INTRO (2) UNIX Programmer’s Manual INTRO(2)

NAME
intro — introduction to system calls and error numbers

SYNOPSIS ;
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always —1; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable errno,
which is not cleared on successful calls. Thus errno should be tested only after an error has
occurred.

The following is a complete list of the errors and their names as given in <errno.h>.

0 Error 0
Unused.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except
to its owner or super-user. It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn’t, or
when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to kil and ptrace does not exist, or is already
dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch.
occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

S EIO 1/0 error
Some physical 1/0 error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
1/0 on a special file refers to a subdevice which does not exist, or beyond the limits of
the device. It may also occur when. for example, an illegal tape drive unit number is
selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions,
does not start with a valid magic number, see a.our(5).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to
a file which is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

4th Berkeley Distribution 12 February 1983 1

INTRO (2) _ UNIX Programmer’s Manual INTRO(2)

11 EAGAIN No more processes
In a fork, the system’s process table is full or the user is not allowed to create any more
processes.

12 ENOMEM Not enough core
During an execve or break, a program asks for more core or swap space than the system
is able to supply. A lack of swap space is normally a temporary condition, however a
lack of core is not a temporary condition; the maximum size of the text, data, and stack
segments is a system parameter.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EFAULT Bad address
The system encountered a hardware fault in attempting to access the arguments of a
system call.

15 ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file directory. (open file, current direc-
tory, mounted-on file, active text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

18 EXDEV' Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name
or as an argument to chdir.

21 EISDIR Is a directory
An attempt to write on a directory.

22 EINVAL Invalid argument

: Some invalid argument: dismounting a non-mounted device, menuonmg an unknown
signal in signal, reading or writing a file for which seek has generated a negative pomter
Also set by math functions, see intro(3). :

23 ENFILE File table overflow
The system’s table of open files is full, and temporarily no more opens can be accepted

24 EMFILE Too many open files
Customary configuration limit is 20 per process.
25 ENOTTY Not a typewriter ’
o - The - file menuoned in an Joctl is not a termmal or one of the other devxces to Wthh
these calls apply. S « .

26 ETXTBSY Text file busy =
’ An attempt to execute a pure-procedure program which is currently open for wntmg
(or reading!). Also an attempt to open for writing a pure- procedure program that is
being executed.

4th Berkeley Distribution 12 February 1983 2

INTRO (2) UNIX Programmer’s Manual INTRO(2)

27 EFBIG File too large
The size of a file exceeded the maximum (about 10° bytes).

28 ENOSPC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE lllegal seek
An Iseek was issued to a pipe. This error may also be issued for other non-seekable
devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This condi-
tion normally generates a signal; the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package (3M) is out of the domain of the
function.

34 ERANGE Result too large
The value of a function in the math package (3M) is unrepresentable within machine
precision.

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on a object in non-
blocking mode (see ioct/ (2)).

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect (2)) was
attempted on a non-blocking object (see ioct! (2)).

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an operation in
progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory.

39 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

4] EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type

requested. For example you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

42 ENOPROTOOPT Bad protocol option
A bad option was specified in a gersockopt(2) or setsockopt(2) call.

43 EPROTONOSUFPORT Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

4th Berkeley Distribution 12 February 1983 3

INTRO(2) UNIX Programmer’s Manual INTRO(2)

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the system or no imple-
mentation for it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol famlly has not been configured into the system or no implementation for
it exists,

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn’t necessarily expect to be able to use PUP Internet addresses with ARPA Inter-
net protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL Can’t assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

50 ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer exe-
cuting a shutdown (2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or sendmsg
request on a connected socket specified a destination other than the connected party.

57 ENOTCONN Socket is not connected ‘
An request to send or receive data was disallowed because the socket is not connected.

58 ESHUTDOWN Can’t send after socket shutdown
A request to send data was disallowed because the socket had already been shut down
with a previous shutdown(2) call.

59 unused

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after a
period of time. (The timeout period is dependent oa the communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This usu-
ally results from trying to connect to a service which is inactive on the foreign host.

4th Berkeley Distribution 12 February 1983 4

INTRO (2) UNIX Programmer’s Manual INTRO(2)

62 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 characters, or an entire path name
exceeded 1023 characters.

64 ENOTEMPTY Directory not empty
A directory with entries other than **.”” and ‘..”” was supplied to a remove directory or
rename call.

DEFINITIONS
Process ID
Each active process in the system is uniquely identified by a positive integer called a pro-
cess ID. The range of this ID is from 0 to {PROC_MAX].

Parent process ID
A new process is created by a currently active process; see fork(2). The parent process ID
of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive integer
called the process group ID. This is the process ID of the group leader. This grouping
permits the signalling of related processes (see killpg(2)) and the job control mechanisms
of csh(l).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive
integer called the tty group ID. This grouping is used to arbitrate between multiple jobs
contending for the same terminal; see csh(1), and y(4).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished
from others and used in implementing accounting facilities. The positive integer
corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process which created it.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process’s real user ID and
real group 1D respectively. Either may be modified through execution of a set-user-ID or
set-group-ID file (possibly by one its ancestors); see execve(2).

The group access list is an additional set of group ID’s used only in determining resource
accessibility. Access checks are performed as described below in ‘‘File Access Permis-
sions’’.

Super-user
A process is recognized as a super-user process and is granted special privileges if its
effective user ID is 0.

Special Processes
The processes with a process ID’s of 0, 1, and 2 are special. Process 0 is the scheduler.
Process 1 is the initialization process init, and is the ancestor of every other process in the
system. It is used to control the process structure. Process 2 is the paging daemon.

4th Berkeley Distribution 12 February 1983 5

INTRO (2) UNIX Programmer’s Manual INTRO(2)

Descriptor ‘
An integer assigned by the system when a file is referenced by open(2), dup(2), or pipe(2)
or a socket is referenced by socket(2) or socketpair(2) which uniquely identifies an access
path to that file or socket from a given process or any of its children.

File Name ‘
Names consisting of up to {FILENAME_MAX] characters may be used to name an ordi-
nary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding 0 (null)
and the ASCII code for / (slash). (The parity bit, bit 8, must be 0.)

Note that it is generally unwise to use », ?, [or] as part of file names because of the spe-
cial meaning attached to these characters by the shell.

Path Name
A path name is a null-terminated character string starting with an optional slash (/), fol-
lowed by zero or more directory names separated by slashes, optionally followed by a file
name. The total length of a path name must be less than {PATHNAME_MAX] charac-
ters.

If a path name begins with a slash, the path search begins at the roor directory. Other-
wise, the search begins from the current working directory. A slash by itself names the
root directory. A null pathname refers to the current directory.

Directory
A directory is a special type of file which contains entries which are references to other
files. Directory entries are called links. By convention, a directory contains at least two
links, . and .., referred to as dor and dot-dot respectively. Dot refers to the directory itself
and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. A process’s root directory
need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used
in determining whether a process may perform a requested operation on the file (such as
opening a file for writing). Access permissions are established at the time a file is created.
They may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or executed.
Directory files use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file, those users in the file's group, anyone else. Every
file has an independent set of access permissions for each of these classes. When an
access check is made, the system decides if permission should be granted by checking the
access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:
The process’s effective user ID is that of the super-user.

The process’s effective user ID matches the user ID of the owner of the file and the
owner permissions allow the access.

The process’s effective user ID does not match the user ID of the owner of the file, and
either the process’s effective group ID matches the group ID of the file, or the group ID
of the file is in the process’s group access list, and the group permissions allow the access.

4th Berkeley Distribution 12 February 1983 6

INTRO (2)

UNIX Programmer’s Manual INTRO(2)

Neither the effective user ID nor effective group ID and group access list of the process
match the corresponding user ID and group ID of the file, but the permissions for ‘‘other
users’’ allow access.

Otherwise, permission is denied.

Sockets and Address Families

SEE ALSO

A socket is an endpoint for communication between processes. Each socket has queues
for sending and receiving data.

Sockets are typed according to their communications properties. These properties include
whether messages sent and received at a socket require the name of the partner, whether
communication is reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socker(2)
for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols.
Each protocol set supports addresses of a certain format. An Address Family is the set of
addresses for a specific group of protocols. Each socket has an address chosen from the
address family in which the socket was created.

intro(3), perror(3)

4th Berkeley Distribution 12 February 1983 7

ACCEPT (2) UNIX Programmer's Manual ACCEPT (2)

NAME
accept — accept a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

ns = accept(s, addr, addrlen)
int ns, s;

struct sockaddr *addr;

int =addrlen;

DESCRIPTION

The argument sis a socket which has been created with socket(2), bound to an address with
bind(2), and is listening for connections after a listen(2). Acceprextracts the first connection on
the queue of pending connections, creates a new socket with the same properties of sand allo-
cates a new file descriptor, ns, for the socket. If no pending connections are present on the
queue, and the socket is not marked as non-blocking, acceprblocks the caller until a connection
is present. If the socket is marked non-blocking and no pending connections are present on the
queue, accept returns an error as described below. The accepted socket, ns, may not be used to
accept more connections. The original socket sremains open.

The argument addr is a result parameter which is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the addr parameter is deter-
mined by the domain in which the communication is occurring. The addrlen is a value-result
parameter. it should initially contain the amount of space pointed to by addr, on return it will
contain the actual length (in bytes) of the address returned. This call is used with connection-
based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

RETURN VALUE

The call returns —1 on error. If it succeeds it returns a non-negative integer which is a descrip-
tor for the accepted socket.

ERRORS
The accepr will fail if:
[EBADF] The descriptor is invalid.
[ENOTSOCK] The descriptor references a file, not a socket.
[EOPNOTSUPP] The referenced socket is not of type SOCK_STREAM.
[EFAULT] The addr parameter is not in a writable part of the user address space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to be
accepted.

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2)

4th Berkeley Distribution 47 July 1983 1

ACCESS (2) UNIX Programmer’s Manual ACCESS (2)

NAME
access — determine accessibility of file

SYNOPSIS
#include <sys/file.h>

#define R_OK 4 /s test for read permission */

#define W_OK 2 /s test for write permission */

#define X _OK 1 /e test for execute (search) permission */
#define F_OK 0 /e test for presence of file »/

accessible = access(path, mode)
int accessible;
char spath;
int mode;
DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive or of
the bits R_OK, W_OK and X_OK. Specifying mode as F_OK (i.e. 0) tests whether the direc-
tories leading to the file can be searched and the file exists.

The real user ID and the group access list (including the real group ID) are used in verifying
permission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access,
but an attempt to open it for writing will fail (although files may be created there); a file may
look executable, but execve will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a —1
value is returned; otherwise a O value is returned.

ERRORS .
Access to the file is denied if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The argument path name was too long.

[ENOENT] Read, write, or execute (search) permission is requested for a null path name
or the named file does not exist.

(EPERM] The argument contains a byte with the high-order bit set.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EROFS] Write access is requested for a file on a read-only file system.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being
executed.

[EACCES] Permission bits of the file mode do not permit the requested access: or search

permission is denied on a component of the path prefix. The owner of a file
has permission checked with respect to the ‘‘owner’’ read, write, and execute
mode bits, members of the file's group other than the owner have permission
checked with respect to the *‘group’ mode bits, and all others have permis-
sions checked with respect to the ‘‘other’’ mode bits.

[EFAULT] Path points outside the process’s allocated address space.

SEE ALSO
chmod(2), stat(2)

4th Berkeley Distribution 18 July 1983 1

ACCT (2) UNIX Programmer’s Manual ACCT (2)

NAME
acct — turn accounting on or off

SYNOPSIS
acct (file)
char «file;

DESCRIPTION
The system is prepared to write a record in an accounting file for each process as it terminates.
This call, with a nuli-terminated string naming an existing file as argument, turns on account-
ing; records for each terminating process are appended to file. An argument of O causes
accounting to be turned off.

The accounting file format is given in accr(5).
This call is permitted only to the super-user.

NOTES
Accounting is automatically disabled when the file system the accounting file resides on runs
out of space; it is enabled when space once again becomes available.

RETURN VALUE
On error —1 is returned. The file must exist and the call may be exercised only by the super-
user. It is erroneous to try to turn on accounting when it is already on.

ERRORS
Accrwill fail if one of the following is true:
[EPERM] The caller is not the super-user.
[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.

[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read-only file system.
[EFAULT] File points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
[EACCES] The file is a character or block special file.
SEE ALSO

acct(5), sa(8)

BUGS -
No accounting is produced for programs running when a crash occurs. In particular nonter-
minating programs are never accounted for.

4th Berkeley Distribution 13 February 1983 1

BIND (2) UNIX Programmer’s Manual BIND (2)

NAME
bind — bind a name toa socket

SYNOPSIS
##include <sys/types.h>
#include <sys/socket.h>

bind (s, name, namelen)
int s;

struct sockaddr *name;
int namelen;

DESCRIPTION
'Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in
a name space (address family) but has no name assigned. Bind requests the name, be assigned
to the socket.

NOTES
Binding a name in the UNIX domain creates a socket in the file system which must be deleted
by the caller when it is no longer needed (using unlink(2)). The file created is a side-effect of
the current implementation, and will not be created in future versions of the UNIX ipc domain.

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of —1 indicates an error, which
is further specified in the global errno.

ERRORS
The bind call will fail if:

[EBADF] Sis not a valid descriptor.
[ENOTSOCK] S is not a socket.

{EADDRNOTAVAIL]
The specified address is not available from the local machine.

{(EADDRINUSE] The specified address is already in use.

[EINVAL] The socket is already bound to an address.
[EACCESS] The requested address is protected, and the current user has inadequate
permission to access it.
{[EFAULT] The name parameter is not in a valid part of the user address space.
SEE ALSO |

connect(2), listen(2), socket(2), getsockname(2)

4th Berkeley Distribution 27 July 1983 1

BRK (2) UNIX Programmer’s Manual ' BRK(2)

NAME

brk, sbrk — change data segment size

SYNOPSIS

caddr_t brk (addr)
caddr_t addr;

caddr_t sbrk(incr)
int incr;

DESCRIPTION

Brk sets the system’s idea of the lowest data segment location not used by the program (called
the break) to addr (rounded up to the next multiple of the system’s page size). Locations
greater than addr and below the stack pointer are not in the address space and will thus cause a
memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program’s data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the
daa segment, it will not be possible to set the break beyond the rlim_max value returned from
a call to gerrlimit, e.g. *‘etext + rlp—rlim_max."" (See end(3) for the definition of erext.)

RETURN VALUE

ERRORS

BUGS

Zero is returned if the brk could be set; —1 if the program requests more memory than the sys-
temn limit. Sérkreturns —1 if the break could not be set.

Sbrk will fail and no additional memory will be allocated if one of the following are true:
[ENOMEM] The limit, as set by setrlimir(Z'). was exceeded.

[ENOMEM] The maximum possible size of a data segment (compiled into the system) was
exceeded.

[ENOMEM] Insufficient space existed in the swap area to support the expansion.

~ SEE ALSO

execve(2), getrlimit(2), malloc(3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin-
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting getrlimir. .

4th Berkeley Distribution 27 July 1983 v 1

CHDIR (2) UNIX Programmer’s Manual CHDIR (2)

NAME
chdir — change current working directory

SYNOPSIS
chdir(path)
char spath;

DESCRIPTION
Path is the pathname of a directory. Chdir causes this directory to become the current working
directory, the starting point for path names not beginning with **/"".

In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errnois set to indicate the error.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the follow-
ing are true:

{[ENOTDIR] A component of the pathname is not a directory.
[ENOENT] The named directory does not exist.
[ENOENT] The argument path name was too long.

{[EPERM] The argument contains a byte with the high-order bit set.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the process's allocated address space.

{ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

chroot(2)

4th Berkeley Distribution 2 July 1983 1

CHMOD (2) UNIX Programmer’s Manual CHMOD (2)

NAME
chmod — change mode of file

SYNOPSIS
chmod(path, mode)
char *path;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by pathor referenced by the descriptor fd has its mode changed to
mode. Modes are constructed by or’ing together some combination of the following:

04000 set user ID on execution

02000 set group ID on execution

01000 save text image after execution

00400 read by owner

00200 write by owner

00100 execute (search on directory) by owner
00070 read, write, execute (search) by group

00007 read, write, execute (search) by others

If an executable file is set up for sharing (this is the default) then mode 1000 prevents the sys-
tem from abandoning the swap-space image of the program-text portion of the file when its last
user terminates. Ability to set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-user-id and set-group-id bits. This
makes the system somewhat more secure by protecting set-user-id (set-group-id) files from
remaining set-user-id (set-group-id) if they are modified, at the expense of a degree of compati-
bility.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Chmod will fail and the file mode will be unchanged if:
[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The pathname was too long.
[ENOENT] The named file does not exist.

[EACCES] Search permission is denied on a component of the path prefix.

[EPERM] The effective user ID does not match the owner of the file and the effective
user 1D is not the super-user.

[EROFS] The named file resides on a read-only file system.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathrame.

Fchmod will fail if:

[EBADF] The descriptor is not valid.

[EINVAL] Fdrefers to a socket, not to a file.

4th Berkeley Distribution 2 July 1983]

CHMOD (2) UNIX Programmer’s Manual CHMOD (2)

[EROFS] The file resides on a read-only file system.

