Tape Controller Status Codes	322
Table 19-1 Values used in NTA Test	334
Table 19-2 Color Values	335

Table 21-1 VME Ma	p Table		389
-------------------	---------	--	-----

•

Figures

Figure 1-1 F	RS-232 Loopback Connector	6
Figure 1-2 H	RS-232 Loopback Cable	7
Figure 1-3 H	RS-232 Connections	8
Figure 8-1 7	The FPA Diagnostic Menu Hierarchy 1	38
Figure 10-1	Sun-3 Keyboard Display 1	91
Figure 11-1	RS-232 Loopback Signals, Asynchronous-only Ports 1	98
Figure 11-2	RS-232 Loopback Signals, Synchronous Ports 1	98
Figure 11-3	RS232 Loopback Signals, Synchronous/Asynchronous Ports	.98
Figure 11-4	RS449 Loopback Signals, The Two RS449 Synchronous Ports	.99
Figure 11-5	Parallel Printer Port Signals, DB25 Plug With Loopback	.99
Figure 20-1	Monochrome Video Pattern Menu	45
Figure 20-2	Grayscale Video Pattern Menu	47
Figure 20-3	Color Video Pattern Menu	50

.

Introduction

ntroduction		
1.1. Glossary	3	
1.2. Conventions	3	
1.3. References	4	
1.4. The Exec Tape	4	
1.5. Required Equipment	5	

.....

Introduction

This manual describes the programs on the Sun Diagnostic Executive tape. This chapter provides information about the diagnostic environment in general. The remaining chapters describe the Executive and the Diagnostic Programs themselves.

1.1. Glossary

The following list defines some words used in this manual:

Diagnostic

A program designed to test parts of the Sun workstation and return messages describing what it found. Each diagnostic covers a particular PC board or subsystem: for example, cpu.exec tests the CPU board on both Sun-2 and Sun-3 systems.

Executive Tape

A 1/4-inch or 1/2-inch magnetic computer tape that contains the Executive and the Diagnostic Programs. Note that you may install these programs on the disk, or boot them directly from the tape.

Exec

Refers to the SunDiagnostic Executive, the operating system that creates and controls the environment under which the diagnostics are executed. It runs by itself, without booting the SunOS Operating System.

1.2. Conventions Fonts

In this manual, different fonts are used to make things clearer. The most common fonts are Roman, typewriter, **typewriter bold**, *italic*, and bold. They are used as follows:

Roman

Roman font is the standard for normal text, just as it appears here.

Roman Bold

Bold Roman font indicates that something deserves more attention than the surrounding text.

Typewriter

Typewriter font has two meanings, depending on where it appears. It may represent something that appears in the manual exactly as the computer displays it on the screen, or it may represent a program path/name.

	Typewriter bold Typewriter bold font represents something that you must type verba- tim into the computer. This sometimes appears together with typewriter font: the computer output appears in typewriter, and what you must type appears in typewriter bold.
	Italic In this manual <i>Italic font</i> usually represents a variable for which you or the computer must provide the exact details. For example:
	error: obs nnnn, exp nnnn
	<i>Italic font</i> is also used for emphasis, special notes and to reference documents.
Hexadecimal Values	Hexadecimal values are represented throughout this manual with "0x" preced- ing the value and sometimes replacing the value's leading zeroes.
1.3. References	See the following documents for further information:
	The Field Service Manual for your system
	The Hardware Installation Manual for your system
	The System Administration Manual for your version of the operating system, which describes various system operations, including the use of the standalone disk facility, diag, and the proper way to shut down the operating system.
1.4. The Exec Tape	This manual contains a chapter describing each diagnostic on the tape version released as of the date of this writing. This manual references the 1.1 version of the SunDiagnostic Executive tape, for Sun-2 and Sun-3 workstations. The 1/4-inch tape is Sun PN 700-1717. The 1/2-inch tape is Sun PN 700-1718. The diagnostic programs may either be loaded directly off this tape, or copied onto a disk and loaded from there.
	The names of the diagnostics contain three fields; the first identifies the function that the diagnostic tests, the second identifies whether the diagnostic runs on a Sun-2 or Sun-3 system, and the third contains the word $exec$. If the number is missing, the diagnostic tests both Sun-2 and Sun-3 systems.
	For example, the name color3.exec describes a Color Board diagnostic pro- gram for a Sun-3; the name mem.exec describes the Memory diagnostic for both Sun-2 and Sun-3.
	The names of the chapters in this manual reflect the hardware that the diagnostic tests and whether it works on a Sun-2 or a Sun-3.

1.5. Required Equipment	All Sun diagnostics require a complete Sun system to operate. This includes:		
	□ Card cage		
	Power supply		
	Monitor, video board and keyboard		
	□ Sun-2 or Sun-3 CPU board		
	The SunDiagnostic Executive and a means of booting it — A bootable copy of the Exec either on a tape, a local disk, or a remote disk (over the Ether- net).		
	The unit to be tested — The unit that the diagnostic tests, and all supporting subsystems.		
	□ · Serial Port Loopback connectors, required for CPU board diagnostics.		
	Additional equipment requirements are listed where necessary.		
Serial Port Loopback Connectors	The Serial Port Loopback connectors are designed to connect serial port A to serial port B of a Sun system for testing purposes. The Transmit/Receive, RTS/CTS, and DTR/DCD signal lines are cross connected between the two ports.		
	The RS-232 Loopback cable is used to test the serial ports of assembled systems.		
Serial Port Loopback Connector	The RS-232 Loopback Connector is a specially wired male DB-25 connector. It is plugged in to a serial port in the back of a system under test. It is wired as follows:		
	Connect pin2 to pin3		
	Connect pin4 to pin5		

See the following figure:

RS-232 Loopback Cable

The RS-232 Loopback Cable is a specially wired cable with two male DB-25 connectors at each end. It is plugged into a pair of serial ports in the back of the system under test. The cable is wired as follows:

> Connect pin2 to pin3 Connect pin3 to pin2 Connect pin4 to pin5 Connect pin5 to pin4 Connect pin6 to pin20 Connect pin20 to pin6

See the following figure:

NOTE Loopback connectors must be wired properly and connected firmly for the Serial Port Tests to work correctly. Miswired, poorly soldered, or missing loopback connectors can lead to erroneous diagnostic error messages when diagnostics are run.

Configuring a Terminal

Some diagnostics are better run from a terminal. To set up the terminal:

Use an ASCII or ANSI terminal, set up as follows:

Full Duplex 9600 baud XON and XOFF 8 bits/1 stop bit No parity

Connect the terminal to the connector labeled "SIO-A" on the system control panel.

Use the following connections:

Cross-connect pins 2 and 3 Loop back pins 5 and 6 at both ends Connect pin 7 straight through

See the following figure:

Later, when you have activated the monitor, use the Exec commands to redirect the input and output.

Using the SunDiagnostic Executive

Jsing the SunDiagnostic Executive		
2.1. History	11	
2.2. Hardware Requirements	12	
2.3. Software Requirements	12	
2.4. Loading and Booting the Exec	14	
2.5. The Exec Environment	19	
2.6. Using the Network Console	22	
2.7. User Interface	22	
2.8. Exec Menus	26	

2

Using the SunDiagnostic Executive

This document introduces the SunDiagnostic Executive, a hardware diagnostic operating system that provides the user interface for Sun diagnostics. 2.1. History Originally, Sun diagnostic programs ran "standalone," without the SunOS operating system. They lived in the /stand directory, and each program had to be booted from the PROM monitor. This directory contained an inventory of diagnostic programs, typically one per system PC board or major function. This arrangement worked for a while, but it had two significant drawbacks. First, only one diagnostic program could run at a time, making it hard to load down the system for a thorough test. It took a long time to test more than just a few components. Second, each diagnostic program had its own particular user interface, which made the tests hard to use. The SunDiagnostic Executive provides a single, unified diagnostic environment with only one user interface. The diagnostic tests still live in individual programs within /stand, but they all work through the SunDiagnostic Executive (hereafter called the Exec) which provides a consistent interface and multitasking capabilities. The Exec has five menus of its own, which contain all of its commands. It can also call up the menus for any diagnostic. It has one Main Menu that appears when the Exec starts. This menu controls the Environments Menu, an Options Menu, a Diagnostics Menu, a Status Menu, and a Log Menu. NOTE In this document, the menus shown are examples only; the menu you see on the screen may differ slightly from these examples.

2.2. Hardware Requirements

	NOTE	Sun does not support a system configuration that includes both a SCSI3 board and a Sysgen disk controller; therefore the SunDiagnostic Executive will not function on a such a system. In order to use the SunDiagnostic Executive, the system it runs on must have the following functional hardware:
		Memory — 1Mbyte minimum
		□ CPU — 68010 (Sun-2) or 68020 (Sun-3)
		• The MMU
		Real-time clock
		The system must have at least one of the following:
		System Console and Keyboard A terminal plugged into Serial Port A A modem plugged into Serial Port B
		A boot path to a storage device:
		A hard disk controlled by SCSI, sd(), or Xylogics, xy() xd() A 1/4" tape controlled by SCSI, st() A 1/2" tape, mt() or xt() An Ethernet controller on a server, ie() or le()
2.3. Software		The following software must be available to boot from the system under test:
Requirements		The SunDiagnostic Executive
		A set of Diagnostic Programs that run under the Exec.
	NOTE	The Diagnostic programs and the Exec must all be at the same revision level (i.e. all from the same tape). The old standalone diagnostics won't work with the Exec.
		The Exec software may be booted from tape or disk, or booted remotely across the Ethernet.
The Exec Tape		The Exec release tape contains boot programs, the Exec program itself (which works on both Sun-2's and Sun-3's) and the diagnostics that currently can run under the Exec. Two "standalone" diagnostics, eccmem3.diag and cache3.diag, are included on the tape. They are designed to test Sun-3/200 series workstation memory, and do not function as part of the SunDiagnostic Executive. These tests may be extracted from tape and executed separately. Documentation for these tests is in <i>Appendix B</i> .

Name	File	Decription-Comments
	Number	-
	(hex)	
Sun-2 Boot Block	0	Load before booting Exec on Sun-2
Sun-3 Boot Block	1	Load before booting Exec on Sun-3
Table of Contents	2	Contains list of contents of tape
extract_exec	3	Script to copy diagnostics to disk
Copyright	4	Textfile containing copyright notice
exec	5	The SunDiagnostic Executive, works with Sun-2s and Sun-3s
diags	6	Diagnostic Menu and File names (used by Exec)
color2.exec	7	Sun-2 Color Diagnostic
color3.exec	8 ·	Sun-3 Color Diagnostic
cpu.exec	9	Sun CPU Diagnostic
eeptool.exec	A	EEPROM programming tool
ether.exec	В	Sun Ethernet Diagnostic
exectest.exec	C	Exec Verification Suite
fpa.exec	D	Sun-3 FPA Diagnostic
gp1.exec	E	Graphics Processor1 Diagnostic
kb.exec	F	Sun Keyboard Diagnostic
mcp.exec	10	Sun ALM2/MCP Board Diagnostic
mem.exec	11	Sun Memory Diagnostic
mouse.exec	12	Sun Mouse Diagnostic
mti.exec	13	Sun MTI/ALM Board Diagnostic
scsisub.exec	14	Sun SCSI Subsystem Diagnostic
sky2.exec	15	Sky-2 Diagnostic
smd.exec	16	Sun SMD Diagnostic
tape.exec	17	1/2-inch Tape Diagnostic
video.exec	18	Sun Video Diagnostic
vidmon.exec	19	Sun Video Monitor Diagnostic
vme3.exec	1A	Sun-3 VME Diagnostic
netcon	1B	Network Console Program
logfile	1C	Error Log File
eccmem3.diag	1D	Standalone ECC memory diagnostic
cache3.diag	1E	Standalone cache memory diagnostic
tarfile	1F	tar archive of remaining tape contents and data source for
		extract_exec
Copyright	20	Textfile containing copyright notice

The table below lists the contents of the tape in order:Table 2-1SunDiagnostic Executive Tape Contents

The files on the tape are stored in tar format, on either a 1/4-inch tape cartridge, PN 700-1717, or a 1/2-inch, 1200 foot tape reel, PN 700-1718. The tapes are titled 1.1 SunDiagnostic Executive Sunbin and are intended for use with Sun-2 or Sun-3 workstations.

The Exec may be booted directly off this tape, or the contents can be stored in a UNIX[†] directory for later use.

[†] UNIX is a registered trademark of AT&T.

2.4. Loading and Booting the Exec	Unless you boot from tape, the Exec loads its programs from UNIX files located on a hard disk. Although the files can be in any directory, we strongly urge you to keep them in the /stand directory. This document will assume the Exec and its diagnostic programs are all in /stand.
Before Booting	The Exec cannot run unless the system has a minimum amount of functional hardware. The Exec depends on the system tests built into the boot PROMs to ensure the machine is minimumly functional. If you power up the workstation in DIAG mode and the PROM selftest prints out error messages on the attached ter- minal, the machine is not working well enough to test.
Halting the System	The Exec must be booted from the PROM monitor. To reach monitor mode, you must halt the operating system. This can be done a number of ways. The best way is to use the UNIX halt command. To run it, do the following:
	be sure to shut down all your applications first! example% su Password: enter password example#sync example# /etc/halt Syncing disks done Unix halted

Another, less preferable way of shutting down the system and bringing up the PROM monitor is to abort the system. Don't do this unless your you have NO OTHER ALTERNATIVE; aborting the operating system may damage your file systems. To abort, hold down the key on the upper left-hand corner of the keyboard (usually [1]) and press (a). Do this IMMEDIATELY following the

Testing _Megabytes of memory....Completed

message.

You should see the PROM monitor prompt, >.

Once you are in the monitor, you should reset the system to clear out all of the hardware settings. Do the following:

```
> g 0
panic: zero
Syncing disks... done
press L1 and A again when the message above finishes
dumping to dev XXX, offset XXXXX you may not see this one
Abort at XXXXXX
>
```


	NOTE	If you are booting the Exec from a SCSI disk or tape, you must cycle the power before booting. Follow the directions to halt your system, turn the power OFF, then ON, then IMMEDIATELY abort the boot using $ll-a$, as described above. Now enter $k2$ to ensure that the system hardware is reset, in case the operating system began to boot before you aborted.
		Now your system is ready to boot the Exec.
Booting from Tape		If you don't have the Exec installed on disk, you can boot it directly off the Exec Tape. Halt your system as previously described, perform a k2 reset, then type the following to the PROM monitor:
		> $b st(,,N)$ N is 0 for Sun-2 or 1 for Sun-3 boot: $st(,,5)$
		Be sure to follow the format shown above. The Exec booting syntax differs from that of the SunOS syntax, so be sure and enter the command exactly as shown. Do not leave parentheses off. The $k2$ reset ensures that the operating system does not remain in memory anywhere on the CPU or memory boards.
		At this point the Exec should boot up and display the Main Menu.
Installing the Exec		If you don't want to load the Exec from tape each time you run it, you must install it in a UNIX directory.
/usr/stand		The Exec and its associated files require approximately 2 Mbytes of disk space. On many systems, the default root partition is not large enough for this. If this is the case, the Exec may be installed in /usr/stand instead of /stand. To do this, fol- low the installation procedure below, but use the directory /usr/stand instead of /stand.
		If you want to boot the Exec directly from /usr/stand, bootblocks must be installed on the /usr partition. Otherwise, the -a option must be used to boot the Exec. If bootblocks are installed, perform a k2 reset from the PROM monitor mode, then boot the Exec with:
		>b device (, , 6) stand/exec
		If bootblocks are <i>not</i> installed, boot the Exec with:
		<pre>>b -a Boot:device(0,0,0)vmunix Load:device(0,0,0)vmunix Boot:device(,,6)stand/exec</pre>
		Where <i>device</i> is the type of disk the Exec is installed on.

If you have the Exec in /usr/stand, and you want to boot it directly, you must install a boot block in the /usr partition. To do this, use the following sequence:

Installing a boot block
	<pre>% su Password: enter super-user password # cd /usr/mdec # installboot bootdisk /dev/rpartition # cp /boot /usr</pre>
	<i>disk</i> is the disk controller type and <i>partition</i> is the disk partition /usr is on; it is usually 0g for the first disk, g partition.
	For example, installing a bootblock on the g partition of disk 0:
	<pre># installboot bootxy /dev/rxy0g # cp /boot /usr</pre>
Servers vs Local Disk and Tape	There are two logical places to install the Exec: on the local disk of the system you want to test (if you don't plan to download it), or on a server from which you want to remotely download the Exec.
Local Disk and Tape	To install the Exec on the test system, first determine whether it is a Sun-2 or a Sun-3. Look at the model number on the workstation to determine this. If you aren't sure, ask your system administrator.
	Loading the Exec from tape is the same for Sun-2s and Sun-3s. First you must load the file called extract_exec into the /stand directory. The example below applies to 1/2-inch tapes. For 1/4-inch tapes, substitute st for mt in the examples below. Do the following:
	example% su Password: <i>enter superuser (root) password</i>
	example# cd /stand example# mt -f /dev/nrmt0 rewind example# mt -f /dev/nrmt0 fsf 3 example# tar xvf /dev/nrmt0
	Once extract_exec is on the disk, run it by doing the following:
	example# extract_exec mt0 you will see a number of messages here example# exit example%
	All of the files on the tape should now be copied onto /stand.
server	Installing a server with the Exec is a little more involved. First, go to the / (root) directory of the server. When the Exec boots from /stand on a server, it is really booting from /pub/stand, which can be either /pub.MC68010/stand (Sun-2) or /pub.MC68020/stand (Sun-3). Use these pathnames to put the files in the right place.
	Put the Exec and the Diagnostics in both /pub.MC68010/stand and /pub.MC68020/stand.

If your server is homogeneous, it will only have one of the two pub directories. Put the Exec and diagnostics into that directory.

Loading the Exec from tape is the same for Sun-2s and Sun-3s. First you must load the file called extract_exec into the /pub.MC680X0/stand (X is 1 or 2) directory. Do the following, using **st** for SCSI tape and **mt** for 1/2-inch tape:

```
example% su
Password: enter superuser (root) password
example# cd /stand
example# mt -f /dev/nrst0 rewind
example# mt -f /dev/nrst0 fsf 3
example# tar xvf /dev/nrst0
```

Once extract_exec is on the disk, run it by doing the following:

```
example# extract_exec st0
you will see a number of messages here..
example# exit
example%
```

All of the files on the tape should now be copied onto /stand.

Remote Tape If you are using a remote tape drive to install the SunDiagnostic Executive onto disk, the rpc.rexd daemon must be running on the remote device. If it is not, you will see the error message:

cannot connect to server

Refer to REXD(8C) in the SunOS Reference Manual ("man" pages).

Use this sequence to perform the remote tape installation. You may want to read the entry in the *SunOS Reference Manual* for the on command, prior to using this command sequence.

cd target_directory

```
on tapeserver mt -f /dev/nrst0 rewind
on tapeserver mt -f /dev/nrst0 fsf 3
on tapeserver tar xvf /dev/nrst0
on tapeserver csh extract_exec st0
```

Use st for SCSI tape or mt for 1/2-inch tape, and replace *tapeserver* with the name of the system that has the tape drive from which you want to load the Sun-Diagnostic Executive.

Booting from DiskTo boot the Exec from disk — either locally or across the Ethernet — copies of
the Exec and the diagnostic programs must be available in a /stand or
/pub/stand directory where they can be booted. Sun-3 machines can be
configured so the Exec will boot automatically when the machine is powered-on
or reset with the CPU diagnostic switch on the ON position. Setting this
configuration requires programming the system's EEPROM, for which you may
use the EEPROM editing tool described in Chapter 6.

Autoboot		If you have a Sun-3 configured to autoboot the Exec with the normal/diagnostic switch in the diagnostic position, do the following:			
		1. Halt the system (see the Halting your System section).			
		2. Turn off the power to your system.			
		3. Set the normal/diagnostic switch on the system from NORM to DIAG			
		4. Power up the system. The Exec should boot automatically.			
		You can also start the Exec by booting the program /stand/exec from the PROM monitor manually, as follows:			
Booting from Local Disk		1. Halt the system as described in Halting your System.			
		2. Perform a k2 reset.			
		3. Boot the Exec by typing the following to the PROM monitor:			
		> b stand/exec			
Booting from Remote Disk	NOTE	Before you shut down your system, read this entire section. You may need to write down some internet numbers from your /etc/hosts file to boot the Exec.			
		1. Halt your system and start the PROM monitor as previously described.			
		2. Boot the Exec by typing the following to the PROM monitor:			
		>b $le(0, X, 0)$ /stand/exec (for Sun-3/50s and 3/60s)			
		or >b ie(0,X,0)/stand/exec (for all other Sun systems)			
		where X is the hexadecimal host number of the server that has the Exec on disk. (if your server has the Exec on it, see shortcut, below)			
	NOTE	The Exec lives in /stand; the path to it is usually /stand/exec. In the case of a client on a server, it lives in /pub/stand, but still boots as described above.			
		The <i>host number</i> tells the PROM monitor what server you want to boot the Exec from. To find the number, look in your /etc/hosts file for the server name you are using.			
		199.5.0.135 Execserver the Exec server to boot from			
		199.5.0.155 example the machine being booted			
		The string of numbers separated by periods (.) is the <i>internet address</i> . The number after the last dot (the right end of the number) is the number you want. This number must be converted to hexadecimal (base 16) before you can use it in the boot command above. The server you use must be on the same network as the workstation you're booting (i.e. the rest of its internet number, the part to the left of the last dot, must exactly match). In the example above, the host number of the server is 135 decimal. So to boot, we would use 0x87, which is 135 converted to hexadecimal.			

shortcut	If the disk server of your test machine has the Exec in its /stand directory, you can save yourself some work. Just type the following from the PROM moni- tor to boot the Exec: >b /stand/exec
	This command works because your disk server is the default machine to boot from. You only have to give an internet number if you must boot from a different machine.
Invoking a Script File	If you have written a script file (described under the <i>Main Menu</i> heading), you may invoke it when you boot the Exec instead of using the SC command from the main menu. To boot a script file, do the following:
	>b device() /stand/exec SOURCE=filename
	Replace <i>device</i> with the boot device designator, such as is for Ethernet, and so on. Replace <i>filename</i> with the name you have given to the script file.
2.5. The Exec Environment	There are two ways of looking at the Exec; as a series of menus, or as a set of separate programs running under an operating system. You need to understand both perspectives in order to use the Exec effectively.
The Menu Perspective	The Exec and Diagnostic programs appear as a series of menus. These menus are arranged in a tree structure. The top of the tree is a single menu, called the Main Menu. Five menus branch out below this menu. Still more menus branch out below this layer, and so on, until you get to the last layer at the bottom of the tree. It is similar to the hierarchical structure of UNIX file systems. Here is a diagram of the Exec and Diagnostic Menu tree:

The Exec itself consists of the Main Menu and the layer of menus below it. All menus below the "Diagnostics" Menu are the diagnostic programs themselves. When the word "sub-menu" is used in this document, it is a relative term — it refers to any menu below the one we are currently "in". The the "current" menu is the one displayed on the screen. Commands and the immediate "sub-menus" are listed as selection items in the current menu.

Moving Around You can move up or down the menu tree. To move down, select the sub-menu you want in the current menu. This makes that sub-menu the new current menu. You can continue down the tree until you get to the menu or command you want. To go up the tree, press the escape key (Esc). This will put you in the menu one level above, making it the ''current'' menu. Moving up from the Main Menu would mean leaving the Exec; so the escape key doesn't work in the top menu. Use the BOOT command to exit the Exec.

The Operating SystemThe menu viewpoint is an adequate one for using the Exec — if you run only one
diagnostic at a time, don't use the at-sign (@) command or do anything in the
status menu, you'll be fine. However this approach doesn't give you the full
power of the Exec.

Beneath the menu driven interface, the Exec is a multitasking operating system. Its purpose is to run diagnostic programs. With it, you can run many diagnostics at once. Each time you enter a diagnostic menu from the Diagnostic Menu in the

Exec, you start a new diagnostic program. If you exit the top menu of a diagnostic by using the escape key $\boxed{\text{Esc}}$, you terminate it.

If you leave a diagnostic using the at-sign command (@), you return to the Diagnostic Menu, leaving that diagnostic running, and are free to start another one at the same time. The menu items in the Status Menu list all the diagnostic programs currently running. Using the at-sign command is similar to using the bg (background) command in the operating system; the diagnostic continues running in the background, but you are back in the Exec, ready to run another one. You can have up to ten diagnostic programs running at once, nine of them running in the background.

NOTE In this release, you can't have more than one copy of the same program running simultaneously.

To bring one of the background diagnostics back into the foreground, go to the Status menu, and select the process number of diagnostic you want. That diagnostic will now take over the screen. You are back in that diagnostic. You can run other tests, move around the menus in that diagnostic, or do anything else you could normally do. If you want to leave that diagnostic again, press the atsign (@) key again; you will be back in the Status Menu.

NOTE When starting multiple tests, start those dealing with the boot path last; otherwise you will be unable to load all tests specified.

There is an exception to the comments above. If you run a set of commands simultaneously, using the semicolon (;) separator, each command will be run in order. Each command waits for the previous one to complete. For example:

Command ==> command1 ; command2 ; command3

In this example, command2 won't start until command1 completes, and command3 won't start until command1 and 2 complete. Lets say you just started this command string. Command1 is running. If you press the at-sign key now, command1 will go to the background, as expected. However command2 has been waiting for command1 to finish. Putting it in the background makes it look like it's finished to command2, so it starts executing. If you press the at-sign key again, command1 and 2 will be in the background, but command3 will start running. Finally, pressing the at-sign puts the final command in the background, and returns you to the Status Menu.

In general, if you have multiple commands, separated by spaces on one line, pressing the at-sign key will only background the currently running one. You must press the at-sign once for each program, or wait for the ones still in the foreground to complete normally before returning to the Exec.

Whether its in the foreground or the background, running diagnostics all save their log messages in the logfile. Not all messages printed by the diagnostic are log messages. Only log messages are saved. The other messages can only be seen if the program is in the foreground, and will be lost when it gets scrolled off the screen. See the Log Menu section for details.

2.6. Using the Network Console	To run the Exec remotely over Ethernet, the netcon program must be installed on a system that will be running the SunOS operating system. This program is on the distribution tape and may be installed wherever you normally install UNIX Executables. Once this program is is installed, the Exec can be run remotely over Ethernet. To do this, first do the following to prevent double echoing and allow transmission of single characters without pressing <u>Return</u> .
	%stty -echo cbreak Return
Do not run more than one netcon	Then, start the netcon program by typing
	%netcon Return
	Netcon then prints the following message:
	netcon: waiting on <i>nnn/nnnn</i>
	where nnn/nnnn is some number.
	Netcon is now waiting to connect to a system running the Exec. Now go to the system running the Exec and from the Exec's environment menu turn the network console on by typing network=on .
	To disconnect the network console, type network=off on the Exec's environment menu, then type control-C on the network console.
	After terminating netcon, perform the following to reset normal conditions:
	%stty -cbreak
2.7. User Interface	The user sees the Exec as a series of menus. These menus are arranged in a tree- like structure. The diagnostic programs themselves are integrated into the menu tree. The system is designed this way so that entering commands and reading results are the same, whether you're in the Exec part of the tree or in a diagnostic subtree.
NOTE	The user interface looks and acts the same in both the diagnostic menus and the Exec menus (except for the at-sign command @).
Menu and Invisible Commands	There are two types of commands available when you run the Exec; the com- mands listed in the menu you are in (the <i>visible</i> or <i>menu</i> commands), and a fixed set of commands which you can use regardless of the menu. These commands are always available, but not shown on the screen; the <i>invisible</i> commands.
Menu Commands	The menu commands are the list of choices shown on whatever menu you're in. A menu line will show a menu command, followed by a short description of the command. A menu command is a single word. For commands that set a system parameter, the word has an equals sign at the end. This character must always be included when typing the command, even if the command word itself is abbrevi- ated (see Command Line Syntax, below). At the bottom of the menu will be a prompt that looks like this:

Command ==>

To run a menu command type its name at the prompt, followed by arguments (if needed). When you type a Return, the command will be Executed. You can only enter the commands displayed on the menu you're in.

To make things easier, menu commands are designed so you only have to type enough of the command name so the Exec can recognize it. This means you only have to type the letters capitalized in the command name. In some cases this will be the entire word; most of the time it's not, however. You are free to type in more of the word if you want. For example, one line of the Environment Menu is:

LOGfile= Log to file currently: off

To Execute this command you could type any fraction of the word "logfile", as long as you start from the beginning of the word and include the letters that are capitalized in the menu:

```
Command ==>log=off this is the minimum

Command ==>logf=off

Command ==>logfi=off

etc...

Command ==>logfile=off this is the maximum
```

NOTE If a command word is displayed in a menu with an equals sign (=), make sure you include that equals sign at the end of the command when you type it, even if you abbreviate the rest of the word.

All commands work the same, you don't have to type the entire command word, just the capitalized part. You still must type in any parameters correctly, though.

You can type the commands in any mixture of upper or lower case; the Exec has no preference. Menu commands do one of two things: Execute a command directly, or move you down to a sub-menu containing other commands. Commands that move you to sub-menus have no arguments; you only have to type the command word.

Invisible commands are a set of single letters that can be typed from any menu in the diagnostic tree. These commands are **not** listed in the menu. None of the invisible commands take arguments. They enable you to move around the menu tree quickly, obtain help information, or re-execute a previous command. The invisible commands are described below.

Esc

Invisible Commands

Pressing the escape key **Esc** from any menu moves you up one level to the menu above. This command does nothing in the Main Menu. If you want to exit the Exec from the main menu, use the BOOT command.

0

Pressing the at-sign character (@) returns you to the Exec from a diagnostic, leaving it running. It has no effect while you are in the Exec (i.e. in the Exec menus). It returns you to the last Exec menu you were in; either the

	Diagnostic or the Status menus. The diagnostic you left is still running in the background; to return to it, go to the Status Menu and select the diagnostic from the process list. For more information, see previous section, <i>The Operating Systems View</i> .			
	Pressing the exclamation point [] displays the last 5 command lines you entered in a numbered list. It acts like a limited version of the UNIX C- Shell's history command. You can re-execute any line on the list by typ- ing number listed with it.			
	 1, 2, 3, 4, or 5 Pressing any of the numbers 1 through 5 allows you to re-execute one of the last five menu commands you executed. 5 is the current command, 1 is the oldest command available. Use the ! command (described above) to list the last five commands entered. 			
	? Pressing the question mark (?) from any menu displays the help list for the current menu. Sometimes, there is more detailed help available; if the items in the help list are lettered, entering the letter causes the Exec to display an even more detailed help list specifically related to that item.			
Command Line Syntax	A command line is formed of one or more commands, each separated by semi- colons (;). For example, a command line with the single command "command1" would look like this:			
	Command ==>command1			
	A command line with three commands in it is shown below; the spaces are optional.			
	Command ==>command1 ; command2 ; command3			
Command Parameters	Some commands may need parameters; they are listed in the menu after the com- mand itself. Parameters are entered two ways: if the command name has an "equals" sign (=) at the end, the parameter is typed immediately after the com- mand word — no spaces are allowed. If the command doesn't have an "equals" sign in it, type one or more parameters after the command, separated by spaces. For example:			
	Command ==>mem allcommand name mem has no equals signCommand ==>source=/standcommand name source= has an equals sign			
	There is one more way to list parameters, used when you are calling diagnostic programs from the Diagnostic Menu. You can selectively call sub-commands as arguments to your command by encasing them in quotes. For example, the cpu command brings up a menu of subcommands that pup convertes. Among the tests			

arguments to your command by encasing them in quotes. For example, the cpu command brings up a menu of subcommands that run cpu tests. Among the tests listed in this sub-menu are the scc and clock commands. If you wanted to run just these tests without going to the cpu menu, enter the following command:


```
Command ==>cpu "scc ; clock"
```

Note that the commands in quotes are treated as a parameter to the cpu command. Also note that the scc and clock commands are separated by a semicolon; type in commands in quotes as if they were being typed on a separate line. The quoting syntax is a shortcut; you can always do the same thing by typing each command, in sequence, on separate lines. The quoting syntax only works in the Diagnostic Menu or its sub-menus. The menu hierarchy is explained in more detail in the following sections.

All of the methods mentioned above can be mixed and matched in different ways. Here is an example including each:

Command ==>cpu "scc ;clock" ; mem all addr=0 size=100000;video

Numerical ParametersMany of the parameters passed to commands are numbers. The Exec automatically selects either decimal (base 10) or hexadecimal (base 16) numbers for command parameters depending on the type of parameter. You can override the Exec's choices by starting or ending a number with %o for octal numbers, %d for decimal, %h for hexadecimal, or %b for binary. The numbers you enter must conform to the standards for the base you select; for example, the string %d1F or 1F%d will generate range errors, since "1F" is not a decimal number. It should be %h1F or 1F%h.

Special Characters The Exec reco

The Exec recognizes three special characters: *, - and ;.

*

The asterisk *) character represents the highest possible numerical value, infinity for all practical purposes. You can use it anywhere the Exec expects a parameter. For example, when you enter a * for the number of times the test will run (called a passcount), it causes a command to repeat virtually forever (or until you stop it!). The actual value of * is 0x7FFFFFFF, hexadecimal.

The hyphen character (-) can be roughly translated as "through", as in "a through d". For example, on a menu with choices a, b, c, and d, entering a-d executes them all in sequence. A note of caution here: the hyphen character works with the menus. It will execute all of the commands in the order they are listed in the menu, not necessarily in alphabetical order. For example, if your current menu looks like this:

t e ser	Sample Menu				
A	Command A				
Q	Command Q				
в	Command B				
S	Command S				
R	Command R				
G	Command G				

Executing the command

Command ==>Q-S

will execute the commands Q, B, S in that order. You can't have any white space between the hyphen and the command names.

The semicolon character (;) as mentioned earlier, separates commands for the Exec, allowing you to enter several commands on the same line. For example, the string

a; b; c

ï

would be interpreted as three separate commands, not a command with two options. The spaces between items are optional.

2.8. Exec Menus The following sections of this chapter describe each of the five Exec menus in detail. For information on diagnostic programs or their menus, see the remaining chapters of this document.

The Main Menu The Main Menu is at the top of the menu hierarchy. It is the first menu you see when you start up the Exec. This menu contains seven commands; the first five give you access to other sub-menus, while the last two, SCript= and Boot, are commands that are executed directly.

NOTE When a specific group of diagnostics have been called up — when the All or Default commands are used, for example — entering a Control-C sequence aborts the current diagnostic and proceeds to the next diagnostic in the group. Using Control-C when a specific group of diagnostics is not specified returns you to the Diagnostic Main Menu.

```
SunDiagnostic Executive Rev:x.x dd/mm/yy Main Menu
Environment Set Executive environment
Options Set global diagnostic options
Diagnostics Available diagnostics
Status Display task status
Log Display error log
Script= Source a script file
Boot Exit and boot another program
```

environment

Selecting this command moves you into the Environment Menu of the Exec. Go to this menu to configure the Exec to its operating environment. See The Environment Menu section for details.

options

Selecting this command moves you into the Options Menu of the Exec. Go to this menu to set the global diagnostic test options. See The Options Menu

section for details.

diagnostics

Selecting this command moves you into the Diagnostic Menu of the Exec. Go to this menu to run the diagnostic tests. See The Diagnostic Menu section for details.

status

Selecting this command moves you into the Status Menu of the Exec. Go to this menu to see to output of the currently running diagnostic tests and run particular tests in the foreground. See The Status Menu section for details.

log

Selecting this command moves you down to the Log Menu of the Exec. Go to this menu to read the entire output of a particular diagnostic test, as . recorded in the logfiles. See The Log Menu section for details.

script=scriptfile

Selecting this command will cause the Exec to read commands from the file named after script= instead of from the console. The *scriptfile* file will contain a sequence of command lines, arranged in a script, to be run by the Exec. This command allows you to run a predefined sequence of tests automatically. When the Exec runs to the end of the file, control returns to the user.

The script file is created prior to running the Exec and may exist on any loadpath exclusive of a tape device. Basically, the commands are entered just like they would if you were running all the diagnostics from the Diagnostic Main Menu. However, the current implementation of the script processor imposes some notational requirements on the script writer, as enumerated below.

- 1. The escape character should be typed out as **<esc>**.
- 2. The d; (entering the Diagnostic Main Menu) must exist alone with nothing after it. All subsequent commands for the diagnostic menus must exist on the next line:

```
d ;
ether cmd="quick;<esc> d"
```

The script processor has problems dealing with CR/LF combinations.

The following is a script to run four diagnostics consecutively.

d ; ether cmd="quick;<esc> d" ; cpu cmd="quick;<esc>" ; video cmd="d;<esc>";mem cmd="quick;<esc>" ;

The example above first selects the Diagnostic Main Menu. The next line selects the Ethernet "quick" test sequence, then escapes back to the main menu. After the second semicolon, the CPU quick test is selected from the main menu, and then the script escapes to the previous menu (the main menu) and selects the Video diagnostic Default test, followed with an escape to the Memory quick test and finally an escape back to the Diagnostics Menu. The *Command Line Syntax* section at the beginning of this chapter provides more information on the use of quotation marks and semicolons in command lines.

The following is an example of a script to run specific diagnostics from the diagnostic sub-menus:

d; cpu cmd="e;quick;<esc>;f;quick;<esc>;<esc>"

In this case the script selects the CPU Diagnostic main menu and then, with the e entry selects the System Enable Test sub-menu. The quick test sequence is then selected from that menu, followed with an escape back to the CPU Diagnostic main menu, from which a second sub-menu is selected with the f command, from which another quick test sequence is invoked. Finally, the two escapes bring you up through the CPU diagnostic main menu to the SunDiagnostic Executive Main Menu.

3. While reading scriptfiles, the type-ahead buffers are not used. If you are writing scripts, you must start concurrent tasks differently. Start a back-ground task using the cmd= and bg options. See the *Diagnostic Menu* section in this chapter, for details.

boot bootfile

Selecting this command causes the Exec to exit and the *bootfile* to be booted on the system. Running boot without any arguments restarts the Exec; use it if the Exec is malfunctioning and can't be fixed any other way. At this time the only argument that the boot command accepts is this:

boot exec

The Environment Menu

The commands in the environment menu allow you to configure the Exec to its operating environment. In this menu you can: identify the machine and directory where the Exec code is stored; tell the location and characteristics of the control terminals that the Exec takes its commands from; and control diagnostic output to the logfile.

SunDiagnost	ic Executive Rev:x.x dd	l/mm/yy Setu	p Menu
Load=	Change load path	currently:	boot path
LOGfile=	Log to file	currently:	off
TTYA=	TTY A console	currently:	off
TTYABaud=	TTY A baud rate	currently:	9600
TTYATerm=	TTY A terminal type	currently:	adm
тттв=	TTY B console	currently:	off
TTYBBaud=	TTY B baud rate	currently:	1200
TTYBTerm-	TTY B terminal type	currently:	ansi
NETwork=	Network console	currently:	off
NETTerm=	Network console type	currently:	ansi
Default	Assign default values to	> all environm	ent flags
Command ==>			

load=loadpath

After the Exec is booted, it selectively loads diagnostic programs as they are required by the user. It uses the *loadpath* variable to determine where (device and directory) to load from. Upon booting, the *loadpath* variable is automatically initialized to the directory the Exec was booted from. You will only need to change *loadpath* if you need to load the diagnostic programs from a place other than the place from which the Exec was booted.

The loadpath consists of two parts; the storage device and the pathname. The storage device tells the Exec where to look for the pathname. It is a device name. It can be a disk, tape or Ethernet. The devices supported for this release are given in the table.

Disks	Tapes	Remote
sd()	st()	ie()
xy()		le()
xd()		

Combine the device name with the directory path on the device to make *loadpath*. End the loadpath with a forward slash (/).

```
if:
device = sd0 -> sd()
directory = /stand
```

then: loadpath=sd()/stand/

logfile=enableflag

This parameter enables or disables the logging process. To enable logging, the *enableflag* should be on. If the Exec is not logging messages, it loads the current logfile into the RAM log, then starts logging all new messages to both the RAM and the disk logfile. To disable logging, enter off. If the Exec is already logging messages, that procedure stops, and any new messages are discarded.

In this release, the log is always saved in a file called logfile in the directory indicated by the loadpath variable on the test system's local disk. You cannot save a logfile on a remote disk. You must create the file, with at least 32K bytes of data in it, before you run the Exec.

ttya=enableflag

This command tells the Exec whether you are using a terminal connected to the ttya serial port on the test system. If you are, the *enableflag* should be the string on. If you're not, use the string off. The Exec is controlled from one or more sources, called consoles. The console default is the system keyboard and screen. Setting ttya, ttyb or network to on allows these devices to act as consoles. Any enabled device will automatically act as a console when it starts receiving characters through its port.

ttyabaud=baudrate

This command sets the baud rate for the ttya port on the test system. You can use any of baud rates in the table below:

Baudrates			
300	2400		
600	4800		
1200	9600		

Enter one of these rates for the baudrate parameter. The default rate is 9600.

ttyaterm=termtype

This command sets the terminal type the Exec expects to be connected to the ttya port. The legal values are ansi, adm, or tty. The table below shows when to use each:

Use	If your terminal is:		
ansi	VT100, Sun workstations, any other ansi		
adm	ADM, TVI925, Wyse		
tty	Any other terminal or unc- ertain of type		

tty contains no escape sequences, so it will work on nearly any terminal, display or printer.

ttyb=enableflag

This command tells the Exec whether you are using a modem connected to the ttyb serial port on the test system. If you are, the *enableflag* should be on. If you're not, enter off. The Exec is controlled from one or more sources, called consoles. The console default is the system keyboard and screen. Setting ttya, ttyb or network to on allows these devices to act as consoles. Any enabled device will automatically act as a console when it starts receiving characters through its port. The ttyb port responds to modem signals as well as data, letting you control the Exec from a phone line.

ttybbaud=baudrate

This command sets the baud rate for the ttya port on the test system. You can use any of baud rates shown for ttyabaud. Enter one of those rates for the *baudrate* parameter. The default rate is 1200.

ttybterm=termtype

This command sets the terminal type the Exec expects to be connected to the ttyb port. The legal values are ansi, adm, or tty as shown for ttyaterm. tty contains no escape sequences, so it will work on nearly any terminal, display or printer.

network=enablefiag

This command tells the Exec whether the console is on a remote machine over the Ethernet. If it is, *enableflag* should be on. If it isn't, enter off. The Exec is controlled from one or more sources, called consoles. The console default is the system keyboard and screen. Setting ttya, ttyb or network to on allows these devices to act as consoles. Any enabled device will automatically act as a console when it starts receiving characters through its port.

The remote console should be running on the network **before** this flag is enabled. To do this, find a Sun workstation running on the same network that the system under test is on. Enter stty -echo cbreak, as described in the Using the Network Console subsection, then run the program netcon under the SunOS operating system.

Netcon is included on the Exec release tape, and should be in the /stand directory of any system that contains the Exec system. Under netcon, the screen will act like an ansi terminal. Now, if the netterm= variable is set in the Exec, the remote workstation can control it.

Don't forget to run the stty -cbreak command when netcon is terminated, to reset normal conditions.

CAUTION In this release, if you enable network= without a network console running, the Exec will "freeze" looking for it. The only way to break out is to start up a network console, or to cycle the power on the test system.

netterm=termtype

This command sets the terminal type the Exec expects to be connected to the The other end of the network. The legal values are ansi, adm, or tty. Since the "terminal" on the other end will most likely be a Sun, ansi is the most common setting. The table in the section that describes ttyaterm shows all of the terminal selections and when to use them. tty contains no escape sequences, so it will work on nearly any terminal, display or printer.

default

This command sets all of the values in this menu to their defaults. The default values are listed in the table below:

Command	Default	Command	Default
Load=	boot path	ttyb	off
logfile=	off	ttybbaud	1200
ttya	off	ttybterm	ansi
ttyabaud	9600	network=	off
ttyaterm	adm	netterm=	ansi

The commands in the Options Menu control how the diagnostic tests will react to errors. These commands allow you to configure some characteristics of all of the diagnostics at once.

Two behaviors are controlled from this menu: how a test responds when it finds a hardware error; and how many times it runs. These behaviors are controlled by the option variables in the menu. Change the variables and you change the behavior of all the diagnostics. These variables always show the current option state.

```
SunDiagnostic Executive Rev:x.x dd/mm/yy Options Menu

STop= Stop on nth error currently: *

SCope= Scope loop on error currently: off

SOft= Soft error retry count currently: 0

Pass= Pass count currently: 1

Default Assign default values to all options

Command ==>
```

stop=numb_errors

The Options Menu

This command controls the number of times a test will detect an error before stopping. The parameter *numb_errors* is a decimal number or the metacharacter *****. Entering ***** means "keep testing no matter how many errors you see". Whether or not a test stops, it will always log any errors it finds into the Exec's error log.

scope=enableflag

This command determines whether a test will run a scopeloop if it detects an error. Entering on for *enableflag* causes the test to scopeloop; entering off makes it continue the test. This setting takes precedence over the stop= parameter; if scope= is on, the test will scopeloop no matter what the stop= setting may be.

A scopeloop is a write or read cycle repeated endlessly. It is used with an oscilloscope or logic analyzer to isolate hardware bugs. Only diagnostics that have a scopeloop test in their menus will scopeloop if this parameter is set.

soft=numb_trys

This command controls the number of times a test will detect a soft error before stopping. A soft error is a temporarily incorrect value found in a storage area (it can be in RAM, disk, registers, etc.) Soft errors are not as serious as hard errors, and if they don't happen too frequently, are often tolerated. What constitutes an unacceptable soft error rate is a matter of judgment. Refer to your test procedures for guidance.

The parameter $numb_trys$ is a decimal number or the metacharacter *. Entering * means "keep retrying no matter how many soft errors you see". Whether or not a test stops, it will always log any errors it finds into the Exec's error log.

pass=numb_tests

This command sets the default for the number of times a test will run before exiting. This is the number of times the test will run if it finds no errors. The number of times a test will run can change if it encounters errors, as determined by the stop=, scope=, and soft= parameters and the number and type of errors encountered. The *numb_tests* parameter can be a decimal number or the metacharacter *, which means "keep running the tests over and over without stopping". Since this value is only a default, it is overridden when a command is entered with a passcount argument.

default

This command sets all of the values in this menu to their defaults. The default values are listed in the table below:

Command	Default	Command	Default
stop=	*	soft=	0
scope=	off	pass=	1

Diagnostic Menu This menu gives you access to the diagnostic programs. Typing a command in this menu moves you to the main menu of the corresponding diagnostic program. Since different machines have different hardware and thus need different tests, the diagnostic menu doesn't have a fixed set of commands. This menu varies depending on the diagnostic programs the Exec has loaded — the menu shown here is only an example. There is one command on this menu that doesn't change; that is the Default selection. Running this command will run all of the tests in the menu with their default parameters.

NOTE Make sure you have configured the /stand/diags file (while running the operating system) before you run the Default command. The diags file is a list of the tests and menu entries. You need to remove both the menu and program name entries that pertain to hardware not available in the system under test.

Since the Exec is multitasking, you can run more than one test program at a time. Read the *Operating System Perspective* and *Command Syntax* section for details on running jobs in the background.

NOTE When starting multiple tests, start those that deal with the boot path LAST or you will be unable to load all the tests you have specified.

C 2	Sun-2 Color Board Diagnostic
C3	Sun-3 Color Board Diagnostic
CP	Sun CPU Board Diagnostic
Fthor	Sun Cro Board Diagnostic
ECHEL	EFEDROM Editing tool
EEPIOM	Sun-2 EDD Diagnostic
rpa	Sun-S FPA Diagnostic
Gp	Graphics Processor 1 and Graphics Burrer Diagnostic
KD	Keyboard Diagnostic
Mem	Memory Diagnostic
MCp	MCP and ALM-2 Diagnostic
MOuse	Mouse Diagnostic
MTi	MTI/ALM Diagnostic
SUBsystem	SCSI Subsystem Diagnostic
SMd	SMD Subsystem Diagnostic
Таре	1/2" Tape Diagnostic
Video	Sun-x Video Diagnostic
VIDMon	Video Monitor Diagnostic
VME	Sun-3 VME Interface Diagnostic
Default	Start all of the above diagnostics

NOTE

When a specific group of diagnostics have been called up — when the All or Default commands are used, for example — entering a Control-C sequence aborts the current diagnostic and proceeds to the next diagnostic in the group. Using Control-C when a specific group of diagnostics is not specified returns you to the Diagnostic Main Menu.

Starting a Diagnostic Entering the name of a diagnostic will put you in that program's main menu. The diagnostics are designed to all have a similar user interface. Each top menu will probably have:

- A "Run all Tests" command runs every test in the diagnostic.
- A "Run quick Tests" command runs a subset of all the tests, which completes in 2 minutes or less.
- A "Run default Tests" command runs the most important tests in the diagnostic
- □ A set of test sub-menus, covering different areas of the hardware.
- A set of utility and debugging commands, including scopeloops.
- A set of option commands for configuring the particular diagnostic to its operating environment.

In addition to the commands visible in the menus, the invisible commands, mentioned earlier in this chapter, are also available.

A diagnostic may be explicitly given a command to run when it is started. This feature is used when writing script files. For example, to run all the commands in the CPU diagnostic, you normally type cpu, wait for the prompt, then type **all**. In a script file, you would type instead:

cpu cmd=all.

The bg option may be added to run the diagnostic in the background. To run the example above in the background, type

cpu cmd=all bg

The CPU diagnostic will start running in the background, but you will remain in the Exec. This feature has little use outside of scriptfiles, since you can use the at-sign (@) to background diagnostics.

default

Running the default command from the diagnostics menu will run all of the diagnostics shown in the menu with their default tests.

Status Menu

This menu lists all of the diagnostic tests currently running under the Exec. This menu is highly variable; it depends entirely on what's running at the present moment. Each test is displayed as a menu item, along with the *process number* the Exec has assigned to it. You can use the process number to reenter individual diagnostics. Here is an example Status Menu:

SunDiagnostic Executive Rev:1.x	25 Sept 1987	Diagnostics Menu	
proce yme			
proce vine			
procn rtest			
procn ktest			
Command ==>			

procn

Entering the process number of a diagnostic puts you back in that diagnostic. You will be in the same menu that you left; if a test is running, you will see its status and error messages on the screen. To leave the diagnostic, enter the ''at-sign'' (@). You will return to the Status Menu. The diagnostic you left will still be running in the background. You can only foreground one test at a time.

0

Entering an at-sign character (@) will stop a test from displaying on the screen and start it running in the background. The current status menu is redisplayed. This command has no effect when there are no tests running in the foreground.

Log Menu

This menu deals with viewing and controlling the current log file. The Exec collects all of the error messages from all of the tests and writes them into a log file. The log file is resident in memory. The commands here allow you to view the current log file, save it to disk, erase it, and turn it on or off.

The log messages themselves have a fixed format. They are made of five parts; *testname, timestamp, error_number, error_location,* and *error_info*. The first two parts are supplied by the Exec. *Testname* is the name of the test that failed. *timestamp* is when it failed; in this release, it is the number of seconds after the test started. The last three parts are supplied by the diagnostic itself. In future releases, the *error_number* will be used to look up a description of a particular error in this manual. *error_location* describes what part of the test failed. The *error_info* section provides more information about the particular error. For example:

mem3.diag:943578 9 - Address Test - Loc 0x9456 Exp 0x0 Obs 0x1

In this example, the mem3 test failed with an error 9, in the address test. It expected a 0 and read a 1 instead. A description of error 9 would be in the appendix of the mem3 diagnostic chapter.

Here is the Log Menu:

```
SunDiagnostic Executive Rev:x.x dd/mm/yy Log Menu
Display Display log
Clear Clear log
Save Save log to log file
Logfile turn logfile on or off
Command ==>
```

display

Running the display command prints the current log file onto the screen. The display runs with character flow control; you can freeze the display by typing \mathbf{s} and continue it with \mathbf{Q} . The \mathbf{s} symbol means <u>Control</u>. To type a \mathbf{Q} , hold down the control key, type the Q, then let go of both keys. The procedure is the same for \mathbf{s} .

clear

Running the clear command erases the current logfile in RAM. If the logfile= parameter is set to "on", the logfile on disk will also be cleared.

Clearing the file does not stop new messages from being accumulated. If diagnostics are running, the log will immediately start to refill as log messages are generated.

save

Running the save command saves the log currently in RAM onto disk. The disk it is saved on depends on the value of loadpath = in the Environment Menu.

NOTE The Log is always saved in a file called logfile in the directory indicated by the loadpath variable on the test system's local disk. You cannot save a logfile on a remote disk. You must create the file, with at least 32K bytes of data in it, before you run the Exec.

logfile

Running the logfile command starts or stops the logging process. If the Exec is already logging messages, that procedure stops, and any new messages are discarded. If the Exec is not logging messages when this command is entered, it loads the current logfile into the RAM log, then starts logging all new messages to both the ram and the disk logfile.

Note that this command has the same effect as the logfile= variable in the Environment Menu. It is included here for convenience.

Sun-2 Color Board Diagnostic

22

Sun-2 Color Board Diagnostic	. 43
3.1. General Description	43
3.2. Required Equipment	. 43
3.3. User Interface	43
3.4. The Main Menu	44
3.5. Manual Test Menu	45
3.6. Control Register Menu	46
3.7. Interrupt Test Menu	. 50
3.8. Color Map Test Menu	50
3.9. Frame Buffer Test Menu	52
3.10. ROPC Test Menu	55
3.11. Error messages	56
3 12. Glossary	58

3

Sun-2 Color Board Diagnostic

3.1. General Description This diagnostic program, which runs under the Exec, tests the Sun-2 Color Graphics Board. This diagnostic runs on both Sun-2 and Sun-3 systems that are using a Sun-2 Color Graphics Board. There are two color boards available from Sun. The older version, introduced **3.2. Required Equipment** with the Sun-2 line, runs on both Sun-2's and Sun-3's. It has 4 BNC connectors on the back of the board. Use this diagnostic to test it. Use the Sun-3 Color Board Diagnostic to test the new color board. It has 5 BNC connectors on the back. Because the diagnostic displays patterns on the color monitor, we advise you to run the diagnostic from a terminal connected to SIO-A. NOTE Starting the system "cold" may effect DAC conversion. If you just powered-on a cold system and you encounter DAC problems, allow the system to "warm up" for about 20 minutes, then rerun any tests that failed. 3.3. User Interface As the diagnostic exercises the color circuits of the Sun color board, it generates colors and images on the color monitor. These displays provide important information about the condition of the color board. You must check the colors and patterns for correctness and even distribution of color. Tests that run continuously can be stopped by typing the letter q on the keyboard. For some tests, there may be a delay before it actually exits.

3.4. The Main Menu

The diagnostic is divided into two parts, auto and manual tests. The Auto test provides good coverage of every part of the hardware. The manual test contains most of the subtests run by the auto test, as well as scope loops and debugging tools for isolating hardware problems.

```
Sun-2 Color Board Diagnostic Program Rev: X XX/XX/XX Main Menu
Auto test Test all hardware
Manual test Select any part of hardware
Command =>
```

Auto

If you type **a**, the *auto test* is invoked. When the test starts, it prompts for the number of times to run the test. Enter the count (in decimal), then press <u>Return</u> to start the test. The Auto test includes DAC, interrupt, TTL / ECL color map, frame buffer, zoom and pan, ROPC, pixel plane mask, and word plane mask tests. Only the DAC test requires user interaction. You must press <u>Return</u> to advance to the next DAC test. All other tests are executed automatically. At the end of a test, a cumulative error message is displayed on the screen. Press <u>Return</u> to get back to main menu.

Manual

The manual test allows you to test each part of the hardware. If the Auto test discovers an error, you should re-run the specific test from the Manual Test menu. The Manual Test mode also provides scope loops and some useful debugging tools, chosen from the Control Register Menu. From the Main Menu, type m to run Manual Tests.

3.5. Manual Test Menu

You may select any item on the menu or press $\boxed{\text{Esc}}$ to back up to the main menu.

Cntl	Test control registers	
Int	Test interrupts	
COlor	Test color maps	
Buffer	Test frame buffer	
Ropc	Test ROPC units	
Zoom	Test zoom and pan	
DAC	Test DACs and monitor	
Monitor	Brief monitor test	
Auto	Perform auto test once	
Command =>		

Cntl

Type **c** to select the *control register test*. The diagnostic will display the Control Register menu.

Int

Type i to select the *interrupt test*. The diagnostic will display the Interrupt Test menu.

COlor

Type **co** to select the *color map test*. The diagnostic will display the Color Map Test menu.

Buffer

Type **b** select the *frame buffer test*. The diagnostic will display the Frame Buffer Test menu.

Ropc

Type \mathbf{r} to select the *ROPC test*. The diagnostic will display the ROPC Test menu.

Zoom

Type z to select the zoom and pan test. The diagnostic displays the Zoom and Pan Test menu.

DAc

Type **da** menu to select the *DAC test*. The diagnostic will display the DAC Test menu.

Monitor

Type **m** to select the *brief monitor test*. This test displays a series of visual tests to check the monitor. There is no sub-menu for this test.

Auto

Type **a** to select the *auto test*. It tests all parts of the hardware automatically, once. There is no sub-menu for this test.

3.6. Control Register Menu Each of the choices below allows you to exercise a different register. You can only choose one register at a time.

After selecting a register to test, a long menu is displayed with different read, write, increment (or decrement) and compare options. These options allow you to exercise the register in question in various ways while examining the circuits with an oscilloscope.

Status	Status register
Perplane	Per_Plane register
Word	Word Pan register
PIxel	Pixel Pan register
Line	Line Offset and Zoom register
Variable	Variable Zoom register
Interrupt	Interrupt register
Command =>	

Status

The *Status Register* is sixteen bits wide. It contains all the status information for the color board. It is cleared when a bus reset is issued.

Perplane

The *Per_Plane Register* is eight bits wide. Its used to restrict access to selected bit planes.

Word

The Word Pan Register sets the origin of the region being displayed. This register is only used during a word pan.

PIxel

The *Pixel Pan Register* sets the origin of the region being displayed. This register is only used during a pixel pan. If the panning is horizontal, a fourbit field called the pixel_offset can be used to limit panning to between one and four pixels at a time.

Line

The *Line Offset and Zoom Register* is an eight bit register. The least significant four bits hold a value that specifies the display size of a single frame buffer pixel. As the zoom level increases, each pixel in the frame buffer will be displayed as a larger and larger region on the screen. If vertical panning is being done, the most significant four-bit field, called the line_offset, can be used to limit panning to between one and four lines at a time.

Variable

The Variable Zoom Register specifies the line number that is the lower limit of the zoom region.

Interrupt

The *Interrupt Register* contains an eight bit interrupt vector. The color board sends it to the VME bus during a vectored interrupt.

Register Test Sub-Menu

After selecting the register you want to test, the following sub-menu gives you various ways to test it.

Read	Read once
RC	Read continuously
Write	Write once
WC	Write continuously
WRRd	Write/read once
WRRC	.Write/read continuously
Inc	Wrt/rd/cmp and dec data by 3
IC	Wrt/rd and inc data continuously
Forever	Wrt/rd & stop/rd forever on error
INN	Wrt/rd/cmp & inc data by n
Alt	Wrt/rd alternating data
Command =>	

Read

The *Read Once* command reads the indicated register once, and prints its hexadecimal contents on the screen. The message printed is

Register name. Read: value.

RC

The *Read Continuously* command reads the indicated register continuously until it is interrupted. The message printed is

Register name. First Read: value

which is the value of the register the first time the diagnostic reads it. The test displays nothing else if this value is consistent. At the end of 0x10000 reads the test does two things. First, if the value read differs, the test prints an E on the screen. Next, the diagnostic checks the keyboard to see if a q has been typed. If it has, the test quits. If it hasn't, the test starts the cycle over.

Write

The Write Once command prompts for a value to write, by printing

Enter Datum(hex)

It then writes the indicated register once, using the value of the argument given. The message printed is

Register name. Wrote: value

WC

The Write Continuously command prompts for a value to write, by printing Enter Datum(hex). It then writes the indicated register repeatedly. At the end of 0x10000 writes, the test prints the following message:

Register name. First Write: value.

then checks to see if q has been entered. If it has, the test exits. If it wasn't entered, the test starts the cycle over.

WRRd

The Write then Read once command prompts for a value to write, with Enter Datum(hex). It then writes the indicated register once, using the value of the argument given. It then immediately reads the value of the register back, and prints it on the screen. The message printed is

Régister name Wrote: value. Read: value.

WRRC

The Write, then Read continuously command prompts for a value to write, by printing:

Enter Datum(hex)

It then writes to the indicated register, using the value of the argument given. It immediately reads the value of the register back, then starts over again. Every 0x10000 iterations, the test does three things. First, the test prints the following message:

Register name First Write: value. First Read: value.

which is the value of the register the first time the diagnostic reads it. Next, if the value read differs (indicating an error), the test prints an E on the screen. Finally, the diagnostic checks to see if a q was typed. If it was, the diagnostic exits. If not, the cycle repeats.

Inc

The Write, Read, Compare, and Decrement command writes to the indicated register, starting with the value of the 0XFFFF. It then immediately reads the value of the register back, then compares it against the original value. The command then decrements the value by 3 and starts over again. If the value read back differs from the value that was written, the register is read twice more, and a message showing the discrepancies is printed:

Device device. Register name. Wrote value. Read rd1, rd2, rd3

When the value gets decremented below zero, the test ends.

IC

The Write, Read, and Increment command writes to the indicated register, starting with the value 0×0 . It immediately reads the value of the register back, then increments the value by one and starts over again. The cycle repeats continuously until

a q is typed. The command does not print the register's contents.

Forever

The Write, Read, and Read on Error command writes to the indicated register, starting with the value 0XFFFF. It immediately reads the value of the register back, then compares it against the original value. The value is decremented by one, then the cycle repeats. The command ends when the value is decremented to zero. If the data doesn't match, the command prints the message:

Device device. Register name. Wrote value. Read value.

followed by

Hit any Character to Continue (r to read forever)

If any key but r is pressed, the test ignores the error, and continues on to the next data value.

If the r key is pressed, the command starts reading the register continuously. Every 0x10000 reads, the test displays the values with the message:

Register name. Read value

and reads the keyboard. If the q has been pressed, the test quits. Otherwise the test repeats the cycle, reading another 0x10000 limes.

INN

The Write, Read, Compare and Increment by n command prompts for an increment value to write, by printing

Enter increment (hex):

It then writes to the indicated register, starting with the value 0×0 . It immediately reads the value of the register back, then increments the value by the amount given and starts over again. The cycle repeats until the value exceeds 0×10000 If the value read does not match the value written, the test reports it with this message:

Device device. Register name. Wrote value. Read value.

Alt

The Write and Read alternating data command does a write and read cycle using two different data values. The values are written alternatively on each cycle. The test prompts for the values by printing:

Enter first Datum(hex):

followed by

Enter second Datum(hex):

and finally,

Print Error Messages (y/n)?

If error messages are enabled, the test will loop for 0x10000 iterations, then print the following message when the value read and the value written don't match:

Device device. Register name. Wrote value. Read value.

It then reads the keyboard to see if the letter q has been typed. If it has, the test quits. If it hasn't, the test repeats the cycle.

3.7. Interrupt Test Menu Type **i** from the Manual Test Menu to select the interrupt test menu.

Sun-2 C	olor Board Diagnostic	Program Rev: X XX/XX/XX	Interrupt Test H	lenu
		the Teat and		
Auto	Periorm A	uto lest once		
Command				

Auto

The Auto Interrupt Test selection asks the Exec to install an interrupt handler. After the test it asks the Exec to remove that handler. If installing or removing the interrupt handler fails, the diagnostic aborts and returns to the Exec top menu.

3.8. Color Map Test Menu This test checks the Sun-2 color map by loading it with different values and patterns, then verifying that the values in the map are correct. Select the color map values by choosing them yourself, or have the values selected automatically. These tests can be set to run one time or continuously.

To display the image in the Sun-2 color frame buffer memory, each 8-bit pixel is used as an index into a 256-element color look-up table. Each element of the table is 24 bits; 8 bits for the red component, 8 bits for the green, and 8 for the blue. The color look-up tables consist of a high speed ECL look-up table that controls the color monitor, and a TTL shadow color lookup table that is loaded and read by the software. The TTL shadow color lookup table is loaded into the ECL lookup table to make the new colors visible.

While running various tests, you should see the appropriate image displayed on the color monitor screen. Note that the

Load TTL -> ECL cmap

command must be executed before values loaded into the color map become visible.


```
Sun-2 Color Board Diagnostic Program Rev: X XX/XX/XX Color Map Test Menu
                  Acquire access to TTL cmap
 Acqttl
 Relttl
                  Relinquish access to TTL cmap
 Loadttlecl
                  Load TTL -> ECL cmap once
                  Set 0-255 red, 256-511 grn, 512-767 blue
 Setrgb
 SIngle
                  Test single location
 AUto
                  Auto test
 ATC
                  Continuous auto test
Command =>
```

Following are brief descriptions of each Color Map Test Menu command.

Acqttl

The TTL Acquire command acquires access to the TTL color map.

Relttl

The TTL Relinquish command relinquishes access to the TTL color map.

Loadttlecl

The *TTL to ECL once* command transfers the data from the TTL color map to the ECL color map once.

Setrgb

The set color map command loads the TTL color map with three linear ramps of Red, Green, and Blue.

SIngle

The *test single location* command checks a selected TTL color map entry. You are prompted for an offset from the beginning of the color map, then that location is read. The legal values for an offset range from 0x00 to 0xFF.

AUto

The auto test command performs the auto color map test once.

ATC

The *continuous auto test* command performs the auto color map test continuously until the letter q is typed on the keyboard.

3.9. Frame Buffer Test Menu

The Frame Buffer Memory Tests allow reading and writing to or from the frame buffer. They are useful for checking frame buffer DRAM in word or pixel mode, and for testing the frame buffer data and address lines. These tests are controlled by a series of command menus.

Some tests enable you to write selected patterns or constant values into memory and then read them back and verify them. There are also a set of automatic frame buffer test routines that can be run once or continuously.

Checker	Write checkerboard
Vertical	Write a vertical line
Horizontal	Write a horizontal line
VRfyv	Verify a vertical line
VRYh	Verify a horizontal line
COnstant	Fill region with constant
Printv	Print all vertical lines
PTh	Print all horizontal lines
Auto	Auto test
ATC	Continuous auto test
Word	Fill frame buffer in word mode
Oneram	Fill one ram
HRztalw	Write horizontal line in word mode
Evenv	Write even vertical lines in fbuf
ODdv	Write odd vertical lines in fbuf
SCanw	Scan word mode memory for a value
Filladdr	Fill frame buffer with addresses
	가는 것 같아요. 이번 가지 않는 것 같아요. 이는 것 같아요. 이는 것 같아요. 이는 것 않아요. 이는 것 않아요. 이야가 많아요. 이가 가지 않는 것 같아요. 이가 있는 것이 가지 않아요. 이가 같이 같아요. 이 같아요. 이는 것은 것은 것은 것이 같아요. 이야기 같아요. 이야기 같아요. 이야기 같아요. 이야기 같아요. 이야기 같아요. 이가 있는 것이 같아요. 이가 있는 것이 같아요. 이가 나

Checker

The *checkerboard* command draws a 16 x 16 grid on the frame buffer. Each box has 72×56 pixels. The boxes are numbered, starting with zero, increasing from left to right, then top to bottom.

Vertical

The *vertical line* command prompts for a color and a column number, then draws the corresponding vertical line.

Horizontal

The *horizontal line* command prompts for a color and a row number, then draws the corresponding horizontal line.

VRfyv

The verify vertical line command verifies that the line displayed by the vertical line command was drawn correctly. The test prompts for a column number and a color, then checks to see if the line exists in the frame buffer. You must run the vertical line command with the appropriate parameters before running this test.

If the test finds an error, it prints the following message:

Error. X= xvalue. Y = value. Rd color

VRYh

The verify horizontal line command verifies that the line displayed by the horizontal line command was drawn correctly. The test prompts for a row number and a color, then checks to see if the line exists in the frame buffer. You must run the horizontal line command with the appropriate parameters before running this test. If the test finds an error, it prints the following message:

Error. X= xvalue. Y = yvalue. Rd color

COnstant

The *fill region* command draws a rectangular region of constant color on the screen. The command prompts for the x and y coordinates of the rectangle's upper left corner, along with its height, width and color.

Printv

The *all vertical lines* command draws every possible vertical line on the screen. The color of each line is computed by performing a logical and of the line's column number and the value $0 \times FF$.

PTh

The *all horizontal lines* command draws every possible horizontal line on the screen. The color of each line is computed by performing a logical and of the line's row number and the value $0 \times FF$.

Auto

The *auto test* prompts for which addressing mode to use (pixel or word), then performs a series of automatic tests. If double buffering RAM is installed on the system, the test will prompt you to select the proper set to test: A or B. When the test completes, it prints the total number of errors it found.

ATC

The *continuous auto test* runs a series of automatic tests continuously, using both pixel and word addressing modes. If double buffering RAM is installed on the system, both sets are tested. After each cycle, the test prints the total number of errors it found. Type the letter q on the keyboard to exit this test.

Word

The *word mode* command prompts for a 32-bit value. It then writes this value into every location in the frame buffer. The frame buffer is accessed in word mode for this test.

Oneram

The one ram command starts by prompting for a bit plane and ram column number. Then you choose one of three patterns: all 0×00 's all 0×01 's or alternating 0×00 's and 0×01 's. The test then fills the area with the pattern selected.

HRztalw

The *horizontal word mode* command starts by prompting for the proper bit plane, row, and data to be written. The test then fills the proper row with the data value.

Evenv

The *even vertical lines* command prompts for a color value. It then fills every even numbered column with that color.

ODdv

The *odd vertical lines* command prompts for a color value. It then fills every odd numbered column with that color.

SCanw

The *scan word* command prompts for a data value. It then scans the buffer, in word mode, looking for that value. Every time it encounters the value, it prints:

Data matches value at address location

Filladdr

The *fill with addresses* command writes to the frame buffer in word mode, filling each location with its address value. The test starts at location 0, bit plane 0.

3.10. ROPC Test Menu

Type \mathbf{r} at the manual test menu to select the ROPC test menu.

Ghramp Bhramp	Print Horizontal Grn Ramp
Bhramp	Drint Morizontal Blu Bamp
a politik <u>a na pripa</u> ra kan di ku Materia Aktika.	FIINC HOIIZONCAI BIG Kamp
Whramp	Print Horizontal White Ramp
RVramp	Print Vertical Red Ramp
GVramp	Print Vertical Grn Ramp
BVramp	Print Vertical Blu Ramp
WVramp	Print Vertical White Ramp
RGBw	Print Simultaneous RGBW horizontal Ramps
BORder	Print Screen Borders x=(0:1152) y=(0:899)
Alter	Write alternating bars of color to test glitches
AUto	Continuous auto tests
Stab	Test Screen Stability

Rhramp

The *Horizontal Red Ramp test* draws a shaded black-red-black image horizontally across the screen. This test checks the linearity of the red DAC.

Ghramp

The *Horizontal Green Ramp test* draws a shaded black-green-black image horizontally across the screen. This test checks the linearity of the green DAC.

Bhramp

The *Horizontal Blue Ramp test* draws a shaded black-blue-black image horizontally across the screen. This test checks the linearity of the blue DAC.

Whramp

The *Horizontal White Ramp test* draws a shaded black-white-black image horizontally across the screen. This test checks the linearity of all three DACs working together.

RVramp

The Vertical Red Ramp test draws a shaded black-red-black image vertically down the screen. This test checks the linearity of the red DAC.

GVramp

The Vertical Green Ramp test draws a shaded black-green-black image vertically down the screen. This test checks the linearity of the green DAC.

BVramp

The Vertical Blue Ramp test draws a shaded black-blue-black image vertically down the screen. This test checks the linearity of the blue DAC.

WVramp

The Vertical White Ramp test draws a shaded black-white-black image

vertically down the screen. This test checks the linearity of all three DACs working together.

RGBw

The *RGBW horizontal Ramp test* draws red, green, blue, and white horizontal ramp images in sequence on the screen.

BORder

The Screen Border test draws a dark screen with a white line around the borders. This checks the beam deflection circuitry.

Alter

The Color Bar test writes alternating bars of color across the screen.

AUto

The *Continuous auto tests* command runs through the tests listed above until a q is typed on the keyboard.

Stab

The *Screen Stability test* Displays a gray pattern on the entire screen. Check the display for consistent shading and color.

3.11. Error messages If the diagnostic encounters a hardware failure, it prints the error message on both the screen and to the Exec's error log file. At the beginning of each error message a test number is displayed to indicate the test which failed. The following table describes each test number.

Error Messages							
Number	Test						
0	Status Reg						
1	Plane Mask Reg						
2	Word Pan Reg						
3	LOff & Zoom Reg						
4	Pixel Pan Reg						
5	Variable Zoom Reg						
6	Interrupts						
7	Shadow Color Map						
8	FB Word-Memory						
· 9	FB Pixel-Memory						
10	ROPC Plane 0						
11	ROPC Plane 1						
12	ROPC Plane 2						
13	ROPC Plane 3						
14	ROPC Plane 4						
15	ROPC Plane 5						
16	ROPC Plane 6						
17	ROPC Plane 7						
18	Pix-mode Plane Masking						
19	Word-mode Plane Masking						
20	ROPC Pixel Memory						
21	FB Word Memory Plane 0						
22	FB Word Memory Plane 1						
23	FB Word Memory Plane 2						
24	FB Word Memory Plane 3						
25	FB Word Memory Plane 4						
26	FB Word Memory Plane 5						
27	FB Word Memory Plane 6						
28	FB Word Memory Plane 7						
29	Interrupt Vector Reg						

Table 3-1Color2 Error Message Table

The address of the bad hardware, shown in an error message, is relative. It is an offset from the starting address of the Color Board. For example, the first address of word mode frame buffer is 0x0, and the first address of pixel mode frame buffer is 0x100000.

3.12. Glossary

DAC

Digital to Analog Converter.

DMA

Direct Memory Access.

Exec

Diagnostic Executive, a multi-tasking environment under which these diagnostics run.

FB Frame Buffer

•

ROPC

RasterOP Chip.

Sun-3 Color Board Diagnostic

Sun-3 Color Board Diagnostic	61
4.1. General Description	61
4.2. Required Equipment	61
4.3. User Interface	61
4.4. The Main Menu	62
4.5. Manual Test Menu	63
4.6. Control Register Menu	64
4.7. Interrupt Test Menu	68
4.8. Color Map Test Menu	68
4.9. Frame Buffer Test Menu	70
4.10. ROPC Test Menu	73
4.11. DAC Test Menu	73
4.12. Error messages	74
4.13. Glossary	75

•

4

Sun-3 Color Board Diagnostic

4.1. General Description This diagnostic program, which runs under the Exec, tests the Sun-3 Color Graphics Board. This diagnostic runs on both Sun-2 and Sun-3 systems that are using the Sun-3 Color Graphics Board. 4.2. Required Equipment There are two color boards available from Sun. The older version, introduced with the Sun-2 line, runs on both Sun-2's and Sun-3's. It has 4 BNC connectors on the back of the board. Use the Sun-2 Color Board Diagnostic to test it. Use this diagnostic to test the new color board. It has 5 BNC connectors on the back. Because the diagnostic displays patterns on the color monitor, we advise you to run the diagnostic from a terminal connected to SIO-A. NOTE Starting the system "cold" may effect DAC conversion. If you just powered-on a cold system and you encounter DAC problems, allow the system to "warm up" for about 20 minutes, then rerun any tests that failed. 4.3. User Interface As the diagnostic exercises the color circuits of the Sun color board, it generates colors and images on the color monitor. These displays provide important information about the condition of the color board. You must check the colors and patterns for correctness and even distribution of color. Tests that run continuously can be stopped by typing the letter q on the keyboard. For some tests, there may be a delay before it actually exits.

4.4. The Main Menu

The diagnostic is divided into two parts, auto and manual tests. The Auto test provides good coverage to every part of the hardware. The manual test contains most of the subtests run by the auto test, as well as scope loops and debugging tools for isolating hardware problems.

```
Sun-3 Color Board Diag (SINGLE/DOUBLE BUF) Rev: X XX/XX/XX Main Menu
Auto test Test all hardware
Manual test Select any part of hardware
Command =>
```

The title at the top of the menu will show either SINGLE or DOUBLE BUF, depending on whether the board is single or double buffered.

Auto

If you type **a**, the *auto test* is invoked. When the test starts, it prompts for the number of times to run the test. Enter the count (in decimal), then press Return to start the test. The Auto test includes DAC, interrupt, TTL/ECL color map, frame buffer (including double buffering if the hardware exists), DMA window (if the hardware exists), ROPC, pixel plane mask, and word plane mask tests. Only the DAC test requires some user interaction. You must press <u>Return</u> to advance to the next DAC test. All other tests are executed automatically. At the end of test, a cumulative error message is displayed on the screen. Press <u>Return</u> to get back to main menu.

Manual

The manual test allows you to test each part of the hardware. If the Auto test discovers an error, you should re-run the specific test in Manual Test menu. The Manual test also has scope loops and some useful debugging tools in it. From the Main Menu, type m to run the Manual Test.

4.5. Manual Test Menu

You may select any item on the menu or press **Esc** to back up to the main menu.

