

IIIIBAPL*PLUS System

FOR THE VAX VMS ENVIRONMENT

Reference Manual

Release 1
August 1987

A PLUS~WARE™ PRODUCT WEBRERRINNNIITIT] |

STSC

This document was prepared to assist users of STSC’s PLUS * WARE software
products; its contents may not be used for any other purpose without written
permission. The material contained herein is supplied without representation or
warranty of any kind. STSC Inc., therefore assumes no responsibility and shall
have no liability of any kind arising from the supply or use of this document or
the material contained herein.

Copyright © 1987 STSC, Inc.
10987654321

ISBN 0-926683-32-2

Printed in the United States of America.

All rights reserved, including the right to reproduce this document or any portion
thereof in any form.

APL+PLUS® and PLUS * WARE® are registered trademarks of STSC, Inc.

IBM® and PC® are registered trademarks of International Business Machines
Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

VAX and VMS are trademarks of Digital Equipment Corporation.

Macintosh is a trademark of Macintosh Laboratories, Inc.

Throughout this manual, trademarked names are used. Rather than put a trademark
symbol in every occurrence of a trademarked name, we state that we are using the

names only in an editorial fashion, and to the benefit of the trademark owner, with
no intention of infringement of the trademark.

Contents

1. Language Summary

1-1 APL Data and Arrays 1-1

1-2 Syntax 1-11

1-3 Primitive Functions 1-13

1-4 Operators 1-15

1-5 Data Input and Output 1-20

1-6 Types of APL statements 1-26

1-7 Structure of User-Defined Functions 1-29

1-8 Control of Execution 1-33

1-9 Execute, Scan, Domino, and Grade 1-38

1-10 Primitive Function and Operator Reference 1-54

2. System Commands

2-1 System Commands vs. System Functions 2-2
2-2 System Command Reference 2-2

3. System Functions, Variables, and Constants
3-1 System Functions 3-3
3-2 System Variables 3-4
3-3 Details of System Functions, Variables, and Constants 3-7

4. Workspace Functions

4-1 Introduction 4-1
4-2 Detailed Descriptions 4-2

Index

- b e —

P =

O W SRR T\ & OO

RA R

oAy A

ARG

Ly

% kT

.l

ey

JALTEOEA - 800

LANGUAGE
SUMMARY

Chapter 1

APL Language Summary

1-1 APL

Datatypes

This summary provides a general overview of the APL language, data
structures, primitive functions and operators, and user-defined functions.
If you are not already familiar with the APL language you should first
review the book APL Is Easy!, which is included with your APL * PLUS
System. If you are familiar with APL, however, this chapter will give
you a good overview of the many features of the APL language.

System commands, distinguished by the leading right parenthesis ()), are

described in Chapter 2 of this manual. System functions and variables,
distinguished by the leading quad (0) character, are described in Chapter 3.

Data and Arrays

One of the greatest strengths of the APL language is its handling of entire
arrays of data as single objects. Here is what you need to know about
these arrays and the data in them.

The APL language recognizes two fundamentally different datatypes:

« character data, which can include any of the 256 different symbols in the
character set

« numeric data, which is restricted to numbers.

Numbers can be subclassified by the ways they are internally represented.
See Internal Representation and Storage, later in this section, for details.

Data Constants and Variables

Copyright ©

You can use either type of data directly in an APL statement or you can
name and store it for later use. Data used without named storage is called a
constant. Stored data is called a variable since you can re-use the name

1987 STSC, Inc. 1-1 Language Summary

to store different values or even different types of data. You can
distinguish character constants from other objects by enclosing them in
single quotes ('); for example ' CHARACTER'. To include a single
quote in a character constant, type it twice in a row; for example,
'JOE''S"'. This technique enters one single quote (used here as an
apostrophe) so that the stored data contains only the five characters
JOE'S.

The rules for variable names (also called identifiers) follow.

A variable name can contain any combination of the letters A through
Z, (either lowercase or uppercase), the digits 0 through 9, A and A.
(On some terminals the underscored letters are substituted for the
lowercase letters. For example, the lowercase letter "a" is displayed as
"A". Note that on systems where lowercase letters are substituted for
underscored in identifiers, lowercase letters can appear only as data
elements in character variables.)

A digit cannot be used as the first character in a variable name.

* The maximum length of a variable name is usually 77 characters
although it may be longer on some systems.

Variables are formed by assigning values with the assignment arrow (<),

A<23 15 18 7.3
LASTANAME«'MCMANN'

Data Elements and Arrays

An element of character data is a single character (letter, digit, or other
symbol); for example, a, A4, 8, +,«, ., or [.

An element of numeric data is a single number, regardless of how many
characters are needed to represent it; for example, 9, 19, 719,
~19.04,0r2.3E711.

Collections of data elements are called arrays. In conventional APL, each

position or element of an array must contain a single character or number
all of one datatype; these are called simple arrays . In this

Copyright © 1987 STSC, Inc. 1-2 Language Summary

APL *PLUS System implementation, each position of an array (called an
item) can contain an array of any rank and datatype. These are called

nested arrays.

Nested arrays are a powerful extension to APL data storage since they
allow mixing data of different types in the same array, as well as
non-rectangular data structures.

A calendar is a good example of a nested table. The variable JULY 87
contains a mixture of data all organized neatly into one format:

JULY 87
SUN MON TUE WED THU FRI SAT
1 2 3 4

5 6 7 8 9 10 11

12 13 14 1§ 16 17 .18

19 20 21 B-DAY 23 24 25

26 27 28 29 30 31 =«
The shape function (p) indicates that the variable has 42 items organized
into a 6 by 7 table.

pJULY87

6 7

The utility function, DISPLAY (available as 0 SHOW on some
systems), graphically illustrates what information is stored in each of the

items.

Copyright © 1987 STSC, Inc. 1-3 Language Summary

I —-—— —->—— —->—— - —— —->-— —->-=_|

[ISUN| I|MONI| |TUE| IWED| |ITHU| |FRI| |SATI|

Il.__..l | ISP ; | (SRS, ¢ | [| | QP lacal l___ll

|.®. .9, .9, |
(. ([|1 1 2 3 4 |
Il_l | o | | . | l
| |
15 6 7 8 9 10 11 |
| |
112 13 14 15 16 17 18 |
| r——— |
119 20 21 | BDAY| 23 24 25 |
| e |
126 27 28 29 30 34 *
'6 __]

Arrays can be of various shapes and ranks. The shape of an array tells the
dimensions of that array (the length of the array along each coordinate).
For example, 6 10 is the shape of a 6- by 10-item table; the shape of a
10-item list is 10 ; and the shape of a 2-unit 3-dimensional cube is

2 2 2.

The rank of an array is the number of coordinates it has (how many
numbers are needed to specify its dimensions). Arrays can be classified as

follows:
Name Rank Description
Scalar 0 An array with a single item
is called a scalar or element and
has no coordinates.
Vector 1 A linear (or one-dimensional)

array of elements is called a
vector or list and has a single
coordinate.

Copyright © 1987 STSC, Inc. 1-4 Language Summary

Matrix 2 A two-dimensional array, such
as a table of numbers, is called a
matrix or table and has two

coordinates.
n-dimensional n A three-dimensional array, such
amray as a set of matching tables (for

example, sales tax tables for
each state) has rank 3 and so
forth, up through the maximum
allowed rank of 63.

A rank 3 array displays as a series of matrices (rank 2 arrays) with one line
skipped between them. Similarly, a rank 4 array displays as a series of
rank 3 arrays with two lines skipped between them.

Sub-arrays can be extracted by using functions such as compress (/),
drop (1),index [;1,take (1),and pick (2).

Empty Arrays

Arrays or items of an array are empty if they have no elements. The shape
of an empty array contains one or more zeros (indicating no length along
the corresponding coordinate). For example, finding the shape of matrix M
shows that it is empty because it has no rows:

oM
0 12

The shape of a scalar is an empty vector; the rank is 0.
PpJULY87[4;4]
PPJULY87[4;4]
Empty numeric or character arrays can result from executing various
functions. Empty vector constants can be included in APL expressions;
for example:
A<''pA

Copyright © 1987 STSC, Inc. 1-5 Language Summary

or stored in a variable name just like any other data array; for example:

ECV+11

Empty character vectors are different from empty numeric or Boolean
vectors. Empty vectors can be created using the following expressions:

Character L
Numeric 10

Empty scalar arrays do not exist because scalars are rank 0 and have no
coordinates (and therefore cannot have a coordinate of 0). Scalars always
have one data element.

Empty arrays are useful in APL. For example, they can be the starting
value of a variable that grows in successive executions of a program or in
successive iterations of a loop within a program. In many other
programming languages, you must use special tests to detect empty arrays
and avoid potential errors. Typical APL statements will work regardless of
whether an array is empty.

Strand Notation

Strand notation is a means of entering vectors, either simple or nested.
Three kinds of constructs appear in strand notation: constant numeric
valuessuchas 12 or 1 2 3, constant character valuessuchas ' A' or
'"HIERONYMUS BOSCH', and expressions such as
(PICKLExJUICE). When two or more of these are adjacent, each is
interpreted to be an item. Constructs that evaluate to simple scalars
remain simple.

Strand notation is an extension of the familiar notation used to enter a
constant numeric vector. A position can consist of a number or character,
an array of any valid rank or shape, or an expression. An expression may
need to be enclosed in parentheses to limit the scope of the functions
within it.

Note that stranding occurs only when two or more values are adjacent.

Copyright © 1987 STSC, Inc. 1-6 Language Summary

All of the following statements (excluding the initial assignment) return
three-item vectors. To better illustrate the structure, the display form
(using 0SHOW or a comparable utility function) is also provided after
some of the examples.

A<l 0 B«<2 ¢ C«3 ¢ D«<1 2 3

ABC
12 3
DISPLAY A B C
11 2 3]
| QIR — 1
ABD
12 123
P ABD
3

v |

I
:12|123II
!

A B Cx2
DISPLAY A B C x 2

e

12 4 6l

Ve ime 8

A B D+ 10
11 12 41 12 13
DISPLAY A B D + 10

A B (D+10) -
1 2 .12-42 13

(1 9 4.15 - 4 r¥oU!
1538 40 4 Y OU

Copyright © 1987 STSC, Inc. 1-7 Language Summary

p(1 9 4 1) 4 'yoU!

L . e
119 4 11 4 [YOUII
'~

______ 1 |___|l

A '"SNARK' 3.14
1 SNARK 3.14
DISPLAY A 'SNARK' 3.14

torm— - |

1 ISNARK| 3.14]|
| JrERep———— 1 I

6 _____________ 1
(2 3) 45
23 45
DISPLAY (2 3) 4 5
P [
12 31 4 5]
|| it |
IE ________ 1
5 1= IVI
=V
DISPLAY 5 '=' V!
15 =VI (Simple heterogeneous array)
e
5 '=y!
5 =V
DISPLAY 5 '=V!
I
15 1=VII (Heterogeneous nested array)
I bt
'E _____ 1

The expression A B D [2] isambiguous. Some APL systems

interpret this as

A B (D[21)

Copyright © 1987 STSC, Inc. 1-8

Language Summary

giving the result

12 2
Others might interpret it as
(A B D) [2]
giving
2
Use parentheses to clear up the ambiguity and ensure that such expressions
produce the desired result.
Strand Notation Assignment

Strand notation assignment allows more than one variable to be assigned
in one operation. For example:

C D E<R

Each variable to the left of the assignment arrow receives the
corresponding item of the vector to the right. The right argument is a
vector with as many items as there are names to the left of the assignment
arrow. A scalar or one-item vector right argument is extended into a vector
with one item for each variable name on the left.

Caution: The syntax of strand assignment in current APL *PLUS
Systems differs from APL2 which requires parenthesis around the list of
names to the left of the assignment arrow. For example,

(A B C)«<1 2 3. Future versions of the APL*PLUS System may
be changed to use this syntax.

Some examples follow.

ABC<123
A OB OC

W=

Copyright © 1987 STSC, Inc. 1-9 Language Summary

A B C «4
A OB OC
4
4
4
A B C«cl 2 3
A OB OC
123
1 2 3
12 3
1pA
1

A B C<'YOU' '"ARE' 'OUR BUSINESS'
ABC
YOU ARE OUR BUSINESS

Now, let's exchange the values of A and C:
A C<C A

ABC
OUR BUSINESS ARE YOU

Internal Representation and Smmge

Data occupies memory space in the computer. Even constants are
internally represented in memory. Each simple element of an array

requires the following storage.
Boolean 1 it
Character 8 bits
Integer 32 bits
Floating Point 64 bits

In additon, some overhead is associated with each variable. The system
function 0.S I ZE will report how much memory space a particular
variable consumes.

Note that storage of data can vary from one system to another.

Copyright © 1987 STSC, Inc. 1-10 Language Summary

The primitive functions and those system functions and variables that
require integer data as arguments will ignore tiny differences from true
integral values.

2.99991 1 would produce the same result as 3 t 1 if the system fuzz is
0001, buta DOMAIN ERROR if the system fuzz is .000001. (Note:

This is not the same as OCT, which is used in computing scalar primitive
results.)

1-2 Syntax
The word syntax means "the correct order or arrangement of the parts to
form a valid whole." In English, the whole is a sentence or a phrase. In
APL, the whole is a statement or an expression.
APL syntax is the description of how data can be used with functions and
operators to produce valid APL statements or expressions. The system
reports syntax problems with the message:

SYNTAX ERROR

The system then prints the faulty APL statement and positions a caret (A)
beneath the part of the statement that is in error.

There is a good analogy between English grammar and APL syntax.

English APL

Noun Data

Verb Function
Adverb Operator
Phrase Expression
Sentence Statement

Types of Functions

Functions tell the system what to do with data objects. These functions
can be

« primitive APL functions (an intrinsic part of the language)

Copyright © 1987 STSC, Inc. 1-11 Language Summary

* system functions (particular to each implementation of the language)
« user-defined functions (programs you write).

Each of these function types uses the same set of APL syntactic structures.
The objects of any given function can be:

* to the left of the function name
* to the right of the function name.

These objects are the formal arguments of the function. An APL
function can have at most two formal arguments.

APL has four kinds of functions:
Function Type Number of Example
Arguments
niladic 0 OFNAMES
FOO
monadic 1 +1
REPEAT 10
dyadic 2 2x3
'LAST*' OVER 'FIRST'
ambivalent lor2 pA

2pA
PRINT REPORT
1260 PRINT REPORT

When a function is called with an incorrect number of arguments, the
result is an error or possibly incorrect results.

Because APL has many more primitive functions than the keyboard has
keys, two techniques are used to represent them:

» The same symbol can represent one monadic function and one dyadic
function. The system can always determine which function to perform

Copyright © 1987 STSC, Inc. 1-12 Language Summary

by the number of arguments. You must be sure which function you
want, since using the wrong number of arguments may perform a
different function instead of producing an error message.

« Operators can take one or two functions and apply them differently to
the data arguments (See Section 1-5 for more information).

Explicit Results

The explicit result of an APL function is the value produced by executing
the function. The value is available for further use by another function or
for storage. In the example 5+ 4 + 3, the result of the first addition (4+3)
is available for immediate re-use in the second addition (5+result). This
re-usability distinguishes an explicit result from implicit output (see
Section 1-6).

While most system functions have an explicit result, some do not. For
example, DFUNT IE closes a component file and removes its name from
the list of those currently in active use but returns no value. Many
user-defined functions also have no explicit result.

1-3 Primitive Functions

A function produces a result according to specific rules that act on
argument data. A primitive function is a function that is built into the
APL *PLUS system.

Scalar Functions

A scalar function is a function whose data manipulation rule works with a
single element at a time. When array arguments are used, the result is the
repetition of the scalar operation for corresponding elements in the arrays.
For example:

=12 5. 20
=12 °5..720

because 0-12="12, 0-5=75,and 0-20="20

Copyright © 1987 STSC, Inc. 1-13 Language Summary

The primitive scalar functions include all of the simple arithmetic
functions and several less familiar function

Scalar dyadic functions take both a left and a right argument. They accept
only data arrays of identical shape, with one important exception: either of
the argument arrays can have only one element (the other argument can be
of any rank). In this case, the single element (or singleton) is

"extended" and used with each element of the other argument. This
extension is illustrated in the following examples for the addition function,
but applies to all the functions.

123 + 10 20 30
11 22 33

123 + 10
11 12 13

1 + 2 3p10 20 30 40 50 60
11 21 31
41 51 61

1 2 3 + 10 20 (3 on left, 2 on right)
LENGTH ERROR
12 3 + 10 20
A

Non-Scalar Functions

Non-scalar functions, sometimes called mixed functions, do not follow the
matching argument rules for scalar functions. Non-scalar functions have
various rules for the shape and values of their arguments and results.
Many of these functions select or restructure the data without changing the
data values by computation, as shown in the following examples.

The reshape function (p) creates a new array with the dimensions specified
in the left argument using the data in the right argument.

MAT « 2 3 p1 2 3 4 5 6

MAT
12 3
4 56

Copyright © 1987 STSC, Inc. 1-14 Language Summary

The catenate function (,) joins two arrays specified by the arguments.
You can specify the coordinate along which to join multi-dimensional
arrays.

2 3,987
8 7

2 3,[11MAT

B [

NN N

D ww w
= o

2,MAT

N =
S
(84}

1
12 3
6
1 2 3,MAT

LENGTH ERROR
1 2 3,MAT

A

In the last example, the LENGTH ERROR occurred because the

last coordinate is the default for catenation. In this case, the function
wants to add a new column to the matrix. The vector has three elements,
but the matrix has two rows, so the new column cannot be constructed.

The replicate function (/) copies the elements in the right argument the
number of times specified in the left agrument.

1237/ 456
4 556 6 6
1 & 1 2 1 2 2 / "CHOMITE!
COMMITTEE
1-4 Operators

Operators produce a new function by modifying the actions of a dyadic
function. An operator is essentially a function that takes another function
or functions as its argument(s). Following are descriptions and examples
of four operators: reduction, inner product, outer product, and each.

Copyright © 1987 STSC, Inc. 1-15 Language Summary

Reduction

The reduction operator (/) allows you to perform a function along a
dimension of an entire array. The process "reduces” the rank of the data by
1. Inreduction, APL conceptually inserts the function to the left of the
operator between elements along a dimension of the array.

+/10 20 30
60

10+20+30
60

x/10 20 30
6000

+/2 3p16
6 15

,/"MARES' 'EAT' '0ATS'
MARESEATOATS

Inner Product

The inner product operator (.) operates on two functions to produce a
derived dyadic function that requires the last dimension of the left argument
to be equal to the first dimension of the right argument. The right

function is applied first and the result is reduced using the left function.
For vectors, A+ . x B is equivalent to + / Ax B. For matrices, + . X is
used to do matrix multiplication.

MAT1
2
5

1 3
4 6

Copyright © 1987 STSC, Inc. 1-16 Language Summary

MAT1 +.x MAT2
58 64
139 154

(thatis, 64=+/1 2 3 x 8 10 12)

Outer Product

Each

The outer product operator (° .) allows you to generate all possible
combinations of the left and right arguments, using the function to the
right of the operator. In the following examples, outer product is used to
generate a multiplication table.

VEC1 « 15
VEC1
123435

VEC2 « 5+VEC1
VEC2
6 78 9 10

VEC1 -.x VEC2
6 7 8 9-10
12 14 16 18 20
18 21 24 27 30
24 28 32 36 40
30 35 40 45 50

The each operator () applies a function to the items of its argument or
between the items of its arguments to produce the items of its result. The
display form of the object is provided for illustration.

1230p" 456
4 55 666

DISPLAY 1 2 3 p” 4 5 6

e
4 55 666 |
~ !

! | P T | B ngiomlan iz i)

Copyright © 1987 STSC, Inc. 1-17 Language Summary

123,456
14 25 3 6

DISPLAY 1 2 3 ,” 4 5 6

I -
11 41 12 51 13 611
| [

- | P Ry | I~__.l|

€E—-—————————————— '
R<(<c2 3 5),c7 11 13
R

2386 7 11 13
DISPLAY R

e i i

I 12 3 51 17 11 1311

I’~ _____ 1 D s o !l

'E _________________ !
¢"R

532 13 11 7
¢O"R

13 117 5 3 2

User-Defined Functions Used with Operators

Powerful array-oriented control structures are provided for user-defined
functions called by operators. This new feature can also be used to explore
the behavior of an operator, as in the following example.

v Z«L MINUS R

[1] Z«<L-R
[2] ,'I2,< ->,I2,< =>,T2'" OFMT 1 3 pL R Z
v
5 MINUS 3
5 -3 =2
2
-/14
-2

Copyright © 1987 STSC, Inc. 1-18 Language Summary

MINUS/14

3 -4 = "1
Z =71 = 3
1 -3= 72
—2

The next example builds a five-item vector, where each item is a two-item
vector. Each two-item vector is used as an argument to the DFREAD
function. The result is a five-item vector (FILE), where each item isa
component read from the file.

FILE<OFREAD” 0«2 ,” 15
21 22 23 24 265

Operator Sequences

Operators have a long left scope and a short right scope. An operator takes
as its left argument the function or derived function to the left. Parentheses
can be used to limit the scope in the usual way. An operator takes as its
right argument only the first function to its right. Parentheses may be
necessary to lengthen an operator's right argument. For example,

(1 2)+.(,7) €10 20) 30
1 10 1 20 1 30
2 10 2 20 2 30

DISPLAY (1 2)-.(,") (10 20) 30
R I g
I 1.w===. === | |.»===.1]
1111 101 11 2011 111 30111
N N P R P
I'E ____________ 1 'E _____ ll
I R |
[1.o===. === | l.>===_]I
112 101 12 2011 112 30111
N R N PV R PV A
I'E ____________ ' 'E ______ 1
1

Here the operator is ° .f ,where f is the derived function built with the each
operator (, ").

Copyright © 1987 STSC, Inc. 1-19 Language Summary

In the following example, the each operator takes as its left argument the
derived function plus-reduction (+/).

+/" (1 2) (3 4) (5 6)
3 7 11

1-5 Data Input and Output
You can move data into and out of the active workspace in several ways:

* You can use the APL input and output functions described in this
section in an APL function or in immediate execution mode.

* You can enter constant data from the keyboard in either immediate
execution mode or function definition mode.

* You can move data in and out of APL * PLUS component files.

* You can use auxiliary processors to pass data between the active
workspace and operating system files.

Evaluated Input

You can use the explicit result of evaluated input immediately within a
statement or you can assign the result to a variable. When 0 is executed,
the prompt O : appears on the screen in columns 1 and 2, with the cursor
waiting in column 7 of the next line for input. You can enter any valid
APL statement; it will be evaluated and its result will be returned as the
result of the input request. The following examples show useful and
correct responses for evaluated input.

O:
45,3 Enter a scalar.
Lz
2 75 7.56 Enter a vector.
0:
10x120 Enter a calculation.

Copyright © 1987 STSC, Inc. 1-20 Language Summary

DATAVARIABLE Enter a variable containing data.
O:
OFREAD 5 7 Enter data stored in a file
'CHARACTER DATA' Enter a character constant.
O:
= End this program execution.
If the expression does not return a value or an error occurs, the prompt will
reappear.
65
NOTAPRESENT
VALUE ERROR
NOTAPRESENT
A
O:

If you enter a sequence of statements separated with diamonds (¢) in
response to the 0 : prompt, all statements are executed and the value of
the last statement (the rightmost statement) is the explicit result of the 0.
(See Compound APL Statements in Section 1-6). '

0O:
'"DFILE'" OFTIE 10 ¢ OFREAD 10 2

Character Input

APL requests character input with a quote-quad ([) and returns it as the
explicit result. This type of input is also called quote-quad input. You
can assign the result to a variable, or you can use it immediately without
assignment (asin > ('Y '=110)pYES). The input resulting from [
is always a vector. If you do not enter any characters before pressing
ENTER, the vector will be empty.

The [accepts, but does not execute, any character sequence, even if it
looks like an APL statement or a system command. The result vector
contains exactly what was typed as input and displayed on the screen, up to
but not including the newline character.

Copyright © 1987 STSC, Inc. 1-21 Language Summary

When the [is executed, the only prompt it displays is a cursor. User
entry begins wherever the cursor is located. The cursor is located at the
left edge of the display unless the request for character input was preceded
by a character prompt issued by the same program. When a character
prompt appears on the same line, it is included in the explicit result (on
some systems, the prompt is replaced by spaces or the contents of OPR).

You can interrupt the executing program requesting character input by
typing O - backspace - U - backspace - T, and then pressing Enter; or by
pressing the key that is defined to have this behavior.

Implicit Output

The calculated explicit result of an APL statement is automatically printed
unless it is assigned to a variable.

More precisely, implicit (or default) output occurs from executing every
APL statement when:

« the last executed function produced an explicit result
» the last executed function is not assignment («) or indexed assignment
([1+).

All the primitive functions and operators used with them except branch (=)
produce explicit results. Many system functions also produce explicit
results (see Chapter 3 of this manual).

An APL statement consisting of a single variable name causes implicit
output of the data associated with the variable.

Most output from APL programs uses the implicit output syntax, shown
in the following examples.

I « 14 Result is assigned; no output.
Ix2 Result is not assigned; output
2 4 6 8 shown.

Copyright © 1987 STSC, Inc. 1-22 Language Summary

I Result is not assigned; output

12 3 4 shown.
B[3]1«10x+/I Result is index assigned; no
output.
D« 4173 1I Result is assigned; no output.
4 1 3 T Result is not assigned; output
1.0 2.0 3.0 4.0 shown.

D<'F4.1'OFMT I Result is assigned; no output.

'F4.1'" OFMT I Result is not assigned; output
shown.

BN
cocoo

The output is displayed according to the following conventions:

« Character data is not changed-its arrangement is the same, character by
character, column by column, as it is in the APL scalar or array. If the
data contains characters such as newline or linefeed characters (OTCNL
or OTCLF), these will cause their usual effect on the display.

 Each element of numeric data is formatted according to the print
precision (O P P) in effect, with the rows and columns of matrices

preserved.

« The rows of data resulting from the preceding step are displayed within
the print width (O PW) in effect. If more than one line is needed to
display a row of data, all lines after the first line will be blocked to fit
within O0PW columns.

« For arrays of rank greater than two, the default output inserts blank lines

between submatrices (formatted as described above) to indicate the higher
coordinates.

Copyright © 1987 STSC, Inc. 1-23 Language Summary

Since matrices always have one line of output for each row, a matrix with
no rows prints no lines. You can use this behavior to suppress incidental
implicit output that a function might otherwise produce as it executes
some part of its task; for example:

00 p ODL 5

yields no output.
Requested Output with Trailing Newline

To display data produced by evaluating an expression, using the same
display rules as for implicit output, use the following function.

0 <« expression

You can use this output syntax to display an intermediate value in an
expression or statement. This technique can be useful in debugging; for
example:

OFREAD O«TN,CN Show-file selection.

10 43
APPLES
ORANGES
BANANAS
PEACHES

Requested Output without Trailing Newline

To display the result of an expression without an automatic newline after
the data, use the following function.

00 <« expression

This technique allows the results of more than one expression to appear on
the same line; for example:

DATE < 1982 ¢ X « 56.1
O«<DATE ¢ O«' RECORD IS ' ¢ O«Xx2 ¢ ' MILES.'
1982 RECORD IS 112.2 MILES.

Copyright © 1987 STSC, Inc. 1-24 Language Summary

Input on Same Line as Character Prompt

You may want to accept input on the same line as a prompt supplied by your
program. Quote-quad ([1) input does not supply a prompt of its own.
Implicit output and quad (O) output are both followed by a newline character
(OTCNL), causing the input to be accepted at the left margin on a new line.

To display output and input on the same line, use the following pair of
statements.

0 <« output ¢ input < [0

Note that output or an equal number of blanks is included as part of the result
of the character input (inpuf). To avoid this side effect, use the statement
OARBOUT 1 0 to clear the output buffer as in the following example.

O«<'COMPANY NAME IS 'OOARBOUT100CN<D
COMPANY NAME IS _ The _ represents the cursor.

You then complete the sentence.

COMPANY NAME IS STSC, INC.

CN
STSC, INC.

pCN
10

In the preceding syntax, output can be the result of any expression. The
righthand statement can be any statement containing a [I; for example:

[15] Q<«<'IS THIS A NEW CUSTOMER?'
[16] O<Q,' [Y NI ' ¢ OARBOUT 10
£171 —>C'Y'=1t0)pY3

Copyright © 1987 STSC, Inc. 1-25 Language Summary

When lines [1517 through [17] are executed, the prompt and reply look
like:

IS THIS A NEW CUSTOMER? [Y N1 Y

1-6 Types of APL Statements

APL has only five types of simple statements — far fewer than most
programming languages. Three of them (assignment, branch, and implicit
output) are executable; two (function header and comment) are non-executable.

The principal part of all APL statements is an expression. An expression is
a sequence of data constants, data variables, primitive APL functions and
operators, system functions, and system variables. The order of this sequence
must conform to the syntax rules of each function and operator used, as
explained in this chapter and in Chapter 3. The simplest expression is a
single data object. An expression can be a part of a larger expression; if it is
not, it is called a statement.

Executable APL Statements
The three types of executable statements are

« the assignment statement, whose leftmost function is assignment; for
example, Y« X * 2

« the branch statement, that begins with > for example, ~LABEL 1

« the implicit output statement, including all executable APL
statements that are neither assignment statements nor branch statements;
for example, 2+3 .

Non-Executable APL Statements
The two types of non-executable APL statements are

» the function header (see Section 1-8)

Copyright © 1987 STSC, Inc. 1-26 Language Summary

 the comment statement.

The comment statement begins with the lamp symbol (A) and continues
to the end of the line on which the lamp symbol appears. Use the
comment statement in your programs to explain or document them. The
A ensures that the remainder of the line is not executed. Consequently,
unmatched quotes, parentheses, and square brackets after a A cause no
problems. Additional A symbols, Vv, ¥, or ¢ are also viewed as part of
the text of the comment.

In immediate execution mode, comments can be used to annotate your
terminal session.

A n that is enclosed in quotes as part of a character constant does not
begin a comment statement.

Compound APL Statements

More than one APL statement can occupy a line. The diamond character
(0) separates two statements on the same line. On some terminals, the
diamond is represented by the "hash" symbol (#). A compound APL
statement is a line containing two or more simple APL statements. (A
function header cannot occur in a compound statement.) A comment
statement, if used, must be the last statement on the line. For example:

X<110 ¢ X<Xx2 Thisisacompound statement.

When multiple statements occur on the same line, they are executed in the
order of appearance from left to right. Do not confuse this order with the

order of evaluation within each statement, which is from right to left. For
more details, see the following subsection and Section 1-8.

A compound statement can be used as a single line in a function and can
then be preceded by a label set off by a colon (:), but the label is not
considered to be a part of the statement. You cannot use colons within a
statement, except as characters within quotes or in comments. For more
details, see Section 1-9.

Copyright © 1987 STSC, Inc. 1-27 Language Summary

Order of Execution

Often an APL expression contains more than one function. APL
expressions always execute the rightmost function first, unless the order is
overridden by parentheses. The following example illustrates this order of
execution.

7-5-3
5

First, 5-3 is performed. Its explicit result (2) is used as the right
argument for the remaining subtraction. The entire expression is read as
"seven minus the difference between five and three." The left argument,
therefore, is simply the nearest single data object named immediately to
the left of the function. In our example, the 3 was subtracted from the 5,
not from the difference of 7 and 5.

In larger or more complex left arguments, you can use parentheses to
enclose an expression to be evaluated before it is used. The parentheses, in
effect, make the result of the enclosed expression a single data object that
must be evaluated before use; for example:

(7=56)=3
=1

Similarly, an indexed variable (or expression) is evaluated before being
used as an argument, thus forcing evaluation of any expression in the
indexing brackets ([1).

This "right-to-left” order of execution rule applies to all functions: scalar
and mixed, primitive, system, or user-defined. The following examples
illustrate the order of execution.

2,3p10,20-1
2 10 19 10

(2,3)p(10,20)-1
9 19 9

Copyright © 1987 STSC, Inc. 1-28 Language Summary

19 -9 19

(2,3p10,20)-1
1919 9

2,(3p10),20-1
2 10 10 10 19

1-7 Structure of User-Defined Functions

The. APL language supports the creation of user-defined functions, also
called programs, routines, or subroutines. A user-defined function consists
of a series of one or more APL statements that have been recorded under
one name and that can be used by simply typing the name along with any
needed input arguments. The series need not be executed in its entirety,
but can be selectively executed by testing and branching. This technique
also allows sections of a program to repeat or loop.

