
1II1IIAPL*PLUS System
FOR THE VAX VMS ENVIRONMENT

Reference Manual

R.I •••• 1
August 1987

A PLUS*WARETM PRODua •••• 111111111111111 r I

STSC

111111 APL*PLUS System
FOR THE VAX VMS ENVIRONMENT

Reference' Manual

Release 1
August 1987

A PLUS*WARE™ PRODUCT •••• 111111111111111 1 1

STSC

This document was prepared to assist users of STSC's PLUS * WARE software
products; its contents may not be used for any other purpose without written
permission. The material contained herein is supplied without representation or
warranty of any kind. STSC Inc., therefore assumes no responsibility and shall
have no liability of any kind arising from the supply or use of this document or
the material contained herein.

Copyright © 1987 STSC, Inc.

10987654321

ISBN 0-926683-32-2

Printed in the United States of America.

All rights reserved, including the right to reproduce this document or any portion
thereof in any form.

APL * PLUS® and PLUS * W ARE® are registered trademarks of STSC, Inc.

IBM® and pc® are registered trademarks of International Business Machines
Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

V AX and VMS are trademarks of Digital Equipment Corporation.

Macinlosh is a trademark of Macintosh Laboratories, Inc.

Throughout this manual, trademarked names are used. Rather than put a trademark
symbol in every occurrence of a trademarked name, we state that we are using the
names only in an edilorial fashion, and to the benefit of the trademark owner, with
no inlenlion of infringement of the trademark.

Contents

1. Language Summary

1-1 APL Data and Arrays 1-1
1-2 Syntax 1-11
1-3 Primitive Functions 1-13
1-4 Operators 1-15
1-5 Data Input and Output 1-20
1-6 Types of APL statements 1-26
1-7 Structure of User-Defined Functions 1-29
1-8 Control of Execution 1-33
1-9 Execute, Scan, Domino, and Grade 1-38
1-10 Primitive Function and Operator Reference 1-54

2. System Commands

2-1 System Commands vs. System Functions 2-2
2-2 System Command Reference 2-2

3. System Functions, Variables, and Constants

3-1 System Functions 3-3
3-2 System Variables 3-4
3-3 Details of System Functions, Variables, and Constants 3-7

4. Workspace Functions

4-1 Introduction 4-1
4-2 Detailed Descriptions 4-2

Index

Chapter 1
APL Language Summary

This summary provides a general overview of the APL language, data
structures, primitive functions and operators, and user-defined functions.
If you are not already familiar with the APL language you should first
review the book AP LIs Easy!. which is included with your APL * PLUS
System. If you are familiar with APL, however, this chapter will give
you a good overview of the many features of the APL language.

System commands, distinguished by the leading right parenthesis (», are
described in Chapter 2 of this manual. System functions and variables,
distinguished by the leading quad (0) character, are described in Chapter 3.

1-1 APL Data and Arrays

Datatypes

One of the greatest strengths of the APL language is its handling of entire
arrays of data as single objects. Here is what you need to know about
these arrays and the data in them.

The APL language recognizes two fundamentally different datatypes:

• character data, which can include any of the 256 different symbols in the
character set

• numeric data, which is restricted to numbers.

Numbers can be subclassified by the ways they are internally represented.
See Internal Representation and Storage, later in this section, for details.

Data Constants and Variables

You can use either type of data directly in an APL statement or you can
name and store it for later use. Data used without named storage is called a
constant. Stored data is called a variable since you can re-use the name

Copyright © 1987 STSC. Inc. 1-1 Language Sununary

to store different values or even different types of data. You can
distinguish character constants from other objects by enclosing them in
single quotes (I); for example I C H ARA CT E R I. To include a single
quote in a character constant, type it twice in a row; for example,
I JOE I I S I. This technique enters one single quote (used here as an

apostrophe) so that the stored data contains only the five characters
JOEl S.

The rules for variable names (also called identifiers) follow.

• A variable name can contain any combination of the letters A through
Z, (either lowercase or uppercase), the digits 0 through 9, A and A.
(On some terminals the underscored letters are substituted for the
lowercase letters. For example, the lowercase letter "a" is displayed as
"A.". Note that on systems where lowercase letters are substituted for
underscored in identifiers, lowercase letters can appear only as data
elements in character variables.)

• A digit cannot be used as the first character in a variable name.

• The maximum length of a variable name is usually 77 characters
although it may be longer on some systems.

Variables are fonned by assigning values with the assignment arrow (+-).

A+-23 15 18 7.3
LASTANAME+-'MCMANN'

Data Elements and Arrays

An element of character data is a single character (letter, digit, or other
symbol); for example, a, A, 8, +, +-, ., or ~.

An element of numeric data is a single number, regardless of how many
characters are needed to represent it; for example, 9, 1 9, -1 9,
-19. 04,or 2. 3E-11 .

Collections of data elements are called arrays. In conventional APL, each
position or element of an array must contain a single character or number
all of one datatype; these are called simple arrays. In this

Copyright © 1987 STSC. Inc. 1-2 Language Summary

APL * PLUS System implementation, each position of an array (called an
item) can contain an array of any rank and datatype. These are called
nested arrays.

Nested arrays are a powerful extension to APL data storage since they
allow mixing data of different types in the same array, as well as
non-rectangular data structures.

A calendar is a good example of a nested table. The variable J U L Y 8 7
contains a mixture of data all organized neatly into one format

JULY 87
SUN MON TUE WED THU FRI SAT

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 B-DAY 23 24 25
26 27 28 29 30 31 *

The shape function (p) indicates that the variable has 42 items organized
into a 6 by 7 table.

pJULY87
6 7

The utility function, DISPLAY (available as DSHOW on some
systems), graphically illustrates what information is stored in each of the
items.

Copyright © 1987 STSC, Inc. 1-3 Language Summary

~------- -- - - ----------- - - - ---------------
.j. ->-- ->- - ->- - ->--

I I SUN I IHONI ITUEI IWEDI ITHUI IFRII ISATI
I '- - -' '---' '---' '--- , ,---, ,---, t __ _ ,

I. e . .e. . e.

II I I I I I 1 2 3 4
I '-' ,- , ,- ,
I
15 6 7 8 9 10 11

112 13 14 15 16 17 18
I -+---

119 20 21 IBDAYI 23 24 25
,----,

126 27 28 29 30 31 *

,~-------------------------- - -------------

Arrays can be of various shapes and ranks. The shape of an array tells the
dimensions of that array (the length of the array along each coordinate).
For example, 6 lOis the shape of a 6- by lO-item table; the shape of a
lO-item list is 10 ; and the shape of a 2-unit 3-dimensional cube is
2 2 2.

The rank of an array is the number of coordinates it has (how many
numbers are needed to specify its dimensions). Arrays can be classified as
follows:

Name Rank

Scalar o

Vector

Copyright © 1987 STSC. Inc. 1-4

Description

An array with a single item
is called a scalar or element and
has no coordinates.

A linear (or one-dimensional)
array of elements is called a
vector or list and has a single
coordinate.

Language Summary

Matrix

n-dimensional
array

2

n

A two-dimensional array, such
as a table of numbers, is called a
matrix or table and has two
coordinates.

A three-dimensional array, such
as a set of matching tables (for
example, sales tax tables for
each state) has rank 3 and so
forth, up through the maximum
allowed rank of 63.

A rank 3 array displays as a series of matrices (rank 2 arrays) with one line
slcipped between them. Similarly, a rank 4 array displays as a series of
rank 3 arrays with two lines slcipped between them.

Sub-arrays can be extracted by using functions such as compress (/),
drop (.l.), index [;] ,take (t), and pick (::>) •

EmptyA"ays

Arrays or items of an array are empty if they have no elements. The shape
of an empty array contains one or more zeros (indicating no length along
the corresponding coordinate). For example, finding the shape of matrix M
shows that it is empty because it has no rows:

pM
o 12

The shape of a scalar is an empty vector; the rank is O.

o

pJULY87[4;4]

ppJULY87 [4; 4]

Empty numeric or character arrays can result from executing various
functions. Empty vector constants can be included in APL expressions;
for example:

A+-"pA

Copyright © 1987 STSC, Inc. 1-5 Language Summary

or stored in a variable name just like any other data array; for example:

ECV+-' ,

Empty character vectors are different from empty numeric or Boolean
vectors. Empty vectors can be created using the following expressions:

Character
Numeric

, ,
10

Empty scalar arrays do not exist because scalars are rank 0 and have no
coordinates (and therefore cannot have a coordinate of 0). Scalars always
have one data element

Empty arrays are useful in APL. For example, they can be the starting
value of a variable that grows in successive executions of a program or in
successive iterations of a loop within a program. In many other
programming languages, you must use special tests to detect empty arrays
and avoid potential errors. Typical APL statements will work regardless of
whether an array is empty.

Strand Notation

Strand notation is a means of entering vectors, either simple or nested.
Three kinds of constructs appear in strand notation: constant numeric
values such as 12 or 1 2 3, constant character values such as ' A ' or
, HIE RON Y MUS B 0 S C H ' , and expressions such as
(P ICKLExJU ICE). When two or more of these are adjacent, each is
interpreted to be an item. Constructs that evaluate to simple scalars
remain simple.

Strand notation is an extension of the familiar notation used to enter a
constant numeric vector. A position can consist of a number or character,
an array of any valid rank or shape, or an expression. An expression may
need to be enclosed in parentheses to limit the scope of the functions
within it.

Note that stranding occurs only when two or more values are adjacent.

Copyright © 1987 STSC. Inc. 1-6 Language Summary

All of the following statements (excluding the initial assignment) return
three-item vectors. To better illustrate the structure, the display form
(using DSHOW or a comparable utility function) is also provided after
some of the examples.

A-1 0 B-2 0 C-3 0 D-1 2 3
ABC

123
DISPLAY ABC

.~----.

11 2 31
....... ----,

A B D
1 2 123

P A B D
3

DISPLAY A B D
.~----------.

I ----.1
112112311
I ,-----'1
,~----------,

A B Cx2
246

DISPLAY ABC x 2
.-+----.

12 4 61 .,...,---_.
A B D + 10

11 12 11 12 13
DISPLAY A B D + 10

.~---------------.

I -------. I
111 12111 12 1311
I ,--------'1
,~---------------,

A B (D+10) -
1 2 11 12 13

(1 9 4 1) 4 'YOU'
1 9 4 1 4 YOU

Copyright © 1987 STSC, Inc. 1-7 Language Summary

3
p(l 9 4 1) 4 'YOU'

DISPLAY (1 9 4 1) 4 'YOU'
~--------------- -

1. -+ - ----- . .-+--.1
I I 1 9 4 1 I 4 I YOU I I
I ''''------, ,- - -, I
'E----------------'

A 'SNARK' 3.14
1 SNARK 3.14

DISPLAY A 'SNARK' 3.14
-to-------------

I :-+----. I
11 I SNARK I 3.14 I
I ,-----, I
'E------- - -----,

(2 3) 4 5
2 3 4 5

DISPLAY (2 3) 4 5
-+--------

I . -+--. I
I 12 31 4 51
1'---' I
'E--------,

5 '=' 'V'
5 =V

DISPLAY 5 '=' 'V'
-+- --

15 =VI (Simple heterogeneous array)
'+---'

5 '=V'
5 =V

DISPLAY 5 '=V'
-+ - ----

I . -+-. I
15 I =VI I
I ,--, I
'€-----,

(Heterogeneous nested array)

The expression A B D [2] is ambiguous. Some APL systems
interpret this as

AB(D[2J)

Copyright © 1987 STSC. Inc. 1-8 Language Summary

giving the result

122

Others might interpret it as

(A B D) [2]
giving

2

Use parentheses to clear up the ambiguity and ensure that such expressions
produce the desired result

Strand Nollltion Assignment

Strand notation assignment allows more than one variable to be assigned
in one operation. For example:

C D E-R

Each variable to the left of the assignment arrow receives the
corresponding item of the vector to the right The right argument is a
vector with as many items as there are names to the left of the assignment
arrow. A scalar or one-item vector right argument is extended into a vector
with one item for each variable name on the left.

Caution: The syntax of strand assignment in current APL * PLUS
Systems differs from APL2 which requires parenthesis around the list of
names to the left of the assignment arrow. For example,
(A B C) -1 2 3. Future versions of the APL * PLUS System may

be changed to use this syntax.

Some examples follow.

1
2
3

ABC- 1 2 3
A 0 B 0 C

Copyright © 1987 STSC, Inc. 1-9 Language Summary

A B C +-4
A 0 B o C

4
4
4

A B C+-cl 2 3
A 0 B 0 C

1 2 3
1 2 3
1 2 3

lpA
1

A B C+-'YOU' 'ARE' 'OUR BUSINESS'
ABC

YOU ARE OUR BUSINESS

Now, let's exchange the values of A and C:

A C+-C A
ABC

OUR BUSINESS ARE YOU

Internal RepresentatWn and Storage

Data occupies memory space in the computer. Even constants are
internally represented in memory. Each simple element of an array
requires the following storage.

Boolean
Character
Integer
Floating Point

1 bit
8 bits

32 bits
64 bits

In additon, some overhead is associated with each variable. The system
function 0 SIZE will report how much memory space a particular
variable consumes.

Note that storage of data can vary from one system to another.

Copyright © 1987 STSC, Inc. 1-10 Language Summary

The primitive functions and those system functions and variables that
require integer data as arguments will ignore tiny differences from true
integral values.

2 . 9 9 9 9 t 1 would produce the same result as 3 t 1 if the system fuzz is
.0001, but a DOMAIN ERROR if the system fuzz is .000001. (Note:
This is not the same as OCT, which is used in computing scalar primitive
results.)

1-2 Syntax

The word syntax means "the correct order or arrangement of the parts to
form a valid whole." In English, the whole is a sentence or a phrase. In
APL, the whole is a statement or an expression.

APL syntax is the description of how data can be used with functions and
operators to produce valid APL statements or expressions. The system
reports syntax problems with the message:

SYNTAX ERROR

The system then prints the faulty APL statement and positions a caret (1\)

beneath the part of the statement that is in error.

There is a good analogy between English grammar and APL syntax.

English APL
Noun Data
Verb Function
Adverb Operator
Phrase Expression
Sentence Statement

Types of Functions

Functions tell the system what to do with data objects. These functions
can be

• primitive APL functions (an intrinsic part of the language)

Copyright © 1987 STSC. Inc. 1-11 Language Summary

• system functions (particular to each implementation of the language)
• user-defined functions (programs you write).

Each of these function types uses the same set of APL syntactic structures.

The objects of any given function can be:

• to the left of the function name
• to the right of the function name.

These objects are the formal arguments of the function. An APL
function can have at most two formal arguments.

APL has four kinds of functions:

Function Type

niladic

monadic

dyadic

ambivalent

Number of
Arguments

o

Example

OFNAMES
FOO

+1
REPEAT 10

2 2x3
'LAST' OVER 'FIRST'

10r2 pA
2pA
PRINT REPORT
1260 PRINT REPORT

When a function is called with an incorrect number of arguments, the
result is an error or possibly incorrect results.

Because APL has many more primitive functions than the keyboard has
keys, two techniques are used to represent them:

• The same symbol can represent one monadic function and one dyadic
function. The system can always determine which function to perform

Copyright © 1987 STSC. Inc. 1- 12 Language Summary

by the number of arguments. You must be sure which function you
want, since using the wrong number of arguments may perform a
different function instead of producing an error message.

• Operators can take one or two functions and apply them differently to
the data arguments (See Section 1-5 for more information).

Explicit Results

The explicit result of an APL function is the value produced by executing
the function. The value is available for further use by another function or
for storage. In the example 5 + 4 + 3, the result of the fllSt addition (4+3)
is available for immediate re-use in the second addition (5+result). This
re-usability distinguishes an explicit result from implicit output (see
Section 1-6).

While most system functions have an explicit result, some do not. For
example, OF UNT I E closes a component me and removes its name from
the list of those currently in active use but returns no value. Many
user-defined functions also have no explicit result

1-3 Primitive Functions

A function produces a result according to specific rules that act on
argument data. A primitive function is a function that is built into the
APL * PLUS system.

Scalar Functions

A scalar function is a function whose data manipulation rule works with a
single element at a time. When array arguments are used, the result is the
repetition of the scalar operation for corresponding elements in the arrays.
For example:

because 0 -12= -12, 0 - 5 = -5, and 0-20= -20

Copyright © 1987 STSC. Inc. 1- 13 Language Summary

The primitive scalar functions include all of the simple arithmetic
functions and several less familiar function

Scalar dyadic functions take both a left and a right argument. They accept
only data arrays of identical shape, with one important exception: either of
the argument arrays can have only one element (the other argument can be
of any rank). In this case, the single element (or singleton) is
"extended" and used with each element of the other argument. This
extension is illustrated in the following examples for the addition function,
but applies to all the functions.

1 2 3 + 10 20 30
11 22 33

1 2 3 + 10
11 12 13

1 + 2 3p10 20 30 40 50 60
11 21 31
41 51 61

1 2 3 + 10 20
LENGTH ERROR

(3 on left, 2 on right)

1 2 3 + 10 20
1\

Non-Scalar Functions

Non-scalar functions, sometimes called mixed functions, do not follow the
matching argument rules for scalar functions. Non-scalar functions have
various rules for the shape and values of their arguments and results.
Many of these functions select or restructure the data without changing the
data values by computation, as shown in the following examples.

The reshape function (p) creates a new array with the dimensions specified
in the left argument using the data in the right argument.

1 2 3
456

MAT ~ 2 3 p1 2 3 4 5 6
MAT

Copyright © 1987 STSC. Inc. 1- 14 Language Summary

The catenate function (•) joins two arrays specified by the arguments.
You can specify the coordinate along which to join multi-dimensional
arrays.

1 2 3.9 8 7
1 2 3 9 8 7

1 2 3. [1] MAT
1 2 3
1 2 3
4 5 6

1 2.MAT
1 1 2 3
2 4 5 6

1 2 3.MAT
LENGTH ERROR

1 2 3.MAT
1\

In the last example. the LENGTH ERROR occurred because the
last coordinate is the default for catenation. In this case. the function
wants to add a new column to the matrix. The vector has three elements.
but the matrix has two rows. so the new column cannot be constructed.

The replicate function (f) copies the elements in the right argument the
number of times specified in the left agrument.

123 / 4 5 6
4 5 5 6 6 6

1 0 1 2 1 2 2 / 'CHOMITE'
COMMITTEE

1-4 Operators

Operators produce a new function by modifying the actions of a dyadic
function. An operator is essentially a function that takes another function
or functions as its argument(s). Following are descriptions and examples
of four operators: reduction. inner product. outer product, and each.

Copyright © 1987 STSC. Inc. 1-15 Language Summary

Reduction

The reduction operator (I) allows you to perfonn a function along a
dimension of an entire array. The process "reduces" the rank of the data by
1. In reduction, APL conceptually inserts the function to the left of the
operator between elements along a dimension of the array.

+/10 20 30
60

10+20+30
60

x/l0 20 30
6000

+/2 3pt6
6 15

.I'MARES' 'EAT' 'OATS'
MARESEATOATS

Inner Product

The inner product operator (.) operates on two functions to produce a
derived dyadic function that requires the last dimension of the left argument
to be equal to the first dimension of the right argument. The right
function is applied first and the result is reduced using the left function.
For vectors, A + . x B is equivalent to + 1 A x B. For matrices, + • x is
used to do matrix multiplication.

MATI
1 2 3
4 5 6

MAT2
7 8
9 10

11 12

Copyright © 1987 STSC, Inc. 1-16 Language Summary

MAT1 +. x MAT2
58 64

139 154

(that is, 64 = + / 1 2 3 x 8 10 12)

Outer Product

Each

The outer product operator (. .) allows you to generate all possible
combinations of the left and right arguments, using the function to the
right of the operator. In the following examples, outer product is used to
generate a multiplication table.

VEC1 +- t5
VEe 1

1 2 345

VEC2 +- 5+VEC1
VEC2

6 7 8 9 10

VEC1 •• x VEC2
6 7 8 9 10

12 14 16 18 20
18 21 24 27 30
24 28 32 36 40
30 35 40 45 50

The each operator (..) applies a function to the items of its argument or
between the items of its arguments to produce the items of its result The
display form of the object is provided for illustration.

1 2 3 p .. 4 5 6
45566 6

DISPLAY 1 2 3 p- 4 5 6
.~---------- - -----.

1.-.. --- .. -----. I
I 4 5 5 666 I
1'-' '---' ,-----'1
'c----------------,

Copyright © 1987 STSC, Inc. 1-17 Language Summary

1 2 3 ,"4 5 6
1 4 2 5 3 6

DISPLAY 1 2 3 - 4 5 6
.~---- - -----------.

I .~-- .. ~-- __ ~--_ I
11141125113611
1'-- - ' '- - -' '---'1
,~ - ---------------,

R-(c2 3 5),c7 11 13
R

2 3 5 7 11 13

DISPLAY R
~-----------------

- ~---- . . ~------. I
1235117111311

1'------' ,----- - -'1
,~-----------------,

$-R
5 3 2 13 11 7

$4l-R
13 11 7 5 3 2

User-Defined Functions Used wiJh Operators

Powerful· array-oriented control structures are provided for user-defmed
functions called by operators. This new feature can also be used to explore
the behavior of an operator, as in the following example.

v Z-L MINUS R
[1] Z-L-R
[2] ,'12 , < ->,12,< =>,12' DFMT 1 3 pL R Z

v

2

5 MINUS 3
5 - 3 = 2

-/14

Copyright © 1987 STSC. Inc. 1-18 Language Summary

MINUSI14
3 - 4 = -1
2 --1 = 3
1 - 3 = -2
-2

The next example builds a five-item vector, where each item is a two-item
vector. Each two-item vector is used as an argument to the DFREAD
function. The result is a five-item vector (FILE), where each item is a
component read from the file.

FILE-OFREAD- 0-2 ,- 15
2 1 2 2 2 3 2 4 2 5

Operator Sequences

Operators have a long left scope and a short right scope. An operator takes
as its left argument the function or derived function to the left. Parentheses
can be used to limit the scope in the usual way. An operator takes as its
right argument only the frrst function to its right. Parentheses may be
necessary to lengthen an operator's right argument For example,

(12)0.(,") (10 20) 30
1 10 1 20 1 30
2 10 2 20 2 30

DISPLAY (1 2)0.(,-) (10 20) 30
~----------------------­

J.. -+------------. ' ------
11.-+--- .. -+---. I 1.-+---. I
11111011120111113011
11'''----' ' ---'1 1' ---'1
I ,~------------, ,~-----,

I. -+------------. . ------.
I I . -+- - - . . -+- - -. I I. -+- - - . I
1112 101 12 2011 112 3011
11' ---' ' ---'1 1' ---'1
I ,~------------, ,~------

,~-----------------------

Here the operator is o! ,where/is the derived function built with the each
operator (, ..).

Copyright © 1987 STSC, Inc. 1-19 Language Summary

In the following example, the each operator takes as its left argument the
derived function plus-reduction (+/).

+/- (1 2) (3 4) (5 6)
3 7 11

1-5 Data Input and Output

You can move data into and out of the active workspace in several ways:

• You can use the APL input and output functions described in this
section in an APL function or in immediate execution mode.

• You can enter constant data from the keyboard in either immediate
execution mode or function definition mode.

• You can move data in and out of APL * PLUS component files .

• You can use auxiliary processors to pass data between the active
workspace and operating system files.

Evaluated Input

You can use the explicit result of evaluated input immediately within a
statement or you can assign the result to a variable. When 0 is executed,
the prompt 0 : appears on the screen in columns 1 and 2, with the cursor
waiting in column 7 of the next line for input. You can enter any valid
APL statement; it will be evaluated and its result will be returned as the
result of the input request. The following examples show useful and
correct responses for evaluated input.

0:
75.3 Enter a scalar.

0:
2 -5 7.56 Enter a vector.

0:
10Xl20 Enter a calculation.

Copyright © 1987 STSC. Inc. 1-20 Language Summary

0:

0:

0:

0:

DATAVARIABLE

OFREAD 5 7

'CHARACTER DATA'

Enter a variable containing data.

Enter data stored in a ftle

Enter a character constant.

End this program execution.

If the expression does not return a value or an error occurs, the prompt will
reappear:

0:
NOTt.PRESENT

VALUE ERROR
NOTt.PRESENT

0:

If you enter a sequence of statements separated with diamonds (0) in
response to the 0 : prompt, all statements are executed and the value of
the last statement (the rightmost statement) is the explicit result of the D.
(See Compound AP L Statements in Section 1-6). .

0:
'DFILE' OFTIE 10 0 OFREAD 10 2

Character Input

APL requests character input with a quote-quad (I!I) and returns it as the
explicit result. This type of input is also called quote-quad input. You
can assign the result to a variable, or you can use it immediately without
assignment (as in -+ (, Y , = 1 t I!I) P YES). The input resulting from I!I
is always a vector. If you do not enter any characters before pressing
ENTER, the vector will be empty.

The I!I accepts, but does not execute, any character sequence, even if it
looks like an APL statement or a system command. The result vector
contains exactly what was typed as input and displayed on the screen, up to
but not including the newline character.

Copyright © 1987 STSC. Inc. 1-21 Language Summary

When the rJ is executed. the only prompt it displays is a cursor. User
entry begins wherever the cursor is located. The cursor is located at the
left edge of the display unless the request for character input was preceded
by a character prompt issued by the same program. When a character
prompt appears on the same line. it is included in the explicit result (on
some systems. the prompt is replaced by spaces or the contents of OF R).

You can interrupt the executing program requesting character input by
typing 0 - backspace - U - backspace - T. and then pressing Enter; or by
pressing the key that is defmed to have this behavior.

Implicit Output

The calculated explicit result of an APL statement is automatically printed
unless it is assigned to a variable.

More precisely. implicit (or default) output occurs from executing every
APL statement when:

• the last executed function produced an explicit result
• the last executed function is not assignment (-) or indexed assignment

([J -).

All the primitive functions and operators used with them except branch (-+)
produce explicit results. Many system functions also produce explicit
results (see Chapter 3 of this manual).

An APL statement consisting of a single variable name causes implicit
output of the data associated with the variable.

Most output from APL programs uses the implicit output syntax. shown
in the following examples.

I - 14

Ix2
2 4 6 8

Copyright © 1987 STSC. Inc. 1-22

Result is assigned; no output.

Result is not assigned; output
shown.

Language Surrunary

I
1 2 3 4

B[3]+-10 x +/I

4 1 , I
1.0 2.0 3.0 4.0

1.0
2.0
3.0
4.0

D+- , F 4 . 1 ' OF MT I

'F4.1' oFMT I

Result is not assigned; output
shown.

Result is index assigned; no
output.

Result is assigned; no output.

Result is not assigned; output
shown.

Result is assigned; no output.

Result is not assigned; output
shown.

The output is displayed according to the following conventions:

• Character data is not changed-its arrangement is the same, character by
character, column by column, as it is in the APL scalar or array. If the
data contains characters such as newline or linefeed characters (oTCNL
or oTCLF), these will cause their usual effect on the display.

• Each element of numeric data is formatted according to the print
precision (0 P P) in effect, with the rows and columns of matrices
preserved.

• The rows of data resulting from the preceding step are displayed within
the print width (oPW) in effect. If more than one line is needed to
display a row of data, all lines after the flrst line will be blocked to flt
within oPW columns.

• For arrays of rank greater than two, the default output inserts blank lines
between submatrices (formatted as described above) to indicate the higher
coordinates.

Copyright © 1987 STSC, Inc. 1-23 Language Summary

Since matrices always have one line of output for each row, a matrix with
no rows prints no lines. You can use this behavior to suppress incidental
implicit output that a function might otherwise produce as it executes
some part of its task; for example:

o 0 P ODL 5

yields no output.

Requested Output with Trailing Newline

To display data produced by evaluating an expression, using the same
display rules as for implicit output, use the following function.

o - expression

You can use this output syntax to display an intermediate value in an
expression or statement. This technique can be useful in debugging; for
example:

10 43
OFREAD O-TN , CN

APPLES
ORANGES
BANANAS
PEACHES

Requested Output without Trailing Newline

Show file selection.

To display the result of an expression without an automatic newline after
the data, use the following function.

!!I - expression

This technique allows the results of more than one expression to appear on
the same line; for example:

DATE - 1982 0 X - 56 . 1
~-DATE 0 ~-' RECORD IS ' 0 ~-Xx2 0 ' MILES.'

1982 RECORD IS 112.2 MILES.

Copyright © 1987 STSC. Inc. 1-24 Language Summary

Input on Same Line as Character Prompt

You may want to accept input on the same line as a prompt supplied by your
program. Quote-quad (fI) input does not supply a prompt of its own.
Implicit output and quad (0) output are both followed by a newline character
(OTCN L), causing the input to be accepted at the left margin on a new line.

To display output and input on the same line, use the following pair of
statements.

fI - output 0 input - fI

Note that output or an equal number of blanks is included as part of the result
of the character input (input). To avoid this side effect, use the statement
OARBOUT 1. 0 to clear the output buffer as in the following example.

f1-'COMPANY NAME IS 'OOARBOUT1.00CN-f1
COM PANY NAME IS _ The _ represents the cursor.

You then complete the sentence.

COMPANY NAME IS STSC, INC.

CN
STSC, INC.

pCN
10

In the preceding syntax, output can be the result of any expression. The
righthand statement can be any statement containing a f1; for example:

[15] Q-'IS THIS A NEW CUSTOMER?'
[16] f1-Q, , [Y N] '0 OARBOUT 1. 0
[17] -<'Y'=ltfl)pY3

Copyright © 1987 STSC, Inc. 1-25 Language Summary

When lines [15 J through [1 7 J are executed, the prompt and reply look
like:

IS THIS A NEW CUSTOMER? [Y NJ Y

1-6 Types of APL Statements

APL has only five types of simple statements - far fewer than most
programming languages. Three of them (assignment, branch, and implicit
output) are executable; two (function header and comment) are non-executable.

The principal part of all APL statements is an expression. An expression is
a sequence of data constants, data variables, primitive APL functions and
operators, system functions, and system variables. The order of this sequence
must conform to the syntax rules of each function and operator used, as
explained in this chapter and in Chapter 3. The simplest expression is a
single data object. An expression can be a part of a larger expression; if it is
not, it is called a statement.

Executable APL Statements

The three types of executable statements are

• the assignment statement, whose leftmost function is assignment; for
example, Y 4-X * 2

• the branch statement, that begins with.... for example, LAB ELl

• the implicit output statement, including all executable APL
statements that are neither assignment statements nor branch statements;
for example, 2 + 3 .

Non-Executable APL Statements

The two types of non-executable APL statements are

• the function header (see Section 1-8)

Copyright © 1987 STSC, Inc. 1- 26 Language Summary

• the comment statement.
The comment statement begins with the lamp symbol (A) and continues
to the end of the line on which the lamp symbol appears. Use the
comment statement in your programs to explain or document them. The
A ensures that the remainder of the line is not executed. Consequently,
unmatched quotes, parentheses, and square brackets after a A cause no
problems. Additional A symbols, V, ¥, or ¢ are also viewed as part of
the text of the comment.

In immediate execution mode, comments can be used to annotate your
terminal session.

A A that is enclosed in quotes as part of a character constant does not
begin a comment statement.

Compound APL Statements

More than one APL statement can occupy a line. The diamond character
(¢) separates two statements on the same line. On some terminals, the
diamond is represented by the "hash" symbol (#). A compound APL
statement is a line containing two or more simple APL statements. (A
function header cannot occur in a compound statement.) A comment
statement, if used, must be the last statement on the line. For example:

This is a compound statement.

When multiple statements occur on the same line, they are executed in the
order of appearance from left to right. Do not confuse this order with the

order of evaluation within each statement, which is from right to left. For
more details, see the following subsection and Section 1-8.

A compound statement can be used as a single line in a function and can
then be preceded by a label set off by a colon (:), but the label is not
considered to be a part of the statement. You cannot use colons within a
statement, except as characters within quotes or in comments. For more
details, see Section 1-9.

Copyright © 1987 STSC. Inc. 1-27 Language Summary

Order of Execution

Often an APL expression contains more than one function. APL
expressions always execute the rightmost function ftrst, unless the order is
overridden by parentheses. The following example illustrates this order of
execution.

7-5-3
5

First. 5 - 3 is performed. Its explicit result (2) is used as the right
argument for the remaining subtraction. The entire expression is read as
"seven minus the difference between ftve and three." The left argument,
therefore, is simply the nearest single data object named immediately to
the left of the function. In our example, the 3 was subtracted from the 5,
not from the difference of 7 and 5.

In larger Or more complex left arguments, you can use parentheses to
enclose an expression to be evaluated before it is used. The parentheses, in
effect, make the result of the enclosed expression a single data object that
must be evaluated before use; for example:

(7-5)-3

Similarly, an indexed variable (or expression) is evaluated before being
used as an argument, thus forcing evaluation of any expression in the
indexing brackets ([J).

This "right-to-Ieft" order of execution rule applies to all functions: scalar
and mixed, primitive, system, or user-deftned. The following examples
illustrate the order of execution.

2,3p10.20-1
2 10 19 10

(2.3)p(10.20)-1
9 19 9

Copyright © 1987 STSC. Inc. 1-28 Language Summary

19 9 19

(2,3p10,20)-1
1 9 19 9

2,(3p10),20-1
2 10 10 10 19

1-7 Structure of User-Defined Functions

The. APL language supports the creation of user-defmed functions, also
called programs, routines, or subroutines. A user-defined function consists
of a series of one or more APL statements that have been recorded under
one name and that can be used by simply typing the name along with any
needed input arguments. The series need not be executed in its entirety,
but can be selectively executed by testing and branching. This technique
also allows sections of a program to repeat or loop.

The elements of a function definition are

• a header, which defmes the syntax of the function, identifies the local
names of the left and right arguments and explicit result, and defines
other local identifiers protected from possible conflict with more global
names

• line numbers and labels to represent them, either of which can be used
with branching to control the flow of execution (see Section 1-9)

• the body of the function, made up of numbered function lines,
consisting either of executable APL statements or of comments for
clarity and documentation (see Section 1-7)

• local identifiers, meaningful only within the function or functions called
by the function

• a v, which signifies the closing or end of the function, or a ~,which
locks the function defmition from further view or changes, even by its
owner.

Copyright © 1987 STSC, Inc. 1-29 Language Summary

System commands cannot be executed as part of a function definition.
Function definition mode prompts cannot be incorporated in a function.

The Function Header

The header line of a function is the fIrst line of the function definition that
is entered or displayed. It determines the syntax for calling the function ,
but is not itself executed. The header always includes the function's name;
anything else is optional. The syntax is specifIed in the header by what
surrounds the function's name; for example:

vBEGIN Niladic function, no explicit
result.

v RE S SQUARE NUM Monadicfunction, explicit
result.

v NUM RAISE DTO EX P R Dyadic function, no explicit
result.

In general, user-defmed function header syntax is

result I functionname r;lvi ;lv2;lv3 . ..

result
I
functionname
r
lvi, Iv2, and Iv3

explicit result
left argument
name of the function
right argument
local variables

The result, function name, argument names, and local variable names
must be different

User-defmed functions need not have two arguments; they can be monadic
or niladic. They also need not return an explicit result, in which case you
would omit "result " from the function header.

Dyadic (two-argument) user-defmed functions are also ambivalent. This
means that the left argument is optional. If the function is used without a
left argument, the variable I is undefined. The following function

Copyright © 1987 STSC. Inc. 1- 30 Language Summary

MIN U S emulates the ambivalent primitive function - .

v R A MINUS B
[1] -CO#DNC 'A')pDYADIC
[2] A"" 0
[3] DYADIC: R A-B

V

1 MINUS 2
-1

MINUS 3
-3

When an incorrect number of arguments is supplied to a user-defmed
function, the result is often a S Y NT AX ERR 0 R.

The Explicit Result

If the header begins with an assignment, the function returns an explicit
result. This result will be whatever value is stored in the variable to the
left of the in the header at the time that function execution terminates.

The name used for the expliCit result within the body of the function has
no initial value when execution begins, even if a variable by the same
name exists outside the function in the global environment.

If the function exits before the result variable is assigned, a VAL U E
ERR 0 R will occur if the function result is required in the calling
environment.

Arguments of a Defined Function

A name occuring before the function name but after the assignment (if
any) is the left argument. A name occuring after the function name is the
right argument. They represent the values that will be used in those
positions when the function is called. The values used beside the function
name when it is executed will be the initial values assigned to these
arguments when they are used in the body of the function. The arguments
are also considered local variables,and are distinct from objects in the
global environment that may have the same names. The local variables

Copyright © 1987 STSC. Inc. 1-31 Language Summary

cease to exist upon termination of the function execution.

Local Identifiers

You can create other local identifiers by placing those names in the
function header. They can appear anywhere after the defmition of the
function's syntax, and must be separated by semicolons.

All identifiers in the header (except the function name itself) are local, and
do not have the same meaning in the global environment that they do
within the function. The global objects that are unavailable from within
the function are said to be shadowed. All identifiers referred to in the
body of the function that do not occur in the header (except labels) are
global. Assignments made to them survive function execution.

Local identifiers can be used for:

• user-defmed local variables (including the arguments and explicit result)

• labels

• user-defmed local functions created using ODE For OFX within the
function

• localized system variables (changes to their values do not survive
termination of function execution)

• variables global to sub-functions.

Lines of a Defined Function

Each line of a defined function consists of an APL statement or comment.
The lines are numbered automatically by the function editor, and may have
labels between the line number and the statement A label remains with
the APL statement or comment it begins, even if the lines are renumbered.
Labels are therefore a good way to refer to a particular line of a function
when branching (see next section). Labels are variables local to the
function in which they are defined and have a value equal to the line
number of the line on which they are found.

Copyright © 1987 STSC. Inc. 1-32 Language Summary

Comments can start anywhere on the line, but once the A symbol has
appeared, the rest of that line becomes part of the comment. Thus,
comments beginning A V are possible, and are called public comments (see
OCRLPC in Chapter 3).

1-8 Control of Execution

The lines in a user-defined function are numbered in ascending order from
top to bottom and, in the absence of a branch, will be executed in numeric
order. The system variable OL C contains the line number of the currently
executing line.

The function and line being executed are tracked in the state indicator, and
can be examined with) S I, or) SIN L. The state indicator shows the
name of the user-defmed function and, in square brackets, the number of
the line that is being executed or that is suspended. It does not show
which statement on the line is executing if the line has multiple
statements.

Suspended functions are those that have stopped because of an error or
an interrupt They are marked in the state indicator by a star. Pendent
functions are those that have called a subfunction that has stopped.
They appear in the state indicator without a star. The execute or evaluated
input primitives will appear in the state indicator as t.and 0 if a function
they call suspends. (See Section 1-10.)

A call to a user-defmed function interrupts the calling function statement
and control goes to the called function until its execution is complete.
The state indicator adds a new top line to the previous display. This new
line shows the name of the called function and identifies the line that is
executing or suspended. Thus, there is more than one line in the state
indicator if it is displayed or examined under program control while the
second function is executing. The top line disappears when a function
named in that line finishes its execution, and control passes back to the
line of the function that called it.

Copyright © 1987 STSC. Inc. 1- 33 Language Summary

A function that calls itself directly or indirectly is recursive. A recursive
function should be coded with a branch test so that it does not call itself
again every time it is called. If too many recursive calls are made, the
state indicator fills as it tracks them, finally producing an error message.

The execute function (~) and evaluated input (D) can conditionally execute
simple or compund statements. While they are executing, the state
indicator shows a line containing ~ or 0 (see Section 1-10).

A stop can be set on any line of an unlocked function using a stop vector

result +-linenumbers DSTOP functionname

or on some systems,

S I:. function name +- linenumbers

This technique is useful primarily in debugging functions. Function
execution can be monitored with

result +- linen umbers DTRACE functioname

or on some systems

T I:. functioname +- linenumbers

Statement Separator (0)

The diamond (0) separates multiple statements on a function line, in
immediate execution mode, or in the character argument to the execute (~)
function.

The leftmost statement of such a sequence is executed fIrst, followed by
the succeeding statements in left-ta-right order.

When control branches to a function line, execution begins with the
leftmost statement. Thus, statements separated by diamonds on a line of a

Copyright © 1987 STSC, Inc. 1-34 Language Summary

Labels

Branching

function are a structural block of code. You can escape the block by
branching out, but you can only re-enter at the leftmost statement.

Labels are most useful in user-defined functions. They are variables local
to the function in which they are defmed and contain the number of the
function line that they begin. Like any other local variables, labels are
known to lower-level functions unless they are shadowed.

A given label is defined only once in a given function by appearing to the
left of a colon (:). The colon separates the label from the statement in the
function line and establishes the label for possible use elsewhere. Labels
are used mainly in branch statement expressions, but they can be used in
any computation.

The branch arrow (-+) is used with APL expressions that calculate the next
function line to be executed. These calculations are usually based on
labels or the constant O. The branch is a monadic or niladic function that
can take a line number as its argument. Following are the results of
branching with various values of v (which must be an integer vector or
scalar).

• If v is empty, do not branch, but execute the next statement in
sequence.

• If v is not empty, transfer immediately to the beginning of the function
line whose number is the first element of v. If v has more than one
element, all elements after the first are ignored. Execution always
begins with the leftmost statement in the target line, even if the line has
a sequence of statements separated by diamonds (0).

• If the first element of v is not a line number in the body of the
function, exit from the function, returning control to the point of call.
The function header line (line [0]) does not count as an executable
line of the function, so -+0 can be used to exit a function.

Copyright © 1987 STSC. Inc. 1-35 Language Summary

Branching only redirects the flow of execution within the most recently
called function. The number branched to is always a line number in that
function, even if a .l or 0 appears in the state indicator above it

A branch statement can appear anywhere in a sequence of statements
separated by diamonds. If the branch action is other than branch to an
empty array, none of the remaining statements in the sequence will be
executed. A variety of techniques can be used to create the vector of values
provided to -+; for example:

• Unconditional branch -+LABEL

LABEL: ...

