
INTRO (2) UNIX Programmer's Manual INTRO (2)

NAME
intro - introduction to system calls and error numbers

SYNOPSIS
#include <errno.h>

DESCRIPTION
This section describes all of the system calls. Most of these calls have one or more error
returns. An error condition is indicated by an otherwise impossible return value. This is
almost always -1; the individual descriptions specify the details.

As with normal arguments, all return codes and values from functions are of type integer
unless otherwise noted. An error number is also made available in the external variable erma,
which is not cleared on successful calls. Thus errno should be tested only after an error has
occurred.

The following is a complete list of the errors and their names as given in < errno.h >.
o Error 0

Unused.

EPERM Not owner
Typically this error indicates an attempt to modify a file in some way forbidden except
to its owner or super-user. It is also returned for attempts by ordinary users to do
things allowed only to the super-user.

2 ENOENT No such file or directory
This error occurs when a file name is specified and the file should exist but doesn't. or
when one of the directories in a path name does not exist.

3 ESRCH No such process
The process whose number was given to kill and ptrace does not exist, or is already
dead.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user has elected to catch.
occurred during a system call. If execution is resumed after processing the signal, it
will appear as if the interrupted system call returned this error condition.

S EIO I/O error
Some physical I/O error occurred during a read or write. This error may in some cases
occur on a call following the one to which it actually applies.

6 ENXIO No such device or address
I/O on a special file refers to a subdevice which does not exist, or beyond the limits of
the device. It may also occur when. for example, an illegal tape drive unit number is
selected or a disk pack is not loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 10240 bytes is presented to execve.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the appropriate permissions.
does not start with a valid magic number, see a.out{S).

9 EBADF Bad file number
Either a file descriptor refers to no open file, or a read (resp. write) request is made to
a file which is open only for writing (resp. reading).

10 ECHILD No children
Wait and the process has no living or unwaited-for children.

4th Berkeley Distribution 12 February 1983

INTRO (2) UNIX Programmer's Manual INTRO (2)

11 EAGAIN No more processes
In a fork, the system's process table is full or the user is not allowed to create any more
processes.

12 ENOMEM Not enough core
During an exeeve or break, a program asks for more core or swap space than the system
is able to supply. A lack of swap space is normally a temporary condition, however a
lack of core is not a temporary condition; the maximum size of the text, data, and stack
segments is a system parameter.

13 EACCES Permission denied
An attempt was made to access a file in a way forbidden by the protection system.

14 EF A UL T Bad address
The system encountered a hardware fault in attempting to access· the arguments of a
system call.

1 S ENOTBLK Block device required
A plain file was mentioned where a block device was required, e.g. in mount.

16 EBUSY Mount device busy
An attempt to mount a device that was already mounted or an attempt was made to
dismount a device on which there is an active file directory. (open file, current direc­
tory, mounted-on file, active text segment).

17 EEXIST File exists
An existing file was mentioned in an inappropriate context, e.g. link.

18 EXDEV Cross-device link
A hard link to a file on another device was attempted.

19 ENODEV No such device
An attempt was made to apply an inappropriate system call to a device; e.g. read a
write-only device.

20 ENOTDIR Not a directory
A non-directory was specified where a directory is required, for example in a path name
or as an argument to ehdir.

21 EISD IR Is a directory
An attempt to write on a directory.

22 EINV AL Invalid argument
Some invalid argument: dismounting a non-mounted device, mentioning an unknown
,signal in Signal, reading or writing a file for which seek has generated a negative pointer.
Also set by'math functions, see intro(3).

23 ENFILE File table overflow
The system's table of open files is full, and temporarily no more opens can be accepted.

24 EMFILE Too many open files
Customary configuration limit is 20 per process.

2S ENOTTY Not a typewriter
, , The, file mentioned 'in an ioel! is not a terminal or one of. the other devices. to which

these calls apply ~ ,

26 ETXTBSY Text file busy
An attempt to execute a pure-procedure program which is currently open for writing
(or reading!). Also an attempt to open for writing a pure-procedure program that is
being executed.

4th Berkeley Distribution 12 February 1983 2

INTRO (2) UNIX Programmer's Manual INTRO (2)

27 EFBIG File too large
The size of a file exceeded the maximum (about 109 bytes).

28 ENOS PC No space left on device
During a write to an ordinary file, there is no free space left on the device.

29 ESPIPE Illegal seek
An Iseek was issued to a pipe. This error may also be issued for other non-seekable
devices.

30 EROFS Read-only file system
An attempt to modify a file or directory was made on a device mounted read-only.

31 EMLINK Too many links
An attempt to make more than 32767 hard links to a file.

32 EPIPE Broken pipe
A write on a pipe or socket for which there is no process to read the data. This condi­
tion normally generates a signal~ the error is returned if the signal is ignored.

33 EDOM Math argument
The argument of a function in the math package OM) is out of the domain of the
function.

34 ERANG E Result too large
The value of a function in the math package (3M) is unrepresentable within machine
precision.

35 EWOULDBLOCK Operation would block
An operation which would cause a process to block was attempted on a object in non­
blocking mode (see ioctl (2».

36 EINPROGRESS Operation now in progress
An operation which takes a long time to complete (such as a connect (2» was
attempted on a non-blocking object (see ioctl (2».

37 EALREADY Operation already in progress
An operation was attempted on a non-blocking object which already had an operation in
progress.

38 ENOTSOCK Socket operation on non-socket
Self-explanatory.

39 EDESTADDRREQ Destination address required
A required address was omitted from an operation on a socket.

40 EMSGSIZE Message too long
A message sent on a socket was larger than the internal message buffer.

41 EPROTOTYPE Protocol wrong type for socket
A protocol was specified which does not support the semantics of the socket type
requested. For example you cannot use the ARPA Internet UDP protocol with type
SOCK_STREAM.

42 ENOPROTOOPT Bad protocol option
A bad option was specified in a getsockopt(2) or setsockopt(2) call.

43 EPROTONOSUPPOR T Protocol not supported
The protocol has not been configured into the system or no implementation for it
exists.

4th Berkeley Distribution 12 February 1983 3

INTRO(2) UNIX Programmer's Manual INTRO (2)

44 ESOCKTNOSUPPORT Socket type not supported
The support for the socket type has not been configured into the· system or no imple­
mentation for it exists.

45 EOPNOTSUPP Operation not supported on socket
For example, trying to accept a connection on a datagram socket.

46 EPFNOSUPPORT Protocol family not supported
The protocol family has not been configured into the system or no implementation for
it exists.

47 EAFNOSUPPORT Address family not supported by protocol family
An address incompatible with the requested protocol was used. For example, you
shouldn't necessarily expect to be able to use PUP Internet addresses with ARPA Inter­
net protocols.

48 EADDRINUSE Address already in use
Only one usage of each address is normally permitted.

49 EADDRNOTAVAIL Can't assign requested address
Normally results from an attempt to create a socket with an address not on this
machine.

SO ENETDOWN Network is down
A socket operation encountered a dead network.

51 ENETUNREACH Network is unreachable
A socket operation was attempted to an unreachable network.

52 ENETRESET Network dropped connection on reset
The host you were connected to crashed and rebooted.

53 ECONNABORTED Software caused connection abort
A connection abort was caused internal to your host machine.

54 ECONNRESET Connection reset by peer
A connection was forcibly closed by a peer. This normally results from the peer exe­
cuting a shutdown (2) call.

55 ENOBUFS No buffer space available
An operation on a socket or pipe was not performed because the system lacked
sufficient buffer space.

56 EISCONN Socket is already connected
A connect request was made on an already connected socket; or, a sendto or sendmsg
request on a connected socket specified a destination other than the connected party.

57 ENOTCONN Socket is not connected
An request to send or receive data was disallowed because the socket is not connected.

58 ESHUTDOWN Can't send after socket shutdown
A request to send data was disallowed because the socket had already been shut down
with a previous shutdowrt(2) call.

59 unused

60 ETIMEDOUT Connection timed out
A connect request failed because the connected party did not properly respond after a
period of time. (The timeout period is dependent 0:1 the communication protocol.)

61 ECONNREFUSED Connection refused
No connection could be made because the target machine actively refused it. This usu­
ally results from trying to connect. to a service which is inactive on the foreign host.

4th Berkeley Distribution 12 February 1983 4

INTRO (2) UNIX Programmer's Manual INTRO (2)

62 ELOOP Too many levels of symbolic links
A path name lookup involved more than 8 symbolic links.

63 ENAMETOOLONG File name too long
A component of a path name exceeded 255 characters, or an entire path name
exceeded 1023 characters.

64 ENOTEMPTY Directory not empty
A directory with entries other than H." and H •• " was supplied to a remove directory or
rename call.

DEFINITIONS
Process ID

Each active process in the system is uniquely identified by a positive integer called a pro­
cess ID. The range of this ID is from 0 to {PROC_MAX}.

Parent process ID
A new process is created by a currently active process; see !ork(2). The parent process ID
of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a positive integer
called the process group ID. This is the process ID of the group leader. This grouping
permits the signalling of related processes (see killpg(2» and the job control mechanisms
of csh(I).

Tty Group ID
Each active process can be a member of a terminal group that is identified by a positive
integer called the tty group ID. This grouping is used to arbitrate between multiple jobs
contending for the same terminal~ see csh(}), and tty(4).

Real User ID and Real Group ID
Each user on the system is identified by a positive integer termed the real user ID.

Each user is also a member of one or more groups. One of these groups is distinguished
from others and used in implementing accounting facilities. The positive integer
corresponding to this distinguished group is termed the real group ID.

All processes have a real user ID and real group ID. These are initialized from the
equivalent attributes of the process which created it.

Effective User Id, Effective Group Id, and Access Groups
Access to system resources is governed by three values: the effective user ID, the
effective group ID, and the group access list.

The effective user ID and effective group ID are initially the process's real user ID and
real group ID respectively. Either may be modified through execution of a set-user-ID or
set-group-ID file (possibly by one its ancestors) ~ see execve(2).

The group access list is an additional set of group ID's used only in determining resource
accessibility. Access checks are performed as described below in HFile Access Permis­
sions".

Super-user
A process is recognized as a super-user process and is granted special privileges if its
effective user ID is O.

Special Processes
The processes with a process ID's of 0, 1, and 2 are special. Process 0 is the scheduler.
Process 1 is the initialization process init, and is the ancestor of every other process in the
system. It is used to control the process structure. Process 2 is the paging daemon.

4th Berkeley Distribution 12 February 1983 5

INTRO (2) UNIX Programmer's Manual INTRO (2)

Descriptor
An integer assigned by the system when a file is referenced by open(2), dup(2). or pipe (2)
or a socket is referenced by socket(2) or socketpair(2) which uniquely identifies an access
path to that file or socket from a given process or any of its children.

File Name
Names consisting of up to {FILENAME_MAXI characters may be used to name an ordi­
nary file, special file, or directory.

These characters may be selected from the set of all ASCII character excluding 0 (null)
and the ASCII code for / (slash). (The parity bit~ bitS, must be OJ
Note that it is generally unwise to use ., ?, [or] as part of file names because of the spe­
cial meaning attached to these characters by the shell.

Path Name
A path name is a null-terminated character string starting with an optional slash (0, fol­
lowed by zero or more directory names separated by slashes, optionally followed by a file
name. The total length of a path name must be less than {PATHNAME_MAX} charac­
ters.

If a path name begins with a slash, the path search begins at the root directory. Other­
wise, the search begins from the current working directory. A slash by itself names the
root directory. Anull path name refers to the current directory.

Directory
A directory is a special type of file which contains entries which are references to other
files. Directory entries are called links. By convention, a directory contains at least two
links, . and .. ,referred to as dot and dot-dot respectively. Dot refers to the directory itself
and dot-dot refers to its parent directory.

Root Directory and Current Working Directory
Each process has associated with it a concept of a root directory and a current working
directory for the purpose of resolving path name searches. A process's root directory
need not be the root directory of the root file system.

File Access Permissions
Every file in the file system has a set of access permissions. These permissions are used
in determining whether a process may perform a requested operation on the file (such as
opening a file for writing). Access permissions are established at the time a file is created.
They may be changed at some later time through the chmod(2) call.

File access is broken down according to whether a file may be: read, written, or executed.
Directory files use the execute permission to control if the directory may be searched.

File access permissions are interpreted by the system as they apply to three different
classes of users: the owner of the file, those users in the file's group, anyone else. Every
file has an independent set of access permissions for each of these classes. When an
access check is made, the system decides if permission should be granted by checking the
access information applicable to the caller.

Read, write, and execute/search permissions on a file are granted to a process if:

The process's effective user 10 is that of the super-user.

The process's effective user 10 matches the user 10 of the owner of the file and the
owner permissions allow the access.

The process's effective userID does not match the user ID of the owner of the file, and
either the process's effective group ID matches the group ID of the file, Of the group 10
of the file is in the process's group access list, and the group permissions allow the access.

4th Berkeley Distribution 12 February 1983 6

INTRO (2) UNIX Programmer's Manual INTRO (2)

Neither the effective user ID nor effective group ID and group access list of the process
match the corresponding user ID and group ID of the file, but the permissions for "other
users" allow access.

Otherwise, permission is denied.

Sockets and Address Families

SEE ALSO

A socket is an endpoint for communication between processes. Each socket has queues
for sending and receiving data.

Sockets are typed according to their communications properties. These properties include
whether messages sent and received at a socket require the name of the partner, whether
communication is reliable, the format used in naming message recipients, etc.

Each instance of the system supports some collection of socket types; consult socket(2)
for more information about the types available and their properties.

Each instance of the system supports some number of sets of communications protocols.
Each protocol set supports addresses of a certain format. An Address Family is the set of
addresses for a specific group of protocols. Each socket has an address chosen from the
address family in which the socket was created.

intro(3), perror(3)

4th Berkeley Distribution 12 February 1983 7

ACCEPT (2) UNIX Programmer's Manual ACCEPT (2)

NAME
accept - accept a connection on a socket

SYNOPSIS
#include < sys/types.h>
#include < sys/socket.h>

ns == accept(s, addr, addrlen}
int ns, s;
struct sockaddr ·addr;
int ·addrlen;

DESCRIPTION
The argument s is a socket which has been created with socket(2) , bound to an address with
bind(2), and is listening for connections after a Iisten(2). Acceptextracts the first connection on
the queue of pending connections, creates a new socket with the same properties of s and allo­
cates a new file descriptor, ns. for the socket. If no pending connections are present on the
queue, and the socket is not marked as non-blocking. accept blocks the caller until a connection
is present. If the socket is marked non-blocking and no pending connections are present on the
queue, accept returns an error as described below. The accepted socket, ns, may not be used to
accept more connections. The original socket s remains open.

The argument addr is a result parameter which is filled in with the address of the connecting
entity, as known to the communications layer. The exact format of the add, parameter is deter­
mined by the domain in which the communication is occurring. The add,len is a value-result
parameter: it should initially contain the amount of space pointed to by addr, on return it will
contain the actual length (in bytes) of the address returned. This call is used with connection­
based socket types, currently with SOCK_STREAM.

It is possible to select(2) a socket for the purposes of doing an accept by selecting it for read.

RETVRN VALUE
The call returns -Ion error. If it succeeds it returns a non-negati\,e integer which is a descrip­
tor for the accepted socket.

ERRORS
The accept will fail if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

[EFAULT]

The descriptor is invalid.

The descriptor references a file, not a socket.

The referenced socket is not of type SOCK_STREAM.

The addr parameter is not in a writable part of the user address space.

[EWOULDBLOCK] The socket is marked non-blocking and no connections are present to be
accepted.

SEE ALSO
bind(2), connect(2), listen(2). select(2). socket(2)

4th Berkeley Distribution ~, 7 July 1983

ACCESS (2) UNIX Programmer's Manual ACCESS (2)

NAME
access - determine accessibility of file

SYNOPSIS
#include < sys/file.h>

#define R_OK 4 /- test for read permission • /
/- test for write permission ./ #define W_OK 2

#define X_OK 1 /- test for execute (search) permission - /
/- test for presence of file - / #define F_OK 0

accessible = access(path, mode)
int accessible;
char -path;
int mode;

DESCRIPTION
Access checks the given file path for accessibility according to mode, which is an inclusive or of
the bits R OK, W OK and X OK. Specifying mode as F OK (i.e. 0) tests whether the direc­
tories leading to the file can be-searched and the file exists:-

The real user ID and the group access list (including the real group ID) are used in verifying
permission, so this call is useful to set-UID programs.

Notice that only access bits are checked. A directory may be indicated as writable by access,
but an attempt to open it for writing will fail (although files may be created there)~ a file may
look executable, but execve will fail unless it is in proper format.

RETURN VALUE
If path cannot be found or if any of the desired access modes would not be granted, then a -1
value is returned~ otherwise a 0 value is returned.

ERRORS
Access to the file is denied if one or more of the following are true:

[ENOTDIR]

[ENOENT]

[ENOENT]

[EPERM]

[ELOOP]

[EROFS]

[ETXTBSY]

[EACCES]

[EFAULT]

SEE ALSO

A component of the path prefix is not a directory.

The argument path name was too long.

Read, write, or execute (search) permission is requested for a null path name
or the named file does not exist.

The argument contains a byte with the high-order bit set.

Too many symbolic links were encountered in translating the pathname.

Write access is requested for a file on a read-only file system.

Write access is requested for a pure procedure (shared text) file that is being
executed.

Permission bits of the file mode do not permit the requested access~ or search
permission is denied on a component of the path prefix. The owner of a file
has permission checked with respect to the "owner" read. write, and execute
mode bits, members of the file's group other than the owner have permission
checked with respect to the "group" mode bits, and all others have permis­
sions checked with respect to the "other" mode bits.

Path points outside the process's allocated address space.

chmod(2), sta«2)

4th Berkeley Distribution 18 July 1983

ACCT(2) UNIX Programmer's Manual ACCT (2)

NAME
acct - turn accounting on or off

SYNOPSIS
acct(file)
char -file;

DESCRIPTION

NOTES

The system is prepared to write a record in an accounting .file for each process as it terminates.
This call, with a null-terminated string naming an existing file as argument. turns on account­
ing~ records for each terminating process are appended to file. An argument of 0 causes
accounting to be turned off.

The accounting file format is given in acct(5).

This call is permitted only to the super-user.

Accounting is automatically disabled when the file system the accounting file resides on runs
out of space~ it is enabled when space once again becomes available.

RETVRN VALUE
On error - 1 is returned. The file must exist and the call may be exercised only by the super­
user. It is erroneous to try to turn on accounting when it is already on.

ERRORS
Acct will fail if one of the following is true:

[EPERM] The caller is not the super-user.

[EPERM]

[ENOTDIR]

[ENOENT]

[EISDIR]

[EROFS]

[EFAULT]

[ELOOP]

[EACCES]

The pathname contains a character with the high-order bit set.

A component of the path prefix is not a directory.

The named file does not exist.

The named file is a directory.

The named file resides on a read-only file system.

File points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

The file is a character or block special file.

SEE ALSO

BUGS

acct(5), sa (8)

No accounting is produced for programs running when a crash occurs. In particular nonter­
minating programs are never accounted for.

4th Berkeley Distribution 13 February 1983

BIND (2) UNIX Programmer's Manual BIND (2)

NAME
bind - bind a name to a socket

SYNOPSIS
#include < sys/types.h >
#include < sys/socket.h >
bind (s, name, namelen)
lnt s;
struct sockaddr -name;
lnt namelen;

DESCRIPTION

NOTES

Bind assigns a name to an unnamed socket. When a socket is created with socket(2) it exists in
a name space (address family) but has no name assigned. Bind requests the name, be assigned
to the socket.

Binding a name in the UNIX domain creates a socket in the file system which must be deleted
by the caller when it is no longer needed (using unlink (2)). The file created is a side-effect of
the current implementation, and will not be created in future versions of the UNIX ipc domain.

The rules used in name binding vary between communication domains. Consult the manual
entries in section 4 for detailed information.

RETURN VALUE
If the bind is successful, a 0 value is returned. A return value of -1 indicates an error, which
is further specified in the global errno.

ERRORS
The bind call will fail if:

[EBADF]

[ENOTSOCK]

S is not a valid descriptor.

S is not a socket.

[EADDRNOTAVAIL]
The specified address is not available from the local machine.

The specified address is already in use.

The socket is already bound to an address.

[EADDRINUSE]

[EINVAL]

[EACCESS] The requested address is protected, and the current user has inadequate
permission to access it.

[EFAULT] The name parameter is not in a valid part of the user address space.

SEE ALSO
connect(2), listen (2) , socket(2), getsockname(2)

4th Berkeley Distribution 27 July 1983 1

BRK (2) UNIX Programmer's Manual BRK (2)

NAME
brk, sbrk - change data segment size

SYNOPSIS
caddr_t brk(addr)
caddr_t addr;

caddr_t sbrk(jncr)
int incr;

DESCRIPTION
Brk sets the system's idea of the lowest data segment location not used by the program (called
the break) to add, (rounded up to the next multiple of the system's page size). Locations
greater than addr and below the stack pointer are not in the address space and will thus cause a
memory violation if accessed.

In the alternate function sbrk, incr more bytes are added to the program's data space and a
pointer to the start of the new area is returned.

When a program begins execution via execve the break is set at the highest location defined by
the program and data storage areas. Ordinarily, therefore, only programs with growing data
areas need to use sbrk.

The getrlimit(2) system call may be used to determine the maximum permissible size of the
data segment~ it will not be possible to set the break beyond the rlim max value returned from
a call to getrlimit, e.g. "etext + rlp-rlim_max." (See end(3) for the definition of etexr.)

RETURN VALUE
Zero is returned if the brk could be set: -1 if the program requests more memory than the sys­
tem limit. Sbrk returns -1 if the break could not be set.

ERRORS
Sb,k will fail and no additional memory will be allocated if one of the following are true:

[ENOMEM] The limit, as set by setrlimit(2), was exceeded.

[ENOMEM]

[ENOMEM]

The maximum possible size of a data segment (compiled into the system) was
exceeded.

Insufficient space existed in the swap area to support the expansion.

SEE ALSO

BUGS

execve(2), getrlimit(2), mallod3), end(3)

Setting the break may fail due to a temporary lack of swap space. It is not possible to distin­
guish this from a failure caused by exceeding the maximum size of the data segment without
consulting get,limif.

4th Berkeley Distribution 27 July 1983

CHOIR (2) UNIX Programmer's Manual

NAME
chdir - change current working directory

SYNOPSIS
chdir(path)
char ·path;

DESCRIPTION

CHOIR (2)

Path is the pathname of a directory. Chdir causes this directory to become the current working
directory, the starting point for path names not beginning with ··r'.
In order for a directory to become the current directory, a process must have execute (search)
access to the directory.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errllo is set to indicate the error.

ERRORS
Chdir will fail and the current working directory will be unchanged if one or more of the follow­
ing are true:

[ENOTDIR]

[ENOENT]

[ENOENT]

[EPERM]

[EACCES]

[EFAULT]

[ELOOP]

SEE ALSO
chroot(2)

A component of the pathname is not a directory.

The named directory does not exist.

The argument path name was too long.

The argument contains a byte with the high-order bit set.

Search permission is denied for any component of the path name.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

4th Berkeley Distribution 2 July 1983

CHMOD (2) UNIX Programmer's Manual CHMOD (2)

NAME
chmod - change mode of file

SYNOPSIS
chmod(path, mode)
char ·path;
int mode;

fchmod(fd, mode)
int fd, mode;

DESCRIPTION
The file whose name is given by path or referenced by the descriptor fdhas its mode changed to
mode. Modes are constructed by or'ing together some combination of the following:

04000 set user ID on execution
02000 set group ID on execution
01000 save text image after execution
00400 read by owner
00200 write by owner
00100 execute (search on directory) by owner
00070 read. write, execute (search) by group
00007 read. write. execute (search) by others

If an executable file is set up for sharing (this is the default) then mode 1000 prevents the sys­
tem from abandoning the swap-space image of the program-text portion of the file when its last
user terminates. Ability to set this bit is restricted to the super-user.

Only the owner of a file (or the super-user) may change the mode.

Writing or changing the owner of a file turns off the set-ust:r-id and set-group-id bits. This
makes the system somewhat more secure by protecting set-user-id (set-group-id) files from
remaining set-user-id (set-group-id) if they are modified. at the expense of a degree of compati­
bility.

RETCRN VALUE
Upon successful completion. a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
ChmodwiJI fail and the file mode wiJI be unchanged if:

[EPERM] The argument contains a byte with the high-order bit set.

[ENOTDIR]

[ENOENT]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

[EFAULT]

A component of the path prefix is not a directory.

The pathname was too long.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

[ELOOP] Toomany symbolic links were eqcountered in translating the pathr.ame.

Fchmod will fail if:

[EBADF] The descriptor is not valid.

[EINVAL] Fdrefers to a socket, not to a file.

4th Berkeley Distribution 2 July 1983

CHMOD (2) UNIX Programmer's Manual CHMOD (2)

[EROFS] The file resides on a read-only file system.

SEE ALSO
open(2), chown(2)

4th Berkeley Distribution 2 July 1983 2

CHOWN (2) UNIX Programmer's Manual CHOWN (2)

NAME
chown - change owner and group of a file

SYNOPSIS
chown(path, owner, group)
char ·path;
int owner, group;

fchown(fd, owner, group)
int fd, owner, group;

DESCRIPTION
The file which is named by path or referenced by fd has its owner and group changed as
specified. Only the super-user may execute this call. because if users were able to give files
away. they could defeat the file-space accounting procedures.

On some systems. chown clears the set-user-id and set-group-id bits on the file to prevent
accidental creation of set-user-id and set-group-id programs owned by the super-user.

Fchown is particularly useful when used in conjunction with the file locking primitives (see
.llock(2».

Only one of the owner and group id's may be set by specifying the other as -1.

RETURS VALUE
Zero is returned if the operation was successful: -1 is returned if an error occurs. with a more
specific error code being placed in the global variable errno.

ERRORS
Chown will fail and the file will be unchanged if:

[EINV AL] The argument path does not refer to a file.

[ENOTDIR]

[ENOENT]

[EPERM]

[ENOENT]

[EACCES]

[EPERM]

[EROFS]

A component of the path prefix is not a directory.

The argument pathname is too long.

The argument contains a byte with the high-order bit set.

The named file does not exist.

Search permission is denied on a component of the path prefix.

The effective user ID does not match the owner of the file and the effective
user ID is not the super-user.

The named file resides on a read-only file system.

[EFAUL T1 Path points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

Fchown will fail if:

[EBADF]

[EINVAL]

Fddoes not refer to a valid descriptor.

Fdrefers to a socket, not a file.

SEE ALSO
chmod(2), flock(2)

4th Berkeley Distribution 27 July 1983

CHROOT (2) UNIX Programmer's Manual CHROOT (2)

NAME
chroot - change root directory

SYNOPSIS
chroot(dirname)
char *dirname;

DESCRIPTION
Dirname is the address of the pathname of a directory, terminated by a null byte. Chrootcauses
this directory to become the root directory, the starting point for path names beginning with

In order for a directory to become the root directory a process must have execute (search)
access to the directory.

This call is restricted to the super-user.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate an error.

ERRORS
Chroot will fail and the root directory will be unchanged if one or more of the following are
true:

[ENOTDIR]

[ENOENT]

[EPERM]

[ENOENT]

[EACCES]

[EFAULT]

[ELOOP]

SEE ALSO
chdid2)

A component of the path name is not a directory.

The pathname was too long.

The argument contains a byte with the high-order bit set.

The named directory does not exist.

Search permission is denied for any component of the path name.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

4th Berkeley Distribution 2 July 1983

CLOSE (2) UNIX Programmer's Manual CLOSE (2)

NAME
close - delete a descriptor

SYNOPSIS
close(d)
iot d;

DESCRIPTION
The close call deletes a descriptor from the per-process object reference table. If this is the last
reference to the underlying object. then it will be deactivated. For example. on the last close of
a file the current seek pointer associated with the file is lost~ on the last close of a socket(2)
associated naming information and queued data are discarded~ on the last close of a file holding
an advisory lock the lock is released~ see further Jlock(2).

A close of all of a process's descriptors is automatic on exit. but since there is a limit on the
number of active descriptors per process. close is necessary for programs which deal with many
descriptors.

When a process forks (see jork(2» , all descriptors for the new child process reference the same
objects as they did in the parent before the fork. If a new process is then to be run using
execve(2) , the process would normally inherit these descriptors. Most of the descriptors can be
rearranged with dup2(2) or deleted with close before the exeo'e is attempted. but if some of
these descriptors will still be needed if the execve fails, it is necessary to arrange for them to be
closed if the execve succeeds. For this reason. the call "fcntJ(d. F _SETFD. I)" is provided
which arranges that a descriptor will be closed after a successful execve~ the call "fcntl (d.
F _SETFD, 0)" restores the default. which is to not close the descriptor.

RETURN VALUE
Upon successful completion. a value of 0 is returned. Otherwise. a value of -1 is returned and
the global integer variable err no is set to indicate the error.

ERRORS
Close will fail if:

[EBADF] D is not an active descriptor.

SEE ALSO
accept(2), flock(2), open(2). pipe(2), socket(2), socketpair(2), execve(2). fcntH2)

4th Berkeley Distribution 27 July 1983

CONNECT (2) UNIX Programmer's Manual CONNECT (2)

NAME
connect - initiate a connection on a socket

SYNOPSIS
#include < sys/types.h>
#include < sys/socket.h>

connect(s, name, namelen}
int s;
struct sockaddr • name;
int namelen;

DESCRIPTION
The parameter s is a socket. If it is of type SOCK_DGRAM, then this call permanently
specifies the peer to which datagrams are to be sent if it is of type SOCK_STREAM. then this
call attempts to make a connection to another socket. The other socket is specified by name
which is an address in the communications space of the socket. Each communications space
interprets the name parameter in its own way.

RETURN V AL liE
If the connection or binding succeeds. then 0 is returned. Otherwise a -1 is returned. and a
more specific error code is stored in errno.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

S is not a valid descriptor.

S is a descriptor for a file. not a socket.

[EADDRNOT AVAIL]
The specified address is not available on this machine.

[EAFNOSUPPORT] Addresses in the specified address family cannot be used with this socket.

[EISCONN] The socket is already connected.

[ETIMEDOUT] Connection establishment timed out without establishing a connection.

[ECONNREFUSED] The attempt to connect was forcefully rejected.

[ENETUNREACH] The network isn't reachable from this host.

[EADDRINUSE]

[EFAULT]

[EWOULDBLOCK]

SEE ALSO

The address is already in use.

The name parameter specifies an area outside the process address space.

The socket is non-blocking and the and the connection cannot be com­
pleted immediately. It is possible to select(2) the socket while it is con­
necting by selecting it for writing.

accept(2), select(2), socket(2), getsockname(2)

4th Berkeley Distribution 7 July 1983

CREAT(2) UNIX Programmer's Manual CREAT(2)

NAME
creat - create a new file

SYNOPSIS
creat(name, mode)
char -name;

DESCRIPTION

NOTES

This interface is obsoleted by open (2).

Crear creates a new file or prepares to rewrite an existing file called flame. given as the address
of a null-terminated string. If the file did not exist. it is given mode mode. as modified by the
process's mode mask (see umask(2». Also see chmod(2) for the construction of the mode
argument.

If the file did exist. its mode and owner remain unchanged but it is truncated to 0 length.

The file is also opened for writing. and its file descriptor is returned.

The mode given is arbitrary: it need not allow writing. This feature has been used in the past
by programs to construct a simple exclusive locking mechanism. It is replaced by the O_EXCL
open mode. or ./fock(2) facilitity.

RETVRN VALVE
The value -1 is returned if an error occurs. Otherwise. the call returns a non-negative descrip­
tor which only permits writing.

ERRORS
Crear will fail and the file will not be created or truncated if one of the following occur:

[EPERM]

[ENOTDIR]

[EACCES]

[EACCES]

[EACCES]

[EISDIR]

[EMFILE]

[EROFS]

[ENXIO]

[ETXTBSY]

[EFAULT]

The argument contains a byte with the high-order bit set.

A component of the path prefix is not a directory.

A needed directory does not have search permission.

The file does not exist and the directory in which it is to be created is not writ­
able.

The file exists. but it is unwritable.

The file is a directory.

There are already too many files open.

The named file resides on a read-only file system.

The file is a character special or block special file. and the associated device
does not exist.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EOPNOTSUPP]
The file was a socket (not currently implemented).

SEE ALSO
open(2). write(2). close(2), chmod(2), umask(2)

4th Berkeley Distribution 2 July 1983

DUP (2) UNIX Programmer's Manual DUP(2)

NAME
dup, dup2 - duplicate a descriptor

SYNOPSIS
newd - dup (oldd)
lnt newd, oldd;

dup2 (oldd, newd)
lnt oldd, newd;

DESCRIPTION
Dup duplicates an existing object descriptor. The argument oldd is a small non-negative integer
index in the per-process descriptor table. The value must be less than the size of the table,
which is returned by getdtablesize(2). The new descriptor newd returned by the call is the
lowest numbered descriptor which is not currently in use by the process.

The object referenced by the descriptor does not distinguish between references using oldd and
newd in any way. Thus if newd and oldd are duplicate references to an open file, read(2) ,
write(2) and Iseek(2) calls all move a single pointer into the file. If a separate pointer into the
file is desired, a different object reference to the file must be obtained by issuing an additional
open(2) call.

In the second form of the call, the value of newd desired is specified. If this descriptor is
already in use, the descriptor is first deallocated as if a c/ose(2) call had been done first.

RETURN VALUE
The value -1 is returned if an error occurs in either call. The external variable errno indicates
the cause of the error.

ERRORS
Dup and dup2 fail if:

[EBADF] Oldd or newd is not a valid active descriptor

[EMFILE] Too many descriptors are active.

SEE ALSO
accept(2) , open(2), close (2) , pipe(2), socket (2) , socketpair(2), getdtablesize(2)

4th Berkeley Distribution 12 February 1983 1

EXECVE(2) UNIX Programmer's Manual EXECVEC2>

NAME
execve - execute a file

SYNOPSIS
execve(name, argv, envp)
char *name, *argvll, -envpll:

DESCRIPTION
Execve transforms the calling process into a new process. The new process is constructed from
an ordinary file called the new process .file. This file is either an executable object file, or a file
of data for an interpreter. An executable object file consists of an identifying header, followed
by pages of data representing the initial program (text) and initialized data pages. Additional
pages may be specified by the header to be initialize with zero data. See a.out(S>.

An interpreter file begins with a line of the form'" #! imerpreter"~ When an interpreter file is
execve'd, the system execve's the specified ;merpreter, giving it the name of the originally
exec'd file as an argument, shifting over the rest of the original arguments.

There can be no return from a successful execve because the calling core image is lost. This is
the mechanism whereby different process images become active.

The argument argl' is an array of character pointers to null-terminated character strings. These
strings constitute the argument list to be made available to the new process. By convention. at
least one argument must be present in this array, and the first element of this array should be
the name of the executed program (i.e. the last component of name>.

The argument em'p is also an array of character pointers to null-terminated strings. These
strings pass information to the new process which are not directly arguments to the command.
see env;ron(7).

Descriptors open in the calling process remain open in the new process. except for those for
which the c1ose-on-exec flag is set~ see c/ose(2). Descriptors which remain open are unaffected
by execve.

Ignored signals remain ignored across an exen'e, but signals that are caught are reset to their
default values. The signal stack is reset to be undefined~ see sigved2) for more information.

Each process has real user and group IDs and a e.ffective user and group IDs. The rea/lD
identifies the person using the system~ the effective lD determines his access privileges. Execl'e
changes the effective user and group ID to the owner of the executed file if the file has the
'"set-user-ID" or '"set-group-ID" modes. The real user ID is not affected.

The new process also inherits the following attributes from the calling process:

process 10 see getpid (2)
parent process I D see getppid(2)
process group ID see getpgrp(2)
access groups see getgroups(2)
working directory see chdir(2)
root directory see chroot(2)
control terminal see tl)'(4)
resource usages see getrusage(2)
interval timers see getitimed2)
resource limits see getrlimit(2)
file mode mask see umask(2)
signal mask see sigved2)

When the executed program begins, it is called as follows:

4th Berkeley Distribution 27 July 1983

EXECVE(2) UNIX Programmer's Manual EXECVE(2)

main(argc, argv, envp)
int argc~
char **argv, envp~

where argc is the number of elements in arg\' (the "arg count") and argl'is the array of charac­
ter pointers to the arguments themselves.

Envp is a pointer to an array of strings that constitute the envirollment of the process. A pointer
to this array is also stored in the global variable "environ". Each string consists of a name. an
,. -= H, and a null-terminated value. The array of pointers is terminated by a null pointer. The
shell sh(1) passes an environment entry for each global shell variable defined when the pro­
gram is called. See environ(7) for some conventionally used names.

RETURN VALUE
If execve returns to the calling process an error has occurred~ the return value will be -1 and
the global variable errllo will contain an error code.

ERRORS
Execve will fail and return to the calling process if one or more of the following are true:

[ENOENT] One or more components of the new process file's path name do not exist.

[ENOTDIR] A component of the new process file is not a directory.

[EACCES] Search permission is denied for a directory listed in the new process file's path
prefix.

[EACCES] The new process file is not an ordinary file.

[EACCES] The new process file mode denies execute permission.

[ENOEXEC] The new process file has the appropriate access permission. but has an invalid
magic number in its header.

[ETXTBSY] The new process file is a pure procedure (shared text) file that is currently
open for writing or reading by some process.

[ENOMEM] The new process requires more virtual memory than is allowed by the imposed
maximum (getrlimit(2»),

[E2BIG] The number of bytes in the new process's argument list is larger than the
system-imposed limit of IARG_MAXI bytes.

[EFAUL T] The new process file is not as long as indicated by the size values in its header.

[EFAUL T] Path, argv, or efnp point to an illegal address.

CAVEATS
If a program is setuid to a non-super-user. but is executed when the real uid is "root", then the
program has the powers of a super-user as well.

SEE ALSO
exit(2), fork(2), execl(3), environ(7)

4th Berkeley Distribution 27 July 1983 2

EXIT (2) UNIX Programmer's Manual EXIT (2)

NAME
_exit - terminate a process

SYNOPSIS
_exit (status)
int status;

DESCRIPTION
_exit terminates a process with the following consequences:

All of the descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait or is interested in the SIGCHLD
signal. then it is notified of the calling process's termination and the low-order eight bits of
status are made available to it~ see wait(2).

The parent process ID of all of the calling process's existing child processes are also set to I.
This means that the initialization process (see intro(2» inherits each of these processes as well.

Most C programs call the library routine exit(3) which performs cleanup actions in the standard
i/o library before calling _eXit.

RETURN VALl:E
This call never returns.

SEE ALSO
fork(2), wait(2). exit(3)

4th Berkeley Distribution 27 July 1983

FCNTL(2) UNIX Programmer's Manual FCNTL (2)

NAME
fcntl - file control

SYNOPSIS
#Include <fcntl.h>

res - fcntl (fd, cmd, aq>
lnt res;
lnt fd, cmd, aq;

DESCRIPTION
Fcntl provides for control over descriptors. The argument /d is a descriptor to be operated on
by cmd as follows:

F _DUPFD Return a new descriptor as follows:

Lowest numbered available descriptor greater than or equal to argo

Same object references as the original descriptor.

New descriptor shares the same file pointer if the object was a file.

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same file status flags).

The close-on-exec flag associated with the new file descriptor is set to remain
open across execv(2) system calls.