The elements of a function definition are

« aheader, which defines the syntax of the function, identifies the local
names of the left and right arguments and explicit result, and defines
other local identifiers protected from possible conflict with more global
names

« line numbers and labels to represent them, either of which can be used
with branching to control the flow of execution (see Section 1-9)

« the body of the function, made up of numbered function lines,
consisting either of executable APL statements or of comments for
clarity and documentation (see Section 1-7)

* local identifiers, meaningful only within the function or functions called
by the function

« a v, which signifies the closing or end of the function, or a #, which

locks the function definition from further view or changes, even by its
owner.

Copyright © 1987 STSC, Inc. 1-29 Language Summary

System commands cannot be executed as part of a function definition.
Function definition mode prompts cannot be incorporated in a function.

The Function Header

The header line of a function is the first line of the function definition that
is entered or displayed. It determines the syntax for calling the function,
but is not itself executed. The header always includes the function’s name;
anything else is optional. The syntax is specified in the header by what
surrounds the function’s name; for example:

VBEGIN Niladic function, no explicit
result.

VRES <« SQUARE NUM Monadic function, explicit
result.

VNUM RAISEDTOQO EXPR Dyadic function, no explicit
result.

In general, user-defined function header syntax is

result < | functionname r;lvl;Iv2;lv3. ..

result explicit result

1 left argument
functionname name of the function
r right argument

Ivl, Iv2, and Iv3 local variables

The result, function name, argument names, and local variable names
must be different.

User-defined functions need not have two arguments; they can be monadic
or niladic. They also need not return an explicit result, in which case you
would omit "result «" from the function header.

Dyadic (two-argument) user-defined functions are also ambivalent. This

means that the left argument is optional. If the function is used without a
left argument, the variable / is undefined. The following function

Copyright © 1987 STSC, Inc. 1-30 Language Summary

MINUS emulates the ambivalent primitive function - .

vV R<A MINUS B

[1] ->(0#0ONC 'A')pDYADIC
[2] A<0
[31] DYADIC: R<A-B
v
1 MINUS 2
=1
MINUS 3
=3

When an incorrect number of arguments is supplied to a user-defined
function, the result is oftena SYNTAX ERROR.

The Explicit Result

If the header begins with an assignment, the function returns an explicit
result. This result will be whatever value is stored in the variable to the
left of the « in the header at the time that function execution terminates.

The name used for the explicit result within the body of the function has
no initial value when execution begins, even if a variable by the same
name exists outside the function in the global environment.

If the function exits before the result variable is assigned, a VALUE
ERROR will occur if the function result is required in the calling
environment.

Arguments of a Defined Function

A name occuring before the function name but after the assignment (if
any) is the left argument. A name occuring after the function name is the
right argument. They represent the values that will be used in those
positions when the function is called. The values used beside the function
name when it is executed will be the initial values assigned to these
arguments when they are used in the body of the function. The arguments
are also considered local variables, and are distinct from objects in the
global environment that may have the same names. The local variables

Copyright © 1987 STSC, Inc. 1-31 Language Summary

cease to exist upon termination of the function execution.

Local Identifiers

You can create other local identifiers by placing those names in the
function header. They can appear anywhere after the definition of the
function’s syntax, and must be separated by semicolons.

All identifiers in the header (except the function name itself) are local, and
do not have the same meaning in the global environment that they do
within the function. The global objects that are unavailable from within
the function are said to be shadowed. All identifiers referred to in the
body of the function that do not occur in the header (except labels) are
global. Assignments made to them survive function execution.

Local identifiers can be used for:
» user-defined local variables (including the arguments and explicit result)
 labels

« user-defined local functions created using ODEF or OF X within the
function

* localized system variables (changes to their values do not survive
termination of function execution)

« variables global to sub-functions.
Lines of a Defined Function

Each line of a defined function consists of an APL statement or comment.
The lines are numbered automatically by the function editor, and may have
labels between the line number and the statement. A label remains with
the APL statement or comment it begins, even if the lines are renumbered.
Labels are therefore a good way to refer to a particular line of a function
when branching (see next section). Labels are variables local to the
function in which they are defined and have a value equal to the line
number of the line on which they are found.

Copyright © 1987 STSC, Inc. 1-32 Language Summary

Comments can start anywhere on the line, but once the A symbol has
appeared, the rest of that line becomes part of the comment. Thus,
comments beginning A V are possible, and are called public comments (see
OCRLPC in Chapter 3).

1-8 Control of Execution

The lines in a user-defined function are numbered in ascending order from
top 1o bottom and, in the absence of a branch, will be executed in numeric
order. The system variable 0L C contains the line number of the currently
executing line.

The function and line being executed are tracked in the state indicator, and
can be examined with) ST, or) SINL. The state indicator shows the
name of the user-defined function and, in square brackets, the number of
the line that is being executed or that is suspended. It does not show
which statement on the line is executing if the line has multiple
statements.

Suspended functions are those that have stopped because of an error or
an interrupt. They are marked in the state indicator by a star. Pendent
functions are those that have called a subfunction that has stopped.

They appear in the state indicator without a star. The execute or evaluated
input primitives will appear in the state indicator as ¢and O if a function
they call suspends. (See Section 1-10.)

A call to a user-defined function interrupts the calling function statement
and control goes to the called function until its execution is complete.
The state indicator adds a new top line to the previous display. This new
line shows the name of the called function and identifies the line that is
executing or suspended. Thus, there is more than one line in the state
indicator if it is displayed or examined under program control while the
second function is executing. The top line disappears when a function
named in that line finishes its execution, and control passes back to the
line of the function that called it.

Copyright © 1987 STSC, Inc. 1-33 Language Summary

A function that calls itself directly or indirectly is recursive. A recursive

function should be coded with a branch test so that it does not call itself

again every time it is called. If too many recursive calls are made, the

state indicator fills as it tracks them, finally producing an error message.

The execute function (¢) and evaluated input (0) can conditionally execute

simple or compund statements. While they are executing, the state

indicator shows a line containing ¢ or 0 (see Section 1-10).

A stop can be set on any line of an unlocked function using a stop vector
result < linenumbers 0ST OP functionname

Or On some systems,

S A function name < linenumbers

This technique is useful primarily in debugging functions. Function
execution can be monitored with

result < linenumbers 0T RACE functioname
Or On some systems
T A functioname « linenumbers
Statement Separator (9)
The diamond (¢) separates multiple statements on a function line, in
immediate execution mode, or in the character argument to the execute (¢)

function.

The leftmost statement of such a sequence is executed first, followed by
the succeeding statements in left-to-right order.

When control branches to a function line, execution begins with the
leftmost statement. Thus, statements separated by diamonds on a line of a

Copyright © 1987 STSC, Inc. 1-34 Language Summary

Labels

Branching

function are a structural block of code. You can escape the block by
branching out, but you can only re-enter at the leftmost statement.

Labels are most useful in user-defined functions. They are variables local
to the function in which they are defined and contain the number of the
function line that they begin. Like any other local variables, labels are
known to lower-level functions unless they are shadowed.

A given label is defined only once in a given function by appearing to the
left of a colon (:). The colon separates the label from the statement in the
function line and establishes the label for possible use elsewhere. Labels
are used mainly in branch statement expressions, but they can be used in
any computation.

The branch arrow (-) is used with APL expressions that calculate the next
function line to be executed. These calculations are usually based on
labels or the constant 0. The branch is a monadic or niladic function that
can take a line number as its argument. Following are the results of
branching with various values of v (which must be an integer vector or
scalar).

« If v is empty, do not branch, but execute the next statement in
sequence.

» If v is not empty, transfer imnmediately to the beginning of the function
line whose number is the first element of v. If v has more than one
element, all elements after the first are ignored. Execution always
begins with the leftmost statement in the target line, even if the line has
a sequence of statements separated by diamonds (¢).

» If the first element of v is not a line number in the body of the
function, exit from the function, returning control to the point of call.
The function header line (line [01) does not count as an executable
line of the function, so ~0 can be used to exit a function.

Copyright © 1987 STSC, Inc. 1-35 Language Summary

Branching only redirects the flow of execution within the most recently
called function. The number branched to is always a line number in that
function, even if a ¢ or 0 appears in the state indicator above it.

A branch statement can appear anywhere in a sequence of statements
separated by diamonds. If the branch action is other than branch to an
empty array, none of the remaining statements in the sequence will be
executed. A variety of techniques can be used to create the vector of values
provided to —; for example:

* Unconditional branch -LABEL

LABEL: ...
* Exit from function -0
» Conditional branch - (X>0)pNONEG

~(A1002,MAT) pTHEN
'«DATA IS TOO LARGE '0-0
THEN:

* Loop n times I+0
LOOPTOP:—»(N<I«I+1)pENDLOOP

(...iterative calculation...)
-~LOOPTOP
ENDLOOP: ...

* Indexed Branch -+(C1,C2,C3,C4)[CASENUM]

Note: Do not use the same name to label more than one line in a
function, since only one line can be reached by branching to that label.

A loop is a sequence of statements repeated by branching back to the
beginning. It is typically controlled by branching back only if some
condition is met or by branching back unconditionally but branching out
of the loop if some condition is met.

Copyright © 1987 STSC, Inc. 1-36 Language Summary

Loops are useful for repetitive tasks like reading and processing successive
components of APL *PLUS SHAREFILE files. In APL, however, they
are generally not needed to handle the elements of arrays as they are in
many other programming languages. Using the array-handling capabilities
of APL to reduce the programming task and execution time needed for such
cases is generally faster and easier than using loops. For example,
+/MATRIX1-MATRIX?2 will give the row sums of the table of
differences between the corresponding positions in the two matrices. This
technique saves a number of explicitly programmed loops with user-defined
and user-controlled temporary storage.

The each (™) operator also eliminates loops (see Section 1-11). APL
code written without loops is sometimes more readable and often more
efficient.

Ending Execution

The niladic branch (—) ends the current execution. The niladic branch can
appear as a statement in a function or it can be entered from the keyboard.
If executed from the keyboard, the niladic branch removes the most recent

sequence of pendent executions, if any, from the state indicator (see
JRESET and) ST in Chapter 2).

Restartable Statements and Functions

Since branching can only direct execution to the beginning of a numbered
function line, a function is only restartable if each line can safely be
executed starting at the beginning. Restartability is good practice, but not
imperative to good APL code. If a statement following a diamond halts
because of an error, you cannot return to the halted statement after fixing
the problem without repeating the preceding statement(s). Do not,
therefore, use a statement followed by a diamond and another statement
unless repetition of the earlier statement will yield the same results the
second time as the first time. For example, a calculation based on
variables that have not yet changed is acceptable, and using

OFREPLACE to replace the value into the position in which it was
already placed is also acceptable. However, a second use of DFAPPEND
would put an additional component on file, increasing the file length.

Copyright © 1987 STSC, Inc. 1-37 Language Summary

Similarly, a calculation that is stored in one of the variables referenced
earlier on the line prevents a second execution from yielding the same
result as the first; for example:

X<+/Y 0 Y<0 0 Z<Xp' '

If you do not plan each function line to be restartable, you may have to
use) RESET and repeat the entire application if it halts. Branching back
into the function at the point where it stopped is faster and more
convenient (use »0LC). To ensure restartability, use multiple function
lines, breaking long statements where they would become non-restartable.

1-9 Execute, Scan, Domino, and Grade

This section describes some advanced APL functions in detail: the execute
function (¢), the "domino" functions matrix divide and matrix inverse (B),
the grade functions (¥ and 4), and the scan operator (\). Throughout this
section, the term "represented statement" refers to the APL statement that
the argument represents.

Execute ¢

Syntax: ¢ data
result <« ¢ daa

The execute primitive function accepts a character image of a well-formed
APL statement and evaluates that statement as if it were entered from the
keyboard. Some of its uses are conditional execution, conversion of

numeric constants, and a limited form of passing unevaluated arguments to
functions.

A simple example of execute is

2'2+2"

Copyright © 1987 STSC, Inc. 1-38 Language Summary

The argument to execute is a character singleton or vector. It can represent
a simple or compound statement.

Since the argument can be constructed from several different parts, the
execute function can be used to perform conditional execution. For
example, ¥<¢ 'M' , ¥N would execute ¥<MO if N was 0; M<M1if
N was 1, and so on.

You can also use execute to convert character vectors representing numeric
constants to their numeric values.

A<es'1 2 3!
A+1
2 3 4

(Seealso OF I and OV I in Chapter 3.)

Since system commands are not APL statements, they cannot be
"executed" by this function.

Execute can call itself recursively.

Presence of Explicit Results
Whether the execute function returns an explicit result depends upon
whether the represented statement, when evaluated, returns an explicit
result. If it does, the result of the represented statement is the result of

execute. If it does not, execute has no result.

¢'1+2x1L0.5xpV"' Returns an explicit result.
¢ 'OFUNTIE 1° Does not return an explicit result.

Consequently, the first statement in the preceding example can be
embedded in a larger statement:

VIe'1+2x1L0.5xpV!]
but the second statement cannot.

A<e¢'OFUNTIE 1!

Copyright © 1987 STSC, Inc. 1-39 Language Summary

VALUE ERROR
A<e¢'OFUNTIE 1'
A

If the represented statement does not develop a value, the calling
environment should not require that a value be returned in order to avoid a
VALUE ERROR. Statements that result in no value are

» auser-defined, primitive, or system function that terminates without
returning a result

* abranch
* an empty or all-blank statement
* acomment.

Display of Explicit Results

If execute returns an explicit result, the result is displayed only if the result

would normally be displayed.
e'15! Displays a value.
s'A-15! Does not display a value
T+«s'15! Does not display a value.

Evaluation of Compound Statements

Several statements can be evaluated in one call to execute if they are
separated by diamonds in the represented statement.

¢'A<B/1pB ¢ RA<pA'
In this case, the value (if any) returned by execute is determined by the last
statement evaluated. Results from other statements are displayed if
appropriate.

Occurrence in State Indicator

If execute has been invoked but has not completed execution, it appears in
the state indicator as a separate line. For example, if FN is a function

Copyright © 1987 STSC, Inc. 1-40 Language Summary

invoked by ¢ ' FN ' or a latent expression (0L X), and its execution is
suspended on line [3], then the state indicator appears as:

)ST
FN[31*
¢

A pendent call to execute is not represented in the vector of line numbers
(OLC) in the state indicator.

Relationship between Execute and Its Calling Environment

Upon successful completion of any statement, the system examines three
potentials that were set during evaluation of the argument:

 Branch potential indicates whether the last statement evaluated is a
successful branch.

» Value potential indicates whether the last statement evaluated returns a
value. '

« Display potential indicates whether the value of the last statement
evaluated is to be displayed. If the last statement evaluated returns no
value, display potential is undefined.

When the execute primitive completes, the setting of these potentials is
determined by the last statement evaluated. These potentials are normally
considered and acted upon at the completion of evaluation of each simple
statement. However, for the last simple statement evaluated in a statement
created by use of execute, consideration of the potentials is deferred to the
calling environment.

If any statement evaluated by execute results in a successful branch:
« No more statements of a compound statement are evaluated.

« The branch potential is set to on.
» Execute returns to the calling environment.

Copyright © 1987 STSC, Inc. 1-41 Language Summary

Otherwise, the branch potential is off.
Value and display potentials are related in that display potential implies
value potential, but value potential does not imply display potential.

Only four combinations of potentials can occur, shown in the following
table (0=Off, 1=On, U=Undefined).

Potential
Branch Value Display Example
0 0 0 ¢ 'OFUNTIE 1!
0 1 0 ¢'A<15!
0 1 1 ¢'15!
1 0 U e'->0!
The calling environment of execute may or may not require that a value be
returned.
¢ 'OFUNTIE 1! Does not require a value.
A<¢'OFUNTIE 1 The assignment requires a value.

If the calling environment does not require a value and the branch potential
is on, then the branch is taken. However, an escape (¢ ' = ") is acted upon
immediately without consideration of the calling environment.

If the calling environment requires a value and the value potential is off,
thena VALUE ERROR is reported with the caret (A) pointing to the
execute (¢) symbol. In this case, the represented statement is evaluated

and any side effects that might be caused by that evaluation occur.

If the calling environment does not require a value and the value potential
is on, then the value is displayed according to the setting of the display
potential.

Error Reports During Execution of the Represented Statement

Error conditions occurring during execution of the represented statement
immediately display an error message, the statement in error, and the caret.

Copyright © 1987 STSC, Inc. 1-42 Language Summary

Scan \

The statement containing the error is displayed, rather than the one at the
level of the calling environment of execute.

¢'A<OFUNTIE 1'
VALUE ERROR
[A<OFUNTIE 1

A

The execute symbol is displayed in the left margin to indicate that the
statement originated from a call to execute.

Syntax: result < f\a
result « fxa
result < f\Lkla

f any scalar dyadic function
a any APL array
k specified scan coordinate

The scan operator complements and extends other APL functions by
producing the results of successive reductions. (See the reduction example
in Section 1-5.) The scan operator combines with any primitive scalar
dyadic function to form a new monadic function. The new function forms
successive elements in the result by applying the scalar dyadic function to
successive take (1) operations of the right argument using reduction. The
shape of the result is identical to that of the right argument.

Scan has many uses, including the calculation of cumulative sums and
products and the manipulation of Boolean data.

The definition of scan for a vector V is as follows:

Let result « f\V.
Then, result[I1 <« isdefinedas f/ItV forallT € 1pV in

origin 1.

Copyright © 1987 STSC, Inc. 1-43 Language Summary

For arrays of rank 2 or greater, the function is applied along the implicit or
explicit coordinate, similar to reduction. For example, you can specify the
scan coordinate by writing:

Na
fra
NIlkla

as it is applied along the last, first, or kth coordinate, respectively.

Examples

TRANSACTIONS <« 100 5 ~20 3 750
+\TRANSACTIONS Calculates running account
100 105 85 88 38 balances.

Scans of Boolean vectors by relational and logical functions are
particularly useful. For a Boolean vector BV, the following are true:

If R<A\BV then R<-BV withall Os after the first O in BV.
If R<<\BV then R«<-BV withall Os after the first 1 in BV.
If R<<\BV then R<-BV withall 1safter the first 0 in BV.
If R<V\BV then R<—BV withall 1s after the first 1 in BV.

#\BV <«— parity of the cumulative number of 1s.
=\BV <«- reverse parity of the cumulative number of Os.

Identities
The following identities hold for any Boolean array B:

<\B «—- ~<\~B

2\B «—- ~>\~B

>\B «— ~2\~B

=\B «—- ~#\~B <> ~2|+\~B
#\B «—> ~=\~B <> 2|+\B
V\B «- ~A\~B

A\B «— ~V\~B

Copyright © 1987 STSC, Inc. 1-44 Language Summary

M\E Py ~~\~B > (Z\B)=(V\B)S<\B
A\B <« ~M\~B <> (>\B)#(A\B)<<\B

Applications

Remove leading blanks.
(V\NTXT#' ')/TXT

Extract the first word.
A<TXT#' ' ¢ (A>V\A<V\A)/TXT

Determine if V is in increasing order.
AIV=T\V

Determine if V contains correctly matched and nested parentheses.
A/O0=L\O+\=/Ve =" ()

Implementation Considerations
As noted previously, scan is defined as follows:

Let result <« f\V.
Then, result[I1 «— f/ItV forall I € 1pV inorigin 1.

For the associative functions + and x, the following definition is used to
reduce execution time. This definition is formally equivalent, but not
always computationally equivalent, to the preceding one.

Let result « f\V.
Then,result[1]1 <— VI[1landresult[I]1 <«— result[I-11 f
VII] forall I € 1l1pV inorigin 1.

For arguments whose values differ significantly in magnitude, the two
definitions may not return the same results. The following example
shows that the two definitions may also differ from the exact answer.

LetV « ~1 1E20 ~1E20 1

First definition: +\V <«-> ~1 1E20 ~1 ~1

Second definition: +\V «-> ~1 1E20 0 1

Exact definition: +\V <= ~1 9.999...F19 =130

Copyright © 1987 STSC, Inc. 1-45 Language Summary

In this case, the exact answer cannot be returned because of the limited
precision used within the computer.

For maximum-scan (I \) and minimum-scan (L \), the two definitions
always produce the same results.

Matrix Division and Inversion

Syntax: result + Br
result < | HBr

1 a scalar, vector, or matrix
r a scalar, vector, or matrix

Either [or r is a scalar, or the first elements of the shapes of / and » must
be equal.

For calculation purposes, matrix divide treats vector and scalar arguments
as one-column matrix arguments. Conformability tests are based on the
arguments treated this way, and a LENGTH ERROR occurs when the left
and right arguments have an unequal number of rows.

The shape of the resulting matrix is determined by the shape of the
arguments. For matrix inversion, it is the dimensions of the argument in
reverse order:

pEA <« ¢pA

For matrix division, the result has as many rows as the left argument had
columns, and as many columns as were in the right argument.

PBHA «—»> (1lpA),(1lpB)
If the right argument is a scalar, a one-element vector, or a one-row by
one-column matrix, matrix divide is equivalent to divide, except for minor

differences in the shape of the result and except when both arguments are
Ze10.

Copyright © 1987 STSC, Inc. 1-46 Language Summary

Applications

Copyright ©

Matrix divide (dyadic domino) is used to solve matrix equations in much
the same way that dyadic + is used to solve scalar equations. Itis
primarily used to solve equations of the form MX=R (the matrix product
MX is expressed in APL notation as M+ . x X) where:

* Mis a given matrix.

« R s a given vector (considered for matrix divide as a one-column matrix
having the same number of rows as M).

¢ X is an unknown vector.

If such an equation has a unique solution X, then X<RHBM. If it has more
than one solution, then RBM will produce a DOMAIN ERROR. In fact,
RHBM will produce a DOMAIN ERROR whenever the matrix M is
singular (a non-zero vector V exists for which M+ . xV is the zero vector).
If M has more rows than columns, is not singular, and the equation MX=R
does not have a solution, then RBM yields the vector that most closely
approximates the solution (the least squares approximation).

Matrix inverse (monadic domino) yields the inverse of a matrix M if M is
non-singular and square. If ¥ is non-singular and has more rows than

columns, matrix inverse yields the least squares approximation to the right
inverse of M.

The following examples show applications of H.
Solving Linear Equations

Use B to solve a system of linear equations such as:

2x-y+3z= 12
Xx+4y-2z=-11
3x+ y+5z= 17

1987 STSC, Inc. 1-47 Language Summary

This system is equivalent to the matrix equation MX=R where M is the
matrix of coefficients of the left side of the equation:

M<3 3p2 71 3 "1 4 "2 315 ¢ M

2 71 3
1 4 72
3 1 5

X is the vector with elements x,y,z,and R<12 ~11 17. Therefore,
X<REBM will yield (the best approximation to) the solution of this system
(since M is non-singular).

X<RBM ¢ X
1 713

In fact, RBM yields the exact solution as shown by multiplying it back:

M+ . xX
12 ~11 17
Fitting a Straight Line

Matrix divide can also be used in curve fitting. In many experiments, the
object is to find a mathematical function that closely approximates
empirical measurements. To find the straight line that comes closest to
passing through a given set of points, you must find the values c and d so
that the line with equation dx + ¢ comes closest to the given values for x
and y. For example, if we take the four points

(1.1,2.3), (1.9,4.0), (3.05,6.3), and (4.1,7.9)
and view them as points on our line, each point provides a value for x and
a value for y to substitute in our general equation, giving us a system of
four equations representing these data points:

1.1d +c=2.3

19d +c=4.0
3.05d +c=6.3

Copyright © 1987 STSC, Inc. 1-48 Language Summary

41d +¢c=79

As in the previous example, the closest possible least squares solution for
such a system of equations is C+YHM, where C contains the values of d
and c, Y is the vector of y coordinates of the points, and M is the matrix
M<X-.x1 0 where X is the vector of x coordinates of the points.
Applying this to the equation yields:

7.9
5 4.1

Y<2.3 4.0 6.
Yel-1 1.9 3«
M<X-.*x1 0 ¢

Ow

N
O Wk
[8,]
(RN N

Using matrix division to find the solution yields:

C<YHM ¢ C
1.876856212 0.3624773633

These results indicate that the linear equation which best approximates
these points is

1.876856212x + 0.3624773633 =y
Fitting a Polynomial Curve

Similarly, the coefficients of the polynomial of degree D that most closely
fit a set of data points can be obtained using the formula
C+«YBM«X-.*®0,1D (inorigin 1). Applying this to our original
data yields the coefficients C of the polynomial of degree 2 that best
approximate them.

C<YEM<X-.*2 1 0 ¢ C
~0.153408846 2.676735268 ~0.480885961

To see how closely the polynomial with these coefficients approximates

our data points, we evaluate it for x = 3.05, using the polynomial
evaluation function (L1):

Copyright © 1987 STSC, Inc. 1-49 Language Summary

3.051C
6.256070817

This result is very close to the y value of 6.3. To see how closely this
comes to all our data points, we use the polynomial evaluation function 1
again:

(4 1pX)1C
2.27789813 4.05
7.914925938

1105114 6.256070817

Computational Accuracy and Efficiency

Although X«<REM and X« (BM)+. xR are equivalent APL statements,
they will generally yield slightly different results when computed because
of roundoff errors. The expression X« RHBM will produce faster and more
accurate results. Similarly, when solving several equations with the same
coefficient matrix, such as

X1<R1BM ¢ X2<R2BM ¢ X3<R38BM

it is more efficient to solve the single equation X< RHBM where R is the
matrix whose columns are R1, R2, and R 3; and X is the matrix with
columns X1, X2, and X 3.

Sorting with the Grade Up and Grade Down Functions
Monadic grade up and grade down provide permutation vectors to sort only

numeric data along the first coordinate. Dyadic grade up and grade down
arrange only character data, but allow for arbitrary collating sequences.

They are discussed separately below.
Monadic Grade
Syntax: result <« bdata
result < Vdata
data any non-scalar numeric array

The grade up and grade down monadic primitives arrange the indices of
numeric data in ascending or descending order.

Copyright © 1987 STSC, Inc. 1-50 Language Summary

The result is always a numeric vector whose length is the same as the first
dimension of the argument. For vector arguments, the result can be used
as a subscript vector to arrange the argument into ascending (for grade up)
or descending (for grade down) order. Duplicate values will retain their
original relative positions.

In the case of two-dimensional (matrix) arguments, the result is formed by
considering one column at a time, working from left to right. An initial
ordering is generated by considering the leftmost column as a vector. If
the vector has no duplicate values, the initial ordering becomes the result.
If the vector does have duplicate values, then data from the next column to
the right is used in an attempt to resolve the duplications. This process
continues until either all duplications are resolved or all columns are used.

Arguments of more than two dimensions are treated as matrices, retaining
the original first dimension and combining all the other dimensions into a
single second dimension. In effect, the data is treated as being reshaped as
follows:

((11pA),x/1ipA)pA

Some examples of monadic grade follow.

0I0«1
A 17 2 14
2.3 1
17 2 14[2 3 11 Increasing sort.
2 14 17
vOo- 3 4p 1 49217761930
149 2
1-7 7 6
161913, .0
32 1
Dyadic grade up and grade down

Syntax: result <« order b data
result < order ¥ data

Copyright © 1987 STSC, Inc. 1-51 Language Summary

daa a character array
order a character array used to establish the relative ordering of the
characters in data

The grade up and grade down dyadic primitives arrange character data in
ascending or descending order. Both arguments must be non-scalar arrays.

The left argument associates numeric values with each character in the
right argument. The rules of monadic grade up or grade down are then
applied to the associated numeric values to produce the result.

If the left argument is a vector, then the associated numeric values are
equivalent to those produced by dyadic iota. Specifically, V4 A is
equivalentto AV 1 A.

For left arguments of rank 2 or greater, each dimension is used
independently, working from the last to the first. The numeric ordering
value for any given character of the right argument with respect to a
specified dimension of the left argument requires consideration of all
occurrences of the characters in the left argument. The ordering value is
taken as the minimum of the coordinate value along the specified
dimension for these occurrences. If a character does not appear in the left
argument, its ordering value is determined much like that of dyadic iota.

Ordering values are initially determined with respect to the last dimension
of the left argument. The rules of monadic grade are then applied to the
associated values, including duplications, to produce an ordering. If this
ordering contains no duplications, or if no further dimensions of the left
argument remain to apply, the process is complete. Otherwise, the
ordering values are recalculated with respect to the next higher dimension,
and the resolution process is reinvoked starting with the first column of
the right argument. This process continues until either all duplications are
resolved, or until all dimensions of the left argument have been exhausted.

Suppose the following matrix is used as the left argument (on some
terminals the underscored letters are displayed as lowercase letters):

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Copyright ® 1987 STSC, Inc. 1-52 Language Summary

The initial ordering using the last dimension will result in A and a
coming before B and b, and so on. If both A and a appear in the right

Bl
argument, they will appear as duplications since they have identical i
coordinate values (and ordering values) along the last dimension. A second .
evaluation will then occur using the first dimension. This will give a Conjugate
further reordering placing A before a.
In the next example, three collating sequences (each starting with a blank)
are used to produce the three different results shown in the following table.
Collating Sequence 1:
abcdefghi jklmnopqrstuvwxyzABCDEFGHIJ Plus
KLMNOPQRSTUVWXYZ
Collating Sequence 2:
aAbBcCdDeEfFgGhHIiI jJkK1LmMnNoOpPQQrR
sStTuUvVwWxXyYzZ
Collating Sequence 3:
abcdefghijklmnopgrstuvwxyz Negate
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Sort with Sort with Sort with
Original Collating Collating Collating
Data Sequence 1 Sequence 2 Sequence 3
Ama acid acid acid
YMCA ama ama ama Minus
Trudgen ammonia ammonia Ama
Tektite pavilion Ama AMA
pi phosphate AMA ammonia
pavilion pi NSPF NSPF
piping piping pavilion pavilion
pump pump phosphate pH
underwater pH pH Philodendron
tsunami trudgen pi phosphate
NSPF tsunami piping pi
87 STSC, Inc.

Copyright © 1987 STSC, Inc. 1-53

Language Summary

SRR

the left argument
the right argument
the explicit result

Return the value of a nur
res « + arg

arg : any numeric array
res: sameas O+arg

+727.34 1¢
~27.34 18 6

Add two numbers

res < larg + rarg

larg, rarg : any numeric ar

res: each item of larg add
ofrarg

2 2 2 + 3
1:5.3 0

Change the sign of a num|
res<+ - arg

arg : any numeric array
res: each item of arg subtr

=2 ~2 1.5
2:2 1.5

Subtract two numbers

res < larg - rarg

larg, rarg : any numeric arrz

res: each item of rarg subt
corresponding item of

o
5.5 1-4

1-55

Tsunami underwater pump piping

trudgen Ama Philodendron ~ pump

pH AMA trudgen Tektite
phosphate NSPF tsunami trudgen
ammonia Philodendron Tektite Trudgen
AMA Tektite Trudgen tsunami
Philodendron Trudgen Tsunami Tsunami
acid Tsunami underwater underwater
ama YMCA YMCA YMCA

Note: The above examples all use dyadic 4; if dyadic ¥ had
been used, the order of the results would have been exactly
reversed. Although CM[OAVYCM; land
oCM[OAVACH;]are equivalent, that AV Y XM and
®0AV ACM are not identical unless there are no duplicates.

1-10 Primitive Function and Operator Reference

This section summarizes the APL primitive functions and operators. Each
function and operator is listed with its syntax, a brief description, and one
or more examples. In some examples a variable or result is shown in
"display" form (Section 1-1) rather than the standard output typically
generated by the system. This display form graphically illustrates the data
structures and is produced by 0 SHOW on some systems and by a display
function on others. Recall that an array can be classified as a scalar,
vector, matrix, or n-dimensional.