Cntl	Test control registers
Int	Test interrupts
COlor	Test color maps
Buffer	Test frame buffer
Ropc	Test ROPC units
Dma	Test DMA
DAc	Test DACs and monitor
Monitor	Brief monitor test
Auto	Perform auto test once
Command =>	

Cntl

Type **c** to select the *control register test*. The diagnostic will display the Control Register menu.

Int

Type i to select the *interrupt test*. The diagnostic will display the Interrupt Test menu.

COlor

Type **co** to select the *color map test*. The diagnostic will display the Color Map Test menu.

Buffer

Type **b** select the *frame buffer test*. The diagnostic will display the Frame Buffer Test menu.

Ropc

Type \mathbf{r} to select the *ROPC test*. The diagnostic will display the ROPC Test menu.

Dma

Type **d** to select the *DMA window test*. Both pattern write/read and visual tests are executed in this test. Note that there's no sub-menu for this test.

DAc

Type **da** to select the *DAC test*. The diagnostic will display the DAC Test menu.

Monitor

Type **m** to select the *brief monitor test*. This test displays a series of visual tests to check the monitor. There is no sub-menu for this test.

Auto

Type **a** to select the *auto test*. It will test all parts of the hardware automatically once. There is no sub-menu for this test.

4.6. Control Register Menu Each of the choices below allows you to exercise a different register. You can only choose one register at a time.

After selecting a register to test, a long menu is displayed with different read, write, increment (or decrement) and compare options. These options allow you to exercise the register in question in various ways while examining the circuits with an oscilloscope.

	Status	Status register
	Perplane	Per_Plane register
ğa Marka	Frame	Read-only Frame Count register
	Base	Write-only Dma Base register
	Width	Write-only Dma Width register
	Double	Double-buffering register
	Interrupt	Interrupt register
	udharata kao minina dia sa	

Status

The *Status Register* is sixteen bits wide. It contains all the status information for the color board. It is cleared when a bus reset is issued.

Perplane

The *Per_Plane Register* is eight bits wide. Its used to restrict access to selected bit planes.

Frame

The *Frame Register* is a counter that is incremented by the display hardware during every vertical retrace.

Base

The Base Register points to the beginning of the DMA window.

Width

The *Width Register* contains a value which is 1/16th the width of the DMA window.

Double

The *Double Register* is sixteen bits wide. Its cleared when a bus reset is issued.

Interrupt

The *Interrupt Register* contains an eight bit interrupt vector. The color board sends it to the VME bus during a vectored interrupt.

Register Test Sub-Menu

After selecting the register you want to test, the following sub-menu gives you various ways to test it.

Read	Read once
RC	Read continuously
Write	Write once
WC	Write continuously
WRRd	Write/read once
WRRC	Write/read continuously
Inc	Wrt/rd/cmp and dec data by 3
IC	Wrt/rd and inc data continuously
Forever	Wrt/rd & stop/rd forever on error
INN	Wrt/rd/cmp & inc data by n
Alt	Wrt/rd alternating data

Read

The *Read Once* command reads the indicated register once, and prints its hexadecimal contents on the screen. The message printed is

Register name. Read: value.

RC

The *Read Continuously* command reads indicated register repeatedly. It prints the following message at the beginning of the cycle:

Register name. First Read: value

which is the value of the register the first time the diagnostic reads it. The test displays nothing else if this value is consistent. At the end of 0x10000 reads the test does two things. First, if the value read differs, the test prints an E on the screen. Next, the diagnostic checks the keyboard to see if a q has been typed. If it has, the test quits. If it hasn't, the test starts the cycle over.

Write

The Write Once command prompts for a value to write, by printing

Enter Datum(hex)

It then writes the indicated register once, using the value of the argument given. The message printed is

Register name. Wrote: value

WC

The Write Continuously command prompts for a value to write, by printing Enter Datum (hex). It then writes the indicated register repeatedly. At the end of 0x10000 writes, the test prints the following message:

Register name. First Write: value.

then checks to see if q has been entered. If it has, the test exits. If it wasn't entered, the test starts the cycle over.

WRRd

The Write then Read once command prompts for a value to write, by printing Enter Datum(hex). It then writes the indicated register once, using the value of the argument given. It then immediately reads the value of the register back, and prints it on the screen. The message printed is

Register name Wrote: value. Read: value.

WRRC

The *Write, then Read continuously* command prompts for a value to write, by printing:

Enter Datum(hex)

It then writes to the indicated register, using the value of the argument given. It immediately reads the value of the register back, then starts over again. Every 0x10000 iterations, the test does three things. First, the test prints the following message:

Register name First Write: value. First Read: value.

which is the value of the register the first time the diagnostic reads it. Next, if the value read differs (indicating an error), the test prints an E on the screen. Finally, the diagnostic checks to see if a q was typed. If it was, the diagnostic exits. If not, the cycle repeats.

Inc

The Write, Read, Compare, and Decrement command writes to the indicated register, starting with the value of the 0XFFFF. It then immediately reads the value of the register back, then compares it against the original value. The command then decrements the value by 3 and starts over again. If the value read back differs from the value that was written, the register is read twice more, and a message showing the discrepancies is printed:

Device device. Register name. Wrote value. Read rd1, rd2, rd3

When the value gets decremented below zero, the test ends.

IC

The Write, Read, and Increment command writes to the indicated register, starting with the value 0×0 . It immediately reads the value of the register back, then increments the value by one and starts over again. The cycle repeats continuously until a q is typed. The command does not print the register's contents.

Forever

The Write, Read, and Read on Error command writes to the indicated register, starting with the value 0XFFFF. It immediately reads the value of the register back, then compares it against the original value. The value is decremented by one, then the cycle repeats. The command ends when the

value is decremented to zero. If the data doesn't match, the command prints the message:

Device device. Register name. Wrote value. Read value.

followed by

Hit any Character to Continue (r to read forever)

If any key but r is pressed, the test ignores the error, and continues on to the next data value.

If the r key is pressed, the command starts reading the register continuously. Every 0x10000 reads, the test displays the values with the message:

Register name. Read value

and reads the keyboard. If the q has been pressed, the test quits. Otherwise the test repeats the cycle, reading another 0x10000 times.

INN

The Write, Read, Compare and Increment by n command prompts for an increment value to write, by printing

Enter increment (hex):

It then writes to the indicated register, starting with the value 0×0 . It immediately reads the value of the register back, then increments the value by the amount given and starts over again. The cycle repeats continuously until the command is interrupted. If the value read does not match the value written, the test reports it with this message:

Device device. Register name. Wrote value. Read value.

Alt

The Write and Read alternating data command does a write and read cycle using two different data values. The values are written alternatively on each cycle. The test prompts for the values by printing:

Enter first Datum(hex):

followed by

Enter second Datum(hex):

and finally,

Print Error Messages (y/n)?

If error messages are enabled, the test will loop for 0x10000 iterations, then print the following message when the value read and the value written don't match:

Device device. Register name. Wrote value. Read value.

It then reads the keyboard to see if the letter q has been typed. If it has, the test quits. If it hasn't, the test repeats the cycle.

4.7. Interrupt Test Menu Type *i* from the Manual Test menu to select the interrupt test menu.

Sun-3 Color Boa	rd Diag	(SINGLE/D	OUBLE	BUF)	Rev:X	XX/XX/87	Interrupt	Test	Menu
Auto	Perf	orm Auto	Test	once					
Command =>									

Auto

The Auto Interrupt Test tests the interrupt bit in the Status Register and the wait bit in the Double Buffer Register. Interrupts are enabled, then verified. Interrupts are disabled again before the test exits.

4.8. Color Map Test Menu This test checks the Sun-3 color map by loading it with different values and patterns, then verifying that the values in the map are correct. Select the color map values by choosing them yourself, or have the values selected automatically. These tests can be set to run one time, or continuously.

To display the image in the Sun-3 color frame buffer memory, each 8-bit pixel is used as an index into a 256-element color lookup table. Each element of the table is 24 bits; 8 bits for the red component, 8 bits for the green, and 8 for the blue. The color look-up tables consist of a high speed ECL look-up table that controls the color monitor, and a TTL shadow look-up table that is loaded and read by the software. The TTL shadow color look-up table is loaded into ECL lookup table to make the new colors visible.

While running various tests, you should see the appropriate image displayed on the color monitor screen. Note that the

Load TTL -> ECL cmap

command must be executed before values loaded into the color map become visible.

Acqttl	Acquire access to TTL cmap
Relttl	Relinquish access to TTL cmap
Ttl	TTL-to-ECL cmap transfers
Ecl	ECL-to-TTL cmap transfers
Loadttlecl	Load TTL -> ECL cmap once
LDeclttl	Load ECL -> TTL cmap once
Setrgb	Set 0-255 red, 256-511 grn, 512-767 blue
SIngle	Test single location
AUto	Auto test
ATC	Continuous auto test

Acqttl

The TTL Acquire command acquires access to the TTL color map.

Relttl

The TTL Relinquish command relinquishes access to the TTL color map.

Ttl

The *TTL to ECL* command enables data transfer from the TTL to the ECL color map.

Ecl

The *ECL to TTL* command enables data transfer from the ECL to the TTL color map.

Loadttlecl

The *TTL to ECL once* command transfers the data from the TTL color map to the ECL color map once.

LDeclttl

The *ECL to TTL once* command transfers the data from the ECL color map to the TTL color map once.

Setrgb

The set color map command loads the TTL color map with three linear ramps of Red, Green, and Blue.

SIngle

The *test single location* command checks a selected TTL color map entry. You are prompted for an offset from the beginning of the color map, then that location is read. The legal values for an offset range from 0×00 to $0 \times FF$.

AUto

The *auto test* command performs the auto color map test once.

ATC

The *continuous auto test* command performs the auto color map test until the letter q is typed on the keyboard.

4.9. Frame Buffer Test Menu

The Frame Buffer Memory Tests allow reading and writing to or from the frame buffer. They are useful for checking frame buffer DRAM in word or pixel mode, and for testing the frame buffer data and address lines. These tests are controlled by a series of command menus.

The tests enable you to write selected patterns or constant values into memory and then read them back and verify them. There are also a set of automatic frame buffer test routines that can be run once or continuously.

Checker	Write checkerboard		
Vertical	Write a vertical line		
Horizontal	Write a horizontal line		
VRfyv	Verify a vertical line		
VRYh	Verify a horizontal line		
COnstant	Fill region with constant		ngikasi ak Kati si si s
Printv	Print all vertical lines		
PTh	Print all horizontal lines		(48) 다음이 다음하고 문화
Auto	Auto test		
ATC	Continuous auto test		
Word	Fill frame buffer in word mode		
Oneram	Fill one ram		
HRztalw	Write horizontal line in word mode		
Evenv	Write even vertical lines in fbuf		
ODdv	Write odd vertical lines in fbuf		
SCanw	Scan word mode memory for a value		
Filladdr	Fill frame buffer with addresses		
ommand =>			

Checker

The *checkerboard* command draws a 16 X 16 grid on the frame buffer. Each box is 72 x 56 pixels. The boxes are numbered, starting with zero, increasing from left to right, then top to bottom.

Vertical

The *vertical line* command prompts for a color and a column number, then draws the corresponding vertical line.

Horizontal

The *horizontal line* command prompts for a color and a row number, then draws the corresponding horizontal line.

VRfyv

The verify vertical line command verifies that the line displayed by the vertical line command was drawn correctly. The test prompts for a column number and a color, then checks to see if the line exists in the frame buffer. You must run the vertical line command with the appropriate parameters before running this test.

If the test finds an error, it prints the following message:

Error. X= xvalue. Y = yvalue. Rd color

VRYh

The verify horizontal line command verifies that the line displayed by the horizontal line command was drawn correctly. The test prompts for a row number and a color, then checks to see if the line exists in the frame buffer. You must run the horizontal line command with the appropriate parameters before running this test. If the test finds an error, it prints the following message:

Error. X= xvalue. Y = yvalue. Rd color

COnstant

The *fill region* command draws a rectangular region of constant color on the screen. The command prompts for the x and y coordinates of the rectangle's upper left corner, along with its height, width and color.

Printv

The *all vertical lines* command draws every possible vertical line on the screen. The color of each line is computed by performing a logical and of the line's column number and the value $0 \times FF$.

PTh

The *all horizontal lines* command draws every possible horizontal line on the screen. The color of each line is computed by performing a logical and of the line's row number and the value $0 \times FF$.

Auto

The *auto test* prompts for the addressing mode to use (pixel or word), then performs a series of automatic tests. If double buffering RAM is installed on the system, the test will prompt for the proper set to test: A or B. When the test completes, it prints the total number of errors it found.

ATc

The *continuous auto test* runs a series of automatic tests continuously, using both pixel and word addressing modes. If double buffering RAM is installed on the system, both sets are tested. After each cycle, the test prints the total number of errors it found. Type the letter q on the keyboard to exit this test.

Word

The *word mode* command prompts for a 32 bit value. It then writes this value into every location in the frame buffer. The frame buffer is accessed in word mode for this test.

Oneram

The one ram command starts by prompting for a bit plane and ram column number. Then you choose one of three patterns: all 0×00 's all 0×01 's or alternating 0×00 's and 0×01 's. The test then fills the area with the pattern selected.

HRztalw

The *horizontal word mode* command starts by prompting for the proper bit plane, row, and data to be written. The test then fills the proper row with the data value.

Evenv

The *even vertical lines* prompts for a color value. It then fills every even numbered column with that color.

ODdv

The *odd vertical lines* prompts for a color value. It then fills every odd numbered column with that color.

SCanw

The *scan word* prompts for a data value. It then scans the buffer, in word mode, looking for that value. Every time it encounters the value, it prints:

```
Data matches value at address location
```

Filladdr

The *fill with addresses* command writes to the frame buffer in word mode, filling each location with its address value. The test starts at location 0, bit plane 0.

4.10. ROPC Test Menu

Type \mathbf{r} from the Manual Test Menu to select ROPC test. Then the following menu will be displayed.

```
Sun-3 Color Board Diag (SINGLE/DOUBLE BUF) Program Rev:X XX/XX/87 ROPC Test Menu
Auto Auto tests
Command =>
```

Auto

The *auto* test checks the Raster Op chips extensively. There is a Raster Op chip for each bit plane in the frame buffer.

4.11. DAC Test Menu Type *da* from the Manual to select DAC test menu. DAC stands for digital to analog converter. These devices are used to convert digital color values to the proper voltages in the color monitor. Select the appropriate item to do the intended visual test.

Rhramp	Print Horizontal Red Ramp
Ghramp	Print Horizontal Grn Ramp
Bhramp	Print Horizontal Blu Ramp
Whramp	Print Horizontal White Ramp
RVramp	Print Vertical Red Ramp
GVramp	Print Vertical Grn Ramp
BVramp	Print Vertical Blu Ramp
WVramp	Print Vertical White Ramp
RGBw	Print Simultaneous RGBW horizontal Ramps
BORder	Print Screen Borders $x=(0:1152)$ $y=(0:899)$
Alter	Write alternating bars of color to test glitches
AUto	Continuous auto tests
Stab	Test Screen Stability

Rhramp

The *Horizontal Red Ramp test* draws a shaded black-red-black image horizontally across the screen. This test checks the linearity of the red DAC.

Ghramp

The *Horizontal Green Ramp test* draws a shaded black-green-black image horizontally across the screen. This test checks the linearity of the green DAC.

Bhramp

The *Horizontal Blue Ramp test* draws a shaded black-blue-black image horizontally across the screen. This test checks the linearity of the blue DAC.

Whramp

The *Horizontal White Ramp test* draws a shaded black-white-black image horizontally across the screen. This test checks the linearity of all three DACs working together.

RVramp

The Vertical Red Ramp test draws a shaded black-red-black image vertically down the screen. This test checks the linearity of the red DAC.

GVramp

The Vertical Green Ramp test draws a shaded black-green-black image vertically down the screen. This test checks the linearity of the green DAC.

BVramp

The Vertical Blue Ramp test draws a shaded black-blue-black image vertically down the screen. This test checks the linearity of the blue DAC.

WVramp

The Vertical White Ramp test draws a shaded black-white-black image vertically down the screen. This test checks the linearity of all three DACs working together.

RGBw

The *RGBW horizontal Ramp test* draws red, green, blue, and white horizontal ramp images on the screen in sequence.

BORder

The *Screen Border test* draws a dark screen with a white line around the borders. This checks the beam deflection circuitry.

Alter

The Color Bar test writes alternating bars of color across the screen.

AUto

Continuous auto tests runs through the tests listed above until a q is typed on the keyboard.

Stab

The *Screen Stability test* displays a gray pattern on the entire screen. Check the display for consistent shading and color.

4.12. Error messages

If the diagnostic encounters a hardware failure, it prints the error message on both the screen and to the Exec's error log file. At the beginning of each error message a test number is displayed to indicate the test which failed. The following table describes each test number.

Number	Test	Number	Test
-			
0	Status Reg	21	FB Word Memory Plane 0
1	Plane Mask Reg	22	FB Word Memory Plane 1
2	Reserved	23	FB Word Memory Plane 2
3	Reserved	24	FB Word Memory Plane 3
4	Reserved	25	FB Word Memory Plane 4
5	Reserved	26	FB Word Memory Plane 5
6	Interrupts	27	FB Word Memory Plane 6
7	Shadow Color Map	28	FB Word Memory Plane 7
8	FB Word-Memory	29	Interrupt Vector Reg
· 9	FB Pixel-Memory	30	ECL Color Map
10	ROPC Plane 0	31	FB Word-Memory (Set B)
11	ROPC Plane 1	32	FB Pixel-Memory (Set B)
12	ROPC Plane 2	33	DB Wait Bit
13	ROPC Plane 3	34	Frame Count Reg
14	ROPC Plane 4	35	Dma Base Loading
15	ROPC Plane 5	36	Dma Width Counting
16	ROPC Plane 6	37	Double Buffering Reg
17	ROPC Plane 7	38	Dma Base Reg
18	Pix-mode Plane Masking	39	Dma Width Reg
19	Word-mode Plane Masking	40	Byte Write to ROPC
20	ROPC Pixel Memory		

Table 4-1Color3 Error Message Table

The address of the bad hardware shown in an error message is relative. It is an offset from the starting address of the Color Board. For example, the first address of the word mode frame buffer is 0x0, and the first address of pixel mode frame buffer is 0x100000.

4.13. Glossary

DAC

Digital to Analog Converter

DMA

Direct Memory Access.

Exec

SunDiagnostic Executive, the multi-tasking environment under which these diagnostics run.

ROPC

RasterOP Chip.

FB Frame Buffer

5

Sun CPU Diagnostic

Sun CPU Diagnostic		
5.1. General Description	79	
5.2. Hardware Requirements	79	
5.3. Command-line Parameters	79	
5.4. Looping on Read and Write	80	
5.5. Main Menu	81	
5.6. Clock Tests Menu	82	
5.7. System Enable Tests Menu	86	
5.8. FPC Tests Menu	88	
5.9. Interrupt Tests Menu	95	
5.10. PROM Tests Menu	97	
5.11. Serial Port Tests Menu	101	
5.12. Glossary	109	

Sun CPU Diagnostic

5.1.	General Description	The Sun CPU Diagnostic contains tests to exercise and debug critical com- ponents on any Sun CPU Board. The CPU board is the heart of all Sun systems.
		Test patterns provide flexible sequencing and control of the tests. All test primi- tives can be run on command. This feature is useful for isolating problems during debugging. At a higher level, a default test sequence is provided for your con- venience.
		This diagnostic covers the following components on the CPU board :
		Time-Of-Day Clock (Intersil 7170) — for Sun-3 and Sun-4
		(National MM58167) — Sun-2 VME and Multibus
		System Enable Register — Sun-3 only
		 Floating-Point Coprocessor (Motorola MC68881 FPC) — Sun-3 only
		Interrupt Register and Interrupts
		PROMS : IDPROM, EEPROM, BOOT PROM — Sun-3 only
		 Serial Ports A and B (Zilog 8530 SCC)
5.2.	Hardware Requirements	The Sun-3 CPU Diagnostic runs on any system configuration that meets the requirements below :
		 You can run the Serial Ports tests without a loopback (i.e. using internal loopback) or with one of the two different kinds of (external) loopbacks: loopback connectors (A-to-A and B-to-B) or loopback cables (A-to-B and B-to-A). (Refer to <i>Chapter 1</i> for pin assignments).
		The Floating-Point Coprocessor tests require the FPC to be on-board. The exception is the Probe test, which can be used to detect the presence of an FPC and does not require it to be on-board.
5.3.	Command-line	All tests in Sun CPU Diagnostic accept the following command-line parameters:
	Parameters P	Pass= This argument controls the number of times a test is repeated. The number entered after the equals sign should be a non-negative decimal integer. If the argument is 0 or *, the test is repeated indefinitely. If not specified, the current value of the environment variable <i>Pass</i> = is used. In the following

sections, a default *Pass* = is a number used if *Pass* = is not specified on the command-line AND the environment variable *Pass* = is not set.

5.4. Looping on Read and Write

While looping on read or write, the following keys can be used to change the address being looped on or the pattern to write with:

- Space bar, \equiv , \geq , or \bigcirc (period) keys are used to increment the address.
- \Box , (hyphen), \leq , or r (comma) keys are used to decrement the address.
- □ For a read loop, the + key is also used to increment the address, but for a write loop, it is used to increment the pattern.
- □ For a read loop, the (underbar) key is also used to decrement the address, but for a write loop, it is used to decrement the pattern.
- □ A hex value "left-shifts" itself into the address; for example, if the current address is 0x1234, pressing (E) will make it 0x234E.
- To ''left-shift'' a pattern during a write loop, press P before the hex digit; for example, if current pattern is 0x12, pressing P then A makes it 0x2A.
- Any non-hexadecimal entry terminates the loop.

5.5. Main Menu

The Main Menu is the first menu displayed on the screen after the Exec loads the diagnostic. From Main Menu, you select which logical block of hardware components needs to be tested, then enter the appropriate command in order to switch to the selected menu. This is how the Main Menu looks on the screen:

```
Sun CPU Diagnostic Rev x.x MM/DD/YY Main Menu
All
            Execute ALL CPU Board Tests
            Default CPU test sequence
Default
Ouick
            Quick CPU test sequence
Clock
            Time-Of-Day Clock Tests Menu
Dcp
                Data Ciphering Processor Test Menu
          System Enable Tests Menu *
Enable
Epc
           Floating-Point Coprocessor Tests Menu *
Interrupt Interrupt Tests Menu
Prom
            PROM Tests Menu *
Serial
            Serial Port Tests Menu
Command ==>
 * these tests do not appear on the main menu for Sun-2 systems.
```

A11

The All command executes the following test sequence:

c; a <esc> e; a <esc> f; a <esc> i; a <esc> s; a <esc>

This sequence goes to each sub-menu in the diagnostic, and runs every test found there.

Default

The *Default* command executes the following test sequence:

c; d <esc> e; d <esc> f; d <esc> i; d <esc> s; d <esc>

This sequence goes to each sub-menu in the diagnostic and runs the default set of tests there.

Quick

The *Quick* command executes the following test sequence:

c; q <esc> e; q <esc> f; q <esc> i; q <esc> s; q <esc>

This sequence goes to each sub-menu in the diagnostic, and runs the quick set of tests there.

Clock

The *Clock Tests Menu* command displays a menu containing the tests for the Time-Of-Day Clock.

Dcp

The *Data Ciphering Test Menu* command displays a menu containing the tests for the encryption processor.

Enable

The *Enable Tests Menu* command displays a menu containing the tests for the enabling various CPU systems.

Fpc

The *FPC Tests Menu* command displays a menu containing the tests for the Floating-Point Coprocessor.

Interrupt

The *Interrupt Tests Menu* command displays a menu containing the tests for the Interrupt Circuitry.

Prom

The *PROM Tests Menu* command displays a menu containing the tests for the system PROMs.

Serial

The *Serial Tests Menu* command displays a menu containing the tests for the Serial Ports.

5.6. Clock Tests Menu Use the following command-line parameters to set clock mode or frequency of interrupt signal:

FAst

Programs the clock to FAST mode, which makes it run about 40 times faster. Default is normal mode.

Freq=

Sets frequency of interrupt signal. Valid frequencies for normal mode are 1, 10 and 100 for 1-Hz, 10-Hz and 100-Hz signals respectively. For FAST mode, they are 1, 60 and 36 for 1-Hz, 1/minute and 1/hour signals. If not specified or an invalid value is used, a default frequency is used. This frequency depends on the test being executed. Pressing the space bar during the test "rotates" the interrupt frequency. In normal mode, pressing the space bar repeatedly "rotates" the interrupt frequency through 1-Hz, 10-Hz and 100-Hz then back to 1-Hz. Any other key aborts the test.

NOTE Keyboard input is not acknowledged until a clock interrupt occurs; in fast mode with 1/hour interrupt frequency, the keyboard will ''hang'' until the hour changes.

Here is the Clock test menu for Sun-3 systems:

DisplayDisplay and calibrate clockNowSet Time-Of-DayReadRead Clock registers loopTestWrite then Read registers testWriteWrite Clock registers loopAllTest then Display time (120 sec)DefaultTest then Display time (10 sec)OuickTest then Display time (5 sec)	Dicalar	Display and Calibrate Clock
NowSet Time-Of-DayReadRead Clock registers loopTestWrite then Read registers testWriteWrite Clock registers loopAllTest then Display time (120 sec)DefaultTest then Display time (10 sec)OuickTest then Display time (5 sec)	Dispiay	Cot The Of Day
ReadRead Clock registers loopTestWrite then Read registers testWriteWrite Clock registers loopAllTest then Display time (120 sec)DefaultTest then Display time (10 sec)OuickTest then Display time (5 sec)	NOW	Set Time-Or-Day
TestWrite then Read registers testWriteWrite Clock registers loopAllTest then Display time (120 sec)DefaultTest then Display time (10 sec)OuickTest then Display time (5 sec)	Read	Read Clock registers loop
WriteWrite Clock registers loopAllTest then Display time (120 sec)DefaultTest then Display time (10 sec)OuickTest then Display time (5 sec)	Test	Write then Read registers test
All Test then Display time (120 sec) Default Test then Display time (10 sec) Ouick Test then Display time (5 sec)	Write	Write Clock registers loop
AllTest then Display time (120 sec)DefaultTest then Display time (10 sec)OuickTest then Display time (5 sec)		
Default Test then Display time (10 sec) Ouick Test then Display time (5 sec)	A11	Test then Display time (120 sec)
Ouick Test then Display time (5 sec)	Default	Test then Display time (10 sec)
	Quick	Test then Display time (5 sec)
같은 사람들은 것도 그렇게 못했다. 여기는 것을 것을 것 같아요. 것 같아요. 눈물 것 같아요.	중말 제작 문법	1759 - 전문 영양, 2016 - 1757 전문 전문 영양, 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 1759 - 2016 -

Here is the Clock test menu for Sun-2 systems:

Sun CPU Diagnostic Rev x.x mm/dd/yy Clock Menu		
Register	Register Test	
Rollover	Rollover Test	
DIsplay	Display Test	
All	Execute ALL TOD2 tests (100)	
Default	Execute ALL TOD2 tests (20)	
Quick	Execute ALL TOD2 tests (5)	

Following are descriptions of the various tests.

Display Pass= FAst Freq= 12

The Display and Calibrate Clock test displays the current time and date (updated every second) for a number of seconds determined by Pass= or until a non-space key is pressed. See the beginning of this section to set clock mode and frequency of interrupt signal. Format of display:

hh:mm:ss mm/dd/yy day_of_week Frequency = interrupt_freq

12 If you enter the parameter 12, the program displays time in 12-hour (with AM/PM) format rather than the default 24-hour or military format.

Defaults are:

```
Pass= 0
Freq= 1 (generate 1-Hz interrupt signal)
```


Now Hour= MIn= Sec= Month= Date= Year= Week=

The Set Time-Of-Day command first displays the current time on one line. If there is at least one command-line parameter, the new time is set according to the command-line parameters. Otherwise, the current time is displayed again on the next line for on-screen and interactive setting of each time field. While setting, a decimal digit "left-shifts" itself into the current field (e.g. if the current field contains "23", pressing (7) will make it "37"). A space bar moves the cursor to the next field. The Esc key recovers the current time, then finishes the setting. Any other key finishes the setting. With or without a command-line parameter, this command displays the new time on another line then pauses until a key is pressed.

Hour=

If you enter a decimal value that is less than 100 after Hour=, the hour is set according to that number. If the number you enter is between 100 and 9999, it is assumed to be of the form hhmm; and the hour and minute are set accordingly. If the number you enter is larger than 9999, it is assumed to be hhmms s, and the hour, minute, and second are set.

MIn=

Enter a decimal value (00-59) for after MIn = to set the minute.

Sec=

Enter a decimal value (00-59) after Sec = to set the second.

Month=MM

Enter a decimal value (01-12) after *Month* = to set the month.

Date=

If you enter a decimal value less than 100 after *Date*=, only the date is set. If the number you enter is between 100 and 9999, it is assumed to be of the form mmdd; and month and date are set accordingly. If you enter a value larger than 9999, it is assumed to be mmddyy; and the month, date, and year are set accordingly.

Year=

Enter a decimal value (00-99) after Year= to set the year.

Week =

Enter a decimal value from 0 (Sunday) to 6 (Saturday) after Week = to set the day of the week.

Notes :

- □ The hour to be set must be in 24-hour or military format.
- For both command-line and interactive setting, day-of-week must be a single digit between 0 (Sunday) and 6 (Saturday).
- The actual value stored in the clock register for Year is offset by 68 (decimal); for example, if Year is set to 68, then the actual value stored is 0; if Year=87, the actual value stored is 19.

Read Pass= Offset=

The Read Clock registers loop command loops on reading and displaying

contents of clock registers. To select a clock register to loop, see the *Looping* on *Read and Write* section at the beginning of this chapter.

Default :

Pass= 0

Offset= 0 (clock register to loop on, from 0x00 to 0x11)

Test Pass=

The Write then Read Clock registers test tests all counter and RAM registers, from 0x00 to 0x0F, by writing, then reading them. This test destroys current contents of all clock registers.

Default :

Pass= 1

Write Pass= Offset= PATtern=

The Write Clock registers loop command loops on writing, reading and displaying the contents of clock registers. This test destroys the current contents of clock registers being written to. To select a clock register to loop on or change the pattern to be written, see the Looping on Read and Write section at the beginning of this chapter.

Default :

Pass= 0

Offset = 0 (clock register to loop on, from 0x00 to 0x11)

PATtern= 0 (pattern to write to clock register)

All

The All command executes the following command sequence:

test pass=10 ; display pass=120

Default

The Default command executes the following command sequence:

test pass=5 ; display pass=10

Quick

The *Default* command executes the following command sequence:

test pass=2 ; display pass=5

5.7. System Enable Tests Menu

NOTE This test menu is not available for Sun-2 systems.

Each Enable test (except the Diagnostic Switch test) toggles its associated bit within the System Enable Register OFF, then ON without doing anything to any other component that might be affected by the changing of that bit. For example, the Copy test only toggles the Copy bit, without actually copying anything to video memory. Likewise, the FPC test only toggles the FPC bit without performing any FPC operations. As a result, the Enable tests (including the Diagnostic Switch) do not produce error messages. A test can be aborted any time by pressing any key.

All Enable tests (except Diagnostic Switch) accept the following parameter:

Delay=

controls how fast or slow to toggle the tested bit. The value after the equals sign should be a non-negative integer. The higher it is, the longer it will take between togglings.

```
Pass=
```

Sets the number of times the test is executed.

Defaults for the Enable Menu tests are:

Pass= 100 Delay= 30

The pass= default is used only if the number of passes was not specified on the command line and the environment variable is not set.

```
Sun CPU Diagnostic Rev R.RR MM/DD/YY Enable Menu
CAche
         Enable External Cache test
Copy
         Enable Copy mode to video memory
DIagnostic Diagnostic Switch test
         Enable Floating-Point Accelerator
FPA
         Enable Floating-Point Coprocessor
Fpc
         Enable System DVMA test
Sdvma
          Enable Video Display test
Video
A11
        Execute ALL Enable tests (100)
Default
          Execute ALL Enable tests ( 20)
Quick
          Execute ALL Enable tests (5)
Command ==>
```

CAche Pass= Delay=

The *Enable External Cache test* turns the Enable External Cache bit OFF, then ON in the System Enable Register.

Copy Pass= Delay=

The *Enable Copy mode to video memory test* turns the Enable Copy bit OFF, then ON in the System Enable Register.

DIagnostic Pass=

The *Diagnostic Switch test* reads and displays the current setting of the Diagnostic Switch.

- ON : switch is set to DIAGnostic position (or middle position on model using 3-positions switch).
- OFF: switch is set to NORMal position.

FPA Pass= Delay=

The *Enable Floating-Point Accelerator test* turns the Enable Floating-Point Accelerator bit OFF, then ON in the System Enable Register.

Fpc *Pass*= *Delay*=

The Enable Floating-Point Coprocessor (MC68881) test turns the Enable Floating-Point Coprocessor bit OFF, then ON in the System Enable Register.

Sdvma Pass= Delay=

The *Enable System DVMA test* turns the Enable System DVMA bit OFF, then ON in the System Enable Register.

Video Pass= Delay=

The *Enable Video Display test* turns the Enable Video bit OFF, then ON in the System Enable Register. The Video display should flash during this test.

A11

The *All* command executes the following command sequence:

set Pass=100 ; cache-video

Default

The Default command executes the following command sequence:

set Pass=20 ; cache-video

Quick

The *Quick* command executes the following command sequence:

set Pass=5 ; cache-video

5.8. FPC Tests Menu

NOTE This test menu is not available for Sun-2 systems.

Mcrom test and all tests in the Monadic and Dyadic sub-menus use the Floating- Point Coprocessor (MC68881) to perform a calculations, then compare that result with the expected, software-computed value. When an FPC test is executed, the diagnostic first checks to see if an FPC is installed on the system. If it isn't, the test is not executed. No error message is printed if a test isn't executed. All bits within the FPCR (Control Register) are cleared before testing.

All tests accept this command:

DISable

Disable the FPC (by turning off the FPC bit within System Enable Register) before testing. Default is enable.

Mcrom test and all tests in the Monadic and Dyadic sub-menus accept these commands:

PAUse

Pause after displaying result of each pass. Press the space bar to continue; any other key aborts that test. Default is no pause.

```
X=#.#
```

Mcrom test ignores this parameter. A monadic test performs calculations using this X value. A dyadic test uses this X value as its first argument. If X = is not specified, a random value is generated for it.

```
Y=#.#
```

Mcrom and monadic tests ignore this parameter. A dyadic test uses this Y value (or a random value if it is not specified) as its second argument.

```
Sun CPU Diagnostic Rev xx MM/DD/YY Floating-Point Menu
Mcrom FMOVECR Move Constant ROM
MOvem FMOVEM Move Multiple Data Register
Probe Probe Floating-Point Coprocessor
1 Switch to Monadic Tests Menu
2 Switch to Dyadic Tests Menu
All Execute ALL FPC tests
Default same as All but shorter
Quick same as All but very quick
Command ==>
```

Mcrom Pass= PAUse=

The *Move Constant ROM test* is used to obtain constants from the FPC's onchip opback Connector for SCSI Bus Connector"

You must install a loopback connector on the SCSI connector at the backpanel edge of the CPU Board in order to test the SCSI Bus, using the Extended Menu

Tests provided by the \times Monitor command. This shorting connector is a DB50 connector. A list of interconnects is provided below. The set of chip and connector (*Conn*) pins on ROM, display them and compare with expected values. If a constant has no expected value, it is displayed both in double-precision real (decimal) format and hexadecimal format. *Pass*= is used to control how many constants are displayed. For example, Pass=10 displays constant #0 through constant #9

Default :

Pass= 64 (which is the size of the FPC ROM table of constants)

MOvem Pass=

The *Move Multiple Data Register test* is used to move all FPC Data (FP0 to FP7) and Control registers (FPCR, FPSR and FPIAR) to and from memory. No comparison or verification is performed. The default number of passes is 100.

Probe Pass=

The *Probe Floating-Point Coprocessor* instruction is used to detect for the presence of the FPC. While this test is running, the space bar can be used to toggle enable/disable FPC. The default number of passes is zero.

1

The Monadic command brings up the Monadic sub-menu.

2

The Dyadic command brings up the Dyadic sub-menu

A11

The All command executes the following command sequence:

mc p=64 ; mo p=100 ; 1 ; all <esc> 2 ; all <esc>

Default

The *Default* command executes the following command sequence:

mc p=64 ; mo p=20 ; 1 ; def <esc> 2 ; def <esc>

Quick

The *Quick* command executes the following command sequence:

mc p=64 ; mo p=5 ; 1 ; qui <esc> 2 ; qui <esc>

FPC Monadic Tests Sub-menu

NOTE This test menu is not available for Sun-2 systems.

This menu executes FPC functions that require only one argument. As mentioned in the beginning of the previous section, all of these tests operate on the variable X=#.#. If X= is not specified on the command-line, a random value is used; the range of this value depends on the test being executed. Do not enter the symbol #.#; enter a value such as 50.0 after X=. The default number of passes for these tests is 100.

2	FTWOTOX	2 to the X power
ABsolute	FABS	Absolute
Cosine	FCOS	Cosine
Exponential	FETOX	e to the X power
Hcos	FCOSH	Hyperbolic Cosine
HSin	FSINH	Hyperbolic Sine
HTan	FTANH	Hyperbolic Tangent
Integer	FINT	Get integer portion
LGt	FLOG10	Log base 10
Log	FLOGN	Log base e
Negate	FNEG	Negate a number
Root	FSQRT	Square Root
Sine	FSIN	Sine
Tangent	FTAN	Tangent
TEst	FTST	Test a number
All	Execute ALL	Monadic tests (100 times)
Default	same as ALL	(20 times)
Quick	same as ALL	(5 times)

2 *Pass*= *X*=#.# *PAUse*

The 2 to the X power test uses the FTWOTOX instruction to calculate 2 to the X power, then compares it with the results from software calculation.

The default value of X = is a random value (from -50.0 to +50.0).

ABsolute *Pass*= *X*=#.# *PAUse*

The *Absolute value test* uses the FABS instruction to calculate the absolute value of X, then compares it with the results from software calculation.

The default value of X = is a random (from -100000.0 to +100000.0).

Cosine *Pass*= *X*=#.# *PAUse*

The *Cosine test* uses the FCOS instruction to calculate cosine of X (X must be in radians), then compares it with the results from software calculation.

The default value of X = is a random number (from -50.0 to +50.0).

Exponential Pass= X=#.# PAUse

The *e* to the X power test uses the FETOX instruction to calculate e (2.71828...) to the X power, then compares it with the results from software calculation.

The default value of X = is a random number (from -50.0 to +50.0).

Hcos *Pass= X=#.# PAUse*

The *Hyperbolic Cosine test* uses the FCOSH instruction to calculate hyperbolic cosine of X, then compares it with the results from software calculation.

The default value of X = is a random number (from -50.0 to +50.0).

Hsin Pass= X=#.# PAUse

The *Hyperbolic Sine test* uses the FSINH instruction to calculate the hyperbolic sine of X, then compares it with the results from software calculation.

The default value of X = is a random number (from -50.0 to +50.0).

HTan Pass= X=#.# PAUse

The *Hyperbolic Tangent test* uses the FTANH instruction to calculate the hyperbolic tangent of X, then compares it with the results from software calculation.

The default value of X = is a random number (from -50.0 to +50.0).

Integer *Pass*= *X*=#.# *PAUse*

The Get integer portion test uses the FINT instruction to obtain the integer portion of X (using "rounded to nearest" mode since the FPCR is cleared before testing), then compares it with the results from software calculation.

The default value of X = is a random number (from -100000.0 to +100000.0).

LGt *Pass= X=#.# PAUse*

The Log base 10 test uses the FLOG10 instruction to calculate the common log of the absolute value of X, then compares it with the results from software calculation. Note that when X=0.0, the result is Infinity. The default value of X= is a random number (from > 0.0 to +50.0).

Log *Pass*= *X*=#.# *PAUse*

The Log base e test uses the FLOGN instruction to calculate the natural log of the absolute value of X then compares it with the results from software calculation. Note that when X=0.0, the result is Infinity.

The default value of X = is a random number (from > 0.0 to +50.0).

Negate *Pass= X=#.# PAUse*

The *Negate a number test* uses the FNEG instruction to negate X, then compares it with the result from software calculation.

The default X = value is a random number (from -100000.0 to +100000.0).

Root Pass= X=#.# PAUse

The Square root test uses the FSQRT instruction to calculate the square root of (absolute value of) X, then compares it with the results from software calculation.

The default value of X = is a random number (from 0 to +100000.0).

Sine Pass= X=#.# PAUse

The *Sine test* uses the FSIN instruction to calculate the sine of X (X must be in radians), then compares it with the results from software calculation.

The default value of X = is a random number (from -50.0 to +50.0).

Tangent Pass= X=#.# PAUse

The *Tangent test* uses the FTAN instruction to calculate the tangent of X (X must be in radians) then compares it with the results from software calculation.

The default value of X = is a random number (from -50.0 to +50.0).

TEst Pass= X=#.# PAUse

The *Test a number* test uses the FTST instruction to compare X with 0, then compares the Condition Code Byte (within FP Status Register) with the results from software emulation :

X < 0	Condition Code = 8
X = 0	Condition Code = 4
X > 0	Condition Code = 0

The default X = value is a random number (from -100000.0 to +100000.0).

A11

The All command executes the following command sequence:

set Pass=100 ; 2-test

Default

The *Default* command executes the following command sequence:

set Pass=20 ; 2-test

Quick

The *Quick* command executes the following command sequence:

set Pass=5 ; 2-test

FPC Dyadic Tests Sub-menu

NOTE This test menu is not available for Sun-2 systems.
 This menu executes FPC functions that require two arguments. As mentioned previously, all of these tests operate on the variables X=#.# and Y=#.#; if X= an X= and Y= are not specified on the command-line, random values are assigned to them. Do not enter the #.# symbols; enter a value such as 100000.0 after X= or Y=. The default number of passes is 100.

Sun CPU Diag	mostic	Rev R.RR MM/DD/YY FPC Dyadic Menu	
ADd Compare DIvide Multiply SDiv SMul Subtract	FADD FCMP FDIV . FMUL FSIGDIV FSIGMUL FSUB	Add 2 numbers Compare 2 numbers Divide 2 numbers Multiply 2 numbers Single Precision Divide Single Precision Multiply Subtract 2 numbers	
All Default Quick Command ==>	Execute ALL same as ALL same as ALL	Dyadic tests (100 times) (20 times) (5 times)	

ADd *Pass*= *X*=#.# *Y*=#.# *PAUse*

The Add 2 numbers command uses the FADD instruction to perform X + Y, then compares it with the results from software calculation.

Default X = Y = values are:

X= random (from -100000.0 to +100000.0)

Y = random (from -100000.0 to +100000.0)

Compare Pass= X=#.# Y=#.# PAUse

The *Compare 2 numbers* command uses the FCMP instruction to compare X and Y, then compares the Condition Code Byte (within FP Status Register) with the results from software emulation :

X > YCondition Code = 0X < YCondition Code = 8X = Y >= 0Condition Code = 4X = Y < 0Condition Code = 12

Default X = Y = values are:

X= random (from -100000.0 to +100000.0)

Y = random (from -100000.0 to +100000.0)

DIvide *Pass*= *X*=#.# *Y*=#.# *PAUse*

The *Divide 2 numbers* command uses the toFDIVinstruction results from software calculation. Note that when Y=0.0, the result is Infinity.

```
Default X = Y = values are:

X = random (from -100000.0 to +100000.0)

Y = random (from -100000.0 to +100000.0)
```

Multiply Pass = X = #.# Y = #.# PAUse

The *Multiply 2 numbers* command uses the FMUL instruction to perform X multiplied by Y, then compares it with the results from software calculation.

Default X = Y = values are:

X = random (from -100000.0 to +100000.0)

Y = random (from -100000.0 to +100000.0)

SDiv *Pass*= *X*=#.# *Y*=#.# *PAUse*

The Divide 2 numbers using single-precision command uses the FSIGDIV instruction to perform X divided by Y, using single-precision calculation, then compares it with the result from software calculation. Note that when Y=0.0, the result is Infinity.

Default X = Y = values are:

X= random (from -100000.0 to +100000.0)

Y= random (from -100000.0 to +100000.0 and not equal to 0.0)

SMul *Pass*= *X*=#.# *Y*=#.# *PAUse*

The Multiply 2 numbers using single-precision command uses the FSIGMUL instruction to perform X multiplied by Y using single-precision calculation, then compares it with the result from software calculation. Default X = Y = values are:

```
X= random (from -100000.0 to +100000.0)
Y= random (from -100000.0 to +100000.0)
```

Subtract Pass= X=#.# Y=#.# PAUse

The Subtract 2 numbers command uses the FSUB instruction to perform X minus Y, then compares it with the result from software calculation. Default X = Y = values are:

```
X= random (from -100000.0 to +100000.0)
Y= random (from -100000.0 to +100000.0)
```


A11

The All command executes the following command sequence:

```
set Pass=100 ; add-multiply ; subtract
```

Default

The *Default* command executes the following command sequence:

```
set Pass=20 ; add-multiply ; subtract
```

Quick

The *Quick* command executes the following command sequence:

set Pass=5 ; add-multiply ; subtract

5.9. Interrupt Tests Menu

Sun CPU D	Diagnostic Rev n.nn MM/DD/II Interrupt Menu
Read Test Write	Read Interrupt register loop Write/Read Interrupt register test Write Interrupt register loop
1	Level 1 Interrupt, Software
2	Level 2 Interrupt, Software
3	Level 3 Interrupt, Software
4	Level 4 Interrupt, Video
5	Level 5 Interrupt, Clock
6	Level 6 Interrupt, Serial Port
- 7	Level 7 Interrupt, Clock
A11	Execute all test (100 times)
Default	Execute all test (20 times)
Quick	Execute all test (5 times)
Command =	n an the Manager and States and St ➡> An

NOTE The Read, Test and Write menu selections are not available for Sun-2 systems.

Read Pass=

The *Read Interrupt Register loop* command loops while reading and displaying the contents of the Interrupt Register, until any key is pressed.

Default :

Pass= 0

Test Pass=

The Write then Read Interrupt Register test command tests the Interrupt Register by writing, then reading it. The previous contents of the Interrupt Register are saved before test, then recovered after testing.

Default :

Pass= 1

Write Pass= PATtern=

The Write Interrupt Register loop command loops while writing, reading and displaying the contents of the Interrupt Register, until a key is pressed. The previous contents of the Interrupt Register are saved before test, then recovered after testing.

Default :

Pass= 0

PATtern=0 (pattern to write to Interrupt Register)

1, 2, 3 and 4

The Level 1, 2, 3 and 4 Interrupt tests turns ON the appropriate bit within the Interrupt Register, then waits for the expected interrupt to occur.

Syntax: 1 or 2 or 3 or 4 Pass= Delay= Default: Pass= 100

Delay= 100 (how long to wait for the interrupt to occur).

5 Pass= FAst Freq=

7 Pass= FAst Freq=

The Level 5 and 7 Clock Interrupt tests programs the clock to generate an interrupt signal periodically, turn ON the appropriate bit within the Interrupt Register, then wait for the expected interrupt to occur. See the beginning of the "Clock Tests Menu" section to set clock mode and frequency of interrupt signal.

Default :

Pass= 100 Freq= 100 (generate 100-Hz interrupt signal).

6 Pass= Delay=

The Level 6, Serial Port Interrupt test programs the Serial Port SCC, channel A to generate an interrupt signal periodically, turn ON the appropriate bit within the Interrupt Register, then wait for the expected interrupt to occur. For Sun-3/50, the level 6 Auto Vector (vector #30 decimal; 0X1E hex) is used to catch the interrupt signal. For others, the User Defined Vector #10 (or vector #74 decimal; 0x4A hex) is used.

Default :

Pass= 100 Delay= 100 (how long to wait for the interrupt to occur).

A11

The All command executes the following command sequence:

set Pass=100 ; test ; 1-7

Default

The *Default* command executes the following command sequence:

set Pass=20 ; test ; 1-7

Quick

The *Quick* command executes the following command sequence:

```
set Pass=5 ; test ; 1-7
```

5.10. PROM Tests Menu

NOTE This test menu is not available for Sun-2 systems. All PROM tests accept the following parameters :

Offset=

A hex number specifying starting offset of the PROM (either EEPROM, EPROM or IDPROM) to be read, displayed, tested, or written. Default is 0.

Length=

A hex number specifying the length of region (in bytes). Default is length of the PROM being acted on.

For tests that write to EEPROM, the previous contents of the EEPROM are saved before testing and recovered afterward. They also accept the following:

Delay=

Controls the delay in milli-seconds after each write to an EEPROM location. Default is 11 milli-seconds.

PATtern=

A hex pattern to be written to EEPROM locations.

While PROM contents are being displayed, pressing any key freezes screen output. At that point, **Esc** terminates the display, while any other key resumes it.

If you use a command line to invoke one of the PROM tests, such as

```
> b stand/exec
Command=> d;
Command=> cpu;p;ef
```

and you DO NOT enter a pass= parameter, the standard SunDiagnostic Executive default of one pass is used, and the test will run once and stop. If you enter a command such as **cpu;p;"ef pass=**" with no number after it, the PROM test's default number of passes is used.


```
Sun CPU Diagnostic Rev x.x MM/DD/YY PROM Menu
EEprom
           Display content of EEPROM
EFill
           EEPROM Fill and Test
EMarch
           EEPROM March Test
          EEPROM Read Loop
ERead
EWrite
          EEPROM Write Loop
Eprom
           Display content of EPROM
           EPROM Read Loop
ELOOP
Idprom
           Display content of IDPROM
IRead
            IDPROM Read Loop
A11 .
            EMarch (9 passes), EFill (18 passes)
Default
           Execute EEPROM March Test (9 passes)
Quick
           Execute EEPROM March Test (1 pass)
Command ==>
```

EEprom Pass= Offset= Length=

The *Display content of EEPROM* command displays the contents of the system EEPROM.

Default

Pass= 1 Offset= 0x000

Length= 0x800 (2 Kbytes)

EFill Pass= Offset= Length= PATtern=

The *EEPROM Fill and Test* command fills the system EEPROM with a constant pattern, then verifies it.

Default

The test performs 18 passes — nine using a 0's pattern and nine using a 0ffff pattern.

Offset = 0x000

The default Length= 0x800 (2 Kbytes). The minimum length you may enter is 0x10, which is the hexadecimal equivalent of 16.

If you enter PATtern= with no argument, the patterns 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 are used one pattern per pass. In other words, the first pass uses 0's, the second pass uses 1's, and so on.

EMarch Pass= Offset= Length= PATtern=

The *EEPROM March Test* tests the system EEPROM using the marching 1's method.

Default: Pass= 9

Offset= 0x000

Length= 0x800 (2 Kbytes)

If you enter PATtern= with no argument, the patterns 0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 are used one pattern per pass. In other words, the first pass uses 0's, the second pass uses 1's, and so on.

ERead *Pass= Offset=*

The *EEPROM Read loop test* loops while reading and displaying contents of locations in EEPROM. To select a location in EEPROM to loop on, see the *Looping on Read and Write* section at the beginning of this chapter.

Default :

Pass= 0

Offset= 0x000

EWrite Pass= Offset= PATiern=

The *EEPROM Write loop test* loops while writing, reading and displaying contents of locations in EEPROM. To select a location in EEPROM to loop on or to change the pattern to be written, see the *Looping on Read and Write* section at the beginning of this chapter.

Default :

Pass= 0

Offset= 0x000

PATtern= 0x00

Eprom Pass= Offset= Length=

The *Display content of EPROM* command displays the contents of the system Boot PROM.

Default :

Pass= 1

Offset= 0x0000

Length= 0x10000 (64 Kbytes)

Eloop Pass= Offset=

The *EPROM Read loop test* command loops while reading and displaying contents of locations in the Boot PROM. To select a location in the Boot PROM to loop on, see the *Looping on Read and Write* section at the beginning of this chapter.

Default :

Pass= 0

Offset= 0x0000

Idprom Pass= Offset= Length=

The *Display content of IDPROM* command displays the contents of the system's IDPROM.

Default: Pass= 1 Offset= 0x00 Length= 0x20 (32 bytes)

IRead Pass= Offset=

The *IDPROM Read loop test* loops while reading and displaying contents of locations in IDPROM. To select a location in IDPROM to loop on, see the "Looping on Read and Write" section at the beginning of this chapter.

Default: Pass= 0

Offset= 0x00

A11

The All command executes the following command sequence:

emarch pass=9 ; efill pass=9 ; efill pass=9 pattern=FF

Default

The Default command executes the following command sequence:

emarch pass=9

Quick

The Quick command executes the following command sequence:

emarch pass=1

5.11. Serial Port Tests Menu	All tests in the three sub-menus of this Menu accept the command-line parameter <i>Delay</i> =, which specifies the delay (in arbitrary units) after each output or transmission.
	All commands in this menu (but NOT those in the three sub-menus) and the Serial command itself (in Main Menu) accept Config=, which selects the proper loopback to use. Its valid values are:
	Cross, Cacb, Cbca, AB or BA : a loopback cable between port A and B.
	External, Eaeb or Ebea : a loopback connector each on both port A and B.
	None, Internal, Iaib or Ibia : no loopback on either port; test both ports in internal or local loopback mode.
	• A, EASb or SBEa : only port A has a loopback connector; skip port B.
	B, EBSa or SAEb : only port B has a loopback connector; skip port A.
	SKIP, SASB or SBSA : skip both ports.
	• EAIb or IBEa : only port A has a loopback connector; test port B internally.
	EBIa or IAEb : only port B has a loopback connector; test port A internally.
	IASb or SBIa : test port A in internal loopback mode ; skip port B.
	IBSa or SAIB : test port B in internal loopback mode ; skip port A.
	Sun CPU Diagnostic Rev xx MM/DD/YYSerial Main MenuASyncAsynchronous Tx ==> Rx TestsModemModem Signals TestsRegisterWrite then Read Registers TestsAllExecute ALL Serial tests
	Default Execute a default set of Serial tests

Command ==>

Quick

ASync

The Asynchronous Tests command brings up the Asynchronous Tests Submenu.

Execute a quick set of Serial tests

AModem

The Modem Signal Tests command brings up the Modem Tests Sub-menu.

ARegister

The Register Tests command brings up the Register Tests Sub-menu.

•		
А		
	-	

The All command executes the following command sequence:

async ; all <esc> modem ; all <esc> register ; all <esc> This sequence is stored in the variable A Serial.

Default

The *Default* command executes the following command sequence:

async ; def <esc> modem ; def <esc> register ; def <esc>

This sequence is stored in the variable D_Serial.

Quick

The *Quick* command executes the following command sequence:

async ; qui <esc> modem ; qui <esc> register ; qui <esc>

Asynchronous Tests Submenu

All asynchronous tests accept the command-line parameter *Baud* = which selects the baud rates to run a test at. Its valid values are :

Baud=All

Runs a test at all possible baud rates.

Baud=Default

Runs a test at 2 baud rates : 300 and 9600.

Baud=Quick

Runs a test at 9600.

Baud=some number

Runs a test at the specified baud rate.

If not specified or improperly specified, Baud=Default is assumed.

```
Sun CPU Diagnostic Rev x.x MM/DD/YY SCC Async Menu
            Tx Channel A ==> Rx Channel A (external)
AAe
AAI
            Tx Channel A ==> Rx Channel A (internal)
AB
            Tx Channel A ==> Rx Channel B
AS
            Tx Channel A Signal test
BA
            Tx Channel B ==> Rx Channel A
BBe
            Tx Channel B ==> Rx Channel B (external)
BBI
            Tx Channel B ==> Rx Channel B (internal)
BS
            Tx Channel B Signal test
All
            All Async tests at all baud rates
            same as 'All' but use default baud rates
Default
Quick
            same as 'All' but use spec baud rate
Command ==>
```


The default parameters for the SCC Async tests are:

Pass= 256 Delay= 100 Baud= 300 or 9600

AAe Pass= Delay= Baud=

The *Tx Channel A* ==> *Rx Channel A (external)* command transmits all possible data patterns at pre-selected baud rates to the TxD output on port A (pin 15 on the SCC and pin 2 on the RS-232C connector), then compares it with data received from its RxD input (pin 13 on the SCC and pin 3 on the RS-232C connector). This test requires a loopback connector on port A.

AAI Pass= Delay= Baud=

The *Tx Channel A* ==> *Rx Channel A (internal)* command programs the SCC to local loopback mode, then transmits all possible data patterns at pre-selected baud rates to the TxD output on port A (pin 15 on the SCC and pin 2 on the RS-232C connector), then compares it with data received from its internal RxD input. This test does not require any loopback.

AB Pass= Delay= Baud=

The *Tx Channel A* ==> *Rx Channel B* command transmits all possible data patterns at pre-selected baud rates to the TxD output on port A (pin 15 on the SCC and pin 2 on the RS-232C connector, A end) then compares it with data received from the RxD input on port B (pin 27 on the SCC and pin 3 on the RS-232C connector, B end). This test requires a loopback cable between port A and port B.

AS Pass= Delay= Baud=

The *Tx Channel A Signal test* loops while transmitting a pattern to TxD output of port A (pin 15 on the SCC and pin 2 on the RS-232C connector). This test does not require any loopback.

BA Pass= Delay= Baud=

The *Tx Channel B* ==> *Rx Channel A* command transmits all possible data patterns at pre-selected baud rates to the TxD output on port B (pin 25 on the SCC and pin 2 on the RS-232C connector, B end), then compares it with data received from the RxD input on port A (pin 13 on the SCC and pin 3 on the RS-232C connector, A end). This test requires a loopback cable between port A and port B.

BBe *Pass*= *Delay*= *Baud*=

The *Tx Channel B* ==> *Rx Channel B (external)* command transmits all possible data patterns at pre-selected baud rates to the TxD output on port B (pin 25 on the SCC and pin 2 on the RS-232C connector), then compares it with data received from its RxD input (pin 27 on the SCC and pin 3 on the RS-232C connector). This test requires a self loopback on port B.

BBI Pass= Delay= Baud=

The *Tx Channel B* ==> *Rx Channel B (internal)* command programs the SCC to local loopback mode, then transmits all possible data patterns at pre-selected baud rates to the TxD output on port B (pin 25 on the SCC and

pin 2 on the RS-232C connector), then compares it with data received from its internal RxD input. This test does not require any loopback.

BS Pass= Delay= Baud=

Then Tx Channel B Signal test loops while transmitting a pattern to TxD output of port B (pin 25 on the SCC and pin 2 on the RS-232C connector). This test does not require any loopback.

All

The All command executes the command sequence stored in the variable A_SAsync. The baud rates are automatically set.

Default

The *Default* command executes the command sequence stored in the variable D_SAsync. The baud rates are automatically set.

Quick

The *Quick* command executes the command sequence stored in the variable Q_SAsync . The baud rates are automatically set.

Modem Tests Sub-menu

All modem tests accept the command-line parameter Signal=, which specifies the level of output signal. Its valid values are :

Signal=Low

Produces a high (+5v) on the tested pin of SCC and a low (-6v) on the corresponding pin of RS-232C connector.

Signal=High

Produces a low (0v) on the tested pin of SCC and a high (+6v) on the corresponding pin of RS-232C connector;

Signal=Pulse

Alternates between Low and High.

If not specified or improperly specified, Signal=Pulse is assumed. While testing, pressing the space bar repeatedly changes the signal from Pulse to Low to High, then back to Pulse. Pressing any other non-space key terminates the test.

Sun CPU Dia	gnostic Rev x.x MM/DD/YY SCC Modem Menu
DAa	DTR Channel A ==> DSR Channel A
DAB	DTR Channel A ==> DSR Channel B
DAS	DTR Channel A Signal test
DBA	DTR Channel B ==> DSR Channel A
DBb	DTR Channel B ==> DSR Channel B
DBS	DTR Channel B Signal test
상 가장 가는 것을 가지요? 물건 이 것은 것 같은 소리가 많이 있는 것	양성 가 같은 것이 같은 것은 것은 것이 같은 것을 알려야 한다. 것이 같은 것은 것이 같은 것이 있는 것이 같이 있다. 것이 같은 가 같은 것은 것은 것은 것은 것은 것은 것은 것은 것은 것이 같은 것이 같
RAa	RTS Channel A ==> CTS Channel A
RAB	RTS Channel A ==> CTS Channel B
RAS	RTS Channel A Signal test
RBA	RTS Channel B ==> CTS Channel A
RBb	RTS Channel B ==> CTS Channel B
RBS	RTS Channel B Signal test
	그는 그는 것은 것은 상품은 것은 것이 같은 것은 것이 같이 많이 있는 것이 것이다.
A11	Execute applicable modem lines tests
Default	same as All
Quick	same as All
Command ==>	

Here is the SCC Modem Test menu:

Parameter defaults for the SCC Modem tests are:

```
Pass= 0
Delay= 100
Signal= Pulse
```

Following are descriptions of each Modem Test sub-menu choice.

DAa Pass= Delay= Signal=

The DTR Channel A ==> DSR Channel A command puts out a signal level to the DTR output of port A (pin 16 on the SCC and pin 20 on the RS-232C connector), then compares it with signal from its DSR input (pin 11 (sync A) on the SCC and pin 6 on the RS-232C connector). This test requires a loop-back connector on port A.

DAB Pass= Delay= Signal=

The DTR Channel A ==> DSR Channel B command puts out a signal level to the DTR output of port A (pin 16 on the SCC and pin 20 on the RS-232C connector, A end), then compares it with signal from the DSR input of port B (pin 29 (sync B) on the SCC and pin 6 on the RS-232C connector, B end). This test requires a loopback cable between port A and port B.

DAS Pass= Delay= Signal=

The *DTR Channel A Signal test* loops while transmitting a signal level to the DTR output of port A (pin 16 on the SCC and pin 20 on the RS-232C connector). This test does not require loopback.

DBA Pass= Delay= Signal=

The *DTR Channel B* ==> *DSR Channel A* command puts out a signal level to the DTR output of port B (pin 24 on the SCC and pin 20 on the RS-232C connector, B end), then compares it with signal from the DSR input of port A (pin 11 (sync A) on the SCC and pin 6 on the RS-232C connector, A end). This test requires a loopback cable between port A and port B.

DBb Pass= Delay= Signal=

The *DTR Channel B* ==> *DSR Channel B* command puts out a signal level to the DTR output of port B (pin 24 on the SCC and pin 20 on the RS-232C connector), then compares it with signal from its DSR input (pin 29 (sync B) on the SCC and pin 6 on the RS-232C connector). This test requires a loop-back connector on port B.

DBS Pass= Delay= Signal=

The *DTR Channel B Signal test* loops while transmitting a signal level to the DTR output of port B (pin 24 on the SCC and pin 20 on the RS-232C connector). This test does not require loopback.

RAa Pass= Delay= Signal=

The *RTS Channel A* ==> *CTS Channel A* command puts out a signal level to the RTS output of port A (pin 17 on the SCC and pin 4 on the RS-232C connector), then compares it with signal from its CTS input (pin 18 on the SCC and pin 5 on the RS-232C connector). This test requires a loopback connector on port A.

RAB Pass= Delay= Signal=

The *RTS Channel A* ==> *CTS Channel B* command puts out a signal level to the RTS output of port A (pin 17 on the SCC and pin 4 on the RS-232C connector, A end), then compares it with the signal from the CTS input of port B (pin 22 on the SCC and pin 5 on the RS-232C connector, B end). This test requires a loopback cable between port A and port B.

RAS Pass= Delay= Signal=

The *RTS Channel A Signal test* loops while transmitting a signal level to the RTS output of port A (pin 17 on the SCC and pin 4 on the RS-232C connector). This test does not require loopback.

RBA *Pass= Delay= Signal=*

The *RTS Channel B* ==> *CTS Channel A* command puts out a signal level to the RTS output of port B (pin 23 on the SCC and pin 4 on the RS-232C connector, B end), then compares it with signal from the CTS input of port A (pin 18 on the SCC and pin 5 on the RS-232C connector, A end). This test requires a loopback cable between port A and port B.

RBb Pass= Delay= Signal=

The *RTS Channel B* ==> *CTS Channel B* command transmits a signal level to the RTS output of port B (pin 23 on the SCC and pin 4 on the RS-232C connector), then compares it with signal from its CTS input (pin 22 on the SCC and pin 5 on the RS-232C connector). This test requires a loopback connector on port B.

RBS *Pass*= *Delay*= *Signal*=

The *RTS Channel B Signal test* loops while transmitting a signal level to the RTS output of port B (pin 23 on the SCC and pin 4 on the RS-232C connector). This test does not require loopback.

All

The All command executes the following command sequence:

quick

This sequence is identical to the Quick Sequence.

Default

The *Default* command executes the following command sequence:

quick

This sequence is identical to the Quick Sequence.

Quick

The *Quick* command executes one of the following command sequences:

"set	Pass=1	;	daa	;	raa'	1				loopback plug on A only
"set	Pass=1	;	dbb	;	rbb'	•				loopback plug on B only
"set	Pass=1	;	daa	;	dbb	;	raa	;	rbb"	loopback plug on A and B
"set	Pass=1	;	dab	;	dba	;	rab	;	rba"	loopback cable bw A and B
11 11										no loopback

Register Tests Sub-menu

```
Sun CPU Diagnostic Rev x.x MM/DD/YY
                                     SCC Register Menu
R2
            Write then Read Register 2, Channel A
R12A
            Write then Read Register 12, Channel A
R13A
            Write then Read Register 13, Channel A
R15A
            Write then Read Register 15, Channel A
R12B
            Write then Read Register 12, Channel B
R13B
            Write then Read Register 13, Channel B
            Write then Read Register 15, Channel B
R15B
All
            Execute all tests (100 times)
            Execute all tests ( 20 times)
Default
Quick
            Execute all tests ( 5 times)
Command ==>
```

R2 Pass= Delay=

R12A Pass= Delay=

R13A Pass= Delay=

R15A Pass= Delay=

The *Channel A* : Write then Read Registers 2, 12, 13, 15 commands write to a register (in port A) with all possible patterns, then read back (after delay) to verify. These tests work with or without loopback (either cable or connector).

Default :

```
Pass= 0
```

```
Delay= 100
```

R12A Pass= Delay=

R13A Pass= Delay=

R15A *Pass= Delay=*

The *Channel B* : Write then Read Registers 12, 13, 15 commands write to a register (in port B) with all possible patterns, then read back (after delay) to verify. These tests work with or without loopback (either cable or connector).

Default :

Pass= 0

Delay= 100

All

The All command executes the following command sequence:

set Pass=100 ; r2-r15b

Default

The *Default* command executes the following command sequence:

set Pass=20 ; r2-r15b

Quick

The *Quick* command executes the following command sequence:

set Pass=5 ; r2-r15b

5.12. Glossary

Exec

The SunDiagnostic Executive, the controlling program that starts all the diagnostics.

FPC

Floating-Point Coprocessor chip, Motorola MC68881.

SCC

Serial Communications Controller chip, AMD or Zilog 8530.

TOD

Time-Of-Day Clock chip, Intersil 7170.

6

The EEPROM Editing Tool

The EEPROM Editing Tool	113
•	
6.1. Introduction	113
6.2. Hardware Requirements	113
6.3. Hardware-Related Information	113
6.4. Loading And Starting The EEPTOOL	113
6.5. The Main Menu	114
6.6. Sub-Menus	114
6.7. EEPROM Reset	120
6.8. Show EEPROM Fields	120
6.9. Show All Write Counts	120
6.10. Recommended Procedure	120

6

The EEPROM Editing Tool

An EEPROM is an Electronically Erasable, Programmable Read-Only Memory 6.1. Introduction chip. Sun uses this monolithic device for the non-volatile storage of data regarding the configuration of a workstation. It holds such information as the resolution of the console monitor screen, size of memory and where to look for bootable code upon power-up or system reset. This tool allows you to edit certain fields of the EEPROM by making selections from menus. You don't have to know any memory locations in the EEPROM or any hexadecimal patterns. 6.2. Hardware You need a Sun-3 workstation to use this tool, since Sun-2 models don't have an Requirements EEPROM. You need to know some things about the workstation, such as how much memory is on the CPU board, because that is the kind of information that goes into the EEPROM. 6.3. Hardware-Related You will need to answer questions about the hardware configuration of the Information workstation. These questions include which printed circuit boards are installed in which slots, how much memory is on the boards, whether certain options are on the CPU board, the types of disk and tape equipment, and so on. 6.4. Loading And Starting You need the workstation PROM Monitor prompt to begin, which looks like this: The EEPTOOL > If you have the operating system up and running, use the /etc/halt or /etc/fasthalt command to shut it down. Refer to Chapter 2 for information on bringing up the SunDiagnostic Executive Main Menu. Select Diagnostics from the Main Menu and find the EEPROM Editing Tool in the list of available diagnostics.

6.5. The Main Menu

Т	Primary Terminal type.		
R	Monitor resolution.		
S	Board Slots.		
В	Boot paths and devices.		
I	Initialize things.		
Z	Reset EEPROM to all zero	S.	
SH	Show EEPROM fields.		
W	Show all Write counts.		
H	High-res monitor cols, r	ows.*	
<esc></esc>	Quit.		
EEPROM	says memory size = 4 MB.		
	김 사람이 아내는 것 같은 것을 가지 않는 것		같은 사람이 가 있는 것이다. 같은 것이 같은 것이 같은 것이다.
*This cho	pice appears on systems with a high r	resolution monito	r .

This menu looks and behaves like a typical menu under the SunDiagnostic Executive.

6.6. Sub-Menus Other menus come up as a result of selecting one of the items on the main menu.

Primary Terminal Type

The EEPROM has an area for storing what is the primary means of talking to the workstation user. For a typical workstation, it would be a black-and-white monitor and keyboard.

Here is the menu that comes up when you enter **T** from the main menu:

Primary Terminal
M B/W Monitor.
A Serial Port A.
B Serial Port B. C Color monitor
P P4 Frame Buffer
Default is M
Choose one:

Monitor Resolution

Board Slot Data

Sun provides workstations with console monitors that have different resolutions. The typical resolution is 1152 x 900 pixels.

Here is the menu that comes up when you enter **R** from the main menu:

```
Monitor Resolution

A 1152 x 900 Standard Resolution Display.

B 1024 x 1024 Display.

C 1600 x 1280 High Resolution Display *

D 1440 x 1440 Display.

Choose one:

* available on Sun-3/2xx and Sun-4/xxx only
```

The default EEPROM entry for monitor resolution is 1152×900 , except for models and Sun-3/260 and Sun-3/280. For them, the default is 1600×1280 .

One of the most important areas in the EEPROM is where it stores information about what type of board is installed in each slot of the workstation backplane. The Boot PROM looks at some of this, as does the operating system. Various application programs might also use this data.

When you select **S** for Board Slots from the main menu, a menu from which you may edit or display EEPROM information:

D Display current slot informationC Choose a slot to edit

If you selected D from this menu, a menu something like this is offered:

```
Slot 1: CPU 4 MB; WITH 68881; NO DCP; 0 kb cache.
Slot 2: Empty.
Slot 3: Memory Board 4 MB's on it.
Slot 4: Empty.
Slot 5: SCSI Sun 2; MT02 Tape ctlr; Adaptec Disk ctlr: 141 MB.
Slot 6: Empty.
Slot 6 is the last one.
Press Return to continue:
```

If you select C from the "Board Slots" menu, the slot assignments will be displayed as shown above, and, instead of the Press Return message at the bottom of the screen, you will be prompted for the slot you wish to change:

Slot to change (N if none)

Your EEPROM just might have some board data for a slot after the last one, since it can hold data for at least 13 slots. If so, the tool will display that information with this message:

(Beyond the "last" slot!)

You may leave the extra data alone or select that slot and tell the tool that the "slot," which presumably doesn't exist, is empty. The tool does not show empty slots after the last one.

In reply to the slot to change query, enter one of the following:

N	No board in this slot.
С	CPU Board.
M	Memory Board.
со	Color Board.
FB	B/W Video Frame Buffer.
FPa	Floating Point Accelerator.
SMd ·	SMD Disk Controller.
T	Tape Controller.
Ε	Ethernet Controller.
A	MTI/ALM.
Gp	Graphics Processor.
SCp	SCP Controller.
Scsi	SCSI Host Adaptor.
I	IPC Board.
GB	Graphics Buffer.
SCM	3/75 SCSI.
MAp	MAPKIT Assembly.
END	Slot <i>n</i> is the last one.

The n, after END above, refers to the slot beyond the one this menu is for. The EEPROM does not have a way of storing the number of board slots in its workstation.

Many of the board types don't need any additional information, so the tool will show the updated board slot display and ask you to name a slot if you wish to continue with the board slot configuration.

Some board types, such as CPU and SCSI, will cause the tool to give you further menus or questions to provide more information concerning the board for the slot. If the tool can provide a default answer, it will do so.

When you have finished with that board, the tool will show the updated board slot display and ask you to name a slot if you wish to continue with the board slot configuration. If you do not, enter n.

Board Type Defaults	These are the defaults for different boards that the EEPROM tool knows about Generally, the tool first looks to see if a reasonable choice is already in the EEPROM. If so, that is the default. If not, the default will be as shown here.	
Board	Default Configuration.	
CPU	Model 60, 260, 280: 8 Megabytes RAM, no 68881, no DCP, 64 KB cache.	
	Other Models: 4 Megabytes RAM, no 68881, no DCP, 0 KB cache.	
Memory	0 Megabytes.	
Color	Type CG3.	
SCSI	Type 2: 0 Tape controllers, 0 Disk controllers.	
	If you have a tape controller, default is MT02. If you have a disk con-	
	troller, default is Adaptec.	
	Default Disk drive: 141 MB.	
SMD Controller	Xylogics 451, Ctlr #0, 0 drives, Drive type 10.5" 575 MB.	
Tape Controller	Xylogics 472, Ctlr #0, 0 drives.	
ALM Serial Line Multiplexer	Systech, 16 lines.	

Boot Paths And Devices

If you select **B**, Boot Paths and Devices, from the main menu, this menu is offered:

P PPPPON Units hash daring	ngi yaashi).	
E EEPROM UNIX BOOL GEVICE.		
D Diagnostic boot device and path.		

The default operating system boot device selection gives you a chance to tell the Boot PROM to either use a list of its own to search for a bootable device, or to find, in the EEPROM, your choice of which device to boot.

For a default operating system and Diagnostic boot device, the tool assigns the device letters le to models Sun-3/50 and Sun-3/60, and will the device letters ie to all other models.

It assigns zeroes for the control, unit and partition fields of the boot devices.

The tool does not assign a default for the diagnostic boot path.

EEPROM Operating System Boot Device If you chose EEPROM Boot Device from the Boot menu, the tool displays this sub-menu:

```
L Change the Unix Device letters.
C Change the Unix Controller number.
U Change the Unix Unit number.
P Change the Unix Partition number.
S Show current Unix boot device.
ie (0,0,0)
device (controller, unit, partition)
```

Instead of ie, your display may show another two device letters and your display may show other numbers in the parentheses. If the EEPROM did not have two letters stored in the proper place, the tool will put a default pair of letters there before displaying this menu. The numbers are, respectively, the boot device controller, unit and partition.

If you choose **L** in this menu, the tool will present this sub-menu:

```
Le le (Set boot device to Lance net)

Ie ie (Set boot device to Ethernet)

Sd sd (Set boot device to SCSI disk).

XD xd (Set boot device to Xylogics 7053).

Xy xy (Set boot device to Xylogics 450/451).

ST st (Set boot device to SCSI Tape).

Mt mt (Set boot device to Tapemaster tape).

XT xt (Set boot device to Xylogics tape).
```

Choose the boot device you want stored in the EEPROM, for a normal boot, when you choose to boot from that specific device rather than to poll for a device.

If you choose one of the other items from the EEPROM Boot Device menu, such as Change the Unix Unit number, the tool will prompt you for a number.

Diagnostic Boot Device If you chose EEPROM Diagnostic boot device from the Boot menu, the tool displays this menu:

L Change the Diagnostic boot Device letters.
C Change the Diagnostic boot device Controller number.
U Change the Diagnostic boot device Unit number.
P Change the Diagnostic boot device Partition number.
S Show current Diagnostic boot device and path.
ie (0,0,0) path
device (controller, unit, partition) path

Instead of ie, your display may show another two device letters and your display may show other numbers in the parentheses. If the EEPROM did not have two letters stored in the proper place, the tool will put a default pair of letters there before displaying this menu. The numbers are, respectively, the boot

device controller, unit and partition.

Your display may have nothing in the *path* area.

If you choose **L** from this menu, the tool will present the tool will present a sub-menu of the available boot devices as shown on the previous page.

Choose the diagnostic boot device you want in the EEPROM, for the case when you boot the workstation with its Diagnostic switch turned on.

If you choose one of the other items from the EEPROM Diagnostic boot device menu, such as Change the Diagnostic Boot Device Unit number, the tool will prompt you for a number.

High Resolution MonitorIf your workstation model has a console monitor resolution of 1600 by 1280 pix-
els, you should use the main menu **E** command to tell the EEPROM how many
columns and how many rows of characters it supports. The defaults are 80
columns and 34 rows.