Get the close-on-exec flag associated with the file descriptor /d. If the low­
order bit is 0, the file will remain open across exec, otherwise the file will be
closed upon execution of exec.

Set the close-on-exec flag associated with /d to the low order bit of arg (0 or 1
as above).

F _GETFL Get descriptor status flags, as described below.

F _SETFL Set descriptor status flags.

F _GETOWN Get the process ID or process group currently receiving SIGIO and SIGURG
signals; process groups are returned as negative values.

F _SETOWN Set the process or process group to receive SIGIO and SIGURG signals; pro­
cess groups are specified by supplying arg as negative, otherwise arg is inter­
preted as a process ID.

The flags for the F _ GETFL and F _SETFL flags are as follows:

FNDELAY Non-blocking 110; if no data is available to a read call, or if a write operation
would block, the call returns -1 with the error EWOULDBLOCK.

Force each write to append at the end of file; corresponds to the 0 APPEND
flag of open (2) . -

FAPPEND

FASYNC Enable the SIGIO signal to be sent to the process group when I/O is possible,
e.g. upon availability of data to be read.

RETURN VALUE
Upon successful completion, the value returned depends on cmd as follows:

F_DUPFD
F_GETFD
F_GETFL
F_GETOWN

4th Berkeley Distribution

A new file descriptor.
Value of flag (only the low-order bit is defined).
Value of flags.
Value of file descriptor owner.

18 July 1983 1

FCNTL (2) UNIX Programmer's Manual FCNTL (2)

other Value other than -1.

Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Fentl will fail if one or more of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EMFILE] Cmd is F _DUPFD and the maximum allowed number of file descriptors are
currently open.

[EINV AL] Cmd is F DUPFD and arg is negative or greater the maximum allowable
number (see getdtablesize(2».

SEE ALSO

BUGS
close (2), execve (2), getdtablesize (2), open (2), sigvec(2)

The asynchronous 110 facilities of FNDELA Y and FASYNC are currently available only for tty
operations. No SIGIO signal is sent upon draining of output sufficiently for non-blocking writes
to occur.

4th Berkeley Distribution 18 July 1983 2

FLOCK (2) UNIX Programmer's Manual FLOCK (2)

NAME
flock - apply or remove an advisory lock on an open file

SYNOPSIS
#include < sys/ftle.h >
#deftneLOCK_SH 1
#deftne LOCK_EX 2
#deftneLOCK_NB 4
#deftneLOCK_UN 8

flock (fd, operation)
int fd, operation;

/. shared lock ./
/. exclusive lock ./
/. don't block when locking ./
/. unlock ./

DESCRIPTION

NOTES

Flock applies or removes an advisory lock on the file associated with the file descriptor fd. A
lock is applied by specifying an operation parameter which is the inclusive or of LOCK_SH or
LOCK_EX and, possibly, LOCK_NB. To unlock an existing lock operation should be
LOCK_UN.

Advisory locks allow cooperating processes to perform consistent operations on files, but do not
guarantee consistency (i.e. processes may still access files without using advisory locks possibly
resulting in inconsistencies).

The locking mechanism allows two types of locks: shared locks and exclusive locks. At any time
multiple shared locks may be applied to a file, but at no time are multiple exclusive, or both
shared and exclusive, locks allowed simultaneously on a file.

A shared lock may be upgraded to an exclusive lock, and vice versa, simply by specifying the
appropriate lock type~ this results in the previous lock being released and the new lock applied
(possibly after other processes have gained and released the lock).

Requesting a lock on an object which is already locked normally causes the caller to blocked
until the lock may be acquired. If LOCK_NB is included in operation, then this will not hap­
pen~ instead the call will fail and the error EWOULDBLOCK will be returned.

Locks are on files, not file descriptors. That is, file descriptors duplicated through dup(2) or
fork(2) do not result in multiple instances of a lock, but rather multiple references to a single
lock. If a process holding a lock on a file forks and the child explicitly unlocks the file, the
parent will lose its lock.

Processes blocked awaiting a lock may be awakened by signals.

RETURN VALUE
Zero is returned if the operation was successful~ on an error a - I is returned and an error code
is left in the global location errno.

ERRORS
The flock call fails if:

[EWOULDBLOCK]

[EBADF]

[EINVAL]

SEE ALSO

The file is locked and the LOCK_NB option was specified.

The argument fd is an invalid descriptor.

The argument fd refers to an object other than a file.

open(2), close(2), dup(2), execve(2), fork(2)

4th Berkeley Distribution 27 July 1983

FORK (2) UNIX Programmer's Manual FORK (2)

NAME
fork - create a new process

SYNOPSIS
pld - forkO
lnt pldj

DESCRIPTION
Fork causes creation of a new process. The new process (child process) is an exact copy of the
calling process except for the following:

The child process has a unique process ID.

The child process has a different parent process ID (i.e., the process ID of the parent pro­
cess) .

The child process has its own copy of the parent's descriptors. These descriptors refer­
ence the same underlying objects, so that, for instance, file pointers in file objects are
shared between the child and the parent, so that a Iseek(2) on a descriptor in the child
process can affect a subsequent read or write by the parent. This descriptor copying is also
used by the shell to establish standard input and output for newly created processes as
well as to set up pipes.

The child processes resource utilizations are set to 0; see setrlimit(2).

RETURN VALUE
Upon successful completion, fork returns a value of 0 to the child process and returns the pro­
cess ID of the child process to the parent process. Otherwise, a value of -1 is returned to the
parent process, no child process is created, and the global variable errno is set to indicate the
error.

ERRORS
Fork will fail and no child process will be created if one or more of the following are true:

[EAGAIN] The system-imposed limit {PROC_MAX} on the total number of processes
under execution would be exceeded.

[EAGAIN] The system-imposed limit {KID_MAX} on the total number of processes
under execution by a single user would be exceeded.

SEE ALSO
execve (2), wait (2)

4th Berkeley Distribution 12 February 1983 1

FSYNC (2) UNIX Programmer's Manual

NAME
rsync - synchronize a file's in-core state with that on disk

SYNOPSIS
fsync(fd)
tnt fd;

DESCRIPTION

FSYNC(2)

Fsync causes all modified data and attributes of fd to be moved to a permanent storage device.
This normally results in all in-core modified copies of buffers for the associated file to be writ­
ten to a disk.

Fsync should be used by programs which require a file to be in a known state; for example in
building a simple transaction facility.

RETURN VALUE
A 0 value is returned on success. A -1 value indicates an error.

ERRORS
The fsync fails if:

[EBADF] Fd is not a valid descriptor.

[EINV AL] Fd refers to a socket, not to a file.

SEE ALSO
sync (2) , sync(S), update(S)

BUGS
The current implementation of this call is expensive for large files.

4th Berkeley Distribution 12 February 1983 1

GETDT ABLESIZE (2) UNIX Programmer's Manual

NAME
getdtablesize - get descriptor table size

SYNOPSIS
nds - letdtablesize ()
int nds;

DESCRIPTION

GETDT ABLESIZE (2)

Each process has a fixed size descriptor table which is guaranteed to have at least 20 slots. The
entries in the descriptor table are numbered with small integers starting at O. The call getdta­
blesize returns the size of this table.

SEE ALSO
c)ose(2) , dup(2), open(2)

4th Berkeley Distribution 12 February 1983 1

GETGID (2) UNIX Programmer's Manual

NAME
getgid, getegid - get group identity

SYNOPSIS
lid - letlld ()
int lid;

eaid - letelld()
int eaid;

DESCRIPTION

GETGID (2)

Getgid returns the real group ID of the current process, getegid the effective group ID.

The real group ID is specified at login time.

The effective group ID is more transient, and determines additional access permission during
execution of a "set-group-ID" process, and it is for such processes that getgid is most useful.

SEE ALSO
getuid (2), setregid (2), setgid (3)

4th Berkeley Distribution 12 February 1983 1

GI·~·I'GROUPS(2) UN IX Progr,ilnrncr\ Manual

gctgroup~ _. get group access list

SYNOPSIS
It include <s)s/p<lrmn.h)

~l't~rotlJ!s(II gfOU PS. ~idsct)
int ll~roliPS. *gidsd;

1l1->:t'IUPTION

GI~TGI{OUPS(2)

(/d'p .. l"OlfIJS gcts the curn.'1l1 grnllp access list or till' lIscr process and stOI\'S it in thc arr;!y ,l)dscl. The
IXlralllClL'r II,!~I'IJUI)S indicaks the !lumher of' elltries which 1I1<ly he pbced in gidw'/. No Ilwre than
NCiROUPS, as ddined in <,-,),sl/ltllwnh>, will ever be rrturtled.

HETUltN V AI.UI-:
(,"".!!I"OIII'S rdllf'llS the 1l1l11lhcJ' or groups P!lt ill gids{'/. i\ v;dllC or () or llIol'l'indical l.'s t!J:ll the call
o.:..IICCl'l'lkd. ;\ \'aIUl' or -- I illdicatc:, tll:lt ;til ,-'ITOI' occllrn . .'d .. and the error code is storl'd ill the glo­
bal "Iri<lhk ("TIl/). II' <Ill ('ITllr (ll.TlIrS, Ilotilillg \;t1iLl is n:tlll'llcd ill gid\'('/.

EIU(OI~S

The pos';ihlc nl'ol's f()J' ,1!{'lgn l ll/J ;lre:

ll:.I:;\lll :1'1
[I:INVAI.I

SEE ALSO

The ~lrgllIlH.'Il{ p,idw', SIWcifil's <Ill invalid address.

The <lrglllllcllt 1I,!:roU/'S i.:; k:-.s lh~11l the 1l11lllhCI" or group,; thal could IX returncd.

setg,rollpsU), initgrollpsO)

4th Jkrkdcy Distrihution 7 July 198.J 1 .

GETHOSTID (2) UNIX Programmer's Manual

NAME
gethostid, sethostid - get/set unique identifier of current host

SYNOPSIS
hostld - lethostld ()
lnt hostld;

seth os tid (hostld) ,
lnt hostld;

DESCRIPTION

GETHOSTID (2)

Sethostid establishes a 32-bit identifier for the current processor which is intended to be unique
among all UNIX systems in existence. This is normally a DARPA Internet address for the
local machine. This call is allowed only to the super-user and is normally performed at boot
time.

Gethostid returns the 32-bit identifier for the current processor.

SEE ALSO
hostid (1), gethostname (2)

BUGS
32 bits for the identifier is too small.

4th Berkeley Distribution 12 February 1983

GETHOSTNAME (2) UNIX Programmer's Manual

NAME
gethostname, sethostname - get/set name of current host

SYNOPSIS
gethostname (name, namelen)
char .name;
lnt namelen;

sethostname(name, namelen}
char .name;
lnt namelen;

DESCRIPTION

GETHOSTNAME (2)

Gethostname returns the standard host name for the current processor, as previously set by
sethostname. The parameter name/en specifies the size of the name array. The returned name is
null-terminated unless insufficient space is provided.

Sethostname sets the name of the host machine to be name, which has length name/en. This
call is restricted to the super-user and is normally used only when the system is bootstrapped.

RETURN VALUE
If the call succeeds a value of 0 is returned. If the call fails, then a value of - 1 is returned and
an error code is placed int the global location errno.

ERRORS
The following errors may be returned by these calls:

[EFAULT] The name or name/en parameter gave an invalid address.

[EPERM] The caller was not the super-user.

SEE ALSO
gethostid (2)

BUGS
Host names are limited to 255 characters.

4th Berkeley Distribution 12 February 1983

G ETITIMER (2) UNIX Programmer's Manual G ETITIMER (2)

NAME
getitimer, setitimer - get/set value of interval timer

SYNOPSIS
#include < sys/time.h >
#define ITIMER_REAL 0
#define ITIMER_ VIRTUAL 1
#define ITIMER_PROF 2

getitimer(which, value}
int which;
struct itimerval -value;

setitimer(which, value, ovalue}
int which;
struct itimerval -value, -ovalue;

/- real time intervals -/
/- virtual time intervals -/
/- user and system virtual time -/

DESCRIPTION

NOTES

The system provides each process with three interval timers, defined in < sys/time. h > . The
getitimer call returns the current value for the timer specified in which, while the setitimer call
sets the value of a timer (optionally returning the previous value of the timer).

A timer value is defined by the itimerval structure:

struct itimerval {

}~

struct timeval it_interval~
struct timeval it_ value~

/. timer interval ./
/. current value ./

If it_value is non-zero, it indicates the time to the next timer expiration. If it_interval is non­
zero, it specifies a value to be used in reloading it_ value when the timer expires. Setting
it value to 0 disables a timer. Setting it interval to 0 causes a timer to be disabled after its next
eipiration (assuming it_value is non-zero).

Time values smaller than the resolution of the system clock are rounded up to this resolution
(on the V AX, 10 microseconds).

The ITIMER_REAL timer decrements in real time. A SIG ALRM signal is delivered when this
timer expires.

The ITIMER_ VIRTUAL timer decrements in process virtual time. It runs only when the pro­
cess is executing. A SIGVT ALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is run­
ning on behalf of the process. It is designed to be used by interpreters in statistically profiling
the execution of interpreted programs. Each time the ITIMER_PROF timer expires, the SIG­
PROF signal is delivered. Because this signal may interrupt in-progress system calls, programs
using this timer must be prepared to restart interrupted system calls.

Three macros for manipulating time values are defined in < sys/time. h >. Timerc/ear sets a time
value to zero, timerisset tests if a time value is non-zero, and timercmp compares two time
values (beware that > == and < == do not work with this macro).

RETURN VALUE
If the calls succeed, a value of 0 is returned. If an error occurs, the value -1 is returned, and
a more precise error code is placed in the global variable errno.

4th Berkeley Distribution 27 July 1983

G ETITIMER (2) UNIX Programmer's Manual GETITIMER (2)

ERRORS .
The possible errors are:

[EFAULT] The value structure specified a bad address.

[EINVAL] A value structure specified a time was too large to be handled.

SEE ALSO
sigvec(2), gettimeofday(2)

4th Berkeley Distribution 27 July 1983 2

GETPAGESIZE (2) UNIX Programmer's Manual

NAME
getpagesize - get system page size

SYNOPSIS
pagesize == i;etpagesize ()
int pagesize;

DESCRIPTION

GETPAGESIZE (2)

Getpagesize returns the number of bytes in a page. Page granularity is the granularity of many
of the memory managemen t calls.

The page size is a system page size and may not be the same as the underlying hardware page
size.

SEE ALSO
sbrk (2), pagesize (1)

4th Berkeley Distribution 18 July 1983 1

GETPEERNAME (2) UNIX Programmer's Manual GETPEERNAME (2)

NAME
getpeername - get name of connected peer

SYNOPSIS
getpeername(s, name, namelen)
int s;
struct sockaddr -name;
int -namelen;

DESCRIPTION
Getpeername returns the name of the peer connected to socket s. The name/en parameter
should be initialized to indicate the amount of space pointed to by name. On return it contains
the actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOTCONN] The socket is not connected.

[ENOBUFS]

[EFAULT]

Insufficient resources were available in the system to perform the operation.

The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO

BUGS

bind (2), socket (2). getsockname (2)

Names bound to sockets in the UNIX domain are inaccessible; getpeername returns a zero
length name.

4th Berkeley Distribution 21 July 1983 1

GETPGRP(2) UNIX Programmer's Manual GETPGRP (2)

NAME
getpgrp - get process group

SYNOPSIS
pgrp == getpgrp(pid)
int prgp;
int pid;

DESCRIPTION
The process group of the specified process is returned by getpgrp. If pid is zero, then the call
applies to the current process.

Process groups are used for distribution of signals, and by terminals to arbitrate requests for
their input: processes which have the same process group as the terminal are foreground and
may read, while others will block with a signal if they attempt to read.

This call is thus used by programs such as csh(I) to create process groups in implementing job
control. The TIOCGPGRP and TIOCSPGRP calls described in tty(4) are used to get/set the
process group of the control terminal.

SEE ALSO
setpgrp(2), getuid(2), tty(4)

4th Berkeley Distribution 2 July 1983 1

GETPID (2) UNIX Programmer's Manual

NAME
getpid, getppid - get process identification

SYNOPSIS
pld - letpld ()
1001 pld;

ppld - letppld ()
1001 ppld;

DESCRIPTION

GETPID (2)

Getpid returns the process ID of the current process. Most often it is used with the host
identifier gethostid(2) to generate uniquely-named temporary files.

Getppid returns the process ID of the parent of the current process.

SEE ALSO
gethostid (2)

4th Berkeley Distribution 12 February 1983 1

GETPRIORITY (2) UNIX Programmer's Manual GETPRIORITY (2)

NAME
getpriority, setpriority - get/set program scheduling priority

SYNOPSIS
#include < sys/resource.h >
#deftne PRIO_PROCESS 0
#define PRIO_PGRP 1
#define PRIO_USER 2

prio = getpriority(which, who}
int prio, which, who;

setpriority(which, who, prio}
int which, who, prio;

DESCRIPTION

/. process • /
/. process group ./
/. user id ./

The scheduling priority of the process, process group, or user, as indicated by which and who is
obtained with the get priority call and set with the setpriority call. Which is one of
PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and who is interpreted relative to which (a
process identifier for PRIO PROCESS, process group identifier for PRIO PGRP, and a user ID
for PRIO_USER). Prio is -a value in the range -20 to 20. The default priority is O~ lower
priorities cause more favorable scheduling.

The get priority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The set priority call sets the priorities of all of the specified processes to the
specified value. Only the super-user may lower priorities.

RETURN VALUE
Since get priority can legitimately return the value -1, it is necessary to clear the external vari­
able errno prior to the call, then check it afterward to determine if a -1 is an error or a legiti­
mate value. The set priority call returns 0 if there is no error. or - 1 if there is.

ERRORS
Getpriority and set priority may return one of the following errors:

[ESRCH] No process(es) were located using the which and who values specified.

[EINVAL] Which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

In addition to the errors indicated above, set priority may fail with one of the following errors
returned:

[EACCES]

[EACCES]

SEE ALSO

A process was located, but neither its effective nor real user ID matched the
effective user ID of the caller.

A non super-user attempted to change a process priority to a negative value.

nice(I), fork(2), renice(8)

4th Berkeley Distribution 18 July 1983

G ETRLIMIT (2) UNIX Programmer's Manual GETRLIMIT (2)

NAME
getrlimit, setrlimit - control maximum system resource consumption

SYNOPSIS
#include < sys/time.h >
#include <sys/resource.h>

getrlimit (resource, rip)
Int resource;
struct rlimlt -rip;

setrlimit (resource, rip)
int resource;
struct rlimit -rip;

DESCRIPTION
Limits on the consumption of system resources by the current process and each process it
creates may be obtained with the getrlimit call, and set with the setrlimit call.

The resource parameter is one of the following:

RLIMIT _CPU the maximum amount of cpu time (in milliseconds) to be used by each pro­
cess.

RLIMIT _FSIZE the largest size, in bytes, of any single file which may be created.

RLIMIT _DATA the maximum size, in bytes, of the data segment for a process~ this defines
how far a program may extend its break with the sbrk(2) system call.

RLIMIT_STACK the maximum size, in bytes, of the stack segment for a process~ this defines
how far a program's stack segment may be extended, either automatically by
the system, or explicitly by a user with the sbrk(2) system call.

RLIMIT _CORE the largest size, in bytes, of a core file which may be created.

RLIMIT_RSS the maximum size, in bytes, a process's resident set size may grow to. This
imposes a limit on the amount of physical memory to be given to a process~
if memory is tight, the system will prefer to take memory from processes
which are exceeding their declared resident set size.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a
process may receive a signal (for example, if the cpu time is exceeded), but it will be allowed
to continue execution until it reaches the hard limit (or modifies its resource limit). The rlimil
structure is used to specify the hard and soft limits on a resource,

struct rlimit {
int
int

}~

r1im_cur~
r1im_max~

I- current (soft) limit -I
I- hard limit -/

Only the super-user may raise the maximum limits. Other users may only alter rlim_cur within
the range from 0 to rlim_max or (irreversibly) lower rlim_max.

An "infinite" value for a limit is defined as RLIMIT_INFINITY (Ox1fffffff).

Because this information is stored in the per-process information, this system call must be exe­
cuted directly by the shell if it is to affect all future processes created by the shell; limit is thus a
built-in command to csh (I).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way: a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!).

4th Berkeley Distribution 7 July 1983 1

G ETRLIMIT (2) UNIX Programmer's Manual G ETRLIMIT (2)

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the soft cpu time
limit is exceeded, a signa! SIGXCPU is sent to the offending process.

RETURN VALUE
A 0 return value indicates that the call succeeded, changing or returning the resource limit. A
return value of -1 indicates that an error occurred, and an error code is stored in the global
location errno.

ERRORS
The possible errors are:

[EF AUL T] The address specified for rip is invalid.

[EPERM] The limit specified to setrlimit would have
raised the maximum limit value, and the caller is not the super-user.

SEE ALSO
cshO), quota(2)

BUGS
There should be limit and unlimit commands in sh (1) as well as in csh.

4th Berkeley Distribution 7 July 1983 2

GETRUSAGE (2) UNIX Programmer's Manual GETRUSAGE (2)

NAME
getrusage - get information about resource utilization

SYNOPSIS
#Include < sys/tlme.h >
#Include < sys/resource.h >
#deftne RUSAGE_SELF 0 I- calling process -I
#deftne RUSAGE_CHILDREN -1 I- terminated child processes -I
letrusale(who, rusage)
Int who;
struct rusale -rusale;

DESCRIPTION
Getrusage returns information describing the resources utilized by the current process, or all its
terminated child processes. The who parameter is one of RUSAGE SELF and
RUSAGE_CHILDREN. If rusage is non-zero, the buffer it points to will be filled in with the
following structure:

struct rusage (

);

struct timeval ru_utime~
struct timeval ru_stime;
int ru_maxrss;
int ruJxrss;
int ruJdrss;
int ruJsrss;
int ru_minflt~
int ru_majflt~
int ru_nswap;
int ruJnblock;
int ru_oublock;
int ru_msgsnd;
int ru_msgrcv;
int ru_nsignals;
int ru_nvcsw~
int ru_nivcsw;

/- user time used -/
/- system time used -/

/- integral shared memory size -/
/- integral unshared data size -/
/- integral unshared stack size -/
/- page reclaims -/
/- page faults -/
/- swaps -/
/- block input operations -/
/- block output operations -/
/- messages sent -/
/- messages received -/
/- signals received -/
/- voluntary context switches -/
/- involuntary context switches -/

The fields are interpreted as follows:

ru_utime

ru_stime

ru_maxrss

ruJxrss

ruJdrss

ruJsrss

the total amount of time spent executing in user mode.

the total amount of time spent in the system executing on behalf of the
process (es) .

the maximum resident set size utilized (in kilobytes).

an "integral" value indicating the amount of memory used which was also
shared among other processes. This value is expressed in units of kilobytes -
seconds-of-execution and is calculated by summing the number of shared
memory pages in use each time the internal system clock ticks and then
averaging over 1 second intervals.

an integral value of the amount of unshared memory residing in the data seg­
ment of a process (expressed in units of kilobytes - seconds-of-execution).

an integral value of the amount of unshared memory residing in the stack seg­
ment of a process (expressed in units of kilobytes - seconds-of-execution).

the number of page faults serviced without any ilo activity; here i/o activity is

4th Berkeley Distribution 18 July 1983 1

GETRUSAGE (2) UNIX Programmer's Manual GETRUSAGE (2)

NOTES

ru_majflt

ru_nswap

rujnblock

ru_outblock

ru_msgsnd

ru_msgrcv

ru _ nsignals

ru_nvcsw

ru_nivcsw

avoided by "reclaiming" a page frame from the list of pages awaiting realloca­
tion.

the number of page faults serviced which required i/o activity.

the number of times a process was "swapped" out of main memory.

the number of times the file system had to perform input.

the number of times the file system had to perform output.

the number of ipc messages sent.

the number of ipc messages received.

the number of signals delivered.

the number of times a context switch resulted due to a process voluntarily giv­
ing up the processor before its time slice was completed (usually to await avai­
lability of a resource).

the number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

The numbers ru_inhlock and ru_outblock account only for real i/o; data supplied by the cacheing
mechanism is charged only to the first process to read or write the data.

SEE ALSO
gettimeofday(2), wait(2)

BUGS
There is no way to obtain information about a child process which has not yet terminated.

4th Berkeley Distribution 18 July 1983 2

GETSOCKNAME (2) UNIX Programmer's Manual GETSOCKNAME (2)

NAME
getsockname - get socket name

SYNOPSIS
getsockname(s, name, namelen}
lnt 5;
struct sockaddr -name;
lnt -namelen;

DESCRIPTION
Getsockname returns the current name for the specified socket. The name/en parameter should
be initialized to indicate the amount of space pointed to by name. On return it contains the
actual size of the name returned (in bytes).

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOBUFS] Insufficient resources were available in the system to perform the operation.

[EF AUL T] The name parameter points to memory not in a valid part of the process
address space.

SEE ALSO

BUGS

bind (2), socket (2)

Names bound to sockets in the UNIX domain are inaccessible~ getsockname returns a zero
length name.

4th Berkeley Distribution 1 April 1983

GETSOCKOPT (2) UNIX Programmer's Manual GETSOCKOPT (2)

NAME
getsockopt, setsockopt - get and set options on sockets

SYNOPSIS
#include < sys/types.h >
#include <sys/socket.h>

getsockopt (5, level, optname, optval, optlen)
int s, level, optname;
char .optval;
int .optlen;

setsockopt(s, level, optname, optval, optlen)
int s, level, optname;
char .optval;
int optlen;

DESCRIPTION
Getsockopt and setsockopt manipulate options associated with a socket. Options may exist at mul­
tiple protocollevels~ they are always present at the uppermost Hsocket" level.

When manipulating socket options the level at which the option resides and the name of the
option must be specified. To manipulate options at the Hsocket" level. level is specified as
SOL_SOCKET. To manipulate options at any other level the protocol number of the appropri­
ate protocol controlling the option is supplied. For example. to indicate an option is to be
interpreted by the TCP protocol, level should be set to the protocol number of TCP~ see
getprotoent(3N) .

The parameters optval and opt/en are used to access option values for setsockopt. For getsockopt
they identify a buffer in which the value for the requested option (s) are to be returned. For
getsockopt. opt/en is a value-result parameter, initially containing the size of the buffer pointed
to by optval, and modified on return to indicate the actual size of the value returned. If no
option value is to be supplied or returned, optval may be supplied as O.

Optname and any specified options are passed uninterpreted to the appropriate protocol module
for interpretation. The include file < sys/socket.h > contains definitions for "socket" level
options~ see socket (2) . Options at other protocol levels vary in format and name, consult the
appropriate entries in (4P).

RETURN VALUE
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] The argument s is not a valid descriptor.

[ENOTSOCK] The argument s is a file, not a socket.

[ENOPROTOOPT] The option is unknown.

[EFAUL T] The options are not in a valid part of the process address space.

SEE ALSO
socket(2), getprotoent(3N)

4th Berkeley Distribution 7 July 1983

GETTIMEOFDA Y (2) UNIX Programmer's Manual GETTIMEOFDA Y (2)

NAME
gettimeofday, settimeofday - getlset date and time

SYNOPSIS
#include < sys/time.h >
gettimeofday <tp, tzp)
strud timeval *tp;
strud timezone *tzp;

settimeofday <tp, tzp)
strud timeval *tp;
strud timezone *tzp;

DESCRIPTION
Gettimeo/day returns the system's notion of the current Greenwich time and the current time
zone. Time returned is expressed relative in seconds and microseconds since midnight January
1, 1970.

The structures pointed to by tp and tzp are defined in < sysltime.h> as:

struct timeval {
u Jong tv _ sec~
long tv _ usec~

} ~

struct timezone {

1* seconds since Jan. 1, 1970 *1
1* and microseconds *1

int tz_minuteswest~/* of Greenwich *1
int tz_dsttime~ 1* type of dst correction to apply *1

} ~

The timezone structure indicates the local time zone (measured in minutes of time westward
from Greenwich), and a flag that, if nonzero, indicates that Daylight Saving time applies locally
during the appropriate part of the year.

Only the super-user may set the time of day.

RETURN
A 0 return value indicates that the call succeeded. A-I return value indicates an error
occurred, and in this case an error code is stored into the global variable errno.

ERRORS
The following error codes may be set in errno:

[EFAULT] An argument address referenced invalid memory.

[EPERM] A user other than the super-user attempted to set the time.

SEE ALSO

BUGS

date(I), ctime(3)

Time is never correct enough to believe the microsecond values. There should a mechanism
by which, at least, local clusters of systems might synchronize their clocks to millisecond granu­
larity.

4th Berkeley Distribution 27 July 1983 1

GETUID (2) UNIX Programmer's Manual

NAME
getuid, geteuid - get user identity

SYNOPSIS
uld - Ketuld ()
Int uld;

euld - Keteuld ()
Int euld;

DESCRIPTION

GETUID (2)

Getuid returns the real user ID of the current process, geteuid the effective user ID.

The real user ID identifies the person who is logged in. The effective user ID gives the process
additional permissions during execution of "set-user-ID" mode processes, which use getuid to
determine the real-user-id of the process which invoked them.

SEE ALSO
getgid (2), setreuid (2)

4th Berkeley Distribution 12 February 1983

IOCTL (2) UNIX Programmer's Manual IOCTL (2)

NAME
ioctl - control device

SYNOPSIS
#include < sys/ioctl.h >
ioctl (d, request, argp)
int d, request;
char .argp;

DESCRIPTION
loctl performs a variety of functions on open descriptors. In particular. many operating charac­
teristics of character special files (e.g. terminals) may be controlled with iocrl requests. The
writeups of various devices in section 4 discuss how ioctl applies to them.

An ioctl request has encoded in it whether the argument is an Hin" parameter or Hout" param­
eter, and the size of the argument argp in bytes. Macros and defines used in specifying an ioctl
request are located in the file < sys/ioetl.h>.

RETURN VALUE
If an error has occurred, a value of -1 is returned and errllo is set to indicate the error.

ERRORS
Joerl will fail if one or more of the following are true:

[EBADF] D is not a valid descriptor.

[ENOTTY] D is not associated with a character special device.

[ENOTTY] The specified request does not apply to the kind of object which the descriptor
d references.

[EINVAL] Request or argp is not valid.

SEE ALSO
execve(2), fcntI(2). mt(4), tty(4), intro(4N)

4th Berkeley Distribution 7 July 1983 1

KILL (2) UNIX Programmer's Manual KILL (2)

NAME
kill - send signal to a process

SYNOPSIS
kill (pid, sig)
int pid, sig;

DESCRIPTION
Kill sends the signal sig to a process, specified by the process number pid. Sig may be one of
the signals specified in sigved2), or it may be 0, in which case error checking is performed but
no signal is actually sent. This can be used to check the validity of pid.

The sending and receiving processes must have the same effective user ID, otherwise this call
is restricted to the super-user. A single exception is the signal SIGCONT which may always be
sent to any child or grandchild of the current process.

If the process number is 0, the signal is sent to all other processes in the sender's process
group; this is a variant of killpg(2).

If the process number is -1, and the user is the super-user, the signal is broadcast universally
except to system processes and the process sending the signal.

Processes may send signals to themselves.

RETURN VALUE
Upon successful completion. a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Kill will fail and no signal will be sent if any of the following occur:

[EINV AL] Sig is not a valid signal number.

[ESRCH] No process can be found corresponding to that specified by pid.

[EPERM]

SEE ALSO

The sending process is not the super-user and its effective user id does not
match the effective user-id of the receiving process.

getpid (2), getpgrp(2), killpg(2), sigved2)

4th Berkeley Distribution 27 July 1983

KILLPG (2) UNIX Programmer's Manual

NAME
killpg - send signal to a process group

SYNOPSIS
killpg (pgrp, sig)
int pgrp, sig;

DESCRIPTION

KILLPG (2)

Killpg sends the signal sig to the process group pgrp. See sigvec(2) for a list of signals.

The sending process and members of the process group must have the same effective user ID,
otherwise this call is restricted to the super-user. As a single special case the continue signal
SIGCONT may be sent to any process which is a descendant of the current process.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
the global variable errno is set to indicate the error.

ERRORS
Killpg will fail and no signal will be sent if any of the following occur:

[EINV ALl Sig is not a valid signal number.

[ESRCH) No process can be found corresponding to that specified by pid.

[EPERM] The sending process is not the super-user and one or more of the target
processes has an effective user ID different from that of the sending process.

SEE ALSO
kiI1(2), getpgrp(2), sigved2)

4th Berkeley Distribution 27 July 1983 1

LINK (2) UNIX Programmer's Manual LINK (2)

NAME
link - make a hard link to a file

SYNOPSIS
link (namel, name2)
char .namel, .name2;

DESCRIPTION
A hard link to name} is created; the link has the name name2. Name} must exist.

With hard links, both name} and name2 must be in the same file system. Unless the caller is
the super-user, namel must not be a directory. Both the old and the new link share equal
access and rights to the underlying object.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Link will fail and no link will be created if one or more of the following are true:

[EPERM] Either pathname contains a byte with the high-order bit set.

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[ENOENT]

[EEXIST]

[EPERM]

[EXDEV]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

Either pathname was too long.

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by name} does not exist.

The link named by name2 does exist.

The file named by name} is a directory and the effective user ID is not super­
user.

The link named by name2 and the file named by name} are on different file
systems.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.

One of the pathnames specified is outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

symlink(2), unIink(2)

4th Berkeley Distribution 12 February 1983

LISTEN (2) UNIX Programmer's Manual

NAME
listen - listen for connections on a socket

SYNOPSIS
listen (s, b-.cklog)
lnt s, backlog;

DESCRIPTION

LISTEN (2)

To accept connections, a socket is first created with socket (2) , a backlog for incoming connec­
tions is specified with listen(2) and then the connections are accepted with accept(2). The listen
call applies only to sockets of type SOCK_STREAM or SOCK_PKTSTREAM.

The backlog parameter defines the maximum length the queue of pending connections may
grow to. If a connection request arrives with the queue full the client will receive an error wi th
an indication of ECONNREFUSED.

RETURN VALUE
A 0 return value indicates success; -1 indicates an error.

ERRORS
The call fails if:

[EBADF]

[ENOTSOCK]

[EOPNOTSUPP]

SEE ALSO

The argument s is not a valid descriptor.

The argument s is not a socket.

The socket is not of a type that supports the operation listen.

accept (2), connect (2), socket (2)

BUGS
The backlog is currently limited (silently) to S.

4th Berkeley Distribution 12 February 1983 1

LSEEK (2) UNIX Programmer's Manual LSEEK (2)

NAME
lseek - move read/write pointer

SYNOPSIS
#define L_SET 0 /- set the seek pointer -/
#define L_INCR 1 /- increment the seek pointer -/
#define L_XTND 2 /- extend the file size -/

pos == Iseek (d, offset, whence)
Int pos;
lnt d, offset, whence;

DESCRIPTION

NOTES

The descriptor d refers to a file or device open for reading and/or writing. Lseek sets the file
pointer of d as follows:

If whence is L_SET, the pointer is set to offiet bytes.

If whence is L_INCR, the pointer is set to its current location plus offset.

If whence is L_XTND, the pointer is set to the size of the file plus offiet.

Upon successful completion, the resulting pointer location as measured in bytes from beginning
of the file is returned. Some devices are incapable of seeking. The value of the pointer associ­
ated with such a device is undefined.

Seekin~ far beyond the end of a file, then writing, creates a gap or "hole", which occupies no
physical space and reads as zeros.

RETURN V ALliE
Upon successful completion, a non-negative integer, the current file pointer value, is returned.
Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
Lseek will fail and the file pointer will remain unchanged if:

[EBADF] Fildes is not an open file descriptor.

[ESPIPE]

[EINVAL]

[EINVAL]

Fildes is associated with a pipe or a socket.

Whence is not a proper value.

The resulting file pointer would be negative.

SEE ALSO
dup(2), open (2)

BUGS
This document's use of whence is incorrect English, but maintained for historical reasons.

4th Berkeley Distribution 7 July 1983

MKDIR (2) UNIX Programmer's Manual MKDIR (2)

NAME
mkdir - make a directory file

SYNOPSIS
mkdir(path, mode)
char .path;
int mode;

DESCRIPTION
Mkdir creates a new directory file with name path. The mode of the new file is initialized from
mode. (The protection part of the mode is modified by the process's mode mask~ see
umask(2».

The directory's owner ID is set to the process's effective user ID. The directory's group 10 is
set to that of the parent directory in which it is created.

The low-order 9 bits of mode are modified by the process's file mode creation mask: all bits set
in the process's file mode creation mask are cleared. See umask(2).

RETURN VALUE
A 0 return value indicates success. A-I return value indicates an error, and an error code is
stored in errno.

ERRORS
Mkdir will fail and no directory will be created if:

[EPERM] The process's effective user 10 is not super-user.

[EPERM] The path argument contains a byte with the high-order bit set.

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT}

[ELOOP]

[EIO]

SEE ALSO

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

An 110 error occured while writing to the file system.

chmod (2), stat (2), umask (2)

4th Berkeley Distribution 27 July 1983 1

MKNOD (2) UNIX Programmer~s Manual MKNOD (2)

NAME
mknod - make a special file

SYNOPSIS
mknod (path, mode, dev)
char .path;
lnt mode, dev;

DESCRIPTION
Mknod creates a new file whose name is path. The mode of the new file (including special file
bits) is initialized from mode. (The protection part of the mode is modified by the process's
mode mask~ see umask(2». The first block pointer of the i-node is initialized from devand is
used to specify which device the special file refers to.

If mode indicates a block or character special file, dev is a configuration dependent specification
of a character or block 110 device. If mode does not indicate a block special or character special
device, dev is ignored.

Mknod may be invoked only by the super-user.

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
Mknod will fail and the file mode will be unchanged if:

[EPERM] The process's effective user ID is not super-user.

[EPERM] The pathname contains a character with the high-order bit set.

[ENOTDIR]

[ENOENT]

[EROFS]

[EEXIST]

[EFAULT]

[ELOOP]

SEE ALSO

A component of the path prefix is not a directory.

A component of the path prefix does not exist.

The named file resides on a read-only file system.

The named file exists.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

chmod(2), 5tat(2), umask(2)

4th Berkeley Distribution 2 July 1983

MOUNT (2) UNIX Programmer's Manual MOUNT(2)

NAME
mount, umount - mount or remove file system

SYNOPSIS
mount(special, name, rwflag)
char -special, -name;
int rwflag;

umount (special>
char -special;

DESCRIPTION
Mount announces to the system that a removable file system has been mounted on the block­
structured special file special; from now on. references to file name will refer to the root file on
the newly mounted file system. Special and name are pointers to null-terminated strings con­
taining the appropriate path names.

Name must exist already. Name must be a directory. Its old contents are inaccessible while the
file system is mounted.

The rwflag argument determines whether the file system can be written on~ if it is 0 writing is
allowed, if non-zero no writing is done. Physically write-protected and magnetic tape file sys­
tems must be mounted read-only or errors will occur when access times are updated, whether
or not any explicit write is attempted.

Umount announces to the system that the special file is no longer to contain a removable file
system. The associated file reverts to its ordinary interpretation.

RETURN VALUE
Mount returns 0 if the action occurred. -1 if special is inaccessible or not an appropriate file, if
name does not exist, if special is already mounted, if name is in use, or if there are already too
many file systems mounted.

Umount returns 0 if the action occurred~ -1 if if the special file is inaccessible or does not have
a mounted file system, or if there are active files in the mounted file system.