The following abbreviations are used throughout this section:

ag the argument
conforming the left and right arguments must have the

same type and shape

ext external factor that affects the result of this
operation (e.g. 0CT, ORL ,0I0)

feg any dyadic function, whether a primitive
function (+,-,%,+, etc.), a system (e.g.
OFREAD), or a user-defined function.
i positive integer scalar
idx index or variable with valid indices

Copyright © 1987 STSC, Inc. 1-54 Language Summary

5388

Arithmetic Functions

+ Conjugate

+ Plus
o Negate
= Minus

Copyright © 1987 STSC, Inc.

the left argument
the right argument
the explicit result

Return the value of a number
res < + arg

arg: any numeric array

res: sameas O+arg

+~27 . 3431’86
~27.34 18 6

Add two numbers

res « larg + rarg

larg, rarg : any numeric array (conforming)

res : each item of larg added to corresponding item
of rarg

2 2 2+ 3,51 2
1.6 3 0

Change the sign of a number

res <+ - arg

arg : any numeric array

res: each item of arg subtracted from zero

= 2 T2 1:8
2 2 T1.8

Subtract two numbers

res « larg - rarg

larg, rarg : any numeric array (conforming)
res: each item of rarg subtracted from

corresponding item of larg
I e S
L
1-55 Language Summary

x Signum Determine the sign of a number
res « X arg
arg : any numeric array
res: ~1 if argisnegative, O if arg is zero, and 1
if arg is positive.

x 3 0 0.5
10 71

X Times Multiply two numbers
res < larg x rarg
larg, rarg : any numeric array (conforming)
res: each item of larg multiplied with
corresponding item of rarg

2 22 x 3.502
“7 0 4

+ Reciprocal Find the reciprocal of a number
res < + arg
arg . any non-zero Numeric array
res : one divided by each item of arg

+= 2 71 0.5
0.5 71 ~2

+ Divide Divide two numbers
res < larg + rarg
larg : any numeric array
rarg : any numeric array (conforming)
res: eachitem of larg divided by corresponding
item of rarg

2 730+130

0=0

Copyright © 1987 STSC, Inc. 1-56 Language Summary

* Exponential Raise e to a power
res < * arg
arg : any numeric array
res: e(2.71828...) raised to the power specified by
each item of arg

* 1 710
2.718281828 0.3678794412 1

* Power Raise a number to a specific power
res < larg * rarg
larg, rarg : any numeric array (conforming)
res : arg raised to the corresponding rarg power

2 49 4 0 » 3 0.5 71 40
8 7 0.25 0

r Ceiling Round up to the nearest integer
res < [arg
arg : any numeric array
res: smallest integer greater than or equal to arg

ext: OCT
I 3.1416 1.5 6
4 71 6
r Maximum Select the greater of two numbers

res<larg [rarg

larg, rarg : any numeric array (conforming)

res : the larger of each corresponding pair of
numbers in larg and rarg

8.2 T4.1°1 T " 4.2
1 4.1

Copyright © 1987 STSC, Inc. 1-57 Language Summary

L Floor

L Minimum

| Magnitude

| Residue

Copyright © 1987 STSC, Inc.

Round down to the nearest integer

res < L arg

arg: any numeric array

res : largest integer less than or equal to arg
ext: OCT

L 3.1416 "1.5 6
3 72 6

Select the lesser of two numbers

res « larg L rarg

larg, rarg : any numeric array (conforming)
res : the lesser of each corresponding pair of
numbers in larg and rarg

“3.2 T4.1 L 7 4.2
3.2 T4.2

Compute the absolute value of a number

res< | arg

arg : any numeric array

res . the absolute value (or magnitude) of each
element of arg

I 20 71.6
2 01.6

Find the remainder after the division of

two numbers

res< larg | rarg

larg, rarg : any numeric array (conforming)

res : the remainder after dividing each
corresponding item of rarg by larg
rarg - (Lrarg+larg) xlarg

2 "2 1] 3 3 8.14159
1 71 0.14159

1-58 Language Summary

® Natural
Logarithm

® Logarithm

o Pi times

o Trigonometric
functions

Copyright © 1987 STSC, Inc.

Compute the natural logarithm of a ”
number

res< ® arg

arg . any positive numeric array

res : the logarithm (base ¢) applied to each item of
ag

® 1 10 2.7182818284
0 2.302585093 1

Roll

Compute the logarithm of a number

res < larg ® rarg

larg, rarg : any positive numeric array (conforming) ?

res : the logarithm of each element of rarg to the
corresponding base in larg

Deal

2 49 4 8 7 0.25
3 0.5 "1

Multiply a number by Pi
res< O arg
arg : any numeric array

res: arg multiplied by Pi (3.141592...) B A
atrix

o1 2 Inverse

0
3.141592654 6.283185307 0

Compute a Trigonometric function for a

number

res < larg © rarg

larg : any array of integers in the range -7 to +7

rarg : any valid numeric array (conforming)

res . the trigonometric function selected by larg
applied to each corresponding item in rarg

Note: all arguments and results are in radians.

larg function larg function

=7 ARCTANH 7 TANH
“6 ARCCOSH 6 COSH
1-59 Language Summary

© 1987 STSC, Inc.

Select a random
res < 7 arg

arg : any positive
res: anintegerp

numbers gi
random nun
0ro < re:
ext: 0I0,0RL
? 200

1969 2 23
Select a set of uni.

res < larg ? rarg
larg, rarg : a posit
Tes: arg unique ra

possible posi
ext: 0I0,0RL
8 7 1¢
153 49¢

Calculate the inver

res < B arg

arg : numeric scala;

res: inverse of arg
Square. If arg
(must have m¢
result is the Je;
the inverse of ,

B 2
3 "1 2
2 1

1-61

5 ARCSINH 5 SINH
4 (Tl+rarg*2)*5 4 (l+rarg*2) x5
~3 ARCTAN 3 TAN
~2 ARCCOS 2 (oS
“1 ARCSIN 1y, :8IN
0 (l-rargx2)*.5
0 o .6
0.8
2 o 3.14159
-1
"3 0012
0 0.7853981634 1.107148718
! Factorial Compute the Factorial of a number
res< ! arg

arg : any numeric array

res: if arg is a positive integer, res is the product
of all positive integers from 1 through arg. If
arg is zero, res is 1. All other numbers
except negative integers are computed using
the gamma function on arg+1; the function is
undefined for negative integers.

' 0 4 2.5
1 24 3.32335097

! Binomial Find the number of permutations for a set
of objects
res < larg ! rarg
larg, rarg : any positive numeric array (conforming)
res : the number of permutations of selecting larg
objects at a time from rarg objects, for each
corresponding larg, rarg pair of numbers

125651 5405
56 1

Copyright © 1987 STSC, Inc. 1-60 Language Summary

? Roll Select a random integer

res<+ 7 arg

arg : any positive integer array

res: an integer picked at random from the set of
numbers given by 1arg [n]; res contains a
random number for each element of arg where
0I0 <res< arg(n]

ext: 0I0,0RL

? 2000 12 30
1969 2 23

? Deal Select a set of unique random integers
res < larg ? rarg
larg, rarg : apositive integer scalar
res: arg unique random integers selected from rarg
possible positive integers (i.e. 1rarg)

ext: 0I0,0RL
8 ?7 10
153 49¢6 87
B Matrix Calculate the inverse of a matrix
Inverse res < B arg

arg : numeric scalar, vector or matrix

res: inverse of arg if arg is non-singular and
square. If arg is non-singular but not square
(must have more rows than columns) the
result is the least squares approximation to

the inverse of arg.
BE22p1123
3 71
2 1

Copyright © 1987 STSC, Inc. 1-61 Language Summary

B Matrix
Divide

T Representation

Copyright © 1987 STSC, Inc.

Solve a set of simultaneous equations

res < larg B rarg

larg, rarg : numeric scalar, vector or matrix; rank of
rarg must equal or exceed rank of larg; if rarg
is a matrix, last dimension must not exceed
the first

res : the exact solution (or a least squares
approximation if rarg has more rows than
columns) of the matrix equation rarg * X =
larg (see Section 1-9 for more details)

14 26 B 2 2p1 3 4 2
53

14 26 78 3 2p1 3 4211
4.981481481 2.944444444

Find the representation of a number in
another radix

res < larg T rarg

larg, rarg : any numeric array

_res: the expression of each element of rarg

represented in a number system described by
larg

10 10 10 10 1 1776

1776
2 272 i
1. ¢ 1
7 24 60 T 5090
3 12 50
7 24 60 T 5090 6666
3 4
12 15
50 6

1-62 Language Summary

1 Base Find the base value of a number

Value res < larg L rarg
larg, rarg : any numeric array
res: the expression of rarg in radix larg

10 1 1 77 6

1776
10.3 2 10 1 1 (Ll 46
276
211 010
10
7 24 60 1L 3 12 50
5090
Logical Functions
< Less than ~ Compare two numeric arrays
res + larg < rarg
larg, rarg : any numeric array (conforming)
res : 1 for each pair of corresponding values where
larg is less than rarg; 0 otherwise
ext: OCT
123 <213
100
< Less than Compare two numeric arrays
or equal

res « larg < rarg

larg, rarg : any numeric array (conforming)

res : 1 for each pair of corresponding values where
larg is less than or equal to rarg; 0 otherwise

ext: OCT

1.2:.8 $ 2.48
1501

Copyright © 1987 STSC, Inc. 1-63 Language Summary

= Equal

2 Greater than

or equal

> Greater than

Not equal

Copyright © 1987 STSC, Inc.

Compare two arrays for equality

res « larg= rarg

larg, rarg : any array (conforming)

res : 1 for each corresponding value of larg and rarg

that is equal; 0 otherwise
ext: OCT
'1St=18TSC!
1010

Compare two numeric arrays

res « larg 2 rarg

larg, rarg : any numeric array (conforming)

res: 1 if the corresponding value of larg is greater
than or equal to rarg; 0 otherwise

ext: OCT

1232213
011

Compare two numeric arrays

res < larg > rarg

larg, rarg : any numeric array (conforming)

res . 1 if the corresponding value of larg is greater
than rarg; 0 otherwise

ext: OCT

123 >213
010

Compare arrays for inequality

res « larg # rarg

larg, rarg : any array (conforming)

res: 1 for each corresponding value of larg and rarg
that are not equal; 0 otherwise

ext: OCT
123 #2133
110
1-64 Language Summary

o~ Not
vV Or

A And
M Nor

Copyright © 1987 STSC, Inc.

Negate a Boolean array

res <~ arg

arg : any Boolean array

res: 1 for each item of arg that is 0; O for each
item that is 1

~ 0 1
10

Logical OR of two Boolean arrays

res « larg V rarg

larg, rarg : any Boolean array (conforming)
res: 1if either larg or rarg is 1; 0 otherwise

0 01 1 v=od 4
0111

Logical AND of two Boolean arrays

res < larg A rarg

larg, rarg : any Boolean array (conforming)
res: 1 if both larg and rarg are 1; 0 otherwise

001 1A~01012
0001

Logical NOR of two Boolean arrays

res « larg ™ rarg

larg, rarg : any Boolean array (conforming)

res: 1if both larg and rarg are 0; 0 otherwise
equivalent to ~ (larg V rarg)

001 1% 0 1:01
1000

1-65 Language Summary

N Nand Logical NAND of two Boolean arrays
res < larg ~ rarg
larg, rarg : any Boolean array (conforming)

res: 0 if both larg and rarg are 1; 1 otherwise
equivalent to ~ (larg A rarg)

0011~0101
1110

Match Compare the equivalence of two arrays

res + larg = rarg

larg, rarg : any array

res: 1if both larg and rarg have the same rank,
shape, and values; 0 otherwise

ext: OCT
'XYZZY' = 1 5p'XYZZY'
0
0 = ,0
0
A<2 3p14
A=A
1
A= "4
0

Location Describers and Modifiers

1 Index Return a set of consecutive integers
generator res< 1 arg
arg . positive integer scalar
res: avector of arg integers from the sequence
0ro, 0Io+1, 0OI10+2,...

ext: OIO
15
1 2 3 45

Copyright © 1987 STSC, Inc. 1-66 Language Summary

1 Index of

[] Indexinto

Copyright © 1987 STSC, Inc.

Find location of items in an array

res < larg 1 rarg

larg : any vector

rarg . any array

res . the index location of the first occurence of the
items specified in rarg in the larg array. For
elements of rarg that do not occur in larg, the
resultis 1+plarg (0I0«1).

ext: OIO
A<3 4 7 3 8
A1 7 48 12

3216

Select a subset of elements from an array

res <arg Lidxj ;idxp; ...]

arg: any non-scalar array

idxy, : any integer array. There must be one index per

non

axis of arg. Indices are, separated by ";".
Missing indices suchasin A[] or
B [; J]indicate that the entire axis should be
selected.
res: the portion of the arg array specified by idx
ext: OIO

A<3 4 7 3 8
ALAL7 4 31
7 4 3

'ABCD'[3 21
CB

(3 4p112)0[;31]
3 7 41
'"ABC'[4 4p13]

ABCA
BCAB
CABC
ABCA

1-67 Language Summary

€ Member of Compare contents of two arrays
res « larg € rarg
larg ,rarg : any array
res: the same size as larg and contains a 1 if the
larg item is found anywhere in rarg; 0

otherwise
ext: OCT

25 €123 4
10

T Take Select a set of elements from an array

res « larg t rarg

larg : any integer scalar or vector with one element
per dimension of rarg

rarg : any array

res: the subset of rarg items. The shape of res is
specified by larg. If larg is negative, the
selection starts from the end rather than the
beginning; res is padded with the fill item
(The fill item is € > arg and is blank or zero
for simple arrays) if larg specifies an array
larger than rarg.

2t 362
51t 36 2

6200
3212301234568

w

A= O
oo

Copyright © 1987 STSC, Inc. 1-68 Language Summary

4 Drop

(= Enclose

Copyright © 1987 STSC, Inc.

Exclude a set of elements from an array

res <« larg { rarg

larg : any integer scalar or vector with one element
per dimension of rarg

rarg : any array

res: all the items of rarg except the subset
specified by larg. larg specifies the number of
elements in each dimension that should be
excluded from the result (starting from the end
if larg is negative). If an element of
larg is larger in magnitude than the
corresponding dimension of rarg, res will be
empty (have a dimension of zero) along the

corresponding coordinate.
511327 48
8
A<2 3p1 2 3 4 5 6
0 "1 ! A
12
4 5
Create a nested scalar out of any array
that is not a simple scalar
res< crarg

rarg : any array

C<'A' 'MM' 'SSS!

pC
3
Cl[2]«c2 2 pr14
C
A 12 SSS
3 4
1-69 Language Summary

=) Pick

Copyright © 1987 STSC, Inc.

DISPLAY C

Select a portion of an array

res < path> arg

arg : any array

path : positive integers describing now deep into arg

to go to select an item
res: asubset of arg specified by path
ext: OIO
A<'ONE' (2 2p14) 'SIX'
pA
3
DISPLAY A
P ———
I IONEI 1 21 ISIXII
T t===t |3 4] V===t
| Pomi=t I
'E ________________ !
2°A
1 .2
3 4
3 2024
I
(2 (2 1))°24
3
2 >'TEXT'
E
1-70 Language Summary

= Partitioned Build a non-simple vector from selected
Enclose portions of an array

res<larg < rargorres<larg <Lil rarg

larg: Boolean vector with same length as selected
coordinate of rarg

rarg. array of any rank

i non-negative scalar indicating the dimension
desired.

res: selected portions of rarg: res is a vector of
length +/larg.

A<0 0 1 0 1 1 0 0 <18

A

34 5 678
pA

3
DISPLAY A

2 Disclose Retrieve the array stored as a nested scalar
res<orarg
rarg . any array,
res: if rarg is a nested scalar, it will be
expanded back to an array

C<"ONE' (2 3 4 5)
pC
p=>CL2]

If rarg is an array rather than a nested scalar, the first
item is selected and expanded into an array

Copyright © 1987 STSC, Inc. 1-71 Language Summary

Copyright © 1987 STSC, Inc.

if it is a nested scalar. This is often called the
"First" function.

ONE

3
1

oC
p=C
21 2 3

Reduce one level of nesting.
res< targorres«< tU[ilarg
arg:

i

res.

(6, B

BwhN -

N

o~JoO,;m

any array with identically-shaped items.
non-negative scalar indicating the dimension
desired

the shape is the shape of arg with the shape of
the items inserted between the specified
dimensions

A<(1 2 3 4) (5 6 7 8)
pA

TtA
3 4
7 8

t[.514A

1-72 Language Summary

4 Split

Copyright © 1987 STSC, Inc.

Segment an array into a nested array

res<darg orres<i [ilarg

arg: any array

i: non-negative scalar indicating the dimension
desired

res: the contents of arg in which the rank has been
reducted by one by enclosing all items in the
ith dimension into a nested scalar. For
example, if arg is a matrix:

res[1]<«cargll;]
resl2]«<cargl2;]

resCnl<cargln;]

A<3 4p112
A

1 2 3 4
5 6 7 8
9 10 11 12

1A
1234 5678 9 10 11 12

plA
3

DISPLAY 1A
} e . yeelesELR ILRRNAL el]
11 2 3 41 156 7 81 19 10 11 1211
||~ ______ ' B g i ' W i s l|
'E _______________________________ 1]

1[11A
159 2610 37 11 48 12

DISPLAY {I[11A

|owmmmm mmmm- R R A
1115 91 12 6 101 13 7 111 14 8 1211

|'~————' | PR, ' J- ! TRe = ll

1-73 Language Summary

A Numeric
Grade Up

A Character
Grade Up

Copyright © 1987 STSC, Inc.

Return ascending sort order of a numeric

array

res <+ A arg

arg : any numeric non-scalar array

res: the indices of arg that would arrange it in
ascending numeric order

ext: OIO

A<5 2 8
AA

21 3
AlLAA]

2 58

Return ascending sort order of a

character array

res < larg A rarg

larg, rarg : any character non-scalar array

res : the indices of rarg required to arrange rarg in
ascending order where larg specifies the

collating sequences to be used
ext: OIO
'ABC' 4 'CAB'
231

A<3 4p'FOURFIVESIX '

A
FOUR
FIVE
SIX

OAVAA
213

ALOAVAA;]
FIVE
FOUR
SIX

1-74 Language Summary

4 Numeric
Grade Down

4 Character
Grade Down

¢ Reverse

Copyright © 1987 STSC, Inc.

Return descending sort order of a numeric
array

res< Y arg

arg : any numeric non-scalar array

res: the indices of arg required to arrange rarg in

descending numeric order
ext: OIO
A<37 9 18
YA
1 3 2
ALYA]
37 18 9

Return descending sort order of character

array

res < larg ¥ rarg

larg, rarg : any character non-scalar array

res: the indices of rarg required to arrange rarg in
descending order where larg specifies the

collating sequence
ext: OIO
OAV ¥ 'CAB'
1 3 2

Note: B[A4Bl«—->eBL[AYB]

Reverse elements of an array

res < ¢ arg or res < ¢ [i] arg

arg : any array

i non-negative scalar indicating the dimension
desired

res: the items in arg reversed along the ith
dimension default is the last dimension.

ext: OIO

1-75 Language Summary

e Reverse

® Rotate

Copyright © 1987 STSC, Inc.

¢ 'TOVES'
SEVOT

A<3 3p'ABCDEFGHI'
A

ABC

DEF

GHI

CBA
FED
IHG

GHI
DEF
ABC

®A

$[1]A

Note: ¢[1]A «— eA

Reverse elements of an array

res < © arg or res < ©[il arg

arg: any array

i: non-negative scalar indicating the dimension
desired

res : the order of the items in arg are reversed along
the ith dimension. The default is the first
dimension.

ext: OIO

e 3 3p'ABCD'
CDA
DAB
ABC

Note: ¢A <«— o [i]A wherei=ppA (the rank
or the number of dimensions of A).

Rotate elements of an array

res < larg & rarg or res « larg ® [il rarg

res: the items in arg rotated larg places along the
ith dimension (default is last dimension)

ext: OIO

1-76 Language Summary

2 ¢ '"TODAY!
DAYTO

A<3 4p112

2 3 ¢ [2]1A
2 1
7 6
2 11

Note: A¢[1]1B «— AeB
© Rotate Rotate elements of an array

res < larg © rarg or res < larg © Li] rarg
larg : integer scalar or vector of length equal to

chosen dimension of rarg

rarg : any array

i: non-negative scalar indicating the dimension
desired

res . the items in rarg rotated larg places along the
ith dimension. The default is the first
dimension.

1 e 3 3p'ABCD!
DAB
CDA
ABC

Note: A¢B <«— Ae[ilB wherei=ppB (the
rank or number of dimensions of B, 1T 0«1)

Copyright © 1987 STSC, Inc. 1-77 Language Summary

R Transpose Reverse axes of an array
res < Q arg
arg: any array
res: arg with the dimensions interchanged

A<3 4p112
A

2 3 4
6 7 8
10 11 12

RA
9
10
11
12

pA

Ne e, 0o

W N -
O30 O,

pPRA
4 3

R Dyadic Select and optionally re-order axes of an
Transpose array
res < larg ® rarg
larg : positive integer scalar or vector
rarg : any array
res: rarg with the dimensions interchanged in the
order specified by larg
ext: OIO

A<2 3 4p124

pl 3 28A
2 43

01 2 384
23 4

03 2 184
43 2

Copyright © 1987 STSC, Inc. 1-78 Language Summary

/ Replicate
(compress)

- Replicate
(compress)

Copyright © 1987 STSC, Inc.

B<3 4p 'ABCDEFGHIJKL'

11%8&8B
AFK

Replicate items of an array

res < larg / rarg or res «< larg / [i] rarg

larg : positive integer scalar or vector of length
equal to the chosen dimension

rarg . any array

res: eachitem of rarg is replicated the number of
times specified by the corresponding larg
value

ext: OIO

012/ '"JMO'
MO0

A<2 3p'ABCDEF'
A

ABC

DEF

1 2 3/4
ABBCCC
DEEFFF

0 1/[11A
DEF

Note: A/ [OI0]B «— A#B

Replicate items of an array

res «larg # rarg or res « larg # il rarg

larg : non-negative integer scalar or vector with
length equal to first dimension of rarg

rarg . any array

i: non-negative scalar indicating the dimension
desired

res: each item of rarg is replicated the number of
times specified by the corresponding larg
value along the the chosen dimension of rarg.

1-79 Language Summary

\ Expand

X Expand

Copyright © 1987 STSC, Inc.

1 02 # 3 4pr12
3
1
1

O W
QOON

1
1

NN W

1 1

1 1

Note: A/B «— A/ [ilB where
i=ppB(0I0«1)

Expand an array with fill items

res < larg \ rarg or res < larg \ [i] rarg

larg : boolean vector whose sum equals the
length of the chosen dimension of rarg

rarg : any array

i: non-negative scalar indicating the dimension
desired

res: the array rarg expanded by adding an additional
fill item for each corresponding 1 in larg

ext: OIO

00101\N178

00708
A<2 3p'ABCDEF'
A
ABC
DEF
1010 1 0\A
ABC
D EF

Expand an array

res < larg X rarg or res < larg \ [i] rarg

larg : Boolean vector whose sum equals the length
of the chosen dimension of rarg

rarg : any array

res : the array rarg expanded by adding additional
blanks or zeros for each corresponding 1 in
larg along the first dimension of rarg.

A2 3 p 123 456

1-80 Language Summary

RN
13,
o)

101X A
1
0
4

onN
Do w

Note: AXB «—> A\[OIO1B

Type Describers and Modifiers

= Assign Store a value in a variable
name <« arg
name : a variable name
arg : any valid expression that returns a value

V « 15

Vv
12345

NEWNAME<V+2
NEWNAME
34567

[] «Index Modify a subset of an array
Assignment namelidxy;idxy;...]«<arg
name : a variable name
arg : any valid expression that returns a value

V<2 3p16
14

3
6

KGN
N

VI2:2 31«7 8
14

3

8

B
~N N

Copyright © 1987 STSC, Inc. 1-81 Language Summary

€ Type

® Execute

L) Format

Copyright © 1987 STSC, Inc.

The datatype of an array

res— €arg

arg: any array

res: zero for each numeric and blank for each
character element of arg.

€ 10 "A' 20 "B¢

0=€10 'A' 20 'B'
1010

Execute an APL expression

¢ expression Or res « ¢ expression

expression : character scalar or vector

res: the result generated by executing the
expression (see Section 1-10 for more details
on execute)

¢ '2+3!
N<7

'V!',(sN),'<10x1"',3N
V7<10%x17 (string is displayed)

Vi
VALUE ERROR
Vi

A

2'V',(3N),'<10x1'3N
(string is executed)
V7
10 20 30 40 50 60 70

Convert numeric to character

res < ¥ arg

arg : any array

res: arg converted to character representation
ext; DOPP

1-82 Language Summary

L] Pattern
Format

Copyright © 1987 STSC, Inc.

YN

o N

¥ 2 3p1 2 3 4 5 6

3

6
p ¥ 2 3p1 2 3 456
'"REDUNDANT '=3%'REDUNDANT'

p ¥ 123

Convert numeric to character

res < pattern ¥ rarg
pattern : integer scalar or vector of pairs; a single

pair is replicated as with scalar extension.
The first number of each pair specifies the
field width for the column; zero, requests a
field large enough to accommodate the largest
number. The second number specifies the
number of decimal places. If the second
number is negative, the result is fomatted in
exponential notation. A pair of numbers for
each column can specify different formatting
for each column. If only one number is
specified it is assumed to be the number of
decimal places.

rarg : any numeric array

res:

a character representation of arg formatted as
specified by pattern.

1 0% 2 35
235
1 %2365
2.0 3.0 5.0
10416 2 3% 2 3p1L 6
1 2.0 3.00
4 5.0 6.00

1-83 Language Summary

Shape Describers and Modifiers

P Shape

P Reshape

Copyright © 1987 STSC, Inc.

Return shape of an array

res « p arg

arg . any array

res: a vector containing the length of each

dimension of arg

p 235
3

p 2 3 5 p130
235

p 99

pp 99
0

Create an array of specific shape

res < larg p rarg

larg : numeric scalar or vector

rarg : any array

res : the items of rarg selected in order and formed
into the new shape specified by larg. Some
rarg elements may be lost (res will have fewer
items than rarg) or duplicated (res will have
more items than rarg) as needed.

3 p 99
99 99 99
2 4p235
5 2
2 3

2 3p1 1 2p7 8

wnN
g w

[e ol |

[/
8

~J oo

1-84 Language Summary

’ Ravel

9 Catenate

Copyright © 1987 STSC, Inc.

Change an array into a vector

res <+ , arg

arg . any array

res: all the items of arg in the same order as arg,

but as a vector
, 99
99
P, 99
i
,2 4p2 3 5

23528353523

Join two arrays

res < larg , rarg or res < larg , [il rarg

larg, rarg : any arrays of like type and chosen
dimensions (conforming)

i: non-negative scalar indicating the dimension
desired

res: the two arrays are joined along the ith
dimension (default is the last dimension). If i
is fractional, a new dimension is added.

ext: OIO

2346 , 99
2 3 5 99

(2 3p16),2 2p33 333 66666

1 2 3 33 333
4 5 6 66 666

B<'HOW' ,[.51 'NOW'

B
HOW
NOW

'HOw' ,[1.5]1 'NOW'

HN
00
WW

1-85 Language Summary

= Depth
Operators
/ Reduction
operator

Copyright © 1987 STSC, Inc.

Levels of nesting in an array.

res < arg

arg: any array

i: non-negative scalar indicating the dimension
desired

res: the maximum number of times disclose (2)
must be used to extract a simple scalar

=3.3

=1 2 3
1

=11
1

=(1 2).'AB!
2

=cccccl1?2 12
6

=(1 2)(2 3)(3 4)(5 6)
2

Apply a specified function across an

array, reducing its dimensions

res<f/ arg or res<f/[il arg

arg : any array

i non-negative scalar indicating the dimension
desired.

res : the function f is applied progressively across
the array eliminating the ith dimension (the
default is the last dimension) in the process

res[1]«argl1;1] f(arg[1;2].. fargl1;m])
res[2)«arg(2;1] f(argl2;2].. fargl2;m])
res[31«argl(3;1] f(arg(3;2].. farg(3;ml)
reslnl«argln; 1] f(argln;2].. fargln;ml)

ext: OIO

1-86 Language Summary

4 Reduction
Operator

Copyright © 1987 STSC, Inc.

+/ 2 3 5

10
x/ 2 301 2 3 456
6 120
A<2 3 p 123456
A
123
456
x/[21A
6 12
,/'ABC' 'DEF' 'GHI'
ABCDEGFGHI

Apply a function across an array reducing

the number of dimemsions

res<f+arg or res+~f#Lil arg

arg : any array valid for f

i non-negative scalar indicating the dimension
desired.

res: the function f is applied progressively across
the array eliminating the ;" dimension (the
default is the first dimension) in the process

res(1]«argl1;1] f(argl2;1].. fargln;11)
res(2)«argl1;2] f(argl2;2].. fargln;21)
res[31«arg(1;3] f(arg(2;3].. fargln;31)

;;’.;[m]*arg[l;m]f(arg[Z;m]...farg[n;m])
ext: OIO
A<2 3 p 1 2 3 456
A
2 3
56

xtA
10 18

L

x/[11A
4 10 18

1-87 Language Summary

\ Scan Operator

Note: For functions other than scalar primitives,
the general case of reduction is defined for
vectors (recursively) as:

res<< (2arg)f>f/ 1larg

Example:

€/('"AE-")('BUCKWHEAT"')
110

Apply successive reductions to an array

res<f\ arg or res < f\[il arg

res : the cumulative effect of successive
applications of reduction to the it dimension
(the default dimension is the last dimension)
ofarg

resT11+<(f/argl1;11), (f/argl1;1 21)..f/argl1;]
res[21«(f/argl2;11), (f/arg(2;1 21)..flargl2;]

reslnl«(f/argln;11), (f/argln;1 21).. f/argln;]

X Scan Operator

Copyright © 1987 STSC, Inc.

ext: OIO

See Section 1-9 for more information.

+\ 235
2 5 10
x\ 2 301 234568
1 2 6
4 20 120
N1 2 3

1 12 123

Apply a successive reduction to an array

res<fXarg or res+fXxU[il arg

arg : any array valid for f

res : the cumulative effect of successive
applications of reduction to the ith dimension
(the default is the first dimension) of arg

1-88 Language Summary

res[11« (ffargl1;11), (ffargl2;11).. ftargl;11]
res[2]1«(ffargl1;21), (ffargl2;21).. ffargl;2]

reslml < (ftfargl1;ml), (ffargl2:ml).. ffargl1l;m]
ext: OIO

See Section 1-9 for more details

A2 3 p 123456
A

12 3

4 56
xXA

1 2 3

4 10 18
x\[11A4

1 2 6

4 10 18

S+ g Inner Product Generalized Matrix Multiplication

res < larg f . g rarg

larg, rarg : conforming arrays valid for fand g
where last dimension of larg is equal to first
dimension of rarg

res : the application of function g between
elements of the last dimension of /arg and
corresponding elements of the first dimension
of rarg followed by reducing the result using
function f. The shape of res is
(T1iplarg), 1l prarg If largisnbyk,
and rarg is k by m, then the res is:

res(1;11«<(f/largl1;]1 grargl;11)
res[1;21«(f/largl1;] grarg(;21)

res[2;11«<(f/largl2 ;] grarg[;11)

res[1;ml«(f/largl1;] grargl;ml)

Copyright © 1987 STSC, Inc. 1-89 Language Summary

resln; 11« (f/largln;1 grargl;11)
resln;ml<(f/largln;] grargl;ml)

Note: For functions other than scalar primitives,
inner product is defined only for vectors:

res < f] larg g arg

235 +.x23%5
38

'SPORT'+.="SHOUT'
3

(3 3p'ABCDEFGHI')A.="DEF'
010

M<2 3p16 ¢ N«<3 4p112
M+ . xN (matrix multiplication)
38 44 50 56
83 98 113 128

NA.=8N
100
010
0 01
"BUCKWHEAT GROATS'+.€'AEIOU'
5

°, f Outer Product Apply function between every item of two

arrays

res« larg ° .f rarg

larg, rarg . any arrays valid for f

res : if f produces a result, res is an array of size ((p
larg), p rarg) consisting of the result from
applying f between each combination of larg
and rarg items

If f does not produce a result, then °f will not
return a result.

Copyright © 1987 STSC, Inc. 1-90 Language Summary

f “ Each

Copyright © 1987 STSC, Inc.

2385 .»0123
1 2 4 8
1 3 9 27
1 5§ 25 125
12 3 4-5.-5.[-1.2.3-4:5
12345
2 2 3495
333435
4 4 4 45
55555
'ABC' -.= 'ABC'
100
0.1 0
0 01
'1ABC' ., '01°
A0 A1l
B0 B1
Co C1

Apply a function to each item

res< [arg or largf rarg

rarg : any array with items valid for f

larg: any array with items valid, if any, for f
(optional) -

res: the collection of all results (each result is a
single nested scalar) from applying f to each
item of arg one at a time

A<1 2 3p"4 5 6
A

4 55 6 6 6
pA

This example reads the first five components
of a file. :

0«<TN«<99, 15
99 1 .99 .2 99,399 4 99 &

oIN

1-91 Language Summary

DISPLAY TN

1199 11199 21199 31199 41199 51|
¥V Vingusran i ¥ Voo e N g ananion pupopasmsins § ® agman ¥ l
'f _____________________________ 1

FILE<OFREAD"TN

Copyright © 1987 STSC, Inc. 1-92 Language Summary

) COMMANDS

Chapter 2
System Commands

System commands are instructions to the APL system rather than
facilities of the APL language interpreter. System commands all
begin with a right parenthesis,), to distinguish them from APL
language statements. The commands are listed below by type.