Initialization

If, from the Main Menu, you select to initialize things, the tool displays this menu:

```
A
       Initialize everything.
T
       Initialize primary Terminal type.
R
       Initialize Monitor resolution.
S
       Initialize Board Slots.
B
       Boot paths and devices.
H
       High-res monitor cols, rows.
P
       Initialize the Test Pattern.
z
       Make sure every field except these are zero.
```

Here are its assumptions:

Primary Terminal Type: B/W Monitor and keyboard.

Monitor resolution: 1152 x 900.

(Except models 260 and 280, which it gives a resolution of 1600 x 1280.)

Board slots:

- 1 CPU with 4* MB RAM, no 68881, no DCP, 0 KB cache.
- 2 Empty.
- 3 END (2 is last slot).†
- 4-12 Empty.

*Models 60, 260 and 280 get 8 MB RAM.

†Applies to Models 50, 60 and 75. Empty on other models.

Please note that, after this initialization, if you wish to modify the board slot information to describe a larger number of slots, first request to change slot 3. Change it so that it no longer indicates that slot 2 is the last one.

6.7. EEPROM Reset	You can elect to clear the entire EEPROM to all zeros by selecting 2 , for Reset, from the Main Menu. This does not, however, clear the fields that hold the EEPROM write count.
6.8. Show EEPROM Fields	The SH item on the Main Menu allows you to see the data now in the EEPROM, displayed in a readable, interpreted format, instead of hex numbers (as it is actually stored).
6.9. Show All Write Counts	Selecting W from the Main Menu allows you to see the number of times that the EEPROM was written to, either by this program or any other program that increments the write-count fields. There are four different counters, depending on which part of the EEPROM was written to. The busiest part of the EEPROM is the "Diagnostic" area. The others are called "Reserved," "ROM," and "Software."
6.10. Recommended Procedure	Select Initialize Things from the main menu. From the initialization menu, select Everything. Normally, that's all you have to do. If your workstation has differences, choose the other menu items, as required, and enter the information relevant to your machine.

Sun Ethernet Diagnostic

Sun Ethernet Diagnostic	
7.1. General Description	123
7.2. Hardware Requirements	123
7.3. The Main Menu	124
7.4. The Control Interface Menu	126
7.5. The Ethernet Menu	127
7.6. The Memory Path Menu	129
7.7. The Debugging Aids Menu	132

7

Sun Ethernet Diagnostic

7.1. General Description The Ethemet Interface provided on Sun-3 CPU Boards connects Sun-3 workstations to an Ethemet communication network. From a test viewpoint, the interface can be subdivided into three major sections: the Ethemet chip set, the control interface, and the memory path. The Sun-3 Ethemet Diagnostic tests the Ethemet Interface on Sun-3 CPU Boards.

7.2. Hardware Requirements

The minimum hardware configuration required is:

- 1. A Sun-3 cardcage.
- 2. A Sun-3 power supply.
- 3. A Sun-3 CPU board.
- 4. A Sun-3 Memory board.
- 5. A dumb terminal(TeleVideo, Wyse, etc.) attached to a CPU serial port.
- 6. A boot device; local disk, local tape or remote disk (over Ethernet.)
- 7. An Ethernet transceiver(3COM 3C100 or equivalent) with two terminator assemblies.
- 8. A standard Ethernet transceiver cable connected between Ethernet port on the CPU board and the transceiver box (for external loopback tests.) The cable can be ordered from Sun. It is P/N 530-1241, "Assy., Cable transceiver 15 meter".

Test OverviewThe tests are grouped into separate menus to facilitate testing and failure isola-
tion within a subdivision of the Ethernet Interface. The groupings are not entirely
independent, however. There is some unavoidable overlap between tests. Here
are a few things to keep in mind:

- 1. Some of the tests only work on a particular chip set or board implementation.
- 2. Although most tests will be applicable to many different chip sets or board implementations, the actual test implementation details and error message content may differ for different chip sets.

Each test description states:

- 1. The purpose of the test.
- 2. The parameters required.
- 3. The function of the test.

Aborting an Ethernet Test Most tests display the message

```
enter one character of ! to escape
```

when they begin. This message is intended to show you which character to enter in order to abort a test BEFORE the number of passes specified by the PASs= parameter has been reached. Using the exclamation point will not abort a test in the middle of a pass, nor will it abort a sequence of tests.

7.3. The Main Menu The user interface of the Ethernet diagnostic consists of a Main Menu and four sub-menus. Help options on each menu offer more detailed instructions to the user. All sub-menus allow the user to return to the Main Menu by using the escape character.

NOTE Do not use a question mark to display a help menu; use

help command_you_want_help_with

for help messages.

Sun-3 Ethernet Diagnostic	REV x,x	xx/xx/xx	Main Menu	
i - control Interface m	enu			
n - etherNet menu				
m - Memory path menu				
A - debugging Aids menu				
AL1 - All test sequence				
DEfault - Default test se	quence		영화 가슴을 들어야?	
QUick - Quick test sequen	ce			
message line				
message line				
Command==>				

i

If the *control interface* menu is selected, the diagnostic displays a sub-menu containing the control interface tests.

n

If the *Ethernet* menu is selected, the diagnostic displays a sub-menu containing the Ethernet chip tests.

m

If the *memory path* menu is selected, the diagnostic displays a sub-menu containing the memory path tests.

A

If the *debugging aids* menu is selected, the diagnostic displays a sub-menu containing the debugging aids.

ALl

The *All tests* command runs all of the tests available on this menu. It executes the following commands in sequence:

i ; AL ; n ; AL ; m ; AL ; u ; AL

The summary after running ALL tests from the main menu ends after three lines, which isn't enough to show results from all the tests that were executed. If an error occurs near the end of the ALL test sequence, you will be unable to see the error unless you are carefully watching the display during execution.

DEfault

The *Default tests* command runs a sub-set of the tests available on this menu. It executes the following commands in sequence:

i ; DE ; n ; DE ; m ; DE

QUick

The *Quick tests* command runs a small set of tests that complete in a short time. It executes the following commands in sequence:

i ; QU ; n ; QU

7.4. The Control Interface Menu

The Control Interface tests test the Sun hardware that interfaces with the Ethernet chip set, excluding hardware specific to the memory path. This hardware includes external control and status registers, interrupt hardware, parity, and protection circuits.

Sun-3 Ethernet Diagnostic	REVx.x xx/	xx/xx Cor	trol In	terface Me	enu
c - Control & status rec	ister test				
s - System error tests	able test				
AL1 - All test sequence	adie cest				
DEfault - Default test sec QUick - Quick test sequend	uence e				
message line					
message line					
Command==>					

С

The *Control and Status Register* test checks the function of the control and status registers. It attempts to set and clear register bits to verify that register bits do get set and cleared only when they are supposed to.

Use PAss=) to set the number of passes. Default number of passes is one.

8

The *System error* test checks the function of the Ethernet specific error reporting circuitry. It creates system errors and protection violation conditions and verifies proper error and violation reporting.

Use PAss=) to set the number of passes. Default number of passes is one.

i

The *Interrupt Enable and Disable* test checks the Ethernet interrupt circuitry. It creates interrupt conditions and verifies that interrupts occur when they are enabled and do not occur when they are disabled.

Its parameter is number of passes (PAss=). The default number of passes is one.

ALl

The *All tests* command runs all of the tests available on this menu. It executes the following commands in sequence:

c;s;i

DEfault

The *Default tests* command runs a subset of the tests available on this menu. It executes the following commands in sequence:

c ; s ; i

QUick

The *Quick tests* command runs a small set of tests that complete in a short time. It executes the following commands in sequence:

c;s;i

7.5. The Ethernet Menu

The Ethernet tests check the functionality of the Ethernet chip set.

```
Sun-3 Ethernet Diagnostic REVx.x xx/xx/xx Ethernet Menu
  - Initialization test
4
A - diAgnose test
n - Nop test
b - internal loopBack test
  - enCoder loopback test
C.
  - external loopback test
f
AL1 - All test sequence
DEfault - Default test sequence
QUick - Quick test sequence
message line
message line
Command==>
```

i

The *Initialization* test checks the operation of Ethernet chip set when it is subjected to initialization procedures. It initializes the Ethernet control blocks, resets the Ethernet chip set, issues channel attention (for Intel chips), and verifies the chips' correct response to initialization.

Use PASS= to set the number of passes. The default number of passes is one.

A

The *Diagnose (Intel only)* test runs the Intel chip's self-diagnosis command and checks the results.

Use PASS= to set the number of passes. The default number of passes is one.

n

The *Nop (Intel only)* test executes the Intel chip's NOP command and checks the results.

Use PAss= to set the number of passes. The default number of passes is one.

ъ

The *Internal Loopback* test checks the performance of the chip set's buffer management, address recognition, CRC generation and detection, interrupt,

and retransmit circuits. It configures the chip set to internal loopback mode, transmits a block, receives the same block, analyzes the control blocks to see if they are in the expected state, then compares the transmitted and the received data.

The parameters are:

PASs= FIFOlim= BLOCKsize=.

```
The defaults are:number of passes=1 fifolim=8 blocksize=0x2000
```

FIFOlim sets the length of the FIFO buffer inside the Ethernet chip. Acceptable entries are 1 through 15.

BLOCKsize sets the size of the buffers used by the Ethernet chip.

NOTE Do not type @ during this test; doing so leaves the Ethernet chip locked in loopback.

С

The *Encoder Loopback (Intel only)* test checks the Intel Ethernet chip set by using the Serial Interface Adapter without going to the transceiver. It sets the Serial Adapter Chip to loopback mode, then runs the sequence of tests described for internal loopback.

The parameters are PASs = FIFOlim = BLOCKsize =.

The defaults are number of passes = 1, fifolim = 8 and blocksize = 18.

FIFOlim sets the length of the FIFO buffer inside the Ethernet chip. Acceptable entries are 1 through 15.

BLOCKsize sets the size of the buffers used by the Ethernet chip.

f The *External Loopback:* test checks the Serial Interface Adapter and transceiver interface. It sets the Serial Adapter Chip to full external loopback mode then runs the sequence of tests described for internal loopback.

The parameters are PASs = FIFOlim = BLOCKsize =. The defaults are number of passes = 1, fifolim = 8 and blocksize = 18.

FIFOlim sets the length of the FIFO buffer inside the Ethernet chip. Acceptable entries are 1 through 15.

BLOCKsize sets the size of the buffers used by the Ethernet chip.

After the Ethernet Diagnostic has been invoked, in order to run the External Loopback Test correctly, the following requirements must be fulfilled: You must connect a "null network" to the CPU board Ethernet connector in place of the normal Ethernet cable. This "null network" must consist of:

- Items 7 and 8 listed under Hardware Requirements in this document
- □ a transceiver cable
- a transceiver with two terminating connectors

If your system boots with the

le

boot device command, the message

ext_chaste: **heartbeat
or
ext_chaste: **no heartbeat

may be printed out. This is not an error or warning message and does not indicate that the has Ethernet circuitry has failed.

ALl

The *All tests* command runs all of the tests available on this menu. It executes the following commands in sequence:

i; A; n; b; c; f; t

DEFault

The *Default tests* command runs a subset of the tests available on this menu. It executes the following commands in sequence:

i; A; n; b; t

Quick

The *Quick tests* commands runs a small set of tests that complete in a short time. It executes the following commands in sequence: i ; A

7.6. The Memory Path Menu The Memory Path tests are designed to test the functionality of Sun hardware that provides memory access to the Ethernet chip set. These tests check circuits such as address or data latches that are missed by the other diagnostics. These tests don't test memory functionality; that's done more efficiently by other diagnostics.

```
Sun-3 Ethernet Diagnostic REVx.x xx/xx/xx Memory Path Menu

A - Address test

b - data test

c - address/data independence test

ALI - All test sequence

DEfault - Default test sequence

QUick - Quick test sequence

message line

message line

Command==>
```

A PASs = BEG = END =

The purpose of the *Address* test is to check the Ethernet chip set's ability to access memory within its address range. This test accepts these parameters:

PASs=number of passes

BEG=beginning address

END=ending address

The default number of passes is one.

The function of the address test is to create data buffers throughout the Ethernet chip set's memory access range (if possible) and verify that data can be written and read properly.

b PAss=

The purpose of the *Data* test is to check the Ethernet chip's ability to write and read data in memory.

The test accepts the *pass* = parameter. The default number of passes is one.

The test writes and reads different data patterns in memory, using the Ethernet chip set, then checks the data's accuracy and lack of pattern sensitivity.

c Address/Data Independence

The purpose of this test is to check the Ethernet chip set's ability to write and read data in memory regardless of the memory address accessed. (Note: both chip sets have multiplexed address and data lines)

This test accepts the parameters

PASs = BEG = END = .

The default settings for these parameters are:

```
1 0x0FF00000 0xFF7800 for Sun-2
```

and

1 0x0FF00000 0x0FFD6000 for Sun-3

The function of this test is to write and read memory using data patterns different from the addresses accessed, then verify the data.

ALL

The *All tests* command runs all of the tests available on this menu. It executes the following commands in sequence:

A ; b ; c

DEfault

The *Default tests* command runs a subset of the tests available on this menu. It executes the following commands in sequence:

A ; b ; c

QUick

The *Quick tests* commands runs a small set of tests that complete in a short time. It executes the following commands in sequence:

A ; b ; c

7.7. The Debugging Aids Menu

The Debugging Aids are designed to help you isolate hardware problems. These commands provide useful information and line control, but cannot be considered automatic tests. The Debugging Aids Menu has four options.

Sun-3 Ethernet Diagnostic REVx dd/mm/yy Debugging Aids Menu r - Reset toggle c - Channel attention toggle D - Dump control blocks s - display data Structure addresses message line message line Command==>

r

The *Reset Toggle* test toggles the Ethernet chip's set/reset line so it can be checked with an oscilloscope.

The parameter is: *PASs*=, and the default is one.

С

The *Channel Attention (Intel only)* test toggles the Ethernet chip's channel attention line so that it can be checked with an oscilloscope.

The parameters are PASs = MOde =. The default settings are:1 0.

If the *mode* parameter equals 1, the test executes a very tight loop, displaying no messages.

If the mode parameter equals 0, all messages are printed.

D

Dump Control Blocks

This test displays for analysis the contents of the control and status registers, the control blocks, and any buffers.

The parameters are LEVEL = INDex =. The defaults are -1 - 1.

The test displays the specified control blocks on the screen. The flag bits described below allow you to control the contents of the display (the default level value is ALL = -1. The second parameter, *index*, optionally specifies a particular block, descriptor, or buffer to be dumped. *index* is a 4 bit field, that is set by giving it an integer from 1 to 16; the default value is -1 (all bits on, which means "display everything").

	Intel Levels
0	control & status register
1	system configuration pointer
2	intermediate system configuration pointer
3	system control block
4	command block(s)
5	transmit buffer descriptor(s)
6	transmit buffer(s)
7	receive frame descriptor(s)
8	receive buffer descriptor(s)
9	receive buffer(s)
a	system control block statistics
b	tdr status

Table 7-1Intel Ethernet Chip Status Levels

 Table 7-2
 AMD Ethernet Chip Status Levels

	AMD Levels
0	control & status registers
3	initialization block
5	transmit descriptor(s)
6	transmit buffer(s)
8	receive descriptor(s)
9	receive buffer(s)

8

Display Data Structure Addresses

This selection displays data structure addresses to assist debugging done with logic analyzers. This command indicates what locations the Ethernet chip set is attempting to access.

The parameters are: *LEVEL*= *INDex*=

The default settings are: -1 -1.

An **s** selection displays the specified data structure addresses. Parameter definitions and defaults are the same as in the Dump command above.

•

Sun-3 FPA Diagnostic

Sun-3 FPA Diagnostic	137
8.1. Required Hardware	137
8.2. Tests	137
8.3. Main Menu	140
8.4. Utilities Menu	151

8

.

Sun-3 FPA Diagnostic

8.1. Required Hardware The FPA board is only used with certain Sun-3 systems. You need the following hardware to run the diagnostic successfully:

- A working Sun-3 CPU board
- A Floating Point Accelerator board (to be tested)
- A working Sun-3 monitor
- A working Sun-3 keyboard
- □ A working boot device (disk, tape, or Ethernet)

8.2. Tests The tests in the diagnostic cover about 98% of the FPA board. The tests can be divided into 4 functional groups:

- register tests
- Weitek tests
- pipeline tests
- microcode controller tests

There are a number of tests for each functional section. The tests in the diagnostic are divided by coverage, not functionality. The tests reside in three menus; Test Sequence 1, Test Sequence 2, and Test Sequence 3. Each test sequence relies on its predecessors and covers the same area more thoroughly. Simpler tests that exercise less circuitry are run first.

In addition to the three test menus, there is a utility menu that is used to directly access some parts of the FPA board for troubleshooting purposes.

The following figure diagrams the menus in the diagnostic and their relationship to each other:

Figure 8-1	The FPA Diagnostic	Menu Hierarchy
------------	--------------------	----------------

Test Syntax	Use the command syntax described in <i>Chapter 2</i> in order to run these tests. You need enter only the letters shown in upper case in order to invoke tests and parameters. When an "equals" sign is shown, you must enter it also.
Default Parameters	Commands in the diagnostic that accept parameters also have a set of default parameters that can be invoked.
	Three special characters are used to invoke a default parameter for a given com- mand. Instead of entering a value for a parameter, enter one of the following:
	null (leave out the parameter value) ""
	period (a single dot) "."
	asterisk (a single star) "*"
	Each command parameter has two default values. Entering null or period invokes the command's first default value. Using an asterisk invokes the other default value, which is usually the largest legal value. The particular value invoked by a default character varies with each command and parameter.
Batching Commands	A series of commands can be "batched", or automatically run in sequence, by entering a series of them on the command line, each one separated by semicolons (;). Each command in the series is entered with its proper parameters or defaults. The commands are run in the order they were entered on the command line. Commands that reside on different menus can be batched together by including the sub-menu and u options as part of the command sequence. Refer to <i>Chapter</i> 2 for more information on command line syntax.

Test Menus

The tests and commands in the diagnostic arc organized into a hierarchy of menus and sub-menus. In addition to the tests themselves, there are commands that move you up or down in the menu tree.

The following commands are common to all of the diagr.ostic's test menus:

All

Run all tests. This command runs all of the tests in sequence in the current menu, and any menus below it. The tests are run in the order they appear in the menu, with their default parameters.

? Display the help menu. This command displays the current help menu. This menu shows the commands of the current menu, along with the names of the parameters expected by each command. This menu is useful if you forget what a given command's parameters are. For a more detailed description of a particular test, refer to it in this manual.

8.3. Main Menu When you boot up the diagnostic, it displays the main menu. This menu is at the top of the command menu hierarchy. The b, c, d, and u commands call submenus.

```
Sun 3 FPA Diagnostic x.x xx/xx/xx FPA Main Menu
  All
              All test Sequence
  Default
              Default Test Sequence
  Options Display the Local Options Menu
  1
    Test Menu #2
              Test Menu #1
  2
      Test Menu #3
  3
  Utilities Utilities Menu
  2
            Display Help Menu
Command ==>
FPA COMMAND:
```

NOTE Do not use the UtilitiesMenu selection; it is not functional at this time.

A11

The *all tests* command executes every test in the diagnostic in sequence; running the test sequences in order, going from top to bottom, in each sequence menu. The commands executed by the all tests command are as follows:

□ Test Sequence 1

C; R; N; M; L; I; T;

D Test Sequence 2

P ; P1 ; I ; Ptr ; P5 ; L ; LF ;

Test Sequence 3

DX1 ; R ; S ; RE ; M ; D ; WO ; WS ; J ; P

Default Pass=

The *default test* command runs a subset of the diagnostic's tests, providing reasonable coverage of the FPA circuitry.

Options

The *options* command displays the local options menu, which allows you to modify the default options of the diagnostic.

1

The *test sequence 1 menu* command displays the test sequence 1 sub-menu. This command must be executed before running test sequence 1 commands.

2

The *test sequence 2 menu* command displays the test sequence 2 sub-menu. This command must be executed before running test sequence 2 commands.

3

The *test sequence 3 menu* command displays the test sequence 3 sub-menu. This command must be executed before running test sequence 3 commands.

Utilities

This command is not functional at this time.

?

The *help* command displays the current menu with the addition of the expected command parameters.

Test Sequence 1 Menu

The tests in this sequence provide first pass coverage of FPA functionality. Sequences 2 and 3 assume that the functionality tested in sequence 1 is working. Each test in the menu depends on the success of the previous test in order to provide accurate error messages.

A11	Execute All tests Sequence
Default	Execute Default Test Sequence
Options	Display the Local Options Menu
Configure	FPA Configuration Test
Register	Register Test(s)
Nack	Nack (Negative Acknowledge) Test
Мар	Mapping Ram Test(s)
MIcrostore	MicroStore Ram Test(s)
Loop	Loop Counter Test
Instruction	Execute Simple Instruction Test
Timeout	Timeout Retry Test
?	Display Help Menu

All Pass=

The *all tests* command runs all of the tests in the current menu in sequence the number of times specified after *Pass*=

Default

The default tests command runs a default subset of the FPA diagnostic tests.

Options

The *options* command brings up a menu that provides for modification of the diagnostic's default options.

Configure Pass=

The FPA Configuration Test test reads the version number of the FPA board. This insures that the correct version of the microcode is loaded into the FPA hardware. The test has one argument, Pass= which controls how many times the test is run.

Register Index= Pass=

The *register* test writes and reads a selected register the number of times specified by *Pass*=. After each write/read cycle, the results are checked to

make sure the register is holding values properly. The parameter *Index* selects the register to check. It can have one of 4 values:

- 0 all registers
- □ 1 Immediate error (IERR) register
- D 2 State register
- Imask register
- 4 Load Pointer (Ldptr)

The second parameter, Pass = controls the number of times the test is executed. The default value for the number of passes is 1.

Nack Pass=

The *negative acknowledgement test* deliberately creates errors to check the IERR (Immediate ERRor) register. The test writes to read-only locations, and reads from write-only locations to generate bus errors. These bus errors should set a bit pattern in the IERR register. If they don't, the test displays an error message. The test has one parameter, *Pass*=, which controls the number of times the test is executed. The default value for the number of passes is 1.

Map Index= Pass=

The mapping RAM test accepts two arguments: Index and Pass=. The Index= argument selects between the fast RAM test, the medium RAM test, or the burn-in RAM test. Each test provides more thorough coverage than the previous one. The values for Index= are shown in the following table:

Table 8-1 Index Values

Index	test to run
0	all tests
1	fast RAM test
2	medium RAM test
3	burn-in RAM test

Every test writes patterns of data into the mapping ram and reads it back, comparing the result with the original data.

The fast ram test writes and reads the first 10 locations in the mapping ram. It uses four hexadecimal data patterns; 0000, FFFF, 5A5A, and A5a5.

The medium ram test runs five different subtests; a data bus check, three address bus checks, and a rotating pattern check.

The data bus check writes every location in RAM with a pattern, then reads it back. If the pattern is corrupted, the test returns an error message. This check uses the following hexadecimal data values for the pattern:

Patterns		
(in hex)		
0000	1818	
FFFF	E7E7	
5555	7171	
AAAA	8E8E	
6666	C3C3	
9999	3C3C	

The first address bus check writes a unique value into every memory location, then reads it back, checking for errors. If an error is found, the test prints an error message.

The second address bus check writes a *walking pattern* into memory. The test sets the RAM to all zeros, then writes all ones into every other memory location. After checking the ram, it repeats the process, this time writing zeros into every location on a background of ones.

The third address bus check clears the RAM then writes into one location repeatedly. The test then examines the memory, to see if any other locations were disturbed by the multiple writes. Once finished, the test repeats at a new location. The locations written to are shown, in order, in the following table:

Write Locations		
(addresses in hex)		
0000	0181	
0FFF	0E7E	
0555	0717	
0AAA	08E8	
0666	0C3C	
0999	03C3	

The rotating pattern check writes a pattern value into every location into memory, then reads back the values to make sure they haven't been corrupted. Then the test does a single left-rotate one the pattern and repeats the process. After two passes, the test uses a new pattern. The patterns used are listed, in order, in the following table:

Rotating Patterns
(values in hex)
0000
1111
FFFF
5555
AAAA

The burn-in RAM test writes zeros to the entire RAM space. Then it writes a single location with all ones and the entire RAM is read to see if any values changed as a result. This process is repeated for every location in the RAM. When its finished, the burn-in test repeats, this time writing a location of zeros on a background of ones.

MIcrostore Index Pass=

The *microstore RAM test* runs the same test sequence used for the mapping ram test, above. Use the mapping ram test description for the microstore ram test. The microstore RAM is accessed through the LD_PTR register on the FPA board.

Loop Pass=

The *loop* command controls the number of times a command sequence is executed. The loop command is the last command in the sequence that is repeated. The *Pass*= argument controls the number of times the sequence is executed.

Loop Pass=

The *loop counter test* checks the loop counter register and the loop counter jump instructions. The test loads the loop counter with different values, then runs a microcode program that loops until the loop counter reaches zero, then jumps to a specified location. The test examines the values in the loop counter register while it is counting down, to make sure it is working correctly. The test cannot distinguish between a loop counter failure and a problem with the conditional jump instruction.

The test accepts one parameter, *pass*=, which controls the number of times the test is run.

Instruction Pass=

The *simple instruction* test makes sure that the FPA board can execute simple microcode instructions. The test writes single microcode instructions into program memory, executes them, then checks the status register for error conditions. The test uses NOP instructions for the test; the single precision NOP, the double precision NOP, and the single precision, unimplemented NOP instruction are executed.

The test accepts one argument, Pass = which controls the number of times the test is run.

Timeout Pass=

The *timeout/retry test* tests the FPA board's timeout circuitry using a microcode program. The test runs a set of microcode instructions, one after another, in an infinite loop program, to test the timeout circuitry. The instructions tested are; pipe write, pipe read, context write, context read, and shadow read. The test checks to see if a "256 tries" error occurs after the program is started. The test accepts one argument, *Pass*=, which controls the number of times the test is run.

?

The *help* command displays the current menu with the addition of the expected command parameters.

Test Sequence 2 Menu

These tests provide more thorough coverage of the FPA, with each test exercising more circuitry. They assume that all of the tests in Sequence 1 have passed without errors. Each test in this menu assumes that the FPA board has passed all the tests above it.

A11	Execute All tests Sequence
Default	Execute Default Test Sequence
Options	Display the Local Options Menu
Pipe	Pipe Test
P1	Pointers 1 through 4 Test
Immed	Immed(2, 3) Pointer Test
Ptr	Pointer Increment/Decrement Test
P5	Pointer 5 Test
Lock	Lock Test
LF	L+/F+ Test
?	Display Help Menu
	그는 것 같은 것 같

All Pass=

The *all tests* command runs all of the tests in the current menu in sequence the number of times specified with *Pass*=.

Default

The default tests command runs a default subset of the tests in this menu.

Options

The *options* command brings up a menu that allows the user to modify the diagnostic's default options.

Pipe Pass=

The *pipe test* checks the instruction and data pipeline hardware. The test is composed of three parts that test the pipeline control circuitry, the data pipeline, and the instruction pipeline. The test sends instructions and data through both pipelines, then reads the pipes to make sure the data, instructions, and the pipe status information is correct. The test accepts one argument, *Pass*=, which controls the number of times the test is run.

P1 Pass=

The pointers (1-4) test checks the load pointer and pointers 1 through 4. The pointer registers are tested to insure they can hold legal values, and that they can be used in instructions to address RAM on the FPA board. Each register is successively loaded with an address value, then read and compared against the original value. If the values don't match, the test displays an error message. The test accepts one argument, *Pass*=, which controls the number of times the test is run.

Immed Pass=

The *immediate*(2,3) *test* is very similar to the pointer (1-4) test, except that the pointer registers must be loaded in a different manner. Since the immed2 and immed3 pointer registers get their values directly from the floating point instructions sent to the FPA board, the test sends instructions that use the pointers to the board, then reads the values of the pointers. If the pointer values are incorrect, the test displays an error message. The test accepts one argument, *Pass*=, which controls the number of times the test is run.

Ptr Pass=

The *pointer increment/decrement test* tests the ability of the pointer registers to increment and decrement their values. The test exercises all of the pointer registers on the FPA board. The test programs the board with a sequence of microcode instructions which increment a pointer register through its range of values, then decrement it back down to zero. After each increment or decrement step, the test checks the value of the register being tested. If the value in the pointer register is incorrect, the test displays an error message. Each pointer register on the FPA board is tested in turn. The test accepts one argument, *Pass*=, which controls the number of times the test is run.

P5 Pass=

The *pointer five test* insures that pointer five can be loaded with, as well as increment and decrement through, all of its legal values. The test first programs the FPA board with a series of instructions that load the pointer five register with all of its legal values, one at a time. The FPA board then runs the program. After each new value is loaded, the program stops, and the test checks the pointer value to insure its correct. After this step is completed, the test reloads the FPA board with a new program, which increments, then decrements the pointer five register through its range of legal values. The program is run as before, and the test checks the register value each time it is incremented or decremented. If the test discovers that the register cannot hold a loaded value, or cannot increment or decrement properly, it displays an error message. The test accepts one argument, Pass=, which controls the number of times the test is run.

Lock Pass=

The *lock test* checks the interlock capability of the shadow registers on the FPA board. Each class of instruction sent to the FPA interlocks different shadow registers. The test sends a representative instruction from each class to the FPA board, then checks to make sure the proper registers have interlocked. If they didn't, the test displays an error message.

LF Pass=

The L+F+ test checks the L+ and F+ circuitry on the FPA board. L+ and F+ refer to bit fields that control the Weitek Chip set. The F+ field determines what operation the Weiteks perform. The L+ field specifies what part of an operand is being loaded to the chips. These fields are generated by the Mapping RAM (decoded directly from a microcode instruction) or by the micromachine itself. The L+ F+ test is composed of three subtests; the mapping RAM test, the microstore read test, and the microstore generation test.

The mapping RAM test

This test makes sure that L+ and F+ fields generated by the mapping ram can be loaded into the Weitek chips. The microstore is loaded with instructions that select the L+ and F+ fields from the mapping ram. The mapping ram is loaded with every possible combination of L+ and F+ values. The test then executes a microstore instruction, and then checks the Weitek chips to see if the proper L+ and F+ values were sent. The test repeats until every value in the mapping ram has been sent to the Weiteks.

The microstore read test

This test ensures that the data path between the microstore and the Weitek chips work. The microstore is filled with instructions containing all possible L+ and F+ values. The test then reads a location in the microstore and sends the values to the weitek chips. It then checks the chip registers to make sure the proper values were received. This cycle is repeated until every location in microstore is read.

The microstore generation test

In this test, the micromachine itself sends F+ codes to the Weitek chips. The microstore is filled with instructions that send F+ values. The instructions are then executed, one at a time. After each instruction, the test reads the weitek registers to ensure the proper value was received. This cycle is repeated until all possible F+ values have been sent, and every location in microstore has been executed.

?

The help command displays the current menu with the addition of the expected command parameters.

Test Sequence 3 Menu

This sequence contains the most complex and comprehensive tests of the three sequences. All of the tests in this sequence assume the FPA board has passed all of the tests in the previous two sequences. Every test in this menu assumes the FPA board has passed all of the tests above it.

```
Sun 3 FPA Diagnostic X.X mm/dd/87 FPA Test #3 Menu
               Execute All tests Sequence
  A11
  Default Execute Default Test Sequence
  OptionsDisplay the Local Options MenuDX1Dx1/Dx2 Operand Data Path
            Register Ram Test
  Ram
   Shadow Shadow Ram Test
  REgister
               Status Register Test
   Mode
               Mode Register Test
  Dața
              Weitek Data Path Test
              Weitek Overall Operation Test
  WOp
              Weitek Overall Status Test
  WStatus
   Jump
              Jump Conditions Test
  Pipeline
              Pipline Control (Timing) Test
   ?
                    Display Help Menu
Command ==>
```

All Pass=

The *all tests* command runs all of the tests in the current menu in sequence *Pass* = times.

Default

The default tests command runs a default subset of the tests in this menu.

Options

The *options* command brings up a menu that allows you to modify the diagnostic's default options.

DX1 Pass=

The Dx1/Dx2 Operand data path test checks the op.d and rr.d data buses on the FPA board. These buses transfer operand values of floating point instructions between different registers on the board. The test uses special diagnostic microcode instructions to write values to the data buses, then read the bus latchs to make sure they have the correct value. The test uses a "walking ones" pattern to generate the data it sends over the bus. If the data read off the bus latch does not match the original data written to the bus, the test displays an error message. The test accepts one argument, Pass=, which controls the number of times the test is executed.

Ram Index Pass=

The register ram test is very similar to the mapping RAM test. The only difference is that it accesses the RAM indirectly, by using the load pointer register. The test writes various values into memory, then reads them back. If the value read does not match the value written, the test displays an error message. The test accepts two arguments, *Index* and *Pass=*. The *Index*

argument controls what level RAM test is run. Here are the possible *Index* values:

Table 8-2Testnum Values

Index	test to run
0	all tests
1	fast ram test
2	medium ram test
3	burn-in ram test

Each test checks the memory with greater thoroughness; the fast ram test the least, the burn-in test the most. The default value for *Index* is 0, which runs all of the tests in order.

The second argument, Pass=, controls the number of times the test is run.

Shadow Pass=

The *shadow RAM test* ensures that the shadow RAM and associated circuitry keeps an accurate copy of the values in the register RAM. The shadow RAM is supposed to duplicate the values stored in the register RAM. This faster memory is used to speed up CPU ability to read the results of floating point instructions. The test writes a value into the register RAM, then reads the shadow RAM to insure that the value was correctly copied. This sequence is repeated for all legal values. If the test finds a discrepancy between the two RAMs, it displays an error message. The test accepts one argument, *Pass*=, which controls the number of times the test is run.

REgister *Pass*=

The status register test insures that the status register on the Weitek chip can be written to, and that the written values can be accurately read from the Wstatus, clear and stable registers. A four-bit pattern is written to the Wstatus register, then read from the clear and stable registers. This sequence is repeated for all possible four bit values. If the values read do not match the values written, the test displays an error message. The entire sequence is done twice; first with the Weitek Imask register set to zero (errors disabled), then with the Imask register set to one (errors are enabled).

The test accepts one argument, Pass=, which controls the number of times the test is run.

Mode Pass=

The *mode register test* checks the operation of the three mode registers on the FPA board: one write-only register connected to two read-only registers. The test makes sure four-bit values written to the mode register (writeonly) get copied to the mode stable and mode clear (read-only) registers. The test accepts one argument, *Pass*=, which controls the number of times the test is performed.

Data Pass=

The Weitek data path test ensures that the data bus to the Weitek chips is

working correctly. The test sends values over the bus by sending add 0 to value and multiply value by 1 commands to the Weitek chips. Using both add and multiply instructions checks the data path to both chips. The value resulting from the instruction is compared to the original value. If the values differ, the test displays an error message. The test accepts one argument, *Pass*=, which controls the number of times the test is performed.

WOp Pass=

The Weitek Overall Operation Test makes sure the Weitek chip can accurately perform all its floating point operations. This test checks command register single and double precision, extended single and double precision, and single and double precision short operations. The test loads the Mapping, and Microstore RAM, and loads in the appropriate constants. It then sets up the FPA registers to drive the Weitek chips to perform an operation. The test then reads the results and compares them again the correct answer. This cycle is repeated for every Weitek instruction.

WStatus Pass=

The Weitek Overall Status Test insures that the Weitek status register can properly display the status of floating point operations. The test sends a special set of floating point instructions to the Weitek chips, which should generate all of the possible floating point status conditions. After each instruction is sent, the test reads the status register to ensure that the proper status is reported. If the status register reports the wrong condition, the test displays an error message. The test accepts one argument, Pass=, which controls the number of times the test is performed.

Jump Pass=

The *jump conditions test* makes sure that the conditional branch microcode instruction works correctly. The test initializes Mapping Microcode and Constant RAM, and then sets up registers for branching operations. After a microcode conditional branch instruction is executed, the test checks that the program has jumped to the right place. The test is repeated for all types of branch instructions, setting the conditions so both branch and don't branch conditions are tested.

Pipeline Pass=

The *pipeline control timing test* makes sure the instruction pipeline can handle a high rate of FPA instructions. The Mapping, Microstore and Constant RAM are initialized, and a series of instructions are sent to the board. After each sequence, the test reads the register to see if the results are correct. A new instruction sequence is sent, until every possible instruction has been sent to the board.

?

The help command displays the current menu with the addition of the expected command parameters.

8.4. Utilities Menu

NOTE This option is not functional at this time. The utilities menu provides the user limited access to the FPA board in order to troubleshoot it.

Options	Display the Local Options Menu
Dump	Dump The Ram Array
Edit	Edit Ram Array
Fill	Fill Ram Array
Download	Download Ram Array
?	Display Help Menu

Options

The *options* command brings up a menu through which you may modify the diagnostic's default options.

Dump Index= Offset= Size=

The *dump ram* command allows you to display the contents of a section of the FPA board RAM. The command accepts three arguments: *Index*=, *Offset*=, and *Size*=. The *Index*= argument determines which area of memory is dumped. The table below shows the possible *Index* values and their meanings.

Table 8-3Index Values

Value	Location
1	Mapping RAM
2	Microstore RAM
3	Register RAM

The *Offset*= parameter is the start address of the memory to be dumped; *Size* is the size (in hexadecimal) of the memory to be dumped.

Edit Index= Offset=

The *edit ram* FPA command provides for modification of the values in the board's memory. The command accepts two arguments: *Index*= and *Offset*=. The *Index*= argument determines which area of memory is dumped. The table at the beginning of this section shows the possible *Index*= values and their meanings.

The *Offset*= parameter is the start address of the memory to be modified. The address is in hexadecimal, and starts at 0 at the beginning of each RAM area.

Fill Index= Begin= End=

The fill ram command allows you to fill selected areas of memory on the

FPA board with a data pattern. The command accepts three arguments: Index=, Begin=, and End=. The Index= argument determines which area of memory is filled; the table at the beginning of this section shows the possible Index values and their meanings.

The *Begin*= parameter is the start address of the memory to be filled; *End*= is the address of the end of the region to fill. Both addresses are hexadecimal, and start at 0 at the beginning of each RAM area. When the fill command is executed, it interactively asks you to enter the value for each memory location to fill. Enter a hexadecimal value of the appropriate size for the memory being filled.

Download Index

The download RAM command displays the contents of an area of RAM to the console. The command accepts one argument, *Index*. This argument determines which area of memory is dumped; the table at the beginning of this section shows the possible *Index* values and their meanings.

?

The help command displays the current menu with the addition of the expected command parameters.

Graphics Processor1 Diagnostic

raphics Processor1 Diagnostic	
9.1. Introduction	155
9.2. The Main Menu	155
9.3. The Scope Loop Menus	156
9.4. Error Messages	164
9.5. Abortion Message Interpretation.	186

9

Graphics Processor1 Diagnostic

9.1. Introduction The Sun GP1 and GB (Graphics Buffer Board) are two, full-size VME boards intended for use in any Sun color workstation that has a VME bus. It could also be used in a monochrome workstation that supports grayscale imaging (and has a modified color frame buffer board to do that) Due to user requirements, this diagnostic does not name failing parts of the board. It displays actual and expected values of each test. See the section showing error messages for tips on how to interpret them to locate hardware faults. The GP1 and GB only work in certain adjacent slots of a Sun workstation. For details, see a Cardcage Backplane and Slot Assignment document. Read Chapter 2 for information on booting the Diagnostic Executive, then select the GP1 test from the Diagnostics menu. This diagnostic consists of a series of tests that run automatically with no user intervention, except in the case of the "scope loop" tests, which present submenus of options. 9.2. The Main Menu The main menu provides these choices; you need only enter the letter(s) shown in upper case to make a selection. GP1 Diagnostic Main Menu Rev x.x Date Gp Run all GP tests. S Run slave tests. Vp Run the Viewing Processor tests. Fp Run Floating Point tests. Pp Run the Painting Processor tests. Sfv Move data from Shared Mem to FIFO to VME. GB Run all GB tests. D Test the GB DRAM. I Test the GB Integer Multiplier. SL Run Scope Loops. Command ==>

> The Gp, S, Vp, Fp, Pp and Sfv selections operate on the Graphics Processor Board, while the GB, D and I selections test the Graphics Buffer Board. If no Graphics Buffer Board is present, the test will query you about it

and then return you to the Main Menu.

Selecting G is the equivalent of selecting S, V, F, P and SF.

Selecting GB is equivalent to selecting D and I.

Selecting SL gives you hundreds of choices of writing/reading patterns throughout the GP1 and GB. The menus are shown later in this text. Once in a scope loop, you exit it by pressing "Control C."

9.3. The Scope Loop Menus The **SL** selection from the main menu brings up this menu:

GP1 Diagnostic Rev x.x Date Scope Loop Menu S Shared Memory from VME Scope Loops Microstore from VME Scope Loops Μ Microstore Address Register Α VP All Source and Destination Loop v Ρ PP and GB All Source and Destination Loop D Graphics Buffer DRAM Scope Loop Command ==>

Each of the choices shown above brings up a sub-menu, described on the pages that follow, along with the sub-menu options.

s — Shared Memory

The **s** selection from the Scope Loop Menu brings up the following sub-menu of test choices:

GP1 Diagnostic Revx.x Date Shmem Scope Loop Menu
FPL Fixed pattern to 1 location
FPA Fixed pattern to all locations
I Incrementing pattern to incr loc
R Read 1 location
RA Read all locations
Command ==>

The FPL, FPA and R selections prompt you for a location, and then, if needed, a pattern:


```
Please select the location for doing scope loop:

if you just press Return, the program enters location 0x00 for you.

You are now prompted for a pattern:

Using location 0 (or the value you entered)

Please give a pattern to write (4 hex digits):

The range is 0 to 3fff (hex; don't use "0x" prefix):

If you do not enter a pattern, the default "0" is used and the test proceeds.
```

The I command writes incrementing patterns to incrementing locations.

The **RA** command reads every shared memory location.

M — Micstor Scope Loop

The **M** selection from the Scope Loop Menu brings up this test selection:

```
GP1 Diagnostic Rev x.x Date Micstor Scope Loop Menu
FPL Fixed Pattern to Microword Location
FPA Fixed Pattern to all Microword Locations
I Incrementing Pattern to incr locs
R Read 1 Microword Location
RA Read All Microword Locations
Command ==>
```

As described for the Shared Memory Scope Loop menu selection, the FPL, FPA and R selections from the menu above ask you to enter a location and pattern:

If you just press <u>Return</u> without entering values, the default used is 0.

The I Microstore Scope Loop Menu choice writes incrementing patterns to incrementing microstore locations.

The **RA** selection reads all microstore locations.

Selecting **A** from the Scope Loop Menu brings up the following sub-menu: A — Microstore Address Register Ρ Write a pattern R Write a pattern then read forever Write a pattern then increment WTI If you select P from the Microstore Address Register test sub-menu, the P program will prompt you for a pattern: Please give a pattern to write (4 hex digits): If you just enter Return, a default 0x0000 pattern is used, and then the test announces: NOW WRITING 0000 TO MICROSTORE ADDRESS REGISTER R If you select R from the Microstore Address Register test sub-menu, the program prompts you for a pattern as shown above, and then announces: NOW READING MICROSTORE ADDRESS REGISTER, EXPECT pattern you entered WTI If you select WTI from the Microstore Address Register test sub-menu, you are prompted for a pattern and the test announces: USING pattern INITIALIZED MICROSTORE ADDRESS REG WITH pattern NOW INCREMENTING IT BY READING DATA REG v — VP Scope Loop Menu If you select ∇ from the Scope Loop Menu, this sub-menu is displayed: GP1 Diagnostic Rev x.x Date VP Scope Loop Menu Ι Interprocessor Flag #2 Register AM29116 Α F FIFO #2 S Shared Memory P VPPROM G General Field F Floating Point Register FS Floating Point Status Register Command ==>

> These menu choices, except for the I selection, each offer a list of possible destinations for the selected component. The selection simply moves the Interprocessor Flag#2 Register to the AM29116, which is the only possible destination for that register.

A If you select A, the program asks you to select a pattern after you choose one of these destinations for the AM29116 pattern:

	VP29116 Loop Me
Choo	se the destination for VP29116 pattern
L	Status LED Register
N	N Register
I	Interprocessor Flag #1 Register
F	FIFO #1
A	AM29116
в	Branch Register
P	VPPROM Register
S	Shared Memory
FP	Floating Point Register
FA	Floating Point Source A Register
FB	Floating Point Source B Register
FD	Floating Point Destination Pointer
SP	Shared Memory Pointer

If, for example, you chose **A** from the VP29116 Loop Menu, the program would prompt you to enter a pattern and then announce:

MOVING AM29116 (pattern) TO STATUS LED REGISTER

F If you select F from the VPScope Loop Menu, these destination choices are offered:

If you select A, B, V or S, the program prompts you to enter a pattern and then moves that pattern from the FIFO#2 to your destination choice, announcing that it is doing so.

If you select N, you are returned to the VP Scope Loop Menu.

S If you select S from the VP Scope Loop Menu, this selection of destinations for the Shared Memory data is displayed:

F	FIFO #1
A (AM29116
B	Branch Register
P	VPPROM Register
R	Floating Point Register
v	Floating Point Source A Pointer
T	Floating Point Source B Pointer
D	Floating Point Destination B Pointer
S	Shared Memory Pointer
N	Never mind doing this

Any selection, excepting N, moves Shared Memory Data to the destination represented by the selection.

N returns you to the VP Scope Loop Menu.

P Selecting P from the VP Scope Loop Menu brings up these destination choices:

```
command ==>p
F FIFO#1
A AM29116
S Shared Memory
R Floating Point Register
N Never mind doing this
Choose the destination where VPPROM goes to.
```

The N selection brings you back to the VPScope Loop Menu; all the other selections move the VPPROM to the destination represented by that choice.

FS An FS selection from the VP Scope Loop Menu brings up these destination choices:

A	AM29116	
S	Shared Memory	
F	Floating Point Register	

If you enter N, the VP Scope Loop Menu returns; any other choice moves the FP Status Register to the destination represented by the selection.

P — PP Scope Loop Menu

If you select P from the Scope Loop Menu, the PP Scope Loop Menu is offered:

GP1 Diagnostic Rev x.x Date PP Scope Loop Menu I Interprocessor Flag#1 Register Α AM29116 P PPPROM GB Read Data Register G V VME Read Data Register S VME Status Register GF General Field S Scratchpad Memory F FIFO #1 Μ Multiplier Result

All the selections shown above bring up sub-menus, with the exception of the first choice, I, which requires no user input. The sub-menus under the Pixel Processor (PP) Scope Loop Menu are shown on the following pages, in the order that they appear on the menu.

A The AM29116 selection from the PP Scope Loop Menu presents this submenu:

L	Status LED Register
N	N Register
B	Branch Register
SP	Scratchpad Register
I	Interprocessor Flag#2 Register
P	PPPROM
F	FIFO
Α	AM29116
S	Scratchpad Memory
GD	GB Write Data Register
VD	VME Write Data Register
MX	Multiplier X Operand
MY	Multiplier Y Operand
MM	Multi-Mode
ID	Internal ID Register
VH	VME High Address
VL	VME Low Address
VC	VME Control
GH	GB High Address
GL	GB Low Address

P Selecting P from the PP Scope Loop Menu brings up this sub-menu:

```
FIFO#2
F
     AM29116
A
S
      Scratchpad Memory
G
   GB Write Data Register
V
      VME Write Data Register
X
     Multiplier X Operand
     Multiplier Y Operand
Y
      Never mind doing this
N
Choose the destination where PPPROM data goes.
```

G A G selection brings up this sub-menu:

v Selecting V from the PP Scope Loop Menu brings up this sub-menu:

```
A AM29116
V VME Write Data Register
X Multiplier X Operand
Y Multiplier Y Operand
N Never mind doing this
Choose the destination where VME Read Data Register goes to.
```

S Selecting S from the Scope Loop Menu brings up this sub-menu:

```
F FIFO#2
A AM29116
S Scratchpad Memory
G GB Write Data Register
N Never mind doing this
Choose the destination for VME Status Register:
```


1	Branch Register
2	Scratchpad Pointer
3	Interprocessor Flag#2
4	PPPROM Pointer
5	FIFO #2
6	AM29116
7	Scratchpad Memory
B	GB Write Data Register
9	VME Write Data Register
10	Multiplier x Operand
11	Multiplier y Operand
12	Multiplier Mode Register
13	Interrupt ID Register
14	VME High Address Register
15	VME Low Address Register
16	VME Control Register
17	GB High Address Pointer
18	GB Low Address Pointer

GF Selecting GF from the PP Scope Loop Menu brings up this sub-menu:

After you have made a destination choice from the General Field menu, you will be prompted to provide a pattern.

M When you select M from the PP Scope Loop menu, this sub-menu is displayed:

If you select N, you will be returned to the PP Scope Loop Menu.

D — DRAM Scope Loop When you select D from the Scope Loop Menu, this sub-menu is displayed: Menu GP1 Diagnostic Rev x.x Date DRAM Scope Loop Menu W Write to one word address WR Write to one word address, then read it back forever WA Write address-unique patterns to 4K-word block R Read one word address command ==> If you select w from the DRAM Scope Loop Menu, the program prompts W you to select a location and a pattern for the test: Please select the location for doing the scope loop: you enter an address Please give pattern to write (4 hex digits): you enter a 4-digit hex value NOW WRITING pattern TO ADDR HIGH= hex value ADDR LOW= hex value IN DRAM WR To be added **WA** If you select WA from the DRAM Scope Loop Menu, you are prompted for a location (as shown above), and, after you enter one, the test announces: NOW WRITING ADDRESS UNIQUE COUNTING PATTERNS, STARTING FROM 0 TO 4-K WORD BLOCK STARTING ADDR HIGH=hex value LOW=hex value IN DRAM 9.4. Error Messages Messages from the GP1/GB diagnostic have a number at their beginning, which helps you find them in this text. Here they are, with a brief discussion of the problem. Where the message examples show a value with a percent sign, it indicates how the value will be presented under running conditions.

> %d a decimal value (0's - 9's). %x a hexadecimal value (0's - f's). %b a binary value (0's and 1's).

NOTE: Following these error messages, see a discussion of ABORTION messages, such as this:

30 VP Status Register test aborted because of the following: Couldn't stop the VP in order to load microcode. Try the slave reg tests. Couldn't start the VP after loading microcode. Try the slave reg tests.

1 CAUTION: GP diag had trouble determining the size of GP microstore. That could mean trouble with VME slave interface with the board.

The two different types of GP1 board are usually called GP and GP+. The main difference between them is the microstore size. Since this diagnostic can handle both kinds of board, it does a simple test at the beginning to determine the size of microstore. This message is a warning that something prevented this simple test from getting expected results. Expect a subsequent test to reveal more information, unless the VMEbus interface is quite seriously broken.

5 Board id error found, should have value other than 0.

The board ID is one read-only byte at the first address of the GP. The hardware documentation on that byte says only that it is not zero; therefore the test can only check for a non-zero value. This message says that when the diagnostic read the board ID, it was zero.

6 Status Register error found. Did board reset, but certain bits in SR not zeroed. Status Register ANDed by 0x%x = %x

The status register test does very little because the GP Status Register is readonly. It uses the write-only GP Control Register to generate a board reset, then reads the GP Status Register and expects bits 8, 9, 10 and 14 to be zeros. This message indicates a difference between observed and expected results. Suspect the reset and status register hardware.

7 Status Reg : xxxx xxxx xxxx xxxx BAD: Expected bit 14, Interrupt Enabled, to be zero.

The test tried to change the value of this bit to zero by using the write-only Control Register. Since that didn't work, suspect both the control and status registers.

8 Status Reg : xxxx xxxx xxxx xxxx BAD: Couldn't TOGGLE bit 14, Interrupt Enabled, from x to x.

The test tried to toggle this bit by using the write-only Control Register. Since that didn't work, suspect both the control and status registers.

10 Status Reg : xxxx xxxx xxxx xxxx BAD: Couldn't change bit 14, Interrupt Enabled, from x to x.

The test tried to change this bit by using the write-only Control Register. Since that didn't work, suspect both the control and status registers.

11 BAD: Expected bit 10, Reset, to be zero.

Following a reset attempt using the Control Register, this bit should show zero, but it doesn't. Suspect the reset, control and status register hardware.

12 Status Reg : xxxx xxxx xxxx xxxx BAD: Couldn't change bit 10, Reset, from x to x.

The test tried to change this bit by using the write-only Control Register. Since that didn't work, suspect both the control and status registers.

14 BAD: Expected bit 9, to be zero.

Following a reset attempt using the Control Register, this bit should show zero, but it doesn't. Suspect the reset, control and status register hardware.

15 Status Reg : xxxx xxxx xxxx BAD: Couldn't change bit 9 from x to x.

The test tried to change this bit by using the write-only Control Register. Since that didn't work, suspect both the control and status registers.

16 BAD: Expected bit 8, to be zero.

Following a reset attempt using the Control Register, this bit should show zero, but it doesn't. Suspect the reset, control and status register hardware.

17 Status Reg : xxxx xxxx xxxx BAD: Couldn't change bit 8 from x to x.

The test tried to change this bit by using the write-only Control Register. Since that didn't work, suspect both the control and status registers.

31 Couldn't get expected pattern in VP status register. Observed xxxx Expected xxxx

The diagnostic used VP microcode to try and put a certain 4-bit pattern into the VP field of the GP Status Register, but failed. Suspect the VP 29116, the GP status register and the paths between them.

36 VP's interprocessor flags bit 8 is a 1, but it should always be a 0.

As a requirement for the two processors to distinguish their unique code in a shared microstore, the VP's interprocessor flag number 8 must always be a 0. If this message comes up, suspect the ipflags buffer UJ4, the VP 29116, and the path between them.

38 VP N Register pattern test error found. OBS (binary) = xxxx EXP (binary) = xxxx

The test moved a pattern to the 4-bit N Register, then used that to make a binary calculation. This message says that the calculation gave wrong results. Suspect the N Register, the VP 29116 and the paths between them.

41 VP AM29116 n field assembly constant test error found. OBS (binary) = xxxx EXP (binary) = xxxx

This test used a pattern in the microcode instruction to make a binary calculation in the VP 29116. This message says that the calculation gave wrong results. Suspect the Microcode decoding hardware for the N field, the VP 29116 and the path between them.

46 VP General Field Immediate Value Test error found. OBS = 0x%x EXP = 0x0

The test put a pattern into the general field of the micro-instruction and moved it to shared memory for comparison with the expected pattern. Since shared memory and the VP bus to the shared memory path were already tested, suspect

the general field data path from microstore to the VP bus.

49 VP General Field Addressing Test error found. Couldn't jump to microstore 56-bit word location %x(hex)

The test put a pattern into the general field of the micro-instruction for use as a branch address. Since the microcode jumped to a different address, suspect the general field data path from microstore to the 2910A.

51 VP Branch Register error found. Couldn't jump to microstore 56-bit word location %x(hex)

The test put a pattern into the VP branch register, then tried to branch to that as an address. Since the microcode jumped to a different address, suspect the branch register and its connection to the VP bus.

56 Couldn't load microcode into location 0x%x. Happens if very small microcode size.

The microstore banks select test, during setup, tried to load some microcode into a high microstore location, but couldn't verify it. That could mean that your GP1 has very a very small microstore. This message is very unlikely to show up.

57 VP Bank Select and address buffer to 2nd bank error found. Couldn't jump to second bank (ustore 56-bit word loc 0x%x

The VP microstore bank select test was unable to jump to a microstore location that needs the bank select hardware to carry out the jump. Suspect the bank select hardware.

58 VP Bank Select error found. Couldn't jump back to first bank (ustore 56-bit word loc 0x%x)

The VP microstore bank select test was unable to jump from a high bank of microstore to an instruction in bank 0. Suspect the bank select hardware.

61 VP Shared Memory address unique test error found. Word Address 0x%x OBS = 0xXXXX EXP = 0xXXXXIf you already tested shared memory with the slave test, suspect the VP's Shared Memory Pointer.

The message is self explanatory.

62 VP Shared Memory read/write test (shmem[i]->am29116->shmem[i-1]). Word Loc 0x%x OBS = 0x%x EXP = 0x%x (NOTE: if you continued after a previous error, expect this error.)

This test used the VP to read shared memory and write back to shared memory in a different location. If no previous shared memory test failed, suspect the VP Shared Memory Pointer or the VP bus between the 29116 and the shared memory pointer.

64 GP microstore address reg error found. OBS = 0x%x EXP = 0x%x

The address register should be capable of holding any pattern. This test wrote the expected pattern to it but read back a different one. Suspect the address

register or the VME bus path to it.

65 GP microstore address reg test error found. 16-bit word window movement in GP Status Reg isn't right.

The GP Status Register has two bits that show which of four "window" locations are currently connected to the microstore Data Register. (A microword is 56 bits wide but you can only access it 16 bits at a time.) This test kept track of which part of the microword it was writing to and compared it with the number in those two bits of the GP status register. Because they disagreed, suspect the GP status register and the path between it and the microstore hardware.

67 GP microstore address unique test error found. ustore loc = 0x%x OBS = 0xhh hhhh hhhh EXP = 0xhh hhhh hhhh

The test wrote different patterns to each location of microstore, then read them back and found an error. Suspect the Address Register, the microstore RAM addressing circuitry and the paths between them.

68 GP microstore random data test error found. ustore loc = 0x%x OBS = 0xhh hhhh hhhh EXP = 0xhh hhhh hhhh

The test wrote random patterns to microstore, then read them back and found an error. Suspect the microstore RAM and the path between it and the VME bus.

69 GP microstore pattern test error found. ustore loc = 0x%x OBS = 0xhh hhhh hhhh EXP = 0xhh hhhh hhhh

The test wrote a constant pattern to microstore. Upon read-back, it found an error. Suspect the microstore RAM and the path between it and the VME bus.

```
71 PP FIFO Test did a control register reset.
High byte of PP's ipflag register: xxxx xxxx
PP ipflags bit 9 says FIFO direction is PP to VP; a reset should have
changed that.
```

Suspect the PP Interprocessor Flags Register 2 hardware, the FIFO Direction Control hardware, the path between them, the reset circuitry and its path to the FIFO Direction Control hardware.

72 PP FIFO Test did a control register reset. High byte of PP's ipflag register: %xxxx xxxx. PP ipflags bit 9 says FIFO direction is VP to PP, but VP supposedly changed it to the other way.

Suspect the PP Interprocessor Flags Register 2 hardware, the FIFO Direction Control hardware and the path between them.

74 High byte of PP's ipflag register: xxxx xxxx. PP ipflags bit 10 says FIFO is not empty, but reset should have cleared FIFO.

Suspect the PP Interprocessor Flags Register 2 hardware, the FIFO Synchronizer hardware, the path between them, the reset circuitry and its path to the FIFO Synchronizer hardware.

75 PP ipflags say FIFO is empty, but PP wrote some words to FIFO.

Suspect the PP Interprocessor Flags Register 2 hardware, the FIFO Synchronizer hardware, the FIFO Write Control hardware and the paths among them.

77 Test expected to read xxxx in the fifo but instead read xxxx.

Suspect the FIFO and its connection with the VP bus.

80 FIFO control is bad. Did series of PP writes to empty FIFO; expected to reach FIFO-full condition after %d times but instead wrote %d times. (Note: used cond code to determine full state, so check that hardware.)

Suspect the PP Interprocessor Flags Register 2 hardware, the FIFO Synchronizer hardware, the FIFO Write Control hardware and the paths among them. Also suspect the PP Condition Code Select hardware. Your GP1 board may have a different size of FIFO than the diagnostic expected.

81 PP FIFO Test. For read # %d, FIFO showed %x. Expected %x.

The test filled the FIFO with positionally unique data. Upon read-back, the data did not compare. Suspect the FIFO, the FIFO Write Registers, the FIFO Read Buffers and their connections to the PP bus.

82 PP FIFO control is bad. Did series of VP reads of full FIFO; expected to reach FIFO-empty condition after %d times but instead read %d times. (Note: used cond code to determine full state, so check that hardware.)

Suspect the PP Interprocessor Flags Register 2 hardware, the FIFO Synchronizer hardware, the FIFO Write Control hardware and the paths among them. Also suspect the PP Condition Code Select hardware. Your GP1 board may have a different size of FIFO than the diagnostic expected.

86 Couldn't get expected pattern in PP status register. Observed xxxx Expected xxxx

The PP Status Register was supposed to show the expected pattern, but held another pattern. Suspect the PP Status Register, the GP Status Register, PP Destination Control (UP16) and the paths among them.

89 PP's interprocessor flags bit 8 is a 0, but it should always be a 1.

As a requirement for the two processors to distinguish their unique code in a shared microstore, the PP's interprocessor flag number 8 must always be a 1. Suspect the ipflags buffer UJ4, the PP 29116 and the path between them.

91 PP N Register pattern test error found OBS (binary) = xxxx EXP (binary) = xxxx

The test moved a pattern to the 4-bit N Register, then used that to make a binary calculation. This message says that the calculation gave wrong results. Suspect the N Register, the PP 29116 and the paths between them.

95 PP AM29116 n field assembly constant test error found. OBS (binary) = xxxx xxxx xxxx EXP (binary) = xxxx xxxx xxxx xxxx

This test used a pattern in the microcode instruction to make a binary calculation in the PP 29116. This message says that the calculation gave wrong results. Suspect the Microcode decoding hardware for the N field, the PP 29116 and the path between them.

98 PP General Field Immediate Value Test error found OBS = 0x%x EXP = 0x%x

The test moved an immediate value from a field in the microcode word, through the FIFO to shared memory. Because you already tested microstore, the FIFO, the VP bus and shared memory, suspect the PP bus between microstore general field and the FIFO.

101 PP General Field Branch Function error found Couldn't jump to u-store 56-bit word location %x(hex)

The test put a pattern into the general field of the micro-instruction for use as a branch address. Remember that "56-bit word location" means the location of the 56-bit word, not that the address is 56 bits long. Since the microcode jumped to a different address, suspect the general field data path from microstore to the PP 2910A.

105 IP Flag #2 pattern test error found OBS = 0x%x EXP = 0x%x

The test moved a pattern from the PP to the Interprocessor Flags Register 2 and from there to shared memory. Since you already checked the PP immediate field and all of the VP hardware, suspect the PP IPflag hardware, the bus between the PP general field and that hardware and the VP path between the IPflag hardware and shared memory.

106 IP Flag #1 pattern test error found OBS = 0x%x EXP = 0x%x

The test moved a pattern from the VP to the Interprocessor Flags Register 1 to the Interprocessor Flags Register 2 and from there to shared memory. Suspect the path between the VP microcode general field and IPflag 1, IPflag 1, the path between IPflag 2 and the PP 29116 and the path between PP 29116 and IPflag 2.

109 Got a timeout while accessing GB board. Is one installed? This test requires a Jumper J7 on GP and a working GB in the system.

The test tried to use the PP to communicate with the GB, but a timeout indicated that this was unsuccessful. If you really have a GB installed, verify that the GP and GB are in suitable slots of the workstation. They communicate using the P2

connectors. However, not all adjacent slot pairs are connected together on the backplane. If the boards are in the correct slots, suspect the PP Bus Extension Transceivers and Decoders, the GP/GB Interface Signal Decoders on the GB and the backplane of the workstation.

110 GP GB interface test error found OBS = 0x%x EXP = 0x%xThis test requires a Jumper J7 on GP and a working GB in the system.

The test wrote patterns to DRAM on the GB, read them back and found a miscomparison. If you have not yet tested DRAM, suspect that. Also suspect the PP Bus Extension Transceivers and Decoders, the GP/GB Interface Signal Decoders on the GB and the backplane of the workstation.

112 PP continue not on zero error found. Could not start PP after halted it.

The test used a control bit of the GP Control Register that allows software to start the PP from the halted state without first setting its program sequencer to location zero of microcode. Since the diagnostic never does that under normal operation, this test does it. Suspect the PP 2910A Sequencer, the GP Control Register hardware, the PP Run/Halt hardware and the paths among them.

113 PP continue not on zero error found. Could not start PP not on zero.

The test used a control bit of the GP Control Register that allows software to start the PP from the halted state without first setting its program sequencer to location zero of microcode. Since the diagnostic never does that under normal operation, this test does it. Suspect the PP 2910A Sequencer, the GP Control Register hardware, the PP Run/Halt hardware and the paths among them.

120 FIFO control is bad. Did control reg reset; the VP ipflag should have said FIFO direction is VP to PP, but it didn't.

Suspect the PP Interprocessor Flags Register 1 hardware, the FIFO Direction Control hardware, the path between them, the reset circuitry and its path to the FIFO Direction Control hardware.

121 FIFO control is bad. Did control reg reset; the VP ipflag should have said FIFO is empty, but it didn't.

Suspect the PP Interprocessor Flags Register 1 hardware, the FIFO Synchronizer hardware, the path between them, the reset circuitry and its path to the FIFO Synchronizer hardware.

122 FIFO control is bad. Wrote two words to empty FIFO; the VP ipflag should have said FIFO not empty, but it didn't. In fact, it gave a fifo1 full cond code to the microcode!

The last line won't always appear. Suspect the PP Interprocessor Flags Register 1 hardware, the FIFO Synchronizer hardware, the FIFO Write Control hardware and the paths among them. If the last line is there, suspect the VP Condition Code Select hardware.

123 FIFO control is bad. Tried to set FIFO direction to PP to VP, but VP ipflag says direction is VP to PP.

VP software can change the FIFO direction. The test tried to do that but failed. Suspect the PP Interprocessor Flags Register 1 hardware, the FIFO Direction Control hardware and the path between them.

124 FIFO data error. Wrote two words to FIFO from VP; read them back in VP. Second word: actual %x expected %x

Suspect the VP bus, the FIFO and the path between them.

125 FIFO control is bad. Did a FIFO direction toggle; after that, the VP ipflag should have said FIFO direction is VP to PP, but it didn't.

Suspect the VP Interprocessor Flags Register 1 hardware, the FIFO Direction Control hardware and the path between them.

126 FIFO data path is bad. Did a VP write to FIFO and read-back. Actual = %x Expected = %x

Suspect the FIFO and its connection to the VP bus. 127 FIFO control is bad. Did series of VP writes to empty FIFO; expected to reach FIFO-full condition after %d times but instead wrote %d times. (Used cond code to determine full state, so check that hardware too.)

Suspect the VP Interprocessor Flags Register 1 hardware, the FIFO Write Control hardware, the FIFO Read Control hardware, the FIFO Synchronizer and the paths among them. Also check the Condition Code Select hardware and the 2910A.

128 Tested VP PROM checksum, using fifo. Actual = % x Expected = % x.

If you already trust the VP PROM and the FIFO, suspect VP bus control. This is the only time the diagnostic moves data from the VP PROM to the FIFO, but both of those have used the VP bus before, so their data paths should be okay. Suspect VP Source and VP Destination hardware.

131 FP A Source Register Pattern Test error found LOC(of 16-bit word) = 0xhhhh OBS = 0xhhhh EXP = 0xhhhh

The test wrote and read back patterns in the Floating Point Registers Set A and found a miscomparison. Suspect the registers and their connection to the VP bus.

132 FP B Source Register Pattern Test error found LOC(of 16-bit word) = 0xhhhh OBS = 0xhhhh EXP = 0xhhhh The test wrote and read back patterns in the Floating Point Registers Set B and found a miscomparison. Suspect the registers and their connection to the VP bus.

133 FP A Source Register Addressing Test error found LOC(of 16-bit word) = 0xhhhh OBS = 0xhhhh EXP = 0xhhhh

The test wrote and read back address-unique patterns in the Floating Point Registers Set A and found a miscomparison. Suspect the set A Floating Point Addressing Source and Destination Pointers and their connections to the VP bus.

133 FP B Source Register Addressing Test error found LOC(of 16-bit word) = 0xhhhh OBS = 0xhhhh EXP = 0xhhhh

The test wrote and read back address-unique patterns in the Floating Point Registers Set B and found a miscomparison. Suspect the set B Floating Point Addressing Source and Destination Pointers and their connections to the VP bus.

135 FP Source Register pointer uniqueness test error found OBS = 0x%x EXP = 0x%x, Should check A and B pointers

The message is self explanatory.

136 FP Source Register pointer test error found 32-bit Addr = 0x%x OBS = 0x%x EXP = 0x0, Check D and A ptr

The message is self explanatory. "D ptr" means Destination Pointer.

140 FP Flowthru ALU operation Float/Fix error found OBS = 0x%x EXP = 0x%x FP Status Register = xxxx xxxx xxxx xxxx

The test used the Weitek ALU chip to convert fixed-point data to floating-point data and back again. Since that failed, suspect the chip and the path between it and the VP bus.

141 FP Flowthru ALU operation A+B error found OBS = 0x%xEXP = 0x%x FP Status Register = xxxx xxxx xxxx

Suspect the Weitek ALU chip and the path between it and the VP bus.

142 FP Flowthru ALU operation A-B error found OBS = 0x%xEXP = 0x%x FP Status Register = xxxx xxxx xxxx xxxx

Suspect the Weitek ALU chip and the path between it and the VP bus.

143 FP Flowthru ALU operation -A+B error found OBS = 0x%xEXP = 0x%x FP Status Register = xxxx xxxx xxxx xxxx

Suspect the Weitek ALU chip and the path between it and the VP bus.

144 FP Flowthru ALU operation |A| + |B| error found OBS = 0x%xEXP = 0x%x FP Status Register = xxxx xxxx xxxx xxxx

Suspect the Weitek ALU chip and the path between it and the VP bus.

145 FP Flowthru ALU operation |A-B| error found OBS = 0x%xEXP = 0x%x FP Status Register = xxxx xxxx xxxx xxxx

Suspect the Weitek ALU chip and the path between it and the VP bus.

146 FP Flowthru ALU operation |A+B| error found OBS = 0x%xEXP = 0x%x FP Status Register = xxxx xxxx xxxx xxxx

Suspect the Weitek ALU chip and the path between it and the VP bus.

147 FP Flowthru Multiplier operation AxB error found OBS = 0x%xEXP = 0x%x FP Status Register = xxxx xxxx xxxx xxxx

Suspect the Weitek Multiplier chip and the path between it and the VP bus.

148 FP source reg high/low word order control error found OBS high word = 0x%x low word = 0x%xEXP high word = 0x0 low word = 0x%xFP Status Register = xxxx xxxx xxxx

The VP bus is 16 bits wide, but the Weitek chips give 32-bit results. Suspect the hardware which correctly orders the two words from the Weitek chips to the VP bus. This includes UA18 and UB18.

151 FP Pipeline, using result register, operation (A+B)*B error found OBS = 0x%xEXP = 0x%x FP Status Register = xxxx xxxx xxxx

Pipelining is a feature of the two Weitek floating-point processor chips. Suspect them both and the result registers, UC25 and UD25.

155 FP Pipeline Matrix Multiplication, (1 by 4). (4 by 1), error found OBS = %dEXP = 20

Suspect the Weitek multiplier chip.

158 FP Status Reg error found, can't force ainv to occur.

Suspect both Weitek chips, FP Status Register chip UD21 and the paths among them.

159 FP Status Reg error found, can't force inv to occur.

Suspect both Weitek chips, FP Status Register chip UD20 and the paths among them.

160 FP Status Reg error found, can't force ainx to occur.

Suspect both Weitek chips, FP Status Register chip UD21 and the paths among them.

161 FP Status Reg error found, can't force aovr to occur.

Suspect both Weitek chips, FP Status Register chip UD21 and the paths among them.

162 FP Status Reg error found, can't force inx to occur.

Suspect both Weitek chips, FP Status Register chip UD20 and the paths among them.

163 FP Status Reg error found, can't force ovr to occur.

Suspect both Weitek chips, FP Status Register chip UD20 and the paths among them.

164 FP Status Reg error found, can't force asgn to occur.

Suspect both Weitek chips, FP Status Register chip UD21 and the paths among them.

165 FP Status Reg error found, can't force aund to occur.

Suspect both Weitek chips, FP Status Register chip UD21 and the paths among them.

166 FP Status Reg error found, can't force sgn to occur.

Suspect both Weitek chips, FP Status Register chip UD20 and the paths among them.

167 FP Status Reg error found, can't force und to occur.

Suspect both Weitek chips, FP Status Register chip UD20 and the paths among them.

170 VP PROM Checksum Test error found OBS = %x(hex)EXP = %x(hex) VP PROM word location 0x%x OBS = 0x%x EXP = xxxx

Suspect the VP PROM and the path between it and the VP bus.

175 VP Two Address Operation, r[%d] + acc = r[%d], error found OBS r[%d] = 0x%x EXP r[%d] = 0x%x

Suspect the VP 29116, the 29116 RAM Address Select hardware and the path between them. Also suspect the path for micro-word bit 51 to the 29116 RAM Address Select hardware.

179 VP continue not on zero error found. Could not start VP after halted it.

The test used a control bit of the GP Control Register that allows software to start the VP from the halted state without first setting its program sequencer to location zero of microcode. Since the diagnostic never does that under normal

operation, this test does it. Suspect the VP 2910A Sequencer, the GP Control Register hardware, the VP Run/Halt hardware and the paths among them.

180 VP continue not on zero error found. Could not start VP not on zero.

The test used a control bit of the GP Control Register that allows software to start the VP from the halted state without first setting its program sequencer to location zero of microcode. Since the diagnostic never does that under normal operation, this test does it. Suspect the VP 2910A Sequencer, the GP Control Register hardware, the VP Run/Halt hardware and the paths among them.

189 PP Branch Register error found. Couldn't jump to u_store 56-bit word location %x(hex)

The test put a pattern into the PP branch register, then tried to branch to that as an address. Since the microcode jumped to a different address, suspect the branch register and its connection to the PP bus.

193 PP Bank Select test couldn't load microcode into location 0x%x.

The microstore bank select test, during setup, tried to load some microcode into a high microstore location, but it couldn't verify it. That could mean that your GP1 has very a very small microstore. This message not likely to show up.

194 PP Bank Select and address buffer to 2nd bank error found. Couldn't jump to second bank (ustore 56-bit word loc 0x%x)

The PP microstore bank select test was unable to jump to a microstore location that needs the bank select hardware to carry out the jump. Suspect the bank select hardware.

195 PP Bank Select error found. Couldn't jump back to first bank (ustore 56-bit word loc 0x%x

The PP microstore bank select test was unable to jump from a high bank of microstore to an instruction in bank 0. Suspect the bank select hardware.

199 PP Scratchpad constant pattern write/read test error found. Word Loc: 0x%x OBS = 0x%x EXP = 0x0

The test wrote all zeros to the PP Scratchpad RAM and read it back. Since the value read back was not zero, suspect the Scratchpad RAM and the path between it and the PP bus.

200 PP Scratchpad test word Loc: 0x%x OBS = 0x%x EXP = 0xhhhh

The test wrote the expected pattern to the PP Scratchpad RAM and read it back. Since the value read back was wrong, suspect the Scratchpad RAM and the path between it and the PP bus.

201 PP Scratchpad address unique write/read test error found. Word Loc: 0x%x OBS = 0x%x EXP = 0x%x

Suspect the Scratchpad Pointer hardware and the path between it and the PP bus.

205 VME Bus Master word write to shmem [0x%x] error found. OBS = 0x%x EXP = 0x%x

The test wrote to slave shared memory using the PP Bus Master hardware. Suspect the VME Master Data Out Register hardware and its connections to the VP bus, the VME Bus Master Data Transfer Controller and the Miscellaneous VME Master Logic.

206 VME Bus Master byte write to high or low byte in shmem word location 0x%x OBS word = 0x%x EXP high byte = 0x%x low byte = 0x%x

The test wrote to slave shared memory using the PP Bus Master hardware. Suspect the VME Master Data Out Register hardware and its connections to the VP bus, the VME Bus Master Data Transfer Controller and the Miscellaneous VME Master Logic.

207 VME low address register error found. Low Addr = 0x%x OBS data = 0x%x EXP data = 0xffff

This test used walking 1 locations in shared memory, as accessed over the VME bus, to write all ones. Since it failed, suspect the VME Address Registers UP7 and UP12 and their connections to the PP bus.

211 VME Bus Master word read from shmem [0x%x] error found. OBS = 0x%x EXP = 0x%x

The test read slave shared memory using the PP Bus Master hardware. Suspect the VME Master Data Out Register hardware and its connections to the VP bus, the VME Bus Master Data Transfer Controller and the Miscellaneous VME Master Logic.

212 VME Bus Master byte read from byte loc shmem[0] error found. OBS = 0x%x EXP = 0x%x

The test read slave shared memory using the PP Bus Master hardware. Suspect the VME Master Data Out Register hardware and its connections to the VP bus, the VME Bus Master Data Transfer Controller and the Miscellaneous VME Master Logic.

213 VME Bus Master byte read from byte loc shmem[1] error found. OBS = 0x%x EXP = 0x%x

The test read slave shared memory using the PP Bus Master hardware. Suspect the VME Master Data Out Register hardware and its connections to the VP bus, the VME Bus Master Data Transfer Controller and the Miscellaneous VME Master Logic.

214 VME bus master address counter error. At color board location 0xhh hhhh expected xxxx xxxx xxxx xxxx

actual xxxx xxxx xxxx xxxx

This test used walking 1 locations on the color board, as accessed over the VME bus, to write all address-unique data. Since it failed, suspect the VME Address Register UP6 and its connections to the PP bus.