• Exit from function -+0

• Conditional branch -+(nO)pNONEG

-+(A100~,HAT)pTHEN

'*DATA IS TOO LARGE '¢-+O
THEN:

• Loop n times I+-O

• Indexed Branch

LOOPTOP:-+(N<I+-I+l)pENDLOOP
(.. .iterative calculation ...)
.... LOOPTOP
ENDLOOP: ...

-+(Cl,C2,C3,C4) [CASENUHJ

Note: Do not use the same name to label more than one line in a
function, since only one line can be reached by branching to that label.

A loop is a sequence of statements repeated by branching back to the
beginning. It is typically controlled by branching back only if some
condition is met or by branching back unconditionally but branching out
of the loop if some condition is met.

Copyright © 1987 STSC, Inc. 1-36 Language Summary

Loops are useful for repetitive tasks like reading and processing successive
components of APL * PLUS SHAREFILE files. In APL, however, they
are generally not needed to handle the elements of arrays as they are in
many other programming languages. Using the array-handling capabilities
of APL to reduce the programming task and execution time needed for such
cases is generally faster and easier than using loops. For example,
+ / HATRIX1-HATRIX2 will give the row sums of the table of
differences between the corresponding positions in the two matrices. This
technique saves a number of explicitly programmed loops with user-defined
and user-controlled temporary storage.

The each (..) operator also eliminates loops (see Section 1-11). APL
code written without loops is sometimes more readable and often more
efficient

Ending Execution

The niladic branch (-+) ends the current execution. The niladic branch can
appear as a statement in a function or it can be entered from the keyboard.
If executed from the keyboard, the niladic branch removes the most recent
sequence of pendent executions, if any, from the state indicator (see
) RE SET and) SI in Chapter 2).

Restartable Statements and Functions

Since branching can only direct execution to the beginning of a numbered
function line, a function is only restartable if each line can safely be
executed starting at the beginning. Restartability is good practice, but not
imperative to good APL code. If a statement following a diamond halts
because of an error, you cannot return to the halted statement after fixing
the problem without repeating the preceding statement(s). Do not,
therefore, use a statement followed by a diamond and another statement
unless repetition of the earlier statement will yield the same results the
second time as the first time. For example, a calculation based on
variables that have not yet changed is acceptable, and using
OF RE PLACE to replace the value into the position in which it was
already placed is also acceptable. However, a second use of OFAP PEND
would put an additional component on file, increasing the file length.

Copyright © 1987 STSC, Inc. 1-37 Language Summary

Similarly. a calculation that is stored in one of the variables referenced
earlier on the line prevents a second execution from yielding the same
result as the rust; for example:

If you do not plan each function line to be restartable. you may have to
use) RE SET and repeat the entire application if it halts. Branching back
into the function at the point where it stopped is faster and more
convenient (use -+OLC). To ensure restartability. use multiple function
lines. breaking long statements where they would become non-restartable.

1-9 Execute, Scan, Domino, and Grade

Execute 1

This section describes some advanced APL functions in detail: the execute
function (t.). the "domino" functions matrix divide and matrix inverse (iii).
the grade functions (t and.). and the scan operator (\). Throughout this
section. the term "represented statement" refers to the APL statement that
the argument represents.

Syntax: t. data
result +- t. data

The execute primitive function accepts a character image of a well-formed
APL statement and evaluates that statement as if it were entered from the
keyboard. Some of its uses are conditional execution, conversion of

numeric constants. and a limited form of passing unevaluated arguments to
functions.

A simple example of execute is

t.'2+2'
4

Copyright © 1987 STSC. Inc. 1-38 Language Summary

The argument to execute is a character singleton or vector. It can represent
a simple or compound statement.
Since the argument can be constructed from several different parts, the
execute function can be used to perform conditional execution. For
example, M+-;. 'M' , 'fN would execute M+-MO if N was 0; M+-Ml if
N was 1, and so on.

You can also use execute to convert character vectors representing numeric
constants to their numeric values.

234

A+-;.'l 2 3'
A+1

(See also OFI and OVI in Chapter 3.)

Since system commands are not APL statements, they cannot be
"executed" by this function.

Execute can call itself recursively.

Presence of Explicit Results

Whether the execute function returns an explicit result depends upon
whether the represented statement, when evaluated, returns an explicit
result. If it does, the result of the represented statement is the result of
execute. If it does not, execute has no result.

;. , 1 + 2 x t L 0 . 5 x P V' Returns an explicit result.
;. , OF UNT I E l' Does not return an explicit result

Consequently, the fIrst statement in the preceding example can be
embedded in a larger statement

but the second statement cannot

A+-;. , OFUNTIE l'

Copyright © 1987 STSC, Inc. 1-39 Language Summary

VALUE ERROR
A'-.l'DFUNTIE l'
/I

If the represented statement does not develop a value, the calling
environment should not require that a value be returned in order to avoid a
VAL U E ERR 0 R. Statements that result in no value are

• a user-defined, primitive, or system function that terminates without
returning a result

• a l?ranch

• an empty or all-blank statement

• a comment.

Display of Explicit Results

If execute returns an explicit result, the result is displayed only if the result
would normally be displayed.

.l ' l5 '

.l'A'-l5'
T.-.t'l5'

Evaluation of Compound Statements

Displays a value .
Does not display a value
Does not display a value.

Several statements can be evaluated in one call to execute if they are
separated by diamonds in the represented statement.

.t'A'-BIlpB 0 RA'-pA'
In this case, the value (if any) returned by execute is determined by the last
statement evaluated. Results from other statements are displayed if
appropriate.

Occurrence in State Indicator

If execute has been invoked but has not completed execution, it appears in
the state indicator as a separate line. For example, if FN is a function

Copyright © 1987 STSC. Inc. 1-40 Language Summary

invoked by .t ' FN' or a latent expression (OLX), and its execution is
suspended on line [3], then the state indicator appears as:

)SI
FN[3]*
.t

A pendent call to execute is not represented in the vector of line numbers
(OLe) in the state indicator.

Relationship between Execute and Its Calling Environment

Upon successful completion of any statement, the system examines three
potentials that were set during evaluation of the argument:

• Branch potential indicates whether the last statement evaluated is a
successful branch.

• Value potential indicates whether the last statement evaluated returns a
value.

• Display potential indicates whether the value of the last statement
evaluated is to be displayed. If the last statement evaluated returns no
value, display potential is undefined.

When the execute primitive completes, the setting of these potentials is
determined by the last statement evaluated. These potentials are normally
considered and acted upon at the completion of evaluation of each simple
statement. However, for the last simple statement evaluated in a statement
created by use of execute, consideration of the potentials is deferred to the
calling environment.

If any statement evaluated by execute results in a successful branch:

• No more statements of a compound statement are evaluated.
• The branch potential is set to on.
• Execute returns to the calling environment.

Copyright © 1987 STSC, Inc. 1-41 Language Summary

Otherwise, the branch potential is off.

Value and display potentials are related in that display potential implies
value potential, but value potential does not imply display potential.

Only four combinations of potentials can occur, shown in the following
table (O=Off, l=On, U=Undefmed).

Potential
Branch Value Display Example

0 0 0 .t'DFUNTIE 11
0 1 0 .t I A+-15 1
0 1 1 .t I 15 1

1 0 U .t I -0 I

The calling environment of execute mayor may not require that a value be
returned.

.t'DFUNTIE 11
A+-.t I DFUNTIE 11

Does not require a value .
The assignment requires a value.

If the calling environment does not require a value and the branch potential
is on, then the branch is taken. However, an escape (.t I - I) is acted upon
immediately without consideration of the calling environment

If the calling environment requires a value and the value potential is off,
then a VAL U E ERR 0 R is reported with the caret (A) pointing to the
execute (.t) symbol. In this case, the represented statement is evaluated
and any side effects that might be caused by that evaluation occur.

If the calling environment does not require a value and the value potential
is on, then the value is displayed according to the setting of the display
potential.

Error Reports During Execution of the Represented Statement

Error conditions occurring during execution of the represented statement
immediately display an error message, the statement in error, and the caret.

Copyright © 1987 STSC, Inc. 1-42 Language Summary

Scan \

The statement containing the error is displayed, rather than the one at the
level of the calling environment of execute.

~ 'A+-OFUNTIE l'
VALUE ERROR
~ A+-OFUNTIE 1

"
The execute symbol is displayed in the left margin to indicate that the
statement originated from a call to execute.

Syntax: result +- f\a
result +- f\ a
result +- f\ [kJ a

f any scalar dyadic function
a any APL array
k specified scan coordinate

The scan operator complements and extends other APL functions by
producing the results of successive reductions. (See the reduction example
in Section 1-5.) The scan operator combines with any primitive scalar
dyadic function to form a new monadic function. The new function forms
successive elements in the result by applying the scalar dyadic function to
successive take (t) operations of the right argument using reduction. The
shape of the result is identical to that of the right argument.

Scan has many uses, including the calculation of cumulative sums.and
products and the manipulation of Boolean data.

The definition of scan for a vector V is as follows:

Let result +- f \ V.
Then, result [IJ +- is defmed as f / I t V for all I ~ 1 P V in
origin 1.

Copyright © 1987 STSC, Inc. 1-43 Language Summary

Examples

Identities

For arrays of rank: 2 or greater, the function is applied along the implicit or
explicit coordinate, similar to reduction. For example, you can specify the
scan coordinate by writing:

j\a
f\a
f\ [kJ a

as it is applied along the last, fIrst, or kth coordinate, respectively.

TRANSACTIONS ~ 100 5 -20 3 -50
+ \ T R AN SA CT I ON S Calculates running account

1 0 0 1 0 5 8 5 8 8 3 8 balances.

Scans of Boolean vectors by relational and logical functions are
particularly useful. For a Boolean vector BV, the following are true:

If R~A \ BV then R~-'BV with alIOs after the first 0 in BV.
If R~< \ BV then R~-'BV with alIOs after the frrst 1 in BV.
If R~~\BV then R~-'BV withalllsafterthefrrstOinBV.
If R~v\BV then R~-'BV withalllsafterthefrrst 1 inBV.

t \ B V ~-. parity of the cumulative number of 1 s.
= \BV ~-. reverse parity of the cumulative number of Os.

The following identities hold for any Boolean array B:

<\B -. -~\-B
~\B -. -<\-B
~\B ->\'-B
>\B -. -~\-B
=\B -. -t\-B +--. -21+\-B
t\B ~-. -=\-B +--. 21+\B
v\B ~-. -A\-B
A\B ~- -v\-B

Copyright © 1987 STSC, Inc. 1-44 Language Summary

~\B ~~ -~\-B ~~ (~\B)=(v\B)~<\B

~\B ~~ -~\-B ~~ (>\B)#(A\B)<~\B

Applications

Remove leading blanks.
(v\TXT#' ') /TXT

Extract the fIrst word.
A~TXT#' '0 (A>v\A<v\A)/TXT

Determine if V is in increasing order.
A/V=f\V

Determine if V contains correctly matched and nested parentheses.
A/O=l \<I>+\-/V·. =' ()'

Implementation Considerations

As noted previously, scan is defined as follows:

Let result +- f \ V.
Then, result [IJ +-~ f / I t V for all I ~ 1 P V in origin 1.

For the associative functions + and x, the following defmition is used to
reduce execution time. This defmition is formally equivalent, but not
always computationally equivalent, to the preceding one.

Let result +- f \ V.
Then, result [1] +-~ V [1] and result [I] +-~ result [I -1] f
V [IJ for all I ~ U 1 P V in origin 1.

For arguments whose values differ signifIcantly in magnitude, the two
defInitions may not return the same results. The following example
shows that the two defInitions may also differ from the exact answer.

LetV +- -1 1E20 -lE20 1
First definition: + \ V +-~ -1 1 E2 0 -1 -1
Second defmition: + \ V +-~ -1 1 E 20 0 1
Exact definition: + \ V ~~ -1 9. 999 ... E 1 9 -1 0

Copyright © 1987 STSC, Inc. 1-45 Language Summary

In this case, the exact answer cannot be returned because of the limited
precision used within the computer.

For maximum-scan (r \) and minimum-scan (L \), the two definitions
always produce the same results.

Matrix Division and Inversion

Syntax: result +­

result +-

III r
III r

a scalar, vector, or matrix
r a scalar, vector, or matrix

Either I or r is a scalar, or the first elements of the shapes of I and r must
be equal.

For calculation purposes, matrix divide treats vector and scalar arguments
as one-column matrix arguments. Confonnability tests are based on the
arguments treated this way, and a LEN G THE R R 0 R occurs when the left
and right arguments have an unequal number of rows.

The shape of the resulting matrix is detennined by the shape of the
arguments. For matrix inversion, it is the dimensions of the argument in
reverse <Xder.

pillA +--+ 4>pA

For matrix division, the result has as many rows as the left argument had
columns, and as many columns as were in the right argument.

If the right argument is a scalar, a one-element vector, or a one-row by
one-column matrix, matrix divide is equivalent to divide, except for minor
differences in the shape of the result and except when both arguments are
zero.

Copyright © 1987 STSC. Inc. 1-46 Language Summary

Applications

Mattix divide (dyadic domino) is used to solve mattix equations in much
the same way that dyadic + is used to solve scalar equations. It is
primarily used to solve equations of the fonn MX=R (the mattix product
MX is expressed in APL notation as M + • x X) where:

• M is a given mattix.

• R is a given vector (considered for matrix divide as a one-column mattix
having the same number of rows as M).

• X is an unknown vector.

If such an equation has a unique solution X, then X R IiIM. If it has more
than one solution, then RfilM will produce a DOMAIN ERROR. In fact,
RIiIM will produce a DOMAIN ERROR whenever the matrix M is
singular (a non-zero vector V exists for which M + •)(V is the zero vector).
If M has more rows than columns, is not singular, and the equation MX=R
does not have a solution, then R filM yields the vector that most closely
approximates the solution (the least squares approximation).

Mattix inverse (monadic domino) yields the inverse of a mattix M if M is
non-singular and square. H M is non-singular and has more rows than
columns, matrix inverse yields the least squares approximation to the right
inverse of M.

The following examples show applications of fil.

Solving Linear Equations

Use iii to solve a system of linear equations such as:

2x - y + 3z = 12
-x+4y-2z=-1l
3x + y + 5z = 17

Copyright © 1987 STSC, Inc. 1-47 Language Summary

This system is equivalent to the matrix equation MX=R where M is the
matrix of coefficients of the left side of the equation:

M-3 3p2 -1 3 -1 4 -2 3 1 5 ¢ M
2 -1 3

-1 4-2
315

X is the vector with elements x, y, Z, and R-12 -11 17. Therefore,
X - R ffi M will yield (the best approximation to) the solution of this system
(since M is non-singular).

In fact, R ffiM yields the exact solution as shown by multiplying it back:

M+.)(X
12 -11 17

Fitting a Straight Line

Matrix divide can also be used in curve fitting. In many experiments, the
object is to find a mathematical function that closely approximates
empirical measurements. To find the straight line that comes closest to
passing through a given set of points, you must find the values c and d so
that the line with equation dx + c comes closest to the given values for x
and y. For example, if we take the four points

(1.1,2.3), (1.9,4.0), (3.05,6.3), and (4.1, 7.9)

and view them as points on our line, each point provides a value for x and
a value for y to substitute in our general equation, giving us a system of
four equations representing these data points:

l.ld + c = 2.3
1.9d + c = 4.0
3.05d + c = 6.3

Copyright © 1987 STSC, Inc. 1-48 Langu'age Summary

4.1d + c = 7.9

As in the previous example, the closest possible least squares solution for
such a system of equations is C+- YIllM, where C contains the values of d
and c, Y is the vector of y coordinates of the points, and M is the matrix
M+-X 0 • * 1 0 where X is the vector of x coordinates of the points.
Applying this to the equation yields:

1. .1
1.9
3 . 05
4.1

Y+-2.3 4 . 0 6.3 7.9
X+-l . l 1.9 3.05 4.1
M+-X 0 • * 1 0 0 M

1
1
1
1

Using matrix division to fmd the solution yields:

C+-YIllM 0 C
1.876856212 0 . 3624773633

These results indicate that the linear equation which best approximates
these points is

1.876856212x + 0.3624773633 = y

Fitting a Polynomial Curve

Similarly, the coefficients of the polynomial of degree D that most closely
fit a set of data points can be obtained using the formula
C+-YIllM+-X 0 • *4>0, tD (in origin 1). Applying this to our original
data yields the coefficients C of the polynomial of degree 2 that best
approximate them.

C+-YIllM+-XO.*2 1 0 0 C
-0.153408846 2.676735268 -0.480885961

To see how closely the polynomial with these coefficients approximates
our data points, we evaluate it for x = 3.05, using the polynomial
evaluation function (1):

Copyright © 1987 STSC, Inc. 1-49 Language Summary

3.05.LC
6.256070817
This result is very close to the y value of 6.3. To see how closely this
comes to all our data points, we use the polynomial evaluation function .L
again:

(4 1pX).LC
2.27789813 4.051105114 6.256070817
7.914925938

Computational Accuracy and Efficiency

Although X +-RIiIM and X+- (IiIM) + . x R are equivalent APL statements,
they will generally yield slightly different results when computed because
of roundoff errors. The expression X+-R IiIM will produce faster and more
accurate results. Similarly, when solving several equations with the same
coefficient matrix, such as

it is more efficient to solve the single equation X +-R IiIM where R is the
matrix whose columns are R 1, R 2, and R 3; and X is the matrix with
columns Xl, X 2, and X 3.

Sorting with the Grade Up and Grade Down Functions

Monadic grade up and grade down provide permutation vectors to sort only
numeric data along the first coordinate. Dyadic grade up and grade down
arrange only character data, but allow for arbitrary collating sequences.
They are discussed separately below.

Monadic Grade

Syntax: result +- .data
result +- 'data

daIa any non-scalar numeric array

The grade up and grade down monadic primitives arrange the indices of
numeric data in ascending or descending order.

Copyright © 1987 STSC. Inc. 1-50 Language Summary

The result is always a numeric vector whose length is the same as the flrst
dimension of the argument. For vector arguments, the result can be used
as a subscript vector to arrange the argument into ascending (for grade up)
or descending (for grade down) order. Duplicate values will retain their
original relative positions.

In the case of two-dimensional (matrix) arguments, the result is formed by
considering one column at a time, working from left to right An initial
ordering is generated by considering the leftmost column as a vector. If
the vector has no duplicate values, the initial ordering becomes the result.
If the vector does have duplicate values, then data from the next column to
the right is used in an attempt to resolve the duplications. This process
continues until either all duplications are resolved or all columns are used.

Arguments of more than two dimensions are treated as matrices, retaining
the original flrst dimension and combining all the other dimensions into a
single second dimension. In effect, the data is treated as be,ing reshaped as
follows:

«ltpA),x/1~pA)pA

Some examples of monadic grade follow.

DIO+-1
• 17 2 14

231
17 2 14[2 3 1]

2 14 17
Increasing sort.

to+- 3 4p 1 4 9 2 1 7 7 6 1 9 3 0
1 4 9 2
1 7 7 6
1 9 3 0
321

Dyadic grade up and grade down

Syntax: result +- order • data
result +- order t data

Copyright © 1987 STSC, Inc. 1-51 Language Summary

cbtl a character array
order a character array used to establish the relative ordering of the

characters in data

The grade up and grade down dyadic primitives arrange character data in
ascending or descending order. Both arguments must be non-scalar arrays.

The left argument associates numeric values with each character in the
right argument. The rules of monadic grade up or grade down are then
applied to the associated numeric values to produce the result.

If the left argument is a vector, then the associated numeric values are
equivalent to those produced by dyadic iota. Specifically, V.A is
equivalent to • V 1 A.

For left arguments of rank 2 or greater, each dimension is used
independently, working from the last to the first. The numeric ordering
value for any given character of the right argument with respect to a
specified dimension of the left argument requires consideration of all
occurrences of the characters in the left argument. The ordering value is
taken as the minimum of the coordinate value along the specified
dimension for these occurrences. If a character does not appear in the left
argument, its ordering value is determined much like that of dyadic iota.

Ordering values are initially determined with respect to the last dimension
of the left argument. The rules of monadic grade are then applied to the
associated values, including duplications, to produce an ordering. If this
ordering contains no duplications, or if no further dimensions of the left
argument remain to apply, the process is complete. Otherwise, the
ordering values are recalculated with respect to the next higher dimension,
and the resolution process is reinvoked starting with the first column of
the right argument. This process continues until either all duplications are
resolved, or until all dimensions of the left argument have been exhausted.

Suppose the following matrix is used as the left argument (on some
terminals the underscored letters are displayed as lowercase letters):

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Copyright © 1987 STSC. Inc. 1-52 Language Summary

The initial ordering using the last dimension will result in A and a
coming before B and b, and so on. If both A and a appear in the right
argument, they will appear as duplications since they have identical
coordinate values (and ordering values) along the last dimension. A second
evaluation will then occur using the first dimension. This will give a
further reordering placing A before a.

In the next example, three collating sequences (each starting with a blank)
are used to produce the three different results shown in the following table.

CoiIating Sequence 1:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJ
KLMNOPQRSTUVWXYZ

Collating Sequence 2:

aAbBcCdDeEfFgGhHiIjJkKILmMnNoOpPqQrR
sStTuUvVwWxXyYzZ

Collating Sequence 3:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Sort with Sort with
Original Collating Collating
Data Sequence 1 Sequence 2

Ama ocid ocid
YMCA ama arna
Trudgen ammonia ammonia
Tektite pavilion Ama
pi phosphate AMA
pavilion pi NSPF
piping piping pavilion
pump pump phosphate
underwater pH pH
tsunami trudgen pi
NSPF tsunami piping

Copyright © 1987 STSC, Inc. 1-53

Sort with
Collating
Sequence 3

acid
ama
Ama
AMA
ammonia
NSPF
pavilion
pH
Philodendron
phosphate
pi

Language Summary

fi'unctions

Conjugate

Plus

Negate

Minus

87 STSC. Inc.

Iarg
rag
res

the left argument
the right argument
the explicit result

Return the value of a nur
res"'" + arg
arg: any numeric array
res: sameas O+arg

+-27.34 IE
-27.34 18 6

Add two numbers
res Iarg + rarg
larg, rarg: any numeric ar;

res: each item of larg add
ofrarg

-2 2 2 + 3
1. 5 3 0

Change the sign of a numl

res"'" - arg
arg: any numeric ar.ray
res: each item of arg subtr

Subtract two numbers
res larg - rarg
largo rarg: any numeric am
res: each item of rarg subtJ

corresponding item of I

-2 2 2 - 3.
-5.5 1 4

1- 55

Tsunami underwater pump piping
trudgen Ama Philodendron pump
pH AMA trudgen Tektite
phosphate NSPF tsunami trudgen
ammonia Philodendron Tektite Trudgen
AMA Tektite Trudgen tsunami
Philodendron Trudgen Tsunami Tsunami
acid Tsunami underwater underwater
ama YMCA YMCA YMCA

Note: The above examples all use dyadic .; if dyadic • had
been used, the order of the results would have been exactly
reversed. Although CM [DAY. CM;] and
aCM [DAY. CM;] are equivalent, that DAY. XM and
$ DAY. CM are not identical unless there are no duplicates.

1-10 Primitive Function and Operator Reference

This section summarizes the APL primitive functions and operators. Each
function and operator is listed with its syntax, a brief description, and one
or more examples. In some examples a variable or result is shown in
"display" form (Section 1-1) rather than the standard output typically
generated by the system. This display form graphically illustrates the data
structures and is produced by OSHOW on some systems and by a display
function on others. Recall that an array can be classified as a scalar,
vector, matrix, or n-dimensional.

The following abbreviations are used throughout this section:

erg
conforming

ext

idx

Copyright © 1987 STSC, Inc.

the argument
the left and right arguments must have the
same type and shape
external factor that affects the result of this
operation (e.g. OCT, ORL ,OIO)
any dyadic function, whether a primitive
function (+, - ,X, + , etc.), a system (e.g.
OFREAD), or a user-defined function.
positive integer scalar
index or variable with valid indices

1- 54 Language Summary

Arithmetic Functions

+ Conjugate

+ Plus

Negate

Minus

kv,g the left argument
TI7g the right argument

res the explicit result

Return the value of a number
res +- + arg
arg : any numeric array
res: same as 0 +arg

+-27.34 18 6
-27.34 18 6

Add two numbers

res +- larg + rarg
larg, rarg: any numeric array (conforming)
res: each item of larg added to corresponding item

ofrarg

-2 2 2 + 3.5 1 -2
1. 5 3 0

Change the sign of a number

res +- - arg
arg: any numeric array
res: each item of arg subtracted from zero

- 2 -2 1.5
-2 2 -1.5

Subtract two numbers
res +- larg - rarg
larg, rarg: any numeric array (conforming)
res: each item of rarg subtracted from

corresponding item of larg

-2 2 2 - 3.5 1 -2
-5.5 1 4

Copyright © 1987 STSC, Inc. 1-55 Language Summary

x Signum

x Times

+ Reciprocal

+ Divide

Copyright © 1987 STSC, Inc.

Determine the sign of a number
res +- x arg
arg: any numeric array
res : -1 if arg is negative, 0 if arg is zero, and 1

if arg is positive.

x 3 0 -0.5

Multiply two numbers
res +- larg x rarg
larg, rarg: any numeric array (conforming)
res: each item of larg multiplied with

corresponding item of rarg

-2 2 2 x 3.5 0 2
-7 0 4

Find the reciprocal of a number

res +- + arg
arg: any non-zero numeric array
res: one divided by each item of arg

+ 2 -1 -0.5
0.5 -1 -2

Divide two numbers
res +-larg + rarg
larg: any numeric array
rarg: any numeric array (conforming)
res : each item of larg divided by corresponding

itemofrarg

130

0+0
1

1-56 Language Summary

* Exponential

* Power

r Ceiling

r Maximum

Copyright © 1987 STSC. Inc.

Raise e to a power
res +- * arg
arg: any numeric array
res: e (2.71828 ...) raised to the power specified by

each item of arg

* 1 -1 0
2.718281828 0.3678794412 1

Raise a number to a specific power

res +- /arg * rarg
largo rarg: any numeric array (conforming)
res: arg raised to the corresponding rarg power

2 49 4 0 * 3 0.5 -1 40
8 7 0.25 0

Round up to the nearest integer
res +- r arg
arg: any numeric array
res: smallest integer greater than or equal to arg
ext: OCT

r 3.1416 -1.56
4 -1 6

Select the greater of two numbers
res +- /arg r rarg
largo rarg: any numeric array (conforming)
res: the larger of each corresponding pair of

numbers in larg and rarg

-3 . 2 -4.1 r 7 -4.2
7 -4.1

1- 57 Language Summary

l Floor

L Minimum

Magnitude

Residue

Copyright © 1987 STSC. Inc.

Round down to the nearest integer
res +- L arg
arg : any numeric array
res: largest integer less than or equal to arg
ext: OCT

L 3.1416 -1.56
3 -2 6

Select the lesser of two numbers

res +- larg L rarg
largo rarg: any numeric array (confonning)
res: the lesser of each corresponding pair of
numbers in /arg and rarg

-3.2 -4.1 L 7 -4.2
-3.2 -4.2

Compute the absolute value of a number
res +- I arg
arg: any numeric array
res: the absolute value (or magnitude) of each

element of arg

I 2 0 -1.6
2 0 1. 6

Find the remainder after the division of
two numbers
res +- larg I rarg
larg, rarg: any numeric array (confonning)
res: the remainder after dividing each

corresponding item of rarg by larg
rarg - (Lrarg+larg) xlarg

2 -2 1 I 3 3 3.14159
1 -1 0.14159

1-58 Language Summary

o

o

Natural
Logarithm

Logarithm

Pi times

Trigonometric
functions

Copyright © 1987 STSC, Inc.

Compute the natural logarithm of a
number
res +-- • arg
arg : any positive numeric array
res: the logarithm (base e) applied to each item of

ag

• 1 10 2.7182818284
o 2.302585093 1

Compute the logarithm of a number
res +-- larg • rarg
larg, rarg: any positive numeric array (confonning)
res: the logarithm of each element of rarg to the

corresponding base in larg

2 49 4 • 8 7 0.25
3 0.5 -1

Multiply a number by Pi
res +-- 0 arg
arg: any numeric array
res: arg multiplied by Pi (3.141592 ...)

o 120
3.141592654 6.283185307 0

Compute a Trigonometric function for a
number
res +-- larg 0 rarg
larg: any array of integers in the range -7 to +7
rarg: any valid numeric array (confonning)
res: the trigonometric function selected by larg

applied to each corresponding item in rarg
Note: all arguments and results are in radians.

larg function larg function

-7 ARCTANH 7 TANH
-6 ARCCOSH 6 COSH

1-59 Language Summary

?

?

RoO

Deal

Matrix

Inverse

© 1987 STSC, Inc.

Select a random
res +-- ? arg
arg: any positiv(
res: an integer J:

numbers gi'
random nun
DIO :s: re~

ext: DIO. DRL

? 200
1969 2 23

Select a set of uni,

res +-- larg ? rarg
larg, rarg: a posit
res: arg unique ra

possible posi
ext: DIO, DRL

8 ? 1 (
1 534 9 6

Calculate the inve.
res -iii arg
arg: numeric scalru
res: inverse of arg

square. If arg
(must have me
result is the lei
the inverse of (

1- 61

Factorial

Binomial

Copyright © 1987 STSC, Inc.

-5 ARCSINH 5 SINH
-4 (- l +rarg *2) * .5 4 (1 +rarg*2) *.5
- 3 ARCTAN 3 TAN
- 2 ARCCOS 2 COS
-1 ARCSIN 1 SIN

0 (l-rarg*2)* . 5

0 0 . 6
0.8

2 0 3.14159
-1

-3 0 0 1 2
o 0.7853981634 1.107148718

Compute the Factorial of a number

res +- ! arg
arg : any numeric array
res : if arg is a positive integer, res is the product

of all positive integers from 1 through argo If
arg is zero, res is 1. All other numbers
except negative integers are computed using
the gamma function on arg+ 1; the function is
undefined for negative integers.

! 0 4 2.5
1 24 3.32335097

Find the number of permutations for a set
of objects
res +- larg ! rarg
larg, rarg: any positive numeric array (conforming)
res : the number of permutations of selecting larg

objects at a time from rarg objects, for each
corresponding largo rarg pair of numbers

125 ! 545
561

1- 60 Language Summary

?

?

Roll

Deal

Matrix

Inverse

Copyright © 1987 STSC, Inc.

Select a random integer
res +- ? arg
arg: any positive integer array
res: an integer picked at random from the set of

numbers given by 1. arg [n]; res contains a
random number for each element of arg where
010 :s: res:S: arg [n]

ext: 010. ORL

? 2000 12 30
1969 2 23

Select a set of unique random integers

res +- larg ? rarg
largo rarg: a positive integer scalar
res: arg unique random integers selected from rarg

possible positive integers (i.e. 1. rarg)
ext: 010. ORL

8 ? 10
1 5 349 687

Calculate the inverse of a matrix

res +-1lI arg
arg: numeric scalar. vector or matrix
res: inverse of arg if arg is non-singular and

square. If arg is non-singular but not square
(must have more rows than columns) the
result is the least squares approximation to
the inverse of argo

III 2 2 P 1 123

1- 61 Language Summary

Matrix

Divide

Solve a set of simultaneous equations

res ~ /arg [ll rarg
larg, rarg: numeric scalar, vector or matrix; rank of

rarg must equal or exceed rank of larg; if rarg
is a matrix, last dimension must not exceed
the first

res : the exact solution (or a least squares
approximation if rarg has more rows than
columns) of the matrix equation rarg • X =
larg (see Section 1-9 for more details)

14 26 ffi 2 2p1 3 4 2
5 3

14 26 7 ffi 3 2p1 3 4 2 1 1
4.981481481 2.944444444

T Representation Find the representation of a number in
another radix
res ~ /arg T rarg
larg, rarg: any numeric array

. res: the expression of each element of rarg
represented in a number system described by
lug

10 10 10 10 T 1776
1 776

222 T 5
1 0 1

7 24 60 T 5090
3 12 50

7 24 60 T 5090 6666
3 4

12 15
50 6

Copyright © 1987 STSC. Inc. 1- 62 Language Summary

.1 Base

Value

Logical Functions

< Less than

Less than
or equal

Copyright © 1987 STSC, Inc.

Find the base value of a number

res targ 1 rarg
larg, rarg: any numeric array
res: the expression of rarg in radix larg

10 1 1 7 7 6
1776

10 3 2 10 1 1 7 7 6

276

211 0 1 0
10

7 24 60 1 3 12 50
5090

Compare two numeric arrays

res larg < rarg
larg, rarg: any numeric array (confonning)
res: 1 for each pair of corresponding values where

larg is less than rarg; 0 otherwise
ext: OCT

123 < 2 1 3
100

Compare two numeric arrays

res larg ~ rarg

larg, rarg : any numeric array (conforming)
res: 1 for each pair of corresponding values where

larg is less than or equal to rarg; 0 otherwise
ext: OCT

123 ~ 2 1 3
1 0 1

1-63 Language Summary

>

Equal

Greater than
or equal

Greater than

Not equal

Copyright © 1987 STSC, Inc.

Compare two arrays for equality

res - /arg= rarg
larg, rarg: any array (confonning)
res: 1 for each corresponding value of larg and rarg

that is equal; 0 otherwise
ext: OCT

'S'='STSC'
1 0 1 0

Compare two numeric arrays

res - larg ~ rarg
largo rarg: any numeric array (confonning)
res: 1 if the corresponding value of larg is greater

than or equal to rarg; 0 otherwise
ext: OCT

123 ~ 2 1 3
o 1 1

Compare two numeric arrays

res - larg > rarg
larg, rarg: any numeric array (confonning)
res: 1 if the corresponding value of larg is greater

than rarg; 0 otherwise
ext: OCT

123 > 2 1 3
010

Compare arrays for inequality

res - larg ~ rarg
larg, rarg: any array (conforming)
res: 1 for each corresponding value of iarg and rarg

that are not equal; 0 otherwise
ext: OCT

123 ~ 2 1 3
1 1 0

1- 64 Language Summary

Not

v Or

A And

Nor

Copyright © 1987 STSC, Inc.

Negate a Boolean array

res - arg
arg : any Boolean array
res: 1 for each item of arg that is 0; 0 for each

item that is 1

- 0 1
1 0

Logical OR of two Boolean arrays
res larg v rarg
largo rarg : any Boolean array (conforming)
res : 1 if either larg or rarg is 1; 0 otherwise

001 1 vOl 0 1
o 1 1 1

Logical AND of two Boolean arrays

res larg " rarg
largo rarg: any Boolean array (conforming)
res : 1 if both larg and rarg are 1; 0 otherwise

001 1 " 0 101
000 1

Logical NOR of two Boolean arrays
res larg ~ rarg
largo rarg : any Boolean array (conforming)
res: 1 if both larg and rarg are 0; 0 otherwise

equivalent to - (larg v rarg)

001 1 ~ 0 101
1 0 0 0

1- 65 Language Summary

Nand

Match

Logical NAND of two Boolean arrays

res +- larg 'IY rarg

larg, rarg: any Boolean array (confonning)
res: 0 if both larg and rarg are 1; 1 otherwise

equivalent to - (larg A rarg)

001 1 'IY 0 101
1 1 1 0

Compare the equivalence of two arrays

res +- larg == rarg
larg, rarg: any array
res: 1 if both larg and rarg have the same rank,

shape, and values; 0 otherwise
ext : OCT

o
o

1

o

'XYZZY' == 1 5p'XYZZY'

o == ,0

A+-2 3P14
A - A

A == 'A'

Location Describers and Modifiers

t Index

generator

Copyright © 1987 STSC, Inc.

Return a set of consecutive integers

res +- 1 arg
arg: positive integer scalar
res : a vector of arg integers from the sequence

OIO, OIO+1, OIO+2 • ...
ext : OIO

15
1 2 345

1- 66 Language Summary

1 Index of

[] Index into

Copyright © 1987 STSC, Inc.

Find location of items in an array
res +- larg 1 rarg
larg: any vector
rarg: any array
res: the index location of the fIrst occurence of the

items specifIed in rarg in the larg array. For
elements of rar g that do not occur in larg, the
result is l+plarg (OIO+-1).

ext: OIO

A+-3 4 7 3 8
A 1 7 4 3 12

3 2 1 6

Select a subset of elements from an array
res +-arg [idx] ; idx2; ...]

arg: any non-scalar array
idxn : any integer array. There must be one index per

axis of argo Indices are, separated by";".
Missing indices such as in A [] or
B [; J] indicate that the entire axis should be
selected.

res: the portion of the arg array specifIed by idx
ext: OIO

743

CB

A+-3 4 7 3 8
A [A 17 4 3]

I ABCD I [3 2]

(3 4pl12)[;3]
3 7 11

ABCA
BCAB
CABC
ABCA

I AB C I [4 4 P 1 3]

1-67 Language Summary

Member of

t Take

Copyright © 1987 STSC. Inc.

Compare contents of two arrays

res larg c rarg

larg , rarg : any array
res: the same size as larg and contains a 1 if the

larg item is found anywhere in rarg; a
otherwise

ext : OCT

2 5 c 123 4
1 0

Select a set of elements from an array
res larg t rarg
larg: any integer scalar or vector with one element

per dimension of rarg
rarg: any array
res: the subset of rarg items. The shape of res is

specified by largo If larg is negative, the
selection starts from the end rather than the
beginning; res is padded with the fill item
(The fill item is c::> arg and is blank or zero
for simple arrays) if larg specifies an array
larger than rarg.

2 t 3 6 2
3 6

5 t 362
3 6 200

-3 2 t 2 3pl 2 3 4 5 6
o 0
1 2
4 5

1- 68 Language Summary

Drop

c Enclose

Copyright © 1987 STSC.lnc.

Exclude a set of elements from an array

res larg .j. rarg
larg: any integer scalar or vector with one element

per dimension of rarg
rarg : any array
res: all the items of rarg except the subset

specified by largo larg specifies the number of
elements in each dimension that should be
excluded from the result (starting from the end
if larg is negative). If an element of

8

1 2
4 5

larg is larger in magnitude than the
corresponding dimension of rarg. res will be
empty (have a dimension of zero) along the
corresponding coordinate.

5 .j. 1 3 2 748

A 2 3p1 2 3 4 5 6
o -1 .j. A

Create a nested scalar out of any array
that is not a simple scalar
res crarg
rarg: any array

3

A

C 'A' 'MM' 'SSS'

pC

C[2] c2 2 pt4

C
1 2 SSS
3 4

1- 69 Language Summary

Pick

Copyright © 1987 STSC, Inc.

DISPLAY C
-+------------

I -+-- .-+--. I
IA -l-l 21 155511
1- 13 41 '---'1 I ' ___ I I

'c------------,

Select a portion of an array

res - path:::> arg
arg: any array
path: positive integers describing now deep into arg

to go to select an item
res: a subset of arg specified by path
ext: OIO

A-'ONE' (2 2p'l4) 'SIX'
pA

3

DISPLAY A
.~----------------

1.-+--. -+-- .. -+--. I
I lONE I -l- 1 2 I I SIX I I
1'---' 13 41 '---'1 I ' ___ I I

'c----------------,
1 2
3 4

I

3

E

2:::>A

(2 (2 l»:::>A

2 :::>'TEXT'

1-70 Language Summary

c Partitioned
Enclose

Disclose

Copyright © 1987 STSC, Inc.

Build a non-simple vector from selected
portions of an array
res-larg c rarg or res larg c [i] rarg
/arg: Boolean vector with same length as selected

coordinate of rarg
rarg: array of any rank
i: non-negative scalar indicating the dimension

desired.
res: selected portions of rarg: res is a vector of

length +/larg.

A O 0 1 0 1 1 0 0 cl8

A
3 4 5 678

pA
3

DISPLAY A
~----------------

I ---
113 41

. .
151

.-----. I
16 7 81 I

1'---' '-' . ,-----, I
,~----------------,

Retrieve the array stored as a nested scalar
res-=>rarg
rarg: any array,
res: if rarg is a nested scalar, it will be

expanded back to an array

2

4

C ' ONE' (2 3 4 5)

pC

p=>C[2J

If rarg is an array rather than a neSted scalar, the flrst
item js selected and expanded into an array

1- 71 Language Summary

t Mix

Copyright © 1987 STSC, Inc.

if it is a nested scalar. This is often called the
"First" function.

ONE

3

1

=>C

p=>C

=> 1 2 3

Reduce one level of nesting.
res'" t arg or res +- t [j J arg
arg: any array with identically-shaped items.
i : non-negative scalar indicating the dimension

desired
res: the shape is the shape of arg with the shape of

the items inserted between the specified
dimensions

2

2

1
5

1
2
3
4

4 4

4

2 3
6 7

5
6
7
8

A+-(l 2 3 4) (5 6 7 8)

pA

ptA

tA
4
8

H.5JA

1- 72 Language Summary

Split

Copyright © 1987 STSC, Inc.

Segment an array into a nested array
res+-J.arg or res+-J. [i] arg

arg: any array
i : non-negative scalar indicating the dimension

desired
res: the contents of arg in which the rank has been

reducted by one by enclosing all items in the
ith dimension into a nested scalar. For
example, if arg is a matrix:

1
5
9

1

3

res [1] +-carg [1 ;]
res [2] +-carg [2 ;]

res [n] +-carg [n;]

A+-3 4P112
A

2 3 4
6 7 8

10 11 12

J.A
2 3 4 5 6 7 8

pJ.A

DISPLAY J.A

9 10 11 12

1 ------. • ... ------. • ... ---- - ----. I

I 11 2 3 41 15 6 7 81 19 10 11 121 I
11-------1 1 ______ _ 1 1_---------1 I
I€ _______________________________ I

J. [1]A
1 5 9 2 6 10 3 7 11 4 8 12

DISPLAY J.[lJA
~---------------------------------

1 ---- . • ... -----. • ... -----. • ... -----. I

111591126101 1371111481211
11----- 1 1 ______ 1 1_----- 1 1_----- 1 I
I€ _______________ ____ ________ _ _____ I

1- 73 Language Summary

Numeric
Grade Up

Character
Grade Up

Copyright © 1987 STSC. Inc.