SEE ALSO
open(2), chown(2)

4th Berkeley Distribution 2 July 1983 2

CHOWN (2) UNIX Programmer’s Manual CHOWN (2)

NAME
chown — change owner and group of a file

SYNOPSIS
chown(path, owner, group)
char spath;
int owner, group;

fchown(fd, ewner, group)
int fd, owner, group;

DESCRIPTION
The file which is named by parh or referenced by fd has its owner and group changed as
specified. Only the super-user may execute this call, because if users were able to give files
away, they could defeat the file-space accounting procedures.

On some systems, chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs owned by the super-user.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
Sock(2)).
Only one of the owner and group id's may be set by specifying the other as —1.

RETURN VALUE
Zero is returned if the operation was successful: —1 is returned if an error occurs, with a more
specific error code being placed in the global variable errno.

ERRORS
Chown will fail and the file will be unchanged if:
[EINVAL] The argument path does not refer to a file.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The argument pathname is too long.

[EPERM] The argument contains a byte with the high-order bit set.
[ENOENT] The named file does not exist.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

[EROFS] The named file resides on a read-only file system.
[EFAULT] Parh points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
Fchown will fail if:
(EBADF] Fd does not refer to a valid descriptor.

, [EINVAL] Fdrefers to a socket, not a file.

SEE ALSO -

chmod(2), flock(2)

4th Berkeley Distribution 27 July 1983 1

CHROOT (2) UNIX Programmer's Manual CHROOT (2)

NAME
chroot — change root directory

SYNOPSIS
chroot(dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte. Chroot causes
this directory to become the root directory, the starting point for path names beginning with
16/7*'
. In. order for a directory to become the root directory a process must have execute (search)
access to the directory.

This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errnois set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:

[ENOTDIR] A component of the path name is not a directory.
[ENOENT] The pathname was too long.

[EPERM] The argument contains a byte with the high-order bit set.

[ENOENT] The named directory does not exist.

[EACCES] Search permission is denied for any component of the path name.

[EFAULT] Path points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

chdir(2)

4th Berkeley Distribution 2 July 1983 1

CLOSE (2) UNIX Programmer’s Manual | CLOSE (2)

NAME
close — delete a descriptor

SYNOPSIS
close(d)
int d;

DESCRIPTION
The close call deletes a descriptor from the per-process object reference table. If this is the last
reference to the underlying object, then it will be deactivated. For example, on the last close of
a file the current seek pointer associated with the file is lost; on the last close of a socket(2)
associated naming information and queued data are discarded; on the last close of a file holding
an advisory lock the lock is released; see further flock(2).

A close of all of a process's descriptors is automatic on exit, but since there is a limit on the
number of active descriptors per process, close is necessary for programs which deal with many
descriptors.

When a process forks (see fork(2)), all descriptors for the new child process reference the same
objects as they did in the parent before the fork. If a new process is then to be run using
execve(2), the process would normally inherit these descriptors. Most of the descriptors can be
rearranged with dup2(2) or deleted with close before the execve is attempted. but if some of
these descriptors will still be needed if the execve fails, it is necessary to arrange for them to be
closed if the execve succeeds. For this reason. the call *“fcnti(d, F_SETFD. 10" is provided
which arranges that a descriptor will be closed after a successful execve; the call “‘fentl(d,
F_SETFD, 0)"" restores the default. which is to not close the descriptor.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
the global integer variable errnois set to indicate the error.

ERRORS
Close will fail if:

[EBADF] Dis not an active descriptor.

SEE ALSO
accept(2), flock(2), open(2), pipe(2), socket(2), socketpair(2), execve(2), fentl(2)

4th Berkeley Distribution 27 July 1983 1

CONNECT (2) UNIX Programmer’s Manual CONNECT (2)

NAME
connect — initiate a connection on a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

connect(s, name, namelen)
int s;

struct sockaddr *name;

int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, then this call permanently
specifies the peer to which datagrams are to be sent: if it is of type SOCK_STREAM., then this
call attempts to make a connection to another socket. The other socket is specified by name
which is an address in the communications space of the socket. Each communications space
interprets the name parameter in its own way.

RETURN VALUE
If the connection or binding succeeds, then 0 is returned. Otherwise a —1 is returned, and a
more specific error code is stored in errno.

ERRORS
The call fails if:
(EBADF] Sis not a valid descriptor.
[ENOTSOCK] Sis a descriptor for a file. not a socket.
[EADDRNOTAVAIL]

The specified address is not available on this machine.
[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.
[EISCONN] The socket is already connected.
[ETIMEDOUT] Connection establishment timed out without establishing a connection.
[ECONNREFUSED] The attempt to connect was forcefully rejected.
[ENETUNREACH] The network isn't reachable from this host.
[EADDRINUSE] The address is already in use.
[EFAULT] The name parameter specifies an area outside the process address space.

[EWOULDBLOCK] The socket is non-blocking and the and the connection cannot be com-
pleted immediately. It is possible to select(2) the socket while it is con-
necting by selecting it for writing.

SEE ALSO
accept(2), select(2), socket(2), getsockname(2)

4th Berkeley Distribution 7 July 1983 1

CREAT (2)

NAME

UNIX Programmer’s Manual CREAT (2)

creat — create a new file

SYNOPSIS

creat(name, mode)

char *name;

DESCRIPTION

This interface is obsoleted by open(2).

Creat creates a new file or prepares to rewrite an existing file called name, given as the address
of a null-terminated string. If the file did not exist. it is given mode mode, as modified by the
process’s mode mask (see umask(2)). Also see chmod(2) for the construction of the mode

argument.

If the file did exist, its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing, and its file descriptor is returned.

NOTES

The mode given is arbitrary: it need not allow writing. This feature has been used in the past
by programs to construct a simple exclusive locking mechanism. It is replaced by the O_EXCL
open mode, or flock(2) facilitity.

RETURN VALUE

The value —1 is returned if an error occurs. Otherwise, the call returns a non-negative descrip-
tor which only permits writing.

ERRORS

Crearwill fail and the file will not be created or truncated if one of the follewing occur:

[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.

[EACCES] A needed directory does not have search permission.

[EACCES] The file does not exist and the directory in which it is to be created is not writ-
able.

[EACCES] The file exists, but it is unwritable.

[EISDIR] The file is a directory.

[EMFILE] There are already too many files open.

[EROFS] The named file resides on a read-only file system.

[ENX10] The file is a character special or block special file, and the associated device

. does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.

[EFAULT] Name points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EOPNOTSUPP]
The file was a socket (not currently implemented).

SEE ALSO

open(2), write(2), close(2), chmod(2), umask(2)

4th Berkeley Distribution 2 July 1983 1

DUP (2) UNIX Programmer’s Manual DUP(2)

NAME
dup, dup2 — duplicate a descriptor

SYNOPSIS
newd = dup(oldd)
int newd, oldd;

dup2(oldd, newd)
int oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative integer
index in the per-process descriptor table. The value must be less than the size of the table,
which is returned by gerdtablesize(2). The new descriptor newd returned by the call is the
lowest numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd and
newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2),
write(2) and Iseek(2) calls all move a single pointer into the file. If a separate pointer into the
file is desired, a different object reference to the file must be obtained by issuing an additional
open(2) call.

In the second form of the call, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a close(2) call had been done first.
RETURN VALUE

The value —1 is returned if an error occurs in either call. The external variable errno indicates
the cause of the error.

ERRORS
Dup and dup? fail if:
[EBADF] Oldd or newd is not a valid active descriptor
[EMFILE] Too many descriptors are active.

SEE ALSO

; accept(2), open(2), close(2), pipe(2), socket(2), socketpair(2), getdtablesize(2)

4th Berkeley Distribution 12 February 1983 1

EXECVE (2)

NAME

UNIX Programmer’s Manual EXECVE (2)

execve — execute a file

SYNOPSIS

execve(name, argv, envp)
char *name, *argvll, *envpll;

DESCRIPTION

Execve transforms the calling process into a new process. The new process is constructed from
an ordinary file called the new process file. This file is either an executable object file, or a file
of data for an interpreter. An executable object file consists of an identifying header, followed
by pages of data representing the initial program (text) and initialized data pages. Additional
pages may be specified by the header to be initialize with zero data. See a.our(5).

An interpreter file begins with a line of the form *‘#! interpreter’, When an interpreter file is
execve'd, the system execve's the specified interpreter, giving it the name of the originally
exec'd file as an argument, shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument argv is an array of character pointers to null-terminated character strings. These
strings constitute the argument list to be made available to the new process. By convention. at
least one argument must be present in this array, and the first element of this array should be
the name of the executed program (i.e. the last component of name).

The argument enmvp is also an array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the command.
see environ(7).

Descriptors open in the calling process remain open in the new process. except for those for
which the close-on-exec flag is set; see close(2). Descriptors which remain open are unaffected
by execve.

Ignored signals remain ignored across an execve, but signals that are caught are reset to their
default values. The signal stack is reset to be undefined: see sigvec(2) for more information.

Each process has real user and group IDs and a effective user and group 1Ds. The real/ 1D
identifies the person using the system; the effective ID determines his access privileges. Execve
changes the effective user and group ID to the owner of the executed file if the file has the
“set-user-ID"’ or *‘set-group-I1D*’ modes. The realuser ID is not affected.

The new process also inherits the following attributes from the calling process:

process 1D
parent process 1D
process group 1D
access groups
working directory
root directory
control terminal
resource usages
interval timers
resource limits
file mode mask
signal mask

see geipid(2)
see getppid(2)
see getpgrp(2)
see getgroups(2)
see chdir(2)

see chroot(2)
see ty(4)

see getrusage(2)
see getitimer(2)
see getrlimit(2)
see umask(2)
see sigvec(2)

When the executed program begins, it is called as follows:

4th Berkeley Distribution

27 July 1983

EXECVE (2)

UNIX Programmer’s Manual EXECVE (2)

main(argc, argv, envp)

int argc;

char **argv, **envp;

where argcis the number of elements in argv (the “‘arg count’) and argvis the array of charac-
ter pointers to the arguments themselves.

Envpis a pointer to an array of strings that constitute the environment of the process. A pointer
to this array is also stored in the global variable ‘‘environ’’. Each string consists of a name, an
=" and a null-terminated value. The array of pointers is terminated by a null pointer. The
shell sh(1) passes an environment entry for each global shell variable defined when the pro-
gram is called. See environ(7) for some conventionally used names.

RETURN VALUE

If execve returns to the calling process an error has occurred. the return value will be —1 and
the global variable errno will contain an error code.

ERRORS

Execve will fail and return to the calling process if one or more of the following are true:

[ENOENT]
[ENOTDIR]
[EACCES]

[EACCES]
[EACCES]
[ENOEXEC]

[ETXTBSY]
(ENOMEM]
[E2BIG]

[EFAULT]
[EFAULT]
CAVEATS

One or more components of the new process file's path name do not exist.
A component of the new process file is not a directory.

Search permission is denied for a directory listed in the new process file's path
prefix.

The new process file is not an ordinary file.
The new process file mode denies execute permission.

The new process file has the appropriate access permission, but has an invalid
magic number in its header.

The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

The new process requires more virtual memory than is aliowed by the imposed
maximum (getrlimir(2)).

The number of bytes in the new process's argument list is larger than the
system-imposed limit of {ARG_MAX] bytes.

The new process file is not as long as indicated by the size values in its header.

Path, argv, or envp point to an illegal address.

If a program is setuid to a non-super-user, but is executed when the real widis ‘‘root’", then the
program has the powers of a super-user as well.

SEE ALSO

exit(2), fork(2), execi(3), environ(7)

4th Berkeley Distribution 27 July 1983 _ 2

EXIT (2) UNIX Programmer’s Manual EXIT(2)

NAME
_exit — terminate a process

SYNOPSIS
_exit(status)
int status;

DESCRIPTION
_exitterminates a process with the following consequences:

All of the descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wairor is interested in the SIGCHLD
signal. then it is notified of the calling process’s termination and the low-order eight bits of
status are made available to it; see wair(2).

The parent process ID of all of the calling process’s existing child processes are also set to 1.
This means that the initialization process (see intro(2)) inherits each of these processes as well.

Most C programs call the library routine exit(3) which performs cleanup actions in the standard
i/o library before calling _exit.

RETURN VALUE
This call never returns.

SEE ALSO
fork (2), wait(2), exit(3)

4th Berkeley Distribution 27 July 1983 1

FCNTL (2) UNIX Programmer’s Manual FCNTL (2)

NAME
fentl — file control

SYNOPSIS
#include <fentl.h>

res = fentl(fd, cmd, arg)
int res;
int fd, cmd, arg;

DESCRIPTION
Fentl provides for control over descriptors. The argument fd is a descriptor to be operated on
by cmd as follows:

F_DUPFD Return a new descriptor as follows:
Lowest numbered available descriptor greater than or equal to arg.
Same object references as the original descriptor.
New descriptor shares the same file pointer if the object was a file.
Same access mode (read, write or read/write).
Same file status flags (i.e., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across execv(2) system calls.

F_GETFD Get the close-on-exec flag associated with the file descriptor fd. If the low-
order bit is 0, the file will remain open across exec, otherwise the file will be
closed upon execution of exec.

F_SETFD Set the close-on-exec flag associated with fd to the low order bit of arg (0 or 1
as above).

F_GETFL Get descriptor status flags, as described below.

F_SETFL Set descriptor status flags.

F_GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG
signals; process groups are returned as negative values.

F_SETOWN Set the process or process group to receive SIGIO and SIGURG signals; pro-
cess groups are specified by supplying arg as negative, otherwise arg is inter-
preted as a process ID.

The flags for the F_GETFL and F_SETFL flags are as follows:

FNDELAY Non-blocking 1/0; if no data is available to a read call, or if a write operation
would block, the call returns -1 with the error EWOULDBLOCK.

FAPPEND Force each write to append at the end of file; corresponds to the O_APPEND
flag of open(2).

FASYNC Enable the SIGIO signal to be sent to the process group when [/O is possible,
e.g. upon availability of data to be read.

RETURN VALUE
Upon successful completion, the value returned depends on ¢md as follows:

F_DUPFD A new file descriptor.

F_GETFD Value of flag (only the low-order bit is defined).
F_GETFL Value of flags.

F_GETOWN Value of file descriptor owner.

4th Berkeley Distribution 18 July 1983 1

FCNTL (2) | UNIX Programmer’s Manual FCNTL (2)

other Value other than —1.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS
Fentl will fail if one or more of the following are true:
{(EBADF] Fildes is not a valid open file descriptor.

[EMFILE) Cmd is F_DUPFD and the maximum allowed number of file descriptors are
currently open.

[EINVAL) Cmd is F_DUPFD and arg is negative or greater the maximum allowable
number (see getdtablesize(2)).

SEE ALSO
close(2), execve(2), getdtablesize(2), open(2), sigvec(2)

BUGS
The asynchronous I/0 facilities of FNDELAY and FASYNC are currently available only for tty

operations. No SIGIO signal is sent upon draining of output sufficiently for non-blocking writes
to occur.

4th Berkeley Distribution 18 July 1983 2

FLOCK (2) UNIX Programmer’s Manual FLOCK (2)

NAME

flock — apply or remove an advisory lock on an open file

SYNOPSIS

##include <sys/file.h>

#defineLOCK_SH 1 /+ shared lock +/

#define LOCK_EX 2 /+ exclusive lock ¢/
#defineLOCK_NB 4 /+ don’t block when locking «/
#defineLOCK_UN 8 /#+ unlock ¢/

flock (fd, operation)
int fd, operation;

DESCRIPTION

NOTES

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A
lock is applied by specifying an operation parameter which is the inclusive or of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not
guarantee consistency (i.e. processes may still access files without using advisory locks possibly
resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any time
multiple shared locks may be applied to a file, but at no time are multiple exclusive, or both
shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type; this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes the caller to blocked
until the lock may be acquired. If LOCK_NB is included in operation, then this will not hap-
pen; instead the call will fail and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
JSork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the
parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE

Zero is returned if the operation was successful; on an error a —1 is returned and an error code
is left in the global location errno.

ERRORS

The Aock call fails if:
[EWOULDBLOCK] The file is locked and the LOCK_NB option was specified.

(EBADF] The argument fd is an invalid descriptor.
{EINVAL] The argument fd refers to an object other than a file.
SEE ALSO

open(2), close(2), dup(2), execve(2), fork(2)

4th Berkeley Distribution 27 July 1983 1

FORK (2) UNIX Programmer’s Manual FORK (2)

NAME
fork — create a new process

SYNOPSIS
pid = fork()
int pid;
DESCRIPTION

Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent pro-
cess).

The child process has its own copy of the parent’s descriptors. These descriptors refer-
ence the same underlying objects, so that, for instance, file pointers in file objects are
shared between the child and the parent, so that a Iseek(2) on a descriptor in the child
process can affect a subsequent read or write by the parent. This descriptor copying is also
used by the shell to establish standard input and output for newly created processes as

well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2).

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro-
cess ID of the child process to the parent process. Otherwise, a value of —1 is returned to the
parent process, no child process is created, and the global variable errno is set to indicate the
error.

ERRORS
Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN] The system-imposed limit {PROC_MAX]} on the total number of processes
under execution would be exceeded.

[EAGAIN] The system-imposed limit {KID_MAX]} on the total number of processes
under execution by a single user would be exceeded.