ERRORS
Mount will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV]

[ENOTBLK]

[ENXIO]

[EPERM]

[ENOTDIR]

[EROFS]

[EBUSY]

[EBUSY]

[EBUSY]

[EBUSY]

[EBUSY]

Special does not exist.

Special is not a block device.

The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

The path name contains a character with the high-order bit set.

A component of the path prefix in name is not a directory.

Name resides on a read-only file system.

Name is not a directory, or another process currently holds a reference to it.

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of range
block size.

Not enough memory was available to read the cylinder group information for
the file system.

An i/o error occurred while reading the super block or cylinder group informa­
tion.

4th Berkeley Distribution 27 July 1983 1

MOUNT (2) UNIX Programmer's Manual MOUNT (2)

Umount may fail with one of the following errors:

[NODEV] The caller is not the super-user;

[NODEV]

[ENOTBLK]

[ENXIO]

[EINVAL]

[EBUSY]

Specia I does not exist.

Special is not a block device.

The major device number of special is out of range {this indicates no device
driver exists for the associated hardware}.

The requested device is not in the mount table.

A process is holding a reference to a file located on the file system.

SEE ALSO
mount(8), umount(8)

BUGS
The error codes are in a state of disarray~ too many errors appear to the caller as one value.

4th Berkeley Distribution 27 July 1983 2

OPEN (2) UNIX Programmer's Manual OPEN (2)

NAME
open - open a file for reading or writing, or create a new file

SYNOPSIS
#include < sys/file.h >
open (path, flags, mode)
char .path;
Int flags, mode;

DESCRIPTION
Open opens the file path for reading and/or writing, as specified by the flags argument and
returns a descriptor for that file. The flags argument may indicate the file is to be created if it
does not already exist (by specifying the 0_ CREA T flag), in which case the file is created with
mode mode as described in chmod(2) and modified by the process' umask value (see
umask(2».

Path is the address of a string of ASCII characters representing a path name, terminated by a
null character. The flags specified are formed by oring the following values

O_RDONLY open for reading only
0_ WRONL Y open for writing only
O_RDWR open for reading and writing
O_NDELAY do not block on open
O_APPEND append on each write
0_ CREA T create file if it does not exist
O_TRUNC truncate size to 0 ° _EXCL error if create and file exists

Opening a file with O_APPEND set causes each write on the file to be appended to the end. If
O_TRUNC is specified and the file exists, the file is truncated to zero length. If O_EXCL is sel
with 0_ CREA T, then if the file already exists. the open returns an error. This can be used to
implement a simple exclusive access locking mechanism. If the O_NDELA Y flag is specified
and the open call would result in the process being blocked for some reason (e.g. waiting for
carrier on a dialup line), the open returns immediately. The first time the process attempts to
perform i/o on the open file it will block (not currently implemented).

Upon successful completion a non-negative integer termed a file descriptor is returned. The file
pointer used to mark the current position within the file is set to the beginning of the file.

The new descriptor is set to remain open across execve system calls~ see c/ose(2).

No process may have more than {OPEN_MAX} file descriptors open simultaneously.

ERRORS
The named file is opened unless one or more of the following are true:

[EPERM1 The pathname contains a character with the high-order bit set.

[ENOTDIR1

[ENOENT1

[EACCES]

[EACCES]

[EISDIR1

[EROFS]

A component of the path prefix is not a directory.

0_ CREA T is not set and the named file does not exist.

A component of the path prefix denies search permission.

The required permissions (for reading and/or writing) are denied for the
named flag.

The named file is a directory, and the arguments specify it is to be opened for
writting.

The named file resides on a read-only file system, and the file is to be
modified.

4th Berkeley Distribution 2 July 1983 1

OPEN (2)

[EMFILE]

[ENXIO]

[ETXTBSY]

[EFAULT]

[ELOOP]

[EEXIST]

[ENXIO]

[EOPNOTSUPP]

SEE ALSO

UNIX Programmer's Manual OPEN (2)

{OPEN_MAX} file descriptors are currently open.

The named file is a character special or block special file, and the device associ­
ated with this special file does not exist.

The file is a pure procedure (shared text) file that is being executed and the
open call requests write access.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

o _EXCL was specified and the file exists.

The O_NDELA Y flag is given, and the file is a communications device on
which their is no carrier present.

An attempt was made to open a socket (not currently implemented).

chmod(2), close(2), dup(2), Iseek(2), read(2), write(2), umask(2)

4th Berkeley Distribution 2 July 1983 2

PIPE (2) UNIX Programmer's Manual PIPE (2)

NAME
pipe - create an interprocess communication channel

SYNOPSIS
plpe(flldes)
lnt flldeslll;

DESCRIPTION
The pipe system call creates an 110 mechanism called a pipe. The file descriptors returned can
be used in read and write operations. When the pipe is written using the descriptor fi/des [1 1 up
to 4096 bytes of data are buffered before the writing process is suspended. A read using the
descriptor fi/des[O] will pick up the data.

It is assumed that after the pipe has been set up, two (or more) cooperating processes (created
by subsequent fork calls) will pass data through the pipe with read and write calls.

The shell has a syntax to set up a linear array of processes connected by pipes.

Read calls on an empty pipe (no buffered data) with only one end (all write file descriptors
closed) returns an end-of-file.

Pipes are really a special case of the socketpair(2) call and, in fact, are implemented as such in
the system.

A signal is generated if a write on a pipe with only one end is attempted.

RETURN VALUE
The function value zero is returned if the pipe was created; -1 if an error occurred.

ERRORS
The pipe call· will fail if:

[EMFILE] Too many descriptors are active.

[EFAULT] The fi/des buffer is in an invalid area of the process's address space.

SEE ALSO
shU), read(2), write(2), fork(2), socketpair(2)

BUGS
Should more than 4096 bytes be necessary in any pipe among a loop of processes, deadlock will
occur.

4th Berkeley Distribution 12 February 1983 1

PROFIL (2) UNIX Programmer's Manual PROFIL (2)

NAME
profil - execution time profile

SYNOPSIS
profil (buff, bufsiz, offset, scale)
char -buff;
int bufsiz, offset, scale;

DESCRIPTION
BL{ffpoints to an area of core whose length (in bytes) is given by bUfsi:. After this call, the
user's program counter (pC> is examined each clock tick (IO milliseconds) ~ o.llset is subtracted
from it, and the result multiplied by scale. If the resulting number corresponds to a word
inside buff, that word is incremented.

The scale is interpreted as an unsigned. fixed-point fraction with binary point at the left:
OxIOOOO gives a 1-1 mapping of pc's to words in buff; Ox8000 maps each pair of instruction
words together. Ox2 maps all instructions onto the beginning of bL{ff (producing a non­
interrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a bl(/si: of
O. Profiling is turned off when an execve is executed, but remains on in child and parent both
after a fork. Profiling is turned off if an update in bl(irwould cause a memory fault.

RETURN VALVE
A 0, indicating success, is always returned.

SEE ALSO
gprof(I), setitimed2), monitod3)

4th Berkeley Distribution 12 February 1983

PTRACE (2) UNIX Programmer's Manual PTRACE (2)

NAME
ptrace - process trace

SYNOPSIS
#ioclude < sigoal.h>

ptrace(request, pid, addr, data)
iot request, pid, *addr, data;

DESCRIPTION
Ptrace provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of break­
point debugging. There are four arguments whose interpretation depends on a request argu­
ment. Generally, pid is the process ID of the traced process, which must be a child (no more
distant descendant) of the tracing process. A process being traced behaves normally until it
encounters some signal whether internally generated like "illegal instruction" or externally gen­
erated like "interrupt". See sigl!ed2) for the list. Then the traced process enters a stopped
state and its parent is notified via wait(2). When the child is in the stopped state. its core
image can be examined and modified using ptrace. If desired, another ptrace request can then
cause the child either to terminate or to continue, possibly ignoring the signal.

The value of the request argument determines the precise action of the call:

o This request is the only one used by the child process: it declares that the process is to be
traced by its parent. All the other arguments are ignored. Peculiar results will ensue if the
parent does not expect to trace the child.

1,2 The word in the child process's address space at addr is returned. If I and D space are
separated (e.g. historically on a pdp-II), request I indicates I space, 2 D space. Add, must
be even. The child must be stopped. The input data is ignored.

3 The word of the system's per-process data area corresponding to addr is returned. Addr
must be even and less than 512. This space contains the registers and other information
about the process: its layout corresponds to the user structure in the system.

4,5 The given data is written at the word in the process's address space corresponding to add,.
which must be even. No useful value is returned. If I and D space are separated, request
4 indicates I space,S D space. Attempts to write in pure procedure fail if another process
is executing the same file.

6 The process's system data is written, as it is read with request 3. Only a few locations can
be written in this way: the general registers. the floating point status and registers. and cer­
tain bits of the processor status word.

7 The data argument is taken as a signal number and the child's execution continues at loca­
tion addr as if it had incurred that signal. Normally the signal number will be either 0 to
indicate that the signal that caused the stop should be ignored. or that value fetched out of
the process's image indicating which signal caused the stop. If add, is (jnt .)1 then execu­
tion continues from where it stopped.

8 The traced process terminates.

9 Execution continues as in request 7: however, as soon as possible after execution of at
least one instruction, execution stops again. The signal number from the stop is
SIGTRAP. (On the VAX-l1 the T-bit is used and just one instruction is executed'> This is
part of the mechanism for implementing breakpoints.

As indicated, these calls (except for request 0) can be used only when the subject process has
stopped. The wait call is used to determine when a process stops: in such a case the "termina­
tion" status returned by wait has the value 0177 to indicate stoppage rather than genuine termi­
nation.

4th Berkeley Distribution 2 July 1983

PTRACE (2) UNIX Programmer's Manual PTRACE (2)

To forestall possible fraud, ptrace inhibits the set-user-id and set-group-id facilities on subse­
quent execve(2) calls. If a traced process calls execve, it will stop before executing the first
instruction of the new image showing signal SIGTRAP.

On a V AX-ll, "word" also means a 32-bit integer, but the '"even" restriction does not apply.

RETURN VALUE
A 0 value is returned if the call succeeds. If the call fails then a -1 is returned and the global
variable errno is set to indicate the error.

ERRORS
[EINVAL]

[EINVAL]

[EINVAL]

[EFAULT]

[EPERM]

The request code is invalid.

The specified process does not exist.

The given signal number is invalid.

The specified address is out of bounds.

The specified process cannot be traced.

SEE ALSO

BUGS

wait(2), sigved2), adb(l)

Ptrace is unique and arcane~ it should be replaced with a special file which can be opened and
read and written. The control functions could then be implemented with ;oc1/(2) calls on this
file. This would be simpler to understand and have much higher performance.

The request 0 call should be able to specify signals which are to be treated normally and not
cause a stop. In this way, for example, programs with simulated floating point (which use '"ille­
gal instruction" signals at a very high rate) could be efficiently debugged.

The error indication, - L is a legitimate function value~ errl1o. see ;/lfro(2), can be used to
disambiguate.

It should be possible to stop a process on occurrence of a system call~ in this way a completely
controlled environment could be provided.

4th Berkeley Distribution 2 July 1983 2

QUOTA (2) UNIX Programmer's Manual QUOTA (2)

NAME
Quota - manipulate disk Quotas

SYNOPSIS
#include < sys/quota.h>

quota (cmd, uid, arg, addr)
int cmd, uid, arg;
caddr_t addr:

DESCRIPTION
The quota call manipulates disk Quotas for file systems which have had Quotas enabled with sel­
quota(2). The cmd parameter indicates a command to be applied to the user 10 uid. A,g is a
command specific argument and addr is the address of an optional, command specific, data
structure which is copied in or out of the system. The interpretation of arg and add, is given
with each command below.

Q_SETOLIM
Set disc quota limits and current usage for the user with 10 uid. Arg is a major-minor
device indicating a particular file system. Addr is a pointer to a struct dqblk structure
(defined in < syslquota.h>). This caIl is restricted to the super-user.

Q_GETOLIM
Get disc quota limits and current usage for the user with ID llid. The remaining
parameters are as for Q_SETOLIM.

Q_SETOUSE
Set disc usage limits for the user with ID llid. A,g is a major-minor device indicating a
particular file system. Add, is a pointer to a struct dqusage structure (defined in
< syslquota.h> >. This call is restricted to the super-user.

Q_SYNC
Update the on-disc copy of quota usages. The uid, arg, and addr parameters are
ignored.

Q_SETUID
Change the calling process's quota limits to those of the user with 10 llid. The arg and
addr parameters are ignored. This call is restricted to the super-user.

Q_SETWARN
Alter the disc usage warning limits for the user with 10 uid. Arg is a major-minor dev­
ice indicating a particular file system. Addr is a pointer to a struct dqwarn structure
(defined in < syslquota.h». This call is restricted to the super-user.

Q_DOWARN
Warn the user with user ID uid about excessive disc usage. This call causes the system
to check its current disc usage information and print a message on the terminal of the
caller for each file system on which the user is over quota. If the arg parameter is
specified as NODEV, all file systems which have disc quotas will be checked. Other­
wise, arg indicates a specific major-minor device to be checked. This call is restricted to
the super-user.

RETURN V ALlJE
A successful call returns 0 and, possibly, more information specific to the cmdperformed: when
an error occurs, the value -1 is returned and errllo is set to indicate the reason.

ERRORS
A quota call will fail when one of the following occurs:

[EINV AL] Cmd is invalid.

4th Berkeley Distribution 7 July 1983

QUOTA (2) UNIX Programmer's Manual QUOTA (2)

[ESRCH]

[EPERM]

[EINVAL]

[EFAULT]

[EUSERS]

No disc quota is found for the indicated user.

The call is priviledged and the caller was not the super-user.

The arg parameter is being interpreted as a major-minor device and it indicates
an unmounted file system.

An invalid addr is supplied~ the associated structure could not be copied in or
out of the kernel.

The quota table is full.

SEE ALSO

BUGS

setquota(2), quotaon(8), quotacheck(8)

There should be someway to integrate this call with the resource limit interface provided by
setrlimit(2) and getrlimit(2).

The Australian spelling of disk is used throughout the quota facilities in honor of the imple­
mentors.

4th Berkeley Distribution 7 July 1983 2

READ (2) UNIX Programmer~s Manual READ.C 2)

NAME
read, readv - read input

SYNOPSIS
cc = read (d, buf, nbytes)
int cc, d:
char -bur;
int nbytes;

#indude < sys/types.h>
#indude < sys/uio.h>

cc = readv (d, iov, iovcnt>
int cc, d:
struct iovec - iov;
int iovcnt;

DESCRIPTION
Read attempts to read nbytes of data from the object referenced by the descriptor d into the
buffer pointed to by bu! Readv performs the same action. but scatters the input data into the
iovcntbuffers specified by the members of the iovecarray: iovlOL iov{IL ... , iov[iovcnt - 11.
For readv, the io~'ec structure is defined as

struct iovec {
caddr _t iov _base~
int iov Jen~

} ~

Each iOl'ec entry specifies the base address and length of an area in memory where data should
be placed. Readv will always fill an area completely before proceeding to the next.

On objects capable of seeking. the read starts at a position given by the pointer associated with
d. see /seek<2>' Upon return from read. the pointer is incremented by the number of bytes
actually read.

Objects that are not capable of seeking always read from the current position. The value of the
pointer associated with such a object is undefined.

Upon successful completion, read and readv return the number of bytes actually read and placed
in the buffer. The system guarantees to read the number of bytes requested if the descriptor
references a file which has that many bytes left before the end-of-file. but in no other cases.

If the returned value is 0, then end-of-file has been reached.

RETURN VALUE
If successful, the number of bytes actually read is returned. Otherwise, a -1 is returned and
the global variable errno is set to indicate the error.

ERRORS
Readand readv will fail if one or more of the following are true:

[EBADF] Fildes is not a valid file descriptor open for reading.

[EFAULT]

[EINTR]

Bu/points outside the allocated address space.

A read from a slow device was interrupted before any data arrived by the
delivery of a signal.

In addition, readv may return one of the following errors:

[EINVAL] lovcntwas less than or equal to 0, or greater than 16.

[EINVAL] One of the iov_lell values in the iovarray was negative.

4th Berkeley Distribution 27 July 1983

READ(2) UNIX Programmer's Manual READ (2)

[EINVAL] The sum of the im,-'ell values in the iovarray overflowed a 32-bit integer.

SEE >\LSO
dup(2), open(2), pipe(2). socket(2). socketpaid2)

4th Berkeley Distribution 27 July 1983 2

READLINK (2) UNIX Programmer's Manual READLINK (2)

NAME
readlink - read value of a symbolic link

SYNOPSIS
cc == readlink (path, buf, bufsiz)
int cc;
char -path, -buf;
int bufsiz;

DESCRIPTION
Readlink places the contents of the symbolic link name in the buffer bl{fwhich has size bl{/'si:.
The contents of the link are not null terminated when returned.

RETURN VALUE
The call returns the count of characters placed in the buffer if it succeeds. or a -I if an error
occurs, placing the error code in the global variable errllo.

ERRORS
Readlillk will fail and the file mode will be unchanged if:

[EPERM] The path argument contained a byte with the high-order bit set.

[ENOENT] The pathname was too long.

[ENOTOIR]

[ENOENT]

[ENXIO]

[EACCES]

[EPERM]

[EINVAL]

[EFAULT]

[ELOOP]

SEE ALSO

A component of the path prefix is not a directory.

The named file does not exist.

The named file is not a symbolic link.

Search permission is denied on a component of the path prefix.

The effective user 10 does not match the owner of the file and the effective
user 10 is not the super-user.

The named file is not a symbolic link.

Bl{fextends outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

stat (2), Istat(2), symlink (2)

4th Berkeley Distribution 2 July 1983

REBOOT (2) UNIX Programmer's Manual REBOOT(2)

NAME
reboot - reboot system or halt processor

SYNOPSIS
#include < sys/reboot.h>

reboot (howto)
int howto;

DESCRIPTION
Reboot reboots the system, and is invoked automatically in the event of unrecoverable system
failures. Howto is a mask of options passed to the bootstrap program. The system call interface
permits only RB_HAL T or RB_AUTOBOOT to be passed to the reboot program: the other flags
are used in scripts stored on the console storage media, or used in manual bootstrap pro­
cedures. When none of these options (e.g. RB_AUTOBOOT) is given, the system is rebooted
from file Hvmunix" in the root file system of unit 0 of a disk chosen in a processor specific
way. An automatic consistency check of the disks is then normally performed.

The bits of howlO are:

RB HALT
the processor is simply halted: no reboot takes place. RB_HAL T should be used with
caution.

RB_ASKNAME
Interpreted by the bootstrap program itself. causing it to inquire as to what file should
be booted. Normally, the system is booted from the file "xx(O.O)vmunix" without
asking.

RB_SINGLE
Normally. the reboot procedure involves an automatic disk consistency check and then
multi-user operations. RB_SINGLE prevents the consistency check, rather simply
booting the system with a single-user shell on the console. RB_SINGLE is interpreted
by the illit(8) program in the newly booted system. This switch is not available from
the system call interface.

Only the super-user may reboot a machine.

RETllRN VALUES
If successful, this call never returns. Otherwise, a -1 is returned and an error is returned in
the global variable errllo.

ERRORS
[EPERM] The caller is not the super-user.

SEE ALSO
crash(8), halt(S), init(8). reboot(8)

BUGS
The notion of "console medium", among other things, is specific to the V AX.

4th Berkeley Distribution 18 July 1983

RECV (2) UNIX Programmer's Manual RECV (2)

NAME
recv. recvfrom. recvrnsg - receive a message from a socket

SYNOPSIS
j nelude < sy sl types. h>
#inelude < sys/socket.h>

cc= reCl' (s, buf, len, flags)
int cc. s;
char -buf;
int len. flags;

cc = recvfrom(s, buf, len, flags, from, fromlen}
int cc, s:
char -buf:
int len, flags;
struct sockaddr -from;
int -fromlen:

cc = recvmsg (s, msg, flags)
int cc, s:
struct msghdr msglJ;
int flags:

DESCRIPTION
Ren'. recvfrom. and recvmsg are used to receive messages from a socket.

The recv call may be used only on a cOl1l1ected socket (see c0I111ect(2» , while ren:!;om and
recvmsg may be used to receive data on a socket whether it is in a connected state or not.

If f;om is non-zero, the source address of the message is filled in. Fromlell is a value-result
parameter, initialized to the size of the butTer associated with from. and modified on return to
indicate the actual size of the address stored there, The length of the message is returned in ('('.
If a message is too long to fit in the supplied butTer. excess bytes may be discarded depending
on the type of socket the message is received from~ see socker(2 >.
If no messages are available at the socket. the receive call waits for a message to arrive, unless
the socket is nonblocking (see ;octl(2» in which case a cc of -I is returned with the external
variable errno set to EWOULDBLOCK.

The select(2) call may be used to determine when more data arrives,

The ,/fags argument to a send call is formed by or'ing one or more of the values.

#defineMSG_PEEK Oxl /. peek at incoming message ./
#defineMSG_OOB Ox2 /. process out-of-band data ./

The recvmsg call uses a msghdr structure to "minimize the number of directly supplied p~rame­
ters. This structure has the following form, as defined in < syS/socker. h> :

struct msghdr {
caddr _t msg_name~ /. optional address ./
int msg_namelen~ /. size of address ./
struct iov ·msgjov~ /. scatter/gather array ./
int msg_iovlen~ /. # elements in msgjov ./
caddr _t msg_accrights~ /. access rights sent/received ./
int msg_accrightslen~

} ~

4th Berkeley Distribution 7 July 1983

RECV (2) UNIX Programmer's Manual RECV (2)

Here msg name and msg name/en specify the destination address if the socket is unconnected:
msg name may be given as a null pointer if no names are desired or required. The msg im' and
msg- iov/en describe the scatter gather locations. as described in read(2)' Access rights to be
sentalong with the message are specified in msg_QccrigJus. which has length msg_accriglllslell.

RETURN VALUE
These calls return the number of bytes received, or - 1 if an error occurred.

ERRORS
The calls fail if:

[EBADF] The argument s is an invalid descriptor.

[ENOTSOCK] The argument s is not a socket.

[EWOULDBLOCK] The socket is marked non-blocking and the receive operation would
block.

[EINTR]

[EFAULT]

SEE ALSO

The receive was interrupted by delivery of a signal before any data was
available for the receive.

The data was specified to be received into a non-existent or protected
part of the process address space.

read(2). send(2), socket(2)

4th Berkeley Distribution 7 July 1983 2

RENAME (2) UNIX Programmer's Manual RENAME (2)

NAME
rename - change the name of a file

SYNOPSIS
rename (from, to)
char ·from, • to;

DESCRIPTION
Rename causes the link named j;om to be renamed as to. If to exists, then it is first removed.
Both /rom and to must be of the same type <that is, both directories or both non-directories),
and must reside on the same file system.

Rename guarantees that an instance of to will always exist, even if the system should crash in
the middle of the operation.

CAVEAT
The system can deadlock if a loop in the file system graph is present. This loop takes the form
of an entry in directory "a", say "a/foo", being a hard link to directory "b", and an entry in
directory "b", say Hb/bar", being a hard link to directory "a". When such a 'oop exists and
two separate processes attempt to perform "rename alfoo b/bar" and "rename blbar a/foo",
respectively, the system may deadlock attempting to lock both directories for modification.
Hard links to directories should be replaced by symbolic links by the system administrator.

RETl1RN VALVE
A 0 value is returned if the operation succeeds, otherwise rename returns -1 and the global
variable errllo indicates the reason for the failure.

ERRORS
Rename will fail and neither of the argument files will be affected if any of the following arc
true:

[ENOTOIR]

[ENOENT]

[EACCES]

[ENOENT]

[EPERM1

[EXOEV]

[EACCES]

[EROFS]

(EFAULT]

[EINVAL]

SEE ALSO
open(2)

A component of either path prefix is not a directory.

A component of either path prefix does not exist.

A component of either path prefix denies search permission.

The file named by from does not exist.

The file named by /rom is a directory and the effective user 10 is not super­
user.

The link named by to and the file named by from are on different logical dev­
ices (file systems). Note that this error code will not be returned if the imple­
mentation permits cross-device links.

The requested link requires writing in a directory with a mode that denies write
permission.

The requested link requires writing in a directory on a read-only file system.

PaTh points outside the process's allocated address space.

From is a parent directory of to.

4th Berkeley Distribution 12 February 1983

RMDIR (2) UNIX Programmer's Manual RMDIR (2)

NAME
rmdir - remove a directory file

SYNOPSIS
rmdir(path)
char ·path;

DESCRIPTION
Rmdir removes a directory file whose name is given by paTh. The directory must not have any
entries other than H." and ".

RETURN VALUE
A 0 is returned if the remove succeeds~ otherwise a -1 is returned and an error code is stored
in the global location errno.

ERRORS
The named file is removed unless one or more of the following are true:

[ENOTEMPTY]

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

The named directory contains files other than, and " in it.

The pathname contains a character with the high-order bit set.

The pathname was too long.

A component of the path prefix is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

Write permission is denied on the directory containing the link to be removed.

The directory to be removed is the mount point for a mounted file system.

The directory entry to be removed resides on a read-only file system.

PaTh points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

mkdid2), unlink(2)

4th Berkeley Distribution 2 July 1983

SELECT (2) UNIX Programmer's Manual SELECT (2)

NAME
select - synchronous i/o multiplexing

SYNOPSIS
#lnclude < sys/tlme.h >
nfound - select (nfds, readfds, wrltefds, execptfds, timeout)
lnt nfound, nfds, .re.dfds, .wrltefds, .execptfds;
strud tlmeval .tlmeout;

DESCRIPTION
Select examines the i/o descriptors specified by the bit masks reaq[ds, write/ds, and execptfds to
see if they are ready for reading, writing, or have an exceptional condition pending, respec­
tively. File descriptor / is represented by the bit "1 < <r' in the mask. N/ds desciptors are
checked, i.e. the bits from 0 through tifds-l in the masks are examined. Select returns, in place,
a mask of those descriptors which are ready. The total number of ready descriptors is returned
in tifound.

If timeout is a non-zero pointer, it specifies a maximum interval to wait for the selection to
complete. If timeout is a zero pointer, the select blocks indefinitely. To affect a poll, the
timeout argument should be non-zero, pointing to a zero valued timeval structure.

Any of reaq[ds, write/ds, and execpt/ds may be given as 0 if no descriptors are of interest.

RETURN VALUE
Select returns the number of descriptors which are contained in the bit masks, or -1 if an error
occurred. If the time limit expires then select returns O.

ERRORS
An error return from select indicates:

[EBADF] One of the bit masks specified an invalid descriptor.

[EINTR] An signal was delivered before any of the selected for events occurred or the
time limit expired.

SEE ALSO

BUGS

accept(2), connect(2), read(2), write(2), recv(2), send(2)

The descriptor masks are always modified on return, even if the call returns as the result of the
timeout.

4th Berkeley Distribution 2 July 1983 1

SEND (2) UNIX Programmer's Manual SEND (2)

NAME
send, sendto, sendmsg - send a message from a socket

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>

cc == send (s, msg, len, flags)
int cc, s;
char .msg;
int len, flags;

cc == sendto(s, msg, len, flags, to, tolen)
int cc, s;
char .msg;
int len, flags;
struct sockaddr -to;
int tolen;

cc == sendmsg (s, msg, flags)
int cc, s;
struct msghdr msgll;
int flags;

DESCRIPTION
Send, sendro, and sendmsg are used to transmit a message to another socket. Send may be used
only when the socket is in a connected state, while sendto and sendmsg may be used at any time.

The address of the target is given by to with tolen specifying its size. The length of the message
is given by len. If the message is too long to pass atomically through the underlying protocol.
then the error EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send. Return values of -1 indicate some
locally detected errors.

If no messages space is available at the socket to hold the message to be transmitted. then send
normally blocks, unless the socket has been placed in non-blocking i/o mode. The select(2) call
may be used to determine when it is possible to send more data.

The flags parameter may be set to SOF _ OOB to send "out-of-band" data on sockets which sup­
port this notion (e.g. SOCK_STREAM).

See recv(2) for a description of the msghdr structure.

RETURN VALUE
The call returns the number of characters sent, or -1 if an error occurred.

ERRORS
[EBADF] An invalid descriptor was specified.

[ENOTSOCK] The argument s is not a socket.

[EFAUL T] An invalid user space address was specified for a parameter.

[EMSGSIZE] The socket requires that message be sent atomically, and the size of the
message to be sent made this impossible.

[EWOULDBLOCK] The socket is marked non-blocking and the requested operation would
block.

SEE ALSO
recv(2), socket(2)

4th Berkeley Distribution 20 September 1983

SETG ROUPS (2) UNIX Programmer's Manual

NAME
setgroups - set group access list

SYNOPSIS
#include < sys/param.h>

setgroups(ngroups, gidset>
int ngroups, .gidset;

DESCRIPTION

SETGROUPS (2)

Setgroups sets the group access list of the current user process according to the array gidsel. The
parameter ngroups indicates the number of entries in the array and must be no more than
NGRPS, as defined in < syslparam.h>.

Only the super-user may set new groups.

RETVRN VALUE
A 0 value is returned on success, -Ion error, with a error code stored in nnw.

ERRORS
The setgroups call will fail if:

[EPERM] The caller is not the super-user.

[EFAULT] The address specified for gidset is outside the process address space.

SEE ALSO
getgroups(2), initgroups(3X)

4th Berkeley Distribution 7 July 1983

SETPGRP (2) UNIX Programmer's Manual SETPGRP (2)

NAME
setpgrp - set process group

SYNOPSIS
setpgrp(pid, pgrp)
iot pid, pgrp;

DESCRIPTION
Setpgrp sets the process group of the specified process pid to the specified pgrp. If pid is zero,
then the call applies to the current process.

If the invoker is not the super-user, then the affected process must have the same effective
user-id as the invoker or be a descendant of the invoking process.

RETURN VALUE
Setpgrp returns when the operation was successful. If the request failed, -1 is returned and the
global variable errllo indicates the reason.

ERRORS
Setpgrp will fail and the process group will not be altered if one of the following occur:

[ESRCH] The requested process does not exist.

[EPERM] The effective user ID of the requested process is different from that of the
caller and the process is not a descendent of the calling process.

SEE ALSO
getpgrp(2)

4th Berkeley Distribution 12 February 1983

SETQUOT A (2) UNIX Programmer's Manual SETQUOT A (2)

NAME
setquota - enable/disable quotas on a file system

SYNOPSIS
setquota (special, file)
char ·special, -file;

DESCRIPTION
Disc quotas are enabled or disabled with the setquota call. Special indicates a block special dev­
ice on which a mounted file system exists. If .tile is nonzero. it specifies a file in that file system
from which to take the quotas. If .tile is 0, then quotas are disabled on the file system. The
quota file must exist~ it is normally created with the chec:kquota(S) program.

Only the super-user may turn quotas on or off.

SEE ALSO
quota(2), quotacheck(S). quotaon(S)

RETURN VALUE
A 0 return value indicates a successful call. A value of -I is returned when an error occurs
and errllo is set to indicate the reason for failure.

ERRORS

BUGS

Setquota will fail when one of the following occurs:

[NODEV] The caller is not the super-user.

[NODEV] Special does not exist.

[ENOTBLK]

[ENXIO]

[EPERM1

[ENOTDIR1

[EROFS]

[EACCES1

[EACCES]

Special is not a block device.

The major device number of special is out of range (this indicates no device
driver exists for the associated hardware).

The pathname contains a character with the high-order bit set.

A component of the path prefix in .tile is not a directory.

File resides on a read-only file system.

File resides on a file system different from special.

File is not a plain file.

The error codes are in a state of disarray~ too many errors appear to the caller as one value.

4th Berkeley Distribution 7 July 1983

SETREGIO (2) UNIX Programmer's Manual

NAME
setregid - set real and effective group 10

SYNOPSIS
setregld <raid, egld)
Int qld, eald;

DESCRIPTION

SETREGIO (2)

The real and effective group 10's of the current process are set to the arguments. Only the
super-user may change the real group 10 of a process. Unpriviledged users may change the
effective group 10 to the real group 10, but to no other.

Supplying a value of -1 for either the real or effective group 10 forces the system to substitute
the current 10 in place of the - 1 parameter.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM] The current process is not the super-user and a change other than changing the

effective group-id to the real group-id was specified.

SEE ALSO
getgid (2), setreuid (2), setgid (3)

4th Berkeley Distribution 12 February 1983 1

SETREUID (2) UNIX Programmer's Manual

NAME
setreuid - set real and effective user ID's

SYNOPSIS
setreuld (ruld, euld)
lot ruld, euld;

DESCRIPTION

SETREUID (2)

The real and effective user ID's of the current process are set according to the arguments. If
ruid or euid is -1, the current uid is filled in by the system. Only the super-user may modify
the real uid of a process. Users other than the super-user may change the effective uid of a
process only to the real uid.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
[EPERM]

SEE ALSO

The current process is not the super-user and a change other than changing the
effective user-id to the real user-id was specified.

getuid (2), setregid (2), setuid (3)

4th Berkeley Distribution 12 February 1983 1

SHUTDOWN (2) UNIX Programmer's Manual

NAME
shutdown - shut down part of a full-duplex connection

SYNOPSIS
shutdown(s, how)
int s, how;

DESCRIPTION

SHUTDOWN (2)

The shutdown call causes all or part of a full-duplex connection on the socket associated with s
to be shut down. If how is 0, then further receives will be disallowed. If how is 1, then further
sends will be disallowed. If how is 2, then further sends and receives will be disallowed.

DIAGNOSTICS
A 0 is returned if the call succeeds, -1 if it fails.

ERRORS
The call succeeds unless:

[EBADF] S is not a valid descriptor.

[ENOTSOCK] S is a file, not a socket.

[ENOTCONN] The specified socket is not connected.

SEE ALSO
connect (2), socket (2)

4th Berkeley Distribution 27 July 1983

SIC; HI JOCK (2)

NAME
sigblock -- block sigllal~

SYNOPSIS
siv,hlo k(mask):
inl mask:

UESCJUPTION

UN IX Pro:!.r~llnmcr's Manual S!GBI,OCK (2)

Si~:h1o('k callses the signals specified ill ml/sk to lw adu('d to t.he set 0[' signals currently being
blocked Ii 0111 Jclivcry, Sign;" i i-; hlockl.:d i r the i-til hit ill mask is a I. Bits arc nwnhen.:d starling
at olle; fill' example. to hlock SI(j"I.Rivl lise
oldJlI(l~k = sigblm'k(l « (SIU/\I.l{\tl - I»;

It is not possible to hlllCk SIGKII.I .. SlC~;TOP. or SICjCON'r; . lhis I\'striclion is siknlly imposed
by t.he system.

I~ETl.IRN VALlJE
The prc\iol.ls sel of 11l;t~k\'d sign;lIs is I\.'turmxl.

SEE ALSO
kill(2). sign:c(n. sigS('tlll;lSk(2).

4th Ikrkeky I listrihution 15 June I'>SJ

SIGPAUSE (2) UNIX Programmer's Manual SIGPAUSE (2)

NAME
sigpause - atomically release blocked signals and wait for interrupt

SYNOPSIS
sigpause(sigmask)
int sigmask;

DESCRIPTION
Sigpause assigns sigmask to the set of masked signals and then waits for a signal to arrive~ on
return the set of masked signals is restored. Sigmask is usually 0 to indicate that no signals are
now to be blocked. Sigpause always terminates by being interrupted, returning EINTR.

In normal usage, a signal is blocked using sigblock(2) , to begin a critical section, variables
modified on the occurance of the signal are examined to determine that there is no work to be
done, and the process pauses awaiting work by using sigpause with the mask returned by sig­
block.

SEE ALSO
sigblock (2), sigve(2)

4th Berkeley Distribution 7 July 1983

SIGSETMASK (2) UNIX Programmer~s Manual

NAME
sigsetmask - set current signal mask

SYNOPSIS
sigsetmask (mask);
int mask;

DESCRIPTION

SIGSETM ASK (2)

Sigsetmask sets the current signal mask <those signals which are blocked from delivery), Signal
; is blocked if the i-th bit in mask is a 1.

The system quietly disallows SIGKILL. SIGSTOP. or SIGCONT to be blocked.

RETUR!'l VALUE
The previous set of masked signals is returned.

SEE ALSO
kilI(2). sigved2). sigblock(2). sigpause(2)

4th Berkeley Distribution 7 July 1983

SIGST ACK (2) UNIX Programmer's Manual SIGST ACK (2)

NAME
sigstack - set and/or get signal stack context

SYNOPSIS
#include < signai.h>

struct sigstack (
caddr_t ss_sp;
int ss_onstack;

} ;

sigstack (ss, oss);
struct sigstack ·SS, ·OSs;

DESCRIPTION

NOTES

Sigsfack allows users to define an alternate stack on which signals are to be processed. If ss is
non-zero. it specifies a sigllal stack on which to deliver signals and tells the system if the process
is currently executing on that stack. When a signal's action indicates its handler should execute
on the signal stack (specified with a sigved2) calJ), the system checks to see if the process is
currently executing on that stack. If the process is not currently executing on the signal stack.
the system arranges a switch to the signal stack for the duration of the signal handler's execu­
tion. If oss is non-zero. the current signal stack state is returned.

Signal stacks are not "grown" automatically. as is done for the normal stack. If the stack
overflows unpredictable results may occur.

RETlJRN VALtlE
Upon successful completion, a value of 0 is returned. Otherwise, a value of - 1 is returned and
errno is set to indicate the error.

ERRORS
Sigsfack will fail and the signal stack context will remain unchanged if one of the following
occurs.

[EFAULT)

SEE ALSO

Either ss or oss points to memory which is not a valid part of the process
address space.

sigve(2). setjmp (3)

4th Berkeley Distribution 15 June 1983

SIGVEC (2) UNIX Programmer's Manual SIGVIC (2)

NAME
sigvec - software signal facilities

SYNOPSIS
#Include <sllnal.h>

struct sllvee (
Int
Int
Int

);

(*sv _handler) () ;
sv_mask;
sv _oDstaek;

sllvec (511, vee, ovee)
Int sll;
struct silVec *vee, *ovec;

DESCRIPTION
The system defines a set of signals that may be delivered to a process. Signal delivery resem­
bles the occurence of a hardware interrupt: the signal is blocked from further occurrence, the
current process context is saved, and a new one is built. A process may specify a handler to
which a signal is delivered, or specify that a signal is to be blocked or ignored. A process may
also specify that a default action is to be taken by the system when a signal occurs. Normally,
signal handlers execute on the current stack of the process. This may be changed, on a per­
handler basis, so that signals are taken on a special signal stack.

All signals have the same priority. Signal routines execute with the signal that caused their
invocation blocked, but other signals may yet occur. A global signal mask defines the set of sig­
nals currently blocked from delivery to a process. The signal mask for a process is initilized
from that of its parent (normally 0). It may be changed with a sigblock(2) or sigsetmask(2) call,
or when a signal is delivered to the process.

When a signal condition arises for a process, the signal is added to a set of signals pending for
the process. If the signal is not currently blocked by the process then it is delivered to the pro­
cess. When a signal is delivered, the current state of the process is saved, a new signal mask is
calculated (as described below), and the signal handler is invoked. The call to the handler is
arranged so that if the signal handling routine returns normally the process will resume execu­
tion in the context from before the signal's delivery. If the process Wishes to resume in a
different context, then it must arrange to restore the previous context itself.

When a signal is delivered to a process a new signal mask is installed for the duration of the
process' signal handler (or until a sigblock or sigsetmask call is made). This mask is formed by
taking the current signal mask, adding the signal to be delivered, and or'ing in the signal mask
associated with the handler to be invoked.