216 PP CC Select Test generated 29116 negative condition code, but cc select logic didn't pass that signal to 2910A

Suspect the PP 2910A and the PP Condition Code Select hardware. Also suspect the path from microstore to the PP 2910A for bit 55 (including the 3-Way Branch Control hardware).

218 PP CC Select test generated carry, fifo not full, fifo not empty cc's. The PP incorrectly detected a 29116 NEGATIVE cc. Check cc select logic.

Suspect the PP 2910A and the PP Condition Code Select hardware.

219 PP CC Select test didn't detect high bit of dreg field (microcode") bit 39), programmable negation bit.

Suspect chip UD14 and the bit 39 path from microstore to it.

220 PP CC Select test generated pp 29116 carry condition code, but CC select logic didn't pass that signal to 2910A.

Suspect the PP 2910A and the PP Condition Code Select hardware. Also suspect the path from microstore to the PP 2910A for bit 55 (including the 3-Way Branch Control hardware).

221 PP CC Select test generated negative, fifo not full, fifo not empty cc's. The PP incorrectly detected a 29116 CARRY cc. Check cc select logic.

Suspect the PP 2910A and the PP Condition Code Select hardware.

222 PP CC Select test generated pp 29116 zero condition code, but cc select logic didn't pass that signal to 2910A.

Suspect the PP 2910A and the PP Condition Code Select hardware. Also suspect the path from microstore to the PP 2910A for bit 55 (including the 3-Way Branch Control hardware).

223 PP CC Select test generated carry, fifo not full, fifo not empty cc's. The PP incorrectly detected a 29116 ZERO cc. Check cc select logic.

Suspect the PP 2910A and the PP Condition Code Select hardware.

224 PP CC Select test generated pp 29116 overflow condition code, but cc select logic didn't pass that signal to 2910A.

Suspect the PP 2910A and the PP Condition Code Select hardware. Also suspect the path from microstore to the PP 2910A for bit 55 (including the 3-Way Branch Control hardware).

225 PP CC Select test generated carry, fifo not full, fifo not empty cc's. The PP incorrectly detected a 29116 OVERFLOW cc. Check cc select logic.

Suspect the PP 2910A and the PP Condition Code Select hardware.

226 PP CC Select test moved a zero in 29116 with STATUS ENABLED. CC logic behaved as if zero cc weren't set.

Suspect the PP 2910A and the PP Condition Code Select hardware. Also suspect the path from microstore to the PP 2910A for bit 55 (including the 3-Way Branch Control hardware).

227 PP CC Select test moved a zero in 29116 with status enabled; then moved a 1 with STATUS NOT ENABLED. CC logic said zero cc wasn't still set. Check cc select logic.

Suspect the PP 2910A and the PP Condition Code Select hardware.

228 PP CC Select test did a reset, which should have emptied the fifo. The PP 2010A did not detect fifo2 not full. Check cc select logic.

Suspect the reset circuitry and its path to the FIFO Synchronizer hardware and the PP 2910A and the PP Condition Code Select hardware.

229 PP CC Select test filled the FIFO, but 2910A detected 'fifo2 not full cc. Check cc select logic.

Suspect the FIFO Control hardware and its connections to the cc select logic.

230 PP CC Select test cleared the FIFO but the 2910A still detected 'fifo1 not empty' cc. Check cc select logic.

Suspect the FIFO Control hardware and its connections to the cc select logic.

231 PP CC Select test wrote to FIFO, but PP 2910A failed to detect 'fifo1 not empty' condition code. Check cc select logic.

Suspect the FIFO Control hardware and its connections to the cc select logic.

232 PP CC Select test. 2910A failed to detect 'vme ready' condition code. Check cc select logic.

Suspect the VME Bus Requester hardware, the cc select logic and the path of the VMERDY signal between them.

233 PP CC Select test. 2910A detected 'vme ready' condition code when it shouldn't have been ready. Check cc select logic.

Suspect the VME Bus Requester hardware, the cc select logic and the path of the VMERDY signal between them.

234 PP 2910A failed to detect 'gb ready' condition code. Check cc select logic.

Check that you have a GB installed in your system. If you really have a GB installed, verify that the GP and GB are in suitable slots of the workstation backplane. They communicate using the P2 connectors. However, all the slots are not connected together there. If the boards are in the correct slots, suspect the Z Buffer Flag hardware, the Condition Code Select hardware and the path between them.

236 3-way branch didn't expect the VME busy condition, but that's what happened. (Microcode primitive p99.)

Three-way branching gives the PP three possible addresses to branch to, depending on a programmed condition code or the VME-busy state of the workstation. The microcode primitive message is there to assist debugging by engineering. This message means that the condition code hardware unexpectedly detected the VME Busy condition.

Suspect the PP Condition Code Select hardware, the VME Bus Requester hardware, the VME Bus Master Data Transfer Controller and the paths among them.

237 3-way branch failed to detect zero condition code. It correctly detected that VME was not busy, however.

Suspect the PP 2910A and the PP Condition Code Select hardware.

238 PP 3-way branch hardware didn't expect the VME busy condition, but that's what happened. Microcode primitive p101.)

Three-way branching gives the PP three possible addresses to branch to, depending on a programmed condition code or the VME-busy state of the workstation. The microcode primitive message is there to assist debugging by engineering. This message means that the condition code hardware unexpectedly detected the VME Busy condition.

Suspect the PP Condition Code Select hardware, the VME Bus Requester hardware, the VME Bus Master Data Transfer Controller and the paths among them.

239 3-way branch detected zero condition code when that cc wasn't set. It correctly detected that VME was not busy, however.

Suspect the PP 2910A and the PP Condition Code Select hardware.

240 3-way branch failed to detect vme busy.

Three-way branching gives the PP three possible addresses to branch to, depending on a programmed condition code or the VME-busy state of the workstation. Suspect the PP Condition Code Select hardware, the VME Bus Requester hardware, the VME Bus Master Data Transfer Controller and the paths among them.

241 Couldn't move data via FIFO and VME from/to Shared Memory. Exp xxx at %x Obs xxxx at %x

The Shared memory to FIFO to VME and back to shared memory (SFV) test uses much of the graphics processor hardware to accomplish its task of copying data from one part of shared memory to another. It uses the VP to write the pattern to the FIFO, then it uses the PP to move it from the FIFO back to shared memory via the VME bus. So the PP becomes the bus master and shared memory is the bus slave. This test will uncover bugs that other tests miss, but it cannot isolate that fault to a certain area of the hardware. This is where userfeedback can enhance this user guide. When you fix a bug that this test detected,

please use the bug report form at the back of this manual to let us know what you learned.

243 PP Two Address Operation, r[%d] + acc = r[%d], error found. OBS r[%d] = 0x%x EXP r[%d] = 0x%x

Suspect the PP 29116, the PP 29116 RAM Address Select hardware and the path between them. Also suspect the path for micro-word bit 51 to the PP 29116 RAM Address Select hardware.

246 just tried to clear interrupts via the GP Control Reg, but the GP Status Reg %s says rupts pending. GP Status Reg: xxxx xxxx xxxx

This is a test of bit 15 in the GP Status Register. That bit indicates whether the PP microcode tried to generate a VME bus interrupt when they were disabled by the GP Control Register. It should always be cleared after a board reset, but the test detected a 1. Suspect GP Status Register chip UP1, GP Control Register chip UN3, VME Bus Interrupter chip UF4, the reset hardware and the paths among them.

248 VME Status Reg bit 15 says an interrupt is pending. VME Status Reg: xxxx xxxx xxxx

(Note that the VME Status Reg uses reverse logic, so leftmost bit 15 should be 1.

This is a test of bit 15 in the PP's VME Status Register. That bit indicates whether the PP microcode tried to generate a VME bus interrupt when they were disabled by the GP Control Register. It should always be cleared after a board reset, but the test detected a 0, not cleared. Suspect VME Status Register chip UN5, GP Control Register chip UN3, VME Bus Interrupter chip UF4 and the paths among them.

249 The PP's VME Status Register Rupt Pending bit, 15, fails to show an interrupt pending. It is supposed to be a copy of GP Status Reg bit 15, Interrupt Pending, which does show a rupt pending. GP Status Reg: xxxx xxxx xxxx VME Status Reg: xxxx xxxx xxxx xxxx (Note that the VME Status Reg uses reverse logic, so leftmost bit 15 should be 0.

Since the GP Status Register is good, suspect VME Status Register chip UN5 and the path between it and Bus Interrupter chip UF4.

250 GP Status Register: xxxx xxxx xxxx xxxx PP tried to generate a VME rupt with GP rupts disabled. That should have set GP Status Reg bit 15, Interrupt Pending, but it didn't happen.

Suspect the PP Destination hardware, GP Status Register chip UP1, VME Bus Interrupter chip UF4 and the paths among them. Note whether you also get the following lines of message:

Interestingly, the PP's VME Status Register Rupt Pending bit, 15, shows a rupt pending, and that's supposed to be a copy of GP Status Reg

bit 15, Interrupt Pending, so check on that. VME Status Reg: xxxx xxxx xxxx xxxx (Note that the VME Status Reg uses reverse logic, so leftmost bit 15 should be 0.

This narrows down the fault to GP Status Register chip UP1 and the path between it and Bus Interrupter chip UF4.

The PP's VME Status Register Rupt Pending bit, 15, also does not show an interrupt pending.

VME Status Reg: xxxx xxxx xxxx xxxx

(Note that the VME Status Reg uses reverse logic, so leftmost bit 15 should be 0.

These lines tell you to concentrate on the PP Destination hardware and its connection to Bus Interrupter chip UF4.

251 The PP's VME Status Register Rupt Pending bit, 15, fails to show an interrupt pending. It is supposed to be a copy of GP Status Reg bit 15, Interrupt Pending, so check on that. VME Status Reg: xxxx xxxx xxxx

This is a test of bit 15 in the PP's VME Status Register. That bit indicates whether the PP microcode tried to generate a VME bus interrupt when they were disabled by the GP Control Register. The test did try to generate an interrupt, but this bit did not go to zero, as it should. Suspect the PP Destination hardware, VME Status Register chip UN5, VME Bus Interrupter chip UF4 and the path among them.

252 Tried to clear the GP Status Reg bit 15, Interrupt Pending, by setting GP Control Register bit 15 Clear Interrupt. It didn't clear. GP Status Reg: xxxx xxxx xxxx xxxx

Suspect GP Status Register chip UP1, GP Control Register chip UN3, VME Bus Interrupter chip UF4 and the paths among them.

255 Exec couldn't install handler for this interrupt vector: %x (hex).

In order for the diagnostic to test the PP VME Bus Interrupter, it needed an interrupt handler for the expected vector. This message says that it got the wrong response from the diagnostic executive. Try the test again, reload and retry the test, reboot the Exec and try the test. If you still get this error code, contact Sun Customer Support.

256 VME Interrupt test tried to generate an interrupt with this vector id %d (decimal), but got no interrupt at all. GP Status Reg: xxxx xxxx xxxx xxxx

The test tried to get the GP1 to generate an interrupt over the VME bus, but that did not happen. Suspect the VME Bus Interrupter hardware, the Interrupt ID Register and their connections to the PP bus and to the VME bus.

Notice that GP Status Register bit 15, Interrupt Pending, was set. Since Grappler ENABLED interrupts, why didn't we get one?

If these lines appeared, suspect GP Control Register chip UN3.

257 Exec couldn't remove the interrupt handler.

In order for the diagnostic to test the PP VME Bus Interrupter, it needed an interrupt handler for the expected vector. This message says that it got the wrong response from the diagnostic executive when it tried to remove the interrupt handler. Try the test again, reload and retry the test, reboot the exec and try the test. If you still get this error code, contact Sun Customer Support.

260 Did a VME word write to shared memory on a byte boundary. That should have set VME Status Register bit 4, Illegal Access, but it didn't. VME Status Reg: xxxx xxxx xxxx xxxx

Suspect the VME Control Register hardware, the VME Master Address Register low byte hardware (specifically the lowest bit), the Miscellaneous VME Master Logic hardware, the VME Status Register and the paths among them.

261 Did a VME access to an undefined address modifier. Expected the VME Status Register to show a time-out error, but that didn't happen. This indicates a problem with the VME Timeout Counter.

Suspect the VME Status Register and the path between it and the VME Bus Timeout Counter hardware ("Timeout").

262 Did a VME access to an undefined address modifier. Expected the VME Status Register to show a time-out error, but it didn't. VME Status Reg: xxxx xxxx xxxx xxxx

Suspect the VME Bus Timeout Counter hardware, the VME Status Register and the path between them ("Timeout").

265 Generated vp 29116 negative condition code, but cc select logic didn't pass that signal to 2910A.

Suspect the VP 2910A and the VP Condition Code Select hardware. Also suspect the paths between the VP Instruction Register and the PP Condition Code Select hardware.

267 Generated carry, fifo not full, fifo not empty cc's. The VP. incorrectly detected a 29116 NEGATIVE cc. Check cc select logic.

Suspect the VP 2910A and the VP Condition Code Select hardware.

268 System didn't detect high bit of dreg field (microcode bit 39), programmable negation bit.

Suspect chip UE32 and the path between it and the VP Instruction Register.

269 Generated vp 29116 carry condition code, but cc select logic didn't pass that signal to 2910A.

Suspect the VP 2910A and the VP Condition Code Select hardware. Also suspect the paths between the VP Instruction Register and the PP Condition Code Select

hardware.

270 Generated negative, fifo not full, fifo not empty cc's. The VP incorrectly detected a 29116 CARRY cc. Check cc select logic.

Suspect the VP 2910A and the VP Condition Code Select hardware.

271 Generated vp 29116 zero condition code, but cc select logic didn't pass that signal to 2910A.

Suspect the VP 2910A and the VP Condition Code Select hardware. Also suspect the paths between the VP Instruction Register and the PP Condition Code Select hardware.

272 Generated carry, fifo not full, fifo not empty cc's. The VP incorrectly detected a 29116 ZERO cc. Check cc select logic.

Suspect the VP 2910A and the VP Condition Code Select hardware.

273 Generated vp 29116 overflow condition code, but cc select logic didn't pass that signal to 2910A.

Suspect the VP 2910A and the VP Condition Code Select hardware. Also suspect the paths between the VP Instruction Register and the PP Condition Code Select hardware.

274 Generated carry, fifo not full, fifo not empty cc's. The VP incorrectly detected a 29116 OVERFLOW cc. Check cc select logic.

Suspect the VP 2910A and the VP Condition Code Select hardware.

275 Moved a zero in 29116 with STATUS ENABLED. CC logic behaved as if zero cc weren't set.

Suspect the paths between the VP Instruction Register and the VP Condition Code Select hardware and between the 29116 and the VP Condition Code Select hardware.

276 Moved a zero in 29116 with status enabled; then moved a 1 with STATUS NOT ENABLED. CC logic said zero cc wasn't still set. Check cc select logic.

Suspect the paths between the VP Instruction Register and the VP Condition Code Select hardware and between the 29116 and the VP Condition Code Select hardware.

277 Grappler did a reset, which should have emptied the fifo. The VP 2010A did not detect fifo1 not full. Check cc select logic.

Suspect the reset circuitry and its path to the FIFO Synchronizer hardware and the VP 2910A and the VP Condition Code Select hardware.

278 Grappler filled the FIFO, but 2910A detected 'fifo1 not full' cc. Check cc select logic.

Suspect the FIFO Control hardware and its connections to the cc select logic.

279 Grappler cleared FIFO but the VP 2910A still detected 'fifo2 not empty' cc. Check cc select logic.

Suspect the FIFO Control hardware and its connections to the cc select logic.

280 Grappler wrote a word to FIFO, but 2910A failed to detect 'fifo2 not empty' condition code. Check cc select logic.

Suspect the FIFO Control hardware and its connections to the cc select logic.

281 Grappler forced a negative number in the floating point hardware, but the VP 2910A failed to detect 'fp negative' cc. Check cc select logic.

Suspect the Weitek ALU chip, FP status chip UA33, the cc select logic and the paths among them.

282 Grappler assured positive number in floating point hardware, but the VP 2910A detected the 'fp negative' condition code. Check cc select logic.

Suspect the Weitek ALU chip, FP status chip UA33, the cc select logic and the paths among them.

302 GB DRAM constant pattern test error found. LOC(high) = 0x%x LOC(low) = 0x%x OBS = 0x%x EXP = 0x%x

The test wrote a constant pattern to GB DRAM and the result did not compare. Suspect the GB DRAM, the PP Bus Extension Transceivers and Decoders, the GP/GB Interface Signal Decoders on the GB and the backplane of the workstation.

304 GB DRAM address unique test error found: LOC(high) = 0x%x LOC(low) = 0xhhhh OBS = 0xhhhh EXP = 0xhhhh

Suspect the Z-Buffer Address Pointer, Row/Column Address Multiplexer, Address Buffers and the paths among them.

306 GB DRAM refresh logic test error found LOC(high) = 0x%x LOC(low) = 0xhhhh OBS = 0xhhhh EXP = 0xhhhh

Suspect the GB Row/Column Address Multiplexer and Refresh Address Counter.

308 GB DRAM address test error found. LOC(high) = 0x%x LOC(low) = 0xhhhh OBS = 0xhhhh EXP = 0xhhhh

Suspect the Z-Buffer Address Pointer, Row/Column Address Multiplexer, Address Buffers and the paths among them.

310 GB DRAM Surround Disturb test error found. LOC(high) = 0x%x LOC(low) = 0x%x ACT = 0x%x EXP = 0x%x

Suspect the GB DRAM.

312 GB DRAM fill mode test error found. LOC(high) = 0x0 LOC(low) = 0xhhhh OBS = 0xhhhh EXP = 0xhhhh

Suspect the DRAM and the Fill Mode hardware.

314 GB DRAM RMW mode test error found.

Suspect the DRAM and the Fill Mode hardware.

317 GB Integer Multiplier test error found. Mode Reg = 0x1e X = 0x%x Y = 0x%x ACT result = 0x%x EXP result = 0x%x

Suspect the Multiplier hardware of the GB.

9.5. Abortion Message Interpretation. Because the diagnostics use microcode primitives heavily to stimulate the GP1 and GB hardware and carry the results to the workstation, they must abort if something is wrong with the microprocessing mechanism. These messages explain why the test aborted.

Couldn't stop the VP in order to load microcode. Try the slave reg tests.

Couldn't stop the PP in order to load microcode. Try the slave reg tests.

The microstore will not accept microcode from the workstation unless both microprocessors are halted. The test failed to detect the halted condition for the named processor, as shown in the GP Status Register. Suspect the GP Status Register, the GP Control Register and the Run/Halt hardware.

Couldn't start the VP after loading microcode. Try the slave reg tests.

Couldn't start the PP after loading microcode. Try the slave reg tests.

The test could not detect the started condition of the named processor, as shown in the GP Status register. It starts a processor using a bit in the GP Control Register. Suspect the GP Status Register, the GP Control Register and the Run/Halt hardware.

Couldn't initialize the VP status reg prior to loading microcode.

Couldn't initialize the PP status reg prior to loading microcode.

The test always loads and starts a primitive which sets the processor's status register to a known pattern before it loads the requested primitive. This message says that the initializing primitive failed to do its job. Suspect the GP Status Register, the GP Control Register, the Run/Halt hardware and microstore.

Couldn't verify microcode after loading. Try the slave microstore tests.

The test wrote the microcode primitive to microstore, then read it back for verification and found an error. Suspect the microstore RAM and its connection to VME.

Couldn't modify microcode. Try running the slave microstore tests.

The test needed to modify some part of microcode after loading and verifying it. This message said that the modification process failed. Suspect the Microstore Address Register and Data Register.

Couldn't enable interrupts via the GP Control Register, according to the GP Status Register. Try the slave reg tests.

The message is self-explanatory. Suspect the GP Status and Control Registers.

Couldn't disable interrupts via the GP Control Register, according to the GP Status Register. Try the slave reg tests.

The message is self-explanatory. Suspect the GP Status and Control Registers.

Couldn't clear the VME interrupt bit via the GP Control Register, according to the GP Status Register. Try the slave reg tests.

Suspect GP Status Register chip UP1, GP Control Register chip UN3, VME Bus Interrupter chip UF4 and the paths among them.

Wanted the PP test to pass some data via the FIFO, but microcode found the fifo to be full. Try running FIFO test.

The test always tries to clear the FIFO before using it for data transfer by doing a control register reset. Suspect the reset hardware and the FIFO hardware.

VP tried to write data to the FIFO, but unexpectedly got FIFO full signal.

Suspect the FIFO hardware.

CPU tried to write data to the color board as a test setup, but when it read it back, that data wasn't there. Try running the test again; but in any case, don't blame the GP.

In order to test the highest bits of the VME Address Counter, the test needs the color frame buffer board. If the test believes that that board is not installed, it puts out a message and continues. This message says that the test thinks the color board is installed, but it couldn't reliably write to it as a bus slave. The test did not yet involve the GP in this process. Suspect the workstation CPU, the color board or the backplane.

•

Sun-2 and Sun-3 Keyboard Diagnostic

Sun-2 and Sun-3 Keyboard Diagnostic	191
· ·	
10.1. Requirements	191
10.2. Description	191

.

10

Sun-2 and Sun-3 Keyboard Diagnostic

The keyboard test program runs under the SunDiagnostic Executive. It tests the
functionality of the keyboard on Sun-2 and Sun-3 systems.10.1. RequirementsThe diagnostic requires a standard Sun monitor or a 1024 x 1024 monitor, and a
standard keyboard.
The test takes about 3 minutes, and requires the operator to participate.10.2. DescriptionTo use the diagnostic:
Enter k from the diagnostics menu.
When the diagnostic starts, it clears the screen, then displays a drawing of a key-
board. The example below depicts the Sun-3 keyboard layout.

Figure 10-1 Sun-3 Keyboard Display

Starting at the upper left-hand corner of the keyboard, press every key in sequence, going from left to right. Start with L1 on the left, then type across to R3 on the right.

As you press each key, the image of that key on the screen should change from solid to ''hash-marked'', while the idle indicator (the square in the upper left corner) should disappear. When you release the key, the image of that key should turn white and the idle indicator should reappear.

Continue this sequence from left to right on each row, working from the top row down to the bottom.

If you press a key out of sequence, the beeper sounds, the idle indicator disappears, and the image of the key changes from dark to striped. When you release it, the image returns to dark and the idle indicator reappears. Press the correct key (the next dark one in the display) to continue the test.

If you want to discontinue key testing, press the <u>Control</u> key and the C key simultaneously (Control-C). The keyboard test will abort and you may then perform the click test (if applicable).

NOTE Key click is a feature of Sun-3 workstations only.

After you press the last key, this message (for Sun-2's) appears:

Audio Annunciator Test: BEEP! BEEP! BEEP! Keyboard Test Complete

Or, for Sun-3's, this display appears, and the bell should sound three times:

Audio Annunciator Test: BEEP! BEEP! BEEP! Key Click Test: Type keys and check for click, <ESC> to continue to next test (type keys and listen for click) Key No-Click Test: Type keys and check for NO click, <ESC> to continue to next test (type keys and listen for click) Keyboard Test Complete

NOTE Keyboard click can be disabled through an EEPROM parameter entry (refer to the PROM User's Manual for more information.)

The following signs indicate a damaged keyboard:

□ The diagnostic displays an error message such as

KB DETECTED ERROR

or

UNKNOWN KEYCODE ERROR

- The idle indicator does not appear in the upper left corner of the display.
- Any key on the display fails to change from dark to striped to clear when you press it in the correct sequence.
- □ The bell does not sound.

If the test fails to acknowledge a key, and you are unable to continue the test, abort it by entering a Control-C (press the <u>Control</u> key and hold it down while pressing the c key) from an alternate Exec console, or by cycling the power on the test system.

If the keyboard proves defective, replace it.

CAUTION To avoid damage to components, power-down the system before installing or removing a keyboard.

11

MCP/ALM2 Diagnostic

MCP/ALM2 Diagnostic	197
. 11.1. Introduction	197
11.2. Hardware Requirements	197
11.3. Limitations	200
11.4. Operating Instructions	200
11.5. The User Interface	200
11.6. Error Handling	204
11.7. Message Interpretation And Failure Analysis.	205
11.8. Status In DEVVEC Patterns	219
11.9. Glossary	220
.

11

MCP/ALM2 Diagnostic

11.1. Introduction	The Sun Multiprotocol Communications Processor has circuitry that provides up to 16 serial ports and one parallel port on a Sun workstation. Twelve of the serial ports are asynchronous only and four of them are either asynchronous or synchronous; two of those four support baud rates up to 230K, full duplex. Two configurations of this board are available: one with four synchronous serial ports and no printer port, called MCP, and the other with sixteen asynchronous serial ports and one parallel printer port, called the ALM-2.
11.2. Hardware Requirements	To run this diagnostic, you need a Sun workstation with at least one Sun ALM- 2/MCP installed. Certain of the tests need loopback connectors fitted to the ports.
	You don't need (or want) any external device hooked up to the ALM-2/MCP board while running these tests.
Loopback Connectors	A diagnostic program must test as many of a board's components as possible, which means, in the case of this Multi-Port Communication board, testing all of the port line drivers, receivers and handshaking circuits. One way to do this is to have some programmed processors attached to those ports, behaving in an expected way when the diagnostic tries to communicate. A simpler and less expensive way is to connect the ports so that the data going out a port comes right back into it, or to connect one port to another one, which is what loopback connectors do.
	For manufacturing Final Test, an entire workstation is configured with the parts that the customer ordered. In that case, the loopback configuration will be pairs of RS-232/449 connectors or single connectors in the sockets provided with the board.
	All of the following figures show the pins as they are on the external DB25 or DB50 sockets, which are the ones that the customer uses. The ALM2 and MCP boards are functionally similar, but have different connectors, as indicated in this text.
	The ribbon connector on the ALM-2 board that provides RS232 signals is called J6. Note that, due to the fact that the MCP board has synchronous ports only, these signals are not available on that board. The figure below shows the RS232 signals on the asynchronous-only ports, with their DB25 pin numbers. <i>From Pin</i> and <i>To Pin</i> indicates which output signals the diagnostic expects to be looped

197

back to which inputs, in either a single loopback or loopback pair fixture.

Figure 11-1 RS-232 Loopback Signals, Asynchronous-only Ports

Signal	From Pin	To Pin	Signal
Chassis Ground	1		
Transmitted Data	2	3	Received Data
Data Terminal Ready	20	8	Data Carrier Detect
Signal Ground	7		

The figure below shows the RS232 signals on the synchronous-only ports with their DB25 pin numbers. The ribbon connector that provides these signals is J5 on the ALM2 board.

Figure 11-2	RS-232 Loo	pback Signals,	Synchronous	Ports

Signal	From Pin	To Pin	Signal
Chassis Ground	1		
Transmitted Data	2	3	Received Data
Received Data Clock	17	24	Transmitted Data Clock Out
Data Terminal Ready	20	8	Data Carrier Detect
Data Carrier Detect	8	6	Data Set Ready
Request To Send	4	5	Clear To Send
Signal Ground	7		

The following figure shows the RS232 signals on synchronous/asynchronous port 0 with the DB50 pin numbers. Ports 0 through 3 are synchronous/asynchronous ports on the MCP board. Please note that although this illustration seems to indicate a single port looping back to itself, you may also use these signals in paired cables. On the MCP version of the board, synchronous RS232 signals are available on ribbon cable connectors J9 and J11.

Figure 11-3 RS232 Loopback Signals, Synchronous/Asynchronous Ports

Signal	From Pin	To Pin	Signal
Transmitted Data	26	2	Received Data
Received Data Clock	18	1 (on J4)	Transmitted Data Clock Out
Data Terminal Ready	3	27	Data Carrier Detect
Data Carrier Detect	27	17	Data Set Ready
Request to Send	16	40	Clear to Send

Note that, on the MCP board, channels 0 and 1 may be configured as either RS232 or RS449 ports. Either jumper J1501 or J1502 is installed, depending on which type of signal is selected. (They are labeled accordingly.) This diagnostic requires the MCP board to be jumpered as RS449 and the ALM2 board to be jumpered for RS232 operation. The figure below shows the RS449 signals on the two possible MCP RS449 synchronous ports, with their DB37 differential paired pin numbers. On the ALM2 board, these signals are provided through ribbon

cable connector J4. On the MCP board, RS449 signals are available on J8 and J10.

Figure 11-4 RS449 Loopback Signals, The Two RS449 Synchronous Ports

SIGNAL	P	IN
	+	-
SHIELD	1	
SEND DATA	22	4
RECEIVE DATA	24	6
TERMINAL TIMING	35	17
RECEIVE TIMING	26	8
TERMINAL READY	30	12
RECEIVER READY	31	13
DATA MODE	29	11
REQUEST TO SEND	25	7
CLEAR TO SEND	27	9
SIGNAL GROUND	19	

The next figure shows the parallel printer port signals on the DB25 plug, with their loopback connections for the Manufacturing, non-printer environment. It connects all of the even-numbered data outputs to the PE status input and all the odd-numbered data outputs to the SLCT status input. This will cover a case where two adjacent pins are shorted together.

Note that the printer port is available only on the ALM2 board. The printer connector on the ALM2 board is J7.

Figure 11-5 Parallel Printer Port Signals, DB25 Plug With Loopback

SIGNAL	PIN
DATA BIT 1	2
DATA BIT 2	3
DATA BIT 3	4
DATA BIT 4	5
DATA BIT 5	6 —
DATA BIT 6	7
DATA BIT 7	8
DATA BIT 8	9
PAPER EMPTY (PE)	12_
SLCT	13
DATA STROBE	1
DATA ACKNOWLEDGE (A	ск) 10 🔟
GROUND	18-24

11.3. Limitations	This diagnostic does not name failing parts of the board. It displays actual and expected values during each test. Refer to the section showing error messages for tips on how to interpret them and locate hardware faults.
11.4. Operating	Read Chapter 2 for information on how to start up the SunDiagnostic Executive.
Loading And Starting	From the Diagnostics menu of the Executive, select the MCP/ALM2 diagnostic. The Exec will load it and display its first menu.
11.5. The User Interface	The user interface consists mostly of menus, and sometimes the program asks you some simple questions. Use the command line language outlined in Chapter 2 to interact with the MCP/ALM2 diagnostic.
Recommended Test Procedure	If you are testing a fresh ALM-2/MCP that was never used or tested before, load this diagnostic and select each test from each of the three menus. Watch for error messages.
	If you are confident that the board is good and just want to verify that fact, install the board into a workstation, install the loopback fixtures, load the MCP/ALM2 diagnostic and select these tests:
	Common RAM. Line Drivers and Receivers. DTR and DCD. RTS and CTS. Printer Port Loopback. Baud Rate Accuracy. X-Off Function. SCC Interrupt Vectors. CIO EOP Interrupt Vectors. CIO DSR Interrupt Vectors. Multiport.
	To run every test repeatedly, select the Exec's Options menu, then choose a Pass = number from that menu. Then select the Diagnostic menu and the MCP/ALM2 diagnostic. Select the ALM-2 or MCP board and use DLF to describe the loopback fixtures. Now select DEF from the basic test menu. That will run every MCP/ALM2 test for as many times as you selected in the Exec

Pass= option.

The Main Menu

The first menu you see after choosing the MCP/ALM2 diagnostic from the Executive presents a choice of four possible boards to test, showing their physical addresses as expected by the diagnostic. This menu also lets you choose whether or not the test should halt when it finds an error. An example of the main menu is shown below:

Ное	Halt On Error. [current]
GOe	Go On Error (don't halt).
Α	Test Board 0. Phys address hex 01000000
В	Test Board 1. Phys address hex 01010000
С	Test Board 2. Phys address hex 01020000
D	Test Board 3. Phys address hex 01030000
Va	Show Virtual Addrsses.
BA=	Baud Rate (300, 1200, 2400, 9600, 19200, 38400). [currently 38400]

Please note that you must set DIP switches on the ALM-2/MCP board(s) you are testing to match the physical address(es) in this menu (refer to the following figure).

+----+ | = | The highest 8 bits of a 32-bit | = = = = = | physical address (showing 01). +----+ | = = = | The next highest 8 bits of a 32-bit | = = = = = | physical address (showing 03). +----+

The previous example shows the DIP switches set for physical address 0x01030000.

NOTE Note that you are looking at the ALM-2/MCP board "upside-down," with the three VMEbus connectors on your left and the ports on your right.

The Show Virtual Addresses selection is intended for use in debugging. It tells you what virtual address the diagnostic executive has given to certain addressable parts of the ALM-2/MCP.

The Baud Rate Selector enables you to force the diagnostic to use a baud rate different than the pre-selected default in the program, which is 38,400 characters per second.

The Basic Test Menu

After you have selected one of the physical boards to test, the diagnostic will try to open it for testing. It it succeeded, the test will display a menu such as this:

M	Manufacturing Board Test Defaults.
DLF	Describe Loopback Fixtures.
DEF	Default Tests. Enter "?" for the list.
Dev	DEVCTL Register Test.
Int	Interrupt Vector Register Test.
Ram	Common RAM Test.
Xof	X-Off File Test.
Fif	FIFO Test.
DMa	DMA Chip Addressing, Data Test.
Scc	SCC Chip Addressing, Data Test.
SL	Scope Loops.
• MT	More Tests.

Test Menu SL Option Choosing the SL option allows you to run scope loops. The tests under this option are designed so that the software performs the requested test within an infinite loop to facilitate hardware debugging. The only way to exit the infinite loop is to press <u>Control-C</u>.

Test Menu DLF OptionBecause the diagnostic must be flexible enough to run under variable circumstances, it allows you to tell it how the ports are set up. Choose DLF from
the basic test menu to give the diagnostic the details on how you have the board
under test configured. Selecting DLF display the menu shown below:

Μ	Manufacturing Defaults (MCP + ALM-2, printer plug).
Pairs	8 ALM pair cables.
All	16 ALM single plugs.
MDf	MCP Pairs with RS449 types on ports 0-1.
MDT	MCP Pairs with RS232 types on ports 0-1.
MPf	MCP Plugs with RS449 types on ports 0,1.
MPT	MCP Plugs with RS232 types on ports 0,1.
None	only use internal loopback tests.
MIxed	prompt me for details.
RP	A Real Printer is plugged in (default, except under M).
PL	A Printer Loopback plug is in.
S	Show loopback Configuration.

M selects a default configuration to be used in manufacturing to test the ALM-2/MCP. It has all 16 RS232 ports paired, with port 0 paired with port 1, port 2 paired with port 3, and continuing that way for all ports. It also simultaneously pairs the two ports 0 and 1 as RS449 ports. The RS449 signal drivers and receivers are separate on the board from the ones for RS232, making this possible.

The Manufacturing default also tells the diagnostic that the parallel printer port has its special loopback connector installed in place of a real printer.

Pairs and All

Pairs and All are two ways to configure the board with asynchronousonly loopbacks. That is why they are called ALM configurations, rather than MCP.

The four MCP choices allow you to tell the diagnostic that the board under test is configured as an MCP; i.e. it has only four ports, which are intended to be synchronous, but which can also be asynchronous. The diagnostic knows that only those four ports can have any kind of loopback fixture, and your selection from this menu tells it which kind.

If you select item **MT** from the Basic Menu, the diagnostic will display the Middle Menu, shown below.

A	Async Data Flow Test. (Uses internal loopback.)
S	Sync Data Flow Test. (Uses internal loopback.)
D	DMA Addressing Test. (Uses internal loopback.)
L	Line Drivers, Receivers Test. (Needs loopback.)
DT	DTR And DCD Control Test. (Needs loopback.)
R	RTS And CTS Control Test. (Needs loopback.)
RP	Real Printer Test. (Needs a real printer.)
PL	Printer port Loopback Test. (Needs printer port loopback plug.)
MT	More Tests.

The Advanced Test Menu

The Middle Test Menu

If you select item **MT** from the Middle Menu, the diagnostic displays the Advanced Menu, shown below.

Testing Board 0 at 38400 baud.

В	Baud Rate Accuracy Test. (Uses internal loopback.)
x	X-Off Function Test. (Uses internal loopback.)
S	SCC Interrupt Vectors Test. (Uses internal loopback.)
F	CIO FIFO Interrupt Vectors Test. (Uses internal loopback.)
Е	CIO EOP Interrupt Vectors Test. (Uses internal loopback.)
D	CIO DSR Interrupt Vectors Test. (Needs MCP loopback fixtures.)
v	VME Interrupts from SCC, CIO. (Uses internal loopback.)
М	Multiport Test. (Uses internal loopback.)

11.6. Error Handling

The main menu of the ALM-2/MCP diagnostic gives you a chance to tell it whether you want it to stop testing when it finds a hardware fault. The default is to keep going. If you do not halt on error, you will probably see more error messages. These might help you determine where the problem lies, but it could also add confusion. Later tests expect the hardware tested earlier to be good, so their messages could mislead you to the wrong area of the board.

11.7. Message Interpretation And Failure Analysis.

Messages from the ALM-2/MCP diagnostic have a number at the beginning, which helps you find their descriptions in this text.

A percent (%) sign in the examples below indicates how the value will be presented under running conditions.

```
%d a decimal value (0's - 9's).
%x a hexadecimal value (0's - f's).
%b a binary value (0's and 1's).
```

Following is a list of possible test messages and their meaning:

2 Tried to set all bits of port p DEVCTL reg. Obs: %b Exp: %b

The test tried to set every bit in the given port's DEVCTL register to a 1, but one or more showed a 0. (The DEVCTL hardware is on sheet 5 of the ALM-2/MCP Schematics. It is not organized as you might expect, with one register for each port. Instead, it is organized by the functions of the individual bits.)

3 DEVCTL reg port p Observed %b Expected %b

A walking 1's test tried to write a single 1 to the DEVCTL register and a zero to the others. The test showed each bit of the DEVCTL register for the given port, where one or more of the bits was wrong.

4 DEVCTL reg port p Observed %b Expected %b

Same as above, only the test was a walking zeros test.

9 Interrupt Vector Register Observed %b Expected %b

The Interrupt Vector Register test tried a bit pattern that mis-compared. The Ivec Reg is on sheet 5 of the schematics.

10 Common RAM byte address test. Address %x Observed %x Expected %x

Software can address the ALM-2/MCP's common RAM as bytes, 16-bit words or 32-bit words. This message says that a byte-addressing test, using addressunique patterns, found a mis-compare. An addressing failure could be a failing chip or broken or shorted address lines to a common RAM chip.

11 Common RAM 16-bit word address test. Address %x Observed %x Expected %x

A 16-bit word-addressing test, using address-unique patterns, found a miscompare. An addressing failure could be a failing chip or broken or shorted address lines to a common RAM chip.

12 Common RAM 32-bit word address test. Address %x Observed %x Expected %x

A 32-bit word-addressing test, using address-unique patterns, found a miscompare. An addressing failure could be a failing chip or broken or shorted address lines to a common RAM chip.

13 Common RAM pattern Read-After-Write. Address %x Observed %x Expected %x

This message came from a test that wrote a pattern to a common RAM address and immediately read it back before going on to the next address. This test will catch a RAM chip that is slow to store a pattern for correct readback.

15 X-Off File Addressing. Port %d Observed %x Expected %x

The X-Off File holds one byte per ALM-2/MCP port. The message above came from an address-unique pattern test. X-Off hardware is on sheet 7 of the schematics.

16 X-Off File Zero Data. Port %d Observed %x Expected 0

The test tried to write zeros to every address of the X-Off file, but the location for the named port showed a wrong pattern.

17 X-Off File Walk-1. Port %d Observed %b Expected %b

The diagnostic found a problem with a location in the X-Off file during a walking-1's test.

18 X-Off File Walk-0. Port %d Observed %b Expected %b

The diagnostic found a problem with a location in the X-Off file during a walking-0's test.

19 Board reset failed to clear FIFO. FIFO word 0x %x Obs %x Exp ffff

After signaling a software reset to the ALM-2/MCP, a reading of the FIFO address should result in sixteen 1's (ffff). The test received some other result, as shown in the message. Suspect the FIFO controller, shown on schematic sheet 7.

20 FIFO Write/Read test. Observed %x Expected %x

The test tried writing a pattern to the FIFO then immediately reading it back. Suspect either the FIFO controller, shown on schematic schematic sheet 7, or the FIFO itself, which is in some of the common RAM chips on sheet 9.

21 FIFO Addressing Test. FIFO word %x Obs %x Exp %x

The test wrote unique patterns into every location of the FIFO, then began reading the FIFO. The miscompare could be due to a bad common RAM chip, the FIFO controller, the common RAM decoder on sheet 4, or, perhaps, a bad address line.

22 FIFO Pattern Test. FIFO word %x Obs %x Exp %x

This test tried to find pattern-sensitive faults of the FIFO memory (common RAM).

24 FIFO Random Test. FIFO word %x Obs %x Exp %x

This test used random patterns to detect FIFO faults.

25 DMA Chip Addressing. Chip %d Channel %d Obs %x Exp %x

The test addressed the DMA chips, writing a unique pattern to each one. When it tried to read them back, it got a wrong value. Suspect the VME addressing hardware on schematic sheet 2, the device decoding hardware on sheet 4 or the chip itself.

27 DMA Chip Data. Chip %d Observed %x Expected %x

The test went to each DMA chip and tested it for holding all possible patterns. Suspect the chip or the data lines.

29 SCC Chip Address. Port %d Observed %x Expected %x

The test addressed the SCC chips, writing a unique pattern to each one. When it tried to read them back, it got a wrong value. Suspect the VME addressing hardware on sheet 2, the device decoding hardware on sheet 4 or the chip itself. Each chip is responsible for two ports, with chip channel A being the odd-numbered port and chip channel B being the even-numbered port. So, for example, chip 0's channel B is for port 0 and channel A is port 1.

30 SCC Chip Data. Port %d Observed %x Expected %x

The test went to each SCC chip and tested it for holding all possible patterns. Suspect the chip or the data lines. Each chip is responsible for two ports, with chip channel A being the odd-numbered port and chip channel B being the evennumbered port. So, for example, chip 0's channel B is for port 0 and channel A is port 1.

50 SCC Async Data Test Setup. FIFO Data: %x Expected ffff.

The test tried to empty the FIFO by reading its address more times than its size. Then, after another FIFO read, it did not get the expected 16 1's result.

51 SCC Async Data. Read %d (dec) bytes, then FIFO showed empty. Internal loopback on port %d.

52 SCC Async Data. Observed port in FIFO: %d Port actually used: %d Count of FIFO reads (hex): %x

When software reads the 16 bits at the FIFO address, the low byte is a byte received by one of the serial ports. The high byte is supposed to show the number of the port that received that byte. Error message 52 says that the port number in the high byte is wrong. Suspect the async receive controllers on schematic sheet 6 or the FIFO port address buffers on sheet 7.

53 SCC Async Data. Observed %x Expected %x; FIFO read count (hex) %x.

This messages says that the received data in the FIFO does not match the transmitted data. Suspect the appropriate SCC chip, the FIFO (common) RAM or the data path between them.

55 Sync Data Port %d. Timeout before EOP from DMA controller.

The test waits for a certain amount of time for a block of data to move to common RAM. This says that the synchronous receiver's DMA controller did not get to its final byte count in the time allowed. Suspect the SCC, the transmitter DMA controller, the receiver DMA controller and the paths among them. Of course if the test is set to continue on error, you will also get the next message showing a data miscomparison.

56 SCC Sync Data Port %d. Rcv CRAM Addr %x Observed %x Expected %x

The Synchronous Data test moved data from the receiving SCC into common RAM, then compared with expected. Suspect the appropriate SCC chip the common RAM and the data path between them.

60 DMA Addressing Test Setup. FIFO Data: %x Expected ffff.

The test tried to empty the FIFO by reading its address more times than its size. Then, after another FIFO read, it did not get the expected 16 1's result.

61 DMA Addressing. Read %d (dec) bytes, then FIFO showed empty. Internal loopback on port %d

The test was reading the FIFO in order to check for correct data, when it unexpectedly got the FIFO Empty signal from the FIFO controller. Suspect the FIFO controller, but it could be bad clocking in the SCC's, too.

62 DMA Addressing. Observed port in FIFO: %d Port actually used: %d

When software reads the 16 bits at the FIFO address, the low byte is a byte received by one of the serial ports. The high byte is supposed to show the number of the port that received that byte. The message says that the port number in the high byte is wrong. Suspect the async receive controllers on schematic sheet 6 or the FIFO port address buffers on sheet 7.

63 DMA Addressing. Port %d byte %x Observed %x Expected %x

The test used different data in each address of common RAM, to verify that the port's DMA controller can correctly address it. Suspect the port's DMA controller chip, common RAM and the addressing lines between them.

64 DMA Addressing, port %d. Timeout before EOP from DMA controller.

The test waits for a certain amount of time for a block of data to move to common RAM. This says that the synchronous receiver's DMA controller did not get to its final byte count in the time allowed. Suspect the SCC, the transmitter DMA controller, the receiver DMA controller and the paths among them. Of course, if the test is set to continue on error, you will also get the next message showing a data miscomparison.

65 DMA Addressing, sync receive data, Port %d. Address %x Observed %x Expected %x

This message shows the address in common RAM to which the receiving SCC, via DMA, wrote the observed byte. Suspect the receiving DMA controller, if the transmitting DMA controller for the same port worked in the async test, which already ran.

70 Line Driver & Receiver Test Setup. FIFO Data: %x Expected ffff.

The test tried to empty the FIFO by reading its address more times than its size. Then, after another FIFO read, it did not get the expected 16 1's result.

71 Line Driver/Receiver. Unexpected FIFO Empty pattern. Transmitting port %d

The test was reading the FIFO for received data, expecting it to come from the named port. Instead it got the FIFO empty reading, sixteen 1's. Suspect the port's SCC, its transmit DMA controller, and the FIFO port address buffers.

72 Line Driver/Receiver. Observed port in FIFO: %d Port actually used: %d

When software reads the 16 bits at the FIFO address, the low byte is a byte received by one of the serial ports. The high byte is supposed to show the number of the port that received that byte. This says that the port number in the high byte is wrong. Suspect the async receive controllers on sheet 6 or the FIFO port address buffers on sheet 7.

73 Line Driver/Receiver. Xmit port %x Rcv port %x Observed %x Expected %x

If the same port passed the DMA Addressing test, this message indicates either a bad line driver of the transmitting port or a bad line receiver of the receiving port (depending on your loopback configuration, these could be the same port).

74 Line Drive & Receive, port %d. Timeout before EOP from DMA controller. (Using the port's RSXXX hardware.)

The test waits for a certain amount of time for a block of data to move to common RAM. This message says that the synchronous receiver's DMA controller did not get to its final byte count in the time allowed. Suspect the SCC, the transmitter DMA controller, the receiver DMA controller and the paths among them. Of course, if the test is set to continue on error, you will also get the next message showing a data miscomparison.

The line about the RSXXX hardware only shows up for messages concerning port 0 or 1, which could have either RS232 or RS449. All of the other ports have RS232 hardware.

75 Line Drive & Receiver Sync data, sending port %d receiving port %d. Address %x Observed %x Expected %x (Using the port's RSXXX hardware.)

If the same port passed the DMA Addressing test in sync mode, this message indicates either a bad line driver of the transmitting port or a bad line receiver of the receiving port (depending on your loopback configuration, these could be the same port).

The line about the RSXXX hardware only shows up for messages concerning port 0 or 1, which could have either RS232 or RS449. All of the other ports have RS232 hardware.

76 The port(s) not tested (no loopback):

You get this message if any port did not have a loopback fixture on it.

80 DTR/DCD Control Test. Port %x sent DTR but port %x didn't see DCD.

This handshake signal test indicates either the transmitting port's DTR line driver is bad or the receiving port's DCD receiver is bad. Depending on your loopback fixture, the two ports could be the same.

81 DTR/DCD Control Test. Port %x turned off DTR but port %x still saw DCD.

The DEVCTL hardware that controls DTR could be bad, the DTR line driver or DCD receiver could be bad, or the receiving port's SCC could be bad. Bit first, suspect the path between the DCD input line and the receiving port's SCC input.

90 RTS/CTS Control Test. Port %x sent RTS but port %x didn't see CTS. Port was tested with RSXXX hardware.

Another handshake signal test. The ALM-2/MCP design only implements these signals on the synchronous ports, 0-3. So make sure you have the suitable loop-back plug or pair on those ports. An async-only loopback plug or pair cable will not carry this signal. The transmitting port's SCC sends RTS, the receiving port's SCC receives CTS. Check the SCC's, the RTS driver and the CTS receiver.

The line about RSXXX hardware only shows up for messages concerning port 0 or 1, which could have either RS232 or RS449. Ports 2 and 3 have RS232 hardware.

91 RTS/CTS Control Test. Port %x turned off RTS but port %x still saw CTS. Port was tested with RSXXX hardware.

See the hint about a suitable loopback fixture under 90, above. Maybe a path between the CTS receiver and the receiving SCC is open or shorted to something. The RTS output path could be shorted, too.

The line about RSXXX hardware only shows up for messages concerning port 0 or 1, which could have either RS232 or RS449. Ports 2 and 3 have RS232 hardware.

92 The synchronous port(s) not tested (no loopback):

If you had told the diagnostic, through the DLF option on the first test menu, that some port(s) did not have any loopback fixture, this message reminds you that the test did not cover some hardware.

100 Real Printer test can't work unless you have a real printer. Use the DLF option to notify me that you have one installed.

The Real Printer test gave this message because it believes that you do not have a real printer plugged into the parallel printer port. Go back to the basic menu and select DLF. Then choose the RP option, so that the software will understand that you really do have a real printer plugged in.

101 Real Printer Test detects Paper Empty signal in the CIO. Aborted.

The test detected the Paper Empty signal on the parallel printer port. Either the printer is missing paper, the paper was installed badly, the printer is not turned on, the printer cable is broken or the ALM-2/MCP hardware is bad. Among the ALM-2/MCP hardware, suspect chip u709 or the CIO or the path between them and to the printer port.

102 Real Printer Test doesn't see SLCT signal in the CIO. Aborted.

The SLCT signal comes from the real printer when you "select" the printer. Typically, the button is labeled "On Line." See the discussion for the Paper Empty signal, above.

110 Printer Port Loopback test can't work unless you have a loopback plug on that port. Use the DLF option to notify me that you have one installed.

You have selected the Printer Loopback test, but the diagnostic believes that you do not have a looopback plugged into the parallel printer port.

111 Printer Port Loopback test. Asserted all 1's on data lines but failed to get expected PE status signal.

The printer loopback test relies on the special loopback plug doing things with the data lines and the status lines. See the section on loopback fixtures at the beginning of this chapter. This message says that, with all 1's on the data lines, the CIO should have detected the PE signal.

112 Printer Port Loopback test. Asserted all 1's on data lines but failed to get expected SLCT status signal.

The printer loopback test relies on the special loopback plug doing things with the data lines and the status lines. See the section on loopback fixtures later in this document. This messages says that, with all 1's on the data lines, the CIO should have detected the SLCT signal.

113 Printer Port Loopback test. Sent pattern %x; got unexpected PE.

Because of the nature of the printer loopback plug and the status detection hardware, the given pattern should not have caused the CIO to detect the PE signal, but that did happen. Suspect one of the printer data lines, the printer data buffer u711, the printer data line drivers u712 or u713, u709 or the CIO chip.

114 Printer Port Loopback test. Sent pattern %x; failed to detect SLCT.

Because of the nature of the printer loopback plug and the status detection hardware, the given pattern should not have caused the CIO to detect the SLCT signal, but that did happen. Suspect one of the printer data lines, the printer data buffer u711, the printer data line drivers u712 or u713, u709 or the CIO chip.

115 Printer Port Loopback test. Sent pattern %x; got unexpected SLCT.

Because of the nature of the printer loopback plug and the status detection hardware, the given pattern should not have caused the CIO to detect the SLCT signal, but that did happen. Suspect one of the printer data lines, the printer data buffer u711, the printer data line drivers u712 or u713, u709 or the CIO chip.

116 Printer Port Loopback test. Sent pattern %x; failed to get PE.

Because of the nature of the printer loopback plug and the status detection hardware, the given pattern should not have caused the CIO to detect the PE signal, but that did happen. Suspect one of the printer data lines, the printer data buffer u711, the printer data line drivers u712 or u713, u709 or the CIO chip.

200 SCC Interrupt Vector Test. After mcp reset, DEVVEC = %x; expected ff.

After a reset of the ALM-2/MCP board, a reading of the address of DEVVEC should get eight 1's (hex ff). This test found something else, as reported. DEV-VEC comes form the CIO and every SCC. One of those chips failed to reset properly or software cannot properly read the DEVVEC location. Suspect the SCC and CIO chips and u405, the device decode2 PAL, as well as the paths among them.

201 SCC Interrupt Vector Test. Exp vector %x from chip %d; obs %x on DEVVEC

The test tried to cause the named SCC chip to generate a vector for DEVVEC, but it read a different vector at DEVVEC's address. If the observed vector is ff, you will see one of these follow-up lines:

Check the IEI/IEO connection between chip %d and chip %d. or

Check that the IEI input of this chip is pulled up.

Priority is determined by the daisy chained Interrupt Enable signal going from the IEO output of one chip to the IEI input of the next one. Chip 0 has the highest priority, going down to chip 7 the lowest of the SCC chips, and the CIO chip lower still. If that daisy chain is broken, every chip after the break in the daisy chain would not be able to put its vector out to DEVVEC, so the observed vector would be ff, the sign of no vector.

The vector is supposed to equal the SCC chip number. So if the observed number is higher than the expected number, that means the named chip did not generate its vector at all. Suspect that SCC chip. If the observed vector is aa, bb or cc, the vector came from the CIO, whose vectors were supposed to be disabled. You should never see such a vector, but if you do the named chip should be the highest SCC chip. Suspect it and the CIO both.

210 FIFO Signal Test. After a board reset, CIO fails to show FIFO empty.

The test expected a FIFO empty signal from the CIO after an ALM-2/MCP reset. So suspect either the FIFO controller, the CIO or the path between them.

211 FIFO Signal Test. Incorrect vector after FIFO not empty condition. Observed vector %x Expected vector %x.

The test installed the expected vector in the CIO port A, but DEVVEC showed a different value. Suspect the FIFO controller, the CIO chip and the paths between them.

212 FIFO Signal Test. Moved %d bytes into the FIFO but CIO still says empty.

Suspect the FIFO controller, the CIO chip and the paths between them.

213 FIFO Signal Test moved %d words into the FIFO, which should not generate an interrupt, but DEVVEC showed this vector: %x

The test moved some words into the FIFO, but not enough to cause it to be halffull. Nevertheless, the CIO did try to generate some kind of interrupt. See the section titled *Status in DEVVEC Patterns* if you want to interpret the vector. Suspect the FIFO controller, the CIO chip and the paths between them.

214 FIFO Signals. Move bytes to FIFO till half full. Obs %d bytes, Exp %d

The test thought it knew how many bytes it would take to make the FIFO half full, but the CIO generated a DEVVEC interrupt vector unexpectedly. If the vector is the one expected for the half-full condition, the test puts out this follow-up line:

Vector was correct for half-full condition.

Suspect the FIFO controller for the incorrect number of bytes causing the FIFO-Half-Full condition. See the section titled *Status in DEVVEC Patterns* if you want to interpret the vector.

If the vector was not the one for the half-full condition, the test puts out this follow-up line:

Observed vector %x Expected FIFO-half-full vector %x.

A different vector means something besides the FIFO-Half-Full condition caused the CIO or an SCC chip to put out the vector. The CIO has three "ports," A, B and C. If the vector was from the CIO, the high byte of the vector will be one of those letters. If the vector is from an SCC, it will be the SCC chip number. Suspect that chip. See the section called *Status in DEVVEC Patterns* if you want to interpret the vector.

215 FIFO Signal Test. Incorrect vector after FIFO half full condition. Observed vector %x Expected vector %x.

This message means that the test moved the number of bytes into the FIFO necessary to make it half full, but the resulting vector in DEVVEC was not the expected one. The CIO has three "ports," A, B and C. If the vector was from the CIO, the high byte of the vector will be one of those letters. If the vector is from an SCC, it will be the SCC chip number. Suspect that chip. See the section called *Status in DEVVEC Patterns* if you want to interpret the vector with more detail.

216 FIFO Signals. Moved bytes to FIFO till full. Obs %d bytes, Exp %d.

The test moved 16-bit words into the FIFO, checking the CIO for the FIFO Full signal. This message said that the CIO indicated that the FIFO showed full before the test finished moving the expected number of bytes into it. Suspect the FIFO controller first, then the CIO.

220 EOP Signal Test. After a board reset, CIO shows a Port B EOP signal. Expected 0 Observed %b.

The test did a reset of the ALM-2/MCP board, then examined the CIO for any EOP indication. The message shows port B of the CIO, with one or more bit unexpectedly set to 1. Suspect the corresponding DMA controller chip, the path between it and the CIO, and the CIO itself.

221 EOP Signal Test. Incorrect vector after dma chip %d EOP condition. Observed vector %x Expected vector %x.

The test caused an EOP condition in the named DMA controller chips, and knew what vector to expect from the CIO. Another vector showed up in DEVVEC. If the high byte of the vector is a B, the port was correct, but the EOP came from the wrong dma controller chip. Suspect the wrong controller chip, the expected dma controller chip, the CIO and the paths among them.

If the high byte of the vector is an A, suspect the CIO. If the vector was something else, it is either stray data from an SCC chip (which should have been reset into a quiet state), or garbage due to improper decoding of the DEVVEC address. The decoding hardware of the ALM-2/MCP is on schematic sheet 4. See the section called *Status in DEVVEC Patterns* if you want to interpret the vector with more detail.

222 EOP Signal Test. Incorrect vector after SDLC receive. Observed vector %x Expected vector %x.

This message came from the test that expected an EOP from the DMA controller, which moves synchronous received data from an SCC chip to common RAM. Instead of the EOP from that controller chip, it got the one shown. Suspect the DMA chip that generated the EOP shown, the receiving DMA chip that failed to send the expected EOP, the CIO and the paths among them. See the section called "Status in DEVVEC Patterns" if you want to interpret the vector with more detail.

226 CIO DSR Signals Test, port %x. Obs vector %x Exp vector %x.

This test tried to generate a unique vector from the CIO. The vector would be caused by receiving a DSR signal on the port connected by your loopback fixture to the named port. The port named is the one that sent out a DTR, which your loopback fixture connects to the receiving DSR, on one of the synchronous ports. The vector was incorrect. Maybe you got the types of loopback fixture mixed up, so that the test expected the DSR from the wrong port. For example, the port really has a single loopback plug but you told the DLF option on the basic menu that the port has a loopback pair.

If that was not the case, suspect the data path which carried the erroneous DSR signal to the CIO, the CIO itself and the path between them.

227 The port(s) not tested (no loopback):

If you had told the diagnostic, through the DLF option on the first test menu, that some port(s) did not have any loopback fixture, this message reminds you that the test did not cover some hardware.

230 VME Interrupt Test IVVEC = %x, expected %x. Aborted.

The VME Interrupt Test depends on good hardware holding the board's interrupt vector. The interrupt vector from the board, during an interrupt, has to correspond to the interrupt handler in the workstation memory. The test was unable to install the correct vector in the ALM-2/MCP IVVEC hardware, so it halted its attempt to test VME interrupting.

231 Failed to install mcp interrupt handler, so skipped VME rupt test.

The test invoked a feature of the diagnostic executive to install an interrupt handler program for the VME Interrupt test, but the exec software gave an indication that it failed to do that properly. Try the test again; if still not successful, reboot the executive and see if that helps.

232 VME Interrupt test failed to get port %x interrupt using 0x%x as vector.

The test tried to cause an interrupt from one of the SCC chips, but it did not receive one before its waiting time ran out. Suspect the SCC chip for the named port or the CIO chip, because it controls whether ALM-2/MCP interrupts are enabled.

233 VME Interrupt test; expected vector: %x observed vector %x.

The test was successful at generating an ALM-2/MCP interrupt, but the vector that it read at the DEVVEC location was not the expected one. Vectors from the SCC chips are their chip numbers. Vectors from the CIO are ax, bx or cx where the x represents a status value and the letter represents the port of the CIO that made the vector. See the section called *Status in DEVVEC Patterns*.

234 Exec couldn't remove the interrupt handler.

The test invoked a feature of the diagnostic executive to remove an interrupt handler program for the VME Interrupt test, but the exec software gave an indication that it failed to do that properly. Try the test again; if still not successful,

reboot the executive and see if that helps, or seek someone who knows about the diagnostic executive or this diagnostic.

240 X-Off Function test port %x. X-Off was disabled but DEVCTL shows transmit not enabled. DEVCTL: %b. Pattern under test: %x.

The test disabled the X-Off function for the named port, which should mean that the hardware will not disable transmitting for that port; nevertheless, transmission was disabled. If you run this test continuing on errors and you get this failure with lots of different patterns, suspect the X-Off File, u705 and the X-Off Comparator, u706 and the Transmit Enable PALs u707 and u708. If it only happens with one pattern, suspect the X-Off Comparator.

241 X-Off Function test port %x. X-Off was enabled with pattern %x but DEVCTL shows transmit still enabled. DEVCTL: %b.

This test enabled the X-Off function for the named port, and sent the pattern shown. That should have disabled transmitting for the port, but the test found transmitting still enabled. Suspect the X-Off File, u705 and the X-Off Comparator, u706 and the Transmit Enable PALs u707 and u708.

242 X-Off Function test port %x. Unexpected no. of characters moved. Observed %d, Expected %d + 1 or 2. X-Off pattern %x.

The design spec of the ALM-2/MCP board states that when the transmitting port receives the X-Off character, it will stop transmitting within 2 characters. This message says that too many or too few characters were moved before X-Off did its job. If the observed number is smaller than the expected number, this is a puzzle that was either caused by a weakness in the diagnostic program or a weakness in the hardware that should have been revealed by an earlier diagnostic test.

If the observed number is greater than the expected number, suspect the X-Off Comparator, u706 and the Transmit Enable PALs u707 and u708.

250 Failed to install mcp interrupt handler, so skipped Multiport test.

The test invoked a feature of the diagnostic executive to install an interrupt handler program for the Multiport test, but the exec software gave an indication that it failed to do that properly. Try the test again; if still not successful, reboot the executive and see if that helps.

251 Multiport Test. Invalid port number in FIFO: %x.

The Multiport test caused all of the ports to move bytes into the FIFO as they received them (from themselves, using internal loopback). When workstation software reads the FIFO, it reads 16-bit words instead of bytes, with the high byte indicating which port received the low byte. When the test did that, it found a number in that high byte that could not be one of the port numbers. Suspect the Async Receive Control hardware shown on sheet 6 of the ALM-2/MCP schematics, the FIFO RAM (really the Common RAM) and the paths among them (especially the SCCID lines).

252 Multiport Test no. of chars received by port %x: %x (hex) exp %x.

The Multiport test caused all of the ports to move a certain number of bytes into the FIFO as they received them (from themselves, using internal loopback). It read 16-bit words instead of bytes, with the high byte indicating which port received the low byte. Using a FIFO-Not-Empty interrupt handler, the diagnostic moved the received characters from the FIFO into workstation memory, separating them according to which port received them. This message said that too many characters went to the save area for the named port. This happened because the high byte of the FIFO word incorrectly named this port as the receiver of characters that it did not receive.

Suspect the Async Receive Control hardware shown on sheet 6 of the ALM-2/MCP schematics, the FIFO RAM (really the Common RAM) and the paths among them (especially the SCCID lines).

253 Multiport Test. Port %x Observed Pattern %x Expected %x. Common RAM virtual address of expected pattern: %x.

The multiport test caused all of the ports to move a certain number of bytes into the FIFO as they received them (from themselves, using internal loopback). Then, using a FIFO-Not-Empty interrupt handler, it moved the received characters from the FIFO into workstation memory, separating them according to which port received them. After all of that movement ended (which the test noticed by checking for the Terminal Count indications of every channel of the transmit DMA controllers), the test compared the patterns in saved memory with their expected values still in Common RAM, from which it transmitted them. The message showed a pattern in Common RAM which didn't get properly received into the FIFO.

Suspect the path between Common RAM and the transmitting port, the port's SCC, the path between the SCC and the FIFO and the FIFO RAM (really part of Common RAM) itself.

254 Exec couldn't remove the interrupt handler.

The Multiport Test received the wrong return indicator from the Exec when it tried to remove its interrupt handler. Try the test again or reboot the Exec.

260 Failed to install mcp interrupt handler, so skipped baudrate test.

The Baud Rate Accuracy Test needs to generate an interrupt after moving a block of data, but the Exec call to install the interrupt handler failed. Try the test again or reboot the Exec.

261 Exec couldn't remove the interrupt handler.

The Baud Rate Accuracy Test received the wrong return indicator from the exec when it tried to remove its interrupt handler. Try the test again or reboot the Exec.

262 Baudrate Test unable to get a time-of-day reading via exec call, so aborted. Return value from call: %d.

The Baud Rate Accuracy Test needed a function from the diagnostic executive, but that function failed. Try the test again, reboot the exec or get in touch with an expert in this diagnostic or the diagnostic executive.

263 Baudrate test didn't get expected device vector. Obs %x exp %x

The Baud Rate Accuracy Test needs to generate an interrupt after moving a block of data, but something unexpected caused the interrupt to happen. See the section called *Status in DEVVEC Patterns* if you want to interpret the vector with more detail.

264 Baudrate test found inaccurate MCP clock. Observed data block transfer time %d seconds, %d microseconds. Expected data block transfer time %d seconds, %d microseconds (plus or minus %d microseconds).

The Baud Rate Accuracy Test measured the time it took to transfer a block of data through a port, using internal loopback. This message said that the elapsed time was off by over a second. Because this test uses the workstation time-of-day clock and its interrupt handling, it is unreliable if you run it while running another program using the exec's multitasking capabilities. Try the test a few more times to see if the results are consistent. If they are, suspect the clock crystal on the ALM-2/MCP board or the one on the workstation CPU board. If not, suspect that the CPU is being kept busy by another program.

265 Baudrate test found MCP clock too fast. Observed data block transfer time %d seconds, %d microseconds. Expected data block transfer time %d seconds, %d microseconds (plus or minus %d microseconds).

The Baud Rate Accuracy Test measured the time it took to transfer a block of data through a port, using internal loopback. This message says that the elapsed time was too short, indicating that the ALM-2/MCP will be using data transfer rates faster than expected. This could cause incompatibility problems with attached serial devices. Suspect the clock crystal on the ALM-2/MCP board or the one on the workstation CPU board.

266 Baudrate test found MCP clock too slow. Observed data block transfer time %d seconds, %d microseconds. Expected data block transfer time %d seconds, %d microseconds (plus or minus %d microseconds).

The Baud Rate Accuracy Test measured the time it took to transfer a block of data through a port, using internal loopback. This message says that the elapsed time was too long, indicating that the ALM-2/MCP will be using data transfer rates slower than expected. This could cause incompatibility problems with attached serial devices. Because this test uses the workstation time-of-day clock and its interrupt handling, it is unreliable if you run it while running another program using the exec's multitasking capabilities. Try the test a few more times to see if the results are consistent. If they are, suspect the clock crystal on the

ALM-2/MCP board or the one on the workstation CPU board. If not, suspect that the CPU is being kept busy by another program.

11.8. Status In DEVVEC Patterns The following information is to help you interpret the status information that comes from some ALM-2/MCP chips when they try to generate an interrupt. This "vector" information shows up in some of the diagnostic error messages, so this is an attempt to describe their meaning. It is not easy to understand, at first, but understanding this is not necessary to troubleshoot the board. Read more about these status signals in literature on the SCC or CIO chips.

The CPU software (the diagnostic, in this case) acknowledges an interrupt from a chip by reading the address of something called DEVVEC. The "Vector" at that address came from the chip that was generating the interrupt signal.

The chips that can generate an interrupt, and that produce an 8-bit "vector" at the DEVVEC location are the eight SCC chips and the CIO chip. The diagnostic has installed a vector in each of those chips, so that it is unique to that chip. In addition, the diagnostic enables an event called, by the chip maker, Vector Includes Status (VIS). When VIS is enabled, the lowest four bits of the chip's vector show a special pattern. The VIS pattern is determined by the type of condition that caused the chip to signal an interrupt and so write its vector to DEVVEC. The diagnostic usually takes advantage of VIS, because it provides information about what has been happening.

Each SCC chip has one vector. That means there is one vector per pair of serial ports, since one SCC supports two serial ports. The CIO chip has three vectors, one for its "A Port," one for its "B Port" and one for its "C Port." (Remember these CIO ports are not ALM-2/MCP serial ports, just channels of the CIO chip.) The diagnostic sets the vectors for the chips as follows:

SCC Chip 0: 00 SCC Chip 1: 10 SCC Chip 2: 20 SCC Chip 3: 30 SCC Chip 3: 30 SCC Chip 4: 40 SCC Chip 5: 50 SCC Chip 5: 50 SCC Chip 6: 60 SCC Chip 7: 70 CIO Port A: a0 CIO Port B: b0 CIO Port C: c0

The SCC chips will modify the lower four bits of their vectors with status information as follows:

- x0 Channel B Transmit Buffer Empty.
- x2 Channel B External/Status Change.
- x4 Channel B Receiver Character Available.
- x6 Channel B Special Receive Condition.
- x8 Channel A Transmit Buffer Empty.
- xa Channel A External/Status Change.
- xc Channel A Receiver Character Available.
- xe Channel A Special Receive Condition.

The "x" refers to the chip number, 0 through 7. Channel B goes to the evennumbered port, Channel A goes to the Odd numbered port. Double the chip number to get its even-numbered port, add 1 for the odd port. So, if x is 2 and the status comes from channel A, the port number is 5.

The CIO chip will modify the lower four bits of its vectors with status information as follows:

- a0 DSR, port 0.
 a2 DSR, port 1.
 a4 DSR, port 2.
 a6 DSR, port 3.
 a8 FIFO Empty.
 aa FIFO Half Full.
 ac FIFO Full.
 b0 EOP, DMA chip 0.
 b2 EOP, DMA chip 1.
 b4 EOP, DMA chip 2.
 b6 EOP, DMA chip 3.
 b8 EOP, DMA chip 4.
 ba EOP, DMA chip 5.
 bc PE, Printer Port.
- be SLCT, Printer Port.

Remember, this status information is only important if you wish to interpret certain error messages that show it.

11.9. Glossary	ALM-2	The device that this software diagnoses is produced in two dif- ferent forms. One of them is the ALM-2 board, a 16-port asynchronous device, which also has one parallel printer port. The other is the MCP board, described below.
	МСР	The MCP version of this product has four synchronous ports and no printer port.
	Asynchronous	This term implies that data communication goes on between two pieces of equipment that do not share a common clock. The ALM-2/MCP has twelve asynchronous-only ports and four more ports that can be either synchronous or asynchro- nous.

Synchronous		This term implies that data communication goes on between two pieces of equipment, one of which is providing a clock for both of them to use.
Port		A place for data to flow into or out of a device. The Sun ALM-2/MCP has fourteen RS232/RS423 ports and two more that can be either RS232/RS423 ports or RS449 ports.
RS232/RS423		RS232 is a usage convention that names a certain kind of socket and plug combination and certain pins in them for carrying data, handshaking and clocking signals for serial communication.
		RS423 is a compatible revision of RS232. It specifies improved signal driving and receiving characteristics.
	RS449	This specifies differential pairing of the same signals used in RS232. It uses twice as many wires to provide the same signals, allowing higher speeds over greater distances.
Handshaking		Before two devices can pass data efficiently, they must exchange certain signals. These signals assure each one that the other is ready to send or receive.
	Loopback	This term implies connecting a port so that the data going out of it goes right back into it.
	Serial	A type of data communication in which data flows from one device to another one bit at a time.
	Parallel	A type of data communication in which data flows from one device to another more than one bit at a time, typically 8 bits.
	DMA Controller	The 8237 direct memory access controller is a special-purpose LSI chip that permits the movement of data to and from memory. It has four "channels," which means it can control DMA data movement for four different devices. In the case of the ALM-2/MCP, one DMA controller chip can handle the transmission of data from Common RAM for four ports. In the case of the four ports that are able to handle synchronous I/O, receipt of data into Common RAM is handled by one
	ЕОР	DMA controller. The 8237 DMA Controller chips have an output pin called EOP, for End Of Process. When that signal is asserted, one of its channels has finished its requested data movement.
	Terminal Count	Terminal Count, or TC, is an event in one of the DMA con- troller channels. It means that the channel has moved all of the bytes it was expected to move. If one (or more) of the four channels of a DMA controller has reached TC, then that chip signals an EOP.

- CIO The ALM-2/MCP employs the Zilog 8536 Counter/timer and I/O chip, called CIO, for generating interrupts to the workstation and for a few other functions. Signals from the DMA controllers as well as certain synchronous communication signals, if enabled in the CIO, can cause the CIO to generate a VME bus interrupt.
- SCC The ALM-2/MCP uses eight Zilog 8530 Serial Communication Controller chips, called SCC's. These devices do most of the work needed to translate between bytes of data and bits of serial information with communication protocols. Another name for such a device is USART, for universal synchronous, asynchronous receiver transmitter.

Sun Memory Diagnostic

Sun Memory Diagnostic	225
12.1. General Description	225
12.2. Hardware Requirements	225
12.3. The Main Menu	226
12.4. Glossary	230

12

Sun Memory Diagnostic

12.1. General Description The Sun Memory Diagnostic is a menu-driven diagnostic designed to detect errors in Sun-2 or Sun-3 main memory. It is a group of tests which can be run in a number of modes, giving the diagnostic flexibility while allowing it to thoroughly exercise the CPU board's main memory. It provides a default test sequence for ease of use.

NOTE This diagnostic does not test cache on any system CPU board. It is a main memory diagnostic; if the CPU board has cache memory, it will be disabled during testing.

12.2. Hardware Requirements

- The system must be either a Sun-2 or a Sun-3.
 - The system must have at least 2 Megabytes of main memory.
 - The system must have a current Boot PROM.
 - The MMU must be functional, because it is tested by the Boot PROM.

12.3. The Main Menu

The Main Menu is shown below:

```
Rev R.RR MM/DD/YY
Sun-3/NNN Memory Diagnostic
                                                 Menu
           Execute ALL Memory tests (10), Long, Word then Byte
A11
        Execute ALL Memory tests ( 5), Long, Word then Byte
Default
Quick Execute ALL Memory tests ( 1), Long
ADdress Address test (unique pattern)
Checker Checker test
Mats
           MATS+ test
Nta
           NTA test
Pattern Pattern test (constant pattern)
Random Random pattern test
Option Set Options
          Set Options
Command ==>
```

Memory Diagnostic Command Descriptions

All

The All command executes the following command sequence:

opt long incr verbose obs ; set Pass=10 ; ad-r ; opt word ; ad-r ; opt byte ; ad-r

Refer to the *Options* description at the end of this chapter for an explanation of the opt part of this command string. This sequence is stored in the variable A_Main, and can be modified from the Exec.

Default

The *Default* command executes the following command sequence:

opt long incr verbose obs ; set Pass=5 ; ad-r ; opt word ; ad-r ; opt byte ; ad-r

This sequence is stored in the variable D_Main and can be modified from the Exec.

Quick

The *Quick* command executes the following command sequence:

opt long incr verbose obs ; set Pass=1 ; ad-r

This sequence is stored in the variable Q_Enable and can be modified from the Exec.

ADdress

The *Address Test* tests a specified block of memory using a data pattern that is incremented after each cycle. For example, in longword mode, entering:

ad address=100000 size=80000 pass=3 inc=2 pattern=0

writes 0x0 into location 100000 and 0x2 into location 100004. The last location tested is 17fffc. The test is executed for 3 passes. You need only enter **ad** to call up the address test, followed by these parameters:


```
address=: base address for this test only
size=: size of memory to be tested for this test only
pass=: number of passes for this test only
inc=: increment
pattern=: base data pattern for this test only
```

The default values for these parameters are:

```
address=0
size=environment size
pass=1
inc=1
pattern=0
```

This test writes a unique pattern into each address location, then reads it back, trying to quickly spot coupling faults in the memory chip decoder.

Checker

The *Checker Test* tests a specified block of memory using a pattern that is the logical negation of every other address location. For example, in longword mode:

```
checker address=100000 size=80000 pattern=0x5555aaaa
```

writes 0x5555aaaa into locations

100000,100008,100010...17fff8

and writes 0xaaaa5555 into locations

100004,10000c,100014...17fffc.

This test catches some types of coupling faults. After entering **checker**, these parameters may be entered:

address=: base address for this test only size=: size of memory to be tested for this test only pass=: number of passes for this test only pattern=: data pattern for this test only

The default values for the parameters are:

```
address=0
size=environment size
pass=1
pattern=0x555555555
```


Mats

The *MATS*+ *Test* tests a specified block of memory for "stuck-at" faults (faults in a data bit is stuck at either the logic 1 or logic 0 state.)

The command syntax is:

mats address= size= pass=

The parameters are:

address=: base address for this test only size=: size of memory to be tested for this test only pass: number of passes for this test only

The default values of the parameters are:

```
address=0
size=environment size
pass=1
```

Nta

The *NTA Test* tests a specified block of memory for "stuck-at" faults and coupling faults. The test is quite thorough in its detection of both. To execute this test, use the following syntax:

nta address= size= pass=

The parameters are:

address=: base address for this test only size=: size of memory to be tested for this test only pass=: number of passes for this test only

The default values for the parameters are:

address=0 size=environment size pass=1

Pattern

The *Pattern Test* tests a specified block of memory using the same pattern for every address location. This test is good for quickly spotting "stuck-at" faults. In order to execute the pattern test, use this syntax:

pattern address= size= pass= pattern=

The parameters are:

address=: base address for this test only size=: size of memory to be tested for this test only pass=: number of passes for this test only pattern=: base data pattern for this test only

The default values for those parameters are:

```
address=0
size=environment size
pass=1
pattern=0xa55aa55a
```

Random

The *Random Test* tests specified block of memory using a randomly generated pattern for each address location.