SEE ALSO
execve(2), wait(2)

4th Berkeley Distribution 12 February 1983 1

FSYNC (2) UNIX Programmer’s Manual FSYNC(2)

NAME
fsync — synchronize a file’s in-core state with that on disk

SYNOPSIS
fsync(fd)
int fd;

DESCRIPTION
Fsync causes all modified data and attributes of f4 to be moved to a permanent storage device.
This normally results in all in-core modified copies of buffers for the associated file to be writ-
ten to a disk.

Fsync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

RETURN VALUE
A 0 value is returned on success. A —1 value indicates an error.

ERRORS
The fsync fails if:

[EBADF) Fd is not a valid descriptor.
[EINVAL] Fd refers to a socket, not to a file.

SEE ALSO
sync(2), sync(8), update(8)

BUGS
The current implementation of this call is expensive for large files.

4th Berkeley Distribution 12 February 1983 1

GETDTABLESIZE (2) UNIX Programmer’s Manual GETDTABLESIZE (2) |

NAME

getdtablesize — get descriptor table size
SYNOPSIS

nds = getdtablesize()

int nds;
DESCRIPTION

Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots. The
entries in the descriptor table are numbered with small integers starting at 0. The call getdia-
blesize returns the size of this table.

SEE ALSO
close(2), dup(2), open(2)

4th Berkeley Distribution 12 February 1983 1

GETGID (2) UNIX Programmer’s Manual GETGID (2)

NAME
getgid, getegid — get group identity

SYNOPSIS
gid = getgid()
int gid;

egid = getegid()
int egid;
DESCRIPTION
Getgid returns the real group ID of the current process, getegid the effective group ID.
The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission during
execution of a ‘‘set-group-ID’’ process, and it is for such processes that gergid is most useful.

SEE ALSO
getuid(2), setregid(2), setgid(3)

4th Berkeley Distribution 12 February 1983 1

GETGROUPS(2) UNIX Progratnmer’s Manual GITTGROUPS (2)

NAME
getagroups — get group access list
SYNOPSIS

include <sys/param.hd
getgroups{eproups, gidset)
int ngroups, +gidset;

DESCRIPTION
Getgroups gets the current group access list of the user process and stores it in the aray gidset. ‘The
paramcter ngroups indicates the number of entries which may be placed in gidser. No more than
NGROUPS, as defined in <sys/param. i, will ever be returned.

RUTURN YALUE
Getgroups veturns the number of groups pat in gidser. A value of 0 or more indicates that the call
succevded. A value of -- 1 indicates that an crror occurred. and the error code is stored in the glo-
bal variable errno. 1 an errar oceurs, nothing valid is returned in gidset.

ERRORS
The possible errors tor gefgroup are:

[EFAULT The arcument gidser specifies an invalid address.
[EINVAL The argument agroups is loss than the number of groups that could He returned.

Sk ALSO
setgroups(2), initgroups(3)

4th Berkeley Distribution 7 July 1983 1

GETHOSTID (2) UNIX Programmer’s Manual GETHOSTID (2)

NAME
gethostid, sethostid — get/set unique identifier of current host

SYNOPSIS
hostid = gethostid ()
int hostid;

sethostid (hostid)
int hostid;

DESCRIPTION
Sethostid establishes a 32-bit identifier for the current processor which is intended to be unique
among all UNIX systems in existence. This is normally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is normally performed at boot
time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid(1), gethostname(2)

BUGS
32 bits for the identifier is too small.

4th Berkeley Distribution 12 February 1983 1

GETHOSTNAME (2) UNIX Programmer’s Manual GETHOSTNAME (2)

NAME
gethostname, sethostname — get/set name of current host

SYNOPSIS
gethostname (name, namelen)
char *name;
int namelen;

sethostname(name, namelen)
char sname;
int namelen;

DESCRIPTION
Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter namelen specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length namelen. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of —1 is returned and
an error code is placed int the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or namelen parameter gave an invalid address.
[EPERM] The caller was not the super-user.

SEE ALSO
gethostid(2)

BUGS .
Host names are limited to 255 characters.

4th Berkeley Distribution 12 February 1983 1

GETITIMER (2) UNIX Programmer’s Manual GETITIMER (2)

NAME
getitimer, setitimer — get/set value of interval timer
SYNOPSIS
#include <sys/time.h>
#define ITIMER_REAL 0 /+ real time intervals +/
#define ITIMER_VIRTUAL 1 /+ virtual time intervals +/

#define ITTIMER_PROF 2 /+ user and system virtual time »/

getitimer (which, value)
int which;
struct itimerval svalue;

setitimer(which, value, ovalue)
int which;
struct itimerval svalue, *ovalue;

DESCRIPTION
The system provides each process with three interval timers, defined in <sys/time.h>. The
getitimer call returns the current value for the timer specified in which, while the setitimer call
sets the value of a timer (optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /+ timer interval +/
struct timeval it_value; /+ current value +/
IR
If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non-
zero, it specifies a value to be used in reloading it_value when the timer expires. Setting
it_value to 0 disables a timer. Setting it_interval to 0 causes a timer to be disabled after its next
expiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution
(on the VAX, 10 microseconds).

The ITIMER_REAL timer decrements in real time. A SIGALRM signal is delivered when this
timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the pro-
cess is executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run-
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling
the execution of interpreted programs. Each time the ITIMER_PROF timer expires, the SIG-
PROF signal is delivered. Because this signal may interrupt in-progress system calls, programs
using this timer must be prepared to restart interrupted system calls.

NOTES
Three macros for manipulating time values are defined in <sys/time.h>. Timerclear sets a time
value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time
values (beware that >= and <= do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value —1 is returned, and
a more precise error code is placed in the global variable errno.

4th Berkeley Distribution 27 July 1983 1

GETITIMER (2) UNIX Programmer’s Manual GETITIMER (2)

ERRORS)
The possible errors are:

[EFAULT] The value structure specified a bad address.
[EINVAL] A value structure specified a time was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

4th Berkeley Distribution 27 July 1983 2

GETPAGESIZE (2) UNIX Programmer’s Manual GETPAGESIZE (2)

NAME

getpagesize — get system page size
SYNOPSIS

pagesize = getpagesize()

int pagesize;
DESCRIPTION

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of many
of the memory management calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE ALSO
sbrk(2), pagesize(1)

4th Berkeley Distribution 18 July 1983 1

GETPEERNAME (2) UNIX Programmer’s Manual GETPEERNAME (2)

NAME
’ getpeername — get name of connected peer
SYNOPSIS
getpeername (s, name, namelen)
int s;

struct sockaddr *name;
int *namelen;

DESCRIPTION

Getpeername returns the name of the peer connected to socket s. The namelen parameter
should be initialized to indicate the amount of space pointed to by name. On return it contains
the actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.
SEE ALSO
bind(2), socket(2), getsockname(2)
BUGS
Names bound to sockets in the UNIX domain are inaccessible; getpeername returns a zero
length name.

4th Berkeley Distribution 21 July 1983 1

GETPGRP(2) UNIX Programmer’s Manual GETPGRP(2)

NAME
getpgrp — get process group
SYNOPSIS
perp = getpgrp(pid)
int prgp;
int pid;

DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes which have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(1) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in ry(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

4th Berkeley Distribution 2 July 1983 1

GETPID (2) UNIX Programmer’s Manual GETPID (2)

NAME
getpid, getppid — get process identification

SYNOPSIS
pid = getpid)
long pid;

ppid = getppid)
long ppid;

DESCRIPTION
Getpid returns the process ID of the current process. Most often it is used with the host
identifier gerhostid(2) to generate uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid(2)

4th Berkeley Distribution 12 February 1983 1

GETPRIORITY (2) UNIX Programmer’s Manual GETPRIORITY (2)

NAME

getpriority, setpriority — get/set program scheduling priority
SYNOPSIS

##include <sys/resource.h>

#define PRIO_PROCESS 0 /+ process +/
#define PRIO_PGRP 1 /+ process group */
##define PRIO_USER 2 /# user id ¢/

prio = getpriority (which, who)
int prio, which, who;

setpriority (which, who, prio)
int which, who, prio;

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and who is
obtained with the gerpriority call and set with the setpriority call. Which is one of
PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a
process identifier for PRIO_PROCESS, process group identifier for PRIO_PGRP, and a user ID
for PRIO_USER). Prio is a value in the range —20 to 20. The default priority is 0; lower
priorities cause more favorable scheduling.

The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriority call sets the priorities of all of the specified processes to the
specified value. Only the super-user may lower priorities.

RETURN VALUE
Since getpriority can legitimately return the value —1, it is necessary to clear the external vari-
able errno prior to the call, then check it afterward to determine if a —1 is an error or a legiti-
mate value. The serpriority call returns 0 if there is no error, or —1 if there is.

ERRORS
Getpriority and setpriority may return one of the following errors:

[ESRCH] No process(es) were located using the which and who values specified.
[EINVAL] Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.
In addition to the errors indicated above, setpriority may fail with one of the following errors

returned:
[EACCES] A process was located, but neither its effective nor real user ID matched the
effective user ID of the caller.
{EACCES] A non super-user attempted to change a process priority to a negative value.
SEE ALSO

nice(1), fork(2), renice(8)

4th Berkeley Distribution 18 July 1983 1

GETRLIMIT (2) UNIX Programmer’s Manual GETRLIMIT (2)

NAME

getrlimit, setrlimit — control maximum system resource consumption

SYNOPSIS

#include <sys/time.h>
#include <sys/resource.h>

getrlimit (resource, rlp)
int resource;
struct rlimit erlp;

setrlimit (resource, rip)
int resource;
struct rlimit »rlp;

DESCRIPTION

Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the gerrlimit call, and set with the serrlimit call.

The resource parameter is one of the following:

RLIMIT_CPU the maximum amount of cpu time (in milliseconds) to be used by each pro-
cess.

RLIMIT_FSIZE the largest size, in bytes, of any single file which may be created.

RLIMIT_DATA the maximum size, in bytes, of the data segment for a process; this defines
how far a program may extend its break with the sbri(2) system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process; this defines
how far a program’s stack segment may be extended, either automatically by
the system, or explicitly by a user with the sbrk(2) system call.

RLIMIT_CORE the largest size, in bytes, of a core file which may be created.

RLIMIT_RSS the maximum size, in bytes, a process’s resident set size may grow to. This
imposes a limit on the amount of physical memory to be given to a process;
if memory is tight, the system will prefer to take memory from processes
which are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed
to continue execution until it reaches the hard limit (or modifies its resource limit). The rlimit
structure is used to specify the hard and soft limits on a resource,

struct rlimit {
int rlim_cur; /+ current (soft) limit +/
int rlim_max; /+ hard limit +/
)
Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within
the range from O to rlim_max or (irreversibly) lower rlim_max.

An “‘infinite’’ value for a limit is defined as RLIMIT_INFINITY (Ox7fffffff).

Because this information is stored in the per-process information, this system call must be exe-
cuted directly by the shell if it is to affect all future processes created by the shell; /imit is thus a
built-in command to csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!).

4th Berkeley Distribution 7 July 1983 1

GETRLIMIT (2) UNIX Programmer’s Manual GETRLIMIT (2)

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the soft cpu time
limit is exceeded, a signa! SIGXCPU is sent to the offending process.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A
return value of —1 indicates that an error occurred, and an error code is stored in the global
location errno.

ERRORS
The possible errors are:

[EFAULT] The address specified for rip is invalid.

[EPERM] The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.

SEE ALSO
¢sh(1), quota(2)

BUGS
There should be limit and unlimit commands in sh(1) as well as in csh.

4th Berkeley Distribution 7 July 1983 2

GETRUSAGE (2)

UNIX Programmer’s Manual GETRUSAGE (2)

getrusage — get information about resource utilization

SYNOPSIS

#include <sys/time.h>
#include <sys/resource.h>

#define RUSAGE_SELF 0
#define RUSAGE_CHILDREN -1

getrusage(who, rusage)
int who;
struct rusage erusage;

/+ calling process ¢/
/+ terminated child processes ¢/

DESCRIPTION

Getrusage returns information describing the resources utilized by the current process, or all its
terminated child processes. The who parameter is one of RUSAGE_SELF and
RUSAGE_CHILDREN. If rusage is non-zero, the buffer it points to will be filled in with the
following structure:

struct rusage {

struct timeval ru_utime;
struct timeval ru_stime;

/+ user time used ¢/
/+ system time used */

int ru_maxrss;

int ru_ixrss; /+ integral shared memory size «/
int ru_idrss; /+ integral unshared data size /
int ru_isrss; /# integral unshared stack size */
int ru_minflt; /» page reclaims */

int ru_majflt; /= page faults »/

int ru_nswap, /* swaps /

int ru_inblock; /+ block input operations »/

int ru_oublock; /= block output operations /

int ru_msgsnd, /+ messages sent */
int ru_msgrev; /» messages received =/

int ru_nsignals; /= signals received «/

int fuU_Nvesw, /+ voluntary context switches «/

4th Berkeley Distribution

int ru_nivcsw; /+ involuntary context switches =/

k

The fields are interpreted as follows:

ru_utime the total amount of time spent executing in user mode.

ru_stime the total amount of time spent in the system executing on behalf of the
process(es).

ru_maxrss the maximum resident set size utilized (in kilobytes).

ru_ixrss an “integral’’ value indicating the amount of memory used which was also
shared among other processes. This value is expressed in units of kilobytes »
seconds-of-execution and is calculated by summing the number of shared
memory pages in use each time the internal system clock ticks and then
averaging over 1 second intervals.

ru_idrss an integral value of the amount of unshared memory residing in the data seg-
ment of a process (expressed in units of kilobytes ¢ seconds-of-execution).

ru_isrss an integral value of the amount of unshared memory residing in the stack seg-
ment of a process (expressed in units of kilobytes » seconds-of-execution).

ru_minflt the number of page faults serviced without any i/o activity; here i/0 activity is

18 July 1983 1

GETRUSAGE (2)

ru_majflt
ru_nswap
ru_inblock
ru_outblock
ru_msgsnd
ru_msgrev
ru_nsignals
Tu_nvesw

ru_nivesw

NOTES

UNIX Programmer’s Manual GETRUSAGE (2)

avoided by *‘reclaiming’ a page frame from the list of pages awaiting realloca-
tion.

the number of page faults serviced which raquired i/o activity.

the number of times a process was ‘‘swapped’’ out of main memory.
the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number of ipc messages sent.

the number of ipc messages received.

the number of signals delivered.

the number of times a context switch resulted due to a process voluntarily giv-
ing up the processor before its time slice was completed (usually to await avai-
lability of a resource).

the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

The numbers ru_inblock and ru_outblock account only for real i/0; data supplied by the cacheing
mechanism is charged only to the first process to read or write the data.

SEE ALSO

gettimeofday (2), wait(2)

BUGS

There is no way to obtain information about a child process which has not yet terminated.

4th Berkeley Distribution 18 July 1983 2

GETSOCKNAME (2) UNIX Programmer’s Manual GETSOCKNAME (2)

S

NAME

getsockname — get socket name
SYNOPSIS

getsockname(s, name, namelen)

int s;

struct sockaddr *name;
_ int *namelen;

DESCRIPTION
‘ Getsockname returns the current name for the specified socket. The namelen parameter should
be initialized to indicate the amount of space pointed to by name. On return it contains the
actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.
[ENOTSOCK] The argument sis a file, not a socket.
[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EFAULT] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO
bind(2), socket(2)

BUGS
Names bound to sockets in the UNIX domain are inaccessible;, getsockname returns a zero
length name.

4th Berkeley Distribution 1 April 1983 1

GETSOCKOPT (2) UNIX Programmer’s Manual GETSOCKOPT (2)

NAME
getsockopt, setsockopt — get and set options on sockets

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

getsockopt (s, level, optname, optval, optlen)
int s, level, optname;

char soptval;

int soptlen;

setsockopt (s, level, optname, optval, optlen)
int s, level, optname;

char «optval;

int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at mul-
tiple protocol levels; they are always present at the uppermost ‘‘socket’” level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the ‘‘socket’ level, level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the appropri-
ate protocol controlling the option is supplied. For example, to indicate an option is to be
interpreted by the TCP protocol, level should be set to the protocol number of TCP; see
getpratoent (3N).

The parameters optval and optlen are used to access option values for setsockopt. For getsockopt
they identify a buffer in which the value for the requested option(s) are to be returned. For
getsockopt, optlen is a value-result parameter, initially containing the size of the buffer pointed
to by optval, and modified on return to indicate the actual size of the value returned. If no
option value is to be supplied or returned, oprval may be supplied as 0.

Optname and any specified options are passed uninterpreted to the appropriate protocol module
for interpretation. The include file <sysfsocker.h> contains definitions for ‘‘socket’ level
options; see socker(2). Options at other protocol levels vary in format and name, consult the
appropriate entries in (4P).

RETURN VALUE
A 0 is returned if the call succeeds, —1 if it fails.

ERRORS
The call succeeds unless:

{EBADF] The argument sis not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown.

[EFAULT] The options are not in a valid part of the process address space.
SEE ALSO

socket(2), getprotoent(3N)

4th Berkeley Distribution 7 July 1983 1

GETTIMEOFDAY (2) UNIX Programmer’s Manual GETTIMEOFDAY (2)

NAME
gettimeofday, settimeofday — get/set date and time

SYNOPSIS
##include <sys/time.h>

gettimeofday (tp, tzp)
struct timeval «tp;
struct timezone +tzp;

settimeofday (tp, tzp)
struct timeval otp;
struct timezone stzp;

DESCRIPTION
Gettimeofday returns the system’s notion of the current Greenwich time and the current time

zone. Time returned is expressed relative in seconds and microseconds since midnight January
1, 1970.