Sigvec assigns a handler for a specific signal. If vec is non-zero, it specifies a handler routine
and mask to be used when delivering the specified signal. Further, if sv ... onstack is 1, the sys­
tem will deliver the signal to the process on a signal stack, specified with sigstack(2). If ovec is
non-zero, the previous handling information for the signal is returned to the user.

The following is a list of all signals with names as in the include file < signal. h >:
SIGHUP 1 hangup
SIGINT 2 interrupt
SIOQUIT 3. quit
SIGILL 4. illegal instruction
SIGTRAP 5. trace trap
SIGIOT 6. lOT instruction
SIGEMT 7. EMT instruction
SIGFPE 8. floating point exception

4th Berkeley Distribution 7 July 1983 1

SIOVEC (2) UNIX Programmer's Manual SIGVEC (2)

NOTES

SIGKILL 9 kill (cannot be caught, blocked, or ignored)
SIOBUS 10. bus error
SIGSEGV 11. segmentation violation
SIGSYS 12. bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIGALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught, blocked, or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19- continue after stop (cannot be blocked)
SIGCHLD 20- child status has changed
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23- i/o is possible on a descriptor (see fcnt/(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 25 file size limit exceeded (see setrlimit(2»
SIGVT ALRM 26 virtual time alarm (see setitimer(2»)
SIGPROF 27 profiling timer alarm (see setitimer(2»

The starred signals in the list above cause a core image if not caught or ignored.

Once a signal handler is installed, it remains installed until another sigvec call is made, or an
exeeve(2) is performed. The default action for a signal may be reinstated by setting sv_handler
to SIG_DFL; this default is termination (with a core image for starred signals) except for sig­
nals marked with - or t. Signals marked with - are discarded if the action is SIG_DFL; signals
marked with t cause the process to stop. If sv_handler is SIG_IGN the signal is subsequently
ignored, and pending instances of the signal are discarded.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a read or write(2) on a
slow device (such as a terminal; but not a file) and during a wait(2).

After a !ork(2) or vfork(2) the child inherits all signals, the signal mask, and the signal stack.

Exeeve(2) resets all caught signals to default action; ignored signals remain ignored; the signal
mask remains the same; the signal stack state is reset.

The mask specified in vee is not allowed to block SIGKILL, SIGSTOP, or SIGCONT. This is
done silently by the system.

RETURN VALUE
A 0 value indicated that the call succeeded. A -1 return value indicates an error occured and
errno is set to indicated the reason.

ERRORS
Sigvec will fail and no new signal handler will be installed if one of the following occurs:

[EFAULT] Either vee or ovee points to memory which is not a valid part of the process
address space.

[EINV AL] Sig is not a valid signal number.

[EiNV AL] An attempt is made to ignore or supply a handler for SIGKILL or SIGSTOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
kill(l) , ptrace(2) , ki11(2) , sigblock(2) , sigsetmask(2) , sigpause(2) sigstack(2) , sigved2),
setjmp(3), tty(4)

4th Berkeley Distribution 7 July 1983 2

SIGVEC (2) UNIX Programmer's Manual SIGVEC (2)

NOTES (VAX·H)

BUGS

The handler routine can be declared:

handler(sig, code, scp)
int sig, code;
struct sigcontext .scp;

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility mode
faults, the code provided by the hardware (Compatibility mode faults are distinguished from the
other SIGILL traps by having PSL_ CM set in the psI). Scp is a pointer to the sigconlexl struc­
ture (defined in < signal.h », used to restore the context from before the signal.

The following defines the mapping of hardware traps to signals and codes. All of these symbols
are defined in < signal.h >:

Hardware condition Signal Code

Arithmetic traps:
Integer overflow SIGFPE FPE_INTOVF_TRAP
Integer division by zero SIGFPE FPE_INTDIV _TRAP
Floating overflow trap SIGFPE FPE_FLTOVF_TRAP
Floating/decimal division by zero SIGFPE FPE_FLTDIV_TRAP
Floating underflow trap SIGFPE FPE_FL TUND _TRAP
Decimal overflow trap SIGFPE FPE_DECOVF _TRAP
Subscript-range SIGFPE FPE_SUBRNG_TRAP
Floating overflow fault SIGFPE FPE_FLTOVF_FAULT
Floating divide by zero fault SIGFPE FPE_FLTDIV_FAULT
Floating underflow fault SIGFPE FPE_FLTUND_FAULT

Length access control SIGSEGV
Protection violation SIGBUS
Reserved instruction SIGILL ILL_RESAD_FAULT
Customer-reserved instr. SIGEMT
Reserved operand SIGILL ILL_PRIVIN_FAULT
Reserved addressing SIGILL ILL_RESOP _FAULT
Trace pending SIGTRAP
Bpt instruction SIGTRAP
Compatibility-mode SIGILL hardware supplied code
Chme SIGSEGV
Chms SIGSEGV
Chmu SIGSEGV

This manual page is confusing.

4th Berkeley Distribution 7 July 1983 3

SOCKET (2) UNIX Programmer's Manual SOCKET (2)

NAME
socket - create an endpoint for communication

SYNOPSIS
#include < sys/types.h>
#include < sys/socket.h>

s = socket<af, type, protocol)
int s, af, type, protocol;

DESCRIPTION
Socket creates an endpoint for communication and returns a descriptor.

The a/parameter specifies an address format with which addresses specified in later operations
using the socket should be interpreted. These formats are defined in the include file
< syslsocket.h>. The currently understood formats are

AF UNIX (UNIX path names),
AF INET (ARPA Internet addresses),
AF PUP (Xerox PUP-I Internet addresses), and
AF JMPLINK (IMP "host at IMP" addresses).

The socket has the indicated type which specifies the semantics of communication. Currently
defined types are:

SOCK STREAM
SOCK_OGRAM
SOCK RAW
SOCK_SEQPACKET
SOCK ROM

A SOCK_STREAM type provides sequenced, reliabl\;!, two-way connection based byte streams
with an out-of-band data transmission mechanism. A SOCK OGRAM socket supports
datagrams (connection less, unreliable messages of a fixed (typicaliy small) maximum length>.
SOCK_RAW sockets provide access to internal network interfaces. The types SOCK_RAW.
which is available only to the super-user, and SOCK_SEQPACKET and SOCK_ROM. which
are planned, but not yet implemented, are not described here.

The protocol specifies a particular protocol to be used with the socket. Normally only a single
protocol exists to support a particular socket type using a given address format. However. it is
possible that many protocols may exist in which case a particular protocol must be specified in
this manner. The protocol number to use is particular to the "communication domain" in
which communication is to take place~ see ser vices (3 N) and prolocols(3 N >.
Sockets of type SOCK_STREAM are full-duplex byte streams, similar to pipes. A stream
socket must be in a connected state before any data may be sent or received on it. A connection
to another socket is created with a cOlll1ecr(2) call. Once connected, data may be transferred
using read(2) and write(2) calls or some variant of the send(2) and recl'(2) calls. When a ses­
sion has ,been completed a c1ose(2) may be performed. Out-of-band data may also be transmit­
ted as described in send(2) and received as described in ren'(2).

The communications protocols used to implement a SOCK_STREAM insure that data is not
lost or duplicated. If a piece of data for which the peer protocol has buffer space cannot be suc­
cessfully transmitted within a reasonable length of time. then the connection is considered bro­
ken and calls will indicate an error with -1 returns and with ETIMEOOUT as the specific code
in the global variable errno. The protocols optionally keep sockets "warm" by forcing
transmissions roughly every minute in the absence of other activity. An error is then indicated
if no response can be elicited on an otherwise idle connection for a extended period (e.g. 5
minutes). A SIGPIPE signal is raised if a process sends on a broken stream~ this causes naive

4th Berkeley Distribution 18 July 1983

SOCKET (2) UNIX Programmer's Manual SOCKET (2)

processes. which do not handle the signal. to exit.

SOCK DGRAM and SOCK RAW sockets allow sending of datagrams to correspondents named
in send(2) calls. It is also possible to receive datagrams at such a socket with recl'(2).

An !cnt/(2) call can be used to specify a process group to receive a SIGURG signal when the
out-of-band data arrives.

The operation of sockets is controlled by socket level options. These options are defined in the
file < syslsocket.h> and explained below. Setsockopr and getsockopr(2) are used to set and get
options. respectively.

SO DEBUG turn on recording of debugging information
SO REUSEADDR allow local address reuse
SO KEEPALIVE keep connections alive
SO _DONTROUTE do no apply routing on outgoing messages
SO_LINGER linger on close if data present
SO_DONTLINGER do not linger on close

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR indi­
cates the rules used in validating addresses supplied in a billd(2) call should allow reuse of local
addresses. SO _KEEPALIVE enables the periodic transmission of messages on a connected
socket. Should the connected party fail to respond to these messages. the connection is con­
sidered broken and processes using the socket are notified via a SIGPIPE signal.
SO _DONTROUTE indicates that outgoing messages should bypass the standard routing facili­
ties. Instead. messages are directed to the appropriate network interface according to the net­
work portion of the destination address. SO LINGER and SO DONTLINGER control the
actions taken when unsent messags are queued on socket and a ;/ose(2) is performed. If the
socket promises reliable delivery of data and SO_LINGER is set. the system will block the pro­
cess on the close attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period. termed the linger interval. is specified in the set­
sockopt call when SO_LINGER is requested). If SO_DONTLINGER is specified and a close is
issued. the system will process the close in a manner which allows the process to continue as
quickly as possible.

RETURN VALVE
A -1 is returned if an error occurs, otherwise the return value is a descriptor referencing the
socket.

ERRORS
The socket call fails if:

[EAFNOSUPPORT] The specified address family is not supported in this version of the sys­
tem.

[ESOCKTNOSUPPORT]
The specified socket type is not supported in this address family.

[EPROTONOSUPPORT]

[EMFILE]

[ENOBUFS]

SEE ALSO

The specified protocol is not supported.

The per-process descriptor table is full.

No buffer space is available. The socket cannot be created.

accept(2), bind(2), connect(2), getsockname(2), getsockopt(2). ioctH2), Iisten(2), recv(2).
select(2), send(2), shutdown(2), socketpaid2)
H A 4.2BSD Interprocess Communication Primer".

4th Berkeley Distribution 18 July 1983 2

SOCKET (2) UNIX Programmer's Manual SOCKET (2)

BUGS
The use of keepalives is a questionable feature for this layer.

4th Berkeley Distribution 18 July 1983 3

SQCKETPAIR (2) UNIX Programmer's Manual SOCKETPAIR (2)

NAME
socketpair - create a pair of connected sockets

SYNOPSIS
#include < sysltypes.h>
#include < sys/socket.h>

socketpair(d, type, protocol, sv)
int d, type, protocol:
int sv121;

DESCRIPTION
The socketpair call creates an unnamed pair of connected sockets in the specified domain d. of
the specified type. and using the optionally specified protocol. The descriptors used in referenc­
ing the new sockets are returned in sr[O] and sv[l J. The two sockets are indistinguishable.

DIAGNOSTICS
A 0 is returned if the call succeeds. -I if it fails.

ERRORS
The call succeeds unless:

[EMFILE] Too many descriptors are in use by this process.

[EAFNOSUPPORT] The specified address family is not supported on this machine.

[EPROTONOSUPPORT]
The specified protocol is not supported on this machine.

[EOPNOSUPPORT] The specified protocol does not support creation of socket pairs.

[EFAULT] The address sl'does not specify a valid part of the process address space.

SEE ALSO
read(2), write(2). pipe(2)

Bt.:GS
This call is currently implemented only for the UNIX domain.

4th Berkeley Distribution 27 July 1983

STAT (2) UNIX Programmer's Manual STAT (2)

NAME
stat, Istat, fstat - get file status

SYNOPSIS
#include < sys!types.h>
#include < sys/stat.h>

stat(path, buf)
char .path;
struct stat • buf;

)stat(path, buf)
char .path;
struct stat • buf;

fstat(fd, buf)
int fd;
struct stat • buf;

DESCRIPTION
Stat obtains information about the file path. Read. write or execute permission of the named
file is not required. but all directories listed in the path name leading to the file must be reach­
able.

Lstat is like stat except in the case where the named file is a symbolic link. in which case Istal
returns information about the link. while stat returns information about the file the link refer­
ences.

Fstat obtains the same information about an open file referenced by the argument descriptor.
such as would be obtained by an open call.

Bl{f is a pointer to a stal structure into which information is placed concerning the file. The
contents of the structure pointed to by bl{f

struct stat (
dev_t
ino t
u_short
short
short
short
dev_t
otT t

time_t
int
time_t
int
time t
int
long
long
long

st_dev~

st_ino~

st_mode~

st_nlink~

st_uid~

st_gid~

st_rdev~

st_size~

st_atime~
st_spare 1 ~

I * device inode resides on *1
I * this inode's number */
/ * protection *1
/ * number or hard links to the file */
1* user-id of owner *1
1* group-id of owner *1
1* the device type. for inode that is device */
/ * total size of file *1
/ * file last access time */

st_mtime~ I'" file last modify time *1
st_spare2:
st_ctime~

st_spare3~
I * file last status change time *1

st_blksize~ I * optimal blocksize for file system i/o ops *1
st blocks~ 1* actual number of blocks allocated *1
st-spare4 [2L

Time when file data was last read or modified. Changed by the following system
calls: mknod(2). utimes(2) , read(2) , and write(2). For reasons of efficiency.
st_atime is not set when a directory is searched. although this would be more logi­
cal.

4th Berkeley Distribution 27 July 1983

STAT (2) UNIX Programmer's Manual STAT (2)

Time when data was last modified. It is not set by changes of owner, group, link
count, or mode. Changed by the following system calls: mkl1od(2), Ulimes(2).
write(2).

Time when file status was last changed. It is set both both by writing and chang­
ing the i-node. Changed by the following system calls: chmod(2) chowl1(2).
link(2), mknod(2), unlink(2) , Ulimes(2), write(2).

The status information word sLmode has bits:
#define S JFMT 0170000 / * type of file */
#define S IFDIR 0040000 / * directory */
#define S)FCHR 0020000 / * character special */
#define S IFBLK 0060000 / * block special */
#define S)FREG 0 I 00000 / * regular */
#define SJFLNK 0120000 /* symbolic link */
#define SJFSOCK 0140000 /* socket */
#define S_ISUID 0004000 /* set user id on execution */
#define SJSGID 0002000 /* set group id on execution */
#define S ISVTX 0001000 /* save swapped text even after use */
#define S)READ 0000400 /* read permission, owner */
#define S IWRITE 0000200 / * write permission, owner */
#define S)EXEC 0000100 /* execute/ search permission, owner */

The mode bits 0000070 and 0000007 encode group and others permissions (see chmod(2».

When /d is associated with a pipe, /stat reports an ordinary file with an i-node number. res­
tricted permissions. and a not necessarily meaningful length.

RETURN VALVE
Upon successful completion a value of 0 is returned. Otherwise. a value of -1 is returned und
err no is set to indicate the error.

ERRORS
Stat and ISlal will fail if one or more of the following are true:

[ENOTDIR] A component of the path prefix is not a directory.

[EPERM] The pathname contains a character with the high-order bit set.

[ENOENT] The pathname was too long.

[ENOENT] The named file does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[EF AUL T] Bli/or name points to an invalid address.

FSlal will fail if one or both of the following are true:

[EBADF] Fildes is not a valid open file descriptor.

[EFAULT]

[ELOOP]

CAVEAT

Bu/points to an invalid address.

Too many symbolic links were encountered in translating the pathname.

The fields in the stat structure currently marked sLspareJ, sLspare2, and sLspare3 are present
in preparation for inode time stamps expanding to 64 bits. This, however, can break certain
programs which depend on the time stamps being contiguous (in calls to ulimes(2»,

SEE ALSO
chmod(2), chown(2), utimes(2)

4th Berkeley Distribution 27 July 1983 2

STAT (2) UNIX Programmer's Manual STAT (2)

BUGS
Applying /stat to a socket returns a zero'd buffer.

The list of calls which modify the various fields should be carefully checked with reality.

4th Berkeley Distribution 27 July 1983 3

SWAPON (2) UNIX Programmer's Manual

NAME
swapon - add a swap device for interleaved paging/swapping

SYNOPSIS
swapon (special)
char .special;

DESCRIPTION

SWAPON (2)

Swapon makes the block device special available to the system for allocation for paging and
swapping. The names of potentially available devices are known to the system and defined at
system configuration time. The size of the swap area on special is calculated at the time the
device is first made available for swapping.

SEE ALSO

BUGS

swapon(8), config(8)

There is no way to stop swapping on a disk so that the pack may be dismounted.

This call will be upgraded in future versions of the system.

4th Berkeley Distribution 27 July 1983 1

SYMLINK (2) UNIX Programmer's Manual SYMLINK (2)

NAME
symlink - make symbolic link to a file

SYNOPSIS
symlink (namel, name2)
char *namel, .name2;

DESCRIPTION
A symbolic link name2 is created to name] (name2 is the name of the file created, name} is the
string used in creating the symbolic link). Either name may be an arbitrary path name~ the files
need not be on the same file system.

RETURN VALUE
Upon successful completion, a zero value is returned. If an error occurs, the error code is
stored in errno and a -1 value is returned.

ERRORS
The symbolic link is made unless on or more of the following are true:

[EPERM] Either name] or name2 contains a character with the high-order bit set.

[ENOENT] One of the path names specified was too long.

[ENOTDIR]

[EEXIST]

[EACCES]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

A component of the name2 prefix is not a directory.

Name2 already exists.

A component of the name] path prefix denies search permission.

The file name2 would reside on a read-only file system.

Name} or name2 points outside the process's allocated address space.

Too may symbolic links were encountered in translating the pathname.

Iink(2), In(1), unlink(2)

4th Berkeley Distribution 27 July 1983

SYNC (2)

NAME
sync - update super-block

SYNOPSIS
syncO

DESCRIPTION

UNIX Programmer's Manual SYNC (2)

Sync causes all information in core memory that should be on disk to be written out. This
includes modified super blocks, modified i-nodes, and delayed block 110.

Sync should be used by programs which examine a file system, for example fsck. df, etc. Sync is
mandatory before a boot.

SEE ALSO
fsync(2), synd8), update(8)

BUGS
The writing, although scheduled, is not necessarily complete upon return from sync.

4th Berkeley Distribution 12 February 1983

SYSCALL(2) UNIX Programmer's Manual SYSCALL (2)

NAME
syscall - indirect system call

SYNOPSIS
syscalHnumber, arc, ...) (VAX-In

DESCRIPTION
Syscall performs the system call whose assembly language interface has the specified number,
register arguments rO and r 1 and further arguments argo

The rO value of the system call is returned.

DIAGNOSTICS
When the C-bit is set, syscall returns -1 and sets the external variable errno (see intro(2».

BUGS
There is no way to simulate system calls such as pipe (2) , which return values in register rl.

4th Berkeley Distribution 12 February 1983 1

TRUNCATE (2) UNIX Programmer's Manual TRUNCATE (2)

NAME
truncate - truncate a file to a specified length

SYNOPSIS
truncate(path, length)
char .path;
int length;

ftruncate (fd, length)
int fd, length;

DESCRIPTION
Truncate causes the file named by path or referenced by fd to be truncated to at most length
bytes in size. If the file previously was larger than this size, the extra data is lost. With ftrun­
cate, the file must be open for writing.

RETURN VALUES
A value of 0 is returned if the call succeeds. If the call fails a -1 is returned, and the global
variable errno specifies the error.

ERRORS
Truncate succeeds unless:

[EPERM] The pathname contains a character with the high-order bit set.

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[EISDIR]

[EROFS]

[ETXTBSY]

[EFAULT]

The pathname was too long.

A component of the path prefix of path is not a directory.

The named file does not exist.

A component of the path prefix denies search permission.

The named file is a directory.

The named file resides on a read-only file system.

The file is a pure procedure (shared text) file that is being executed.

Name points outside the process's allocated address space.

Ftruncate succeeds unless:

[EBADF]

[EINVAL]

SEE ALSO
open(2)

BUGS

The fd is not a valid descriptor.

The fd references a socket, not a file.

Partial blocks discarded as the result of truncation are not zero filled~ this can result in holes in
files which do not read as zero.

These calls should be generalized to allow ranges of bytes in a file to be discarded.

4th Berkeley Distribution 7 July 1983 1

UMASK(2) UNIX Programmer's Manual

NAME
umask - set file creation mode mask

SYNOPSIS
oumask - umask (numask)
int oumask, numask;

DESCRIPTION

UMASK(2)

Umask sets the process's file mode creation mask to numask and returns the previous value of
the mask. The low-order 9 bits of numask are used whenever a file is created, clearing
corresponding bits in the file mode (see chmod(2». This clearing allows each user to restrict
the default access to his files.

The value is initially 022 (write access for owner only). The mask is inherited by child
processes.

RETURN VALUE
The previous value of the file mode mask is returned by the call.

SEE ALSO
chmod(2), mknod(2), open(2)

4th Berkeley Distribution 12 February 1983 1

UNLINK (2) UNIX Programmer's Manual UNLINK (2)

NAME
unlink - remove directory entry

SYNOPSIS
unlink (path)
char .path;

DESCRIPTION
Unlink removes the entry for the file path from its directory. If this entry was the last link to
the file, and no process has the file open. then all resources associated with the file are
reclaimed. If, however, the file was open in any process, the actual resource reclamation is
delayed until it is closed, even though the directory entry has disappeared.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and
errno is set to indicate the error.

ERRORS
The unlink succeeds unless:

[EPERM]

[ENOENT]

[ENOTDIR]

[ENOENT]

[EACCES]

[EACCES]

[EPERM]

[EBUSY]

[EROFS]

[EFAULT]

[ELOOP]

SEE ALSO

The path contains a character with the high-order bit set.

The path name is too long.

A component of the path prefix is not a directory.

The named file does not exist.

Search permission is denied for a component of the path prefix.

Write permission is denied on the directory containing the link to be removed.

The named file is a directory and the effective user ID of the process is not the
super-user.

The entry to be unlinked is the mount point for a mounted file system.

The named file resides on a read-only file system.

Path points outside the process's allocated address space.

Too many symbolic links were encountered in translating the pathname.

c1ose(2), link(2), rmdir(2)

4th Berkeley Distribution 2 July 1983

UTIMES(2) UN IX ProgramlTlcr's ~t1a1lL1<l1 UTlivl1 ~S (2)

NAME
utimcs - set file times

SYNOPSIS
If includc <sys/tilllc.h>

utillll'S(fllc, hll)
dlar *liIc;
stmd timl~'/al l"p[21;

DESCl~IVI'ION

The ul;lIl/,s c(1I1 uses the ":lccessed" and "lIpdated" times in that ord~r from the f~'P vector to set the
corresponding rccorded times for file.

Thc c(lller ITlllst he the owner of the file or lhc super··L1scr. The "inode-changcd' tillle of the me is
set to the ClilTclltlime.

HETlmN VALUE
Upon slicces"flli completion, a v,litle or 0 is returned. Otherwise, a valt!c of _. I is rcttlmcd and
('!TIIO is set to i Ildicatc the error.

EI~n()HS

lflill1{, will f:til if one or more or the following arc true:

[FPFIU'vlj

[I ~N()I':NTI

lFNOI·:NT.I

11':NOTl)IRI

ll~i\l'CI':SI

[FPFRM I
[EACCFSI

[I ~ROI;SI

ll':I:Alll :1'1
[I ~I J)OP.l

SEE ALSO
stal(2)

4th Berkl'il-y l)i~;trihllti{)11

The r;llhnallle contained a chllr<lcter with the high-urder hit scl.

Tile pati1Il<llllc \V;.IS too long.

Tile l1amed Ilk docs not exist.

i\ compollent or the pdill prefix is Ih)t (\ directory.

A componcnt or the p;lth prefix denie'-i seilrcll IH'rmissiol1.

The process is l10l Sliper-lI~;('r :.111<.1 nol the 0\':111..'1' or tile file.

The elrl'cti\c lIser II) is not super-llser ~IIH.I nol the oWIH.'r or tile Ii Ie (Ind fillies is
N UI.r. (lilt! write ;ICC(,SS is (kllkd.

Till' fik systl..'l1l c()llt;lilllng tilL' lik is mOllllled Icad-only.

Fl'F points olltside Ilw pnlCl'ss\ ;t1locall'd <lddl"l'sS spacc.

Too Illany \Ylllholic links \vel\~ el1countered in tr;1I1sbtillg the p;llhnalllc.

2 .lilly 19X]

VFORK (2) UNIX Programmer's Manual VFORK (2)

NAME
vfork - spawn new process in a virtual memory efficient way

SYNOPSIS
pid == vfork 0
int pid;

DESCRIPTION
Vfork can be used to create new processes without fully copying the address space of the old
process, which is horrendously inefficient in a paged environment. It is useful when the pur­
pose of fork (2) would have been to create a new system context for an execve. Vfork differs
from fork in that the child borrows the parent's memory and thread of control until a call to
execve(2) or an exit (either by a call to exit(2) or abnormally.) The parent process is suspended
while the child is using its resources.

Vfork returns 0 in the child's context and (later) the pid or the child in the parent's context.

Vfork can normally be used just like fork. It does not work, however, to return while running in
the childs context from the procedure which called vfork since the eventual return from vfork
would then return to a no longer existent stack frame. Be careful, also, to call _exir rather than
exit if you can't execve, since exit will flush and close standard 110 channels, and thereby mess
up the parent processes standard 110 data structures. (Even with fork it is wrong to call exit
since buffered data would then be flushed twice.)

SEE ALSO
fork(2), execve(2), sigved2), wait(2),

DIAG:'IJOSTICS

Bl'GS

Same as for fork.

This system call will be eliminated when proper system sharing mechanisms are implemented.
Users should not depend on the memory sharing semantics of vfork as it will. in that case, be
made synonymous to fork.

To avoid a possible deadlock situation, processes which are children in the middle of a vfork are
never sent SIGTTOU or SIGTTIN signals~ rather, output or iocrls are allowed and input
attempts result in an end-or-file indication.

4th Berkeley Distribution 2 July 1983 1

VHANGUP (2) UNIX Programmer's Manual VHANGUP(2)

NAME
vhangup - virtually "hangup" the current control terminal

SYNOPSIS
vhangupO

DESCRIPTION
Vhangup is used by the initialization process init(8) (among others) to arrange that users are
given "clean'" terminals at login, by revoking access of the previous users' processes to the
terminal. To effect this, vhangup searches the system tables for references to the control termi­
nal of the invoking process, revoking access permissions on each instance of the terminal which
it finds. Further attempts to access the terminal by the affected processes will yield i/o errors
(EBADF). Finally, a hangup signal (SIGHUP) is sent to the process group of the control ter­
minal.

SEE ALSO
in it (8)

BUGS
Access to the control terminal via Idev Itty is still possible.

This call should be replaced by an automatic mechanism which takes place on process exit.

4th Berkeley Distribution 12 Febuary 1983

WAIT(2) UNIX Programmer's Manual WAIT (2)

NAME
wait, wait3 - wait for process to terminate

SYNOPSIS
#include < sys/wait.h >

pid = wait (status)
int pid;
union wait -status;

pid = wait (0)
int pld;

#include <sys/time.h>
#include < sys/resource.h >

pid = wait3 (status, options, rusage)
Int pid;
union wait *status;
lnt options;
struct rusage -rusage;

DESCRIPTION

NOTES

Wait causes its caller to delay until a signal is received or one of its child processes terminates.
If any child has died since the last wait, return is immediate, returning the process id and exit
status of one of the terminated children. If there are no children, return is immediate with the
value - 1 returned.

On return from a successful wait call, status is nonzero, and the high byte of status contains the
low byte of the argument to exit supplied by the child process~ the low byte of status contains
the termination status of the process. A more precise definition of the status word is given in
< syslwait.h>.

Wait3 provides an alternate interface for programs which must not block when collecting the
status of child processes. The status parameter is defined as above. The options parameter is
used to indicate the call should not block if there are no processes which wish to report status
(WNOHANG), and/or that only children of the current process which are stopped due to a
SIGTTIN, SIGTTOU, SIGTSTP, or SIGSTOP signal should have their status reported (WUN­
TRACED). If rusage is non-zero, a summary of the resources used by the terminated process
and all its children is returned (this information is currently not available for stopped
processes) .

When the WNOHANG option is specified and no processes wish to report status, wait3 returns
a pid of O. The WNOHANG and WUNTRACED options may be combined by or'ing the two
values.

Seesigvec(2) for a list of termination statuses (signals) ~ 0 status indicates normal termination.
A special status (0177) is returned for a stopped process which has not terminated and can be
restarted~ see ptrace(2). If the 0200 bit of the termination status is set, a core image of the
process was produced by the system.

If the parent process terminates without waiting on its children, the initialization process (pro­
cess ID :II: 1) inherits the children.

Wait and wait3 are automatically restarted when a process receives a signal while awaiting termi­
nation of a child process.

RETURN VALUE
If wait returns due to a stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of - 1 is returned and errno is set to

4th Berkeley Distribution 27 July 1983 1

WAIT (2) UNIX Programmer's Manual WAIT (2)

indicate the error.

Wait3 returns -1 if there are no children not previously waited for~ 0 is returned if
WNOHANG is specified and there are no stoppeu or exited chiidren.

ERRORS
Wait will fail and return immediately if one or more of the following are true:

[ECHILD] The calling process has no existing unwaited-for child processes.

[EFAULT]

SEE ALSO
exit(2)

The status or rusage arguments point to an illegal address.

4th Berkeley Distribution 27 July 1983 2

WRITE (2) UNIX Programmer's Manual WRITE (2)

NAME
write, writev - write on a file

SYNOPSIS
write(d, buf, nbytes)
int d;
char -buf;
int nbytes;

#include < sys/types.h >
#include < sys/uio.h >
writev (d, iov, ioveclen)
int d;
struct iovec -iov;
int ioveclen;

DESCRIPTION
Write attempts to write nbytes of data to the object referenced by the descriptor d from the
buffer pointed to by buf Writev performs the same action, but gathers the output data from
the iovlen buffers specified by the members of the iovec array: iov [0], iov [1], etc.

On objects capable of seeking. the write starts at a position given by the pointer associated with
d, see Iseek(2). Upon return from write, the pointer is incremented by the number of bytes
actually written.

Objects that are not capable of seeking always write from the current position. The value of the
pointer associated with such an object is undefined.

If the real user is not the super-user, then write clears the set-user-id bit on a file. This
prevents penetration of system security by a user who "captures" a writable set-user-id file
o··vned by the super-user.

RETURN VALUE
Upon successful completion the number of bytes actually writen is returned. Otherwise a -I is
returned and errno is set to indicate the error.

ERRORS
Write will fail and the file pointer will remain unchanged if one or more of the following are
true:

[EBADF]

[EPIPE]

[EPIPE]

[EFBIG]

[EFAULT]

SEE ALSO

D is not a valid descriptor open for writing.

An attempt is made to write to a pipe that is not open for reading by any pro­
cess.

An attempt is made to write to a socket of type SOCK_STREAM which is not
connected to a peer socket.

An attempt was made to write a file that exceeds the process's file size limit or
the maximum file size.

Part of iov or data to be written to the file points outside the process's allocated
address space.

Iseek(2), open(2), pipe(2)

4th Berkeley Distribution 27 July 1983

INTRO(3) UNIX Programmer's Manual INTRO (3)

NAME
intro - introduction to library functions

DESCRIPTION

FILES

This section describes functions that may be found in various libraries. The library functions
are those other than the functions which directly invoke UNIX system primitives, described in
section 2. This section has the libraries physically grouped together. This is a departure from
older versions of the UNIX Programmer's Reference Manual, which did not group functions by
library. The functions described in this section are grouped into various libraries:

(3) and (35)
The straight "3" functions are the standard C library functions. The C library also
includes all the functions described in section 2. The 35 functions comprise the standard
110 library. Together with the (3N), (3X), and (3C) routines, these functions constitute
library libc, which is automatically loaded by the C compiler cc(1), the Pascal compiler
pc(1), and the Fortran compiler .177(1). The link editor Id(I) searches this library under
the '-lc' option. Declarations for some of these functions may be obtained from
include files indicated on the appropriate pages.

(3F) The 3F functions are all functions callable from FORTRAN. These functions perform
the same jobs as do the straight "3" functions.

(3M) These functions constitute the math library, libm. They are automatically loaded as
needed by the Pascal compiler pe(1) and the Fortran compiler .177(1). The link editor
searches this library under the '-1m' option. Declarations for these functions may be
obtained from the include file < math. h > .

(3N) These functions constitute the internet network library,

(35) These functions constitute the 'standard 110 package', see intro (35). These functions
are in the library libc already mentioned. Declarations for these functions may be
obtained from the include file <stdio.h>.

(3X) Various specialized libraries have not been given distinctive captions. Files in which
such libraries are found are named on appropriate pages.

(3C) Routines included for compatibility with other systems. In particular, a number of sys­
tem call interfaces provided in previous releases of 4B5D have been included for source
code compatibility. The manual page entry for each compatibility routine indicates the
proper interface to use.

llib/libc.a
lusr Ilib/Hbm.a
lusr Ilib/Hbc y.a
lusr llib/libm y.a

SEE ALSO
intro(3C), intro(35), intro(3F), intro(3M), intro(3N), nm(1), IdO), ccO), n7(l), intro(2)

DIAGNOSTICS
Functions in the math library (3M) may return conventional values when the function is
undefined for the given arguments or when the value is not representable. In these cases the
external variable errno (see intro(2» is set to the value EDOM (domain error) or ERANGE
(range error). The values of EDOM and ERANGE are defined in the include file < math.h >.

