

Application Visualization
System

User’s Guide

MD — 2301

NOTICE

This document, and the software and other products described or referenced in it, are confidential and proprietary
products of Stardent Computer Inc. (Stardent) or its licensors. They are provided under, and are subject to, the
terms and conditions of a written license agreement between Stardent and its customer, and may not be transferred,
disclosed or otherwise provided to third parties, unless otherwise permitted by that agreement.

NO REPRESENTATION OR OTHER AFFIRMATION OF FACT CONTAINED IN THIS DOCUMENT, IN-
CLUDING WITHOUT LIMITATION STATEMENTS REGARDING CAPACITY, PERFORMANCE, OR SUITA-
BILITY FOR USE OF PRODUCTS OR SOFTWARE DESCRIBED HEREIN, SHALL BE DEEMED TO BE A
WARRANTY BY STARDENT FOR ANY PURPOSE OR GIVE RISE TO ANY LIABILITY OF STARDENT
WHATSOEVER. STARDENT MAKES NO WARRANTY OF ANY KIND IN OR WITH REGARD TO THIS
DOCUMENT, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE.

STARDENT SHALL NOT BE RESPONSIBLE FOR ANY ERRORS THAT MAY APPEAR IN THIS DOCU-
MENT AND SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION INCI-
DENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, ARISING OUT OF OR RELATED TO
THIS DOCUMENT OR THE INFORMATION CONTAINED IN IT, EVEN IF STARDENT HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

The specifications and other information contained in this document for some purposes may not be complete, cur-
rent or correct, and are subject to change without notice. The reader should consult Stardent for more detailed and
current information.

Copyright © 1989
Stardent Computer Inc.
All Rights Reserved

STARDENT and STELLIX are registered trademarks of Stardent Computer Inc.
AVS is a trademark of Stardent Computer Inc.

ETHERNET is a registered trademark of Xerox Corporation.
FIGARO is a trademark of Megatek Corporation.
IBM is a trademark of International Business Machines.

DEC and VAX are registered trademarks of Digital Equipment Corporation.
NFS was created and developed by, and is a trademark of Sun Microsystems, Inc.
UNIX and DOCUMENTER’S WORKBENCH are registered trademarks of AT&T.
HP is a trademark of Hewlett-Packard.

TELETYPEis a trademark of AT&T.

X WINDOW SYSTEM is a trademark of MIT.

RESTRICTED RIGHTS LEGEND (U.S. Department of Defense Users)

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of
the Rights In Technical Data and Computer Software clause at DFARS 252.227--7013.

Stardent Computer Inc.
95 Wells Avenue
Newton, MA 02159

RESTRICTED RIGHTS NOTICE (U.S. Government Users excluding DoD)

Notwithstanding any other lease or license agreement that may pertain to, or accompany the delivery of this com-
puter software, the rights of the Government regarding its use, reproduction and disclosure are as set forth in the
Commercial Computer Software — Restricted Rights clause at FAR 52.227-19(c)(2).

1-1
1-2
1-3
1-4
1-5
1-5
1-9
1-13
1-13

2-1
2-1
2-4
2-6

3-1
3-2

3-5
3-6
3-10
3-11

5-3
54
58

Table of Contents

Preface

Chapter 1

Introduction to the Application Visualization System

Introduction

Scientific and Engineering Data
Pixel-Based Visualization
Geometry-Based Visualization

The AVS Subsystems

AVS Modules

AVS Networks

AVS Display Windows

Preparing Your Data for Use with AVS

Chapter 2
Starting AVS

AVS Environment Variables

The AVS Command and Command-Line Options
The Main Menu — AVS’s Subsystems

Using On-Line Help

Chapter 3
The Image Viewer Subsystem

Overview of Image Viewer Usage
Entering and Leaving the Image Viewer
Using the Data Preprocessors

Selecting Visualization Techniques
Running the Network

Using More Than One Technique
Additional Image Viewer Features

Chapter 4
The Volume Viewer Subsystem

Chapter 5
The Geometry Viewer Subsystem

Menu Choices, Sliders, and Function Keys
Transformations and the Transform Selection Area
Geometry Viewer Menu Reference

Stardent Application Visualization System | User's Guide — 002424-001 Rev A

iii

6-1
6-2
6-11
6-21

A-1
A-11

B-1
B-12
B-16
B-18

C-1
C-2

C-4

D-1
D-1

E-1
E-2
E-3

E-6
E-7

Chapter 6
The Network Editor Subsystem

Starting the Network Editor

Using the Module Palette and the Workspace
Controlling the Execution of a Network
Using the Network Editor Menu System

Chapter 7
AVS Module Manual Pages

Appendix A
Tutorial: Image Viewer, Volume Viewer, and Network Editor

Using the Image Viewer
Volume Viewer Tutorial

Appendix B
Geometry Viewer Tutorial

Session 1: Working with a Single Object
Session 2: Working with Lights

Session 3: Creating Composite Objects
Session 4: Creating Multiple Views

Appendix C
Geometry Conversion Programs

Automatic Data Filtering
Shell-Level Usage of Filter Utilities
Templates for New Filter Utilities
Writing a New Filter Utility

Appendix D
The Geometry Viewer Script Language

Scene Files and Object Files
Script Language Commands

Appendix E
AVS File Formats

AVS Startup File

Module Library File Format
Image File Format — .x

Field File Format — fld

Volume Data File Format — .dat
Geometry File Format — .geom

Stardent Application Visualization System | User's Guide — 002424-001 Rev A

This manual describes the use of the interactive visualization program, avs,
which is a major component of the Stardent Application Visualization System
(AVS™). AVS also includes a facility for users to create their own computa-
tional modules, which can then be used with the avs visualization program.
This facility is described in the AVS Developer’s Guide.

After reading the introductory material in Chapter 1, you may want to skip to
the tutorials in Appendix A and Appendix B. These tutorials provide a guided
tour of the several subsystems of the avs program.

The remaining chapters discuss startup issues and each of the avs subsystems.

Stardent Application Visualization System | User's Guide — 002424-001 Rev A -1

1

Introduction to the Application
Visualization System

Table of Contents

Chapter 1
Introduction to the Application Visualization System

1-1 Introduction

1-2 Scientific and Engineering Data
1-2 Other Data Formats

1-3 Pixel-Based Visualization

1-3 Colormap Lookup

1-4 Further Pixel Processing

1-4 High-Quality Pixel-Based Visualization

1-4 Geometry-Based Visualization
1-5 The AVS Subsystems

1-5 AVS Modules
1-6 Modules: Ports and Parameters

1-9 AVS Networks
1-10 Data Flow in an AVS Network
1-12 Network Control Panel

1-13 AVS Display Windows

1-13 Preparing Your Data for Use with AVS
1-13 File Formats that are in General Use
1-14 AVS-Specific File Formats

1-14 Geometry Data File Format

1-14 Image Data File Format

1-15 Field Data File Format

1-20 Volume Data File Format

1-22 Converting Your Data to an AVS Format
1-23 Creating a Data Directory

Introduction

The increasing power of supercomputers and graphics systems has made it pos-
sible for the scientific and engineering communities to gain new insight into
their disciplines. In particular, the graphics supercomputer combines
minisupercomputer-class computational power with 3D graphics capabilities.
In areas as diverse as fluid dynamics, computer-aided engineering, molecular
modeling, and geophysics, researchers are applying these powerful systems to
analyze and view their data, producing real-time interactive displays.