Return ascending sort order of a numeric
array
res +- + arg
arg: any numeric non-scalar array
res: the indices of arg that would arrange it in

ascending numeric order
ext : DIO

213

258

A+-5 2 8
+A

A[+A]

Return ascending sort order of a
character array
res +- /arg + rarg
larg, rarg: any character non-scalar array
res: the indices of rarg required to arrange rarg in

ascending order where larg specifies the
collating sequences to be used

ext: DIO

'ABC' + 'CAB'
2 3 1

A+-3 4p'FOURFIVESIX ,

A
FOUR
FIVE
SIX

DAV+A
2 1 3

A [DAV+A;]
FIVE
FOUR
SIX

1- 74 Language Summary

Numeric
Grade Down

Character
Grade Down

Reverse

Copyright © 1987 STSC, Inc.

Return descending sort order or a numeric
array
res +- t arg
arg: any numeric non-scalar array
res: the indices of arg required to arrange rarg in

descending numeric order
ext: 010

132

A+-37 9 18

tA

A(tA]
37 18 9

Return descending sort order or character
array
res +- larg t rarg
larg, rarg: any character non-scalar array
res: the indices of rarg required to arrange rarg in

descending order where larg specifies the
collating sequence

ext: 010

DAV t 'CAB'
132

Note: B (A"B] +--+eB (A t B]

Reverse elements or an array
res +- cI> arg . or res +- cI> (i] arg
arg: any array
i: non-negative scalar indicating the dimension

desired
res : the items in arg reversed along the i th

dimension default is the last dimension.
ext: 010

1-75 Language Summary

e Reverse

Rotate

Copyright © 1987 STSC.lnc.

4> 'TOVES'
SEVOT

A-3 3p'ABCDEFGHI'
A

ABC
DEF
GHI

CBA
FED
IHG

GHI
DEF
ABC

4>A

4>[1JA

Note: 4> [1 J A --+ e A

Reverse elements of an array

res - e arg or res - e [iJ arg
arg: any array
i : non-negative scalar indicating the dimension

desired
res: the order of the items in arg are reversed along

the ith dimension. The default is the first
dimension.

ext: OIO

CDA
DAB
ABC

e 3 3p'ABCD'

Note: 4>A --+ e[j]Awherei=ppA(therank
or the number of dimensions of A).

Rotate elements of an array
res +- larg 4> rarg or res - larg 4> [iJ rarg
res: the items in arg rotated larg places along the

ith dimension (default is last dimension)
ext: OIO

1- 76 Language Summary

e Rotate

Copyright © 1987 STSC, Inc.

2 4> 'TODAY'
DAYTO

A+-3 4pt12

A
1 2 3 4
5 6 7 8
9 10 11 12

12 1 4> A
2 3 4 1
6 7 8 5

10 11 12 9

1 2 3 4> [2] A
2 3 4 1
7 8 5 6

12 9 10 11

Note: A4>[1]B +--+ AeB

Rotate elements of an array

res +- larg e rarg or res +- larg e [i] rarg
larg: integer scalar or vector of length equal to

chosen dimension of rarg
rarg: any array
i : non-negative scalar indicating the dimension

desired
res: the items in rarg rotated larg places along the

ith dimension. The default is the fIrst
dimension.

DAB
CDA
ABC

1 e 3 3p'ABCD'

Note: A<I>B +--+ Ae[i]B wherei=ppB(the
rank or number of dimensions ofB • OIO+-1)

1-77 Language Summary

Transpose

Dyadic
Transpose

Copyright © 1987 STSC. Inc.

Reverse axes of an array
res +- /II arg
arg: any array
res: arg with the dimensions interchanged

A+-3 4pt12
A

1 2 3 4
5 6 7 8
9 10 11 12

/II A
1 5 9
2 6 10
3 7 11
4 8 12

pA
3 4

p/llA
4 3

Select and optionally re-order axes of an
array

res +- larg /II rarg
larg: positive integer scalar or vector
rarg: any array
res: rarg with the dimensions interchanged in the

order specified by larg
ext: DIO

A+-2 3 4pt24

p1 3 2/11A
2 4 3

p1 2 3/11A
2 3 4

p3 2 l/11A
4 3 2

1- 78 Language Summary

/ Replicate

(compress)

Replicate
(compress)

Copyright © 1987 STSC, Inc.

B-3 4p 'ABCDEFGHIJKL'

1 1 til B
AFK

Replicate items of an array

res - larg I rarg or res - larg I [i) rarg
larg: positive integer scalar or vector of length

equal to the chosen dimension
rarg: any array
res: each item of rarg is replicated the number of

times specified by the corresponding larg
value

ext: OIO

MOO

ABC
DEF

o 1 2 I 'JMO'

A-2 3p'ABCDEF'
A

1 2 31A
ABBCCC
DEEFFF

o lI[lJA
DEF

Note: AI [OIO] B --+ AI- B

Replicate items of an array
res -larg I- rarg or res - larg I- [i) rarg
larg: non-negative integer scalar or vector with

length equal to first dimension of rarg
rarg : any array
i : non-negative scalar indicating the dimension

desired
res : each item of rarg is replicated the number of

times specified by the corresponding larg
value along the the chosen dimension of rarg.

1-79 Language Summary

\ Expand

Expand

Copyright © 1987 STSC. Inc.

1 2
9 10
9 10

1 0 2 f 3 4Pl12
3 4

11 12
11 12

Note: AlB AI [iJ B where
i=ppB (DIO l)

Expand an array with fill items

res larg \ rarg or res larg \ [i] rarg
larg: boolean vector whose sum equals the

length of the chosen dimension of rarg
rarg: any array
i : non-negative scalar indicating the dimension

desired
res : the array rarg expanded by adding an additional

fill item for each corresponding 1 in larg
ext: DIO

o 0 1 0 1 \ 7 8
o 0 708

ABC
DEF

ABC
D E F

A 2 3p'ABCDEF'
A

1 0 1 0 1 O\A

Expand an array

res larg \ rarg or res larg \ [j] rarg
larg : Boolean vector whose sum equals the length

of the chosen dimension of rarg
rarg : any array
res: the array rarg expanded by adding additional

blanks or zeros for each corresponding 1 in
larg along the first dimension of rarg.

A 2 3 P 1 2 3 4 5 6

1- 80 Language Summary

Type Describers and Modifiers

Assign

[] 4-Index
Assignment

Copyright © 1987 STSC. Inc.

A
1 2 3
4 5 6

1 0 1 \ A
1 2 3
0 0 0
4 5 6

Note: A\B +--+ A\[OIO]B

Store a value in a variable
name +- arg
name: a variable name
arg: any valid expression that returns a value

v +- t5

V
1 2 3 4 5

NEWNAME+-V+2
NEWNAME

3 4 567

Modify a subset of an array
name[idxl ;idx2; .. ·]+-arg

name: a variable name
arg : any valid expression that returns a value

1 2 3
456

123
478

V+-2 3pt6
V

V[2;2 3]+-7 8
V

1- 81 Language Summary

Type

t Execute

, Format

Copyright © 1987 STSC, Inc.

The datatype of an array
res- c arg
arg: any array
res: zero for each numeric and blank for each

character element of argo

c 10 'A' 20 'B'
o 0

0=cl0 'A' 20 'B'
1 0 1 0

Execute an APL expression
~ expression or res ~ expression
expression: character scalar or vector
res: the result generated by executing the

expression (see Section 1-10 for more details
on execute)

~ '2+3'
5

'V' . (,N). ' 10xt' • ,N
V7 1 0 Xl 7 (string is displayed)

V7
VALUE ERROR

V7

"
~ 'V'. (,N). ' 10xt' ,N

(string is executed)
V7

10 20 30 40 50 60 70

Convert numeric to character

res ' arg
arg: any array
res : arg converted to character representation
ext: OFF

1- 82 Language Summary

Pattern

Format

Copyright © 1987 STSC. Inc.

, 2 3pl 2 3 4 5 6
1 2 3
4 5 6

P , 2 3pl 2 3 4 5 6
2 5

'REDUNDANT'=, 'REDUNDANT'
1

P , 1 2 3
5

Convert numeric to character

res -- pattern , rarg
pattern: integer scalar or vector of pairs; a single

pair is replicated as with scalar extension.
The fIrst nwnber of each pair specifies the
fIeld width for the colwnn; zero, requests a
fIeld large eriough to accommodate the largest
number. The second number specifies the
nwnber of decimal places. If the second
number is negative, the result is fomatted in
exponential notation. A pair of numbers for
each column can specify different fonnattiilg
for each column. If only one number is
specifIed it is assumed to be the number of
decimal places.

rarg: any numeric array
res: a charocter representation of arg fonnatted as

specifIed by pattern.

235
1 , 2 3 5

2 . 0 3 . 0 5.0

1 0 4 1 6 2 , 2 3Pl 6
1 2.0 3.00
4 5.0 6.00

1-83 Language Summary

Shape Describers and Modifiers

p Shape

p Reshape

Copyright © 1987 STSC, Inc.

Return shape of an array
res p arg
arg: any array
res : a vector containing the length of each

dimension of arg

3

235

o

P 2 3 5

P 2 3 5 pl30

P 99

pp 99

Create an array of specific shape

res larg P rarg
larg: numeric scalar or vector
rarg: any array
res: the items of rarg selected in order and formed

into the new shape specified by largo Some
rarg elements may be lost (res will have fewer
items than rarg) or duplicated (res will have
more items than rarg) as needed.

3 P 99
99 99 99

2 4 P 2 3 5
2 3 5 2
3 5 2 3

2 3pl 1 2p7 8
7 8 7
8 7 8

1-84 Language Summary

Ravel

Catenate

Copyright © 1987 STSC. Inc.

Change an array into a vector
res +- • arg
arg: any array
res: all the items of arg in the same order as arg.

but as a vector

• 99
99

P . 99
1

.2 4p2 3 5
2 3 523 523

Join two arrays
res +- larg • rarg or res +- larg • [i] rarg
larg, rarg: any arrays of like type and chosen

dimensions (conforming)
i : non-negative scalar indicating the dimension

desired
res: the two arrays are joined along the ith

dimension (default is the last dimension). If i
is fractional, a new dimension is added.

ext: oIO

2 3 5 • 99
2 3 5 99

(2 3pt6>.2 2p33 333 66666

1 2 3 33 333
4 5 6 66 666

B+-'HOW' • [. 5] 'NOW'
B

HOW
NOW

'HOW' • [1.5] 'NOW'
HN
00
WW

1- 85 Language Summary

Operators

I

Depth

Reduction
operator

Copyright © 1987 STSC, Inc.

Levels of nesting in an array_
res +- arg
arg: any array
i : non-negative scalar indicating the dimension

desired
res: the maximum number of times disclose (:::»

must be used to extract a simple scalar

=3 . 3
0

=1 2 3
1

=' ,
1

=(1 2) 'AB'
2

=ccccc12 12
6

=<1 2)(2 3)(3 4)(5
2

Apply a specified function across an
array, reducing its dimensions
res +- / / arg or res +- / / [iJ arg
arg: any array

6)

i: non-negative scalar indicating the dimension
desired.

res: the function/is applied progressively across
the array eliminating the ith dimension (the
default is the last dimension) in the process

res [1] '-arg [1; 1] f(arg [1; 2] .. farg [1 ;m])
res [2] '-arg [2 ; 1] f (arg [2 ; 2] .. f arg [2 ; m])
res [3] '-arg [3 ; 1] f(arg [3 ; 2] .. f arg [3 ; m])

res[n] '-arg [n; 1] f(arg [n ; 2] . . farg [n ;m])

ext : DIG

1-86 Language Summary

Reduction
Operator

Copyright © 1987 STSC, Inc.

+/ 2 3 5
10

x/ 2 3pl 2 3 4 5 6
6 120

A-2 3 P 1 2 3 4 5 6
A

123
456

6 120
x/[2]A

,/'ABC' 'DEF' 'GHI'
ABCDEGFGHI

Apply a function across an array reducing
the number of dimemsions
res - / I- arg or res / I- [i] arg
arg: any array valid for/
i: non-negative scalar indicating the dimension

desired.
res : the function/is applied progressively across

the array eliminating the ith dimension (the
default is the flrst dimension) in the process

res [1] +-arg [1 ; 1] [(arg [2; 1] . . I arg [n ; 1])

res [2] +-arg [1 ; 2] [(arg [2 ; 2] .. I arg [n ; 2])

res [3] +-arg [1 ; 3] [(arg [2; 3] .. I arg [n ; 3])

res [m] +-arg [1 ; m] [(arg [2; m] . . larg [n; m])

ext: DIO

A-2 3
A

1 2 3
4 5 6

xl-A
4 10 18

xl [lJA
4 10 18

1- 87

P 1 2 345 6

Language Summary

Note: For functions other than scalar primitives,
the general case of reduction is defined for
vectors (recursively) as:

res+-c (~arg) I~I / 1 .j. arg

Example:
c/ ('AEo') ('BUCKWHEAT')

1 1 0

\ Scan Operator Apply successive reductions to an array
res +-1\ arg or res +-1\ [i] arg

res: the cumulative effect of successive
applications of reduction to the ith dimension
(the default dimension is the last dimension)
ofarg

res[1]+-Cflarg[l;lJ), Cflarg[1;l 2]) .. /larg[l;]
res[2]+-Cflarg[2;1J), Cflarg[2;1 2]) .. /larg[2;]

res[n]+-Cf!arg[n;lJ) , Cflarg[n;l 2] l. . /Iarg[n;]

ext: DIO

See Section 1-9 for more information.

+\ 2 3 5
2 5 10

x\ 2 3p1 2 3 4 5 6
126
4 20 120

,\1 2 3
1 1 2 1 2 3

~ Scan Operator Apply a successive reduction to an array
res +- f \ arg or res +-f \ [i] arg

Copyright © 1987 STSC. Inc.

arg : any array valid fori
res: the cumulative effect of successive

applications of reduction to the ith dimension
(the default is the first dimension) of arg

1- 88 Language Summary

res [1].- ([farg [1 ; 1]) , ([farg [2; 1] >. . ffarg [; 1]

res [2].- ([farg [1 ; 2]) , ([farg [2; 2]) . . ffarg [; 2]

res[m] '-([farg [1 ;m]), ([farg [2 :m]) . . ffarg [1 ; m]

ext: DIO

f. g Inner Product

Copyright © 1987 STSC, Inc.

See Section 1-9 for more details

A~2 3 P 1 2 3 4 5 6
A

123
456

x\A
1 2 3
4 10 18

x\[lJA
1 2 6
4 10 18

Generalized Matrix Multiplication
res ~ larg f . g rarg
larg, rarg: conforming arrays valid forfandg

where last dimension of larg is equal to first
dimension of rarg

res : the application of function g between
elements of the last dimension of larg and
corresponding elements of the first dimension
of rarg followed by reducing the result using
function f The shape of res is
(-1 .j. plarg) , 1 .j. prarg. If larg is n by k,
and rarg is k by m, then the res is:

res [1 ; lJ ~ (f /Iarg [1 ;] g rarg [; lJ)
res [1 ; 2] +- (f / larg [1 ;] g rarg [; 2])

res [2 ; lJ +- (f /Iarg [2 ;] g rarg [; lJ)

res [1 ; m] +- (f /Iarg [1 ;] g rarg [; m])

1-89 Language Summary

res[n; 1] </llarg[n;] grarg[; 1])

res[n;m] </Ilarg[n;] grarg[;m])

Note: For functions other than scalar primitives,
inner product is defined only for vectors:

res /1 larg g arg

2 3 5 +.X 2 3 5
38

'SPORT'+.='SHOUT'
3

<3 3p'ABCDEFGHI')A.='DEF'
010

M 2 3P16 0 N 3 4Pl12
M+ . xN (matrix multiplication)

38 44 50 56
83 98 113 128

100
010
001

5

NA. =Is/N

'BUCKWHEAT GROATS'+.£'AEIOU'

o • f Outer Product Apply function between every item of two
arrays

Copyright © 1987 STSC. Inc.

res /arg 0 ./ rarg
larg, rarg: any arrays valid for/
res: if/produces a result, res is an array of size «p

larg) , p rarg) consisting of the result from
applying/between each combination of larg
and rarg items

If/ does not produce a result, then 0/ will not
return a result.

1-90 Language SUITUnary

fOO Each

Copyright © 1987 STSC. Inc.

2 3 5 0 * 0 1 2
1 2 4 8
1 3 9 27
1 5 25 125

1 2 3 4 5 o • r 1
1 2 3 4 5
2 2 3 4 5
3 3 3 4 5
4 4 4 4 5
5 5 5 5 5

'ABC' 0 = 'ABC'
1 0 0
0 1 0
0 0 1

'ABC' 0 '0 I'
AO Al
BO Bl
CO Cl

Apply a function to each item
res +- r arg or largj"·rarg
rarg : any array with items valid for/

3

2 3

larg: any array with items valid, if any, for/
(optional) .

4 5

res: the collection of all results (each result is a
single nested scalar) from applying/to each
item of arg one at a time

3

A+-l 2 3p··4 5 6
A

455 666
pA

This example reads the first five components
of a fIle.

O+-TN+-99 ," 15
99 1 99 2 99 3 99 4 99 5

pTN
5

1-91 Language Summary

DISPLAY TN

1 --- --- --- --- ---. I
1199 11199 21199 31199 41199 511
"~ ___ f ' ---, ' ---' ----. ' --, I
.(----------------------------_.

FILE..-DFREAD" TN

Copyright © 1987 STSC. Inc. 1-92 Language Summary

o
o
3:
3:
> z
o en

Chapter 2
System Commands

System commands are instructions to the APL system rather than
facilities of the APL language interpreter. System commands all
begin with a right parenthesis,) , to distinguish them from APL
language statements. The commands are listed below by type.

• Active Workspace Environment
) F N S Display function names
) HE L P Display online documentation
) RE SET Clear state indicator
) S I Display state indicator
) SIC Clear state indicator
) SIN L Display state indicator showing local names
) SYMBOLS Display (or change) size of the symbol table
) V A R S Display variable names
) W SID Display (or change) workspace name

• Workspace and File Management
) C LEA R Clear active workspace
) DR 0 P Delete a saved workspace
) FILE HELP E R Help gain access to a file
) F LIB Display list of component files
) LI B Display list of all files
) LOAD Load a saved workspace
) P S AVE Protected save of a workspace
) SAVE Save active workspace
) W S LIB Display list of workspaces
)XLOAD Load a workspace without executing DLX

• Object Manipulation
)

)COPY
)EDIT
)ERASE
)PCOPY

Copyright © 1987 STSC, Inc.

Recall previous APL statements
Copy from a saved workspace
Edit an object with full-screen editor
Erase objects in active workspace
Protected copy from a saved workspace

2-1 System Commands

• Operating Environment
) eM D Execute DeL command
) LIB S Display library to directory correspondence
) 0 F F End APL session
) PO R T S List active users and ports

2-1 System Commands vs. System Functions

Some system functions and system variables provide basically the
same capabilities as system commands; however these general
differences should be noted:

• System variables can be referenced or assigned; system functions
usually have arguments, even if empty. System commands report
the current value; those that take an argument reset the value.

• System variables and system functions can be used in an APL
statement as part of a defmed function; system commands cannot.

• Results from system functions and variables can be captured by
assignment to a variable; output from system commands cannot.

2-2 System Command Reference

On the following pages, all of the system commands are listed in
alphabetical order and are discussed in detail. Each description contains
the system command's name, purpose, syntax, arguments, and effect.
One or more examples are also provided for clarity.

Note: Many of the system commands have workspace identifiers or file
identifiers as arguments. They are referred to in the syntax as wsid
and ftleid, respectively.

A valid identifier consists of a workspace or file name preceded by a
directory name. A directory name follows the operating system's
convention and may also include a disk or network node identifier. For
example, the following are valid workspace or file identifiers.

Copyright © 1987 STSC, Inc. 2-2 System Commands

MYWORK
[APL. REL 1] DATES
[STUARTJ TEMPWS
$DISK1: [APL.WSJTEMPWS
LABVAX1: :$DD01: [USER1JUTIL

If the directory name is omitted, the current default directory is used.

To provide compatibility with other APL * PLUS Systems in a variety
of operating systems, this APL * PLUS System also supports library
mode. In library mode, a valid identifier consists of the workspace
name optionally preceded by a valid library number. For example:

TEMPWS
101 DATES

The connection between library numbers and operating system
directories are made with DLIBD and reported with)LIBS or
o LIB S. The system is in directory mode by default unless 0 LIB D
is used to assign a library number to a directory. At that point the
system is in library mode until alilibrary-to-directory correspondences
are removed. 0 LIB D is also used to disolve a library-ta-directory
assignment

The APL * PLUS System is in either directory mode or library mode.
Some commands that are valid in directory mode will give
INCORRECT COMMAND messages in library mode and vice
versa. The definitive test for library mode is that 0 LIB S has at least
one entry:

on tpDLIBS

Workspace and file names themselves (not the directory or library
prefix) are limited to a maximum length of eleven characters. Names
must be composed entirely of alphabetic letters (A-Z, a-z) and digits
(0-9). The first character of the name must be a letter.

Copyright © 1987 STSC, me. 2-3 System Commands

Recall Previous APL Statement)

Purpose:

Syntax:

Errect:

Examples:

Recall previous nonblank APL statement entered in immediate
execution mode for re-use after editing.

Recalls the previous line and displays it on the screen. The line
can then be edited in the same manner as though it had just been
typed in. When you press Enter, the current fonn of the line is
executed.

1 2 3 + 4 5
LENGTH ERROR

1 2 3 + 4 5

" "
(Recall last line, cursor at end.

1 2 3 + 4 5_ Type a space and a 6, making it:
1 2 3 + 4 5 6 and then press Enter.)

5 7 9

Copyright © 1987 STSC, lnc. 2-5 System Commands

Clear Active Workspace)CLEAR

Purpose: Clear the active workspace.

Syntax:)CLEAR
) CLEAR wssize

Argument: wssize new workspace size in bytes

Effect:

Example:

wssize must be an integer number greater than 8192, but smaller
than the operating system limit

Discards the contents of the active workspace and resets the
workspace-related system variables to their default values. (See
Chapter 3 for the default values).

File ties and session-related system variables are unaffected by the
) C LE AR operation.

The new size of the workspace may be larger or smaller than the
present workspace size. If the workspace size requested exceeds the
system configuration limit, the message INS U F F I C IE NT
SPA C E FOR W S is displayed and the workspace is cleared, but
the workspace size is not changed.

The workspace can be cleared under program control by using:

OSA-'CLEAR' 0 -

HISID
IS EXAMPLE

OWSSIZE,OWA
150000 116090

OPW-56
OIO-O

Copyright © 1987 STSC. Inc. 2-6 System Commands

A
F

)VARS
B C
G H

) CLEAR 250000
CLEAR WS

)VARS

)WSID
IS CLEAR WS

OPW
56

DID
1

oWSSIZE
250000

Copyright © 1987 STSC, Inc. 2-7

DAY
I

E

(The variables are deleted.)

(EXAMPLE is deleted.)

(Session-related system
variables remain.)

(Workspace-related system
variables have been reset.)

System Commands

Execute DCL Command)CMD

Purpose: Execute a VMS DCL command.

Syntax:)CMD
) C M D command

Argument: command DCL command to be executed

Effect:

Examples:

Temporarily exits APL (the contents of the workspace are
preserved) and allows access to the operating system.

If command is not specified, you are in the operating system and
may enter as many operating system commands as you wish.
Logoff returns you to the APL session.

If command is specified, APL is again temporarily exited, but this
time the operating system command is executed and control
immediately passes back to APL.

The APL terminal exit string, if any, is written to the terminal
before any non-APL output is produced, and the APL initialization
string is written when control returns to APL. Output produced by
the operating system is not part of the APL session; it cannot be
scrolled back once it has disappeared from the terminal screen, and
it will vanish if you press the Refresh key.

o C M D provides a sim ilar capability and can be used under program
control. In addition, 0 C M D can be used to capture the output
generated by the DCL command.

)CMD (Leave APL.)
type log to return to apl
$ show def

$DISK1: [MYERS]

$ log (Return to APL. Press
Refresh key to restore screen.)

)CMD SHOW TIME
31-AUG-1987 10:44:36

2+2 (Still in APL.)
4

Copyright © 1987 STSC, Inc. 2-8 System Commands

Copy from Saved Workspace)COpy

Purpose:

Syntax:

Copy APL functions and variables from a saved workspace to the
active workspace.

) COpy wsid
) COpy wsid objlist

Arguments: wsid workspace identifier (see section 2-2)

Effect:

objlist list of functions or variables to be copied

Copies objects from the saved workspace (wsid) into the active
workspace and displays a SA V ED message with the time and date
that wsid was saved. Identically named objects already in the active
workspace will be replaced.

If objlist is not specified, all APL variables and functions in the
saved workspace are copied into the active workspace.

If copying cannot be completed because an object is too large to fit
into the active workspace, a NOT COP lED: message is
displayed along with the names of the objects that could not be
copied. If an object is not found in the specified workspace, a
message NOT FOUND: is displayed along with the names of
the objects that could not be found. In both cases, copying
continues with the remaining objects in the list.

If the free space in the active workspace is insufficient for the copy
process, one of the following messages may be displayed:

WS FULL
WS TOO LARGE

If) COP Y is unable to create a temporary file used in the copy
process, one of the following mesages may be displayed:

CANNOT CREATE TEMPORARY COpy FILE
ERROR WRITING TEMPORARY COpy FILE

Copying a function copies only the source form of the function;
any intermediate code normally saved to improve that function's

Copyright © 1987 STSC. Inc. 2-9 System Commands

Example:

performance is not copied. All 0 STOP and DTRACE settings in
effect for a copied function are also discarded during the copy
process.

DC 0 P Y provides a similar capability and can be used under
program control.

MATRIX
VALUE ERROR

MATRIX
A

)SI
THREE[7] *

)COPY OTHERWS ONE TWO THREE FOUR
SAVED 14:19:10 07/02/85
NOT COPIED: TWO
NOT FOUND: FOUR

Copyright © 1987 STSC, Inc. 2-10 System Commands

Delete a Saved Workspace)DROP

Purpose: Erase a saved workspace from disk storage.

Syntax:)DROP wsid

Argument: wsid workspace identifier (see section 2-2)

Effect:

Examples:

Deletes the named workspace (wsid) from storage and displays the
timestamp of the operation. The active workspace is not affected.

If the workspace does not exist you receive a W S NOT F 0 UN D
message. If you do not have permission from the operating system
to delete this file, a W SAC C E SSE R R 0 R is displayed. If
the library number is undefined (see OLI B S), the message
LIBRARY NOT FOUND is displayed.

The combined use of ONT IE and ONERASE provide the same
capability and can be used under program control.

)DROP TEMPWS
12:17:13 OS/25/87

)DROP [JGW.WSSJOLDWS
10:50:51 OS/24/87

)DROP 101 OLDWS
10:50:51 OS/24/87

(In directory mode.)

(In library mode.)

Copyright © 1987 STSC, Inc. 2-11 System Commands

Edit Object with Full-Screen Editor)EDIT

Purpose: Modify or create a function or character variable.

Syntax:)EDIT object

Argument: object name of the function or character variable to be edited

Effect:

Examples:

Activates the full-screen editor with a new copy of the contents of
the named object as an image in the edit ring. If the object exists,
it must either be an unlocked function or a simple character
variable whose rank is two or less (a vector or matrix). If no
object with the specified name exists, it is assumed to be the name
of a new function to be created.

The) EDIT command can only be used from immediate execution
mode. Attempts to use it from D or function definition mode
produces a NOT IN DEFN OR QUAD message.

The system function DE DIT and special keyboard keystrokes
provide a similar capability. DE D I T can be used under program
control.

For details on the use of the full-screen editor, see Chapter 2 of the
APL *PLUS System User's Manual.

)EDIT CUSTOMERLIST

)EDIT PROGRAM

Copyright © 1987 STSC, Inc. 2-1 2 System Commands

Erase Objects in Workspace)ERASE

Purpose: Erase functions and variables from the active workspace.

Syntax:)ERASE obj/isl

Argument: obj/isl list of functions or variables to be erased

Errect:

Examples:

Erases the specified objects from the active workspace. If any of
them cannot be erased, the system displays the message NOT
ERASE D: followed by the names of the objects that were not
erased.

Functions that are suspended or pending can be erased, but the
storage they occupy will not be reclaimed until execution is
completed or the stack is cleared (see) SIC)

DE X and 0 ERA S E provide a similar capability and can be used
under program control.

)ERASE JANDATA TRIALFN NOSUCH
NOT ERASED: NQSUCH

Copyright © 1987 STSC. Inc. 2-13 System Commands

Help Gain Access to a File)FILEHELPER

Purpose:

Syntax:

Effect:

Examples:

Allow access to a me without adherance to passnumber or access
matrix constraints. Useful when you are accidentally locked out of
a file.

)FILEHELPER fileid

Discards the access matrix for the me specified by fileid.
OF H I ST information is updated and you are reflected as the
current owner of the me and the last person to change the access
matrix. You must be the owner of the me at the VMS level in
orderto use)F ILEHELPER.

'LOCKEDFILE' OFSTIE 1
FILE ACCESS ERROR

)FILEHELPER LOCKEDFILE
'LOCKEDFILE' OFSTIE 1 (Now works.)

Copyright © 1987 STSC, Inc. 2-14 System Commands

Display File Library List)FLIB

Purpose:

Syntax:

List the names of the APL component files in a library or
directory.

)FLIB
)FLIB dir
)FLIB lib

Arguments: " directory to be searched

Effect:

Examples:

lib library number of the directory to be searched

Lists all component files stored in the specified directory or library,
even if the user has no access to them. If no library number or
directory name is specified, the current working directory is
searched.

A directory name (dir) can be specified even when the system is in
library mode. A library number (lib) can only be used when in
library mode.

OF LI B provides a similar capability and can be used under
program control.

)FLIB
DATEBOOK TAXDATA

DLIBD '213 [APL.WS] '
)FLIB 213

ORACLE REPORTS

)FLIB [APL.RELlJ
DATES INPUT SERXFER

Copyright © 1987 STSC, Inc. 2-15 System Commands

Display Function Names)PHS

Purpose:

Syntax:

List the names of all user-defined functions in the active
workspace.

)FNS
)FNS start

Argument: start starting letter or character string

Effect:

Examples:

Displays a list, in alphabetic order. of the user-defined functions in
the active workspace. Specifying the optional start string begins
the list with the functions whose names are alphabetically equal or
subsequent to the start string.

ON L and 0 I D LIS T provide a similar capability and can be used
under program control.

)FNS
ADDITEM
CHANGE
FILEUPDATE

)FNS P

PROCESS TOTALSBYMONTH
RANGECHECK
RESTART

PROCESS RESTART
RANGECHECK TOTALSBYMONTH

Copyright © 1987 STSC. Inc. 2-16 System Commands

Online Documentation)HELP

Purpose:

Syntax:

Effect:

Examples:

Provide infonnation on the editing commands available in the
full-screen editor.

)HELP

Displays the contents of the editor help file on the screen. The
default help file HE L P . HLP provided with the system contains a
summary of the editing commands available for the tenninal
chosen when APL was loaded. A different help file may be used,
depending on the type of tenninal being used.

If the file contains more lines than can be displayed at once, the
user can browse through the file by using the U and D keys to
move up and down through the file. The help screen remains
active until the user presses the Q key.

A different file can be used as the help file if specified by the APL
session parameter help=. See Chapter 1 in the APL .. PLUS
System User's Manual.

)HELP (The system displays the contents
of the Help file.)

Copyright © 1987 STSC. Inc. 2-17 System Commands

Display File and Workspace Libraries)LIB

Purpose:

Syntax:

List every workspace and file (including native files) in a library.

lLlE
lLlE dir
lLlE lib

Arguments: " directory to be searched

Effect:

Examples:

lib library number where files and workspaces are located

Lists the files stored in the specified directory. If no directory is
specified, the files in the current worlcing directory are listed.

The APL * PLUS System uses extension . WS for saved APL
workspaces and . VF for APL component files.

A directory name (dir) can be specified even when the system is in
library mode. A library number (libno) can only be used when in
library mode.

OLl E provides a similar capability and can be used under program
control. .

lLlE
DATES.WS TEST.VF

(Switch to library mode.)
OLlED '123 [APL.WS] '
lLlE 123

JUNK.VF TEST.WS

lLlE
ADDSUE.C
APL
CORE

[APL. RELlJ
DEMO.WS
FORMAT.WS
MAKEFlLE

(Search another directory.)

MOVEFlLE.WS
XDEMO.VF

Copyright © 1987 STSC, Inc. 2-18 System Commands

Library to Directory Correspondences)LIBS

Purpose:

Syntax:

Effect:

Examples:

Display the defmitions of the APL libraries in use during this
session.

)LIBS

Displays the APL library definitions in use during this session.
For an explanation of APL libraries, see theAPL *PLUS System
User's Manual. If there is no output from) LI B S (indicating that
no library numbers are defmed), then APL is in directory mode.
Library numbers cannot be used when APL is in directory mode.

If any library numbers have been assigned to directory names, then
APL is in library mode, and) LI B S will list the library-to­
directory correspondences. When APL is in library mode, library
numbers can be used as a substitute for the directory name.

OLI B S provides a similar capability and can be used under
program control.

)LIBS

)LIBS
666 [APL.OLD]

1 [GROUP. DIR]

(Directory mode; no libraries defined.)

(Library mode.)
11

12345678
[STSC.UTIL]
[APL. tiS]

Copyright © 1987 STSC, Inc. 2-19 System Commands

Load a Saved Workspace)LOAD

Purpose:

Syntax:

Activate a saved workspace by replacing the current workspace with
a copy of a workspace stored on disk.

)LOAD wsid

Argument: wsid workspace identifier

Effect: Replaces the active workspace with a copy of the specified saved
workspace (wsid) and displays the time and date that the workspace
was saved. Once loaded, the latent expression (DLX) is
automatically executed. In a workspace saved with a non-empty
state indicator, DLX could be a localized latent expression.

The workspace can be in any directory. If a directory is not
specified, the current directory is assumed. If the specified
workspace is not located in the specified directory, the system
displaysa WS NOT FOUND message. If you do not have read
privilege for the me that contains the saved workspace, the system
displays a HOST ACCESS ERROR. If you load a workspace
that was saved by a previous version of APL, you may see the
message

OBSOLETE WS STRUCTURE UPDATED.
PLEASE RESAVE WS

This means that APL has automatically updated the active
workspace to accommodate changes to the workspace structure
needed for the new version.

If you attempt to load a workspace when the version of APL you
are running is older than the version used to save the workspace,
the message INCOMPATIBLE WS is displayed and the
workspace is not loaded.

File ties and session-related system variables are not affected by the
)LOAD operation.

o LOA D provides the same capability and can be used under
program control.

Copyright © 1987 STSC, Inc. 2-20 System Commands

Examples:)LOAD [AP L. REL 1] SCRT (Directory mode.)
[APL.REL1JSCRT SAVED 14:53:17 05/14/87

)LOAD STARTWS
STARTWS SAVED 17:20:42 03/17/87
CORPORATE FORECASTING SYSTEM READY
FILES LAST USED ON 811511987 AT 5:35
PM

NEW. MODIFY. DELETE. END [N.M.D.EJ:

OLIBD '123 [APL. WSJ ' (Library mode.)
)LOAD 123 FREQ

123 FREQ SAVED 11:15:59 01/20/59

Copyright © 1987 STSC, Inc. 2-21 System Commands

End APL Session)OFF

Purpose:

Syntax:

Effect:

Examples:

End the current APL session.

)OFF

Terminates an APL session and returns you to the operating
system. The contents of the active workspace are not preserved and
any fIles that were tied are automatically untied.

o S A provides a similar capability and can be used under program
control (0 SA"" , OFF' 0 -+).

)OFF
$

Copyright © 1987 STSC, Inc. 2-22 System Commands

Protected Copy)PCOpy

Purpose:

Syntax:

Copy APL functions and variables from a saved workspace into the
active workspace provided the copy does not replace any objects in
the active workspace.

)PCOPYwsid
) PCOPY wsid objlist

Arguments: wsid workspace from which to copy (see section 2-2)
list of functions or variables to copy

Effect:

Examples:

objlist

Copies objects from the saved workspace (wsid) into the active
workspace and displays a S AVE D message.

Objects that do not ex,ist in the saved workspace will be listed after
a NOT FOUND: message. Uno objects are specified (objlist
is omitted), then all variables and functions are copied. Identically
named objects already in the active workspace will not be replaced.

Objects that were found but not copied are flagged with a NOT
COP IE D message. This could be due to the workspace
containing an existing object by the same name or insufficient
space in the workspace to store the object Copying continues
with the remaining objects on the list.

)VARS
SIX THREE

)PCOPY OTHERWS ONE TWO THREE
SAVED 14:19:10 07/02/85
NOT COPIED: THREE

)VARS
ONE SIX THREE TWO

Copyright © 1987 STSC, Inc. 2-23 System Commands

List Active Users and Ports)PORTS

Purpose:

Syntax:

Effect:

Examples:

List users signed on to the operating system and the port numbers
to which they are attached.

)PORTS

Lists the users presently logged on to the VMS operating system
and which ports they are using. All active users are listed, whether
or not they are presently using APL. The information reported is
derived from the VMS command show users.

)PORTS
STUART: TXAO
MRVN:TXA3
JGW:TXA9

SYSTEM
MLO:TXA4
LINDA: TXA8

LLG:TXA6
RIK:TXA5

Copyright © 1987 STSC, Inc. 2-24 System Commands

Protected Save of a Workspace)PSAVE

Purpose:

Syntax:

Save a copy of the current workspace on disk under the specified
name only if the workspace does not already exist.

)PSAVE
)PSAVE wsid

Argument: wsid workspace identifier (see section 2-2)

Effect:

wsid is optional and, if omitted, the name of the active workspace
is used.

Creates a new file on disk containing the active workspace with a
name of "wsw. Ws". If the directory name or library name is
included the workspace, the workspace is saved in the specified
directory. Otherwise, it is saved in the current directory.

) P SA V E changes the name of the active workspace (0 W SID) to
match that of the new saved workspace and updates the values of
OWSTS and OWSOWNER.

If you attempt to) P SAVE a workspace that already exists in the
specified library or directory, the system will generate a W S
NAME ERROR message.

) P SAVE is a more restrictive variant of) SAVE.

Examples:)WSLIB
ACCOUNT MAILBOX

)PSAVE PRINTFILE
19.16.34 12/14/86

)WSLIB
ACCOUNT MAILBOX

)PSAVE PRINTFILE
WS NAME ERROR

Copyright © 1987 STSC, Inc. 2-25

PRINTFILE

System Commands

Clear State Indicator)RESET

Purpose:

Syntax:

Clear the state indicator of the active workspace.

lRESET
lRESET n

Argument: n number of suspensions to clear from the state indicator

Effect:

Examples:

Clears the state indicator completely, as opposed to -+ which clears
only the most recent suspension.

If n is specified, the state indicator is cleared for n suspensions.

o SA provides a similar capability and can be used under program
control (0 SA+-' RE SET ').

lSI
SUBFN[6J*
STARTUP[2J
SUBFN[5J*
STARTUP[2J
SUBFN[4] *
STARTUP[2]

-+ 0

lSI
SUBFN[5] *
STARTUP[2J
SUBFN[4] *
STARTUP [2]

lRESET
lSI

(Two functions are suspended.)

(One suspension has been cleared.)

(All functions have been cleared.)

Copyright © 1987 STSC, Inc. 2-26 System Commands

Save the Active Workspace)SAVE

Purpose:

Syntax:

Save a copy of the active workspace on disk under the specified
name.

) SAVE
) SAVE wsid

Argument: wsid workspace identifier (see section 2-2)

Effect: Creates a copy of the active workspace as a fIle on disk with a
name of "wsid . WS". If the directory name or library number is
also supplied, the file is saved in the specified directory, otherwise
it is saved in the current directory.

If no wsid is given, the system uses the current active workspace
identification (0 W SID), including its library number or directory
name. You cannot save a clear workspace; you must first name it

If wsid is different from the workspace name,) SA V E changes the
name of the workspace (OW SI D) to match that of the saved
workspace. If the current workspace name is different from wsid
and a workspace is already saved on disk with a name of wsid, a
NOT SAVED THIS WS IS . .. messageisdisplayed. If
the save is successful, OWSID, OWSTS, and OWSOWNER are
updated to match that of the saved workspace.

For maximum safety during the) SA V E operation, the new
workspace file is first built as a temporary fIle
WSSAV. TMPWS . WS. After the entire workspace is
successfully saved in the temporary fIle, the old workspace fIle is
erased and the temporary file is renamed. If a disk error or system
crash occurs during the save process, the original version of the
saved workspace remains intact on the disk.

OSAVE provides a similar capability and can be used under
program control.

Copyright © 1987 STSC, Inc. 2-27 System Commands

Examples: lWSLIB
MAINTGAME TEST

lWSID
IS MAINTGAME

lSAVE
MAINTGAME SAVED 11:03:56 08/05/87

lSAVE PRODGAMES
PRODGAMES SAVED 11:53:14 08/05/87

lWSLIB
MAINTGAME TEST PRODGAMES

Copyright © 1987 STSC, Inc. 2-28 System Commands

Display State Indicator)SI

Purpose:

Syntax:

Errect:

Example:

Display the state indicator of the active workspace, showing which
functions are pendent or suspended.

)51

Displays the state indicator starting with the most recent entry.
The state indicator includes the status of suspended and pendent
functions, executes (~) , and evaluated input (0) calls. The list
shows the name of the function and the number of the statement at
which execution was suspended.

051 provides the same capability under program control.

)51
5UBFN[7J*
REPORT[3J
5UBFN[7J*
5TARTUP[11]
~

Copyright © 1987 STSC, Inc. 2-29 System Commands

Clear State Indicator)SIC

Purpose:

Syntax:

Effect:

Examples:

Clear the state indicator of the active workspace.

)S1C

Clears the state indicator completely, as opposed to -. which clears
only the most recent suspension. The system command
) RESET performs the samefunction as) SIC.