The structures pointed to by tp and tzp are defined in <sysftime.h> as:

struct timeval {
u_long tv_sec; /= seconds since Jan. 1, 1970 «/
long tv_usec; /+ and microseconds */

I8

struct timezone {
int tz_minuteswest:/+ of Greenwich =/
int tz_dsttime: /* type of dst correction to apply */
IR
The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

Only the super-user may set the time of day.

RETURN
A 0 return value indicates that the call succeeded. A —1 return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.
[EPERM] A user other than the super-user attempted to set the time.
SEE ALSO

date(1), ctime(3)

BUGS
Time is never correct enough to believe the microsecond values. There should a mechanism
by which, at least, local clusters of systems might synchronize their clocks to millisecond granu-
larity.

4th Berkeley Distribution 27 July 1983 1

GETUID (2) UNIX Programmer’s Manual GETUID (2)

NAME
getuid, geteuid — get user identity

SYNOPSIS
uid = getuid()
int uid;

euid = geteuid()
int euid;

DESCRIPTION
Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the process
additional permissions during execution of ‘‘set-user-ID’’ mode processes, which use geruid to
determine the real-user-id of the process which invoked them.

SEE ALSO
getgid(2), setreuid(2)

4th Berkeley Distribution 12 February 1983 1

IOCTL (2) UNIX Programmer’s Manual IOCTL (2)

NAME
ioctl — control device

SYNOPSIS
##include <sys/ioctl.h>

ioctl(d, request, argp)
int d, request;
char »argp;

DESCRIPTION
loctl performs a variety of functions on open descriptors. In particular, many operating charac-
teristics of character speécial files (e.g. terminals) may be controlled with ioct/ requests. The
writeups of various devices in section 4 discuss how ioct! applies to them.

An ioctl request has encoded in it whether the argument is an ‘‘in”’ parameter or ‘‘out’’ param-
eter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl
request are located in the file <sysfioctl.h> .

RETURN VALUE
If an error has occurred, a value of —1 is returned and errno is set to indicate the error.

ERRORS
loctl will fail if one or more of the following are true:
[EBADF] D is not a valid descriptor.
[ENOTTY] D is not associated with a character special device.
[ENOTTY] The specified request does not apply to the kind of object which the descriptor
d references.
[EINVAL] Request or argp is not valid.
SEE ALSO

execve(2), fenti(2), mt(4), tty(4), intro(4N)

4th Berkeley Distribution 7 July 1983 1

KILL (2) UNIX Programmer’s Manual KILL (2)

NAME

kill — send signal to a process

SYNOPSIS

kill (pid, sig)
int pid, sig;

DESCRIPTION

Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of
the signals specified in sigvec(2), or it may be 0, in which case error checking is performed but
no signal is actuaily sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user. A single exception is the signal SIGCONT which may always be
sent to any child or grandchild of the current process.

If the process number is 0, the signal is sent to all other processes in the sender’s process
group; this is a variant of killpg(2).

If the process number is —1, and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal.

Processes may send signals to themselves.

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS

Kill will fail and no signal will be sent if any of the following occur:

[EINVAL] Sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM] The sending process is not the super-user and its effective user id does not

match the effective user-id of the receiving process.

SEE ALSO

getpid(2), getpgrp(2), killpg(2), sigvec(2)

4th Berkeley Distribution 27 July 1983 1

KILLPG (2) UNIX Programmer’s Manual KILLPG (2)

NAME
killpg — send signal to a process group

SYNOPSIS
killpg (pgrp, sig)
int pgrp, sig;
DESCRIPTION
Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user ID,
otherwise this call is restricted to the super-user. As a single special case the continue signal
SIGCONT may be sent to any process which is a descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
the global variable errno is set to indicate the error.

ERRORS
Killpg will fail and no signal will be sent if any of the following occur:

(EINVAL] Sig is not a valid signal number.
[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM] The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending process.

SEE ALSO
kill(2), getpgrp(2), sigvec(2)

4th Berkeley Distribution 27 July 1983 1

LINK (2) UNIX Programmer’s Manual LINK (2)

NAME
link — make a hard link to a file

SYNOPSIS
link (namel, name2)
char snamel, *name2;

DESCRIPTION
A hard link to namel is created; the link has the name name2. Namel must exist.

With hard links, both namel and name2 must be in the same file system. Unless the caller is
the super-user, namel must not be a directory. Both the old and the new link share equal
access and rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:
[EPERM] Either pathname contains a byte with the high-order bit set.

[ENOENT] Either pathname was too long.
[ENOTDIR] A component of either path prefix is not a directory.
[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permission.

[ENOENT] The file named by namel does not exist.

[EEXIST] The link named by name2 does exist.

(EPERM] The file named by namel is a directory and the effective user ID is not super-
user.

[EXDEV] The link named by name?2 and the file named by namel are on different file
systems.

{[EACCES] The r.eq_uested link requires writing in a directory with a mode that denies write
permission.

[EROFS] The requested link requires writing in a directory on a read-only file system.

[EFAULT] One of the pathnames specified is outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO

symlink(2), unlink(2)

4th Berkeley Distribution 12 February 1983 1

LISTEN (2) UNIX Programmer’s Manual LISTEN (2)

NAME
listen — listen for connections on a socket

SYNOPSIS
listen(s, bscklog)
int s, backlog;

DESCRIPTION
To accept connections, a socket is first created with socket(2), a backlog for incoming connec-
tions is specified with listen(2) and then the connections are accepted with accept(2). The listen
call applies only to sockets of type SOCK_STREAM or SOCK_PKTSTREAM.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client will receive an error with
an indication of ECONNREFUSED.

RETURN VALUE

A 0 return value indicates success; —1 indicates an error.
ERRORS

The call fails if:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EOPNOTSUPP] The socket is not of a type that supports the operation listen.
SEE ALSO

accept(2), connect(2), socket(2)

BUGS
The backlog is currently limited (silently) to §.

4th Berkeley Distribution 12 February 1983 1

LSEEK (2) UNIX Programmer’s Manual LSEEK (2)

NAME
Iseek — move read/write pointer

SYNOPSIS
##define L_SET 0 /e set the seek pointer ¢/
#tdefine L_INCR 1 /+ increment the seek pointer »/
#tdefine L_XTND 2 /e extend the file size ¢/

pos = Iseek(d, offset, whence)

int pos;

int d, offset, whence;
DESCRIPTION

The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the file
pointer of d as follows:

If whence is L_SET, the pointer is set to offser bytes.
If whence is L_INCR, the pointer is set to its current location plus gffser.
If whence is L_XTND, the pointer is set to the size of the file plus offser.

Upon successful completion, the resulting pointer location as measured in bytes from beginning
of the file is returned. Some devices are incapable of seeking. The value of the pointer associ-
ated with such a device is undefined.

NOTES
Seeking far beyond the end of a file, then writing, creates a gap or ‘‘hole’’, which occupies no
physical space and reads as zeros.

RETURN VALUE
Upon successful completion, a non-negative integer, the current file pointer value, is returned.
Otherwise, a value of —1 is returned and errno is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if:
[EBADF] Fildes is not an open file descriptor.
[ESPIPE] Fildes is associated with a pipe or a socket.
[EINVAL] Whence is not a proper value.

[EINVAL] The resulting file pointer would be negative.

SEE ALSO
dup(2), open(2)

BUGS
This document’s use of whence is incorrect English, but maintained for historical reasons.

4th Berkeley Distribution 7 July 1983 1

MKDIR (2) UNIX Programmer’s Manual MKDIR (2)

NAME
mkdir — make a directory file

SYNOPSIS
mkdir(path, mode)
char spath;
int mode;
DESCRIPTION
Mkdir creates a new directory file with name path. The mode of the new file is initialized from

mode. (The protection part of the mode is modified by the process’s mode mask; see
umask(2)).

The directory’s owner ID is set to the process’s effective user ID. The directory’s group ID is
set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process’s file mode creation mask: all bits set
in the process’s file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A —1 return value indicates an error, and an error code is
stored in errno.

ERRORS
Mkdir will fail and no directory will be created if:

[EPERM] The process’s effective user ID is not super-user.

[EPERM] The path argument contains a byte with the high-order bit set.
[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] A component of the path prefix does not exist.

[EROFS] The named file resides on a read-only file system.
[EEXIST] The named file exists.
[EFAULT] Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
(EIO] An 1/0 error occured while writing to the file system.
SEE ALSO

chmod(2), stat(2), umask(2)

4th Berkeley Distribution 27 July 1983 1

MKNOD (2) UNIX Programmer’s Manual MKNOD (2)

NAME
mknod — make a special file

SYNOPSIS
mknod (path, mode, dev)
char »path;
int mode, dev;

DESCRIPTION |
Mknod creates a new file whose name is path. The mode of the new file (including special file
bits) is initialized from mode. (The protection part of the mode is modified by the process’s
mode mask; see umask(2)). The first block pointer of the i-node is initialized from dev and is
used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent specification
of a character or block I/0 device. If mode does not indicate a block special or character special
device, dev is ignored.

Mknod may be invoked only by the super-user.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Mbknod will fail and the file mode will be unchanged if:
[EPERM] The process’s effective user ID is not super-user.
[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] A component of the path prefix does not exist.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] Path points outside the process’s allocated address space.

{(ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

chmod(2), stat(2), umask(2)

4th Berkeley Distribution 2 July 1983 1

MOUNT (2) UNIX Programmer’s Manual MOUNT (2)

NAME
mount, umount — mount or remove file system

SYNOPSIS
mount (special, name, rwflag)
char sspecial, *name;
int rwflag;

umount (special)
char sspecial;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block-
structured special file special; from now on, references to file name will refer to the root file on
the newly mounted file system. Special and name are pointers to null-terminated strings con-
taining the appropriate path names.

Name must exist already. Name must be a directory. Its old contents are inaccessible while the
file system is mounted.

The rwflag argument determines whether the file system can be written on; if it is 0 writing is
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file sys-
tems must be mounted read-only or errors will occur when access times are updated, whether
or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable file
system. The associated file reverts to its ordinary interpretation.

RETURN VALUE
Mount returns 0 if the action occurred, —1 if special is inaccessible or not an appropriate file, if
name does not exist, if special is already mounted, if name is in use, or if there are already too
many file systems mounted.

Umount returns 0 if the action occurred; —1 if if the special file is inaccessible or does not have
a mounted file system, or if there are active files in the mounted file system.

ERRORS

Mount will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV] Special does not exist.

[ENOTBLK] Special is not a block device.

[ENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware). ‘

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix in name is not a directory.

[EROFS] Name resides on a read-only file system. ‘

[EBUSY] Name is not a directory, or another process currently holds a reference to it.

[EBUSY] No space remains in the mount table. _

[EBUSY] The super block for the file system had a bad magic number or an out of range
block size.

[EBUSY] Not enough memory was available to read the cylinder group information for
the file system.

{EBUSY] An i/o error occurred while reading the super block or cylinder group informa-
tion.

4th Berkeley Distribution 27 July 1983 1

MOUNT (2) UNIX Programmer’s Manual MOUNT (2)

Umount may fail with one of the following errors:

[NODEV] The caller is not the super-user.
[NODEV] Special does not exist.
[ENOTBLK] Special is not a block device.
{ENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).
[EINVAL] The requested device is not in the mount table.
[EBUSY] A process is holding a reference to a file located on the file system.
SEE ALSO

mount(8), umount(8)

BUGS
The error codes are in a state of disarray; too many errors appear to the caller as one value.

4th Berkeley Distribution 27 July 1983 2

OPEN (2) UNIX Programmer’s Manual OPEN(2)

NAME

open — open a file for reading or writing, or create a new file

SYNOPSIS

#include <sys/file.h>

open(path, flags, mode)
char spath;
int flags, mode;

DESCRIPTION

Open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if it
does not already exist (by specifying the O_CREAT flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process’ umask value (see
umask(2)).

Path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by or’ing the following values

O_RDONLY open for reading only
O_WRONLY open for writing only
O_RDWR open for reading and writing
O_NDELAY do not block on open
O_APPEND append on each write
O_CREAT create file if it does not exist
O_TRUNC truncate size to 0

O_EXCL error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end. If
O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL is set
with O_CREAT, then if the file already exists, the open returns an error. This can be used to
implement a simple exclusive access locking mechanism. If the O_NDELAY flag is specified
and the open call would result in the process being blocked for some reason (e.g. waiting for
carrier on a dialup line), the open returns immediately. The first time the process attempts to
perform i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The file
pointer used to mark the current position within the file is set to the beginning of the file. -

The new descriptor is set to remain open across execve system calls; see close(2).
No process may have more than {OPEN_MAX] file descriptors open simultaneously.

ERRORS

The named file is opened unless one or more of the following are true: _‘
[EPERM] The pathname contains a character with the high-order bit set.
[ENOTDIR] A component of the path prefix is not a directory.)
[ENOENT] O_CREAT is not set and the named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EACCES] The required permissions (for reading and/or writing) are denied for the
named flag.

[EISDIR] The named file is a directory, and the arguments specify it is to be opened for
writting.

[EROFS] The named file resides on a read-only file system, and the file is to be
modified.

4th Berkeley Distribution 2 July 1983 N 1

OPEN (2) UNIX Programmer’s Manual OPEN(2)

[EMFILE] {OPEN_MAX] file descriptors are currently open.

[ENXIO] The named file is a character special or block special file, and the device associ-
ated with this special file does not exist.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and the
open call requests write access.

[EFAULT] Path points outside the process’s allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EEXIST] O_EXCL was specified and the file exists.

[ENXIO] The O_NDELAY flag is given, and the file is a communications device on
which their is no carrier present.

[EOPNOTSUPP]

An attempt was made to open a socket (not currently implemented).

SEE ALSO
chmod(2), close(2), dup(2), Iseek(2), read(2), write(2), umask(2)

4th Berkeley Distribution 2 July 1983 2

PIPE (2) UNIX Programmer’s Manual PIPE (2)

NAME

pipe — create an interprocess communication channel
SYNOPSIS

pipe(fildes)

int fildesl2];

DESCRIPTION
The pipe system call creates an I/0 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor fildes[1} up
to 4096 bytes of data are buffered before the writing process is suspended. A read using the
descriptor fildes[0] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in

the system.

A signal is generated if a write on a pipe with only one end is attempted.
RETURN VALUE :

The function value zero is returned if the pipe was created; —1 if an error occurred.
ERRORS

The pipe call will fail if:
[EMFILE] Too many descriptors are active.
[EFAULT] The fildes buffer is in an invalid area of the process’s address space.

SEE ALSO
sh(1), read(2), write(2), fork(2), socketpair(2)

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will
occur.

4th Berkeley Distribution 12 February 1983 1

PROFIL (2) UNIX Programmer’s Manual PROFIL (2)

NAME

profil — execution time profile

SYNOPSIS

profil (buff, bufsiz, offset, scale)
char sbuff;
int bufsiz, offset, scale;

DESCRIPTION

Byff points to an area of core whose length (in bytes) is given by bufsiz. After this call, the
user’s program counter (pc) is examined each clock tick (10 milliseconds); offser is subtracted
from it, and the result multiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
0x10000 gives a 1-1 mapping of pc’s to words in by/ff: 0x8000 maps each pair of instruction
words together. 0x2 maps ail instructions onto the beginning of buff (producing a non-
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bufsiz of
0. Profiling is turned off when an execve is executed, but remains on in child and parent both
after a fork. Profiling is turned off if an update in byff'would cause a memory fault.

RETURN VALUE

A 0, indicating success, is always returned.

SEE ALSO

gprof (1), setitimer(2), monitor(3)

4th Berkeley Distribution 12 February 1983 1

PTRACE(2) UNIX Programmer’s Manual PTRACE (2)

NAME
ptrace — process trace

SYNOPSIS
#include <signal.h>

ptrace(request, pid, addr, data)
int request, pid, *addr, data;

DESCRIPTION

Pirace provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of break-
point debugging. There are four arguments whose interpretation depends on a request argu-
ment. Generally, pidis the process ID of the traced process, which must be a child (no more
distant descendant) of the tracing process. A process being traced behaves normally until it
encounters some signal whether internally generated like ‘‘illegal instruction’” or externally gen-
erated like ‘‘interrupt’’. See sigvec(2) for the list. Then the traced process enters a stopped
state and its parent is notified via wair(2). When the child is in the stopped state, its core
image can be examined and modified using pirace. If desired, another ptrace request can then
cause the child either to terminate or to continue, possibly ignoring the signal.

The value of the requesrargument determines the precise action of the call:

0 This request is the only one used by the child process: it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process’s address space at addr is returned. If 1 and D space are
separated (e.g. historically on a pdp-11), request 1 indicates I space, 2 D space. Addr must
be even. The child must be stopped. The input dara is ignored.

3 The word of the system’s per-process data area corresponding to addr is returned. Addr
must be even and less than 512. This space contains the registers and other information
about the process; its layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process’s address space corresponding to addr,
which must be even. No useful value is returned. If I and D space are separated, request
4 indicates | space, 5 D space. Attempts to write in pure procedure fail if another process
is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers, the floating point status and registers, and cer-
tain bits of the processor status word.