LIST OF FUNCTIONS
Name

abort
abort

4th Berkeley Distribution

Appears on Page

abort. 3
abort.3f

Description

generate a fault
terminate abruptly with memory image

2 April 1983 1

INTRO(3) UNIX Programmer's Manual INTRO(3)

abs abs.3 integer absolute value
access access.3f determine accessability of a file
acos sin.3m trigonometric functions
alarm alarm.3c schedule signal after specified time
alarm alarm.3f execute a subroutine after a specified time
alloca malloc.3 memory allocator
arc plot.3x graphics interface
asctime ctime.3 convert date and time to ASCII
asin sin.3m trigonometric functions
assert assert.3x program verification
atan sin. 3m trigonometric functions
atan2 sin.3m trigonometric functions
atof atof.3 convert ASCII to numbers
atoi atof.3 convert ASCII to numbers
atol atof.3 convert ASCII to numbers
bcmp bstring.3 bit and byte string operations
bcopy bstring.3 bit and byte string operations
bessel bessel.3f of two kinds for integer orders
bit bit.3f and, or, xor, not, rshift, Ishift bitwise functions
bzero bstring.3 bit and byte string operations
cabs hypot.3m Euclidean distance
calloc malloc.3 memory allocator
ceil floor. 3m absolute value, floor, ceiling functions
chdir chdir.3f change default directory
chmod chmod.3f change mode of a file
circle plot.3x graphics interface
c1earerr ferror.3s stream status inquiries
closedir directory. 3 directory operations
c1oselog syslog.3 control system log
c10sepl plot.3x graphics interface
cont plot.3x graphics interface
cos sin.3m trigonometric functions
cosh sinh.3m hyperbolic functions
crypt crypt. 3 DES encryption
ctime ctime.3 convert date and time to ASCII
clime time.3f return system time
curses curses.3x screen functions with "optimal" cursor motion
dbminit dbm.3x data base subroutines
delete dbm.3x data base subroutines
dffrac flmin.3f return extreme values
dflmax fimin.3f return extreme values
dflmax range.3f return extreme values
dflmin tlmin.3f return extreme values
dflmin range.3f return extreme values
drand rand.3f return random values
dtime etime.3f return elapsed execution time
ecvt ecvt.3 output conversion
edata end. 3 last locations in program
encrypt crypt. 3 DES encryption
end end.3 last locations in program
endfsent getfsent.3x get file system descriptor file entry
endgrent getgrent.3 get group file entry

4th Berkeley Distribution 2 April 1983 2

INTRO(3)

endhostent
endnetent
endprotoent
endpwent
endservent
environ
erase
etext
etime
exec
exece
execl
execle
execlp
exect
execv
execvp
exit
exit
exp
fabs
fclose
fcvt
fdate
feof
ferror
fetch
mush
ffrac
ffs
fgetc
fgetc
fgets
fileno
firstkey
flmax
flmax
flmin
flmin
floor
flush
fork
fpecnt
fprintf
fputc
fputc
fputs
fread
free
frexp
fscanf
fseek

4th Berkeley Distribution

UNIX Programmer's Manual INTRO(3)

gethostent.3n
getnetent.3n
getprotoent.3n
getpwent.3
getservent.3n
execl.3
plot.3x
end.3
etime.3f
execl.3
execl.3
execl.3
.execl.3
execl.3
execl.3
execl.3
execl.3
exit. 3
exit.3f
exp.3m
floor.3m
fclose.3s
ecvt.3
fdate.3f
ferror.3s
ferror.3s
dbm.3x
fclose.3s
flmin.3f
bstring.3
getc.3f
getc.3s
gets.3s
ferror.3s
dbm.3x
flmin.3f
range.3f
flmin.3f
range.3f
floof.3m
flush.3f
fork.3f
trpfpe.3f
printf.3s
putc.3f
putc.3s
puts.3s
fread.3s
malloc.3
frexp.3
scanf.3s
fseek.3f

get network host entry
get network entry
get protocol entry
get password file entry
get service entry
execute a file
graphics interface
last locations in program
return elapsed execution time
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
execute a file
terminate a process after flushing any pending output
terminate process with status
exponential, logarithm, power, square root
absolute value, floor, ceiling functions
close or flush a stream
output conversion
return date and time in an ASCII string
stream status inquiries
stream status inquiries
data base subroutines
close or flush a stream
return extreme values
bit and byte string operations
get a character from a logical unit
get character or word from stream
get a string from a stream
stream status inquiries
data base subroutines
return extreme values
return extreme values
return extreme values
return extreme values
absolute value, floor, ceiling functions
flush output to a logical unit
create a copy of this process
trap and repair floating point faults
formatted output conversion
write a character to a fortran logical unit
put character or word on a stream
put a string on a stream
buffered binary input/output
memory allocator
split into mantissa and exponent
formatted input conversion
reposition a file on a logical unit

2 April 1983 3

INTRO(3)

fseek
fstat
ftell
ftell
ftime
fwrite
gamma
gcvt
gerror
getarg
getc
getc
getchar
getcwd
getdiskbyname
getenv
getenv
getfsent
getfsfile
getfsspec
getfstype
getgid
getgrent
getgrgid
getgrnam
gethostbyaddr
gethostbyname
gethostent
getlog
getlogin
getnetbyaddr
getnetbyname
getnetent
getpass
getpid
getprotobyname
getprotobynumber
getprotoent
getpw
getpwent
getpwnam
getpwuid
gets
getservbyname
getservbyport
getservent
getuid
getw
getwd
gmtime
gmtime
gtty

4th Berkeley Distribution

UNIX Programmer's Manual

fseek.3s reposition a stream
stat.3f get file status

. fseek.3f reposition a file on a logical unit
fseek.3s reposition a stream
time.3c get date and time
fread.3s buffered binary input/output
gamma.3m log gamma function
ecvt.3 output conversion
perror.3f get system error messages
getarg.3f return command line arguments
getc.3f get a character from a logical unit
getc.3s get character or word from stream
getc.3s get character or word from stream
getcwd.3f get pathname of current working directory
getdisk.3x get disk description by its name
getenv.3 value for environment name
getenv.3f get value of environment variables
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getfsent.3x get file system descriptor file entry
getuid.3f get user or group ID of the caller
getgrent.3 get group file entry
getgrent.3 get group file entry
getgrent.3 get group file entry
gethostent.3n get network host entry
gethostent.3n get network host entry
gethostent.3n get network host entry
getlog.3f get user's login name
getlogin.3 get login name
getnetent.3n get network entry
getnetent.3n get network entry
getnetent.3n get network entry
getpass.3 read a password
getpid.3f get process id
getprotoent.3n get protocol entry
getprotoent.3n get protocol entry
getprotoent.3n get protocol entry
getpw.3 get name from uid
getpwent.3 get password file entry
getpwent.3 get password file entry
getpwent.3 get password file entry
gets.3s get a string from a stream
getservent.3n get service entry
getservent.3n get service entry
getservent.3n get service· entry
getuid.3f get user or group ID of the caller
getc.3s get character or word from stream
getwd.3 ·get current working directory pathname
ctime.3 convert date and time to ASCII
time.3f return system time
stty.3c set and get terminal state (defunct)

2 April 1983

INTRO (3)

4

INTRO(3)

hostnm
htonl
htons
hypot
iargc
idate
ierrno
index
index
inet addr
inet)naof
inet_makeaddr
inet_netof
inet_network
initgroups
initstate
inmax
inmax
insque
ioinit
irand
isalnum
isalpha
isascii
isatty
isatty
iscntrl
isdigit
islower
isprint
ispunct
isspace
isupper
itime
jO
jl
jn
kill
label
Idexp
len
lib2648
line
linemod
link
lnblnk
loc
local time
log
log10
long
longjmp

4th Berkeley Distribution

UNIX Programmer's Manual INTRO (3)

hostnm.3f
byte order .3n
byte order .3n
hypot.3m
getarg.3f
idate.3f
perror.3f
index.3f
string. 3
inet.3n
inet.3n
inet.3n
inet.3n
inet.3n
initgroups.3x
random.3
flmin.3f
range.3f
insque.3
ioinit.3f
rand.3f
ctype.3
ctype.3
ctype.3
ttynam.3f
ttyname.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
ctype.3
idate.3f
jO.3m
jO.3m
jO.3m
kill.3f
plot.3x
frexp.3
index.3f
lib2648.3x
plot.3x
plot.3x
link.3f
index.3f
loc.3f
ctime.3
exp.3m
exp'3m
long.3f
setjmp.3

get name of current host
convert values between host and network byte order
convert values between host and network byte order
Euclidean distance
return command line arguments
return date or time in numerical form
get system error messages
tell about character objects
string operations
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
Internet address manipulation routines
initialize group access list
better random number generator
return extreme values
return extreme values
insert/remove element from a queue
change f77 I/O initialization
return random values
character classification macros
character classification macros
character classification macros
find name of a terminal port
find name of a terminal
character classification macros
character classification macros
character classification macros
character classification macros
character classification macros
character classification macros
character classification macros
return date or time in numerical form
bessel functions
bessel functions
bessel functions
send a signal to a process
graphics interface
split into mantissa and exponent
tell about character objects
subroutines for the HP 2648 graphics terminal
graphics interface
graphics interface
make a link to an existing file
tell about character objects
return the address of an object
convert date and time to ASCII
exponential, logarithm, power, square root
exponential, logarithm, power, square root
integer object conversion
non-local goto

2 April 1983 5

INTRO (3) UNIX Programmer's Manual INTRO (3)

Istat stat.3f get file status
Itime time.3f return system time
malloc malloc.3 memory allocator
mktemp ··mktemp.3 make a unique file name
modf frexp.3 split into mantissa and exponent
moncontrol monitor.3 prepare execution profile
monitor monitor.3 prepare execution profile
monstartup monitor. 3 prepare execution profile
move plot.3x graphics interface
nextkey dbm.3x data base subroutines
nice nice.3c set program priority
nlist nUst.3 get entries from name list
ntohl byteorder .3n convert values between host and network byte order
ntohs byteorder .3n convert values between host and network byte order
opendir directory. 3 directory operations
openlog syslog.3 control system log
pause ·pause.3c stop until signal
pclose popen.3 initiate I/O to/from a process
perror perror.3 system error messages
perror perror.3f get system error messages
plot: openpl plot.3x graphics interface
point plot.3x graphics interface
popen popen.3 initiate 110 to/from a process
pow exp.3m exponential, logarithm, power, square root
printf printf.3s formatted output conversion
psignal psigna1.3 system signal messages
putc putc.3f write a character to a fortran logical unit
putc putc.3s put character or word on a stream
putchar putc.3s put character or word on a stream
puts puts.3s put a string on a stream
putw . putc.3s put character or word on a stream
qsort qsort.3 quicker sort
qsort qsort.3f quick sort
rand rand.3c random number generator
rand rand.3f return random values
random random. 3 better random number generator
rcmd rcmd.3x routines for returning a stream to a remote command
re_comp regex.3 regular expression handler
re_exec regex.3 regular expression handler
readdir directory .3 directory operations
realloc malloc.3 memory allocator
remque insque.3 insert/remove element from a queue
rename rename.3f rename a file
rewind fseek.3s reposition a stream
rewinddir directory .3 directory operations
rexec rexec.3x return stream to a remote command
rindex index.3f tell about character objects
rindex string. 3 string operations
rresvport rcmd.3x routines for returning a stream to a remote command
ruserok rcmd.3x routines for returning a stream to a remote command
scandir scandir.3 scan a directory
scanf scanf.3s formatted input conversion

4th Berkeley Distribution 2 Apri11983 6

INTRO (3) UNIX Programmer's Manual INTRO (3)

seekdir directory.3 directory operations
setbuf setbuf.3s assign buffering to a stream
setbuffer setbuf.3s assign buffering to a stream
setegid setuid.3 set user and group ID
seteuid setuid.3 set user and group ID
setfsent getfsent.3x get file system descriptor file entry
setgid setuid.3 set user and group ID
setgrent getgrent.3 get group file entry
sethostent gethostent.3n get network host entry
setjmp setjmp.3 non-local goto
setkey crypt. 3 DES encryption
setlinebuf setbuf.3s assign buffering to a stream
setnetent getnetent.3n get network entry
setprotoent getprotoent.3n get protocol entry
setpwent getpwent.3 get password file entry
setrgid setuid.3 set user and group ID
setruid setuid.3 set user and group ID
setservent getservent.3n get service entry
sets tate random. 3 better random number generator
setuid setuid.3 set user and group ID
short long.3f integer object conversion
signal signal. 3 simplified software signal facilities
signal signal.3f change the action for a signal
sin sin.3m trigonometric functions
sinh sinh.3m hyperbolic functions
sleep sleep 3 suspend .execution for interval
sleep sleep.3f suspend execution for an interval
space plot.3x graphics interface
sprintf printf.3s formatted output conversion
sqrt exp.3m exponential, logarithm, power, square root
srand rand.3c random number generator
srandom random. 3 better random number generator
sscanf scanf.3s formatted input conversion
stat stat.3f get file status
stdio intro.3s standard buffered input/output package
store dbm.3x data base subroutines
strcat string. 3 string operations
strcmp string. 3 string operations
strcpy string. 3 string operations
strlen string. 3 string operations
stmcat string. 3 string operations
stmcmp string. 3 string operations
strncpy string.3 string operations
stty stty.3c set and get terminal state (defunct)
swab swab. 3 swap byt
sys _ errlist perror.3 system e
sys_nerr perror.3 system e
sys _ siglist psigna1.3 system s
syslog syslog.3 control:
system system.3 issue a l
system system.3f execute
tan sin.3m trigonol

4th Berkeley Distribution 2 April 1983 7

INTRO(3)

tanh
tclose
telldir
tgetent
tgetfiag
tgetnum
tgetstr
tgoto
time
time
times
timezone
topen
tputs
traper
trapov
tread
trewin
trpfpe
tskipf
tstate
ttynam
ttyname
ttyslot
twrite
ungetc
unlink
utime
valloc
varargs
vlimit
vtimes
wait
yO
yl
yn

4th Berkeley Distribution

UNIX Programmer's Manual INTRO(3)

sinh. 3m
topen.3f
directory. 3
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
time.3c
time.3f
times.3c
ctime.3
topen.3f
termcap.3x
traper.3f
trapov.3f
topen.3f
topen.3f
trpfpe.3f
topen.3f
topen.3f
ttynam.3f
ttyname.3
ttyname.3
topen.3f
ungetc.3s
unlink.3f
utime.3c
valloc.3
varargs.3
vlimit.3c
vtimes.3c
wait.3f
jO.3m
jO.3m
jO.3m

hyperbolic functions
n7 tape I/O
directory operations
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
get date and time
return system time
get process times
convert date and time to ASCII
n7 tape 1/0
terminal independent operation routines
trap arithmetic errors
trap and repair floating point overflow
n7 tape 1/0
n7 tape 1/0
trap and repair floating point faults
n7 tape I/O
n7 tape I/O
find name of a terminal port
find name of a terminal
find name of a terminal
n7 tape I/O
push character back into input stream
remove a directory entry
set file times
aligned memory allocator
variable argument list
control maximum system resource consumption
get information about resource utilization
wait for a process to terminate
bessel functions
bessel functions
bessel functions

2 April 1983 8

ABORT (3)

NAME
abort - generate a fault

DESCRIPTION

UNIX Programmer's Manual ABORT (3)

Abort executes an instruction which is illegal in user mode. This causes a signal that normally
terminates the process with a core dump, which may be used for debugging.

SEE ALSO
adb(1), sigvec(2), exit(2)

DIAGNOSTICS
Usually 'lOT trap - core dumped' from the shell.

BUGS
The abortO function does not flush standard I/O butTers. Use ffiush (3S).

7th Edition 18 January 1983 1

ABS(3)

NAME
abs - integer absolute value

SYNOPSIS.
abs(l)
lot I;

DESCRIPTION

UNIX Programmer's Manual

Abs returns the absolute value of its integer operand.

SEE ALSO
Ooor(3M) for labs

BUGS

ABS (3)

Applying the abs function to the most negative integer generates a result which is the most
negative integer. That is,

abs(Ox80000000)

returns Ox80000000 as a result.

7th Edition 18 January 1983 1

ATOF(3) UNIX Programmer's Manual ATOF(3)

NAME
atof, atoi, atol - convert ASCII to numbers

SYNOPSIS
double atof(nptr)
char *nptrj
atol(nptr)
char .nptrj

1001 atoHnptr)
char .optr;

DESCRIPTION
These functions convert a string pointed to by nptr to floating, integer, and long integer
representation respectively. The first unrecognized character ends the string.

Ato/recognizes an optional string of spaces, 'then an optional sign, then a string of digits option­
ally containing a decimal point, then an optional 'e' or 'E' followed by an optionally signed
integer.

Atoi and atol recognize an optional string of spaces, then an optional sign, then a string of
digits.

SEE ALSO
scanf(3S)

BUGS
There are no provisions for overflow.

7th Edition 19 January 1983 1

BSTRING(3) UNIX Programmer's Manual BSTRING (3)

NAME
bcopy, bcmp, bzero, trs - bit and byte string operations

SYNOPSIS
bcopy(bl, b2, length)
char -bl, -b2;
Int length;

bcmp(bl, b2, length)
char -bl, *b2;
Int length;

bzero(b, length)
char -b;
lnt length;

ft'sO)
Int I;

DESCRIPTION

BUGS

The functions bcopy, bcmp, and bzero operate on variable length strings of bytes. They do not
check for null bytes as the routines in string(3) do.

Beopy copies length bytes from string bl to the string b2.

Bemp compares byte string bl against byte string b2, returning zero if they are identical, non­
zero otherwise. Both strings are assumed to be length bytes long.

Bzero places length 0 bytes in the string bl.

Ffs find the first bit set in the argument passed it and returns the index of that bit. Bits are
numbered starting at 1. A return value of -1 indicates the value passed is zero.

The bemp and beopy routines take parameters backwards from stremp and strepy.

4th Berkeley Distribution 4 March 1983 1

CRYPT (3) UNIX Programmer's Manual CRYPT (3)

NAME
crypt, setkey, encrypt - DES encryption

SYNOPSIS
char -crypt (key, salt)
char -key, -salt;

setkey(key)
char -key;

encrypt (block, edflag)
char -block;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data Encryption Standard,
with variations intended (among other things) to frustrate use of hardware implementations of
the DES for key search.

The first argument to crypt is normally a user's typed password. The second is a 2-character
string chosen from the set [a-zA-ZO-9.11. The salt string is used to perturb the DES algorithm
in one of 4096 different ways, after which the password is used as the key to encrypt repeatedly
a constant string. The returned value points to the encrypted password, in the same alphabet as
the salt. The first two characters are the salt itself.

The other entries provide (rather primitive) access to the actual DES algorithm. The argument
of setkey is a character array of length 64 containing only the characters with numerical value 0
and 1. If this string is divided into groups of 8, the low-order bit in each group is ignored,
leading to a 56-bit key which is set into the machine.

The argument to the encrypt entry is likewise a character array of length 64 containing O's and
1 'so The argument array is modified in place to a similar array representing the bits of the argu­
ment after having been subjected to the DES algorithm using the key set by setkey. If eqjiag is
0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
passwd(l), passwd(5), 10gin(1), getpass(3)

. BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 25 February 1983 1

CrIME(3) UNIX Programmer's Manual CTIME(3)

NAME
ctime, local time, gmtime, asctime, timezone -- convert date and time to ASCII

SYNOPSIS
char *ctimc(clock)
long *clock;

include (sys/timc.h)

struct tm *Iocaltime(clock)
long *clock;

struct tm *gmtimc(c1ock)
long *clock;

char *~lsctime(tm)
struct tm *hll;

char *timcl.onc(zonc, dst)

DESCnll'TION
Clilllc converts a time pointed to by clock slIch as returned by limc(3) into ASCII and returns a
pointer to a 26-charactcr string in the following form. All the fields have constant width.

Sun Sep 16 01:03:52 .1973\n\0

Loca/lime and gnilillle return pointers to structures containing the broken-down time. I,oea/lime
corrects for the time zone and possible daylight savings time; gmlimc converts directly to GMT,
which is the time UN IX uses. Asc:limc converts a broken-down time to ASCII and returns a
pointer to a 26-character string.

The structure dec1aration rrom the include file is:

~truct tm. {
int

};

int
int
illt
int
int
int
int
int

tlll.,...sec;
tlll_lllin;
tmJlOur;

. tm_mday;
tm_mon;
till_year;
tlll_wday;
tlll_yday;
tm_isdst;

These quantities give the time on a 24-hour clock, day of month (1-30, month of year (0-11), day
of week (Sunday = 0), year - 1900, day of year (0-365), and a nag that is nOllzero if daylight sav­
ing time is in clfect.

When local time is called for, the program consults the system to determine the time zone and
whether the U.S./\, Australian, Eastern European, Middle European, or Western European day­
Jight saving time adjustment is appropriatc. The program knows about various peculiarities in time
conversion over the past 10··20 years: if necessary, this understanding can be extended.

Timezone returns the name of the time zone associated with il<; first argument, which is measured in
minutes westward from Greenwich. If the second argument is 0, Ule standard name is used, other­
wise the Daylight Saving version. I f the required name docs not appear in a table built into the
routine, the difference from GMT is produced: e.g. in Alghanistan tilllczO,llc(-(60*4 -/- 30), 0) is
appropriate because it is 4:30 ahead of.GMT and the string GMT+4:30 is'produced.

4th Berkeley Distrihution 26 J unc 1983 . I

CTIME(3) UNIX Programmer's Manual CTIME(3)

SEE ALSO
gcttimeofday(2), time(3)

BUGS
The return values point to static data whose content is overwritten by each call.

4th Berkeley Distribution 26 June 1983 2

CTYPE(3) UNIX Programmer's Manual CTYPE(3)

NAME
isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct, isprint, iscntrl, isascii - character
classification macros

SYNOPSIS
#lnclude < etype.h >
lsalpha(c)

DESCRIPTION
These macros classify ASCII-coded integer values by table lookup. Each is a predicate return­
ing nonzero for true, zero for false. lsascii is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII value EOF (see stdio(3S».

isalpha

isupper

is/ower

isdigit

isalnum

isspace

'ispunct

isprint

iscntrl

isascii

SEE ALSO
ascii (7)

7th Edition

c is a letter

c is an upper case letter

c is a lower case letter

c is a digit

c is an alphanumeric character

c is a space, tab, carriage return, newline, or formfeed

c is a punctuation character (neither control nor alphanumeric)

c is a printing character, code 040(8) (space) through 0176 (tilde)

c is a delete character (0177) or ordinary control character (less than 040).

c is an ASCII character, code less than 0200

2S February 1983 1

DIRECTORY (3) UNIX Programmer's Manual DIRECTORY (3)

NAME
opendir, readdir, telldir, seekdir, rewinddir, closedir- directory operations

SYNOPSiS
#lnelude < sys/dlr.h >
DIR .opendir(fllename)
ebar .fllename;

strud dlreet .readdlr(dlrp)
DIR .dlrp;

lonl telldlr(dlrp)
DIR .dlrp;

seekdlr (dlrp, loe)
DIR .dlrp;
lonlloe;

rewlnddlr(dlrp)
DIR .dlrp;

elosedlr(dlrp)
DIR .dlrp;

DESCRIPTION
Opendir opens the directory named by filename and associates a directory stream with it. Opendir
returns a pointer to be used to identify the directory stream in subsequent operations. The
pointer NULL is returned if filename cannot be accessed, or if it cannot malloc(3) enough
memory to hold the whole thing. .

Readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end
of the directory or detecting an invalid seekdir operation.

Telldir returns the current location associated with the named directory stream.

Seekdir sets the position of the next readdir operation on the directory stream. The new. position
reverts to the one associated with the directory stream when the telldir operation was performed.
Values returned by telldir are good only for the lifetime of the DIR pointer from which they are
derived. If the directory is closed and then reopened, the telldir value may be invalidated due
to undetected directory compaction. It is safe to use a previous telldir value immediately after a
call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the directory.

Closedir closes the named directory stream and frees the structure associated with the DIR
pointer.

Sample code which searchs a directory for entry "name" is:

len - strlen(name);

SEE ALSO

dirp - opendir(".");
for (dp - readdir(dirp); dp !- NULL; dp - readdir(dirp»

if (dp->d_namlen - - len &,&, !strcmp(dp->d_name, name» (
closedir (dirp) ;

}
closedir(dirp) ;

return FOUND;

return NOT_FOUND;

open(2), close(2), read(2), Iseek(2), dir(S)

4th Berkeley Distribution 2S February 1983 1

ECVT(3) UNIX Programmer's Manual ECVT(3)

NAME
ecvt, fcvt, gcvt - output conversion

SYNOPSIS
char -eert (value, ndlgit, deept, slln)
double value;
Int ndillt, -deept, -silo;

dlar -fcvt(value, Dclllit, deept, slln)
double value;
Int Ddillt, -deept, -sliD;

char -Icvt(value, ncllglt, but)
double value;
char -buf;

DESCllIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits and returns a pointer
thereto. The position of the decimal point relative to the beginning of the string is stored
indirectly through deept (negative means to the left of the returned digits). If the sign of the
result is negative, the word pointed to by sign is non-zero, otherwise it is zero. The low-order
digit is rounded.

Fevt is identical to eev~ except that the correct digit has been rounded for Fortran F-format out­
put of the number of digits specified by ndigits.

Gevt converts the value to a null-terminated ASCII string in but and returns a pointer to b,q. It
attempts to produce ndigit significant digits in Fortran F format if possible, otherwise E format,
ready for printing. Trailing zeros may be suppressed.

SEE ALSO
printf(3)

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

END(3) UNIX Programmer's Manual END (3)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extem end;
extem etext;
extem edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address
of etext is the first address above the program text, edata above the initialized data region, and
end above the uninitialized data region.

When execution begins, the program break coincides with end, but it is reset by the routines
brk(2), ma//oc(3), standard input/output (stdio(3», the profile (-p) option of ccO), etc. The
current value of the program break is reliably returned by 'sbrk(O)', see brk(2).

SEE ALSO
brk(2), malloc(3)

7th Edition 19 Janull)' 1983 1

EXCEIY1'(3) UN IX Programmer's Manual EXCEPT(J)

NAME
(except) raise, raise_sysO - C exception handling

SYNOPSIS
include (except.h>

misc(code, msg)
iut code;
ch~1r *msg;

misc_sysO

cc ... -Iexcept

~:XTENDED C SYNTAX
DUnlNG statementl ni\NnL~~n slatement2 li:ND_IIANIlLII:lt

KJHi:TlJRN_ VOID

DESCRIPTION
The macros and functions in this package provide a limited amount of exception handling for pro­
gramming in C. They provide the ability to associate an exception handler to be invoked if an
~xccplion is raised during the execution of a statement.

C syntax is extended by several macros that al10w the programmer to as..~ociate an exception
handler with a statement. The "syntax" for this is:

DURING statementl HANDLER statement2 END_HANDLER

Either or both statement may be a compound statement. If an exception is raised using the raiseO
function during stat(,lIIellIl (or during any functions called by stat('lIIelltl), the stack wHi be
unwound and statemenl2 wilt be invokt'tl in the Cllrrcllt context. Ilowcvcr, if the exception handler
is redeclared in a dynamically cnclosed statement, the current cxception handler wilt be inactive
during the execution of the enclosed statement.

During the exccution or stat~lIleIl12, two preddined values may be used: Hxccplioll. Code , an
integer,is the value of code passcd to the raiseO call which invoked the handler, and
ExcepliOli.Alessage is the value of IIIsg. It is up to the user to define the values used fl)r the excep-
tion codes~ by convention, small positive integers are interpreted <ts Unix error codes. .

As an example of the lise of this package, the following "toy" code computes the qlloticntof vari­
ahles nand f2, unless t2 is 0.0:

7th Edition

DURING {
if(fl ::::.= 0.0)

raise(DIVIDE_BY _ZERO, "Division by zero attempted");
quotient = tIl a;

} HANDI.HR
switch (Exception.Code) (
case DIVIDE_HY_ZI!RO:

retufnH lUGE);
break;

default:
pJintf(" Unex pcc ted error %8\n", Exception.Message);

Stanford 1

EXCEPT(3} UN IX Programmer's Manual EXCEIYf(3)

}
EN l)_!-·II\NDl,ER

If a handler does not want to take responsibility for an exception, it can "pass the buck" to the
dynamically cnc10sing exception handler by use of the R HI? A ISH macro, which simply raises the
exception that invoked the handler. Of course, it is possiblc that there is no higher-level handler.
The programmer can control the action in this case hy setting lhe external int H:~:cepIAlode to some
(bit-wise OR'd) combination of the following constant'):

EX_MODI'~_REPORT Print a message on stderr if an exception is not caught. If this is not set,
no message is printed.

EX_MODE_A 130RT Calls the aborl(3) rout.ine if an exception is not caught. If this is not set,
. . , , . ,cxi/(3) is called:with the exccpW>il c()~c~as an argument.

The dcfault value for h'xcepll\lode is zero.

RESTIHCTIONS
TI-IESll: nESTIUCTIONS AHE IMPOI{TANT; YOU WILL SUFFER IF YOU DISOBEY
THEM.

During the execution of slalcmelltl. no transfers out of the statement are allowed, except as noted
here. Execution of a compound sfatemellll must "llin oil' the end" of the block. This means that
slalemcllll may not iilclude a rcturn or goto, or a brcak or continuc t.hat would "flect " loop enclos­
ing the DUfUNG ... HNIJ_IIANIJI,HR block. The slatemf'nll may include a call to raiseO (but
not RFR AI,\'H), exil(3), and any statement at all may be used in a functioll ca11ed.

If' you wish to use a rl'lufI1 within slalrllll'llll, you must instead lise f~'-RFTURNO to return a
value, or 1~'-R/~7'URN_VOII) if thc enclosing function is declared void. These two macros Illay be
used ollly in the (lexically) outermost slu/ell/rllli of a function, and nowhere clse.

There are no restrictions on what may be done inside the slalement2 part of Cl handler hlock, except
that it is subject lo lile above constraints if it is lexically enclosed in lhe sllllell/f'lIlf parl of another
handler.

As an aid to Ullix programmers, the raise_.~)'sO function is provided. It is lIs~d exactly as raisrO is,
except that it lIses the global crmo(3) to produce t.he cxception code and mcssage.

SEI~ AlBO
errnoO),' selj III pO)

AUTI-IOn'

BU(~S

Jeffrey Mogul (Stantbrd)

Due toa limitation of the s£'(illlp(3) implementation, rcgist'cr variables which are actually stored in
registers (and this is not always easy to dct.ennine. and e$pecially is not portable) arc restored to the
values they had upon entering slalell/f'1I11 whcn th(' handler (slt/femeIl12) is invoked. 1\11 other data
keeps whatever values they were assigned during the (illh.'lTlipted) execution or sIll lelllCII I I. ;\ good
rule to 1{}lIow is that you should not rely Oil the values or variables dec1areu l'l'gislcl' (in the current
block) atler an exception has been caught.

7th Edition Stanford 2

EXECL(3) UNIX Programmer's Manual EXECL(3)

NAME
execl, execv, execle, execlp, execvp, exec, exece, exect, environ - execute a file

SYNOPSIS
execl (name, argO, argl, ••• , aran, 0)
ehar -Dame, -argO, -argl, ••• , -8I'ID;

execv (name, arav)
ehar -name, -argvll;

exeele(name, argO, a1'l1, .•• , argn, 0, envp)
ehar -name, -argO, -argl, ••• , -argn, -envpll;

exeet (name, argv, envp)
char -name, -argvll, -envp();

extern ehar --environ;

DESCRIPTION
These routines provide various interfaces to the execve system call. Refer to execve(2) for a
description of their properties; only brief descriptions are provided here.

Exec in all its forms overlays the calling process with the named file, then transfers to the entry
point of the core image of the file. There can be no return from a successful exec; the calling
core image is lost.

The name argument is a pointer to the name of the file to be executed. The pointers Qfg[O]'
arg[J] ... address null-terminated strings. Conventionally arg(O] is the name of tbe file.

Two interfaces are available. execl is useful when a known file with known arguments, is being
called; . the arguments to execl are the character strings constituting the file and the arguments~
the first argument is conventionally the same as the file name (or its last component). A 0
argument must end the argument list.

The execv version is useful when the number of arguments is unknown in advance; the argu­
ments to execv are the name of the file to be executed and a vector of strings containing the
arguments. The last argument string must be followed by a 0 pointer.

The exect. version is used when the executed file is to be manipulated with ptrace(2). The pro­
gram is forced to single step a single instruction giving the parent an opportunity to manipulate
its state. On the VAX-II this is done by setting the trace bit in the process stat.us longword.

When a C program is executed, it is called as follows:

main(argc, argv, envp)
int argc;
char •• argv, •• envp;

where orgc is the argument count and arIV is an array 01 character pointers to the argu,ments
themselves. As indicated, argc is conventionally at least one and tbe first member of the array
points to a string containing the name of the file.

Argv is directly usable in another execv because argv(argcl is O.
Envp is a pointer to an array of strings that constitute the en:viron.ment' of the f)·recess.. Each
string consists of a name, an "-", and a. null-terminated. ~altle. The: array of pointers is; ter­
minated by a null pointer. The shell shU) passes an environment entry for each global shell
variable defined when the program is called. See environ (1) for some con:ventionally used
names. The C run-time start-off routine places· a copy of envp in tbe global cell en:vilon, whkh
is used by execvand exec! to pass the environment to any subprolrams executed by tile current
. program.

4th Berkeley Distribution 1 April 1981 1

EXECL(3) UNIX Programmer's Manual EXECL(3)

FILES

Exec!p and execvp are called with the same arguments as exec! and execv, but duplicate the
shell's actions in searching for an executable file in a list of directories. The directory list is
obtained from the environment.

Ibin/sh shell, invoked if command file found by execlp or execvp

SEE ALSO
execve(2), fork(2), environ (7) , csh(1)

DIAGNOSTICS

BUGS

If the file cannot be found, if it is not executable, if it does not start with a valid magic number
(see a.out(S», if maximum memory is exceeded, or if the arguments require too much space,
a return constitutes the diagnostic; the return value is -1. Even for the super-user, at least
one of the execute-permission bits must be set for a file to be executed.

If execvp is called to execute a file that turns out to be a shell command file, and if it is impossi­
ble to execute the shell, the values of argv[01 and argyl -11 will be modified before return.

4th Berkeley Distribution 1 Apri11981 2

EXIT (3) UNIX Programmer's Manual

NAME
exit - terminate a process after flushing any pending output

SYNOPSIS
exit (status)
lnt status;

DESCRIPTION

EXIT (3)

Exit terminates a process after calling the Standard 1/0 library function _cleanup to flush any
buffered output. Exit never returns.

SEE ALSO
exit (2) , intro(3S)

4th Berkeley Distribution 1 Apri11983 1

FREXP (3) UNIX Programmer's Manual

NAME
frexp, ldexp, modf - split into mantissa and exponent

SYNOPSIS
double frexp (value, eptr)
double value;
lnt .eptr;

double Idexp (value, exp)
double value;

double modf(value, Iptr)
double value, .Iptr;

DESCRIPTION

FREXP(3)

Frexp returns the mantissa of a double value as a double quantity, x, of magnitude less than 1
and stores an integer n such that value - x- 2 n indirectly through eptr. .
Ldexp returns the quantity value- Pp.

Modi returns the positive fractional part of value and stores the integer part indirectly through
iplr.

7th Edition 19 January 1983 1

GETBANNER(3) UNIX Programmer's Manual

NAME
getbanner - get system login banner string

SYNOI)SIS
char *gdhanncr();
cc files ... - Igctty .

DI~~CI{IPTION

GETBANNI~I{ (3)

Gelballller tries to extract the im (initial message) field from the default entry in letc/gettytab (see
gNI),lab(S». It then decodes the initial message according to the gellylab specifications (including
possible hostname substitution and alteration via the 1m and he fields),. and returns a pointer to the
static string. If letc/gcttytab docs not exist or the default entry can not be found, a default banner
is substituted.

FILES
lusrlstanfi>rd/lib/libgclly.a
Ictc/gettY~lb

SEE ALSO
gcttytab(5)

AUTHOR
Bill Blirgess

7th Edition 6 September 1984 1 .

GETENV(3) UNIX Programmer's Manual

NAME
getenv - value for environment name

SYNOPSIS
char -Ieteny(name)
char -name;

DESCRIPTION

GETENV(3) .

Getenv searches the environment list (see environ(7» for a string of the form name-value and
returns a pointer to the string value if such a string is present, otherwise getenv returns the
value 0 (NULL). .

SEE ALSO
environ (7), execve (2)

7th Edition 19 January 1983 1

GETGRENT (3) UNIX Programmer's Manual GETGRENT (3)

NAME
getgrent, getgrgid, getgrnam, setgrent, endgrent - get group file entry

SYNOPSIS
#lnclude < pp.h >
stnd poup -Ietlrent 0
stnd Iroup -Ietlqid (lid)
lnt lid;

stnct 1I'0up -Ietlmam (name)
char -name;

setlrentO

endlrentO

DESCIUPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the group file.

struct group { I- see getgrent(3) -/
char .gr_name;
char -gr ..,passwd;
int gr.Jid;
char .-gr_mem;

};

struct group .getgrent 0, .getgrgid 0, -getgrnam 0;
The members of this structure are:

gr_name The name of the group.
gr..,passwd The encrypted password of the group.
gr ..lid The numerical group-ID.
gr_mem Null-terminated vector of pointers to the individual member names.

Getgrent simply reads the next line while getgrgid and getgrnam search until a matching gid or
name is found (or until EOF is encountered). Each routine picks up where the others leave off
so successive calls may be used to search the entire file.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when· processing is complete.

letclgroup

SEE ALSO
getlogin(3), getpwent(3), group(S)

DIAGNOSTICS
A null pointer (0) is returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 19 January 1983 1

GETLOGIN (3)

NAME
getlogin - get login name

SYNOPSIS
char *Ietlolln 0

DESCRIPTION

UNIX Programmer's Manual GETLOGIN (3)

Get/ogin returns a pointer to the login name as found in letclutmp. It may be used in conjunc­
tion with getpwnam to locate the correct password file entry when the same use rid is shared by
several login names.

If get/ogin is called within a process that is not attached to a typewriter, it returns NULL. The
correct procedure for determining the login name is to first call get/ogin and if it fails, to call
getpw(getuidO) .

FILES
letc/utmp

SEE ALSO
getpwent(3), getgrent(3) , utmp(S), getpw(3)

DIAGNOSTICS
'Returns NULL (0) if name not found.

BUGS
The return values point to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

GETPASS (3)

NAME
getpass - read a password

SYNOPSIS
char .Ietpsss (prompt)
char .prompt;

DESCRIPTION

UNIX Programmer's Manual GETPASS (3)

Getpass reads a password from the file Idevltry, or if that cannot be opened, from the standard
input, after prompting with the null-terminated string prompt and disabling echoing. A pointer
is returned to a null-terminated string of at most 8 characters.

FILES
Idev/tty

SEE ALSO
crypt (3)

BUGS
The return value points to static data whose content is overwritten by each call.

7th Edition 19 January 1983 1

GETPWENT (3) UNIX Programmer's Manual GETPWENT (3)

NAME
getpwent, getpwuid, getpwnam, setpwent, endpwent - get password file entry

SYNOPSIS
#Include < p"d.h >
struct passwd -getpwentO

struet passwd -getpwuld (uld)
Int uld;

struet passwd -getpwnam (name)
char -name;

Int setpwentO

Int endpwentO

DESCRIPTION

FILES

Getpwent, getpwuid and getpwnam each return a pointer to an object with the following structure
containing the broken-out fields of a line in the password file.

struct passwd (/- see getpwent(3) ./
char .pw_name;
char .pw -passwd;
int pw_uid;
int pW...Jid;
int pw _quota;
char .pw_comment;
char .pw...Jecos;
char .pw _ dir;
char .pw _shell;

};

struct passwd -getpwent (), .getpwuid (), .getpwnam 0 ;
The fields pw_quota and pw_comment are unused; the others have meanings described in
passwd(S).

Getpwent reads the next line (opening the file if necessary); setpwent rewinds the file; endpwent
closes it.

Getpwuid and getpwnam search from the beginning until a matching uid or name is found (or
until EOF is encountered).

/etc/passwd

SEE ALSO
getlogin(3), getgrent(3), passwd(S)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

7th Edition 19 January 1983 1

GETWD(3) UNIX Proarammer's Manual

NAME·
letwd - let current woran, directory pathname

SYNOPSIS
char .. etwd (p.tha)
char .p.thaame;

DESCRIPTION

GETWD(3)

Getwd copies. the absolute pathname of the current working directory to pathname and returns a
pointer to the result.

LIMITATIONS
Maximum pathname leqth is MAXPATHLEN characters (1024).

DIAGNOSTICS
Getwd returns zero and places a message in pathname if an error occurs.

BUGS
Getwd may fail to return to the current directory if an error occurs.

4th Berkeley Distribution 25 February 1983 1

INSQUE(3) UNIX Programmer's Manual

NAME
insque, remque - insert/remove element from a queue

SYNOPSIS
struct qelem (

);

struct qelem *qJonv;
struct qelem *CLback;
char CLdatall;

insque (elem, prect)
struct qelem .elem, *pred;

remque(elem)
struct qelem .elem;

DESCRIPTION

INSQUE (3)

Insque and remque manipulate queues built from doubly linked lists. Each element in the
queue must in the form of "struct qelem". Insque inserts elem in a queue imediately after
pred; remque removes an entry elem from a queue.

SEE ALSO
"V AX Architecture Handbook", pp. 228-235.

4th Berkeley Distribution 18 July 1983 1

MALLOC(3) UNIX Programmer's Manual MALLOC(3)

NAME
malice, free, realloc, calloc, alloca - memory allocator

SYNOPSIS
char -malloc(size)
unsigned size;

free (ptr)
char -ptr;

char -realloc(ptr, size}
char -ptr;
unsigned size;

char -calloc(nelem, elsize}
unsigned nelem, elsize;

char -alloca {size}
Int size;

DESCRIPTION
Mal/oc and free provide a simple general-purpose memory allocation package. Mal/oc returns a
pointer toa block of at least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated by mal/oc; this space is made
available for further allocation, but its contents are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc is overrun or if some
random number is handed to free.

Malloc maintains multiple lists of free blocks according to size, allocating space· from the
appropriate list. 1.t calls sbrk (see brk(2» to get more memory from the system when there is
no suitable space already free.

Realloc changes the size of the block pointed to by plr to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old
sizes.

In order to be compatible with older versions, realloe also works if plr points to a block freed
since the last call of malloc, realloc or calloe; sequences of free, malloc and realloc were previ­
ously used to attempt storage compaction. This procedure is no longer recommended.

Cal/oc allocates space for an array of nelem elements of size elsize. The space is initialized to
zeros.

Alloca allocates size bytes of space in the stack frame of the caller. This temporary space is
automatically freed on return.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

DIAGNOSTICS

BUGS

Malloc, realloc and cal/oc return a null pointer (0) if there is no available . memory or if the
arena has been detectably corrupted by storing outside the bounds of a bloCk. Mal/oc may be
recompiled to check the arena very stringently on every transaction; those sites with a source
code license may check the source code to see how this can be done.

When realloc returns 0, the block pointed to by plr may be destroyed.

AI/oca is machine dependent; it's use is discouraged.

4th Berkeley Distribution 19 January 1983 1

MKTEMP(3) UNIX Programmer's Manual

NAME
mktemp -- make a unique file name

SYNOPSIS
char -mktemp(template)
char -template;

DESCRIPTION

MKTEMP(3)

Mktemp replaces template by a unique file name, and returns the address of the template. The
template should look like a file name with six trailing X's, which will be replaced with the
current process id and a unique letter.

SEE ALSO
getpid(2)

7th Edition 19 January 1983 1

MONITOR (3) UNIX Programmer's Manual MONITOR (3)

NAME
monitor, monstartup, moncontrol - prepare execution profile

SYNOPSIS
monltor(Iowpc, hlahpc, buffer, bufslze, nfune}
lnt . (*lowpc) 0, (*h1abpc) 0;
short buffer II ;

mObstartup (Iowpc, hlahpe)
Int (*lowpc}O, (*highpe)();

moncontrol (mode)

DESCRIPTION
There are two different forms of monitoring available: An executable program created by:

cc -p ...

automatically includes calls for the proj(l) monitor and includes an initial call to its start-up
routine monstartup with default parameters; monitor need not be called explicitly except to gain
fine control over profil buffer allocation. An executable program created by:

cc -pg ...

a~tomatically includes calls for the gproj(I) monitor.

Monstartup is a high level interface to projil(2). Lowpc and highpc specify the address range that
is to be sampled; the lowest address sampled is that of lowpc and the highest is just below
highpc. Monstartup allocates space· using sbrk(2) and passes it to monitor (see below) to record a
histogram of periodically sampled values of the program counter, and of counts of calls of cer­
tain functions, in the buffer. Only calls of functions compiled with the profiling option -p of
cc (1) are recorded.

To profile the entire program, it is sufficient to use

extern etext 0;

monstartup «int) 2, etext);

Etext lies just above all the program text, see end(3).

To stop execution monitoring and write the results on the file mon.out, use

monitor (0) ;

then proj(l) can be used to examine the results.