» Active Workspace Environment

JENS
JHELP
JRESET
)SI

)SIC
)SINL
)SYMBOLS
YVARS
YWSID

Display function names

Display online documentation

Clear state indicator

Display state indicator

Clear state indicator

Display state indicator showing local names
Display (or change) size of the symbol table
Display variable names

Display (or change) workspace name

» Workspace and File Management

JCLEAR
)DROP

Clear active workspace
Delete a saved workspace

JFILEHELPER Help gain access to a file

YFLIB
JLIB
YLOAD
JPSAVE
)SAVE
JWSLIB
YXLOAD

* Object Manipulation
)
)COPY
YEDIT
JERASE
JPCOPY

Copyright © 1987 STSC, Inc.

Display list of component files

Display list of all files

Load a saved workspace

Protected save of a workspace

Save active workspace

Display list of workspaces

Load a workspace without executing OL X

Recall previous APL statements

Copy from a saved workspace

Edit an object with full-screen editor
Erase objects in active workspace
Protected copy from a saved workspace

2-1 System Commands

« Operating Environment

)CMD Execute DCL command

JLIBS Display library to directory correspondence
JOFF End APL session

JPORTS List active users and ports

2-1 System Commands vs. System Functions

Some system functions and system variables provide basically the
same capabilities as system commands; however these general
differences should be noted:

 System variables can be referenced or assigned; system functions
usually have arguments, even if empty. System commands report
the current value; those that take an argument reset the value.

 System variables and system functions can be used in an APL
statement as part of a defined function; system commands cannot.

Results from system functions and variables can be captured by
assignment to a variable; output from system commands cannot.

2-2 System Command Reference

Note:

On the following pages, all of the system commands are listed in
alphabetical order and are discussed in detail. Each description contains
the system command's name, purpose, syntax, arguments, and effect.
One or more examples are also provided for clarity.

Many of the system commands have workspace identifiers or file
identifiers as arguments. They are referred to in the syntax as wsid
and fileid, respectively.

A valid identifier consists of a workspace or file name preceded by a
directory name. A directory name follows the operating system's
convention and may also include a disk or network node identifier. For
example, the following are valid workspace or file identifiers.

Copyright © 1987 STSC, Inc. 2-2 System Commands

MYWORK

[LAPL.REL11DATES
[LSTUARTITEMPWS

$DISK1: [APL.WSITEMPWS
LABVAX1::$DD01: [USER1IUTIL

If the directory name is omitted, the current default directory is used.

To provide compatibility with other APL*PLUS Systems in a variety
of operating systems, this APL *PLUS System also supports library
mode. In library mode, a valid identifier consists of the workspace
name optionally preceded by a valid library number. For example:

TEMPWS
101 DATES

The connection between library numbers and operating system
directories are made with 0L I BD and reported with) LT BS or
OLIBS. The system is in directory mode by default unless LI BD
is used to assign a library number to a directory. At that point the
system is in library mode until all library-to-directory correspondences
are removed. OL I BD is also used to disolve a library-to-directory
assignment.

The APL*PLUS System is in either directory mode or library mode.
Some commands that are valid in directory mode will give
INCORRECT COMMAND messages in library mode and vice
versa. The definitive test for library mode is that 0L I B S has at least

one entry:
0#1tpOLIBS

Workspace and file names themselves (not the directory or library
prefix) are limited to a maximum length of eleven characters. Names
must be composed entirely of alphabetic letters (A-Z, a-z) and digits
(0-9). The first character of the name must be a letter.

Copyright © 1987 STSC, Inc. 2-3 System Commands

Recall Previous APL Statement)

Purpose: Recall previous nonblank APL statement entered in immediate
execution mode for re-use after editing.

Syntax:)
Effect: Recalls the previous line and displays it on the screen. The line

can then be edited in the same manner as though it had just been
typed in. When you press Enter, the current form of the line is

executed.
Examples: 123+ 45

LENGTH ERROR
123+ 4658
A A
) (Recall last line, cursor at end.
1 2 3 + 4 5_ Typeaspace and a 6, making it:
1 2 3 + 4 5 6 andthen press Enter.)

57 8

Copyright © 1987 STSC, Inc. 2-5 System Commands

Clear Active Workspace JCLEAR

Purpose:

Syntax:

Argument:

Effect:

Example:

Clear the active workspace.

YCLEAR
YCLEAR wssize

wssize new workspace size in bytes

wssize must be an integer number greater than 8192, but smaller
than the operating system limit.

Discards the contents of the active workspace and resets the
workspace-related system variables to their default values. (See
Chapter 3 for the default values).

File ties and session-related system variables are unaffected by the
) CLE AR operation.

The new size of the workspace may be larger or smaller than the
present workspace size. If the workspace size requested exceeds the
system configuration limit, the message INSUFFICIENT
SPACE FOR WS isdisplayed and the workspace is cleared, but
the workspace size is not changed.

The workspace can be cleared under program control by using:
O0SA<'CLEAR' ¢ =~

JWSID
IS EXAMPLE

OWSSIZE,OWA
150000 116090

0PW«<56
0I0<0

Copyright © 1987 STSC, Inc. 2-6 System Commands

YVARS

JCLEAR 250000

A B
F G
CLEAR WS
YVARS
JWSID
IS CLEAR WS
OPw
56
0Io0
1
OWSSIZE
250000

Copyright © 1987 STSC, Inc.

c
H

2-7

DAY
I

E

(The variables are deleted.)

(EXAMPLE is deleted.)

(Session-related system
variables remain.)

(Workspace-related system
variables have been reset.)

System Commands

Execute DCL Command JCMD

Purpose: Execute a VMS DCL command.

Syntax:)CMD
)CMD command

Argument: command DCL command to be executed

Effect: Temporarily exits APL (the contents of the workspace are
preserved) and allows access to the operating system.

If command is not specified, you are in the operating system and
may enter as many operating system commands as you wish.
Logof£ £ returns you to the APL session.

If command is specified, APL is again temporarily exited, but this
time the operating system command is executed and control
immediately passes back to APL.

The APL terminal exit string, if any, is written to the terminal
before any non-APL output is produced, and the APL initialization
string is written when control returns to APL. Output produced by
the operating system is not part of the APL session; it cannot be
scrolled back once it has disappeared from the terminal screen, and
it will vanish if you press the Refresh key.

0CM D provides a similar capability and can be used under program
control. In addition, DCMD can be used to capture the output

generated by the DCL command.
Examples:)CMD (Leave APL.)
type log to return to apl
$ show def
$DISK1: [MYERS]
$ log (Return to APL. Press

Refresh key to restore screen.)
YCMD SHOW TIME
31-AUG-1987 10:44:36
2+2 (Still in APL.)

Copyright © 1987 STSC, Inc. 2-8 System Commands

Copy from Saved Workspace YCOPY

Purpose:

Syntax:

Arguments:

Effect:

Copy APL functions and variables from a saved workspace to the
active workspace.

)COPY wsid
) COPY wsid objlist

wsid workspace identifier (see section 2-2)
objlist list of functions or variables to be copied

Copies objects from the saved workspace (wsid) into the active
workspace and displays a SAVE D message with the time and date
that wsid was saved. Identically named objects already in the active
workspace will be replaced.

If objlist is not specified, all APL variables and functions in the
saved workspace are copied into the active workspace.

If copying cannot be completed because an object is too large to fit
into the active workspace,a NOT COPIED: message is
displayed along with the names of the objects that could not be
copied. If an object is not found in the specified workspace, a
message NOT FOUND: isdisplayed along with the names of
the objects that could not be found. In both cases, copying
continues with the remaining objects in the list.

If the free space in the active workspace is insufficient for the copy
process, one of the following messages may be displayed:

WS FULL
WS TOO LARGE

If) COPY is unable to create a temporary file used in the copy
process, one of the following mesages may be displayed:

CANNOT CREATE TEMPORARY COPY FILE
ERROR WRITING TEMPORARY COPY FILE

Copying a function copies only the source form of the function;
any intermediate code normally saved to improve that function's

Copyright © 1987 STSC, Inc. 2-9 System Commands

performance is not copied. All 0STOP and OTRACE settings in
effect for a copied function are also discarded during the copy
process.

OCOPY provides a similar capability and can be used under
program control.

Example: MATRIX
VALUE ERROR
MATRIX
A

)ST
THREEL7]*

JCOPY OTHERWS ONE TWO THREE FOUR
SAVED 14:19:10 07/02/85
NOT COPIED: TWO
NOT FOUND: FOUR

Copyright © 1987 STSC, Inc. 2-10 System Commands

Delete a Saved Workspace JDROP

Purpose: Erase a saved workspace from disk storage.
Syntax: JDROP wsid
Argument: wsid workspace identifier (see section 2-2)

Effect: Deletes the named workspace (wsid) from storage and displays the
timestamp of the operation. The active workspace is not affected.

If the workspace does not exist you receivea WS NOT FOUND
message. If you do not have permission from the operating system
to delete this file,a WS ACCESS ERROR is displayed. If
the library number is undefined (see 0L I B S), the message
LIBRARY NOT FOUND isdisplayed.

The combined use of ONTIE and ONERASE provide the same
capability and can be used under program control.

Examples: JDROP TEMPWS
12:17:13 05/25/87
(In directory mode.)
JDROP [JGW.WSSIOLDWS
10:50:51 05/24/87
(In library mode.)

JDROP 101 OLDWS
10:50:51 05/24/87

Copyright © 1987 STSC, Inc. 2-11 System Commands

Edit Object with Full-Screen Editor JEDIT

Purpose:
Syntax:
Argument:

Effect:

Examples:

Modify or create a function or character variable.
YEDIT object
object name of the function or character variable to be edited

Activates the full-screen editor with a new copy of the contents of
the named object as an image in the edit ring. If the object exists,
it must either be an unlocked function or a simple character
variable whose rank is two or less (a vector or matrix). If no
object with the specified name exists, it is assumed to be the name
of a new function to be created.

The) EDIT command can only be used from immediate execution
mode. Attempts to use it from O or function definition mode
producesa NOT IN DEFN OR QUAD message.

The system function OE DIT and special keyboard keystrokes
provide a similar capability. OEDIT can be used under program
control.

For details on the use of the full-screen editor, see Chapter 2 of the
APL *PLUS System User’s Manual.

YEDIT CUSTOMERLIST
YEDIT PROGRAM

Copyright © 1987 STSC, Inc. 2-12 System Commands

Erase Objects in Workspace JERASE

Purpose: Erase functions and variables from the active workspace.
Syntax:)ERASE objlist
Argument: objlist list of functions or variables to be erased

Effect: Erases the specified objects from the active workspace. If any of
them cannot be erased, the system displays the message NOT
ERASED: followed by the names of the objects that were not
erased.

Functions that are suspended or pending can be erased, but the
storage they occupy will not be reclaimed until execution is
completed or the stack is cleared (see) SIC)

OEX and OERASE provide a similar capability and can be used
under program control.

Examples: JERASE JANDATA TRIALFN NOSUCH
NOT ERASED: NOSUCH

Copyright © 1987 STSC, Inc. 2-13 System Commands

Help Gain Access to a File JFILEHELPER

Purpose:

Syntax:

Effect:

Examples:

Allow access to a file without adherance to passnumber or access
matrix constraints. Useful when you are accidentally locked out of
a file.

YFILEHELPER fileid

Discards the access matrix for the file specified by fileid.
OFHIST information is updated and you are reflected as the
current owner of the file and the last person to change the access
matrix. You must be the owner of the file at the VMS level in
ordertouse)FILEHELPER.

'"LOCKEDFILE' OFSTIE 1
FILE ACCESS ERROR

JFILEHELPER LOCKEDFILE
'"LOCKEDFILE' OFSTIE 1 (Now works.)

Copyright © 1987 STSC, Inc. 2-14 System Commands

Display File Library List JFLIB

Purpose: List the names of the APL component files in a library or
directory.
Syntax: YFLIB
)JFLIB dir
YFLIB lib
Arguments: dr directory to be searched
lib library number of the directory to be searched
Effect: Lists all component files stored in the specified directory or library,

even if the user has no access to them. If no library number or
directory name is specified, the current working directory is
searched.

A directory name (dir) can be specified even when the system is in
library mode. A library number (/ib) can only be used when in
library mode.

OFLI B provides a similar capability and can be used under
program contro].

Examples: JFLIB
DATEBOOK TAXDATA

OLIBD '213 [APL.WS1'
JFLIB 213
ORACLE REPORTS

JFLIB [APL.REL1]
DATES INPUT SERXFER

Copyright © 1987 STSC, Inc. 2-15 System Commands

Display Function Names JENS

Purpose:

Syntax:

Argument:

Effect:

Examples:

List the names of all user-defined functions in the active

workspace.

JFNS
YENS start
start starting letter or character string

Displays a list, in alphabetic order, of the user-defined functions in
the active workspace. Specifying the optional start string begins
the list with the functions whose names are alphabetically equal or
subsequent to the start string.

ONL and 0IDLIST provide a similar capability and can be used
under program control.

JFNS
ADDITEM PROCESS TOTALSBYMONTH
CHANGE RANGECHECK
FILEUPDATE RESTART
JENS P
PROCESS RESTART

RANGECHECK TOTALSBYMONTH

Copyright © 1987 STSC, Inc. 2-16 System Commands

Online Documentation JHELP

Purpose:

Syntax:

Effect:

Examples:

Provide information on the editing commands available in the
full-screen editor.

JHELP

Displays the contents of the editor help file on the screen. The
default help file HELP . HL P provided with the system contains a
summary of the editing commands available for the terminal
chosen when APL was loaded. A different help file may be used,
depending on the type of terminal being used.

If the file contains more lines than can be displayed at once, the
user can browse through the file by using the U and D keys to
move up and down through the file. The help screen remains
active until the user presses the Q key.

A different file can be used as the help file if specified by the APL
session parameter he1p=. See Chapter 1 in the APL *PLUS
System User’s Manual.

JHELP (The system displays the contents
of the Help file.)

Copyright © 1987 STSC, Inc. 2-17 System Commands

Display File and Workspace Libraries JLIB

Purpose: List every workspace and file (including native files) in a library.
Syntax: JLIB

JLIB dir

JLIB lib
Arguments: dr directory to be searched

lib library number where files and workspaces are located
Effect: Lists the files stored in the specified directory. If no directory is

specified, the files in the current working directory are listed.

The APL *PLUS System uses extension . WS for saved APL
workspaces and . VF for APL component files.

A directory name (dir) can be specified even when the system is in
library mode. A library number (/ibno) can only be used when in

library mode.
OLI B provides a similar capability and can be used under program
control. '
Examples: J)LIB
DATES.WS TEST.VF
(Switch to library mode.)
OLIBD '123 [APL.WS1'
J)LIB 123
JUNK.VF TEST.WS
(Search another directory.)
JLIB [APL.REL1]
ADDSUB.C DEMO.WS MOVEFILE.WS
APL FORMAT .WS XDEMO.VF

CORE MAKEFILE

Copyright © 1987 STSC, Inc. 2-18 System Commands

Library to Directory Correspondences JLIBS

Purpose:

Syntax:

Effect:

Examples:

Display the definitions of the APL libraries in use during this
session.

JLIBS

Displays the APL library definitions in use during this session.

For an explanation of APL libraries, see the APL #*PLUS System
User’s Manual. If there is no output from) LI B S (indicating that
no library numbers are defined), then APL is in directory mode.
Library numbers cannot be used when APL is in directory mode.

If any library numbers have been assigned to directory names, then
APL is in library mode, and) LT B S will list the library-to-
directory correspondences. When APL is in library mode, library
numbers can be used as a substitute for the directory name.

0L I BS provides a similar capability and can be used under
program control.

JLIBS (Directory mode; no libraries defined.)
)LTBS (Library mode.)
666 [APL.OLD] 11 [STSC.UTIL]

1 [GROUP.DIR] 12345678 [APL.WS]

Copyright © 1987 STSC, Inc. 2-19 System Commands

Load a Saved Workspace JLOAD

Purpose:

Syntax:
Argument:

Effect:

Activate a saved workspace by replacing the current workspace with
a copy of a workspace stored on disk.

YLOAD wsid
wsid workspace identifier

Replaces the active workspace with a copy of the specified saved
workspace (wsid) and displays the time and date that the workspace
was saved. Once loaded, the latent expression (0L X) is
automatically executed. In a workspace saved with a non-empty
state indicator, DLX could be a localized latent expression.

The workspace can be in any directory. If a directory is not
specified, the current directory is assumed. If the specified
workspace is not located in the specified directory, the system
displaysa WS NOT FOUND message. If you do not have read
privilege for the file that contains the saved workspace, the system
displaysa HOST ACCESS ERROR. If you load a workspace
that was saved by a previous version of APL, you may see the
message '

OBSOLETE WS STRUCTURE UPDATED.
PLEASE RESAVE WS

This means that APL has automatically updated the active
workspace to accommodate changes to the workspace structure
needed for the new version.

If you attempt to load a workspace when the version of APL you
are running is older than the version used to save the workspace,
the message INCOMPATIBLE WS isdisplayed and the

workspace is not loaded.

File ties and session-related system variables are not affected by the
) LOAD operation.

OLOAD provides the same capability and can be used under
program control.

Copyright © 1987 STSC, Inc. 2-20 System Commands

Examples: JLOAD [APL.REL1]SCRT (Directory mode.)
[APL.REL11SCRT SAVED 14:53:17 05/14/87

JLOAD STARTWS
STARTWS SAVED 17:20:42 03/17/87
CORPORATE FORECASTING SYSTEM READY
FILES LAST USED ON 8/15/1987 AT 5:35

PM
NEW, MODIFY, DELETE, END [N,M,D,E]l:

OLIBD '123 [APL.WS1'! (Library mode.)

JLOAD 123 FREQ
123 FREQ SAVED 11:15:59 01/20/59

Copyright © 1987 STSC, Inc. 2-21 System Commands

End APL Session JOFF

Purpose: End the current APL session.
Syntax:)OFF
Effect: Terminates an APL session and returns you to the operating

system. The contents of the active workspace are not preserved and
any files that were tied are automatically untied.

0SA provides a similar capability and can be used under program
control (OSA«<'QFF' ¢ -).

Examples:)OFF

Copyright © 1987 STSC, Inc. 2-22 System Commands

Protected Copy JPCOPY

Purpose:

Syntax:

Arguments:

Effect:

Examples:

Copy APL functions and variables from a saved workspace into the
active workspace provided the copy does not replace any objects in
the active workspace.

YPCOPY wsid
) PCOPY wsid objlist

wsid workspace from which to copy (see section 2-2)
objlist list of functions or variables to copy

Copies objects from the saved workspace (wsid) into the active
workspace and displays a SAVE D message.

Objects that do not exist in the saved workspace will be listed after
a NOT FOUND: message. If no objects are specified (objlist

is omitted), then all variables and functions are copied. Identically
named objects already in the active workspace will not be replaced.

Objects that were found but not copied are flagged witha NOT
COPIED message. This could be due to the workspace
containing an existing object by the same name or insufficient
space in the workspace to store the object. Copying continues
with the remaining objects on the list.

YVARS
SIX THREE

JPCOPY OTHERWS ONE TWO THREE
SAVED 14:19:10 07/02/85
NOT COPIED: THREE

JVARS
ONE SIX THREE TWO

Copyright © 1987 STSC, Inc. 2-23 System Commands

List Active Users and Ports JPORTS

Purpose: List users signed on to the operating system and the port numbers
to which they are attached.

Syntax: JPORTS

Effect: Lists the users presently logged on to the VMS operating system

and which ports they are using. All active users are listed, whether
or not they are presently using APL. The information reported is
derived from the VMS command show users.

Examples: JPORTS
STUART:TXAOQ SYSTEM LLG:TXA6
MRVN:TXA3 MLO:TXA4 RIK:TXAS
JGW:TXA9 LINDA:TXAS8

Copyright © 1987 STSC, Inc. 2-24 System Commands

Protected Save of a Workspace JPSAVE

Purpose:

Syntax:

Argument:

Effect:

Example s:

Save a copy of the current workspace on disk under the specified
name only if the workspace does not already exist.

JPSAVE
YPSAVE wsid

wsid workspace identifier (see section 2-2)

wsid is optional and, if omitted, the name of the active workspace
is used.

Creates a new file on disk containing the active workspace with a
name of "wsid.wS". If the directory name or library name is
included the workspace, the workspace is saved in the specified
directory. Otherwise, it is saved in the current directory.

) PSAVE changes the name of the active workspace (OW SI D) to
match that of the new saved workspace and updates the values of
OWSTS and OWSOWNER.

If you attempt to) PSAVE a workspace that already exists in the
specified library or directory, the system will generatea WS
NAME ERROR message.

) PSAVE is a more restrictive variant of) SAVE.

JWSLIB
ACCOUNT MAILBOX

JPSAVE PRINTFILE
19.16.34 12/14/86

JWSLIB
ACCOUNT MAILBOX PRINTFILE

JPSAVE PRINTFILE
WS NAME ERROR

Copyright © 1987 STSC, Inc. 2-25 System Commands

Clear State Indicator JRESET
Purpose: Clear the state indicator of the active workspace.
Syntax: JRESET
JRESET n
Argument: n number of suspensions to clear from the state indicator
Effect: Clears the state indicator completely, as opposed to - which clears
only the most recent suspension.
If n is specified, the state indicator is cleared for n suspensions.
[0S A provides a similar capability and can be used under program
control (0SA«'RESET").
Examples:)ST
SUBFN[61]*
STARTUP[2]
SUBFN[5] *
STARTUPI[2]
SUBFN[41+ .
STARTUPI[2] (Two functions are suspended.)
-0
ST
SUBFN[5]*
STARTUPI[2]
SUBFN[4]~
STARTUPI([2] (One suspension has been cleared.)
JRESET
)SI (All functions have been cleared.)

Copyright © 1987 STSC, Inc.

2-26 System Commands

Save the Active Workspace)SAVE

Purpose: Save a copy of the active workspace on disk under the specified
name.

Syntax:)SAVE
) SAVE wsid

Argument: wsid workspace identifier (see section 2-2)

Effect: Creates a copy of the active workspace as a file on disk with a
name of "wsid . WS". If the directory name or library number is
also supplied, the file is saved in the specified directory, otherwise
it is saved in the current directory.

If no wsid is given, the system uses the current active workspace
identification (OW S I D), including its library number or directory
name. You cannot save a clear workspace; you must first name it.

If wsid is different from the workspace name,) SAVE changes the
name of the workspace (OW S I D) to match that of the saved
workspace. If the current workspace name is different from wsid
and a workspace is already saved on disk with a name of wsid, a
NOT SAVED THIS WS IS... messageisdisplayed. If
the save is successful, OWSID, OWSTS,and OWSOWNER are
updated to match that of the saved workspace.

For maximum safety during the) SAVE operation, the new
workspace file is first built as a temporary file
WSSAV.TMPWS.WS. After the entire workspace is
successfully saved in the temporary file, the old workspace file is
erased and the temporary file is renamed. If a disk error or system
crash occurs during the save process, the original version of the
saved workspace remains intact on the disk.

OSAVE provides a similar capability and can be used under
program control.

Copyright © 1987 STSC, Inc. 2-27 System Commands

Examples: JWSLIB
MAINTGAME TEST

JWSID
IS MAINTGAME

)SAVE
MAINTGAME SAVED 11:03:56 08/05/87

)SAVE PRODGAMES
PRODGAMES SAVED 11:53:14 08/05/87

JWSLIB
MAINTGAME TEST PRODGAMES

Copyright © 1987 STSC, Inc. 2-28 System Commands

Display State Indicator)ST

Purpose: Display the state indicator of the active workspace, showing which
functions are pendent or suspended.

Syntax:)ST

Effect: Displays the state indicator starting with the most recent entry.

The state indicator includes the status of suspended and pendent
functions, executes (¢), and evaluated input (0) calls. The list
shows the name of the function and the number of the statement at
which execution was suspended.

0 ST provides the same capability under program control.

Example:)ST
SUBFNL71~*
REPORTI[3]
SUBFNL[71~*
STARTUPI[111]
[

Copyright © 1987 STSC, Inc. 2-29 System Commands

Clear State Indicator)SIC

Purpose: Clear the state indicator of the active workspace.
Syntax:)SIC
Effect: Clears the state indicator completely, as opposed to = which clears

only the most recent suspension. The system command
YRESET performs the same functionas) SIC.

[0S A provides a similar capability and can be used under program
control (0SA«'RESET").

Examples:)ST
SUBFNI[6] *
STARTUPI[2]
SUBFNL[51x*
STARTUPI[2]
SUBFN[41]~*

STARTUPI[2] (There are three suspended function
executions.)

)ST
SUBFNL[5] *
STARTUPL2]
SUBFNL[41~

STARTUPI[2] (Only the topmost suspension,
SUBFN [61, has been cleared.)
)SIC

)ST
(The state indicator is empty. All
suspensions have been cleared.)

Copyright © 1987 STSC, Inc. 2-30 System Commands

Display State Indicator
With Names Localized)SINL

Purpose: Display the state indicator of the active workspace, showing which
functions are pendent or suspended and which names are localized
within each function.

Syntax:)SINL

Effect: Displays the same information as) ST with the addition of
localized names at each level of the stack.

Example: JCOPY UTILITY SUBFN
SI DAMAGE
SAVED 13:03:11 05/7/10/87
)SINL

SUBFN[~11+ L1 L2 X OIO
REPORT[™1]1 X Y OELX
SUBFN[~11* L1 L2 X OIO

STARTUPL ™11 RESULT MORE DONE

Copyright © 1987 STSC, Inc. 2-31 System Commands

Workspace Symbols JSYMBOLS

Purpose: Display and optionally change the number of symbol table entries
for which there is space reserved in the active workspace.

Syntax:)SYMBOLS
)SYMBOLS n
Argument: n maximum number of objects allowed in the symbol table

n must be a positive integer greater than 16 or the number of
symbols currently in use, whichever is larger.

Effect: Used alone,) SYMBOLS reports the maximum number of entries
possible in the symbol table of the active workspace and the
number in use.

When 7 is provided,) SYMBOL S resets the symbol table size to
the specified number of entries.

In this APL *PLUS System, the symbol table can be enlarged or
reduced at any time, not just in a clear workspace. In addition, the
system automatically enlarges the symbol table when additional
symbol space is required.

O0SYMB provides the same reporting capability and can be used
under program control.

Example: JCLEAR
CLEAR WS

)SYMBOLS
IS 500; 0 IN USE

A<B<C+5
)SYMBOLS
IS 500; 3 IN USE

)SYMBOLS 1024
WAS 500

Copyright © 1987 STSC, Inc. 2-32 System Commands

Display Variable Names JVARS

Purpose: List the names of the variables in the active workspace.
Syntax: YVARS
YVARS start

Argument: sart starting letter or character string

Effect: Displays a list, in alphabetic order, of the variables currently in the
local environment of the active workspace. Specifying the
optional start string begins the list with variables whose names are
alphabetically equal or subsequent to the start string.

ONL and OIDLIST provide a similar capability and can be used

under program control.
Examples: A<l 0 B«<2 O (C«3 ¢ D<4
YVARS
A B (o D
YVARS C
(o D

Copyright © 1987 STSC, Inc. 2-33 System Commands

Workspace Identification J)WSID

Purpose:

Syntax:

Argument:

Effect:

Examples:

Display or reset the name associated with the active workspace.

JWSID
YWSID wsid

wsid workspace identifier (see section 2-2)
Displays the workspace identification without changing it.

When used with wsid,) WS I D sets the name of the active
workspace to the workspace identification provided.

OW S ID provides a similar capability and can be used under
program control.

YWSID
IS [APL.REL11MYWS

JWSID TUESDAY
WAS [APL.REL11MYWS

Copyright © 1987 STSC, Inc. 2-34 System Commands

Display List of Workspaces JWSLIB

Purpose: List the names of the workspaces in a library or directory.
Syntax: JWSLIB
YWSLIB dir
YWSLIBlib
Arguments: dr directory name
lib library number
Effect: Lists the workspaces in either the specified directory (dir) or library

(lib) or the user's default directory. The workspaces are listed in
alphabetic order. If lib or dir is omitted, your current default
directory is assumed.

OW SL I B provides a similar capability and can be used under
program control.

Examples: JWSLIB
GAMES MONTHS UTILITY

: JWSLIB [APL.REL1]
DATES

(Change to library mode.)
OLIBD '105 [APL.WS1!

JWSLIB 105
GRAPH PRINT

Copyright © 1987 STSC, Inc. 2-35 System Commands

Load a Workspace, Suppressing

Execution of the Latent Expression JXLOAD
Purpose: Retrieve a saved workspace without executing its latent expression.
Syntax: YXLOAD wsid

Argument: wsid workspace identifier (see section 2-2)

Effect: Replaces the active workspace with the specified saved workspace
and displays the time and date that the workspace was saved, but
does not execute the latent expression (0L X). In a workspace
saved with a non-empty state indicator, 0L X could be a localized
latent expression.

If the specified workspace is not located, the system displays a
WS NOT FOUND message.

File ties and session-related system variables are not affected by the
) XLOAD operation.

The system function 0XLOAD provides the same capability and
can be used under program control.

Caution: In this APL*PLUS System, anyone can) XL0OAD a workspace.
Other APL *PLUS Systems and future versions of this system
may restrict use of) XLOAD to the workspace owner.

Example: YXLOAD MYWS
SAVED 10:26:22 13/11/86
OLx
'"BOO HOO' (Did not execute 0L X.)

Copyright © 1987 STSC, Inc. 2-36 System Commands

UJFNS, [JVARS

Chapter 3

System Functions, Variables, and Constants

O0DM
O0IDLIST
OIDLOC
010

0SI
OSYMB

OCOPY
OLIB
OLIBD
OLIBS
OLOAD
OPCOPY

OCR
OCRL
OCRLPC
ODEF
ODEFL
ODR
OEDIT
OERASE
0EX
OFI

Copyright © 1987 STSC, Inc.

» Workspace Information (active workspace)

OWA
OWSID
OWSOWNER
OWSSIZE
OwWSTS

* Workspace and File Management

OPSAVE
O0QLOAD
OSAVE
OWSLIB
OXLOAD

* Function/Object Information and Manipulation

OFMT
OFX
OLOCK
OMF
ONC
ONL
OSIZE
0ss
ovI
Ove

3-1

This chapter describes in detail each of the system functions, system
variables, and system constants in the APL*PLUS System. Their
names always begin with a quad (0) symbol so that you can easily
recognize them (thatis, ILOAD and OAV). System functions,
variables, and constants are features that are always available in any
workspace. They are listed below by type.

System Functions

» Execution Related

« Native File Functions

Copyright © 1987 STSC, Inc.

OALX OLC
ODL OLX
0DM OSA
OELX O0ST
OERROR O0STOP
0Io OTRACE

» Component File Functions
OFAPPEND OFRDCI
OFAVAIL OFREAD
OFCREATE OFRENAME
OFDROP OFREPLACE
OFDUP OFRESIZE
OFERASE OFSIZE
OFHIST OFSTAC
OFHOLD OFSTIE
OFLIB OFTIE
OFNAMES OFUNTIE
OFNUMS OLIBD
OFRDAC OLIBS
OLIBS ONREAD
ONAPPEND ONRENAME
ONCREATE ONREPLACE
ONERASE - ONSIZE
ONNAMES ONSTAC
ONNUMS ONTIE
ONRDAC ONUNTIE

* Input/Output Management
OARBIN OPP
OARBOUT OPR
OCURSOR OPW
OEDIT OWGET
OINKEY OWINDOW
OPFKEY OWPUT

« Interface to Operating System and Non-APL Programs
OCHDIR ONA
OCMD O0XPn
ODR

32

System Functions

« Other Functions

OAI OTCESC
OAV OTCFF
ocT OTCLF
ORL OTCNL
0SYSID O0TCNUL
OSYSVER aors
OTCBEL OuL
OTCBS OUSERID
OTCDEL

3-1 System Functions

System functions share many of the properties of APL primitive
functions:

» They are always available for use in any workspace.

« They can be incorporated into user-defined functions.

» Some have both monadic and dyadic definitions.

Most return an explicit result that can be used in subsequent
operations.

System functions can be niladic (no arguments), monadic
(1 argument), dyadic (2 arguments), or ambivalent (1 or 2 arguments).
Typically, they.

« provide information about the session, the active workspace, and the
objects in it

« retrieve other objects or workspaces
» assist in debugging programs

» produce an effect on or indicate the status of the relevant
environment

« provide access to files

« provide an interface to the operating system or non-APL programs.