This test writes a unique pattern into each address location to quickly spot coupling faults in the memory chip decoder. To execute this test, use this syntax:

random address= size= pass=

address=: base address for this test only size=: size of memory to be tested for this test only pass=: number of passes for this test only

The default values for these parameters are:

address=0 size=environment size pass=1

Option

The Option Command sets the default modes for the other tests. Each test can run in byte, word, or longword mode. Turning on one of these modes automatically turns the other two off. Each test can be run in observe, verbose, increment or decrement mode. These modes can be turned off by using noobserve, noverbose, noincrement or nodecrement.

The *increment* and *decrement* modes increment or decrement the specified pattern for the next pass of a test. The increment mode should not be confused with the increment parameter of the address test. For example,

opt increment ; ad pass=3 inc=2 pattern=1111111

will on its first pass use 11111111 as its base pattern. On the second pass it uses 11111112 and on its third pass use 11111113. For the random test, the seed used for the random pattern generation is incremented, resulting in a different series of random patterns being written on each successive pass of the test.

Options are set as follows:

Option *option(s)*

options may be any of the following, and you need only enter the letters shown below in upper case to invoke the option.

B=yte Word Long OBserve Verbose INCrement DECrement NOOBserve NOVerbose NOINCrement NODECrement

If you enter **Option** with no arguments, current options are displayed. The default options are:

long observe verbose noincrement nodecrement

12.4. Glossary

Coupling Fault

An error in which the change of value in one data bit on a memory chip changes the value of another bit on that chip. Such a pair of bits are said to be coupled.

DRAM

Dynamic RAM. A form of semiconductor memory requiring periodic refreshing to maintain its data. Sun-2 and Sun-3 main memory is implemented in DRAM.

Stuck-at Fault

An error in which a data bit is stuck at either the logic 1 or logic 0 state.

13

Sun-3 Mouse Diagnostic

Sun-3 Mouse Diagnostic	233
13.1. General Description	233
13.2. Command Line Description	233
13.3. Mouse Data	233
13.4. The Main Menu	233
13.5. Error Messages	235
13

Sun-3 Mouse Diagnostic

13.1.	General Description	The Mouse Diagnostic checks the transmission of data from the mouse to the host system. This data contains information about mouse movements and the state of its switches (buttons).
		The Mouse Diagnostic consists of the button test and motion test. Both tests prompt you for input and return to the main menu when the test completes or when you exit the test.
		The user interface of the Mouse Diagnostic contains a single Main Menu. The individual tests prompt for necessary input or actions.
		The mouse diagnostic requires no special hardware other than the mouse and "mouse pad" (for optical mice), along with a functioning Sun-2 or Sun-3 system.
13.2.	Command Line Description	The minimum characters that must be entered to invoke each test are indicated by the upper case letters. Exceptions to this are the (esc) character and the ? character (not listed in the menu).
13.3.	Mouse Data	The mouse transmits data when it experiences a change of state. The state changes when the mouse is moved on the pad, or one of its buttons is pressed or released. The mouse sends data in five-byte blocks. The start of each block is indicated by a "sync" byte. The "sync" byte contains the information about the state of the buttons. The other four bytes contain information about movement of the mouse on its pad.
13.4.	The Main Menu	The Main Menu has four options: Typing B tests the mouse buttons. Typing M starts the mouse movement test. Pressing the escape key (\underline{Esc}) returns the user to the previous menu. Pressing ? displays the Mouse Diagnostic Help Menu.


```
Sun-2/Sun-3 Mouse Diagnostic REV X.X mm/dd/87 Main Menu
Button Button Test
Motion Motion Test
<esc> menu exit (return to previous menu)
Command==>
```

В

The *Button*Test verifies that the mouse is transmitting the correct data about the state of its buttons.

The Button test prompts you to press the Left, Middle, and Right buttons. As a button is pressed, the data received from the mouse is compared with the expected value. The test displays an error message if the data is incorrect. The test then prompts for the next button.

The correct hexadecimal value for each "state" of the mouse buttons follows:

Values	Left	Middle	Right
0	down	down	down
1	down	down	up
2	down	up	down
3	down	up	up
4	up	down	down
5	up	down	up
6	up	up	down
7	up	up	up

If incorrect data values are received from the mouse, the error message indicates what value was expected and what value was received.

If the test receives no data for 10 seconds, it will ask if the appropriate button has been pressed. If you type \mathbf{y} (yes), the Button test indicates that the button failed and prompts you to press the next button. If you type \mathbf{n} (no), the Button test will wait ten seconds for you to press the button, then repeat the question if no data is received.

The Button test returns to the Main Menu when all buttons have been tested, or when you type \mathbf{q} .

М

The *Motion*Test verifies that the mouse transmits data when it is moved on the mouse pad.

The Motion Test prompts you to move the mouse on the mouse pad. As you move the mouse on the pad, the cursor moves on the screen. If the test does not see any mouse data (indicating motion), the test waits 10 seconds, then asks if the mouse has been moved. If you type \mathbf{y} (yes), the test prints an

error message and exits the test. If you type n (no), the test waits another 10 seconds, then repeats the question if it still receives no indication that the mouse has moved.

You may exit the Motion test by typing \mathbf{q} . If the mouse has been idle for ten seconds and the motion test has verified movement of the mouse on the mouse pad, the test prints a message showing that the mouse passed, then exits to the Main Menu.

13.5. Error Messages

- 1 <function> Unable to get time of day
- 2 <function> data: expected <value> received <value>
- 3 <function> Unable to install exception handler
- 4 <function> SCC map failed; physical address <value>
- 5 <function> Unable to remove exception handler

14

MTI/ALM Board Diagnostic

MTI/ALM Board Diagnostic	
14.1. Introduction	239
14.2. Hardware Requirements	239
14.3. Operating Instructions	239
14.4. Test Descriptions	242
14.5. Error Handling	243
14.6. Glossary	244
14.7. References	245

.

14

MTI/ALM Board Diagnostic

14.1. Introduction The MTI board is the serial communications subsystem for Multibus products. It provides an interface between the Multibus and either eight or fourteen RS-232-C ports. The ALM board is the serial communications subsystem for VME products. It provides an interface between the VMEbus and sixteen RS-232-C ports. The MTI/ALM Diagnostic is designed to test either the MTI or ALM boards. It consists of baud rate, stop bit, parity, modem, block, character and word length tests. Each one of the ports in the MTI or ALM board are tested under various configurations. 14.2. Hardware The first requirement for this diagnostic is a fully configured Sun workstation, Requirements able to boot the Exec as described in Chapter 2 of this document. One megabyte of usable, functional memory is required. The required test fixtures are a minimum of 4 single loopback plugs and 2 loopback cables. However, having 16 loopback plugs and 8 loopback cables would be optimum. These plugs and cables are to be fitted to the appropriate RS232 sockets for each of the various configurations. 14.3. Operating Follow the procedures found in Chapter 2 for loading the SunDiagnostic Execu-Instructions tive. **Recommended Test Procedure** Select the MTI/ALM diagnostic from the diagnostic menu after bringing up the Exec. From the main menu, select Char. If that test passes, select All. If any test fails, verify that you have the test fixtures on correctly and that you have told the MTI diagnostic about them, using Group. (You don't need to use Group if you are using the default test fixture configuration of all single loopback connectors.) Each menu and the options associated with it are discussed next.

The Main Menu

The main menu looks something like this:

```
Sun Multibus/VME MTI/ALM Diagnostic x.x MM/DD/YY MTI/ALM

All All Test Sequence

Default Default Test Sequence

Character single character data test

BLock block data Test

BAud baud rate test

Stop stop bit test

Word word length test

Parity parity test

Modem modem lines test

Group user selects ports

Select one, or press <esc> to test next board or exit
```

After you press one of the letters shown in upper case, the MTI/ALM diagnostic performs the operation associated with that item, then it returns the menu again. The Exec is not case sensitive; you may use upper- or lower-case letters when interacting with it.

Each MTI board is tested individually. Up to four boards can be tested, beginning with board 1. You may run any number of tests on each individual board.

The following paragraphs describe the MTI/ALM menu choices.

A11

Selecting a runs all the MTI/ALM tests.

Default

Selecting d executes the Character, BLock, and Modem options.

Character

Selecting **c** executes the read/write test. This module tests the MTI board character read and write capabilities.

BLock

Entering **bl** executes the block read/write test. This module tests the block data read and write capabilities.

BAud

Selecting **ba** tests a list of baud rates for the MTI board.

Modem

Selecting m turns modem line signals on and off and checks for continuity.

Group

Selecting g provides a sub-menu of selections that allow you to change the port test configuration.

<esc>

Pressing Esc and Return prompts you to test the next board, if one is installed, or exit the MTI board diagnostic.

Help

The following entry displays a single-line help message that explains the selected command:

```
help command
(replace "command" with one of the menu choices)
```

Configuration Selection Sub-Menu

Selecting the Group option from the main MTI/ALM menu brings up a submenu that looks something like this:

Select or	e of the followi	ng port configurations
•	Source Ports	Receiving Ports
single4	0-3	0-3
single8	0-7	0-7
single14	0-9,a-d	0-9,a-d
all	0-9,a-f	0-9,a-f
double8	0,1,3,5	7,2,5,6
double14	0,1,3,5,8,9,t	7,2,4,6,d,a,c
pairs	0,1,3,5,8,9,£	,d 7,2,4,6,f,a,c,e

When you select single4 from this menu, for example, the ports shown under Source Ports are paired with the ports shown under Receiving Ports. Therefore, for any configuration option that begins with single, each of the ports under test should be fitted with a single loopback connector. When the selection begins with double, loopback cables should be used. For the pairs option, use loopback cables, and for the all option, use loopback connectors.

You may also enter a series of ports, such as

0,1,2,3

which is the equivalent of entering

0-3 .

No spaces are required when you enter the port numbers. You may also enter combinations such as:

0-3,5-7,a,c

The examples given above represent single lists of ports, meaning that each port has a single loopback connector installed in it. You may also enter two lists, separated by a space, as follows:

0,2,4 1,3,5

In this example, ports 0, 2 and 4 are the source ports and 1, 3 and 5 are the receiving ports.

14.4. Test Descriptions	The follo of the tes receiving tested, tw in their o source po port.	wing text describes each test in the MTI/ALM Board Diagnostic. Each ts writes the test data to the source port and then reads it from the port for verification. the test is executed once when a single port is rice when a pair of ports is tested. The tests first execute with the ports riginal configuration, then with the configuration reversed. That is, the ort becomes the receiving port and the receiving port becomes the source
Character Data Test	This mod and ALM written to	ule is designed to test the character read/write capabilities of the MTI I boards. There are 8 different bit patterns that are tested. The data is the source port and then read from the receiving port for verification.
Block Data Test	This mod boards. 7 receiving	ule tests the block data read/write capabilities of the MTI and ALM The block of data is written to the source port and then read from the port and compared byte for byte.
Baud Rate Test	This to the sou repeated	module tests the data at different baud rates. Again the data is written arce port and read from the receiving port for verification. This is for 16 different baud rates. The baud rates are listed below.
	Baud Rat	e
	50	0.8 kHz
	75	1.2 kHz
	110	1.76 kHz
	134.5	2.1523 kHz
	150	2.4 kHz
	300	4.8 kHz
	600	9.6 kHz
	1200	19.2 kHz
	1800	28.8 kHz
	2000	32.081 kHz
	2400	38.4 kHz
	3600	57.6 kHz
	4800	76.8 kHz
	7200	115.2 kHz
	9600	153.6 kHz
	19200	316.8 kHz

Stop Bit Test	This module tests 8 different stop bit patterns. Like all the modules previously described, this test writes the data pattern to the source port and reads it from the receiving port for verification. The test is repeated for three stop bit types. The stop bit values are 1.0, 1.5 and 2.0.		
Word Length Test	This module tests word length sensitive data for 4 different word length types. The possible word lengths are 5, 6, 7 and 8 bits. Again the data is written to the source port and read from the receiving port for verification.		
Parity Test	This module tests parity-sensitive data for three possible parity types. The parity types are "no parity", "odd parity" and "even parity". The test data is written to the source port and read from the receiving port for verification.		
Modem Lines Test	This module tests the functionality of the modem lines. The line signals are turned on and off in checking for continuity. The on or off signal is detected through the 2661 chip.		
14.5. Error Handling	Each test first identifies the port that caused the error and then displays the appropriate error message. In addition, each error message is recorded in the Executive message log (through the execlog function).		
	The following section explains various messages that are displayed by each of the tests.		
	Data Compare error. read x, expected y, xor z. This is the most common error message for the MTI/ALM diagnostic. Any test may generate this message. It means that the data written to the source port and read from the receiving port does not match the original test data.		
	Serial data, framing error. read x expected y. This message is generated from the character read/write test. It means that there was a framing error detected in one of the USART status register bits.		
	Serial data, overrun error, read x expected y. This message originates from the character read/write test. In this case it means that an overrun error has occurred in one of the bits of the USART status register.		
	Serial data, parity error, read x expected y. This message may be displayed when running the character read/write test or the parity test. In this case the parity error is detected in one of the bits of the USART status register.		
	Data Set Ready (DSR) line, read x, expected y This message may occur during the modem lines test. It means that the DSR modem line is not functioning properly.		
	Clear to Send (CTS) line, read x, expected y This message may also occur during the modem lines test. In this case it means that the CTS line is not functioning properly; that is, the transmitter buffer is empty.		

	Tested OK. The test has passed. The only difference between this message and those ones previously described is that this message is not recorded in the Execu- tive log.
	Check loopback connector If this message is encountered, check to see if the loopback connectors or cables are installed correctly. Also reconfigure the ports to match the instal- lation of the loopback plugs or cables by using the Group option. This message is not recorded in the Executive log.
	Initialization Failed If the board is not properly initialized, this message will appear before the main menu is seen. If this message appears, check to see if the board is inserted correctly into the system and that the bus is configured for the board.
	Board not responding This message means the board is not sending information to the diagnostic. If this message is encountered, check to see if the board is inserted correctly into the system and that the bus is configured for the board.
14.6. Glossary	ALM Asynchronous Line Multiplexer. A serial communications subsystem assembly that provides an interface between the VME bus and 16 RS-232-C ports.
	Asynchronous When communications equipment operates asynchronously, it means that different parts do not share a common clock. So to keep the receiving part in line with the transmitting part, the transmitting part must send some kind of signal that indicates it is starting or stopping a character. The MTI board design allows the sending of stop bits after each character.
	Channel A channel is part of a port, providing a path for data to move in only one direction. So on the MTI, each port has two channels: one for input, one for output.
	MTI Multiple Terminal Interface. A serial communications subsystem that pro- vides an interface between the Multibus and either 8 or 14 RS-232-C ports.
	Port An electrical connection for data transfer.

Serial

A serial port moves data through a channel one bit at a time. Another type of port is called parallel, which moves data more than one bit at a time, usually eight. While a parallel port might seem to be more efficient, it limits the length of a connecting cable to just a few feet. A serial cable may be hundreds of feet long.

USART

Universal Synchronous/Asynchronous Receiver/Transmitter. A data communications controller chip.

14.7. References

For more information on either the MTI or ALM board, refer to these documents:

Installation and Service Manual for the Multiple Terminal Interface Board, Part Number 813-1007

VME Asynchronous Line Multiplexer Configuration Procedures, Part Number 813-2003

SCSI Subsystem Diagnostic

SCSI Subsystem Diagnostic	249
15.1. Introduction	249
15.2. Problem Specification	250
15.3. Requirements	250
15.4. General Information	251
15.5. Operating Instructions	251
15.6. Overview of the Diagnostic	251
15.7. The User Interface	252
15.8. Error Handling	270
15.9. Message Interpretation	271
15.10. Failure Analysis	272
15.11. Glossary	273

15

SCSI Subsystem Diagnostic

This diagnostic is associated with the SCSI Host Adaptor, Subsystem Disk Drive, Disk Controller and Tape Drive.

15.1. Introduction

Sun Microsystems supports several different SCSI Host Adaptors, Subsystem Disk Drives, disk controllers, and tape drives. There are three different SCSI Host Adaptor boards that control data transferred to/from outside world: SCSI2, SCSI3, and on-board SCSI3. The hardware board that communicates directly with the SCSI Subsystem disk drive is the disk controller board. Sun supports two (2) such boards, the Emulex MD21 and the Adaptec 4000. The controller takes care of many details of error checking, data transfer, and arrangement of the data on the disk. The board that interfaces with the tape drive is the tape controller. Sun uses two such boards, the Emulex Mt02 and Sysgen.

NOTE Sun does not support system configurations in which both a SCSI3 board and a Sysgen disk controller board are installed.

This diagnostic was designed to be as friendly as possible. During loading time, it will determine system configuration, such as the type of SCSI host adaptor, disk controller, and disk drive. This determination is used to set up certain tests for current configuration. If there is a problem, you need only answer some nontechnical questions before the test is started.

At present, the following disk drives are supported for the ST506/SCSI environment (their respective capacity is also shown):

> 1. Micropolis 1304 - 40 Mbytes 2. Micropolis 1325 - 71 Mbytes 3. Fujitsu 2243 - 71 Mbytes

The following disk drives are supported for the ESDI/SCSI environment (their respective capacity is also shown):

1. Micropolis 1355 - 141 Mbytes 2. Toshiba MK 156F - 141 Mbytes

15.2. Problem

The following disk controllers are supported by Sun for the SCSI Subsystem (also shown are their respective interface types):

	1. Adaptec 4000 ST506->SCSI
	2. Emulex MD21 ESDI-> SCSI
	These SCSI Host Adaptors are supported across Sun architectures:
	On-board SCSI3 — used on Sun-3/50, 3/60 systems.
	SCSI2, SCSI3 — used on the other Sun-2 and Sun-3 systems.
	The following tape drive and controller configurations are supported by Sun SCSI Host Adaptors:
	 Wangtek Tape drive (Model 5099EG11) + Sysgen Controller. Wangtek Tape drive (Model 5099EG11) + Emulex Controller. Archive Tape drive (Model 5945 C) + Sysgen Controller. Archive Tape drive (Model 5945 C) + Emulex Controller. Archive Tape drive (Model 9050 B) + Sysgen Controller. Archive Tape drive (Model 9020 B) + Sysgen Controller.
Specification	The objective of the SCSI Subsystem Diagnostic is to ensure that the SCSI Host Adaptors, disk drives, disk controllers, and tape drives work correctly. Though the SCSI Subsystem diagnostic is designed to provide the testing capability for

Adaptors, disk drives, disk controllers, and tape drives work correctly. Though the SCSI Subsystem diagnostic is designed to provide the testing capability for different SCSI Host Adaptors, Subsystem controllers and different SCSI Subsystem disk drives, the examples in this chapter reflect a configuration consisting of the Emulex MD21 Disk Controller along with a Micropolis 1355 disk drive.

15.3. Requirements In the process of designing the SCSI Host Adaptor, Subsystem Disk Drive, disk Controller, and tape drive Diagnostic, the following performance, functional, hardware, and environment requirements were assumed.

Performance Requirements The confidence level for the disk drive tests depends on the commands that are allowed by the disk controller to test the drive. The confidence level for the disk controller will depend on the accessibility and flexibility to test the hardware of the controller. This also applies to the tape drive as well. The maximum time for completion of a disk drive test should be less than or equal to 20 minutes. The maximum time for completion of a SCSI Host Adaptor or controller test should be less than or equal to 5 minutes and less than 30 minutes for tape drive tests.

Functional RequirementsYou will be able to interrupt the execution of the SCSI Host Adaptor, Subsystem
Disk Drive, Disk Controller, and Tape Drive Diagnostic after each test is exe-
cuted and in some cases, while the test is being executed. Adequate on-line help
is available. The SCSI Subsystem Diagnostic also generates and stores meaning-
ful error messages for later retrieval. In addition to making default tests avail-
able, the parameters of each test are automatically given a default value.

Hardware Requirements	1. A working Sun-2 or Sun-3 CPU board		
	2. A working keyboard and mouse		
	3. A working monitor		
	4. SCSI Subsystem Disk Controllers (Adaptec 4000, Emulex MD21)		
	5. Formatted SCSI Subsystem Disk Drive (device under test - See Introduction Section for disks)		
	6. A boot device (i.e. local disk, local tape or remote disk over Ethernet)		
	7. SCSI2 or SCSI3 or on-board SCSI3.		
	8. Tape drives and tape controllers listed at the beginning of this chapter listed at the beginning of this chapter.		
15.4. General Information	The standard power-up Boot PROM is needed to run SCSI Subsystem Diagnos- tic. The boot PROM is used to load and begin execution of the SCSI Subsystem Diagnostic. The boot path (Ethernet, disk, tape) is assumed to be checked out so that the SCSI Subsystem diagnostic can be loaded.		
15.5. Operating Instructions	Read <i>Chapter 2</i> to load the SunDiagnostic Executive. After the Exec Main Menu is displayed on the screen, type d; sub to load scsisub.exec file and to start the test, and refer to <i>Chapter 2</i> for further information on how to set up and run the test under Exec.		
NOTE	While running the SCSI Subsystem Test on a system that does not have a SCSI disk controller installed, execute only commands that refer to the tape drive. This includes commands from SCSI Host Adapter and Tape Drive sub-menus that are accessed from the SCCI Subsystem Diagnostic main menu. Executing commands that require the disk controller may fail or appear to "hang" the system. Under the SCSI Host Adapter menu, run only the "Test SCSIX W/O Disk and Controller" test (where X is 2 or 3); this will test all the host adapter-only functions that are available.		
	On a system without a SCSI disk controller, the SCSI Subsystem Diagnostic may take between one and two minutes to load.		
15.6. Overview of the Diagnostic	The SCSI Subsystem Diagnostic allows you the flexibility to test the SCSI Host Adaptor, disk controller, and disk drive separately. In addition, commands are provided to do the tests in a continuous sequence.		
	The user-interface of the SCSI Subsystem Diagnostic consists of a Main Menu with several sub-menus. A help option on each menu makes more detailed user command syntax available to the user. (\underline{Esc}) and MAin options are also available on each test menu to provide the ability to (1) return to the current sub-menu and (2) return to the main menu.		

15.7. The User Interface The SCSI Subsystem Diagnostic attempts to create the most user- friendly environment possible. One of these features is that the you can choose to test either the SCSI Host Adaptor, disk drive, disk controller, tape drive or all of them. The user interactive command and response sequences are intended to be simple and straightforward.

The features of the user interface are covered in the following sections. The user interface consists of a menu with options associated with each diagnostic test.

The Main MenuThe Main menu contains the sub-menus and commands as follows: As in all the
SunDiagnostic Executive tests, you need only enter the letters shown in upper
case when making a menu selection.

```
SCSI SUB-SYSTEM DIAGNOSTICS. Rev xx, Date:xx/xx/xx Main MenuAllExecute Scsi, disk and controller test.Scsi Host AdaptorSCSI Host Adaptor Menu.DriveDisk Drive test Menu.ControllerDisk Controller Test Menu.Tape DriveTape Drive test Menu.SYSconfigurationSubsystem configuration.STop on errorEnable STop on error option.?Help for Main Menu.ExecReturn to Exec Menu
```

Main Menu items are described in the following paragraphs:

A11

This selection executes the disk and controller test. The program starts executing all SCSI Host Adaptor, disk drive, disk controller, and tape drive tests.

Scsi

When you type this command, the program points to the SCSI Host Adaptor sub-menu.

Drive

Entering D brings up the Disk Drive Tests Menu, discussed later.

Controller

Typing C brings up the Controller Tests Menu.

Tape Drive

Typing **T** brings up the Tape Drive Test Menu

SYSconfiguration

Typing SYS invokes the Subsystem Configuration command, which displays the type of machine, type of scsi board, type of disk controller, type of disk drive, and a partition table found in the system under test.

ST or SOE=

Entering ST enables the stop-on-error option. This allows the test either to

	keep runni error and t	ng or to halt when an error occurs. The default is not to stop-on- he syntax is :	
	ST or ST	SOE=y stops the test when an error occurs.	
	ST SOE=	n lets the test run when an error occurs.	
	? The questi select and	on mark brings up Help for the Main Menu, showing you how to run the test.	
	Exec Entering	E quits and returns to the Exec Main Menu.	
SCSI Tests Menu	Each SCSI Hos SCSI2 Menu, S	st Adaptor has its own test menu. There are three SCSI menus: SCSI3 menu, and SCSI3(ob) menu.	
The SCSI2 Menu	The following	The following are the tests for SCSI2 Host Adapter board:	
	SCSI2 Adapt	er Diagnostics Rev. xx, Date:xx/xx/xx SCSI2 Test Menu	
	All	Execute all SCSI2 tests.	
	SCSI	Test Scsi2 w/o drive and controller.	
	ICR	Test Interface Control Register.	
	DMA	Test DMA Counter Register.	
	AD	Test DMA Address Register.	
	TI	Test Target Initialization.	
	DR	Test Device Ready.	
	BT	Test Data Transfer via Bus.	
	DT	Test Data Transfer via DMA.	
	SI	Test Status Interrupt.	
	DO	Test DMA Overrun.	
	DI	Test Data Integrity.	
	scc	Test SCC (Multibus only).	
	2	Help for SCSI2 test Menu.	
	ESC	Return to previous Menu.	
	MAin	Return to Main Menu.	
	· 문화 문화 전 · 문화 · 문화 · 문화	그는 그는 그는 것이 있는 것이 같은 것을 수 있는 것 같은 것을 물질했다. 방법물에서 가지 않아야 하는 것을 많이 가지 않는 것이 않는 것을 했다.	

The following are descriptions of the commands in this menu :

A11

Command ===>

By executing this command, the program will execute all the tests given in this menu.

SCSI

This command tests SCSI registers without involving the disk drive and disk controller.

ICR

This command tests writable/readable bits in this 16 bits register.

DMA

This command tests the DMA counter register with the data pattern 0-FFFFH.

- AD This command tests the DMA address register with the pattern 0-FFFFH.
- **TI** This command initializes the target and waits for a proper response.
- **DR** This command tests the device that interfaces to the SCSI host adaptor for ready communication.
- **BT** This command tests the data transfer over the SCSI bus.
- **DT** This command tests the data transfer over the DMA controller.
- SI This command tests the Interrupt Register with the pattern 0x0-FFH.
- **DO** This command transfers more data bytes than the DMA actually did and waits for a DMA overrun condition to occur.
- **DI** This command does DMA transfers for 20 blocks with a random data pattern.

SCC

This command tests the Serial Communication Controller.

? This command will displays the help menu for SCSI2 menu.

Esc

Pressing the Esc key brings back the previous menu.

MAin

This command displays Main Menu.

SCSI3 Menu

The following are the tests for SCSI3 Host Adaptor board:

Scsi3 Adaptor Di	agnostics Rev.xx, Date:xx/xx/xx Scsi3 Test Menu.
A11	Execute All Scsi3 tests.
ICR	Test Initiator Command Register.
MR	Test Mode Register.
TCR	Test Target Command Register.
NCR	Test NCR 5380 Register.
CSR	SCSI3 Control/Status Register.
DAR	DMA Address Register
DCR	DMA Counter Register.
FC	Test FIFO Counter Register.
FD	FIFO Data Register.
IV	Test Interrupt Vector Register.
FID	Test Interactive FIFO/DMA registers.
DF	Test Interactive DMA/FIFO registers.
FR	Test FIFO RAM.
BPR	Test Byte Pack Register.
II	Test Interactive Interrupt.
BDT	Test Bus/DMA transfer.
SCSI	Test SCSI3 w/o disk and controller.
?	Help for SCSI3 test menu.
MAin	Return to Main Menu.
Command ===>	
	그는 것 같은 것 같은 것 같은 것이 같은 것을 하는 것 같은 것이 같은 것이 같이 많이 많이 했다. 것 같은 것 같

Following are descriptions of the commands in the SCSI3 Test Menu:

A11

This command executes all tests on the SCSI3 test menu.

ICR

This command tests the Initiator Command Register of NCR 5380.

MR This command tests the Mode Register of NCR 5380.

TCR

This command tests the Target Command Register of NCR 5380.

NCR

This command tests writable/readable registers of NCR 5380.

CSR

This command tests writable/readable bits of this register.

DAR

This command tests the 32-bit DMA address Register.

DCR

This command tests the 24-bit DMA counter register.

- **FC** This command tests the 24-bit FIFO counter registers.
- FD This command tests the 16-bit FIFO data register.
- **IV** This command tests the writable/readable bits of the Interrupt Vector register.

FID

This command writes to the FIFO register and reads back from the DMA counter Register, then compares the data.

- **DF** This command writes to the DMA counter register and reads back from FIFO, and then compares data.
- **FR** This command tests FIFO RAM with a "walking 1" data pattern.

BPR

This command uses DMA t transfer 16- and 32-bit data in order to test 16bit and 32-bit byte packing registers.

II This command tests the SCSI interrupts by setting up certain interrupt condition and check for the return.

BDT

This command performs both bus and DMA transfer to/from the disk.

SCSI

This command tests the SCSI3 host adaptor without disk and controller involvement.

? This command will display the SCSI3 help menu.

MA This command brings you back to main Menu.

SCSI3(OB) Menu

The following are the tests for SCSI3(OB) Host Adaptor board:

A11	Execute All SCSI3 tests.
ICR	Test Initiator Command Register.
MR	Test Mode Register.
ICR	Target Command Register.
NCR	Test NCR 5380 Register.
CSR	Test Control/Status Register.
sc	Test Scsi Counter.
FR	Test FIFO RAM.
UDC	Test UDC Am9516.
M	UDC Master Mode Register.
JAR	UDC Current Address Register.
JCNR	UDC Counter Register.
JPM	UDC Pattern/Mask Registers.
JIM	UDC Interrupt/Channel Mode Registers.
JCR	UDC Chain Address Registers.
3DT	Test Bus/Dma Transfer.
SCSI	Test SCSI3 w/o controller and drive.
2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	Help for SCSI3 test menu.
Ain	Return to main Menu.

The following are descriptions of the commands in this menu :

A11

This command executes all the tests in this menu.

ICR

This command tests the ICR of NCR 5380.

MR This command tests the MR of NCR 5380.

TCR

This command tests the Target Command Register of NCR 5380.

NCR

This command tests the writable/readable registers of NCR 5380.

CSR

This command tests all writable/readable bits of this register.

SC This command tests the 16-bit SCSI counter register.

FR This command test FIFO RAM on the SCSI3 board.

UCC

This command tests all writable/readable registers of the UDC Am 9516.

UM This command tests the Master mode register of UDC.

UAR

This command tests the UDC Current Address Register.

UCNR

This command tests the UDC Counter Register.

UPM

This command tests the UDC Pattern/Mask Registers.

UIM

This command tests the UDC Interrupt/Channel Mode Register.

UCR

This command tests the UDC Chain Address Register.

BDT

This command performs both Bus and DMA data transfer to/from the disk.

SCSI

This command tests all SCSI3 registers without disk and controller involvement.

- ? This command displays the SCSI3 help menu.
- MA This command brings you back to the Main menu.

Controller Tests Menu

The following are the tests for a SCSI Disk Controller:

```
Disk Controller Diagnostics Rev. xx, Date: Controller Tests Menu
All Execute All Controller Tests
Misc Miscellaneous Tests Menu
Diagnostic Diagnostic Command Test Menu
Read Read Command Test Menu
Write Write Command Test Menu
? Help for Controller Menu
MAin Return to Main
Command ===>
```

The following are descriptions of the commands in this menu:

A11

When you execute this command, the program executes all the tests given in this menu.

M repeat=

This command causes the program to jump into a sub-menu where you can test the commands that do not relate to reads, writes or self-maintenance.

By using the Exec's repeat = command, you can select number of times the tests are to be executed.

- **D** This command brings up the Controller Diagnostic sub-menu. From this sub-menu you can run individual tests that are explained in the menu.
- **R** The program jumps to the sub-menu of tests for read-related commands.
- W The program jumps into a sub-menu that contains tests for write-related commands.
- ? When you type this command, the program displays the syntax for each command.
- MA This command returns you to the SCSI Subsystem Main Menu.

Diagnostic Command Menu The following are the tests that execute diagnostic related tests.

```
Disk Controller Diagnostics Rev.xx, Date:xx/xx/xx Diag. Command Menu
All Execute All Controller Diagnostic Tests
Buffer Read and Write Buffer
Send Send and Receive Diagnostic
Disconnect & Rec. Disconnect and reconnect.
? Help Diag. Command Menu.
ESC Return to Previous Menu
MAin Return to Main Menu
Command ===>
```

The following are descriptions of the commands in this menu:

A11

This command executes all the tests in the controller/diagnostic menu.

- **B** This command tests the controller's data buffer memory and the SCSI bus integrity.
- **S** This test requests that the controller perform diagnostic tests on itself, on the attached disk controller, or on both.
- **D** This command tests the controller's disconnect/reconnect capability.
- ? When you type this command, the program displays the command syntax for each command in this menu.
- **MA** This command returns you to the SCSI Subsystem Main Menu.

Controller Write Command Menu

The following commands are all write-related commands:

```
Disk Controller Diagnostics Rev. xx, Date:xx/xx/xx Write Command Menu
             Execute All Controller Write commands.
A11
Write
             Write
             Write Extended.
Extended
Long
             Write Long (Emulex only)
?
             Help for Write command Menu.
ESC
             Return to Previous Menu
             Return to Main Menu
MAin
Command ===>
```

The following are descriptions of the commands in this menu:

A11

This command executes all the tests in the controller/write menu.

- W This command instructs the controller to write data that was transferred by the host adapter to the disk drive.
- **E** This command is basically the same as the Write command above except that it allows for two extra bytes in the command block for the logical block address and one extra byte for means of transfer length specifications.
- L This command requests that the controller perform a write operation of one data block and the six bytes of ECC information. The data and the six ECC bytes for the specified logical block are supplied by the host adapter during the Data Out phase. Only the Emulex controller supports this command.
- ? This command displays the help menu that provides information on how to enter the commands in this menu.
- MA This command returns you to the SCSI Subsystem Main Menu.

Controller Read Command Menu

The following are the read-related commands.

A11	Execute All Controller Read Commands
Read	Read
Defect	Read Defect List (Emulex only)
Extended	Read Extended
Long	Read Long (Emulex only)
?	Help for Read Command Menu
ESC	Return to Previous Menu
MAin	Return to Main Menu
Command ==	

The following are descriptions of the commands in this menu:

AII

This command executes all the tests in the Controller/Read Menu.

- **R** This command transfers a block (512 bytes) of data to the host. The logical starting block address is specified by the program.
- **D** This command requests that the controller transfer the defect list maintained by the controller to the host adapter.
- **E** This command will request that the controller transfer data to the host adapter from the disk drive. This command transfers four bytes of the block address instead of two as in the read command (described above). It also allows for specification of more logical data blocks of data to be transferred than the read command.
- L This command requests that the controller perform a read operation of one data block and the six ECC bytes associated with that block. The data from the block and the ECC bytes are transferred to the host adapter during the Data In phase.
- ? This command displays the syntax for the commands in this menu.
- MA This command returns you to the SCSI Subsystem Main Menu.

Miscellaneous Command

	Disk Controller I	Diagnostic Rev. xx, Date:xx/xx/xx Miscellaneous Menu
	A11	Execute All Miscellaneous Tests
a da ser seño Se se seño	Inquiry	Inquiry (Emulex only)
	SENse	Mode Sense
	REServe	Reserve Unit (Emulex only)
	RELease	Release Unit (Emulex only)
	REZero	Rezero Unit
	Seek	Seek
	XSeek extd	Seek Extended (Emulex only)
	STart stop unit	Start-Stop unit.
Regission.	REQuest	Request Sense
	Test Unit Ready	Test Unit Ready
	ROM Version	Display ROM version. (Emulex only)
	Performance	Performance Test
	.	Help for Misc. menu
	ESC	Return to Previous Menu
	MAin	Return to main menu

The following are the descriptions of the commands in this menu:

All

This command executes all the tests in the Controller/Miscellaneous menu.

The following are commands not considered to be read or write commands, but

I This command causes the host adapter to request information regarding the controller and its attached disk drive(s). Only Emulex supports this command.

SEN

This command provides a means by which the host adapter may receive the medium, logical unit and peripheral device parameters from the controller.

RES

This command will reserve a specified LUN for exclusive use by the host adapter. Only Emulex supports this command.

REL

This command causes the LUN (connected to the controller and previously reserved by the Reserve Unit command) to be released. Only Emulex supports this command.

REZ

This command requests that the controller set the logical unit to the logical block address zero.

- **S** This command causes the selected LUN to seek to the logical block addresses which are specified by the program.
- **xs** This command is basically the same as the Seek command above except that this commands allows for two extra bytes in the command block for the logical block address. Only Emulex supports this command.

ST This command requests that the controller enable or disable the logical unit for further operation. For the Adaptec controller, the Stop command moves W/R head to shipping zone.

REQ

This command provides a means for the host adapter to obtain more detailed information after execution of a command. Typically, a Request Sense command is issued after the previous command had completed and a Check Condition status has been returned to the host adapter.

T This command causes the host adapter to check to see if the logical unit is ready.

ROM

This command displays the controller firmware revision level. Only Emulex supports this command.

- **P** This command tests the performance level of the Adaptec controller board to see if it is able to perform up to specifications.
- ? This command displays the command syntax for each command in this menu.
- MA This command brings you to the SCSI Subsystem Main Menu.

Disk Drive Tests Menu

1. 24

The following menu shows the tests for a SCSI Disk drive :

```
Disk Drive Diagnostic Rev.x, Date:xx/xx/xx Disk Drive Test Menu
                Execute All Disk Tests (W/R/S/CST)
A11
Write
               Write Test Menu (data destroyed)
Read
                Read Test Menu
Seek
                Seek Test Menu
              Check Seek Time
CSTime
Drive Infor
                Drive Information.
Format
               Format disk drive.
SELect
               Select disk drive.
User
                User Select Test Block
QUick
               Quick Test
?
                 Help for drive test menu
MAin
                 Return to Main Menu
Command ===>
```

The following are descriptions of the commands in this menu:

A11

This command executes the sequential W/R test, the seek test, and the check seek time test in the subsystem/disk menu. The test will default to one pass through each test.

- W This command selects a sub-menu that contains tests that write data to the disk drive. Any previous data that was on the disk will be destroyed except the disk drive label and defect list data.
- **R** This command selects a sub-menu that contains tests that read the disk drive and compute the soft and/or hard error rates per error.
- **S** This command selects a sub-menu of tests that perform different types of seek test patterns and compute seek error rates per error.

CST

This command executes the tests that calculate the seek times (Average, track-to-track, 1/3 stroke, and maximum) on the disk drive under test. Due to critical timing, it must be run as single tasking to guarantee the time accuracy.

- **D** This command displays the geometry of the drive under test.
- **F** This command formats the drive with default drive parameters obtained from controller. The confirm message will be displayed before the test is started.

SEL

This command selects the disk drive to be tested by the remainder of the commands in the Disk Drive Test Menu. It prompts for the number (0 or 1) of the disk drive to be tested.

U b=block address

This command executes write/read commands to the disk drive. Up to 128 blocks, beginning at the block address you specify, is written and then read back. The test checks to see if the specified block address is within the limits of the drive or the block address 0 is selected. If it is not, an error message is displayed. The confirm message will be displayed and wait for your the test is executed.

- **QU** This command executes a quick test by writing and then reading back a block of data on the inner, the outer, and the middle cylinder. You need to respond to a warning message before the test is started.
- ? This command displays the menu of each of the tests and gives brief descriptions of what each command will do.
- MA. This command will quit the current menu and return to the Main Menu.

Disk Write Test Menu

The following are the tests for an SCSI Disk write test :

```
Disk Drive Diagnostic Rev. xx, Date:xx/xx/xx Write Test Menu
            Execute All Disk Write Tests
A11
6DB
            Write with worst case data pattern 0x6DB
B6D
            Write with worst case data pattern 0xB6D
DB6
            Write with worst case data pattern 0xDB6
7A6E
            Write with pattern 7A6E (for RLL drives)
Random
            Random Write Test
?
           Help for Write test menu
ESC
            Return to Previous Menu
            Return to Main Menu
MAin
Command ===>
```

This menu consists of commands that will write data patterns to the drive. You must respond to the warning message before writing to the the disk drive is allowed. The label block (block 0) and defect list block will be preserved and skipped during all the write tests.

All

This command executes all tests in the disk/write menu.

6DB

This command writes the entire disk except the disk drive label and defect list block with the pattern 0x6DB.

B6D

This command writes the entire disk except the disk drive label and defect list block with the pattern 0xB6D.

DB6

This command writes the entire disk except the disk drive label and defect list block with the pattern 0xB6D.

7A6E

This command writes the entire disk except the disk drive label and defect list block with the pattern 0x7A6E. This pattern is used to test the drives that are using RLL (Run Length Encode).

- **R** This command randomly selects a data pattern for a random block address before the write command is executed. It will repeat for 300 random blocks which are generated by a random number generator.
- **MA** This command exits from this menu and returns to the Main menu.

Disk Read Test Menu

The following are the tests for the Read Menu of the SCSI disk:

Soit	Read until 1x10 10 bits transferred is met
Hard	Read until 1x10 ¹² bits transferred is met
User	User select number of times to loop
Random	Random Read Test
?	Help for Read test Menu
ESC	Return to Previous Menu
MAin	Return to Main Menu

The following are descriptions of the commands in this menu:

- **S** This command reads the drive sequentially until at least 10¹⁰ bits have been transferred. In this way soft error rate of the drive is computed. The number of loops needed to complete this test is automatically computed by the program. You may abort the test any time by typing the ! key.
- **H** This command reads the drive sequentially until at least 10¹² bits have been transferred. This process computes the hard error rate of the drive. The number of loops needed to complete this test is automatically determined by the program. You may abort the test any time by typing the ! key.

$\mathbf{v} PASs =$

With this command you may select the number of times to loop on a test. At the end of the test, the number of bits that have been transferred is computed.

The value you enter after PASs = is the number of times you want to execute the test. If you do not enter a value, the test will run only once (the default). Note that the *PASs* argument differs from the repeat = command, in that it keeps track number of loops that have been completed for later use of error rate calculation, while the repeat = argument is controlled by the Exec, and doesn't keep track of the number of loops.

- **R** This command will perform 300 random reads on the drive under test.
- ? This command displays information regarding usage of the commands in this menu.
- MA This command exits the Read Test Menu and returns to the Main menu.


```
Disk Seek Test Menu
                                  The following are tests for the Seek Test Menu:
 Disk Drive Diagnostic Rev. xx, Date:xx/xx/xx Seek Test Menu
 A11
                     Execute All Disk Seek Tests
                     Seek with ping-pong pattern until 1x10<sup>6</sup> seeks
 Ping-pong
                     Seek with center-in pattern until 1x10°6 seeks is met
 Center
                     Seek ping-pong per user select loop
 UPPong
                     Seek center in per user select loop
 UCenter
 ?
                     Help for Seek test Menu
 ESC
                     Return to Previous Menu
 MAin
                     Return to Main Menu
 Command ===>
                         NOTE
                                  Note that the PASs argument differs from the repeat = command, in that it
                                  keeps track number of loops that have been completed for later use in error rate
                                   calculation, while the repeat = argument is controlled by the Exec, and
                                  doesn't keep track of the number of loops.
                                  The following are descriptions of the commands in this menu:
                                  A11
                                       This command executes all the tests in the Disk/Seek menu.
                                  P
                                      This command performs a seek test with a ping-pong pattern that moves the
                                       W/R head from cylinder 0 to last cylinder, back to cylinder 0 and then to last
                                       cylinder n, where n is incremented by one for each complete W/R head
                                       move. When n = 1 ast cylinder, it will be reset to 0 and the test will be
                                       repeated until at least 10<sup>6</sup> seeks are met. The number of loops are deter-
                                       mined by the program for each type of drive.
                                      This command performs a seek test with a center-in pattern that moves the
                                  С
                                       W/R head from the cylinder 0 + n to the last cylinder - n, where n is incre-
                                       mented by one for each complete W/R head move. When n = (last cylinder +
                                       2), it will be reset to 0 and the test will be repeated until at least 10° seeks
                                       are met.
                                  UPP PASs =
                                       This command does a seek test with the ping-pong pattern after you select
                                       the number of loops to run.
                                       PASs is the number of times you want to execute the test. You must enter a
                                       number greater than 0 for the test to be executed. The default is one pass.
                                  UC PASs =
                                       This command does a seek test with the center-in pattern after you select the
                                       number of loops to run.
                                       PASs is the number of times you want to execute the test. You must enter a
                                       number greater than 0 for the test to be executed.
                                       This command displays information regarding usage of the commands in
                                   ?
                                       this menu.
```


MA This command exits the Seek Test menu and returns to the Main Menu.

Tape Drive Tests Menu

The following are the tests for the Tape drive.

A11	Execute All Tape Tests.	
RWT	Rewind the Tape.	
ERT	Erase the Tape.	
RTT	Retension the Tape.	
RDT	Read the Tape.	
WRT	Write/Read the Tape.	
FST	File Skipping Test.	
WET	Write until End of Tape.	
RAT	Read Alignment Tape.	
TPI	Tape Information.	
QII	Set up QIC-11 Format.	
Q24	Set up QIC-24 Format.	
?	Help for Tape test Menu.	
ESC	Return to previous Menu.	
MAin	Return to Main Menu.	

The following are descriptions of the commands in this menu:

A11

This command execute all tests in the Tape Drive test menu.

RWT

This command rewind the tape to physical BOT (Beginning Of Tape).

ERT

This command erases the whole tape if the tape is not write protected.

RTT

This command retensions the tape for better tape drive performance.

RDT

This command does read operations on a certain number of blocks on the tape.

WRT

This command performs write/read tests on ten (10) files, 27 blocks each. Write/read data is compared after each file is created and written with a random data pattern. QIC_11 and QIC_24 format is also be tested with this command.

FST

This command writes seven (7) files to the tape with data pattern 2929H - 2931H and then randomly reads back one (1) file by doing file-skipping with random numbers (1-7). The data will be compared after the read operation to validate it.

WET

This command writes from BOT to EOT with a random data pattern. This test assures that the w/r head mechanism steps and moves up and down properly. If it does, the BOT and EOT signal is trapped and the test is completed. For a SCSI-3/SYSGEN combination, this test takes about 20 times longer to run as compared to the other combinations. This increase in runtime is because the Sysgen tape controller takes longer to return status information to the SCSI-3 host adapter. There is a warning message concerning this problem before the test is executed; you must decide whether to proceed or to abort the test.

RAT

This command reads the alignment tape to assure that the w/r head is aligned properly. Currently, there are two alignment tape formats (QIC11 and QIÇ24) that are supported. After each file is read, the data is checked and compared to guarantee it is valid.

TPI

This command displays the tape configuration information, such as the type of SCSI board, type of tape controller, QIC format being set up, and so son.

Q11

This command sets the Tape controller to handle QIC-11 format. All data written on the tape with QIC-24 format will not be read by QIC-11 format, and vice versa; an error message will inform you if this condition exists.

Q24

This command sets the tape controller to handle QIC-24 format. The restriction described for the Q11 command also applies here.

? This command displays the help menu.

The Escape Key

Pressing Esc returns you to the previous menu.

MA This command returns you to the Main Menu.

15.8. Error Handling

There are two types of error messages. One (code 1H- 50H) is the message interpreting the error code that was returned by disk controller using the request sense command. The other (code 80H-90H) type is comprised of error messages that come from the test program. The diagnostic test reports the failure of the selected test in as much detail as possible and saves it in a log file. The stop-onerror option, which you can set up from the Main Menu allows the test either to keep running or to halt when an error occurs. Please refer to *Chapter 2* for information on displaying and saving the error log file.

15.9. Message Interpretation

The following are the error code descriptions, according to vendor or OEM technical manuals (SYSGEN, Adaptec, and Emulex). Please refer to these manuals for more detail.

Code	1	-	No index signal.
Code	2	-	No seek complete.
Code	3	-	Write fault.
Code	4	-	Drive is not ready.
Code	5	-	Drive is not selected.
Code	6	-	No track 0 found.
Code	8	-	Target is busy or Command queue is full.
Code	9	-	Tape media is not installed.
Code	AH	-	Not enough space on tape for transfer.
Code	BH	-	Tape drive time-out.
Code	10H	-	I.D CRC error.
Code	11H	-	Uncorrectable data error.
Code	12H	-	I.D address mark not found.
Code	13H	-	Data address mark not found.
Code	14H	-	Block or sector not found.
Code	15H	-	Seek error.
Code	16H	-	DMA time-out while serving tape drive.
Code	17H	-	Tape write protected/Read error recovered with retries.
Code	18H	-	Ecc recovered read error.
Code	19H	-	Ecc error during verify/Defect list error/Tape bad block found.
Code	1AH	-	Interleave error or Parameter overrun.
Code	1CH	-	Unformatted/bad format on drive/Tape file mark detected.
Code	1DH	-	Self test failed or compare error.
Code	1EH	-	Defective track (media error).
Code	20H	-	Invalid command.
Code	21H	-	Invalid/illegal block address.
Code	22H	-	Illegal function for device.
Code	23H	-	Volume overflow.
Code	24H	-	Bad argument/illegal field in CDB.
Code	25H	-	Invalid logical unit number.
Code	26H	-	Invalid field in parameter list.
Code	27H	-	Write protected.
Code	28H	-	Medium change.
Code	29H	-	Power up or reset occurred.
Code	2AH	-	Mode select just changed.
Code	30H	-	Tape Unit Attention.
Code	31H	-	Format Failed/Tape command time-out.
Code	32H	-	No alternate track on LUN.
Code	33H	-	Tape Append error.
Code	34H	-	Read EOT (End Of Tape).
Code	40H	-	RAM error detected.
Code	43H	-	Message reject error.
Code	44H	-	SCSI hardware/firmware error.
Code	45H	-	Select/reselect failed.
Code	47H	-	Parity error.
Code	48H	-	Initiator detected error.
Code	49H	-	Inappropriate/illegal message.

The following error messages are interpreted for the SYSGEN tape controller:

QIC2-0 81H - File Mark Detected. QIC2-0 82H - Bad Block not Allocated. QIC2-0 84H - Unrecoverable data error. QIC2-0 88H - End of Media. QIC2-0 90H - Write protected Cartridge. QIC2-0 A0H - Unselected Tape Drive. QIC2-0 COH - Tape not in place or just inseted. QIC2-1 81H - Power on/Reset occurred. QIC2-1 82H - Reserved for end of recorded media. QIC2-1 82H - Reserved for bus parity error. QIC2-1 88H - Beginning of Media. QIC2-1 88H - Beginning of Media. QIC2-1 90H - Marginal Block detected. QIC2-1 :0H - Illegal Command.

The following are the program error code messages, which tell you in which routine the error occurred and for which reason the error was generated.

Code 80H - DMA TRANSFER : Error returned from CHECK PHASE. Code 81H - DMA TRANSFER : Error returned from SEND COMMAND TO CDB. Code 82H - DMA TRANSFER : Expect cnt=0, Observed cnt=xxxx. Code 83H - SEND_COMMAND_TO_CDB : Error returned from CHECK_PHASE. Code 84H - BUS TRANSFER : Error returned from SEND COMMAND TO CDB. Code 85H - CHECK STATUS: Error returned from CHECK PHASE. Code 86H - PHASE MATCH : Phase was mismatched. Code 87H - REQUEST SENSE : Error returned from SEND COMMAND TO CDB. Code 88H - REQUEST SENSE : Expect no error, observed check condition. Code 89H - TARGET INITIALIZATION : Busy bit never asserted. Code 8AH - TEST UNIT READY : Error returned from SEND COMMAND TO CDB. Code 8BH - Error while doing Exec Map. Code 8CH - HANDSHAKING : Request bit never toggle. Code 8DH - DMA TRANSFER(W/R): Bus_err/Scsi_bcnfl bit is set. Code 8EH - REQUEST SENSE: Error from w/r via bus. Code 8FH - SEND COMMAND TO CDB: Error from target initial. Code 90H - DMA TRANSFER: Sbc int bit was not set after Dma. DEFAULT - Unknown error returned from the controller.

15.10. Failure Analysis The purpose of failure analysis is to help narrow down to a certain area what might cause the error, although those components may not necessarily be bad. It is up to the service person to perform further tests, investigation and troubleshooting to resolve the problem. The error codes listed below are divided into groups to help you determine the area in which the error occurred.

The following error codes are most likely to be disk drive related:

ERROR CODES (in Hex): 1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19.

ERROR CODES (in Hex): 1A, 1C, 1E, 23, 27, 28,

The rest of the controller error codes are disk controller related:

ERROR CODES (in Hex): 8, 1D, 20, 21, 22, 24, 25, 26, 29, 2A, 31, 32.

ERROR CODES (in Hex): 40, 43, 44, 45, 47, 48, 49.

All of the program error codes (80H - 90H) are most likely referring to SCSI board problems, such as bad connections, faulty switch settings, no power on, a problem with the target device, bad cable, and so on. It is recommended that you power down both the system and storage device to do a check. If the problem still exists then replacing the SCSI board is the next step.

The all option in the Main Menu of the SCSI Subsystem Diagnostics performs an exhaustive test on the SCSI host adapter, disk drive, disk controller board, and tape drive. It provides a more confident statement regarding SCSI subsystem device functionality.

15.11. Glossary	ACB	Adaptec 4000 Disk Controller Board
	CPU	Central Processing Unit
	Cylinder	Most common disk devices consist of a number of platters mounted on a spindle spinning at a high speed. The cylinder is geometrically located at a radius (from the center of the spindle) on all platters. Disks store information on a thin mag- netic coating.
	ESDI	Enhanced Small Device Interface
	Head	To read and write the information on the surface of the disk, a number of heads are mounted on a common arm so they travel together. Usually, there are two heads for each platter (one for the top and one for the bottom surfaces).
	Mbytes	Megabytes
	MD21	Emulex MD21 Disk Controller Board
	ST506	Seagate Technology Disk Interface
	Sector	Each track is further divided into segments called sectors. The sector is a basic unit of storage on the disk. On Sun systems, each sector contains 512 bytes of data and is surrounded by a header and trailer containing addressing and error correction information.
	SASI	Shugart Associates System Interface
	SCSI	Small Computer System Interface
	Track	A track is the portion of a disk passing under a single station- ary head during disk rotation.
		The cylinder, tracks and sectors each inhabit a distinct dimen- sion that separates and locates them; cylinders are located by distance from the spindle; tracks are separated from each other

by surface on platters; and sectors from each other by time.

16

Sun-2 Sky FFP Diagnostic

Sun-2 Sky FFP Diagnostic	277
. 16.1. Sky Board General Description	277
16.2. Sky Board Functional Overview	277
16.3. Sky Diagnostic Test Overview	277
16.4. Hardware Requirements	278
16.5. The Main Menu	278
16.6. Main Help Menu	280
16.7. The Arithmetic Selection Menu	281
16.8. Arithmetic Help Menu	282
16.9. Error Handling	282
16.10. Recommended Test Procedure	282
16.11. Glossary	

Sun-2 Sky FFP Diagnostic

16.1. Sk De	ky Board General escription	The Sun-2/120 Sl in Multi-bus or V ties; it uses the bu form math operat	ky Fast Floating F MEbus systems. 7 us for its data tran ions rapidly on 32	Point board is a floating point accelerator used This board has no I/O (input/output) capabili- sfers. The Sky board is primarily used to per- 2-bit integers.	
16.2. Sk Ov	ky Board Functional verview	The Sky FFP board must have its RAM loaded with microcode before use. At this point the board is initialized and is ready to execute commands. Command codes are sent from the CPU to the Sky board over the bus, followed by the data (usually two 16-bit words) that requires computation. The command code describes the operation the Sky board is to perform on the Data and what form returned data should take. If a command code arrives while an operation is in process, the Sky board performs Context Restore/Save, which saves the current task on the stack, loads the new task, completes it, then restores and completes the previous assignment. In this way the Sky board can be considered a multi-tasking device.			
		The Sky FFP is a single board that plugs directly into the backplane of a Multibus or VMEbus cardcage. The board requires +5 VDC, at 4.0 Amps and can operate in an environment of 0 to 55 degrees Celsius. The board uses the 2901 bit-slice ALU and 16 x 16 Multiplier, running at 8 MHz internal cycle time (125 ns). The Program Memory on board is equal to 4K x 32 Bits of RAM, with seven levels of interrupt available.			
		The Microcode is (16 Bits), while c Bits.) The data co	s loaded to the Sky commands are recommes into the boar	y board by means of the Microcode Register eived through the Status/Control Register (16 rd through two Data Registers (16 Bits.)	
16.3. Sky Diagnostic Test OverviewThe Sky Fast Floating Point Diagnostic exercises the Sky FFP board wi lowing tests:					
		Addition Subtraction Multiplication	Logarithm Division Configuration	Microcode Load Microcode Restore Microcode Save	
The Sky FFP Diagnostic works on both the Sun 2/120 (Multibus) and th 2/160/130 (VMEbus) systems. Although the boards physically differ, the same electrically for both systems. No external (I/O) cables are required operate the Sky FFP board					

16.4.	Hardware	To operate the Sky Floating Point Diagnostic, a Sun system must contain:		
	Requirements	nts 🛛 🗸	A Sun-2 CPU board with:	
			1. Two Mbytes of RAM	
			2. A Sun-2 Video board	

- 3. A Sun-2 Ethernet board or SCSI Tape drive (for loading the diagnostic)
- 4. A Sky Fast Floating Point board.

16.5. The Main Menu The Main Menu of the Sky FFP Diagnostic is shown below. A total of nine different options are listed in the menu.

Sky Fast Float:	ing Point Board Diagnostic REV X.X mm/dd/yy Main Menu
Configure	Configuration Test Sequence
Microcram	Microcode Load Test Sequence
Restore	Context Restore/Save Test Sequence
ARithmetic	Arithmetic Selection Menu
A 11	All Test Sequence
Default	Default Test Sequence
Quick	Quick Version Test Sequence
Command ==>	

Configure

The *initialization test* reads the system's ID PROM to determine whether the board is connected to a Multibus or VMEbus backplane. The test then sets the appropriate Physical Address and read the board's address back ten (10) times. If an error should occur, the diagnostic stops with an error message such as:

Sky board not installed in system. Check system configuration.

At the same time, the error is logged to disk.

Microcram

The *Microcode Load test* writes approximately 4080 bytes of Microcode to the Command Register of the Sky board. Each byte written is then read back to insure its accuracy and determine if the correct amount of code has been loaded. The Sky diagnostic displays a message showing the total number of bytes loaded, along with the Sky board's status. If an error occurs during the Microcode load, the diagnostic is stopped and the error is logged to disk. An error at this point is serious enough to terminate operation of the diagnostic, since the Sky board must have its microcode loaded to accept commands from the host CPU. Once loaded, the Microcode resides in the Sky board's RAM.

Restore

The *Restore/Save test* tests the Sky board's ability to operate in a multitasking environment. Eight bytes of data are saved, then restored, simulating an interrupt for a Context Restore/Save. The bytes are displayed during

the Restore portion of the test. If an error occurs during this test, the error message

Error while running Restore test-Check log

is displayed, the test is stopped, and the error is logged to disk. The diagnostic can still be used after this type of error.

ARithmetic

This menu item selects the Arithmetic Sub-Menu. For an explanation of the available tests, and a description of each, see the The Arithmetic Selection Menu section. The Microcode load test must be executed prior to running these tests, or the error message

Sky board NOT configured, running configuration routine

· is displayed.

A11

The All test sequence executes the following tests automatically in the order they appear. Each displays information about the Sky board and log errors to the disk, just as if they were initialized manually.

- 1. Configuration Test: Quick Configuration Check, and set Physical Address.
- 2. Microcram Test: Load the 4080 Bytes of Code into the Sky board RAM.
- 3. Restore/Save Test: Context Restore/Save, 8 32 bit words are Saved and Restored.
- 4. Logarithm Test: Take the Log of a 1.0
- 5. Addition Test: Add two Random Floating Point Numbers 25 times.
- 6. Subtraction Test: Subtract two Random Floating Point Numbers 25 times.
- 7. Multiplication Test: Multiply two Random Floating Point Numbers 25 times.
- 8. Division Test: Divide two Random Floating Point Numbers 25 times.

The All test Sequence command can have a Loop=* appended added to the command line for infinite execution, as shown below.

Command ==>All , Loop=*

The Exec displays a message containing the Pass Loop number each time the test is executed. This way you know how many passes the test sequence has executed.

Default

The Default Test Sequence executes the tests listed below:

1. Initialization Test: Quick Configuration Check, and set Physical Address.

	2. Microcram Test: Load the 4080 Bytes of Code into the Sky boards RAM.
	 Restore/Save Test: Context Restore/Save, 8 - 32 bit words are Saved and Restored.
	The Default Test Sequence is intended to be a default for the Main Menu. If the you know nothing about the Diagnostic and want to run the tests displayed, select the default option and invoke the tests listed above.
	Quick The Quick Test Sequence executes the Configuration Test Sequence once. This test can be used to determine if the Sky board is configured correctly.
16.6. Main Help Me	nu The main Help Menu is shown below. It can only be selected from the Main Menu, by typing ?. The Help Menu contains an explanation of the test options in the Main Menu. It contains information only; tests can't be selected from this menu. To leave this menu, enter Esc on the command line.
Sky Fast Floating	J Point Board Diagnostic REV x.x mm/dd/yy Helpl Menu
Configuration Microcram	Will Execute a Test checking the SKY Boards Configuration. Will Execute a Micro Code Loading test on the SKY Board.

ConfigurationWill Execute a Test checking the SKY Boards Configuration.MicrocramWill Execute a Micro Code Loading test on the SKY Board.RestoreWill Execute a Multiple User Test (Context Switch).ArithmeticWill Display a Menu of the Arithmetic Tests.AllWill Execute ALL the Sky FFP board tests in sequence.DefaultWill Execute a Default series of Sky FFP board testsQuickWill Execute a Quick test on the Sky board.Command ==>

This is the only level of help for the Main Menu. It explains what each test option does. If ? is typed at this point, the message

Already in the help Menu

is displayed.

16.7. The Arithmetic Selection Menu

The Arithmetic Selection Menu is shown below. Nine options are included in the this menu. Each option corresponds to a character or set of characters for ease of test selection.

The math function tests all use Single Precision Floating Point Real numbers, (SPR), generated by a random number routine. The results of a test are calculated with software, then used to verify the hardware value. If the hardware answer doesn't match the software answer, an error message is generated.

If an error is found during the execution of a Math Function, the test that is currently running exits. The diagnostic continues to the next test after logging the error.

Sky Fast Floating P	oint Board Diagnostic REV X.X mm/dd/87 Arithmetic Menu
LOG	Lògarithmic Test Sequence
ADdition	Addition Test Sequence
SUbtraction	Subtraction Test Sequence
MUltiplication	Multiplication Test Sequence
DIvision	Division Test Sequence
All	All Math Test Sequence
Command ==> LOG	

LOG

The *logarithm test* takes the logarithm of a known value (1.0), computes its value, checks it against the known answer, then displays the result. The test repeats 256 times. If an error occurs during execution, the message Logarithm Failed is displayed, and the error is logged to the disk.

ADdition

The Addition test uses single precision floating point numbers to add two random numbers and generate an answer. The addition is repeated 256 times, each time using a different random number. The last iteration uses a hard coded value of 1.0 as the operand. If an error occurs, FPP Addition Test done- Errors:xx. is displayed, and the error is logged to disk.

SUbtraction

The Subtraction test uses single precision floating point numbers to subtract two random numbers and generate an answer. The subtraction is repeated 256 times, each time using different random number. After each pass, the answer and the two random operands are displayed. The last iteration uses a hard coded value of 1.0 for the operand. If an Error occurs, Subtraction Failed is displayed and the error is logged to disk.

MUltiplication

The *Multiplication test* uses single precision floating point numbers to multiply two random numbers and generate an answer. The operation is repeated

256 times, each time using different random number. The last iteration uses a hard coded value of 1.0 for the operand. If an error occurs, Multiplication Failed is displayed and the error is logged to disk.

Division

The *Division test* uses single precision floating point numbers to multiply two random numbers and generate an answer. The operation is repeated 256 times, each time using different random number. The last iteration uses a hard coded value of 1.0 for the operand. If an error occurs, Division Failed, is displayed and the error is logged to disk.

16.8. Arithmetic Help
MenuThe Arithmetic Help Menu is shown below. Type ? to bring it up. The Help
Menu contains an explanation of the Arithmetic Menu options. It contains infor-
mation only; tests can't be selected from this menu. To leave this menu, enter
(Esc) on the command line.

LOG	Will Execute the LOG Function on 1.0.
ADdition	Will Execute a Single Precision Floating Point Addition.
Subtraction	Will Execute a Single Precision Floating Point Subtraction.
Multiplication	Will Execute a Single Precision Floating Point Multiplication
DIvision	Will Execute a Single Precision Floating Point Division.
a11	Will Execute ALL the Math Test Choices Listed Above.

16.9. Error Handling	Error Handling for the Sky Diagnostic takes two steps: the error message is displayed, then it is logged to the disk. In this way a history of the diagnostic is preserved, and can be reviewed at a later time. The error message warns you that an error has occurred.
16.10. Recommended Test Procedure	The All Test Sequence option on the Main Menu provides a thorough test of the board's functionality. Upon successful completion of this series of tests, the board should have been exercised as though it were running under nor- mal conditions.
	The Default Test Sequence tests only the board's ability to load Micro- code. It does not test the Math functions. The default option provides a standard set of main menu tests, and should not be used as an overall test of the Sky board.
	The Quick Test Sequence only checks that the Sky board has been ini- tialized properly and that the correct Physical address has been set. This test

board. It is a good check of the board's configuration.

should be used as a first test to make sure the CPU can communicate with the Sky

16.11. Glossary

Executive

The diagnostic operating system, under which this diagnostic runs.

Sky FFP

Sky Fast Floating Point Board.

.

17

Sun SMD Diagnostic

Sun SMD Diagnostic	287
17.1. General Description	287
17.2. Hardware Requirements	288
17.3. Set-Up Procedures	288
17.4. Main Menu	290
17.5. Controller Tests Menu	292
17.6. Drive Tests Menu	295
17.7. Utilities Menu	299
17.8. Controller Errors and Their Interpretation	301
17.9. Program Reported Errors	302
17.10. Diagnostic Variables	304
17.11. Glossary	305

17

Sun SMD Diagnostic

17.1. General Description

Sun Microsystems supports a number of SMD Drives and controllers. The SMD controller board communicates directly with the SMD Drive. The Controller takes care of the details of error checking, data transfer, and arrangement of the data on the disk.

The following Fujitsu, CDC, NEC, and Hitachi SMD Disk Drives are currently supported by this diagnostic:

Table 17-1Supported Disk Drives

Fujitsu	2312	8"	84	Mbytes
11	2284	14"	169	Mbytes
**	2322	8"	168	Mbytes
"	2333	8"	337	Mbytes
"	2351	Eagle	474	Mbytes
"	2297	14"	600+	Mbytes
"	2361	Eagle xp	689	Mbytes
CDC	9720	8"	337	Mbytes
NEC	2363	9"	9xx	Mbytes
Hitachi	815-10	9"	9xx	Mbytes

The following SMD Disk Controllers are currently supported by this diagnostic:

Table 17-2Disk Controller Boards

Xylogics	450	Multibus
Xylogics	451	Multibus
Xylogics	7053	VME

17.2.	Hardware	A working Sun CPU Board.
	Requirements	A working Keyboard.
		A working Monitor.
		An SMD Controller.
		- An SMD Drive.
		A boot device (i.e. local disk, local tape or remote disk over Ethernet).
	CAUTION	You must run this diagnostic from a system other than the one under test.
17.3.	Set-Up Procedures	Before you execute this diagnostic, you should check to see what drive and con- troller type the program is set up to test, and make changes if necessary. These paragraphs provide information on how to change the test parameters and how to enter a command line that deals with such things as multiple disk testing.
		First of all, this diagnostic is set up with these default parameters:
		c0d0=fuj2322 ct0=xy450 cylinder=the disk diagnostic cylinder — change at your own risk track=0 retry=1 pass=1
		These values may be changed any time during the testing process. To check on the disk types that Sun supports at this time, enter
		p cnumberdnumber=? [Return]
		number may be any numeric value
		To check on the present test parameters, simply enter p from the main menu.
		Controller Selection The following examples show you how you can specify a certain controller number and type. Any of these commands may be mixed together on the same command line or used separately.
		To select the controller under test, you first enter a command from one of the SMD diagnostic menus, followed with the controller number and type, as shown below:
		command ctnumber=xy7053
		command may be any command except ?.
		<i>number</i> is the controller number to be tested $(0 - 3)$. If you issue multiple ct <i>number</i> = commands, you may test more than one controller at once.

Disk Selection

To select the disk under test, you first enter a command from any of the menus (excluding the ? command), followed by the controller and disk number and the disk type, as shown below:

```
command cnumberdnumber=disk type
```

As described for controller selection, the *cnumber* and *dnumber* entries may be any number from 0 - 3. The c represents the controller under test and the d represents the disk. The *disk type* parameter may be any disk that Sun supports. To view possible choices, use the command:

p cany numberdany number= ? [Return]

Option Selection

To select SMD diagnostic test options, use this command:

command option test= cylinder= track= pass= retry=

command may be any command except ?, from any of the SMD menus. The test parameter selects a special test in a given sequences of tests. For example, if command was s for the seek tests, the *test* argument could be:

test	=	1	sequential seek test
test	=	2	Long seek test
test	=	3	Oscillating seek test (hourglass or butterfly)
test	=	4	Random seek test
test	-	5	Seek timing test

For descriptions of these tests, refer to the Drive Tests Menu section in Chapter 17.

Another example of test numbers that might be entered when using the Option command is when calling up the ECC test, using e in place of *command*, where *test* is the test number and is as follows :

test	=	0	ecc pattern test 1 - takes about 0 minutes
test	=	1	ecc pattern test 2 - takes about 40 minutes
test	=	2	ecc pattern test 3 - takes about 6 HOURS

These tests are described in the this chapter under the *Controller Tests Menu* section.

The cylinder and track parameters to the Option command specify which area of the disk the test will write to and read from. pass specifies the number of passes the program or test will execute, and retry determines the number of times the I/O routine (driver) will try to complete an unsuccessful operation.

CAUTION When changing the cylinder to any cylinder other than the default, diagnostic cylinder, you risk destroying data that may be stored on that cylinder.

17.4. Main Menu

The main menu provides access to the sub-menus. It also contains a fast and default test command. The main menu is shown below:

SMD Subsystem	Exerciser REV 1 xx/xx/xx Main Menu
Controller	Controller tests menu
Drive	Drive tests menu
A11	All test sequence
Burnin	Burn-in Controller tests
Quick	Quick test sequence
Utilities	Utilities Menu
PARameters	Enter Configuration Parameters
3	Display the command syntax of this menu
Command:	

Controller

The *Controller tests menu* command brings up the controller sub-menu. Enter **c** to bring up this menu.

Drive

The Drive tests menu command brings up the drive sub-menu. Enter **d** to bring up this menu.

Burnin PASs=

The Burn-in Controller tests command automatically executes a set controller tests that don't require an SMD disk. This test is useful for burning in the controller (with no disk connected) in a burn-in oven. Enter **b** and pass = followed with the number of passes you want the tests to make. No pass = entry means that the tests run once.

This command executes the following sub-tests:

- 1. Controller Self Test.
- 2. DMA Test.
- 3. Buffer Load and Dump Test.

All pass=

The *All tests* command executes all the SMD tests in their proper sequence. You can control the number of times this command is executed. The syntax is:

a PASs=some number

pass= is the number of times this command should execute. If no count is given, the program runs only once.

The all tests command executes the following tests:

- Registers Test
- NOP Test
- Controller Diagnostic Test
- Controller Maintenance Test
- Interface Test
- Label Test
- Addressing Test
- Seek Test
- $\mathbf{D} \cdot \mathbf{Switch Test}$
- D Pattern Test
- ECC Test

Quick

The *Quick test* command executes a subset of the SMD tests. This subset takes less time, yet still provides good test coverage. You can control the number of times the Quick test is executed. Enter

q PASs=some_number

pass is the number of times the command executes. If no value is given, the program runs only once.

The quick tests command executes the following tests:

- Registers Test
- NOP Test
- Controller Diagnostic Test
- Controller Maintenance Test
- Interface Test
- Label Test (Primary Label is tested)
- Addressing Test
- Seek Test (Sequential Seek test only)
- Switch Test
- D Pattern Test

PARameters

This command allows you to enter controller parameters. Enter **par** and the desired change, such as CTO=xy451 or CODO=Fuj2333.

?

The *Help Command* displays the syntax of all the commands. Enter ? to invoke Help.

17.5. Controller Tests Menu

The tests below check the SMD Controller. You should run these tests first, to find out if the controller is working.

```
SMD Subsystem Exerciser
                         REV 1 xx/xx/xx Controller Tests Menu
Register
                Registers test
Nop
                Nop test
Diagnostic
             Controller Diagnostic tests
Controller Controller Maintenance tests
Ecc
               ECC test
A11
              All Controller Tests Sequence
PARameters Enter Configuration Parameters
? - Display the command syntax for this menu
Command :
```

n PASs=

The *NOP test* commands the controller to read the IOPB and mark it complete. Then the test sends a NOP command to the controller and checks the return status.

pass is the number of times the given test is executed. If no value is given, the test runs only once. The disk must be connected to the controller for this test.

r PASs=

The *Registers test* reads and writes different patterns to all writable/readable registers then verifies them.

The command syntax is :

r PASs=some_number

pass is the number of times the test is executed. If no value is given, the test runs only once. The SMD disk does not need to be connected to the controller for this test.

c PASs =

The *Controller maintenance tests* command executes the DMA test, the load and dump test, the IOPB addressing test, and the interrupt test. The SMD disk needs to be connected to the controller for this test.

The DMA Test uses the DMA command. The patterns used for the DMA test are: 0x0, 0x55, 0x77, 0xAA, 0xCC, and 0xFF.

The Load and Dump test uses the Buffer Load and Buffer Dump commands. It runs the following patterns: 0x0, 0x55, 0x77, 0xAA, 0xCC, and 0xFF.

The IOPB Addressing test uses the NOP command. It tests all the address bits of IOPB address registers.

The Interrupt test sends a command to the controller after setting the interrupt bit. The program finds out if the interrupt occurred through the interrupt handler.

pass is the number of times the test is executed. If no value is given, the test runs only once.

d PASs =

The Controller Diagnostic tests executes the controller's self test.

pass is the number of times the given test should be executed. If no value is given, the test runs only once.

• TEst= PAS=

The *Ecc test* command runs the ECC (Error Checking and Correction) test. The disk should be attached for this test because it writes and reads from

diagnostic disk cylinder. This test is not part of any default test sequence. There is a mode test in which all four possible ECC correction modes are checked. The test checks ECC circuitry three ways. It alternates, using 1's as a background and 0's for the ECC correction, then 0's are the background and 1's as the ECC correction.

Test "0" steps are:

- 1. Write all 1's to a sector using the write command (to the diag cylinder).
- 2. Read the entire sector using the read all command.
- 3. Write 11 bits of 0's, starting from the first bit of the sector.
- 4. Read the same sector and check the status bits.
- 5. Read the status bits to see if the ECC circuit worked properly.
- 6. Starting from the 12th bit, repeat steps 2 through 5.
- 7. Do steps 1 through 6 for all 512 bytes so that all the bits are covered.
- 8. Do steps 1 through 7 with 0's as background and 1's as ECC pattern.

Test 1 is similar to Test 0 except it does an 11-bit ECC bit by bit. Test "1" steps are:

- 1. Writes all 1's to a sector using the write command (to the diag cylinder).
- 2. Read the whole sector using the read all command.
- 3. Write 11 bits of 0's from the first bit of the sector.
- 4. Read the same sector and check the status bits.
- 5. Check the status bits to see if the ECC circuit worked properly.
- 6. Starting from the 2nd bit repeat steps 2 to 5 (do all bits 8 times).
- 7. Repeat steps 1 through 6 for all 512 bytes; now all the bits are covered.
- 8. Repeat steps 1 through 7 using 0's as the background and 1's as the ECC pattern.

Test "2" is more extensive than the previous two. It starts with a 1-bit ECC pattern and works up to an 11-bit pattern. The ECC patterns from 1 bit to 11 bits are done on each bit of the sector. The steps are similar to Tests 0 and 1.

test is the test number, as follows:

Table 17-3Test Parameter Values

Value	Test
0	ECC pattern test 1 - takes about 6 minutes
1	ECC pattern test 2 - takes about 40 minutes
2	ECC pattern test 3 - takes about 6 HOURS

The default test is "0". The argument pass= is the number of times the given test is executed. If no value is given, the test runs only once.

8

The *All tests* command executes all the tests given in this menu, in the sequence given below:

- Registers Test
- NOP Tests
- Controller Diagnostic Tests
- Controller Maintenance Tests

You can set the number of times the tests are executed. The default is one. The syntax is :

a PASs=some_number

pass is the number of times you want to execute the test. If no value is supplied, the test runs only once.