7 The dara argument is taken as a signal number and the child’s execution continues at loca-
tion addr as if it had incurred that signal. Normally the signal number will be either 0 to
indicate that the signal that caused the stop should be ignored, or that value fetched out of
the process’s image indicating which signal caused the stop. If addris (int +)1 then execu-
tion continues from where it stopped.

8 The traced process terminates.

Execution continues as in request 7. however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. (On the VAX-11 the T-bit is used and just one instruction is executed.) This is
part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wait call is used to determine when a process stops; in such a case the ‘‘termina-
tion’’ status returned by wait has the value 0177 to indicate stoppage rather than genuine termi-
nation.

4th Berkeley Distribution 2 July 1983 1

PTRACE (2) UNIX Programmer’s Manual PTRACE (2)

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subse-
quent execve(2) calls. If a traced process calls execve, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

On a VAX-11, “*word’" also means a 32-bit integer, but the **‘even’’ restriction does not apply.

RETURN VALUE
A 0 value is returned if the call succeeds. If the call fails then a —1 is returned and the global
variable errno is set to indicate the error.

ERRORS
{EINVAL] The request code is invalid.

[EINVAL] The specified process does not exist.
[EINVAL] The given signal number is invalid.
[EFAULT] The specified address is out of bounds.
[EPERM] The specified process cannot be traced.

SEE ALSO
wait(2), sigvec(2), adb(1)

BUGS
Prrace is unique and arcane; it should be replaced with a special file which can be opened and
read and written. The control functions could then be implemented with joct/(2) calls on this
file. This would be simpler to understand and have much higher performance.

The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use *“ille-
gal instruction®’ signals at a very high rate) could be efficiently debugged.

The error indication, —1, is a legitimate function value: errno, see intro(2), can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call; in this way a completely
controlled environment could be provided.

4th Berkeley Distribution 2 July 1983 2

QUOTA (2) UNIX Programmer’s Manual QUOTA (2)

NAME
quota — manipulate disk quotas

SYNOPSIS
#include <sys/quota.h>

quota(cmd, uid, arg, addr)
int cmd, uid, arg;
caddr_t addr;

DESCRIPTION
The quora call manipulates disk quotas for file systems which have had quotas enabled with ser-
quota(2). The cmd parameter indicates a command to be applied to the user ID wid Argis a
command specific argument and addr is the address of an optional, command specific, data
structure which is copied in or out of the system. The interpretation of arg and addr is given
with each command below.

Q_SETDLIM
Set disc quota limits and current usage for the user with ID wid. Argis a major-minor
device indicating a particular file system. Addris a pointer to a struct dgblk structure
(defined in < sysfquota.h>). This call is restricted to the super-user.

Q_GETDLIM
Get disc quota limits and current usage for the user with ID wid The remaining
parameters are as for Q_SETDLIM.

Q_SETDUSE
Set disc usage limits for the user with ID wid Argis a major-minor device indicating a
particular file system. Addr is a pointer to a struct dqusage structure (defined in
< sysfquota.h>). This call is restricted to the super-user.

Q_SYNC
Update the on-disc copy of quota usages. The wuid, arg, and addr parameters are
ignored.

Q_SETUID
Change the calling process’s quota limits to those of the user with ID wid. The arg and
addr parameters are ignored. This call is restricted to the super-user.

Q_SETWARN
Alter the disc usage warning limits for the user with ID wid Argis a major-minor dev-
ice indicating a particular file system. Addr is a pointer to a struct dqwarn structure
(defined in < sysiquota.h>). This call is restricted to the super-user.

Q_DOWARN
Warn the user with user ID wid about excessive disc usage. This call causes the system
to check its current disc usage information and print a message on the terminal of the
caller for each file system on which the user is over quota. If the arg parameter is
specified as NODEV, all file systems which have disc quotas will be checked. Other-
wise, arg indicates a specific major-minor device to be checked. This call is restricted to
the super-user.

RETURN VALUE
A successful call returns 0 and, possibly, more information specific to the cmd performed; when
an error occurs, the value —1 is returnad and errnois set to indicate the reason.

ERRORS
A quora call will fail when one of the following occurs:

[EINVAL] Cmdis invalid.

4th Berkeley Distribution 7 July 1983 1

QUOTA (2) UNIX Programmer’s Manual QUOTA (2)

[ESRCH] No disc quota is found for the indicated user.

[EPERM] The call is priviledged and the caller was not the super-user.

[EINVAL] The arg parameter is being interpreted as a major-minor device and it indicates
an unmounted file system.

[EFAULTI An invalid addr is supplied; the associated structure could not be copied in or

out of the kernel.
(EUSERS] The quota table is full.

SEE ALSO
setquota(2), quotaon(8), quotacheck (8)

BUGS
There should be someway to integrate this call with the resource limit interface provided by
setrlimit(2) and getrlimin(2).

The Australian spelling of disk is used throughout the quota facilities in honor of the imple-
mentors.

4th Berkeley Distribution 7 July 1983 2

READ (2) UNIX Programmer’s Manual READ.(2)

read, readv — read input

SYNOPSIS

cc = read(d, buf, nbytes)
int cc, d;

char *buf;

int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

cc = readv(d, iov, iovent)
int cc, d;

struct iovec *iov;

int jovent;

DESCRIPTION

Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by buf Readv performs the same action. but scatters the input data into the
iovent buffers specified by the members of the iovec array: iov[0], iov(1]. ..., iovliovent — 1].

For readv, the iovec structure is defined as

struct iovec |
caddr_t iov_base:
int iov_len:
)
Each iovec entry specifies the base address and length of an area in memorv where data should
be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking, the read starts at a position given by the pointer associated with
d, see fseek(2). Upon return from read, the pointer is incremented by the number of bytes
actually read.

Objects that are not capable of seeking always read from the current position. The value of the
pointer associated with such a object is undefined.

Upon successful completion, readand readvreturn the number of bytes actually read and placed
in the buffer. The system guarantees to read the number of bytes requested if the descriptor
references a file which has that many bytes left before the end-of-file, but in no other cases.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE

If successful, the number of bytes actually read is returned. Otherwise, a —1 is returned and
the global variable errnois set to indicate the error.

ERRORS

Readand readv will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT] Bufpoints outside the allocated address space.

[EINTR] A read from a slow device was interrupted before any daga arrived by the

delivery of a signal.
In addition, readv may return one of the following errors:
(EINVAL] loveni was less than or equal to 0, or greater than 16.
[EINVAL] One of the iov_len values in the iovarray was negative.

4th Berkeley Distribution 27 July 1983 1

READ(2) UNIX Programmer’s Manual READ (2)

[EINVAL] The sum of the jov_len values in the jov array overflowed a 32-bit integer.

SEE ALSO
dup(2), open(2), pipe(2), socket(2), socketpair(2)

4th Berkeley Distribution 27 July 1983 2

READLINK (2) UNIX Programmer’s Manual READLINK (2)

NAME

readlink — read value of a symbolic link
SYNOPSIS

cc = readlink (path, buf, bufsiz)

int cc;

char ¢path, *buf;
int bufsiz;

DESCRIPTION
Readlink places the contents of the symbolic link name in the buffer bufwhich has size bufsi-.
The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds, or a —1 if an error
occurs, placing the error code in the global variable errno.

ERRORS
Readlink will fail and the file mode will be unchanged if:

[EPERM] The parhargument contained a byte with the high-order bit set.
[ENOENT] The pathname was too long.

{[ENOTDIR] A component of the path prefix is not a directory.

[ENOENT] The named file does not exist.

[ENXIO] The named file is not a symbolic link.
[EACCES] Search permission is denied on a component of the path prefix.
[EPERM] The effective user ID does not match the owner of the file and the effective

user ID is not the super-user.
[EINVAL] The named file is not a symbolic link.

[EFAULT] Bufextends outside the process's allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

stat(2), Istat(2), symlink(2)

4th Berkeley Distribution 2 July 1983 1

REBOOT (2) UNIX Programmer's Manual REBOOT (2)

NAME

reboot — reboot system or halt processor

SYNOPSIS

#include <sys/reboot.h>

reboot (howto)
int howto;

DESCRIPTION

Reboor reboots the system, and is invoked automatically in the event of unrecoverable system
failures. Howrois a mask of options passed to the bootstrap program. The system call interface
permits only RB_HALT or RB_AUTOBOOT to be passed to the reboot program: the other flags
are used in scripts stored on the console storage media, or used in manual bootstrap pro-
cedures. When none of these options (e.g. RB_AUTOBOOT) is given, the system is rebooted
from file ‘“‘vmunix’ in the root file system of unit O of a disk chosen in a processor specific
way. An automatic consistency check of the disks is then normally performed.

The bits of howro are:

RB_HALT
the processor is simply halted; no reboot takes place. RB_HALT should be used with
caution.

RB_ASKNAME
Interpreted by the bootstrap program itself, causing it to inquire as to what file should
be booted. Normally, the system is booted from the file **xx(0.0)vmunix"" without
asking.

RB_SINGLE
Normally, the reboot procedure involves an automatic disk consistency check and then
multi-user operations. RB_SINGLE prevents the consistency check, rather simply
booting the system with a single-user shell on the console. RB_SINGLE is interpreted
by the inif(8) program in the newly booted system. This switch is not available from
the system call interface.

Only the super-user may reboota machine.

RETURN VALUES

If successful, this call never returns. Otherwise, a —1 is returned and an error is returned in
the global variable errno.

ERRORS

[EPERM] The caller is not the super-user.

SEE ALSO

BUGS

crash(8), halt(8), init(8), reboot(8)

The notion of *‘console medium™, among other things, is specific to the VAX.

4th Berkeley Distribution 18 July 1983 1

RECV (2) UNIX Programmer’s Manual RECV (2)

NAME

recv, recvfrom, recvmsg — receive a message from a socket

SYNOPSIS

#include <sys/types.h>
#include <sys/socket.h>

cc = recv (s, buf, len, flags)
int cc, s;

char #buf;

int len, flags;

cc = recvfrom(s, buf, len, flags, from, fromlen)
int cc, s;

char *buf;

int len, flags;

struct sockaddr *from;

int «fromlen;

cc = recvmnsg (s, msg, flags)
int cc, s;

struct msghdr msgll;

int flags;

DESCRIPTION

Recv, recvfrom, and recvmsg are used to receive messages from a socket.
The recv call may be used only on a connected socket (see connect(2)), while recvfrom and

© recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If from is non-zero, the source address of the message is filled in. Fromlen is a value-result
parameter, initialized to the size of the buffer associated with from, and modified on return to
indicate the actual size of the address stored there. The length of the message is returned in cc.
If a message is too long to fit in the supplied buffer, excess bytes may be discarded depending
on the type of socket the message is received from; see socket(2).

If no messages are available at the socket, the receive call waits for a message to arrive, unless
the socket is nonblocking (see ioct/(2)) in which case a ccof —1 is returned with the external

- variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives.
The Aflags argument to a send call is formed by or'ing one or more of the values,

#defineMSG_PEEK Ox! /= peek at incoming message */
#defineMSG_OOB 0x2 /= process out-of-band data */

The recvmsg call uses a msghdr structure to minimize the number of directly supplied parame-
ters. This structure has the following form, as defined in < sys/socket.h>:

struct msghdr {

caddr_t msg_name; /* optional address */

int msg_namelen; /+ size of address */

struct iov *msg_iov, /+ scatter/gather array */

int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_accrights; /=~ access rights sent/received */
int msg_accrightsien:

4th Berkeley Distribution 7 July 1983 1

RECV (2) UNIX Programmer’s Manual RECV (2)

Here msg_name and msg_namelen specify the destination address if the socket is unconnected.
msg_name may be given as a null pointer if no names are desired or required. The msg_iov and
msg_iovlen describe the scatter gather locations, as described in read(2). Access rights to be
sent along with the message are specified in msg_accrights, which has length msg_accrighislen.
RETURN VALUE
These calls return the number of bytes received, or —1 if an error occurred.
ERRORS
The calls fail if:

[EBADF] The argument sis an invalid descriptor.

[ENOTSOCK] The argument sis not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.

[EINTR]

The receive was interrupted by delivery of a signal before any data was
available for the receive.

[EFAULT] The data was specified to be received into a non-existent or protected
part of the process address space.

SEE ALSO

read(2), send(2), socket(2)

4th Berkeley Distribution 7 July 1983

RENAME (2) UNIX Programmer's Manual RENAME (2)

NAME
rename — change the name of a file

SYNOPSIS
rename (from, to)
char ¢from, *to;

DESCRIPTION
Rename causes the link named from to be renamed as to. If 1o exists, then it is first removed.
Both from and ro must be of the same type (that is, both directories or both non-directories),
and must reside on the same file system.

Rename guarantees that an instance of fo will always exist, even if the system should crash in
the middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is present. This loop takes the form
of an entry in directory **a’", say ‘*a/foo’’, being a hard link to directory **b’", and an entry in
directory **b’’, say “‘b/bar’’, being a hard link to directory **a’”. When such a loop exists and
two separate processes attempt to perform ‘‘rename a/foo b/bar’” and ‘‘rename b/bar a/foo™,
respectively, the system may deadlock attempting to lock both directories for modification.
Hard links to directories should be replaced by symbolic links by the system administrator.

RETURN VALUE
A 0 value is returned if the operation succeeds, otherwise rename returns —1 and the global
variable errno indicates the reason for the failure.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the following are
true:

[ENOTDIR] A component of either path prefix is not a directory.
[ENOENT] A component of either path prefix does not exist.

[EACCES] A component of either path prefix denies search permission.

[ENOENT] The file named by fromdoes not exist.

[EPERM] The file named by from is a directory and the effective user 1D is not super-
user.

{[EXDEV] The link named by t0 and the file named by from are on different logical dev-

ices (file systems). Note that this error code will not be returned if the imple-
mentation permits cross-device links.

[EACCES] The requested link requires writing in a directory with a mode that denies write
permission.
[EROFS] The requested link requires writing in a directory on a read-only file system.
[EFAULT] Parh points outside the process’s allocated address space.
{EINVAL] From is a parent directory of 0.
SEE ALSO
open(2)

4th Berkeley Distribution 12 February 1983 1

RMDIR (2) UNIX Programmer's Manual RMDIR (2)

NAME
‘rmdir — remove a directory file

SYNOPSIS
rmdir(path)
char spath;

DESCRIPTION
Rmdir removes a directory file whose name is given by path. The directory must not have any
entries other than **.”” and **..”".

RETURN VALUE
A 0 is returned if the remove succeeds; otherwise a —1 is returned and an error code is stored
in the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:
[ENOTEMPTY]
The named directory contains files other than **."” and **..”" in it.
[EPERM] The pathname contains a character with the high-order bit set.

[ENOENT] The pathname was too long.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.

{[EACCES] A component of the path prefix denies search permission.
{[EACCES] Write permission is denied on the directory containing the link to be removed.
[EBUSY] The directory to be removed is the mount point for a mounted file system.
[EROFS] The directory entry to be removed resides on a read-only file system.
[EFAULT] Path points outside the process's allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.

SEE ALSO

mkdir(2), unlink(2)

4th Berkeley Distribution 2 July 1983 1

SELECT (2) UNIX Programmer’s Manual SELECT (2)

NAME
select — synchronous i/o multiplexing

SYNOPSIS
#include <sys/time.h>

nfound = select(nfds, readfds, writefds, execptfds, timeout)
int nfound, nfds, ereadfds, swritefds, sexecptfds;
struct timeval stimeout;

DESCRIPTION
Select examines the i/o descriptors specified by the bit masks readfds, writefds, and execptfds to
see if they are ready for reading, writing, or have an exceptional condition pending, respec-
tively. File descriptor fis represented by the bit ‘1< <f in the mask. N/fds desciptors are
checked, i.e. the bits from 0 through nfds-1 in the masks are examined. Select returns, in place,
a mask of those descriptors which are ready. The total number of ready descriptors is returned
in nfound.

If timeout is a non-zero pointer, it specifies 8 maximum interval to wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero valued timeval structure.

Any of readfds, writefds, and execptfds may be given as 0 if no descriptors are of interest.

RETURN VALUE
Select returns the number of descriptors which are contained in the bit masks, or —1 if an error
occurred. If the time limit expires then select returns 0.

ERRORS
An error return from select indicates:
[EBADF] One of the bit masks specified an invalid descriptor.
{EINTR] An signal was delivered before any of the selected for events occurred or the
time limit expired.
SEE ALSO

accept(2), connect(2), read(2), write(2), recv(2), send(2)

BUGS
The descriptor masks are always modified on return, even if the call returns as the result of the
timeout. :

4th Berkeley Distribution 2 July 1983 1

SEND (2) UNIX Programmer’s Manual SEND (2)

NAME
send, sendto, sendmsg — send a message from a socket

SYNOPSIS
##include <sys/types.h>
##include <sys/socket.h>

cc = send (s, msg, len, flags)
int cc, s;

char »msg;

int len, flags;

cc = sendto(s, msg, len, flags, to, tolen)
int cc, s;

char *msg;

int len, flags;

struct sockaddr +to;

int tolen;

cc = sendmsg(s, msg, flags)
int cc, s;

struct msghdr msgl];

int flags;

DESCRIPTION
Send, sendio, and sendmsg are used to transmit a message to another socket. Send may be used
only when the socket is in a connected state, while sendro and sendmsg may be used at any time.