Copyright © 1987 STSC, Inc. 3-3 System Functions

3-2 System Variables

System variables, a special class of APL variables, are used to manage
the interaction between the APL processor and the active workspace.

System variables provide a means of holding information that you,
your programs, or the system can always find in any workspace. To
you, system variables behave like ordinary variables with some
restrictions on domain and shape; to the system, they are a set of
parameters controlling the interface with you.

System variables are always available. You cannot erase or copy
them. You can reference them, assign values to them, and localize
them in functions. They are similar to other localized variables in
functions except in the following respects:

» Names of system variables cannot be used as function names or as
names of labels, arguments, or the results.

« When a session-related system variable is no longer shadowed (upon
returning from function execution or loading a workspace), it takes
on the global value associated with the session.

» When execution depends upon a system variable that is localized but
has no assigned value, it assumes the value that the variable had at a
previous level. This is referred to as pass-through localization.

System variables are classified as session-related or workspace-related.
Session-related system variables are not saved with any workspace
except where they are localized in pendent or executing functions. No
primitive functions depend upon the values of these variables.
Workspace-related system variables are stored with the workspace and,
therefore, may change value aftera) LOAD or DLOAD.

Session-Related Variables

The default value of session-related system variables is established at
the start of each APL session and remains in effect until a new value is
assigned. Loading a workspace does not affect the global value of
these variables for the session. The value of a localized session
variable temporarily supersedes the global value. When a
session-related system variable is no longer shadowed (upon return

Copyright © 1987 STSC, Inc. 3-4 System Functions

from function execution), the variable takes on the global value
associated with the session. The following table summarizes
session-related system variables.

Session-Related System Variables

Acceptable Default

Name Meaning Values Value
OWINDOW Terminal window Not 0 0 24 80
size and location assignable
OPW Printing Width An integer 80
from30
through 255

OCURSOR Cursor location Any screen 0 0
position

Workspace-Related Variables

Workspace-related system variables are stored with the workspace and
are possibly altered whenever a workspace is loaded. Various primitive
functions depend upon the value of one or more of these variables.
Workspace-related system variables are summarized in the
Workspace-Related System Variables table.

The default value of workspace-related system variables is established
in a clear workspace and its current value is the value (possibly
localized) associated with the active workspace. As with user-defined
variables that are localized, when a workspace-related system variable
is no longer shadowed (upon return from function execution) it takes
on the global value associated with the current state of the workspace.

Copyright © 1987 STSC, Inc. 3-5 System Functions

Name

OALX

ocr

0OELX

oro
OLx

OprPpP

OPR

ORL
0SA

OWSID
(Clear

workspace)

Copyright © 1987 STSC, Inc.

Workspace-Related System Variables

Meaning

Attention Latent
Expression

Comparison
Tolerance

Error Latent
Expression

Index Origin

Latent
Expression

Printing
Precision

Prompt
Replacement

Random Link

Stop Action

Workspace

Identification

3-6

Acceptable
Values

Character vector
or singleton

0<0OCT<1E"10

Character vector
or singleton

Qor1l

Character vector
or singleton

Integer from
3018

Character singleton

lto "2+2+31

'"CLEAR'
'EXIT' or
'OFF'

Any valid

workspace name

Default

Value

'0DM!

15713

'0DM!

16807

System Functions

For example:

v FOO;0PW
L] OPW<30
[21 GO0
v
v GOO;0PW
[1] OPW<77
[21 OPW
v
OPW<60
Foo
77
OopPW
60
System Constants

System constants are values that are available in any workspace and do
not change within a given APL system. They include the following:

OAV OTCESC
OFAVAIL OTCFF

O0SYSID OTCLF

OTCBEL OTCNL

OTCBS OTCNUL
OTCDEL

3-3 Details of System Functions, Variables, and Constants

On the following pages, all of the system functions, variables, and
constants are listed in alphabetic order and are discussed in detail. Each
description contains the name, syntax, effect, and one or more
examples.

Note: Some of the system functions have workspace or file identifiers as

arguments. They are referred to as wsid and fileid, respectively. See
section 2-2 for a discussion on identifier names.

Copyright © 1987 STSC, Inc. 3-7 System Functions

Accounting Information OAI

Purpose:

Syntax:

Result:

- Caution:

Errors:

Example:

Return current accounting information.

result « OAI
result is an eight-element numeric vector containing:

[1] Your account number (identification code)

[2]1 Cumulative amount of CPU time used by this APL session

[31 The elapsed time since the start of the APL session
(41 0

Although all time is expressed in milliseconds, DA I relies on the
operating system clock for time measurement. This limits
resolution to 1/60th of a second. OAI [31] hasa one-second
resolution.

OAT as described here is specific to this APL * PLUS System.
The length and definition of each item of result may be different
from other APL*PLUS Systems or future releases of this system.

WS FULL

The following expression provides the hours, minutes, seconds,
and milliseconds since starting the APL session:

0I0<1 v
0 60 60 1000 T DOAIIL3]
0 6 24 0

Copyright © 1987 STSC, Inc. 3-9 System Functions

Attention Latent Expression OALX

Purpose:

Syntax:

Arguments:

Default:

Effect:

Errors:

Contain the APL expression to be executed in the event of an
attention exception.

value <« OALX
OALX <« statement

value character vector or singleton
statement APL expression to replace the current value

'"0DM" in a clear workspace

When an attention exception occurs during the execution of an
APL statement or function, the most local value of the statement
stored in DAL X is executed (¢ OLX).

An attention exception occurs whenever execution suspends at the
start of a function line because of a weak interrupt. A weak
interrupt is usually generated by pressing the Break key once. It is
interpreted by the system as a request to stop execution as soon as
it has finished executing the current line.

A strong interrupt is usually generated by pressing the Break key
twice in rapid succession and is interpreted by the system as a
request to stop execution immediately. Note that a strong interrupt
does not trigger an attention exception whereas a weak interrupt
does.

DOMAIN ERROR
RANK ERROR

In addition, any APL error can occur during execution of DALX.

Copyright © 1987 STSC, Inc. 3-10 System Functions

Example: In the first example, DAL X is used to protect a critical function
from suspension when an interrupt has been signalled by
automatically restarting the function. Note that L C has no
element corresponding to the ¢ that would show in the state
indicator (see 0ST or) SI) during the execution of the statement

¢[JALX.
v SAMPLE1;0ALX v SAMPLEZ2;0ALX
[1] DALX<'-0OLC' [1] DOALX<'OERROR ''ATTN''"'
. v

The function SAMPLE 2 uses DALX to pass a special error exception
to the calling function so that DE LX can be used to handle both errors
and attentions. The calling function can then determine that the error
resulted from an attention exception and take appropriate action.

Copyright © 1987 STSC, Inc. 3-11 System Functions

Arbitrary Input from Terminal OARBIN

Purpose: Perform input and output of data for various physical devices with
optional built-in translation.

For example, DARBIN can be used to communicate with a
remote computer, a printer, or a native file.

Syntax: result < OARBIN data

result < outin trans proto wait limit term DARBIN data
Arguments: ow output device

in input device

trans translation option

proto protocol option

wait seconds to wait while collecting the result from in
limit maximum number of bytes of input expected from in
term list of terminator codes

result data received from the device

daa data sent to the device

The right argument, data is either character or numeric data to be
sent to the device. If data is a matrix or array of higher rank, it is
raveled (, data) before being transmitted.

The left argument is an integer vector or singleton of transmission
options.

out The destination to which the right argument (data) is
sent, identified by a number. A 1 (the default) specifies
the terminal for the APL process; O specifies no output.
A negative value of out indicates the tie number of a
native file to which output is appended.

in The source from which data is to be received, identified
by a number. A 1 (the default) selects the terminal for
the APL process; 0 specifies no input and causes
OARBIN toreturn an empty vector (' ') immediately
after data has been transmitted even if wait or limit has
not been satisfied. A negative value for in indicates the
tie number of a native file from which input is read.

Copyright © 1987 STSC, Inc. 3-12 System Functions

trans The way data is to be translated before being written and
the way result is translated after being read.

If data is in integer form, it is treated as raw numeric
codes and never translated.

If the translation specification is O or 1, data, in
character form, has overstrikes expanded and is translated
to typewriter-paired or bit-paired codes, respectively. If
the specification is 3, 2 or ~1, data (character form) is
transmitted without translation or expansion of
overstrikes.

When not explicitly specified, the trans is O for dyadic
use of JARBIN and ~1 for monadic use.

result is translated in one of four ways.
Trans Description

1 raw untranslated numeric codes, one for each
character received.

0 translated according to the APL-ASCII
typewriter-pairing overlay. Overstrikes formed
with the Backspace character are combined into
single APL characters.

1 translated according to the APL-ASCII
bit-pairing overlay. Overstrikes formed with the
Backspace character are combined into single
APL characters.

2 untranslated 7-bit characters. The high (parity)
bitis set to 0.

3 untranslated 8-bit characters with the high-order
bit preserved.

Copyright © 1987 STSC, Inc. 3-13 System Functions

proto specifies other aspects of the operation.
Proto Description
0 (Default.)
1 (Reserved.)
N 2 Echo each character read from inport to outport.

wait The maximum number of elapsed seconds to wait for data
(a dead-man timer). If this time limit is reached before
any data is received, or since the last data was received or
successfully sent, control returns to the calling program.
A negative value selects no timeout (an infinite wait).
The effect of a zero wait value may be changed in a future
release; a zero limit should be used when no input is
desired.

The default wait value, if none is specified, is ~1.
limit The maximum number of characters of input desired.

Execution of DARBIN terminates when this number of
characters has been received. A value of O indicates that
no response is expected at this time, causing an empty
result to be returned immediately.

The default limit value, if none is specified, is 400
characters. Since the result of DARBIN always
contains a trailing termination code, the minimum value
for limit is 2.

term A list (possibly empty) of termination codes. Execution
of DARBIN terminates when one of these codes is
received. For character to numeric equivalents, see
Appendix B of the APL *PLUS System User's Manual.

The default terminator list, if none is specified, is 13 (the

newline character). If ~1 is supplied as term, no
termination character is used.

Copyright © 1987 STSC, Inc. 3-14 System Functions

Effect: OARBIN transmits data to the specified port and waits for as long
as dictated in the left argument for a response before returning its
explicit result. If a wait is dictated, the explicit result is the
response received up to termination. If no wait is specified (by a 0
value for wait or limif), an empty explicit result is returned
immediately, allowing local processing to resume at once.
Concurrent gathering of a response is still possible during such
processing. Note, however, that buffering of input depends upon
the capabilities of the operating system version being used. Input
may be lost if system buffers overflow.

OARBIN can also be used with regular native files, where its
overstrike-handling capability is sometimes useful (for example,
output to be printed on a printer).

Result: result is either a character or numeric vector (depending on
translation).

When input is requested, the result of DJARBIN is a character or
numeric vector as specified in the translation.

If the translation value is O or 1, incoming sequences will be
resolved as appropriate into overstruck characters, regardless of the
order in which they are received. (This process depends on the
received characters not causing the cursor to backspace beyond the
beginning of the text.) Undefined overstrikes are resolved into an
undefined character (QAV[255+01I01).

If the received sequence contains tab characters (ASCII HT), they
are represented in result as DAV (3+0I0) and are not resolved
into spaces. This allows user-programming to determine how they
will be treated, even permitting simulation of variable tab
positions. Users who do not want to provide interpretation for tab
characters can instruct the device not to use them.

The last element of result is the terminator character and identifies
the cause of JARBIN termination.

Copyright © 1987 STSC, Inc. 3-15 System Functions

~1 tresult Termination

0AVI[129+01I0] Time out

0AVI130+0I0] Character limit
ODAVI131+0I0] Break termination character
ODAV[132+01I01] End of file (for native files)

OAV Lterm] User supplied termination character

Caution: OARBIN as described here is specific to this APL *PLUS
System. It may be different or absent in other APL * PLUS
Systems.

Errors: DOMAIN ERROR

RANK ERROR
WS FULL

Copyright © 1987 STSC, Inc. 3-16 System Functions

Arbitrary Output to Terminal OARBOUT

Purpose: Permit the transmission of arbitrary transmission codes to a
terminal or other remote device.

Syntax: OARBOUT codes

Argument: codes setof codes to be transmitted
The argument is an integer array with values from 0 to 255
inclusive. The argument can be of any rank; it is raveled before
being displayed. It can also be of any length; it is not limited by
the value of OPW.

Examples: OARBOUT 7 (Ring the bell on the terminal.)

Copyright © 1987 STSC, Inc. 3-17 System Functions

Atomic Vector OAvV

Purpose:
Syntax:
Result:

Caution:

Errors:

Example:

Return a vector of all possible character values.
result « DAV
result is a 256-element vector of all possible character values.

Avoid relying heavily on the order in which the character set is
mapped onto the elements in DAV since this is not the same in all
APL+PLUS Systems. However, all possible characters are
represented somewhere in DAV -- even those not available directly
from the keyboard. The explicit result can be indexed and the results
stored in variables. Throughout this manual, all subscripts into
OAYV are shown in index origin 0.

Note that the entire result of AV cannot be visually displayed
since several of its elements are terminal control characters. See
Appendix B of the APL #*PLUS System User’s Manual for a display
of the entire DAV. This AV has the same composition as the
APL *PLUS System for the PC although not all characters can be
visually distinguished on most terminals.

WS FULL

0I0+<0
0AV 1'ABC'
65 66 67

OAVI65 66 671
ABC

OLD<"'abc'

ALLCAPS<0AV

IX<~(126)+0AVL'a!'
ALPHA«<'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
ALLCAPS[IX1+<ALPHA
NEW<ALLCAPS[OAV10LD]

NEW
ABC

Copyright © 1987 STSC, Inc. 3-18 System Functions

The last example translates character values. NEW becomes a
revised version of O L D in which all lowercase letters are converted
1o uppercase letters. A translate table ALLCAPS has been formed
to do the translation.

Copyright © 1987 STSC, Inc. 3-19 System Functions

Change Working Directory OCHDIR

Purpose: Change the default directory.

Syntax: result < OCHDIR dir

Argument: dr directory name
dir is a character scalar or vector containing a valid directory name
or an empty vector (' ') that returns the name of the current default
directory.

Result: result is the old current working directory name.

Effect: Changes the working directory to the directory specified. Since the
old directory name is returned as result, DICHDIR ' ' can be used

to query the current directory.

Errors: DOMAIN ERROR
RANK ERROR

Caution: OCHDIR as described here is specific to this APL*PLUS
System. It may be different or absent in other APL *PLUS

Systems.
Examples: OCHDIR "' (Query current directory.)
[STUART]
OCHDIR '[LINDA.TEST1' (Change.)
[STUART]

Copyright © 1987 STSC, Inc. 3-20 System Functions

Execute DCL Command OCMD

Purpose:

Syntax:

Argument:

Result:

Effect:

Execute a VMS DCL command.

result < OCMD command
result <« 1 OCMD command
0 OCMD command

command DCL command

command is a character vector or singleton containing the DCL
command to be executed. It may be empty.

If 0CMD is used monadically, result is an integer scalar containing
the return code for the operation. If O0CMD is used dyadically,
result is a character vector containing the output generated by
executing the DCL command.

If command is empty, APL is temporarily exited, the contents of
the workspace are preserved. You are then returned to the operating
system and may enter as many operating system commands as you
wish. Logoff returns you to the APL session and execution
continues with the next statement.

If command is a non-empty character vector, APL is termporarily
exited, the operating system command is executed, and control
immediately passes back to APL.

If 0CMD is used monadically (only a right argument), the APL
terminal exit string, if any, is written to the terminal before any
non-APL output is produced and the APL initialization string is
written when control returns to APL. Output produced by the
system is not part of the session. It cannot be called back once it
has disappeared from the session screen and it will vanish if you
press the Refresh key.

If DCMD is used dyadically with 1 as the left argument, the output
is captured and returned as a result. The terminal is not reset. If 0
is the left argument, no result is produced.

Copyright © 1987 STSC, Inc. 3-21 System Functions

Monadic OCMD is best used for situations where the execution of
the DCL command requires control of the terminal. Dyadic 0CMD
is recommended when the DCL command does not need control of
the terminal since all output can be captured by the APL session.

Caution: Do not use dyadic DCMD to run an interactive application since
you will not receive any output until the program terminates.

OCMD as described here is specific to this APL *PLUS System. It
may be different or absent in other APL * PLUS Systems.

Errors: DOMAIN ERROR
Examples: 0pOCMD !

$ show time
5-AUG-1987 14:15:41

$ log
(Back in APL.)
RES«<1 OCMD 'SHOW DEF'
PRES
17
RES

$DISK1: [MYERS]

Copyright © 1987 STSC, Inc. 3-22 System Functions

Copy From Saved Workspace QCOPY

Purpose: Copy APL functions and variables from a saved workspace into the
active workspace.

Syntax: result < OCOPY wsid
result < objlist OCOPY wsid

Arguments: wsid workspace name (see section 2-2)
objlist list of functions and variables to copy

objlist can be either a character matrix of object names, one name
per row, or a character vector with each name seperated by one or
more blanks.

Result: result is an integer vector representing the success or failure of
OCOPY. If objlist is specified, result contains a response code for
each object in objlist.

Response Code Explanation

2 A variable was copied successfully.
1 A function was copied successfully.
0 No objects copied; none found with the
supplied name.
2 The object was too large to copy given the
available free workspace.
-3 The name is defined as a label and cannot be
changed.
4 There is insufficient space in the symbol
table to copy this object.
) The amount of workspace available is too
small to perform the copy.

If 0COPY is used without specifying objlist, then result is empty if
all objects of wsid were copied successfully. If one or more objects to
be copied from wsid are suspended or pendent functions in the current
workspace, result is a numeric vector containing an appropriate
response code for each object that is not copied. If an unanticipated
error occurs, no result is returned.

Copyright © 1987 STSC, Inc. 3-23 System Functions

Effect: Copies objects from the specified workspace (wsid) into the local
environment of the active workspace replacing any objects by the same
name. See description of DPCOPY for a way to prevent replacement
of existing objects.

Copying a function only copies its source form; all compiled code is
discarded and 0STOP and OTRACE settings are cleared in the active
workspace.

Errors: DOMAIN ERROR
INSUFFICIENT MEMORY
LENGTH ERROR
RANK ERROR
WS ARGUMENT
WS DAMAGED
WS FULL
WS NOT COMPATIBLE
WS NOT FOUND

Example: YVARS
MT
MT
1 2
3 4
)ST

SUSPENDEDL31+
'"MT XXX DATA SUSPENDED' OCOPY 'WS3'

20 2 "3
YVARS (Value of MT has changed.)
DATA MT
MT
CAT
DOG
RAT

Copyright © 1987 STSC, Inc. 3-24 System Functions

Canonical Representation of a Function OCR

Purpose: Return the canonical representation of a function.
Syntax: result <« OCR fnname
Argument: frnname function name

fnname is a character singleton or vector containing the name of a
function.

Result: result is a character matrix containing the canonical representation
of the most local definition of the function. Each line of the
function (including the header) is left-justified and all lines (except
the longest line) are padded o the right with blanks.

If fnname is not the name of an unlocked function, result is an
empty matrix (shape 0 0).

The result of 0CR can be assigned to a variable and used as the
argument to ODEF or OF X to redefine the original function.

Errors: DOMAIN ERROR
RANK ERROR
WS FULL

Example: v TRI N;A

[1] DOed+,1
[2] L1:>(N<pA)pO ¢ O«<A<(0,A)+A,0

[31 ~L1
v

pQ<OCR 'TRI'
4 25

Q
TRI N;A
O<A«, 1
L1:->(N<pA)p0 ¢ O<A<(0,A)+A,0
L1

OFX Q
TRI

Copyright © 1987 STSC, Inc. 3-25 System Functions

Canonical Representation
of a Single Function Line OCRL

Purpose:

Syntax:

Arguments:

Result:

Errors:

Examples:

Return a character vector containing the canonical representation of
a single line of a function.

result < OCRL 'fanamel[nl'

fnname function name
n line number

The argument to OCRL is a character singleton or vector. faname
is the name of a valid function and n is a non-negative integer
representing a line number in the function.

result is the canonical representation of line » of function fnname
with a length matching that of line n (generally shorter than the
width of OCR 'faname'). If n is zero, the result is the header of
the function.

If fnname is a locked function or if n is greater than the number of
lines in the function, the result is an empty vector.

result is also an empty vector if the argument is ill-formed or the
function does not exist.

If n is not given, the result of OCRLis 1p' '.

DOMAIN ERROR

RANK ERROR
WS FULL
v FO0O
[1] O«'THIS IS A TEST'
[21 A<112
[3] O«Ax3
v

Copyright © 1987 STSC, Inc. 3-26 System Functions

OCRL 'FOO'

pOCRL 'FO0O'
0
OCRL 'Fo0IL21!
A<112
DD<OCRL 'FOO[L11"'
DD
O«'THIS IS A TEST'
DD

THIS IS A TEST

Copyright © 1987 STSC, Inc. 3-27 System Functions

Public Comment Display OCRLPC

Purpose:

Syntax:

Arguments:

Result:

Errors:

Example:

Retrieve the public comment from a single line of a function. A
public comment begins with A Vv and can occur after executable
code on a given line. OCRL PC also operates on locked functions,
allowing even locked functions to have imbedded documentation
retrievable by the user.

result < OCRLPC 'fnnamel[nl'

frnname function name
n line number

result is the public comment for line n of function fnname.

If line n has no public comment or if n is greater than the number
of lines in the function, result is an empty vector. It is also an
empty vector if the argument is ill-formed or the function does not
exist.

DOMAIN ERROR
RANK ERROR
WS FULL

OCRLPC can be used to identify different versions of the same
locked function; the version number can be documented in a public
comment.

OCRLPC 'LOCKEDFNI[11'
Av VERSION 4 REVISED 10/15/86 BY SAM

Copyright © 1987 STSC, Inc. 3-28 System Functions

Comparison Tolerance ocr

Purpose:

Syntax:

Domain:

Effect:

Specify the maximum relative difference allowed between two
numbers for them to be considered equal.

value <« OCT
OCT <« value

value is any single numeric value between O and 1E~10. Ina
clear workspace, the default value is 1E ~13. OCT, when
referenced, is always a numeric scalar.

Overcomes the problems of inexact internal representation and
cumulative rounding errors that are inherent in computer arithmetic
on noninteger values. Comparison tolerance is a means of
ignoring small differences between two numbers that are likely to
come from inexact representation or rounding.

Two numbers are considered equal if their relative difference is less
than or equal to OCT. Other comparisons are derived from that
property. This means that A and B are considered equal if:

(1A-B)<OCTx(1A)T |B.

If OCT is 0, all comparisons are exact. Furthermore, all
comparisons with the number 0 are exact and are independent of
OCT. Setting OCT to O may produce counter-intuitive results
from floating-point calculations on real numbers due to the way
numbers are stored internally (see Caution: below).

The value of OCT is used when computing the result of any of the
following primitive functions using floating-point data:

« floor (L)

» ceiling (I')

* residue (1)

* match (=)

* membership (€)

* index of (1)

* numeric relation (>2=<<)

Copyright © 1987 STSC, Inc. 3-29 System Functions

Only in special cases should OCT be set to zero. The examples

presented below illustrate the shortcomings of exact comparisions

when performing arithmetic on non-integer numbers that

The following chart shows how the results of some simple

expressions depend upon the value of OCT.

Caution:
experience rounding.
EPS <« 1E~15
A <« 0011
B « (O+EPS),
OCT < 0
OCT « 10xEPS
OCT < 0
OCT « 10xEPS
OCT « 0
OCT « 10xEPS
OCT «< 0
OCT « 10xEPS
ocT < 0
OCT « 10xEPS
OCT <« 0
OCT « 10xEPS
Errors: DOMAIN ERROR
RANK ERROR
Examples: JWSID
IS CLEAR WS
OocT
1.0E713
0
1

Effect of 0CT on Numeric Operations

LB —
LB «—
B —
B —
A=B <+
A=B <«
A<B «—
A<B +—
AlB <+
AlB
A€EB +—
A€EB «—

3=3+.000000000001

0CT«.00000000001
3=3+.000000000001

Copyright © 1987 STSC, Inc.

3-30

—_

(6,14,

oo

o o

[, 6, o o

o o

(0=EPS), (1+EPS), (1-EPS)

- N

- O

wo;m O =

- O

w O, o o = O

[l =]

System Functions

Cursor Position OCURSOR

Purpose:

Syntax:

Domain:

Effect:

Caution:

Errors:

Examples:

Query or set the cursor location on the screen.

pair <« OCURSOR
OCURSOR <« pair

Integer vector (2 elements) containing the row and column of the
cursor position relative to the upper-left corner of the window (in
origin 0). The default value is O O and is reset each time the
window is cleared.

The value of DCURSOR is the cursor location at the time the
statement is executed (not its position before the line was executed,
which may be the line above).

Assigning a new value to DCUR SO R moves the cursor to the new
position. pair must be a valid cursor position ora DOMAIN
ERROR is produced.

OCURSOR as described here is specific to this APL * PLUS
System. It may be different or absent in other APL *PLUS
Systems.

DOMAIN ERROR
LENGTH ERROR

RANK ERROR
OCURSOR
22 0 (The cursor was on line 22 in
column O of the current window
when OCURSOR was executed.)

OCURSOR « 0 0 ¢ 'A!
(Move the cursor to the upper-left
corner of the current window and
display an "A".)

Copyright © 1987 STSC, Inc. 3-31 System Functions

Function Definition ODEF

Purpose:

Syntax:

Argument:

Result:

Effect:

Define a function from a character representation.

result < ODEF fnrep
fnrep character representation of a function

If fnrep is a character vector whose first non-blank character is v or
#, it is assumed to represent a function in OV R form. Otherwise,
a character vector will be taken to be a vector version of a function
in OCR form (that is, without V's and line numbers). If farep is a
character matrix, the function is assumed to be in DCR form.
fnrep may contain superfluous blanks in the same way that
function definition (V-editor or) EDIT) allows them.

If the function definition is successful, result is the name of the
defined function.

If the function definition is not successful, result is a two-element
numeric vector containing information about the error (see
Errors: below).

Defines a function of the appropriate name in the active workspace
unless an error condition occurs. The amount of available
workspace area and the number of symbols may change. If fnrep
contains a leading or trailing #, the function will be locked after it
is defined.

If the name of the function defined corresponds to a local identifier
in a currently executing, pendent, or suspended function, the newly
defined function is local to that function and is erased when the
function in which it is localized completes execution.

If the name of the function defined corresponds to the name of an
existing function, the existing function is replaced and any
OSTOP or OTRACE settings in the function are removed.

Copyright © 1987 STSC, Inc. 3-32 System Functions

Example: M

TRI N;A

O0«A<,1

L1:>(N<pA)p0O ¢ O«<(0,A)+A,0 ¢ ~L1

M<OCR 'TRI'
MIL1;]1«<(1ipM)t'TRIANGLE N;A'

ODEF M
TRIANGLE

Notes: ODEF and OF X provide similar capabilities. ODEF is a more
powerful and general case of DF X. The differences are outlined
below:

« [1DEF accepts both canonical (matrix) and visual (vector)
representations of a function; OF X accepts only the canonical
representation.

« ODEF can create a function as a locked function; OF X cannot.

« ODEF indicates both the cause and the location of an error;
OFX indicates only the location.

« ODEF indicatesthe SYMBOL TABLE FULL or WS
FULL conditions via error codes without halting execution.
OFX halts execution.

Errors: If the system recognizes an error condition during analysis of a
character vector or matrix argument, the function is not defined, but
no explicit error is reported. Instead, the result is a two-element
integer vector containing information about the error. The first
element is the type of error that occurred; the second element
indicates the row of the function representation where the error
begins. The index returned depends on the current setting of 0I 0.

The following error types are indicated by the first element of the
result:

Copyright © 1987 STSC, Inc. 3-33 System Functions

Code

59

ODEF Error Codes
Explanation

WS FULL; the function definition requires more
workspace storage than is available.

DEFN ERROR

» the function or header is ill-formed

« the function name is already in use as a variable or label

» the function is executing, pendent, suspended, or waiting

« the first character in a line of code is a right parenthesis,
right bracket, or left bracket (not including line numbers)

Reserved.

SYMBOL TABLE FULL; creating the function
requires more symbol table entries than are available in
the active workspace.

Reserved.

Copyright © 1987 STSC, Inc. 3-34 System Functions

Single Function Line Editing ODEFL

Purpose: Edit a single line of the most local definition of an unlocked
function. '
Syntax: result <« ODEFL 'fnname[nlline'

result <« ODEFL 'fnname[~nl'

Arguments: fnname function name
[nl line number
line text of the line to be inserted or replaced
[~n] line number or numbers to be deleted

The argument must be a character scalar or vector.

To replace an existing line in the function named fnname, specify
the line number 7 in brackets followed by the replacement text
(line).

To insert a new line into the function named fnname, specify n as
a decimal fraction between two existing lines, suchas [3.5]. In
such a case, DDEFL will insert line between lines 3 and 4. If n is
greater than the number of lines in the function, /ine will be
inserted at the end of the function.

To delete a line from the function named fnname, specify a tilde
(~) before n and omit /ine. Multiple lines can be deleted by
specifying n as a vector, asin [~3 4 51,

Result: If the operation is successful, result is a character vector containing
the name of the function. If the name of the function changes as a
result of replacing line O of the function, the result is the name of
the new function.

If the operation is not successful, result is a numeric scalar
containing information about the error (see Errors: below).

Copyright © 1987 STSC, Inc. 3-35 System Functions

Effect:

Errors:

Inserts or deletes the lines as requested by the syntax. All lines
following the point of insertion or deletion are automatically
renumbered.

Note that the form of the argument to DDEFL is the same for
insertion and replacement. The effect depends upon the value of n
relative to the line numbers of the function. In this sense, the
behavior of ODEFL is similar to other function editing
capabilities in the APL*PLUS System.

If an error condition occurs during analysis of argument values by
the system, no explicit error is reported. Instead, the result is an
integer scalar indicating the type of error. Note that if one of the
listed errors occurs, the function is not changed.

ODEFL Error Codes
Code Explanation

1 WS FULL; the function definition requires more
workspace storage than is available.

2 DEFN ERROR

» the argument is ill-formed

* fnname is the name of a locked, suspended, pendent, or
non-existent function

» the new name of the function is currently defined or you
tried to delete line 0

« the first nonblank character in lineisa) or]

* n is negative or greater than 9999.9999

3 Reserved.
4 SYMBOL TABLE FULL; creating the function
requires more symbol table entries than are available in

the active workspace.

5-9 Reserved.

Copyright © 1987 STSC, Inc. 3-36 System Functions

Example: OVR 'TRI'
vV TRI N;A
[1] O«A«,1
[2] L1:-(N<pA)p0 ¢ O«A«<(0,A)+A,0 ¢ -L1

v
ODEFL 'TRI[1] A<,1'

TRI
OVR 'TRI
v TRI N;A
[1]1 A«,1
[2] L1-(N<pA)p0O ¢ O<A<(0,A)+A,0 ¢ -L1
v

Copyright © 1987 STSC, Inc. 3-37 System Functions

Delay Execution O0DL

Purpose: Delay execution.
Syntax: result < 0ODL seconds
Argument: seconds length of the delay in seconds

seconds is a positive numeric singleton (possibly fractional).

Result: result is the actual delay in seconds; it may vary each time ODL is
used.
Effect: Using the system clock, 0 DL delays execution for the time

requested. The delay can be aborted by a weak interrupt in which
case result may be substantially less than seconds.

Errors: DOMAIN ERROR
LENGTH ERROR
WS FULL

Example: ODL 5
5

Copyright © 1987 STSC, Inc. 3-38 System Functions

Diagnostic Message ODM

Purpose: Return the last diagnostic message recorded in the workspace. A
diagnostic message is produced for any event that halts execution
such as an APL error or a user interrupt.

Syntax: result <« 0ODM

Result: result is a character vector containing the diagnostic message
associated with the last error or interrupt that occurred.

Effect: Displays the diagnostic message associated with the last weak
interrupt, strong interrupt, or trapped error that occurred in the
workspace. Except for INTERRUPT, 0DM does not reflect the
diagnostic message displayed after an untrapped error or attention.
For more information on exceptions, see DALX, OELX, and
OERROR in this chapter.

The diagnostic message reported by 0DM is saved when the
workspace is saved.

If there is not enough workspace storage available when an error or
attention occurs, the system displays NO SPACE FOR 0ODM
followed by the diagnostic message. ODM is empty aftera NO
SPACE FOR 0ODM error.