Moncontrol is used to selectively control profiling within a program. This works with either
proj(l) or gproj(l) type profiling. When the program starts, profiling begins. To stop the col­
lection of histogram ticks and call counts use moneontro/(O); to resume the collection of histo­
gram ticks and call counts use moneontro/(1). This allows the cost of particular operations to be
measured. Note that an output file will be produced upon program exit irregardless of the state
of moneontrol.

Monitor is a low level interface to projil(2). Lowpc and highpc are the addresses of two func·
tions; btd/'er is the address of a (user supplied) array of bujsize short integers. At most nfunc
call counts can be kept. For the results to be Significant, especially where there are small,
heavily used routines, it is suggested that the buffer be no more than a few times smaller than
the range of locations sampled. Monitor divides the buffer into space to record the histogram of
program counter samples over the range lowpc to highpc, and space to record call counts of
functions compiled with the -p option to ceO). .

4th Berkeley Distribution 19 January 1983 1

MONITOR (3) UNIX Programmer's Manual

To profile the entire program, it is sufficient to use

extern etext 0;

monitor ((int) 2, etext, buf, bufsize, nfunc);

FILES
mon.out

SEE ALSO
cc (1), prof(1), gprof(1), profiI(2), sbrk (2)

4th Berkeley Distribution 19 January 1983

MONITOR (3)

2

NLIST(3) UNIX Programmer's Manual

NAME
nlist - get entries from name list

SYNOPSIS
#include < nlist.h >
nUst (fllename, nO
char -fllename;
struct nUst nl II;

DESCRIPTION

NLIST (3)

Nlist examines the name list in the given executable output file and selectively extracts a list of
values. The name list consists of an array of structures containing names, types and values.
The list is terminated with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the next two fields. If the
name is not found, both entries are set to O. See a.out(S) for the structure declaration.

This subroutine is useful for examining the system name list kept in the file /vmunix. In this
way programs can obtain system addresses that are up to date.

SEE ALSO
a.out(S)

DIAGNOSTICS
All type entries are set to 0 if the file cannot be found or if it is not a valid name list.

4th Berkeley Distribution 19 January 1983 1

PERROR (3) UNIX Programmer's Manual PERROR(3)

NAME
perror, sys_errlist, sys_nerr - system error messages

SYNOPSIS
perror(s)
char .s;

lnt sys_Derr;
char .sys_errlist(J;

DESCRIPTION
Perror produces a short error message on the standard error file describing the last error
encountered during a call to the system from a C program. First the argument string s is
printed, then a colon, then the message and a new-line. Most usefully, the argument string is
the name of the program which incurred the error. The error number is taken from the exter­
nal variable errno (see intro(2», which is set when errors occur but not cleared when non­
erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings sys_errlist is provided;
errno can be used as an index in this table to get the message string without the newline.
Sys_nerr is the number of messages provided for in the table; it should be checked because new
error codes may be added to the system before they are added to the table.

SEE ALSO
intro (2), psignal (3)

J

4th Berkeley Distribution 19 January 1983 1

PSIGNAL (3) UNIX Programmer's Manual PSIGNAL (3)

NAME
psignal, sys_siglist - system signal messages

SYNOPSIS
psignal (sig, s)
unsigned sig;
char -s;

char -sys_siglist(J;

DESCRIPTION
Psignal produces a short message on the standard error file describing the indicated signal. First
the argument string s is printed, then a colon, then the name of the signal and a new-line.
Most usefully, the argument string is the name of the program which incurred the signal. The
signal number should be from among those found in <signal.h>.

To simplify variant formatting of signal names, the vector of message strings sys_siglist is pro­
vided; the signal number can be used as an index in this table to get the signal name without
the newline. The define NSIG defined in <signal.h> is the number of messages provided for
in the table; it should be checked because new signals may be added to the system before they
are added to the table.

SEE ALSO
sigvec(2), perror(3)

4th Berkeley Distribution 25 February 1983 1

QSORT(3) UNIX Programmer's Manual

NAME
qsort - quicker sort

SYNOPSIS
qsort (base, nel, width, compar)
char -base;
int (-compar) 0;

DESCRIPTION

QSORT (3)

Qsort is an implementation of the quicker-sort algorithm. The first argument is a pointer to the
base of the data; the second is the number of elements; the third is the width of an element in
bytes; the last is the name of the comparison routine to be called with two arguments which are
pointers to the elements being compared. The routine must return an integer less than, equal
to, or greater than 0 according as the first argument is to be considered less than, equal to, or
greater than the second.

SEE ALSO
sortO)

4th Berkeley Distribution 19 January 1983 1

RANDOM (3) UNIX Programmer's Manual RANDOM (3)

NAME
random, srandom, initstate, setstate - better random number generator; routines for changing
generators

SYNOPSIS
long random 0
srandom (seed)
lnt seed;

char -initstate (seed, state, n)
unsigned seed;
char -state;
Int n;

char -setstate (state)
char -state;

DESCRIPTION
Random uses a non-linear additive feedback random number generator employing a default
table of size 31 long integers to return successive pseudo-random numbers in the range from 0
to 231 _1. The period of this random number generator is very large, approximately
16*(231

- O.
Random/srandom have (almost) the same calling sequence and initialization properties as
rand/srand. The difference is that rand(3) produces a much less random sequence -- in fact, the
low dozen bits generated by rand go through a cyclic pattern. All the bits generated by random
are usable. For example, "randomO&Ol" will produce a random binary value.

Unlike srand, srandom does not return the old seed; the reason for this is that the amount of
state information used is much more than a single word. (Two other routines are provided to
deal with restarting/changing random number generators). Like rand(3), however, random will
by default produce a sequence of numbers that can be duplicated by calling srandom with J as
the seed.

The initstate routine allows a state array, passed in as an argument, to be initialized for future
use. The size of the state array (in bytes) is used by initstate to decide how sophisticated a ran­
dom number generator it should use -- the more state, the better the random numbers will be.
(Current "optimal" values for the amount of state information are 8, 32, 64, 128, and 256
bytes; other amounts will be rounded down to the nearest known amount. Using less than 8
bytes will cause an error). The seed for the initialization (which specifies a starting point for
the random number sequence, and provides for restarting at the same point) is also an argu­
ment. Initstate returns a pointer to the previous state information array.

Once a state has been initialized, the setstate routine provides for rapid switching between
states. Setstate returns a pointer to the argument state array is used for further random number
generation until the next call to initstate or setstate.

Once a state array has been initialized, it may be restarted at a different point either by calling
initstate (with the desired seed, the state array, and its size) or by calling both setstate (with the
state array) and srandom (with the desired seed). The advantage of calling both setstate and
srandom is that the size of the state array does not have to be remembered after it is initialized.

With 256 bytes of state information, the period of the random number generator is greater than
269

, which should be sufficient for most purposes.

AUTHOR
Earl T. Cohen

4th Berkeley Distribution 19 January 1983 1

RANDOM (3) UNIX Programmer's Manual RANDOM (3)

DIAGNOSTICS
If initstate is called with less than 8 bytes of state information, or if setstate detects that. the state
information has been garbled, error messages are printed on the standard error output.

SEE ALSO
rand (3)

BUGS
About 2/3 the speed of rand(3C).

4th Berkeley Distribution 19 January 1983 2

REGEX(3) UNIX Programmer's Manual REGEX(3)

NAME
re_comp, re_exec - regular expression handler

SYNOPSIS
char .re_comp(s)
char .s;

re_exee(s)
char .s;

DESCRIPTION
Re_comp compiles a string into an internal form suitable for pattern matching. Re_exec checks
the argument string against the last string passed to re_comp.

Re_comp returns 0 if the string s was compiled successfully; otherwise a string containing an er­
ror message is returned. If re_comp is passed 0 or a null string, it returns without changing the
currently compiled regular expression.

Re _exec returns 1 if the string s matches the last compiled regular expression, 0 if the string s
failed to match the last compiled regular expression, and - 1 if the compiled regular expression
was invalid (indicating an internal error).

The strings passed to both re_comp and re_exec may have trailing or embedded newline charac­
ters; they are terminated by nulls. The regular expressions recognized are described in the
manual entry for ed(1), given the above difference.

SEE ALSO
ed(1), ex(l), egrep(t), fgrep(l), grep(1)

DIAGNOSTICS
Re_exec returns -1 for an internal error.

Re_comp returns one of the following strings if an error occurs:

No previous regular expreSSion,
Regular expression too long,
unmatched \ (,
missing],
too many \ f\) pairs,
unmatched \).

4th Berkeley Distribution 29 February 1980 1

SCANDIR(3) UNIX Programmer's Manual SCANDIR(3)

NAME
scandir - scan a directory

SYNOPSIS
#lnclude < sys/types.h >
#lnclude < sys/dlr.h >
scandlr(dlrname, namellst, select, compar)
char .dlmame;
struct direct _(enamellstll>;
lnt (.select> ();
Int (.compar> ();

alphasort(dt, dl)
struct direct eedt, e.dl;

DESCRIPTION
Scandir reads the directory dirname and builds an array of pointers to directory entries using
malloc(3). It returns the number of entries in the array and a pointer to the array through
name/ist.

The select parameter is a pointer to a user supplied subroutine which is called by scandir to
select which entries are to be included in the array. The select routine is passed a pointer to a
directory entry and should return a non-zero value if the directory entry is to be included in the
array. If select is null, then all the directory entries will be included.

The com par parameter is a pointer to a user supplied subroutine which is passed to qsort(3) to
sort the completed array. If this pointer is null, the array is not sorted. A /phasort is a routine
which can be used for the compar parameter to sort the array alphabetically.

The memory allocated for the array can be deallocated with free (see malloc(3» by freeing each
pointer in the array and the array itself.

SEE ALSO
directory (3) , malloc(3), qsort(3), dir(S)

DIAGNOSTICS
Returns -1 if the directory cannot be opened for reading or if malloc(3) cannot allocate
enough memory to hold all the data structures.

4th Berkeley Distribution 19 January 1983 1

SETJMP(3) UNIX Programmer's Manual SETJMP (3)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

setJmp(env)
Jmp_buf env;

longJmp(env, val)
Jmp_buf env;

_setJmp(env)
Jmp_buf env;

_longJmp(env, val)
Jmp_buf env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encountered in a low-level sub­
routine of a program.

Setjmp saves its stack environment in env for later use by longjmp. It returns value O.

Longjmp restores the environment saved by the last call of setjmp. It then returns in such a way
that execution continues as if the call of setjmp had just returned the value val to the function
that invoked setjmp, which must not itself have returned in the interim. All accessible data
have values as of the time longjmp was called.

Setjmp and longjmp save and restore the signal mask sigmask(2), while _setjmp and _Iongjmp
manipulate only the C stack and registers.

SEE ALSO

BUGS

sigvec (2), sigstack (2), signal (3)

Setjmp does not save current notion of whether the process is executing on the signal stack.
The result is that a longjmp to some place on the signal stack leaves the signal stack state in­
correct.

4th Berkeley Distribution 19 January 1983 1

SETUID (3) UNIX Programmer's Manual

NAME
setuid, seteuid, setruid, setgid, setegid, setrgid - set user and group ID

SYNOPSIS
setuid (uld)
seteuid (euid)
setruid (ruid)

setgid (gid)
setegid (egid)
setrgid (rgid)

DESCRIPTION

SETUID (3)

Setuid (setgid) sets both the real and effective· user ID (group ID) of the current process to as
specified.

Seteuid (setegid) sets the effective user ID (group 1D) of the current process.

Setruid (setruid) sets the real user ID (group ID) of the current process.

These calls are only permitted to the super-user or if the argument is the real or effective ID.

SEE ALSO
setreuid (2), setregid (2), getuid (2), getgid (2)

DIAGNOSTICS
Zero is returned if the user (group) ID is set; -1 is returned otherwise.

4th Berkeley Distribution 1 April 1983 1

SLEEP (3) UNIX Programmer's Manual SLEEP (3)

NAME
sleep - suspend execution for interval

SYNOPSIS
sleep (seconds)
unsigned seconds;

DESCRIPTION
The current process is suspended from execution for the number of seconds specified by the
argument. The actual suspension time may be up to I second less than that requested, because
scheduled wakeups occur at fixed I-second intervals, and an arbitrary amount longer because of
other activity in the system.

The routine is implemented by setting an interval timer and pausing until it occurs. The previ­
otis state of this timer is saved and restored. If the sleep time exceeds the time to the expira­
tion of the previous timer, the process sleeps only until the signal would have occurred, and the
signal is sent 1 second later.

SEE ALSO
setitimer(2), sigpause(2)

BUGS
An interface with finer resolution is needed.

4th Berkeley Distribution 19 January 1983

STRCMPFOLD(3) UN IX Programmer's Manual STRCMPI;OlJ)(J)

NAME
strcmpfbld, strncmpfold - case-folded string compaJison operations

SYNOPSIS
strcmpfold(s I, s2)
char *sl, *s2;

strncmpfoJd(s I, s2, n)
clw r *sl, *s2;

[)1~ScnIP·rl.ON

These functions operate 011 null-terminated strings. They ignore case in comparisons; e.g., "CAT"
and "Cat" compare equal, and "cat" collates before "DOG". Otherwise, they are the same as the
slrcmp and slmcl11p functions described in slring(.3).. .

StrcmpjiJld compares its arglllllenL<) and returns an integer greater than, equal to, or less than 0,
according as sl is lexicogmphically greater tlwn. equal to, or less than s2. Slmcmpji>/d makes the
same comparison but looks at at most 11 characters.

SEl!: ALSO
slring(3)

BUGS
The name of stmcmpjhld is not unique in its first seven characters, and thus cannot be ported to
some implementations of C.

These functions arc currently unique to Stanford, and so programs using them may not he portable.

4th Berkeley Distribution Stallfbrd 1

STRING (3) UNIX Programmer's Manual STRING (3)

NAME
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index, rindex - string operations

SYNOPSIS
#include < strings.h >
char *strcat<sl, 52)
char *51, *52;

char *strncat<Sl, 52, n)
char *51, *52;

strcmp{sl, 52)
char *51, *52;

strncmp{sl, 52, n)
char *51, *52;

char *strcpy (51, 52)
char *51, *52;

char *strncpy (51, 52, n)
char *51, *52;

strlen{s)
,char *S;

char *index (s, c)
char *5, c;

char -rindex (s, c)
char *5, C;

DESCRIPTION
These functions operate on, null-terminated strings. They do not check for overflow of any
receiving string.

Streat appends a copy of string s2 to the end of string s1. Strncat copies at most n characters.
Both return a pointer to the null-terminated result.

Stremp compares its arguments and returns an integer greater than, equal to, or less than 0,
according as s1 is lexicographically greater than, equal to, or less than s2. Strnemp makes the
same comparison but looks at at most n characters.

Strepy copies string s2 to s1, stopping after the null character has been moved. Strnepy copies
exactly n characters, truncating or null-padding s2,' the target may not be null-terminated if the
length of s2 is n or more. Both return s1.

Strlen returns the number of non-null characters in s.

Index (rindex) returns a pointer to the first (last) occurrence of character e in string s, or zero if
e does not occur in the string.

4th Berkeley Distribution 19 January 1983 1

SWAB (3)

NAME
swab - swap bytes

SYNOPSIS
swab (from, to, nbytes)
char -from, -to;

DESCRIPTION

UNIX Programmer's Manual SWAB(3)

Swab copies nbytes bytes pointed to by from to the position pointed to by to, exchanging adja­
cent even and odd bytes. It is useful for carrying binary data between PDPll 's and other
machines. Nbytes should be even.

4th Berkeley Distribution 19 January 1983 1

SYSLOG (3) UNIX Programmer's Manual SYSLOG (3)

NAME
syslog, openlog, close log -- control system log

SYNOPSIS
include <syslog.h>

openlog (ident, logstat)
char .ident~

syslog (priority, message, parameters ...)
char .message~

close log 0
DESCRIPTION

Syslog arranges to write the message onto the system log maintained by syslog(S). The message
is tagged with priority. The message looks like a print/OJ string except that %m is replaced by
the current error message (collected from errno). A trailing newline is added if needed. This
message will be read by syslog(8) and output to the system console or files as appropriate.

If special processing is needed, open log can be called to initialize the log file. Parameters are
ident which is prepended to every message, and logstat which is a bit field indicating special
status~ current values are:

LOG _PID log the process id with each message: useful for identifying instantiations of dae-
mons.

Openiog returns zero on success. If it cannot open the file /devliog, it writes on Idevlconsole
instead and returns -1.

Closelog can be used to close the log file.

EXAMPLES
syslog(LOG_SALERT, "who: internal error 23")~

openlog ("serverftp", LOG _PID);
syslog(LOG_INFO, "Connection from host %d", CallingHost);

SEE ALSO
syslog(S)

7th Edition 1

SYSTEM (3) UNIX Programmer's Manual

NAME
system - issue a shell command

SYNOPSIS
s,stem (striDI)
char estrlnl;

DESCRIPTION

SYSTEM (3)

System causes the string to be given to shU) as input as if the string had been typed as a com­
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

SEE ALSO
popen (3S), execve (2), wait (2)

DIAGNOSTICS
Exit status 127 indicates the shell couldn't be executed.

7th Edition 19 January 1983 1

TIYNAME(3) UNIX Programmer's Manual TIYNAME(3)

NAME
ttyname, isatty, ttyslot - find name of a terminal

SYNOPSIS
char -ttyname (flledes)

Isatty (flledes)

ttyslotO

DESCRIPTION

FILES

Ttyname returns a pointer to the, null-terminated path name of the terminal device' associated
with file descriptor JUedes (this is a system file descriptor and has nothing to do with the stan­
dard I/O FILE typedeO.

lsatty returns 1 if JUedes is associated with a terminal device, 0 otherwise.

Ttyslot returns the number of the entry in the ttys(S) file for the control terminal of the current
process.

/dev/­
/etc/ttys

SEE ALSO
ioctl(2), ttys(5)

DIAGNOSTICS

BUGS

Ttyname returns a null pointer (0) if JUedes does not describe a terminal device in directory
'/dev'.

Ttyslot returns 0 if '/etc/ttys' is inaccessible or if it cannot determine the control terminal.

The return value points to static data whose 'content is overwritten by each call.

7th Edition 19 January 1983 1

VALLOC(3) UNIX Programmer's Manual

NAME
valloc - aligned memory allocator

SYNOPSIS
ehar *"alloe(size)
uDsilDed size;

DESCRIPTION

VALLOC(3)

Yalloe allocates size bytes aligned on a page boundary. It is implemented by calling mal/oc(3)
with a slightly larger request, saving the true beginning of the block allocated, and returning a
properly aligned pointer.

DIAGNOSTICS
Yalloc returns a null pointer (0) if there is no available memory or if the arena has been detect­
ably corrupted by storing outside the bounds of a block.

BUGS
Yfree isn't implemented.

3rd Berkeley Distribution 19 January 1983 1

VARARGS(3) UNIX Programmer's Manual VARARGS(3}

NAME
varargs - variable argument list

SYNOPSIS
#lnelude < varargs.h >
jUnction(va_allst>
va_del
va_list pvar;
va_start(pvar);
f - va_ara(pvar, type);
va_end(pvar);

DESCRIPTION
This set of macros provides a means of writing portable procedures that accept variable argu­
ment lists. Routines having variable argument lists (such as prinif(3)} that do not use varargs
are inherently nonportable, since different machines use different argument passing conven­
tions.

va_allst is used in a function header to. declare a variable argument list.

va_del is a declaration for va_alist. Note that there is no semicolon after va_del.

va_list is a type which can be used for the variable pvar, which is used to traverse the list. One
such variable must always be declared.

va_start(pvar) is called to initialize pvar to the beginning of the list.

va_llI'I(pvar, type} will return the next argument in the list pointed to by pvar. Type is the type
the argument is expected to be. Different types can be mixed, but it is up to the routine to
know what type of argument is expected, since it cannot be determined at runtime.

va_end(pvar) is used to finish up.

Multiple traversals, each bracketed by va_start ... va_end, are possible.

EXAMPLE

BUGS

#lnelude < varargs.h >
execl (va_allst>
va del
(-

}

va_list ap;
ehar .file;
ehar .args[100];
lnt argno - 0;

va_start(ap);
file - va_ara(ap, ehar .);
while (argsllll'lno+ +J - va_aq(ap, ehar .»

;
va_end(ap);
retum exeev (lie, arlls);

It is up· to the calling routine to determine how many arguments there are, since it is not possi­
ble to determine this from the stack frame. For example, exec/ passes a 0 to signal the end of
the list. Prinifcan tell how many arguments are supposed to be there by the format.

7th Edition 19 January 1983 1

INTRO(3F) UNIX Programmer's Manual INTRO (3F)

NAME
intro - introduction to FORTRAN library functions

DESCRIPTION
This section describes those functions that are in the FORTRAN run time library. The func­
tions listed here provide an interface from j77 programs to the system in the same manner as
the C library does for C programs. They are automatically loaded as needed by the Fortran
compiler j77(1) .

Most of these functions are in libU77.a. Some are in UbF77.a or libI77.a. A few intrinsic func­
tions are described for the sake of completeness.

For efficiency, the SCCS 10 strings are not normally included in the a.out file. To include them,
simply declare

external n7lid

in any j77 module.

LIST OF FUNCTIONS
Name

abort
access
alarm
bessel
bit
chdir
chmod
ctime
dffrac
dflmax
dflmin
drand
dtime
etime
exit
fdate
ffrac
fgetc
flmax
flmin
flush
fork
fpecnt
fputc
fseek
fstat
ftell
gerror
getarg
getc
getcwd
getenv
getgid
getlog

Appears on Page Description

abort.3f terminate abruptly with memory image
access.3f determine accessability of a file
alarm.3f execute a subroutine after a specified time
besse1.3f of two kinds for integer orders
bit.3f and, or, xor, not, rshift, lshift bitwise functions
chdir.3f change default directory
chmod.3f change mode of a file
time.3f return system time
flmin.3f return extreme values
flmin.3f return extreme values
flmin.3f return extreme values
rand.3f return random values
etime.3f return elapsed execution time
etime.3f return elapsed execution time
exit.3f terminate process with status
fdate.3f return date and time in an ASCII string
flmin.3f return extreme values
getc.3f get a character from a logical unit
flmin.3f return extreme values
flmin.3f return extreme values
flush.3f flush output to a logical unit
fork.3f create a copy of this process
trpfpe.3f trap and repair floating point faults
putc.3f write a character to a fortran logical unit
fseek.3f reposition a file on a logical unit
stat.3f get file status
fseek.3f reposition a file on a logical unit
perror .3f get system error messages
getarg.3f return command line arguments
getc.3f get a character from a logical unit
getcwd.3f get pathname of current working directory
getenv.3f get value of environment variables
getuid.3f get user or group 10 of the caller
getlog.3f get user's login name

4th Berkeley Distribution 26 July 1983 1

INTRO(3F) UNIX Programmer's Manual INTRO (3F)

getpid getpid.3f get process id
getuid getuid.3f get user or group ID of the caller
gmtime time.3f return system time
hostnm hostnm.3f get name of current host
iargc getarg.3f return command line arguments
idate idate.3f return date or time in numerical form
ierrno perror.3f get system error messages
index index.3f tell about character objects
inmax flmin.3f return extreme values
intro intro.3f introduction to FORTRAN library functions
ioinit ioinit.3f change n7 I/O initialization
irand rand.3f return random values
isatty ttynam.3f find name of a terminal port
itime idate.3f return date or time in numerical form
kill kill.3f send a signal to a process
len index.3f tell about character objects
link link.3f make a link to an existing file
lnblnk index.3f tell about character objects
loc loc.3f return the address of an object
long long.3f integer object conversion
Istat stat.3f get file status
ltime time.3f return system time
perror perror.3f get system error messages
putc putc.3f write a character to a fortran logical unit
qsort qsort.3f quick sort
rand rand.3f return random values
rename r~name.3f rename a file
rindex index.3f tell about character objects
short long.3f integer object conversion
signal signa1.3f change the action for a signal
sleep sleep.3f suspend execution for an interval
stat stat.3f get file status
system system.3f execute a UNIX command
tclose topen.3f n7 tape 110
time time.3f return system time
topen topen.3f n7 tape 110
traper traper.3f trap arithmetic errors
trapov trapov.3f trap and repair floating point overflow
tread topen.3f n7 tape I/O
trewin topen.3f n7 tape I/O
trpfpe trpfpe.3f trap and repair floating point faults
tskipf topen.3f n7 tape I/O
tstate topen.3f n7 tape I/O
ttynam ttynam.3f find name of a terminal port
twrite topen.3f n7 tape I/O
unlink unlink.3f remove a directory entry
wait wait.3f wait for a process to terminate

4th Berkeley Distribution 26 July 1983 2

ABORT (3F) UNIX Programmer's Manual

NAME
abort - terminate abruptly with memory image

SYNOPSIS
subroutine abort (striog)
character- (-) string

DESCRIPTION

ABORT (3F)

Abort cleans up the 110 buffers and then aborts producing a core file in the current directory. If
string is given, it is written to logical unit 0 preceeded by "abort:".

FILES
lusr llib/libF77.a

SEE ALSO
abort (3)

BUGS
String is ignored on the PDPll.

4th Berkeley Distribution 18 July 1983 1

ACCESS (3F) UNIX Programmer's Manual

NAME
access - determine accessability of a file

SYNOPSIS
integer function access (name, mode)
character- (-) name, mode

DESCRIPTION

ACCESS (3F)

Access checks the given file, name, for accessability with respect to the caller according to mode.
Mode may include in any order and in any combination one or more of:

r test for read permission
w test for write permission
x test for execute permission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all of
the specified modes. 0 is returned if the specified access would be successful.

FILES
lusr llib/libU77.a

SEE ALSO
access (2) , perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 26 July 1983 1

ALARM (3F) UNIX Programmer's Manual

NAME
alarm - execute a subroutine after a specified time

SYNOPSIS
integer function alarm (time, proc)
integer time
external proc

DESCRIPTION

ALARM (3F)

This routine arranges for subroutine proc to be called after time seconds. If time is "0", the
alarm is turned off and no routine will be called. The returned value will be the time remaining
on the last alarm.

FILES
lusr/lib/libU77.a

SEE ALSO
alarm(3C), sleep(3F), signaH3F)

BUGS
Alarm and sleep interact. If sleep is called after alarm, the alarm process will never be called.
SIGALRM will occur at the lesser of the remaining alarm time or the sleep time.

4th Berkeley Distribution 18 July 1983 1

BESSEL (3F) UNIX Programmer's Manual

NAME
bessel functions - of two· kinds for integer orders

SYNOPSIS
function besjO (x)

function besjl (x)

function besjn (n, x)

function besyO (x)

function besyl (x)

function besyn (n, x)

double precision function dbesjO (x)
double precision x

double precision function dbesjl (x)
double precision x

double precision function dbesjn (n, x)
double precision x

double precision function dbesyO (x)
double precision x

double precision function dbesyl (x)
double precision x

double precision function dbesyn (n, x)
double precision x

DESCRIPTION

BESSEL (3F)

These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause besyO, besyJ, and besyn to return a huge negative value. The system
error code will be set to EDOM (33).

FILES
lusr Ilib/libF77.a

SEE ALSO
jO(3M), perror(3F)

4th Berkeley Distribution 18 July 1983 1

BIT (3F) UNIX Programmer's Manual BIT (3F)

NAME
bit - and, or, xor, not, rshift, lshift bitwise functions

SYNOPSIS
{intrinsic} function and (wordt, word2)

(intrinsic) function or hvordl, word2)

{Intrinsic} function xor (wordt, word2)

(intrinsiC> function not (word)

(intrinsic) function rshift (word, nbits)

(intrinsic) function Ishift (word, nbits)

DESCRIPTION

FILES

These bitwise functions are built into the compiler and return the data type of their
argument(s). It is recommended that their arguments be integer values; inappropriate manipu­
lation of real objects may cause unexpected results.

The bitwise combinatorial functions return the bitwise "and" (and), "or" (or), or "exclusive
or" (xor) of two operands. Not returns the bitwise complement of its operand.

Lshift, or rshift with a negative nbits, is a logical left shift with no end around carry. Rshift, or
Ishift with a negative nbits, is an arithmatic right shift with sign extension. No test is made for a
reasonable value of nbits.

These functions are generated in-line by the f77 compiler.

4th Berkeley Distribution 13 June 1983 1

CHDIR(3F) UNIX Programmer's Manual

NAME
chdir - change default directory

SYNOPSIS
integer function chdir (dirname)
character- (-) dirname

DESCRIPTION

CHOIR (3F)

The default directory for creating and locating files will be changed to dirname. Zero is returned
if successful~ an error code otherwise.

FILES
lusr Ilib/libU77.a

SEE ALSO
chdir(2), cd(I), perror(3F)

BUGS
Pathnames can be no longer than MAXP ATHLEN as defined in < sys/param. h > .
Use of this function may cause inquire by unit to fail.

4th Berkeley Distribution 18 July 1983 1

CHMOD(3F) UNIX Programmer's Manual

NAME
chmod - change mode of a file

SYNOPSIS
integer function chmod (name, mode)
character- (.) name, mode

DESCRIPTION

CHMOD (3F)

This function changes the filesystem mode of file name. Mode can be any specification recog­
nized by chmodO). Name must be a single path name.

The normal returned value is O. Any other value will be a system error number.

FILES
lusr/lib/libU77.a
Ibin/chmod

SEE ALSO
chmod(l)

BUGS

exec'ed to change the mode.

Pathnames can be no longer than MAXP ATHLEN as defined in < sys/param. h > .

4th Berkeley Distribution 18 July 1983 1

ETIME (3F) UNIX Programmer's Manual

NAME
etime, dtime - return elapsed execution time

SYNOPSIS
function etime <tarray)
real tarray(2)

function ,dtime (tarray)
real tarray (2)

DESCRIPTION

ETIME (3F)

These two routines return elapsed runtime in seconds for the calling process. Dtime returns the
elapsed time since the last call to dtime, or the start of execution on the first call.

The argument array returns user time in the first element and system time in the second ele­
ment. The function value is the sum of user and system time.

The resolution of all timing is 11HZ sec. where HZ is currently 60.

FILES
lusr/lib/libU77.a

SEE ALSO
times(2)

4th Berkeley Distribution 26 July 1983 1

EXIT (3F) UNIX Programmer's Manual

NAME
exit - terminate process with status

SYNOPSIS
subroutine exit (status)
integer status

DESCRIPTION

EXIT (3F)

Exit flushes and closes aU the process's files, and notifies the parent process if it is executing a
wait. The low-order 8 bits of status are available to the parent process. (Therefore status
should be in the range 0 - 255)

This call will never return.

The C function exit may cause cleanup actions before the final'sys exit'.

FILES
lusr llib/libF77.a

SEE ALSO
exit(2), fork(2), fork(3F), wait(2), wait(3F)

4th Berkeley Distribution 18 July 1983 1

FDATE(3F) UNIX Programmer's Manual

NAME
fdate _. return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
eharacter- (-) string

character- (-) function fdate ()

DESCRIPTION

FDATE (3F)

Fdate returns the current date and time as a 24 character string in the format described under
ctime(3). Neither 'newline' nor NULL will be included.

Fdate can be called either as a function 01: as. a subroutine. If called as a function, the calling
routine must define its type and length. For example:

character*24 fdate
external fdate

write(.,*) fdateO

FILES
lusr IIib/IibU77.a

SEE ALSO
ctime(3), time(3F), itime(3F), idate(3F), Itime(3F)

4th Berkeley Distribution 13 June 1983 1

FLMIN (3F) UNIX Programmer's Manual FLMIN (3F)

NAME
flmin, flmax, fTrac, dflmin, dflmax, dffrac, inmax - return extreme values

SYNOPSIS
function tlmin 0

function tlmax 0

function trrac 0

double precision function dtlmin 0

double precision function dtlmax 0

double precision function dffrac 0

function inmax 0
DESCRIPTION

FILES

Functions jfmin and jfmax return the minimum and maximum positive floating point values
respectively. Functions qjlmin and djfmax return the minimum and maximum positive double
precision floating point. values. Function inmax returns the maximum positive integer value.

The functions ffrac and qjfrac return the fractional accuracy of single and double precision float­
ing point numbers respectively. These are the smallest numbers that can be added to 1.0
without being lost.

These functions can be used by programs that must scale algorithms to the numerical range of
the processor.

lusr/lib/libF77.a

4th Berkeley Distribution 13 June 1983 1

FLUSH (IF) UNIX Programmer's Manual

NAME
flush - flush output to a logical unit

SYNOPSIS
subroutine flush (Iunit)

DESCRIPTION

FLUSH (3F)

Flush causes the contents of the buffer for logical unit lunit to be flushed to the associated file.
This is most useful for logical units 0 and 6 when they are both associated with the control ter­
minal.

FILES
lusr/lib/libI77.a

SEE ALSO
fclose(3S)

4th Berkeley Distribution 18 July J983 1

FORK (3F) UNIX Programmer's Manual FORK (3F)

NAME
fork - create a copy of this process

SYNOPSIS
integer function fork ()

. DESCRIPTION

FILES

Fork creates a copy of the calling process. The only distinction between the 2 processes is that
the value returned to one of them (referred to as the 'parent' process) will be the process id if
the copy. The copy is usually referred to as the 'child' process. The value returned to the
'child' process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the con­
tents of 110 buffers in the external file (s).

If the returned value is negative, it indicates an error and will be the negation of the system
error code. See perror(3F).

A corresponding exec routine has not been provided because there is no satisfactory way to
retain open logical units across the exec. However, the usual function of fork/exec can be per­
formed using system(3F).

/usr /lib/lib U77.a

SEE ALSO
fork(2), wait(3F), kill(3F), system(3F), perror(3F)

4th Berkeley Distribution 13 June 1983 1

FSEEK(3F) UNIX Programmer's Manual

NAME
fseek, ftell - reposition a file on a logical unit

SYNOPSIS
Integer function fseek (Iunlt, offset, from)
lnteler offset, from

Integer function ftell (Junlf)

DESCRIPTION

FSEEK (3F)

lunit must refer to an open logical unit. offset is an offset in bytes relative to the position
specified by /rom. Valid values for /rom are:

FILES

o meaning 'beginning of the file'
1 meaning 'the current position'
2 meaning 'the end of the file'

The value returned by fteek will be 0 if successful, a system error code otherwise. (See
perror(3F))

Ftell returns the current position of the file associated with the specified logical unit. The value
is an offset, in bytes, from the beginning of the file. If the value returned is negative, it indi-

. cates an error and will be the negation of the system error code. (See perror(3F»

lusr/lib/libU77.a

SEE ALSO
fseek(3S), perror(3F)

4th Berkeley Distribution 18 July 1983 1

GETARG (3F) UNIX Programmer's Manual

NAME
getarg, iargc - return command line arguments

SYNOPSIS
subroutine getarg (k, ara)
character- (-) ara

function iargc ()

DESCRIPTION

GETARG (3F)

A call to getarg will return the kth command line argument in character string argo The Oth
argument is the command name.

large returns the index of the last command line argument.

FILES
lusr/lib/libU77.a

SEE ALSO
getenv(3F), execve(2)

4th Berkeley Distribution 18 July 1983 1

GETC (3P) UNIX Programmer's Manual

NAME
getc, fgetc - get a character from a logical unit

SYNOPSIS
integer function letc (char)
character char

integer function fletc (Iunit, char>
character char

DESCRIPTION

GETC (3P)

These routines return the next character from a file associated with a fortran logical unit,
bypassing normal fortran 110. Getc reads from logical unit 5, normally connected to the control
terminal input.

The value of each function is a system status code. Zero indicates no error occured on the read;
-1 indicates end of file was detected. A positive value will be either a UNIX system error
code or an f77 110 error code. See perror(3P).

FILES
lusr/lib/libU77.a

SEE ALSO
. getc(3S), intro(2), l'error(3P)

4th Berkeley Distribution 13 June 1983 1

GETCWD(3F) UNIX Programmer's Manual

NAME
getcwd - get pathname of current working directory

SYNOPSIS
integer funetion getcwd (dirname)
character. (.) dimame

DESCRIPTION

GETCWD(3F)

The pathname of the default directory for creating and locating files will be returned in dirname.
The value of the function will be zero if successful; an error code otherwise.

FILES
lusr/lib/libU77.a

SEE ALSO
chdir(3F), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 18 July 1983 1

GETENV(3F) UNIX Programmer's Manual

NAME
getenv - get value of environment variables

SYNOPSIS
sub .. outine getenv (ename, evalue)
character- (.) ename, evalue

DESCRIPTION

GETENV (3F)

Getenv searches the environment list (see environ(7» for a string of the form ename= va!ue and
returns va!ue in eva!ue if such a string is present, otherwise fills eva!ue with blanks.

FILES
lusr/lib/libU77.a

SEE ALSO
environ (7), execve (2)

4th Berkeley Distribution 18 July 1983 1

GETFSENT (3X) UNIX Programmer's Manual GETFSENT (3X)

NAME
getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file· entry

SYNOPSIS
#include < fstab.h >
strud fstab *getfsentO

strud fstab *getfsspec (spec)
char *spec;

strud fstab *getfsflle(ftle)
char *flle;

strud fstab -aetfstype<type)
char .type;

int setfsent ()

int endfsent 0
DESCRIPTION

Ge(jSent, getj'sspec, getj'stype, and get/Wle each return a pointer to an object with the following
structure containing the broken-out fields of a line in the file system description file,
<fstab.h>.

struct fstab{
char
char
char
int
int

};

*fs_spec;
*fs_file;
*fs_type;
fs_freq;
fs-passno;

The fields have meanings described in jstab(S).

Get/sent reads the next line of the file, opening the file if necessary.

Se(jSent opens and rewinds the file.

Endj'sent closes the file.

Getfsspec and get/wle sequentially search from the beginning of the file until a matching special
file name or file system file name is found, or until EOF is encountered. Getfstype does like­
wise, matching on the file system type field.

FILES
letc/fstab

SEE ALSO
fstab(S)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

4th Berkeley Distribution 19 January 1983 1

GETLOG (3F) UNIX Programmer's Manual

NAME
getlog - get user's login name

SYNOPSIS
subroutine getlog (name)
character- (-) name

character- (-) function getlog ()

DESCRIPTION

GETLOG (3F)

Getlog will return the user's login name or all blanks if the process is running detached from' a
terminal.

FILES
lusr/Ub/libU77.a

SEE ALSO
getlogin (3)

4th Berkeley Distribution 13 June 1983 1

GETPID (3F)

NAME
getpid - get process id

SYNOPSIS
integer function getpld ()

DESCRIPTION

UNIX Programmer's Manual

Getpid returns the process ID number of the current process.

FILES
lusr llib/libU77.a

SEE ALSO
getpid(2)

4th Berkeley Distribution 13 June 1983

GETPID (3F)

1

GETUID(3F) UNIX Programmer's Manual

NAME
getuid, getgid - get user or group ID of the caller

SYNOPSIS
integer function getuld ()

integer function getgid ()

DESCRIPTION
These functions return the real user or group 10 of the user of the process.

FILES
lusr Ilib/libU77.a

SEE ALSO
getuid(2)

4th Berkeley Distribution 13 June 1983

GETUID (3F)

1

HOSTNM(3F) UNIX Programmer's Manual

NAME
hostnm - get name of current host

SYNOPSIS
integer function hostnm (name)
character- (-) name

DESCRIPTION

HOSTNM (3F)

This function puts the name of the current host into character string name. The return value
should be 0; any other value indicates an error.