A limiting factor in this growing field has been the existing software tools,
which require specialized programming expertise and great expense, both in
time and in money. The Application Visualization System (AVS) addresses this
problem, allowing researchers to apply the hardware power to their problems
without requiring programming expertise or a great investment of time.

AVS includes a substantial number of visualization techniques which the user
can invoke simply by selecting them from a menu. These image-viewing and
volume-viewing techniques will satisfy many users’ first-level needs in turning
data into pictures.

For situations in which these standard techniques do not suffice, AVS users can
construct their own visualization applications, by combining software compo-
nents into executable flow networks. The components, called modules, imple-
ment specific functions in the visualization cycle:

Q Filtering the basic data into a more usable form (more informative,
smaller, etc.)

O Mapping the filtered data into geometric primitives (triangles, lines,
spheres, etc.)

O Rendering the geometric primitives into pictures on the display screen.

The flow networks are built from a menu of modules by using a direct-
manipulation interface. The user produces an application by selecting a group
of modules and drawing connections between them. In many cases, users can
construct an entire visualization application in this way, using standard modules
and without resorting to any traditional procedural programming.

AVS includes a rich set of modules for construction of networks. Given the
nature of scientific visualization and the need for extensibility, AVS also sup-
ports the creation and dynamic loading of new modules. Users need not have
detailed knowledge of the AVS implementation or expertise in disciplines out-
side their areas of interest. Modules are “software building blocks” with well-
defined interfaces, written either in FORTRAN or in C. The overall structuring
of the application is handled on the AVS level; the computational details are
handled within modules as FORTRAN or C procedures.

Modules take typed data as inputs and produce typed data as outputs. The basic
data types in the system are oriented toward scientific data manipulation and
graphic display. These types include 1D, 2D, and 3D vectors of floating-point
values, 2D and 3D grids with vectors of floating-point values at each grid point,
geometric data, and images. Byte and integer data types are also supported.

In addition to input and output data, modules also have parameters that control
the module’s computation. Once the structure of the application has been esta-
blished, AVS executes the network, allowing the user to interact with the appli-
cation by navigating through the network diagram and interacting with various
modules through their individual parameters. AVS generates the “control
panel”” user interface to a module automatically, by associating parameters with
either graphical control panels (buttons, sliders, etc) or peripheral input devices

Stardent Application Visualization System | User's Guide — 002424-001 Rev A 1-1

(dials, joysticks, etc.).

The remainder of this chapter presents an overview of the AVS approach to the -
challenge of scientific visualization. (

Scientific and Engineering Data

..........................

...

In the engineering and scientific arena, a set of data to be processed by com-
puter typically takes the form of a sequence of numbers. Sometimes, the num-
bers are generated as a real-time data stream. Many measurement instruments
can produce streams of digital output (perhaps aided by an analog-to-digital
converter). Often, the data is being produced by a running computational pro-
cess. Sometimes, the numbers have been generated at some previous time, and
are stored in a file on disk. AVS has facilities for handling both real-time data
streams and disk-based data.

Each number in a data set can be represented in a variety of ways. AVS can
handle the following integer and floating-point numerical formats:

byte (8 bits)
A single byte can represent an unsigned integer in the range 0..255 or a
signed integer in the range —128..127.

integer (32 bits)
A single machine word can represent an unsigned integer in the ran%e
0..2°%1 (0..4294967295) or a signed integer in the range —2°1..2°%~
(-2147483648..2147483647).

single-precision (32 bits)
A single machine word can also be used to represent a floating-point quan-
tity in IEEE 754 single format. (

double-precision (64 bits)
Two machine words can be used to represent a floating-point quantity in
IEEE 754 double format.

In many cases, the sequence of numbers in a data set has an implied or explicit
structure. For instance, a sequence of 40,000 numbers may represent a 2D
square grid (a 200x200 matrix). Similarly, a sequence of 500,000 numbers
might represent a 100x200x25 lattice of data points.

Presumably, a numerical grid corresponds to a physical grid with a particular
distance between grid points. In some cases, the grid may be non-regular — the
distance between grid points is variable, rather than constant. It is also possible
for the grid to describe a curved or arbitrarily deformed space, instead of a rec-
tangular space. (For more on this subject, see the Preparing Your Data for Use
with AVS later in this chapter.)

In AVS, data files always begin with a header that specifies the overall structure
of the data. Additional structural information (for instance, the real-world coor-
dinates that correspond to the numerical data grid) can also be included in the
data file.

Other Data Formats

...

AVS can also use data that is in a format other than a simple stream of numbers.

At many sites, purely numerical data has already been processed into a struc-

tured form, by a user-written program or by an application software package.

For instance, Figure 1-1 shows part of a file written in the Brookhaven Protein ;
Data Bank format. This file defines the structure of a particular protein molecule (
called “crambin”. There is an AVS data input module to read files in this

Stardent Application Visualization System | User's Guide — 002424-001 Rev A

format. Users can supply their own data input modules for other data formats.

Figure 1-1.

Data File in Brookhaven Protein Data Bank Format

1 HN1 THR
2 HN2 THR
3 N THR
4 HN3 THR
5 CA THR
6 C THR
7 0 THR

[e N

17.017
16.297
16.982
17.707
16.949
15.686
15.236

14
13
14
14

.972
.912
.095
.470
12.
12.
13.

808
779
827

.068
.883
.587
.008
.348
.142
.603

oD W WwWwN

AVS implements two basic strategies for translating numerical data into color
images. In the pixel-based method, data points become pixels, more or less
directly. In the geometry-based method, the numerical data is converted to
descriptions of 3D objects. These are, in turn, turned into color images by the
machine’s low-level graphics software and rendering hardware.

These two strategies are described further in the sections that follow.

Pixel-Based Visualization

The essence of the pixel-based visualization strategy is simple: take a “raw”
data value and translate it into a number that represents a color. In AVS, this
translation is accomplished with a simple table lookup, called a colormap. You
can define, save, and retrieve your own colormaps. AVS includes an interactive
drawing tool for generating colormaps conveniently and quickly.

Colormap Lookup

...