Caution: System-produced diagnostic messages may be altered or extended in
the future. Applications that analyze the result of 0DM should,
therefore, be designed to allow easy modification. One such
technique is to use the same function for analyzing the diagnostic
message throughout an application.

Examples: JCLEAR (ODM is empty in a clear workspace.)
CLEAR WS

o0DM

Copyright © 1987 STSC, Inc. 3-39 System Functions

3+A (An APL error is generated; the normal

VALUE ERROR diagnostic message displays since
3+A OELX<'ODM'.)
A
oODM ¢ ODM (ODM now returns the diagnostic
32 message associated with the last error
VALUE ERROR exception.)
3+A
A

)SAVE TEMP (The workspace is saved, then cleared.)
TEMP SAVED 7:19:00 05/27/87

)CLEAR
CLEAR WS
oODM
0
JLOAD TEMP
TEMP SAVED 7:19:00 05/27/87
O0DM (O0DM was saved with the workspace.)
.VALUE ERROR
3+A
A
OELX « "! (DELX is set to do nothing; no error
5+0 message is displayed on obvious APL
€ITOrS.)
TA' + 1

23 x 9 10 11

O0DM (Last error message is in 0DM.)
LENGTH ERROR
2 3 x 9 10 11

A A

Copyright © 1987 STSC, Inc. 3-40 System Functions

DELX « 'OERROR-LL..1MJ
(Result is even less revealing; ODM is
reset, removing the error message.)

2 3 x 9 10 11(Same statement causes error but an
empty line displays.)
0DM
(D DM contains a single space.)
OELX <« 'ODM' (After experimenting, reset DELX.)

2 3 x 9 10 11
LENGTH ERROR
23 x 9 10 11

A A

Copyright © 1987 STSC, Inc. 3-41 System Functions

Data Representation O0DR

Purpose: Report the internal datatype of the argument.
Syntax: result < ODR data
Argument: dawa any APL array

Result: result is the datatype code for data. The last digit of the result
(10 | result) indicates the data format used while the other digits
(Lresult+10) indicate the number of bits per element with which
the data is represented. The following are the datatype codes for
this APL * PLUS System:

Code Datatype

11 Boolean (1 bit per element)
82 character (8 bits per element)
323 integer (32 bits per element)
644 floating point (64-bit VAX format)

326 nested (32-bit pointer)

807 heterogeneous (10-byte structure)

Caution: More datatype codes may be added in future releases. The datatype
codes specified here are not necessarily the same datatype codes on
other APL *PLUS Systems on other computers.

ODR as described here is specific to this APL*PLUS System. It
may be different or absent in other APL * PLUS Systems.

Examples: ODrR 'X!
82
ODR 'A',1
807
ODR <15
326

ODR"5,(Cec156),'C', (1A1)
323 326 82 11

Copyright © 1987 STSC, Inc. 3-42 System Functions

Edit an Image of Named Object

Jrom Active Workspace OEDIT
Purpose: Edit a character vector, matrix, or function.
Syntax: OEDIT object

Argument: object name of the object to be edited

object is a character vector, one-row matrix, or scalar containing
the name of the object to be edited.

Effect: A new edit session is created in the session manager and the
function or variable specified by object is copied into it. The
session name is updated to reflect the object's name and the session
manager is initialized to edit the copy of the object. (The details
on editing operations are described in Chapter 2 of the APL *PLUS
System User’s Manual.)

Upon return to your APL session, the cursor is restored to the
same position it was in before the statement was executed.

If the variable named in the argument contains numeric or nested
data or the argument is of rank greater than2,a NONCE
ERROR isproduced. If the object does not exist, a new object is
created and given the specified name.

Errors: DOMAIN ERROR
NONCE ERROR
SYMBOL TABLE FULL
WS FULL

Caution: OEDIT as described here is specific to this APL*PLUS System.
It may be different or absent in other APL*PLUS Systems.

Examples: OEDIT 'CUSTOMERLIST'
OEDIT 'PROGRAM'

Copyright © 1987 STSC, Inc. 3-43 System Functions

Error Latent Expression OELX

Purpose:

Syntax:

Domain:

Effect:

Contain the APL expression to be executed in the event of an error
exception.

statement < OELX
OELX <« statement

Character vector or singleton containing an APL expression. The
default value of DEX is ' ODM' in a clear workspace.

Whenever a trapped error (see definition below) occurs during
execution of an APL expression or function, the statement stored
in the most local value of DEL X is executed. Thus, if DELX has
its default value (' DM ') when an error occurs, the system
simply displays the diagnostic message (see 0 DM).

If an error occurs during execution of the actual statement in
OELX, the system displays the diagnostic message and returns to
immediate execution input. If, however, the error handler calls a
function, errors signalled within that function trigger execution of
OELX.

If an error occurs while the system is evaluating O input, the
diagnostic message associated with the error is displayed and the
user is prompted again for input; 0DM is not changed and DELX
is not executed. Note that if a function call is entered in O input,
errors occurring within the called function do trigger execution of
OELX.

APL Errors Handled by OELX:

The following errors are trapped (trigger execution of DELX)
except when caused by a system command. Any error exceptions
signalled by OE RROR are also trapped.

AXIS ERROR

DISK ERROR

DOMAIN ERROR

FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE DAMAGED

Copyright © 1987 STSC, Inc. 3-44 System Functions

FILE FULL

FILE INDEX ERROR
FILE NAME ERROR
FILE NOT FOUND
FILE SIZE ERROR
FILE TIE ERROR
FILE TIE QUOTA EXCEEDED
FILE TIED

FORMAT ERROR

HOST ACCESS ERROR
INDEX ERROR
LENGTH ERROR
LIBRARY NOT FOUND
LIMIT ERROR

NONCE ERROR

RANK ERROR

SYMBOL TABLE FULL
SYNTAX ERROR
VALUE ERROR

WS ARGUMENT ERROR
WS FULL

WS NOT COMPATIBLE
WS NOT FOUND

WS TOO LARGE

Errors that are not trapped are:

« input errors (including errors in expressions evaluated for
0 input)

« errors resulting from system commands
« errors signaled by an ill-formed statement in DELX
» system errors (internal errors in the APL+*PLUS System itself)

Errors: DOMAIN ERROR
RANK ERROR

In addition, any APL error can occur during the execution of DELX.

Copyright © 1987 STSC, Inc. 3-45 System Functions

Examples: In the function SAMPLE 1, OELX is used to branch to the
error-processing part of the function if an error occurs.

v SAMPLE1;0ELX
(1] OELX«<' —ERR '

[n] ERR:

v

This next function uses DELX to invoke an error in the function
that called it.

v SAMPLEZ2;0ELX
£1]
OELX«<'OERROR((ODM OTCNL)>-0IO)tODM'

v

Copyright © 1987 STSC, Inc. 3-46 System Functions

Erase Objects OERASE

Purpose:

Syntax:

Argument:

Result:

Effect:

Note:

Errors:

Example:

Erase, if possible, objects in the workspace while under program
control.

result <« OERASE objlist
objlist list of function or variable names

objlist can be a character vector containing one or more object
names separated by one or more blanks, or it can be a character
matrix with one identifier in each row.

result is a character matrix with each row containing the name of
an object that was not erased. Objects that are undefined are not
included in result.

If all objects in objlist are erased, result is an empty matrix.

Erases objects specified in objlist. DERASE does not erase the
definitions of identifiers representing labels, system functions, or
system variables. An object might not be erased because the name
is ill-formed or because it is a suspended or executing function.

In this version of the APL*PLUS System, DERASE can erase a
suspended or exectuing function. In fact, a function can even erase
itself. The name association with the function is broken, but the
executing function does not actually disappear until it completes
execution or is cleared from the) S I stack.

OERASE and OEX provide similar capabilities. For maximum
portability to other APL Systems, use OE X rather than
OERASE.

DOMAIN ERROR
RANK ERROR
WS FULL

pO<0ERASE 'MYPROGRAM'
pOVR 'MYPROGRAM'

Copyright © 1987 STSC, Inc. 3-47 System Functions

Error Exception Signal OERROR

Purpose:

Syntax:

Argument:

Effect:

Errors:

Examples:

Generate a user-defined error exception.
OERROR message
message diagnostic message

message is a character singleton or vector containing the first line
of the diagnostic message associated with the resulting error
exception.

OE RROR provides two facilities:

« the ability of a function to signal an exception to the program
from which it was called

« the ability to signal user-defined error exceptions.

When OERROR is executed, the state indicator stack is returned to
the environment from which the function executing DERROR was
called. If the state indicator is empty or contains only one function
when OERROR is executed, the error exception is signalled in the
global environment.

If message is empty (' '), no exception is signaled, which permits
conditional signaling of error exceptions with a statement of the
form OERROR condition /' message ' .

DOMAIN ERROR

NO SPACE FOR ODM
RANK ERROR

WS FULL

In the function SQRT below, DERROR signals an error in the
environment from which SQRT is called instead of within SQRT
itself.

Copyright © 1987 STSC, Inc. 3-48 System Functions

vV R<SQRT A;0ELX
[11 OELX«'OERROR ((ODM\OTCNL)-DIO0)*t0ODM’
[21 R<Ax0.5

SQRT ~1
DOMAIN ERROR
SQRT ~1

A

In the next example, SQRT is modified to detect a negative argument
and generate an error message that is more informative than the
DOMAIN ERROR report normally produced by the system.

vV R-SQRT A;0ELX
[11 OELX«<'OERROR ((ODM\OTCNL)-0I0)t0ODM’
[21 OERROR (v/,A<0)/'ARGUMENT NEGATIVE'
[31 R<A*0.5

SQRT ~1
ARGUMENT NEGATIVE

SQRT "1

A

If SQRT is called from another function and a negative argument is
supplied to SQRT, an error is signalled in the calling function.

vV R<M RELMASS V;C
[11] A COMPUTES RELATIVISTIC MASS
(21 A OF A MOVING OBJECT
[3] A M «— REST MASS; V <« VELOCITY
[4] A C «— SPEED OF LIGHT IN METERS/SEC
[5] C+<300000000
[6] R<M+SQRT 1-(V*2)+C*2

1 RELMASS 2.9E8
3.905667329

1 RELMASS 3.5E8 (Uses a velocity greater

ARGUMENT NEGATIVE than the speed of light.)
RELMASS[5] R<M+SQRT 1-(V*2)+C*2

A

Copyright © 1987 STSC, Inc. 3-49 System Functions

The following technique can be used to clear the result of 0DM,
provided the state indicator is clear and OE L X does not call
OERROR.

OERROR ' !

Since OE RROR reduces the state indicator stack by one function
call, it can be used to move one level up in the state indicator for
debugging purposes; for example:

DRIVER
LENGTH ERROR
SUBROUTINE[1] Z<A+Bx0,11A
A

)ST
SUBROUTINE[L1]1 =
PROCESSL7]
MAINFNIL3]
DRIVERLS]

OERROR 'POP'
POP
PROCESSL7]1 SUBROUTINE
A
)ST
PROCESSL7]1 =

MAINFNI[3]
DRIVERILS]

The argument (B) to SUBRQUT INE can now be corrected and
execution can resume.

B<(pA)*tB ¢ ~0OLC

Copyright © 1987 STSC, Inc. 3-50 System Functions

Erase Objects OEX

Purpose:

Syntax:

Argument:

Result:

Effect:

Caution:

Errors:

Examples:

Erase, if possible, the most local version of one or more objects in
the active workspace while under program control.

result < DOEX objlist
objlist list of zero or more functions or variable names

objlist can be a character vector containing one or more object
names separated by one or more blanks, or it can be a character
matrix with one identifier in each row.

If 0EX producesa WS FULL or DOMAIN ERROR,
nothing has been erased.

result is a Boolean vector with one element for each name provided
in objlist. The result is 1 if the object was erased or undefined; the
result is 0 if the object was not erased. An object might not be
erased because the name is ill-formed or because it is a suspended or
executing function.

Erases objects specified in objlist. DEX does not erase an
identifier if it is a label, system function, or system variable.

Some APL systems may restrict objlist to a character matrix.

DOMAIN ERROR

RANK ERROR
WS FULL

OEX 'TRI'
1

TRI
VALUE ERROR

TRI

A

OEX DOAI
DOMAIN ERROR

OEX OAI

A

Copyright © 1987 STSC, Inc. 3-51 System Functions

File Append OFAPPEND

Purpose: Append a value to the end of a component file by adding a new
component.
Syntax: result < value OFAPPEND tieno

result < value DFAPPEND tieno pass
Arguments: value variable (or value) to be appended to the file
tieno file tie number
pass passnumber
value can have any rank, shape, or data type.
The right argument must be an integer-valued singleton or
two-element vector with a valid tie number (fieno) and optional

valid passnumber.

If the passnumber is omitted, it is assumed to be zero.

Result: result is the number of the new component.

Effect: Appends a new data component to the file along with component
information (OFRDCI). This process increases the disk space
occupied by the file.

Access: The file must be tied, the passnumber must match the one in

effect, and you must have append access. The access code for
OFAPPENDis 8.

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE FULL
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

Copyright © 1987 STSC, Inc. 3-52 System Functions

Examples: The first example places the visual representation of TR T in the
next component of the file tied to 27 and captures the component
number in the variable COMP.

COMP«<(OVR 'TRI') OFAPPEND 27

The next example appends the variables JANSALE S and
FEBSALES at the end of the file tied to 3 3.

OFSIZE 33
1 20 36412 100000

JANSALES+48032

JANSALES OFAPPEND 33
20

OFSIZE 33
1 21 36432 100000

Copyright © 1987 STSC, Inc. 3-53 System Functions

File System Availability OFAVAIL

Purpose: Indicate availability of the component file system.

Syntax: result <« OFAVAIL

Result: result is 1 if the component file system is available for use, 0 if it
is not.

Note: On this APL*PLUS System, the file system is always available.

OFAVAIL is included for compatibility with other APL*PLUS
Systems in which the file system is not always available.

Errors: WS FULL

Copyright © 1987 STSC, Inc. 3-54 System Functions

File Create

OFCREATE

Purpose:

Syntax:

Arguments:

Effect:

Access:

Create a new component file.

! fileid' OFCREATE tieno
' fileid size' OFCREATE tieno
' fileid size/lcomp' OFCREATE tieno

fileid file identifier (see section 2-2)
size file size limit in bytes

comp starting component number
tieno file tie number

The left argument must be a character scalar or vector designating
the file to create. It contains the file identifier (fileid) and,
optionally, the file size unit (size) and starting component number
(comp). The file name must be different from any others in that
directory or library.

The optional size specifies a limit on the amount of space the file
can occupy on disk. If omitted, the default is 0, meaning the file
has no limit on its size. size is specified in bytes and must be an
integer value. The file size limit can be changed later by
OFRENAME or OFRESIZE.

The optional comp specifies the starting component number for the
new file. It must be integer-valued and follow a slash (/) in the
argument. If omitted, the starting component number is 1.

The file tie number (tieno) must be a positive integer-valued
singleton. You must have no other file currently tied with this
number.

Creates a new file and ties it to the tie number specified.
No file access code is required for 0FCREATE. However, you

must be authorized to create files in the specified or default
directory or library.

Copyright © 1987 STSC, Inc. 3-55 System Functions

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE TIE ERROR
LIBRARY NOT FOUND
RANK ERROR
WS FULL

Examples: '"TEXTFILE' OFCREATE 27
'"PRINTFILE 225000' OFCREATE 1
'"[MYERS1D87 0/11001' DOFCREATE 99

OLIBD '12 [MYERS]'
'12 DATA88' OFCREATE 98

Copyright © 1987 STSC, Inc. 3-56 System Functions

File Drop of Components OFDROP

Purpose: Drop components from either end of a component file.
Syntax: OFDROP tienon
OF DROP tieno n passno

Arguments: tieno file tie number
n number of components to drop
passno pass number

The argument must be a two- or three-element integer vector which
designates the file by tie number (tieno), the components to drop,
and an optional passnumber. If the passnumber is not specified, it
is assumed to be zero.

Effect: Drops components from a file. If n is positive, n components are
dropped starting from the beginning of the file. If n is negative,
(I n) components are dropped from the end of the file. If n is zero,
no components are dropped.

Access: The file must be tied, the passnumber must match the one in
effect, and the user must have drop access. The access code for
OFDROP is 32.

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE INDEX ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR

RANK ERROR
Examples: OFSIZE 27
1 10 7424 0
OFDROP 27 2 ¢ OFSIZE 27
3 10 7424 0
OFDROP 27 ~—3 ¢ OFSIZE 27
3 7 2536 0O

Copyright © 1987 STSC, Inc. 3-57 System Functions

Duplicate File OFDUP

Purpose:

Syntax:

Arguments:

Effect:

Create an exact copy of a file with a new name and compact it, if
possible, to occupy less disk space.

'fileid' OFDUP tieno
' fileid size/comp' OFDUP tieno passno

fileid file identification (see section 2-2)
size file size limit in bytes

comp initial component number

tieno file tie number

passno file passnumber

The left argument must be a character scalar or vector designating
the new file to create. It contains the file identifier (fileid) and,
optionally, the file size limit (size) and starting component (comp).
The fileid must be different from any others in that directory or
library.

The optional size specifies a limit on the amount of storage a file
can occupy on disk. If omitted, the default is O, meaning the file
has no limit on its size. size is specified in bytes and must be
integer-valued.

comp specifies the starting component number for the new file.
It, too, must be integer-valued and must follow a slash (/) in the
argument. If omitted, the starting component number is 1.

The file tie number (tieno) must be a positive integer-valued
singleton. You must have no other file currently tied with this
number.

OFDUP creates a new file with the specified name (fileid) and
copies all the data from the file specified by tieno into it. Unused
space created by replacing records with a different sized component
is retrieved in the process, potentially allowing the new file to
occupy less disk space than the original file. The old file remains
unchanged.

Copyright © 1987 STSC, Inc. 3-58 System Functions

Caution: OF DUP as described here is specific to this APL*PLUS System.
It may be different or absent in other APL+*PLUS Systems. In
particular, the APL *PLUS System for the PC allows OFDUP to
duplicate the file onto itself; this implementation does not. Note
also that 0F DUP does not preserve the component information
(OFRDCI) of the old file. This behavior may change in a future
release and may be different on other APL *PLUS Systems.

Access: The file to be duplicated must be tied, the passnumber must match
the one in effect, and you must have both duplicate access and the
authority to create files in the specified (or default) directory or
library. The access code for OFDUP is 16384.

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LIBRARY NOT FOUND
WS FULL

Examples: OFLIB '!
: LISTINGS

'"LISTINGS' OFTIE 10

OFNAMES
LISTINGS

'LEANINGS' OFDUP 10

OFNAMES
LISTINGS

OFLIB '!'

LEANINGS
LISTINGS

Copyright © 1987 STSC, Inc. 3-59 System Functions

File Erase

OFERASE

Purpose:

Syntax:

Arguments:

Effect:

Access:

Errors:

Examples:

Erase a tied component file.

'fileid' OFERASE tieno
'fileid'" OFERASE tieno pass

fileid file identifier (see section 2-2)
tieno file tie number
pass file passnumber

The left and right arguments designate the same file. The left
argument is a character vector or scalar containing the file
identification (fileid).

The right argument must be a integer-valued singleton or two
element vector designating the file by tie number (tieno) and,
optionally, the passnumber. If the passnumber is not specified, it
is assumed to be zero.

Unties a file and erases it from the directory or library. All of the
data in the file is destroyed.

A file must be tied. The passnumber must match the one in effect
and you must have erase access. The access code for OFERASE
is 4. The file cannot be erased if any other user also has it tied.

DOMAIN ERROR

FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAMES ERROR
FILE TIE ERROR
FILE TIED

HOST ACCESS ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR

WS FULL

'"TEXTFILE' OFTIE 10
'"TEXTFILE' OFERASE 10

"PRTFILE' OFSTIE 33 707
"PRTFILE' OFERASE 33 707

Copyright © 1987 STSC, Inc. 3-60 System Functions

APL Component File History OFHIST

Purpose: Provide historical information about an APL component file.
Syntax: result < OFHIST tieno
Argument: tieno file tie number

tieno must be a scalar or one-element vector containing a valid file
tie number.

Result: result is a three-row integer matrix containing information about
the history of the file. Row 1 contains the user number of the file
owner and the timestamp of the file's creation in both packed form
and OT'S form. Row 2 contains the user number and timestamp
associated with the most recent change to the file. Row 3 contains
the user number and timestamp associated with the most recent
setting of the file access matrix.

Access: The file must be tied and the passnumber must match the one in
effect. In addition, the operating system must allow you to read
the file. Ifnot,a HOST ACCESS ERROR results.

Warning: OFHIST is experimental in this release of this APL * PLUS
System. This feature may change or be removed in a future
release.

Example: '"TESTFILE' OFTIE 1 ¢ OFHIST 1
(Created) 103448289548 1984 3 16 12 52 29 0
(Lastchange) 199449334082 1984 4 1 9 19 34 0
(Accesssef) 103448443819 1984 3 18 17 56 53 0

Copyright © 1987 STSC, Inc. 3-61 System Functions

File Hold

OFHOLD

Purpose:

Syntax:

Argument:

Effect:

Synchronize file operations in shared file systems.

OFHOLD tieno
OFHOLD tieno pass

tieno file tie numbers
pass file passnumbers

The argument designates the files (by file tie numbers) and the
passnumbers. If a passnumber is not specified, it is assumed to be
zero. The argument must be an integer array consisting of one of
the following:

 ascalar, vector, or one-row matrix of file tie numbers

= atwo-row matrix whose first row contains file tie numbers and
whose second row contains corresponding passnumbers.

Provides an interlock by which multiple users can synchronize file
updates. Only one user can have the interlock at any one time.
Each user executing 0F HOL D waits in a queue until his turn
comes to have the interlock (Note: 0FHOL D does not lock files).

OFHOLD first releases any current interlocks and then, when it's
your turn, sets an interlock on each designated file. No interlocks
are set while another user has an interlock set on any of the
designated files; 0 FHOL D execution waits until all such other
interlocks have been released. While an interlock is set, other users
are delayed in turn from completing execution of their OFHOLD
operations but not from executing other file operations.

All interlocks are released when the user who set them executes
another DFHOLD, exits APL, enters immediate execution mode,
or signals a strong interrupt. The interlock on an individual file
can be released without affecting other interlocks by untying or
retying the file.

Copyright © 1987 STSC, Inc. 3-62 System Functions

File interlocks are not released when a program stops for O or [
input. Stopping for input when files are held can impose long
delays on other users and should be avoided except when necessary.

File tie numbers must be distinct, and they must designate tied
files. An empty vector or a one- Or two-row, zero-column matrix
releases all interlocks and does not set any.

Access: The file must be tied, the passnumber must match the one in
effect, and you must have hold access. The access code for
OFHOLD is 2048.

Errors: DOMAIN ERROR

FILE ACCESS ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

Example: The following example holds a file while an update is performed:

OFHOLD 2 2p27 33 0 ~317232
v FOQ

A UPDATE DIRECTORY

OFHOLD TN

ENTRY<((OFREAD TN,1),[1]1 NEW)
ENTRY OFREPLACE TNWN,1

OFHOLD 10

L e W W e I o IO
wooJom,m
[T

Copyright © 1987 STSC, Inc. 3-63 System Functions

Input Format Conversion OFI

Purpose: Convert a character string to numeric values.
Syntax: result <« OFI data
Argument: daa character string to convert

data is a character singleton or vector.

Result: result is a numeric vector formed by taking data and converting it
to numbers. The conversion process uses the same rules as when
numbers are entered from the keyboard in immediate execution
mode. Groups of characters that are invalid numbers appear as
zeros in result .

Errors: DOMAIN ERROR

LIMIT ERROR

RANK ERROR

WS FULL

Examples: A<'666 ~1.20 .1 314159E°5!

OFI A

666 ~1.2 0.1 3.14159
oFr ' 2 !

2
pOFI ' 2 !

1
pOFL * !

0
OFI 'ANSWER: 666"

0 666
B<'"ANSWER IS 666 LBS.'
OFI B

0 0 666 0
C=! .25 =6.25 8,9,10"7
OFI C

0.25 0 O

Copyright © 1987 STSC, Inc. 3-64 System Functions

File Library List OFLIB

Purpose: Produce a character matrix of all the component files in a library or
directory.
Syntax: result <« OFLIB '!'

result <« OFLIB dir
result < OFLIB lib

Arguments: dr directory name
lib library number

If the system is in directory mode, the argument, if supplied, must
be a character vector or scalar representing a valid directory name
(din).

If the system is in library mode, the argument, if supplied, must be
a positive integer singleton that has been associated with a
directory with LI BD or a startup parameter.

An empty character or numeric vector argument indicates the user's
default directory or library.

Rﬁultﬁ The form of result depends on the argument supplied and the
system mode (library or directory).

If the system is in directory mode (the default) and no argument or
directory name is supplied, result is a character matrix of file
names, left justified; the number of columns is the length of the
longest file name in the list (the directory prefix and file suffix
(.VF) are omitted from the list).

If the system is in library mode, the result is a 22-column character
matrix containing one file identification per row. The columns in
the result are defined as follows:

Column 1-10 Library number, right justified
Column 11 Space
Column 12-22 File name, left justified

Copyright © 1987 STSC, Inc. 3-65 System Functions

When the system is in library mode, you can still supply a
directory name as an argument to DFLTB. The result is a
library-style display of file names with 1 t DATI used as the library
number.

) FL I B produces the same list of files formatted in multiple
columns and without library numbers for convenient viewing on
the terminal.

In all modes, the files are listed in alphabetic order.

Errors: DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
WS FULL

Examples: OFLIB '[APL.REL11' (Directory mode.)
CONVERT

DATES
SERXFER

pOFLIB '[APL.REL11'

(Switch to library mode.)
OLIBD '123 [APL.REL11'
OFLIB 123
123 CONVERT
123 DATES
123 SERXFER

oOFLIB 123

Copyright © 1987 STSC, Inc. 3-66 System Functions

Format Output OFMT

Purpose: Format character and numeric data into a character matrix with
advanced formatting features. OFMT is described in detail with
many examples in Chapter 4 of the APL #*PLUS System User’s
Manual.

Syntax: result < formatstring OFMT data

result < formatstring OFMT (datal ;data2; . . .;datan)
result < formatstring OFMT (<datal), (data2) ... <datan

Arguments: data, datan APL arrays
formatstring format phrases to be applied to data, datal,
data?, and so on

formatstring is a character vector that contains combinations of
editing and positioning format phrases separated by commas.
These phrases control the editing and display of data in the right

argument.
Format Phrases
rmAw Character
rmEw.s Exponential
rmFw.d Fixed point
rmG <pattern> Patten
rmIw Integer
Tpor T Absolute tab

rXp Relative tab

r <text > Text insertion
where
d Decimal position parameter (F)
m Optional Modifier
p Position parameter (T, X)
pattern Pattern text parameter (G)
r Optional repetition factor
s Significant digits parameter (E)
w Field width parameter (4, E, F, I)

Copyright © 1987 STSC, Inc. 3- 67 System Functions

Result:

Caution:

Any combination of the following modifiers can be used with the
phrases shown in parentheses:

Format Phrase Modifiers
B Blank if zero (F,I)
G Comma insertion (F,I)
Ki Scale argument by 10 *i (E,F,G,I)
E Left justify (F,I)
M<text> Negative left decoration (F,G,I)
N<text> Negative right decoration (F,G,I)
O<text> Format zeros as text (F,G,I)
P<text> Positive or zero left decoration (F,G,I)
Q<text> Positive or zero right decoration (F,G,I)
R<text> Background fill (4,E,F,G,I)
S <symbolpairs> Symbol substitution (F,G,T)
VA Zero fill (F,T)

The text in the decorations, background fill, symbol substitution,
and text insertion can be delimited by any of the following pairs of
symbols:

< >
[= o)
0 0
0 0
/ /

Multiple format phrases for individual data columns are separated
by commas within formatstring. A group of format phrases can be
repeated by enclosing it in a pair of parentheses and preceding the
left parenthesis with a repetition factor.

The right argument can contain any numeric or character array. It
can also be a strand (a vector of enclosed arrays).

result is a character matrix of the data formatted as specified.
Older APL *PLUS Systems use a special list (datal;data?2) to

format multiple arrays of different types. This system supports
this form for compatibility, but a nested vector or a strand can be

Copyright © 1987 STSC, Inc. 3- 68 System Functions

also used, perhaps more conveniently. For example, the following
expressions produce the same result:

CHAR<3 3p'ONE TWO SIX'
NUM<1000x23

'3A1,I5'" OFMT(CHAR;NUM) (old way)
'3A1,I5'" OFMT CHAR NUM (new way)

Examples: '15,2F8.1,E9.3" DFEMT *3"4p1i42
1 2.0 3.0 4.00E0
5 6.0 7.0 8.00E0
9 10.0 11.0 1.20E0

'G<(999) 999-9999' OFMT 3019845000
(301) 984-5000

FSTR«<'3A1,<*PLUS >,6A1"'

FSTR OFMT 1 9p'APLSYSTEM'
APL*PLUS SYSTEM

Copyright © 1987 STSC, Inc. 3- 69 System Functions

File Identifications of Tied Files OFNAMES

Purpose: Return the file identifications of all tied component files (files tied
with OFTIE or OF STIE).

Syntax: result <« OFNAMES

Result: result is a character matrix of file identifications. The form and
shape of result depends on whether the system is in library or
directory mode. The rows of result have the same order as
OFNUMS.

In directory mode (the default) DFNAME S formats result to be as
wide as needed to contain the directory path and file name in the
same form as supplied when the file was tied.

~ In library mode, the result is 22 columns wide formatted as

follows:
Columns 1-10 Library number
Column 11 Blank
Columns 12-22 Filename
Errors: WS FULL
Examples: OFNAMES (In directory mode.)
[APL.WSS1CHAPTER1
TEMP
PRINTFILE
OFNAMES (In library mode).
76 CHAPTER1
101 TEMP

101 PRINTFILE

Copyright © 1987 STSC, Inc. 3-70 System Functions

File Numbers of Tied Files OFNUMS

Purpose: Display the tie numbers of all tied component files (files tied with
OFTIE or OFSTIE).

Syntax: result <« OFNUMS

Result: result is a numeric vector of file tie numbers. The tie numbers are

in the same order as the file names reported by OFNAME S, which
is the order in which they were tied.

Errors: WS FULL
Examples: OFNUMS
27 33 17

OFUNTIE OFNUMS (Untie all tied files at one time.)
pOFNUMS

Copyright © 1987 STSC, Inc. 3-71 System Functions

File Read of File Information OFRDAC

Purpose: Report the current access matrix for an APL component file.

Syntax: result < OFRDAC tieno
result < OFRDAC tieno pass

Arguments: fieno file tie number
pass passnumber

The right argument is an integer-valued singleton or two-element
vector designating the file (by tie number) and optionally the
passnumber. If the passnumber is omitted, it is assumed to be

Zero.

Result: result is a three-column numeric matrix containing the access
matrix of the file. A newly created file has an access matrix with
No IOWS.

Access: The file must be tied, the passnumber must match the one in

effect, and you must have the authority to read the access matrix.
The access code for OFRDAC is 4096.

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE DAMAGED
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

Examples: oOFRDAC 27 (File with empty access matrix.)

OFRDAC 33 7655
12304 16059 7566
23405 16063 0

Copyright © 1987 STSC, Inc. 3-72 System Functions

File Read of Component Information OFRDCI

Purpose: Return information about one component of a file.

Syntax: result < OFRDCI tieno comp
result <« OFRDCI tieno comp pass

Arguments: rieno file tie number
comp component number
pass passnumber

The right argument must be an integer-valued, two- or
three-clement vector. If the passnumber is omitted, it is assumed
to be zero.

Result: result is a ten-element numeric vector containing the following
information:

« the workspace storage needed to hold the component, in bytes.

« the account number of the user who most recently executed
OFAPPEND or OFREPLACE on the component.

« the timestamp, in OWST'S format (microseconds since 00:00 on
January 1, 1900) , when the component was last written to file.
Use the TIME function in the workspace FILEAID (see
Chapter 4, Supplied Functions) to interpret the timestamp. The
microsecond resolution is maintained for compatibility with
other APL *PLUS Systems. The clock accuracy, however, is
one second.

Access: The file must be tied, the passnumber must match the one in

effect, and you must have the authority to read the access matrix.
The access code for OFRDCT is 512.