The address of the target is given by fo with rolen specifying its size. The length of the message
is given by len. If the message is too long to pass atomically through the underlying protocol,
then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of —1 indicate some
locally detected errors. !

If no messages space is available at the socket to hold the message to be transmitted, then send
normally blocks, unless the socket has been placed in non-blocking i/0 mode. The select(2) call
may be used to determine when it is possible to send more data.

The flags parameter may be set to SOF_QOOB to send “‘out-of-band’’ data on sockets which sup-
port this notion (e.g. SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or —1 if an error occurred.

ERRORS ,
[EBADF] An invalid descriptor was specified.
[ENOTSOCK] The argument s is not a socket.
[EFAULT] An invalid user space address was specified for a parameter.
[EMSGSIZE) The socket requires that message be sent atomically, and the size of the

message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would
block.

SEE ALSO
recv(2), socket(2)

4th Berkeley Distribution 20 September 1983 1

SETGROUPS (2) UNIX Programmer's Manual SETGROUPS (2)

NAME
setgroups — set group access list
SYNOPSIS
#include <sys/param.h>
setgroups (ngroups, gidset)
int ngroups, *gidset;

DESCRIPTION
Setgroups sets the group access list of the current user process according to the array gidsetr. The

parameter ngroups indicates the number of entries in the array and must be no more than
NGRPS, as defined in < sysfparam.h>.

Only the super-user may set new groups.
RETURN VALUE
A 0 value is returned on success, —1 on error, with a error code stored in errno.

ERRORS
The setgroups call will fail if:
[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidseris outside the process address space.

SEE ALSO
getgroups(2), initgroups(3X)

4th Berkeley Distribution 7 July 1983 1

SETPGRP (2) UNIX Programmer’s Manual SETPGRP (2)

NAME
setpgrp — set process group
SYNOPSIS
setpgrp(pid, pgrp)
int pid, pgrp;
DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If pidis zero,
then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.
RETURN VALUE

Setpgrp returns when the operation was successful. If the request failed, —1 is returned and the
global variable errno indicates the reason.

ERRORS
Sepgrp will fail and the process group will not be altered if one of the following occur:
[ESRCH] The requested process does not exist.
[EPERM] The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.
SEE ALSO
getpgrp(2)

4th Berkeley Distribution 12 February 1983 1

SETQUOTA (2) UNIX Programmer’s Manual SETQUOTA (2)

NAME
setquota — enable/disable quotas on a file system

SYNOPSIS
setquota (special, file)
char sspecial, «file;

DESCRIPTION
Disc quotas are enabled or disabled with the serquora call. Special indicates a block special dev-
ice on which a mounted file system exists. If fileis nonzero, it specifies a file in that file system
from which to take the quotas. If file is 0, then quotas are disabled on the file system. The
quota file must exist; it is normally created with the checkquota(8) program.

Only the super-user may turn quotas on or off.
SEE ALSO

quota(2), quotacheck(8), quotaon(8)
RETURN VALUE

A O return value indicates a successful call. A value of —1 is returned when an error occurs
and errnois set to indicate the reason for failure.

ERRORS
Serquora will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV] Special does not exist.

[ENOTBLK] Specialis not a block device.

[ENXIO] The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR] A component of the path prefix in file is not a directory.

[EROFS]) File resides on a read-only file system.

[EACCES] File resides on a file system different from special.

[EACCES] File is not a plain file.
BUGS
The error codes are in a state of disarray, too many errors appear to the caller as one value.

4th Berkeley Distribution 7 July 1983 1

SETREGID (2) UNIX Programmer’s Manual SETREGID (2)

NAME
setregid — set real and effective group ID

SYNOPSIS
setregid (rgid, egid)
int rgid, egid;

DESCRIPTION
The real and effective group ID’s of the current process are set to the arguments. Only the
super-user may change the real group ID of a process. Unpriviledged users may change the
effective group ID to the real group ID, but to no other.

Supplying a value of —1 for either the real or effective group ID forces the system to substitute
the current ID in place of the —1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM] The current process is not the super-user and a change other than changing the
effective group-id to the real group-id was specified.
SEE ALSO

getgid(2), setreuid(2), setgid(3)

4th Berkeley Distribution 12 February 1983 1

SETREUID (2) UNIX Programmer’s Manual SETREUID (2)

NAME :
setreuid — set real and effective user ID’s

SYNOPSIS
setreuid (ruid, euid)
int ruid, euid;

DESCRIPTION
The real and effective user ID’s of the current process are set according to the arguments. If
ruid or euid is —1, the current uid is filled in by the system. Only the super-user may modify
the real uid of a process. Users other than the super-user may change the effective uid of a
process only to the real uid.

RETURN VYALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and

errno is set to indicate the error.

ERRORS »
[EPERM] The current process is not the super-user and a change other than changing the
effective user-id to the real user-id was specified.
SEE ALSO

getuid(2), setregid(2), setuid(3)

4th Berkeley Distribution 12 February 1983 1

SHUTDOWN (2) UNIX Programmer’s Manual SHUTDOWN (2)

NAME
shutdown — shut down part of a full-duplex connection

SYNOPSIS
shutdown (s, how)
int s, how;
DESCRIPTION
The shutdown call causes all or part of a full-duplex connection on the socket associated with s

to be shut down. If Aowis O, then further receives will be disallowed. If howis 1, then further
sends will be disallowed. If howis 2, then further sends and receives will be disallowed.

DIAGNOSTICS

A 0 is returned if the call succeeds. —1 if it fails.
ERRORS

The call succeeds unless:

[EBADF] Sis not a valid descriptor.

[ENOTSOCK] Sis a file, not a socket.

[ENOTCONNI] The specified socket is not connected.

SEE ALSO
connect(2), socket(2)

4th Berkeley Distribution 27 July 1983 1

SIGBLOCK(2) UNIX Proziammer’s Manual SIGBLOCK(2)

NAME
sighlock -- block signals
SYNOPSIS
siublock{mask);
int mask;
DESCRIPTION
Sighlock causes the signals specified in wiask to be added to the set of signals currently being
blocked from delivery. Signal 7 is blocked it the i-th bit in mask is a 1. Bits are numnbeiced starting
at one; for example, to block SIGATRM use
oldmask = sigblock(1 << (SIGATLRM - 1));
It is not possible to block SIGKILL, SIGETOP, or SIGCON'Y; - this restriction is silently imposed
by the system.
RETURN VALUE
The previous set of masked signals is returnced.
SEE ALSO
Kill(2), sigvee(?), sigsetimask(2),

4th Berkeley Distribution 15 June 1983 R

SIGPAUSE (2) UNIX Programmer’s Manual SIGPAUSE (2)

NAME
sigpause — atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause(sigmask)
int sigmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive; on
return the set of masked signals is restored. Sigmaskis usually O to indicate that no signals are
now to be blocked. Sigpause always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sighlock(2), to begin a critical section, variables
modified on the occurance of the signal are examined to determine that there is no work to be
done, and the process pauses awaiting work by using sigpause with the mask returned by sig-
block.

SEE ALSO
sigblock (2), sigvec(2)

4th Berkeley Distribution ' 7 July 1983 1

SIGSETMASK (2) UNIX Programmer’s Manual SIGSETMASK (2)

NAME

sigsetmask — set current signal mask
SYNOPSIS

sigsetmask (mask);

int mask;
DESCRIPTION

Sigsetmask sets the current signal mask (those signals which are blocked from delivery). Signal
iis blocked if the i-th bit in maskis a 1.

The system quietly disallows SIGKILL, SIGSTOP, or SIGCONT to be blocked.

RETURN VALUE
The previous set of masked signals is returned.

SEE ALSO
kill(2), sigvec(2). sigblock(2), sigpause(2)

4th Berkeley Distribution 7 July 1983 1

SIGSTACK (2) UNIX Programmer’s Manual SIGSTACK (2)

NAME
sigstack — set and/or get signal stack context

SYNOPSIS
#include <signal.h>

struct sigstack {
caddr_t ss_sp;
int ss_onstack;

};

sigstack (ss, oss);
struct sigstack *ss, *o0ss;

DESCRIPTION

Sigstack allows users to define an alternate stack on which signals are to be processed. If ssis
non-zero, it specifies a signal stack on which to deliver signals and tells the system if the process
is currently executing on that stack. When a signal’s action indicates its handler should execute
on the signal stack (specified with a sigvec(2) call), the system checks to see if the process is
currently executing on that stack. If the process is not currently executing on the signal stuack,
the system arranges a switch to the signal stack for the duration of the signal handler’s execu-
tion. If ossis non-zero, the current signal stack state is returned.

NOTES
Signal stacks are not ‘‘grown’ automatically, as is done for the normal stack. If the stack
overflows unpredictable results may occur.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
Sigstack will fail and the signal stack context will remain unchanged if one of the following
occurs.
[EFAULT] Either ss or oss points to memory which is not a valid part of the process
address space.
SEE ALSO

sigvec(2), setjimp(3)

4th Berkeley Distribution 15 June 1983 |

SIGVEC (2) UNIX Programmer’s Manual - SIGVEC(2)

NAME

sigvec — software signal facilities

SYNOPSIS

#include <signal.h>
struct sigvec {

int (sv_handler) O;
int sv_mask;
int sv_onstack;

]

sigvec(sig, vec, ovec)
int sig;
struct sigvec svec, sovec;

DESCRIPTION

The system defines a set of signals that may be delivered to a process. Signal delivery resem-
bles the occurence of a hardware interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify a handler to
which a signal is delivered, or specify that a signal is to be blocked or ignored. A process may
also specify that a default action is to be taken by the system when a signal occurs. Normally,
signal handlers execute on the current stack of the process. This may be changed, on a per-
handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their
invocation blocked, but other signals may yet occur. A global signal mask defines the set of sig-
nals currently blocked from delivery to a process. The signal mask for a process is initilized
from that of its parent (normally 0). It may be changed with a sigblock(2) or sigsetmask(2) call,
or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it is delivered to the pro-
cess. When a signal is delivered, the current state of the process is saved, a new signal mask is
calculated (as described below), and the signal handler is invoked. The call to the handler is
arranged so that if the signal handling routine returns normally the process will resume execu-
tion in the context from before the signal’s delivery. If the process wishes to resume in a
different context, then it must arrange to restore the previous context itself. ”

When a signal is delivered to a process a new signal mask is installed for the duration of the
process’ signal handler (or until a sigblock or sigsetmask call is made). This mask is formed by
taking the current signal mask, adding the signal to be delivered, and or’ing in the signal mask
associated with the handler to be invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine
and mask to be used when delivering the specified signal. Further, if sv_onstack is 1, the sys-
tem will deliver the signal to the process on a signal stack, specified with sigstack(2). If ovecis
non-zero, the previous handling information for the signal is returned to the user.

The following is a list of all signals with names as in the include file <signalh>:

SIGHUP 1 hangup

SIGINT 2 interrupt

SIGQUIT 3« quit

SIGILL 4+ illegal instruction
SIGTRAP Se trace trap

SIGIOT 6+ IOT instruction
SIGEMT 7+« EMT instruction
SIGFPE 8+ floating point exception

4th Berkeley Distribution ; 7 July 1983 1

SIGVEC(2)

UNIX Programmer’s Manual SIGVEC (2)
SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIGBUS 10+ bus error
SIGSEGV 11s segmentation violation
SIGSYS 12+ bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16® urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19e continue after stop (cannot be blocked)
SIGCHLD 20e child status has changed
SIGTTIN 21t background read attempted from contro!l terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23e i/o is possible on a descriptor (see fentl(2))
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2))
SIGXFSZ 25 file size limit exceeded (see setrlimit(2))

SIGVTALRM 26 virtual time alarm (see setitimer(2))

SIGPROF

27 profiling timer alarm (see setitimer(2))

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is made, or an
execve(2) is performed. The default action for a signal may be reinstated by setting sv_handler
to SIG_DFL; this default is termination (with a core image for starred signals) except for sig-
nals marked with ® or +. Signals marked with ® are discarded if the action is SIG_DFL; signals
marked with t cause the process to stop. If sv_handler is SIG_IGN the signal is subsequently
ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calis, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a read or write(2) on a
slow device (such as a terminal; but not a file) and during a wait(2).

After a fork(2) or vfork(2) the child inherits all signals, the signal mask, and the signal stack.

Execve(2) resets all caught signals to default action; ignored signals remain ignored; the signal
mask remains the same; the signal stack state is reset.

The mask specified in vec is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This is
done silently by the system.

RETURN VALUE

A 0 value indicated that the call succeeded. A —1 return value indicates an error occured and
errno is set to indicated the reason.

ERRORS

Sigvec will fail and no new signal handler will be installed if one of the following occurs:

[EFAULT] Either vec or ovec points to memory which is not a valid part of the process

address space.

[EINVAL] Sig is not a valid signal number.
[EINVAL] An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.
[EINVAL) An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO

4th Berkeley Distribution

kill(1), ptrace(2), kill(2), sigblock(2), sigsetmask(2), sigpause(2) sigstack(2), sigvec(2),
setjmp(3), tty(4)

7 July 1983 2

SIGVEC(2)

NOTES (VAX-11)

The handler routine can be declared:

handler (sig, code, scp)
int sig, code;
struct sigcontext sscp;

UNIX Programmer’s Manual

SIGVEC (2)

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility mode
faults, the code provided by the hardware (Compatibility mode faults are distinguished from the
other SIGILL traps by having PSL_CM set in the psl). Scp is a pointer to the sigcontext struc-
ture (defined in <signal.h>), used to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of these symbols

are defined in <signal.h>:
Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault
Length access control
Protection violation
Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
Chme
Chms
Chmu

BUGS
This manual page is confusing.

4th Berkeley Distribution

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS
SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

7 July 1983

Code

FPE_INTOVF_TRAP
FPE_INTDIV TRAP
FPE_FLTOVF_TRAP
FPE_FLTDIV_TRAP
FPE_FLTUND_TRAP
FPE_DECOVF_TRAP
FPE_SUBRNG_TRAP
FPE_FLTOVF_FAULT
FPE_FLTDIV _FAULT
FPE_FLTUND_FAULT

ILL_RESAD FAULT
ILL_PRIVIN FAULT
ILL_RESOP_FAULT

hardware supplied code

SOCKET (2) UNIX Programmer’s Manual SOCKET (2)

NAME
socket — create an endpoint for communication

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

s = socket(af, type, protocol)
int s, af, type, protocol;

DESCRIPTION
Socketcreates an endpoint for communication and returns a descriptor.

The afparameter specifies an address format with which addresses specified in later operations
using the socket should be interpreted. These formats are defined in the include file
< sys/socker.h>. The currently understood formats are

AF_UNIX (UNIX path names),
AF_INET (ARPA Internet addresses),
AF_PUP (Xerox PUP-I Internet addresses), and

AF_IMPLINK (IMP *‘host at IMP*’ addresses).

The socket has the indicated rvpe which specifies the semantics of communication. Currently
defined types are:

SOCK_STREAM
SOCK_DGRAM
SOCK_RAW
SOCK_SEQPACKET
SOCK_RDM

A SOCK_STREAM type provides sequenced, reliable, two-way connection based byte streams
with an out-of-band data transmission mechanism. A SOCK_DGRAM socket supports
datagrams (connectionless, unreliable messages of a fixed (typically small) maximum. length).
SOCK_RAW sockets provide access to internal network interfaces. The types SOCK_RAW,
which is available only to the super-user, and SOCK_SEQPACKET and SOCK_RDM. which
are planned, but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type using a given address format. However, it is
possible that many protocols may exist in which case a particular protocol must be specified in
this manner. The protocol number to use is particular to the ‘‘communication domain’ in
which communication is to take place; see services(3N) and protocols(3N).

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A connection
to another socket is created with a connect(2) call. Once connected, data may be transferred
using read(2) and write(2) calls or some variant of the send(2) and recv(2) calls. When a ses-
sion has been completed a close(2) may be performed. Out-of-band data may also be transmit-
ted as described in send(2) and received as described in recv(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be suc-
cessfully transmitted within a reasonable length of time. then the connection is considered bro-
ken and calls will indicate an error with —1 returns and with ETIMEDOUT as the specific code
in the global variable errno. The protocols optionally keep sockets ‘‘warm™ by forcing
transmissions roughly every minute in the absence of other activity. An error is then indicated
if no response can be elicited on an otherwise idle connection for a extended period (e.g. 5
minutes). A SIGPIPE signal is raised if a process sends on a broken stream: this causes naive

4th Berkeley Distribution 18 July 1983 1

SOCKET (2) UNIX Programmer’s Manual SOCKET (2)

processes, which do not handle the signal, to exit.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspondents named
in send(2) calls. It is also possible to receive datagrams at such a socket with recv(2).

An fentl(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the
file <sys/socket.h> and explained below. Sersockopr and getsockopr(2) are used to set and get
options, respectively.