An AVS colormap is a 256-row table; each row specifies a 24-bit “true-color”
value (and, optionally, an 8-bit auxiliary field), as shown in Figure 1-2. A
colormap lookup consists of using an input value to select a particular row of
the table. The color value in that row is the result of the lookup.

Figure 1-2. AVS Colormap Lookup

input value
(0 ..255)
selects row of
colormap table

P
1
yyyy e 2
254

N 255

first color value

color value

color value

color value

last color value

In general, AVS colormaps accept byte data as input values. Each byte is con-
sidered to be an unsigned integer (0..255) which specifies a particular row of the
table.

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A

NOTE

AVS colormaps are independent of the hardware colormaps used by low-level
graphics software. All AVS colormaps produce 24-bit “true color” output. If
necessary, further translation takes place automatically — for instance, to
produce images on a machine with only 12 color planes.

Further Pixel Processing

...

If multi-dimensional data is converted to pixels, the results must somehow be
reduced to 2D before they can be displayed as an image onscreen. AVS pro-
vides several ways to perform such reductions:

Slicing
A 2D cross-section can be made through a 3D block of pixels.

Blending
If a 3D block of pixels is passed though a colormap whose auxiliary field
contains opacity/transparency data, pixels can be blended along the line of
sight. This process, called alpha blending is described in more detail in the
manual page for the alpha blend module (see the chapter entitled AVS
Module Manual Pages).

High-Quality Pixel-Based Visualization

In simple pixel-based visualization, each data point corresponds to a single
pixel. When the user “zooms in” on a particular portion of the image, the
magnification is performed by pixel replication. (For instance, a single pixel
value may be used throughout a 6x6 patch in a zoomed image.)

A variety of techniques can be used to improve image quality: high-order inter-
polation of data values, antialiasing of pixel values, 3D texture mapping, etc. In
addition, 3D graphics techniques such as lighting, shading, and perspective
viewing can be used to compute the interpolated pixel values.

Geomeiry-Based Visualization

..

14

AVS’s other strategy for turning numbers into pictures brings all the power and
flexibility of interactive 3D graphics to the visualization arena. The raw data
values (or, more likely, a subset of the values) are mapped into the vertices of
geometric objects. The values are used to assign colors to the vertices, using
AVS colormaps. Then, the graphics subsystem creates color images from the
geometric descriptions.

There are many techniques for creating geometric descriptions, or geometries,
from raw data. For instance:

O Represent each atom of a molecule as a sphere. Assign color and transpar-
ency to the sphere based on the type of atom.

Q Given a set of data that specifies the temperature at many points within a
volume, use all the points at a given temperature to define an isosurface.

QO Given a set of data that specifies the wind velocity at many points within a
volume, use arrows to represent the velocity at each point on an arbitrary
plane within the volume.

Q Given window velocity data as above, construct flow lines to represent the
motion of an object through the field.

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A

The AVS Subsystems

AVS Modules

..

AVS’s capabilities are divided into a group of subsystems:

Image Viewer
The Image Viewer subsystem is a high-level tool for manipulating and
viewing images.

Geometry Viewer
The Geometry Viewer subsystem allows you to compose “scenes” that
contain geometrically-defined objects. The objects must have been created
by programs or AVS modules that use AVS’s GEOM programming library.
You can transform the objects themselves (move, rotate, scale); you can
change the viewing parameters (e.g. move the eye point, perspective view,
etc.); and you can control the way in which the graphical images are ren-
dered (lighting and shading, Z-buffering, etc.).

The Geometry Viewer is an expanded version of the software that was
delivered as Release 1 of AVS.

Volume Viewer
The Volume Viewer subsystem is a high-level tool for visualizing volume
(3D) data. It can handle a wide variety of data sets that convey information
for a sampling of points in a 3D space.

Network Editor
The Network Editor subsystem is a tool for connecting computational
modules together into networks that perform visualization functions.
Modules and networks are discussed in the sections that follow.

Exit AVS
Ends the AVS session. A pop-up window appears, prompting you to
confirm your choice or cancel it.

When using AVS for the first time, you should familiarize yourself with the
product by using the Image Viewer and Volume Viewer subsystems. These are
menu-driven and quite easy to use. Using the sample data provided in the
lusrlavs/data directory, you can perform significant visualization functions with
just a few clicks of the mouse. Appendix A provides an illustrated tutorial intro-
duction to these subsystems. The tutorial also includes a walkthrough of the
Network Editor subsystem.

Appendix B is a tutorial introduction to the Geometry Viewer subsystem.

...

The module is the AVS computational unit. Each module accepts data as input
and generates other data as output. To create an AVS application, you connect
together a group of modules into a network. The connections represent the flow
of data among the modules. Typically, the data originates in one or more disk
files, but it can also be supplied by an “external’’ program, running on the same
machine or on another machine in the local network. The data is transformed
into one or more images by a collection of modules, and finally is displayed in a
window onscreen. Figure 1-3 shows a simple network of modules.

Stardent Application Visualization System | User's Guide — 002424-001 Rev A 1-5

Figure 1-3. Simple Network of AVS Modules

this module reads data this module generates

from a disk file its own data
read volume generate colormap

this module accepts
two data inputs and colorizer
generates one output

alpha blend

transform pixmap

this module displays

an image in a window display pixmap

The remainder of this section discusses the characteristics of individual AVS
modules. Networks of modules are discussed in the following section.

Modules: Ports and Parameters

Each AVS module is designed to be a powerful, flexible, easy-to-use processing
component. A module is general in its functionality, so that you can use itin a
variety of application contexts. Each module does a substantial amount of pro-
cessing, so that networks need contain only a few modules to do real, useful
work.

You can include a particular module in any number of AVS applications (net-
works); you can even include the same module more than once in a single net-
work.

The key to the modular approach to application building is that each module
has a simple, consistent interface, which includes:

Q A setof data inputs.

O A set of input parameters, which controls the way the module processes its
input data or determines which data to use. One of AVS’s most powerful
features is that you can change parameter values interactively as a network
executes.

O A setof data outputs.

When you use AVS to create a network, each module’s interface is represented
visually by a module icon and a control panel (Figure 1-4). The module icon is
a rectangle, labeled with the module’s name. Each data input is represented by
an input port along the top edge. Each data output is represented by an output
port along the bottom edge. Each input parameter is represented by a control
widget (slider, dial, etc.); the controls are assembled in a separate control panel
window.

Stardent Application Visualization System | User's Guide — 002424-001 Rev A

Figure 1-4. A Module’s Interface: Icon and Control Panel

{Untitled)

Data Inputs

A module accepts one or more data sets as input. Each data set must be of a par-
ticular AVS data type: field, colormap, etc. The module “doesn’t care’” where
its input data comes from, only that the data types are correct.