PARameters

This command allows you to enter controller parameters. Enter **par** and the desired change, such as CTO=xy451 or COD0=Fuj2333.

?

The *Help* command displays the syntax of each command in the menu. Enter ? to get help with the commands.

17.6. Drive Tests Menu

These tests check the SMD drive: It tests drive interface and drive operations. There are eight commands in this menu. they are :

InterfaceInterface testLabelLabel testAddressingAddressing testSeekSeek testSWitchSWitch testPatternPattern testALlALl testsQuickQuick testsPARametersEnter Configuration Parameters? - Display the command syntax for this menu	SMD Subsystem	Exerciser REV 1 xx/xx/xx Drive Tests Menu
LabelLabel testAddressingAddressing testSeekSeek testSWitchSWitch testPatternPattern testALlALl testsQuickQuick testsPARametersEnter Configuration Parameters? - Display the command syntax for this menu	Interface	Interface test
AddressingAddressing testSeekSeek testSWitchSWitch testPatternPattern testALIALI testsQuickQuick testsPARametersEnter Configuration Parameters? - Display the command syntax for this menu	Label	Label test
SeekSeek testSWitchSWitch testPatternPattern testALIALI testsQuickQuick testsPARametersEnter Configuration Parameters? - Display the command syntax for this menu	Addressing	Addressing test
SWitchSWitch testPatternPattern testALIALI testsQuickQuick testsPARametersEnter Configuration Parameters? - Display the command syntax for this menu	Seek	Seek test
PatternPattern testAL1AL1 testsQuickQuick testsPARametersEnter Configuration Parameters? - Display the command syntax for this menu	SWitch	SWitch test
ALl ALl tests Quick Quick tests PARameters Enter Configuration Parameters ? - Display the command syntax for this menu	Pattern	Pattern test
Quick Quick tests PARameters Enter Configuration Parameters ? - Display the command syntax for this menu	AL1	ALl tests
PARameters Enter Configuration Parameters ? - Display the command syntax for this menu	Quick	Quick tests
? - Display the command syntax for this menu	PARameters	Enter Configuration Parameters
	? - Display th	ne command syntax for this menu
	Command:	

i PASs=

The *Interface test* makes sure the drive is connected and the cables between the drive and controller are good. *pass* is the number of times the test is executed. If no parameters are given, the test runs only once.

1 Num= PASs=

The *Label Test* checks label of the Disk to see if it is good or not. It checks the primary label (at sector 0 and track 0) and alternate labels (at sectors 1, 3, 5, 7, and 9 of the second alternate). This test accepts two arguments. If no *Num* values are given, the test checks all the labels once. The argument *num* is for individual labels as shown below:

Table 17-4Num Parameter Values

Value	Meaning
0	all the labels
1	primary label (sector 0, track 0)
2	alternate label (sector 1, second alternate)
3	alternate label (sector 3, second alternate)
4	alternate label (sector 5, second alternate)
5	alternate label (sector 7, second alternate)
6	alternate label (sector 9, second alternate)

The second argument, *pass*, is the number of times the test will execute. If no values are given, the test runs only once.

a CYLinder= TRAck= OPTion=Sector Start= End= PASs=

or

a OPTion= Cylinder Start= End= PASs=

The Addressing test checks the addressing of cylinders and sectors by addressing even sectors (and cylinders) from first to last, then addressing odd sectors (and cylinders) from last to first. The test accepts four or six arguments.

- cylinder is the cylinder number.
- □ track is the track number.
- option specifies whether the test is for a cylinder or sector.
- start is the starting sector/cylinder number to test.
- end is the last sector/cylinder number to test.

If no values are given, the test checks the sectors and cylinders, going from minimum to maximum number.

pass is the number of times the test executes. The default value is one.

8

The *Seek test* performs a number of different seek tests on the SMD drive. There are five different tests. They are explained below :

Sequential Test

This test seeks to the starting cylinder number, then does seeks in increments of one to last cylinder number. It then starts seeking from the last cylinder number to the first cylinder number in decrements of one.

Long Seek Test

This test seeks to the starting cylinder number, then seeks to the last cylinder number. Then it does the reverse, seeking to the last cylinder number, then seeking to the first cylinder number.

Oscillating Seek Test

This test seeks from the starting cylinder to the next cylinder, and back again. Then it seeks two cylinders up, then back, repeating the cycle to the top cylinder. Next it starts doing the reverse; starting from the top cylinder, it seeks down one then back up, down two then up, until it reaches the starting cylinder.

Random Seek Test

This test does random cylinder seeks between the starting and ending cylinder numbers. The program gets the cylinder number from a random number generator.

Timing Seek Test

This test consists of four timing measurements:

The Average Minimum Seek (forward) test seeks the head sequentially (forward) over the center 100 cylinders and the average is displayed.

The Average Minimum Seek (reverse) test is identical to the previous test, except that it seeks in the reverse direction.

The Average Seek test does 100 average seeks and the average is displayed.

The maximum seek test does 100 maximum seeks and then displays the average.

NOTE Software overhead has NOT been removed for these timing tests.

8W

The SWitch test checks the switching of heads and cylinders. The syntax is:

```
sw OPTion=Cylinder Start= End= PASs=
```

or

ew OPTion=Head Start= End= PASs=

This test accepts four arguments. *option* specifies whether cylinders or heads are tested. If no value for *option* is supplied, the test is executed for heads and cylinders.

start is the starting cylinder or head number to test.

end is the last cylinder or head number to test. pass is the number of times to execute the test (default is one).

P

The *Pattern test* writes and reads different patterns to the SMD drive. The test uses the patterns in the table below:

Table 17-5Pattern Test Values

Pattern Values
0xaaaaaaa
0xFFFFFFFF
0xEBD6EBD6
0xD7ADD7AD
0xAF5BAF5B
0x5EB75EB7
0x6DB66DB6

The *Pattern* test uses the diagnostic cylinder to do a write/read operation in the default mode. Each pattern is written to the disk, read back and compared. All errors are reported. If any mode other than the default mode of operation is selected, it is *VERY probable* that data on the disk will be destroyed. "Other than default mode" means that you select which cylinder or track is to be used. All cylinders other than the diagnostic cylinder MAY have data stored on them, and as a result this data would be lost.

This command accepts five or seven arguments. The command syntax is:

p CYLinder=TRAck=OPTion=Sector Start=End=PATtern=PASs=

٥r

- **p** OPTion=Cylinder Start= End= PATtern= PASs=
- cylinder is the cylinder number.
- \Box track is the track number.
- option specifies whether a cylinder or a sector is tested.

- start is the starting sector or cylinder number you want to test.
- end number is the end sector or cylinder number you want to test.

If no sector or cylinder number is provided, the test runs the pattern test for all available sectors with default patterns one time.

- pattern is the pattern used to test on the disk.
- pass is the number of times the test runs (default is one).

The default test is a non-destructive test on every cylinder using its six default patterns.

al PASs=

The ALl tests command executes all the tests in this menu in the sequence below:

- 1. Interface Test
- 2. Label Test
- 3. Addressing Test
- 4. Seek Test
- 5. Switch Test
- 6. Pattern Test

You can set the number of times the tests are executed. The default is one. The syntax is:

al PASs=xxxx

pass = is the number of times the test executes. If no arguments are supplied, the test runs once.

q PASs =

The *Quick test* completes faster than the *All tests* but performs only limited testing. It runs the following tests:

- 1. Interface Test
- 2. Label Test (Primary label is tested)
- 3. Addressing Test
- 4. Seek Test (only Sequential part)
- 5. Switch Test
- 6. Pattern Test

pass = is the number of times the test executes. If no arguments are supplied, the test runs once.

PARameters

This command allows you to enter controller parameters. Enter **par** and the desired change, such as CTO=xy451 or CODO=Fuj2333.

?

The *Help* command displays the syntax of each command. Enter ? to get help with command syntax.

17.7. Utilities Menu

The Utilities Menu for an SMD drive will look something like this:

SMD Subsystem	Exerciser REV 1 xx/xx/xx Utilities Menu
-	
Dump	Dump
RHeader	Read Headers
Read	Read
Write	Write
Parameters	Enter Configuration Parameters
2	Display the command syntax for this menu
_• _	
Command:	

This menu provides limited support for the SMD subsystem through the use of four utilities. Some of these utilities are rough and will not always display or handle data in the manner desired because they were originally designed to be used in debugging this diagnostic. Due to the length of some of the displays, all utilities may be aborted with the (\underline{Esc}) key.

The options on the Utilities Menu are used as follows:

D cylinder= track=

The dump utility "dumps", or displays, the contents of the disk referenced when you entered the P command, or of the disk specified in a command line. The complete sector is displayed as it is transferred from the disk, which includes header, data, and ECC. As a result, the header may not make sense at first, because the cylinder, track and sector are not separated in this release. This will be corrected at a later date.

The cylinder and track parameters are optional.

CAUTION The cylinder and track information used by this utility is the same information used by the diagnostic. Therefore, if reference is made to an area other than the diagnostic cylinder, it should be changed before returning to the test menus. This procedure will prevent the destruction of disk data.

RH cylinder= track=

The Read headers utility displays only the header information referenced by the values displayed when using the P command, or those included as part of a command line. The complete header is displayed as transferred from the disk, and as a result it may not make sense at first, because the cylinder, track, and sector information are not separated for easy viewing. This will be corrected at a later date.

The cylinder and track parameters are optional. Refer to the CAUTION message above.

R cylinder= track=

This utility displays only the disk data information referenced by the values

displayed when using the P command, or those included as part of a command line. The sector data for a complete track is displayed as transferred from the disk.

The cylinder and track parameters are optional. Refer to the CAUTION message above.

W cylinder = track =

This utility writes data to the track referenced by the values displayed when using the P command, or those included as part of a command line. The complete track is written.

The cylinder and track parameters are optional. Refer to the CAUTION message above.

P ct#= c#d#= cylinder= track= pattern= pass=

The Enter Configuration Parameters utility prints the values of the existing parameters on the screen, or allows you to enter new ones.

The type of controller, controller and drive configuration, cylinder, track, pattern, and pass count are all optionally entered parameters. The program has a default value for all these parameters. The defaults are:

ct1=xy450 cOdO=fuj2322 cylinder= (this value is controlled by the disk being used) track= (this value is controlled by the disk being used) pattern= (if none is issued all are used — refer to Table 17-5) pass=1

When a disk parameter is entered, the cylinder and track information is extracted from a table containing that information for all the disk units that the diagnostic presently supports.

Entering p with no arguments displays the present parameters.

CAUTION The cylinder and track information used by this utility is the same information used by the diagnostic. Therefore, if reference is made to an area other than the diagnostic cylinder, data on that cylinder could be destroyed during testing.

17.8. Controller Errors and Their Interpretation

The table below lists Xylogics' 450/451 error numbers in hexadecimal. The numbers are more fully explained in the Xylogics user's manual. These numbers are printed when the program fails at the driver level, causing the status of the IOPB to be printed.

Number	Туре	Meaning
00	N/A	successful completion
01	hard	interrupt pending
03	hard	busy conflict
04	soft	operation timeout
05	hard	header not found
06	hard	hard ECC error
0'7	hard	illegal cylinder address error
09	soft	sector slip command error
0A	hard	illegal sector address
0D	hard	last sector too small
0E	hard	slave ACK error (non-existent memory)
12	hard	cylinder & head header error
13	soft	seek retry required
14	hard	write protect error
15	hard	unimplemented command
16	hard	drive not ready
17	hard	sector count zero
18	hard	drive faulted
19	hard	illegal sector size
1A	hard	self test A
1B	hard	self test B
1C	hard	self test C
1E	hard	soft ECC error
1F	soft	soft ECC error recovered
20	hard	illegal head error
21	hard	disk sequencer error
25	hard	seek error

Table 17-6Xylogics 450/451 Error Numbers (in Hex)

The table that follows lists the error conditions, and their decimal numbers, detected by the program.

17.9. Program Reported Errors

```
000
        DRIVE NOT READY.
001
        DISK CONFIGURED FOR ONLY [dd] SECTORS.
002
        IT MUST BE ABLE TO HANDLE AT LEAST [dd] DATA SECTORS!
003
        iopb address test failed at physical address = [xxxxxx], virtual address = [xxxxxx].
004
        No action, status only, error status = [xx].
005
        Non-retryable programming error, error status = [xx].
006
        Non-existing error code, error status = [xx].
007
        Successful recovered soft error, error status = [xx].
008
        Hard error / retry, error status = [xx].
009
        Non-existing error code, error status = [xx].
010
        Hard error / Reset and retry, error status = [xx].
011
        Fatal Hardware error, error status = [xx].
012
        Miscellaneous error, error status = [xx].
013
        Requires Manual intervention, error status = [xx].
014
        Driver failed, error = [xx], retry = [d].
015
        Bus error (reset or read), controller bad or not installed.
016
        Operator aborted.
017
        Controller reset failed, CSRT failed to clear.
018
        Controller failed to set RIO or clr BUSY, timeout. CSR = [xx], Cmd = [xx], subfun = [xx].
019
        Fatal controller error fatal error reg = [xx].
020
        Controller failed, DONE not set in IOPB.
021
        BUFFER LOAD failed in command chaining.
022
        Driver, Controller is busy, Timeout.
023
        driver failed, error = [xx], cyl = [dddd], head = [dd], sector = [dd], retry = [d].
024
        DMA Could not be done for pattern = [xx], error = [xx].
025
        DMA Test failed at iopb byte no. [dd], expected / observed = [xx] / [xx].
026
        failed, error = [xx], iopb chaining, retry = [d].
027
        Minimal seek test forward failed (Timing), cyl = [ddd].
027
        Minimal seek test reverse failed (Timing), cyl = [ddd].
028
        Acceptable strings for this test for 'option' are 'cylinder' or 'sector'.
029
        cylinder number given is out of range.
        start is out of range.
030
031
        end is out of range.
032
        Controller/disc initialization failed.
033
        Cylinder address test failed (reset, Read track header, or Read all).
034
        Cylinder address test failed :expected / observed = [dd] / [dd].
035
        Sector address test failed (reset, Read track header, or Read all).
```


Program Errors, Continued

```
036
        sector address test failed : cylinder expected / observed = [dd] / [dd].
037
        sector address test failed : track expected / observed = [dd] / [dd].
038
        sector address test failed : sector expected / observed = [dd] / [dd].
039
        Controller diagnostic test failed (Self Test).
040
        NOP Test Failed.
041
        (BUFLOAD or BUFDUMP) Test failed.
042
        BUFFER DUMP LOAD FAILED, at addr = [xxxxxx], expected / observed = [xx] / [xx].
043
        Could not allocate memory as required.
044
        Addressing Test failed.
045
        Could not deallocate memory.
046
        Average maximum seek test failed (Timing), cyl = [ddd].
046
        Average maximum seek test (forward) failed (Timing), cyl = [ddd].
046
        Average maximum seek test (reverse) failed (Timing), cyl = [ddd].
047
        exinstall failed.
048
        Installed interrupt failed to interrupt.
049
        exremove failed.
050
        Interrupt test failed.
051
        Acceptable values for variable 'test' are '0' to '2'.
052
        Ecc test compares failed, status = [xx], I-J-K = [d], [d], [d].
053
        Ecc test failed (Read Track header, Write, Read, or Write all).
054
        No good sectors on track 0 diag cylinder, ecc test stopped.
055
        Mode = [d], Ecc test failed (Write, Readall, or Write all).
        Ecc test failed (Read with ecc mode 0, 1, 2, or 3), status = [xx].
056
057
        Ecc test failed (Read with ecc mode 2), expected = 0xFF, read = [xx].
058
        Ecc test failed, pattern is (1's \text{ or } 0's), status = [xx].
059
        Ecc test failed, pattern is (1's \text{ or } 0's) \cdot I - J - K = [d], [d], [d].
060
        Ecc test failed, pattern is (1's \text{ or } 0's). I-J = [d], [d].
061
        Average seek test forward failed (Timing), cyl = [ddd].
061
        Average seek test reverse failed (Timing), cyl = [ddd].
062
        CORRUPT LABEL!!
063
        MISPLACED LABEL !!
064
        NO PRIMARY LABEL.
065
        No backup label found.
066
        No logical partitions.
067
        Acceptable values for variable 'num' are '0' to '6'.
068
        Label test failed : Primary label is corrupted.
069
        Label test failed :secondary label - (1, 2, 3, 4, or 5) is corrupted.
070
        label test failed (READ).
071
        NO SECONDARY (ONE, TWO, THREE, FOUR, or FIVE) LABEL.
072
        Pattern test failed (reset, Write, or Read).
073
        Pattern test failed, head = [dd], sector = [dd], long word = [d], expected/observed = [xx],
        Buss error (reset, read, or write), controller bad or not installed.
074
075
        Controller reset failed, CSRT failed to clear.
076
        Register test failed, IOPB addr reg (0, 1, 2, or 3) expected / observed = [xx] / [xx].
```


Program Errors, Continued

```
Register test failed, IOPB addr mod reg, expected / observed = [xx] / [xx].
077
        Register test failed, error reg, expected / observed = [xx] / [xx].
078
       Register test failed, relocation (low or hig)h byte, expected / observed = [xx] / [xx].
079
       Register test failed, address (low or high) byte, expected / observed = [xx] / [xx].
080
081
       Register write failed, Bus error. addr = [xx], value = [xx].
082
       Register write failed (register and bit), Bus error.
083
       Register read failed, Bus error.
       Given value for option 'start' is out of range.
084
       Given value for option 'end' is out of range.
085
        Seek test failed (Oscillating), cyl = [dddd].
086
086
        Seek test failed (Sequential), cyl = [dddd].
086
        Seek test failed (Random), cyl = [dddd].
086
        Seek test failed (Timing), cyl = [dddd].
086
        Seek test failed (Long), cyl = [dddd].
087
       Interface Test failed (status, reset or set drive size).
088
       Allowable strings for this test for 'option' are 'cylinder'
        or 'head'.
        given value for option 'cylinder' is out of range.
089
090
        Cylinder switch test failed (reset).
091
        Cylinder switch test failed - (1, 2, or 3) (Read).
        Switch Test failed, cyl = [xxxx], byte = [xx], expected / observed = [xx] / [xx].
092
093
        Acceptable values for variable 'test' are '0' to '5'.
094
        Xy450 controller and disc are not xfer rate compatible.
095
       Wrong controller name is given for ct[d].
096
        Wrong drive name is given for c[d]d[d].
097
        Acceptable values for variable 'pass' should be in decimal.
097
        Acceptable values for variable 'retry' should be in decimal.
097
        Acceptable values for variable 'register' should be in hex.
097
        Acceptable values for variable 'pattern' should be in hex.
        Acceptable string for variable 'dual' is Dual.
097
        Acceptable values for variable 'test' should be in decimal.
097
        Acceptable string for variable 'option' are 'cylinder', 'track', 'sector', or 'all' only.
097
        Acceptable values for variable 'cylinder' should be in decimal.
097
        Acceptable values for variable 'Track' should be in decimal.
097
        Acceptable values for variable 'start' should be in decimal.
097
097
        Acceptable values for variable 'end' should be in decimal.
098
        IOPB chaining test failed.
```

17.10. Diagnostic Variables

Parameters can be given on any command line. A command uses only the relevant ones. Parameters not given are loaded from a set of diagnostic variables. These variables retain their values until the diagnostic exits. They are set to default values when the diagnostic starts.

The list below shows the diagnostic variables, and to what values you can set them. The capital letters given for a variable are the minimum letters that you must type.

CTO - CT3=xycontroller_type This variable sets the type of the first SMD controller. controller_type might be xy450 for a Xylogics 450, xy451 for a Xylogics 451 controller, or xy7053 for a Xylogics 7053 controller.

C0 - C3D3=ascii_string This variable sets the drive type for controller zero, drive zero. The

following fuj2284 fuj2294	Fujitsu drive nar , fuj2322, , CDC9720,	nes might rep fuj2351, NEC2363,	blace <i>ascii_strin</i> fuj2333, f HIT815-10,	g: fuj2312, uj2361, or none.
PASs= decima This varia	<i>l_number</i> ble sets the numb	ber of times t	he test runs (in (decimal).
DATa= hex_nu The varia	mber ble sets the hexad	lecimal patte	rn to be written	to a register.
TEst= decima This varia vidual con mation.	el_number ble sets the sub-t nmand. The rele	test to run. The vant numbers	nis number is de are described i	pendent on the indi- n the command infor-
OPTion=asc This varia "Track"	<i>i string</i> ble specifies who ''Sector'' or ''A	ere a disk test ll'' three. Its	should be done meaning varies	e on a "Cylinder", between tests.
CYLinder =0 This varia	<i>lecimal_number</i> ble determines th	he cylinder o	n which the test	is performed.
TRACk= decin This varia	<i>hal_number</i> ble determines th	he track or he	ad on which the	e test is performed.
STart=decin This varia test is per	<i>nal_number</i> ble determines the formed.	he starting cy	linder, track, or	sector on which the
ENd=decimal This varia test is per	_ <i>number</i> ble determines tl formed.	he ending cyl	inder, track, or	sector on which the
Cylinder Most com dle spinni (from the thin magr	mon disk device ng at a high spee center of the spin letic coating.	s contain a nu d. Cylinders ndle) on all p	umber of Platter are the tracks at latters. Disks st	rs mounted on a spin- t a certain radius tore information on a
Head To read a are moun two heads	nd write information and on a common a for each platter(tion on the su arm so they one for the to	rface of the disl travel together. op and one for th	k, a number of heads Usually, there are he bottom surfaces).
Mbytes 1,048,576	(approximately	one million)	bytes.	
Sector Each trac unit of sto of data, an error corr	k is divided into prage on the disk. nd is surrounded ection informatic	equal segmer On Sun sys by a header a on.	nts called sector tems, each sector and trailer conta	s. A sector is the basic or contains 512 bytes ining addressing and

SMD

17.11. Glossary

Storage Module Device.

Track

The portion of a disk passing under a stationary head while the disk is rotating is called a track. It is similar to a track on a record album.

Cylinders, tracks and sectors each inhabit a distinct dimension that separates and locates them; cylinders are located by distance from the spindle, tracks are separated from each other by surface location on platters, and sectors are separated from each other by time.

1/2-Inch Tape Diagnostic

309
309
309
309
310
323

18

1/2-Inch Tape Diagnostic

18.1.	General Description	The 1/2-inch Tape Subsystem Diagnostic tests all of the 1/2" tape transports currently supported by Sun, and supports the Xylogics 472 Tape Controller Board. This diagnostic does not support the Tapemaster tape controller board.
18.2.	Hardware Requirements	In order to run this diagnostic, you must at least have the following in your system:
		□ A working Sun CPU board.
		A working Keyboard.
		A working Monitor.
		A 1/2" tape controller (Xylogics 472).
		A 1/2" tape transport (Fujitsu M2444 or CDC 92181).
		A boot device (local disk, local tape or remote disk through Ethernet).
		□ A 1/2" scratch tape.
	NOTE	Both the Fujitsu 2444 and the CDC 92181 have built in diagnostics that can be actuated from their front panel. Try executing these tests before running this diagnostic.
18.3.	Set-Up Procedures	There are parameters that should be checked and possibly changed prior to run- ning the Tape Diagnostic. The program defaults for the type of tape drive and controller are:
		ct0=xy472 (the first controller is a Xylogics 472) c0d0=fuj2444 (the tape drive is a Fujitsu 2444) retry=1 (an unsuccessful test will be repeated once) pass=1 (the test will be executed once)
		These values may be changed at any time during the testing process. The param- eters are divided into controller selection, transport selection and options selec-

tion.

Controller Selection

To select the controller(s) to be tested, use a command similar to this:

command ctnumber=xy472

command may be any command from any of the Tape Diagnostic menus, except ?. number may be any controller number, from 0 - 3. Use multiple ct number = commands to configure more than one tape drive for testing at the same time.

Transport Selection

To select the transport to be tested, use a command like this:

command cnumberdnumber=drive type

command may be any command from any of the Tape Diagnostic menus, except the ? command. cnumber may be any controller number from 0 - 3. dnumber may be any transport number, from 0 - 7. Use multiple cnumberdnumber commands to select multiple drives. The value for drive type may be either fuj2444 or cdc92181.

Test Options

To select test options, use a command such as:

command option mode= pass= retry=

command may be any command from any of the tape diagnostic menus, except for ?. mode= determines the method of writing and may be pe or gcr. pass= determines the number of passes the program or test will execute. retry= determines the number of times the I/O routine (driver) will try to complete an unsuccessful operation.

18.4. Menus Commands are displayed in the form of menus. Each menu handles commands for a different group of tests. Each menu has a help command (?) to provide syntax information, and *Chapter 2* explains how to use the Diagnostic Executive command line syntax to invoke diagnostics and set parameters from the Exec level.

This chapter describes Tape Subsystem Diagnostic Main Menu options first, followed with Sub-Menu descriptions.

Main Menu

The main menu provides access to the sub-menus. It also contains a fast and default test command. The main menu is shown below:

A11	All test sequence
Controller	Controller tests menus
Transport	Transport tests menu
Only	Controller test only
Utilities	Utilities menu
Quick	Quick test sequence
Parameters	Parameters display only
?	Display the command syntax of this menu

NOTE The device parameters can be changed in any command line. Once set, a parameter remains fixed until set to a new value by another test option. This is true for both default and user selected values. The parameters menu selection allows you to change drive and controller parameters.

Valid parameters for Main Menu commands are PASs= and Mode=.

PASs = is the number of times the command executes. If no pass parameter is given, the program executes once (default).

Mode sets the recording method used. If no mode is selected, the program uses the method presently in use, or the default value, phase encoded (PE). A list of valid *Mode* = entries follows:

Valid Modes		
PE	Phase Encoded mode	
GCR	Group Code Recording mode	
BOTH	PE and GCR mode	

The contents of the main menu are described below. When part of a parameter entry is shown in upper case letters, you need enter only those letters, followed with the appropriate value.

a PASs= Mode=

The *All tests* command executes all the 1/2-inch tape tests except the All, Quick and Parameters tests.

CAUTION Do not specify more than one pass at a time when you run this diagnostic; the diagnostic will not function if you do so.

Refer to the table that follows the Main Menu example for a list of valid *Mode*= entries.

- **c** The Controller tests menu command displays the controller menu, from which you may select controller tests. Simply enter **c** to bring up this menu.
- t The *Transport tests menu* command displays the tape transport menu, from which you may select transport tests. Simply enter t to bring up this menu.

o PASs=

The *controller Only test* command executes only the controller tests that don't require any hardware other than the controller. It executes the controller's on-board diagnostics, NOP test, Register test, and Controller addressing test.

u

The Utilities menu command displays the utility menu, which contains routines used for debugging and repairing the 1/2-inch tape subsystem. Simply enter **u** to bring up this menu.

q PASs= Mode=

The *Quick test* command performs all of the tests specified by All command, but executes them in a shorter time period. You may enter the number of times the Quick test is executed.

Refer to the table that follows the Main Menu example for a list of valid *Mode* = entries.

pct = c d = c

The *Parameters menu* command displays the tape system parameters in use. Enter p to view the parameters.

You must press a key on the keyboard to make the program continue after the parameters are displayed.

To set the controller number to be tested, enter:

p ct0=xy472 for the first Xylogics 472 Controller board

Enter ct1=xy472 for the second controller board. At this time, the program only accepts xy472 as the tape controller board parameter.

To set the drive number and type, enter:

c0d0=fuj2444 for the first Fujitsu 2444 Tape Drive

Replace *c0d0* with *c0d1*, *c0d2*, or *c0d3*, depending on which drive you are specifying. At the time of this writing, the program accepts only

fuj2444 *or* cdc92181

as drive types.

?

The *help* command displays the syntax of all the commands. Simply enter ? to receive help with commands and their parameters.

The "#" symbol represents a number that you are to enter; DO NOT enter the "#" symbol. **Controller Tests Menu**

The following tests are offered for a 1/2-inch tape controller:

ATT .	All conclotter rears sednence
Register	Kegistera lest
Nop	Nop test
Diagnostic	Controller diagnostic tests
Controller	Controller addressing tests
Quick	Quick controller test sequence
Parameters	Parameters display only
3	Display the command syntax for this menu

You may add a *Pass* = parameter to all Controller Test Menu commands except for the Parameters command. *Pass* = is the number of times the test is executed. The default number of passes is one.

a PASs=

The *All tests* command executes all the tests shown in the Controller Test menu, except for the Parameters and Quick tests.

$\mathbf{r} PASs =$

The Registers test command verifies the addresses of the in and out registers.

n PASs=

The *Nop test* command makes the controller read the I/O process block (IOPB) and mark it complete.

d PASs =

The *Controller diagnostic tests* command executes the controller's on-board diagnostics — if they are enabled.

c PASs =

The *Controller addressing test* command executes the addressing test, which tests the address lines using NOP IOPB.

p*ct*#= *c*#*d*#=

The *Parameters menu* command displays the tape system parameters in use. Enter **p** to view the parameters. You must press a key on the keyboard to make the program continue after the parameters are displayed.

To set the controller number to be tested, enter:

p ct0=xy472 for the first Xylogics 472 Controller board

Enter ct1=xy472 for the second controller board. At this time, the program only accepts xy472 as the tape controller board parameter.

The "#" symbol represents a number that you are to enter; DO NOT enter the "#" symbol. To set the drive number and type, enter:

dt=c0d0=fuj2444 for the first Fujitsu 2444 Tape Drive

Replace *c0d0* with *c0d1*, *c0d2*, or *c0d3*, depending on which drive you are specifying. At the time of this writing, the program accepts only

fuj2444 or cdc92181

as drive types.

q PASs =

The Quick test command performs the tests specified by the All command, but executes them faster. You can set the number of times the Quick test is executed.

?

The *help* command displays the syntax for each command. To invoke help, enter ?.

Transport Tests Menu

The menu for testing a 1/2" tape transport is shown below:

```
1/2" Tape Subsystem Diagnostic REVx.x mm/dd/yy Transport Tests MenuAllAll transport testsDataData testHandlerTape handler testParametersParameter display onlyQuickQuick transport test?Display the command syntax for this menuCommand:
```

Valid entries for and descriptions of the parameters shown with each command are:

PASs = sets the number of times the test executes. If no value is given, the test runs once (by default). Mode = sets the recording method used. If no mode is selected, the program uses the current method, or the default of PE. Refer to the table following the Main Menu example for valid mode = entries.

The *PATtern*= argument sets the fixed pattern used during testing. You may enter any data pattern that does not exceed 32 bits. If no pattern is specified, the default of all patterns is used.

This menu tests the tape transport interface and operations. There are five commands in this menu. They are:

a PASs= Mode=

The *All tests* command first executes the Data test, followed with the Tape Handler test. Refer to the description following the Transport Tests Menu

for information on parameter entries.

d Mode= PATtern= PASs=

The *Data test* command writes, then reads, varying or fixed data patterns of a fixed block size, using the current recording mode. Refer to the description following the Transport Tests Menu for information on parameter entries.

h Mode= PASs=

The tape Handler test command checks the positioning of tape. This includes such things as "skip # blocks, skip # file marks", and so on.

p ct#= c#d#=

The *Parameters menu* command displays the tape system parameters in use. Enter p to view the parameters. You must press a key on the keyboard to make the program continue after the parameters are displayed.

To set the controller number to be tested, enter:

p ct0=xy472 for the first Xylogics 472 Controller board

Enter ct1=xy472 for the second controller board. At this time, the program only accepts xy472 as the tape controller board parameter.

To set the drive number and type, enter:

dtc0d0=fuj2444 for the first Fujitsu 2444 Tape Drive

Replace *c0d0* with *c0d1*, *c0d2*, or *c0d3*, depending on which drive you are specifying. At the time of this writing, the program accepts only

fuj2444 *or* cdc92181

as drive types.

q PASs= Mode=

The *Quick test* command performs all of the tests specified by All command, but executes them in a shorter time period. You can enter the number of times the Quick test is executed.

?

The *help* command displays the syntax of each command. To get help with a command, enter ?

Utilities Menu

The menu below contains the utilities routines used for debugging or repairing the 1/2" tape subsystem.

1/2" Tape Sub	system Diagnostic REVx.x mm/dd/yy	Utilities Menu
Nop	NOP instruction	
Write	Write tape	
EOF	Write EOF	
Read	Read tape	
Erase	Erase tape	
Space	Space tape	
REWind	Rewind tape	
Unload	Unload tape	
RESet	Reset tape	
STatus	Status tape	
Mode	Change modes	
Diagnostics	Controller diagnostics	
Parameters	Parameter display only	
?	Display the command syntax for t	this menu
Command:		

Parameters for the Utilities Menu are:

PASs =

which sets the number of times the test is executed. If no options are selected, the current parameter values are used.

PATtern=

sets the data pattern written to tape. You may enter any data pattern that does not exceed 32 bits.

Mode=

sets the recording mode used. If no mode is selected, the default mode is used. Refer to the table following the Main Menu example for valid mode= entries.

The commands described below perform special testing and scoping:

nPASs=

The *Nop* command performs a NOP loop until the pass count is reached. Refer to the paragraphs following the Main Menu example for information on parameter entry.

w PATtern= PASs= Mode=

The Write command writes to the tape until the pass count is zero. PATtern sets the data pattern written to tape. PASs sets the number of records written if EOT is not reached. The operation terminates when EOT is detected. Mode sets the recording mode used. If no mode is selected, the default mode is used. Refer to the table following the Main Menu example for valid Mode = entries.

eof PASs= Mode=

The Write EOF command writes file marks on the tape from its present position until the pass count is reached. This routine uses two parameters.

PASs = sets the number of times an EOF is written if EOT is not detected. Mode = sets the recording mode used. If no mode is selected, the default value is used. Refer to the table following the Main Menu example for valid Mode = entries. If no options are selected, the current parameter values are used.

r PASs=

The *Read* command reads the contents of the tape from its present position until the pass count is reached. The data read should have been written with the write or write EOF routines. This routine uses only one parameter. *PASs* sets the number of records to be read before terminating. If the number of passes is not entered, the current value is used.

• PASs=

The *Erase tape* command erases the tape one record at a time until the pass count is reached. *PASs* = sets the number of erasures done. The default is one erasure.

s PASs= Dir=

The *Space tape* command spaces the tape, one record at a time, until the pass count is reached.

PASs = sets the number of records to skip. If pass isn't set, only one record is skipped (by default).

Dir= (direction) sets whether the tape will space forward or backward.

Enter **dir=fwd** to space forward.

Enter **dir=rev** to space backward, or reverse direction.

rew

The *Rewind tape* command rewinds the selected tape.

u The Unload tape command unloads the tape unit selected.

res PASs=

The Reset tape command resets the selected tape unit.

PASs = sets the number of resets issued.

st PASs=

The *Status tape* command displays the status of the selected tape unit. PASs = sets the number of status requests made. You must press a key on the keyboard to make the program continue after the status is displayed.

m PASs = Mode =

The *Mode select* command sets the mode to the value selected in the Mode option.

PASs = sets the number of times the test runs. If the number of passes is not set, the default is one.

Mode = sets the recording method used. If the mode is not set, the program uses the current method. Refer to the table the follows the Main Menu example for valid Mode = entries.

	d PASs= The Controller diagnostics command activates the tape controller on-board diagnostics.
	<i>PASs</i> = sets the number of times the diagnostics execute. If not set, the tests runs once (by default).
	p The <i>Parameter</i> command displays the current tape system parameters. Enter p to view the parameters. You must press a key on the keyboard to make the program continue after the parameters are displayed.
	? The <i>help</i> command displays the syntax of each command. Enter ? for information on commands and their parameters.
18.5. Error Reporting	Errors are reported through the Diagnostic Libraries. The program displays an error message, then logs it — if error logging is selected. All error messages are in "English text", such as:
35, controller test, rea	d, data compare error, expected xxxxx, read yyyyyy.
	The fields in the message shown above are described in the paragraphs that fol- low.
	35: An index number associated with the message to allow a lookup table for foreign languages (future option).
	controller test: The test that failed.
	read: The operation the test was performing.
	data compare error: The type of error detected.
	expected xxxxx: The data expected (good).
	<i>read</i> yyyyyy: The data actually read (bad).
Error Messages	The table that follows lists all the error message numbers possible in this diag- nostic. The description indicates the type of error encountered.

01 Nop failed.	
02 status failed.	
03 Reset failed.	
04 Rewind failed.	
05 Space reverse failed.	
05 Space forward failed.	
06 Write failed.	
07 Unload failed.	
08 Write EOF failed.	
09 Read reverse failed.	
09 Read forward failed.	
10 Erase failed.	
11-19 Reserved.	
20 Controller, Controller failed to complete reset, Timeout.	
21 Address test failed.	
22 Command does not exist.	
23-29 Reserved.	
30 Controller is busy, Timeout.	
31 Controller is busy, Timeout.	
32 Driver failed, error = $0x$, cmd = $0x$, subfun = $0x$, cnt = d, retry = $0x$	1
33 Driver(Interrupt Test), Controller is busy, Timeout.	
34 Driver(Interrupt Test), Controller is busy, Timeout.	
35 Driver failed, error = $0x$, retry = d.	
36 Driver, Controller is busy, Timeout.	
37 Driver, Controller is busy, Timeout.	
38 Driver failed, error = $0x$, retry = d.	
39 Reserved.	
40 NOP Test Failed.	
41 Controller diagnostic test failed (Self Test).	
42 Register test failed, relocation low byte, expected/observed = x/x .	
43 Register test failed, relocation high byte, expected/observed = x/x	κ.
44 Register test failed, address low byte, expected/observed = x / x .	
45 Register test failed, address high byte, expected/observed = x / x	
46 Register test failed, csr, err, ipnd, ans areq bits, expected / observe	ed = x / x.
47-49 Reserved.	······································
50 Tape handler test failed (rewind).	
51 Tape handler test failed (Write record).	
52 Tape handler test failed (rewind).	
53 Tape handler test (space records) failed.	
54 Tape handler test failed (Write EOF).	
55 Tape handler test failed (rewind).	
56 Tape handler test (space files) failed.	
57 Tape handler test failed (write record), record $\# = d$.	
58 Tape handler test failed (rewind).	
59 Tape handler test failed (read forward).	

Table 18-1Tape Diagnostic Error Messages

Error #	Error text
60	Tape handler test failed (read forward), expected = $0x$, read = $0x$, word cnt = d.
61	Tape handler test failed (read reverse).
62	Tape handler test failed (read reverse), expected = $0x$, read = $0x$, word cnt = d.
63	Tape handler test failed (space test).
64	Tape handler test failed (read forward).
65	Tape handler test failed (space record), expected = $0x$, read = $0x$, word cnt = d.
66	Tape handler test failed (space test), record $cnt = 0x$.
67	Tape handler test failed (read forward).
68	Tape handler test failed (read reverse), expected = $0x$, read = $0x$, word cnt = d.
69	Tape handler test failed (write EOF).
70	Tape handler test failed (write record).
71	Tape handler test failed (rewind).
72	Tape handler test failed (file space test), file $cnt = 0x$.
73	Tape handler test failed (read forward).
74	Tape handler test failed (read), expected = $0x$, read = $0x$, word cnt = d.
75	Tape handler test failed (file space test), file $cnt = 0x$.
76	Tape handler test failed (read forward).
77	Tape handler test failed (read), expected = $0x$, read = $0x$, word cnt = d.
78	Tape handler test failed (rewind).
79	Reserved.
80	Write/read data test failed (rewind).
81	Write/read data test failed (Write).
82	Write/read data test failed (Read reverse).
83	Write/read data test failed (compare), word count = $0x$, expected/observed = $0x / 0x$.
84	Write/read data test failed (rewind).
87	Write/read data test failed (compare), 88
89	Reserved.
90	Could not allocate 33k memory as required.
91	Addressing Test failed.
92	Could not deallocate 33k memory.
93	Interrupt auto vector 37 install, failed.
93	Interrupt 3 install, failed.
94	Interrupt auto vector 36 install, failed.
94	Interrupt 3 install, failed.
95	Interrupt test failed.
96	Interrupt removal failed in Interrupt test.
97	Unable to set drive parameters.
98-99	reserved.

Table 18-1	Tape Diagnostic Error Messages—Continued

•

Procedural Error MessagesThe list below shows all of the error messages that result from user input error.
They are self-explanatory.Acceptable variable for 'pass' should be in decimal.
Acceptable variable for 'pattern' should be in hex.
Acceptable variables for 'direction' are FWD or REV.
Acceptable variable for 'mode' are 'pe', 'gcr', or 'both'.
Acceptable variables for 'ct0' is 'xy472'.

Acceptable variables for 'ctl' is 'xy472'.

Acceptable variables for 'c#d#' are' fuj2444' or 'cdc92181'.

Xylogics 472 status codesThe table below lists the current status codes and their meaning as given by the
vendor. The codes and their definition are subject to change by the vendor at any
time, and were correct at the time this document was prepared.

Code	type	Definition
00	Status	Successful completion - No errors.
01	Hard	Interrupt pending.
02	N/A	Reserved.
03	Hard	Busy conflict.
04	Hard	Operation timeout.
05	N/A	Reserved.
06 .	Hard	Uncorrectable data.
07-0D	N/A	Reserved.
0E	Hard	SLave ACK error (Non-existent memory).
0F-13	N/A	Reserved.
14	Hard	Write-protect error.
15	Hard	Unimplemented command.
16	Hard	Drive off-line.
17-19	N/A	Reserved.
1A	Hard	Self test A failed.
1B	Hard	Self test B failed.
1C	Hard	Self test C failed.
1D	Hard	Tape mark failure.
1E	Hard	Tape mark detected on read.
1F	Status	Corrected data.
20-21	N/A	Reserved.
22	Hard	Record length short.
23	Hard	Record length long.
24-29	N/A	Reserved.
30	Hard	Reverse into BOT.
31	Hard	EOT detected.
32	Status	ID burst detected.
33	Hard	Data late detected.

 Table 18-2
 Xylogics Tape Controller Status Codes

18.6. Glossary

Head

There are two types of heads: write/read and erase. The write/read head writes and reads the magnetic tape. The erase head erases only. It always erases the magnetic tape before it is written by the read/write head.

Mbytes

Megabytes (1024 kilobytes).

IPS

Inches per second, the speed at which the tape moves across the tape head.

Track

The portion of the tape passing under the tape head and running the length of the tape. Generally there are nine tracks on a 1/2" tape.

PE

Phase encoded, a method used to read and write magnetic tape.

GCR

Group code recording, a method used to read and write magnetic tape.

Pertec

A hardware interface developed for peripherals by Pertec Inc., most commonly used on tape systems. The other standard used for tape interfaces is the STC interface, developed by Storage Technology Corp.

IOPB

I/O process block, contains the operation to be executed and the buffer to be used if needed.

19

Sun Video Diagnostic

Sun Video Diagnostic	327
. 19.1. General Description	327
19.2. Menus	328
19.3. Sun-2 Main Menu	330
19.4. Frame Buffer Menu	332
19.5. Glossary	337

Sun Video Diagnostic

19.1. General Description The Sun Video Diagnostic tests color video ONLY when the color circuitry is present on the CPU board, as on-board circuitry or as a daughter board. To test systems with a color board that resides in a separate slot, run either the Color2 or Color3 Diagnostic.

The Sun Video diagnostic provides a tool to operate the video section of the Sun processor boards in near normal conditions for failure detection and isolation. It provides flexible tests for debugging as well as the easy-to-use default sequence tests. You can quickly determine whether the video section is functional. If you discover failures, focus on the problem area with the individual device tests and the associated test loops.

The way the test patterns are presented provides flexibility in test sequencing and parameter setting. All tests can be broken down so that primitive actions can be performed on command, which is useful for isolating problems when debugging boards. At a higher level, a default test sequence is invoked with a single command character.

Map of Video Frame Buffers The Video frame Buffers on the various Sun-3 products have the following characteristics:

- Sun-3/160 or 3/180 has a single Monochrome Frame Buffer that is 128K Bytes long (0x00 - 0x20000), Beginning at address 0xff0000000.
- Sun-3/50 has a single monochrome Frame Buffer that is 128K Bytes long (0x00 - 0x20000), beginning at address 0x00100000.
- Sun-3/60 has three frame buffers: a single, monochrome frame buffer, 128K (256K) bytes long, 0x00 0x20000 (0x00 0x40000), beginning at 0x1F000000; an enable plane, 128 Kbytes long (0x20000) beginning at address 0x1F600000; and a color plane 1 Mbyte long (0x100000) beginning at 0x1F800000. The color map begins at address 0x1F200000.
- Sun-3/2XX has a single monochrome frame buffer that is 256K bytes long (0x0 - 0x40000), high resolution, beginning at 0xff000000.
- Sun-3/110 has three (3) frame buffers: a single monochrome frame buffer, 128K Bytes long (0x00 0x20000) beginning at address 0xff000000; an enable plane, 128K Bytes long (0x20000), beginning at address 0xfe400000; and a color plane 1 Mbyte long (0x100000), beginning at

0xfe800000. The enable plane selects either the monochrome display when filled with all ones (0xff), or the color display, when filled with all zeroes (0x00).

The color map, an array of three (3) 256 Byte long (Red, Green, Blue), eight (8) bit wide locations, is located at address 0x000e0000, 0x000e0100, 0x000e0200 for Red, Green and Blue, respectively.

19.2. Menus When testing any Sun-3 system other than the Sun-3/60 or Sun-3/110, the Frame Buffer Menu comes up in place of the Main Menu, and represents the only test choices for those systems. The Main Menu for the 3/60 and 3/110 includes a color pattern test menu and a status bit test, in addition to the Frame Buffer Menu. The Video diagnostic first reads the CPU board's IDPROM to determine on which system it is loaded. It then loads the appropriate menu.

Monochrome frame buffer testing is used in most Sun-3's, and the color frame buffer testing is used for the combination of color and monochrome type frame buffers in the Sun-3/110 and 3/60.

Here is an example of the Main Menu for Sun-3/60 or 3/110:

```
Sun Video Diagnostic Rev x.x mm/dd/yy 3/110 or 3/60 Main Menu
All All Test Sequence
Default Default Test Sequence
FB Frame Buffer Menu
Pattern Pattern Test Menu
Status Status Bit Test (First Half & Too Late)
Command ==>
```

Following are descriptions for the Sun-3/110 and 3/60 Main Menu choices:

A11

The All Test Sequence runs the frame buffer tests automatically. This command runs the following tests in sequence:

A ; C ; NTA ; R ; U

As they run, the tests record any errors in the error log and print error messages on the screen.

Default

The *Default Test Sequence* automatically runs a set of frame buffer tests. This command will run every test in sequence, recording any errors it encounters in the error log, and printing error messages on the screen. This default test sequence is for all Sun-3's except the Sun-3/110 and 3/60 systems:

This default test sequence is for Sun-3/110 and 3/60 systems only:


```
FB; A; C; NTA; U; R;

P;

Solid (All Color Sequence '#8') solid patterns

Stripe (All Color Sequence '#8') shaded stripes

Block (All Color Sequence '#8') Block Pattern
```

The *Frame Buffer Menu* command displays the diagnostic's Frame Buffer Menu, described later.

Pattern

The Pattern Menu command displays the diagnostic's Pattern Menu, described later.

Status (Sun-3/60 and 3/110)

The Status Bit Test reads the status registers to make sure they are being set during the vertical retrace cycle. If the vertical retrace period is in its first half, the First Half bit should be set. When the retrace has progressed too far into its cycle to begin a write to the Color Maps in the DAC chip, theToo Late bit should set. The test waits in a loop until one of these two bits are set or a time-out occurs.

The Help Command

The *Help* command displays a message describing the commands in the main menu.

19.3. Sun-2 Main Menu When the Sun Video Diagnostic runs on a Sun-2/160, the menu heading names the Sun-2/50; the two CPUs are functionally the same.

On Sun-2 systems, the Main Menu looks something like this:

Sun Video Diagnostic Rev xx.x dd/mm/yySun2 Video Main MenuAllAll Test SequenceDefaultDefault Test SequenceControlControl Register MenuSerialSerial Communication Controller MenuVideoVideo Memory Menu

The Sun-2 Video Menu All Test Sequence and the Default Test Sequence run all the Control Register, Video Memory and SCC internal options.

The Control, Serial, and Video entries from the Sun-2 menu bring up sub-menus, shown on the following pages.

Video Control Register

If you enter c from the Sun-2 Video Main Menu, this sub-menu is offered:

```
Sun Video Diagnostic Rev xx.x mm/dd/yy Control Register Menu
A11
               All Test Sequence
Default
             Default Test Sequence
               Memory Test
Memory
Jumper
               Jumper Test
                         Enable/Disable Test
Screen
               Screen
                        Enable/Disable Test
Copy
               Copy
               Interrupt Enable/Disable Test
Interrupt
```

The video control register is used to enable or disable various functions. The starting address for the control register is 0x781800 (hex) for Multibus systems and 0x020000 (hex) for VME systems. Each one of the Control Register tests is described as follows:

Memory

Bits 01-06 correspond to the bus address lines 17-22. This test writes values to bits 01-06 of the control register and reads them back to do a comparison to check for any type of a data mismatch.

Jumper

This option displays bits 08-11, which are the configuration jumpers.

Screen

This test enables and disables the video display bit (15). The screen will blink off and on. The processor writes to this bit reads it back to check that it is set. If the bit is one, the video display is on, and if it is zero the display is completely black.

Copy

This test enables and disables the copy-enable bit. The Copy mode enables read-modify cycles to a main memory shadow buffer to write to the video board memory. The values in both main and video memory are then checked for consistency.

Interrupt

This test generates a video interrupt and reports whether nor not it has occurred. The interrupt bit is bit 13. An interrupt is caused by setting bit 13 to one, or to zero if no interrupt is desired. If bit 13 is set, the interrupt status bit, bit 12, will get set on the next interval and the video board will issue an interrupt. Bit 12 stays set until the processor resets it.

Serial Communications Controller(SCC)

The SCC is a Zilog 8530 serial communications controller used to communicate with the keyboard and the mouse. The keyboard is known as channel A and the mouse is known as channel B.

If you enter **s** from the Sun-2 Video Main Menu, this sub-menu is offered:

Sun Video Diago	ostic Rev vv v mm/d	d/www.SCC Menu
0u 12000 0209.		
211	All Test Semience	
•••	mer repe bequeinte	
Default	Default Test Semience	
	Derudit icoc bequeilos	
Internal	Internal SCC Test	

Within	Within Channel External	SCC Test
******	Mitchilli Onumer Dicornat	
Between	Between Channel Externa	1 SCC Test

Each of the SCC tests are described as follows:

Both the keyboard and the mouse channels of the SCC are tested at baud rates of 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400 and 76800.

Internal

The internal loopback test of the SCC is executed.

Between

The external loopback test of the SCC is executed. It checks for data flow between channels A(B) and B(A).

Within

The external loopback test of the SCC is executed. A loopback test is performed on both channels.

Video Memory

The video memory is addressed with a megabyte of address. The base address is 0x700000 for Multibus systems and 0x000000 for VME systems.

If you enter \mathbf{v} from the Sun-2 Video Main Menu, this sub-menu is offered:

Sun Video Diag	nostic Rev xx.xx mm/dd/vv Frame Buffer Menu
	·····
11	B11 Test Semiance
·••+ +	AIT TEST Sequence
Default	Default Test Sequence
ADdress	Address Pattern Test
C	Constant Data and Mast
Constant	Constant Pattern 1est
NTA	NTA Dattern Test
A1 4 43	NIA Educatin 1660
Random	Random Pattern Test
 ,	
Unique	Uniqueness Pattern Test

The Video Memory tests are the same as the frame buffer tests for Sun-3 systems. For descriptions of these menu selections, refer to the the *Frame Buffer Menu* section.

19.4. Frame Buffer Menu

This test menu may be brought up from the Sun-3/110 and Sun-3/60 Main Menu. It automatically comes up *instead of the main menu* when testing any other Sun-3 system. The menu looks something like this:

The following text describes the Frame Buffer Menu choices.

A11

The All Test Sequence runs the frame buffer tests automatically. This command runs the following tests in sequence:

A ; C ; NTA ; U ; R

As they run, the tests record any errors they encounter in the error log, and print error messages to the screen.

Default

The *Default Test Sequence* runs a set of the frame buffer tests automatically. This command will run every test in the diagnostic in sequence, recording any errors it encounters in the error log, and printing error messages to the screen. systems:

Address

The Address Pattern Test checks the specified block of memory using the low order address bits of each location, or its complement, as data. This test runs in byte, word, or long word mode. The command syntax is:

Address Offset= Datamode= Pass=

The default offset is 0, at the beginning of each frame buffer under test. The size of the monochrome plane is 0x20000 (128K Bytes) or 0x40000 (256K Bytes) for the Sun-3/2XX. The size of the monochrome plane on the Sun-3/60 can be either 128 Kbytes or 256 Kbytes. The *datamode* parameter determines whether a memory test will run in byte, word, or long word mode. The syntax is:

Datamode= 0=byte/1=word/2=long

The default setting is Datamode=2.

The default number of passes is one.

Constant

The *Constant Pattern Test* checks the specified block of memory by using the specified data pattern. The memory block is filled with data, then read back and compared with the specified data pattern. If the data read from an address location does not match the original data pattern, an error is flagged. This test runs in byte, word, or long word mode. The command syntax is:

Constant Offset= Pattern= Datamode= Pass=

Defaults are:

Default Offset=0; beginning of each Frame Buffer under test. Default pattern=0xa5; values 0x00 - 0xffffffff are acceptable. Default datamode=2; 0=byte, 1=word 2=long Default pass=1.

The size of the monochrome plane is 0x20000 (128K Bytes) or 0x40000 (256K Bytes) for the Sun-3/2XX. The size of the monochrome plane on the Sun-3/60 is either 128 Kbytes or 256 Kbyates.

NTA Offset= Pass=

The NTA test detects stuck-at faults, coupling faults, and pattern sensitivity faults in the memory under test. The test goes through 4 steps to verify memory. The table below shows the values the NTA test writes into memory. Each cycle is a pass through memory, starting at the high end of memory and running down, or starting at the low end of memory and running up. Some steps only read the values; others read, then change the values.

Step	Values (in Hex)	Read/Write	Start at
0	<i>N/A -></i> 0X00	W	Low
1	0x00 -> 0x01	R/W	Low
1	0x01 -> 0x00	R	High
2	0x00 -> 0x5F	R/W	Low
2	0x5F -> 0x11	R	High
3	0x11 -> 0xCC	R/W	Low
3	$0xCC \rightarrow 0xDB$	R	High
4	0xDB -> 0x6D	R/W	Low
4	0x6D -> 0xB6	R/W	High
5.	0xB6 -> 0xFF	R/W	Low

Table 19-1Values used in NTA Test

Command syntax is:

NTA Offset= Pass=

Default Offset=0x00, at the beginning of each Frame Buffer under test. Default Pass=1.

The size of the monochrome plane is 0x20000 (128K Bytes) or 0x40000 (256K Bytes) for Sun-3/2XXs.

Random Offset= Datamode= Seed= Pass=

The *Random Pattern Test* checks the specified block of memory using a sequence of random numbers generated from the specified seed. It uses the random number generator found in the "C" run-time library. A block of memory is filled with data, the random sequence is reseeded, then the data is read back and compared with what was originally written. If the data read from an address location does not match the original data pattern, an error is flagged. This test runs in byte, word, or long word mode.

Defaults are:

Default Offset=0x00; beginning of each Frame Buffer under test. Default Datamode=2; 0=byte, 1=word 2=long Default Seed=1; values 0x00 - 0x09 are acceptable. Default Pass=1.

The size of the monochrome plane is 0x20000 (128K Bytes) or 0x40000 (256K Bytes) for Sun-3/2XXs.

Unique

The Uniqueness Pattern Test checks for address uniqueness. It runs in byte, word, or long word mode. The command syntax is:

Unique Offset= Datamode= Seed=

Defaults are:

Default Offset=0x00; at the beginning of each Frame Buffer under test. Default Datamode=2;0=byte, 1=word 2=long Default Seed=1;values 0x00 - 0x09 are acceptable.

The size of the monochrome plane is 0x20000 (128K Bytes) or 0x40000 (256K Bytes) for Sun-3/2XXs.

Patterns (Sun-3/60, 3/110The main menu presented when a Sun-3/60 or Sun-3/110 is tested provides a
Pattern menu choice. These patterns aid in debugging the hardware, using the
video frame buffer RAM. Software has no access to this circuitry, so you must
watch for failures. The Mono and Color tests are included in this menu to
check the ability of the Sun-3/60 and 3/110 to set the enable plane for either
monochrome or color.

While displaying the patterns, the color map is updated during the video blanking period. No flashing colors should be visible during changes.

The color parameters are listed in the table below:

Table 19-2Color Values

Value	Color
-	
0	black
1	red
2	green
3	blue
4	yellow
5	cyan
6	magenta
7	white

Sun Video Diagr	ostic Rev X.X mm/dd/87	Pattern Menu
A11	All Test Sequence	
Default	Default Test Sequence	
Color	Color Frame Enable	
Mono	Monochrome Frame Enable	
SOlids	Solid Color Plane Test	
STripes	Venetian Stripe Color Te	est
Block	Block Color Test	
Command ==>		

A11

The All Test Sequence runs the pattern tests automatically. This command runs the following tests in sequence:

C ; CC ; M ; CM ; SO ; ST ; B

As they run, the tests record any errors they encounter in the error log, and print error messages to the screen.

Default

The *Default Test Sequence* runs a set of the pattern tests automatically. This command runs every test in the diagnostic in sequence, recording any errors it encounters in the error log, and printing error messages to the screen. The default test runs the same set of tests as the *All* command.

Color

The Color Frame Enable command enables the color frame; the enable plane is filled with 0's. To use this command, enter Color.

Mono

The *Monochrome Frame Enable* command enables the monochrome frame buffer, the enable plane is filled with 1's. To enable the monochrome buffer, enter **Mono**.

Solid

The *Solids* command initializes the color frame buffer to 0. Then the color frame is enabled by writing 0's to the enable frame. Next, the color map is initialized according to the color parameter selected. Using this default value, each of the seven colors are displayed. To use this command, enter: **Solid** color.

The default color = 8. (Refer to the color/number chart in the previous section.)

Stripe

The *Stripes* command fills the color frame buffer with an address pattern and enables the color frame buffer. Then the appropriate color map is filled with an address pattern according to the primary (increasing) and secondary (decreasing) color parameters selected. To use this command, enter:

Stripe Color Color2

The defaults are:

Default Color=8. Default Color2=1.

Refer to the color chart in the previous section.

Block

The *Blocks* command selects the Color plane. A 12x12 box pattern is written into the frame buffer and the color map is updated with a special pattern that spreads the colors out fairly evenly. Next a random number generator selects random parts of the color map and distributes the color boxes across the color plane, looping 16 times. To use this command, enter:

Block color

Defaults are:

Default color=8.

Refer to the color chart in the previous section.

19.5. Glossary **Frame Buffer** — Refers to the Memory (RAM) that the video circuitry uses to display the entire screen.

- Status Bit(s)— Sun-3/110 and 3/60 status bits that are read by the diagnostic to determine if the vertical retrace cycle has started or is complete. Located at 0x000e300, one byte wide, only bits 6 & 7 are valid, the others are masked off.
- Monochrome Plane The black and white or grayscale frame buffer.
- □ · Enable Plane Sun-3/60, 3/110 128 Kbyte long Frame Buffer.

Located at address 0xfe400000 for 3/110.

For Sun-3/60, the address is 0x1F6000000.

- Color Plane Sun-3/60, 3/110 only 1 Megabyte long frame buffer, eight (8) bits per pixel, located at address 0xfe800000 for 3/110. Located at 0x1f800000 for the 3/60. Used to index the color map locations.
- Color Map 3 separate arrays, 256 bytes long, 8 bits wide, one each for Red, Green, and Blue, located at addresses 0x000e0000 to 0x000e02ff. The color map is located on the board in the DAC s, and occupies Type 1 space. For the 3/60, the color map address is 0x1f200000.

Sun Video Monitor Diagnostic

Sun Video Monitor Diagnostic	341
20.1. General Description	341
20.2. Hardware Requirements	342
20.3. User Interface	342
20.4. Standard Patterns	343
20.5. Main Menu	344
20.6. Monochrome Menu	345
20.7. Grayscale Menu	347
20.8. Color Menu	350
20.9. Error Messages	353
20

Sun Video Monitor Diagnostic

20.1. General Description

NOTE This diagnostic is intended for use on a Sun monitor. It is NOT intended to be used to diagnose the display on a terminal that is attached to a CPU board Serial port.

Before running this diagnostic, make sure that the EEPROM on the system CPU board is set correctly for the monitor type. To check these settings, you may use the EEPROM Editing Tool described in *Chapter 6* of this manual, selecting SH to view all the Primary Terminal Type, Monitor Resolution and High-resolution monitor column/row settings. To change settings, use T from the main menu for the console type, R to change the display resolution, and H to change the high-resolution monitor setting.

Or, you may wish to use the PROM monitor q command to view the contents of location 0x016 for the screen size; locations 0x050 and 0x051 for a high resolution monitor (usually found in Sun-3/2xx and Sun-4 systems); and location 0x01F, to select which device will act as the system console. The EEPROM Editing Tool is the easiest way to check or change EEPROM parameters; however, if you wish to use the q command from the monitor, access the PROM monitor, and then use the q command to check or change the parameters shown below:

NOTE "0x" is not entered or displayed; it is used in Sun documentation to represent hexadecimal values.

The value of location 0x016 will usually be "00", for the standard 1152 x 900 pixel screen. If you have a high resolution monitor, the value would be "13" for a 1600 x 1280 pixel screen size. Changing the display size of the monitor requires a hardware change on the CPU board in addition to EEPROM programming.

For a high resolution monitor, location 0x050 should contain "50", the hexadecimal representation of 80 columns, and location 0x051 should contain "22", the hexadecimal representation of 34 rows.

20.2. Hardware

Depending on the device being used as the primary display, or console, one of these values should be in location 0x01F:

0x00 U	se	B/W Monitor
0x10 U	se	Serial Port A
0x11 U	se	Serial Port B
0x12 U	se	Color Monitor
0x20 U	se	''first'' head of multi-headed P4 card

NOTE If you attempt to run this diagnostic from a serial port, only the main Sun Video Monitor Diagnostic menu will appear on the terminal display. The "icon" menus shown on the following pages, from which you select the test patterns, are directed for output ONLY to a color or monochrome Sun monitor display. The Sun Video Monitor Diagnostic is a set of patterns designed to allow the quick and easy test and setup of monitors for Sun-2 and Sun-3 products. These patterns, along with a special template, allow you to quickly test a monitor for all the common parameters that affect its "usability" in our product. They also allow the set-up of certain important variables such as focus and linearity.

> The objective of the Video Monitor Diagnostic is to provide a minimum set of patterns with which you can determine the acceptability of a monitor as a display for a Sun workstation. It also provides monitor adjustment capability for trained technicians.

The Video Monitor Diagnostic depends on the operator to decide the success or failure of the tests that are associated with the patterns.

- 1. A Sun-2/3 system appropriate for the monitor being tested Requirements
 - 2. Related hardware (cables; the diagnostic on a server, disk, or tape)
 - 3 Ethernet transceiver cable and a transceiver box if using a server.

20.3. User Interface The user interface of the Video Monitor Diagnostic consists of a menu of patterns displayed as icons. The pattern icons are arranged in a grid of 3 across by up to 7 down. You select a pattern, using the R and L function keys on the sides of the keyboard. The instruction box on the screen describes the use of the pattern select keys and other alphabetic keys.

There are a number of command keys that work in any of the pattern menus:

- The L command allows you to loop continuously through icons R1 R4.
- The **s** command allows you to single step from R1 through R4. Stepping to the next icon is accomplished by pressing the space bar.
- The I command inverts a pattern's black and white components.

The **R** command or the space bar returns you to the menu if a pattern is being displayed. When running this diagnostic from The Esc command returns you to the main menu of the Exec. an off-board frame buffer that resides in a separate slot, such as The e selection either erases or redisplays the timer. The timer is a clock that found on the Color2 or Color3 board, DO NOT use the "Control-C" that appears in the lower right portion of the Video Monitor Diagnostic sequence to exit; doing so will lockdisplay: up the Video Monitor Diagnostic displays. Use Esc) instead. 000:00:00:00 During a test, the time shown indicates how long the pattern you are viewing has been on the screen. If you exit that test, the time shown represents the elapsed time since you selected one of the Monitor Diagnostic sub-menus shown on the following pages. 20.4. Standard Patterns The standard patterns (1 - 4) appear in each of the menus (black and white, grayscale and color). These patterns are invoked with the R1 thru R4 selections in each of the menus. Error Message If you make an inappropriate choice (for example, the workstation has a color monitor and you choose the Monochrome Monitor Menu), an error message is displayed: Invalid choice of monitor

The diagnostic then returns to the Main Menu.

20.5. Main Menu

The user interface of the Video Monitor Diagnostic consists of a main menu that allows you to select a sub-menu of icon patterns appropriate for the monitor being tested. The main menu gives you three choices: Monochrome Monitor Menu, Grayscale Monitor Menu, or Color Monitor Menu. The appropriate submenu is invoked by typing a minimum of the first letter of any submenu choice.

Video Monitor Diagnostic				
Monochrome	Monochrome Monitor Menu			
Grayscale	Grayscale Monitor Menu			
Color_	Color Monitor Menu			
Command==>				
L				

Monochrome

Selecting *Monochrome* from the Main Menu brings up the Monochrome Menu. Use it only if the diagnostic is running on a monochrome monitor.

Grayscale

Selecting *Grayscale* from the Main Menu brings up the Grayscale Menu. Use it only if the diagnostic is running on a grayscale monitor.

Color

Selecting *Color* from the Main Menu brings up the Color Menu. Use it only if the diagnostic is running on a color monitor.

20.6. Monochrome Menu A menu that looks something like this is displayed when you select Monochrome from the main Video Monitor Diagnostic menu. The squares will be filled with examples of the test patterns represented by R1 - R15.

Figure 20-1 Monochrome Video Pattern Menu

VEROION VY

VIDEOPAT	TERNS	VERSION X.X.	MM/DD/TT	
R1	R2	R3		IN STRUCTION S: R1 thru R15 = Display a Pattern. 1 = Loop thru patterns
R4	R5 .	R6		s = Single step patterns R1 thru R4. [SPACEBAR] to step
R7	R8	R9		
R 10	R11	R12		<pre>i = Invert pattern e = erase/redisplay timer r = Return to monitor menu from pattern <esc> = Exit to vidmon</esc></pre>
R 13	R14	R15		Main Nenu
				Selection: Monochrome

MARIOD/VV

R1

The Screen Geometry Test verifies that the screen is properly aligned, the video amplifier is working correctly, and the horizontal/vertical scan amplifiers are operating correctly.

Description:

The pattern has a "cross" centered in the middle of the display area. The cross consists of thin lines separated by a short space. This tests for precision and sweep linearity. One-fourth of the distance from the center in each of the four legs of the cross are four perpendicular lines. They provide four boxes for testing horizontal and vertical centering.

In the left and right eighth of the screen are a set of gray, black, and white bars to test for video amplifier ringing. In the upper left quadrant and oneeighth of the way from the center is a horizontal black line with two thin white lines entering a wide, vertical, half-gray line. This pattern tests for

over/undershoot in the video amp. (On systems where there is no grayscale, the gray will be created by half-tone shading of the area, with every other pixel turned on and the adjacent pixel turned off.)

In the lower right quadrant of the screen is another horizontal black bar to maintain symmetry of the overall pattern. There are two white bars oneeighth of the way above and below the center of the screen. The lower bar penetrates halfway into the vertical gray bars and the upper bar completely covers the gray bars.

R2

The *Focus and Brightness Test* verifies that the focus controls are properly set and that the monitor can be focused. The peak white level is set by this test.

Description:

The pattern consists of m's (the character m) and e's (the character e) filling the screen with a three inch white box in the middle. The m's and e's provide 3 short vertical lines connected at the top by a short horizontal line. The legs of the m's and e's are one pixel in width and are spaced two pixels apart.

This pattern is used to set and check the focus of the monitor. The focus adjustment is closely related to correct brightness so both adjustments are done here. Use the white square in the middle to set the screen's brightness. Its presence doesn't affect the focus of the screen. Use the m's and e's to set the screen's focus. The worst case focus occurs at the edges of the monitor, where the electron beam strikes the phosphor at an angle. If the dots are correct at the edge and one-fourth of the way to the center, they should be correct at the center.

There is occasionally a problem with focus linearity. The circuit that corrects focus, depending on the location of the dot on the screen, may be defective. If this is a problem, you may have to use the outline pattern to set the screen brightness and fill the white box with m's and e's.

R3

The Black & White Convergence Test verifies that the beam convergence is properly set.

Description:

This pattern consists of 25 large squares (white lines on black) with a white dot in the middle of each square. Use the horizontal and vertical lines to make sure the beams from the color gun(s) converge properly. Correctly set beams produce pure white lines and dots. A multicolored pattern indicates poor convergence.

The Luminance Uniformity Test checks for uniform screen luminance (brightness) and correct high voltage regulation.

Description:

The monitor displays a white screen.

R5 - R15

The Voltage and Geometry tests check screen voltages and screen dimensions

Description:

The patterns R5 thru R15 are useful for checking video shadowing (ringing), high voltage regulation, and screen geometry.

20.7. Grayscale Menu A menu that looks something like this is displayed when you select Grayscale from the main Video Monitor Diagnostic menu. The squares will be filled with examples of the test patterns represented by R1 - R15 and L1.

Figure 20-2 Grayscale Video Pattern Menu

The Screen Geometry Test verifies that the screen is properly aligned, the video amplifier is working correctly, and the horizontal/vertical scan amplifiers are operating correctly.

Description:

The pattern has a "cross" centered in the middle of the display area. The cross consists of thin lines separated by a short space. This tests for precision and sweep linearity. One-fourth of the distance from the center in each of the four legs of the cross are four perpendicular lines. They provide four boxes for testing horizontal and vertical centering.

In the left and right eighth of the screen are a set of gray, black, and white bars to test for video amplifier ringing. In the upper left quadrant and oneeighth of the way from the center is a horizontal black line with two thin white lines entering a wide, vertical, half-gray line. This pattern tests for over/undershoot in the video amp. (On systems where there is no grayscale, the gray will be created by half-tone shading of the area, with every other pixel turned on and the adjacent pixel turned off.)

In the lower right quadrant of the screen is another horizontal black bar to maintain symmetry of the overall pattern. There are two white bars oneeighth of the way above below the center of the screen. The lower bar penetrates halfway into the vertical gray bars and the upper bar completely covers the gray bars.

R2

The Focus and Brightness Test verifies that the focus controls are properly set and that the monitor can be focused. The peak white level is set by this test.

Description:

The pattern consists of m's (the character m) and e's (the character e) filling the screen with a three inch white box in the middle. The m's and e's provide 3 short vertical lines connected at the top by a short horizontal line. The legs of the m's and e's are one pixel in width and are spaced two pixels apart.

This pattern is used to set and check the focus of the monitor. The focus adjustment is closely related to correct brightness so both adjustments are done here. Use the white square in the middle to set the screen's brightness. Its presence doesn't affect the focus of the screen. Use the m's and e's to set the screen's focus. The worst case focus occurs at the edges of the monitor, where the electron beam strikes the phosphor at an angle. If the dots are correct at the edge and one-fourth of the way to the center, they should be correct at the center.

There is occasionally a problem with focus linearity. The circuit that corrects focus depending on the location of the dot on the screen may be defective. If this is a problem, you may have to use the outline pattern to set the screen brightness and fill the white box with m's and e's.

The Black & White Convergence Test verifies that the beam convergence is properly set.

Description:

This pattern consists of 25 large squares (white lines on black) with a white dot in the middle of each square. Use the horizontal and vertical lines to make sure the beams from the color gun(s) converge properly. Correctly set beams produce pure white lines and dots. A multicolored pattern indicates poor convergence.

R4

The Luminance Uniformity Test checks for uniform screen luminance (brightness) and correct high voltage regulation.

Description:

The monitor displays a white screen.

R5 - R15

The Voltage and Geometry tests check screen voltages and screen dimensions

Description:

The patterns R5 thru R15 are useful for checking video shadowing (ringing), high voltage regulation, and screen geometry.

L1

The Grayscale Luminance Test checks the uniformity of the monitor display with uniformly varying shades of gray.

Description:

The pattern is made up of two rows of eight rectangles each on a gray background. The top row begins with a black rectangle. Each succeeding rectangle in the row has a uniformly lower saturation. The last rectangle in the row is white. The lower row of rectangles starts with a white rectangle. Each succeeding rectangle is more saturated until the last rectangle in the row is black.

20.8. Color Menu A menu that looks something like this is displayed when you select Color from the main Video Monitor Diagnostic menu. The squares will be filled with examples of the test patterns represented by R1 - R15 and L1 - L6.

Figure 20-3 Color Video Pattern Menu

R1

The Screen Geometry Test verifies that the screen is properly aligned, the video amplifier is working correctly, and the horizontal/vertical scan amplifiers are operating correctly.

Description:

The pattern has a "cross" centered in the middle of the display area. The cross consists of thin lines separated by a short space. This tests for precision and sweep linearity. One-fourth of the distance from the center in each of the four legs of the cross are four perpendicular lines. They provide four boxes for testing horizontal and vertical centering.

In the left and right eighth of the screen are a set of gray, black, and white bars to test for video amplifier ringing. In the upper left quadrant and oneeighth of the way from the center is a horizontal black line with two thin white lines entering a wide, vertical, half-gray line. This pattern tests for over/undershoot in the video amp. (On systems where there is no grayscale, the gray will be created by half-tone shading of the area, with every other pixel turned on and the adjacent pixel turned off.)

In the lower right quadrant of the screen is another horizontal black bar to maintain symmetry of the overall pattern. There are two white bars oneeighth of the way above below the center of the screen. The lower bar penetrates halfway into the vertical gray bars and the upper bar completely covers the gray bars.

R2

The *Focus and Brightness Test* verifies that the focus controls are properly set and that the monitor can be focused. The peak white level is set by this test.

Description:

The pattern consists of m's (the character m) and e's (the character e) filling the screen with a three inch white box in the middle. The m's and e's provide 3 short vertical lines connected at the top by a short horizontal line. The legs of the m's and e's are one pixel in width and are spaced two pixels apart.

This pattern is used to set and check the focus of the monitor. The focus adjustment is closely related to correct brightness so both adjustments are done here. Use the white square in the middle to set the screen's brightness. Its presence doesn't affect the focus of the screen. Use the m's and e's to set the screen's focus. The worst case focus occurs at the edges of the monitor, where the electron beam strikes the phosphor at an angle. If the dots are correct at the edge and one-fourth of the way to the center, they should be correct at the center.

There is occasionally a problem with focus linearity. The circuit that corrects focus, depending on the location of the dot on the screen, may be defective. If this is a problem, you may have to use the outline pattern to set the screen brightness and fill the white box with m's and e's.

R3

The Black & White Convergence Test verifies that the beam convergence is properly set.

Description:

This pattern consists of 25 large squares (white lines on black) with a white dot in the middle of each square. Use the horizontal and vertical lines to make sure the beams from the color gun(s) converge properly. Correctly set beams produce pure white lines and dots. A multicolored pattern indicates poor convergence.

The Luminance Uniformity Test checks for uniform screen luminance (brightness) and correct high voltage regulation.

Description:

The monitor displays a white screen.

R5 - R15

The Voltage and Geometry tests check screen voltages and screen dimensions

Description:

The patterns R5 thru R15 are useful for checking video shadowing (ringing), high voltage regulation, and screen geometry.

L1

The *Red Luminance Test* checks the luminance uniformity of the red color gun.

Description:

Pattern L1 is a pure red screen.

L2

The Green Luminance Test checks the luminance uniformity of the green color gun.

Description:

Pattern L2 is a pure green screen.

L3

The *Blue Luminance Test* checks the luminance uniformity of the blue color gun.

Description:

Pattern L3 is a pure blue screen.

L4

The Magenta Color Convergence Test verifies alignment of the red and blue color guns.

Description:

Pattern L4 is a white background behind a magenta convergence pattern.

L5

The Cyan Color Convergence Test verifies alignment of the green and blue color guns.

Description:

Pattern L5 is a white background behind a cyan convergence pattern.

L6

The Color Rainbow Test verifies that the red, green, blue, and sync cables

are attached to the proper connectors.

Description

This pattern consists of a gray background behind two rows of eight rectangles each. The bottom row of rectangles, from left to right, are gray, red, orange, yellow, green, blue, magenta, and white. The top left rectangle is black, and is followed by half values of red, orange, yellow, green, blue, magenta, and white.