Copyright © 1987 STSC, Inc. 3-73 System Functions

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE DAMAGED
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR
RANK ERROR
WS FULL

Example: JCOPY DATES FTIMEFMT
SAVED 17:00:46 01/26/86

FTIMEFMT (OFRDCI 27 1)[3]
7/14/87 15:14:00.000

Copyright © 1987 STSC, Inc. 3-74 System Functions

File Read of Component OFREAD

Purpose:

Syntax:

Arguments:

Result:

Access:

Errors:

Examples:

Read a component of a file and make it available in the workspace
as a variable.

result <« OFREAD tieno comp
result < OFREAD tieno comp pass

tieno file tie number
comp component number

pass passnumber

The argument is an integer-valued two- or three-element vector that
designates the data to be returned by file tie number (tieno), the
component number (comp), and the passnumber. If the
passnumber is omitted, it is assumed to be zero.

result is the actual value stored in the file component.

The file must be tied, the passnumber must match the one in
effect, and comp must be a valid component number. The access
code for DFREAD is 1.

DISK ERROR

DOMAIN ERROR
FILE ACCESS ERROR
FILE DAMAGED
FILE DATA ERROR
FILE INDEX ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR

RANK ERROR

WS FULL

OFREAD 27 1

THIS FILE CONTAINS DATA FOR 1982
CREATED 26 JANUARY 1987.

Copyright © 1987 STSC, Inc. 3-75 System Functions

OFREAD 27 2
SMALLS, BARRY T. 4856739 6/30/85

A<OFREAD 27 3
A

SMITH, KAREN M. 3847384 3/01/86
pA

40

Copyright © 1987 STSC, Inc. 3-76 System Functions

File Rename OFRENAME

Purpose:

Syntax:

Arguments:

Effect:

Change the name of a file.

fileid OFRENAME tieno
fileid size OF REN AME tieno pass

fileid file identification (see section 2-2)
pass passnumber

size file size limit

tieno file tie number

The left argument, a character scalar or vector, designates the new
file identification and, optionally, the new size limit. The new file
name must not already exist in the library. The fileid must be
specified consistent with the mode selected (directory or library).

If a directory name or library number is specified, it must designate
a library in which you are allowed to own files. If the directory or
library number is omitted, your default library is assumed.

The right argument, an integer-valued singleton or two-element
vector, designates the old file identification by tie number and
optional passnumber. If the passnumber is not specified, it is
assumed to be zero.

OF RENAME changes the file name to the one specified in the left
argument, potentially moving it to a different directory. If the file
name already exists, the system signalsa FILE NAME
ERROR.

The result of DFNAME S will reflect the new file identification.
The user who renames the file becomes the new file owner.

OFRENAME can be applied to a file that is share tied. Other
users do not become aware of the name change until the next time
they attempt to tie the file. If ownership of the file is changed, the
former owner will lose all access to the file except that which is
explicitly granted by the access matrix.

Copyright © 1987 STSC, Inc. 3-77 System Functions

Access: The file must be tied, the passnumber must match the one in
effect, and you must have rename access. You must be authorized
to own files in the designated directory and must have a sufficient
user storage limit to accommodate the present space needed by the
file. The access code for DFRENAME is 128.

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE SIZE ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

Examples: OFLIB "!
PRIMES

'"PRIMES' OFTIE 10
'"PRIMENUMBERS' OFRENAME 10

OFLIB '!
PRIMENUMBERS
(Directory mode.) "NEWNAME' OFRENAME 10
(Library mode.) OLIBD '101 [MLO1'

'101 NEWNAME' OFRENAME 10

Copyright © 1987 STSC, Inc. 3-78 System Functions

Replace Component OFREPLACE

Purpose:

Syntax:

Arguments:

Effect:

Access:

Errors:

Change the value of an existing component of a file.

value OFREPLACE tieno comp
value OFREPLACE tieno comp pass

value any APL object
tieno file tie number
comp component number
pass passnumber

value is the value to be stored in the file. It can have any rank,
shape, or datatype.

The right argument, a two- or three-element integer vector,
designates where to store the data by file tie number (tieno) and,
optionally, by passnumber (pass). If the passnumber is omitted, it
is assumed to be zero.

Replaces the designated component of the file with a new value. It
also updates the component information (OFRDCI). Replacing a
component with a smaller or larger value may change the file size.

The file must be tied, the passnumber must match the one in
effect, and you must have append access. The access code for
OFAPPEND s 16.

DISK ERROR

DOMAIN ERROR

FILE ACCESS ERROR
FILE FULL

FILE INDEX ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR

RANK ERROR

WS FULL

Copyright © 1987 STSC, Inc. 3-79 System Functions

Examples: LIBRARY<DOFREAD 33 10
LIBRARY<LIBRARY, OUSERID
LIBRARY OFREPLACE 33 10

Copyright © 1987 STSC, Inc. 3- 80 System Functions

File Reservation Resize OFRESIZE

Purpose:

Syntax:

Arguments:

Effect:

Access:

Errors:

Example:

Reset the file size limit of a component file.

size OFRESIZE tieno
size OFRESIZE tieno pass

size file size limit in bytes
tieno file tie number
pass passnumber

size is the new file size limit in bytes. It must be a positive

integer scalar or one-element vector greater than or equal to the
current size of the file. size may also be zero, meaning that the file
has no size limit.

The right argument, a singleton or two-element integer vector,
designates the file by tie number (tieno) and optional passnumber
(pass). If the passnumber is omitted, it is assumed to be zero.

Changes the file size limit to the specified value. If size is zero
(the default for a new file), the file has no size limit, meaning that
it can grow as large as needed.

The file may be tied, the passnumber must match the one in effect,
and the user must have resize access. The access code for
OFRESIZE is 1024.

DISK ERROR

DOMAIN ERROR

FILE ACCESS ERROR
FILE SIZE ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR

RANK ERROR

WS FULL

OFSIZE 27

1 50 94560 100000
2600000 OFRESIZE 27
OESIZE 27

1 50 94560 2600000

Copyright © 1987 STSC, Inc. 3-81 System Functions

File Size Information OFSIZE

Purpose:

Syntax:

Arguments:

Result:

Errors:

Examples:

Return size limits of a component file.

result <« OFSIZE tieno
result < OFSIZE tieno pass

tieno file tie number
pass passnumber

The argument, an integer scalar or two-element vector, designates
the file by tie number (tieno) and optional passnumber (pass). If
the passnumber is omitted, it is assumed to be zero.

result is a four-element numeric vector with the following
information:

[1] the number of the first component in the file
[21 the next available component

[31] the physical storage (in bytes) used by the file, including
data, overhead, and access matrix

[4] the size limit for the file as set by the user (a value of zero
means no upper limit)

DOMAIN ERROR

FILE ACCESS ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR

RANK ERROR

WS FULL

'PRIMES' OFSTIE 37
OFSIZE 37
7 53 28672 100000

'"NEWFILE' OFCREATE 13
OFSIZE 13
1 1 2048 10

Copyright © 1987 STSC, Inc. 3-82 System Functions

File Set of Access Matrix OFSTAC

Purpose:

Syntax:

Arguments:

Effect:

Access:

Errors:

Set the access matrix of a component file.

access OFSTAC tieno
access OF STAC tieno pass

access access matrix
tieno file tie number

pass passnumber

access is the new access matrix. It is a three-column integer matrix
or a three-element vector. See Chapter 3 of the APL *PLUS
System User’s Guide for more information on access matrices.

The right argument, an integer scalar or one- or two-element
vector, designates the file by tie number (tieno) and optional
passnumber (pass). If the passnumber is omitted, it is assumed to
be zero.

Replaces the access matrix for the file. The new access restrictions
are imposed on a user the next time the file is tied by that user.

OF ST AC may increase the amount of disk storage occupied by the
file.

The file must be tied, the passnumber must match the one in
effect, and the user must have the authority to change the access
matrix. The access code for DF STAC is 8192.

DISK ERROR

DOMAIN ERROR

FILE ACCESS ERROR
FILE FULL

FILE TIE ERROR
HOST ACCESS ERROR
LENGTH ERROR

RANK ERROR

WS FULL

Copyright © 1987 STSC, Inc. 3- 83 System Functions

Example: MAT<2 3p4772490 2 666 1000 "1 O
MAT OFSTAC 33

OFRDAC 33
4772490 2 666
1000 =1 0

Copyright © 1987 STSC, Inc. 3- 84 System Functions

File Share Tie OFSTIE

Purpose:

Syntax:

Arguments:

Effect:

Access:

Note:

Tie a component file for shared use.

fileid OF ST IE tieno
fileid OF ST IE tieno pass

fileid file identification (see section 2-2)
tieno file tie number
pass optional passnumber

fileid must be a character vector or singleton containing the file
identification of an existing file. If the directory or library number
is not specified, the default library is assumed.

The right argument, an integer scalar or one- or two-element
vector, designates the file tie number (tieno) and optional
passnumber (pass). If the passnumber is omitted, it is assumed to
be zero.

The file is share tied. File ties are “slippery;” that is, if a file is
already tied to one tie number, DF ST IE can tie the file to the
same number or to another unused tie number without requiring the
file to first be untied.

The file must exist and must not be exclusively tied (OF T I E) by
anyone, although it can be share tied by others. The user must
have some form of access to the file, and the passnumber must
match the one in the access matrix.

More than one user can simultaneously update a file when
OFSTIE isused (see OFHOLD, OFTIE).

Copyright © 1987 STSC, Inc. 3-85 System Functions

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME TABLE FULL
FILE NOT FUOND
FILE TIE ERROR
FILE TIE QUOTA EXCEEDED
FILE TIED
HOST ACCESS ERROR
LENGTH ERROR
LIBRARY NOT FOUND

RANK ERROR
Examples: '"PRIMES' OFSTIE 37
(Directory mode.) "[APL.REL1IMYFILE' OFSTIE 22

(Switch to library mode.) OLIBD '12345 [APL.WSS]1'
'12345 PRINTOUT' OFSTIE 1 666

Copyright © 1987 STSC, Inc. 3-86 System Functions

File Tie

OFTIE

Purpose:

Syntax:

Arguments:

Effect:

Access:

Note:

Tie a component file for exclusive (non-shared) use.

fileid OFTIE tieno
fileid OFTIE tieno pass

fileid file identification (see section 2-2)
tieno available positive file tie number
pass optional integer passnumber

fileid must be a character vector or singleton containing the file
identification of an existing file. If the directory name or library
number is not specified, the default directory is assumed.

The right argument, an integer scalar or one- or two-element
vector, designates the file tie number (tieno) and optional
passnumber (pass). If the passnumber is omitted, it is assumed to
be zero.

The file is exclusively tied. No other user will be able to tie the
file as long as it remains exclusively tied.

File ties are “slippery;” that is, if a file is already tied to one tie
number, DFTIE will allow you to tie the file to the same number
or to another unused tie number without requiring the file to first
be untied.

The file must exist, it must not be tied by anyone else, the user
must have the authority to exclusively tie the file, and the
passnumber must match the one in the access matrix of the file.
The access code for DFTIE is 2 (see DFSTAC).

Only one user can update a file when OFT IE is used (see
OFHOLD,OFSTIE).

Copyright © 1987 STSC, Inc. 3-87 System Functions

Examples: '"PRIMES' OFTIE 37

(Directory mode.) '"[APL.REL1IMYFILE' OFTIE 2

(Switch to library mode.) OLIBD '12345 [APL.REL11'
112345 MYFILE' OFTIE 1

Copyright © 1987 STSC, Inc. 3-88 System Functions

File Untie OFUNTIE

Purpose: Untie one or more component files.
Syntax: OFUNTIE tienol tieno?2 tieno3 . . . tieno

Argument: tienol tieno2 tieno3 . .. tieno file tie numbers of files to be
untied
The argument is an integer scalar or vector of possible file tie
numbers. Elements of the argument need not be in use as file tie
numbers. An empty vector is permitted as an argument and does
not affect any file ties.

Effect: The files tied to any of the tie numbers in the argument are untied.
This frees the file tie slot for possible re-use with another file.
Any file holds in effect are released.

Errors: DOMAIN ERROR
RANK ERROR
WS FULL
Examples: OFUNTIE 33
OFUNTIE OFNUMS (Unties all current ties.)

Copyright © 1987 STSC, Inc. 3-89 System Functions

Function Fix OFX

Purpose:

Syntax:

Argument:

Result:

Effect:

Define (fix) a function from a character matrix (canonical)
representation of the function (see also DCR and ODEF).

result <« OFX farep
fnrep function representation

fnrep contains the canonical representation of a function (the result
of OCR) as a character matrix. The lines of the matrix should not
contain bracketed line numbers, nor should they contain v or #
other than in comments or character constants. Blanks that would
be superfluous in function definition mode are ignored by OF X.

If the function definition is successful, result is a character vector
containing the name of the function defined.

If the function definition is not successful, result is a numeric
scalar containing the index of the matrix argument where the first
fault was found. result depends on the index origin (O I 0).

Defines the specified function in the active workspace unless an
error condition occurs. The amount of available workspace area and
the number of symbols may change.

If the name of the function that has been defined corresponds to a
local identifier in a currently executing, pendent, or suspended
function, the newly-defined function is local to that function and is
erased when the function in which it is localized completes
execution.

If the name of the function that has been defined corresponds to the
name of an existing function, the existing function is replaced and
any OSTOP or OTRACE settings in the function are removed.

Copyright © 1987 STSC, Inc. 3-90 System Functions

Notes: ODEF and OF X provide similar capabilities. ODEF is a more
powerful and general case of DFX. The differences are outlined
below:

« ODEF accepts both canonical (matrix) and visual (vector)
representations of a function; OF X accepts only the canonical
representation.

« ODEF can create a function as a locked function; OF X cannot.

- ODEF indicates both the cause and the location of an error;
OFX indicates only the location.

» ODEF indicatesthe SYMBOL TABLE FULL or WS
FULL conditions via error codes without halting execution.
OFX halts execution.

Errors: DOMAIN ERROR
RANK ERROR
WS FULL
Example: OFX 3 5p'ABC DEFG HIJKL'
ABC
OVR '"ABC'
v ABC
[11] DEFG
[21 HIJKL
v

Copyright © 1987 STSC, Inc. 3-91 System Functions

Identifier List OIDLIST

Purpose:

Syntax:

Arguments:

Result:

Note:

Errors:

Return a character matrix of identifiers (names). The list can be
restricted to those that begin with designated letters.

result < OIDLIST class
result < letters DIDLIST class

class the classification of identifiers to be included in result
leters an optional character scalar or vector specifying the first
letters of identifiers to be selected

The right argumentclass is the sum of one or more of these values:

Value Identifier

1 functions
2 variables
8 labels

To obtain a combination of identifier types, the sum of the
appropriate values is used.

letters restricts the names included in result to those whose first
letter occurs in letters. If letters is not specified, all identifiers of
the specified types are produced.

result is a character matrix of identifiers. The rows are in
alphabetic order.

OIDLIST and ONL provide similar capabilities, but they use
different classification codes and arguments. In addition,
OIDLIST accepts an argument consistent with the result of
OIDLOC; ONL accepts an argument consistent with the result of
ONC. For maximum portability to other APL systems, use ONL
rather than 0IDLIST.

DOMAIN ERROR
LENGTH ERROR
WS FULL

Copyright © 1987 STSC, Inc. 3-92 System Functions

Example: List all functions that begin with T, U, or V.
'TUV' OIDLIST 1
TRI
VALIDATE

Copyright © 1987 STSC, Inc. 3-93 System Functions

Identifier List 0IDLOC

Purpose:

Syntax:

Argument:

Result:

Note:

Return the local and global classifications of a list of identifiers.
result « OIDLOC idlist
idlist list of identifiers

idlist contains a list of zero or more identifiers. It can be
represented as a character vector containing two or more identifiers
separated by one or more blanks or a character matrix with one
identifier in each row.

result is a numeric matrix with each row corresponding to an
identifier named in idlist. The matrix has one column for each
function in the state indicator, progressing from the most local to
the most global in increasing column order. The last column
contains the global definitions.

Values that may be returned are shown in the following table. The
values in the last column are always non-negative.

Value Classification
=4 Not localized at this level
0 Localized with no assigned value at this level

or globally undefined
1 System or user-defined function
2 System or user-defined variable with value
8 Label

OIDLOC and ONC provide similar capabilities, but they use
different classification codes and arguments. Other differences
include:

e OIDLOC returns all local and global classifications; ONC
returns only the locally active classifications of the identifier.

« OIDLOC is more informative than ONC. Different numeric
codes are used by each; ONC returns a less specific classification
code.

Copyright © 1987 STSC, Inc. 3-94 System Functions

Errors:

Example:

» OIDLOC accepts either a character matrix or character vector;
ONC accepts only a character matrix as an argument.

e OIDLIST returns a result consistent with 0ITDLOC; ONL
returns a result consistent with ONC.

» [ONC accepts an ill-formed identifier name; 0I DLOC produces a
DOMAIN ERROR

For maximum portability to other APL systems, use ONC rather
than 0I DLOC when appropriate.

DOMAIN ERROR
RANK ERROR
WS FULL

)SINL
TRI[1] * N A
TESTL11] A

OIDLOC 'A N TRI'

0 8 0
3 =1 B
=1 =t 1

This example shows that A is undefined (0) in the most local
environment (TR I), where it is localized but has not been defined
by assigning it a value. In the environment of TEST, A is
defined as a label (8). A has no global definition (0).

Copyright © 1987 STSC, Inc. 3-95 System Functions

Accept One Character of Keyboard Input OINKEY

Purpose:

Syntax:

Result:

Effect:

Caution:

Example:

Read one keystroke at a time from the terminal.
result < OINKEY

result is a character scalar containing the first key typed at the
terminal or the first key in the type-ahead buffer.

Waits for a single character of keyboard input. The input is not
displayed on the screen when it is typed, but instead returned as
result.

Multiple keystrokes typed by the user are buffered and only the first
character is retumed. The remaining characters can be read by
further use of 0JINKEY. Logical function keys are returned as a
single character; that is, they are not expanded into the multiple
keystroke definition specified by OPFKEY.

If Ctrl-C (interrupt) is pressed, DINKEY returns a Ctrl-C
(0AV[3+0I017)and signalsa weak interrupt.

OINKEY as described here is specific to this APL*PLUS
System. It may be different or absent in other APL * PLUS
Systems.

'Q'=0INKEY
1 (User pressed a "Q".)

Copyright © 1987 STSC, Inc. 3-96 System Functions

Index Origin 0I1Io

Purpose:

Syntax:

Domain:

Effect:

Errors:

Example:

Set or retrieve the value of the index origin. The value of OI 0 is
used in the definition of several APL functions.

value <« 0I0
O0I0 <« value

value can be either 0 or 1. In a clear workspace, the default value for
O0IO0isl.

When generating or referencing index values, the system assumes that
indices are numbered starting at 0 T0.

The value of OI 0 is used in connection with:

« computing the result of index generator (monadic 1) and
index of (dyadic 1)
» computing the result of roll (monadic ?) and deal (dyadic ?)
 computing the result of grade up (4) and grade down (V)
« indexing applied to an array (AL. . . 1)
« applying the axis operator to a primitive function (¢ [. . . 1A)
« interpreting the left argument to dyadic transpose (. . . RA4)
» computing the result of DDEF and OF X when an invalid
argument is used

DOMIAN ERROR
RANK ERROR

The columns below show the effect of 0I 0O on various operations.

0I10+1 O0I0+0

i5 15

128345 01234
X+<5+15 X+<5+15
X X

6 7 8 9 10 56789
X[3] X[3]

8 8

Copyright © 1987 STSC, Inc. 3-97 System Functions

Copyright © 1987 STSC, Inc.

X[5]

10

X[0]
INDEX ERROR
X[o01l

AA

12 3 4 [3]
'"ABCDEF' [2+13]
CDE
V<6 23 11 4 7o
AV
54132
X,[0.5]1 V

6 7 8 9 10
6 23 11 4 76

373

3-98

X[5]
INDEX ERROR
X[5]

AA

X[0]

12 3 4 [3]
4

'ABCDEF'[2+13]
CDE

V<6 23 11 4
AV

4 3021
X,[0.51 V

6 23
7 11

9 76

3?73

System Functions

6

Line Counter OLC

Purpose:

Syntax:

Result:

Effect:

Errors:

Example:

Return the current value of the execution line counter.
result <« OLC

result is a numeric vector of line numbers from the state indicator
beginning with the most local. It does not include any values
corresponding to ¢ or 0 symbols appearing in 0ST or) ST.

While OLC just returns the line numbers, it can be used in the
expression to resume a stopped or interrupted execution.

WS FULL

0SI
TRI[2]1~*

3
EXAMPLE[3]
OLC

-0LC (Restart execution.)

Copyright © 1987 STSC, Inc. 3-99 System Functions

Library List

OLIB

Purpose:

Syntax:

Arguments:

Result:

Caution:

Errors:

Examples:

Return a character matrix of file names in the specified library.

result < OLIBdir
result < OLIBlib

ar directory name (see section 2-2)
lib library number

If the system is in directory mode (the default), the right argument
is a character vector or scalar containing the directory name (dir) to
be searched for files. If the system is in library mode, the right
argument is a library number (/ib).

result is a character matrix containing one file identification in each
row. The number of columns in result is determined by the
longest file name in the list. The columns are arranged in
alphabetic order.

If an argument is not specified, result contains the file
identification for your default working directory or library.

OLI B, as described here, is specific to this APL*PLUS System.
It may be different or absent in other systems.

DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
WS FULL

OLIB '!
TEMP.SF
DATA87.SF
OLIB '[LLGI1'
DATES.C
SERHOST
UTILITY
OLIBD '12 [JGWI'
OLIB 12
DATES
SERHOST
UTILITY

Copyright © 1987 STSC, Inc. 3-100 System Functions

Define Library OLIBD

Purpose:

Syntax:

Argument:

Effect:

Errors:

Caution:

Examples:

Associates a library number with a directory.
OLIBD libdefn
libdefn library number and the name of a directory

libdefn must be a character vector containing both the library
number and the directory name separated by at least one space. The
library number should be an integer number (in character form) and
the directory name a valid, existing directory.

Equates the library number with the directory in the argument. The
result of 0L I BS changes accordingly; the number can be used in
workspace and file names, and the number can be used to query the
contents of the directory. If the library number was defined
previously, the new definition replaces the previous one.

No test is made of the validity of the directory name or of the
existence of a directory by the given name. If the name is
ill-formed or the library does not exist,a LIBRARY NOT
FOUND message will be produced when you attempt to use the
library definition.

DOMAIN ERROR
RANK ERROR

OLIBD as described here is specific to this APL * PLUS System.
It may be different or absent in other APL * PLUS Systems.

OLIBS
1 [APL.REL1]

OLIBD '11 [APL.WS1' ¢ OLIBS
1 [APL.REL1]
11 [APL.WS1]

Copyright © 1987 STSC, Inc. 3-101 System Functions

Library to Directory Correspondences OLIBS

Purpose: List the defined APL libraries and the directories to which they
correspond.

Syntax: result < OLIBS

Result: result is a character matrix with one row for each defined APL

library. Each row shows the library number and the associated
directory to which it corresponds.

The association of a library number and directory can be made when
entering APL by a line in the form "1library="orin the APL
configuration file. Associations between libraries and directories
can also be made under program control using LI BD. In the
absence of any library definitions, APL is in directory mode,
meaning that no libraries are defined. Directories other than the
current working directory are referenced by explicitly specifying the
directory name.

If no libraries are defined, the result is a zero-row matrix. Thus,
the expression 0=1t pOLIBS is true if and only if the system is
in directory mode. This is the definitive test for distinguishing
directory mode from library mode under program control.

The libraries listed in DL I B S are not guaranteed to exist.
Attempts to access or create a file or workspace in a library
corresponding to a directory that cannot be located results in a
LIBRARY NOT FOUND error message.

Errors: WS FULL
Caution: OLIBS asdescribed here is specific to this APL * PLUS System.
It may be different or absent in other APL *PLUS Systems.
Examples: OLIBS (Empty result means directory mode.)
pOLIBS
0 0
OLIBS (Non-empty means library mode.)
1 [APL.REL1]
11 [APL.WS]

Copyright © 1987 STSC, Inc. 3-102 System Functions

Load a Workspace OLOAD

Purpose: Replace the active workspace by loading the designated workspace
(under program control).

Syntax: OLOAD wsid
Argument: wsid workspace identification (see section 2-2)

wsid is a character scalar or vector that specifies the workspace to
be loaded. If the directory name or library number is omitted, your
current default library is assumed.

Effect: The specified workspace becomes the new active workspace,
OWSID changes,and OLX is executed. 0QLOAD provides a
similar capability and does not display the SAV E D message.

Errors: DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR
WS ARGUMENT ERROR
WS NOT COMPATIBLE
WS NOT FOUND
WS TOO LARGE

Examples: OLOAD 'TESTWS'
TESTWS SAVED 12:27:39 07/22/87

(Switch to path mode.) OLIBD '1234 [APL.REL1]'
OLOAD '1234 TESTWS'
1234 TESTWS SAVED. ..

Copyright © 1987 STSC, Inc. 3-103 System Functions

Lock Defined Functions OLOCK

Purpose: Lock functions under program control.
Syntax: result < OLOCK fnlist
Argument: falist list of function names
fnlist contains a list of the function names that can be represented

as a character matrix, with one function name in each row or a
character vector containing function names separated by blanks.

Result: result is an alphabetized character matrix of requested function
names whose definitions cannot be locked. If all requested names
are locked, result is an empty matrix with shape 0 0.

Effect: Only the most local definition of a function is locked. Functions
shadowed by more local use of the same name are not locked.

Locking a function also removes any stop or trace settings it may
have (see descriptions of 0STOP and OTRACE in this manual).

Errors: DOMAIN ERROR
RANK ERROR
WS FULL
Examples: pOVR 'TRI'
72
pOCR 'TRI'
3 32
OLOCK 'TRI'
pOVR 'TRI'
0
pOCR 'TRI'
00
OLOCK ONL 3 (Lock all functions in

the workspace.)

Copyright © 1987 STSC, Inc. 3-104 System Functions

Latent Expression OLX

Purpose:

Syntax:

Domain:

Effect:

Errors:

Example:

Store an APL expression to be executed when the workspace is
loaded. This provides a convenient way to start an application
automatically once it has been loaded.

expr <« OLX
OLX <« expr

expr 1s a character vector containing a valid APL expression. Ina
clear workspace, the default value for 0L X is an empty vector

(l I).

Stores a statement that is executed whenever the workspace is
loaded (except by DXLOAD or) XLOAD). If OL X represents an
invalid APL statement, an error is reported and execution is
suspended as if the statement were a line entered in immediate
execution mode.

DOMAIN ERROR
RANK ERROR

The following example illustrates a typical latent expression:

v AUTOSTART
[1] '"WELCOME TO THIS WORKSPACE'
[21 MAIN

v
OLX<'AUTOSTART'
)SAVE STARTWS

The AUTOSTART function is executed as soon as the workspace
is loaded.

JLOAD STARTWS
STARTWS SAVED. ..
WELCOME TO THIS WORKSPACE

Copyright © 1987 STSC, Inc. 3-105 System Functions

Monitor Function OMF

Purpose:

Syntax:

Arguments:

Result:

Set and unset monitoring of function execution and read monitor
data.

result <« OMF frnname
result < flag OMF [nlist

flag monitoring switch setting
fnlist list of function names
fnname function name

flag is a Boolean scalar or one-element vector that controls the
monitoring setting. A 1 sets monitoring on, and a O tumns it off.

fnname is a character scalar or vector containing the name of one
function.

fnlist contains a list of function names. It can be represented as a
character matrix with one function name in each row or a character
vector containing function names separated by blanks.

Monitoring cannot be set or unset on functions that are locked,
suspended, pendent, or executing.

The result depends on the arguments supplied. If flag and fnlist are
supplied, result is a Boolean vector with one element for each
function name in falist. A 1 indicates that monitoring was
successfully set or unset for the corresponding function. A 0
indicates that DMF was unable to set or unset monitoring for the
corresponding function.

If only fnname is supplied, result is a three-column integer matrix
with one row per function line and one row for the function header.
The first row of the result contains information about the execution
of the entire function. The second and subsequent rows of the
result contain information about the corresponding function line.

Copyright © 1987 STSC, Inc. 3-106 System Functions

Effect:

Example:

[1;11] Total CPU time for entire function
[1;2] 0
[1;31] Number of times the function was called
[2eeen; 1] Accumulated CPU time for the line
[2eeen; 2] CPU time for the line minus that used
while subfunctions called on that line were
executing
[2¢en; 3] Number of times the line was executed

Sets monitoring on a function and causes it to expand internally to
include space for accumulated monitor data. When monitoring is
unset, the function contracts to its normal size.

If a function is already being monitored, using 1 OMF fnlist resets
monitor data to zero.

A monitored function which is subsequently locked continues to
accumulate monitor data while executing. However, the data
cannot be read. O OMF fnlist can be applied to unset monitoring.

Monitor all functions in the workspace whose name starts with C:

pF«'C' OIDLIST 3

24 15
pA<1 OMF F
AJA
0
OMF 'COMPLEX' (Display execution time.)
15 0 3 (For entire function.)
8 8 3 (For line 1.)
4 4 3 (For line 2.)
3 3 3 (For line 3.)

Copyright © 1987 STSC, Inc. 3-107 System Functions

Call Non-APL Routine ONA

Purpose:

Syntax:

Arguments:

Allow APL to call an external machine language routine by associating
it with a name in the APL workspace.

result <

ONA fnname

result < class ONA ' module:fname routine (arg, arg...) res'

class

[frname

module

routine

syntax class of the external routine. The only possible value
of classis 3 0 in this release.

name of a function

name of a file with extension . exe containing the routine to
be called from APL. module must have been defined as a
logical name prior to invoking APL with a DEFINE
command. For example, $DEFINE VTOM

SDUAO: [APL.REL1] .EXE.

name of the APL function created in the workspace by ONA.
fnname is optional; if omitted, routine will be used as the
function name

name of the entry point in the module to be associated
with the APL function created by ONA

describes the form of the argument expected by the external
routine. The list of argument specifications appears in
parentheses, separated by commas. If the external routine
requires no parameters, an empty list within parentheses is
required. arg describes the datatype of each argument, how the
argument is passed, and whether it will be modified by the
external routine. Any value marked as modifiable will be
returned as an item of the explicit result of the external
function, whether or not it has actually been modified.
Datatypes recognized by the current release of the
APL*PLUS System are:

Copyright © 1987 STSC, Inc. 3-108 System Functions

Result:

Effect:

arg Datatype

B1 Boolean (1 bit per element)

c1 Character (1 byte per element)

I4 Integer (4 bytes per element)

D4 VAX D - format float (4 bytes per element)

D8 VAX F - format float (8 bytes per element)

GO General object; a variable in the form used
internally by APL (always passed by
reference)

The presence of an asterisk ' * ' before the datatype
descriptor indicates that the argument is to be passed by
reference; APL will pass the address of the beginning of the
data in the array. Otherwise, the argument is passed by
value and APL passes the value of the first item of the
array. An array of more than one item can only be passed
by reference. The presence of an arrow '« ! after the
datatype descriptor indicates that the value may be modified
and will be included in the explicit result returned by the
external routine.

res describes the form of the result, if any, returned by the
routine. If specified, the routine's result will be returned as
the first item of the explicit result returned by the
associated APL function. If omitted, the routine's explicit
result is discarded

When ONA is used dyadically, the right argument is a character
vector containing the specifications for an external routine.

result is 1 if dyadic ONA is successful, 0 if it is not. If used
monadically, result is 3 if fnname is the name of a function that
has been associated with an external routine. Otherwise, result is
0 indicating that fnname is not associated with an external routine.

Creates a locked function in the APL workspace that is associated
with the external routine. Using this locked function causes APL
to call the routine specified by fnspec, passing the pointers (or
actual value in the case of scalars) of the arguments supplied to
fnname. fnname is always assumed to be monadic and the number

Copyright © 1987 STSC, Inc. 3-109 System Functions

of items in its right argument must match the number of args
specified in the right argument.

Used monadically, ONA simply reports on whether fnname is an
external routine.

Note: See Chapter 9 of the APL *PLUS System User’s Manual for more
information on using ONA.

Warning: ONA is experimental in this release of this APL*PLUS System.
This feature may change or be removed in a future release.

Example: JCLEAR
CLEAR WS
3 0 ONA 'VAXCRTL:AT TIMES(xI4+) I4'
1
T<AT ,c14
1=T
0 (Return code.)
2>T
1662 0 0 0O (CPU time for APL process.)

Copyright © 1987 STSC, Inc. 3-110 System Functions

Native File Append ONAPPEND

Purpose:
Syntax:

Arguments:

Effect:

Append data to the end of a designated native file.
value ONAPPEND tieno

value any simple, homogeneous APL array
tieno native file tie number

Appends new data to a native file. Each item of data in the array is
written to the native file using the current internal representation of
the APL data.