Each data input is represented on the module icon by a color-coded input port,
along the top edge of the icon. The color indicates the type of data that the port
accepts:

TABLE 1-1. Module Input Ports / AVS Data Types

Port Color Data Type
red geometry
yellow colormap
light blue pixmap
multi-color field

AVS helps you to match data types as you interactively build a network. When
you begin to establish a module-to-module connection, AVS shows you the
valid possibilities.

Some modules have no input ports at all. Such modules create their own data, or
read data in from a source that is external to the AVS network (e.g. a disk file).

Input Parameters
A module’s data inputs determine the type of data it processes, while its input
parameters determine how the data is to be processed.

The following examples use the modules shown in Figure 1-3 to illustrate sev-
eral types of parameters:

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A 1-7

1-8

Q The read volume module brings a 3D block of byte values into a network.
Its input parameter specifies the file from which the values are to be read.

O The generate colormap module creates and outputs a colormap that
transforms byte values into color values. Its input parameter is
implemented as an interactive “colormap editor”’, with which you specify
the 256-entry colormap.

@ The alpha blend module reduces a 3D block of partially-transparent color
values to a 2D image, using a projection algorithm. Its input parameters
determine the orientation of the block with regard to the direction of the
projection.

Parameters are the “control knobs” for a module. By “adjusting the knobs”,
you can control the way in which a module processes its data — change the
angle of a cross-section plane or a rotation, change a coloring scheme, change
the way values are sampled from a large data set, blow up an image to examine
some detail, etc.

Each of a module’s parameters is represented by an onscreen control widget.
Figure 1-5 presents examples of control widgets.

Figure 1-5. Module Control Widgets

min X =1.00_

AVS implements the following types of control widgets:
Q Dials and sliders can be used to indicate integers or floating point values.

QO Typeins allow you to specify a character string: title, label, filename, etc.
Typeins can also be used to specify numeric values: integers or floating-
point numbers.

O Toggles implement on/off switches for various parameters.

O Radio buttons (also called choices) implement sets of mutually exclusive
choices.

Q File browsers allow you to specify a file to be read or written.

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A

Data Outputs

Data outputs for modules are analogous to data inputs. Each data output is rep-
resented on the module icon by a color-coded output port, along the bottom
edge of the icon. The color-coding is the same as for input ports.

Subroutine Modules and Coroutine Modules

There are two types of AVS modules, which differ in the way they fit into net-
works. A short explanation follows; for a more complete discussion, see the AVS
Developer’s Guide.

Q Subroutine modules are essentially passive, like subroutines in a standard
program. When you execute a network, each subroutine module initializes
itself (a UNIX process is created). But the module does not perform any
work (the process sleeps) until the AVS Flow Executive signals it. In addi-
tion to “waking up” the module, the Flow Executive passes its input data
to it. When the module finishes computing its output data, it passes the
data back to the Flow Executive, then returns to its dormant state.

Q Coroutine modules are active, not passive. Rather than being like a sub-
routine, a coroutine is a cooperative process that can continually execute,
passing data to the Flow Executive on its own initiative, instead of doing so
only when it is signalled. Coroutine modules typically implement computa-
tional simulations, such as repeatedly releasing particles to flow through a
field.

Standard Modules and Module Libraries

The AVS product includes a large number of general-purpose modules. This
means that, often without any programming, you can begin to visualize your
data sets.

The modules are grouped into module libraries, each of which contains a set of
modules designed to be used together. During an AVS session, you can switch
back and forth among module libraries easily. You can also rearrange the
libraries or create new ones, simply by creating lists of modules with a text edi-
tor program.

User-Written Modules

One of the most important aspects of the AVS system is its extensibility. Many
installations have already developed computer programs to process the raw
data. AVS makes it easy to turn such user-supplied programs into AVS modules.
Once this is accomplished, the user-written module can be combined with any
other modules — AVS-supplied or user-written — to implement visualization
applications.

AVS Networks

..

As modules are the computational units in AVS, networks are the operational
units. Given data that you wish to view in a particular manner, you select the
modules that perform the appropriate computations and combine them into a
network. You can save the network on disk, then repeatedly use it to visualize
the same data, or any other data set of the same form. After using AVS for some
time, you will most likely maintain a group of networks that, collectively, sat-
isfy most of your visualization needs.

Stardent Application Visualization System | User's Guide — 002424-001 Rev A 1-9

1-10

Data Flow in an AVS Network

Figure 1-6 repeats the network shown at the beginning of the Modules section
above. This time, the figure emphasizes the way data flows through a typical
AVS network.

Figure 1-6. Data Flow in a Network

disk-resident
data sef(s) read volume generate colormap
colorizer
typical transforms:
data-to-data
alpha blend

data-to-geometry
data-to-pixels

transform pixmap

display visualization
images |

display pixmap

The data-flow diagram reflects the scientific visualization process, which begins
with data and ends with onscreen images. Networks that use data stored on disk
begin with a “read data” module. (There are several such modules, to accom-
modate the variety of AVS data types.) These modules allow you to specify the
name of a file containing the raw data. By selecting different files, you can use
the same network to visualize different data sets.

The network illustrated above has a simple structure and performs a (relatively)
simple task — reading a single data set and constructing a single image. More
complex networks can use multiple data sets, creating independent images or
composite images. A network can consist of any number of independent sub-
networks. Figure 1-7 illustrates a more sophisticated network topology:

Stardent Application Visualization System | User's Guide — 002424-001 Rev A

Figure 1-7. Complex Network Structure

read volume

read volume

read volume

[

]

combine scalars

read volume

dot surface

volume bounds

]

advect particles

scatter dots

render geometry

display pixmap

Stardent Application Visualization System | User's Guide — 002424-001 Rev A

There are limits to network complexity, however. Networks are inherently flat
— AVS provides no support for creating hierarchical structures. And networks
may not contain “cycles’: a module’s output data cannot subsequently be fed
back into the module as input, directly or indirectly.

You create networks using the AVS Network Editor subsystem. The mouse-

driven interface allows you to interactively construct network diagrams, like
those illustrated above. To select a module, you drag its icon from a Palette into
a Workspace (Figure 1-8). To make and break connections between modules,
you click-and-drag the mouse.

1-11

Figure 1-8. AVS Network Editor Windows

Network Construction Window

1-12

Network Control Panel

At any time, you can save a network in a disk file, for later retrieval. Only the
network structure and the current settings of the input parameters are saved —
the data to be visualized is not part of the network, but is loaded when the
network executes.

A network’s data-flow diagram omits one very important aspect of network exe-
cution: the settings of the module’s input parameters. As you construct a net-
work, the control widgets that represent the parameters (and allow you to con-
trol their values) are automatically assembled in the Network Control Panel
window along the left edge of the screen.