OS A provides a similar capability and can be used under program
control (0 SA+- 'RESET').

)S1
SUBFN[6J *
STARTUP[2J
SUBFN[SJ*
STARTUP[2J
SUBFN[4J*
STARTUP[2J

)S1
SUBFN[SJ*
STARTUP[2l
SUBFN[4J*
STARTUP[2J

)S1C

)S1

(There are three suspended function
executions.)

(Only the topmost suspension,
SUBFN [6 J , has been cleared.)

(The state indicator is empty. All
suspensions have been cleared.)

Copyright © 1987 STSC, Inc. 2-30 System Commands

Display State Indicator
With Names Localized)SINL

Purpose:

Syntax:

Effect:

Example:

Display the state indicator of the active workspace, showing which
functions are pendent or suspended and which names are localized
within each function.

)SINL

Displays the same infonnation as) S I with the addition of
localized names at each level of the stack.

)COPY UTILITY SUBFN
SI DAMAGE
SAVED 13:03 : 11 05/10/87

)SINL
SUBFN[-l]* L1 L2 X DIO
REPORT[-l] X Y DELX
SUBFN[-l]* L1 L2 X DIO
STARTUP[-l] RESULT MORE DONE

Copyright © 1987 STSC, Inc. 2-31 System Commands

Workspace Symbols)SYMBOLS

Purpose:

Syntax:

Display and optionally change the number of symbol table entries
for which there is space reserved in the active workspace.

)SYMBOLS
)SYMBOLS n

Argument: n maximum number of objects allowed in the symbol table

Effect:

Example:

n must be a positive integer greater than 16 or the number of
symbols currently in use, whichever is larger.

Used alone,) S Y M B 0 L S reports the maximum number of entries
possible in the symbol table of the active workspace and the
number in use.

When n is provided,) SYMBOLS resets the symbol table size to
the specified number of entries.

In this APL * PLUS System, the symbol table can be enlarged or
reduced at any time, not just in a clear workspace. In addition, the
system automatically enlarges the symbol table when additional
symbol space is required.

OS Y M B provides the same reporting capability and can be used
under program control.

) CLEAR
CLEAR WS

)SYMBOLS
IS 500 ; 0 IN USE

A+-B+-C+-5
)SYMBOLS

IS 500; 3 IN USE

)SYMBOLS 1024
WAS 500

Copyright © 1987 STSC, Inc. 2-32 System Commands

Display Variable Names)VARS

Purpose:

Syntax:

List the names of the variables in the active workspace.

)VARS
)VARS start

Argument: start starting letter or character string

Effect:

Examples:

Displays a list, in alphabetic order, of the variables currently in the
local environment of the active workspace. Specifying the
optional start string begins the list with variables whose names are
alphabetically equal or subsequent to the start string.

DNL and DI DLIST provide a similar capability and can be used
under program control.

A~l 0 B~2 0 C~3 0 D-4

A
)VARS

B

)VARS C
C D

C D

Copyright © 1987 STSC, Inc. 2-33 System Commands

Workspace Identification H/SID

Purpose:

Syntax:

Display or reset the name associated with the active workspace.

)WSID
rWSID wsid

Argument: wsid workspace identifier (see section 2-2)

Effect:

Examples:

Displays the workspace identification without changing it.

When used with wsid,) W SID sets the name of the active
workspace to the workspace identification provided.

ow SID provides a similar capability and can be used under
program control.

H/SID
IS [APL.RELIJMYWS

H/SID TUESDAY
WAS [APL.RELIJMYWS

Copyright © 1987 STSC,lnc. 2-34 System Commands

Display List of Works paces H/SLIR

Purpose:

Syntax:

List the names of the workspaces in a library or directory.

)WSLIB
)WSLIB dir
)WSLIB lib

Arguments: c;
lib

directory name
library number

Errect:

Examples:

Lists the workspaces in either the specified directory (dir) or library
(lib) or the user's default directory. The workspaces are listed in
alphabetic order. If lib or dir is omitted, your current default
directory is assumed.

OW S LIB provides a similar capability and can be used under
program control.

)WSLIB
GAMES MONTHS UTILITY

DATES
)WSLIB [APL.REL1]

(Change to library mode.)
OLIBD '105 [APL.WS] '

)WSLIB 105
GRAPH PRINT

Copyright © 1987 STSC, Inc. 2-35 System Commands

Load a Workspace, Suppressing
Execution of the Latent Expression)XLOAD

Purpose: Retrieve a saved workspace without executing its latent expression.

Syntax:)XLOAD wsid

Argument: wsid workspace identifier (see section 2-2)

Effect:

Caution:

Example:

Replaces the active workspace with the specified saved workspace
and displays the time and date that the workspace was saved, but
does not execute the latent expression (DLX). In a workspace
saved with a non-empty state indicator, DLX could be a localized
latent expression.

If the specified workspace is not located, the system displays a
WS NOT FOUND message.

File ties and session-related system variables are not affected by the
) XL a AD operation.

The system function 0 XL a A D provides the same capability and
can be used under program control.

In this APL*PLUS System, anyone can) XLOAD a workspace.
Other APL * PLUS Systems and future versions of this system
may restrict use of) XLOAD to the workspace owner.

)XLOAD MYWS
SAVED 10:26:22 13/11/86

DLX
'BOO HOO' (Did not execute DLX.)

Copyright © 1987 STSC, Inc. 2-36 System Commands

o
."
Z

.CI>

o
);
:EI
CI>

Chapter 3
System Functions, Variables, and Constants

This chapter describes in detail each of the system functions, system
variables, and system constants in the APL * PLUS System. Their
names always begin with a quad (D) symbol so that you can easily
recognize them (that is, DLOAD and DAV). System functions,
variables, and constants are features that are always available in any
workspace. They are listed below by type.

• Workspace Infonnation (active workspace)
DDM DWA
DIDLIST DWSID
DIDLOC DWSOWNER
DIO DWSSIZE
DSI DWSTS
DSYMB

• Workspace and File Management
DCOPY DPSAVE
DLIB DQLOAD
DLIBD DSAVE
DLIBS DWSLIB
DLOAD DXLOAD
DPCOPY

• Function/Object Infonnation and Manipulation
OCR DFMT
DCRL DFX
DCRLPC DLOCK
DDEF DMF
DDEFL DNC
DDR DNL
DEDIT DSIZE
DERASE DSS
DEX DVI
DFI DVR

Copyright © 1987 STSC, Inc. 3-1 System Functions

• Execution Related
DALX
DDL
DDM
DELX
DERROR
DIO

• Component File Functions
DFAPPEND
DFAVAIL
DFCREATE
DFDROP
DFDUP
DFERASE
DFHIST
DFHOLD
DFLIB
DFNAMES
DFNUMS
DFRDAC

• Native File Functions
DLIBS
DNAPPEND
DNCREATE
DNERASE ·
DNNAMES
DNNUMS
DNRDAC

• Input/Output Management
DARBIN
DARBOUT
DCURSOR
DEDIT
DINKEY
OPFKEY

DLC
DLX
OSA
OSI
OSTOP
DTRACE

OFRDCI
OFREAD
OFRENAME
OFREPLACE
OFRESIZE
OFSIZE
OFSTAC
OFSTIE
DFTIE
OFUNTIE
DLIBD
OLIBS

ONREAD
ONRENAME
ONREPLACE
ONSIZE
ONSTAC
ONTIE
ONUNTIE

OPP
OPR
OPW
OWGET
OWINDOW
OWPUT

• Interface to Operating System and Non-APL Programs
OCHDIR DNA
OCMD DXPn
ODR

Copyright © 1987 STSC, Inc. 3-2 System Functions

• OLher Functions
DAI
DAV
OCT
DRL
DSYSID
DSYSVER
DTCBEL
DTCBS
DTCDEL

3-1 System Functions

DTCESC
DTCFF
DTCLF
DTCNL
DTCNUL
DTS
DUL
DUSERID

System functions share many of the properties of APL primitive
functions:

• They are always available for use in any workspace.
• They can be incorporated into user-defmed functions.
• Some have both monadic and dyadic definitions.
• Most return an explicit result that can be used in subsequent

operations.

System functions can be niladic (no arguments), monadic
(1 argument), dyadic (2 arguments), or ambivalent (lor 2 arguments).
Typically, they.

• provide information about the session, the active workspace, and the
objects in it

• retrieve other objects or workspaces

• assist in debugging programs

• produce an effect on or indicate the status of the relevant
environment

• provide access to files

• provide an interface to the operating system or non-APL programs.

Copyright © 1987 STSC, Inc. 3-3 System Functions

3-2 System Variables

System variables, a special class of APL variables, are used to manage
the interaction between the APL processor and the active workspace.

System variables provide a means of holding information that you,
your programs, or the system can always find in any workspace. To
you, system variables behave like ordinary variables with some
restrictions on domain and shape; to the system, they are a set of
parameters controlling the interface with you.

System variables are always available. You cannot erase or copy
them. You can reference them, assign values to them, and localize
them in functions. They are similar to other localized variables in
functions except in the following respects:

• Names of system variables cannot be used as function names or as
names of labels, arguments, or the results.

• When a session-related system variable is no longer shadowed (upon
returning from function execution or loading a workspace), it takes
on the global value associated with the session.

• When execution depends upon a system variable that is localized but
has no assigned value, it assumes the value that the variable had at a
previous level. This is referred to as pass-through localization.

System variables are classified as session-related or workspace-related.
Session-related system variables are not saved with any workspace
except where they are localized in pendent or executing functions. No
primitive functions depend upon the values of these variables.
Workspace-related system variables are stored with the workspace and,
therefore, may change value after a) LOA D or 0 LOA D.

Session-Related Variables

The default value of session-related system variables is established at
the start of each APL session and remains in effect until a new value is
assigned. Loading a workspace does not affect the global value of
these variables for the session. The value of a localized session
variable temporarily supersedes the global value. When a
session-related system variable is no longer shadowed (upon return

Copyright © 1987 STSC, Inc. 3-4 System Functions

from function execution), the variable takes on the global value
associated with the session. The following table summarizes
session-related system variables.

Session-Related System Variables

Name

DWINDOW

OPW

DCURSOR

Meaning

Terminal window
size and location

Printing Width

Cursor location

Workspace-Related Variables

Acceptable
Values

Not
assignable

An integer
from 3 0
through 255

Any screen
position

Default
Value

0 0 24

80

0 0

80

Workspace-related system variables are stored with the workspace and
are possibly altered whenever a workspace is loaded. Various primitive
functions depend upon the value of one or more of these variables.
Workspace-related system variables are summarized in the
Workspace-Related System Variables table.

The default value of workspace-related system variables is established
in a clear workspace and its current value is the value (possibly
localized) associated with the active workspace. As with user-defmed
variables that are localized, when a workspace-related system variable
is no longer shadowed (upon return from function execution) it takes
on the global value associated with the current state of the workspace.

Copyright © 1987 STSC, Inc. 3-5 System Functions

Workspace-Related System Variables

Acceptable Default
Name Meaning Values Value

DALX Attention Latent Character vector 'DDM'
Expression or singleton

OCT Comparison 0s;DCTs;lE-10 1E-13
Tolerance

DELX Error Latent Character vector 'DDM'
Expression or singleton

DIO Index Origin o or 1 1

DLX Latent Character vector ' ,
Expression or singleton

DPP Printing Integer from 10
Precision 3 to 18

DPR Prompt Character singleton
Replacement

DRL Random Link 1 to -2 + 2 * 31 16807

DSA Stop Action ' ,
'CLEAR'
'EXIT' or
'OFF'

DWSID Workspace Any valid ' ,
(Clear

Identification workspace name
workspace)

Copyright © 1987 STSC. Inc. 3-6 System Functions

For example:

V FOO;DPW
[1] DPW-30
[2] GOO

v

v GOO;DPW
[1] DPW-77
[2] DPW

v

DPW-60

FOO
77

DPW
60

System Constants

System constants are values that are available in any workspace and do
not change within a given APL system. They include the following:

DAV
DFAVAIL
DStSID
DTCBEL
DTCBS
DTCDEL

DTCESC
DTCFF
DTCLF
DTCNL
DTCNUL

3-3 Details of System Functions, Variables, and Constants

On the following pages, all of the system functions, variables, and
constants are listed in alphabetic order and are discussed in detail. Each
description contains the name, syntax, effect, and one or more
examples.

Note: Some of the system functions have workspace or file identifiers as
arguments. They are referred to as wsid andfileid, respectively. See
section 2-2 for a discussion on identifier names.

Copyright © 1987 STSC, Inc. 3-7 System Functions

Accounting Information DAI

Purpose:

Syntax:

Result:

. Caution:

Errors:

Example:

Return current accounting information.

result +- OAI

result is an eight-element numeric vector containing:

[1] Your account number (identification code)

[2] Cumulative amount of CPU time used by this APL session

[3] The elapsed time since the start of the .APL session

[4] a

Although all time is expressed in milliseconds, OAI relies on the
operating system clock for time measurement. This limits
resolution to l/60th of a second. OAI [3 J has a one-second
resolution .

OAI as described here is specific to this APL * PLUS System.
The length and definition of each item of result may be different
from other APL * PLUS Systems or future releases of this system.

WS FULL

The following expression provides the hours, minutes, seconds,
and milliseconds since starting the APL session:

OIO+-1
a 60 60 1000 i OAI[3J

a 6 24 a

Copyright © 1987 STSC, Inc. 3-9 System Functions

Attention Latent Expression DALX

Purpose:

Syntax:

Contain the APL expression to be executed in the event of an
attention exception.

value +- OALX
OALX statement

Arguments: value character vector or singleton

Default:

Effect:

Errors:

statemem APL expression to replace the current value

I 0 D M I in a clear workspace

When an attention exception occurs during the execution of an
APL statement or function, the most local value of the statement
stored in OALX is executed (.t OLX).

An attention exception occurs whenever execution suspends at the
start of a function line because of a weak interrupt. A weak
interrupt is usually generated by pressing the Break key once. It is
interpreted by the system as a request to stop execution as soon as
it has finished executing the current line.

A strong interrupt is usually generated by pressing the Break key
twice in rapid succession and is interpreted by the system as a
request to stop execution immediately. Note that a strong interrupt
does not trigger an attention exception whereas a weak interrupt
does.

DOMAIN ERROR
RANK ERROR

In addition, any APL error can occur during execution of OALX.

Copyright © 1987 STSC, Inc. 3- 10 System Functions

Example: In the first example, OALX is used to protect a critical function
from suspension when an interrupt has been signalled by
automatically restarting the function. Note that OLe has no
element corresponding to the ~ that would show in the state
indicator (see 0 S I or) S I) during the execution of the statement
.!.OALX.

v SAMPLE1; DALX
[1] DALX+-'-.DLC'

v

v SAMPLE2;DALX
[1] DALX+-' DERROR "ATTN'"

v

The function SAM P LE2 uses OALX to pass a special error exception
to the calling function so that DE LX can be used to handle both errors
and attentions. The calling function can then determine that the error
resulted from an attention exception and take appropriate action.

Copyright © 1987 STSC, Inc. 3-11 System Functions

Arbitrary Inputfrom Terminal DARB IN

Purpose:

Syntax:

Perform input and output of data for various physical devices with
optional built-in translation.

For example, DAR BIN can be used to communicate with a
remote computer, a printer, or a native file.

result +- DARBIN data
result ... out in trans proto wait limit term DARB IN data

Arguments: out output device
input device
translation option
protocol option

in
trans
proto
YYaiJ
limit
term

seconds to wait while collecting the result from in
maximum number of bytes of input expected from in
list of terminator codes

result data received from the device
ctkl data sent to the device

The right argument, data is either character or numeric data to be
sent to the device. If data is a matrix or array of higher rank, it is
raveled (, data) before being transmitted.

The left argument is an integer vector or singleton of transmission
options.

out The destination to which the right argument (data) is
sent, identified by a number. A 1 (the default) specifies
the terminal for the APL process; 0 specifies no output.
A negative value of out indicates the tie number of a
native file to which output is appended.

in The source from which data is to be received, identified
by a number. A 1 (the default) selects the terminal for
the APL process; 0 specifies no input and causes
DARBIN to return an empty vector (' ') immediately
after data has been transmitted even if wait or limit has
not been satisfied. A negative value for in indicates the
tie number of a native file from which input is read.

Copyright © 1987 STSC. Inc. 3-12 System Functions

trans The way data is to be translated before being written and
the way result is translated after being read.

If data is in integer form, it is treated as raw numeric
codes and never translated.

If the translation specification is 0 or 1, data, in
character form, has overstrikes expanded and is translated
to typewriter-paired or bit-paired codes, respectively. If
the specification is 3, 2 or -1 , data (character form) is
transmitted without translation or expansion of
overstrikes.

When not explicitly specified, the trans is 0 for dyadic
use of DARBIN and -1 for monadic use.

result is translated in one of four ways.

Trans Description

-1 raw untranslated numeric codes, one for each
character received.

Copyright © 1987 STSC, Inc.

o translated according to the APL-ASCII
typewriter-pairing overlay. Overstrikes formed
with the Backspace character are combined into
single APL characters.

1 translated according to the APL-ASCII
bit-pairing overlay. Overstrikes formed with the
Backspace character are combined into single
APL characters.

2 untranslated 7 -bit characters. The high (parity)
bit is set to O.

3 untranslated 8-bit characters with the high-order
bit preserved.

3-13 System Functions

proto specifies other aspects of the operation.

Proto Description

o (Default.)

1 (Reserved.)

2 Echo each character read from inport to outport.

wail The maximum number of elapsed seconds to wait for data
(a dead-man timer). If this time limit is reached before
any data is received, or since the last data was received or
successfully sent, control returns to the calling program.
A negative value selects no timeout (an infinite wait).
The effect of a zero wait value may be changed in a future
release; a zero limit should be used when no input is
desired.

The default wait value, if none is specified, is -1 .

limit The maximum number of characters of input desired.

Execution of DARBIN terminates when this number of
characters has been received. A value of 0 indicates that
no response is expected at this time, causing an empty
result to be returned immediately.

The default limit value, if none is specified, is 400
characters. Since the result of DARBIN always
contains a trailing termination code, the minimum value
for limit is 2.

term A list (possibly empty) of termination codes. Execution
of DARB IN terminates when one of these codes is
received. For character to numeric equivalents, see
Appendix B of the APL *PLUS System User's Manual.

The default terminator list, if none is specified, is 13 (the
newline character). If -1 is supplied as term, no
termination character is used.

Copyright © 1987 STSC, Inc. 3-1 4 System Functions

Effect:

Result:

DARB IN transmits data to the specified port and waiLS for as long
as dictated in the left argument for a response before returning iLS
explicit result. If a wait is dictated, the explicit result is the
response received up to termination. If no wait is specified (by a 0
value for wait or limit), an empty explicit result is returned
immediately, allowing local processing to resume at once.
Concurrent gathering of a response is still possible during such
processing. Note, however, that buffering of input depends upon
the capabilities of the operating system version being used. Input
may be lost if system buffers overflow.

DAR BIN can also be used with regular native mes, where iLS
overstrike-handling capability is sometimes useful (for example,
output to be printed on a printer).

result is either a character or numeric vector (depending on
translation) .

When input is requested, the result of DARBIN is a character or
numeric vector as specified in the translation.

If the translation value is 0 or 1, incoming sequences will be
resolved as appropriate into overstruck characters, regardless of the
order in which they are received. (This process depends on the
received characters not causing the cursor to backspace beyond the
beginning of the text.) Undefined overstrikes are resolved into an
undefined character (DAV [2 5 5 + 0 IO]).

If the received sequence contains tab characters (ASCII Hf), they
are represented in result as 0 A V (9 + 0 I 0) and are not resolved
into spaces. This allows user-programming to determine how they
will be treated, even permitting simulation of variable tab
positions. Users who do not want to provide interpretation for tab
characters can instruct the device not to use them.

The last element of result is the terminator character and identifies
the cause of DARBIN termination.

Copyright © 1987 STSC. Inc. 3-15 System Functions

Caution:

Errors:

-1 t result

OAV[129+0IOJ
OAV [130+0IOJ
OAV [131 +OIOJ
OAV [132+0IOJ
OAV [term]

Termination

Time out
Character limit
Break termination character
End of file (for native files)
User supplied termination character

OARBIN as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DOMAIN ERROR
RANK ERROR
WS FULL

Copyright © 1987 STSC. Inc. 3-16 System Functions

Arbitrary Output to Terminal DARBOUT

Purpose:

Syntax:

Permit the transmission of arbitrary transmission codes to a
terminal or other remote device.

OARBOUT codes

Argument: codes set of codes to be transmitted

Examples:

The argument is an integer array with values from 0 to 255
inclusive. The argument can be of any rank; it is raveled before
being displayed. It can also be of any length; it is not limited by
the value of OPW.

OARBOUT 7 (Ring the bell on the terminal.)

Copyright © 1987 STSC, Inc. 3-17 System Functions

Atomic Vector DAV

Purpose:

Syntax:

Result:

Caution:

Errors:

Example:

Return a vector of all possible character values.

result +- DA V

result is a 256-element vector of all possible character values.

Avoid relying heavily on the order in which the character set is
mapped onto the elements in DAV since this is not the same in all
APL * PLUS Systems. However, all possible characters are
represented somewhere in DAV -- even those not available directly
from the keyboard. The explicit result can be indexed and the results
stored in variables. Throughout this manual, all subscripts into
DAV are shown in index origin O.

Note that the entire result of DA V cannot be visually displayed
since several of its elements are terminal control characters. See
Appendix B oftheAPL *PLUS System User's Manual for a display
of the entire DA V. This DAV has the same composition as the
APL * PLUS System for the PC although not all characters can be
visually distinguished on most terminals.

WS FULL

DIO O
DAV t 'ABC'

65 66 67

ABC

ABC

DA V[65 6 6 6 7 J

OLD ' abc'
ALLCAPS-DAV
IX (t26)+DAVt 'a'
ALPHA"" 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ,
ALLCAPS[IXJ ALPHA
NEW ALLCAPS[DAVtOLDJ

NEW

Copyright © 1987 STSC. Inc. 3-18 System Functions

The last example translates character values. NEW becpmes a
revised version of OLD in which ail lowercase letters are converted
to uppercase letters. A translate table ALLC AP S has been formed
to do the translation.

Copyright © 1987 STSC. Inc. 3-19 System Functions

Change Working Directory OCHDIR

Purpose: Change the default directory.

Syntax: result +- DCHDIR dir

Argument: cir directory name

Result:

Effect:

Errors:

Caution:

Examples:

dir is a character scalar or vector containing a valid directory name
or an empty vector (' ') that returns the name of the current default
directory.

result is the old current working directory name.

Changes the working directory to the directory specified. Since the
old directory name is returned as result , 0 C H D I R "can be used
to query the current directory.

DOMAIN ERROR
RANK ERROR

DC H D I R as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DC H D I R " (Query current directory.)
[STUART]

DCHDIR '[LINDA . TEST] , (Change.)
[STUART]

Copyright © 1987 STSC, Inc . 3-20 System Functions

Execute DCL Command OCMD

Purpose:

Syntax:

Execute a VMS DCL command.

result OCMD command
result +-- 1 OCMD command

o OCMD command

Argument: command DCL command

Result:

Effect:

command is a character vector or singleton containing the DCL
command to be executed. It may be empty.

If 0 C M D is used monadically, result is an integer scalar containing
the return code for the operation. If OCMD is used dyadically,
result is a character vector containing the output generated by
executing the DCL command.

If command is empty, APL is temporarily exited, the contents of
the workspace are preserved. You are then returned to the operating
system and may enter as many operating system commands as you
wish. Logoff returns you to the APL session and execution
continues with the next statement.

If command is a non-empty character vector, APL is termporarily
exited, the operating system command is executed, and control
immediately passes back to APL.

If 0 C M D is used monadically (only a right argument), the APL
terminal exit string, if any, is written to the terminal before any
non-APL output is produced and the APL initialization string is
written when control returns to APL. Output produced by the
system is not part of the session. It cannot be called back once it
has disappeared from the session screen and it will vanish if you
press the Refresh key.

If 0 C M D is used dyadically with 1 as the left argument, the output
is captured and returned as a result. The terminal is not reset. If 0
is the left argument, no result is produced.

Copyright © 1987 STSC, Inc. 3-21 System Functions

Caution:

Errors:

Examples:

Monadic 0 C M D is best used for situations where the execution of
the DCL command requires control of the terminal. Dyadic 0 C M D
is recommended when the OCL command does not need control of
the terminal since all output can be captured by the APL session.

Do not use dyadic 0 C M D to run an interactive application since
you will not receive any output until the program terminates.

DC M D as described here is specific to this APL * PLUS System. It
may be different or absent in other APL * PLUS Systems.

DOMAIN ERROR

OpDCMD "
$ show time

5-AUG-1987 14:15:41
$ log

(Back in APL.)

RES-1 DCMD 'SHOW DEF'
pRES

17
RES

$DISK1: [MYERS]

Copyright © 1987 STSC, Inc. 3-22 System Functions

Copy From Saved Workspace DCOPY

Purpose:

Syntax:

Copy APL functions and variables from a saved workspace into the
active workspace.

result +- DCOPY wsid
result +- objlist DCOPY wsid

Arguments: wsid workspace name (see section 2-2)

Result:

objlist list of functions and variables to copy

objlist can be either a character matrix of object names, one name
per row, or a character vector with each name seperated by one or
more blanks.

result is an integer vector representing the success or failure of
DC 0 P Y. If objlist is specified, result contains a response code for
each object in objlist.

Response Code

2
1
o

-2

Explanation

A variable was copied successfully.
A function was copied successfully.
No objects copied; none found with the
supplied name.
The object was too large to copy given the
available free workspace.
The name is defined as a label and cannot be
changed.
There is insufficient space in the symbol
table to copy this object
The amount of workspace available is too
small to perfonn the copy.

If 0 COP Y is used without specifying objlist, then result is empty if
all objects of wsid were copied successfully. If one or more objects to
be copied from wsid are suspended or pendent functions in the current
workspace, result is a numeric vector containing an appropriate
response code for each object that is not copied. If an unanticipated
error occurs, no result is returned.

Copyright © 1987 STSC, Inc. 3-23 System Functions

Effect:

Errors:

Example:

Copies objects from the specified workspace (wsid) into the local
environment of the active workspace replacing any objects by the same
name. See description of 0 P COP Y for a way to prevent replacement
of existing objects.

Copying a function only copies its source form; all compiled code is
discarded and 0 S TOP and 0 T R ACE settings are cleared in the active
workspoce.

DOMAIN ERROR
INSUFFICIENT MEMORY
LENGTH ERROR
RANK ERROR
WS ARGUMENT
WS DAMAGED
WS FULL
WS NOT COMPATIBLE
WS NOT FOUND

MT

1 2
3 4

)VARS

MT

)SI
SUSPENDED [3] *

'MT XXX DATA SUSPENDED' OCOPY 'WS3'
2 0 2 -3

)VARS
DATA MT

CAT
DOG
RAT

MT

(Value of MT has changed.)

Copyright © 1987 STSC. Inc. 3-24 System Functions

Canonical Representation of a Function OCR

Purpose: Return the canonical representation of a function.

Syntax: result - 0 C R fnname

Argument: fnname function name

Result:

Errors:

Example:

fnname is a character singleton or vector containing the name of a
function.

result is a character matrix containing the canonical representation
of the most local definition of the function. Each line of the
function (including the header) is left-justified and all lines (except
the longest line) are padded olf the right with blanks.

Iffnname is not the name of an unlocked function, result is an
empty matrix (shape ° 0).

The result of 0 C R can be assigned to a variable and used as the
argument to 0 DE F or OF X to redefme the original function.

DOMAIN ERROR
RANK ERROR
WS FULL

v
[1]
[2]
[3]

v

4 25

TRI N;A
O-A-, 1

Ll:-+(N<pA)pO
-Ll

pQ-OCR 'TRI'

Q
TRI N;A
O-A-, 1

¢ O-A-(O,A)+A,O

Ll:-(N<pA)pO ¢ O-A-(O,A)+A,O
Ll

OFX Q
TRI

Copyright © 1987 STSC. Inc. 3-25 System Functions

Canonical Representation
of a Single Function Line DCRL

Purpose:

Syntax:

Return a character vector containing the canonical representation of
a single line of a function .

result +-- 0 C R L 'Jnname [n] ,

Arguments: Jnname function name

Result:

Errors:

Examples:

n line number

The argument to 0 C R L is a character singleton or vector. Jnname
is the name of a valid function and n is a non-negative integer
representing a line number in the function.

result is the canonical representation of line n of functionJnname
with a length matching that of line n (generally shorter than the
width of 0 C R 'Jnname'). If n is zero, the result is the header of
the function.

IfJnname is a locked function or if n is greater than the number of
lines in the function, the result is an empty vector.

result is also an empty vector if the argument is ill-formed or the
function does not exist

If n is not given, the result of 0 C RL is 1 P ,

DOMAIN ERROR
RANK ERROR
WS FULL

v
[lJ
[2]
[3]

v

FOO
D+--'THIS IS A TEST'
A+--112
D+--Ax3

Copyright © 1987 STSC. Inc. 3-26 System Functions

o

DCRL 'FOO'

pDCRL 'FOO'

DCRL 'FOO[2J'

DD-DCRL 'FOO[lJJ
DD

D-'THIS IS A TEST'

t.DD
THIS IS A TEST

Copyright © 1987 STSC, Inc. 3-27 System Functions

Public Comment Display DCRLPC

Purpose:

Syntax:

Retrieve the public comment from a single line of a function. A
public comment begins with A V and can occur after executable
code on a given line. 0 C R L P C also operates on locked functions ,
allowing even locked functions to have imbedded documentation
retrievable by the user.

result +- DCRLPC 'fnname En] ,

Arguments: fnname function name
line number

Result:

Errors:

Example:

n

result is the public comment for line n of functionfnname.

If line n has no public comment or if n is greater than the number
of lines in the function, result is an empty vector. It is also an
empty vector if the argument is ill-formed or the function does not
exist.

DOMAIN ERROR
RANK ERROR
WS FULL

OCR L P C can be used to identify different versions of the same
locked function; the version number can be documented in a public
comment.

DCRLPC 'LOCKEDFN[l] '
AV VERSION 4 REVISED 10/15/86 BY SAM

Copyright © 1987 STSC, Inc. 3-28 System Functions

Comparison Tolerance OCT

Purpose:

Syntax:

Domain:

Effect:

Specify the maximum relative difference allowed between two
numbers for them to be considered equal.

value +- OCT
OCT +- value

value is any single numeric value between ° and 1E -10. In a
clear workspace, the default value is lE -13. OCT, when
referenced, is always a numeric scalar.

Overcomes the problems of inexact internal representation and
cumulative rounding errors that are inherent in computer arithmetic
on non integer values. Comparison tolerance is a means of
ignoring small differences between two numbers that are likely to
come from inexact representation or rounding.

Two numbers are considered equal if their relative difference is less
than or equal to 0 CT. Other comparisons are derived from that
property. This means that A and B are considered equal if:

(IA -B)~OCTx(IAH lB.

If OCT is 0, all comparisons are exact. Furthermore, all
comparisons with the number ° are exact and are independent of
OCT. Setting 0 CT to 0 may produce counter-intuitive results
from floating-point calculations on real numbers due to the way
numbers are stored internally (see Caution: below).

The value of 0 CT is used when computing the result of any of the
following primitive functions using floating-point data:

• floor (L)
• ceiling (r)
• residue (I)
• match (=)
• membership (c)
• index of (1)

• numeric relation (> ~ = ~ <)

Copyright © 1987 STSC, Inc. 3-29 System Functions

Caution:

Errors:

Examples:

Only in special cases should OCT be set to zero. The examples
presented below illustrate the shortcomings of exact comparisions
when performing arithmetic on non-integer numbers that
experience rounding.

The following chart shows how the results of some simple
expressions depend upon the value of 0 CT.

Effect of 0 CT on Numeric Operations

EPS lE-15
A 0 0 1 1
B (O+EPS), (O-EPS), (1+EPS) , (I-EPS)

OCT 0 lB 0 -1 1
OCT 10xEPS lB 0 0 1

OCT 0 rB 1 0 2
OCT +- 10xEPS rB 0 0 1

OCT +- 0 A=B 0 0 0
OCT +- 10xEPS A=B 0 0 1

OCT +- 0 A<B 1 0 1
OCT +- 10 xEPS A<B 1 0 0

OCT +- 0 ALB 5 5 5
OCT +- 10 xEPS ALB 5 5 3

OCT +- 0 Ae-B 0 0 0
OCT +- 10xEPS MB 0 0 1

DOMAIN ERROR
RANK ERROR

)WSIn
IS CLEAR WS

OCT
1.0E-13

3=3+.000000000001
0

OCT-.00000000001
3=3+.000000000001

1

0
1

1
1

0
1

0
0

5
3

0
1

Copyright © 1987 STSC, Inc. 3-30 System Functions

Cursor Position DCURSOR

Purpose:

Syntax:

Domain:

Effect:

Caution:

Errors:

Examples:

Query or set the cursor location on the screen.

pair +- DCURSOR
DCURSOR +- pair

Integer vector (2 elements) containing the row and column of the
cursor position relative to the upper-left corner of the window (in
origin 0). The default value is 0 0 and is reset each time the
window is cleared.

The value of 0 CUR SO R is the cursor location at the time the
statement is executed (not its position before the line was executed,
which may be the line above).

Assigning a new value to 0 CUR S 0 R moves the cursor to the new
position. pair must be a valid cursor position or a DOMAIN
ERR 0 R is produced.

DC U R SO R as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DOMAIN ERROR
LENGTH ERROR
RANK ERROR

DCURSOR
2 2 0 (The cursor was on line 22 in

column 0 of the current window
when DCURSOR was executed.)

DCURSOR +- 0 0 0 'A'
(Move the cursor to the upper-left
comer of the current window and
display an "A".)

Copyright © 1987 STSC, Inc. 3-31 System Functions

Function Definition DDEF

Purpose: Define a function from a character representation.

Syntax: result <- DDEF fnrep

Argument: fnrep character representation of a function

Result:

Effect:

Iffnrep is a character vector whose fIrst non-blank character is v or
¥, it is assumed to represent a function in DVR form. Otherwise,
a character vector will be taken to be a vector version of a function
in 0 C R form (that is, without v's and line numbers). Iffnrep is a
character matrix, the function is assumed to be in 0 C R form .
fnrep may contain superfluous blanks in the same way that
function definition (v -editor or) EDIT) allows them.

If the function defInition is successful, result is the name of the
defined function.

If the function defInition is not successful, result is a two-element
numeric vector containing information about the error (see
Errors: below).

Defines a function of the appropriate name in the active workspace
unless an error condition occurs. The amount of available
workspace area and the number of symbols may change. Iffnrep
contains a leading or trailing ¥, the function will be locked after it
is defIned.

If the name of the function defmed corresponds to a local identifIer
in a currently executing, pendent, or suspended function, the newly
defined function is local to that function and is erased when the
function in which it is localized completes execution.

If the name of the function defIned corresponds to the name of an
existing function, the existing function is replaced and any
o STOP or DT RACE settings in the function are removed.

Copyright © 1987 STSC. Inc. 3-32 System Functions

Example:

Notes:

Errors:

M
TRI N;A
O<-A<-, 1
Ll:~(N<pA)pO 0 O<-(O,A)+A,O 0 ~Ll

M<-OCR 'TRI'
M[l;]<-(l~pM)t'TRIANGLE N;A'

ODEF M
TRIANGLE

ODE F and OF X provide similar capabilities. 0 DE F is a more
powerful and general case of 0 F X. The differences are outlined
below:

• 0 DE F accepts both canonical (matrix) and visual (vector)
representations of a function; OF X accepts only the canonical
representation.

• 0 DE F can create a function as a locked function; OF X cannot.

• 0 DE F indicates both the cause and the location of an error;
OFX indicates only the location.

• ODEFindicatesthe SYMBOL TABLE FULL or WS
FULL conditions via error codes without halting execution.
OFX halts execution.

If the system recognizes an error condition during analysis of a
character vector or matrix argument, the function is not defined, but
no explicit error is reported. Instead, the result is a two-element
integer vector containing information about the error. The first
element is the type of error that occurred; the second element
indicates the row of the function representation where the error
begins. The index returned depends on the current setting of 0 I 0 .

The following error types are indicated by the first element of the
result:

Copyright © 1987 STSC, Inc. 3-33 System Functions

DDEF Error Codes

Code Explanation

11 S FULL; the function definition requires more
workspace storage than is available.

2 DEFN ERROR
• the function or header is ill-formed
• the function name is already in use as a variable or label
• the function is executing, pendent, suspended, or waiting
• the first character in a line of code is a right parenthesis,
right bracket, or left bracket (not including line numbers)

3 Reserved.

4 SYMBOL TABLE FULL; creating the function
requires more symbol table entries than are available in
the active workspace.

5-9 Reserved.

Copyright © 1987 STSC, Inc. 3-34 System Functions

Single Function Line Editing DDEFL

Purpose:

Syntax:

Edit a single line of the most local definition of an unlocked
function.

result +- DDEFL 'fnname En] line'
result +- DDEFL 'fnname[-n] '

Arguments: fnname
En]

line
[-n]

function name
line number
text of the line to be inserted or replaced
line number or numbers to be deleted

Result:

The argument must be a character scalar or vector.

To replace an existing line in the function namedfnname, specify
the line number n in brackets followed by the replacement text
(line). •

To insert a new line into the function namedfnname, specify n as
a decimal fraction between two existing lines, such as [3 . 5]. In
such a case, 0 DE F L will insert line between lines 3 and 4. If n is
greater than the number of lines in the function, line will be
inserted at the end of the function.

To delete a line from the function namedfnname, specify a tilde
(-) before n and omit line. Multiple lines can be deleted by
specifying n as a vector, as in [- 3 4 5].

If the operation is successful, result is a character vector containing
the name of the function. If the name of the function changes as a
result of replacing line 0 of the function, the result is the name of
the new function.

If the operation is not successful, result is a numeric scalar
containing information about the error (see Errors: bel?w).

Copyright © 1987 STSC, Inc. 3-35 System Functions

Effect:

Errors:

Inserts or deletes the lines as requested by the syntax. All lines
following the point of insertion or deletion are automatically
renumbered.

Note that the form of the argument to 0 DE F L is the same for
insertion and replacement. The effect depends upon the value of n
relative to the line numbers of the function. In this sense, the
behavior of 0 DE F L is similar to other function editing
capabilities in the APL * PLUS System.

If an error condition occurs during analysis of argument values by
the system, no explicit error is reported. Instead, the result is an
integer scalar indicating the type of error. Note that if one of the
listed errors occurs, the function is not changed.

DDEFL Error Codes

Code Explanation

W S F U L L; the function defmition requires more
workspace storage than is available.

2 DEFN ERROR
• the argument is ill-formed
• fnname is the name of a locked, suspended, pendent, or
non-existent function

• the new name of the function is currently defined or you
tried to delete line 0

• the first nonblank character in line is a) or]
• n is negative or greater than 9999.9999

3 Reserved.

4 SYMBOL TABLE FULL; creating the function
requires more symbol table entries than are available in
the active workspace.

5-9 Reserved.

Copyright © 1987 STSC, Inc. 3-36 System Functions

Example: OVR 'TRI'
v TRI N;A

[1] O+-A+- .1
[2] L1:-+(N<pA)pO 0 O+-A+-(O.A)+A.O o -+L1

v
ODEFL 'TRI[1] A+-. 1 '

TRI
OVR 'TRI'

v TRI N;A
[1] A+-.1
[2] L1-+(N<pA)pO 0 O+-A+-(O.A) +A. 0 0 -+L1

v

Copyright © 1987 STSC, Inc. 3-37 System Functions

Delay Execution DDL

Purpose: Delay execution.

Syntax: result +- DDL seconds

Argument: seconds length of the delay in seconds

Result:

Effect:

Errors:

Example:

seconds is a positive numeric singleton (possibly fractional).

result is the actual delay in seconds; it may vary each time DDL is
used.

Using the system clock, DDL delays execution for the time
requested. The delay can be aborted by a weak interrupt in which
case result may be substantially less than seconds.

DOMAIN ERROR
LENGTH ERROR
WS FULL

DDL 5
5

Copyright © 1987 STSC, Inc. 3-38 System Functions

Diagnostic Message ODM

Purpose:

Syntax:

Result:

Effect:

Caution:

Examples:

Return the last diagnostic message recorded in the workspace. A
diagnostic message is produced for any event that halts execution
such as an APL error or a user interrupt.

result ... DDM

result is a character vector containing the diagnostic message
associated with the last error or interrupt that occurred.

Displays the diagnostic message associated with the last weak
interrupt, strong interrupt, or trapped error that occurred in the
workspace. Except for INTERRUPT, DDM does not reflect the
diagnostic message displayed after an untrapped error or attention.
For more infonnation on exceptions, see DALX, DELX, and
DERROR in this chapter.

The diagnostic message reported by DDM is saved when the
workspace is saved.

If there is not enough workspace storage available when an error or
attention occurs, the system displays NO SPACE FOR DDM
followed by the diagnostic message. DDM is empty after a NO
SPACE FOR DDM error.

System-produced diagnostic messages may be altered or extended in
the future. Applications that analyze the result of DDM should,
therefore, be designed to allow easy modification. One such
technique is to use the same function for analyzing the diagnostic
message throughout an application.

) CLEAR
CLEAR WS

pDDM
o

(DDM is empty in a clear workspace.)

Copyright © 1987 STSC, Inc. 3-39 System Functions

3+A
VALUE ERROR

3+A
1\

pDDM 0
32
VALUE ERROR

3+A
1\

DDM

(An APL error is generated; the normal
diagnostic message displays since
DELX+-' DDM'.)

(DDM now returns the diagnostic
message associated with the last error
exception.)

l SA VE T E M P (The workspace is saved, then cleared.)
TEMP SAVED 7:19:00 OS/27/87

lCLEAR
CLEAR WS

pDDM
o

lLOAD TEMP
TEMP SAVED 7:19:00 OS/27/87

DDM
.VALUE ERROR

3+A
1\

DELX +- "

5+0

'A' + 1

(0 DM was saved with the workspace.)