20.9. Error Messages 1 - <function> - Unable to map EEPROM 2 - <function> - Unable to unmap EEPROM 3 - <function> - Unable to allocate frame buffer 4 - <function> - unable to map device <> 5 - <function> - Unable to open frame buffer

Sun VME Interface Diagnostic

Sun VME Interface Diagnostic	357
21.1. General Description	357
21.2. Hardware Requirements	357
21.3. Hardware Set-Up	358
21.4. User Interface	358
21.5. The Main Menu	360
21.6. The Master Tests Menu	362
21.7. The Slave Tests Menu	367
21.8. The Asynchronous Tests Menu	371
21.9. The Debugging Aids Menu	379
21.10. The Options Menu	382
21.11. Glossary	387
21.12. VME Map Table	389

Sun VME Interface Diagnostic

21.1. General Description	VMEbus compatible board products can be combined to produce a wide range of system configurations ranging from the very simple to the very complex. The VMEbus specification defines specific functional entities or elements which can be implemented on a VMEbus compatible board. The VMEbus Interface imple- mentation for the Sun product line provides Master, Slave, Interrupt Handler, and Arbiter VME bus functions. This diagnostic checks the VME interface on the CPU board. The required hardware is listed below.			
21.2. Hardware Requirements				
NOTE	Installing any additional unspecified VMEbus boards can cause the diagnostic to produce unreliable and erroneous reports.			
	 A 12-slot or smaller cardcage with sufficient power capacity to support two CPU boards. 			
	D The Unit Under Test (UUT): a Sun CPU board.			
	 The Test Support CPU (TSCPU): a second, functionally sound, Sun CPU board. 			
	1. Sun Memory board(s) if no memory is on CPU board(s).			
	 Two Sun consoles (monitor and keyboard) or two "dumb" terminals (TeleVideo, Wyse, etc.) 			
	3. A boot device (such as Ethernet).			
	 Two ethemet transceiver cables (P/N 530-1241-01, "Assy., Cable transceiver 15 meter") and transceiver boxes (3COM 3C100 or equivalent). Alterna- tively, a single ethemet drop may be shared by the two CPU boards. 			
	5. An InterProcessor Communication Serial Cable (IPC Serial Cable) connect- ing the UUT to the TSCPU by way of the "B" serial ports.			
Configuration	The following is an example of a test system configuration that uses the hardware listed above:			
	1. The Unit Under Test and Test Support CPU are installed in the VMEbus card- cage, in slots that do <i>not</i> share a common P2 bus. Memory board(s) are			

installed as required for the specific CPU board. The ARBITER and the VME Clock must be disabled on the board which takes the role of theTSCPU.(Consult CPU board configuration procedure for jumper locations.)

- 2. Either a Sun console (monitor and keyboard) or a dumb terminal connected to serial port A on the Unit Under Test is required for the user interface. A second console or a terminal attached to serial port A must be connected to the TSCPU for booting the SunDiagnostic Executive and viewing messages that may be displayed while testing is in progress.
- 3. An interprocessor serial communication cable is connected between serial port B on the UUT and serial port B on the TSCPU.
- 4. The two Ethernet transceiver boxes are connected to the network containing the File Server from which the diagnostic is downloaded. The transceiver cables connect each CPU (UUT and TSCPU) to a transceiver box.

21.3. Hardware Set-Up UUT/TSCPU configuration

The hardware jumper placement and EEPROM settings required for correct operation of the VME diagnostic are described below.

Jumper PlacementRefer to the appropriate CPU board configuration document for jumper locations,
which vary, depending on which CPU board is being tested.

Jumper Description	UUT	TSCPU
Requester only	off	on
Arbiter/Requester	on	off
Reset slave	off	on
Reset master	on	off
VMEclock enable	on	off

UUT EEPROMEEPROM location 0x1f must be set to 0x10 in order to use a terminal on serial
port A.

TSCPU EEPROM EEPROM location 0x1f must be set to 0x10 in order to use a terminal on serial port A.

21.4. User Interface The user interface consists of a Main Menu with five sub-menus. Each of the menus makes a number of visible and invisible options available to the user. Only the visible options are discussed in this chapter. *Chapter 2* provides interface support for menus and command line interpretation.

Many of the tests are composed of several sub-tests that check a particular aspect of an interface function. Any of the sub-tests may be executed individually for debugging purposes by choosing the appropriate parameter values. Default parameter values cause all subtests to run. Local copies of the global environmental parameters can be set and used by those tests that have a double asterisk (**) in their parameter lists. See the *Local Environment* section for details.

Each test description states:

- 1. The purpose of the test.
- 2. The parameters required.
- 3. The function of the test.

Note that a parameter range specified as "1_7" means the values 1 through 7 inclusive are allowed. If the base is "hex" and the description contains option values such as 1=walking zero, 2=walking 1, or 4=constant, values may be combined to select multiple options. For example, combining 1 and 4 (1+4=5) would cause "walking zero" and "constant" options to be selected. A range specified as "1,2,4" means only the values 1 or 2 or 4 exclusively are allowed. In that case, values MAY NOT BE COMBINED to select multiple options; e.g. "1+4=5" would not function correctly.

Command Line Description The SunDiagnostic Executive command line interpreter is more powerful and provides more flexibility than previous command line interpreters. Multicharacter commands are allowed. Parameters are optional. Default values are automatically provided for parameters not entered. Parameters may be entered in any order. Global environmental parameters can be set from the options menu. Refer to *Chapter 2* for more information on command line syntax.

Starting the DiagnosticThe VME diagnostic expects to see a pair of CPU's connected by a synchroniza-
tion link. This design requires the special start-up procedure described below.

Start-up Procedure

The following procedure assumes that a single Ethernet drop is shared between the two CPU boards.

- 1.Check Set Up
- D Make sure both CPU's are configured and installed correctly.
- Make sure the IPSC Cable is connected to serial port "B" of each CPU board.

2.Boot IPC Master

- Determine which CPU has its Arbiter enabled and connect the Ethernet cable to it. This board is the IPC Master and must be booted first.
- To Boot the SunDiagnostic Executive on the IPC Master, enter the following from the PROM monitor mode:

> b ie() stand/exec

• From the SunDiagnostic Executive's main menu type:

Command==> di;vme

to start the VME diagnostic. After the VME diagnostic has started, it will repeatedly display the message: hit any key to display menu. Don't press any keys at this time!

3.Boot IPC Slave

- Disconnect the Ethernet cable from the IPC Master and connect it to the CPU that is the IPC Slave.
- Now boot the IPC Slave CPU by typing:

> b ie() stand/exec

□ From the SunDiagnostic Executive's main menu type:

Command==> di;vme

to start the VME diagnostic. After the VME diagnostic has started, it will repeatedly display the message: hit any key to display menu. Don't press any keys at this time!

At this point, you must decide which CPU board is to be the UUT; press the spacebar on the keyboard attached to that CPU board. By default, the other CPU board will become the TSCPU. The CPU roles can be reversed later by changing the CPUMode setting from Options Menu, if desired.

The UUT should display the Main Menu and the TSCPU should occasionally display the message SLAVE: waiting for command. **Don't press** any keys on the TSCPU keyboard! The TSCPU keyboard is not used unless the CPUMode is set to ASYNC and the Async Tests Menu is selected.

4.Run Tests

The diagnostic is now ready use. Any of the default sequences can be used to run the synchronous Master and Slave tests. The CPU roles may be reversed by setting CPUMode=TSCPU on the Options Menu. Asynchronous mode may be selected from the Options Menu by setting CPUMode=ASYNC.

21.5. The Main Menu The Main Menu, at the top level of this diagnostic, has a total of nine visible options. The Master, Slave, ASync, DEBug and Options menus are all available here. All the tests can be run at once by selecting All. The Error log displays a list of all the error messages generated by the diagnostic since it started. To go to a sub-menu, you must at least type in the letters shown in the menu in upper case. If the entry results in a command, that command will run; if it brings up a menu, that menu is displayed.


```
Sun VME Interface Diagnostic REV x.x xx/xx/xx Main Menu

All perform all tests in sequence

Default perform default test sequence

Quick perform quick test sequence

Master Master tests menu

Slave Slave tests menu

ASync Asynchronous tests menu

DEBug Debugging aids menu

Options Options menu

Error Error log display

message line

.

Command==>
```

A11

Typing this command runs all tests in the sequence shown on the menu. The sequence is:

m; a; Esc; s; a; Esc;

Default

Typing this command runs a standard subset of tests that are comprehensive but complete in a more reasonable time. The sequence is:

m;d; Esc; s;d; Esc;

Quick

Typing this command runs the minimal set of tests that offer reasonable coverage. It will complete in a very short time, generally two minutes or less. The sequence is:

m; q; s Esc; Esc;

Master

Typing this command brings up the Master menu.

Slave

Typing this command brings up the Slave menu.

ASync

Typing this command brings up the ASync menu.

DEBug

Typing this command brings up the DEBug menu.

Options

Typing this command brings up the Options menu.

Error

Typing this command displays the error log.

21.6. The Master Tests Menu

The Master tests are designed to test the functionality of the VMEbus Master interface. The Arbiter test is included in this group to avoid creating an additional menu with only a single test entry. This menu has a total of nine visible options.

Sun VME I	nterface Diagnostic REV x.x xx/xx/xx Master Tests Menu
A11	perform all tests in sequence
Default	perform default test sequence
Quick	perform quick test sequence
ADdress	address lines test
DAta	data lines tests
UNalign	unaligned transfer test
PRot	protection, timeout, & memory error tests
BUs	bus arbiter tests
Error	error log display
message line	
message line	
Command==	»

A11

Typing this command runs all tests in the sequence shown on the menu. The sequence is:

ad ; da ; un ; pr ; bu ;

Default

Typing this command runs a standard sub-set of tests that are comprehensive but complete in a more reasonable time. The sequence is:

ad ; da ; un ; pr ; bu ;

Quick

Typing this command runs the minimal set of tests that offer reasonable coverage. It will complete in a very short time, generally two minutes or less. The sequence is:

ad ; da ; un ; pr ; bu ;

ADdress

Address line tests verify the Master correct manipulation of DTB address lines over specified address range and identify failing address line combinations.

To run these tests, use this syntax, with or without the parameters shown. The minimum entry is shown in upper case; you need only enter **ad**, for example, to invoke the address line tests.

ADdress DVma=OFFSET=OPSize=OPType=POrt=PType=**=

The parameters are:

dvma

Enter dv to select the DVMA space to use. Enter dv=1 for system DVMA. Enter dv=2 for user DVMA.

offset

Offset specifies an address offset from the VME MAPPING TABLE address to use during a read or write operation.

opsize

opsize specifies the number of bytes to use during a read or write operation.

optype

specifies the type of operation to be tested. Enter **opt=1** for write, or **opt=2** for read.

port

specifies the VME port to use.

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the VME 32-bit master port.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The following table shows default values and the acceptable range of values you may enter for each parameter.

parameter	default	range	base (radix)
dvma	3	1_3	hex
offset	0	01fff	hex
opsize	4	1,2,4	hex
optype	3	1_3	hex
port	3	13	hex

During each pass, the Address Line Tests toggle the address bits and execute write/read/compare operations, then report bus or compare errors. The parameters dvma, opsize, optype, port, and offset allow you to customize the test for debugging purposes. For example, by specifying OPtype=2 means that a read only test is performed.

DAta

Data line tests verify Master's correct manipulation of DTB data lines over specified data range. They also identify failing data line combinations.

The command syntax is:

DAta OPSize = OPType = PATtern = POrt = PType = **=

The parameters are:

opsize

Opsize specifies the number of bytes to use during a read or write operation.

optype

specifies the type of operation to be tested. Enter **opt=1** for write, or **opt=2** for read.

pattern

is the constant value to be used if ptype=4 (constant pattern type) is selected.

port

VME port to use.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the VME 32-bit master port.

ptype

is the pattern type to be applied to data lines. 1 = walking zero, 2 = walking one, 4 = constant.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The following table shows default values and the acceptable range of values you may enter for each parameter.

parameter	default	range	base (radix)
opsize	4	1,2,4	hex
optype	3	1_3	hex
pattern	12345678	0ffffffff	hex
port	3	1_3	hex
ptype	3	1_7	hex

During each pass, the Data Line Tests apply the pattern type specified by ptype to all of the data bits, execute write/read/compare operations, then report *bus* or *compare* errors. The parameters dvma, opsize, optype, pattern, port, and offset allow you to customize the test for debugging purposes. For example, by specifying OPtype=2 a read only test is performed.

UNalign

Unaligned transfer tests verify the Master's ability to handle non-aligned transfer without error.

You need only enter the letters shown in upper case, or you may enter the entire command or parameter word. The command syntax is:

UNalignAIndex= OFFSet= OPType= POrt= SEnse= **=

The following paragraphs describe the parameters:

aindex

The address index parameter specifies the map entry to be used in the VME MAPPING TABLE.

offset

specifies an address offset from the VME MAPPING TABLE address to use during a read or write operation.

optype

```
specifies the operation type to be tested. 1 = write, 2 = read.
```

port

specifies which VME port to use.

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the VME 32-bit master port.

sense

specifies whether bit ON(1) or bit OFF(0) addresses are used.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for each Unalign Transfer Test parameter.

parameter	default	range	base (radix)
aindex	0	0_31	dec
offset	0	01fff	hex
optype	3	13	hex
port	3	13	hex
sense	0	01	hex

During each pass, the Unalign Transfer Tests force VME Master writes/reads to/from locations not modulo 4 aligned, then compare values written to the Master with values actually read from Slave and Master to verify correct operation. Any data corruption is reported as an error. The parameters aindex, offset, optype, port, and sense allow the you to customize the test for debugging purposes. For example, by specifying OPtype=2 means a read only test is performed.

PRot

Protection, timeout and memory error tests verify correct operation of error reporting circuitry specific to the Master's VMEbus interface.

The command syntax is:

PRot SUbtest = **=

subtest

specifies the sub-test(s) to execute during each test pass. 1 = read_only, 2 = supervisor_only, 4 = invalid_page, 8 = timeout, 0x10 = slave_error.

The table that follows shows default values and the acceptable range of values you may enter for the sub-test parameter.

parameter	default	range	base (radix)
subtest	lf	11f	hex

Each sub-test tests a specific error or exception reporting function by forcing conditions under which the exceptions should occur and then checking for an appropriate exception report. The read_only, supervisor_only, and invalid_page subtests test MMU generated exceptions, while the timeout and slave_error sub-tests test externally generated exception conditions.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

BUs

Bus arbiter tests verify correct bus arbiter operation on the Unit Under Test.

The command syntax is:

```
BusITerations= LEn= **=
```

iterations

Number of times the data block is written/read per pass.

- len Length of the data block to use in bytes.
- ** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
iterations	1000	1f0000	hex
len	100	1400	hex

During each pass, the Bus Arbiter Tests set up Master and Slave on both the UUT and TSCPU so that each Master can write/read the Slave on the other CPU. The tests let each Master write *len* data bytes, read them back, and test for corrupted data, memory errors, and timeout exceptions. The *iterations* parameter specifies the number of iterations.

21.7. The Slave Tests Menu

The Slave tests test the functionality of the VMEbus Slave interface.

The Slave Tests Menu has a total of eight visible options.

```
Sun VME Interface Diagnostic REV x.x xx/xx/xx Slave Tests Menu
All perform all tests in sequence
Default perform default test sequence
Quick perform quick test sequence
ADdress address lines tests
DAta data lines tests
PRot protection & memory error tests
ENable dvma enable register tests
Error error log display
message line
message line
Command==>
```

A11

Typing this command runs all tests in the order shown in the menu. The sequence is:

ad ; da ; pr ; en ;

Default

Typing this command runs a standard subset of tests that are comprehensive but complete in a more reasonable time. The sequence is:

ad ; da ; pr ; en ;

Quick

Typing this command runs the minimal set of tests that offer reasonable coverage. It will complete in a very short time, generally two minutes or less.

The sequence is:

ad ; da ; pr ; en ;

ADdress

Address lines tests verify the Slave's correct response to manipulation of DTB address lines over a specified address range and identify failing address line combinations.

When entering the test command and specifying parameters, you need only enter the letters shown here in upper case. The command syntax is:

ADdress DVma= OFFSET= OPSize= OPType= POrt= PType= **=

The parameters are:

```
dvma
```

specifies which toDVMAspace

offset

specifies an address offset from the VME MAPPING TABLE address to use during a read or write operation.

opsize

specifies the number of bytes to use during a read or write operation.

optype

specifies the Operation Type to be tested. 1 = write, 2 = read.

port

specifies which VME port to use.

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the VME 32-bit master port.

ptype

specifies the Pattern Type to be applied to data lines. 1 = walking zero, 2 = walking one, 4 = constant.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
dvma	3	1_3	hex
offset	0	01fff	hex
opsize	4	1,2,4	hex
optype	3	1_3	hex
port	3	1_3	hex
ptype	7	17	hex

During each pass, the Address Lines Tests toggle the address bits and execute write/read/compare operations. They report bus or compare errors. The parameters dvma, offset, opsize, optype, port, and ptype allow you to customize the test for debugging purposes. For example, by specifying OPtype=2, a read only test is performed.

DAta

Data line tests verify the Slave's correct response to manipulation of DTB data lines over specified data range and identify failing data line combinations.

Command syntax is:

DAta OPSize= OPType= PATtern= POrt= PType= **=

The parameters are:

opsize

specifies the number of bytes to use during a read or write operation.

optype

specifies the Operation Type to be tested. 1 =write, 2 =read.

pattern

specifies a constant to be written to local memory location if constant pattern type is selected (ptype).

port

specifies which VME port to use.

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the VME 32-bit master port.

ptype=

specifies the pattern type to be applied to data lines. 1 = walking zero, 2 = walking one, 4 = constant.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
opsize	4	1,2,4	hex
optype	3	1_3	hex
pattern	12345678	0ffffffff	hex
port	3	1_3	hex
ptype	3	17	hex

During each pass, the Data Line Tests apply the pattern type specified by ptype to all of the data bits, then execute write/read/compare operations. They report bus or compare errors. The parameters opsize, optype,

pattern, port, and ptype allow you to customize the test for debugging purposes. For example, by specifying OPtype=2, a read only test is performed.

PRot

Protection & memory error tests verify correct operation of Slave VMEbus interface error reporting circuitry.

The command syntax is:

PRot SUbtest = **=

subtest

specifies which Sub-test(s) to perform:

1 = nontype0 2 = sdvma_invalid 4 = sdvma_read_only 8 = udvma_invalid 0x10 = udvma_read_only 0x20 = udvma_supervisor_only.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the *subtest* parameter.

parameter	default	range	base (radix)
subtest	ff	0_ff	hex

During each pass of the DVMA Enable Register Tests, the subtest(s) specified by executed.subtestare Each sub-test checks a specific error/exception reporting function by forcing conditions under which the exceptions should occur, then checking for an appropriate exception report. The sub-tests check MMU and memory generated exceptions as well as the Slave VMEbus error reporting circuitry.

ENable

DVMA Enable register tests verify correct operation of the VMEbus DVMA enable circuitry for System and User DVMA.

Command syntax is: ENable SUbtest= COntext= **=

subtest

```
specifies which sub-test(s) to perform. 1 = System DVMA, 2 = User DVMA.
```

context

specifies which context(s) to test when User DVMA is specified. The parameter requires an 8-bit entry with same format as the User DVMA enable register.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

parameter	default	range	base (radix)
subtest	3	1_3	hex
context	ff	00ff	hex

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

During each pass, the Enable Register Tests execute the subtest(s) specified by subtest. The System DVMA subtest checks proper function of the System DVMA enable bit. The User DVMA subtest checks proper function of each enable bit in the User DVMA enable register specified by the context parameter.

21.8. The Asynchronous Tests Menu The Asynchronous tests are designed to provide you with a set of asynchronous functions similar to those found in the *Carpvme* PROMs. Interprocessor communication is not used to synchronize operation of the two CPU boards; therefore the distinction between UUT and TSCPU becomes meaningless. Instead, the terms LOCAL and REMOTE are used to indicate on which CPU board memory the operations are taking place.

> LOCAL memory is the memory on the CPU board connected to the terminal or console through which you are currently entering commands. REMOTE memory is the memory on the "other" CPU board, accessed over the VMEbus. Since operation of the two CPU boards is asynchronous, any combination of functions may be run when two terminals or consoles are used.

The Asynchronous Tests Menu has a total of 11 options.

A11

Typing this command runs all tests in the sequence they appear in the menu. The sequence is:

gx; kx;

Default

Typing this command runs a standard subset of tests that are comprehensive but complete in a more reasonable time. The sequence is:

gx; kx;

Quick

Typing this command runs the minimal set of tests that offer reasonable coverage. It will complete in a very short time, generally two minutes or less. The sequence is:

gx; kx;

AX

Write Local Memory writes a pattern into a local memory location. The other CPU board can access this pattern over the VMEbus, using remote read or write operations.

You need only enter the letters shown in upper case, followed by the "equals" sign and the parameter entry. The command syntax is:

AX AIndex= OFFSet= OPSize= PATtern= PType= SEnse= **=

The parameters are:

aindex

Address Index specifies the map entry to be used in the VME MAPPING TABLE.

offset

specifies an address offset from the VME MAPPING TABLE address, for use during a read or write operation.

opsize

specifies the number of bytes to use during a read or write operation.

pattern

Pattern constant value to be used if constant pattern type is selected.

ptype

specifies the pattern type to be applied to the data lines. 1 = walking zero, 2 = walking one, 4 = constant.

sense

specifies whether bit ON(1) or bit OFF(0) addresses are used.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
aindex	0	0_31	dec
offset	0	0_1fff	hex
opsize	4	1,2,4	hex
pattern	12345678	0fffffffff	hex
ptype	3	1_7	hex
sense	0	0_1	hex

The Write Local Memory command writes the specified pattern type to a local memory location for the number of iterations specified by pass. If pattern type = constant (ptype=4), the test uses the constant specified in pattern.

BX

Read & Display Local Memory reads a local memory location and displays the value observed. This value may be accessed by the other CPU board over the VMEbus, using remote read or write operations.

The command syntax is:

BX AIndex= SEnse= OPSize= OFFSet= **=

Command parameters are:

aindex

Address index specifies the map entry to be used in the VME MAPPING TABLE.

sense

specifies whether bit ON(1) or bit OFF(0) addresses are used.

opsize

specifies the number of bytes to use during a read or write operation.

offset

specifies an address offset from the VME MAPPING TABLE address for use during a read or write operation.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
aindex	0	031	dec
sense	0	0_1	hex
opsize	4	1,2,4	hex
offset	0	0_1fff	hex

The Read and Display Local Memory test reads the local memory location and displays the observed value for the number of iterations specified by pass. The local memory location is obtained by adding offset to the address specified in the VME MAPPING TABLE, indexed by

aindex,sense,VME_SLAVE (see end of chapter).

СХ

Write Remote Memory (over VMEbus) writes a pattern into a remote memory location over the VMEbus.

Command syntax is:

CX AIndex= OFFSet= OPSize= PATtern= POrt= PType= SEnse= **=

Command parameters are:

aindex

Address index specifies the map entry to be used in the VME MAPPING TABLE.

offset

specifies an address offset from the VME MAPPING TABLE address to use during a read or write operation.

opsize

specifies the number of bytes to use during a read or write operation.

pattern

specifies the *Pattern constant* to be written to a remote memory location if constant pattern type (ptype=4) is selected.

port

specifies which VME port to use:

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the VME 32-bit master port.

ptype

specifies the *pattern type* to be applied to the data lines. 1 = walking zero, 2 = walking one, 4 = constant.

sense

specifies whether bit ON(1) or bit OFF(0) addresses are used.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
aindex	0	0_31	dec
offset	0	0_1fff	hex
opsize	4	1,2,4	hex
pattern	12345678	0_ffffffff	hex
port	1	1_2	hex
ptype	3	1_7	hex
sense	0	0_1	hex

The Write Remote Memory test writes the specified pattern type into the remote memory location through the VMEbus for the number of iterations specified by pass. If pattern type = constant (ptype=4), the test uses the constant specified in pattern. For each iteration the test uses 16- or 32-bit master data space as specified by *port*. If a bus error occurs and the loopon-error flag is set, a scope loop is entered.

DX

Read Remote Memory (over VMEbus) reads from a remote memory location over the VMEbus and displays the observed value.

Command syntax is: DX AIndex= OFFSet= OPSize= POrt= SEnse= **=

The parameters are:

aindex

address index specifies the map entry to be used in the VME MAPPING TABLE.

offset

specifies an address offset from the VME MAPPING TABLE address for use during a read or write operation.

opsize

specifies the number of bytes to use during a read or write operation.

port

specifies the VME port to use:

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the VME 32-bit master port.

sense

specifies whether bit ON(1) or bit OFF(0) addresses are used.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
aindex	0	0_31	dec
offset	0	01fff	hex
opsize	4	1,2,4	hex
port	1	12	hex
sense	0	0_1	hex

The Read Remote Memory test reads from the remote memory location over the VMEbus and displays the observed value. The number of iterations is specified in the pass count limit. For each iteration, the test uses 16 or 32 bit master data space as specified by the parameter port. If a bus error occurs and loop on error flag is set, a scope loop is entered.

GX

Write/Read Remote Memory Space (over VMEbus) verifies correct operation while exercising all address bits.

Command syntax is: GX DVma= OFFSet= OPSize= POrt= PType= **=

The parameters are:

dvma

```
specifies which DVMA space to use: System or User. 1 = System, 2 = User.
```

offset

specifies an address offset from the VME MAPPING TABLE address to use during a read or write operation.

opsize

specifies the number of bytes to use during a read or write operation.

port

VME port to use:

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the 32-bit master port.

ptype

specifies the pattern type to be applied to the data lines. 1 = walking zero, 2 = walking one, 4 = constant.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
dvma	3	13	hex
offset	0	01fff	hex
opsize	4	1,2,4	hex
port	3	13	hex
ptype	7	17	hex

The Write/Read Remote Memory Space Test executes the test for the number of iterations specified in the pass count limit parameter. For each iteration, the test applies the pattern data = address while toggling all VMEbus address bits at least once, using the Slave DVMA space specified by DVMA. The test compares actual values read from the Slave to unique values written to the Slave and reports differences as failures. Selection of 16 or 32 bit data is determined by port. If a bus error or data compare error occurs, and the loop-on-error flag is set, a scope loop is entered.

Appropriate address truncation and skipping is be performed automatically to conform to hardware and software constraints. These constraints include address sizes, Slave VMEbus addressing, and preservation of bootPROM monitor variables.

KX

Write/Read Remote Memory Offset Data (over VMEbus) verifies the Master's ability to handle non-aligned transfer without error.

Command syntax is:

KX AIndex= OFFSet= POrt= SEnse= **=

aindex

address index specifies the map entry to be used in the VME MAPPING TABLE.

offset

specifies an address offset from the VME MAPPING TABLE address for use during a read or write operation.

port

VME port to use:

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter po=2 for the 32-bit master port.

sense

specifies whether bit ON(1) or bit OFF(0) addresses are used.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
aindex	0	031	dec
offset	0	01fff	hex
port	1	1_2	hex
sense	0	0_1	hex

The Write/Read Remote Memory Offset Data test executes the test for the number of iterations specified in the pass count limit. For each iteration it forces remote writes/reads to/from locations not modulo 4 aligned. It compares written values with values actually read back to verify correct operation. It reports any data corruption as an error. If a bus or data compare error occurs and the loop on error flag is set, a scope loop is entered.

21.9. The Debugging Aids Menu

The Debugging Aids are functions that allow tight loop repetition of VMEbus atomic functions (writes or reads) with user specified address or data values. This aids oscilloscope debugging in situations where a closed automatic test is insufficient or not available.

The Debugging Aids Menu has a total of five visible options.

```
Sun VME Interface Diagnostic REV x.x xx/xx/xx Debugging Aids Menu
ADdress address lines exerciser
DAta data line exerciser
Error error log display
message line
.
Command==>
```

ADdress

The Address line exerciser exercises address lines for debugging with an oscilloscope or logic analyzer.

The command syntax is:

ADdress AIndex= OFFSet= OPSize= OPType= POrt= **=

Parameters are:

aindex

address index specifies the map entry to be used in the VME MAPPING TABLE.

offset

specifies an address offset from the VME MAPPING TABLE address for use during a read or write operation.

opsize

specifies the number of bytes to use during a read or write operation.

optype

specifies the Operation Type to be tested. 1 = write, 2 = read.

port

VME port to use:

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the VME 32-bit master port.

** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

parameter	default	range	base (radix)
aindex	0	0_31	dec
offset	0	0_1fff	hex
opsize	4	1,2,4	hex
optype	1	1,2	hex
port	0	0,1,2	hex

During each pass, the Address Line Exerciser toggles the address bit specified by aindex. The parameters offset, opsize, optype, and port allow you to customize the test for debugging purposes. For example, by specifying OPtype=2, a read only test is performed.

DAta

The *Data line exerciser* exercises data lines for debugging with an oscilloscope or logic analyzer.

Command syntax is:

DAta AIndex= OFFSet= OPSize= OPType= PATtern= POrt= PType= SEnse= **=

Parameters are:

aindex

address index specifies the map entry to be used in the VME MAPPING TABLE.

offset

specifies an address offset from the VME MAPPING TABLE address for use during a read or write operation.

opsize

specifies the number of bytes to use during a read or write operation.

optype

specifies the Operation Type to be tested. 1 =write, 2 =read.

pattern

specifies the *Pattern constant* to be written to a remote memory location if constant pattern type (ptype=4) is selected.

port

VME port to use:

Enter **po=0** for the VME slave port.

Enter **po=1** for the VME 16-bit master port.

Enter **po=2** for the VME 32-bit master port.

ptype

specifies the pattern type to be applied to the data lines. 1 = walking zero, 2 = walking one, 4 = constant.

sense

- specifies whether bit ON(1) or bit OFF(0) addresses are used.
- ** Refer to the *Local Environment* subsection for a list of global parameters that can be set for this test.

ptype

parameter	default	range	base (radix)
aindex	0	0_31	dec
offset	0	01fff	hex
opsize	4	1,2,4	hex
optype	3	1_3	hex
pattern	12345678	0fffffffff	hex
port	0	0,1,2	hex
ptype	7	1_7	hex
sense	0	0_1	hex

The table that follows shows default values and the acceptable range of values you may enter for the parameters.

During each pass, the Data Line Exerciser applies the pattern type specified by ptype. The parameters aindex, offset, opsize, optype, pattern, port, ptype, and sense allow you to customize the test for debugging purposes. For example, by specifying OPtype=2, a read-only test is performed.

21.10. The Options Menu

The options are non-test, non-exerciser functions that control and display program environment variables, flags, and the error log.

The Options Menu has a total of nine visible options.

```
Sun VME Interface Diagnostic REV x.x xx/xx/xx Options Menu

CPUMode= Set cpu mode - UUT, TSCPU, ASYNC currently:

MV= Message verbosity - Off, Terse, Verbose currently:

Pass= Pass count currently:

SCope= Scopeloop on error currently:

SOft= Soft error retry count currently:

STop= Stop on Nth error currently:

WAit= Wait on error for message viewing currently:

Def Set default values

Error error log display

...

message line

Command==>
```

CPUMode=

Set CPU mode sets the program CPU mode variable.

To set this mode, enter

CPUMode=

followed by one of the parameters listed below under range.

variable	default	range	base (radix)
cpumode	ASYNC	ASYNC, UUT, TSCPU	string

MV=

sets message verbosity.

To set this mode, enter

MV=

followed by 0 for no messages, 1 for short messages, or 2 for full verbosity.

variable	default	range	base (radix)
mv	1	0:2	hex

Pass=

sets the pass count limit.

To set this mode, enter

Pass=

followed by a hexadecimal value within the range shown below:

variable	default	range	base (radix)
pass	1	1:0xfffffffe	hex

The pass parameter sets a global pass count limit to value entered. This limit allows a test to run until the number of iterations exceeds the pass count limit, unless an "on error limit" is exceeded first.

SCope=

sets the scopeloop on error flag.

To set this flag, enter

SCope=

followed by 0 to turn scope looping OFF, or 1 to turn it ON.

variable	default	range	base (radix)
scope	0	0:1	hex

This parameter sets a global scopeloop-on-error flag. The loop on error flag may be ignored for tests or functions for which the loop on error action has no meaning. The loop-on-error function displays a message indicating the type of operation(s), the address, and the data used while looping. The DIAGNOSTIC bit in the enable register is set to "1" before the operation(s) and set to "0" after the operation(s) while looping. Use this as a SYNC trigger for scope/analyzer debugging. No messages are displayed while looping in order to keep the loop as tight as possible.

SOft

sets the soft error retry limit.

To set the number of times a test will retry after an error occurs, enter

SOft=

followed with a value within the range shown below.

variable	default	range	base (radix)
soft	0	0:0xfffffffe	hex

Soft sets the soft error retry count limit to the value entered. Applicable tests retry if an error occurs, until the number of retrys exceeds the soft error retry count limit.

STop

sets stop on nth error limit.

To set this parameter, enter

STop=

followed with the hexadecimal value that represents the number of errors the test is to allow before halting.

variable	default	range	base (radix)
stop	1	1:0xfffffffe	hex

Stop sets stop on nth error limit to the value entered. This limit causes testing to be stopped when the number of errors exceeds the value entered. A "continue on error" parameter can be simulated by setting STop to some large value.

WAit=

sets the wait on error flag.

To set this parameter, enter

```
WAit=
```

followed by 0 to turn the flag OFF, or 1 to turn the flag ON.

variable	default	range	base (radix)
wait	0	0:1	hex

The wait parameter sets a global wait on error flag. If an error occurs and the wait on error flag is "1", the program pauses for about 15 seconds. This permits messages on the screen to be read before the menu is repainted.

Def

sets default values for all global variables and flags, except CPUmode.. To set this parameter, enter

Def

Error

Error Log Display displays the list of errors recorded in the errlog. Optional user entered parameters are provided for controlling the display verbosity and flushing the errlog.

The command syntax is:

Error VErb=FLush=

verb

controls display verbosity. 1 = terse, 2 to f = verbose.

flush

controls whether or not the errlog is flushed. 0 = noflush, 1 = flush.

parameter	default	range	base (radix)
verb	1	1:0xf	hex
flush	0	0,1	hex

Local Environment The local environmental parameters are a subset of the global environmental parameters available on the *Options Menu*. Any of these parameters may be entered on a command line following a test command, along with any test parameters required for that test.

The local environmental parameter value exists only for the duration of the test command which it follows. If a local environmental parameter is not entered, the current value of the equivalent global environmental parameter (displayed in the *Options Menu*) becomes the default value.

The parameters that follow are applicable to all the tests that show double asterisks (**) in the command syntax example.

Local environmental parameters

provide a facility for locally modifying the value of the global environmental parameters on a test by test basis, without changing the current global values or forcing the user to continually go to The Options Menu.

The command syntax is:

TESTCMD TESTPARAMETER = MV = Pass = SCope = SOft = STop = WAit =

After entering the test command and any of the test parameters discussed on the previous pages, you may enter the letters shown in upper case in the syntax example above, followed with the values shown below.

mv sets message verbosity. 0 = off, 1 = terse, 2 = verbose.

pass

sets the pass count limit, which is the number of times a test is to be executed.

scope

sets the scope flag. 0 = off, 1 = on.

soft

sets soft error retry limit.

stop

sets the stop on nth error limit.

wait

sets the wait flag. 0 = off, 1 = on.

The table below shows the default values for the local environmental parameters, the acceptable ranges, and whether the entry should be in hexadecimal or decimal.

parameter	default	range	base (radix)
mv	1	0:2	hex
pass	1	1:*	decimal
scope	0	0:1	hex
soft	0	0:0xfffffffe	hex
stop	1	1:0xfffffffe	hex
wait	0	0:1	hex

The local environmental parameters command line entry executes the specified test, using the test and local parameter values entered in place of *TESTCMD* and *TESTPARAMETER* in the syntax example. For parameters not entered on the command line, the program uses the local default values for the test parameters and current global environmental parameter values as defaults for the local environmental parameters.

21.11. Glossary

ARBITER

A functional module that accepts bus requests from a master or interrupt handler and grants control to only one such requester at a time.

CPU

Central Processing Unit in this chapter is a reference to a Sun-3 CPU board, containing the MC68020 microprocessor chip.

DTB

Data Transfer Bus - One of four buses provided on the VMEbus backplane. Used to transfer binary data between a Master and a Slave on the VMEbus.

ETHERNET

Communication link between systems, using coaxial cable.

FRU

Field Replaceable Unit

INTERRUPTER

A functional module that generates interrupt requests on the PIB.

INTERRUPT HANDLER

A functional module that detects and responds to requests generated by an Interrupter.

IPC

InterProcessor Communication, used in references to the communication link that exists between the UUT and the TSCPU for process synchronization purposes.

IPC Master

InterProcessor Communication Master is the CPU that initiates commands on the IPC link and whose console is used for controlling synchronous testing. Not to be confused with VMEbus MASTER below, or the SunIPC board.

IPC Slave

InterProcessor Communication Slave is the CPU that responds to commands on the IPC link and whose console is display-only during synchronous testing. Not to be confused with VMEbus SLAVE below, or the SunIPC board.

MASTER

A functional module that initiates DTB cycles in order to transfer data between itself and a Slave module.

PIB

Priority Interrupt Bus - One of four buses provided on the VMEbus backplane. Used by an interrupter to send interrupt requests to an interrupt handler.

SLAVE

A functional module that detects DTB cycles initiated by a Master and, when those cycles specify its participation, transfers data between itself and the Master.

TSCPU

The Test Support CPU is a second, "known good" Sun-3 CPUboard installed in the VMEbus cardcage and used to support testing of the UUT.

UUT

Unit Under Test is the Sun-3 CPU board whose VMEbus interfaces are being tested.

VMEbus

An interfacing system used to interconnect data processing, data storage, and peripheral control devices.

21.12. VME Map Table

	bit	<u></u>	port/	VME bus	virtual	physical
(<i>i</i> , <i>p</i> , <i>s</i>)	no. value	sense	context	address	address	address
(00,0,0)	00 0x0000001	OFF	Slave/S*	0x0000030	0x0ff00030	*****
(00,0,1)	00 0x0000001	ON	Slave/S*	0x0000031	0x0ff00031	******
(00,1,0)	00 0x0000001	OFF	D16	0x0000030	*******	0x0000030
(00,1,1)	00 0x0000001	ON	D16	0x0000031	******	0x0000031
(00,2,0)	00 0x00000001	OFF	D32	0x0000030	******	0x0000030
(00,2,1)	00 0x0000001	ON	D32	0x0000031	******	0x0000031
(01,0,0)	01 0x0000002	OFF	Slave/S*	0x0000050	0x0ff00050	******
(01,0,1)	01 0x0000002	ON	Slave/S*	0x0000052	0x0ff00052	******
(01,1,0)	01 0x0000002	OFF	D16	0x0000050	******	0x0000050
(01,1,1)	01 0x0000002	ON	D16	0x0000052	******	0x0000052
(01,2,0)	01 0x0000002	OFF	D32	0x0000050	******	0x0000050
(01,2,1)	01 0x0000002	ON	D32	0x0000052	*****	0x0000052
(02,0,0)	02 0x0000004	OFF	Slave/S*	00000000	0x0ff00000	******
(02,0,1)	02 0x0000004	ON	Slave/S*	0x0000004	0x0ff00004	******
(02,1,0)	02 0x0000004	OFF	D16	00000000	******	00000000
(02,1,1)	02 0x0000004	ON	D16	0x0000004	*******	0x0000004
(02,2,0)	02 0x0000004	OFF	D32	00000000	******	00000000
(02,2,1)	02 0x0000004	ON	D32	0x0000004	******	0x0000004
(03,0,0)	03 0x0000008	OFF	Slave/S*	00000000	0x0ff00000	*******
(03,0,1)	03 0x0000008	ON	Slave/S*	0x0000008	0x0ff00008	*****
(03,1,0)	03 0x0000008	OFF	D16	00000000	*******	00000000
(03,1,1)	03 0x0000008	ON	D16	0x0000008	*****	0x0000008
(03,2,0)	03 0x0000008	OFF	D32	00000000	******	00000000
(03,2,1)	03 0x0000008	ON	D32	0x0000008	*******	0x0000008
(04,0,0)	04 0x00000010	OFF	Slave/S*	0000000	0x0ff00000	******
(04,0,1)	04 0x00000010	ON	Slave/S*	0x0000010	0x0ff00010	******
(04,1,0)	04 0x00000010	OFF	D16	00000000	*****	00000000
(04,1,1)	04 0x00000010	ON	D16	0x0000010	*****	0x00000010
(04,2,0)	04 0x00000010	OFF	D32	00000000	******	00000000
(04,2,1)	04 0x00000010	ON	D32	0x0000010	******	0x00000010
(05,0,0)	05 0x0000020	OFF	Slave/S*	0000000	0x0ff00000	******
(05,0,1)	05 0x0000020	ON	Slave/S*	0x0000020	0x0ff00020	******
(05,1,0)	05 0x0000020	OFF	D16	00000000	*******	00000000
(05,1,1)	05 0x0000020	ON	D16	0x0000020	*****	0x0000020
(05,2,0)	05 0x0000020	OFF	D32	00000000	*******	00000000
(05,2,1)	05 0x0000020	ON	D32	0x0000020	******	0x0000020
(06,0,0)	06 0x00000040	OFF	Slave/S*	00000000	0x0ff00000	******
(06,0,1)	06 0x00000040	ON	Slave/S*	0x00000040	0x0ff00040	******
(06,1,0)	06 0x0000040	OFF	D16	00000000	*******	00000000
(06,1,1)	06 0x00000040	ON	D16	0x0000040	*****	0x00000040
(06,2,0)	06 0x0000040	OFF	D32	00000000	******	00000000
(06,2,1)	06 0x0000040	ON	D32	0x00000040	******	0x00000040

Table 21-1VME Map Table

	bit		port/	VME bus	virtual	physical
(i,p,s)	no. value	sense	context	address	address	address
(07.0.0)	07 0x0000080	OFF	Slave/S*	0000000	0x0ff00000	******
(07.0.1)	07 0x0000080	ON	Slave/S*	0x0000080	0x0ff00080	******
(07.1.0)	07 0x0000080	OFF	D16	00000000	******	00000000
(07,1,1)	07 0x0000080	ON	D16	0x0000080	******	0x0000080
(07,2,0)	07 0x0000080	OFF	D32	00000000	*******	00000000
(07,2,1)	07 0x0000080	ON	D32	0x0000080	*******	0x0000080
(08,0,0)	08 0x00000100	OFF	Slave/S*	00000000	0x0ff00000	******
(08,0,1)	08 0x00000100	ON	Slave/S*	0x00000100	0x0ff00100	******
(08,1,0)	08 0x00000100	OFF	D16	00000000	*******	00000000
(08,1,1)	08 0x00000100	ON	D16	0x00000100	******	0x00000100
(08,2,0)	08 0x00000100	OFF	D32	00000000	******	00000000
(08,2,1)	08 0x00000100	ON	D32	0x00000100	******	0x00000100
(09,0,0)	09 0x0000200	OFF	Slave/S*	00000000	0x0ff00000	******
(09,0,1)	09 0x0000200	ON	Slave/S*	0x0000200	0x0ff00200	******
(09,1,0)	09 0x00000200	OFF	D16	00000000	******	00000000
(09,1,1)	09 0x00000200	ON	D16	0x0000200	*****	0x00000200
(09,2,0)	09 0x0000200	OFF	D32	00000000	******	00000000
(09,2,1)	09 0x0000200	ON	D32	0x0000200	*****	0x00000200
(10,0,0)	10 0x00000400	OFF	Slave/S*	00000000	0x0ff00000	*****
(10,0,1)	10 0x00000400	ON	Slave/S*	0x00000400	0x0ff00400	*****
(10,1,0)	10 0x00000400	OFF	D16	00000000	*****	00000000
(10,1,1)	10 0x00000400	ON	D16	0x00000400	******	0x00000400
(10,2,0)	10 0x00000400	OFF	D32	00000000	*****	00000000
(10,2,1)	10 0x00000400	ON	D32	0x00000400	******	0x00000400
(11,0,0)	11 0x0000800	OFF	Slave/S*	00000000	0x0ff00000	*****
(11,0,1)	11 0x0000800	ON	Slave/S*	0x0000800	0x0ff00800	*****
(11,1,0)	11 0x00000800	OFF	D16	0000000	****	00000000
(11,1,1)	11 0x00000800	ON	D16	0x0000800	******	0x0000800
(11,2,0)	11 0x0000800	OFF	D32	0000000	*******	00000000
(11,2,1)	11 0x0000800	ON	D32	0x0000800	*****	0x00000800
(12,0,0)	12 0x00001000	OFF	Slave/S*	00000000	0x0ff00000	******
(12,0,1)	12 0x00001000	ON	Slave/S*	0x00001000	0x0ff01000	******
(12,1,0)	12 0x00001000	OFF	D16	0000000	******	00000000
(12,1,1)	12 0x00001000	ON	D16	0x00001000	******	0x00001000
(12,2,0)	12 0x00001000	OFF	D32	0000000	******	00000000
(12,2,1)	12 0x00001000	ON	D32	0x00001000	******	0x00001000
(13,0,0)	13 0x00002000	OFF	Slave/S*	00000000	0x0ff00000	******
(13,0,1)	13 0x00002000	ON	Slave/S*	0x00002000	0x0ff02000	******
(13,1,0)	13 0x00002000	OFF	D16	0000000	******	00000000
(13,1,1)	13 0x00002000	ON	D16	0x00002000	*******	0x00002000
(13,2,0)	13 0x00002000	OFF	D32	00000000	******	00000000
(13,2,1)	13 0x00002000	ON	D32	0x00002000	******	0x00002000
(14,0,0)	14 0x00004000	OFF	Slave/S*	00000000	0x0ff00000	******
(14,0,1)	14 0x00004000	ON	Slave/S*	0x00004000	0x0ff04000	******
(14,1.0)	14 0x00004000	OFF	D16	00000000	******	00000000

 Table 21-1
 VME Map Table— Continued

	bit			VME bus	virtual	physical
(<i>i.p.s</i>)	no. value	sense	context	address	address	address
(14.1.1)	14 0x00004000	ON	D16	0x00004000	*****	0x00004000
(14.2.0)	14 0x00004000	OFF	D32	00000000	******	00000000
(14,2,1)	14 0x00004000	ON	D32	0x00004000	*******	0x00004000
(15,0,0)	15 0x00008000	OFF	Slave/S*	00000000	0x0ff00000	*******
(15,0,1)	15 0x00008000	ON	Slave/S*	0x00008000	0x0ff08000	******
(15,1,0)	15 0x00008000	OFF	D16	00000000	*******	00000000
(15,1,1)	15 0x00008000	ON	D16	0x00008000	*****	0x00008000
(15,2,0)	15 0x00008000	OFF	D32	00000000	*****	00000000
(15,2,1)	15 0x00008000	ON	D32	0x00008000	******	0x00008000
(16,0,0)	16 0x00010000	OFF	Slave/S*	0000000	0x0ff00000	******
(16,0,1)	16 0x00010000	· ON	Slave/S*	0x00010000	0x0ff10000	******
(16,1,0)	16 0x00010000	OFF	D16	00000000	******	00000000
(16,1,1)	16 0x00010000	ON	D16	0x00010000	****	0x00010000
(16,2,0)	16 0x00010000	OFF	D32	00000000	*****	00000000
(16,2,1)	16 0x00010000	ON	D32	0x00010000	****	0x00010000
(17,0,0)	17 0x00020000	OFF	Slave/S*	0x00002004	0x0ff02004	*****
(17,0,1)	17 0x00020000	ON	Slave/S*	0x00022004	0x0ff22004	*****
(17,1,0)	17 0x00020000	OFF	D16	0x00002004	********	0x00002004
(17,1,1)	17 0x00020000	ON	D16	0x00022004	********	0x00022004
(17,2,0)	17 0x00020000	OFF	D32	0x00002004	*********	0x00002004
(17,2,1)	17 0x00020000	ON	D32	0x00022004	00000000	UXU0022004
	18 0x00040000	OFF	Slave/S*	0x00002008	0x01102008	********
(18,0,1)	18 0x00040000	OFE	Slave/S*	0x00042008		0000000000
(10,1,0)	18 0x00040000	ON	D16	0x0002008	********	0x00002008
(10,1,1)	18 0x00040000	OFF	D10	0x00042008	*******	0x00042008
(10,2,0)	18 0x00040000	ON	D32	0x0002008	*******	0x0002008
(10,2,1)	10 0x000+0000	OFF	Slave/S*	0x00042008	0v0ff02010	*****
(19,0,0)	19 0x00080000	ON	Slave/S*	0x00002010	0x01102010	*****
(19,10)	19 0x00080000	OFF	D16	0x00002010	*******	0x00002010
(19,1,1)	19 0x00080000	ON	D16	0x00082010	****	0x00082010
(19.2.0)	19 0x00080000	OFF	D32	0x00002010	*****	0x00002010
(19,2,1)	19 0x00080000	ON	D32	0x00082010	*****	0x00082010
(20.0.0)	20 0x00100000	OFF	Slave/U0	0x80082020	0x00082020	******
(20.0.1)	20 0x00100000	ON	Slave/U0	0x80182020	0x00182020	******
(20.1.0)	20 0x00100000	OFF	D16	0x80082020	*****	0x80082020
(20.1.1)	20 0x00100000	ON	D16	0x80182020	*******	0x80182020
(20.2.0)	20 0x00100000	OFF	D32	0x80082020	*******	0x80082020
(20,2.1)	20 0x00100000	ON	D32	0x80182020	******	0x80182020
(21,0,0)	21 0x00200000	OFF	Slave/U0	0x80082040	0x00082040	*****
(21,0,1)	21 0x00200000	ON	Slave/U0	0x80282040	0x00282040	******
(21,1,0)	21 0x00200000	OFF	D16	0x80082040	*****	0x80082040
(21,1,1)	21 0x00200000	ON	D16	0x80282040	*******	0x80282040
(21,2,0)	21 0x00200000	OFF	D32	0x80082040	******	0x80082040
(21,2,1)	21 0x00200000	ON	D32	0x80282040	******	0x80282040

Table 21-1VME Map Table— Continued

	bit		port/	VME bus	virtual	physical
(i,p,s)	no. value	sense	context	address	address	address
(22,0,0)	22 0x00400000	OFF	Slave/U0	0x80082080	0x00082080	******
(22,0,1)	22 0x00400000	ON	Slave/U0	0x80482080	0x00482080	******
(22,1,0)	22 0x00400000	OFF	D16	0x80082080	******	0x80082080
(22,1,1)	22 0x00400000	ON	D16	0x80482080	*******	0x80482080
(22,2,0)	22 0x00400000	OFF	D32	0x80082080	******	0x80082080
(22,2,1)	22 0x00400000	ON	D32	0x80482080	*****	0x80482080
(23,0,0)	23 0x00800000	OFF	Slave/U0	0x80082100	0x00082100	*****
(23,0,1)	23 0x00800000	ON	Slave/U0	0x80882100	0x00882100	*****
(23,1,0)	23 0x00800000	OFF	D16	0x80082100	********	0x80082100
(23,1,1)	23 0x00800000	ÓN	D16	0x80882100	*******	0x80882100
(23,2,0)	23 0x00800000	OFF	D32	0x80082100	*******	0x80082100
(23,2,1)	23 0x00800000	ON	D32 Slave (U)	0x80882100	A00002200	UX80882100
(24,0,0)	24 0X0100000 24 0x01000000	OFF	Slave/UU	0x80082200	0x00082200	*********
(24,0,1)	24 0x0100000	OFE	D16	0x81082200	0X01082200	0
(24,1,0)	24 0x0100000	ON	D16	0x80082200	*****	0x80082200
(24,1,1)	24 0x01000000	OFF	D10 D22	0x81082200	****	0x81082200
(24,2,0)	24 0x01000000	ON	D32 D32	0x80082200	*****	0x80082200
(25,0,0)	25 0x02000000	OFF	Slave/U0	0x81082200	0x00082400	******
(25,0,0)	25 0x02000000	ON	Slave/U0	0x82082400	0x00002400	*******
(25,1.0)	25 0x02000000	OFF	D16	0x80082400	*****	0x80082400
(25,1,1)	25 0x02000000	ON	D16	0x82082400	*****	0x80082400
(25.2.0)	25 0x02000000	OFF	D32	0x80082400	******	0x80082400
(25,2,1)	25 0x02000000	ON	D32	0x82082400	******	0x82082400
(26,0,0)	26 0x04000000	OFF	Slave/U0	0x80082800	0x00082800	******
(26,0,1)	26 0x04000000	ON	Slave/U0	0x84082800	0x04082800	******
(26,1,0)	26 0x04000000	OFF	D16	0x80082800	*****	0x80082800
(26,1,1)	26 0x04000000	ON	D16	0x84082800	******	0x84082800
(26,2,0)	26 0x04000000	OFF	D32	0x80082800	*******	0x80082800
(26,2,1)	26 0x04000000	ON	D32	0x84082800	*****	0x84082800
(27,0,0)	27 0x08000000	OFF	Slave/U0	0x80083000	0x00083000	******
(27,0,1)	27 0x08000000	ÕN	Slave/U0	0x88083000	0x08083000	*******
(27,1,0)	27 0x08000000	OFF	D16	0x80083000	*******	0x80083000
(27,1,1)	27 0x08000000	ON	D16	0x88083000	******	0x88083000
(27,2,0)	27 0x08000000	OFF	D32	0x80083000	******	0x80083000
(27,2,1)	27 0x08000000	ON	D32	0x88083000	*****	0x88083000
(28,0,0)	28 0x1000000	OFF	Slave/U0	0x80083004	0x00083004	******
(28,0,1)	28 0x1000000	ON	Slave/U1	0x90083004	0x00083004	*****
(20,1,0)	28 UX 1000000	OFF	DIG	UX80083004	********	0x80083004
(20,1,1)	28 0x1000000	ON	D10	0x90083004	*********	0x90083004
(20,2,0)	28 UX 1000000	OFF	D32	UX8UU83UU4	*********	UX80083004
(20,2,1)	28 UX 1000000	ON	D32 Slave (D)0	000083004	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	UX90083004
(29,0,0)	29 UX2000000	OFF	Slave/UU	000000000000000000000000000000000000000	UXUUU83008	*********
(29,0,1)	29 UX2UUUUU 20 0x2000000	ON	Slave/U2	0x20083008	UXUUU83008	*******
(29,1,0)	29 UX2000000	OFF	D16	UX80083008	*****	Ux80083008

 Table 21-1
 VME Map Table— Continued

	bit		porti	VME bus	virtual	physical
(i,p,s)	no. value	sense	context	address	address	address
(29,1,1)	29 0x20000000	ON	D16	0xa0083008	******	0xa0083008
(29,2,0)	29 0x2000000	OFF	D32	0x80083008	*****	0x80083008
(29,2,1)	29 0x20000000	ON	D32	0xa0083008	*****	0xa0083008
(30,0,0)	30 0x4000000	OFF	Slave/U0	0x80083010	0x00083010	******
(30,0,1)	30 0x40000000	ON	Slave/U4	0xc0083010	0x00083010	********
(30,1,0)	30 0x40000000	OFF	D16	0x80083010	*****	0x80083010
(30,1,1)	30 0x4000000	ON	D16	0xc0083010	*****	0xc0083010
(30,2,0)	30 0x40000000	OFF	D32	0x80083010	*****	0x80083010
(30,2,1)	30 0x40000000	ON	D32	0xc0083010	******	0xc0083010
(31,0,0)	31 0x80000000	OFF	Slave/S*	0x00083020	0x0ff83020	******
(31,0,1)	31 0x80000000	· ON	Slave/U0	0x80083024	0x00083024	******
(31,1,0)	31 0x80000000	OFF	D16	0x00083020	*****	0x00083020
(31,1,1)	31 0x80000000	ON	D16	0x80083024	*****	0x80083024
(31,2,0)	31 0x80000000	OFF	D32	0x00083020	*****	0x00083020
(31,2,1)	31 0x8000000	ON	D32	0x80083024	******	0x80083024

Table 21-1VME Map Table— Continued

•

SunDiagnostic Executive Bug Report Form

SunDiagnostic Executive Bug Report Form				
A.1. Overview	397			
A.2. Who to Send the report to	397			
A.3. Who we can contact	397			
A.4. Description of Problem	398			

A

SunDiagnostic Executive Bug Report Form

A.1. Overview	Use this form to report bugs found in the executive programs. To report a Sun- Diagnostic Executive software problem, please do the following:
Isolate the problem	Try to repeat the error. Can you make it happen consistently? If not, how often does it occur? Does the error happen on other machines?
Describe the environment	Carefully describe the hardware environment of the machine with the problem. Are you using any unusual hardware configurations?
	Following these steps is very important. We need detailed information in order to repeat the bug in our labs. Some problems, like an obscure error message, don't need this level of detail. If you are in doubt, the more information you supply, the better our chances of fixing the problem.
A.2. Who to Send the report to	When you have completed filling in this form, please mail it to the following address.
	Attn: Customer Support Engineering Mail Stop 2-34 Sun Microsystems 2550 Garcia Avenue Mountain View, CA 94043
	If it is more convenient, and you have access to the uucp network, you can send the information in electronic form to <i>sun!exec-bugs</i> . Please try to conform to the format of this form as closely as possible.
A.3. Who we can contact	Please provide the name and telephone number of someone we can reach to get more information about the problem. It is also useful to have your account number for our records.
Contact	Name:
	Phone:

Account	Name:
	Number:
A.4. Description of Problem	Please answer the following questions about the bug in question
Diagnostic	
Part of Executive System that failed	
How often does it fail?	□ fails every time
	fails about <i>failures</i> out of <i>times_run</i> times
	□ fails erratically
	fails when event happens: event =
Part number of the Tape:	
How did you boot the SunDiagnos-	☐ from local tape
	☐ from remote tape
	from disk (what disk, partition?)
Hardware Environment	Type of Machine:
	Serial Number of Machine:
	Mbytes of Memory:
	PROM Revision: Perform a kb command from the monitor prompt to determine your Boot PROM revision level.
	Disk(s) Used:
	Special Hardware:

	Describe the hardware problem that made you run the executive.						
Type of Hardware Error	What part of the system failed?:						
	What are the symptoms?:						
Type of Executive Error	Describe how the executive failed.						
-9F	Executive not reporting a hardware problem						
	Executive reporting a non-existent hardware problem						
	Executive giving misleading or incomplete Error Messages						
	Executive Hanging/Not running						
	Describe reason executive didn't run						
	• Executive Broken						
	Incorrect Manual description						
	Other:						
Any other error information							
Action Taken:							
What hardware problem was actu- ally found:							
What component was replaced ?							
	Serial Number of component:						
Service Order Number:							

Manual

Describe inaccuracies or shortcomings you found in the manual

Miscellaneous

Any information you feel is relevant

•

Standalone Cache and ECC Tests

Standalone Cache and ECC Tests	403
B.1. Introduction	403
B.2. Standalone Cache Test	403
B.3. Diagnostic Function	404
B.4. Hardware Requirements	404
B.5. Limitations	404
B.6. Loading and Starting	404
B.7. Test Descriptions	414
B.8. Test Sequences	430
B.9. Glossary	431
B.10. Standalone ECC Memory Diagnostic	433
B.11. Hardware Requirements	434
B.12. Overview Of The Diagnostic	434
B.13. Loading And Starting	436
B.14. User Interface	437
B.15. Error Handling	454
B.16. Special Problems	456
B.17. Replacing the Memory Board	456
B.18. Recommended Test Procedure	457
B.19. Glossary	457
B.20. Syndrome Decode Table	459

B

Standalone Cache and ECC Tests

B.1. Introduction	This appendix discusses the standalone Sun-3 Cache and ECC Memory Tests. The tests do not run under the SunDiagnostic Executive but are included on the tape.
B.2. Standalone Cache Test	The Sun-3/2xx cache is a virtual, write-back cache that translates through a high speed, associative memory between the virtual address bus and the 64-bit Sun-3/2xx memory bus.
How the Cache Functions	When enabled, all type 0 memory addresses except video are cached if mapped cache enabled. That is, when a virtual memory address is accessed, the 16 byte memory block containing that address is read into the cache. If there is valid memory data already in the referenced cache block one of two things can occur: if the block is dirty, that is, if it has been modified since being read into the cache, it is first written back to memory prior to reading in the accessed block. If not, it is merely overwritten. In any case, the cache always contains the most recently accessed memory data.
	Three other concepts require some introduction: cache hit, cache miss, and cache flush.
	A cache hit occurs with the cache enabled when a virtual memory access occurs and the cache block for that address is in the cache. In this case the data access occurs within the cache and not to memory. A cache miss occurs when the data for the access address is not in the cache. In this case the entire 16-byte block for that address is read into the cache. If valid data for a different set associate address was already in the cache and had been modified since being read into the cache, it is first written back to memory prior to reading in the accessed block, if not, it is merely overwritten.
	The last concept to be defined is that of a cache flush. The cache flush operation is performed in order to purge the cache of any modified (dirty) data in order to make memory consistent with the cache and invalidate all valid tags within the cache. This is typically done prior to switching context or remapping memory.

B.3.	Diagnostic Function	The program performs cache design verification. It tests all types of cache opera- tions. It verifies byte alignment/misalignment between the memory and the CPU by the bypass path, cache to CPU for all byte, word, and longword write and read operations.
		It permits selection of standard test control operations such as looping/not loop- ing on error, and printing or not printing error messages. It displays a meaning- ful LED pattern that indicates which test is being performed.
B.4 .	Hardware Requirements	The program requires at least the CPU board and a working Sun-3/2xx memory board, which must be the lowest numbered memory board in the system.
		At least the CPU to EPROM and memory data paths must be functional in order load and execute the test. Also, a boot path (ethemet, disk, or tape) must be functional in order to boot load the standalone program into Sun-3/200 memory. For the cache logic, only the cache off/cache miss path between the CPU and Sun-3/2xx memory must be functional in order for the program's instructions and data to be fetched and executed from Sun-3/2xx memory.
		The power-up Boot PROM tests will have verified that the MMU, Cache, video ram, and data path to memory are functional. The Sun-3/2xx CPU board should have a Boot PROM revision of 1.7 or later.
B.5.	Limitations	The program uses the current, Sun-3 standalone token eat/parse user command interface. No error logging is performed; errors are reported as they occur.
B.6 .	Loading and Starting	You must be in the PROM monitor program in order to extract this standalone diagnostic from the SunDiagnostic Executive tape, if it is not already present in a directory such as /pub/stand.
		When you have the > monitor prompt, type in $k2$ to reset the Sun-3/2xx to its initial state.
	NOTE	This diagnostic will not function correctly if the reset it not performed. Check the SunDiagnostic Executive tape table of contents shown in Chapter 2 of the SunDiagnostic Executive User's Guide for the cache3.diag file number. Convert the number to decimal and boot the diagnostic directly off the tape, as shown in Chapter 2.
		If cache3.diag is already loaded onto disk, you may boot it with a command such as:
		b stand/cache3.diag
User	· Command Interface	The cache tests described in this appendix are selected from a main menu. After specifying the test control options, you enter the appropriate command to execute the test.

The menu looks something like this:

```
Sun3xxx Cache Diagnostic Rev x.x mm/dd/yy
 Selections:
   d - cache data tests menu
   t - cache tag tests menu
   r - cache read hit menu
   w - cache write hit menu
   R - cache read miss menu
   W - cache write miss menu
   p - cache phy address cmpr menu
   e - cache writeback error menu
   f - cache flush menu
   b - block copy menu
   q - quick tests
   D - default tests
   P - default single pass
   E - exerciser menu
   X - exerciser tests
   M - cache RAM memory
   1 - long tests
   L - loop
   o - options menu
   ? - help
    ^ - quit
  Command :
```

If option d on the main menu is selected, a sub-menu containing all of the various cache data tests is presented. The cache data tests menu is discussed later.

Option t on the main menu brings up a sub-menu containing all of the various cache tag tests. The cache tag tests menu is discussed later.

Option \mathbf{r} on the main menu brings up a sub-menu containing all of the cache read hit tests. The cache read hit tests menu is discussed later.

Option w on the main menu brings up a sub-menu containing all of the various cache write hit tests. The cache write hit menu is discussed later.

Option m brings up the Cache MMU Tests menu, which is discussed later.

Option \mathbf{R} on the main menu brings up a sub-menu containing all of the various cache read miss tests. The cache read hit menu is discussed later.

Option W on the main menu brings up a sub-menu containing all of the various cache write miss tests. The cache write miss menu is discussed later.

Option p on the main menu brings up a sub-menu containing all of the various cache physical address compare tests. The cache physical address compare menu is discussed later.

Option **e** on the main menu brings up a sub-menu containing all of the various cache writeback error tests. The cache writeback error tests menu is discussed later.

Option f on the main menu brings up a sub-menu containing all of the various cache flush tests.

Option **b** on the main menu brings up a sub-menu containing all of the block copy test options. The block copy tests menu is discussed later.

Option **q** on the main menu executes a quick test sequence, one time. It is discussed under *Test Sequences*.

Option D on the main menu executes the default test sequence of tests continuously. At the end of each pass of the default test sequence, a message listing the pass count, and the total errors which have occurred since starting the default test sequence will be displayed.

Option **P** executes a single pass of default tests, discussed under Test Sequences.

Option \mathbf{E} on the main menu brings up a sub-menu containing all of the various exerciser tests The exerciser tests menu is discussed under *Test Sequences*.

Option \mathbf{x} on the main menu selects the exerciser tests sequence, which runs continuously. At the end of each pass of the exerciser test sequence, a message listing the pass count, and the total errors which have occurred since starting the test sequence will be displayed.

Option **M** brings up the Cache RAM Memory menu, discussed under *Test* Sequences.

Option 1 on the main menu selects the long tests sequence. which executes continuously. At the end of each pass of the long test sequence, a message listing the pass count, and the total errors which have occurred since starting the default test sequence will be displayed.

Option L on the main menu permits looping a command sequence. To use the L command, you enter a command string in which each command and its arguments are followed by a space and a ";" character. You then terminate the command string with the number of times to loop the command. For example, to perform the cache data pattern write/read test with a pattern of all ones followed by the cache data address test for two times, you would enter the following command string: sequence:

d; P; 0; fffc; a; 0; fffc; ^; L 2

Or, to perform it an infinite number of times, enter * for the loop count argument as follows:

d; P; 0; fffc; a; 0; fffc; ^; L *

If option \circ is selected, a sub-menu containing all of the various test control options.

Option Menu

The Option Menu provides three choices and access to other level menus. When the option is set it applies to all tests that execute after that. The option menu looks something like this:

Sun3 xxx Cache Diagnostic Rev x.x mm/dd/yy Selections: 1 - loop on error h - halt on error n - inhibit error messages ^ - pop up a menu level ? - help .Command :

Option 1 causes a loop on the failing test.

Option h causes the test to halt upon error and return to the menu command input.

Option n causes only fatal error messages to be printed.

Entering ^ brings up the next higher level menu.

The Cache Data Tests Menu

The Cache Data Tests Menu has three commands and provides access to other menus. The Cache Data Tests test the cache control space accessed data RAM. The Cache Data Tests Menu looks something like this:

```
Sun3 xxx Cache Diagnostic Rev x.x mm/dd/yy
Selections:
    d - cache data write/read test
    a - cache data address test
    p - cache data 3-pattern test
    ^ - pop up a menu level
    ? - help
Command :
```

The Cache Data Tests Menu selections are described below. The tests themselves are described later.

Entering the d command causes the execution of the cache data write/read test.

Entering the a command causes the execution of the cache data address test.

Entering the p command causes the execution of the cache data 3-pattern test.

The ^ command brings you up to the menu above the one you are in.

Cache Tags Tests Menu

```
Sun3 xxx Cache Diagnostic Rev x.x mm/dd/yy
Selections:
    d - cache tags write/read test
    p - cache tags 3-pattern test
    ^ - pop up a menu level
    ? - help
Command :
```

The Cache Tags Data Tests Menu selections are described below. The tests are described later.

Entering the d command causes the execution of the cache tags write/read test.

Entering the p command causes the execution of the cache tags 3-pattern data test.

The Cache Read Hit Tests Menu

Sun3 XXX Cache Diagnostic Rev x.x. mm/dd/yy
Selections:
r - cache read hit test
<pre>c = cache read hit (cx different) test b = cache read hit byte alignment test</pre>
 Cache read hit longword alignment test pop up a menu level
? - help
Command :

The Cache Read Hit Tests Menu selections are described below.

Entering the

r [addr > 0x20000] [size] [npass]

command causes the execution of the cache read hit test to be performed from base address *addr* which must be greater than 0x20000 for memory *size* for a number of passes entered in place of *npass*.

Entering the

c [addr > 0x20000] [size] [npass]

command causes the execution of the cache read hit (cx different) test to be performed from base address *addr*, which must be greater than 0x20000 for memory size specified by *size* for a number of passes specified by *npass*.

Entering the

b [npass]

command will cause the execution of the cache read hit byte alignment test to be

performed for a number of passes entered in place of npass.

Entering the

1 [npass]

command causes the execution of the cache read hit longword alignment test to be performed for a number of passes given in place of *npass*.

The Cache Writeback Error Tests Menu

The Cache MMU Tests Menu selections are described below.

Entering the

t [npass]

command executes the cache writeback timeout err test for the number of passes given in place of *npass*.

Entering the

e [npass]

command executes the cache writeback translation err test for the given number of passes.

The Cache Write Hit Tests Menu

Entering the

w [addr > 0x20000] [size] [npass]

command executes the cache write hit test, performed from base address addr,

The Cache Read Miss Tests

Menu

which must be greater than 0x20000 for memory size specified by size. The number of passes is specified by *npass*.

Entering the

m [addr > 0x20000] [size] [npass]

command executes the cache modify write hit test, performed from base address *addr*, which must be greater than 0x20000 for the memory size specified by *size*. The number of passes is specified by *npass*.

Entering the

Ъ [npass]

command executes the cache write hit byte alignment test, performed for a given number of passes.

```
Sun3 XXX Cache Diagnostic Rev x.x mm/dd/yy
Selections:
    n - cache read miss/no writeback (not dirty) test
    d - cache read miss/writeback (valid & dirty) test
    ^ - pop up a menu level
    ? - help
Command :
```

The Cache Read Miss Tests Menu selections are described below.

Entering the

n [addr > 0x20000] [size] [npass]

command executes the cache read miss/no writeback (not dirty) test, performed from base address *addr*, which must be greater than 0x20000 for the memory size specified by *size*. The number of passes is specified in place of *npass*.

Entering the

```
d [addr > 0x20000] [size] [npass]
```

command executes the cache read miss/writeback (valid & dirty) test, performed from base address *addr*, which must be greater than 0x20000 for the memory size specified by *size*. Enter the number of passes in place of *npass*.

The Cache Write Miss Tests Menu

```
Sun3 xxx Cache Diagnostic Rev x.x mm/dd/yy
Selections:
    n - cache write miss/no writeback (not dirty) test
    d - cache write miss/writeback (valid & dirty) test
    ^ - pop up a menu level
    ? - help
Command :
```

The Cache Write Miss Tests Menu selections are described below. Entering the

n [addr > 0x20000] [size] [npass]

command executes cache write miss/no writeback (not dirty) test, performed from base address *addr*, which must be greater than 0x20000 for the memory size specified by *size*. Specify the number of passes in place of *npass*.

Entering the

d [addr > 0x20000] [size] [npass]

command executes the cache write miss/writeback (valid & dirty) test, performed from base address *addr*, which must be greater than 0x20000 for the memory size specified by *size*. Specify the number of passes in place of *npass*.

```
Sun3 xxx Cache Diagnostic Rev x.x mm/dd/yy
Selections:
    m - bcopy (src & des blks invalid) test
    s - bcopy (src valid, des invalid) test
    d - bcopy (src invalid, des valid) test
    v - bcopy (src valid, des valid) test
    ^ - pop up a menu level
    ? - help
Command :
```

The following paragraphs describe the Cache Block Copy Tests Menu selections.

Entering the

m [addr > 0x20000] [size <= 0x8000] [npass]

command executes the bcopy (src & des blks invalid) test, performed from base address *addr*, which must be greater than 0x20000 for the memory size specified by *size* $\leq 0x8000$ (which must be less than 0x8000). Enter the number of passes in place of *npass*.

LP Entering the

s [addr > 0x20000] [size <= 0x8000] [npass]

The Cache Block Copy Tests Menu
command executes the bcopy (src valid, des invalid) test, performed from base address *addr*, which must be greater than 0x20000 for the memory size specified by *size* $\leq 0x8000$ (which must be less than 0x8000). Replace *npass* with the number of passes.

Entering the

m [addr > 0x20000] [size <= 0x8000] [npass]

command executes bcopy (src invalid, des valid) test, performed from base address *addr*, which must be greater than 0x20000 for the memory size specified by *size* $\leq 0x8000$. Replace *npass* with the number of passes.

Entering the

m [addr > 0x20000] [size <= 0x8000] [npass]

command executes bcopy (src valid, des valid) test, performed from base address *addr*, which must be greater than 0x20000 for the memory size specified by *size* <= 0x8000. Replace *npass* with the number of passes.

The Cache Flush Tests Menu

Sun3 xxx Cache Diagnostic Rev	x.x mm/dd/yy
Selections:	
<pre>c - context flush test p - page flush test s - segment flush test m - read mod write flush n - read mod write flush i - read mod write flush - pop up a menu level ? - help</pre>	(single cx) test (multiple cx) test (interspersed cx) test
Command :	

The following paragraphs describe the Cache Flush Tests Menu selections.

Entering the

c [addr >=0x20000] [size <= 0x10000] [npass]

command executes the context flush test, performed from the base address addr >=0x20000, for memory size size <=0x10000. Replace npass with the number of passes.

Entering the

p [page_base_addr] [size <= 0x2000] [npass]</pre>

command executes the Page Flush test, performed from the base address $page_base_addr$ for memory size $size \le 0x2000$. Replace *npass* with the number of passes.

Entering the

s [segment_base_addr] [size >= 0x20000] [npass]

command executes the Segment Flush Test, performed from the base address segment_base_address for memory size size >=0x20000. Replace npass with the number of passes.

Entering the

m [addr >=0x20000] [size <= 0x10000] [npass]

command executes the Read Mod Write Flush (single cx) test, performed from the base address addr >=0x20000 for memory size size <=0x10000. Replace *npass* with the number of passes.

Entering the

i [addr >=0x20000] [size <=0x10000] [npass]

command executes the Read Mod Write Flush (interspersed cx) test to be performed from the base address addr >=0x20000 for memory size size <=0x10000. Replace npass with the number of passes.

The Cache Physical Address Compare Tests Menu

Entering the

r [address_is_mult_of_0x20000] [size >= 0x20000] [npass]

command executes the Cache Read/Physical Address Compare test, performed from the base address *address_is_mult_of_0x20000* for memory size *size* >= 0x20000. Replace *npass* with the number of passes.

Entering the

w [address_is_mult_of_0x20000] [size >= 0x20000] [npass]

command executes the Cache Write/Physical Address Compare test, performed from the base address <u>address_is_mult_of_0x20000</u> for memory size size >= 0x20000. Replace *npass* with the number of passes.

The Exerciser Tests Menu

Sun3 xxx Cach	ne Diagnostic Rev	x.x mm/dd/	УУ	
Salactioner				
Selections.				
w - cached	memory write/read	i test		
f - cached	memory write/flus	h/read tes	it .	
e - cached	execution/cached	memory wri	te/flush/r	ead test
- pop up	a menu level			
? - help				
Command :				
······································				

The following paragraphs describe the Exerciser Tests Menu selections.

Entering the

w [addr] [size <= memory_available] [npass]</pre>

command executes the Cached Memory Write/Read test, performed from the base address for the memory size size <= memory_available. Replace npass with the number of passes.

Entering the

f [addr] [size <= memory_available] [npass]

command executes the Cached Memory Write/Flush/Read test, performed from the base address for the memory size size <= memory_available, npass times.

Entering the

• [addr] [size <= memory_available] [npass]

command executes the Cached Execution Memory Write/Flush/Read test, performed from the base address for the memory size size <= memory_available for a number of passes specified by *npass*.

Exerciser Test Sequence Option X on the main menu selects the exerciser tests sequence, which executes continuously. At the end of each pass of the exerciser test sequence, a message listing the pass count, and the total errors which have occurred since starting the default test sequence will be displayed.

B.7. Test Descriptions The tests described in this section are:

- Cache data tests
- Cache tag tests
- Cache read hit tests
- Cache write hit tests
- Cache MMU tests
- Cache read miss tests

	Cache write miss tests
	Cache physical address compare tests
	Cache writeback error tests
	Cache flush tests
	 Block copy tests
Cache Data Write/Read Test	The Cache Data Write/Read Test is a test of the write/read data integrity of the cache data static RAM on the CPU board. The cache data space, which contains 64 Kilobytes of long-word addressable data, is write/read tested by writing each address with a data pattern, then inverting the pattern and writing the next address. This process is followed by a read back of the original address and a compare of the data read with the original, noninverted longword data pattern. This test insures that all signals dynamically swing within the allowed access time. The patterns used insure that every bit of the cache data RAM is written with a one and zero and that adjacent RAM bits are different.
Error Description	Upon error, the test displays the failing address and longword data written and read, where <i>addr</i> is the cache data control space address, <i>exp</i> is the expected cache read longword data, and <i>obs</i> is the observed longword read data. If the loop-on-error option is set, it will then enter a scopeloop in which the failing write pattern is written to the failing address followed by a write of the inverse pattern to the next address, and finally a read of the failing address. The error message would look something like this:
	addr 0x90000000 exp 0x5A972C5A, obs 0x5B972C5A
Cache Data Address Test	For all cache data addresses, each address is written with a longword data pattern which is the address. Then all addresses are read back and compared with the expected address as data pattern. This test verifies the addressing uniqueness of cache data RAM.
Error Description	Upon error, if the loop-on-error option is set, the test loops through the entire write/read pattern, and is therefore not ideal for scope looping except to verify the binary weighting of each address line. An error message would look something like this:
	addr 0x80000040 exp 0x00000040, obs 0x00000000
Cache Inverse Data Address Test	For all cache data addresses, this test writes the inverse of the address as data at each address of cache data control space. Then, it reads back all addresses to ver- ify that each cache data address contains its inverse address as data. This is a test of addressing uniqueness of the cache data store in control space. Upon error, the test loops thru the entire write/read and is therefore not ideal for scope looping except the binary weighting of the address lines which address the cache data space.