By default, the control widgets are collected into pages, one page for each
module. You can redesign the layout of control widgets, however, to create
simpler and more convenient user interfaces to your networks. This allows
developers of networks to “package’’ their work so that even the most sophisti-
cated visualization tasks can be performed easily and reliably by users.

You can also extend the Network Control Panel to include additional physical
input devices: the DIGIT™ dialbox and the Spatial Systems Spaceball™. Cer-
tain types of input parameters can be associated with a dial or the Spaceball,
instead of with an onscreen control widget.

Networks in the Image Viewer and Volume Viewer

Two of the AVS subsystems, the Image Viewer and the Volume Viewer, make
use of networks transparently. These subsystems are entirely menu-driven:
through menu choices, you select the data to be processed along with one or
more visualization techniques to be applied to the data. Each technique is
implemented with a pre-existing AVS network. You can control the execution

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A

of the networks using control panels, as described in the preceding section. But
you need not go through the process of creating your own networks.

This convenience is balanced by flexibility, however. Both the Image Viewer
and the Volume Viewer allow you to view the networks that implement the
visualization techniques, and to switch to the Network Editor in order to revise
or enhance them.

AVS Display Windows

AVS creates its visualization images in display windows on the screen. (There is
also a provision for saving images in PostScript™ files for printing, storage, or
transfer to another site.) Each display window is an X Window System win-
dow. This integration of AVS with X means that you can move, resize, iconify,
and otherwise manipulate display windows using the X window manager. AVS
also provides some window-oriented functions, such as zoom and unzoom. You
can integrate display windows into the control panels of the visualization net-
works you build, allowing you to build predictable and space-efficient user
interfaces.

AVS is designed for users who already have large numerical data sets waiting to
be visualized. Inevitably, the data sets will emcompass a wide range of file for-
mats. Some formats may be highly structured, comprising many types of data
records. Other formats may be essentially unstructured: a small amount of
header information followed by a stream of data.

In its current implementation, AVS can directly read several file formats, which
are described below. Some of these formats (e.g. the Brookhaven Protein Data
Bank format) are already in general use in the scientific/engineering commun-
ity. If your data is already in one of these formats, you can start immediately to
visualize it using AVS. Other formats are AVS-specific. This means you will
need to do some data-conversion programming work to make such data directly
usable by AVS.

File Formats that are in General Use

Files in the following formats can be used directly by AVS:
TABLE 1-2. AVS-Readable File Formats: General Use

File Format AVS Filename Suffix
Mathematica ThreeScript s

Movie BYU .byu

Protein Data Bank pdb

UNC .ppoly

Wavefront Wfront

Each of these formats embodies a description of one or more geometric objects.
If a file is named with the appropriate suffix from the table above, a single com-
mand in the Geometry Viewer subsystem reads the file, automatically converts
its geometric descriptions to the AVS geometry format, and displays the
object(s) in a window. (The converted data is also stored on disk, in a file with
a .geom suffix.)

There is also an AVS module, pdb to geom, that reads a file in the Protein Data
Bank format and outputs the data as an AVS geometry. (None of the other con-
version routines are implemented as modules.)

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A 1-13

1-14

AVS-Specific File Formats

For more information of conversion of these data formats to the geometry
format, see the Geometry Conversion Programs appendix.

AVS has several data formats of its own, which are designed to accommodate a
wide variety of scientific/engineering data sets with a minimum of conversion
effort. These formats are summarized here and described in more detail in the
following sections.

Geometry
As described in the preceding section, AVS has its own data format for the
specification of display output in terms of geometric primitives: lines, tri-
angles, spheres, etc. Many (but not all) numerical data sets are converted
to geometries during the visualization process.

Image
AVS can read an image of any size. The file format is essentially a stream
of pixel values: each pixel is specified by a red-green-blue triple.

Field
The most flexible AVS data format is the field, a generalization of the n-
dimensional array construct that is commonly used to represent scientific
data sets.

Volume Data
The AVS field construct is extremely general and powerful. As a conve-
nience, AVS also supports a simpler format that handles one commonly-
used type of field, volume data.

Geometry Data File Format

...

The AVS Geometry Viewer subsystem (also implemented as the read geometry
module) read files in the GEOM file format. Such files can be created with rou-
tines in the special GEOM programming library (libgeom.a), which is included
with AVS. For a description of this library and the file format, see the geom(3V)
manual page (reproduced in Appendix B).

Geometry data files should have names that end with a .geom suffix.

Image Data File Format

...

The read image and image manager modules can read a file that contains an
image — a 2D array of pixel values. In AVS, such files should have names that
end with a x suffix.

The file must begin with a two-word header, which specifies the dimensions of
the image:

first word: number of pixels in horizontal direction (32-bit integer)
second word: number of pixels in vertical direction (32-bit integer)

There is no explicit limit on the size of an image.

The remainder of the file is a sequence of 4-byte (32-bit) words, one for each
pixel of the image. The pixels are arranged rowwise; there is no padding at the
end of a row.

The four bytes of a pixel are interpreted as four component values in the range
0..255. Three of the bytes are the red, green, and blue color components. The
fourth byte is an auxiliary field, which is used by some AVS modules to
represent an opacity/transparency value:

Stardent Application Visualization System | User's Guide — 002424-001 Rev A

o & ;Z(\(0

auxiliary red green blue
this field is sometimes these three fields make up
interpreted as an the pixel’s color value
opacity value

Figure 1-9 illlustrates the AVS image data file format. Image data files should
have names that end with a .x suffix.

Figure 1-9. Image Data File Format

4-byte integer

4-byte integer

Xx-size

y-size

first pixel value

second pixel value

last pixel value

number of pixels in X dimension

number of pixels in Y dimension

T

total number of pixels:
X-size * y-size

total number of bytes:
4 * x-size * y-size

i

A field is a generalization of the familiar array structure. Whereas each element
of an ordinary array has a single data value (e.g. byte or integer), each element
of an AVS field can have a list of data values. Thus, a field can be described as
an n-dimensional array with an m-dimensional vector of values at each array
location (where n and m are any integers).

Moreover, the field can include coordinate data, so that each field element is
mapped to a real-world location.

Figure 1-10 illustrates the top-level structure of an AVS field: Field data files
should have names that end with a ,fld suffix.

Stardent Application Visualization System | User's Guide — 002424-001 Rev A 1-15

1-16

Figure 1-10. AVS Field Structure

ASCII
header

SESSECMNNEE Scparator Characters

data area T

binary
area

coordinates area l

Before describing the field file format in more detail, we present several
examples of fields. This will serve to introduce terminology and to illustrate the
power and flexibility of the field construct.