FILES
lusr Ilib/libU77.a

SEE ALSO
gethostname (2)

4th Berkeley Distribution 13 June 1983 1

IDATE(3F) UNIX Programmer's Manual

NAME
idate, itime - return date or time in numerical form

SYNOPSIS
suhroutine idate (larray)
integer iarray (3)

suhroutine itlme (larray)
integer iarray(3)

DESCRIPTION

IDATE (3F)

Idate returns the current date in iarray. The order is: day, mon, year. Month will be in the
range 1-12. Year will be ~ 1969.

Itime returns the current time in iarray. The order is: hour, minute, second.

FILES
lusr Ilib/libU77.a

SEE ALSO
ctime(3F), fdate(3F)

4th· Berkeley Distribution 13 June 1983 1

INDEX (3F) UNIX Programmer's Manual

NAME
index, rindex, lnblnk, len - tell about character objects

SYNOPSIS
(intrinsic) function index (string, substr>
character.(.) string, substr

integer function rindex (striDg, substr>
character.(.) string, substr

function lnblnk (string)
character. (.) string

(intrinsic) function len (string)
charader. (.) string

DESCRIPTION

INDEX (3F)

Index (rindex) returns the index of the first (last) occurrence of the substring substr in string, or
zero if it does not occur. Index is an n7 intrinsic function; rindex is a library routine.

FILES

Lnblnk returns the index of the last non-blank character in string. This is useful since all n7
character objects are fixed length, blank padded. Intrinsic function len returns the size of the
character object argument.

lusr Ilib/libF77 .a

4th Berkeley Distribution 13 June 1983 1

10INIT(3F) UNIX Programmer's Manual IOINIT(3F)

NAME
ioinit - change f77 1/0 initialization

SYNOPSIS
logical function loin It (eetl,bzro, apod, prefix, vrbose)
logical cdl, bzro, apod, vrbose
character- (-) prefix

DESCRIPTION
This routine will initialize several global parameters in the f77 110 system, and attach externally
defined files to logical units at run time. The effect of the Rag arguments applies to logical
units opened after ioinit is called. The exception is the preassigned units, S and 6, to which eetl
and bzro will apply at any time. /oinit is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If eetl is. true. then· carriage
control will be recognized on formatted output to all logical units except unit 0, the diagnostic
channel. Otherwise the default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is .true. then
such blanks will be treated as zero's. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is some­
times necessary or convenient to open at the END-OF-FILE so that a write will append to the
existing data. If apnd is .true. then files opened subsequently on any logical unit will be posi­
'tioned at their end upon opening. A value of .false. will restore the default behavior.

Many systems provide an automatic association of global names with fortran logical units when
a program is run. There is no such automatic association in f77. However, if the argument
prefix is a non-blank string, then names of the form prefixNN will be sought in the program
environment. The value associated with each such name found will be used to open logical unit
NN for formatted sequential access. For example, if f77 program myprogram included the call

call ioinit (.true., .false., .false., 'FORT', .false.>

then when the following sequence

0/0 setenv FORTOI mydata
0/0 setenv FORT12 myresults
0/0 myprogram

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file myresults.
Both files would be positioned at their beginning. Any formatted output would have column I
removed and interpreted as carriage control. Embedded and trailing blanks would be ignored
on input.

If the argument vrbose is .true. then ioinit will report on its activity.

The effc5ct of

call ioinit (.true., .true., .false., 1/, .false.)

ean be achieved without the actual call by including "-1166" on the j77 command line. This
gives carriage control on all logical units except 0, causes files to be opened at their beginning,
and causes blanks to be irlterpreted as zero's.

The internal flags are stored in a labeled common block with the following definition:

integer-2 ieof, ictt, ibzr

4th Berkeley Distribution 13 June 1983 . 1

IOINIT (3F) UNIX Programmer's Manual

common lioingl ieof, ictl, ibzr

FILES
lusr Ilib/libI77.a
lusr Ilib/libI66.a

SEE ALSO

f77 110 library
sets older fortran I/O modes

getarg(3F), getenv(3F), "Introduction to the f77 110 Library"

BUGS

lOIN IT (3F)

Prefix can be no longer than 30 characters. A pathname associated with an environment name
can be no longer than 255 characters.

The U +" carriage control does not work.

4th Berkeley Distribution 13 June 1983 2

KILL (3F) UNIX Programmer's Manual

NAME
kill - send a signal to a process

SYNOPSIS
function kill (pld, sllnum)
Integer pld, sllnum

DESCRIPTION

KILL (3F)

Pid must be the process id of one of the user's processes. Signum must be a valid signal
number (see sigvec(2». The returned value will be 0 if successful; an error code otherwise.

FILES
lusr Ilib/libU77.a

SEE ALSO
kilI(2), sigvec(2), signal(3F), fork(3F), perror(3F)

4th Berkeley Distribution.

LINK (3F) UNIX Programmer's Manual

NAME
link - make a link to an existing file

SYNOPSIS
function link (namel, namel)
character-(-) namel, name2

integer function symlnk (namel, n·ame2)
character-(-) namel, name2

DESCRIPTION

LINK (3F)

Namel must be the pathname of an existing file. Name} is a pathname to be linked to file
namel. Name} must not already exist. The returned value will be Oif successful; a system
error code otherwise.

Symlnk creates a symbolic link to name 1.

FILES
lusr/lib/libU77.a

SEE ALSO
link(2), symlink(2), perror(3F), unlink(3F)

BUGS
Pathnames can be no longer than MAXPA THLEN as defined in < sys/param. h > .

4th Berkeley Distribution 18 July 1983 1

LOC (3F) UNIX Programmer's Manual

NAME
loe - return the address of an object

SYNOPSIS
function loc: (aq)

DESCRIPTION
The returned value will be the address of argo

FILES
lusr Ilib/libU77.a

·4th Berkeley ;Distribution 13 June 1983

LOC (3F)

1

LONG (3F) UNIX Programmer's Manual

NAME
long, short - integer object conversion

SYNOPSIS
integer.4 function IODg (lntl)
integer.l lntl

integer.l function short (tnt4)
integer.4 int4

DESCRIPTION

LONG (3F)

These functions provide conversion between short and long integer objects. Long is useful
when constants are used in calls to library routines and the code is to be compiled with H-i2".
Short is useful in similar context when an otherwise long object must be passed as a short
integer.

FILES
lusr Ilib/libF77.a

4th Berkeley Distribution 26 July 1983 1

PERROR(3F) UNIX Programmer's Manual PERROR(3F)

NAME
perror, gerror, ierrno - get system error messages

SYNOPSIS
subroutine perror (string)
character- (-) string

subroutine gerror (string)
character- (-) string

character-(-) function gerrorO

function ierrno ()

DESCRIPTION

FILES

Perror will write a message to fortran logical unit 0 appropriate to the last detected system error.
String will be written preceding the standard error message.

Gerror returns the system error message in character variable string. Gerror may be called either
as a subroutine or as a function.

Ierrno will return the error number of the last detected system error. This number is updated
. only when an error actually occurs. Most routines and I/O statements that might generate such
errors return an error code after the call; that value is a more reliable indicator of what caused
the error condition.

/usr /lib/lib U77 .a

SEE ALSO

BUGS

NOTES

intro(2), perror(3)
D. L. Wasley, Introduction to the}77 110 Library

String in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

UNIX system error codes are described in intro (2). The f77 110 error codes and their mean­
ings are:

100 "error in format"
101 "illegal unit number"
102 "formatted io not allowed"
103 "unformatted io not allowed"
104 "direct io not allowed"
105 Hsequential io not allowed"
1 06 "can't backspace file"
107 "off beginning of record"
108 "can't stat file"
1 09 "no • after repeat count"
110 "off end of record"
111 "truncation failed"
112 "incomprehensible list input"
113 "out of free space"
114 "unit not connected"
115 "read unexpected character"

4th Berkel~y Distribution 13 June 1983 1

PERROR(3F) UNIX Programmer's Manual PERROR (3F)

116 "blank logical input field"
117 '''new' file exists"
118 "can't find 'old' file"
119 "unknown system error"
120 "requires seek ability"
121 "illegal argument"
122 "negative repeat count"
123 "illegal operation for unit"

4th Berkeley Distribution 13 June 1983 2

PUTC (3F) UNIX Programmer's Manual

NAME
putc, fputc - write a character to a fortran logical unit

SYNOPSIS
integer function putc (char)
character char

integer function fputc Hunit, char)
character char

DESCRIPTION

PUTC (3F)

These funtions write a character to the file associated with a fortran logical unit bypassing nor­
mal fortran 110. Pule writes to logical unit 6, normally connected to the control terminal out­
put.

The value of each function will be zero unless some error occurred; a system error code other­
wise. See perror(3F).

FILES
lusr/lib/libU77.a

SEE ALSO
putc(3S), intro(2), perror(3F)

4th Berkeley Distribution 13, JUne 1983 1

QSORT(3F) UNIX Programmer's Manual

NAME
qsort - quick sort

SYNOPSIS
subroutine q~ort (array, len, lslze, compar)
external compar
integer-l compar

DESCRIPTION

QSORT(3F)

One dimensional array contains the elements to be sorted. len is the number of elements in the
array. isize is the size of an element, typically -

FILES

4 for lnteaer and real
8 for double,preeislon or complex
16 for double complex
(length of character object) for character arrays

Compar is the name of a user supplied integer.2 function that will determine the sorting order.
This function will be called with 2 arguments that will be elements of array. The function must
return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg 1 is considered to follow arg 2

On return, the elements of array will be sorted.

lusr llib/libU77.a

SEE ALSO
qsort(3)

4th Berkeley Distribution 13 June 1983 1

RAND (314') UNIX Proarammer's Manual RAND (3F)

N~ME
rand, drand, irand - return random values

SYNOPSIS
funetion irand (ttlal>

funetion rand (ltlal)

double precision funetion drand (ttla,)

DESCRIPTION

FILES

These functions use rand(3C) to generate sequences of random. numbers. If i/lag is '1', the
generator is restarted and the first random value is returned. If ilia, is othel'Wise non-zero, it is
used as a new seed for the random number aenerator, mel the fttst new random value is're­
turned.

lrand returns positive integers in the range 0 tbrouab 2147413647. Rand and dtand retotrt
values in the range O. through 1.0.

lusr Ilib/libF77.a

SEE ALSO

BUGS
'rand(3C)

The algorithm returns a IS bit quantity on the 'Drl(l;: at 31 bit ~tify' on the VAX .. Ita~nd on
the PDPtl calls rand(3C) twice to form a 31 bit <I\Imtity,; but ilft't, IS wilt alWays; be: O.

1

RANGE (3F) UNIX Programmer's Manual RANGE (3F)

NAME
ftmin, fimax, dflmin, dftmax, inmax - return extreme values

SYNOPSIS
function 8mln 0

function 8muO

double precision function d8mln 0

double precision function dlmuO

function Inmu 0
DESCBJPTION

FILES

Functions Jlmin and Jlmax return the minimum and maximum positive floating point values
respectively. Functions 4!lmin and 4flmax return the minimum and maximum positive double
precision floating point values. Function inmax returns the maximum positive integer value.
These functions can be used by programs that must scale algorithms to the numerical range of
the processor.

/usr/lib/libF77.a

7th Edition 19 January 1983 1

RENAME (3F)

NAME
rename - rename a file

SYNOPSIS

UNIX Programmer's Manual

Integer function rename (from, to)
character- (-) from, to

DESCRIPTION

RENAME (3F)

From must be the patbname of an existing file. To will become the new pathname for the file.
If to exists, then both from and to must be the same type of file, and must reside on the same
filesystem. If to exists, it will be removed first.

The returned value will be 0 if successful; a system error code otherwise.
FILES

lusr/lib/libU77.a

SEE ALSO
rename(2), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in < sys/param.h >.

4th Berkeley Distribution 18 July 1983 1

SIGNAL (3F) UNIX Programmer's Manual SIGNAL (3F)

NAME
signal - change the action for a signal

SYNOPSIS
integer function signal (signum, proc, flag)
integer signum, flag
external proc

DESCRIPTION

FILES

When a process incurs a signal (see signal(3C» the default action is usually to clean up and
abort. The user may choose to write an alternative signal handling routine. A call to signal is
the way this alternate action is specified to the system.

Signum is the signal number (see signa/(3C». If flag is negative, then proc must be the name
of the user signal handling routine. If flag is zero or positive, then proc is ignored and the
value of flag is passed to the system as the signal action definition. In particular, this is how
previously saved signal actions can be restored. Two possible values for flag have specific
meanings: 0 means "use the default action" (See NOTES beloW), 1 means "ignore this signal".

A positive returned value is the previous action definition. A value greater than 1 is the ad­
dress of a routine that was to have been called on occurrence of the given signal. The returned
value can be used in subsequent calls to signal in order to restore a previous action definition.
A negative returned value is the negation of a system error code. (See perror(3F»

lusr/lib/libU77.a

SEE ALSO

NOTES

signal(3C), ki1l(3F)~ kill(I)

n7 arranges to trap certain signals when a process is started. The only way to restore the de­
fault n7 action is to save the returned value from the first call to signal.

If the user signal handler is called, it will be passed the signal number as an integer argument.

4th Berkeley Distribution 18 July 1983 1

STAT (3F) UNIX Programmer's Manual

NAME
stat, Istat, fstat - get file status

SYNOPSIS
integer function stat (name, statb)
character. (.) name
inteler statb (12)

integer function 1stat (name, statb)
character.(.) name
integer statb (12)

integer function fstat (Iunit, statb)
integer statb (12)

DESCRIPTION .

STAT (3F)

These routines return detailed information about a file. Stat and Istat return information about
file name; /stat returns information about the file associated with fortran logical unit lunit. The
order and meaning of the information returned in array statb is as described for the structure
stat under stat(2). The "spare" values are not included.

The value of either function will be zero if successful; an error code otherwise.

FILES
lusr/lib/libU77.a

SEE ALSO
stat (2) , access (3F) , perror(3F), time(3F)

BUGS
Pathnames can be no longer than MAXP A THLEN as defined in < sys/parom. h > .

4th Berkeley Distribution 18 July 1983 1

SLEEP (3F) UNIX Programmer's Manual

NAME
sleep - suspend execution for an interval

SYNOPSIS
subroutine sleep (ltlme)

DESCRIPTION

SLEEP (3F)

Sleep causes the calling process to be suspended for itime seconds. The actual time can be up to
1 second less than itime due to granularity in system timekeeping.

FILES
lusr Ilib/libU77.a

SEE ALSO
sleep (3)

4th Berkeley Distribution 13 June 1983 1

SYSTEM (3F) .- UNIX Programmer's M~ual

NAME
system - execute a UNIX command

SYNOPSIS·
Inteaer function system (string)
character-(-) string

DESCRI.PTION

SYSTEM (3F)

System causes string to be given to your shell as input· as if the string had been typed as a com­
mand. If environment variable SHELL is found, its value will be used as the command inter­
preter (shell); otherwise sh (t) is used.

FILES

The current process waits until the command terminates. The returned value will be the exit
status of the shell. See wait(2) for an explanation of this value.

lusr/lib/libU77.a

SEE ALSO
exec(2), wait(2), system(3)

BUGS
String can not be longer than NCARGS - SO characters, as defined in < sys/param. h >.

4th Berkeley 'Distribution 1'8 JUlyi9.83

SYSLOO(3) UNIX Programmer's Manual SYSLOG (3)

NAME
syslog, openlog, c1oselog - control system log

SYNOPSIS
#Include <sysIOl.h>

open 101 (ldent, logstad
char -ldent;

syslol (priority, message, parameters •••)
char -message;

closelogO

DESCRIPTION
Sys/og arranges to write the message onto the system log maintained by sys/og(S). The message
is tagged with priority. The message looks like a printj(3) string except that '10m is replaced by
the current error message (collected from errno). A trailing newline is added if needed. This
message will be read by sys/og(S) and output to the system console or files as appropriate.

If special processing is needed, open/og can be called to initialize the log file. Parameters are
ident which is prepended to every message, and /ogstat which is a bit field indicating special
status; current values are:

LOG_PID log the process id with each message: useful for identifying instantiations of dae-
mons.

Open/og returns zero on success. If it cannot open the file Idevllog, it writes on Idev/console
instead and returns -1.

C/ose/og can be used to close the log file.

EXAMPLES
syslog(LOG_SALERT, "who: internal error 23");

openlog("serverftp", LOG _PIO);
syslog (LOG_INFO, "Connection from host %d", CallingHost);

SEE ALSO
syslog(S)

7th Edition 14 November 19S2 1

TIME (3F) UNIX Programmer's Manual

NAME
time, ctime, ltime, gmtime - return system time

SYNOPSIS
integer function timeO

character- (.) function ctime (stime)
integer stime

subroutine Itime (stime, tarray)
integer stime, tarray(9)

subroutine gmtime (stime, tarray)
integer stime, tarray(9)

DESCRIPTION

TIME (3F)

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the
value of the UNIX system clock.

FILES

Ctime converts a system time to a 24 character ASCII string. The format is described under
ctime(3). No 'newline' or NULL will be included.

Ltime and gmtime disect a UNIX time into month, day, etc., either for the local time zone or as
. GMT. The order and meaning of each element returned in tarray is described under ctime(3).

lusr/lib/libU77.a

SEE ALSO
ctime(3), itime(3F), idate(3F), fdate(3F)

4th Berkeley Distribution 13 June 1983 1

TOPEN(3F) UNIX Programmer's Manual TOPEN (3F)

NAME
topen, tclose, tread, twrite, trewin, tskipf, tstate - n7 tape 110

SYNOPSIS
integer function topen (tlu, devnam, label)
integer tlu
character. (.) devnam
logical label

integer function tclose (tlu)
integer tlu

integer function tread (tlu, buffer)
integer tlu
character. (.) buffer

integer function twrite (tlu, buffer)
integer tlu
character.(.) buffer

integer function trewin (tlu)
integer tlu

integer function tskipf (tlu, nfiles, nrecs)
integer tlu, nfiles, nrecs

integer function tstate (tlu, fileno, recno, errf, eoff, eotf, tcsr)
integer tlu, fileno, recno, tcsr
logical errf, eoff, eotf

DESCRIPTION
These functions provide a simple interface between n7 and magnetic tape devices. A' "tape
logical unit", tlu, is "topen"ed in much the same way as a normal n7 logical unit is Hopen"ed.
All other operations are performed via the tlu. The tJu has no relationship at all to any normal
n7 logical unit.

Topen associates a device name with a tJu. Tlu must be in the range 0 to 3. The logical argu­
ment label should indicate whether the tape includes a tape label. This is used by trewin below.
Topen does not move the tape. The normal returned value is O. If the value of the function is
negative, an error has occured. See perror(3F) for details.

Tclose closes the tape device channel and removes its association with tlu. The normal returned
value is O. A negative value indicates an error.

Tread reads the next physical record from tape to brQfer. BrQfer must be of type character.
The size of brQfer should be large enough to hold the largest physical record to be read. The
actual number of bytes read will be returned as the value of the function. If the value is 0, the
end-of-file has been detected. A negative value indicates an error.

Twrite writes a physical record to tape from brQfer. The physical record length will be the size
of b,qrer. Buffer must be of type character. The number of bytes written will be returned. A
value of 0 or negative indicates an error.

Trewin rewinds the tape associated with tlu to the beginning of the first data file. If the tape is a
labelled tape (see topen above) then the label is skipped over after rewinding. The normal
returned value is O. A negative value indicates an error.

4th Berkeley Distribution 18 July 1983 1

TOPEN (3F) UNIX Programmer's Manual TOPEN (3F)

FILES

Tskipf allows the user to skip over files and lor records. First, rdiles end-of-file marks are
skipped. If the current file is at EOF, this counts as 1 file to skip. (Note: This is the way to
reset the EOF status for a tlu.) Next, nrees physical records are skipped over. The normal
returned value is O. A negative value indicates an error.

Finally, tstate allows the user to determine the logical state of the tape 1/0 channel and to see
the tape drive control status register. The values of fileno and reeno will be returned and indi­
cate the current file and record number. The logical values err/, eol/, and eoifindicate an error
has occurred, the current file is at EOF, or the tape has reached logical end-of-tape. End-of ..
tape (EOT) is indicated by an empty file, often referred to as a double EOF mark. It is not
allowed to read past EOT although it is allowed to write. The value of tesr will reflect the tape
drive control status register. See ht(4) for details.

lusr/lib/libU77.a

SEE ALSO
ht(4), perror(3F), rewindO)

4th Berkeley Distribution 18 July 1983 2

TRAPER(3F) UNIX Programmer's Manual

NAME
traper - trap arithmetic errors

SYNOPSIS
integer function traper (mask)

DESCRIPTION
NOTE: This routine applies only to the VAX. It is ignored on the PDPll.

TRAPER (3F)

Integer overflow and floating point underflow are not normally trapped during execution. This
routine enables these traps by setting status bits in the process status word. These bits are reset
on entry to a subprogram, and the previous state is restored on return. Therefore, this routine
must be called inside each subprogram in which these conditions should be trapped. If the con­
dition occurs and trapping is enabled, signal SIGFPE is sent to the process. (See signa/(3C»

The argument has the following meaning:

value meaning
o do not trap either condition
1 trap integer overflow only
2 trap floating underflow only
3 trap both the above

The previous value of these bits is returned.

FILES
lusr Ilib/UbF77 .a

SEE ALSO
signal (3C), signal (3F)

4th Berkeley Distribution 18 July 1983 1

TRAPOV(3F) UNIX Programmer's Manual TRAPOV(3F)

NAME
trapov - trap and repair floating point overflow

SYNOPSIS
subroutine trapov (numesg, rtnvan
double precision rtnval

DESCRIPTION
NOTE: This routine applies only to the older VAX 11/780's. V AX computers made or
upgraded since sprinl 1983 handle errors differently. See trpfpe(3F) for the newer error
handler. This routine has always been ineffective on the V AX 11/750. It is a null routine on
the PDP11.

This call sets up signal handlers to trap arithmetic exceptions and the use of illegal operands.
Trapping arithmetic exceptions allows the user's program to proceed from instances of floating
point overflow or divide by zero. The result of such operations will be an illegal floating point
value. The subsequent use of the illegal operand will be trapped and the operand replaced by
the specified value.

The first numesg occurrences of a floating point arithmetic error will cause a message to be writ­
ten to the standard error file. If the resulting value is used, the value given for rtnva/ will
replace the illegal operand generated by the arithmetic error. Rtnva/ must be a double precision
value. For example, "OdO" or "dflmax 0".

FILES'
lusr/lib/libF77.a

SEE ALSO

BUGS

trpfpe(3F), signaH3F), range(3F)

Other arithmetic exceptions can be trapped but not repaired.

There is no way to distinguish between an integer value of 32768 and the illegal floating point
form. Therefore such an integer value may get replaced while repairing the use of an illegal
operand.

4th Berkeley Distribution .18 July 1983 1

TRPFPE (3F) UNIX Programmer's Manual TRPFPE (3F)

NAME
trpfpe, fpecnt - trap and repair floating point faults

SYNOPSIS
subroutine trpfpe (nurnesl, rtnva))
double precision rtnval

integer function fpecnt ()

common Ifpefttl fperr
loaical fperr

DESCRIPTION

FILES

NOTE: This routine appUes only to Vax computers. It is a null routine on the PDPl!.

Trplpe sets up a signal handler to trap arithmetic exceptions. If the exception is due to a float­
ing point arithmetic fault, the result of the operation is replaced with the rtnval specified.
Rtnval must be a double precision value. For example, "OdO" or "dflmaxO".

The first numesg occurrences of a floating point arithmetic error will cause a message to be writ­
ten to the standard error file. Any "exception that can't be repaired will result in the default
action, typically an abort with core image.

Fpecnt returns the number of faults since the last call to trplpe.

The logical value in the common block labelled fpeftt will be set to • true. each time a fault
occurs.

lusr/lib/libF77.a

SEE ALSO

BUGS
signaH3F), range(3F)

This routine works only for laults, not traps. This is primarily due to the Vax architecture.

If the operation involves changing the stack pointer, it can't be repaired. This seldom should
be a problem with the f77 compiler, but such an operation might be produced by the optimizer.

The POL Y and EMOD opcodes are not dealt with.

4th Berkeley Distribution 26 July 1983 1

ITYNAM(3F) UNIX Programmer's Manual

NAME
ttynam, isatty - find name of a terminal port

SYNOPSIS
character- (-) function ttynam (Iunit)

logical function isatty Qunit)

DESCRIPTION

TTYNAM(3F)

Ttynam returns a blank padded path name of the terminal device associated with logical unit
lunit.

FILES

lsatty returns .true. if lunit is associated with a terminal device, .false. otherwise.

/dev/.
/usr/lib/libU77.a

DIAGNOSTICS
Ttynam returns an empty string (all blanks) if lunit is not associated with a terminal device in
directory '/dev'.

4th Berkeley Distribution 13 June 1983 1.

UNLINK (3F) UNIX Programmer's Manual

NAME
unlink - remove a directory entry

SYNOPSIS
integer function unlink (name)
character- (-) name

DESCRIPTION

UNLINK (3F)

Unlink causes th~ directory entry specified by pathname name to be removed. If this was the
last link to the file, the contents of the file are lost. The returned value will be zero if success­
ful; a system error code otherwise.

FILES
lusr Ilib/libU77 .a

SEE ALSO
unlink(2), link(3F), filsys(S), perror(3F)

BUGS
Pathnames can be no lo~ger than MAXPATHLEN as defined in <sys/param.h>.

4th Berkeley Distribution 18 July 1983 1

WAIT (3F) UNIX Programmer's Manual

NAME
wait - wait for a process to terminate

SYNOPSIS
integer function wait (status)
integer status

DESCRIPTION

WAIT (3F)

Wait causes its caller to be suspended until a signal is received or one of its child processes ter­
minates. If any child has terminated since the last wait, return is immediate; if there are no
children, return is immediate with an error code. .

If the returned value is positive, it is the process ID of the child and status is its termination
status (see wait(2». If the returned value is negative, it is the negation of a system error code.

FILES
lusr Ilib/libU77.a

SEE ALSO
wait(2), signaI(3F), kill(3F), perror(3F)

4th Berkeley Distribution 13 June 1983 1

INTRO(3M) UNIX Programmer's Manual INTRO(3M)

NAME
intro - introduction to mathematical library functions

DESCRIPTION
These functions constitute the math library, libm. They are automatically loaded as needed by
the Fortran compiler .177(1). The link editor searches this library under the "-1m" option.
Declarations for these functions may be obtained from the include file < math.h >.

LIST OF FUNCTIONS
Name Appears on Page Description

acos sin.3m
asin sin.3m
atan sin.3m
atan2 sin.3m
cabs hypot.3m
ceil floor.3m
cos sin.3m
cosh sinh.3m
exp exp.3m
fabs floor.3m
floor floor.3m
gamma gamma.3m
hypot hypot.3m
jO jO.3m
jl jO.3m
jn jO.3m
log exp.3m
log10 exp.3m
pow exp.3m
sin sin.3m
sinh sinh.3m
sqrt exp.3m
tan sin.3m
tanh sinh.3m
yO jO.3m
y1 jO.3m
yn jO.3m

4th Berkeley Distribution

trigonometric functions
trigonometric functions
trigonometric functions
trigonometric functions
Euclidean distance
absolute value, floor, ceiling functions
trigonometric functions
hyperbolic functions .
exponential, logarithm, power, square root
absolute value, floor, ceiling functions
absolute value, floor, ceiling functions
log gamma function
Euclidean distance
bessel functions
bessel functions
bessel functions
exponential, logarithm, power, square root
exponential, logarithm, power, square root
exponential, logarithm, power, square root
trigonometric functions
hyperbolic functions
exponential, logarithm, power, square root
trigonometric functions
hyperbolic functions
bessel functions
bessel functions
bessel functions

8 July 1983 1

EXP (3M) UNIX Programmer's Manual

NAME
exp, log, log10, pow, sqrt - exponential, logarithm, power, square root

SYNOPSIS'
#include < matb.b >
double exp (x)
double x;

double log (x)
double x;

double log10 (x)
double x;

double pow (x, y)
double x, y;

double sqrt (x)
double x;

DESCRIPTION
Exp returns the exponential function of x.

Log returns the natural logarithm of x; /oglO returns the base 10 logarithm.

Pow returns ;('.

Sqrt returns the square root of x.

SEE ALSO
hypot(3M), sinh(3M), intro(3M)

DIAGNOSTICS

EXP (3M)

Exp and pow' return a huge value when the correct value would overflow; errno is set to
ERANGE. Pow returns 0 and sets errno to EDOM when the second argument is negative and
non-integral and when both arguments are O.

Log returns 0 when x is zero or negative; errno is set to EDOM.

Sqrt returns 0 when x is negative; errno is set to EDOM.

7th Edition 18 July 1983 1

FLOOR (3M) UNIX Programmer's Manual

NAME
fabs, floor, ceil - absolute value, floor, ceiling functions

SYNOPSIS
#lndude <math.h>

double 8oor(x)
double Xi

double eell (x)
double Xi

double fabs (x)
double X;

DESCRIPTION
Fobs returns the absolute value Ix~
Floor returns the largest integer not greater than x.
Ceil returns the smallest integer not less than x.

SEE ALSO
abs(3)

7th Edition 19 January 1983

FLOOR (3M)

1

GAMMA (3M) UNIX Programmer's Manual

NAME
gamma - log gamma function

SYNOPSIS
#lnelude < math.h >
double lamma (x)
double x;

DESCRIPTION .

GAMMA (3M)

Gamma returns In Ir(lxI) I. The sign of r(lxl) is returned in the external integer signgam.
The following C program might be used to calculate r:

DIAGNOSTICS

y - gamma (x) ;
if (y > 88.0)

error();
y - exp(y);
if(signgam)

y - -y;

A huge value is returned for negative integer arguments.

BUGS
There should be a positive indication of error.

7th Edition 19 January 1983 1

HYPOT(3M) UNIX Programmer's Manual

NAME
hypot, ~bs - Euclidean distance

SYNOPSIS
#lnelude <math.h>

double hJPOt(s, J)
double s, J;

double eabs(z)
stru~ (double s, J;) z;

DESCRIPTION
Hypot and cabs return

sqrt(x.x + y.y),

taking precautions against unwarranted overflows.
SEE ALSO

exp(3M) for sqrt

7th Edition 19 January 1983

HYPOT(3M)

JO (3M) UNIX Programmer's Manual

NAME
jO, jI, jn, yO, yI, yn - bessel functions

SYNOPSIS
#lodude <math.h>

double JO (x)
double X;

double Jl (x) .
double x;

double Jo (0, x)
double x;

double yO (x)
double X;
double' yl (x)
double x;

double yo (0, x)
double x;

DESCR.IPTION

JO (3M)

These functions calculate Bessel functions of the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause yO, yl. and yn to return a huge negative value and set errno to
EDOM.

7th Edition 19 January 1983 1

SIN (3M) UNIX Programmet's Manual

NAME
sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS
#Include < math.h >
douhle sin (x)
douhle x;

double eos(x)
douhle X;

douhle as In (x)
douhle X;

douhle aeos (x)
douhle X;

double atan (x)
douhle x;

double atanl(x, y)
douhle x, y;

DESCRIPTION

SIN(3M)

Sin, eos and tan return trigonometric functions of radian arguments. The magnitude of the arm
gument should be checked by the caller to make sure the result is meaningful.

Asin returns the arc sin in the range -fr/2 to fr/2.

Aeos returns the arc cosine in the range 0 to fr.

Atan returns the arc tangent of x in the range -fr/2 to fr/2.

Atan2 returns the arc tangent of xIy in the range -11" to fr.

DIAGNOSTICS
Arguments of magnitude greater than 1 cause asin and aeos to return value 0; errno is set to
EDOM. The value of tan at its singular points is a huge number, and errno is set to ERANGE.

BUGS
The value of tan for arguments greater than about 2 •• 31 is garbage.

7th Edition 19 January 1983 1

sINH (3M) UNIX Prol1'ammer's Manual

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#Include <math.h>

double sinh (x)

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION
These functions compute the designated hyperbolic functions for real arguments.

DIAGNOSTICS

SINH (3M)

Sinh and cosh return a huge value of appropriate sign when the correct value would overflow.

7th Edition 19 January 198'3 1

BYTEORDER(3N) UNIX Programmer's Manual BYTEORDER(3N)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

SYNOPSIS
#IDelade < s,s/types.h >
#IDelade < DetIBet/ID.h >
DetloDI - htonl (hostloDI) ;
a_loDI DetloDI, hostlonl;

netshort - btOBS {host short) ;
u_short Detshort, hostshort;

bostlonl - Dtohl (netlonl) ;
a_IoDI hostlODI, Detlonl;

hostshort - ntohs (netshort> ;
u_short hostshort, Detshort;

DESCRIPTION
These routines convert 16 and 32 bit quantities between network byte order and host byte
order. On machines such as the SUN these routines are defined as null macros in the include
file < netinet/in. h > .
These routines are most often used in cof\junction with Internet addresses and ports as returned
by gethostent(3N) and getse,vent(3N).

SEE ALSO

BUGS
gethostent(3N), getservent(3N)

The VAX handles bytes backwards from most everyone else in the world. This is not expected
to be fixed in the near future.

4th Berkeley Distribution 4 March 1983 1

GETHOSTENT(3N) UNIX Programmer's Manual GETHOSTENT (3N)

NAME
gethostent, gethostbyaddr, gethostbyname, sethostent, endhostent - get network host entry

SYNOPSIS
#lnelude < netdb.h >
struet hostent -Iethostent 0
struet hostent -Iethostbyname(name)
ehar -name;

struet hostent -Iethostbyaddr(addr, len, type)
ehar -addr; lnt len, type;

sethostent (stayopen)
lnt stayopen

endhostent 0
DESCRIPTION

FILES

Gethostent, gethostbyname, and gethostbyaddr each return a pointer to an object with the follow­
ing structure containing the broken-out fields of a line in the network host data base, letclhosts.

struct hostent (
char -h_name;
char -.h_aliases;
int h_addrtype;
int hJength;
char -h_addr;

);
The members of this structure are:

h_name Official name of the host.

I- official name of host -I
/- alias list -I
/. address type ./
I- length of address -/
/- address -/

h_aliases A zero temrlnated array of alternate names for the host.

h_addttype The type of address being returned; currently always AF _!NET.

The length, in bytes, of the address.

A pointer to the network address for the host. Host addresses are returned in net­
work byte order.

Gethostent reads the next line of the file, opening the file if necessary.

Sethostent opens and rewinds the file. If the stayopen flag is non-zero, the host data base wiD
not be closed after each call to gethostent (either directly, or indirectly through one' of the othe'r
"gethost" calls).

Endhostent closes the file.

Gethostbyname and gethostbyaddr sequentially search from the begilmiul of tbe file ulltil a
matching host name or host address is found, or until BOF is encountered. HQSt addresses: are
supplied in network order.

/etc/hosts

SEE ALSO
hosts(S)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

4th Berkeley Distribution 9 February 1983' 1

GETHOSTENT (3N) UNIX Programmer's Manual GETHOSTENT(3N)

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the
Intemet address format is currently understood.

4th Berkeley Distribution 9 February 1983 2

GETNETENT(3N) UNIX Programmer's Manual GETNETENT (3N)

NAME
getnetent, getnetbyaddr, getnetbyname, setnetent, endnetent - get network entry

SYNOPSIS
#Inelude < netdb.h >
strud Detent -letnetentO

stmd Detent -Ietnetbyname(name)
ehar -name;

stmd Detent -letnetbyaddr(Det)
10DI Det;

setDeteDt (sta)"opeD)
IDt sta)"opeD

eDdneteDtO

DESCRIPTION

FILES

Getnetent, getnetbyname, and getnetbyaddr each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network data base, letc/networks.

struct netent (
char
char
int
long

);

-n_name;
--n_aliases;
n_addrtype;
n_net;

The members of this structure are:

/- official name of net -I
/- alias list -/
/- net number type -I
/- net number -/

n_name The official name of the network.

n_aliases A zero terminated list of alternate names for the network.

n_addrtype The type of the network number returned; currently only AF _INET.

n_net The network number. Network numbers are returned in machine byte order.

Getnetent reads the next line of the file, opening the file if necessary.

Setnetent opens and rewinds the file. If the stayopen Oag is non-zero, the net data base will not
be closed after each call to getnetent (either directly, or indirectly through one of the other
"getnet" calls).

Endnetent closes the file.

Getnetbyname and getnetbyaddr sequentially search from the beginning of the file until a match­
ing net name or net address is found, or until EOP is encountered. Network numbers are sup­
plied in host order.

/ etc/networks

SEE ALSO
networks(S)

DIAGNOSTICS

BUGS
Null pointer (0) returned on EOP or error.

All information is contained in a static area so it must be copied if it is to be saved. Only Inter­
net network numbers are currently understood. Expecting network numbers to fit in no more
than 32 bits is probably naive.

4th Berkeley Distribution 9 February 1983 1

GETPROTOENT (3N) UNIX Programmer's Manual GETPROTOENT (3N)

NAME
getprotoent, getprotobynumber, getprotobyname, setprotoent, endprotoent - get protocol entry

SYNOPSIS
#lnclude < netdb.h >
struet protoent *Ietprotoent ()

struet protoent *getprotobyname(name)
char *name;

struct protoent *Ietprotobynumber (proto)
lnt proto;

setprotoent (stayopen)
lnt stayopen

endprotoent ()

DESCRIPTION

FILES

Getprotoent, getprotobyname, and getprotobynumber each return a pointer to an object with the
following structure containing the broken-out fields of a line in the network protocol data base,
/etc/protocoIs.

struct protoent {
char -p _name;
char --p_aliases;
long p -proto;

};

The members of this structure are:

/- official name of protocol -/
/- alias list */
/- protocol number -/

p name The official name of the protocol.

p_aliases A zero terminated list of alternate names for the protocol.

p -proto The protocol number.

Getprotoent reads the next line of the file, opening the file if necessary.

Setprotoent opens and rewinds the file. If the stayopen flag is non-zero, the net data base will
not be closed after each call to getprotoent (either directly, or indirectly through one of the other
"getproto" calls).

Endprotoent closes the file.

Getprotobyname and getprotobynumber sequentially search from the beginning of the file until a
matching protocol name or protocol number is found, or until EOF is encountered.

/ etc/protocols

SEE ALSO
protocols (5)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to be saved. Only the
Internet protocols are currently understood.

4th Berkeley Distribution 9 February 1983 1

GETSERVENT (3N) UNIX Programmer's Manual GETSER VENT (3N)

NAME
getservent, getservbyport, getservbyname, setservent, endservent - get service entry

SYNOPSIS
#lndude < netdb.h >
struet se"ent *getservent 0
struet se"ent *getservbyname(name, proto)
char *name, *proto;

struet se"ent *getservbyport (port, proto)
lnt port; char *proto;

setse"ent (stayopen)
lnt st.yopen

endse"entO

DESCRIPTION

FILES

Getservent, getservbyname, and getservbyport each return a pointer to an object with the following
structure containing the broken-out fields of a line in the network services data base,
/etc/services.

struct servent (
char .s_name;
char •• s_aliases;
long s-port;
char .5 "proto;

);

/. official name of service ./
/. alias list ./
/. port service resides at ./
/. protocol to use • /

The members of this structure are:

s_name The official name of the service.

s_aliases A zero terminated list of alternate names for the service.

s..p0rt The port number at which the service resides. Port numbers are returned in network
byte order.

s"proto The name of the protocol to use when contacting the service.

Getservent reads the next line of the file, opening the file if necessary.

Setservent opens and rewinds the file. If the stayopen flag is non-zero,thenet data base will not
be closed after each call to getservent (either directly, or indirectly through one of the other
"getserv" calls).