Error Description	Typical error messages are:
	addr xxxxxxx, exp xxxxxxx, obs xxxxxxxx
Cache Data 3-Pattern Test	Three passes of write/read tests are performed in the cache data control space. During the first pass, the pattern 0x5A972C5A,0x5A5A972C,0x2C5A5A97 is written repeatedly throughout cache data control space. During the second pass, 0x5A5A972C,0x2C5A5A97,0x5A972C5A is written and read throughout cache data control space. During the third pass, the patterns 0x2C5A5A97,0x5A972C5A,0x5A5A972C are written and read throughout cache data control space.
Error Description	Upon error, the test displays the failing address and longword data written and read, where <i>addr</i> is the cache data control space address, <i>exp</i> is the expected cache read longword data and <i>obs</i> is the observed longword read data. Upon error, if the loop-on error option is set, the entire pattern write/read throughout the cache data space is looped. This test is not ideal for scope looping! An error message would look something like this:
	addr 0x90000000 exp 0x5A972C5A, obs 0x5B972C5A
Cache Data Pattern Write/Read Test	The Cache Data Pattern Write/Read Test writes and reads each address of the cache data blocks in device control space. This test writes the address with a pattern then inverts the pattern and writes the next address, then reads back the original address and compares it with the noninverted pattern.
Error Description	Typical error messages are:
	addr xxxxxxx, exp xxxxxxx, obs xxxxxxx
Cache Data Walking Ones Test	For each cache data address the address is written with a float one pattern then read back to verify the correctness of the float one pattern.
Error Description	Typical error messages are:
	addr xxxxxxx, exp xxxxxxx, obs xxxxxxxx
Cache Data Walkin <u>g</u> Zeros Test	For each cache data address the address is written with a float zero pattern then read back to verify the correctness of the float zero pattern.
Error Description	Typical error messages are:
	addr xxxxxxx, exp xxxxxxx, obs xxxxxxx

Cache Tags Write/Read Test	Each address of the cache tags static RAM in device control space is written with a data pattern. Then, the next address is written with the data pattern inverted, followed by a read and data compare of the first address.
Error Description	Upon error, the test will display the failing address and longword data written and read, where <i>addr</i> is the cache data control space address, <i>exp</i> is the expected cache read longword data, and <i>obs</i> is the observed longword read data. It will then enter a scopeloop in which the failing write pattern is written to the failing address followed by a write of the inverse pattern to the next address, and finally a read of the failing address. An error message would look something like this: addr $0x90000000 \exp 0x5A972C5A$, obs $0x5B972C5A$
Cache Tags 3-Pattern Test	Three passes of write/read tests are performed in the cache tag control space. During the first pass, the pattern 0x4A972400, 0x4A5A1700, 0x0C5A1200 is written repeatedly throughout cache tag control space. During the second pass, 0x4A5A1700, 0x0C5A1A00, 0x4A972400 is written and read throughout cache tag control space. During the third pass, the patterns 0x0C5A1A00, 0x4A972400, 0x4A5A1700 are written and read throughout cache tag control space. Upon error, if the loop on error option is set, the entire pattern write/read throughout the cache tag space is looped. This test is not ideal for scope looping!
Cache Inverse Tag Address Test	For all cache tag addresses, this test writes the inverse of the address as data at each address of cache tag control space. Then it reads back all addresses and verifies that each cache tag address contains its inverse address as data. This is a test of addressing uniqueness of the cache tag data stored in control space. Upon error, the test loops through the entire write/read and is therefore not ideal for scope looping except the binary weighting of the address lines that address the cache data space.
Error Description	Typical error messages are:
	addr xxxxxxxx, exp xxxxxxx, obs xxxxxxxx
Cache Tags Pattern Write/Read Test	This test writes and reads each address of the cache tag blocks in device control space. It writes the address with a pattern then inverts the pattern and writes the next address, then reads back the original address and compares it with the noninverted pattern.
Error Description	Typical error messages are:
	addr xxxxxxxx, exp xxxxxxx, obs xxxxxxxx
Cache Tags Walking Ones Test	For each cache tag address the address is written with a float one pattern then read back to verify the correctness of the float one pattern.

Error Description	Typical error messages are:
	addr xxxxxxxx, exp xxxxxxx, obs xxxxxxxx
Cache Tags Walking Zeros Test	For each cache tag address the address is written with a float zero pattern then read back to verify the correctness of the float zero pattern.
Error Description	Typical error messages are:
	addr xxxxxxxx, exp xxxxxxx, obs xxxxxxxx
Cache Read Hit Test	This test verifies that doing a supervisor data operand read from system memory with the memory block address in cache "valid" causes a read from the cache and not from system memory. All memory being tested is first mapped to be cache-enabled then is written with a longword address pattern. The address being tested within the cache data space is written with an inverse address pattern and the cache block tags are set to valid, and, not modified. The cache is then enabled and the address is read, and then the cache is disabled. The data read is then compared with that expected; if it is the inverse of the address being read, it is correct, if not, it is incorrect. Thus the only data operand fetch that occurs from the cache is when the cache is enabled. This provides a timing window for scoping the test when troubleshooting.
Error Description	Upon error, the test displays the virtual address being read and the expected and observed read data. If the loop-on-error option is set, it will then enter a scope loop where the entire cache setup, enable, read, and disable sequence occurs. The relevant read cycle from the cache occurs when the data operand read during the enable/disable cache "window" occurs.
	Error messages would look something like this:
	With access address in cache, a cache hit shld occur
	addr 0x00000010, exp 0xFFFFFEF, obs 0x00000010
Cache Read Hit (context different) Test	This test is the same as the Cache Read Hit Test except that the context I.D. tag bits in cache for the block of addresses being tested are set differently from the context within which the test is executing. This is done to verify that, for super- visor mode, reads to the context of the cached data are "don't care" and a cache read hit rather than a miss will occur.
Error Description	Upon error, the test displays the virtual address being read and the expected and observed read data. It then enters a scope loop where the entire cache setup, enable, read, and disable sequence occurs. The relevant read cycle from the cache occurs when the data operand read during the enable/disable cache "window" occurs.
	An error message would look something like this:

	With access address in cache, a cache hit shld occur
	addr 0x00000010, exp 0xFFFFFEF, obs 0x00000010
Cache Read Hit User Violation Test	For the address being tested, the cache tags are set to valid, not modified, super- visor only. A read hit is then attempted in user mode for the cached address and a bus error with correct protection error status in the bus error register is verified.
Error Description	If no bus error occurs upon the attempted user mode read of the supervisor only protected block, the following error message and status is displayed:
A read hit of a superviso	r only accessible address shld cause a bus error.
addr 0x0000010	
	If the read actually does occur, the following error message is displayed.
Attempting to read a supe	rvisor only accessible address shld not read it.
addr 0x00000010, exp 0x00	000000, obs 0xFFFFFFFF
	If the bus error register does not indicate a protection bus error, this message is displayed:
A supervisor only user ac	cess error shld set prot err status in bus error reg.
bus err reg: exp 0x00000	40, obs 0x0000000
Cache Read Byte Hit Byte Alignment (within block) Test	The byte alignment for all byte addresses within a cache block is verified for all move byte read transfers that are cache hits. To do this, the test stores a block pattern of 0x00010203, 0x10111213, 0x20212223, and 0x30313233 in a cache block and performs move byte read transfers of each byte.
Error Description	If the byte read into the CPU register is not correct, that is, is misaligned in its transfer from the cache to the CPU, the following error message is displayed:
	Read hit byte alignment error during a byte read
	addr 0x00000010, exp 0x00000020, obs 0x00000021
Cache Read Longword Hit Byte Alignment (Within Block) Test	The byte alignment for all byte addresses within a cache block is verified for all move longword read transfers that are cache hits. To do this, the test stores a block pattern of $0x00010203$, $0x10111213$, $0x20212223$, and $0x30313233$ in a cache block and performs move longword read transfers of each byte.
	If the longword read into the CPU register is not correct, that is, if it is misaligned in its transfer from the cache to the CPU, an error message that look something like this is displayed: error message is displayed:

	Read hit byte alignment error during a longword read
	addr 0x00000010, exp 0x00000020, obs 0x00000021
Cache Read Miss/No Writeback (invalid) Test	For the address being tested, the cache tags for that block are set up to mark the block as invalid and inverse address data is stored in the cache block for that address. The address is then read during which the cache block should be updated from memory and the block marked as valid. The test checks to insure that the entire cache block is updated from memory correctly and that the cache block is set to valid, write enabled, to match the MMU setup for the page being accessed.
Error Description	If the cache block was not updated correctly from memory on the read miss, the following error message is displayed:
During a cache read miss,	one or more longwords were not read into the cache.
addr 0x00000010, exp 0x00	000010, obs 0x00000020
	If the data was not read correctly by the bypass path from memory to the CPU during the read miss transfer, the following error message is displayed:
	For a read miss, bypass data to CPU shld = memory data
	addr 0x00000010, exp 0x00000010, obs 0x00000020
Cache Read Miss/No Writeback (not dirty) Test	For the address being tested, the cache tags for that block are set up to mark the block as valid, and inverse address data is stored in the cache block for that address. The address is then read, during which the cache block should be updated from memory and the block marked as valid. The test checks to insure that the entire cache block is updated from memory correctly and that the cache block is set to valid, write enabled to match the MMU setup for the page being accessed. Also, memory is checked for the old cache block address to verify that the old cache block, which is not dirty, is not written back to memory.
Error Description	If the cache block was not updated correctly from memory on the read miss, the following error message is displayed:
During a cache read miss,	one or more longwords were not read into the cache.
addr 0x00000010, exp 0x00	000010, obs 0x00000020
	If the data was not read correctly by the bypass path from memory to the CPU during the read miss transfer, the following error message is displayed:
	For a read miss, bypass data to CPU shld = memory data
	addr 0x00000010, exp 0x00000010, obs 0x00000020
	If the old cache block was written back to memory incorrectly as it was replaced by the new cache block, the following error message is displayed:

With old cache entry valid and not dirty, no writeback of it shld occur to memory.

addr 0x00000010, exp 0x00000010, obs 0x00000020

Cache Read Miss/Writeback (valid & dirty) Test	For the address being tested, the cache block is set to valid, dirty. A modulo cache size address is then read. The cache block for that set associative address is then checked to verify that the following is true:	
	1. The old cache block is written back to memory correctly.	
	2. The memory block for the new address is correctly copied into memory.	
	3. The tag bits are correctly set to valid, not dirty	
	4. The MMU protection bits are correctly copied from the MMU for the page being referenced.	
	In addition, the data read through the bypass path is verified to have been correctly read into the CPU register.	
Error Description	If the cache block was not updated correctly from memory on the read miss, the following error message is displayed:	
During a cache read miss,	one or more longwords were not read into the cache.	
addr 0x00000010, exp 0x00	000010, obs 0x00000020	
	If the data was not read correctly by the bypass path from memory to the CPU during the read miss transfer, the following error message is displayed:	
	For a read miss, bypass data to CPU shld = memory data	
	addr 0x00000010, exp 0x00000010, obs 0x00000020	
	If the old cache block was written back to memory incorrectly as it was replaced by the new cache block, the following error message is displayed:	
With old cache entry vali	d and not dirty, no writeback of it shld occur to memory.	
addr 0x00000010, exp 0x00	000010, obs 0x00000020	
	If the old cache block for the old address was not correctly written back into memory, the following error message is displayed:	
With old cache entry vali	d and dirty, a writeback of it shld occur to memory.	
addr 0x00000010, exp 0x00	000010, obs 0x00000020	
Cache Modify Write Hit Test	For the address being tested, the cache block is set to valid, modified, and inverse data is stored in the cache block. The address is then written-to and a cache write hit is verified. The cache block is then checked to verify that it was modified and that the valid, modified status is "1,1" and that the corresponding memory block	

is verified to have been written correctly.

Error Description	If the write hit incorrectly updated memory, the following error message is displayed:
	A write hit of a valid cache entry shld not write memory.
	mem addr 0x00000010, exp 0x00000010, obs 0xFFFFFFEF
	If the cache block tags are not updated correctly, the following error message is displayed:
	Cache entry not set valid and modified or incorrect tag field.
	cache addr 0x00000010, exp 0xC0000000, obs 0x80000000
Cache Write Hit/ Write Protect Violation Test	For the address being tested, the cache block is set to valid, not write enabled, and inverse data is stored in the cache block. An attempt is then made to write the address, and a bus error is verified to occur with the bus error register status indicating a protection error.
Error Description	If the write hit of the address did not cause a bus error, the following error mes- sage is displayed:
A write hit to a nonwrite	enabled address shld cause a bus error.
mem addr 0x00000010	
	If the bus error register was not set to indicate a protection type bus error, the fol- lowing error message is displayed:
A write hit of a nonwrite en	abled address shld set protect err status in bus error register.
bus err reg: exp 0x00000040,	obs 0x0000000
Cache Write Byte Hit Byte Alignment (within block) Test	The byte alignment for all byte addresses within a cache block is verified for all move byte write transfers that are cache hits. To do this, the test stores a block pattern of all zeros in a cache block and performs move byte write transfers of 0xFF to each byte address of the cache block.
Error Description	If the byte write into the CPU register is not correct, that is, if it is misaligned in its transfer from the cache to the CPU, the following error message is displayed:
	Read hit byte alignment error during a byte read
	addr 0x00000010, exp 0x000000FF, obs 0x0000FF00
Cache Write Longword Hit Byte Alignment (within block) Test	The byte alignment for all byte addresses within a cache block is verified for all move longword write transfers that are cache hits. To do this, the test stores a block pattern of all zeros in the cache block and performs move longword write transfers, starting at each of the byte 0-12 boundaries within the cache block.

Error Description	If the longword write into the CPU register is not correct, that is, if it is misaligned in its transfer from the cache to the CPU, the following error message is displayed:
	Read hit byte alignment error during a longword read.
	addr 0x00000010, exp 0x10111213, obs 0x0010111213
Cache First Write Hit Test	This test verifies that doing a write operation to a valid but unmodified block in the cache causes the cache data to be updated and the valid, modified tag bits to be set to "1,1".
Error Description	If the memory address is written incorrectly, that is, if a write hit did not occur, the following error message will be displayed:
	A write hit of a valid cache entry shld not write memory.
	mem addr 0x00000010, exp 0x00000010, obs 0xFFFFFFFF
	If the cache tags were not correctly updated to valid and modified with all other tag bits as expected, the following error message is displayed:
	Cache entry not set valid and modified or incorrect tag field.
	cache addr 0x00000010, exp 0xC0000000, obs 0x80000000
Cache Write Miss Tests	A cache "miss" on write cycles in device space may be caused by either an access to a cacheable type 0 page whose data are missing from the cache, or by an access to a "don't cache" page or a non-type 0 page. Reading the MMU page map determines whether the access data should be in the cache. If the MMU translates the access address to a valid type 0 page whose "don't cache" bit is inactive, then the cache will be updated at the block corresponding to the access address on the write cycle. The cache tags will be updated to show the access context and virtual address, the valid bit will be set active and the modified bit will be set.
	The following tests may be selected from Cache Write Miss Tests Menu:
	1. Cache write miss/no writeback (not dirty) test
	2. Cache write miss/writeback (valid & dirty) test
Cache Write Miss/No Writeback (not dirty) Test	This test verifies that doing a supervisor data operand write to system memory with the memory block address not in the cache will cause a replacement and update the cache entry data, tag address and set the valid and the modified bit for the new cache entry. For the old cache entry verify that the old cache entry is not written back where the old cache entry is valid and not modified.

	The test is performed in the following steps:
	1. Clear all cache tag field addresses in cache tag control space.
	2. Clear all cache data control space addresses.
	3.
	For addresses within the user command specified virtual address range:
	(a) clear the cache tag/data entries for the address,
	 (b) store the address in the cache tag entry with (valid, modified) bits = (1,0),
	(c) store the longword address inverted as data in cache data control space,
	(d) write the virtual address,
	(e) read by control space the cache tags and data from the cache and verify that the data is updated and the valid bit is set.
Error Descriptions	Typical error messages that may be reported during the test are:
	With read/merge of cache block data on write miss, the memory and cpu data was not merged correctly in cache. cache addr 0x0000000, exp 0x00020000, obs 0x00000000
	With old cache entry valid and not dirty, a block writeback of '- not occur to memory write addr: 0x00020000, mem addr 0x00040000, exp 0x00040000, ob 0x00020000
	Cache entry not set valid or incorrect tag field cache addr 0x00000000, exp 0x80000000, obs 0x00000000
Cache Write Miss/No Writeback (invalid) Test	This test verifies that doing a supervisor data operand write to system memory with the memory block address not in the cache will cause a replacement and update the cache entry data, tag address and set the valid and the modified bit for the new cache entry. For the old cache entry verify that the old cache entry is not written back where the old cache entry is invalid.
	The test is performed in the following steps:
	1. Clear all cache tag field addresses in cache tag control space.
	2. Clear all cache data control space addresses.
	3. For addresses within the user command specified virtual address range:
	(a) clear the cache tag/data entries for the address,
	 (b) store the address in the cache tag entry with (valid, modified) bits = (1,0),
	(c) store the longword address inverted as data in cache data control space,

- (d) write the virtual address,
- (e) read by control space the cache tags and data from the cache and verify that the data is updated and the valid bit is set.

Typical error messages that may be reported during the test are: **Error Description** With read/merge of cache block data on write miss, the memory and cpu data was not merged correctly in cache. cache addr 0x0000000, exp 0x00020000, obs 0x00000000 With old cache entry invalid , a block writeback of it shld not occur to memory write addr: 0x00020000, mem addr 0x00040000, exp 0x00040000, obs 0x00020000 Cache entry not set valid or incorrect tag field cache addr 0x00000000, exp 0x8000000 obs 0x00000000 Cache Write Miss/Writeback The test verifies that doing a supervisor data operand write to system memory (valid & dirty) Test with the memory block address not in the cache will cause a replacement and update the cache entry data, tag address and set the valid and the modified bit for the new cache entry. It verifies that the old cache entry is written back where the old cache entry is valid and modified. The test is performed in the following steps: 1. Clear all cache tag field addresses in cache tag control space. 2. Clear all cache data control space addresses. 3. For each virtual address: (a) clear the cache tag/data entries for the address, (b) store the address in the cache tag entry with (valid, modified) bits = (0,0), (c) store the longword address inverted as data in cache data control space, (d) read the virtual address and verify that the data read is the not the inverse of the virtual address, but is the address, (e) read by control space the cache tags and data from the cache and verify that the data is updated and the valid bit is set. **Error Description** Typical error messages during the test are:

With read/merge of cache block data on write miss, the memory and cpu data was not merged correctly in cache. cache addr 0x00000000, exp 0x00020000, obs 0x00000000 With old cache entry valid and dirty, a block writeback of it shld occur to memory write addr: 0x00020000, mem addr 0x00020000, exp 0xFFFDFFFF, obs 0x00020000 Cache entry not set valid or incorrect tag field cache addr 0x00000000, exp 0x80000000, obs 0x00000000 **Exerciser Tests** Exerciser tests are tests that perform cache enabled memory write and read tests with comparing memory write and read data. One of the tests also executes the test code in the cache. They are included in the menu of tests in order to provide fast testing of cache write hit, write miss, read hit, read miss and page flush operations without detailed testing of tags and date within the cache. As a result they should be used to quickly test the cache and memory in order to quickly verify cache/memory integrity. The menu of Exerciser Tests is as follows: 1. Cached memory write/read test 2. Cached memory write/flush/read test 3. Cached execution/cached memory write/flush/read test **Cached Memory Write/Read** The Cached Memory Write/Read Test enables the cache and then writes all test memory from the command specified base virtual address for the command specified memory size, then reads the same virtual memory space back and performs a data compare of written with read data. The test is performed in the following step sequence: 1. Setup all test memory above the program space to be wr/rd/cache enabled. 1. Perform a write/read test of the test memory space which should cause write hits/read hits/write misses/read misses to occur. 3. After each write/read pass compare memory data and print all data compare errors. **Error Description** Typical error messages during the test are as follows: mem addr 0x20000, exp 0x00020000, obs 0x00000000 Cached Execution/Memory The Cached Execution/Memory Write/Flush/Read Test copies the test code into Write/Flush/Read Test the cache, then performs a write/flush/read test of all of the specified test memory space. The test is performed in the following step sequence: 1. Copy the test into the cache. Then, perform a write/flush/read test of all of

test memory above the cached code space.

	2. Setup all test memory above the program space to be wr/rd/cache enabled.
	3. Perform a write/read test of the test memory space which should cause write hits/read hits/write misses/read misses to occur.
	4. After each write/read pass compare memory data and print all data compare errors.
Error Description	Typical error messages during the test are as follows:
	mem addr 0x20000, exp 0x00020000, obs 0x00000000
Cache Block Copy Tests	Block Copy (read) and Block Copy (write) are commands which, executed in sequence, cause a block of data to be moved from one block address to another while maintaining cache data integrity and avoiding the displacement of any valid blocks from the cache. The source block for a Block Copy sequence may be either a cache block or main memory; the destination is always a block in main memory.
	Block Copy (read) and (write) must maintain cache data consistency. For both Block Copy (read) and (write), the virtual address hit criteria are the same as those used in cache read and write accesses. An additional comparison is required for both Block Copy (read) and (write), if the command address "misses" the cache. In this case, the translated physical address for the com- mand must be compared with the translated cache block address. If they match, the command address and cache block address are synonyms, and the command must be handled as a cache "hit".
	The destination o the Block Copy (write) command is always main memory. If the Block Copy (write) command "hits" the cache, then the cache block must be invalidated. A protection violation for the Write command will result if the page for the destination block prohibits writes. A protection violation prevents both writing the block and updating the MMU. Otherwise, both the MMU accessed and modified bits will be updated by a valid Block Copy (write) command.
	The menu of tests provided for Block Copy testing is as follows:
	1. Bcopy (src & des blks invalid) Test
	2. Bcopy (src valid, des invalid) Test
	3. Bcopy (src invalid, des valid) Test
	4. Bcopy (src valid, des valid) Test
Bcopy (src & des blks invalid) Test	The Bcopy (src & des blks invalid) Test performs a block copy operation for the case where both the source and destination blocks are invalid cache blocks within the cache. The test is performed in the following step sequence:
	1. Set all cache entries to invalid state.
	2. Perform a bcopy read from one memory block to another memory block.
	3. Then verify the following:

	(a) the corresponding cache block remains invalid.		
	(b) the memory block (4 longwords) was copied correctly.		
	(c) Repeat for all blocks for address range of interest.		
Error Description	Typical error messages during the test are as follows:		
	A bcopy operation has failed to copy data correctly src addr 0x00020000, src data 0x00020000, des addr 0x00040000, des data 0x00040000		
Bcopy (src valid, des invalid) Test	The Bcopy (src valid, des invalid) Test verifies that a block copy read that is a cache hit, reads the block from the cache and leaves the "from" cache block valid and unchanged. The test is performed in the following step sequence:		
	1. Initialize all cache blocks to be invalid.		
	2. Set cache block to be valid with inverse address data pattern in it.		
	3. Perform a bcopy read from the block (in cache and valid) to memory addresses that are not in cache.		
	4. Then verify the following:		
	(a) the valid "from" cache block remains valid and unchanged.		
	(b) the memory block (4 longwords) was copied correctly from the cache block and not from memory.		
	(c) the "to" cache block (since no cache hit) is unchanged.		
	5. Repeat for all blocks for address range of interest.		
Error Description	Typical error messages during the test are as follows:		
A bcopy operation has fai src addr 0x00020000, src des data 0x00040000	led to copy data correctly data 0x00020000, des addr 0x00040000,		
A destination cache block was set valid during a bcopy operation! cache addr 0x00040000, exp tag data 0x00000000, obs 0x80000000			
Bcopy (src invalid, des valid) Test	The Bcopy (src invalid, des valid) Test verifies that for a block copy read that is in cache, reads from the block from memory cause a cache write hit, and invali- date the "to" cache block. The test is is performed in the following step sequence:		
	1. Initialize all cache blocks to be invalid.		
	2. Set "to" cache block to be valid with inverse address data pattern in it.		
	3. Perform a boopy read from the block in memory to the block in cache		
	4. Then verify the following:		

	(a) the valid "to" cache block is invalidated.
	(b) the memory block (4 longwords) was copied correctly from the memory block to the "to" memory block.
	5. Repeat for all blocks for address range of interest.
Error Description	Typical error messages during the test are as follows:
	A bcopy operation has failed to copy data correctly src addr 0x00020000, src data 0x00020000, des addr 0x00040000, des data 0x00040000
	One or more valid destination cache blocks were not invalidated during bcopy operation cacheW tag addr 0x00000000, tag data exp 0x000000000, tag data obs 0x80000000
Bcopy (src valid, des valid) Test	The Bcopy (src valid, des valid) Test verifies that for a block copy read that is in cache reads from the block in cache, causes a cache write hit, and invalidates the "to" cache block. The test is is performed in the following step sequence:
	1. Store an address pattern in memory.
	2. Initialize all cache blocks to be invalid.
	3. Set "to" cache block to be valid with inverse address data pattern in it.
	4. Set the "from" cache block to be valid with inverse address data
	5. Perform a bcopy read from the block in cache to the block in cache
	6. Then verify the following:
	(a) the valid "to" cache block is invalidated.
	(b) the memory block (4 longwords) was copied correctly from the cache block to the "to" memory block.
	(c) the "from" cache block is still valid.
	5. Repeat for all blocks for address range of interest.
Error Description	Typical error messages during the test are as follows:
	A bcopy operation has failed to copy data correctly src addr 0x00020000, src data 0x00020000, des addr 0x00040000, des data 0x00040000
	One or more valid destination cache blocks were not invalidate during bcopy operation cache tag addr 0x00000000, tag data exp 0x00000000, tag data obs 0x80000000

Cache Exerciser Tests	The cache exerciser tests are a suite of menu selectable tests consisting of the lowing tests:	
	1. Cached Memory Write/Read Test	
	2. Cached Memory Write/Flush/Read Test	
	3. Cache Fetch NOP Test	
	4. Cached Execution/Cached Memory Write/Read Test	
Cached Memory Write/Read Test	The Cache Memory Write/Read Test maps all test memory above the program space to be write/read/cache enabled. It then performs a write/read test fo the test memory space which should cause write hits/read hits/write misses/read misses to occur. After each write/read pass, memory data is compared and all data compare errors are printed.	
Error Description	Typical error messages are:	
	addr xxxxxxx, exp xxxxxxx, obs xxxxxxx	
Cached Memory Write/Flush/Read Test	The Cache Memory Write/Flush/Read Test maps all test memory above the pro- gram space to be write/read/cache enabled. It then performs a write/flush/read test of the test memory space which should cause write hits/read hits/write misses/read misses to occur. After each write/read pass, memory data is com- pared and all data compare errors are printed.	
Error Description	Typical error messages are:	
	addr xxxxxxx, exp xxxxxxx, obs xxxxxxx	
Cached Fetch NOP Test	The test copies a string of nop instructions into the cache. It then fetches and executes the nops from the cache. The test verifies the ability to fetch and execute nop instructions from the cache. If it fails it fails destructively.	
Cached Execution Memory Write/Read Test	The test code is copied into the cache. A write/flush/read of all the test memory is then executed from the cache of test memory above the cached code space. After each write/read pass memory data is compared and all data compare errors are printed.	
B.8. Test Sequences	The following Test Sequences are provided and are selectable from the main menu of the program:	
	1. Quick Test	
	2. Default Test	
	3. Single Pass Default Test	
	4. Long Test	
	5. Exerciser Test	

	6. Cache RAM Memory Test
Quick Test	The Quick Test is a short, nonexhaustive test that verifies that the basic cache functions: write/read hits, misses, and flushes work. Addressing is not exhaustively exercised.
Default Test	The Default Test is a selection of all the cache functions tests: write/read hits, misses, and flushes as well as the exerciser tests. Cache and memory addressing is varied to attempt to provide a rigorous test of the cache and memory system. The test will run until stopped by the operator, accumulating all errors which are totaled and printed at the end of each test pass.
Single Pass Default Test	The Single Pass Default Test is a single pass of the Default Test.
Long Test	The Long Test is a longer, more exhaustive version of the default test which will execute one test pass then stop.
Exerciser Test	The Exerciser Test is a selection of tests from the Exerciser Test Menu. The tests execute fast and provide a quick but exhaustive test of the cache and memory system but with limited diagnostic information in error messages.
Cache RAM Memory Test	The Cache RAM Memory Test consists of all the cache data and tag tests from the Cache Data and Cache Tag Menus and is provided to focus testing only upon testing the Cache RAM. The test will cycle forever or until stopped by the operator and will accumulate and error count which is typed at the end of each test pass.
B.9. Glossary	Bootpath Interface and bus logic from CPU to an I/O boot device
	Block Four longwords of memory data that have tag control/status
	Cache An associative, fast RAM between the CPU and main memory
	Cache Block The smallest number of memory words copied between the cache and memory during a cache to memory transfer.
	Cache Hit A memory access in which the accessed address's data is in the cache
	Cache Miss A memory access in which the accessed address's data is not in the cache
	CPU Central Processing Unit

Dirty

Write modified within the cache

Flush

To copy and invalidate all modified(dirty) cache blocks to memory

Ethernet

Coaxial cable communication link between systems

I/O

Input and output, as for example, an input/output device

LED

Light Emitting Diode

MMU

Memory Management Unit

Page

The smallest contiguous, selectable block of memory through the MMU

PMEG

Page Map Entry Group

POR

Power-on Reset

RAM

Random Access Memory

SCC

Serial Communications Controller

Tags

Control/status bits unique for each cache block

UART

Universal, Asynchronous, Receiver/Transmitter

B.10. Standalone ECC Memory Diagnostic This standalone diagnostic tests the error checking and correction (ECC) memory for Sun-3 workstation products. It resides on the 1.1 version of the SunDiagnostic Executive tape, but does not run under the Executive program. You must

boot it separately, as described under Section B.13, Loading And Starting. The layout of the memory array puts 64 bits of data and 8 bits of ECC into the RAM. However, by using partial writes (byte, word, longword) it is possible to determine the memory location that has a failure, even though on reads the CPU reads a 128 bit block of memory. The MC68020 processor only gets the byte, word, or long word requested.

The ECC logic is eight bits wide and generates check bits over each 64-bit word, making the DRAM array 72 bits wide. The ECC logic always writes the check bit code into the check bit DRAMs. The ECC error logic only reports errors when the error reporting bit is set in the Memory Enable Register. These errors are CE for single bit errors (CE corrects the error), and UE for double bit errors (no correction). The ECC logic is designed in such a way as to prevent reading the actual check bit code stored in the check bit DRAMs.

Functional testing is designed to detect permanent faults that cause the memory to function incorrectly. Generally speaking, RAM can be defined as functional if it is possible to store a 0 or a 1 into every cell of the memory, to change every cell from 0 to 1 as well as from 1 to 0, and to read every cell correctly when it stores a 0 as well as when it stores a 1, regardless of the contents of the remaining cells or the previous memory access sequences. A functional test that will cover all the possible faults is impossible from the practical point of view, as such a test may take years to execute! Therefore, in order to develop any practically feasible test procedure, we restrict ourselves to a subset of faults that are most likely to occur.

The following three fault models for RAM are the most widely used:

Stuck-at Faults

One or more logic values in the memory system cannot be changed. For example, one or more cells are "stuck at" 1 or 0.

Coupling Faults

There exist two or more cells that are coupled. A pair of memory cells are said to be coupled if a transition in one cell if the pair changes the state of the other cell.

Pattern Sensitivity Faults

The fault that alters the state of a memory cell as a result of certain patterns of zeros, ones, zero-to-one transitions, and/or one-to-zero transitions in the other cells of the memory is called a pattern sensitivity fault. The fault that causes a read or a write operation of one cell of the memory to fail owing to certain patterns of zeros and ones in the other cells of the memory is also called a pattern sensitivity fault.

Slow Access/Recovery Faults

During writes, data is not recorded in the specified time. Also, a read occurring immediately after a write may sense bad data if the chip's recovery time exceeds specification.

	Refresh Faults After long inactive periods, data is lost from the memory.
B.11. Hardware Requirements	The ECC Memory Diagnostic tests any ECC memory configuration. Each memory board has an enable register with the memory size encoded in it. With a possibility of four memory boards with any combination of 8 or 32 Megabyte boards, reading the memory enable register determines the memory size of the system. The following list specifies the environmental requirements for this test:
	The CPU board is assumed functional (MMU, Cache, video ram, data path to memory) as check out by the boot PROM.
	The boot path (ethernet, disk, tape) is assumed checked out so that the memory diagnostic can be loaded into main memory.
	The boot PROM aids in user I/O communications.
	This diagnostic runs standalone, meaning that the operating system is not needed while memory is being tested.
B.12. Overview Of The Diagnostic	The test patterns are presented to allow flexibility in sequencing as well as cus- tomizing of the tests. All tests can be broken down to allow primitive actions upon the memory to be tested on command. At a higher level, a default test sequence is provided with a single command character for ease of use.
	The main enhancement of the memory diagnostic is that the memory diagnostic will be copied into CACHE RAM so that all of memory can be tested. This means that the diagnostic will no longer have to relocate itself in memory.
	All tests are optimized for speed. While speed is important in terms of the volumes of memory arrays to be tested, it is also important to check for slow access and recovery faults.
Memory Interface	The memory interface will be discussed here as it applies to the Sun-3/2xx implementation of the Sun-3 architecture.
	Each memory board is configured with 8 or 32 Megabytes of ECC memory. In addition, each board includes an ECC Memory Enable register, a Correctable Error register (Syndrome register), and an EDC chip Diagnostic register, as defined in the Sun-3 architecture. Sun-3/2xx memory also features a self timed refresh controller that may be enabled for memory scrub.
	Each 8 Megabyte memory array is implemented with 288 256k DRAM chips with 120 NS access time. An 8 Megabyte bank is organized as four banks of 2 Megabytes each, with even and odd quadwords (addressed by A3 and ~A3) in each bank, and each 4 Megabytes is divided by address A22 and ~A22.
	The Sun-3/2xx memory board is interconnected with the CPU board over the 64- bit bus.
	Sun-3/2xx memory supports the operations summarized below:
	Block Read/Write Read from or write into memory a block of 16 bytes, using two full 8 byte

data transfers. Block reads may result form any CPU or DVMA bus cycle to main memory. Whether a cycle is initiated depends on whether the data is cacheable and on the state of the Sun-3 cache on the CPU board. Block writes may result from cache block replacement, cache flushes, or Block Copy operations.

Partial Write

Write, from a single data transfer of 8 bytes, up to 4 bytes into memory, as specified with an 8 bit Byte Mark field. This field is set by the CPU board to mark bytes being modified by a CPU or DVMA bus cycle. Partial writes only result from write operations into a page in main memory which is marked Don't Cache.

Register Read/Write

Read from or write into control register on the memory board. Control registers are addressed by the CPU as Type 1 devices in Device Space. Register writes must be partial write bus cycles.

Data is aligned according to MC68020 conventions. On partial write bus cycles, the write data from the CPU is assumed to be in the proper alignment within a quadword. Similarly, on register transfer cycles, register data for both Read and Write bus cycles is aligned by MC68020 addressing conventions within a quadword. Following the MC68020 convention, the high order byte within a quadword, D<63..56>, is byte 0; the low order byte, D<7..0>, is byte 7.

Each memory board contains four AMD 2960A ECC chips (EDC) configured to generate eight check bits for every 64 data bits. The mode of operation for these chips is controlled through bits D<12..11> of the Enable register, which corresponds to chip inputs DM1 and DM0 of the 2960A.

On the Sun-3/2xx memory board, the EDC chip and external ECC control logic are designed to correct any single bit error and to report as an uncorrectable error (UE) any double bit error. All other errors, including those triple bit errors for which there are defined syndromes, go unreported.

Each board includes local refresh control. A data scrub operation (if enabled) may be performed during each refresh cycle.

The refresh period is once every 15.5 microseconds. Refresh requests have higher priority than new bus requests occurring in the same cycle. Once a refresh or memory cycle begins, it completes without interruption.

During data scrub cycles, any single bit error is corrected and written back into memory, while signaling a CE error and recording the CE address. An uncorrectable error detected during a scrub is not reported. No data are written back into memory.

Revision A of 20 May 1988

Error Checking Correction Interface

Refresh

Initialization		Bus error and parity error handling is setup, and the MMU is setup.	
		To set up the MMU:	
		(1) The first 64 Kbytes of main memory are mapped cache enable. Then the code is copied into the cache. The diagnostic will execute from here.	
		(2) The next pages are mapped to the 16 Megabytes of main memory. The logical addresses for the first memory board are 0x14000 to 0x7fc000. The physical address for the first memory board are 0x0 to 0x7fffff. The logical address for memory boards 2, 3, and 4 are 0x814000 to 0x1014000. The physical addresses for memory boards 2, 3, and 4 are 0x800000 to 0xffffff. The reason to execute from Cache Ram is that the ECC logic can not be tested from memory, since an error would cause program execution to stop.	
		Memory is then sized.	
		The memory is sized to determine how many memory boards are in the sys- tem. There can be a minimum of 1 memory board and a maximum of 4 memory boards. Each memory board contains 8 or 32 Megabytes of DRAM. During testing, each board is separately run through all tests before the next board is tested.	
		The default parameters are then initialized.	
		The default parameters are address size of 8 Megabytes, 1 pass count for each test.	
B.13. Loading And Starting		The following steps must be followed in the order listed below to run the ECC Memory Diagnostic.	
		1. Turn on the system.	
		2. Since the ECC Memory Diagnostic is a standalone diagnostic, the operating system should not be booted. Instead, after self-tests pass, terminate the booting process with the L1-A sequence. That is, hold down the [1] key while pressing the a key. On the other hand, if you are interacting with a dumb terminal, use the break key.	
		3. In order to reset the memory maps to their initial state, prior to pressing the <u>(Return)</u> key, type k2 .	
	NOTE	The ECC Memory diagnostic cannot be booted correctly if this reset step is skipped.	
		4. At this point the ECC Memory Diagnostic can be loaded and its execution started. The three ways to load the diagnostic are listed below.	
		Assuming that the executable version of the ECC Memory Diagnostic resides on the local disk in directory /pub/stand or /stand, the diagnostic can be loaded by typing the following command line before pressing <u>Return</u>	
		b stand/eccmem3.diag	
		If the diagnostic resides on a remote disk, it can be loaded over Ethernet. Assuming that the network file server has a partition reserved for the system	

Sun microsystems being tested (i.e. the system under test is a client of the file server) and that eccmem3. diag resides in the file server's directory /pub/stand, the ECC Memory Diagnostic can be loaded as follows:

b ec(, file-server_host_net_number) stand/eccmem3.diag
Return

Finally, the diagnostic can be loaded from local tape. Assuming that the tape contains a bootable image of eccmem3.diag, the three command lines listed below can be used to load the diagnostic.

1) If eccmem3.diag resides on a SCSI tape, use this command line:

b st()

2). If eccmem3.diag resides on an archive tape, use this command line:

b ar()

If eccmem3.diag resides on a tape master, use this command line:
 b mt()

B.14. User Interface There are five menus in the ECC Memory Diagnostic, a main menu and four sub-menus. The sub-menus handle commands for options, tests, and utilities.

The Command Line Language The semicolon (;) acts as a *separator* between commands. For instance, let's assume that our goal is to run the default option from the main menu five times. In order to accomplish this, we can make use of the loop option (option 1) as follows:

d;15

The d specifies selection of the default test sequence. The ; separates the d command from the 1 command. 1 5 indicates that the command line is to be executed five times. In short, the ; must be used to separate commands. It is *not* used to separate a command from its argument(s) and it is *not* used to separate one argument from another, doing so causes a syntax error.

All commands, arguments and semicolons must be separated by at least one SPACE character. Thus, d; 1 5 is *not* the correct method to invoke the default test sequence five times; the lack of spaces causes a syntax error.

Main Menu

The main menu has nine options and provides access to the sub-menus. It also contains the default test command as well as a command to display the error log. These options are described following the Main menu example.

Sun-3 ECC Memory Diagnostic Rev. x.x mm/dd/yy Main Menu Selections: o - options m - memory data tests c - ecc tests u - utilities d - default test 1 - 100p e - display error log ? - help ^ - quit Command :

- Option o on the main menu is a navigational command. If selected, a submenu containing all of the various control options is presented. The Option Menu is discussed later.
- m Option m is a navigational command. If chosen, a sub-menu containing all of the various memory data tests is presented. The Memory Menu is discussed later.
- **c** Option c is a navigational command. If chosen, a sub-menu containing all of the various ECC tests is presented. The ECC Test Menu is discussed later.
- **u** Option "u" is a navigational command. It brings up a sub-menu containing all of the various utilities that are useful in examining the memory board under test. The Utility Menu is discussed later.

d D[addr] [size] [cmp] [passcount]

Option d is the default test sequence. Selection of this option executes all of the tests, which are listed below. These tests test all of the memory boards present in the system or the memory boards that have been selected by select mem bd to test in the Option Menu.

- Memory Enable Register
- Address pattern
- Alternate Pattern
- Diagonal Pattern
- Unique Pattern
- Checker Pattern
- NTA Pattern

- Alignment Test
- Refresh Test
- **D** EDC Diagnostic Read Test
- CE Forced Bit Test
- UE Forced Bit Test
- **EDC Diagnostic Write Test**
- Syndrome Register Test
- ECC Alternating Test
- ECC Diagonal Test
- ECC Checker Pattern
- Refresh Scrubbing Test

The **d** option uses a set of global parameters that are initialized at load time or that are changed upon request from the option menu. The default parameters are:

- 1. Memory boards to test = 1.
 - 2. Data mode (number of bits to test in a word) 3 = long word mode.
 - 3. Data compare "on".
 - 4. Pass count = 1.

Option d has four arguments. Daddr and size must be set, while the other two can be left at the default values. The Daddr parameter is the starting address of memory and can be in the range of 0x0 to 0x7fff0. The size parameter is the amount of memory to test and can be in the range of 0x10 to 0x7fff0. Daddr and size added together should not be any greater then 7ffff0.

l loop_count

Entering 1 from the main menu provides opportunity to specify the number of times a specific sequence of tests is to be executed. For example, terminating a command line containing one or more user-specified tests with 1 5 executes all of the tests on that command line five times.

The loop_count argument is optional. Without it, the test(s) on the command line are performed once. The loop_count argument specifies, in decimal, the number of times that the command line sequence is to be executed. The range of legal numerical values for the loop_count is 1 to 2147483647 or (0x7fffffff). However, if an asterisk (*) is entered as the loop_count argument, the given test sequence will run forever.

- Option e from the main menu displays an error log. More specifically, at a maximum, the first 20 errors messages of each type recorded by the ECC Memory Diagnostic are printed on the screen. You may suspend and restart the error log if you wish. Pressing any key except q suspends the error log display until you press another key. If you press q at any time, the error log display is terminated.
- **h** If option h is selected from the main menu, more detailed user instructions appear on the screen.

Finally, option ^ from the main menu terminates the ECC Memory Diagnostic.

Option Menu

The Option Menu has twelve options and contains global parameters for the tests that can be set and reset. The options can be set for one individual test or for all tests. The option menu is shown below.

NOTE When you change the arguments to the parameters inc,addr,size, from the default, the new values will become the default and will be used throughout all of the tests until changed again or until the diagnostic is rebooted.

a [addr] [size]

Option a sets up the starting address and the size of memory to be tested. Most of the tests and utilities require address and size parameters. The address is the beginning address (low) of memory to be tested, while the size is the number of bytes in the block of memory to be tested. The default address and size are used if none other is supplied on the command line for the tests and utilities. The default address and size are initially set to include all of memory in the system at the time the diagnostic is loaded. This option allows you to change the default address size. The address and size are always given in hex. The address should be in the range of 0 to 0x7ffff0and the size should be in the range of 0x10 to 0x7ffff0. When testing any memory board other then board one, the program adds the virtual address offset to both the address and size parameters to allow testing of these memory boards.

m [number]

Option m sets the data mode that tell the tests how many bytes to test. These are byte, word, long word, and quadword modes. There are some tests that are only executed in longword mode and will not look at this parameter. However most of them the do, the description for each test explains what data modes are excepted.

You may enter a number from 1 to 4 after m, where (1) selects byte mode, (2) selects word mode, (3) selects long word mode, and (4) selects quad word mode.

b [number]

Option b allows you to select any or all or a combination of memory boards to be tested with each test. Note that you must know how many memory boards are in the system under test. If you select a memory board to test that does not physically exist, the system will produce a watchdog time out and trap back to the PROM monitor. The number entered on the command line is a code and the numbers can be combined. The number must be a hex number from 1 to 0xf. The default is 1 memory board selected. Use this table to decide what value to enter:

Hex Value	Description
1	select membd 1
2	select membd 2
3	select membds 1, 2
4	select membd 3
5	select membds 1, 3
6	select membds 2, 3
7	select membds 1, 2, 3
8	select membd 4
9	select membd 1, 4
a	select membd 2, 4
Ъ	select membds 1, 2, 4
с	select membd 3, 4
d	select membds 1, 3, 4
e	select membds 2, 3, 4
f	select membds 1, 2, 3, 4

p [number]

Option p enables or disables ECC checking for any given memory data test. For the ECC tests, the ECC is already enabled. Note that if ECC is enabled for the memory data tests, when the test fails you will have to use the Memory Error register and Syndrome register read utilities to determine if the error was caused by a CE or UE and to determine the bad bits and the address of the failure. This could be done with data compare *off* for faster execution of the memory tests. With the data compare *off*, the Memory Error and Syndrome registers should be read after each test to determine if an error occurred and if so, the location of the error. The default is ECC checking *off*. The [number] argument should be 0 to select Error checking *off* or 1 to select error check *on*.

x [number]

Option x turns data compare mode on or off. The sequence of most memory tests is write, read, compare. The compare step can be skipped using this option, thereby speeding up memory scanning. It must be noted that if the data compare option is turned off, the ECC circuitry must be enabled to catch any errors that may exist in the memory array. The *number* argument may be 0 to select data compare mode *off*, or 1 to select data

compare mode on. The default is data compare mode on.

1 [number]

Option 1 enables or disables scopeloop on error. If an error occurs, a scopeloop is entered, continually repeating the circumstances causing the initial error. The loop can be broken by typing special keys that begin the test again or to continue with the next test. The *number* argument may be 0 to disable scope loop on error, or 1 to enable scope loop on error.

s [number]

Option s stops the execution of the present test if an error occurs. The wait can be interrupted by typing any key on the key board. The *number* argument may be 0 to disable stop on error or 1 to enable stop on error.

• [number]

Option e enables or disables the display of all messages to the screen. Only the first 20 error messages are stored and display later if this option is disabled. The default is error messages enabled. The *number* argument may be 0 to disable error message display during execution of each test, or 1 to enable error message display.

- ? Option ? brings up the Option Menu's help display.
- [^] Entering [^] returns you to the main menu.

Memory Data Menu

The Memory Data Menu has twelve options and displays the Memory data tests that are available to be executed:

Sun-3 ECC Memory Diagnostic Rev. x.x mm/dd/yy Memory Data Test Menu Selections: a - mem enb register test b - address pattern c - alternating pattern d - diagonal pattern e - unique pattern f - checker pattern g - nta pattern h - alignment test i - refresh test 1 - 100p ? - help - return to main menu Command :

The "dots" between arguments are placeholders because the program reads the values in four fields and determines which value applies to which parameter depending on the placement of the value.

a . . . [passcount]

The option a checks the memory enable register on each of the memory boards in the system. This check turns on and off the bits that are write/read only. This test checks the ability of each of the enable registers to hold and report correct status, and insures that there are no shorts.

Upon exit from the test all the memory boards except memory board 1 are disabled. This is because memory boards 2, 3, and 4 are mapped to the same virtual and physical address. If one of these board is to be tested it will be enabled prior to the execution of the test and disable after the test has completed.

The bits that are checked are the base address bits (0 - 5), Board enable bit (6), scrub enable bit (7), Enable DM0 (11), Enable DM1 (12).

The option a has four arguments, one of which is used. The first three are place holders. The *passcount* argument determines how many times to execute the test.

To abort the test and return to the test Menu press the q key.

b [addr] [size] [cmp] [passcnt] [dmode]

Option b tests the specified block of memory using the low order bits of the address of each location, or its complement, as data. This test can be run in byte, word, long word, or quadword mode. Use the address pattern test to detect coupling faults.

The option b has four arguments. The *address* and *size* arguments have been discussed in the section containing the Option Menu. The *cmp* option is used with this test to invert the physical address and use this inverted address as data written into the DRAM chips. If you enter 1 the physical address in inverted; entering 0 does not invert the address. The *passcnt* argument sets the number of passes this test will execute before returning to the Memory Data Menu.

The *dmode* argument selects which data size to test. The choices are byte, word, long word, and quadword. Refer to option m in the Option Menu section. To abort the test and return to the test Menu, enter q.

c [addr] [size] . [pascnt] [dmode]

Option c is the alternating pattern test, which tests the specified block of memory using the alternating data pattern. First the memory block is filled with data, then it is read back and compared with the specified data pattern. If the data read from an address location does not match the original data pattern an error is flagged. This test can be run in byte, word, long word, or quad word mode. Use the alternating pattern test to detect stuck at faults.

The patterns used for testing are as follows. The test pattern alternates with each pass.

pass 1: a5a5a5a5 5a5a5a5a pass 2: 5a5a5a5a a5a5a5a5

The option c has four arguments. The *address* and *size* arguments have been discussed in the section containing the Option Menu. The third option is a place holder so that the remaining fields can be entered. The *passcount* argument sets the number of passes this test will execute before returning to the Memory Data Menu.

The *dmode* argument selects which data size to test. The choices are byte, word, long word, and quadword. Refer to option m in the Option Menu section. To abort the test and return to the test menu, press the q key.

d [addr] [size] [complement] [pascnt] [dmode]

Option d performs the diagonal pattern test. The diagonal test is actually a modified galpat test (also called diapat). This test requires a number of write-read scans thru each bank of memory to be tested. At the beginning of the test the memory is initialized to zeros. The test proceeds in the following sequence:

Pass 0: a long word of 1's is written at particular locations in memory causing a diagonal of 1's in each memory chip's memory array. These locations can be determined by examining the address lines that decode RAS and CAS.

Example

pass 0: 0000000 00000001 00000000 00000002 00000000 00000004 00000000 00000008 00000000 00000010

8000000 0000000

Pass N : the diagonal is shifted until it has occupied all of the diagonal positions of each memory chip's array with wrap around. In other words, each cell of the memory array has been the only 1 cell in a row and column of the array.

Example:

pass N: 8000000 0000000 0000000 0000001 0000000 0000002 0000000 0000004 . . . 40000000 00000000

Each read scan checks for the diagonal of 1's in a field of 0's, note that the entire memory bank is checked. This test is run in byte, word, long word, and quad word modes. The test can be run with inverted data using the compl parameter. Use the diagonal pattern test to detect pattern sensitive faults.

The option d has four arguments. The address and size arguments have been discussed in the section containing the Option Menu. The complement option is used with this test to invert the data pattern written into the DRAM chips. Enter 1 to invoke invert the data pattern and 0 if you do not want to invert the pattern. The *passcount* argument sets the number of passes this test will execute before returning to the Memory Data Menu. The *dmode* argument selects which data size to test. The choices are byte, word, long word, and quadword. Refer to option m in the Option Menu section.

To abort the test and return to the test menu, press the q key.

• [addr] [size] [incr] [pascnt] [dmode]

Option e is for the address uniqueness test. The test for address uniqueness tests the specified block of memory using the sequence {incr, $2 * incr, 3 * incr, 4 * incr, ...}$ for the test data. This test can be run in byte, word, long word mode. Use the unique pattern test to detect couping faults.

Option e has four arguments. The address and size arguments have been discussed in the section containing the Option Menu. The incr argument

determines the increment value that is added to the data pattern written into the memory. If no increment value is given the memory will be cleared. The *pascnt* argument specifies the number of times to execute the test before returning the menu. The *dmode* argument selects which data size to test. The choices are byte, word, long word, and quadword. Refer to option m in the Option Menu section.

To abort the test and return to the test menu press the q key on the keyboard.

f [addr] [size] [pattern] [pascnt]

Option f performs the Checker test. Checker test writes a sequence of pattern and pattern in a series of write/read scans as follows:

Pass 0 {pattern, ~pattern, ~pattern} Pass 1 {~pattern, pattern, ~pattern} Pass 2 {~pattern, ~pattern, pattern}

The checker test requires a number of write-read scans over the block of memory under test (which explains why it takes so long to run!). The data used is an alternating sequence of pattern and ~pattern (the complement of pattern), and hence the name checker (short for checker board). This test can be executed in byte, word, long word, or quad word mode. Use the checker pattern test to detect pattern sensitive faults.

Option f has four arguments. The *address* and *size* arguments have been discussed in the Option Menu section. The *pattern* argument determines which pattern and ~pattern that is written into memory. The *pascnt* argument specifies how many passes are executed. For time considerations the pass count is 1, for much better testing the suggested pass count should 3 or more passes.

To abort the test and return to the test menu press the q key on the keyboard.

g [addr] [size] . [pascnt]

Option g performs the NTA pattern test. This test detects stuck-at faults, coupling faults, and pattern sensitivity faults in the memory under test. The test executes the 8 passes in byte mode only, to verify memory as follows.

First each location of memory is initialized to 0. Pass 1 : Each 0 is read and changed to a 1 starting at the bottom of the memory array. The 1's are read back starting at the top of memory.

Pass 2 : Each 1 is read and changed to a 0 starting at the bottom of the memory array. The 0's are read back starting at the top of memory.

Pass 3 : Each 0 is read and changed to a 1 starting at the top of the memory array. The 1's are read back starting at the bottom of memory.

Pass 4 : Each 1 is read and changed to a 0 starting at the top of the memory array. The 0's are read back starting at the bottom of memory.

Pass 5 : Each 0 is read and changed to a 1 and back to a 0 starting at the bottom of the memory array. The 0's are read back starting at the top of memory.

Pass 6: Each 0 is read and changed to a 1 and back to a 0 starting at the top of the memory array. The 0's are read back starting at the bottom of memory.

Next each location of memory is reset to 1.

Pass 7 : Each 1 is read and changed to a 0 and back to a 1 starting at the bottom of the memory array. The 1's are read back starting at the top of memory.

Pass 8 : Each 1 is read and changed to a 0 and back to a 1 starting at the top of the memory array. The 1's are read back starting at the bottom of memory.

Use the nta pattern test to detect stuck at faults, coupling faults, and pattern sensitive faults.

Option g has four arguments. The *address* and *size* arguments have already been discussed. The third argument is a place holder if the *pascnt* argument is to be used. The *pascnt* argument has also been discussed in the above test options.

To abort the test and return to the test menu press the q key on the keyboard.

h [adr] . . [pascnt]

Option h is the address alignment test. This test tests the byte, word, long word, and quad word alignment of the data in the memory. The hardware is designed so that all data is stored on quad word boundaries. Any write with in this boundaries causes a read-modify-write cycle if the new data is less then the quad word. This test is designed to test this read-modify-write function of the memory board to ensure that the data is written to the correct location, and read from it. This test will test a byte, word, long word, and quadword in all possible positions, including the writes across the quad word boundary.

The option h has two arguments. The "dots" between the two arguments are placeholders because the program reads the values in four fields and determines which value applies to which parameter depending on the placement of the value. If you are not going to enter a *pascnt* value, you do not need to enter the placeholder value. *addr* specifies the starting address to test. The *pascnt* argument has already been discussed for the previous tests.

To abort the test and return to the test menu press the q key.

i [addr] [size] . [pascnt]

Option i performs the refresh test. This tests tests the refresh logic on all of the memory boards in the system. A data pattern is written to a 256K block of memory. The test waits for the specified delay and then reads the block of memory, and checks the data for no decay. If the data did decay,

the refresh logic is not functioning, and an error is posted.

This test can not be run in any kind of DRAM on either the CPU (video RAM) or on the memory board due to the way RAS has been implemented. All efforts will be made to execute the test in the MC68020's internal cache. If the test is too big to fit in the MC68020's cache, the test can not be executed.

The i option has three arguments. The *address* and *size* and *pascnt* arguments have already been discussed. The "dot" is a placeholder that must be entered if you enter a *pascnt* value.

To abort the test and return to the test menu, press the q key.

1 [loop_count]

Option 1 from the main menu provides the opportunity to specify the number of times a user-specified sequence of tests is to be executed. For example, terminating a command line that contains one or more user-specified tests with 1 5 executes all of the tests on that command line five times.

Option 1 accepts one command line argument. The *loop_count* argument is optional. Without it, the test(s) on the command line are performed once. The *loop_count* argument specifies, in decimal, the number of times that the command line sequence is to be executed. The range of legal numerical values for the *loop_count* is 1 to 2147483647 or (0x7fffffff). However, if an asterisk (*) is entered as the *loop_count* argument, the given test sequence will run forever.

Option

t [addr] . [pattern] [pascnt]

performs the bcopy test.

It tests the bcopy interface between the CPU board and the memory board by writing a block pattern into memory and then reading the block out into the 128 bit (16 byte buffer in the cache) then doing a block copy write to memory. It verifies that the data was copied correctly.

Option "t" has three arguments. The address argument have been discussed in the Option Menu section. The *pattern* argument determines which pattern that is written into memory. The *pascnt* argument specifies how many passes are executed.

? Option ? brings up the Memory Data Test Menu's help display. Option ^ returns you to the Main Menu.

ECC Test Menu

The ECC test menu has twelve options and runs a variety of tests that exercise the EDC chip functionality, and test the ability of the ECC DRAM chips to correctly store and read correct data. The ECC Test Menu is shown below.

Rev. 1.0 3/15/86 Sun-3 ECC Memory Diagnostic ECC Test Menu: Selections: j - EDC Diagnostic read mode test k - CE forced bit test m - UE forced bits test n - EDC Diagnostic write mode test o - Syndrome reg test p - ECC alternating pattern q - ECC diagonal pattern r - ECC checker pattern s - refresh scrub test 1 - 100p? - help ^ - return to main menu Command:

The option h has two arguments. The "dots" between arguments are placeholders because the program reads the values in four fields and determines which value applies to which parameter depending on the placement of the value.

j . . . [pascnt]

Option j performs the EDC Diagnostic Read test which tests the EDC chips ability to correct errors. This is accomplished by writing a data pattern into memory that causes a syndrome code of all zero's. It then writes the diagnostic register of the ECC chip with a different check bit code. It enables Error Correction and reads the data from memory with the EDC in diagnostic read mode. This should cause an error. The test then reads the Syndrome register and checks the syndrome written there against the check bit code written into the diagnostic register. They should match. If an error is detected it will be reported. This tests all 256 combinations of check bit codes that the ECC chip will generate.

The option j has four arguments. The first three arguments are place holders if the *pascnt* argument is to be used. The *pascnt* argument has been discussed in the Memory Data Test section.

To abort the test and return to the test menu, press the q key.

k . . . [pascnt]

Option k performs the Correctable forced Error test, which checks the ability of the ECC logic to detect and correct single bit errors. To do this, the test uses the diagnostic read mode function to cause single bit errors of the data being read from the data memory locations. This causes the ECC logic to write the corrected bit back to the data memory. Next, the test turns error correction off and reads the modified data from the memory location. If the

data read back does not match the expected data, an error is reported. This test checks all of the 64-bit positions of the stored data. The initial data pattern has all zeros. The check bit code stored along with the data is never changed, allowing all of the bits to be corrected.

The k option has four arguments. The first three arguments are place holders if the *pascnt* argument is to be used. The *pascnt* argument has been discussed in the Memory Data Test section.

To abort the test and return to the test menu, enter q.

m...[pascnt]

Option m performs the Uncorrectable forced Error test, which checks the ability of the ECC logic to detect and not correct double bit errors. This is accomplished in much the same way as the previous test, except that the check bit code used forces double bit errors instead of single bit errors. The data is read back and checked to be sure that it was not corrected. If the data was corrected an error message will be reported.

The moption has four arguments. The first three arguments are place holders if the *pascnt* argument is to be used. The *pascnt* argument has been discussed in the Memory Data Test section.

To abort the test and return to the test menu, enter q.

n . . . [pascnt]

Option n performs the EDC diagnostic write test, which tests the EDC chip's ability to detect and correct errors. To do this, the test writes a data pattern into memory that causes a syndrome code of all zero's. It then writes the diagnostic register of the ECC chip with a different check bit code. Next, the test writes the new check bit code into the ECC DRAM chips, using the diagnostic mode 1. Now, it enables error correction and reads the data from memory, which should cause an error. It reads the Syndrome register and checks the syndrome written there against the expected syndrome code, and they should match. If an error is detected it is reported. All 255 combinations of check bit codes that the EDC chip generates are tested.

The n option has four arguments. The first three arguments are place holders if the *pascnt* argument is to be used. The *pascnt* argument has been discussed in the Memory Data Test section.

To abort the test and return to the test Menu, enter q.

o . . . [pascnt]

Option o performs the Syndrome register check test, created due to the fact that the ECC tests will not generate all address combinations for the Syndrome register. The address of each write/read operation is written into the Syndrome register as long as no error has occurred, thus allowing the register to be tested. This test rotates a bit through each of the address lines of the Syndrome register, checking for opens and "stuck at" shorts. Data is written to a quad word address, the syndrome register is read and the address compared. The address is then shifted by 1 and the loop continues until all 22 address lines been checked. However, if an error is found, the Syndrome

register is displayed. This test is executed once per board when testing a 32 megabyte board.

The o has four arguments. The first three arguments are place holders if the *pascnt* argument is to be used. The *pascnt* argument has been discussed in the Memory Data Test section.

To abort the test and return to the test Menu, enter q.

p [adr] [size] . [pascnt]

Option p performs the ECC alternating pattern test. In the alternating pattern test the specified block of ECC memory is tested, using a data pattern that causes an alternating data pattern to be written into the ECC DRAM chips. First, the memory block is filled with data, error correction is enabled, then it is read back and the Syndrome register is checked for errors. If an error occurs, the syndrome and address are reported.

The data pattern that is written into the ECC DRAM chips follow. After each pass the data that is written into the ECC DRAM chips is inverted.

Example:

pass 1: a5 5a ...

pass 2: 5a a5 ...

Use the alternating pattern test to detect stuck at faults in the ECC DRAM chips.

The option p has four arguments. The first two determine the starting address and size of memory to test, and are described in the first section of *Option Menu*. The third argument is place holder. The last argument, *pascnt* has been discussed in the section *Memory Data Tests*.

To abort the test and return to the test Menu, enter q.

q [adr] [size] [comp] [pascnt]

Option q performs the ECC Diagonal pattern test. In this test, the specified block of ECC memory is tested, using a data pattern that will put a diagonal pattern in the ECC DRAM chips. First, the block of memory is written with the data pattern, error correction is enabled, and the data is read from memory. The Syndrome register is checked for errors. If an error occurs, the syndrome and address of the error are reported. This test can be executed with a data pattern that inverts the data in ECC DRAM chips.

The test pattern in the ECC DRAM chips is as follows:

pass 1: 01 02 04 08 10 20 40 80

pass 2: 02 04 08 10 20 40 80 01

The option q has four arguments. The address and size arguments have already been discussed in the *Option Menu* section. The third argument, *comp*, is a flag that, when set, complements the data that is written into memory. Enter 1 in place of *comp* if you want to set invert the data; enter 0 if you do not. The forth argument, *pascnt* also has been discussed in the section titled *Memory Data Test*. If you wish to stop the test while it is running, enter q.

r [adr] [size] . [pascnt]

Option r performs the ECC checker pattern test, which tests the specified block of ECC DRAM chips that writes the checker pattern into them. The data pattern is written to memory, error correction is enable, and the data is read from memory. The Syndrome register is checked for errors. If an error occurred, the syndrome and address of the error is reported.

The data written into the ECC DRAM chips is as follows:

pass 1: 0x00 0xff 0xff pass 2: 0xff 0x00 0xff pass 3: 0xff 0xff 0x00

The option r has four arguments. The address and size arguments have already been discussed in the *Option Menu* section. The third argument is a place holder for the *pascnt* argument. The forth argument, *pascnt*, also has been discussed and is found in the section titled *Memory Data Test*. For a better test of the ECC DRAM, set the number of passes to 3 or more.

To abort the test and return to the test menu, enter the q.

s [adr] [size] . [pascnt]

Option s performs the Refresh scrubbing test, which tests memory cell refresh scrubbing. The test first initializes memory with ECC on, then enables the error interrupt and scrubbing bit. It waits 20 seconds, and if it times out without an interrupt and the Syndrome register has no error in it, the scrubbing is good.

Next, the test disables interrupts and scrubbing, writes a bad ECC code to a memory location and then enables the interrupts and scrubbing. After a 20 second wait, if an interrupt occurred, and the syndrome register code is what is expected, the scrubbing did find the error. The test now checks the data location to see if it was corrected. If no interrupt occurred, an error is reported.

This test is executed once per board when testing a 32 Megabyte board. The time delay has been increased slightly to allow for scrubbing of 32 Megabyte memory boards.

The r option has four arguments. The *address* and *size* arguments have already been discussed in the *Option Menu* section. The third argument is a place holder for the *pascnt* argument. The forth argument, *pascnt*, also has

been discussed and is found in the section titled Memory Data Test.

To abort the test and return to the test menu, enter q.

1 [loop_count]

Entering 1 from the main menu provides opportunity to specify the number of times a specific sequence of tests is to be executed. For example, terminating a command line containing one or more user-specified tests with 1 5 executes all of the tests on that command line five times.

Option 1 accepts one command line argument. The *loop_count* argument is optional. Without it the test(s) on the command line are performed once. The *loop_count* argument specifies, in decimal, the number of times that the command line sequence is to be executed. The range of legal numerical values for the *loop_count* is 1 to 2147483647 or (0x7fffffff). However if an asterisk (*) is entered as the *loop_count* argument, the given test sequence will run forever.

- ? Option ? displays the Memory Data Test Menu's help display.
- [^] Option [^] returns the you back to the Main Menu.

Utility Menu

The Utility Menu has six options and shows utility functions that will aid in determining the functionality of the memory board(s) in the system. The tools are: fill memory, display a section of memory, read the CPU Memory Error Register, and Read the memory board Memory Enable Register and Syndrome register. The Utility Menu is shown below.

<pre>tility Menu Selections: f - fill d - display e - memory error register (cpu) s - read syndrome register ? - help ^ - return to main menu</pre>			
<pre>Selections: f - fill d - display e - memory error register (cpu) s - read syndrome register ? - help ^ - return to main menu</pre>	tility	y Menu	
<pre>f - fill d - display e - memory error register (cpu) s - read syndrome register ? - help ^ - return to main menu</pre>	Select	ctions:	
d - display e - memory error register (cpu) s - read syndrome register ? - help ^ - return to main menu	f -	• fill	
e - memory error register (cpu) s - read syndrome register ? - help ^ - return to main menu	d -	- display	
s - read syndrome register ? - help ^ - return to main menu	e -	- memory error register (cpu)	
? - help ^ - return to main menu	8 -	- read syndrome register	
* - return to main menu	? -	- help	
	• -	- return to main menu	
	Comma	and :	

£ [adr] [size] [pattern]

Option f is the Fill Memory utility, which allows you to fill a specified block of memory with a specified pattern. Memory can be filled with bytes, words, long words of the given data pattern depending on the data mode set.

The option f has three arguments. The *address* and *size* arguments have been discussed in the section, *Option Menu*. The *pattern* argument is the data pattern that is to be written in DRAM.

d adr size

Option d displays a specified section of memory on the console or terminal.

Data is always (no matter what the data mode) read and displayed a byte at a time. Each line of the display contains the hexadecimal address (always a multiple of 0x10 except for the first line if the specified block doesn't begin on a multiple of 0x10 boundary) followed by 16 bytes of data grouped in long words (by 4s).

In order to display memory on any board other than board "0", you should first go to the Option Menu and, using the m option, select the board from which you want to display the memory.

The option d has two arguments. The *adr* argument is the starting address of the section of memory to be displayed. This address should be between 0 and 0x7fff0. The *size* argument is length of data to be displayed and has the same range as the address argument.

The following is an example of the display.

100000: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 100010: 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

• Option e displays the Memory Error Register on the CPU board. The data that is displayed CE and UE. This is useful when the compare routine is disabled and ECC is turned on to speed up execution of the tests.

When the Memory Error register is displayed, it is displayed as a hex value.

Solution s displays the ECC Memory Enable and Syndrome registers when executed. It sets the last address of the syndrome code if no error occurred (or, in case of error, the address of the error), and it sets the CE bit. The syndrome code is either the last syndrome latched before the register was enabled or the first error occurrence after the register was enabled.

The ECC Enable Register and Syndrome register are displayed as hex digits. Following is an example of the display.

> ECC Enable register = 0x0240ffff Syndrome register, 0xc001200

Where the contents of the Enable register = board size 8 megabytes, board enabled.

The contents of the Syndrome register = syndrome code 0xc, address 0x2400, CE bit is zero.

? Option ? displays the Utility help menu.

B.15. Error Handling ECC Errors

ECC errors are handled separately from bus errors. ECC is now a non-maskable interrupt at level 7, rather than a bus error as before in the older architecture. The ECC handling in the hardware has been vastly improved in the current architecture.

	The hardware latches ECC errors synchronously as they occur (no cycle delays) and the processor is immediately notified. In addition, the virtual address con- taining the ECC error is latched in hardware as well as the syndrome code in which bit of the contents of the latched address is in error.
	This error occurs only when ECC is enabled during memory data tests:
	<pre>*** ECC error! : memory error reg= 0x<memory_error_reg></memory_error_reg></pre>
	The first line flags the error as an ECC error and displays the contents of the memory error register. The next line displays the syndrome register's contents. The last line displays the information saved on the stack by the MC68020 as it processes exceptions (an interrupt in this case).
ECC Test Error Messages	The following messages are displayed when an error has occurred during the ECC tests.
ECC Data Compare Error	The following message may be displayed during execution of the ECC Alternate, ECC Diagonal, and ECC Checker tests. The failing address is displayed along with the address that was read from the syndrome register (these should match), and the contents of the syndrome code. To determine what the code means use the table at the end of this section.
	This message is displayed when, during a read from a memory cycle where the syndrome register code is non-zero (error condition).
	test name failed @ addr> syndrome addr (saddr) syndrome (syndrome)
EDC Forced Error	The following message may be displayed during execution of the EDC Diag Read, CE forced, UE forced, and EDC Diag Write tests. The failing address is displayed along with the expected syndrome code, the read syndrome code.
	test name failed @ addr exp (wrdata) obs (rddata) xor (Wrdata ^ rddata)
	The message shown above occurs when the expected, forced syndrome code does not equal the syndrome code read form the syndrome register.
Refresh Scrub Errors	These errors occur during the Refresh Scrubbing test. The first one, No Interrupt means that an error condition was forced with the (level 7) inter- rupt turned on and the interrupt did not happen. The second one, No CE Mem Cntrl Reg, occurs during the same forced error condition where the CE bit in the Memory Error Control register was not set. The third error, No CE Syn- drome reg, occurs when the CE bit is not present in the syndrome register dur- ing the same forced error. The error messages look something like this:

	<i>test name</i> No Interrupt failed @ <i>addr</i> exp <i>expdata</i> obs <i>rddata</i> xor <i>expdata ^ rddata</i> .						
	<i>test name</i> No CE Mem Cntrl reg failed @ <i>addr</i> exp <i>expdata</i> obs <i>rddata</i> xor <i>expdata</i> ^ <i>rddata</i> .						
	<i>test name</i> No CE in Syndrome reg failed @ addr exp <i>expdata</i> obs rddata xor expdata ^ rddata.						
Bus Errors	Bus errors are trapped and a message is displayed as follows:						
	*** bus error! : 0xbus_error_reg sr=statusreg pc=progctr vss=vectoff&specstat @addr						
	The first line flags the error as a bus error and displays the contents of the bus error register. The second line displays the information saved on the stack by the MC68020 as it processes exceptions (a bus error in this case).						
Data Compare Errors	This error message is displayed for all of the Memory Data Tests. It is displayed when an compare error is found. That is, during a read compare operation the data read does not equal the data written. The address of the failure is displayed along the data written and the data observed. The message is displayed as shown below.						
	test name failed @ addr exp (wrdata) obs (rddata) xor (wrdata ^ rddata)						
B.16. Special Problems	At the time of this writing, when exiting to the PROM monitor from this diagnos- tic, using a $k1$ command causes problems. It is recommended that, in order to boot the operating system or any other standalone diagnostic, you first execute a k2 reset instead of a $k1$ reset.						
B.17. Replacing the Memory Board	If the ECC Memory Diagnostic is being executed in the field you determine that the memory board under test should be replaced, look at the first message after the menu display, Testing Memory Board X, where X is a number from 1 to 4. The jumper on the edge of the board determines what the board number is. The following table shows the jumper positions and what they mean.						

Memory Board	Jumper Position
	0 0
1	0 0
	0 0
	00
	0 0
2	0 0
	00
	0 0
	0 0
3	00
	0 0
•	0 0
	00
4	0 0
	0 0
	0 0
L	

B.18. Recommended Test Procedure

The recommended test procedure for minimal testing of the Sun-3/2xx memory boards is that you execute the following tests:

Checker Pattern Test - Memory Data Test Menu

EDC Diag Read Test - ECC Test Menu

ECC Checker Pattern Test - ECC Test Menu

These tests will give a brief confidence level of the memory data RAM (DRAM) chips and the addressing to the chips. They test the functionality of the Error Detection and Correction chips, and finally, the ECC DRAM chip's ability to store and read data from them. The tests listed above can be executed on all boards if they are in the system and if the board number has been selected (see Option Menu).

If you want to exhaustively test all the memory boards in the system, execute the default test from the Main Menu. This test has been described in the Main Menu *Tests* section. This option is useful for burn-in of the memory boards and exhaustive field testing.

B.19. Glossary

AMD

Advanced Micro Devices

Bootpath

Interface and bus logic from CPU to an I/O boot device

Cache

An associative, fast RAM between the CPU and main memory

CE

Correctable error

CPU

Central Processing Unit

DM0

Diagnostic mode 1 for EDC chip (write function)

DM1

Diagnostic mode 2 for EDC chip (read function)

DRAM

Dynamic Random Access Memory

EDC

AMD's 16 bit Error Detection and Correction unit

ECC

Error Checking and Correction, on main memory

I/O

Input and output, as for example, an input/output device

UE

Uncorrectable Error

RAM

Random Access Memory

Refresh scrub

Correction of single bit errors that are found during a refresh cycle

Video RAM

Memory that holds the video information that is display on the screen

B.20. Syndrome Decode Table

The following table defines which bit is in error or if the error was caused by a double bit error (UE) or multi-bit error. The table is read left to right. For example if the syndrome code in the syndrome register was CE, read down the first column until you find C0 then go across until you find 0E. This tells us that bit 0 is bad.

Syndrome Bits 7-4	<u></u>						Syn	drome	Bits 3	8 - 0					-	
	00	01	02	03	04	05	06	07	08	09	0a	0b	0c	Od	0e	Of
00	*	сх	c0	t	c1	t	t	m	c2	t	t	17	t	m	16	t
10	c4	t	t	18	t	19	20	t	t	21	22	t	23	t	t	m
20	CS	t	t	08	t	9	10	t	t	11	12	t	13	t	t	m
30	t	14	m	t	15	t	t	m	m	t	t	m	t	m	m	t
40	c16	t	t	m	t	m	m	t	t	m	33	t	m	t	t	32
50	t	m	34	t	35	t	t	36	37	t	t	38	t	39	m	t
60	t	m	56	t	57	t	t	58	59	t	t	60	t	61	m	t
70	62	t	t	m	t	63	m	t	t	m	m	t	m	t	t	m
80	c32	t	t	m	t	m	m	t	t	m	49	t	m	t	t	48
90	t	m	50	t	51	t	t	52	53	t	t	54	t	55	m	t
a0	t	m	40	t	41	t	t	42	43	t	t	44	t	45	m	t
ъ0	46	t	t	m	t	47	m	t	t	m	m	t	m	t	t	m
c0	t	m	m	t	m	t	t	m	m	t	t	1	t	m	0	t
d0	m	t	t	2	t	3	4	t	t	5	6	t	7	t	t	m
e0	m	t	t	24	t	25	26	t	t	27	28	t	29	t	t	m
f0	t	30	m	t	31	t	t	m	m	t	t	m	t	m	m	t

How to decode this table

* denotes no error detected

A number indicates bit number of the single bit in error

A t means that a two-bit error was detected

An m means that more than two errors were detected

Revision History

Dash Number	imber Date Comments					
10	November 16, 1987	FCS for 1.0 Release (Internal Only)				
11	December 21, 1987	First Draft for Release 1.1				
12	December 29, 1987	Beta Draft for Release 1.1				
13	May 20, 1988	FCS for Release 1.1				