SO_DEBUG turn on recording of debugging information
SO_REUSEADDR allow local address reuse

SO_KEEPALIVE keep connections alive

SO_DONTROUTE do no apply routing on outgoing messages
SO_LINGER linger on close if data present

SO_DONTLINGER do not linger on close

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indi-
cates the rules used in validating addresses supplied in a bind(2) call should allow reuse of local
addresses. SO_KEEPALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages. the connection is con-
sidered broken and processes using the socket are notified via a SIGPIPE signal.
SO_DONTROUTE indicates that outgoing messages should bypass the standard routing facili-
ties. Instead, messages are directed to the appropriate network interface according to the net-
work portion of the destination address. SO_LINGER and SO_DONTLINGER control the
actions taken when unsent messags are queued on socket and a close(2) is performed. If the
socket promises reliable delivery of data and SO_LINGER is set, the system will block the pro-
cess on the close attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is specified in the ser-
sockopr call when SO_LINGER is requested). If SO_DONTLINGER is specified and a close is
issued. the system will process the close in a manner which allows the process to continue as
quickly as possible.

RETURN VALUE
A —1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS
The socker call fails if:

[EAFNOSUPPORT] The specified address family is not supported in this version of the sys-

tem.
[ESOCKTNOSUPPORT]
The specified socket type is not supported in this address family.
[EPROTONOSUPPORT]
» The specified protocol is not supported.
[EMFILE] The per-process descriptor table is full.
[ENOBUFS] No buffer space is available. The socket cannot be created.

SEE ALSO
accept(2), bind(2), connect(2), getsockname(2), getsockopt(2), ioctl(2), listen(2), recv(2),
select(2), send(2), shutdown(2), socketpair(2)
‘“A 4.2BSD Interprocess Communication Primer™".

4th Berkeley Distribution 18 July 1983 2

SOCKET (2) UNIX Programmer’s Manual SOCKET (2)

BUGS
The use of keepalives is a questionable feature for this layer.

4th Berkeley Distribution 18 July 1983 3

SOCKETPAIR (2) UNIX Programmer’s Manual SOCKETPAIR (2)

- NAME
socketpair — create a pair of connected sockets
SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol;
int svl2];

DESCRIPTION

The socketpair call creates an unnamed pair of connected sockets in the specified domain d, of
the specified npe, and using the optionally specified prorocol. The descriptors used in referenc-
ing the new sockets are returned in sv{0] and sv[1]. The two sockets are indistinguishable.

DIAGNOSTICS
‘ A 0 is returned if the call succeeds. —1 if it fails.

ERRORS ‘
The call succeeds unless:
[EMFILE] Too many descriptors are in use by this process.
[EAFNOSUPPORT] The specified address family is not supported on this machine.
[EPROTONOSUPPORT]

The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket pairs.

[EFAULTI The address sv does not specify a valid part of the process address space.
SEE ALSO
read(2), write(2), pipe(2)

BUGS
This call is currently implemented only for the UNIX domain.

4th Berkeley Distribution 27 July 1983 1

STAT (2)

NAME

UNIX Programmer’s Manual STAT (2)

stat, Istat, fstat — get file status

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

stat(path, buf)
char *path;
struct stat *buf;
Istat(path, buf)

char *path;
struct stat =buf;

fstat(fd, buf)
int fd;
struct stat *buf;

DESCRIPTION

Stat obtains information about the file parh. Read, write or execute permission of the named
file is not required, but all directories listed in the path name leading to the file must be reach-

able.

Lstat is like star except in the case where the named file is a symbolic link, in which case /siar

returns information about
ences.

the link, while starreturns information about the file the link reter-

Fstat obtains the same information about an open file referenced by the argument descriptor.

such as would be obtained

by an open call.

Bufis a pointer to a star structure into which information is placed concerning the file. The
contents of the structure pointed to by buf

struct stat |

dev_t st_dev; /= device inode resides on */
ino_t st_ino; /= this inode’s number */
u_short st_mode: /= protection */
short st_nlink; /+ number or hard links to the file */
short st_uid; /* user-id of owner */
short st_gid: /+* group-id of owner »/
dev_t st_rdev. /* the device type, for inode that is device */
off t st_size: /+ total size of file «/
time_t st_atime; /+ file last access time */
int st_sparel:
time_t st_mtime:. /= file last modify time */
int st_spare2;
time_t st_ctime: /« file last status change time */
int st_spare3;
long st_blksize; /+ optimal blocksize for file system i/0 ops */
long st_blocks: /= actual number of blocks allocated */
long st_spare4[2].
R
st_atime Time when file data was last read or modified. Changed by the following system:

calls: mknod(2), utimes(2), read(2), and write(2). For reasons of efficiency.
st_atime is not set when a directory is searched, although this would be more logi-

cal.

4th Berkeley Distribution

27 July 1983 1

STAT(2)

st_mtime

st_ctime

The status information word s¢_mode has bits:

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

UNIX Programmer’s Manual STAT (2)

Time when data was last modified. It is not set by changes of owner, group, link
count, or mode. Changed by the following system calls: mknod(2), utimes(2).

write(2).

Time when file status was last changed. It is set both both by writing and chang-
ing the i-node. Changed by the following system calls: chmod(2) chown(2),
link(2), mknod(2), unlink(2), utimes(2), write(2).

S_IFMT 0170000
SIFDIR 0040000
S_IFCHR 0020000
SJIFBLK 0060000
S_IFREG 0100000
S_IFLNK 0120000
S_IFSOCK 0140000

S_ISUID 0004000

S_ISGID 0002000

S_ISVTX 0001000

S_IREAD 0000400

S_IWRITE 0000200

S_IEXEC 0000100

/+ type of file =/

/= directory +/

/= character special */

/* block special */

/* regular =/

/+ symbolic link */

/* socket =/

/+ set user id on execution */

/= set group id on execution */

/* save swapped text even after use +/
/+ read permission, owner */

/* write permission, owner */

/* execute/search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2)).

When fd is associated with a pipe, fstar reports an ordinary file with an i-node number, res-
tricted permissions, and a not necessarily meaningful length.

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS

Starand Istat will fail if one or more of the following are true:

[ENOTDIR]
[EPERM]
[ENOENT]
[ENOENT]
[EACCES]
[EFAULT]

A component of the path prefix is not a directory.

The pathname contains a character with the high-order bit set.

The pathname was too long.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Bufor name points to an invalid address.

Fstarwill fail if one or both of the following are true:

(EBADF]

[EFAULT]

[ELOOP]
CAVEAT

Fildes is not a valid open file descriptor.

Bufpoints to an invalid address.

Too many symbolic links were encountered in translating the pathname.

The fields in the stat structure currently marked sz_sparel, si_spare2, and si_spare3 are present
in preparation for inode time stamps expanding to 64 bits. This, however, can break certain
programs which depend on the time stamps being contiguous (in calls to utimes(2)).

SEE ALSO

chmod(2), chown(2), utimes(2)

4th Berkeley Distribution

27 July 1983 ~ 2

STAT(2) UNIX Programmer’s Manual STAT (2)

BUGS
Applying fstatto a socket returns a zero’d buffer.

The list of calls which modify the various fields should be carefully checked with reality.

4th Berkeley Distribution 27 July 1983 3

SWAPON (2) UNIX Programmer's Manual SWAPON (2)

NAME
swapon — add a swap device for interleaved paging/swapping

SYNOPSIS
swapon (special)
char especial;

DESCRIPTION
Swapon makes the block device special available to the system for allocation for paging and
swapping. The names of potentially available devices are known to the system and defined at
system configuration time. The size of the swap area on special is calculated at the time the
device is first made available for swapping.

SEE ALSO
swapon(8), config(8)

BUGS
There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

4th Berkeley Distribution 27 July 1983 1

SYMLINK (2) UNIX Programmer’s Manual SYMLINK (2)

NAME
symlink — make symbolic link to a file

SYNOPSIS
symlink (namel, name2)
char *namel, *name2;

DESCRIPTION
A symbolic link name?2 is created to namel (name2 is the name of the file created, namel is the
string used in creating the symbolic link). Either name may be an arbitrary path name, the files
need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in errno and a —1 value is returned.

ERRORS
The symbolic link is made unless on or more of the following are true:

[EPERM] Either namel or name2 contains a character with the high-order bit set.
[ENOENT] One of the pathnames specified was too long.
[ENOTDIR] A component of the name?2 prefix is not a directory.

[EEXIST] Name? already exists.

[EACCES] A component of the name?2 path prefix denies search permission.

[EROFS] The file name?2 would reside on a read-only file system.

[EFAULT] Namel or name?2 points outside the process’s allocated address space.

{[ELOOP] Too may symbolic links were encountered in translating the pathname.
SEE ALSO

link(2), In(1), unlink(2)

4th Berkeley Distribution 27 July 1983 1

SYNC (2) UNIX Programmer’s Manual SYNC (2)

NAME
sync — update super-block

SYNOPSIS
sync()

DESCRIPTION
Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block 1/0.

Sync should be used by programs which examine a file system, for example fick, df, etc. Syncis
mandatory before a boot.

SEE ALSO
fsync(2), sync(8), update(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

4th Berkeley Distribution 12 February 1983 1

SYSCALL (2) UNIX Programmer’s Manual SYSCALL (2)

NAME

syscall — indirect system call
SYNOPSIS

syscall(number, arg, ...) (VAX-11)
DESCRIPTION

Syscall performs the system call whose assembly language interface has the specified number,
register arguments r0 and r/ and further arguments arg.

The r0 value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, syscall returns —1 and sets the external variable errno (see intro(2)).

BUGS
There is no way to simulate system calls such as pipe(2), which return values in register rl.

4th Berkeley Distribution 12 February 1983 1

TRUNCATE (2) UNIX Programmer’s Manual TRUNCATE (2)

NAME
truncate — truncate a file to a specified length

SYNOPSIS
truncate (path, length)
char spath;
int length;
ftruncate(fd, length)
int fd, length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With firun-
cate, the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a —1 is returned, and the global
variable errno specifies the error.

ERRORS
Truncate succeeds unless:

[EPERM] The pathname contains a character with the high-order bit set.
[ENOENT] The pathname was too long.

[ENOTDIR] A component of the path prefix of path is not a directory.
[ENOENT] The named file does not exist.

[EACCES] A component of the path prefix denies search permission.

[EISDIR] The named file is a directory.
[EROFS] The named file resides on a read-only file system.
[ETXTBSY] The file is a pure procedure (shared text) file that is being executed.
[EFAULTI] Name points outside the process’s allocated address space.
Ftruncate succeeds unless:
[EBADF] The fd is not a valid descriptor.
[EINVAL] The fd references a socket, not a file.
SEE ALSO
open(2)

BUGS
Partial blocks discarded as the result of truncation are not zero filled; this can result in holes in
files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

4th Berkeley Distribution 7 July 1983 1

UMASK (2) UNIX Programmer’s Manual UMASK (2)

NAME
umask — set file creation mode mask

SYNOPSIS
oumask = umask (numask)
int oumask, numask;

DESCRIPTION
Umask sets the process’s file mode creation mask to numask and returns the previous value of

the mask. The low-order 9 bits of numask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2)). This clearing allows each user to restrict
the default access to his files.

The value is initially 022 (write access for owner only). The mask is inherited by child
processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2)

4th Berkeley Distribution 12 February 1983 1

UNLINK (2) UNIX Programmer’s Manual UNLINK (2)

NAME
unlink — remove directory entry

SYNOPSIS
unlink (path)
char spath;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link to
the file, and no process has the file open. then all resources associated with the file are
reclaimed. If, however, the file was open in any process, the actual resource reclamation is
delayed until it is closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

ERRORS
The unlink succeeds unless:
[EPERM] The path contains a character with the high-order bit set.

[ENOENT] The path name is too long.
[ENOTDIR] A component of the path prefix is not a directory.
[ENOENT] The named file does not exist.

[(EACCES] Search permission is denied for a component of the path prefix.
[EACCES] Write permission is denied on the directory containing the link to be removed.
[EPERM] The named file is a directory and the effective user ID of the process is not the
super-user.
[EBUSY] The entry to be unlinked is the mount point for a mounted file system.
[EROFS] The named file resides on a read-only file system.
[EFAULT] Path points outside the process’s allocated address space.
[ELOOP] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

close(2), link(2), rmdir(2)

4th Berkeley Distribution 2 July 1983 1

UTIMES(2) UMNIX Programmer’s Manual UTIMES(2)

NAME
utitmes — sct file times
SYNOPSIS
7tinclude <sys/time.h>
utimes{file, tvp)
char =lile;
struct timeval tvp[2];
DESCRIPTION .
The utimes call uses the “accessed” and “updated™ times in that order from the fyp vector to set the
corresponding recorded times for file.
The caller must be the owner of the file or the super-user. "The “inode-changed” time of the file is
set to the current time. :
RETURM VALUE
Upon successful completion, a vatue of 0 is returned. Otherwise, a value of —1 is returned and
errno is sct o indicate the crror.
FRRORS
Utime will fail if onc or more of the [ellowing are true:

[EPERM] The pathname contained a character with the high-order bit sct.

[ENOENT] The pathname was oo long.

[ENOENT] The named file does not exist.

[ENOTDIR] A component of the paih prefix is not a directory.

[EACCES] A component of the path prefix denies scarch permission,

[EPERM] The process is not super-user and not the owner of the file.

[HEACCES] The cffective user 11D is not super-user and not the owner of the file and fimes is

NULTL and write access is denied.

[EROS] The file systeny containing the file is mounted read-only,

{FEAULT] vy points outside the process’s altocated address space.

[1:1.O0P] Too many symbolic links were encountered in translating the pathname.
SEE ALSO

stal(2)

4th Berkeley Distribution 2 July 1983 1

VFORK (2) UNIX Programmer’s Manual VFORK (2)

NAME

vfork — spawn new process in a virtual memory efficient way

SYNOPSIS

pid = vfork()
int pid;

DESCRIPTION

Vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur-
pose of fork(2) would have been to create a new system context for an execve. Vfork differs
from fork in that the child borrows the parent’s memory and thread of control until a call to
execve(2) or an exit (either by a call to exit(2) or abnormally.) The parent process is suspended
while the child is using its resources.

Vfork returns 0 in the child’s context and (later) the pid of the child in the parent’s context.

Vfork can normally be used just like fork. It does not work, however, to return while running in
the childs context from the procedure which called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exir rather than
exit if you can’t execve, since exit will flush and close standard 1/0 channels, and thereby mess
up the parent processes standard I/0 data structures. (Even with fork it is wrong to call exir
since buffered data would then be flushed twice.)

SEE ALSO

fork(2), execve(2), sigvec(2), wait(2),

DIAGNOSTICS

BUGS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will, in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes which are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals; rather, output or ioctls are allowed and input
attempts result in an end-of-file indication.

4th Berkeley Distribution 2 July 1983 1

VHANGUP (2) UNIX Programmer’s Manual VHANGUP (2)

NAME
vhangup — virtually ‘‘hangup’’ the current control terminal

SYNOPSIS
vhangup(

DESCRIPTION

Vhangup is used by the initialization process init(8) (among others) to arrange that users are
given ‘“‘clean’’’ terminals at login, by revoking access of the previous users’ processes to the
terminal. To effect this, vhangup searches the system tables for references to the control termi-
nal of the invoking process, revoking access permissions on each instance of the terminal which
it finds. Further attempts to access the terminal by the affected processes will yield i/o errors
(EBADF). Finally, a hangup signal (SIGHUP) is sent to the process group of the control ter-
minal.

SEE ALSO
init (8)
BUGS
Access to the control terminal via /dev/tty is still possible.

This call should be replaced by an automatic mechanism which takes place on process exit.

4th Berkeley Distribution 12 Febuary 1983 1

WAIT (

NAME

2) UNIX Programmer's Manual WAIT (2)

wait, wait3 — wait for process to terminate

SYNOPSIS

#include <sys/wait.h>

pid = wait(status)
int pid;
union wait sstatus;

pid = wait(0)
int pid;

#include <sys/time.h>
#include <sys/resource.h>

pid = wait3(status, options, rusage)
int pid;

union wait sstatus;

int options;

struct rusage srusage;

- DESCRIPTION

Wait causes its caller to delay until a signal is received or one of its child processes terminates.
If any child has died since the last wait, return is immediate, returning the process id and exit

~ status of one of the terminated children. If there are no children, return is immediate with the

value —1 returned.
On return from a successful wair call, starus is nonzero, and the high byte of srarus contains the

‘low byte of the argument to exit supplied by the child process; the low byte of sratus contains

NOTES

~ RETUR

the termination status of the process. A more precise definition of the srarus word is given in
<sys/wait.h>.

Wait3 provides an alternate interface for programs which must not block when collecting the
status of child processes. The starus parameter is defined as above. The options parameter is
used to indicate the call should not block if there are no processes which wish to report status
(WNOHANG), and/or that only children of the current process which are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should have their status reported (WUN-
TRACED). If rusage is non-zero, a summary of the resources used by the terminated process
and all its children is returned (this information is currently not available for stopped
processes).

When the WNOHANG option is specified and no processes wish to report status, wait3 returns
a pid of 0. The WNOHANG and WUNTRACED options may be combined by or’ing the two
values. -

- See sigvec(2) for a list of termination statuses (signals); O status indicates normal termination.

A special status (0177) is returned for a stopped process which has not terminated and can be
restarted; see prrace(2). If the 0200 bit of the termination status is set, a core image of the
process was produced by the system.

If the parent prucess terminates without waiting on its children, the initialization process (pro-
cess ID = 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a signal while awaiting termi-
nation of a child process. ,

N VALUE
If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of —1 is returned and errno is set to

- 4th Berkeley Distribution 27 July 1983 1

WAIT (2) UNIX Programmer’s Manual WAIT (2)

indicate the error.