The system function 0 DR should be used to determine the datatype
since the display form of the data does not indicate the internal
representation. For example, the vector 1 0 1 displays the
same whether it is stored internally as Boolean, integer, or
floating-point data. Explicit conversion of numeric data may be
needed.

The following expressions will convert data to the desired internal
representation (note that datatype conversions are not considered
part of the APL language and are therefore subject to change in
future releases).

Datatype Conversions
Conversion Expression

Boolean (signal domain error DATA<1ADATA
if not Boolean-valued)

Integer DATA<LDATA+0.5
Integer (from Boolean) DATA<0+BOOLEAN
Floating Point DATA<DATA+1

When an APL array is written to a native file, only the data values in
the array are stored. Rank, shape, and datatype information are not
written to the file.

Copyright © 1987 STSC, Inc. 3-111 System Functions

Caution: ONAPPEND is intended for use with the sequential Stream_LF files
created with ONCREATE. Other types of files may be damaged if
ONAPPEND is used to write to them.

ONAPPEND as described here is specific to this APL *PLUS System.
It may be different or absent in other APL * PLUS Systems.

Errors: DISK ERROR
DISK FULL
DOMAIN ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

Examples: (OVR 'TRI') ONAPPEND ~27

TEXT ONAPPEND ~33

Copyright © 1987 STSC, Inc. 3-112 System Functions

Name Classification of Identifiers ONC

Purpose:

Syntax:

Argument:

Result:

Errors:

Examples:

Return classification of a list of identifiers (object names).

result < ONC objlist

objlist list of object identifiers

objlist contains a list of zero or more workspace identifiers
(function, variable, or label names). The argument can be a
character vector with one or more names separated by blanks or a

character matrix with one name per row.

result is a numeric vector of classification codes, one for each name
in the argument. Values that can be returned are:

Value Classification

0 not defined

1 label

2 variable

3 defined function
4 other

A value of 4 indicates that the object identifier is invalid or that it
is the name of a system function or variable (that is, it begins with
a).

DOMAIN ERROR
RANK ERROR
WS FULL

ONC 'A TRI'
ONC 2 3 p'A TRI'

ONC 'OWA'!

Copyright © 1987 STSC, Inc. 3-113 System Functions

Native File Create ONCREATE

Purpose: Create a new native file with specified name and tie the file.
Syntax: file ONCREATE tieno
Arguments: file file name

tieno file tie number

file is a character vector containing the name of a valid operating
system file. You may prefix the file name with any directory and
disk information desired. Native files are created as unblocked
Stream_LPF files.

tieno must be a negative, integer-valued singleton designating an
available file tie number. You cannot have another file currently
tied with this number.

Native files are created as unblocked sequential Stream_LF VMS

files.

Effect: A new file is created with file name as specified by file. The new
file is then tied to tieno.

Caution: File names ending in . VF and . WS designate APL component files

and workspaces to APL, respectively. We recommend against
using . VF and . WS for any other purpose.

ONCREATE as described here is specific to this APL *PLUS
System. It may be different or absent in other APL *PLUS
Systems.

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE NAME TABLE FULL
FILE TIE QUOTA EXCEEDED
RANK ERROR
WS FULL

Copyright © 1987 STSC, Inc. 3-114 System Functions

Examples: 'SAMPLE .C' ONCREATE ~27
'"PRINT' ONCREATE ~33

'"[RIKIEXAMPLE .TXT' ONCREATE ~25

Copyright © 1987 STSC, Inc. 3-115 System Functions

Native File Erase ONERASE

Purpose: Erase a native file.

Syntax: file ONERASE tieno

Arguments: file file name (see ONTIE)
tieno native file tie number

The file described by name (file) and by tie number (tieno) must be
the same file.

Effect: Unties a file and erases it from the disk and directory. All of the
data in the file is destroyed.

Caution: ONERASE as described here is specific to this APL *PLUS
System. It may be different or absent in other APL*PLUS
Systems.

Errors: DISK ERROR

DOMAIN ERROR

FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE TIE ERROR

HOST ACCESS ERROR
RANK ERROR

WS FULL

Examples: "MEMO.TXT' ONTIE ~27
"MEMO.TXT' ONERASE ~27

"SCRATCH' ONTIE ~33
'"SCRATCH' ONERASE ~33

Copyright © 1987 STSC, Inc. 3-116 System Functions

Name List of Identifiers ONL

Purpose:

Syntax:

Arguments:

Result:

Errors:

Examples:

Return a character matrix of function, variable, and/or label
identifiers (names).

result « ONL class
result < letters ONL class

leters beginning letters of identifiers
class classification of identifiers

letters is an optional character vector of letters (blanks are not
permitted) that restricts result to names whose first letter is in
letters.

class is an integer vector that determines the class of names
produced; the acceptable values are

Value Identifiers
1 labels
2 variables
3 functions

If more than one value is designated, identifiers defined as
belonging to any of those classes are returned. For example, ONL
2 3 produces a matrix of names of all variables and functions.
The most local definitions of the identifiers are used.

result is a character matrix of identifiers with the rows alphabetized.

DOMAIN ERROR
RANK ERROR
WS FULL

YJENS

TRI UPDATE VOoID WITH
WITHOUT XMIT

'TX' ONL 3
TRI
XMIT

Copyright © 1987 STSC, Inc. 3-117 System Functions

YVARS
ARC TERM XRAY

'TX' ONL 3 2
TERM
TRI
XMIT
XRAY

Copyright © 1987 STSC, Inc. 3-118 System Functions

File Identifications of All Tied Native Files ONNAMES

Purpose:

Syntax:

Result:

Errors:

Caution:

Example:

Return the file identifications of all files currently tied with
ONTIE.

result <« ONNAMES

result is a character matrix that contains one file identification per
row and as many columns as are necessary to hold the longest
name. The rows of result have the same ordering as the result of
ONNUMS.

Directory information is included in the result of ONNAME S in
the same form as it was used when the file tic was established
(using ONCREATE or ONTIE).

WS FULL

ONNAMES as described here is specific to this APL * PLUS
System. It may be different or absent in other APL+PLUS
Systems.

.ONNAMES
[LAPL.REL11CHAPTER1
SCRATCH

Copyright © 1987 STSC, Inc. 3-119 System Functions

File Numbers of Native Files ONNUMS

Purpose: Return the file tie numbers of all files currently tied as native files.
Syntax: result < ONNUMS
Result: result is a numeric vector of file tie numbers.

result has the same ordering as the rows of the result of

ONNAMES.

Errors: WS FULL

Caution: ONNUMS as described here is specific to this APL*PLUS
System. It may be different or absent in other APL *PLUS
Systems.

Examples: ONNUMS

27 62 T3 737 "4
ONUNTIE ONNUMS

oONNUMS

Copyright © 1987 STSC, Inc. 3-120 System Functions

Read Native File Access ONRDAC

Purpose: Read the current file mode (access permissions) for a native file.

Syntax: result <« ONRDAC file
result <« ONRDAC tieno

Arguments: file native file
tieno native file tie number

The argument identifies the file by file tie number (tieno) or by
name (file). If identified by tie number, the argument must be a
negative integer singleton representing a tied native file. If
identified by name, a character vector or singleton must be a valid
file name.

Result: result is an integer scalar representing the current file permissions
as the sum of the following values:

Value Explanation
256 Read permission for owner
128 Write permission for owner
64 Execute permission for owner
32 Read permission for group
16 Write permission for group
8 Execute permission for group
4 Read permission for all others
2 Write permission for all others
1 Execute permission for all others

For a discussion of file permissions, see the documentation supplied
with your operating system. Other bits may be set; their effect is
presently undefined.

Caution: ONRDAC as described here is specific to this APL*PLUS System. It
may be different or absent in other APL * PLUS Systems.

Errors: DOMAIN ERROR
FILE NAME ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

Copyright © 1987 STSC, Inc. 3-121 System Functions

Example: 'FILE' ONCREATE ~1
T<3 3p~91(32p2) T ONRDAC -1
' RWX',[11'OWN' 'GRP' 'ALL',T
RW X
OWN 1 1
GRP 1 0
ALL 0 0

[eolele]

Copyright © 1987 STSC, Inc. 3-122 System Functions

Read from Native File ONREAD

Purpose:
Syntax:

Arguments:

Result:

Effect:

Caution:

Read data from a native file.
result < ONREAD tieno conv count startbyte

tieno native file tie number

conv data conversion to be used

count number of element of type conv to be read
startbyte starting byte at which to begin reading

The argument is an integer vector of three or four elements
(startbyte is optional and assumed to be the next byte following the
last byte that has been read with ONREAD). Tying the file with
ONREAD sets startbyte to 0 (the first byte in the file). tieno must
be a valid native file tie number (see ODNT I E) and conv must be
one of the following conversion types:

ONRE AD Data Conversions

Conv. Conversion Type
11 Read one bit per element, result is Boolean data
82 Read one byte per element, result is character data
163 Read two bytes per element, result is integer data
323 Read four bytes per element, result is integer data
644 Read eight bytes per element, result is VAX
floating-point data

result is the data in the file in the datatype specified by conv.
result will be an APL vector with length count.

Copies the data in the file into the workspace and converts it to the
specified datatype.

ONREAD is capable of reading on sequential Stream_LF files.
Other types of VMS files may not be readable.

Not all eight-byte sequences represent valid floating-point numbers.
If arbitrary data is read in with a floating-point conversion, the
effect of APL primitives on this data is undefined.

Copyright © 1987 STSC, Inc. 3-123 System Functions

ONREAD as described here is specific to this APL*PLUS
System. It may be different or absent in other APL *PLUS
Systems.

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE INDEX ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR
WS FULL

Example: ONREAD ~12 82 57 0
THIS FILE CONTAINS SALES DATA FOR
1987. CREATED 1/26/87.

Copyright © 1987 STSC, Inc. 3-124 System Functions

Change the Name of a Native File ONRENAME

Purpose: Change the name of a native file or move it to another directory.
Syntax: file ONRENAME tieno

Arguments: file native file name (including directory, if needed)
tieno tie number

The right argument describes the existing file by tie number
(tieno). The left argument (file) provides the new file name and,
optionally, directory information.

Effect: Renames a native file tied to tieno. You become the file owner.
ONRENAME provides the same facility as the DCL command
rename and you must have the same access permission required to
use rename in order to use ONRENAME.

ONRENAME cannot replace an existing file and produces a
FILE NAME ERROR if the target file already exists.

Errors: DOMAIN ERROR
FILE ARGUMENT ERROR
FILE NAME ERROR
FILE TIE ERROR
HOST ACCESS ERROR
LIBRARY ACCESS ERROR

Caution: ONRENAME as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

Example: '"TEST.C' ONTIE "1
'"[MRVNIWORKING.C' ONRENAME ~1

Copyright © 1987 STSC, Inc. 3-125 System Functions

Replace Native File Data ONREPLACE

Purpose:

Syntax:

Arguments:

Effect:

Caution:

Stores a new value in an existing native file storage space,
replacing the data already there.

value ONREPLACE tieno startbyte

value single, homogeneous array
tieno negative file tie number
startbyte starting byte where the new data is to be placed

The right argument designates the file by tie number (tieno). It
must be an integer two-element vector with the second element
positive (startbyte).

Replaces the value of the designated storage space in the file. If the
storage from the specified startbyte to the end of the file is
insufficient for the specified value, the file is extended to
accommodate it.

ONREPLACE is intended for use only with sequential Stream_LF
files of the kind that are created with ONCREATE. Other types of
files may be damaged if ONRE PLACE is used to write to them.

Numeric data is written to file in its present internal representation.
Explicit coercion of numeric data to the desired datatype is
recommended (see "ONAPPEND -- Native File Append”).
Boolean data is written in whole bytes (writing n Boolean values
will cause L (n+7) +8 bytes to be replaced in the file). The
value of trailing bits in the last byte is undefined.

ONREPLACE as described here is specific to this APL*PLUS
System. It may be different or absent in other APL+*PLUS
Systems.

Copyright © 1987 STSC, Inc. 3-126 System Functions

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE INDEX ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR
WS FULL

Example: BLOCK<ONREAD ~33 323 10 1048520

BLOCK
23 7 1984 ~22 79 22 48 41 68 82

BLOCK[31+1982
BLOCK ONREPLACE ~33 1048520

Copyright © 1987 STSC, Inc. 3-127 System Functions

File Size Information ONSIZE

Purpose: Report the amount of disk storage occupied by a file.
Syntax: result < ONSIZE file

result < ONSIZE tieno
Arguments: file name of the native file

tieno native file tie number

The right argument can either be a character vector containing a file
name (file) or an integer singleton containing a tie number (tieno).

Result: result is a numeric scalar indicating the total disk storage (in bytes)
used by the file.

Caution: ONSIZE as described here is specific to this APL* PLUS
System. It may be different or absent in other APL *PLUS
Systems.

Errors: DOMAIN ERROR

FILE NAME ERROR
FILE TIE ERROR
LENGTH ERROR

RANK ERROR
WS FULL
Example: '"PRIMES' ONTIE 737
ONSIZE ~37
233472

Copyright © 1987 STSC, Inc. 3-128 System Functions

Set Native File Access ONSTAC

Purpose: Set the file mode (access permissions) for a native file.
Syntax: access ONSTAC tieno

Arguments: access access permissions
tieno native file tie number

access is an integer singleton containing the sum of the file
permissions that are to be set for the native file.

Access
Permission
Value Explanation
256 Read permission for owner
128 Write permission for owner
64 Execute permission for owner
32 Read permission for group
16 Write permission for group
8 Execute permission for group
4 . Read permission for all others
2 Write permission for all others
1 Execute permission for all others

tieno is the tie number of the native file. It must be a negative
integer.

Effect: The new permissions are established for the file and take effect
immediately.

Caution: ONSTAC as described here is specific to this APL*PLUS
System. It may be different or absent in other APL * PLUS
Systems.

Errors: DOMAIN ERROR
FILE ACCESS ERROR
FILE TIE ERROR
LENGTH ERROR
RANK ERROR

Copyright © 1987 STSC, Inc. 3-129 System Functions

Example: '"DEMO' ONTIE "1
(+/256 128 32 4) ONSTAC ~1

Copyright © 1987 STSC, Inc. 3-130 System Functions

Tie Native File ONTIE

Purpose: Establish a file tie for a native file.

Syntax: file ONTIE tieno

Arguments: file native file name (see section 2-2)
tieno file tie number

file must be a character vector or singleton containing a valid file
name. It may optionally be preceded by a directory designation.

tieno is the file tie number to be used and must be a negative,
integer-valued singleton not currently in use as a tie number.

Effect: The native file is tied (opened) for reading and writing if the user
has both permissions; read-only if the user lacks write permission.

A file that is already tied with ONT IE can be re-tied using

ONT IE without first being untied. The tie number can be the
same number or a different number. The only restrictions are that
no other file can already be tied with the new tie number and the
file cannot be tied to a positive number. This "slippery" tie can be
used to verify that a file is tied (without looking up its name in
ONNAMES and ONNUMS).

Caution: ONT IE as described here is specific to this APL *PLUS System.
It may be different or absent in other APL*PLUS Systems.

Errors: DISK ERROR
DOMAIN ERROR
FILE ACCESS ERROR
FILE ARGUMENT ERROR
FILE NAME TABLE FULL
FILE NOT FOUND
FILE TIE ERROR
FILE TIE QUOTA EXCEEDED
LENGTH ERROR
RANK ERROR

Examples: '"SAMPLE.C' ONTIE "1
[APL.TEST1SAMPLE.C ONTIE ~1

Copyright © 1987 STSC, Inc. 3-131 System Functions

Untie Native File ONUNTIE

Purpose:

Syntax:

Argument:

Effect:

Errors:

Caution:

Examples:

Untie native files currently tied.
ONUNTIE tienol tieno2 tieno3 ... tienon
tieno tie numbers

The argument designates the files by tie number. It must be a
numeric singleton or vector of zero or more tie numbers. The
numbers do not have to be distinct, nor do they need to designate
actual tied files.

Has no response if the argument is empty. If the argument
includes tie numbers of tied files, they are closed and associated
entries are removed from ONNAME S and ONNUMS.

DISK ERROR
DOMAIN ERROR
RANK ERROR

ONUNTIE as described here is specific to this APL * PLUS
System. It may be different or absent in other APL *PLUS
Systems.

ONUNTIE ~33
ONUNTIE ONNUMS

Copyright © 1987 STSC, Inc. 3-132 System Functions

Protected Copy From Saved Workspace OPCOPY

Purpose:

Syntax:

Arguments:

Result:

Copy APL functions and variables from a saved workspace into the
active workspace provided the object does not already exist.

result « OPCOPY wsid
result < objlist OPCOPY wsid

wsid workspace name (see section 2-2)
objlist list of functions and variables to copy

objlist can be either a character matrix of object names, one name
per row, or a character vector with each name separated by one or
more blanks.

result is an integer vector representing the success or failure of
OPCOPY. If objlist is specified, result contains a response code
for each object in objlist:

Code Explanation

2 A variable was copied successfully
1 A function was copied successfully
0 No objects copied; none found with the supplied
name
~1 An object with this name already exists in the
workspace
=2 The object was too large to copy given the
available free workspace
-3 The name is defined as a label and cannot be
changed
~4 There is insufficient space in the symbol table to
copy this object
6 The amount of workspace available is too small

to perform the copy

If OPCOPY is used without specifying objlist, then result is
empty if all objects of wsid were copied successfully.

Copyright © 1987 STSC, Inc. 3-133 System Functions

Effect: Copies objects from the specified workspace (wsid) into the local
environment of the active workspace unless they would replace any
objects by the same name. See the description of DCOPY for a
way to copy while replacing any existing objects.

If an unanticipated error occurs, no result is returned.

Copying a function copies only its source form; all compiled code
is discarded and 0 ST OP and OTRACE settings are cleared in the
active workspace.

Errors: DOMAIN ERROR
INSUFFICIENT MEMORY
LENGTH ERROR
RANK ERROR
WS ARGUMENT
WS DAMAGED
WS FULL
WS NOT FOUND

Examples: JVARS
MTRX

MTRX

W
N

)SI
SPNDL31+~

'"MTRX XXX DAT SPND' OPCOPY 'WS3'
1102 73

JVARS
DAT MTRX

MTRX (Compare to 0COPY which changes
the value of MATRIX.)

w -
>N

Copyright © 1987 STSC, Inc. 3-134 System Functions

Programmable Function Keys OPFKEY

Purpose:

Syntax:

Arguments:

Result:

Effect:

Report the current settings of the logical programmable function
keys or, optionally, redefines the function key settings.

string OPFKEK key
string < OPFKEY key

string character sequence associated with a programmable
function key
key character or integer identifying the key

The right argument identifies the keystroke whose programmable
value is being queried or set. It is an integer singleton in the range
from O to 127 or a character singleton from 128t 0AV. For
example, the character sequence associated with the D key can be
referred to either as the character value ' D' or the integer value
36 ((OAV1'D')-0I0).

The optional left argument is used to redefine the character sequence
associated with the keystroke. It can be any character scalar or
vector. It can also be an integer scalar or vector containing the
origin-0 (0I 0+«0) indices of those characters in DAV.

The total space available for function keys is sufficient to hold
512 characters. The longest possible character sequence is 6 4
characters.

The explicit result of monadic DPFKEY is a character vector
containing the current character sequence defined for the key
indicated in the right argument. Dyadic DPFKEY does not return
an explicit result.

Defines logical programmable function keys that are independent of
any physical function keys on a terminal keyboard. The logical
function keys are invoked by typing the PF-key keystroke followed
by another character. The effect is to substitute the stored character
sequence for that key, just as if it had been typed at the keyboard.

Copyright © 1987 STSC, Inc. 3-135 System Functions

If the character sequence contains a newline character (0T CNL),
the effect is equivalent to pressing Return to enter a line of input.
A single function key can contain multiple input lines separated by
newline characters. If the Escape character 0T CESC occurs in the
sequence, it is sent through to APL as an Escape. One function
key cannot invoke another function key.

Default values are defined for each of the ASCII characters. These
are listed in Section 5-3 of the APL *PLUS System User’s

Manual.

Caution: OPFKEY as described here is specific to this APL * PLUS
System. It may be different or absent in other APL * PLUS
Systems.

Errors: DOMAIN ERROR

LENGTH ERROR
LIMIT ERROR

RANK ERROR
WS FULL
Examples: OPFKEY 'V! (Previous definition.)
14
(')VARS' ,O0TCNL) OPFKEY 'V!
OPFKEY 'V!
YVARS

After executing the above example, the sequence ') VARS ' can
be entered as input by pressing PF-key followed by a shift V.
Note that v and V are distinct and can be given different function
key definitions.

Copyright © 1987 STSC, Inc. 3-136 System Functions

Printing Precision OPP

Purpose: Specify the maximum number of significant digits, or print
precision, provided by the system when it displays numeric data.

Syntax: result < OPP
OPP <« number
Domain: OPP can be assigned an integer value between 1 and 18

inclusive. The default value is 10 in a clear workspace.

Effect: The value of OPP is used when computing the result of monadic
format (¥) or any system-generated numbers. The system uses up
to 0P P significant digits in the representation of numbers. If a
value cannot be represented exactly with 0P P digits, the result is
rounded to OPP digits.

Note: 0P P+«18 permits display of full internal precision, with every
internal floating-point value distinguishable from its nearest
neighbors. The final digit may not be otherwise significant.

Errors: DOMAIN ERROR
LENGTH ERROR

Examples: OPP
10
%3
©.3333333333

2+3
.6666666667

o

+8
0.125 (Requires fewer than ten significant digits.)

+64
0.015625

OPP<3
+64

0.0156 (Only three significant digits are displayed.)

Copyright © 1987 STSC, Inc. 3-137 System Functions

Prompt Replacement OPR

Purpose:

Syntax:

Domain:

Effect:

Caution:

Errors:

The workspace-related system variable 0P R controls how [input
is affected by the input prompt.

prompt < 0OPR
OPR <« prompt

OPR can be assigned a character singleton or empty vector. The
default value is ' ' in a clear workspace.

The value of OPR determines how an input prompt, if any, is
merged with the result of [0 input. If PR is an empty vector, the
result of [1 input contains the original input prompt, including any
changes the terminal user might have made to the prompt. This
provides a mechanism for supplying a prompt that the user is
expected to modify into an input line.

If OPR is a one-element vector, the result of [input contains the
value of OPR in every position of the prompt, except those
positions that have been modified by the user backspacing into the
prompt and performing actions. For more information, see Section
5-1 of the APL *PLUS System User’s Manual.

OPR has no effect when ODARBOUT 10 is used to prevent the
prompt from appearing in [0 input. If OARBOUT 10 isused,
as is common practice with APL*PLUS Systems, the value of
OPR is immaterial.

OPR, as described here, is specific to this APL* PLUS System. It
may be different or absent in other APL * PLUS Systems.

DOMAIN ERROR

Copyright © 1987 STSC, Inc. 3-138 System Functions

Examples: OPR<'2"!

f«'PROMPT: ' ¢ OARBOUT 10 ¢ Z«IN
PROMPT: ANSWER
Z
ANSWER
(Prompt not included.)
(Without 0ARBOUT.)

[<'PROMPT: ' 0 Z<[l
PROMPT: ANSWER

Z
?7???????ANSWER

(Prompt replaced with "?".)
OPR«<'*' ¢ [O«'PROMPT: ' ¢ Z<N
PROMPT:

(User then modifies line before pressing RETURN.)
PROMPTLY ANSWER

Z
**xx*x*xxLY ANSWER

Copyright © 1987 STSC, Inc. 3-139 System Functions

Save Workspace with Replacement OPSAVE

Purpose: Save the active workspace under program control without halting
execution and check that saving the workspace will not replace an
existing workspace with the same name.

Syntax: 'RESET' OPSAVE wsid
OPSAVE wsid
Arguments: wsid workspace identification for the saved workspace (see
section 2-2)

The optional left argument, if present, is the character vector
containing the value ' RESET ', indicating that the workspace is
to be saved with a clear state indicator.

wsid is a character singleton, vector, or one-row matrix specifying
the name of the saved workspace.

Effect: Saves the active workspace without halting execution of the APL
statement in which it appears. Monadic 0P SAVE produces a
saved workspace with execution suspended at the start of the
function line at the top of the state indicator at the time it is called.
Dyadic 0P SAVE saves the workspace with a clear state indicator.
The system variables OWSID, OWSTS, and OWSOWNER, for
both the newly saved and the current workspace, are all changed as
a side-effect of 0SAVE.

If a workspace already exists with the supplied name (wsid),a WS
ARGUMENT ERROR isproduced. Contrast thisto DSAVE
which performs the save by replacing the existing workspace with
the new version.

Errors: DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR
WS ACCESS ERROR
WS ARGUMENT ERROR

Copyright © 1987 STSC, Inc. 3-140 System Functions

Caution:

Examples:

OPSAVE as described here is specific to this APL*PLUS
System. It may be different or absent in other APL *PLUS

Systems.

The first example shows the use of dyadic 0PSAVE to save a
workspace with a clear state indicator. Note the local OWSID.

v INSTALL WSID;OWSID
[1] '"RESET' OPSAVE WSID
v

The next example uses monadic 0P SAVE to checkpoint a running
application (note the local 0L X):

v CHECKPOINT WSID;OLX
(1] OLX«<'-0' ¢ OPSAVE WSID
v

Copyright © 1987 STSC, Inc. 3-141 System Functions

Printing Width OPW

Purpose: Set the maximum number of character positions or columns
available for output.

Syntax: result < OPW
OPW <« number
Domain: OPW can be assigned an integer value between 30 and 255,

inclusive. The default value at the start of an APL session is 8 0.

Effect: The system uses no more than the first 0 PW print positions on
each line during output. Output that would extend beyond this
number of positions is “folded” onto subsequent lines that are
indented six spaces. The display of numeric data is folded between
numbers.

The value of OPW is used during output from monadic format (¥),
OFMT, default output from executing a statement creating an
explicit result, and requested output (O« or [«). It does not affect
the creation of variables.

Errors: DOMAIN ERROR
LENGTH ERROR
Examples: OPW (Display the value of OPW at session startup.)
80
O0PW+«30
60p'0O"

000000000000000000000000000000
000000000000000000000000
ooooaoo

Copyright © 1987 STSC, Inc. 3-142 System Functions

Quietly Load a Workspace OQLOAD

Purpose: Load a workspace under program control without displaying the
saved message.

Syntax: OQLOAD wsid

Argument: wsid workspace identifier (see section 2-2)

wsid is a character scalar or vector that specifies the workspace to
be loaded.

Effect: Replaces the active workspace with a copy of the contents of the
designated workspace. No SAVED. .. message is displayed.

When OQLOAD is used, the new active workspace begins
execution automatically if OLX is set appropriately in it, giving
the effect of continuing a multistep program through two or more
workspaces. You can exchange information between the two
workspaces by storing data in a file while in one workspace and
then reading the data back while in another workspace.

Example: YCLEAR
CLEAR WS...
OQLOAD 'STAGE2' (Note the absence of
the SAVE D message.)
OWSID (Shows the new
STAGE2 workspace id.)

Copyright © 1987 STSC, Inc. 3-143 System Functions

Random Link ORL

Purpose:

Syntax:

Domain:

Effect:

Errors:

Examples:

Set the seed value (or random link) used by the pseudo-random
number generator.

result <« ORL
ORL <« number

Any integer from 1102147483646 (T2+2*31). Inaclear
workspace, the default value is 16807 (7 *5).

The value of ORL is used in computing the result of the roll
(monadic ?) and deal (dyadic ?) primitive functions.

ORL can be assigned a specified value in order to reproduce test
results (by resetting DR L to the same value each time) or to
“randomize” results (by setting DR L to an arbitrary value, such as
the time of day).

As each pseudo-random number is generated, the seed (ORL) is
used in the computation and is also changed.

DOMAIN ERROR
LENGTH ERROR
RANK ERROR

JCLEAR
CLEAR WS

ORL
16807

?73p100 (Generate 3 random numbers from 1 to 100.)
50 74 59

ORL
984943658

ORL<16807
730100
50 74 59

ORL
984943658

Copyright © 1987 STSC, Inc. 3-144 System Functions

Stop Action

OSA

Purpose:

Syntax:

Domain:

Effect:

Specify the action to be taken whenever execution stops for
immediate execution input.

result <« OSA
O0SA <« action

The domain for assignment to 0.SA is limited to one of the
following character vectors:

'CLEAR'
VEXIT'
'OFF'

Superfluous leading and trailing blanks are ignored; an all-blank
vector is treated as empty.

In a clear workspace, the default value of 0.SA is an empty
character vector (' ').

Specifies the stop action to be taken whenever execution stops for
immediate execution input. The effect of each possible value of
0SA is explained below:

b No special stop action is taken. Execution suspends
in the local environment and the system accepts
immediate execution input.

'"CLEAR' The active workspace is cleared.

'EXIT' The state indicator is stripped back to an environment
where 0SAisnot ' EXIT'. If the value of 0SA
in the resulting environmentis ' CLEAR ', the
workspace is cleared.

'OFF! The APL session is terminated with normal untying
of any tied files; you are returned to the operating
system.

Copyright © 1987 STSC, Inc. 3-145 System Functions

Errors:

Examples:

After the stop action has been taken (except for ' OFF '), the
system accepts immediate execution input.

If execution is interrupted at a point where 0 S A has been localized
but not assigned, the state indicator is stripped back to an
environment where 0S4 is defined.

DOMAIN ERROR
RANK ERROR

These examples show the effect of each of the settings of 0SA in
the global environment. For illustration, 0 S A is not localized in
any of the functions called and no other exception handlers are used.

YWSID
IS PROCESS

0sI
O0SA«<"!

PROCESS 'PAYROLL'
INDEX ERROR (An error occurs with
LOOKUP[4] » 0SA set to its default

value.)
O0sI

LOOKUP[4]~* (Execution is suspended at

DSEARCHI 141 the point of error.)
XQT 8]

PAYUPDATE[38]

PROCESS[12]

JRESET
0SsT1

OSA<'EXIT' (O0SAissetto 'EXIT'
in the global environment
PROCESS 'PAYROLL' and the function is

executed again.)
INDEX ERROR
LOOKUP[4] *» (The error occurs again and
PROCESS 'PAYROLL' the state indicator is
pOST cleared.)

Copyright © 1987 STSC, Inc. 3-146 System Functions

O0SA<'CLEAR'

INDEX ERROR
LOOKUP[4] #
CLEAR WS

JWSID
IS CLEAR WS

Copyright © 1987 STSC, Inc.

3-147

¢ PROCESS 'PAYROLL'

(0SAissetto

'"CLEAR' andthe
function is executed again.
The error occurs once
more, but the entire active
workspace is cleared.)

System Functions

Save Workspace, with Replacement OSAVE

Purpose: Saves the active workspace under program control without halting
execution.
Syntax: "RESET' OSAVE wsid
OSAVE wsid
Arguments: wsid workspace identification for the saved workspace (see
section 2-2)

The optional left argument, if present, is the character vector
containing the value ' RESET', indicating that the workspace is
to be saved with a clear state indicator.

wsid is a character singleton, vector, or one-row matrix specifying
the name of the saved workspace.

Effect: Saves the active workspace without halting execution of the APL
statement in which it appears. Monadic 0 SAVE produces a saved
workspace with execution suspended at the start of the function line
at the top of the state indicator at the time it is called. Dyadic
O0SAVE saves the workspace with a clear state indicator. The
system variables OWSID, OWSTS, and OWSOWNER, for both
the newly saved and the current workspace, are all changed as a
side-effect of 0SAVE.

See OPSAVE for a way to prevent the save from overwriting an
existing workspace.

Errors: DISK ERROR
DOMAIN ERROR
LENGTH ERROR
LIBRARY NOT FOUND
RANK ERROR
WS ACCESS ERROR
WS ARGUMENT ERROR

Caution: OSAVE as described here is specific to this APL*PLUS System.
It may be different or absent in other APL * PLUS Systems.

Copyright © 1987 STSC, Inc. 3-148 System Functions

Examples: The first example shows the use of dyadic 0SAVE to save a
workspace with a clear state indicator. Note the local OW SID.

v INSTALL WSID;OWSID
[11 "RESET' OSAVE WSID
v

The next example uses monadic DSAVE to checkpoint a running
application (note the local 0L X):

v CHECKPOINT WSID;OLX
(1] 0OLX<'-0' ¢ OSAVE WSID
v

Copyright © 1987 STSC, Inc. 3-149 System Functions

State Indicator OsI

Purpose: Return a character matrix representation of the state indicator.
Syntax: result <« 0OST
Result: result is a character matrix containing essentially the same

information as displayed by the) ST system command. The
names of pendent or suspended functions, quad symbols, and
execute <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>