Example 1: Uniform 2D Field
Consider the following 2D integer-valued array (using a FORTRAN-style nota-
tion):

DATA(I,J) I=12 J=15

DATA(1,1) = 12
DATA(2,1) = 17
DATA(1,.2) = 4
DATA(2.2) = 0
DATA(1,3) = 10
DATA(2.3) = -5
DATA(1,4) = 16
DATA(2,4) = 16
DATA(L,5) = 16
DATA(2,5) = 8

This array describes a 2D computational space, with I and J dimensions. The
size of the I dimension is 2; the size of the J dimension is 5. The data is of type
integer.

Since there is only one data value for each field element, this is said to be a
scalar field. The following notation might be used to indicate the values of a
vector field:

DATA(2,3) = (251,1.09,5.73)
or
DATA(2,3) = (2.51,1.09,5.73,0, 1)

In the first case, the field is still 2-dimensional, but the data value is said to be a
3-vector. Such a data value might be used to represent a velocity vector. The 5-
vector in the second case might represent the temperature-pressure-humidity
measurements at each location in space, along with two boolean values to
indicate the presence/absence of other atmospheric conditions.

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A

In the absence of any additional information, there is a natural mapping
between the computational space and a 2D physical space, the X-Y coordinate
plane:

The physical space is a uniformly-spaced lattice. Accordingly, a field with no
coordinate data is said to have the field type uniform.

Example 2: Rectilinear 2D Field
Continuing the preceding example, we can establish an explicit mapping
between the computational and physical spaces by specifying coordinate data:

X-coordinates: 0,3,6,9,12
Y-coordinates: 20+*log(1), 20*1og(2), 20*1og(3), 20*log(4), 20+log(5)
For example, array element IDATA(1,3) is mapped to physical location (0,

20+*log(3)) according to this scheme. This mapping from computational space
to the X-Y plane can be pictured as follows:

Y-axis

i

Stardent Application Visualization System | User's Guide — 002424-001 Rev A 1-17

1-18

NOTE

Note that in a rectilinear field, lines connecting the lattice points are always
mutually orthogonal — all the angle are right angles.

Example 3: Irregular 2D Fieid

Continuing the example once more, there is another way of establishing a map-
ping between the computational and physical spaces. Instead of mapping the
array indices, we can map individual field elements to arbitrary points in physi-
cal space:

DATA(1,1) - (1,1
DATA(2,1) - (7,1
DATA(1,2) - (3,3)
DATA(2,2) - (6,2.5)
DATA(1,3) - (4,4.5)
DATA(2,3) —> (5.5,4.5)
DATA(1,4) > (3.5,6)
DATA(2,4) -> (45,5.5)
DATA(1,5) -> (3.5,7.5)
DATA(2,5) - (6,8)

This mapping from computational space to the X-Y plane can be pictured as
follows:

Y-axis

Note that there is nothing in this scheme that restricts the physical space to
having the same number of dimensions as the computational space. For
example, the field element DATA(2,3) could be mapped to the physical point
(4.5,5.5,-8.1) in 3D space. This kind of mapping can be used to “wrap” a
plane (computational space) around a sphere (physical space), or to warp a flat
plane into a 3D manifold.

For additional examples, including some involving non-2D fields, see the AVS
Data Types chapter in the AVS Developer’s Guide.

ASCIl Header. Every field file must begin with a header in ASCII text for-
mat. This header includes a number of “keyword=value’’ pairs, one per line; it
also may include comment lines. For example:

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A

Figure 1-11. ASCII Header for AVS Field

AVS field file

#

ndim = 2 # number of computational dimensions
diml = 512

dim2 = 480

nspace = 2 # number of physical dimensions
veclen = 4

data = Dbyte

field uniform

The keywords are described below, with reference to the three examples in the
preceding sections.

ndim
This value specifies the number of computational dimensions in the field.
That is, it specifies the number of dimensions in the field element array. In
all the examples above, ndim has the value 2.

dim1, dim2, ...
The values for these keywords specify the size of the computational space.
For a 2D field, you would specify dim1 and dim2 values. In all the
examples above, dim1 = 2 and dim2 = 5. For a 4D field, you would
specify dim1, dim2, dim3, and dim4 values.

nspace
This value specifies the dimensionality of the physical space that
corresponds to the computational space. In all the examples above, nspace
=2. At the end of Example 3, the following mapping to a 3D physical
space is suggested:

DATA(2,3) - (5.5,4.5,-8.1)
In this case, nspace = 3.

veclen
This value specifies the number of data values for each field element.
Example 1 above discussed two possibilities:

DATA(23)
DATA(2,3)

-5 veclen =1
(2.51,1.09,5.73,0.0, 1.0) veclen =5

data
This keyword takes one of the following values: byte, integer, real,
double. It indicates the type of data that is supplied for each field element.
AVS fields have the restriction that all of the veclen data values must be of
the same type.

field
This keyword takes one of the following values: uniform, rectilinear,
irregular. The main purpose of three examples above is to illuminate these
three field types. A uniform field (as in Example 1) has no computational-
to-physical space mapping. The field implicitly takes its mapping from the
organization of the computational array of field elements.

For a rectilinear field (as in Example 2), each array index in each
dimension of the computational space is mapped to a physical coordinate.
This produces a physical space whose axes are orthogonal, but the spacing
among elements is not necessarily equal.

For an irregular field (as in Example 3), there is no restriction on the
correspondence between computational space and physical space. Each
element in the computational space is assigned its own physical

Stardent Application Visualization System | User's Guide — 002424-001 Rev A 1-19

1-20

coordinates.

Separator Characters. The ASCII header must be followed by two
formfeed characters, in order to separate it from the binary area. A formfeed is
expressed variously as Ctrl-L, octal 14, decimal 12, or hex 0C.

This scheme allows you to use the more(1) shell command to examine the
header. When more stops at the formfeeds, press q to quit. This avoids the
problem of the binary data garbling the screen.

Binary Area. The binary area consists of all the data that is associated with
the field elements, along with all the coordinates. (For uniform fields, the coor-
dinates area is null.)

The data area begins with the one or more data values for the first field ele-
ment. All the data values for a field element are stored together. The first array
index varies most quickly (“FORTRAN-style”). For example, suppose the
ASCII header is as follows:

ndim = 3
diml = 10
dim2 = 5
dim3 = 8
nspace=3
veclen=5
data=byte

field=uniform

The data ordering can be illustrated as follows:

DATA(1,1,1) value 1 <- each value is one byte
DATA(1,1,1) value 2
DATA(1,1,1) value 3
DATA(1,1,1) value 4
DATA(1,1,1) value 5
DATA(2,1,1) value 1
DATA(2,1,1) value 2
DATA(2,1,1) value 3
DATA(2,1,1) value 4
DATA(2,1,1) value 5

DATA(10,5,8) value 1
DATA(10,5,8) value 2
DATA(10,5,8) value 3
DATA(10,5,8) value 4
DATA(10,5,8) value 5

Measurement data often takes the form of a 3-dimensional array, which corre-
sponds to a uniform lattice in 3D space. Each array value indicates one mea-
surement (temperature, pressure, etc.) at the corresponding lattice point. Such
data can be represented as a uniform 3D field, as described in the preceding

Stardent Application Visualization System | User's Guide — 002424-001 Rev A

NOTE

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A

section. For convenience, AVS also provides a simpler volume data format to
accommodate this type of data.