(DELX is set to do nothing; no error
message is displayed on obvious APL
errors.)

2 3 x 9 10 11

DDM (Last error message is in DDM.)
LENGTH ERROR

2 3 x 9 10 11
1\ 1\

Copyright © 1987 STSC, Inc. 3-40 System Functions

OELX ~ 'OERROR " '"
(Result is even less revealing; ODM is
reset, removing the error message.)

2 3 x 9 1 0 11 (Same statement causes error but an
empty line displays.)

ODM
(ODM contains a single space.)

OELX ~ 'ODM' (After experimenting, reset OELX.)

2 3 x 9 10 11
LENGTH ERROR

2 3 x 9 10 11
A A

Copyright © 1987 STSC. Inc. 3-41 System Functions

Data Representation

Purpose: Report the internal datatype of the argument.

Syntax: result <- DDR data

Argument: data any APL array

Result:

Caution:

Examples:

result is the datatype code for data . The last digit of the result
(10 I result) indicates the data format used while the other digits
(L result + 1 0) indicate the number of bits per element with which
the data is represented. The following are the datatype codes for
this APL * PLUS System:

Code Datatype

11 Boolean (1 bit per element)
82 character (8 bits per element)

323 integer (32 bits per element)
644 floating point (64-bit V AX format)
326 nested (32-bit pointer)
807 heterogeneous (lO-byte structure)

More datatype codes may be added in future releases. The datatype
codes specified here are not necessarily the same datatype codes on
other APL * PLUS Systems on other computers.

o DR as described here is specific to this APL * PLUS System. It
may be different or absent in other APL * PLUS Systems.

DDR 'X'
82

ODR 'A' .1
807

DDR ct5
326

DDR" 5 • (Cc t 5) • ' C' • (1 A 1)
323 326 82 11

Copyright © 1987 STSC. Inc. 3-42 System Functions

ODR

Edit an Image of Named Object
from Active Workspace DEDIT

Purpose: Edit a charncter vector, matrix, or function.

Syntax: DE D IT object

Argument: object name of the object to be edited

Effect:

Errors:

Caution:

Examples:

object is a character vector, one-row matrix, or scalar containing
the name of the object to be edited.

A new edit session is created in the session manager and the
function or variable specified by object is copied into it The
session name is updated to reflect the object's name and the session
manager is initialized to edit the copy of the object. (The details
on editing operations are described in Chapter 2 oftheAPL *PLUS
System User's Manual.)

Upon return to your APL session, the cursor is restored to the
same position it was in before the statement was executed.

If the variable named in the argument contains numeric or nested
data or the argument is of rank greater than 2, a NON C E
ERR 0 R is produced. If the object does not exist, a new object is
created and given the specified name.

DOMAIN ERROR
NONCE ERROR
SYMBOL TABLE FULL
WS FULL

DE D IT as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems.

DEDIT 'CUSTOMERLIST'

DEDIT 'PROGRAM'

Copyright © 1987 STSC. Inc. 3-43 System Functions

Error Latent Expression DEL X

Purpose:

Syntax:

Domain:

Effect:

Contain the APL expression to be executed in the event of an error
exception.

statement <- DELX
DE LX <- statement

Character vector or singleton containing an APL expression. The
default value of DE X is I D DM I in a clear workspace.

Whenever a trapped error (see definition below) occurs during
execution of an APL expression or function, the statement stored
in the most local value of DELX is executed. Thus, if DELX has
its default value (' DDM ') when an error occurs, the system
simply displays the diagnostic message (see DDM).

If an error occurs during execution of the actual statement in
DE LX, the system displays the diagnostic message and returns to
immediate execution input. If, however, the error handler calls a
function, errors signalled within that function trigger execution of
DELX.

If an error occurs while the system is evaluating D input, the
diagnostic message associated with the error is displayed and the
user is prompted again for input; D D M is not changed and DEL X
is not executed. Note that if a function call is entered in D input,
errors occurring within the called function do trigger execution of
DELX.

APL Errors Handled by DE LX:

The following errors are trapped (trigger execution of DEL X)
except when caused by a system command. Any error exceptions
signalled by 0 ERR 0 R are also trapped.

AXIS ERROR
DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE DAMAGED

Copyright © 1987 STSC. Inc. 3-44 System Functions

Errors:

FILE FULL
FILE INDEX ERROR
FILE NAME ERROR
FILE NOT FOUND
FILE SIZE ERROR
FILE TIE ERROR
FILE TIE QUOTA EXCEEDED
FILE TIED
FORMAT ERROR
HOST ACCESS ERROR
INDEX ERROR
LENGTH ERROR
LIBRARY NOT FOUND
LIMIT ERROR
NONCE ERROR
RANK ERROR
SYMBOL TABLE FULL
SYNTAX ERROR
VALUE ERROR
WS ARGUMENT ERROR
WS FULL
WS NOT COMPATIBLE
WS NOT FOUND
WS TOO LARGE

Errors that are not trapped are:

• input errors (including errors in expressions evaluated for
D input)

• errors resulting from system commands

• errors signaled by an ill-formed statement in DE LX

• system errors (internal errors in the APL * PLUS System itself)

DOMAIN ERROR
RANK ERROR

In addition, any APL error can occur during the execution of DE LX.

Copyright © 1987 STSC. Inc. 3-45 System Functions

Examples: In the function SAM P L E 1, DEL X is used to branch to the
error-processing part of the function if an error occurs.

v SAMPLE1; DEL X
[1] DELX~' -ERR '

en] ERR:

v

This next function uses DE LX to invoke an error in the function
that called it.

v SAMPLE2;DELX
[1]

DELX~'DERROR«DDM1DTCNL)-DIO)tDDM'

v

Copyright © 1987 STSC, Inc. 3-46 System Functions

Erase Objects DERASE

Purpose:

Syntax:

Erase, if possible, objects in the workspace while under program
control.

result 4- DE RASE objlist

Argument: objlist list of function or variable names

Result:

Effect:

Note:

Errors:

Example:

objlist can be a character vector containing one or more object
names separated by one or more blanks, or it can be a character
matrix with one identifier in each row.

result is a character matrix with each row containing the name of
an object that was not erased. Objects that are undefmed are not
included in result.

If all objects in objlist are erased, result is an empty matrix.

Erases objects specified in objlist. DERASE does not erase the
definitions of identifiers representing labels, system functions, or
system variables. An object might not be erased because the name
is ill-formed or· because it is a suspended or executing function.

In this version of the APL*PLUS System, DERASE can erase a
suspended or exectuing function. In fact, a function can even erase
itself. The name association with the function is broken, but the
executing function does not actually disappear until it completes
execution or is cleared from the) S I stack.

DE RASE and DEX provide similar capabilities. For maximum
portability to other APL Systems, use DEX rather than
DERASE.

DOMAIN ERROR
RANK ERROR
WS FULL

o 0

o

pD4-DERASE 'MYFROGRAM'

pDVR 'MYPROGRAM'

Copyright © 1987 STSC, Inc. 3-47 System Functions

Error Exception Signal DERROR

Purpose: Generate a user-defined error exception.

Syntax: DERROR message

Argument: message diagnostic message

Effect:

Errors:

Examples:

message is a character singleton or vector containing the first line
of the diagnostic message associated with the resulting error
exception.

DE R R 0 R provides two facilities:

• the ability of a function to signal an exception to the program
from which it was called

• the ability to signal user-defined error exceptions.

When DE R R 0 R is executed, the state indicator stack is returned to
the environment from which the function executing DE RROR was
called. If the state indicator is empty or contains only one function
when DE R R 0 R is executed, the error exception is signalled in the
global environment.

If message is empty (' '), no exception is signaled, which permits
conditional signaling of error exceptions with a statement of the
form DE R R 0 R condition / ' message' .

DOMAIN ERROR
NO SPACE FOR DDM
RANK ERROR
WS FULL

In the function S Q R T below, DE R R 0 R signals an error in the
environment from which SQRT is called instead of within SQRT
itself.

Copyright © 1987 STSC, Inc. 3-48 System Functions

v R~SQRT A;D~LX .
[1] DELX~'DERROR((DDMlDTCNL)-DIO)tDDM'
[2] R~A"'O. 5

v

SQRT -1
DOMAIN ERROR

SQRT -1
1\

In the next example, SQRT is modified to detect a negative argument
and generate an error message that is more informative than the
DOMAIN ERROR report normally produced by the system.

v R~SQRT A;DELX
[1] DELX~'DERROR ((DDMlDTCNL)-DIO)tDDM'
[2] DERROR (v/,A<O)/'ARGUMENT NEGATIVE'
[3] R~A"'O. S

v

SQRT -1
ARGUMENT NEGATIVE

SQRT -1
1\

If SQRT is called from another function and a negative argument is
supplied to S Q RT, an error is signalled in the calling function.

v R~M RELMASS V;C
[1] A COMPUTES RELATIVISTIC MASS
[2] A OF A MOVING OBJECT
[3] A M ~ REST MASS; V ~. VELOCITY
[4] A C ~ SPEED. OF LIGHT IN METERS/SEC
[S] C~300000000

[6] R~M+SQR.T 1-(V"'2)+C"'2
v

1 RELMASS 2.9E8
3 . 905667329

1 RELMASS 3 . SE8 (Uses a velocity greater
ARGUMENT NEGATIVE than the speed of light.)
RELMASS[SJ R~M+SQRT 1-(V"'2)+C"'2

1\

Copyright © 1987 STSC. Inc. 3-49 System Functions

The following technique can be used to clear the result of 0 D M,
provided the state indicator is clear and 0 E L X does not call
DERROR.

DERROR '

Since 0 ERR 0 R reduces the state indicator stack by one function
call, it can be used to move one level up in the state indicator for
debugging purposes; for example:

DRIVER
LENGTH ERROR
SUBROUTINE[lJ Z~A+BxO.l!A

)SI
SUBROUTINEEl] *
PROCESS[7J
MAINFN[3J
DRIVER[SJ

DERROR 'FOF'
POF

II

PROCESS[7J SUBROUTINE
II

)SI
FROCESS[7J *
MAINFN[3J
DRIVER[SJ

The argument (B) to SUBROUTINE can now be corrected and
execution can resume.

B~(pA)tB 0 -+DLC

Copyright © 1987 STSC. Inc. 3-50 System Functions

Erase Objects DEX

Purpose:

Syntax:

Erase, if possible, the most local version of one or more objects in
the active workspace while under program control.

result ... DEX objlist

Argument: objlist list of zero or more functions or variable names

Result:

Effect:

Caution:

Errors:

Examples:

objlist can be a character vector containing one or more object
names separated by one or more blanks, or it can be a character
matrix with one identifier in each row.

IfDEXproducesa WS FULL or DOMAIN ERROR,
nothing has been erased.

result is a Boolean vector with one element for each name provided
in objlist. The result is 1 if the object was erased or undefined; the
result is 0 if the object was not erased. An object might not be
erased because the name is ill-formed or because it is a suspended or
executing function.

Erases objects specified in objlist. DE X does not erase an
identifier if it is a label, system function, or system variable.

Some APL systems may restrict objlist to a character matrix.

DOMAIN ERROR
RANK ERROR
WS FULL

DEX 'TRI'
1

TRI
VALUE ERROR

TRI
A

DEX DAI
DOMAIN ERROR

DEX DAI
A

Copyright © 1987 STSC, Inc. 3-51 System Functions

File Append OF AP P EN D

Purpose: Append a value to the end of a component file by adding a new
component.

Syntax: result +- value OFAPPEND tieno
result +- value OF AP PEN D tieno pass

Arguments: value
tieno

variable (or value) to be appended to the file
file tie number

Result:

Effect:

Access:

Errors:

pass passnumber

value can have any rank, shape, or data type.

The right argument must be an integer-valued singleton or
two-element vector with a valid tie number (deno) and optional
valid passnumber.

If the passnumber is omitted, it is assumed to be zero.

result is the number of the new component.

Appends a new data component to the file along with component
information (0 F R D C I). This process increases the disk space
occupied by the file.

The file must be tied, the passnumber must match the one in
effect, and you must have append access. The access code for
OFAPPEND is 8 .

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE FULL
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

Copyright © 1987 STSC. Inc. 3-52 System Functions

Examples: The first example places the visual representation of T R I in the
next component of the file tied to 27 and captures the component
number in the variable COMPo

COMP~(DVR 'TRI') DFAPPEND 27

The next example appends the variables JAN SALE Sand
FE B SALE S at the end of the file tied to 33.

DFSIZE 33
1 20 36412 100000

JANSALES~48032

JANSALES DFAPPEND 33
20

DFSIZE 33
1 21 36432 100000

Copyright © 1987 STSC, Inc. 3-53 System Functions

File System Availability DFAVAIL

Purpose:

Syntax:

Result:

Note:

Errors:

Indicate availability of the component file system.

result <- OFAVAI L

result is 1 if the component file system is available for use, 0 if it
is not.

On this APL * PLUS System, the file system is always available.
OF AV AI L is included for compatibility with other APL * PLUS
Systems in which the file system is not always available.

WS FULL

Copyright © 1987 STSC. Inc. 3-54 System Functions

File Create DFCREATE

Purpose: Create a new component file.

Syntax: 'fileid ' OFCREATE tieno
'fileid size I OFCREATE tieno
'fileid size/comp I OFCREATE tieno

Arguments: fileid file identifier (see section 2-2)
me size limit in bytes

Effect:

Access:

size
comp
tieno

starting component number
file tie number

The left argument must be a character scalar or vector designating
the file to create. It contains the file identifier (jileid) and,
optionally, the file size unit (size) and starting component number
(comp) . The file name must be different from any others in that
directory or library.

The optional size specifies a limit on the amount of space the me
can occupy on disk. If omitted, the default is 0, meaning the file
has no limit on its size. size is specified in bytes and must be an
integer value. The fIle size limit can be changed later by
OFRENAME or OFRESIZE.

The optional comp specifies the starting component number for the
new fIle. It must be integer-valued and follow a slash if) in the
argument If omitted, the starting component number is 1.

The file tie number (tieno) must be a positive integer-valued
singleton. You must have no other fIle currently tied with this
number.

Creates a new file and ties it to the tie number specified.

No file access code is required for OF C RE ATE. However, you
must be authorized to create fIles in the specified or default
directory or library .

Copyright © 1987 STSC, Inc. 3-55 System Functions

Erron: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE TIE ERROR
LIBRARY NOT FOUND
RANK ERROR
WS FULL

Examples: 'TEXTFILE' DFCREATE 27

'PRINTFILE 225000' DFCREATE 1

'[MYERSJD87 0/11001' DFCREATE 99

DLIBD '12 [MYERSJ'
'12 DATA88 , DFCREATE 98

Copyright © 1987 STSC. Inc. 3-56 System Functions

File Drop of Components DFDROP

Purpose:

Syntax:

Drop components from either end of a component file.

DFDROP tieno n
DFDROP tieno npassno

Arguments: tieno file tie number

Effect:

Access:

Errors:

Examples:

n number of components to drop
passno pass number

The argument must be a two- or three-element integer vector which
designates the file by tie number (tieno), the components to drop,
and an optional passnumber. If the passnumber is not specified, it
is assumed to be zero.

Drops components from a file. If n is positive, n components are
dropped starting from the beginning of the file. If n is negative,
(I n) components are dropped from the end of the file. If n is zero,
no components are dropped.

The file must be tied, the passnurnber must match the one in
effect, and the user must have drop access. The access code for
OF DROP is 32.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE INDEX ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR

DFSIZE 27
1 10 7424 0

DFDROP 27 2 0 DFSIZE 27
3 10 7424 0

DFDROP 27 -3 0 DFSIZE 27
3 7 2536 0

Copyright © 1987 STSC, Inc. 3-57 System Functions

Duplicate File DFDUP

Purpose:

Syntax:

Create an exact copy of a file with a new name and compact it, if
possible, to occupy less disk space.

'fileid' OFDUPtieno
'fileid size/camp' OFDUP tieno passno

Arguments: ji/eid file identification (see section 2-2)
file size limit in bytes

Effect:

size
comp
fieno
fXlSSM

initial component number
file tie number
file passnumber

The left argument must be a character scalar or vector designating
the new file to create. It contains the file identifier lfileid) and,
optionally, the file size limit (size) and starting component (comp).
The fileid must be different from any others in that directory or
library.

The optional size specifies a limit on the amount of storage a file
can occupy on disk. If omiued, the default is 0 , meaning the file
has no limit on its size. size is specified in bytes and must be
integer-valued.

camp specifies the starting component number for the new file.
It, too, must be integer-valued and must follow a slash (j) in the
argument If omitted, the starting component number is 1.

The file tie number (tieno) must be a positive integer-valued
singleton. You must have no other file currently tied with this
number.

OF DU P creates a new file with the specified name (fileid) and
copies all the data from the file specified by tieno into it. Unused
space created by replacing records with a different sized component
is retrieved in the process, potentially allowing the new file to
occupy less disk space than the original file. The old file remains
unchanged.

Copyright © 1987 STSC. Inc. 3-58 System Functions

Caution:

Access:

Errors:

Examples:

OF DU P as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems. In
particular, the APL * PLUS System for the PC allows OF DU P to
duplicate the file onto itself; this implementation does not. Note
also that OF DU P does not preserve the component information
(OF R DC I) of the old file. This behavior may change in a future
release and may be different on other APL * PLUS Systems.

The file to be duplicated must be tied, the passnumber must match
the one in effect, and you must have both duplicate access and the
authority to create files in the specified (or default) directory or
library. The access code for 0 F D U P is 1 6 3 8 4 .

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LIBRARY NOT FOUND
WS FULL

OFLIB "
LISTINGS

'LISTINGS' OFTIE 10

OFNAMES
LISTINGS

'LEANINGS' OFDUP 10

OFNAMES
LISTINGS

OFLIB "
LEANINGS
LISTINGS

Copyright © 1987 STSC, Inc. 3-59 System Functions

File Erase DFERASE

Purpose: Erase a tied component file.

Syntax: 'fileid' OFERASE tieno
'fileid' OFERASE tieoo pass

Arguments: ji/eid file identifier (see section 2-2)

Effect:

Access:

Errors:

Examples:

tieoo file tie number
pass file passnumber

The left and right arguments designate the same file. The left
argument is a character vector or scalar containing the file
identification ifileid).

The right argument must be a integer-valued singleton or two
element vector designating the file by tie number (tieno) and,
optionally, the passnumber. If the passnumber is not specified, it
is assumed to be zero.

Unties a file and erases it from the directory or library. All of the
data in the file is destroyed.

A file must be tied. The passnumber must match the one in effect
and you must have erase access. The access code for OFE RASE
is 4. The file cannot be erased if any other user also has it tied.

DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAMES ERROR
FILE TIE ERROR
FILE TIED
HOST ACCESS ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR
WS FULL

'TEXTFILE' OFTIE 10
'TEXTFILE' OFERASE 10

'PRTFILE' OFSTIE 33 707
'PRTFILE' OFERASE 33 707

Copyright © 1987 STSC. Inc. 3- 60 System Functions

APL Component File History DFHIST

Purpose: Provide historical information about an APL component file.

Syntax: result ~ OF H I ST tieno

Argument: tieno file tie number

Result:

Access:

Warning:

tieno must be a scalar or one-element vector containing a valid file
tie number.

result is a three-row integer matrix containing information about
the history of the file. Row 1 contains the user number of the file
owner and the timestamp of the file's creation in both packed form
and 0 T S form. Row 2 contains the user number and timestamp
associated with the most recent change to the file. Row 3 contains
the user number and timestamp associated with the most recent
setting of the file access matrix.

The file must be tied and the passnumber must match the one in
effect. In addition, the operating system must allow you to read
the file. Ifnot,a HOST ACCESS ERROR results .

OF H I ST is experimental in this release of this APL * PLUS
System. This feature may change or be removed in a future
release.

Example: I TESTFILE I OFTIE 1 ¢ OFHIST 1
52 29 0
19 34 0
56 53 0

(Created) 1 0 3 4 4 8 2 8 9 5 4 8 1 9 8 4 3 1 6 12
(Last change) 1 9 9 4 4 9 3 3 4 0 8 2 1 9 8 4 4 1 9
(Access set) 1 0 3 4 4 8 4 4 3 8 1 9 1 9 8 4 3 1 8 1 7

Copyright © 1987 STSC, Inc. 3- 61 System Functions

File Hold OF HOLD

Purpose: Synchronize file operations in shared file systems.

Syntax: OFHOLD tieno
OFHOLD tieno pass

Argument: tiena file tie numbers
file passnumbers

Effect:

{XlSS

The argument designates the files (by file tie numbers) and the
passnumbers. If a passnumber is not specified, it is assumed to be
zero. The argument must be an integer array consisting of one of
the following:

• a scalar, vector, or one-row matrix of file tie numbers

• a two-row matrix whose first row contains file tie numbers and
whose second row contains corresponding passnumbers.

Provides an interlock by which multiple users can synchronize file
updates. Only one user can have the interlock at anyone time.
Each user executing OF HOLD waits in a queue until his tum
comes to have the interlock (Note: OFHOLD does not lock files) .

OF HaL D first releases any current interlocks and then, when it's
your tum, sets an interlock on each designated file. No interlocks
are set while another user has an interlock set on any of the
designated files; 0 FHa L D execution waits until all such other
interlocks have been released. While an interlock is set, other users
are delayed in tum from completing execution of their OF HOLD
operations but not from executing other file operations.

All interlocks are released when the user who set them executes
another 0 FHa L D, exits APL, enters immediate execution mode,
or signals a strong interrupt. The interlock on an individual file
can be released without affecting other interlocks by untying or
retying the file.

Copyright © 1987 STSC. Inc. 3-62 System Functions

Access:

Errors:

Example:

File interlocks are not released when a program stops for 0 or ~
input. Stopping for input when files are held can impose long
delays on other users and should be avoided except when necessary.

File tie numbers must be distinct, and they must designate tied
files. An empty vector or a one- or two-row, zero-column matrix
releases all interlocks and does not set any.

The file must be tied, the passnumber must match the one in
effect, and you must have hold access. The access code for
OFHOLD is 2048.

DOMAIN ERROR
FILE ACCESS ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

The following example holds a file while an update is performed:

OFHOLD 2 2p27 33 0 -317232

v FOO

[5] A UPDATE DIRECTORY
[6] OFHOLD TN
[7] ENTRY-«OFREAD TN.1), [1] NEW)
[8] ENTRY OFREPLACE TN.1
[9] OFHOLD 'lO

v

Copyright © 1987 STSC. Inc. 3-63 System Functions

Input Format Conversion DFI

Purpose: Convert a character string to numeric values.

Syntax: result OF I data

Argument: daJa character string to convert

Result:

Errors:

Examples:

data is a character singleton or vector.

result is a numeric vector formed by taking data and converting it
to numbers. The conversion process uses the same rules as when
numbers are entered from the keyboard in immediate execution
mode. Groups of characters that are invalid numbers appear as
zeros in result.

DOMAIN ERROR
LIMIT ERROR
RANK ERROR
WS FULL

A '666 -1.20 .1 314159E-5'
OFI A

666 -1.20.13.14159

2

1

o

o 666

OFI' 2

pOFI' 2

pOFI '

OFI 'ANSWER: 666'

B 'ANSWER IS 666 LBS.'
OFI B

o 0 666 0

C ' . 25 -6.25 8,9,10'
OFI C

0.25 0 0

Copyright © 1987 STSC. Inc. 3- 64 System Functions

File Library List DFLIB

Purpose: Produce a character matrix of all the component files in a library or
directory.

Syntax: result OF LIB "
result OF LI B dir
result ~ OFLIB lib

Arguments: ciT directory name

Result:

lib library number

If the system is in directory mode, the argument, if supplied, must
be a character vector or scalar representing a valid directory name
(dir).

If the system is in library mode, the argument, if supplied, must be
a positive integer singleton that has been associated with a
directory with 0 LIB D or a startup parameter.

An empty character or numeric vector argument indicates the user's
default directory or library.

The form of result depends on the argument supplied and the
system mode (library or directory).

If the system is in directory mode (the default) and no argument or
directory name is supplied, result is a character matrix of me
names, left justified; the number of columns is the length of the
longest me name in the list (the directory prefix and me suffix
(. VF) are omitted from the list).

If the system is in library mode, the result is a 22-column character
matrix containing one file identification per row. The columns in
the result are defined as follows:

Column 1-10
Column 11
Column 12-22

Library number, right justified
Space
File name, left justified

Copyright © 1987 STSC, Inc. 3-65 System Functions

Errors:

Examples:

When the system is in library mode, you can still supply a
directory name as an argument to OF LI B. The result is a
library-style display of file names with 1 t DAI used as the library
number.

) F LI B produces the same list of files formatted in multiple
columns and without library numbers for convenient viewing on
the terminal.

In all modes, the files are listed in alphabetic order.

DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
WS FULL

DFLIB I [APL. RELlJ I (Directory mode.)
CONVERT
DATES
SERXFER

3 7

3 22

pDFLIB I [APL.REL1J I

(Switch to library mode.)
DLIBD' 1123 [APL. RELlJ I

DFLIB 123
123 CONVERT
123 DATES
123 SERXFER

pDFLIB 123

Copyright © 1987 STSC, Inc. 3-66 System Functions

Format Output DFMT

Purpose:

Syntax:

Format character and numeric data into a character matrix with
advanced formatting features. OFMT is described in detail with
many examples in Chapter 4 of the APL *PLUS System User's
Manual.

result +- formatstring OFMT data

result +- formatstring OFMT (datal;data2; ... ;dalan)
result +- formatstring OFMT (edatal), (edata2) ... edatan

Arguments: data, daJan APL arrays

formatstring
data2 ,

format phrases to be applied to data, datal,
and so on

formalstring is a character vector that contains combinations of
editing and positioning format phrases separated by commas.
These phrases control the editing and display of data in the right
argument.

rmAw
rmEw.s
rmFw.d
rmG <pattern >
rmlw

Tp or T
rXp
r <text>

where:

d
m
p
pattern
r
s
w

Copyright © 1987 STSC, Inc.

Format Phrases

Character
Exponential
Fixed point
Paltern
Integer
Absolute tab
Relative tab
Text insertion

Decimal position parameter (F)
Optional Modifier
Position parameter (T, X)
Pattern text parameter (G)
Optional repetition factor
Significant digits parameter (E)
Field width parameter (A , E, F, I)

3- 67 System Functions

Result:

Caution:

Any combination of the following modifiers can be used with the
phrases shown in parentheses:

Format Phrase Modifiers

B
C
Ki
L
M<text>

N<text>

O<text>
P<text>

Q <text>

R<text>

S <symbo/pairs>
Z

Blank if zero (F,I)
Comma insertion (F ,I)
Scale argument by 10 * i (E ,F ,G,I)
Leftjustify (F,I)
Negative left decoration (F ,G ,I)
Negative right decoration (F,G,I)
Format zeros as tex t (F , G ,I)
Positi ve or zero left decoration (F, G,I)
Positive or zero right decoration (F ,G ,I)
Background fill (A,E,F,G,I)
Symbol substitution (F,G,I)
Zero fill (F ,I)

The text in the decorations, background fill, symbol substitution,
and text insertion can be delimited by any of the following pairs of
symbols:

<
c

o
rJ
/

>

o
rJ
/

Multiple format phrases for individual data columns are separated
by commas withinformatstring. A group of format phrases can be
repeated by enclosing it in a pair of parentheses and preceding the
left parenthesis with a repetition factor.

The right argument can contain any numeric or character array. It
can also be a strand (a vector of enclosed arrays).

result is a character matrix of the data formatted as specified.

Older APL * PLUS Systems use a special list (datal ;data2) to
format multiple arrays of different types. This system supports
this form for compatibility, but a nested vector or a strand can be

Copyright © 1987 STSC. Inc . 3- 68 System Functions

Examples:

also used, perhaps more conveniently. For example, the following
expressions produce the same result:

CHAR-3 3p'ONE TWO SIX'
NUM-1000 x 23

, 3A 1, I5' DFMT (CHAR; NUM) (old way)
'3A1,I5' DFMT CHAR NUM (new way)

'I5,2F8.1.E9.3' DFMT 3 4Pl12
1 2 . 0 3.0 4.00EO
5 6.0 7.0 8 . 00EO
9 10.0 11.0 1.20EO

'G«999) 999-9999' DFMT 3019845000
(301) 984-5000

FSTR-'3A1.<*PLUS >.6A1'
FSTR DFMT 1 9p'APLSYSTEM'

APL*PLUS SYSTEM

Copyright © 1987 STSC, Inc. 3· 69 System Functions

File Ide1ltifications of Tied Files DFNAMES

Purpose:

Syntax:

Result:

Errors:

Examples:

Return the file identifications of all tied component files (files tied
with OFT I E or OF ST I E) .

result +- OFNAME S

result is a character matrix of file identifications. The form and
shape of result depends on whether the system is in library or
directory mode. The rows of result have the same order as
OFNUMS.

In directory mode (the default) OFNAME S formats result to be as
wide as needed to contain the directory path and file name in the
same form as supplied when the file was tied.

In library mode, the result is 22 columns wide formatted as
. follows:

Columns
Column
Columns

WS FULL

1-10
11
12-22

OFNAMES
[APL.WSS] CHAPTER 1
TEMP
PRINTFILE

Library number
Blank
Filename

(In directory mode.)

OFNAMES (In library mode).
76 CHAPTER1

101 TEMP
101 PRINTFILE

Copyright © 1987 STSC, Inc. 3- 70 System Functions

File Numbers of Tied Files OFNUMS

Purpose:

Syntax:

Result:

Errors:

Examples:

Display the tie numbers of all tied component files (files tied with
OFTIE or OFSTIE).

result +- OFNUMS

result is a numeric vector of file tie numbers . The tie numbers are
in the same order as the file names reported by 0 F N AM E S, which
is the order in which they were tied.

WS FULL

OFNUMS
27 33 17

OFUNTIE OFNUMS (UntiealltiedfIlesatonetime.)

pOFNUMS
o

Copyright © 1987 STSC, Inc. 3- 71 System Functions

File Read of File Information DFRDAC

Purpose: Report the current access matrix for an APL component file .

Syntax: result DFRDAC tieno
result DFRDAC tieno pass

Arguments: rieno file tie number

Result:

Access:

Errors:

Examples:

JXlSS passnumber

The right argument is an integer-valued singleton or two-element
vector designating the file (by tie number) and optionally the
passnumber. If the passnumber is omitted, it is assumed to be
zero.

result is a three-column numeric matrix containing the access
matrix of the file. A newly created file has an access matrix with
no rows.

The file must be tied, the passnumber must match the one in
effect, and you must have the authority to read the access matrix.
The access code for 0 F R D A C is 4096.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE DAMAGED
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

pDFRDAC 27
o 3

(File with empty access matrix .)

DFRDAC 33 7655
12304 16059 7566
23405 16063 0

Copyright © 1987 STSC, Inc. 3-72 System Functions

File Read of Component Information OFRDCI

Purpose: Return information about one component of a file.

Syntax: result OFRDCI tieno comp
result OF RDC I tieno comp pass

Arguments: new file tie number

Result:

Access:

comp component number
pass passn umber

The right argument must be an integer-valued, two- or
three-element vector. If the passnumber is omitted, it is assumed
to be zero.

result is a ten-element numeric vector containing the following
information:

• the workspace storage needed to hold the component, in bytes.

• the account number of the user who most recently executed
OFAPPEND or OFREPLACE on the component.

• the timestamp, in OW ST S format (microseconds since 00:00 on
January 1, 1900) , when the component was last written to file.
Use the TIME function in the workspace FILE AI D (see
Chapter 4, Supplied Functions) to interpret the timestamp. The
microsecond resolution is maintained for compatibility with
other APL*PLUS Systems. The clock accuracy, however, is
one second.

The file must be tied, the passnumber must match the one in
effect, and you must have the authority to read the access matrix.
The access code for OF RDC I is 512.

Copyright © 1987 STSC, Inc. 3- 73 System Functions

Errors:

Example:

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE DAMAGED
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

)COFY DATES FTIMEFMT
SAVED 17:00 : 46 01/26/86

FTIMEFMT <OFRDCI 27 1)[3]
7/14/8715:14:00.000

Copyright © 1987 STSC. Inc. 3-74 System Functions

File Read of Component DFREAD

Purpose:

Syntax:

Read a component of a file and make it available in the workspace
as a variable.

result +- DFREAD tieno comp
result +- OF READ tieno comp pass

Arguments: tieno file tie number

Result:

Access:

Errors:

Examples:

comp component number
pass passnumber

The argument is an integer-valued two- or three-element vector that
designates the data to be returned by file tie number (tieno), the
component number (comp), and the passnumber. If the
passnumber is omitted, it is assumed to be zero.

result is the actual value stored in the file component.

The file must be tied, the passnumber must match the one in
effect, and comp must be a valid component number. The access
code for OF READ is 1.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE DAMAGED
FILE DATA ERROR
FILE INDEX ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

DFREAD 27 1
THIS FILE CONTAINS DATA FOR 1982
CREATED 26 JANUARY 1987.

Copyright © 1987 STSC, Inc. 3-75 System Functions

OFREAD 27 2
SMALLS, BARRY T. 4856739 6/30/85

A OFREAD 27 3
A

SMITH, KAREN M. 3847384 3/01/86
pA

40

Copyright © 1987 STSC, Inc. 3-76 System Functions

File Rename DFRENAME

Purpose: Change the name of a file.

Syntax: fileid DFRENAME tieno
fileid size DFRENAME tieno pass

Arguments: fileid file identification (see section 2-2)
passnumber

Effect:

pass
size
tieno

file size limit
rue tie number

The left argument, a character scalar or vector, designates the new
rue identification and, optionally, the new size limit. The new rue
name must not already exist in the library. Thefileid must be
specified consistent with the mode selected (directory or library).

If a directory name or library number is specified, it must designate
a library in which you are allowed to own files. If the directory or
library number is omitted, your default library is assumed.

The right argument, an integer-valued singleton or two-element
vector, designates the old rue identification by tie number and
optional passnumber. If the passnumber is not specified, it is
assumed to be zero.

OF R EN AM E changes the file name to the one specified in the left
argument, potentially moving it to a different directory. If the rue
name already exists, the system signals a FILE N AM E
ERROR.

The result of 0 F N AMES will reflect the new file identification.
The user who renames the rue becomes the new fIle owner.

OF R EN AM E can be applied to a file that is share tied. Other
users do not become aware of the name change until the next time
they attempt to tie the rue. If ownership of the" file is changed, the
former owner will lose all access to the file except that which is
explicitly granted by the access matrix.

Copyright © 1987 STSC, Inc. 3-77 System Functions

Access:

Errors:

Examples:

The file must be tied, the passnumber must match the one in
effect, and you must have rename access. You must be authorized
to own files in the designated directory and must have a sufficient
user storage limit to accommodate the present space needed by the
file. The access code for 0 F R EN AM E is 12 8 .

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE SIZE ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

DFLIB "
PRIMES

'PRIMES' DFTIE 10

'PRIMENUMBERS' DFRENAME 10

DFLIB "
PRIMENUMBERS

(Directory mode.)

(Library mode.)

'NEWNAME' DFRENAME 10

DLIBD '101 [MLO] ,
'101 NEWNAME' DFRENAME 10

Copyright © 1987 STSC. Inc. 3-78 System Functions

Replace Component DFREPLACE

Purpose:

Syntax:

Change the value of an existing component of a file.

value OFREPLACE tieno comp
value OFREPLACE tienocomppass

Arguments: value
tieno

any APL object
file tie number

Effect:

Access:

Errors:

comp component number
fXJSS passnumber

value is the value to be stored in the fIle. It can have any rank,
shape, or datatype.

The right argument, a two- or three-element integer vector,
designates where to store the data by file tie number (fieno) and,
optionally, by passnumber (pass). If the passnumber is omitted, it
is assumed to be zero.

Replaces the designated component of the file with a new value. It
also updates the component information (0 F R D C I) . Replacing a
component with a smaller or larger value may change the file size.

The file must be tied, the passnumber must match the one in
effect, and you must have append access. The access code for
OFAPPENDis 16.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE FULL
FILE INDEX ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

Copyright © 1987 STSC, Inc. 3- 79 System Functions

Examples: LIBRARY-OFREAD 33 10

LIBRARY-LIBRARY. OUSERID

LIBRARY OFREPLACE 33 10

Copyright © 1987 STSC. Inc . 3- 80 System Functions

File Reservation Resize DFRESIZE

Purpose: Reset the file size limit of a component file.

Syntax: size DFRESIZE tieno
size DFRESIZE tienopass

Arguments: size file size limit in bytes

Effect:

Access:

Errors:

Example:

tieno file tie number
pass passnumber

size is the new file size limit in bytes. It must be a positive
integer scalar or one-element vector greater than or equal to the
current size of the file. size may also be zero, meaning that the fIle
has no size limit.

The right argument, a singleton or two-element integer vector,
designates the file by tie number (tieno) and optional passnumber
(pass). If the passnumber is omitted, it is assumed to be zero.

Changes the file size limit to the specified value. If size is zero
(the default for a new file), the file has no size limit, meaning that
it can grow as large as needed.

The file may be tied, the pass number must match the one in effect,
and the user must have resize access. The access code for
DFRESIZE is 1024.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE SIZE ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

DFSIZE 27
1 50 94560 100000

2600000 DFRESIZE 27
DFSIZE 27

1 50 94560 2600000

Copyright © 1987 STSC, Inc. 3- 81 System Functions

File Size Information DFSIZE

Purpose: Return size limits of a component file.

Syntax: result oFSIZE tieno
result DFSIZE tieno pass

Arguments: tieno file tie number
passnumber

Result:

Errors:

Examples:

pass

The argument, an integer scalar or two-element vector, designates
the file by tie number (tieno) and optional passnumber (pass) . If
the passnumber is omitted, it is assumed to be zero.

result is a four-element numeric vector with the following
information:

[1] the number of the first component in the file

[2] the next available component

[3] the physical storage (in bytes) used by the file, including
data, overhead, and access matrix

[4] the size limit for the file as set by the user (a value of zero
means no upper limit)

DOMAIN ERROR
FILE ACCESS ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

'PRIMES' oFSTIE 37
oFSIZE 37

7 53 28672 100000

'NEWFILE' OF CREATE 13
DFSIZE 13

1 1 2048 10

Copyright © 1987 STSC, Inc. 3-82 System Functions

File Set of Access Matrix DFSTAC

Purpose:

Syntax:

Set the access matrix of a component file.

access OFSTAC tieno
access 0 F ST A C tieno pass

Arguments: access access matrix
file tie number

Effect:

Access:

Errors:

tieno
pass passnumber

access is the new access matrix. It is a three-column integer matrix
or a three-element vector. See Chapter 3 of the APL *PLUS
System User's Guide for more information on access matrices.

The right argument, an integer scalar or one- or two-element
vector, designates the file by tie number (tieno) and optional
passnumber (pass) . If the passnumber is omitted, it is assumed to
be zero.

Replaces the access matrix for the file. The new access restrictions
are imposed on a user the next time the file is tied by that user.
OF ST AC may increase the amount of disk storage occupied by the
file.

The file must be tied, the passnumber must match the one in
effect, and the user must have the authority to change the access
matrix. The access code for OF ST AC is 8192.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE FULL
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

Copyright © 1987 STSC, Inc. 3- 83 System Functions

Example: MAT-2 3p4772490 2 666 1000 -1 0

MAT OFSTAC 33

OFRDAC 33
4772490 2

1000 -1
666

o

Copyright © 1987 STSC. Inc. 3- 84 System Functions

File Share Tie DFSTIE

Purpose:

Syntax:

Tie a component file for shared use.

fileid OF ST IE tiena
fileid 0 F S TIE dena pass

Arguments: fileid file identification (see section 2-2)
file tie number

Effect:

Access:

Note:

tieno
pass optional passnumber

fileid must be a character vector or singleton containing the file
identification of an existing file. If the directory or library number
is not specified, the default library is assumed.

The right argument, an integer scalar or one- or two-element
vector, designates the file tie number (tieno) and optional
passnumber (pass). If the passnumber is omitted, it is assumed to
be zero.

The file is share tied. File ties are "slippery;" that is, if a file is
already tied to one tie number, OF ST I E can tie the file to the
same number or to another unused tie number without requiring the
file to first be untied.

The file must exist and must not be exclusively tied (OFT I E) by
anyone, although it can be share tied by others. The user must
have some form of access to the file, and the passnumber must
match the one in the access matrix .

More than one user can simultaneously update a file when
OFSTIE is used (see OFHOLD. OFTIE).

Copyright © 1987 STSC. Inc. 3- 85 System Functions

Errors: DI SK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME TABLE FULL
FILE NOT FUOND
FILE TIE ERROR
FILE TIE QUOTA EXCEEDED
FILE TIED
HOST ACCESS ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR

Examples: 'PRIMES' DFSTIE 37

(Directory mode.) '[APL.REL1JMYFILE' DFSTIE 22

(SWilchlolibrarymode.) DLIBD '12345 [APL.WSS] '
'12345 PRINTOUT' DFSTIE 1 666

Copyright © 1987 STSC. Inc. 3- 86 System Functions

File Tie

Purpose:

Syntax:

Tie a component me for exclusive (non-shared) use.

ji/eid OFT I E tieno
ji/eid OFT I E tieno pass

DFTIE

Arguments: jileid file identification (see section 2-2)
available positive me tie number
optional integer passnumber

Effect:

Access:

Note:

tleno
pass

fileid must be a character vector or singleton containing the me
identification of an existing file. If the directory name or library
number is not specified, the default directory is assumed.

The right argument, an integer scalar or one- or two-element
vector, designates the file tie number (tleno) and optional
passnumber (pass). If the passnumber is omitted, it is assumed to
be zero.

The file is exclusively tied. No other user will be able to tie the
me as long as it remains exclusively tied.

File ties are "slippery;" that is, if a file is already tied to one tie
number, OFT IE will allow you to tie the file to the same number
or to another unused tie number without requiring the file to first
be untied.

The file must exist, it must not be tied by anyone else, the user
must have the authority to exclusively tie the file, and the
passnumber must match the one in the access matrix of the me.
The access code for OFTIE is 2 (see OFSTAC).