Wait3 returns —1 if there are no children not previously waited for; 0 is returned if
WNOHANG is specified and there are no stopped or exited chiidren.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child processes.
[EFAULT] The status or rusage arguments point to an illegal address.

SEE ALSO
exit(2)

4th Berkeley Distribution 27 July 1983 2

WRITE (2) UNIX Programmer’s Manual WRITE (2)

NAME

write, writev — write on a file
SYNOPSIS

write(d, buf, nbytes)

int d;

char <buf;
int nbytes;

#include <sys/types.h>
#include <sys/uio.h>

writev(d, iov, ioveclen)
int d;

struct iovec *iov;

int ioveclen;

DESCRIPTION
- Write attempts to write nbytes of data to the object referenced by the descriptor d from the
buffer pointed to by buf. Writev performs the same action, but gathers the output data from
the iovlen buffers specified by the members of the iovec array: iov[0], iov[1], etc.

On objects capable of seeking, the write starts at a position given by the pointer associated with
d, see Iseek(2). Upon return from write, the pointer is incremented by the number of bytes
actually written.

Objects that are not capable of seeking always write from the current position. The value of the
pointer associated with such an object is undefined.

If the real user is not the super-user, then wrire clears the set-user-id bit on a file. This
prevents penetration of system security by a user who ‘‘captures’ a writable set-user-id file
owned by the super-user.

RETURN VALUE
Upon successful completion the number of bytes actually writen is returned. Otherwise a —1 is
returned and errno is set to indicate the error.

ERRORS
Write will fail and the file pointer will remain unchanged if one or more of the following are
true:
[EBADF] D is not a valid descriptor open for writing.
[EPIPE] An attempt is made to write to a pipe that is not open for reading by any pro-
cess.
[EPIPE] An attempt is made to write to a socket of type SOCK_STREAM which is not
connected to a peer socket.
[EFBIG] An attempt was made to write a file that exceeds the process’s file size limit or
the maximum file size.
[EFAULT] Part of jov or data to be written to the file points outside the process’s allocated
address space.
SEE ALSO

Iseek(2), open(2), pipe(2)

4th Berkeley Distribution 27 July 1983 1

INTRO (3)

NAME

FILES

UNIX Programmer’s Manual INTRO (3)

intro — introduction to library functions

DESCRIPTION

This section describes functions that may be found in various libraries. The library functlons
are those other than the functions which directly invoke UNIX system primitives, described in
section 2. This section has the libraries physically grouped together. This is a departure from
older versions of the UNIX Programmer’s Reference Manual, which did not group functions by
library. The functions described in this section are grouped into various libraries:

(3) and (39)

(3P

(3M)

(3N)
(39)

(3%)

(30

The straight ““3”’ functions are the standard C library functions. The C hbrary also
includes all the functions described in section 2. The 3S functions comprise the standard
1/0 library. Together with the (3N), (3X), and (3C) routines, these functions constitute
library libc, which is automatically loaded by the C compiler cc(1), the Pascal compiler
pc(1), and the Fortran compiler f77(1). The link editor /d(1) searches this library under
the ‘—Ic’ option. Declarations for some of these functions may be obtamed from
include files indicated on the appropriate pages.

The 3F functions are all functions callable from FORTRAN. These functions perform
the same jobs as do the straight *‘3”* functions.

These functions constitute the math library, /ibm. They are automatically loaded as
needed by the Pascal compiler pc(1) and the Fortran compiler /77(1). The link editor
searches this library under the ‘—Im’ option. Declarations for these functions may be
obtained from the include file <math.h>.

These functions constitute the internet network library,

These functions constitute the ‘standard I/0 package’, see intro(3S). These functions
are in the library libc already mentioned. Declarations for these functions may be
obtained from the include file <stdio.h>.

Various specialized libraries have not been given distinctive captions. Files in which
such libraries are found are named on appropriate pages. .

Routines included for compatibility with other systems. In particular, a number of sys-
tem call interfaces provided in previous releases of 4BSD have been included for source
code compatibility. The manual page entry for each compatibility routine indicates the
proper interface to use.

/lib/libc.a

/ust/lib/libm.a .
/usr/lib/libc_p.a
/usr/lib/libm_p.a

SEE ALSO
intro(3C), intro(3S), intro(3F), intro(3M), intro(3N), nm(1), 1d(1), cc(1), f77(1), intro(2)

DIAGNOSTICS

Functions in the math library (3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases the
external variable errno (see intro(2)) is set to the value EDOM (domain error) or ERANGE
(range error). The values of EDOM and ERANGE are defined in the mclude file <math.h>.

LIST OF FUNCTIONS

Name

abort
abort

Appears on Page Description

abort.3 generate a fault
abort.3f terminate abruptly with memory image

4th Berkeley Distribution 2 April 1983 ‘ 1

INTRO (3)

abs
access
acos
alarm
alarm
alloca
arc
asctime
asin
assert
~atan
atan2
atof
atoi
atol
beopy
bessel
bit
bzero
cabs
“calloc
ceil
chdir
chmod
circle
clearerr
closedir
closelog
closepl
cont
cos
cosh
crypt
ctime
-ctime
curses
dbminit
delete
dffrac
dfimax
dfimax
dfimin
dflmin
drand
dtime
ecvt
edata
encrypt
-end
endfsent
endgrent

4th Berkeley Distribution

UNIX Programmer’s Manual

abs.3
access.3f
sin.3m
alarm.3c

" alarm.3f

malloc.3
plot.3x
ctime.3
sin.3m
assert.3x
sin.3m
sin.3m
atof .3
atof.3
atof .3
bstring.3
bstring.3

" bessel.3f

bit.3f
bstring.3
hypot.3m
malloc.3
floor.3m
chdir.3f
chmod.3f
plot.3x
ferror.3s
directory.3
syslog.3
plot.3x
plot.3x
sin.3m
sinh.3m
crypt.3
ctime.3
time. 3f
curses.3x

- dbm.3x

dbm.3x

flmin.3f
flmin.3f
range.3f
fimin.3f
range.3f
rand.3f

etime.3f

~ ecvt.3

end.3

crypt.3
end.3
getfsent.3x
getgrent.3

integer absolute value

determine accessability of a file
trigonometric functions

schedule signal after specified time
execute a subroutine after a specified time
memory allocator

graphics interface

convert date and time to ASCII'
trigonometric functions

program verification

trigonometric functions

trigonometric functions

convert ASCII to numbers

convert ASCII to numbers

convert ASCII to numbers

bit and byte string operations

bit and byte string operations

of two kinds for integer orders

and, or, xor, not, rshift, Ishift bitwise functions
bit and byte string operations
Euclidean distance

memory allocator

absolute value, floor, ceiling functions

change default directory ‘

change mode of a file

graphics interface '

stream status inquiries

directory operations

control system log

graphics interface

graphics interface

trigonometric functions

hyperbolic functions

DES encryption

convert date and time to ASCII
return system time

screen functions with “optxmal” cursor motion

data base subroutines

data base subroutines

return extreme values -

return extreme values

return extreme values

return extreme values

‘return extreme values

return random values

return elapsed execution time
output conversion

last locations in program

DES encryption

last locations in program

get file system descriptor file entry
get group file entry

2 April 1983

INTRO(3)

INTRO (3) UNIX Programmer’s Manual INTRO(3)

endhostent gethostent.3n get network host entry

endnetent getnetent.3n get network entry

endprotoent getprotoent.3n get protocol entry

endpwent getpwent.3 get password file entry

endservent getservent.3n get service entry

environ execl.3 execute a file

erase plot.3x graphics interface

etext end.3 last locations in program

etime etime.3f return elapsed execution time

exec execl.3 execute a file

exece execl.3 execute a file

execl execl.3 execute a file

execle execl.3 execute a file

execlp execl.3 execute a file

exect execl.3 execute a file

execv execl.3 execute a file

execvp execl.3 execute a file

exit exit.3 , terminate a process after flushing any pending output
exit exit.3f terminate process with status

exp exp.3m exponential, logarithm, power, square root
fabs floor.3m absolute value, floor, ceiling functions
fclose fclose.3s close or flush a stream

fovt ecvt.3 output conversion

fdate fdate.3f return date and time in an ASCII string
feof ferror.3s stream status inquiries '
ferror ferror.3s stream status inquiries

fetch dbm.3x data base subroutines

filush fclose.3s close or flush a stream

ffrac flmin, 3f return extreme values

ffs bstring.3 bit and byte string operations

fgetc getc.3f get a character from a logical unit
fgetc : getc.3s get character or word from stream
fgets gets.3s get a string from a stream

fileno ferror.3s stream status inquiries

firstkey dbm.3x data base subroutines

flmax flmin.3f return extreme values

fimax range.3f return extreme values

fimin fimin.3f return extreme values

fimin range.3f return extreme values

floor floor.3m absolute value, floor, ceiling functions
flush ‘ flush.3f flush output to a logical unit

fork fork.3f create a copy of this process

fpecnt trpfpe.3f trap and repair floating point faults
fprintf printf.3s formatted output conversion

fputc putc.3f write a character to a fortran logical unit
fputc putc.3s put character or word on a stream
fputs puts.3s put a string on a stream

fread fread.3s buffered binary input/output

free malloc.3 memory allocator

frexp frexp.3 split into mantissa and exponent
fscanf scanf.3s formatted input conversion

fseek fseek.3f reposition a file on a logical unit

4th Berkeley Distribution 2 April 1983 , _ ' 3

INTRO (3)

fseek

fstat

ftell

ftell

ftime

fwrite

gamma

gevt

gerror

getarg

getc

getc

getchar
getcwd
getdiskbyname
getenv

getenv
getfsent
getfsfile
getfsspec
getfstype
getgid
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent
getlog
getlogin
getnetbyaddr
getnetbyname
getnetent
getpass

getpid
getprotobyname
getprotobynumber
getprotoent
getpw
getpwent
getpwnam
getpwuid

gets
getservbyname
getservbyport
getservent
getuid

getw

getwd
gmtime
gmtime

gtty

4th Berkeley Distribution

UNIX Programmer’s Manual INTRO(3)
fseek.3s reposition a stream
stat.3f get file status
fseek.3f reposition a file on a logical unit
fseek.3s reposition a stream
time.3c get date and time
fread.3s buffered binary input/output
gamma.3m log gamma function
ecvt.3 output conversion
perror.3f get system error messages
getarg.3f return command line arguments
getc.3f get a character from a logical unit
getc.3s get character or word from stream
getc.3s get character or word from stream
getewd.3f get pathname of current working directory
getdisk.3x get disk description by its name
getenv.3 value for environment name
getenv.3f get value of environment variables
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getuid. 3f get user or group ID of the caller
getgrent.3 get group file entry
getgrent.3 get group file entry
getgrent.3 get group file entry
gethostent.3n get network host entry
gethostent.3n get network host entry
gethostent.3n get network host entry
getlog.3f get user’s login name
getlogin.3 get login name
getnetent.3n get network entry
getnetent.3n get network entry
getnetent.3n get network entry
getpass.3 read a password
getpid.3f get process id
getprotoent.3n get protocol entry
getprotoent.3n get protocol entry
getprotoent.3n get protocol entry
getpw.3 get name from uid
getpwent.3 get password file entry
getpwent.3 get password file entry
getpwent.3 get password file entry
gets.3s get a string from a stream
getservent.3n get service entry
getservent.3n get service entry
getservent.3n get service entry
getuid.3f get user or group ID of the caller
getc.3s get character or word from stream
getwd.3 get current working directory pathname
ctime.3 convert date and time to ASCII
time.3f return system time
stty.3¢ set and get terminal state (defunct)
2 April 1983 4

INTRO (3) UNIX Programmer’s Manual INTRO (3)

hostnm hostnm.3f get name of current host

htonl byteorder.3n convert values between host and network byte order
htons byteorder.3n convert values between host and network byte order
hypot hypot.3m Euclidean distance

iargc getarg.3f return command line arguments

idate idate.3f return date or time in numerical form
ierrno perror.3f get system error messages

index index.3f tell about character objects

index string.3 string operations

inet_addr inet.3n Internet address manipulation routines
inet_lnaof inet.3n Internet address manipulation routines
inet_makeaddr inet.3n Internet address manipulation routines
inet_netof inet.3n Internet address manipulation routines
inet_network inet.3n Internet address manipulation routines
initgroups initgroups.3x initialize group access list

initstate random.3 better random number generator

inmax fimin.3f return extreme values

inmax range.3f return extreme values

insque insque.3 insert/remove element from a queue
ioinit ioinit.3f change 77 1/0 initialization

irand rand.3f return random values

isalnum ctype.3 character classification macros

isalpha ctype.3 character classification macros

isascii ctype.3 character classification macros

isatty ttynam.3f find name of a terminal port

isatty ttyname.3 find name of a terminal

iscntrl ctype.3 character classification macros

isdigit ctype.3 character classification macros

islower ctype.3 character classification macros

isprint ctype.3 character classification macros

ispunct ctype.3 character classification macros

isspace ctype.3 character classification macros

isupper ctype.3 character classification macros

itime idate.3f return date or time in numerical form

jo j0.3m bessel functions

jl j0.3m bessel functions

jn j0.3m bessel functions

kill kill.3f send a signal to a process

label plot.3x graphics interface

ldexp frexp.3 split into mantissa and exponent

len index.3f tell about character objects :
1ib2648 1ib2648.3x subroutines for the HP 2648 graphics termina
line plot.3x graphics interface

linemod plot.3x graphics interface

link link.3f make a link to an existing file

Inbink index.3f tell about character objects

loc loc.3f return the address of an object

localtime ctime.3 convert date and time to ASCII

log exp.3m exponential, logarithm, power, square root
logl10 exp.3m exponential, logarithm, power, square root
long long.3f integer object conversion

longjmp setjmp.3 non-local goto

4th Berkeley Distribution 2 April 1983 5

INTRO(3)

Istat
Itime
malloc
mktemp
modf
moncontrol
monitor
monstartup
move
nextkey
nice
nlist
ntohl
ntohs
opendir
openlog
pause
pclose
perror
perror
plot: openpl
point
popen
pow
printf
psignal
putc
putc
putchar
puts
putw
gsort
gsort
rand
rand
random
remd
re_comp
re_exec
readdir
realloc
remque
rename
rewind
rewinddir
rexec
rindex
rindex
rresvport
ruserok
scandir
scanf

4th Berkeley Distribution

UNIX Programmer’s Manual INTRO(3)

stat.3f get file status

time.3f return system time

malloc.3 memory allocator

- mktemp.3 make a unique file name

frexp.3 split into mantissa and exponent

monitor.3 prepare execution profile

monitor.3 prepare execution profile

monitor.3 prepare execution profile

plot.3x graphics interface

dbm.3x data base subroutines

nice.3¢ set program priority

nlist.3 get entries from name list

byteorder.3n convert values between host and network byte order
byteorder.3n convert values between host and network byte order
directory.3 directory operations

syslog.3 control system log

-pause.3c stop until signal

popen.3 initiate I/0 to/from a process

perror.3 system error messages

perror.3f get system error messages

plot.3x graphics interface

plot.3x graphics interface

popen.3 initiate 1/0 to/from a process

exp.3m exponential, logarithm, power, square root

printf.3s formatted output conversion

psignal.3 system signal messages

putc.3f write a character to a fortran logical unit

putc.3s put character or word on a stream

putc.3s put character or word on a stream

puts.3s put a string on a stream

.pute.3s put character or word on a stream

gsort.3 quicker sort

gsort.3f quick sort

rand.3c random number generator

~rand.3f return random values

random.3 better random number generator o
remd.3x routines for returning a stream to a remote command
regex.3 regular expression handler :
regex.3 regular expression handler

directory.3 directory operations

malloc.3 memory allocator

insque.3 insert/remove element from a queue

rename.3f rename a file

fseek.3s reposition a stream

directory.3 directory operations

rexec.3x return stream to a remote command
index.3f tell about character objects

string.3 string operations ,
remd. 3x routines for returning a stream to a remote command
rcmd.3x routines for returning a stream to a remote command
scandir.3 - scan a directory
scanf.3s formatted input conversion

2 April 1983

INTRO (3) UNIX Programmer’s Manual INTRO (3)

seekdir directory.3 directory operations

setbuf setbuf.3s assign buffering to a stream
setbuffer setbuf.3s assign buffering to a stream
setegid setuid.3 set user and group ID

seteuid setuid.3 set user and group ID

setfsent getfsent.3x get file system descriptor file entry
setgid setuid.3 set user and group ID

setgrent getgrent.3 get group file entry

sethostent gethostent.3n get network host entry

setjmp setjmp.3 non-local goto

setkey crypt.3 DES encryption

setlinebuf setbuf.3s assign buffering to a stream
setnetent getnetent.3n get network entry

setprotoent getprotoent.3n get protocol entry

setpwent getpwent.3 get password file entry

setrgid setuid.3 set user and group ID

setruid setuid.3 set user and group 1D

setservent getservent.3n get service entry

setstate random.3 better random number generator
setuid setuid.3 set user and group ID

short long.3f integer object conversion ,
signal signal.3 simplified software signal facilities
signal signal.3f change the action for a signal

sin sin.3m trigonometric functions

sinh sinh.3m hyperbolic functions

sleep sleepd3 suspend execution for interval
sleep sleep.3T suspend execution for an interval
space plot.3x gr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>