The AVS volume data format requires that each value in the data array be a
byte. (For other data types (e.g. single-precision), you must use the more
general field contruct.) Volume data files should have names that end with a
.dat suffix.

The volume data and field file formats are not compatible.

A volume data file begins with a three-byte header, which specifies the size of
the array in the first (X), second (Y), and third (Z) dimensions. Since each
dimension’s size must be expressed as a 1-byte number, the largest array
supported by this file format is 255x255x255.

The remaining contents of the file are the values of a 3D array of bytes, in
column-major order (“FORTRAN-style””). For example, the values in a
50x20x10 array would be stored as follows (using FORTRAN notation):

DATA(1,1,1)
DATA(2,1,1)
DATA(3,1,1)

DATA(50,1,1)
DATA(1,2,1)
DATA(2,2,1)
DATA(3,2,1)

DATA(1,20,1)
DATA(2,20,1)
DATA(3,20,1)

DATA(1,20,2)
DATA(2,20,2)
DATA(3.20,2)

DATA(1,20,10)
DATA(2,20,10)
DATA(3,20,10)

DATA(50,20,10)

Figure 1-12 illustrates the volume data file format.

1-21

Figure 1-12. Volume Data File Format

(1byte) | nx: size of X dimension
(1 byte) | ny: size of Y dimension
(1 byte) nz: size of Z dimension
first data byte T
second data byte
total number
third data byte of bytes:
| | | X *ny*nz
| |
last data byte l

Converting Your Data to an AVS Format

The preceding section contains descriptions of the file formats that are directly
readable by the standard AVS modules. This section discusses strategies for
converting your data to these formats.

The AVS data formats are quite simple. Each involves a short header followed
by a stream of data values. There are two basic strategies for getting your data
into these formats. ’

Writing Your Own Conversion Utility

You can use FORTRAN or C (or any other language) to write a program that
converts your data to AVS’s field format or volume data format. In addition to
the basic conversion task, the program may need to perform some data filtering,
in order to prevent problems in the AVS environment. Here are some issues that
such a conversion utility should address:

O Holes in the data set.
O Special flag values.
O Size of the data set.

Ideally, your conversion utility will filter out all data that could confuse AVS or
seriously stress its memory allocation system. AVS includes many useful filter
modules, but it is unlikely that they will cover every user’s needs.

A drawback of this approach is that you may have to maintain two versions of
every data set: the original one (presumably used by other analysis software),
and the new one for use by AVS. With large data sets, this can have a
significant impact on your system’s data storage capacity.

Writing an AVS Module

A more elegant approach to converting your data is to write an AVS module
that reads a data set in its original form and outputs an AVS field. For more
information, see the AVS Developer’s Guide.

1-22 Stardent Application Visualization System | User's Guide — 002424-001 Rev A

Creating a Data Directory

...

You can store the data to be used with AVS anywhere in the directory hierarchy.
By default, AVS initially reads its data from directory /usr/avs/data. During
program execution, you can make any other directory the current data directory.

You can also use command-line options or the AVS startup file to specify any
directory as the initial data directory. This is explained further in the next chap-
ter.

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A 1-23

2

Starting AVS

21

2-3

2-4
2-5

2-6

Table of Contents

Chapter 2
Starting AVS

AVS Environment Variables

The AVS Command and Command-Line Options
AVS Startup File

The Main Menu — AVS’s Subsystems
Switching Among the Subsystems

Using On-Line Help

Starting an AVS session involves two steps: making sure your UNIX environ-
ment is properly set, and issuing the appropriate shell command.

AVS Environment Variables

..

Before starting, make sure that the following UNIX environment variables are
properly set.

DISPLAY Used by the X Window System to indicate the display screen
at which you’re working.

SPACEBALL (optional) Indicates the serial communications port to which a
Spaceball device is attached. This can also be set in the AVS
startup file (see below).

DIALS (optional) Indicates the serial communications port to which a
DIGIT dialbox device is attached. This can also be set in the
AVS startup file (see below).

AVS_HELP_PATH
(optional) Specifies one or more locations in the file system
for AVS to use when searching for on-line help files. See
Appendix D of the AVS Developer’s Guide for more on this
variable.

..

The basic command to start AVS is simple:
avs

There are quite a few options that you can use when issuing the avs command.
All option keywords begin with a hyphen (e.g. —data). In many cases, the
keyword is followed by an additional word (e.g. a directory name). You must
separate the keyword and the additional word with whitespace (SPACE and/or
TAB characters).

All options keywords can be abbreviated, as long as there is no ambiguity. For
example, —data can be abbreviated to —da. But you cannot abbreviate it to —d,
since this might indicate either —data or —display.

In several cases, you can use an entry in the AVS startup file as an alternative to
a command-line option. For example, a DataDirectory entry in the startup file
is equivalent to a —data option. See the next section for details on the startup
file.

—data directory
(startup file equivalent: DataDirectory) Specifies the directory in which
the AVS Network Editor subsystem initially will look for data files (files
used an input to computational modules).

The default data directory is /usr/avs/data.

-netdir directory
(startup file equivalent: NetworkDirectory) Specifies the directory in
which the AVS Network Editor subsystem initially will look for network
files (Read Network and Write Network functions).

The default network directory is /usr/avs/inetworks.

—path directory
(startup file equivalent: Path) Specifies the directory tree in which AVS
itself is installed.

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A 2-1

- The default path is /usr/avs. If you specify another path, then the default
data directory and network directory are modified accordingly. For

example:
If: path = lusrllocallavs
Then: data directory = lusrllocallavsidata
network directory = lusrl/locallavs/networks

—display display-name
Specifies the X Window System display on which AVS is to execute. This
overrides the current setting of the DISPLAY environment variable.

—geometry [geom-option(s) |
Automatically invokes the Geometry Viewer subsystem at startup. You can
include the following options that are specific to this subsystem.

—scene scene-file
Automatically loads a “scene’” from disk storage. This
option executes the Geometry Viewer’s Read Scene
function, using the file scene-file.scene.

~dir pathname
Specifies pathname as the default directory used by the
functions Read Object, Save Object, Read Scene, Save
Scene, and the Read and Save functions in the Edit
Property window.

The default data directory is /usr/avs/data (same as the
Network Editor).

—filter pathname
Specifies pathname as the directory to search for
geometry conversion utilities, named ..._to_geom. See
the Geometry Conversion Programs appendix.