Only one user can update a file when OFT lEis used (see
OFHOLD,OFSTIE).

Copyright © 1987 STSC, Inc. 3-87 System Functions

Examples: 'PRIMES' oFTIE 37

(Directory mode.) '[APL.REL1]MYFILE' oFTIE 2

(Switch LO library mode.) oLIBD '12345 [APL.REL1] '
'12345 MYFILE' oFTIE 1

Copyright © 1987 STSC. Inc. 3-88 System Functions

File Untie OFUNTIE

Purpose: Untie one or more component files.

Syntax: OF UNT IE lienol lieno2 lieno3 .. . lieno

Argument: lienol lieno2 lieno3 . .. lieno
untied

file tie numbers of files to be

Effect:

Errors:

Examples:

The argument is an integer scalar or vector of possible file tie
numbers. Elements of the argument need not be in use as file tie
numbers. An empty vector is permitted as an argument and does
not affect any file ties.

The files tied to any of the tie numbers in the argument are untied.
This frees the file tie slot for possible re-use with another file.
Any file holds in effect are released.

DOMAIN ERROR
RANK ERROR
WS FULL

OFUNTIE 33
OFUNTIE OFNUMS (Unties all current ties.)

Copyright © 1987 STSC. Inc. 3- 89 System Functions

Function Fix DFX

Purpose:

Syntax:

Define (fix) a function from a character matrix (canonical)
representation of the function (see also 0 C Rand 0 DE F).

result <- OFX fnrep

Argument: fnrep function representation

Result:

Effect:

fnrep contains the canonical representation of a function (the result
of 0 C R) as a character matrix. The lines of the matrix should not
contain bracketed line numbers, nor should they contain v or '"
other than in comments or character constants. Blanks that would
be superfluous in function definition mode are ignored by OF X.

If the function definition is successful, result is a character vector
containing the name of the function defined.

If the function definition is not successful, result is a numeric
scalar containing the index of the matrix argument where the first
fault was found. result depends on the index origin (0 IO).

Defines the specified function in the active workspace unless an
error condition occurs. The amount of available workspace area and
the number of symbols may change.

If the name of the function that has been defined corresponds to a
local identifier in a currently executing, pendent, or suspended
function, the newly-defined function is local to that function and is
erased when the function in which it is localized completes
execution.

If the name of the function that has been defined corresponds to the
name of an existing function, the existing function is replaced and
any OSTOP or OTRACE settings in the function are removed.

Copyright © 1987 STSC, Inc. 3- 90 System Functions

Notes:

Errors:

Example:

ODE F and 0 F X provide similar capabilities. 0 DE F is a more
powerful and general case of 0 F X. The differences are outlined
below:

• ODEF accepts both canonical (matrix) and visual (vector)
representations of a function; OF X accepts only the canonical
representation.

• ODEF can create a function as a locked function; OFX cannot.

• 0 DE F indicates both the cause and the location of an error;
OFX indicates only the location.

• ODEF indicates the SYMBOL TABLE FULL or WS
FULL conditions via error codes without halting execution.
OFX halts execution.

DOMAIN ERROR
RANK ERROR
WS FULL

ABC

v
[1]
[2]

v

OFX 3 5p'ABC DEFG HIJKL'

OVR 'ABC'
ABC
DEFG
HIJKL

Copyright © 1987 STSC. Inc. 3- 91 System Functions

Identifier List DIDLIST

Purpose:

Syntax:

Return a character matrix of identifiers (names). The list can be
restricted to those that begin with designated letters.

result - OIDLIST class
result -letters OIDLIST class

Arguments: class the classification of identifiers to be included in result
an optional character scalar or vector specifying the first
of identifiers to be selected

Result:

Note:

Errors:

letters
letters

The right argumentclass is the sum of one or more of these values:

Value
1
2
8

Identifier
functions
variables
labels

To obtain a combination of identifier types, the sum of the
appropriate values is used.

letters restricts the names included in result to those whose first
letter occurs in letters. If letters is not specified, all identifiers of
the specified types are produced.

result is a character matrix of identifiers. The rows are in
alphabetic order.

DID LIST and ON L provide similar capabilities, but they use
different classification codes and arguments. In addition,
OI DLI ST accepts an argument consistent with the result of
OI DLOC; ONL accepts an argument consistent with the result of
ON C. For maximum portability to other APL systems, use ON L
rather than OIDLI ST.

DOMAIN ERROR
LENGTH ERROR
WS FULL

Copyright © 1987 STSC, Inc. 3- 92 System Functions

Example: List all functions that begin with T, U, or V.

'TUV' DIDLIST 1
TRI
VALIDATE

Copyright © 1987 STSC, Inc. 3- 93 System Functions

Identifier List DIDLOC

Purpose:

Syntax:

Argument:

Result:

Return the local and global classifications of a list of identifiers.

result -- OIDLoe idlist

idlist list of identifiers

idlist contains a list of zero or more identifiers. It can be
represented as a character vector containing two or more identifiers
separated by one or more blanks or a character matrix with one
identifier in each row.

result is a numeric matrix with each row corresponding to an
identifier named in idlist. The matrix has one column for each
function in the state indicator, progressing from the most local to
the most global in increasing column order. The last column
contains the global definitions.

Values that may be returned are shown in the following table. The
values in the last column are always non-negative.

Value
-1

o

1
2
8

Classification ·
Not localized at this level
Localized with no assigned value at this level
or globally undefmed
System or user-defined function
System or user-defined variable with value
Label

Note: OI DLOe and ONe provide similar capabilities, but they use
different classification codes and arguments. Other differences
include:

• 0 I D L 0 e returns all local and global classifications; 0 N e
returns only the locally active classifications of the identifier.

• 0 I D L 0 e is more informative than 0 N e. Different numeric
codes are used by each; ONe returns a less specific classification
code.

Copyright © 1987 STSC, Inc. 3-94 System Functions

Errors:

Example:

• OI DLOC accepts either a character matrix or character vector;
ONC accepts only a character matrix as an argwnent.

• OIDLISTreturns a result consistent with OIDLOC; ONL
returns a result consistent with ONC.

• ONC accepts an ill-formed identifier name; OI DLOC produces a
DOMAIN ERROR

For maximum portability to other APL systems, use ONC rather
than 0 I D L 0 C when appropriate.

DOMAIN ERROR
RANK ERROR
WS FULL

)SINL
TRI [1] *
TEST[1]

OIDLOC
o
o
1

N
A

'A N TRI'

A

This example shows that A is undefined (0) in the most local
environment (T R I), where it is localized but has not been defined
by assigning it a value. In the environment of TEST, A is
defined as a label (8). A has no global definition (0).

Copyright © 1987 STSC. Inc. 3-95 System Functions

Accept One Character of Keyboard Input DINKEY

Purpose:

Syntax:

Result:

Effect:

Caution:

Example:

Read one keystroke at a time from the terminal.

result +- DINKEY

result is a character scalar containing the first key typed at the
terminal or the first key in the type-ahead buffer.

Waits for a single character of keyboard input. The input is not
displayed on the screen when it is typed, but instead returned as
result.

Multiple keystrokes typed by the user are buffered and only the fust
character is returned. The remaining characters can be read by
further use of DINKEY. Logical function keys are returned as a
single character; that is, they are not expanded into the multiple
keystroke definition specified by D P F KEY.

If Ctrl-C (interrupt) is pressed, DINKEY returns a Ctrl-C
(DA V [3 + D IO]) and signals a weak interrupt.

DINKEY as described here is specific to this APL*PLUS
System. It may be different or absent in other APL * PLUS
Systems.

'Q' =DINKEY
1 (User pressed a "Q".)

Copyright © 1987 STSC. Inc . 3-96 System Functions

Index Origin DIO

Purpose: Set or retrieve the value of the index origin. The value of 0 lOis
used in the definition of several APL functions .

Syntax: value'" OIO
OIO ... value

Domain: value can be either 0 or 1. In a clear workspace. the default value for
OIO is 1.

Effect: When generating or referencing index values. the system assumes that
indices are numbered starting at OIO .

The value of 0 lOis used in connection with:

• computing the result of index generator (monadic l) and
index of (dyadic l)

• computing the result of roll (monadic?) and deal (dyadic?)
• computing the result of grade up (•) and grade down (,)
• indexing applied to an array (A [. . .])
• applying the axis operator to a primitive function ($ [...] A)
• interpreting the left argument to dyadic transpose (... ~ A)
• computing the result of 0 DE F and 0 F X when an invalid

argument is used

Errors: DaMIAN ERROR
RANK ERROR

Example: The columns below show the effect of OIO on various operations.

DIO-!

l5
1 2 345

X-5+l5
X

6 7 8 9 10

x[3J
8

Copyright © 1987 STSC. Inc. 3-97

DIO-O

l5
o 1 2 3 4

X-5+l5
X

5 678 9

x[3J
8

System Functions

XESJ XESJ
10 INDEX ERROR

XESJ

""
X [OJ XEOJ

INDEX ERROR S
XEOJ

""
1 2 3 4 [3J 1 234 [3J

3 4

'ABCDEF' [2+l3J ' AB C DE F' [2 + 1 3 J
CDE CDE

Y--6 23 11 4 - 6 Y--6 23 11 4 -6
+V +V

S 4 1 3 2 4 3 0 2 1

X. [O . SJ Y X. [O . SJ Y
6 7 8 9 10 S 6
6 23 11 4 -6 6 23

7 11
8 4
9 -6

373 373
312 201

Copyright © 1987 STSC, Inc. 3-98 System Functions

Line Counter OLe

Purpose:

Syntax:

Result:

Effect:

Errors:

Example:

Return the current value of the execution line counter.

result +- OLG

result is a numeric vector of line numbers from the state indicator
beginning with the most local. It does not include any values
corresponding to ~ or 0 symbols appearing in 0 S I or) S I.

While OLG just returns the line numbers, it can be used in the
expression to resume a stopped or interrupted execution.

WS FULL

OSI
TRI[2J*
~

EXAMPLE[3J

OLG
2 3

-+OLG (Restart execution.)

Copyright © 1987 STSC, Inc. 3-99 System Functions

Library List 0 LIB

Purpose: Return a character matrix of file names in the specified library.

Syntax: result OLIB dir
OLIB lib result

Arguments: cir directory name (see section 2-2)
library number

Result:

Caution:

Errors:

Examples:

lib

If the system is in directory mode (the default), the right argument
is a character vector or scalar containing the directory name (dir) to
be searched for files. If the system is in library mode, the right
argument is a library number (lib).

result is a character matrix containing one file identification in each
row. The number of columns in result is determined by the
longest file name in the list. The columns are arranged in
alphabetic order.

If an argument is not specified, result contains the file
identification for your default working directory or library.

OLI B, as described here, is specific to this APL * PLUS System.
It may be different or absent in other systems.

DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
WS FULL

OLIB "
TEMP. SF
DATA87.SF

OLIB '[LLGJ'
DATES.C
SERHOST
UTILITY

OLIBD '12 [JGWJ'
OLIB 12

DATES
SERHOST
UTILITY

Copyright © 1987 STSC, Inc. 3-100 System Functions

Define Library DLIBD

Purpose: Associates a library number with a directory.

Syntax: DLIBD libdefn

Argument: libdefn library number and the name of a directory

Effect:

Errors:

Caution:

Examples:

libdefn must be a character vector containing both the library
number and the directory name separated by at least one space. The
library number should be an integer number (in character form) and
the directory name a valid, existing directory.

Equates the library number with the directory in the argument The
result of DLI B S changes accordingly; the number can be used in
workspace and file names, and the number can be used to query the
contents of the directory. If the library number was defined
previously, the new definition replaces the previous one.

No test is made of the validity of the directory name or of the
existence of a directory by the given name. If the name is
ill-formed or the library does not exist, a LIBRARY NOT
FOUND message will be produced when you attempt to use the
library definition.

DOMAIN ERROR
RANK ERROR

DLI B D as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems.

DLIBS
1 [APL.RELlJ

DLIBD '11 [APL.WS] ' ODLIBS
1 [APL. REL lJ

11 [APL. WS]

Copyright © 1987 STSC, Inc. 3-101 System Functions

Library to Directory Correspondences DLIBS

Purpose:

Syntax:

Result:

Errors:

Caution:

Examples:

List the defined APL libraries and the directories to which they
correspond.

result +- DLI B S

result is a character matrix with one row for each defined APL
library. Each row shows the library number and the associated
directory to which it corresponds.

The association of a library number and directory can be made when
entering APL by a line in the form "library=" or in the APL
configuration file. Associations between libraries and directories
can also be made under program control using DLI B D. In the
absence of any library definitions, APL is in directory mode,
meaning that no libraries are defined. Directories other than the
current working directory are referenced by explicitly specifying the
directory name.

If no libraries are defined, the result is a zero-row matrix. Thus,
the expression 0 = 1 t P DLI B S is true if and only if the system is
in directory mode. This is the definitive test for distinguishing
directory mode from library mode under program control.

The libraries listed in DLI B S are not guaranteed to exist.
Attempts to access or create a file or workspace in a library
corresponding to a directory that cannot be located results in a
LIBRARY NOT FOUND error message.

WS FULL

DLI B S as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems.

o 0

DLIBS
pDLIBS

DLIBS
1 [APL.RELlJ

11 [APL.WSJ

(Empty result means directory mode.)

(Non-empty means library mode.)

Copyright © 1987 STSC, Inc. 3-102 System Functions

Load a Workspace DLOAD

Purpose:

Syntax:

Replace the active workspace by loading the designated workspace
(under program control).

DLOAD wsid

Argument: wsid workspace identification (see section 2-2)

Effect:

Errors:

Examples:

wsid is a character scalar or vector that specifies the workspace to
be loaded. If the directory name or library number is omitted, your
current default library is assumed.

The specified workspace becomes the new active workspace,
DWSID changes, 'and DLX is executed. DQLOAD provides a
similar capability and does not display the SA V ED message.

DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR
WS ARGUMENT ERROR
WS NOT COMPATIBLE
WS NOT FOUND
WS TOO LARGE

DLOAD 'TESTWS'
TESTWS SAVED 12:27:39 07/22/87

(Switch to path mode.) DLIBD '1234 [APL.RELlJ'
DLOAD '1234 TESTWS'

1234 TESTWS SAVED ...

Copyright © 1987 STSC. Inc. 3- 103 System Functions

Lock Defined Functions DLOCK

Purpose: Lock functions under program control.

Syntax: result 0 L 0 C K inlist

Argument: intist list of function names

Result:

Effect:

Errors:

Examples:

intist contains a list of the function names that can be represented
as a character matrix, with one function name in each row or a
character vector containing function names separated by blanks.

result is an alphabetized character matrix of requested function
names whose definitions cannot be locked. If all requested names
are locked, result is an empty matrix with shape 0 O.

Only the most local definition of a function is locked. Functions
shadowed by more local use of the same name are nOllocked.

Locking a function also removes any stop or trace settings it may
have (see descriptions of 0 STO P and 0 T RA C E in this manual).

DOMAIN ERROR
RANK ERROR
WS FULL

pOVR 'TRI'
72

pOCR 'TRI'
3 32

OLOCK 'TRI'
pOVR 'TRI'

0

pOCR 'TRI'
o 0

OLOCK ONL 3 (Lock all functions in
the workspace.)

Copyright © 1987 STSC, Inc. 3-104 System Functions

Latent Expression DLX

Purpose:

Syntax:

Domain:

Effect:

Errors:

Example:

Store an APL expression to be executed when the workspace is
loaded. This provides a convenient way to start an application
automatically once it has been loaded.

expr OLX
OLX expr

expr is a character vector containing a valid APL expression. In a
clear workspace, the default value for OLX is an empty vector
(' ').

Stores a statement that is executed whenever the workspace is
loaded (except by OXLOAD or)XLOAD). If OLX represents an
invalid APL statement, an error is reported and execution is
suspended as if the statement were a line entered in immediate
execution mode.

DOMAIN ERROR
RANK ERROR

The following example illustrates a typical latent expression:

v
[1]
[2]

v

AUTOSTART
'WELCOME TO THIS WORKSPACE'
MAIN

o LX"" , AUTOSTART'
)SAVE STARTWS

The AUTO START function is executed as soon as the workspace
is loaded.

)LOAD STARTWS
STARTWS SAVED ...
WELCOME TO THIS WORKSPACE

Copyright © 1987 STSC, Inc. 3-105 System Functions

Monitor Function OMF

Purpose:

Syntax:

Set and unset monitoring of function execution and read monitor
data.

result <- DMF fnname
result <- flag DMF fnlist

Arguments: flag monitoring switch setting
list of function names
function name

Result:

fnlist
fnname

flag is a Boolean scalar or one-element vector that controls the
monitoring setting. A 1 sets monitoring on, and a 0 turns it off.

fnname is a character scalar or vector containing the name of one
function.

fnlist contains a list of function names. It can be represented as a
character matrix with one function name in each row or a character
vector containing function names separated by blanks.

Monitoring cannot be set or unset on functions that are locked,
suspended, pendent, or executing.

The result depends on the arguments supplied. IfJlag andfnlist are
supplied, result is a Boolean vector with one element for each
function name infnlist. A 1 indicates that monitoring was
successfully set or unset for the corresponding function. A 0
indicates that DMF was unable to set or unset monitoring for the
corresponding function.

If only fnname is supplied, result is a three-column integer matrix
with one row per function line and one row for the function header.
The fIrst row of the result contains information about the execution
of the entire function. The second and subsequent rows of the
result contain information about the corresponding function line.

Copyright © 1987 STSC, Inc. 3-106 System Functions

Effect:

Example:

[1; 1]

[1; Z]

[1 ; 3]

[Z···n; 1]

[Z···n;Z]

[Z···n;3]

Total CPU time for entire function
o
Number of times the function was called
Accumulated CPU time for the line
CPU time for the line minus that used
while subfunctions called on that line were
executing
Number of times the line was executed

Sets monitoring on a function and causes it to expand internally to
include space for accumulated monitor data. When monitoring is
unset, the function contracts to its normal size.

If a function is already being monitored, using 1 DMF fnlist resets
monitor data to zero.

A monitored function which is subsequently locked continues to
accumulate monitor data while executing. However, the data
cannot be read. 0 DMF fnlist can be applied to unset monitoring.

Monitor all functions in the workspace whose name starts with C:

pF+-'C' DIDLIST 3
24 15

pA+-1 DMF F
24

A/A
0

DMF 'COMPLEX' (Display execution time.)
15 0 3 (For entire function.)

8 8 3 (For line 1.)
4 4 3 (For line 2.)
3 3 3 (For line 3.)

Copyright © 1987 STSC, Inc. 3-107 System Functions

Call NOIl-APL Routine DNA

Purpose:

Syntax:

Allow APL to call an external machine language routine by associating
it with a name in the APL workspace.

result +- ON A fnname
result +- class DNA I modulefname routine (arg, arg ...) res I

Arguments: class syntax class of the external routine. The only possible value
of class is 3 0 in this release.

fnname name of a function

module name of a file with extension . exe containing the routine to
be called from APL. module must have been defined as a
logical name prior to invoking APL with a DEFINE

command. For example, $DEF INE VTOM
$DUAO: [APL. REL1] . EXE.

fname name of the APL function created in the workspace by DNA.
fnname is optional; if omitted, routine will be used as the
function name

routine name of the entry point in the module to be associated
with the APL function created by ON A

erg describes the form of the argument expected by the external
routine. The list of argument specifications appears in
parentheses, separated by commas. If the external routine
requires no parameters, an empty list within parentheses is
required. arg describes the datatype of each argument, how the
argument is passed, and whether it will be modified by the
external routine. Any value marked as modifiable will be
returned as an item of the explicit result of the external
function, whether or not it has actually been modified.
Datatypes recognized by the current release of the
APL * PLUS System are:

Copyright © 1987 STSC, Inc. 3-108 System Functions

Result:

Effect:

arg Datatype

B 1 Boolean (1 bit per element)
C 1 Character (1 byte per element)
14 Integer (4 bytes per element)
D 4 V AX D - format float (4 bytes per element)
D 8 V AX F - format float (8 bytes per element)
GO General object; a variable in the form used

internally by APL (always passed by
reference)

The presence of an asterisk I * I before the datatype
descriptor indicates that the argument is to be passed by
reference; APL will pass the address of the beginning of the
data in the array. Otherwise, the argument is passed by
value and APL passes the value of the first item of the
array. An array of more than one item can only be passed
by reference. The presence of an arrow I <- I after the
datatype descriptor indicates that the value may be modified
and will be included in the explicit result returned by the
external routine.

res describes the form of the result, if any, returned by the
routine. If specified, the routine's result will be returned as
the first item of the explicit result returned by the
associated APL function. If omitted, the routine's explicit
result is discarded

When ON A is used dyadically, the right argument is a character
vector containing the specifications for an external routine.

result is 1 if dyadic ON A is successful, 0 if it is not. If used
monadically, result is 3 iffnname is the name of a function that
has been associated with an external routine. Otherwise, result is
o indicating thatfnname is not associated with an external routine.

Creates a locked function in the APL workspace that is associated
with the external routine. Using this locked function causes APL
to call the routine specified by fnspec, passing the pointers (or
actual value in the case of scalars) of the arguments supplied to
fnname. fnname is always assumed to be monadic and the number

Copyright © 1987 STSC. Inc. 3-109 System Functions

Note:

Warning:

Example:

of items in its right argument must match the number of args
specified in the right argument.

Used monadically, ON A simply reports on whether fnname is an
external routine.

See Chapter 9 of the APL *PLUS System User's Manual for more
information on using DNA.

ON A is experimental in this release of this APL * PLUS System.
This feature may change or be removed in a future release.

) CLEAR
CLEAR WS

3 0 DNA 'VAXCRTL:6T T1HES(*14~) 14'
1

o

2:::>T
1662 0 0 0

(Return code.)

(CPU time for APL process.)

Copyright © 1987 STSC, Inc. 3-110 System Functions

Native File Append DNAPPEND

Purpose: Append data to the end of a designated native file.

Syntax: value ONAPPEND dena

Arguments: value any simple, homogeneous APL array
native file tie number

Effect:

tieno

Appends new data to a native me. Each item of data in the array is
written to the native me using the current internal representation of
the APL data.

The system function 0 DR should be used to determine the datatype
since the display form of the data does not indicate the internal
representation. For example, the vector 1 0 1 displays the
same whether it is stored internally as Boolean, integer, or
floating-point data. Explicit conversion of numeric data may be
needed.

The following expressions will convert data to the desired internal
representation (note that datatype conversions are not considered
part of the APL language and are therefore subject to change in
future releases).

Datatype Conversions

Conversion

Boolean (signal domain error
if not Boolean-valued)

Integer

Integer (from Boolean)

Floating Point

Expression

DATA-lI1DATA

DATA-LDATA+O.5

DATA-O+BOOLEAN

DATA-DATA + 1

When an APL array is written to a native file, only the data values in
the array are stored. Rank, shape, and data type information are not
written to the file.

Copyright © 1987 STSC, Inc. 3-111 System Functions

Caution:

Errors:

Examples:

ON A P PEN D is intended for use with the sequential Stream_LF files
created with 0 NCR E AT E. Other types of files may be damaged if
ON AP P EN D is used to write to them.

ONAPPEND as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems.

DISK ERROR
DISK FULL
DOMAIN ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

<OVR 'TRI') ONAPPEND -27

TEXT ONAPPEND -33

Copyright © 1987 STSC. Inc. 3-112 System Functions

Name Classification of Identifiers ONe

Purpose: Return classification of a list of identifiers (object names).

Syntax: result.... ONe objlist

Argument: objlist list of object identifiers

Result:

Errors:

Examples:

objlist contains a list of zero or more workspace identifiers
(function, variable, or label names). The argument can be a
character vector with one or more names separated by blanks or a
character matrix with one name per row.

result is a numeric vector of classification codes, one for each name
in the argument Values that can be returned are:

Value
o
1
2
3
4

Classification
not defined
latel
variable
defined function
cther

A value of 4 indicates that the object identifier is invalid or that it
is the name of a system function or variable (that is, it begins with
a 0).

DOMAIN ERROR
RANK ERROR
WS FULL

ONe 'A TRI'
2 3

ONe 2 3 piA TRI'
2 3

ONe 'OWA'
4

Copyright © 1987 STSC, Inc. 3-113 System Functions

Native File Create DNCREATE

Purpose: Create a new native file with specified name and tie the file.

Syntax: file ONCREATE tieno

Arguments: file file name

Effect:

Caution:

Errors:

tieno file tie number

file is a character vector containing the name of a valid operating
system file. You may prefix the file name with any directory and
disk information desired. Native files are created as unblocked
Stream_LF files .

tieno must be a negative, integer-valued singleton designating an
available file tie number. You cannot have another file currently
tied with this number.

Native files are created as unblocked sequential Stream_LF VMS
files.

A new file is created with file name as specified by file . The new
file is then tied to .tieno.

File names ending in . VF and . WS designate APL component files
and workspaces to APL, respectively. We recommend against
using . VF and . ws for any other purpose.

ONC REATE as described here is specific to this APL* PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE NAME TABLE FULL
FILE TIE QUOTA EXCEEDED
RANK ERROR
WS FULL

Copyright © 1987 STSC. Inc. 3-114 System Functions

Examples: 'SAMPLE.C' DNCREATE -27
'PRINT' DNCREATE -33
'[RIKJEXAMPLE.TXT' DNCREATE -25

Copyright © 1987 STSC, Inc. 3·115 System Functions

Native File Erase DNERASE

Purpose: Erase a native file.

Syntax: file ONERASE tieno

Arguments: file file name (see ONT I E)
native file tie number

Effect:

Caution:

Errors:

Examples:

tiena

The file described by name (file) and by tie number (tieno) must be
the same file.

Unties a file and erases it frpm the disk and directory. All of the
data in the file is destroyed.

ONE RASE as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE TIE ERROR
HOST ACCESS ERROR
RANK ERROR
WS FULL

'MEMO. TXT' ONTIE -27
'MEMO. TXT' ONERASE -27

'SCRATCH' ONTIE -33
'SCRATCH' ONERASE -33

Copyright © 1987 STSC. Inc. 3- 116 System Functions

Name List of Identifiers DNL

Purpose:

Syntax:

Return a character matrix of function, variable, and/or label
identifiers (names).

result +- ONL class
result +- letters ONL class

Arguments: letters beginning letters of identifiers
classification of identifiers

Result:

Errors:

Examples:

class

letters is an optional character vector of letters (blanks are not
permitted) that restricts result to names whose first letter is in
letters.

class is an integer vector that determines the class of names
produced; the acceptable values are

Value
1
2
3

Identifiers
labels
variables
functions

If more than one value is designated, identifiers defined as
belonging to any of those classes are returned. For example, ON L
2 3 produces a matrix of names of all variables and functions.
The most local definitions of the identifiers are used.

result is a character matrix of identifiers with the rows alphabetized.

DOMAIN ERROR
RANK ERROR
WS FULL

)FNS
TRI UPDATE
WITHOUT XMIT

TRI
XMIT

'TX' ONL 3

VOID WITH

Copyright © 1987 STSC, Inc. 3-117 System Functions

lVARS
ARC TERM XRAY

ITXI DNL 3 2
TERM
TRI
XMIT
XRAY

Copyright © 1987 STSC. Inc. 3- 118 System Functions

File Identifications of All Tied Native Files DNNAMES

Purpose:

Syntax:

Result:

Errors:

Caution:

Example:

Return the file identifications of all files currently tied with
DNTIE.

result DNNAMES

result is a character matrix that contains one file identification per
row and as many columns as are necessary to hold the longest
name. The rows of result have the same ordering as the result of
DNNUMS.

Directory information is included in the result of ONN AME Sin
the same form as it was used when the file tie was established
(using DNCREATE or DNTIE).

WS FULL

ON N AMES as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems .

. DNNAMES
[APL.REL1JCHAPTERl
SCRATCH

Copyright © 1987 STSC, Inc. 3-119 System Functions

File Numbers of Native Files DNNUMS

Purpose:

Syntax:

Result:

Errors:

Caution:

Examples:

Return the file tie numbers of all files currently tied as native files.

result +- DNNUMS

result is a numeric vector of file tie numbers.

result has the same ordering as the rows of the result of
DNNAMES.

WS FULL

DNNUMS as described here is specific to this APL* PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DNNUMS
-27 -52 -3 -37 -4

DNUNTIE DNNUMS

pDNNUMS
o

Copyright © 1987 STSC. Inc. 3-120 System Functions

Read Native File Access ONRDAC

Purpose:

Syntax:

Read the current file mode (access pennissions) for a native file.

result
result

DNRDAC file
+- DNRDAC lieno

Arguments: file native file

Result:

Caution:

Errors:

fiena native file tie number

The argument identifies the file by file tie number (tieno) or by
name (file) . If identified by tie number, the argument must be a
negative integer singleton representing a tied native file. If
identified by name, a character vector or singleton must be a valid
file name.

result is an integer scalar representing the current file pennissions
as the sum of the following values:

Value
256
128
64
32
16
8
4
2
1

Explanation
Read pennission for owner
Write pennission for owner
Execute pennission for owner
Read pennission for group
Write pennission for group
Execute pennission for group
Read pennission for all others
Write pennission for all others
Execute pennission for all others

For a discussion of file pennissions, see the documentation supplied
with your operating system. Other bits may be set; their effect is
presently undefined.

DNRDAC as described here is specific to this APL*PLUS System. It
may be different or absent in other APL * PLUS Systems.

DOMAIN ERROR
FILE NAME ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

Copyright © 1987 STSC, Inc. 3-121 System Functions

Example: 'FILE' DNCREATE
T+-3 3p-9t (32p2)
, RWX', [1] 'OWN'

R W X
OWN 1 1 0
GRP 1 0 0
ALL 0 0 0

Copyright © 1987 STSC, lnc. 3-122

-1
T DNRDAC -1
'GRP' 'ALL', T

System Functions

Readfrom Native File ONREAD

Purpose: Read data from a native fLle.

Syntax: result +- DNREAD tieno cony count startbyte

Arguments: tiena native file tie number

Result:

Effect:

Caution:

cony data conversion to be used
count number of element of type cony to be read
startbyte starting byte at which to begin reading

The argument is an integer vector of three or four elements
(startbyte is optional and assumed to be the next byte following the
last byte that has been read with DNRE AD). Tying the fLle with
DNREAD sets startbyte to 0 (the first byte in the file). tieno must
be a valid native file tie number (see DNT I E) and cony must be
one of the following conversion types:

Conv.
11
82

163
323
644

DNREAD Data Conversions

Conversion Type
Read one bit per element, result is Boolean data
Read one byte per element, result is character data
Read two bytes per element, result is integer data
Read four bytes per element, result is integer data
Read eight bytes per element, result is V AX
floating-point data

result is the data in the fLle in the datatype specified by cony.
result will be an APL vector with length count.

Copies the data in the file into the workspace and converts it to the
specified datatype.

DNRE AD is capable of reading on sequential Stream_LF fLIes.
Other types of VMS fLIes may not be readable.

Not all eight-byte sequences represent valid floating-point numbers.
If arbitrary data is read in with a floating-point'conversion, the
effect of APL primitives on this data is undefined.

Copyright © 1987 STSC. Inc. 3-123 System Functions

Errors:

Example:

ON REA D as described here is specific to this APL * PLUS
System. It may be different or absent in other APL*PLUS
Systems.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE INDEX ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR
WS FULL

DNREAD -12 82 57 0
THIS FILE CONTAINS SALES DATA FOR
1987. CREATED 1/26/87.

Copyright © 1987 STSC. Inc. 3-124 System Functions

Change the Name of a Native File DNRENAME

Purpose: Change the name of a native file or move it to another directory.

Syntax: file ONRENAME tieno

Arguments: file native file name (including directory, if needed)
tie number

Effect:

Errors:

Caution:

Example:

lieno

The right argument describes the existing file by tie number
(tieno). The left argument lfile) provides the new file name and,
optionally, directory information.

Renames a native file tied to tieno. You become the file owner.
ONRENAME provides the same facility as the DCL command
rename and you must have the same access permission required to
use rename in order to use ONRENAME.

ON RENAME cannot replace an existing file and produces a
FILE N AM E ERR 0 R if the target file already exists.

DOMAIN ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LIBRARY ACCESS ERROR

ONRENAME as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

'TEST.C' ONTIE -1
'[MRVNJWORKING.C' ONRENAME -1

Copyright © 1987 STSC, Inc. 3-125 System Functions

Replace Native File Data ONREPLACE

Purpose: Stores a new value in an existing native file storage space,
replacing the data already there.

Syntax: value ONREPLACE tieno startbyte

Arguments: value single, homogeneous array

Effect:

Caution:

tieno negative file tie number
startbyte starting byte where the new data is to be placed

The right argument designates the file by tie number (tieno). It
must be an integer two-element vector with the second element
positive (startbyte).

Replaces the value of the designated storage space in the file. If the
storage from the specified startbyte to the end of the ftle is
insufficient for the specified value, the file is extended to
accommodate it

ON REP LA C E is intended for use only with sequential Stream_LF
ftles of the kind that are created with 0 NCR EAT E. Other types of
files may be damaged if ONRE PLACE is used to write to them.

Numeric data is written to file in its present internal representation.
Explicit coercion of numeric data to the desired datatype is
recommended (see "ONAPPEND -- Native File Append").
Boolean data is written in whole bytes (writing n Boolean values
will cause L (n + 7) + 8 bytes to be replaced in the file). The
value of trailing bits in the last byte is undefmed.

DNRE PLACE as described here is specific to this APL*PLUS
System. It may be different or absent in other APL * PLUS
Systems.

Copyright © 1987 STSC, Inc. 3-126 System Functions

Errors:

Example:

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE INDEX ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR
WS FULL

BLOCK~DNREAD -33 323 10 1048520

BLOCK
23 7 1984 -22 79 22 48 41 68 82

BLOCK[3]-1982

BLOCK DNREPLACE -33 1048520

Copyright © 1987 STSC. Inc. 3-127 System Functions

File Size Information DNSIZE

Purpose: Report the amount of disk storage occupied by a file.

Syntax: result +- ON SIZE file
result +- ONSIZE tieno

Arguments: file name of the native file

Result:

Caution:

Errors:

Example:

tieno native file tie number

The right argument can either be a character vector containing a file
name (file) or an integer singleton containing a tie number (tieno).

result is a numeric scalar indicating the total disk storage (in bytes)
used by the file.

ON SIZE as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DOMAIN ERROR
FILE NAME ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERR OR
WS FULL

233472

'PRIMES' ONTIE -37

ONSIZE - 37

Copyright © 1987 STSC. Inc . 3- 128 System Functions

Set Native File Access DNSTAC

Purpose: Set the file mode (access permissions) for a native file.

Syntax: access ON ST A C tieno

Arguments: access access permissions
native fIle tie number

Effect:

Caution:

Errors:

tieno

access is an integer singleton containing the sum of the file
permissions that are to be set for the native file.

Access
Permission

Value Explanation

256 Read permission for owner
128 Write permission for owner
64 Execute permission for owner
32 Read permission for group
16 Write permission for group
8 Execute permission for group
4 . Read permission for all others
2 Write permission for all others

Execute permission for all others

tieno is the tie number of the native me. It must be a negative
integer.

The new permissions are established for the file and take effect
immediatel y.

ON S T A C as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DOMAIN ERROR
FILE ACCESS ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

Copyright © 1987 STSC. Inc. 3-129 System Functions

Example: 'DEMO' DNTIE - 1
(+/256 128 32 4) DNSTAC -1

Copyright © 1987 STSC, Inc. 3-130 System Functions

Tie Native File DNTIE

Purpose: Establish a file tie for a native file.

Syntax: file DNT I E lieno

Arguments: file native file name (see section 2-2)
me tie number

Effect:

Caution:

Errors:

Examples:

dena

file must be a character vector or singleton containing a valid file
name. It may optionally be preceded by a directory designation.

tieno is the file tie number to be used and must be a negative,
integer-valued singleton not currently in use as a tie number.

The native file is tied (opened) for reading and writing if the user
has both permissions; read-only if the user lacks write permission.

A file that is already tied with 0 NT IE can be re-tied using
DNT IE without first being untied. The tie number can be the
same number or a different number. The only restrictions are that
no other file can already be tied with the new tie number and the
file cannot be tied to a positive number. This "slippery" tie can be
used to verify that a file is tied (without looking up its name in
DNNAMES and DNNUMS).

DNT IE as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems.

DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME TABLE FULL
FILE NOT FOUND
FILE TIE ERROR
FILE TIE QUOTA EXCEEDED
LENGTH ERROR
RANK ERROR

'SAMPLE.C' DNTIE -1

[APL.TESTJSAMPLE.C DNTIE -1

Copyright © 1987 STSC, Inc. 3- 131 System Functions

Untie Native File DNUNTIE

Purpose: Untie native files currently tied.

Syntax: DNUNT IE lienol lieno2 liena3 ... lienon

Argument: tiena tie numbers

Effect:

Errors:

Caution:

Examples:

The argument designates the files by tie number. It must be a
numeric singleton or vector of zero or more tie numbers. The
numbers do not have to be distinct, nor do they need to designate
ac tua! ti ed files.

Has no response if the argument is empty. If the argument
includes tie numbers of tied files, they are closed and associated
entries are removed from DNNAMES and DNNUMS.

DISK ERROR
DOMAIN ERROR
RANK ERROR

DNUNT I E as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DNUNTIE -33

DNUNTIE DNNUMS

Copyright © 1987 STSC, Inc. 3-132 System Functions

Protected Copy From Saved Workspace DPCOPY

Purpose:

Syntax:

Copy APL functions and variables from a saved workspace into the
active workspace provided the object does not already exist.

result +- OPCOPYwsid
result +- objlist OPCOPY wsid

Arguments: wsid workspace name (see section 2-2)

Result:

objlist list of functions and variables to copy

objlist can be either a character matrix of object names, one name
per row, or a character vector with each name separated by one or
more blanks.

result is an integer vector representing the success or failure of
o P COP Y. If objlist is specified, result contains a response code
for each object in objlist:

Code Explanation
2 A variable was copied successfully
1 A function was copied successfully
o No objects copied; none found with the supplied

name
-1 An object with this name already exists in the

workspace
- 2 The object was too large to copy given the

available free workspace
- 3 The name is defined as a label and cannot be

changed
- 4 There is insufficient space in the symbol table to

copy this object
- 6 The amount of workspace available is too small

to perform the copy

If 0 P COP Y is used without specifying objlist, then result is
empty if all objects of wsid were copied successfully.

Copyright © 1987 STSC, Inc. 3-133 System Functions

Effect:

Errors:

Examples:

Copies objects from the specified workspace (wsid) into the local
environment of the active workspace unless they would replace any
objects by the same name. See the description of 0 COP Y for a
way to copy while replacing any existing objects.

If an unanticipated error occurs, no result is returned.

Copying a function copies only its source form; all compiled code
is discarded and 0 ST 0 P and 0 T R ACE settings are cleared in the
active workspace.

DOMAIN ERROR
INSUFFICIENT MEMORY
LENGTH ERROR
RANK ERROR
WS ARGUMENT
WS DAMAGED
WS FULL
WS NOT FOUND

MTRX

1 2
3 4

)VARS

MTRX

)SI
SPND[3]*

'MTRX XXX DAT SPND' DPCOPY 'WS3'
-1 1 0 2 -3

)VARS
DAT MTRX

1 2
3 4

MTRX (Compare to 0 COP Y which changes
the value of MATRIX.)

Copyright © 1987 STSC, Inc. 3-134 System Functions

Programmable Function Keys DPFKEY

Purpose:

Syntax:

Report the current settings of the logical programmable function
keys or, optionally, redefmes the function key settings.

string OPFKEK key
string +- OPFKEY key

Arguments: string character sequence associated with a programmable
function key

Result:

Effect:

key character or integer identifying the key

The right argument identifies the keystroke whose programmable
value is being queried or set. It is an integer singleton in the range
from 0 to 127 or a character singleton from 128 t OAV. For
example, the character sequence associated with the D key can be
referred to either as the character value ' D' or the integer value
36 ((OAVl'D')-OIO)'

The optional left argument is used to redefine the character sequence
associated with the keystroke. It can be any character scalar or
vector. It can also be an integer scalar or vector containing the
origin-0 (0 I 0 +- 0) indices of those characters in 0 A V.

The total space available for function keys is sufficient to hold
5 1 2 characters. The longest possible character sequence is 6 4
characters.

The explicit result of monadic 0 P F KEY is a character vector
containing the current character sequence defined for the key
indicated in the right argument. Dyadic 0 P F KEY does not return
an explicit result.

Defines logical programmable function keys that are independent of
any physical function keys on a terminal keyboard. The logical
function keys are invoked by typing the PF-key keystroke followed
by another character. The effect is to substitute the stored character
sequence for that key, just as if it had been typed at the keyboard.

Copyright © 1987 STSC, Inc. 3-135 System Functions

Caution:

Errors:

Examples:

If the character sequence contains a newline character (DTCN L),
the effect is equivalent to pressing Return to enter a line of input.
A single function key can contain multiple input lines separated by
newline characters. If the Escape character 0 T C ESC occurs in the
sequence, it is sent through to APL as an Escape. One function
key cannot invoke another function key.

Default values are defined for each of the ASCll characters. These
are listed in Section 5-3 of the APL *PLUS System User's
Manual.

o P F KEY as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DOMAIN ERROR
LENGTH ERROR
LIMIT ERROR
RANK ERROR
WS FULL

DPFKEY 'V'
V

(previous defmition.)

(')VARS' ,DTCNL) DPFKEY 'V'
DPFKEY 'V'

)VARS

After executing the above example, the sequence') V ARS' can
be entered as input by pressing PF-key followed by a shift V.
Note that V and V are distinct and can be given different function
key definitions.

Copyright © 1987 STSC, Inc. 3-136 System Functions

Printing Precision OFF

Purpose:

Syntax:

Domain:

Effect:

Note:

Errors:

Examples:

Specify the maximum number of significant digits, or print
precision, provided by the system when it displays numeric data.

result +- 0 P P
OP P +- number

o P P can be assigned an integer value between 1 and 1 8
inclusive. The default value is lOin a clear workspace.