The default directory for these programs is /usr/avsifilter.

—defaults filename
Specifies a Geometry Viewer defaults file. The format of
" this file is described in the Geometry Viewer Script
Language Appendix.

—geometry geom_spec
Specifies an X Window System geometry (e.g. 500x500-
5-5) for the initial window created by the Geometry
Viewer.

—usage Displays a usage message for the Geometry Viewer
options. No AVS session is started if you type avs
—geometry —usage.

The Geometry Viewer options correspond to the command-line options
recognized by Release 1 of AVS.

—-image
Automatically invokes the Image Viewer subsystem at startup.

—-volume
Automatically invokes the Volume Viewer subsystem at startup.

-network network-file
Automatically invokes the Network Editor subsystem at startup, and loads
the specified network file using the Read Network function.

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A

—viewer viewer-file
Automatically creates a “viewer”’ that provides “turnkey’’ access to a
group of existing networks. The AVS Image Viewer and Volume Viewer
subsystems are implemented in this way.

-modules directory
(startup file equivalent: ModulesDirectory) Specifies the directory in
which the AVS Network Editor subsystem initially will look for executable
modules. All executable files in the directory are examined to determine
whether they contain one or more modules.

You can use more than one -modules option to have AVS search through
multiple directories for modules. The default modules directory is
lusrlavs/avs_library.

—usage
Displays a usage message for the AVS options (except for the Geometry
Viewer option — see above). (Does not start an AVS session.)

-version
Displays the AVS version number. (Does not start an AVS session.)

..

When it begins execution, AVS searches for a startup file, which specifies the
locations of various directories. AVS looks for the following files, in the order

listed:
J.avsrc (current directory)
$HOME/ .avsrc (home directory)
lusrlavs/runtimelavsrc (system directory)

At most one of these startup files is read. If AVS finds one of them, it ignores the
others. A /usr/avsiruntimelavsrc file is included on Stardent’s AVS distribution
tape.

Startup File Format
Each line of the AVS startup file consists of keyword-value pair, with whi-
tespace separating the keyword and the value. For example:

NetworkWindow 867x567+407+2
NetworkDirectory /usr/johnp/avs/nets
DataDirectory /usr/johnp/avs/data
DialDevice /dev/tty02

In most cases, the keyword corresponds to one of the command-line options
described in the preceding section. If you use a command-line option, it
overrides the specification, if any, in the startup file.

The AVS startup file keywords are as follows:

DataDirectory
(command-line equivalent: —data) Specifies the directory in which the
various “read data’’ modules (read field, read geometry, etc.) initially
will look for data files.

DialDevice
(command-line equivalent: none) Indicates the serial communications port
to which a DIGIT dialbox device is attached.

This entry corresponds to the environment variable DIALS; if DIALS is
set, the startup file entry (if any) is ignored.

Stardent Application Visualization System | User’'s Guide — 002424-001 Rev A 2-3

ImageScrollbars
(command-line equivalent: none) If set to the value off, suppresses the
adding of scrollbars to display windows that are too small for the image
they are currently displaying. (You can always see more of the image
simply by dragging it with the mouse.)

NetworkDirectory
(command-line equivalent: —netdir) Specifies the directory in which the
AVS Network Editor subsystem initially will look for network files (Read
Network and Write Network functions).

NetworkWindow
(command-line equivalent: none) Specifies the X Window system geometry
of the Network Construction Window, which includes the Network Editor
menu, the Module Palette, and the Workspace in which you construct
networks of modules.

Path
(command-line equivalent: —path) Specifies the directory tree in which
AVS itself is installed.

SaveMessageLog
(command-line equivalent: none) It set to the value on, causes the AVS
message log to be preserved when the AVS session ends normally. By -
default, the message log (/tmplavs_message.log_XXX, where XXX is the
AVS process number) is deleted automatically. The log file is always
preserved if AVS exits abnormally (e.g. Ctrl-C interrupt, system crash).

SpaceballDevice
(command-line equivalent: none) Indicates the serial communications port
to which a Spaceball device is attached.

This entry corresponds to the environment variable SPACEBALL; if
SPACEBALL is set, the startup file entry (if any) is ignored.

The Main Menu — AVS’s Subsystems

..

When you start AVS, the main menu appears within a control panel along the
left edge of the screen (Figure 2-1).

2-4 Stardent Application Visualization System | User's Guide — 002424-001 Rev A

Figure 2-1. AVS Main Menu

Application Visualization System: -

Each of the subsystems has its own control panel (usually, along the left edge of
the screen). When you click the Exit button at the top of a subsystem’s control
panel, the AVS main menu reappears.

Switching Among the Subsystems

In general, you cannot go directly from one AVS subsystem to another. Instead,
you must click Exit to return to the AVS main menu, then enter another subsys-
tem. Keep in mind that when you exit a subsystem, your work is not automati-
cally saved. (A dialog box will appear to remind you of this fact.) If you wish
to preserve your work for later use, be sure to use the appropriate function first
(e.g. Write Network in the Network Editor subsystem).

There are some exceptions to this rule: for instance, you can go directly to the
Geometry Viewer subsystem from any of the others, and return again.

Stardent Application Visualization System | User’s Guide — 002424-001 Rev A 2-5

Using On-Line Help

2-6

Figure 2-2. A Help Browser

At all times during an AVS session, on-line help is available. Help takes several
forms:

Help Buttons

All of AVS’s control panels include a Help button at the top. Clicking this
button causes a Help Browser window to appear (Figure 2-2):

The browser displays a list of help topics. To get help on a particular topic,
just click on it. A text file is loaded into the browser’s viewing area, which
has scroll bars to allow easy perusal of the help texts:

O The left mouse button scrolls upward.
Q The effect of the middle button depends on exactly where the cursor is:

In the arrow box at the top
Click to scroll to the very top of the help text.

In the elevator shaft
Click and hold down the button to grab the elevator bar. Moving
the bar up or down causes the help text to scroll accordingly.

In the arrow box at the bottom
Click to scroll the to the very bottom of the help text.

Q The right mouse button scrolls downward.

You can change the size of the viewing area by using the X window man-
ager to make the entire browser window larger or smaller. You can also
move the window using the window manager.

Click on as many topics as you like. When you’re done, click the Close
button to close the browser window.

Red entries in a help browser indicate subdirectories that contain additional
help screens. You’ll often see the red entry “../ (help)” at the top of the
browser list. This indicates the parent directory, /usr/avs/runtimelhelp,
which contains a group of help screens that provide overall AVS orienta-
tion.

Stardent Application Visualization System | User's Guide — 002424-001 Rev A

Module Editor
Each computational module in AVS is represented onscreen by an icon.
Clicking on the small square at the right side of the icon with the middle or
right mouse button opens a Module Editor window, which displays
information about the module: a capsule descripti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>