The value of 0 P P is used when computing the result of monadic
format (f) or any system-generated numbers. The system uses up
to 0 P P significant digits in the representation of numbers. If a
value cannot be represented exactly with 0 P P digits, the result is
rounded to 0 P P digits.

OP P+-18 permits display of full internal precision, with every
internal floating-point value distinguishable from its nearest
neighbors. The final digit may not be otherwise significant.

DOMAIN ERROR
LENGTH ERROR

OPP
10

+3
0.3333333333

2+3
0.6666666667

+8
0.125

+64
0.015625

OPP+-3
+64

(Requires fewer than ten significant digits.)

o . 0 1 56 (Only three significant digits are displayed.)

Copyright © 1987 STSC. Inc. 3-137 System Functions

Prompt Replacement DPR

Purpose:

Syntax:

Domain:

Effect:

Caution:

Errors:

The workspace-related system variable 0 P R controls how rI input
is affected by the input prompt.

prompt +- 0 P R
o P R +- prompt

o P R can be assigned a character singleton or empty vector. The
default value is I I in a clear workspace.

The value of 0 P R determines how an input prompt, if any, is
merged with the result of rI input. If 0 P R is an empty vector, the
result of rI input contains the original input prompt, including any
changes the terminal user might have made to the prompt. This
provides a mechanism for supplying a prompt that the user is
expected to modify into an input line.

If 0 P R is a one-element vector, the result of rI input contains the
value of 0 P R in every position of the prompt, except those
positions that have been modified by the user backspacing into the
prompt and performing actions. For more information, see Section
5-1 of the APL *PLUS System User's Manual.

OP R has no effect when OARBOUT lOis used to prevent the
prompt from appearing in rI input. If OARBOUT lOis used,
as is common practice with APL * PLUS Systems, the value of
o P R is immaterial.

o P R, as described here, is specific to this APL * PLUS System. It
may be different or absent in other APL * PLUS Systems.

DOMAIN ERROR

Copyright © 1987 STSC, Inc . 3-138 System Functions

Examples: DPR+-'?'
~+-'PROMPT: ' 0 DARBOUT to 0 Z+-~

PROMPT: ANSWER

Z
ANSWER

(Prompt not included.)

(Without DARB OUT.)
~+-'PROMPT: ' 0 Z+-~

PROMPT: ANSWER

Z
????????ANSWER

(Prompt replaced with "?".)

DPR--'*' 0 ~+-'PROMPT: ' 0 Z--~
PROMPT:

(User then modifies line before pressing RETIJRN.)
PROMPTLY ANSWER

Z
******LY ANSWER

Copyright © 1987 STSC. Inc. 3-139 System Functions

Save Workspace with Replacement DPSAVE

Purpose:

Syntax:

Save the active workspace under program control without halting
execution and check that saving the workspace will not replace an
existing workspace with the same name.

f RE SET f OPSAVE wsid
OPSAVEwsid

Arguments: wsid workspace identification for the saved workspace (see
section 2-2)

Effect:

Errors:

The optional left argument, if present, is the character vector
containing the value f RE SET f ,indicating that the workspace is
to be saved with a clear state indicator.

wsid is a character singleton, vector, or one-row matrix specifying
the name of the saved workspace.

Saves the active workspace without halting execution of the APL
statement in which it appears. Monadic 0 P SA V E produces a
saved workspace with execution suspended at the start of the
function line at the top of the state indicator at the time it is called.
Dyadic 0 P SA V E saves the workspace with a clear state indicator.
The system variables OW SID, OWST S, and OWSOWNER, for
both the newly saved and the current workspace, are all changed as
a side-effect of 0 SA V E.

If a workspace already exists with the supplied name (wsid), a W S
ARGUMENT ERROR is produced. Contrast this to OSAVE
which performs the save by replacing the existing workspace with
the new version.

DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR
WS ACCESS ERROR
WS ARGUMENT ERROR

Copyright © 1987 STSC, Inc. 3-140 System Functions

Caution:

Examples:

o P S AVE as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

The first example shows the use of dyadic 0 P S AVE to save a
workspace with a clear state indicator. Note the local OWSI D.

v INSTALL WSID;OWSID
[1] t RESET t OPSAVE WSID

v

The next example uses monadic 0 P SA VEto checkpoint a running
application (note the local DLX):

v CHECKPOINT WSID;OLX
[1] OLX~t~ot 0 OPSAVE WSID

v

Copyright © 1987 STSC. Inc. 3-141 System Functions

Printing Width DPW

Purpose:

Syntax:

Domain:

Effect:

Errors:

Examples:

Set the maximum number of character positions or columns
available for output.

result -- 0 PW
o PW -- number

o PW can be assigned an integer value between 30 and 255,
inclusive. The default value at the start of an APL session is 8 O.

The system uses no more than the first DPW print positions on
each line during output. Output that would extend beyond this
number of positions is "folded" onto subsequent lines that are
indented six spaces. The display of numeric data is folded between
numbers.

The value of DPW is used during output from monadic format (l),
OF MT, default output from executing a statement creating an
explicit result, and requested output (0 -- or rJ --). It does not affect
the creation of variables.

DOMAIN ERROR
LENGTH ERROR

DPW (Display the value of DPW at session startup.)
80

DPW--30
60p'D'

000000000000000000000000000000
000000000000000000000000
000000

Copyright © 1987 STSC, Inc. 3-142 System Functions

Quietly Load a Workspace OQLOAD

Purpose:

Syntax:

Load a workspace under program control without displaying the
saved message.

DQLOADwsid

Argument: wsid workspace identifier (see section 2-2)

Effect:

Example:

wsid is a character scalar or vector that specifies the workspace to
be loaded.

Replaces the active workspace with a copy of the contents of the
designated workspace. No SA V ED . .. message is displayed.

When 0 Q LOA D is used, the new active workspace begins
execution automatically if DLX is set appropriately in it, giving
the effect of continuing a multistep program through two or more
workspaces. You can exchange information between the two
workspaces by storing data in a fIle while in one workspace and
then reading the data back while in another workspace.

)CiEAR
CLEAR WS ...

DQLOAD 'STAGE2'

DWSID
STAGE2

(Note the absence of
the SAVE D message.)

(Shows the new
workspace id.)

Copyright © 1987 STSC, Inc. 3-143 System Functions

Random Link DRL

Purpose:

Syntax:

Domain:

Effect:

Errors:

Examples:

Set the seed value (or random link) used by the pseudo-random
number generator.

result +- ORL
ORL +- number

Any integer from 1 to 2 14 74 8364 6 C 2 + 2 * 3 1). In a clear
workspace, the default value is 16807 (7 * 5).

The value of ORL is used in computing the result of the roll
(monadic 7) and deal (dyadic 7) primitive functions.

OR L can be assigned a specified value in order to reproduce test
results (by resetting ORL to the same value each time) or to
"randomize" results (by setting ORL to an arbitrary value, such as
the time of day).

As each pseudo-random number is generated, the seed (ORL) is
used in the computation and is also changed.

DOMAIN ERROR
LENGTH ERROR
RANK ERROR

)CLEAR
CLEAR WS

ORL
16807

73 P 100 (Generate 3 random numbers from 1 to 100.)
50 74 59

ORL
984943658

ORL-16807
73p100

50 74 59

ORL
984943658

Copyright © 1987 STSC. Inc. 3·144 System Functions

Purpose: Specify the action to be taken whenever execution stops for
immediate execution input

Syntax: result 4- DSA
DSA ... action

Domain:

Effect:

The domain for assignment to 0 SA is limited to one of the
following character vectors:

, ,
'CLEAR'
'EXIT'
'OFF'

Superfluous leading and trailing blanks are ignored; an all-blank
vector is treated as empty.

In a clear workspace, the default value of 0 SA is an empty
character vector (' ').

Specifies the stop action to be taken whenever execution stops for
immediate execution input. The effect of each possible value of
DSA is explained below:

, , No special stop action is taken. Execution suspends
in the local environment and the system accepts
immediate execution input.

'CLEAR' The active workspace is cleared.

, EXIT' The state indicator is stripped back to an environment
where DSA is not' EX IT'. If the value of DSA

'OFF'

in the resulting environment is ' C LE AR ' , the
workspace is cleared.

The APL session is terminated with normal untying
of any tied files; you are returned to the operating
system.

Copyright © 1987 STSC. Inc. 3-145 System Functions

Errors:

Examples:

After the stop action has been taken (except for ' OFF'), the
system accepts immediate execution input.

If execution is interrupted at a point where 0 SA has been localized
but not assigned, the state indicator is stripped back to an
environment where OSA is defined.

DOMAIN ERROR
RANK ERROR

These examples show the effect of each of the settings of 0 SA in
the global environment. For illustration, 0 SA is not localized in
any of the functions called and no other exception handlers are used.

)WSID
IS PROCESS

OSI

OSA-' ,

PROCESS 'PAYROLL'
INDEX ERROR
LOOKUP[4J ~

OSI
LOOKUP[4J*
DSEARCH[14J
XQT [8 J
PAYUPDATE[38J
PROCESS[12J

)RESET
OSI

(An error occurs with
OS A set to its default
value.)

(Execution is suspended at
the point of error.)

OSA-'EXIT' (OSAissetto 'EXIT'
in the global environment

PROCESS 'PAYROLL' and the function is
executed again .)

INDEX ERROR
L 0 0 K UP [4 J ¥ (The error occurs again and

PROCESS 'PAYROLL' the state indicator is
pO S I cleared.)

o 0

Copyright © 1987 STSC. Inc. 3-146 System Functions

OSA+-'CLEAR'
INDEX ERROR
LOOKUP[4J
CLEAR WS

)WSID
IS CLEAR WS

o PROCESS 'PAYROLL'
(OSA is set to
, CLEAR' and the
function is executed again.
The error occurs once
more, but the entire active
workspace is cleared.)

Copyright © 1987 STSC. Inc. 3-147 System Functions

Save Workspace, with Replacement DSAVE

Purpose:

Syntax:

Saves the active workspace under program control without halting
execution.

'RESET' OSAVEwsid
OSAVE wsid

Arguments: wsid workspace identification for the saved workspace (see
section 2-2)

Effect:

Errors:

Caution:

The optional left argument, if present, is the character vector
containing the value' RE SET' , indicating that the workspace is
to be saved with a clear state indicator.

wsid is a character singleton, vector, or one-row matrix specifying
the name of the saved workspace.

Saves the active workspace without halting execution of the APL
statement in which it appears. Monadic 0 SA V E produces a saved
workspace with execution suspended at the start of the function line
at the top of the state indicator at the time it is called. Dyadic
OSAVE saves the workspace with a clear state indicator. The
system variables OWSI D, OWSTS, and OWSOWNER, for both
the newly saved and the current workspace, are all changed as a
side-effect of 0 SAVE.

See OF SAVE for a way to prevent the save from overwriting an
existing workspace.

DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR
WS ACCESS ERROR
WS ARGUMENT ERROR

o SAVE as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems.

Copyright © 1987 STSC, Inc . 3-148 System Functions

Examples: The first example shows the use of dyadic 0 SA VEto save a
workspace with a clear stale indicator. Note the local 0 W SID.

v INSTALL WSID;DWSID
[1] 'RESET' DSAVE WSID

v

The next example uses monadic 0 SA VEto checkpoint a running
application (note the local DLX):

v CHECKPOINT WSID;DLX
[1] DLX+-' O' 0 DSAVE WSID

v

Copyright © 1987 STSC, Inc. 3-149 System Functions

State Indicator DSI

Purpose:

Syntax:

Result:

Errors:

Example:

Return a character matrix representation of the state indicator.

result - DSI

result is a character matrix containing essentially the same
information as displayed by the) S I system command. The
names of pendent or suspended functions, quad symbols, and
execute symbols may appear in the result. Each row can contain
one of the following:

• a quad symbol (D), indicating a pending evaluated input request

• an execute symbol (~) , indicating a pending statement invoked
by the execute primitive function

• a function name followed by a bracketed line number, indicating
a pendent function

• a function name followed by a bracketed line number and a star,
indicating a suspended function

If the state indicator is empty, the result of 0 S I is an empty
matrix of shape 0 O.

WS FULL

1 OSTOP ITRI'

~'TRI 51

TRI [1J

OSI
TRI[1J*
~

pOSI
2 7

Copyright © 1987 STSC, Inc. 3-150 System Functions

Space Used by Identifiers DSIZE

Purpose:

Syntax:

Return the amount of space used by a list of object identifiers
(names).

result +- 0 SIZE idlist

Argument: idlist list of identifiers (functions, variables, or labels)

Result:

Caution:

Errors:

idlist contains a list of zero or more names that can be represented
as a character matrix with one function name in each row or a
character vector containing names separated by blanks.

result is a numeric vector. Each element of result is the amount of
space (in bytes) required for the internal representation of the object
named in the corresponding position of the argument (Note:
Symbol table space is included). Zeros are returned for undefined
identifiers, ill-formed names, and system functions and variables.
OS I ZE references the most local definition of each name.

The value of 0 SIZE cannot be used to reliably estimate the
increase in workspace from erasing an object in the workspace. It
is possible that multiple variable names refer to the same variable
in the workspace (see Examples: below). A nested array can also
contain multiple items that have the same value and occupy the
same storage in the workspace.

Note also that functions can change in size. In particular, a
function grows larger when a line in the funciton is executed for
the first time and compiled code is generated for that line.
Function monitoring (DMF) also changes the size of a function.

DOMAIN ERROR
RANK ERROR
WS FULL

Copyright © 1987 STSC, Inc. 3-151 System Functions

Examples: OSIZE 'A TRI'
o 144

A~B~C~2 400 0 OSIZE 'A B CI
52 52 52

OWA
35916

OERASE 'A CI 0 OSIZE 'A B CI
o 52 0

OWA (Workspace available did not increase.)
35916

Copyright © 1987 STSC. lnc. 3-15 2 System Functions

String Search DSS

Purpose:

Syntax:

Perform a string search, locating all occurrences of a character
scalar or vector within another character vector.

result +- data 0 S S pattern

Arguments: data character vector to be searched

Result:

Errors:

Examples:

pattern character vector or scalar to be located in data

The left argument (data) must be a character vector. The right
argument (pattern) may be a character vector or scalar.

result is a Boolean vector of the same length as the left argument,
showing the location of all occurrences of pattern within data. A 1
in the result signifies a match beginning at that position within
data. All matches are shown, including those that overlap. If
pattern is empty (' ') result is alII 's.

DOMAIN ERROR
RANK ERROR
WS FULL

'MISSISSIPPI' DSS 'ISSI'
o 1 0 0 1 000 000

'EMPTY MATCHES ALL' DSS "
1 1 111 111 111 1 1 1 111

CV+-'THIS IS TOO
(-CV DSS' ') / CV

THIS IS TOO SPACED.

SPACED. '

Copyright © 1987 STSC, Inc. 3-153 System Functions

Stop Function Execution OSTOP

Purpose: Set, remove, or report flags for a function.

Syntax: result +- OSTOP Jnname
result +-/inenums OSTOP Jnname

Arguments: linenums line numbers to set a stop flag
Jnname function name

Result:

Effect:

The optional left argument (linenums) is an integer vector or
singleton containing the lines of the functionJnname for which
stop flags should be set. Zero and integers that are not line
numbers in the specified function are ignored.

Jnname is a character vector or singleton containing the name of an
unlocked function in the workspace.

result is an integer vector of the lines ofJnname for which prior
stops were set.

Executing 0 STO P has no effect immediately. However, it does
affect the executing of other functions in the workspace. If
o ST 0 P is used to set a stop flag on a function line, it removes all
existing stop flags for other lines in the function. Once the stop
flag is set, all subsequent executions of the function lfnname) are
halted prior to executing the flagged lines (Iinenums).

Each time function execution reaches a line that has been set to
stop, execution is halted, and the system enters immediate
execution mode, preserving the state indicator and all local values
and definitions. You can then explore and even alter the local
environment before branching (.....) back into or out of the suspended
function. The resulting ability to observe and alter the local
environment at those chosen points in function execution is a
valuable aid for debugging a program.

Copyright © 1987 STSC, Inc. 3-154 System Functions

Errors:

Examples:

Stop settings are saved and reloaded with a workspace, but they are
not copied along with the particular function to which they apply
(byOCOPY,)COPY,OPCOPY,or)PCOPY). Redefininga
function with either 0 DE F or OF X removes all stop settings from
that function. Editing a function line with either v or 0 DE F L
removes any setting associated with that line of code. If other lines
are inserted or deleted in the function, the setting moves with the
line of code thereby changing the line number. Locking a function
either by ¥ or 0 L 0 C K removes all stop settings in the function.

All stop flags for a function can be cleared with:

(10) OSTOP fnname

DOMIAN ERROR
RANK ERROR
WS FULL

Given a function:

v R+-FIBONA N
[1] R+-1 1
[2J BACK: R+-R.+/-2tR
[3] BACKxN>pR

v

(13) OSTOP 'FIBONA' (Emptyexplicitresult
means no lines were

FIBONA 1
FIBONA [1]
R

VALUE ERROR
R

1 1

.... 1
FIBONA[2]
R

.... 2
FIBONA[3J
R

1 1 2

previously set.)

Copyright © 1987 STSC. Inc. 3-155 System Functions

3

OSI
FIBONA[3J *
OLC

-OLC
FIBONA[2J
R

1 1 2

Copyright © 1987 STSC, Inc. 3- 15 6 System Functions

Workspace Symbols OSYMB

Purpose:

Syntax:

Result:

Return the current number of symbol table entries in the active
workspace.

result - DSYMB

result is a two-element numeric vector. The first element is the
number of entries reserved in the symbol table of the active
workspace. The second element is the number of entries already
used in the symbol table of the active workspace.

Returns the same information as) S Y M B 0 L S, but without the
text.

Note: The symbol table contains entries for all functions, variables, and
labels referenced in defined functions and executing statements.
The symbol table size increases automatically as needed and can be
changed by using the system command) S Y M B 0 L S.

Errors: WS FULL

Examples:)CLEAR
CLEAR WS

DSYMB
500 a

A-l
DSYMB

500 1

)ERASE A
DSYMB

500 1

Copyright © 1987 STSC. Inc. 3-157 System Functions

System Identifier OSYSID

Purpose:

Syntax:

Result:

Errors:

Caution:

Example:

Return the identification of the APL * PLUS System being used.

result +- DSYSID

result is a character vector containing the identification of the
APL * PLUS System being used. All characters are used to identify
a system.

WS FULL

OS Y SID as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

OSYSID
APLPLUSD

Copyri ght © 1987 STSC, Inc . 3-15 8 System Functions

System Version DSYSVER

Purpose:

Syntax:

Result:

Errors:

Caution:

Example:

Return identification of the current version of this APL * PLUS
System.

result +- DSYSVER

The explicit result of 0 S Y SV E R is a character vector. Its exact
form changes from one version of the system to another.

WS FULL

OS Y SV ERas described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

DSYSVER
1.0.0 31AUG87 VAX/VMS

Copyright © 1987 STSC, Inc. 3-159 System Functions

Terminal Control Codes DTCxx

Purpose:

Errect:

Contain terminal, non-printable characters for easy addition to code.
None of the following constants actually produce characters on the
screen; rather, they store the terminal control characters often used
to affect output.

There are eight terminal control constants:

Terminal Control Constants

Name Value DAV [n + DIO]

DTCBEL bell character 7

DTCBS backspace character 8

DTCDEL delete character 127

DTCESC ASCII escape character 27

DTCFF form feed character 12

DTCLF linefeed character 10

DTCNL new-line character 13

DTCNUL null character 0

Produces the following effects when displayed at a terminal:

DTC BE L is treated differently depending upon the atermcap
definition for the terminal in use. The effect is either
to produce a beep sound or to "flash" the terminal
screen by briefly switching to reverse video and back
again.

Copyright © 1987 STSC. Inc . 3-160 System Functions

Note that on some terminals the sound produced by the
"BEL" control code will last only one character-time
(1/30th of a second at 30 CPS). Thus, several bell
characters may need to be separated by one or more
null characters (0 T C NUL) to be heard as distinct
sounds.

o T CBS moves the cursor one position to the left so that the
next character to be displayed will overstrike the
preceding character.

o T CD E L is transmitted to the terminal as an ASCII DEL
character (decimal 127). On the APL * PLUS system
for the VAX, OTC DE L is usually displayed as a blot.

o T C ESC is transmitted to the terminal as the ASCII ESC
(decimal27). Many devices recognize the ESC
character as the start of a special control sequence.

OTCFF clears the current window (see OWINDOW) when
transmitted to the terminal and places the cursor in the
upper left comer.

When 0 T C F F is transmitted to some hardcopy
printers or terminals, the paper is ejected to the start of
the next page (form feed).

OTC LF varies with the device to which it is transmitted.
When displayed on some terminals and printers, it
causes the screen or paper to advance one line while
keeping the cursor in the same column position as on
the previous line. On other terminals and printers,
however, it may be treated as a OTCN L or ignored
completely.

o T C N L moves the cursor to the first position of the next line.

OTCNUL does not move the cursor, but causes the terminal to
pause in output for one character-time (1/30th of a
second on a 30 CPS terminal).

Copyright © 1987 STSC, Inc. 3-161 System Functions

Example:

13

DOWN

B--' DOWN' , OTCLF , 'WE'
C--' OTCBS, ' __ ' ,OTCLF, 'GO I

A--B,C
pA

A

WE
-GO

Copyright © 1987 STSC, Inc . 3-162 System Functions

Trace Function Execution DTRACE

Purpose: To aid you in debugging a program by allowing lines of functions
to be flagged for diagnostic output when next executed.

Syntax: result +- OTRACE fnname
result +- linenums OTRACE fnname

Arguments: linenums integer line numbers to trace
fnname function name

Result:

Effect:

The optional left argument (linenums) is an integer vector or
singleton indicating which lines of the function named in the right
argument are to be traced. They will continue to be traced until a
later execution of DTRACE on the function name in this
workspace resets the lines. Zero and integers that are not line
numbers in the specified function are ignored.

fnname is a character vector or singleton containing the name of an
unlocked function in the workspace.

result is an integer vector of the lines of fnname for which tracing
was in effect until this execution of 0 T R ACE.

o T R ACE does not trace output as its direct result. Instead, it
flags lines in a function so that, in future execution, diagnostic
output is produced.

During execution of a function that is being traced, the system
displays the final value calculated in each statement on each traced
line. The value appears after the function's name and the bracketed
line number or after a O. This is true even for values that would
not display in normal (untraced) execution. In the case of a branch
in the function, a -+ is displayed before the value to which the
function branched.

The resulting ability to observe the sequence in which the lines are
executed and the internal values of statements (those not normally
displayed) is a valuable aid in debugging a program.

Copyright © 1987 STSC, Inc. 3-163 System Functions

Errors:

Examples:

Trace settings are saved and reloaded with a workspace, but they are
not copied along with the particular function to which they apply
(by OCOPY,)COPY, OPCOPY,or)PCOPY). Redefining a
function with either ODE For OFX removes all trace setting from
that function. Editing a function line with either v or 0 DE F L
removes any setting associated with that line of code. If other lines
are inserted or deleted, the setting moves with the line of code,
thereby changing the line number.

Locking a function with either 'iI or 0 L 0 C K removes all trace
settings in that function. Execution of OTRACE removes any
existing trace flags previously set, so

(lO) OTRACE fnname

can be used to remove all trace settings for a function.

DOMAIN ERROR
RANK ERROR
WS FULL

v RESULT -<- GO
[1] ~-<-'NEW LINE DURING TRACE DESPITE ~

OUTPUT! '
[2] RESULT -<- 1
[3] LABEL: RESULT -<- (O,RESULT)+RESULT,O
[4] - LABEL x 4 > pRESULT

(15) DTRACE 'GO'
(An empty explicit result means no lines were set.)

GO
NEW LINE DURING TRACE DESPITE ~ OUTPUT!
GO [2] 1
GO [3] 1 1
¢-3
GO [3] 1 2 1
¢-3
GO [3] 1 3 3 1
¢-O
1 3 3 1 (The explicit result of GO.)

Copyright © 1987 STSC. Inc. 3-164 System Functions

Current Timestamp DTS

Purpose:

Syntax:

Result:

Errors:

Example:

Return the current date and time of day as represented by the system
clock.

result +- 0 T S

result is a seven-element numeric vector containing the following
information:

[1] year
[2] month
[3] day
[4] hour
[5] minute
[6] second
[7] millisecond

o T S relies on the system clock maintained by the operating
system for its time measurement. The seventh element of the
result is included for consistency with other APL * PLUS Systems.
However, the computer system's clock precision determines if this
element provides useful information.

The fust three elements in the result of 0 T S always indicate a
date, and the last four elements always indicate a time of less than
24 hours.

WS FULL

DTS
1986 9 8 19 12 7 0

Copyright © 1986 STSC, Inc. 3-165 System Functions

User Load OUL

Purpose: Return the number of users.

Syntax: result +- OUL

Result: result is a numeric scalar containing the number of users currently
signed on to the system.

Note: You can use) CMD or OCMD to execute the DeL command
show users to obtain detailed information about users signed
on to the system.

Errors: WS FULL

Example: OUL
5

Copyright © 1987 STSC. Inc. 3-166 System Functions

User Identification DUSERID

Purpose:

Syntax:

Result:

Caution:

Errors:

Example:

Return your VMS logon identification.

result +- DUSERID

result is an eight-element character vector containing your logon
identification. The name is left justified and padded with blanks.

o USE RID may return a different number of elements on other
APL * PLUS Systems.

WS FULL

MYERS

8

DUSERID

pDUSERID

Copyrighl © 1987 STSC, Inc . 3-167 SYSlem Funclions

Verification of I nput Format DVI

Purpose: Provide a validity check on an input character vector (often used in
conjunction with OF I) .

Syntax: result -- OVI data

Argument: d:Jtl character data

Result:

Errors:

Examples:

data is a character singleton or vector of data.

result is a Boolean vector with 1 's in the positions where groups of
characters represent well-formed numbers, and O's where they do
not

DOMAIN ERROR
RANK ERROR
WS FULL

A--'666 -1.20 .1 314159E-5'
OFI A

666 -1.20.13.14159

OVI A .
1 1 1 1

o 666
OFI 'ANSWER: 666'

B--'ANSWER IS 666 LBS.'
OFI B

o 0 666 0

OVI B
o 0 1 0

COVI B)/OFI B
666

Copyright © 1987 STSC, Inc. 3-168 System Functions

Visual Representation of a Function DVR

Purpose: Return the visual representation of a function as a character vector.

Syntax: result +- OVRfnname

Argument: fnname function name

Result:

Errors:

Example:

fnname is a character scalar or vector containing one function
name.

result is a character vector. It is a visual representation of the
function with bracketed line numbers and embedded newline
characters separating the character representations of the successive
lines of the function. The explicit result is not affected by OPW.

Iffnname is a character singleton or vector but does not contain the
name of an unlocked function , result is an empty vector.

DOMAIN ERROR
RANK ERROR
WS FULL

pQ+-OVR 'TRI'
81

Q
v TRI N;A

[1] O+-A+-,l
[2] ~(N<pA)/O 0 O+-A+-(O,A)+A,O 0 ~OLC

v

Copyright © 1987 STSC. Inc. 3-169 System Functions

Work Area Available DWA

Purpose:

Syntax:

Result:

Errors:

Example:

Return the current amount of work area available in the active
workspace (in bytes).

result +- OWA

result is a numeric scalar whose value is the current number of
unused bytes in the active workspace.

WS FULL

)WSID
IS OFFICE

OWA
14372

Copyright © 1986 STSC. Inc . 3-170 System Functions

Get Window Data Dl/GET

Purpose:

Syntax:

Read the characters or attributes or both from a specified (or the
current) screen window.

result of- oWGET rtype
result of- wspec oWGET rtype

Arguments: wspec window specification
type of result desired

Result:

rtype

The optional left argument (wspec) is a specification of a window
to be used during this one operation. If wspec is not specified, the
entire window is used.

rtype is an integer singleton with a value of 1, 2, or 3. It affects
the type of result produced.

Value Result

1 A character matrix containing the characters visible in the
window (without their display attributes).

2 An integer matrix containing the attribute values
associated with each character position in the window
(the attribute values are given in the table below).

3 A rank 3 character array where result [; ; 1] contains
the characters displayed on the screen (the same as the
result if rtype= 1). result [; ; 2] contains the attributes
coded as characters by oAV [all+ oIO] where all is the
same as the integer result when rtype = 2 .

result is the data requested by the specified rtype from the specified
window as a matrix (or for rtype type 3, a three-dimensional array
with last coordinate of length 2).

Copyright © 1987 STSC, Inc. 3-171 System Functions

Attribute Values:

Effect:

Caution:

Errors:

Examples:

The conventional values used for display attributes in this
APL * PLUS System are:

AUr. Description
o default display form for the terminal
I reverse video
2 alternate intensity (brighter or dimmer than usual)
4 blinking
8 underlined (unrelated to APL's underscored alphabet)

A combination of atttributes is represented by the sum of their
values. For more details on the logical nature of these attributes,
see Chapter I of the APL *PLUS System User's Manual.

Retrieves the data specified by rtype and wspec from the display
buffer and returns it as a result.

OW G ET as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems.

DOMAIN ERROR
LENGTH ERROR
RANK ERROR
WS FULL

Obtain the characters on the top row of the screen.

TOP - 0 0 1 80 OWGET 1

Save the entire screen including its current attributes.
SCREEN - OWINDOW DWGET 3

Copyright © 1987 STSC. Inc. 3-172 System Functions

Window Specification OWINDOW

Purpose:

Syntax:

Domain:

Effect:

Caution:

Errors:

Example:

Report the dimensions of the terminal screen or window. Its value
is a vector containing the first row and first column of the window
followed by the window size (number of rows and columns).

value +- OWINDOW

value is limited by the physical device. It is a numeric vector
containng the first row and first column of the window followed by
the window size (number of rows and columns).

The value of 0 WIN DOW is used in connection with 0 CUR SO R,
which is relative to the upper-left comer of the current window, to
determine the absolute screen location for output.

When normal screen input or output is displayed, it is limited to
the rectangle on the screen described by OW IN DOW. The first two
elements of the current value are taken as the row and column
numbers of the upper-left comer of the window (in origin 0). The
last two elements are taken as the window size -- the number of
rows and columns contained within the window.

The number of rows and columns of the terminal screen is derived
from the specifications in the atermcap file.

OW I N DOW as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems. In particular, some APL * PLUS Systems allow
OW I N DOW to be set by the users. This system produces a
NONCE ERROR instead.

NONCE ERROR

OWINDOW
o 0 23 80

Copyright © 1987 STSC, Inc. 3-173 System Functions

Put Window Data DWPUT

Purpose:

Syntax:

Replace the characters or attributes on the screen or window.

OWPUTckua
wspec OWPUT data

Arguments: wspec window specification

Effect:

cttl characters or attributes to be placed on the screen

The optional left argument (wspec) specifies the region on the
screen to display the data. If wspec is not supplied, the entire
window (OWINDOW) is used.

The right argument (data) is the data to be placed on the screen. It
must be a character array with rank 3 or less or a numeric array of
rank 2 or less (matrix). Its shape should be either a singleton or
match the window size (- 2 t OW IN DOW or -2 twspec) to
prevent it from being reshaped to fit the specified window.

OWPUT changes the screen display. The actual effect depends
greatly on the shape of data .

Value

Character singleton
supplied.

Numeric singleton
specified

Character matrix

Numeric matrix
position

. 3-dimensional
character array

Effect

Fill region of screen with character

Change attribute of region with
attribute (see below).

Fill region of screen with text supplied.

Change attributes of each character
with attribute specified in data .

Fill the region of the screen with data
[: : 1] and then change the attributes
with those specified by data [: : 2] .

Copyright © 1987 STSC, Inc. 3-174 System Functions

Attribute Values:

Errors:

Caution:

Examples:

The conventional values used for display attributes in this
APL * PLUS System are:

AUr. Description

o default display form for the terminal
1 reverse video
2 alternate intensity (brighter or dimmer than usual)
4 blinking
8 underlined (unrelated to APL's underscored alphabet)

A combination of atttributes is represented by the sum of their
values. For more details on the logical nature of these attributes,
see Chapter 5 of the APL *PLUS System User's Manual.

DOMAIN ERROR
LENGTH ERROR
RANK ERROR

ow PUT as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems.

OWPUT WI

Fill top row of screen with It * It.
o 0 1 80 OWPUT '*'

Put the contents of the current window into reverse video.
OWPUT 1

Clear screen except for small portion that is preserved.
SCR~5 10 6 20 OWGET 3

OTCFF
5 10 6 20 OWPUT SCR

Copyright © 1987 STSC. Inc. 3-175 System Functions

Workspace Identification DWSID

Purpose:

Syntax:

Domain:

Result:

Errors:

Examples:

Store the active workspace identification.

wsid - OWSID
OWSID - wsid(seesection2-2)

OW SID contains any well-formed workspace name optionally
preceded by directory or library designation. In a workspace,
OW SID is a character vector containing the workspace
identification (see section 2-2 for a description of a valid workspace
identification). In a clear workspace, OW SID is an empty vector.

When referenced, OWSID returns the workspace identification or
an empty vector if the workspace name is C LEA R W S. The
actual format depends upon whether the system is in library mode
or directory mode.

If the system is in directory mode, 0 W SID is a character vector
containing the name left justified. If the system is in library mode,
OW SID is a 22-element character vector containing the workspace
identification. The 22-element vector has the following format:

Elements 1-10
Element 11
Elements 12-22

WS FULL

)WSID
IS ANSWER

Library number, right justified
Blank
Workspace name, left justified

OWSID 0 pOWSID
ANSWER
6

22

(Switch to library mode.)
OLIED '11 [APL .WS]
OWSID-' 11 ANSWER'
OWSID 0 pOWSID

11 ANSWER

Copyright © 1987 STSC, Inc . 3-176 System Functions

Workspace Library List DWSLIB

Purpose: Return a character matrix listing all the workspaces in the
designated library, even if the user has no access to them.

Syntax: result +- OWSLIB dir
result OWSLIB lib

Arguments: dr directory to be searched

Result:

lib library to be searched

The argument designates the directory or library whose workspaces
are to be listed. It is either a character singleton or vector
containing the directory name (dir) or a positive integer associated
with a directory in OLI B S. An empty vector specifies the current
working directory.

The form of the explicit result of 0 W S LIB depends upon the form
of the argument. If a path name is supplied, the result is a matrix
of workspace names, left-justified. The number of columns is the
length of the longest workspace name in the list

If the argument is a numeric library number, the result is a
22-column character matrix that contains one workspace
identification in each row. The columns in the result are defined as
follows:

Column 1-10
Column 11
Columns 12-22

Library number, right-justified
SIlU
Workspace name, left-justified

In either form , the ordering of the rows (workspace identifications)
is alphabetic.

Note:) W S LI B produces the same list of workspaces, but they are listed
in multiple columns to save lines on the screen and are listed
without library numbers.

Copyright © 1987 STSC. Inc. 3-177 System Functions

Errors: DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
WS FULL

Examples: DWSLIB '[APL.RELl] ' (In directory mode.)
FEBRUARY
JANUARY
MARCH

DLIBD '1
DWSLIB 1

(Switch to library mode.)
[APL.WSS] ,

(In library mode.)
1 PERSONS
1 SALES

pDWSLIB 1
2 22

pDWSLIB '[APL.WSS] '
3 8

Copyright © 1987 STSC. Inc. 3-178 System Functions

Workspace Owner DWSOWNER

Purpose:

Syntax:

Result:

Errors:

Example:

Return the user number of the user who last saved the current
workspace.

result +- DWSOWNER

result is an integer scalar representing the user number (1 t DAI)
of the user who last saved the workspace.

In a clear workspace, result is O.

WS FULL

DWSOWNER
3720

Copyright © 1987 STSC. Inc. 3-179 System Functions

Workspace Size DWSSIZE

Purpose:

Syntax:

Result:

Errors:

Examples:

Return the size of the active workspace in bytes.

result +- OWSSIZE

result is a numeric scalar containing the total size of the active
workspace, including the space used by APL objects, the symbol
table, and unused storage (OW A). In this APL * PLUS System,
OW S SIZE is determined by the initial workspace size specified in
the command line when APL is invoked from the operating system
or by the size specified with) C LE AR. For more information,
see Chapter 1 of the APL *PLUS System User's Guide.

WS FULL

OWSSIZE
102483

OWA
26782

OWSSIZE-OWA
67701 (The approximate number of bytes

needed to store this workspace on disk.)

Copyright © 1987 STSC, Inc. 3-180 System Functions

Workspace Timestamp D.WSTS

Purpose:

Syntax:

Result:

Errors:

Examples:

Return the save time of a loaded workspace or the time of the most
recent) SAVE or) C LE AR performed on the active workspace.

result +- OW ST S

result is a numeric scalar containing the time of the most recent
) SAVE or) CLEAR performed on the active workspace. The
time code is in microseconds since 00:00 on 1 January 1900.

WS FULL

)LOAD MYWS
MYWS SAVED 15:14:00 07/14/87

DWSTS
2.76226284E15

)COPY DATES FTIMEFMT
SAVED 15:17:21 08/07/87

FTIMEFMT DWSTS
15:14:00.000 07/14/87

Copyright © 1987 STSC. Inc. 3-181 System Functions

Load a Workspace,
Bypassing the Latellt Expression DXLOAD

Purpose:

Syntax:

Replace the active workspace by loading the designated workspace
(under program control), but without executing the latent
expression (OLX).

OXLOAD wsid

Argument: wsid workspace identification (see section 2-2)

Effect:

Errors:

Examples:

The argument is a character scalar or vector that specifies the
workspace to be loaded. If the directory name or library number is
omitted, your default library is assumed.

Loads the specified workspace, making it the new active
workspace. 0 liS I D changes and 0 L X is not executed.

DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR
liS ARGUMENT ERROR
liS NOT COMPATIBLE
liS NOT FOUND
liS TOO LARGE

OXLOAD 'STAGE2'
STAGE2 SAVED 19:41:55 10/19/87

OXLOAD 'TESTIIS'
TESTIIS SAVED 19:42:07 03/19/87

(Switch to library mode.)
OLIBD '1234 [APL . RELlJ'

OXLOAD '1234 TESTIIS'
TESTIIS SAVED 23 :24: 25 01/20/87

Copyright © 1987 STSC, Inc. 3- 182 System Functions

Communicating with an External Process DXPn

Purpose:

Syntax:

Initiate, communicate with, send interrupts to, or shut down a
concurrent VMS process. Identical facilities are provided by
OX P 2, OX P 3, OX P 4, and OX P 5, permitting as many as five
independent concurrent processes. See Chapter 7 in the
APL *PLUS System User's Manual for more information.

result +- OX P 1 process
result +- OX P 1 intnum
result +- array OX P 1 array

Arguments: process name of a VMS . exe file containing the program
to be run as a concurrent process

Result:

intnum integer to be signaled to the concurrent process
amy any simple homogeneous APL array

The left and right arguments, when both are present, can be any
simple homogeneous APL array to be passed to the external
process associated with OX Pl. Only the dyadic use of OX P 1
passes input to the external process, which must previously have
been initiated by a monadic use of 0 X P 1.

The right argument to OX P 1 when there is no left argument (a
monadic use of 0 X P 1) must be:

• a character vector representing the name of the executable module
to be activated as a subprocess child of the APL process and
associated with OX P 1 for further communications

• an empty character vector (' ') to inquire what process is
currently associated with OX P 1

• an integer-valued singleton representing an interrupt to be
signaled to the external process using the "kill" system call.
Note that in Release 1 of the APL * PLUS System, 9 is the only
interrupt supported, and it teminates the external process.

The explicit result of a dyadic use of OX P 1 can be any simple
homogeneous APL array created and returned by the external
process.

Copyright © 1987 STSC, Inc. 3-183 System Functions

Effect:

The explicit result of a monadic use of OX Pi varies according to
the nature of the argument that produced it:

OX P 1 Arguments

, , (empty
character vector)

a character vector
containing the
process name

an interrupt

Results

the character argument previously used
to associate an external process with
XP1

a positive integer representing the VMS
process lD of the process started up, if
successful; a two-element vector
consisting of a 0 as the first element and
the VMS System Service Condition
Value as the second element, if
unsuccessful; or - 2 if a process is
already running for this OX Pn

an integer showing that number the
specilied interrupt was judged valid (= 0)
or invalid (= -1)

Varies with the nature of the argument or arguments used with it.

Monadic OX Pi used with a character vector naming a . exe file
containing a program:

• sets up a VMS subprocess running that program
• sets up a VMS mailbox to communicate with that process
• associates that process with 0 X P 1 so that 0 X P 1 can be used as

a means of communicating with that process
• returns the process lD number as result; indicating that the

program has been successfully started, or returns a zero if it has
not been successfully started

Copyright © 1987 STSC. Inc. 3-184 System Functions

Warning:

Errors:

Used with an empty character vector, monadic OX P 1 returns the
process name used to initiate the external process currently
associated with 0 X P 1. If no process is currently associated with
OX P 1, result is an empty character vector.

Used with an integer-valued singleton (intnum), monadic OX P 1
sends that value as an interrupt to the child process using the V AX
'C' "kill" system call (see kill (2) and signal (2) in your V AX
C reference manual) and returns a zero if the interrupt is valid or a -1
is the interrupt is not valid. Interrupt 9 is the only valid VMS
interrupt supported in Release 1 of the APL * PLUS System.

Used with two arguments, dyadic 0 X P 1 transmits first the left
then the right argument (complete with their internal headers)
through the mailbox to the external process. The output of the
external process is then read from the mailbox, checked to assure
that it is well formed, and returned as the explicit result.

OX P n is experimental in Release 1 of the APL * PLUS System.
This feature may change or be removed in a future release.

DOMAIN ERROR
FILE ARGUMENT ERROR
FILE NOT FOUND
FILE TIE QUOTA EXCEEDED
HOST ACCESS ERROR
NO PROCESS RUNNING
RANK ERROR
WS FULL
OXP1 ERROR n
OXP1 INTERRUPT

The external process can also return error codes that are interpreted
through the list in ERRMACRO . H distributed with the APL * PLUS
system. These error messages are presented as if the errors were
signaled by APL itself, using the spelled out message rather than
the error code number. The messages are not part of the APL
session, however, and will disappear when you press the Refresh
key.

In addition, the external process can cause arbitrary error reports to
appear on the screen by using fprintf with stderr. The file
must be created in the external process before it can be used for

Copyright © 1987 STSC, Inc. 3-185 System Functions

Example:

debug information. See Chapter 7 of the APL *PLUS System
User's Manual for details and solutions.

204

OX P 1 " (No process associated
with OXP 1.)

OX P 1 'VTOM. EX E' (Initiate a process.)
(Process ID number.)

OXPl "
VTOM.EXE

ONE
TWO
THREE

3 5

o

Z~" OXPl 'ONE TWO THREE'

Z

pZ

OXPl 9

o = pOXPl "

(pass data to external process.)

(Result returned by VTOM

process.)

(Terminate process.)

(0 X P 1 now available to start
another process.)

Copyright © 1987 STSC. Inc. 3-186 System Functions

c:
-4
i=
=i
-<
"T\
c:
Z
~
o z
C/)

Chapter 4
Workspace Functions

4-1 Introduction

This chapter describes in detail some of the functions in the
workspaces supplied with your APL * PLUS System. They are
listed alphabetically. Each description contains:

• the function name
• the workspace containing it
• the syntax of the function
• a description of the arguments, result, and effect of the function.

Most of the descriptions also show at least one example of the
function.

The following conventions are used in the detailed function
descriptions for the D AT E S workspace:

d:1Ie an integer array whose last dimension is 3
(3 = -1 t pdate)

ts an integer array whose last dimension is 7 (7 = -1 t pIS).

Typically, date is a vector in 3 tOT S form:

date [1] two- or four-digit year (1900s are assumed for two-digit
representations)

dale [2] an integer (1 to 12) representing the month
date [3] an integer (1 to 3 1) representing the day of the month.

Typically, ts is a vector in 7 tOTS form:

ts [1]

ts [2]

Is [3]

ts [4]

Is [5]

two- or four-digit year (1900s are assumed for two-digit
representations)
an integer (1 to 12) representing the month
an integer (1 to 3 1) representing the day of the month
an integer (0 to 23) representing the hour
an integer (0 to 59) representing the minute

Copyright © 1987 STSC. Inc. 4-1 Workspace Functions

ts [6] an integer (0 to 59) representing the second
Is [7] an integer (0 to 999) representing the millisecond.

ts can also be a matrix with one date or time per row.

4-2 Detailed Descriptions

CALEN DEMOAPL

Syntax: CALEN year

Displays the 12 monthly calendars for the specified year.

CALEN 1987

This function will now print out a
calendar for 1987. You can turn the
printer on and align the paper before
pressing Enter.

CALENDAR FOR 1987

JANUARY 1987
SUN MON TUES WED THUR FRI SAT

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

--------------- - --------------------
FEBRUARY 1987

SUN MON TUES WED THUR FRI SAT
1 2 3 4 5 6 7
8 9 10 11 12 13 14

15 16 17 18 19 20 21

(This table has been abbreviated.)

Copyright © 1987 STSC, Inc. 4-2 Workspace Functions

CALENDAR

CENTER

DEMOAPL

Syntax: CALENDAR month year

Displays a calendar for the month and year requested.

CALENDAR 7 1987

JULY 1987
SUN MON TUES WED THUR FRI SAT

1 2 3 4
5 6 7 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

FORMAT

Syntax: result - formatstring CENTER title

result is a one-row matrix with appropriate blanks added to the title
to center it in the width specified by formatstring, a character
vector. Usually, it is in the same format string that was used to
produce a report with 0 F MT, but it can be any format string with
an appropriate width, or it can be the result of RWT D. The title is
centered within the width of the format string when it is displayed,
and it is truncated on the right if it is too long. title, a character
vector, is the desired title.

In the following example, a report is set up with OFMT and then
titled with CENTER.

F - '6A1,T10,I5,T17,P<$> CF11.2'
NAMES - 3 6p'JAMES ROGAN TAYLOR'
SALES - 36.5 30 67.13
VALUES - 981.24xSALES

REP1-F OFMT NAMES SALES VALUES
REP1

JAMES 37 $35,815.26
ROGAN 30 $29,437.20
TAYLOR 67 $65,870.64

Copyright © 1987 STSC, Inc. 4-3 Workspace Functions

COLNAMES

T~'ANNOUNCEMENT OF NEW DATA'
CTITLE~F CENTER T
" 0 CTITLE 0 " 0 REP1

ANNOUNCEMENT OF NEW DATA

JAMES
ROGAN
TAYLOR

37
30
67

$35.815.26
$29.437.20
$65.870.64

FORMAT

Syntax: result ~ formatstring CO LN AMES columnames

result is a one-row character matrix with the column names from
the right argument lined up appropriately to be used as column
headers for a report. formatstring is usually the fonnat string that
was used to produce the report with OFMT. columnnames is a
character vector containing column names separated by a delimeter
character. The first character in columnnames becomes a separator
character for each new column heading. Each time the function
reaches a separator, it skips to the next field produced by an editing
fonnat phrase to display the next string of text. In the following
example, I is the separator and FIRST, SECOND, and TH IRD
are column names. .

, IFIRSTISECONDITHIRD'

Column names for numeric fields are right-justified, while column
names for character fields are left-justified. The width of the
column name for a numeric field is limited by the width of the
corresponding fonnat phrase. A column name for character data
may extend into a text phrase immediately to the right.

T~ '·NAME·SALES·VALUE'
CNAME ~ FSTR1 COLNAMES T

CNAME1 0 REP1

NAME
JAMES
ROGAN
TAYLOR

SALES
37
30
67

VALUE
$35.815.26
$29.437.20
$65.870.64

Copyright © 1987 STSC. Inc. 4-4 Workspace Functions

COMB

DATEBASE

CNAME2 ~ FSTR1 COLNAMES T

CNAME1 0 CNAME2 0 REP1

NAME

JAMES
ROGAN
TAYLOR

SALES

37
30
67

VALUE

$35.815.26
$29.437 . 20
$65.870.64

Syntax: result ~ n COMB m

DEMOAPL

result is a table containing all the possible sets of n items chosen
from a set of m items. There are (n ! m) such possible sets.

10

123
124
125
1 3 4
1 3 5
1 4 5
234
235
245
3 4 5

3!5

3 COMB 5

Syntax: result ~ DATEBASE date

DATES

Returns an integer array of shape -1'!' pdate representing the
number of days elapsed since January 1. 1900. Elements of result
may be negative. In the example. we find the number of days
between February 28. 1972, and March 2, 1972. (The year 1972
was a leap year.)

Copyright © 1987 STSC, Inc. 4-5 Workspace Functions

DATEBASE 2 3p72 3 2 72 2 28
26358 26355

26358-26355
3

DATECHECK DATES

Syntax: result +- DATECHECK date

Returns a Boolean vector of shape -1.\. pdate, in which Is indicate
valid dates. In the example, February 29,1976, is a valid date
(since 1976 is a leap year), but February 29, 1977, is not.

DATECHECK 2 3p76 2 29 77 2 29
1 0

DATEOFFSET DATES

DATEREP

Syntax: result +- days DATEOFFSET date

Adds the number of days in days to each date in date and returns the
new dates. The result is the same format and shape as date. The
.days argument is a vector or scalar with one element for each row
in date . In the example, 30, 60, and 90 days are added to November
15, 1986. The resulting dates are December 15, 1986; January 14,
1987; and February 13, 1987.

1986
1987
1987

30 60
12

1
2

90 DATEOFFSET 86 11 15
15
14
13

Syntax: date +- DATEREP elapsed

DATES

. The elapsed argument is the number of days since January 1, 1900.
DAT E RE P returns a date in DT S format.

Copyright © 1987 STSC. Inc. 4-6 Workspace Functions

DATESPELL

DATEBASE 87 5 27
31922

DATEREP 31922
1987 5 27

Syntax: result +- code DATESPELL ts

DATES

Returns ts fonnatted according to code. The ts argument need not
include hour, minute, second, or millisecond although hour is
required if you use the hour offset. code is a one- or two-element
vector in which the first element is the display style and the second
(optional) element is an hour offset. If omitted, it is assumed to be
O. The following table shows the available styles.

Code Result

o 1 MAR 1987
1 MAR 1, 1987
2 1 MARCH 1987
3 MARCH 1, 1987
4 TUE 1 MAR 1987
5 TUE, MAR 1, 1987
6 TUESDAY 1 MARCH 1987
7 TUESDAY, MARCH 1, 1987

The preceding codes display time in AM/PM style; add 8 to each
code to display time in 24-hour style (military time). For
example, code 15 is the same as code 7, but time will be displayed
in 24-hour style.

o DATESPELL 1987 12 31 12
31 DEC 1987 12 N

5 DATESPELL TS+-78 1 1 2 10
SUN, JAN 1, 78 2:10 AM .

5 - 3 DAT ESP E LL T S (Change to Pacific time.)
SAT, DEC 31, 87 11:10 PM

Copyright © 1987 STSC. Inc. 4-7 Workspace Functions

DAYOFWK

DAYOFYR

DAYSDIFF

DEB

DATES

Syntax: result +- DAYOFWK date

Returns the the day of the week (1 through 7). The result will
have one element for each date in date . In the example, we find
that January 1, 1975, was a Wednesday; January 1, 1976, was a
Thursday; and January 1, 1977, was a Saturday.

DAYOFWK 3 3p75 1 1 76 1 1 77 1 1
457

DATES

Syntax: result +- DAYOFYR date

Returns the day of the year (1 through 366). result will have one
element for each date in date .

T+-76 12 31 77 1 3 77 12 31
DAYOFYR 3 3 pT

366 3 365

Syntax: result +- date} DAYSDIFF date2

DATES

Returns an integer array containing the difference in days between
the corresponding dates supplied in the arguments.

3 2

L+-2 3p72 3 2 73 3 2
R+-2 3p72 2 28 73 2 28
L DAYSDIFF R

Syntax: result +- DEB text

INPUT

Removes all extra blanks (leading, trailing, and multiple) from the
character vector text.

Copyright © 1987 STSC. Inc . 4-8 Workspace Functions

DISPLAY

DLB

DLTB

DEB I The car cost
The car cost $10,960

$10,960 I

UTILITY

Syntax: result +- DISPLAY array

result is the pictorial representation of an array. This is
particularly useful in illustrating the structure of a nested array.

DISPLAY 1 ··l 3

~-------------------------------

.
111 11 21 11231 11 2 3 41 I_' , ___ , '_----1 ,_------.

I~ _____ -------------------- ______ I

INPUT

Syntax: result +- DLB text

Deletes leading blanks from the specified character vector.

DLB I THE QUICK BROWN FOX. I

THE QUICK BROWN FOX.

INPUT

Syntax: result +- DLTB text

Deletes the leading and trailing blanks from text, a character vector.

(DLTB I Some text I), I! I

Some text!

Copyright © 1987 STSC, Inc. 4-9 W orkspai.:e Functions

DSPELL

DTB

DTF

DATES

Syntax: text +- D S P E LL ts

Displays the date and time in the argument in the fonn:

DD MMM YY HH:MM:SS:NNN

The time precision of the result depends on the length of the last
dimension of the argument. Time is displayed in 24-hour style.

DSPELL 87 10 9 14
9 OCT 87 14:00

Syntax: result +- DT B text

INPUT

Deletes trailing blanks from the specified character vector.

(DTB I SOME TEXT I) , I ! I

SOME TEXT!

SERHOST

Syntax: objectlist DT F tieno

Relates to: DTFALL , LFF, REP, DEREP

Creates the representation of the objects specified in the left
argument and appends them to the APL file tied to the tie number
in the right argument. If the left argument is empty, the values of
DIO, DPW, OCT, DRL , DSA, DLX, DALX, and DELX are
represented and filed.

The left argument is either a matrix of object names to be filed or a
vector of names separated by spaces. If the workspace parameters
are to be filed, the left argument is an empty vector. The right
argument is the tie number of the file to which DT F appends the
representation of the objects.

Copyright © 1987 STSC. Inc . 4-10 Workspace Functions

'FN1 FN2' DTF 13
Starting size is 1 1 2048 0
FN1 £i 1 ed
FN2 filed
Ending size is 1 3 3050 0

DTFALL SERHOST

DTFN

Syntax: DTFALL tieno

Requires: DT F

Relates to: DTF, SENDTFILE, LFF, RE P, DEREP

Writes all of the workspace environment parameters, the variables,
and the functions to a "transfer" file in the standard representation
format

The argument is the tie number of the APL file into which the
function writes the objects.

DTFALL 21
Starting size is 1 1 2084 0
OIO filed
OFP filed

(Display continues.)

Ending size is 1 1025 12560 0

Syntax: object DTFN tieno

TRANSFER

Appends the source code of the functions supplied in object to the
native me specified by tie no.

'FN1 FN2' DTFN -13
Starting file size is 0
FN1 filed
FN2 filed
Ending size is 3050

Copyright © 1987 STSC, Inc. 4-11 Workspace Functions

DTFNALL TRANSFER

DUMPFILE

DUMPWS

Syntax: DTFNALL tieno

Appends the source code of all the functions in the current
workspace to the native file specified by tieno.

DTFNALL -21
Starting size is 0
OIO filed
OPP filed

(Display continues.)

Ending size is 21065

Syntax: fileid DUMP FILE sltid

SLT

Appends a component file to a source level native file. The file is
stored as though it was a workspace with variables comp 1, comp2,
... , compn representing each component of the file . This allows
you to retrieve the data later from the native file into a component
file with LOADF ILE, or into a workspace with LOADWS. The
component file is specified by tie number or name ifileid). The
native file is specified by tie number or name (sltid).

23 DUMPFILE -1
NATIVE FILE SIZE: 1629
. (One dot displayed for each component.)
NATIVE FILE SIZE: 8537

SLT

Syntax: DUMPWS sltid

Appends the current workspace (functions, variables, and
workspace-dependent system variables) to the file . The file is a
native file and is specified by name or tie number (sltid).

Copyright © 1987 STSC,lnc. 4-12 Workspace Functions

EXPLAIN

) LOAD MYWORK
)COPY [APL.REL1JSLT

DUMPWS 'STORE.WRK'
NATIVE FILE SIZE: 3218
OPP
OIO
OCT

(Display continues.)

NATIVE FILE SIZE: 8943

Syntax: result -- EXPLAIN fnname

Returns all the initial public comments from the function specified
byfnname.

EXPLAIN 'CXACOSH'
CXARRZ--CXACOSH CXARR -- COMPUTE THE

FTIMEBASE DATES

FTIMEFMT

Syntax: result -- FT IME BASE ts

Converts the dates and time in ts to single numbers representing
elapsed microseconds since 00:00, January 1, 1900.

FTIMEBASE OTS
2736769242000000

Syntax: text -- FTIMEFMT elapsed

DATES

Converts scalars representing elapsed microseconds since 00:00,
January 1, 1900, and formats the result in the form:

DD MMM YY HH:MM:SS:NNN

Copyright © 1987 STSC, Inc . 4-13 Workspace Functions

FTIMEREP

HOURBASE

HOURREP

Time is displayed in 24-hour style.

FTIMEFMT Dl/STS
10/13/86 19:56:15.0000

Syntax: result +- FTIMEREP elapsed

DATES

Converts scalars representing elapsed microseconds since 00:00,
January 1, 1900, to dates in 0 T S timestamp form. result is an
integer array of dates corresponding to the elements of elapsed.

Dl/STS
2730387878000000

FTIMEREP Dl/STS
1986 1 4 12 56 43 685

Syntax: result +- HOURBASE dateshours

DATES

Converts dates lind hours in the argument to single numbers
representing the elapsed hours since 00:00, January 1, 1900.
dateshours is an integer array whose last dimension is 4; typically,
a vector in the form 4 t DT S.

HOURBASE 77 10 25 14
682118

Syntax: result +- HOURREP elapsed

DATES

Converts scalars representing the elapsed hours since 00:00,
January 1, 1900, to dates and times in 4 tOT S format.

HOURREP 682118
1977 10 25 14

Copyri ght © 1987 STSC, Inc . 4- 14 Workspace Functions

LEAPYR

LFF

LFFN

DATES

Syntax: result - LEAPYR year

Returns a Boolean value representing whether the year specified in
the argument is a leap year. The argument year is the year in two­
or four-digit form; the 1900s are assumed when two digits are used.
The result is 1 if the year is a leap year.

LEAPYR 1970+110
o 1 000 1 000 1

Syntax: LFF tierw

Relates to: DTF, DTFALL, REP, DEREP

SERHOST

Takes the objects stored in transfer format in the APL file
referenced by the tie number (tie no) and creates those objects in the
active workspace.

The example recreates a workspace that had previously been stored
in the file named DT F FILE. This is the reverse of DT F.

DIO­
DPP-

)CLEAR
)COPY [APL.REL1JSERHOST LFF
'DTFFILE' DFTIE 10
LFF 10

TRANSFER

Syntax: LFFN tieno

Recreates the objects stored in the native file specified by tie no.
This is the reverse of DT F N .

Copyright © 1987 STSC, Inc. 4-15 Workspace Functions

LJUST

LOADFILE

OIO+­
OPP+-

)CLEAR
)COPY [APL.REL1JUTILITY LFFN
'DTFN FILE' ONTIE -10
LFFN -10

FORMAT

Syntax: result +- Jormatstring LJU ST title

Jormatstring is usually the same fonnat string that was used to
produce the report, but it is can be any format string with an
appropriate width, or it can be the result RWT D. title is a character
vector containing a title. The text in title is left-justified within
the width of the fonnat string and returned as a one-row matrix .

LT+-F1 LJUST 'THIRD UPDATE'
CT 0 " 0 LT 0 " 0 REP1

ANNOUNCEMENT OF NEW DATA

THIRD UPDATE

JAMES
ROGAN
TAYLOR

37
30
67

$35.815 . 26
$29.437.20
$65.870.64

Syntax: fileid LOADF ILE sltid loc

SLT

Recreates a component file from a source level native file. The
source level native file should have been created with
DUM P FILE. The right argument is a two-element vector
specifying the native file and the location in the file to find the
requested source code. sltid can be specified either as a tie number
or a file name. loc can be specified as the offset from the
beginning of the file or as a workspace name.

Copyright © 1987 STSC. Inc. 4-16 Workspace Functions

LOADWS

Since sltid and loc can either be a character string or a numeric
value, the right argument may either be a simple numeric vector or
a nested array.

'NEWFILE' DFCREATE 13
13 LOADFILE 'XFILE.SLT' 'FILE'

OFFSET: 1652 WSID: FILE TEST
FROM: APL*PLUSD VERSION 1.0 06 AUG
87 VMS

OFFSET 50866 END OF FILE

SLT

Syntax: wsid LOADWS sltid loc

Retrieves a workspace from a file. The file is a native file
containing APL source code. It is specified by name or tie number
(sltid). loc specifies the location in the file to retrieve the
workspace as an offset from the beginning of the file, or the name
of the workspace.

The right argument to LOADW S is a two-element vector. Since
sltid and loc can either be a character string or a numeric value, the
right argument may either be a simple numeric vector or a nested
array.

wsid is the name of the resulting workspace (OW SI D) and is
optional. If specified, it must be a character vector valid for
assignment to DWSID.

'WICTEST' LOADWS -1 961
OFFSET: 961 WSID: WS TRANSFER
DPP
DIO

(Display continues.)

OFFSET: 14014 WSID: FILE XFILE
SAVING WICTEST
WICTEST SAVED 17:59:31 08/07/87

Copyright © 1987 STSC. Inc. 4-17 Workspace Functions

MDYTOYMD DATES

Syntax: result +- MDYTOYMD mdy

Converts dates in the form month-day-year to dates in the form
year-month-day. The argument mdy is an array of dates represented
as MMDDYY or MMDDYYYY.

T+-2 2p20577 42577 102077 61077
MDYTOYMD T

770205 770425
771020 770610

MINBASE DATES

MINREP

PERMX

Syntax: result +- MINBASE datestimes

Converts dates and times to single numbers representing the
elapsed minutes since 00:00, January 1, 1900. datestimes is an
integer array of dates whose last dimension is 5. Typically, it is a
vector in 5 tOT S form .

MINBASE 77 10 25 14 10
40927090

Syntax: result +- MINREP elapsed

DATES

Converts scalars representing the elapsed minutes since 00:00,
January 1, 1900, to dates and times in 5 tOTS format.

MINREP 40927090
1977 10 25 14 10

Syntax: result +- P E RMX n

DEMOAPL

result is a table of the permutations of numbers from 0 I 0 to n.
The number of rows in the table is equal to ! n .

Copyright © 1987 STSC. Inc. 4-1 8 Workspace Functions

PRIMES

RJUST

ROWNAMES

PERMX 3
1 2 3
2 3 1
3 1 2
2 1 3
1 3 2
3 2 1

DEMOAPL

Syntax: result +- PRIMES n

result is a numeric vector containing all the prime numbers from 1
ton.

PRIMES 30
2 3 5 7 11 13 17 19 23 29

FORMAT

Syntax: result +- Jormatstring RJU ST title

Jormatstring is a character vector usually containing the same
format string that was used to produce the report, but it can be any
format string with an appropriate width, or it can be the result of
RWT D. The title is right-justified within the width of the format
string and returned as a one-row matrix.

RTITLE +- P1 RJUST 'JULY 27, 1987'

JAMES
ROGAN
TAYLOR

" ¢ RTITLE ¢ " ¢ REP1

37
30
67

JULY 27, 1987

$35,815.26
$29,437.20
$65,870.64

Syntax: result +- shape ROW N AMES rownames

FORMAT

shape is a numeric vector or singleton containing up to two
integers which specify the dimensions of the matrix of row names.

Copyright © 1987 STSC, Inc. 4-19 Workspace Functions

rownames contains the row names as a character vector. The first
character in rownames is a separator character for each new row
name. Each time the function reaches a separator, it skips to the
next row. result is a character matrix containing rownames
arranged in a column format.

If shape contains two elements, the absolute value of the first
element is the number of rows in result. If the absolute value of
the first element specifies more rows than separator characters in
rownames, extra rows are padded with blanks at the bottom if the
first element is positive and at the top if the first element is
negative.

The absolute value of the second element in shape is the number of
columns in result, unless the second element is zero. When the
second element is zero, result has as many columns as the
maximum number of text characters between separators. If the
second element is positive, the row names are left-justified; if it is
negative or zero, the row names are right-justified. If the number
of columns specified is insufficient, the row name field is filled
with stars.

3 -6 ROWNAMES '=SUNNY=SIDE=UP'
SUNNY

SIDE
UP

If shape contains one element, that element controls the number of
columns in the character matrix. If the element is positive, the
row names are left-justified; if it is negative or zero, the row names
are right-justified. The number of rows in result is determined by
the number of separator characters in the right argument.

S~'TSMITHTVASSAR'
T~'TBRYN MAWRTRADCLIFFE'
9 ROWNAMES S,T

SMITH
VASSAR
BRYN MAWR
RADCLIFFE

Copyright © 1987 STSC, Inc. 4-20 Workspace Functions

If both elements of shape arc missing, result has as many rows as
there are separator characters and as many columns as the
maximum number of text characters between separators. The row
names are left-justified.

T-'?NEVER?SOMETIMES?ALWAYS'
(10) ROWNAMES T

NEVER
SOMETIMES
ALWAYS

The first format phrase in the format string should provide
formatting insuuctions for the character matrix of row names.

F1 - '12A1.X1.6A1.T28.I5.'
F2 'P< $>CF11.2'
T - '*AREA*NAME*SALES*VALUE'
CNAME - (F1.F2) COLNAMES T
T - 'tTERRITORY 1tTERRITORY 2'
T - T.'tTERRITORY 3'
RNAME - 3 12 ROWNAMES T
DATA - RNAME NAMES SALES VALUES
REPORT2 - (F1.F2) OFMT DATA

CNAME
AREA
TERRITORY 1
TERRITORY 2
TERRITORY 3

o REPORT2
NAME SALES
JAMES 37
ROGAN 30
TAYLOR 67

VALUE
$35.815.26
$29.437 . 20
$65.870.64

RWTD FORMAT

Syntax: result.... RWT D Jormatstring

Jormatstring, a character vector, is any valid left argument to OF MT. resu
a numeric matrix with four columns and as many rows as there are format
phrases inJormatstring. The columns have the following interpretation:

Copyright © 1987 STSC, Inc. 4-21 Workspace Functions

SECBASE

SEC REP

Column 1

Column 2

Column 3

Column 4

Number of repetitions

Width of field, or relative tab if X, or the equivalent
relative tab if T

Type of field, as follows:
o G pattern
1 F fixed point
2 I integer
3 E exponential or floating-point
4 A character
5 X relative tab
6 < text> character text
7 T absolute tab

Number of decimal positions for fixed-point format,
number of significant digits for exponential format,
zero otherwise.

DATES

Syntax: result ... SECBASE datestimes

Converts dates and times to single numbers representing the
elapsed seconds since 00:00, January 1, 1900. The argument
datestimes is an integer array of dates whose last dimension is 6.
Typically , it is a vector in 6 tOT S form .

SECBASE 77 10 25 14 10 56
2455625456

Syntax: result ... SECREP seconds

DATES

Converts scalars representing the elapsed seconds since 00:00,
January 1, 1900, to dates and times in 6 tOTS format.

SECREP 2455625456
1977 10 25 14 10 56

Copyright © 1987 STSC. Inc. 4-22 Workspace Functions

TIMEBASE

TIMEFMT

TIMEREP

UNBLOCKS

DATES

Syntax: result +- TIMEBASE ts

Converts the date specified by the argument to the number of
elapsed milliseconds since 00:00, January 1, 1900.

TIMEBASE 77 10 25 14 10 56 0
2455625456000

DATES

Syntax: result +- TIMEFMT ts

Formats dates and times specified in the argument in the form:

MM/DD/yY HH:MM:SS:NNN

The precision of the time depends on whether the last four elements
of ts are present.

TIMEFMT 77 12 31 12
12/31/77 12:00

TIMEFMT DTS
8/15/87 09:31:25.000

Syntax: result +- TIMEREP elapsed

DATES

Converts scalars representing elapsed milliseconds since 00:00,
January 1, 1900, to dates and times in DT S form.

TIMEREP 24556254&£000
1977 10 25 14 10 56 0

Syntax: oldtierw UNBLOCKS newtieno

SERHOST

Converts the native file specified as a tie number by oldtieno to an
unblocked Stream_LF file tied to newtieno. oldtieno may

Copyright © 1987 STSC, Inc. 4-23 Workspace Functions

optionally be a 2-element numeric vector in which the second
element is the oringinal data size. It is intended for use in
converting files created by Kermit.

'OLDFILE' ONTIE - 1
'NEWFILE' ONCREATE -2
-1 627 UNBLOCKS -2

WKDAYSDIFF DATES

WSLIB

YMDTOMDY

Syntax: result +- date] WKDAYSDIFF date2

Calculates the number of weekdays between the corresponding dates
in the arguments.

86 10 15 WKDAYSDIFF 86 10 1
10

SLT

Syntax: WSLIB sltid

Displays a listing of the workspaces stored in the source level
transfer file. The file is a native file and is identified by name or
tie number (sltid).

'MYFILE.SLT' ONTIE -1
WSLIB -1

OFFSET: 961
OFFSET: 14014
OFFSET: 50868

WSID: WS TRANSFERWS
WSID: FILE TRANSFERFILE
END OF FILE.

DATES

Syntax: result +- YMDTOMDY ymd

Converts dates in the form year-month-day to dates in the form
month-day-year. In the example, the dates are put in the correct
form and then formatted with OFMT.

Copyright © 1987 STSC, Inc. 4-24 Workspace Functions

FSTR-'G<ZZ/ZZ/ZZ>'
T-870527 870303 870424 871216
FSTR DFMT YMDTOMDY 2 2pT

5/27/87 3/03/87
4/24/87 12116/87

Copyright © 1987 STSC, Inc. 4-25 Workspace Functions

z
c
m
><

Index

U = APL *PLUS System User's Manual
R = APL *PLUS System Reference Manual

2-5 R
Access (see Files)
Access matrix (see Files)
Accounting information

(see OAI)
OAI 3-9 R
Alphabets 1-15 U
OALX 3-10 R
APL command procedure 1-4 U
APL component files (see Files)
APL session 1-2 U
APLCOURSE workspace 9-2 U
Aplotab file 1-22 U
OARBIN 6-1 U, 3-12 R
Arbitrary input from terminal (see OA RBI N)
Arbitrary ouput to terminal (see 0 AR BOUT)
DARB OUT 5-2 U, 3-17 R
ASCn terminal 1-12 U
Atermcap file D-l U
Atomic vector (see 0 A V)
Attention latent expression (see OALX)
OA V B-1 U, 3-18 R
AXIS ERROR C-l U

Bitotab file 122 U

Canonical representation of a function,
(see OCR and OCRL)

Character set (see OA V)
OCHDIR 3-20 R
) CLEAR 2-6 R
)CMD 7-2U,2-8R

OCMD 3-21 R
Communications overview 6-1 U
Comparison tolerance .(see 0 CT)
COMPLEX workspace 9-3 U
Configuration files 1-28-1-29 U
Conversion of data (see OF I)
) COpy 2-9 R .

Copyright © 1987 STSC, Inc .

OCOPY 3-23 R
OCR 3-25 R
OCRL 3-26 R
OCR LPC 3-28 R
OCT 3-29 R
OCURSOR 5-3 U, 3-31 R
Cursor movement 1-16 .U
Cursor position (see 0 CUR S OR)

Data conversion (see OF I)
Data representation (see 0 DR)
D ATE S workspace 9-5 U
ODEF 3-32 R
ODEFL 3-35 R
Del editor 2-21-2-26 U

errors 2-26 U
Delay execution (see 0 D L)
DEMOAPL workspace 9-6 U
Diagnotsic message (see 0 D M)
DISK ERROR C-l U
Display attributes 5-4 U
ODL 3-38 R
ODM 3-39 R
DOMAIN ERROR C-1 U
ODR 3-42 R
) DROP 2-11 R
DT F N function 6-7 U
DTFNALL function 6-7 U

DEDIT 2-14 U, 3-43 R
)EDTT 2-14U,2-12R

Editmem= 1-20 U
E IGENVAL workspace 9-7 U
OELX 3-44 R
Erase objects (see OERASE and OEX)
)ERASE 2-13 R
OERASE 3-47 R
Error exception signal (see DE R R 0 R)
Error latent expression (see 0 E LX)

I-I Index

OERROR 3-48 R
Errors, li sted C-l U
OEX 3-51 R
External processes 7-4-7-10 U

defined 7-3 U
structure 7-8-7-10 U
writing 7-8 U

External routines 7-10-7-21 U
defined 7-3 U

OFAPPEND 3-52R
OFAVAIL 3-54 R
OFC RE ATE 3-7-3-9 U, 3-55 R
OFDROP 3-17 U,3-57 R
OFDUP 3-23 U, 3-58 R
OFERASE 3-12 U, 3-60 R
OFHIST 3-61 R
OFHOLD 3-27-3-31 U, 3-62 R
OF I 5-7 U, 3-64 R
File system availability (see OF A V A I L)
FILE ACCESS ERROR C-l U
FILE ARGUMENT ERROR C-l U
FILE DAMAGED C-l U
FILE DATA ERROR C-2 U
FILE FULL C-2 U
FILE INDEX ERROR C-2 U
FILE NAME ERROR C-2 U
FILE NAME TABLE FULL C-2 U
FILE NOT FOUND C-2 U
FILE TIE ERROR C-2 U
FILE TIE QUOTA EXCEEDED C-2 U
FILE TIED C-2 U
IFILEHELPER ~14R

Files 3-1-3-43 U
access 3-3 U
access matrix 3-24-3 -26, 3-32-3-38 U

defined 3-35 U
example 3-37 U
override (see IFILEHELPER)

compacting 3-23 U
comparison with workspaces 3-4 U
component information (see OF R DC I)
components 3-2 U
copying (see OFDUP)
creating (see OFCREATE)
dropping components (see 0 F D R 0 P)
erasing (see OFERASE)

Copyright © 1987 STSC. Inc.

examples 3-19 U
libraries 3-3 U

default 3-39 U
defined 3-38 U
listing (see OFLI B)

native files 3-3. 3-43, 7-1 U
comparison with APL files 3-14,

3-40 U
sample handling 3 -13 U

passnumbers 3-35 U
reading (see OFREAD)
renaming (see OFRENAME)
replacing components

(see OFREPLACE)
sharing ties

(see OFSTIE and OFHOLD)
size (see OF SIZE)
size limit (see OFRESIZE)
tie inquiries (see OFNAMES and

OFNUMS)
tying (seeOFTIE)
untying (see 0 F U NT I E)

IFLIB 2-15 R
OFLIB 3-11 U, 3-65 R
OFMT 3-67 R. 4-1-4-39 U

arguments 4-4-4-7 U
data list 4-4 U
decorators (see modifiers)
defined 4-3 U
examples 4-2. 4-34 U
format phrases 4-9--4-17 U

character editing 4-9 U
exponential editing 4-11 U
integer editing 4-10 U
pattern editing 4-12 U
positioning 4-14-4-17 U
text 4-14--4-17 U

format string 4-6--4-8 U
grouping symbols 4-21 U
modifiers 4-22--4-34 U
parameters 4-18--4-21 U
stars in result 4-34 U
tutorial 4-1--4-39 U

OFNAMES 3-15U.3-70R
OFNUM S 3-15 U, 3-71 R
IFNS 2-16 R

Format ouput (see OFMT)

1-2 Index

FORMAT ERROR C-3 U
FORMAT workspace 4-36-4-39 U
Fonnalting (see 0 F MT)
OFRDAC 3-32U,3-72R
OFRDCI 3-26 U, 3-73 R
OF RE AD 3-11 U, 3-75 R
OF RENAME 3-21 U, 3-77 R
OFREPLACE 3-16 U, 3-79 R
OF RE SIZE 3-21 U, 3-81 R
OF SIZE 3-18 U, 3-82 R
OF ST A C 3-32 U, 3-83 R
OF ST I E 3-27 U, 3-85 U
OFTIE 3-10 U, 3-87 R
Full-screen editor 2-1-2-18 U

command mode 2-13 U
commands 2-4-2-14 U
errors 2-16-2-19 U
status line 2-4 U

Function definition (see 0 DE F)
Function definition mode 2-21 U
Function fix (see 0 F X)
OFUNTIE 3-9 U, 3-89 R
OFX 3-90 R

Hardware requirements 1-1 U
HDS tenninal 1-12 U
)HELP 2-17 R

Help: 1-20 U
HOST ACCESS ERROR C-3 U

Identifier list
(see OIDLIST and OIDLOC)

OIDLIST 3-92 R
OIDLOC 3-94 R
INCOMPATIBLE WS C-3 U
INCORRECT COMMAND C-3 U
Index origin (see OIO)
INDEX ERROR C-3 U
!nitfile= 1-21 U
Initialws= 1-21 U
DINKEY 5-5 U, 3-96 R
Input fonnat conversion (see OF I)
Input fonnat verification (see 0 V I)
Input management 5-1-5-7 U
INPUT workspace 5-8-5-13 U
Insert mode 1-14 U
INSUFFICIENT MEMORY C-3 U

Copyright © 1987 STSC, Inc.

INSUFFICIENT PROCESS SPACE
C-3 U

Internal data representations A-I U
Internal structures 10-6 U
Interrupting APL 1-13 U
OIO 3-97 R
IPCHR function 5-11 U
I PMATC H function 5-12 U
IPMIX function 5-12 U
IPNUM function 5-11 U

Kermit 611 U
distribution policy E-l U

Keyboard 1-9-1-15 U

Latent expression (see OLX)
OLC 3-99 R
LENGTH ERROR C-4 U
LESSONS workspace 9-7 U
LF F N function 6-7 U
)LIB 2-18 R
OLIB 3-100 R
OLIBD 3-101 R
)LIBS 2-19 R
OLIBS 3-102 R
Libraries (see Files)
Library define (see OLIBD)
Library list (see OLIB and OLIBS)
LIBRARY NOT FOUND C-4 U
library= 1-22 U
LIMIT ERROR C-4 U
Line counter (see OLC)
)LOAD 2-20R
OLOAD 3-103 R
OLOCK 3-104 R
Logical keystrokes 1-9 U

customizing 1-26 U
OLX 3-105 R

Memory considerations 10-1 U
OMF 10-4 U, 3-106 R
Monitor function (see OMF)

DNA 7-1, 7-10-7-21 U, 3-108 R
case study 7-19 U
errors 7-16 U
wri ting your own routines 7-17 U

1-3 Index

Name classification (see ON C)
Name list of id entifiers (see DNL)
DNAPPEND 3-111 R
DNC 3-113 R
DNCREATE 3-114 R
DNERASE 3-116 R
DNL 3-117 R
DNNAMES 3-119 R
DNNUMS 3-120 R
NO SPACE FOR DDM C-4 U
Non-APL Routine (see DNA)
NONCE ERROR C-4 U
NOT COPIED C-4 U
NOT COPIED, WS DAMAGED C-4 U
NOT ERASED C-4 U
NOT FOUND C-4 U
NOT IN DEFN OR QUAD C-5 U
DNRDAC 3-121 R
DNREAD 3-123 R
DNRENAME 3-125 R
DNREPLACE 3-126 R
DNSIZE 3-128 R
DNSTAC 3-129 R
DNTIE 3-131 R
DNUNTIE 3-132 R

) OFF 2-22 R
Output management 5-1-5-7 U
Outputtrt= 1-22 U
Overstrike mode 1-14 U
Overstrikes 1-14 U

Paging 10-2 U
PC as a terminal 1-6-1-9
)PCOPY 2-23 R
DPCOPY 3-133 R
PF keys 5-5, 5-6 U
DPFKEY 3-135 R
) PORTS 2-24 R
DPP3-137R
Printing 8-1 U
Printing precision (see 0 P P)
Printing width (see 0 P W)
DPR 3-138 R
Prompt replacement (see 0 P R)
Prompt= 1-23 U
Protected copy (see 0 P COP y)

Copyright © 1987 STSC, Inc .

) P S A V E 2-25 R
DPSAVE 3-140 R
DPW 3-142R

DQLOAD 3-143 R
Quad (D) input 5-1 U
Quiet load (see 0 Q LOA D)
Quote-quad ([']) input 5-1 U

Random Link (see DRL)
RANK ERROR C-5 U
Rawotab file 1-22 U
References, mUltiple 10-5 U
Replace mode 1-14 U
)RESET 2-26R

Ring, editing 2-2 U
DRL 3-144 R

DSA 3-145R
)SAVE2-27R
DSAVE 3-148 R
Screens= 1-24 U
Scrolling 1-17 U
SERHOST workspace 6-4-6-6 U
S E R X FER workspace 6-4-6-6 U
Session Manager 1-16-1-18 U
Session parameters 1-18-1 -28

list 1-19 U
Set Host command 6-11 U
Shared code segment 10-3 U
) SI 2-29 R
DSI3-150R
) SIC 2-30 R
) SINL 2-31 R
DSIZE 3-151 R
S L T workspace 6-9 U
Software requirements 1-1 U
Source level transfer

(see S LT workspace)
DSS 3-153R
State indicator (see 0 S I)
Status= 1-24 U
Stop action (see 0 SA)
Stop function execution (see DSTOP\
o STO P 3-154 R
String search (see 0 S S)
) SYMBOLS 2-32 R

1-4 Index

DSYMB 3-157 R
SYNTAX ERROR C-5 U
DSYSID 3-158 R
System identifier (see 0 S Y S I D)
System limits A-I U
System version (see DSYSVER)
SYSTEM ERROR C-5 U
DSYSVER 3-159 R

DTC BE L 5-2 U, 3-160 R
DTCB S 5-2 U, 3-160 R
OTC DE L 5-2 U, 3-160 R
DTC ESC 5-2 U, 3-160 R
DTCFF 5-2U,3-160R
DTCLF 5-2 U, 3-160 R
DTCNL 5-2 U, 3-160 R
DTCNUL 5-2 U, 3-160 R
Termcap database 1-25 U, D-l U
Termcap entries D-2 U
Termcap= 1-25 U
Termdinit= 1-24 U
Terminal control codes (see DTCx x)
Terminal= 1-25 U
Terminals supported 1-2, 1-4 U
Terminit= 1-24 U
Timestamp (see OTS)
Trace function execution (see DTRACE)
DTRACE 3-163 R
TRANSFER workspace 6-6--6-8 U
Transferring data 6-2 U
Translate table 1-22 U
DTS 3-165 R

OUL 3-166 R
UNBLOCKS function 6-7 U
User identification (see 0 USE R I D)
User load (see DUL)
DUSERID 3-167 R
UT I LITY workspace 9-8 U

VALUE ERROR C-5 U
)VARS 2-33 R
DVI5-7U,3-168R
Visual representation of a function

(see DVR)
OVR 3-169 R
VT220 terminal 1-6 U

Copyright © 1987 STSC, Inc .

VT220 tab file 1-22 U

OWA 3-170 R
OWGET 5-4 U
OWGET 3-171 R
Window data (see OWPUT and OWGET;
Window specification (see OW I N DOW)
OWINDOW 3-173 R
Work area available (see OWA)
Workspaces

comparison with files 3-4 R
supplied with system 9-1-9-8 U,

4-1-4-25 R
DWPUT 5-3U,3-174R
WS ARGUMENT ERROR C-S U
WS DAMAGED C-5 U
WS FULL 10-3 U, C-5 U
WS NAME ERROR C-5 U
WS NOT FOUND C-5 U
W S TOO LARGE C-6 U
)WSID 2-34 R
DWSID 3-176 R
) W S LIB 2-35 R
OWSLI B 3-177 R
OWSOWNER 3-179 R
OWSSIZE 3-180 R
OWSTS 3-181R

OXLOAD 3-182 R
OX P 7-1, 74 U, 3-183 R

1-5 Index

/