Endservent closes the file.

Getservbyname and getservbyport sequentially search from the beginning of the file until a match­
ing protocol name or port number is found,or until EOF is encountered. Ifaprotoeol name is
also supplied (non-NULL), searches must also match the protocol.

/ etc/services

SEE ALSO
getprotoent(3N), services,(S)

DIAGNOSTICS
Null pointer (0) returned on EOF or error.

BUGS
All information is contained in a static area so it must be copied if it is to besav:ed. Expecting
port numbers to fit in a32 bit quantity is probably naive.

4th Berkeley Distribution 9 February 1983 1

INET(3N) UNIX Programmer's Manual INET (3N)

NAME
inet_addr, inet_network, jnet_ntoa, inet_makeaddr, inetJnaof, inet_netof - Internet address
manipulation routines

SYNOPSIS
#include < sys/socket.h >
#include < netinet/lo.h >
#include < arpa/lnet.h >
struct In_addr inet_addr(cp)
char .cp;

Int Inet_network (cp)
. char .cp;

char .inet_ntoa (in)
struct Inet_addr In;

struct In_addr inet_makeaddr(net, Ina}
int net, Ina;

lnt Inet_lnaofOn)
struct in_addr in;

int inet_netof(in)
struct in _addr in;

DESCRIPTION
The routines inet_addr and ineLnetwork each interpret character strings representing numbers
expressed in the Internet standard "." notation, returning numbers suitable for use as Internet
addresses and Internet network numbers, respectively. The routine ineLntoa takes an Internet
address and returns an ASCII string representing the address in "." notation. The routine
ineLmakeaddr takes an Internet network number and a local network address and constructs an
Internet address from it. The routines ineLneto! and ineLinao/ break apart Internet host
addresses, returning the network number and local network address part, respectively. .

All Internet address are returned in network order (bytes ordered from left to right). All net­
work numbers and local address parts are returned as machine format integer values.

INTERNET ADDRESSES
Values specified using the "." notation take one of the following forms:

a.b.c.d
a.b.c
a.b
a

When four parts are specified, each is interpreted as a byte of data and assigned, from left to
right, to the four bytes of an Internet address. Note that when an Internet address is viewed as
a 32-bit integer quantity on the VAX the bytes referred to above appear as "d.c.b.a". That is,
VAX bytes are ordered from right to left.

When a three part address is specified, the last part is interpreted as a 16-bit quantity and placed
in the right most two bytes of the network address. This makes the three part address format
convenient for specifying Class B network addresses as "128.net.host".

When a two part address is supplied, the last part is interpreted as a 24-bit quantity and placed
in the right most three bytes of the network address. This makes the two part address format
convenient for specifying Class A network addresses as "net. host" .

When only one part is given, the value is stored directly in the network address without any
byte rearrangement.

4th Berkeley Distribution 18 July 1983 1

INET(3N) UNIX Programmer's Manual INET (3N)

All numbers supplied as Uparts" in a "." notation may be decimal, octal, or hexadecimal, as
specified in the C language (Le. a leading Ox or OX implies hexadecimal; otherwise, a leading 0
implies octal; otherwise, the number is interpreted as decimal).

SEE ALSO
gethostent(3N), getnetent(3N), hosts(S), networks(S),

DIAGNOSTICS

BUGS

The value -1 is returned by ineLaddr and ineLnetwork for malformed requests.

The problem of host byte ordering versus network byte ordering is confusing. A simple way to
specify Class C network addresses in a manner similar to that for Class B and Class A is
needed. The string returned by ineLntoa resides in a static memory area.

4th Berkeley Distribution 18 July 1983 2

INTRO (3S) UNIX Programmer's Manual INTRO (3S)

NAME
stdio - standard buffered input/output package

SYNOPSIS
#include < stdio.h >
FILE -stdin;
FILE -stdout;
FILE -stderl;

DESCRIPTION
The functions described in section 3S constitute a user-level buffering scheme. The in-line
macros gete and pute(3S) handle characters quickly. The higher level routines gets, /gets, scan/,
/scan!, /read, puts, /puts, print/, /print/, /write all use gete and pute; they can be freely intermixed.

A file with associated buffering is called a stream, and is declared to be a pointer to" a defined
type FILE. Fopen (3S) creates certain descriptive data for a stream and returns a pointer to
designate the stream in all further transactions. There are three normally open streams with
constant pointers declared in the include file and associated with the standard open files:

stdin standard input file
stdout standard output file
stden standard error file

A constant 'pointer' NULL (0) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or error by integer functions that
deal with streams.

Any routine that uses the standard input/output package must include the header file
< stdio.h > of pertinent macro definitions. The functions and constants mentioned in sections
labeled 3S are declared in the include file and need no further declaration. The constants, and
the following 'functions' are implemented as macros; redeclaration of these names is perilous:
gete, getehar, pute, putehar, feo!, /error, fileno.

SEE ALSO
open(2), close(2), read(2), write(2), fread(3S), fseek(3S), f-(3S)

DIAGNOSTICS

BUGS

The value EOF is returned uniformly to indicate that a FILE pointer has not been initialized
with /open, input (output) has been attempted on an output (input) stream, or a FILE pointer
designates corrupt or otherwise unintelligible FILE data.

For purposes of efficiency, this implementation of the standard library has been changed to line
buffer output to a terminal by "default and attempts to do this transparently by flushing the out­
put whenever a read(2) from the standard input is necessary. This is almost always tran­
sparent, but may cause confusion or malfunctioning of programs which use standard iI 0 rou­
tines but use read(2) themselves to read from the standard input.

In cases where a large amount of computation is done after printing part of a line on an output
terminai, it is necessary to fflush (3S) the standard output before going off and computing so
that the output will appear.

The standard buffered functions do not interact well with certain other library and system func­
tions, especially v/ork and abort.

LIST OF FUNCTIONS
Name

clearerr
fclose

Appears on Page Description

ferror .3s stream status inquiries
fclose.3s close or flush a stream

4th Berkeley Distribution 18 July 1983 1

INTRO(3S)

feof
ferror
ftlush
fgetc
fgets
fileno
fprintf
fputc
fputs
fread
fscanf
fseek
ftell
fwrite
getc
getchar
gets
getw
printf
putc
putchar
puts
putw
rewind
scanf
setbuf
setbuffer
setlinebuf
sprintf
sscanf
ungetc

ferror.3s
ferror.3s
fclose.3s
getc.3s
gets.3s
ferror.3s
printf.3s
putc.3s
puts.3s
fread.3s
scanf.3s
fseek.3s
fseek.3s
fread.3s
getc.3s
getc.3s
gets.3s
getc.3s
printf.3s
putc.3s
putc.3s
puts.3s
putc.3s
fseek.3s
scanf.3s
setbuf.3s

. setbuf.3s
setbuf.3s
printf.3s
scanf.3s
ungetc.3s

4th Berkeley Distribution

UNIX Programmer's Manual

stream status inquiries
stream status inquiries
close or flush a stream
get character or word from stream
get a string from a stream
stream status inquiries
formatted output conversion
put character or word on a stream
put a string on a stream
buffered binary input/output
formatted input conversion
reposition a stream
reposition a stream
buffered binary input/output
get character or word from stream
get character or word from stream
get a string from a stream
get character or word from stream
formatted output conversion
put character or word on a stream
put character or word on a stream
put a string on a stream
put character or word on a stream
reposition a stream
formatted input conversion
assign buffering to a stream
assign buffering to a stream
assign buffering to a stream
formatted output conversion
formatted input conversion
push character back into input stream

18 July 1983

INTRO (3S)

2

FCLOSE(3S) UNIX Programmer's Manual FCLOSE (3S)

NAME
fclose, mush - close or flush a stream

SYNOPSIS
#lnclude < stdlo.h >
fclose (stream)
FILE -stream;

fIlush (stream)
FILE -stream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the file to be closed. Buffers
allocated by the standard input/output system are freed.

Fclose is performed automatically upon calHng exit (3) .

Ff/ush causes any buffered data for the named output stream to be written to that file. The
stream remains open.

SEE ALSO
. close(2), fopen(3S), setbuf(3S)

DIAGNOSTICS
These routines return EOF if stream is not associated with an output file, or if buffered data
cannot be transferred to that file. .

7th Edition 19 January 1983 1

FERROR(3S) UNIX Programmer's Manual

NAME
ferror, feof, clearerr, fileno - stream status inquiries

SYNOPSIS
#lnelude < stdlo.h >
feof(stream)
FILE *stream;

ferror(stream)
FILE *stream

elearerr{stream)
FILE *stream

flleno (stream)
FILE *stream;

DESCRIPTION

FERROR(3S)

Feo/returns non-zero when end of file is read on the named input stream, otherwise zero.

Ferror returns non-zero when an error has occurred reading or writing the named stream, other­
wise zero. Unless cleared by clearerr, the error indication lasts until the stream is closed.

Clrerr resets the error indication on the named stream.

Fileno returns the integer file descriptor associated with the stream,see open(2).

These functions are implemented as macros; they cannot be redeclared.

SEE ALSO
fopen(3S), open(2)

4th Berkeley Distribution 19 January 1983 1

FOPEN (3S) UNIX Programmer's Manual FOPEN (3S)

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include < stdio.h >
FILE -fopen (fllename, type)
char -filename, -type;

FILE -freopen (fllename, type, stream)
char -fllename, -type;
FILE -stream;

FILE -fdopen (fildes, type)
char -type;

DESCRIPTION
Fopen opens the file named by filename and associates a stream with it. Fopen returns a pointer
to be used to identify the stream in subsequent operations.

Type is a character string having one of the following values:

"r" open for reading

"w" create for writing

"a" append: open for writing at end of file, or create for writing

In addition, each type may be followed by a '+' to have the file opened for reading and writing.
"r+" positions the stream at the beginning of the file, "w+" creates or truncates it, and "a+"
positions it at the end. Both reads and writes may be used on read/write streams, with the limi­
tation that an /seek, rewind, or reading an end-of-filemust be used between a read and a write
or vice-versa.

Freopen substitutes the named file in place of the open stream. It returns the original value of
stream. The original stream is closed.

Freopen is typically used to attach the preopened constant names, stdin, stdout,. stderr, to
specified files.

Fdopen associates a stream with a file descriptor obtained from open, dup, creat, or pipe (2) . The
type of the stream must agree with the mode of the open file.

SEE ALSO
open(2), fclose(3)

DIAGNOSTICS
Fopen and /reopen return the pointer NULL if filename cannot be accessed.

BUGS
Fdopen is not portable to systems other than UNIX.

The read/write types do not exist on all systems. Those systems without read/write modes will
probably treat the type as if the '+' was not present. These are unreliable in any event.

4th Berkeley Distribution 1 April 1981 1 .

FREAD (3S) UNIX Programmer's Manual FREAD (3S)

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#lnclude < stdl0.h >
fread(ptr, slzeof(*ptrl, nitems, stream)
FILE *stream;

fwrlte(ptr, slzeof(*ptr), nitems, stream)
nLE *stream;

DESCIUPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of .plr from the named
input stream. It returns the number of items actually read.

If stream is stdln and the standard output is line buffered, then any partial output line will be
flushed before any call to read(2) to satisfy the /read.

Fwrite appends at most nilems of data of the type -of .ptr beginning at plr to the named output
stream. It returns the number of items actually written.

SEE ALSO
read (2) , write (2) , fopen (3S), getc(3S), putc(3S), gets (3S) , puts (3S) , printf(3S), scanf(3S)

DIAGNQSTICS
Fread and /write return 0 upon end of file or error.

4th Berkeley Distribution 19 January 1983 1

FSEEK(3S) UNIX Programmer's Manual

NAME
fseek, ftell, rewind - reposition a stream

SYNOPSIS
#include < stdio.h >
fseek (stream, offset, ptrname)
FILE *stream;
lonl offset;

lonl ftell (stream)
FILE *stream;

rewind (stream)

DESCRIPTION

FSEEK (3S)

Fseek sets the position of the next input or output operation on the stream. The new position is
at the signed distance offset bytes from the beginning, the current position, or the end of the
file, according as ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc(3S).

Ftell returns the current value of the offset relative to the beginning of the file associated with
the named stream. It is measured in bytes on UNIX; on some other systems it is a magic
cookie, and the only foolproof way to obtain an offset for /seek.

Rewind(stream) is equivalent to /seek(stream, OL, 0).

SEE ALSO
Iseek(2), fopen(3S)

DIAGNOSTICS
Fseek returns -1 for improper seeks.

7th Edition 19 January 1983 1

GETC (3S) UNIX Programmer's Manual GETC (3S)

NAME
getc, getchar, fgetc, getw - get character or word from stream

SYNOPSIS
#lnclude < stdlo.h >
lnt letc(stream)
FILE -stream;

Int letcharO

Int fletc (stream)
FILE -stream;

Int letw (stream)
FILE -stream;

DESCRIPTION
Getc returns the next character from the named input stream.

GetcharO is identical to getc(stdin).

Fgetc behaves like getc, but is a genuine function, not a macro; it may be used to save object
text.

Getw returns the next word (in a 32-bit integer on a VAX-II) from the named input stream. It
returns the constant Eor upon end of file or error, but since that is· a good integer value, leol
and !error(3S) should be used to check the success of getw. Getw assumes no special alignment
in the file.

SEE ALSO
fopen(3S), putc(3S), gets(3S), scanf(3S), fread(3S), ungetc(3S)

DIAGNOSTICS

BUGS

These functions return the integer constant EOr at end of file or upon read error.

A stop with message, 'Reading bad file', means an attempt has been made to read from a
stream that "has not been opened for reading by lopen.

The end-of-file return from getchar is incompatible with that in UNIX editions 1-6.

Because it is implemented as a macro, getc treats a stream argument with side effects incorrectly.
In particular, 'getc(-f+ +);' doesn't work sensibly.

7th Edition 19 January 1983 1

GETS (3S) UNIX Programmer's Manual

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#IDclude < stdlo.h >
char -aets (s)
char -s;

char -faets (5, D, stream)
char -S;
FILE -stream;

DESCRIPTION

GETS (3S)

Gets reads a string into s from the standard input ~tream stdlD. The string is terminated by a
newline character, which is replaced in s by a null character. Gets returns its argument.

Fgets reads n -1 characters, or up to a newline character, whichever comes first, from the
stream into the string s. The last character read into s is followed by a null character. Fgets
returns its first argument.

SEE ALSO
puts (3S) , getc(3S), scanf(3S), fread(3S), ferror(3S)

DIAGNOSTICS
Gets and /gets return the constant pointer NULL upon end of file or error.

BUGS
Gets deletes a newline, !gets keeps it, all in the name of backward compatibility.

7th Edition 19 January 1983 1

PRINTF(3S) UNIX Programmer's Manual PRINTF (3S)

NAME
printf, fprintf, sprintf - formatted output conversion

SYNOPSIS
#include < stdio.h >

printf(format [, arg] ...)
char .format;.

fprintf(stream, format [, arg] ...)
FILE .stream;
char .format;

sprintf(s, format [, arg] ...)
char .s, format;

#include <varargs.h>
_doprnt(format, args, stream)
char .format;
va_list .args;
FILE .stream;

DESCRIPTION
Print! places output on the standard output stream stdout. Fprint! places output on the named
output stream. Sprint! places 'output' in the string s, followed by the character '\0'. All of
these routines work by calling the internal routine _doprnt, using the variable-length argument
facilities of varargs(3).

Each of these functions converts, formats, and prints its arguments after the first under control
of the first argument. The first argument is a character string which contains two types of
objects: plain characters, which are simply copied to the output stream, and conversion
specifications, each of which causes conversion and printing of the next successive arg print/.

Each conversion specification is introduced by the character 0/0. Following the %, there may be

• an optional minus sign '-' which specifies left adjustment of the converted value in the
indicated field;

• an optional digit string specifying a field width; if the converted value has fewer charac­
ters than the field width it will be blank-padded on the left (or right, if the left­
adjustment indicator has been given) to make up the field width; if the field width
begins with a zero, zero-padding will be done instead of blank-padding;

• an optional period '.' which serves to separate the field width from the next digit string~

• an optional digit string specifying a precision which specifies the number of digits to
appear after the decimal point, for e- and f-conversion, or the maximum number of
characters to be printed from a string;

• an optional '#' character specifying that the value should be converted to an "alternate
form". For c:, d, s, and u, conversions, this option has no effect. For 0 conversions,
the precision of the number is increased to force the first character of the output string
to a zero. For x(X) conversion, a non-zero result has the string Ox(OX) prepended to
it. For e, E, f, II, and G, conversions, the result will always contain a decimal point,
even if no digits follow the point (normally, a decimal point only appears in the results
of those conversions if a digit follows the decimal point). For II and G conversions,
trailing zeros are not removed from the result as they would otherwise be.

• the character I specifying that a following· d, 0, x, or u corresponds to a long integer
argo

• a character which indicates the type of conversion to be applied.

7th Edition 1 Apri11981 1

PRINTF(3S) UNIX Programmer's Manual PRINTF (3S)

A field width or precision may be '.' instead of a digit string. In this case an integer arg sup­
plies the field width or precision.

The conversion characters and their meanings are

dox The integer arg is converted to decimal, octal, or hexadecimal notation respectively.

f The float or double arg is converted to decimal notation in the style '[-]ddd.ddd'
where the number of d's after the decimal point is equal to the precision specification
for the argument. If the precision is missing, 6 digits are given; if the precision is
explicitly 0, no digits and no decimal point are printed.

e The float or double arg is converted in the style ,[-]d.ddde±dd' where there is one
digit before the decimal point and the number after is equal to the precision
specification for the argument; when the precision is missing, 6 digits are produced.

g The float or double arg is printed in style d, in style f, or in style e, whichever gives full
precision in minimum space.

c: The character arg is printed.

s Arg is taken to be' a string (character pointer) and characters from the string are printed
until a null character or until the number of characters indicated by the precision
specification is reached; however if the precision is 0 or missing all characters up to a
null are printed.

u The unsigned integer arg is converted to decimal and printed (the result will be in the
range 0 through MAXUINT, where MAXUINT equals 4294967295 on a VAX-ll and
65535 on a PDP-l 1).

0/0 Print a '%'; no argument is converted.

In °no case does a non-existent or small field width cause truncation of a field; padding takes
place only if the specified field width exceeds the actual width. Characters generated by print!
are printed by putc(3S}.

Examples
To print a date and time in the form 'Sunday, July 3, 10:02', where weekday and month are
pointers to null-terminated strings:

printf("%s, %s %d, %02d:%02d", weekday, month, day, hour, min);

To print 1t' to 5 decimals:

printf("pi == %.5f', 4.atan(1.0»;

SEE ALSO
putc(3S}, scanf(3S), ecvt(3)

BUGS
Very wide fields (> 128 characters) fail.

7th Edition 1 April 1981 2

PUTC (3S) UNIX Programmer's Manual PUTC (3S)

NAME
putc, putchar, fputc, putw - put character or word on a stream

SYNOPSIS
#lnclude < stdlo.h >
lnt putc (c, stream)
char c; .
FILE -stream;

putchar(c)

fputc(c, stream)
FILE -stream;

putw (1t' t stream)
FILE -stream;

DESCRIPTION
Pute appends the character e to the named output stream. It returns the character written.

Putehar(c) is defined as pute(c, stdout).

Fpute behaves like pute, but is a genuine function rather than a ma~o.

p,utw appends word (that is, lnt) w to the output stream. It returns the word written. Putw nei­
ther assumes nor causes special alignment in the file.

SEE ALSO
fopen(3S), fclose(3S), getc(3S), puts(3S), printf(3S), fread(3S)

DIAGNOSTICS

BUGS

These functions return the constant EOF upon error. Since this is a good integer, /error(3S)
should be used to detect putw errors.

Because it is implemented as a macro, pule treats a stream argument with side effects improper­
ly. In particular

putc(c, .f+ +);

doesn't work sensibly.

Errors can occur long after the call to pute.

7th Edition 19 January 1983 1

PUTS (3S) UNIX Programmer's Manual

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#lndude < stdlo.h >
puts(s)
char -S;

fputs (St stream)
char -s;
FILE -stream;

DESCRIPTION

PUTS (3S)

Puts copies the null-terminated string s to the standard output stream stdout and appends a
newline character.

Fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminal null character.

SEE ALSO

BUGS

fopen(3S), gets (3S) , putc(3S), printf(3S), ferror(3S)
fread(3S) for /write

Puts appends a newline, /puts does not, all in the name of backward compatibility.

7th Edition 19 January 1983 1

SCANF(3S) UNIX Programmer's Manual SCANF(3S)

NAME
scanf, fseanf, sscanf - formatted input conversion

SYNOPSIS
#include < stdio.h >
scanf(format [, pointer] . ..)
char .format;,

fscanf(stream t format [, pointer] . ..)
FILE .stream;
char .format;

sscanf(s, format [, pointer] '. ..)
char .St .format;

DESCRIPTION
Scan/ reads from the standard input stream stdin. Fscan/ reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them ac­
cording to a format, and stores the results in its arguments. Each expects as arguments a con­
trol string format, described below, and a set of pointer arguments indicating where the convert­
ed input should be stored.

The control string usually contains conversion specifications, which are used to direct interpre­
tation of input sequences. The control string may contain:

1. Blanks, tabs or newlines, which match optional white space in the input.

2. An ordinary character (not %) which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppress-
ing character ., an optional numerical maximum field width, and a conversion character.

A conversion specification directs the conversion of the next input field; the result is placed in
the variable pointed to by the corresponding argument, unless assignment suppression was indi­
cated by •. An input field is defined as a string of non-space characters; it extends to the next
inappropriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field; the corresponding
pointer argument must usually be of a restricted type. The following conversion characters are
legal:

0/0 a single '%' is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

o an octal integer is expected; the corresponding argument should be a integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

s a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating '\0',
which will be added. The input field is terminated by a space character or a newline.

c a character is expected; the corresponding argument should be a character pointer. The
normal skip over space characters is suppressed in this case; to read the next non-space
character, try '%ls'. If a field width is given, the corresponding argument should refer to a
character array, and the indicated number of characters is read.

e a floating point number is expected; the next field is converted accordingly and stored
f through the corresponding argument, which should be a pointer to a ./Ioat. The input for­

mat for floating point numbers is an optionally signed string of digits possibly containing a
decimal point, followed by an optional exponent field consisting of an E or e followed by

7th Edition 19 January 1983 1

SCANF(3S) UNIX Programmer's Manual SCANF(3S)

an optionally signed integer.

indicates Il string not to be delimited by space characters. The left bracket is followed by a
set of characters and a right bracket; the characters between the brackets define a set of
characters making up the string. If the first character is not circumflex ("), the input field
is all characters until the first character not in the set between the brackets; if the first char­
acter after the left bracket is ", the input field is all characters until the first character which
is in the remaining set of characters between the brackets. The corresponding argument
must point to a character array.

The conversion characters d, 0 and x may be capitalized or preceded by I to indicate that a
pointer to lonl rather than to lnt is in the argument list. Similarly, the conversion characters e
or f may be capitalized or preceded by I to indicate a pointer to double rather than to float. The
conversion characters d, 0 and x may be preceded by h to indicate a pointer to short rather than
to Int.

The scaliffunctions return the number of successfully matched and assigned input items. This
can be used to decide how many input items were found. The constant Eor is returned upon
end of input; note that this is different from 0, which means that no conversion was done; if
conversion was intended, it was frustrated by an inappropriate character in the input.

For example, the call

int i; float x; char name(50);
scanf("%d%f%s", &i, &x, name);

with the input line

25 54.32E-1 thompson

will assign to ithe value 25, x the value 5.432, and name will contain 'thompson\O'. Or,

int i; float x; char name [50) ;
scanf("%2d%fO/o*d%[1234567890)", &i, &x, name);

with input

56789 0123 56a72

will assign 56 to i, 789.0 to x, skip '0123', and place the string '56\0' in name. The next call to
getchar will return 'a'.

SEE ALSO
atof(3), getc (3S), printf(3S)

DIAGNOSTICS
The scalif functions return Eor on end of input, and a short count for missing or illegal data
items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

7th Edition 19 January 1983 2

SETBUF(3S) UNIX Programmer's Manual SETBUF(3S)

NAME
setbuf, set buffer , setlinebuf - assign buffering to a stream

SYNOPSIS
#include < stdio.h >
setbuf(stream, but)
FILE -stream;
char -buf;

setbuffer(stream, bUf, size}
FILE -stream;
char -buf;
Int size;

setlinebuf(stream)
FILE -stream;

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered. When
an output stream is unbuffered, information appears on the destination file or terminal as soon
as written; when it is block buffered. many characters are saved up and written as a block; when
it is line buffered characters are saved up until a newline is encountered or input is read from
stdin. Fflush (see /c1ose(3S» may be used to force the block out early. Normally all files are
block buffered. A buffer is obtained from mal/oc(3) upon the first getc or putc(3S) on the file.
Ir"the standard stream stdout refers to a terminal it is line buffered. The standard stream stderr
is always unbuffered.

Setbu/is used after a stream has been opened but before it is read or written. The character ar­
ray bu/is used instead of an automatically allocated buffer. If bu/is the constant pointer NULL,
input/output will be completely unbuffered. A manifest constant BUFSIZ tells how big an array
is needed:

char buf[BUFSIZ];

Setbt.dfer, an alternate form of setbu/, is used after a stream has been opened but before it is
read or written. The character array bu/whose size is determined by the size argument is used
instead of an automatically allocated buffer. If bu/is the constant pointer NULL, input/output
will be completely unbuffered.

Setlinebu/ is used to change stdout or stderr from block buffered or unbuffered to line buffered.
Unlike setbu/and setbtiffer it can be used at any time that the file descriptor is active.

A file can be changed from unbuffered or line buffered to block buffered by using /reopen (see
/open(3S». A file can be changed from block buffered or line buffered to unbuffered by using
/reopen followed by setbu/with a buffer argument of NULL.

SEE ALSO
fopen(3S), getc(3S), putc(3S), malloc(3), fclose(3S), puts(3S), printf(3S), fread(3S)

BUGS
The standard error stream should be line buffered by default.

The setbt.dfer and setlinebu/functions are not portable to non 4.2 BSD versions of UNIX.

4th Berkeley Distribution 19 January 1983 1

UNGETC(3S) UNIX Programmer's Manual

NAME
ungetc - push character back into input stream

SYNOPSIS
#IDclude < stdlo.h >
uDletc(c, stream)
FILE -stream;

DESCRIPTION

UNGETC (3S)

Ungetc pushes the character c back on an input stream. That character will be returned by the
next getc calion that stream. Ungetc returns c.

One character of pushback is guaranteed provided something has been read from the stream
and the stream is actually buffered. Attempts to push EOP are rejected.

Fseek(3S) erases all memory of pushed back characters.

SEE ALSO
getc(3S), setbuf(3S), fseek(3S)

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

7th Edition 19 January 1983 1

INTRO(3X) UNIX Programmer's Manual INTRO (3X)

NAME
intro - introduction to miscellaneous library functions

DESCRIPTION

FILES

These functions constitute minor libraries and other miscellaneous run-time facilities. Most are
available only when programming in C. The list below includes libraries which provide device
independent plotting functions, terminal independent screen management routines for two
dimensional non-bitmap display terminals, functions for managing data bases with inverted
indexes, and sundry routines used in executing commands on remote machines. The routines
getdiskbyname, rcmd, rresvport, ruserok, and rexec reside in the standard C run-time library
"-lc". All other functions are located in separate libraries indicated in each manual entry.

llib/libc.a
lusr/lib/libdbm.a
lusr/lib/libtermcap.a
lusr IUb/libcurses.a
lusr/lib/lib2648.a
lusr llib/libplot.a

LIST OF FUNCTIONS
Name

arc
assert
circle
close pi
cont
curses
dbminit
delete
endfsent
erase
fetch
first key
getdiskbyname
getfsent
getfsfile
getfsspec
getfstype
initgroups
label
lib2648
line
linemod
move
nextkey
plot: open pI
point
rcmd
rexec
rresvport
ruserok
setfsent
space

Appears on Page

plot.3x
assert.3x
plot.3x
plot.3x
plot.3x
curses.3x
dbm.3x
dbm.3x
getfsent.3x
plot.3x
dbm.3x
dbm.3x
getdisk.3x
getfsent.3x
getfsent.3x
getfsent.3x
getfsent.3x
initgroups.3x
plot.3x
lib2648.3x
plot.3x
plot.3x
plot.3x
dbm.3x
plot.3x
plot.3x
rcmd.3x
rexec.3x
rcmd.3x
rcmd.3x
getfsent.3x
plot.3x

4th Berkeley Distribution

Description

graphics interface
program verification
graphics interface
graphics interface
graphics interface
screen functions with "optimal" cursor motion
data base subroutines
data base subroutines
get file system descriptor file entry
graphics interface
data base subroutines
data base subroutines
get disk description by its name
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
get file system descriptor file entry
initialize group access list
graphics interface
subroutines for the HP 2648 graphics terminal
graphics interface
graphics interface.
graphics interface
data base subroutines
graphics interface
graphics interface
routines for returning a stream to a remote command
return stream to a remote command
routines for returning a stream to a remote command
routines for returning a stream to a remote command
get file system descriptor file entry
graphics interface

8 July 1983 1

INTRO(3X)

store
tgetent
tgetflag
tgetnum
tgetstr .
tgoto
tputs

4th Berkeley Distribution

UNIX Programmer's Manual

dbm.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x
termcap.3x

data base subroutines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines
terminal independent operation routines

8 July 1983

INTRO(3X)

2

ASSERT (3X)

NAME
assert - program verification

SYNOPSIS
#lnclude < assert.h >
assert (expression)

DESCRIPTION

UNIX Programmer's Manual ASSERT (3X)

Assert is a macro that indicates expression is expected to be true at this point in the program. It
causes an exit(2) with a diagnostic comment on the standard output when expression is false (0).
Compiling with the ceO) option - DNDEBUG effectively deletes assert from the program.

DIAGNOSTICS
'Assertion failed: file f line n.' F is the source file and n the source line number of the assert
statement.

7th Edition 19 January 1983 1

CURSES (3X) UNIX Programmer's Manual CURSES (3X)

NAME
curses - screen functions with "optimal" cursor motion

SYNOPSIS
cc [flags] files -lcurses -Itermcap [libraries]

DESCRIPTION
These routines give the user a method of updating screens with reasonable optimization. They
keep an image of the current screen, and the user sets up an image of a new one. Then the
rejreshO tells the routines to make the current screen look like the new one. In order to initial­
ize the routines, the routine· initscrO must be called before any of the other routines that deal
with windows and screens are used. The routine endwinO should be called before exiting.

SEE ALSO
Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold,
ioctl(2), getenv(3), tty (4) , termcap(S)

AUTHOR
Ken Arnold

FUNCTIONS
addch(ch)
addstr (str)
box (win, vert,hor)
crmodeO
clear 0
clearok (scr, boolf)
clrtobotO
clrtoeolO
delchO
delete In 0
delwin (win)
echo 0
endwinO
erase 0
getchO
getcap(name)
getstr (str)
gettmodeO
getyx (win,y ,x)
inch 0
initscrO
insch(c)
insertlnO
leaveok (win, boolf)
longname(termbuf,name)
move (y,x)
mvcur(lasty ,lastx,newy ,newx)
newwin(lines,cols,beginy,begin_x)
nlO
nocrmodeO
noechoO
nonlO
norawO
overlay (win 1 ,win2)
overwrite (win 1 , win2)

4th Berkeley Distribution

add a character to stdscr
add a string to stdscr
draw a box around a window
set cbreak mode
clear stdscr
set clear flag for scr
clear to bottom on stdscr
clear to end of line on stdscr
delete a character
delete a line
delete win
set echo mode
end window modes
erase stdscr
get a char through stdscr
get terminal capability name
get a string through stdscr
get tty modes
get (y,x) co-ordinates
get char at current (y,x) co-ordinates
initialize screens
insert a char
insert a line
set leave flag for win
get long name from termbuf
move to (y,x) on stdscr
actually move cursor
create a new window
set newline mapping
unset cbreak mode
unset echo mode
unset newline mapping
unset raw mode
overlay winl on win2
overwrite winl on top of win2

19 January 1983 1

CURSES (3X) UNIX Programmer's Manual CURSES (3X)

BUGS

printw(fmt,arg1 ,arg2, .. .)
raw 0
refresh 0
resetty()
savetty()
scanw(fmt,argl,arg2, .. .)
scroll (win)
scroll ok (win, booIf)
setterm (name)
standend()
standout()
subwin(win,lines,cols,beginJ,begin_x)
touchwin (win)
unctrl(ch)
waddch (win,ch)
waddstr(win,str)
wclear(win)
wclrtobot (win)
wclrtoeol (win)
wdelch(win,c)
wdeleteln (win)
werase (win)
wgetch (win)
wgetstr(win,str)
winch (win)
winsch (win,c)
winsertln (win)
wmove (wins ,x)
wprintw(win,fmt,argl,arg2, .. .)
wrefresh (win)
wscanw(win,fmt,argl,arg2, .. .)
wstandend (win)
wstandout (win)

printf on stdscr
set raw mode
make current screen look like stdscr
reset tty flags to stored value
stored current tty flags
seanf through stdscr
scroll win one line
set scroll flag
set term variables for name
end standout mode
start standout mode
create a subwindow
"change" all of win
printable version of ch
add char to win
add string to win
clear win
clear to bottom of win
clear to end of line on win
delete char from win
delete line from win
erase win
get a char through win
get a string through win
get char at current (y,x) "in win
insert char into win
insert line into win
set current (y,x) co-ordinates on win
printf on win
make screen look like win
scanf through win
end standout mode on win
start standout mode on win

4th Berkeley Distribution 19 January 1983 2

DBM(3X) UN IX Programmer's Manual DBMt3X)

NAJ\stE
dbminit, fetch, storc, delete, firstkcy, nextkey -- data base subroutines

SYNOPSIS
typcdcf struct {

char *dptr.;
iut dsize;

} datum;

dbminit{fiIe)
char *file;

d.ltUfll fctch(key)
datum key;

storc(key, content)
datum){cy, content;

dc!ctc(kcy)
datum key;

datum Hrstkcy()

datum nextkey(key)
d:itum key;

DESCRIPTION
These functions maint.1in key/content pairs in a data base. The functions will handle very large (a
biHion blocks) databases and will access a keyed item in one or two fIle system accesses. The func­
tions arc obtained with the loader option -Idbm.

Keys and cOil/ellIs are described by the dalulII typedef. /\ dalulIl specifics a string of d'Jize bytes
pointed to by dpll: Arbitrary binary elata, as well as normal ASCII strings, are allowed. The data
base is stored in two nIes. One file is {l directory containing a bit m<lp and has. '.dir' as its suffix.
The second file contains all data and has '.pag' as its sullix. .

Bclhre a database can he a!-'cessed, it must be opcned by dbmillil. At the time of this call, the files
file.di .. and file.par, must exist (An empty database is created by creating 7.ero-lcllgth '.dir' and
'.pag' HIes.)

Once open, the data stored under a key is accessed by i(,'lclt and data is placed tinder a key by
store. /\ key (and its associated contents) is deleted by delele. 1\ linear pass through all keys in a
database may be made, in an (apparently) random order, by use of jh:')lkey and nexlkey.Firstkey
will return the first. key in the database. With any key lI('xlkey will return the next key in the data­
base. This code will traverse the data base:

for (key = firstkeyO: key.dptr ! = NULl,: key = nextkey(key»)

DIAGNOSTICS

RUGS

All ftlllctions that return an ill/ indicate errors wilh negative values. A zero return indicates ok.
Routincs that return a dallllll indicate crrors with a null (0) dp/r.

The '.pag' file will contain holes so that iL~ apparent size is about four times its actual content.
Older UNIX systems may create real me blocks f'()J" these holes when touched. These nIcs cannot
be copied by normal means (cp, cat, tp, tar, ar) without filling in the holes.

J)p~r pointers returned by I.hese subroutines point into st.atic storage that is changed by subsequent
calls.

The slim of thesii'.es of a key/content pair must not exceed the internal block sii',e (currently 1024
bytes). Moreover all key/content. pairs that hash together must fit on a single block. Store will

4th Berkeley Distribution 19 January 1983 1 .

DBM(3X) UN IX Programmer's Manual DHM(3X)

return an errol' in the event that a disk block fills with inseparable data.

Delete does not physically reclaim filc spacc, although it does make it available ten'rcuse.

Thc order of kcys presentcd by firstkey and nextkey dcpends on a hashing function, not on any­
thing interesting.

Because of ambiguities in this man page, there is no consistent style as to whether or not the
"dsizc" field includes the trailing null in a na.rnc. If you arc reading a database generated by some
other program, as for example the sendmail alias database /usr/lib/aliascs, you must know whether
it.~ usage has included the null in the character count (aliases docs).

4th Berkeley Distribution 19 January 1983" 2

GETDISKBYNAME (3X) UNIX Programmer's Manual

NAME
getdiskbyname - get disk description by its name

SYNOPSIS
#Include < dlsktab.h >
struet dlsktab -
letdlskbyname(name)
char -name;

DESCRIPTION

GETDISKBYNAME (3X)

Getdiskbyname takes a disk name (e.g. rm03) and returns a structure describing its geometry
information and the standard disk partition tables. All information obtained from the disk­
tab(S) file.

<disktab.h> has the following form:

/* @(#)disktab.h 4.2 (Berkeley) 3/6/83 */

/*
- Disk description table, see disktab(S)
-/

#defineDISKTAB "/etc/disktab"

struct disktab {
char *d_name; /- drive name -I
char *d_type; /* drive type -/
int d_secsize; /- sector size in bytes */
int . d_ntracks; /- # tracks/cylinder -/
int d_nsectors; /- # sectors/track -I
int d_ncylinders; /- # cylinders -/
int d_rpm; /- revolutions/minute -/
struct partition {

int p_size; /- #sectors in partition -/
short p_bsize;/- block size in bytes -/
short p_fsize; /- frag size in bytes -I

} dJ'artitions[8];
};

struct disktab -getdiskbyname () ;

SEE ALSO
disktab(S)

BUGS
This information shoulc; be obtained from the system for locall) lvailable disks (in particular,
the disk partition tables).

4th Berkeley Distribution 4 March 1983 1

INITGROUPS (3X) UNIX Programmer's Manual

NAME
initgroups - initialize group access list

SYNOPSIS
initgroups (name, basegid)
char -name;
lnt basegid;

DESCRIPTION

INITGROUPS (3X)

Initgroups reads through the group file and sets up, using the setgroups(2) call, the group access
list for the user specified in name. The basegid is automatically included in the groups list.
Typically this value is given as the group number from the password file.

FILES
letclgroup

SEE ALSO
setgroups (2)

DIAGNOSTICS
Initgroups returns -1 if it was not invoked by the super-user.

BUGS
Initgroups uses the routines based on getgrent(3). If the invoking program uses any of these
routines, the group structure will be overwritten in the call to initgroups.

Noone seems to keep letclgroup up to date.

4th Berkeley Distribution 25 February· 1983 1

LIB2648 (3X) UNIX Programmer's Manual LIB2648 (3X)

NAME
lib2648 - subroutines for the HP 2648 graphics terminal

SYNOPSIS
#lnclude <stdlo.h>

typedef char -bltmat;
FILE -trace;

cc file.c -12648

DESCRIPTION
Lib2648 is a general purpose library of subroutines useful for interactive graphics on the
Hewlett-Packard 2648 graphics terminal. To use it you must call the routine ttyinitO at the
beginning of execution, and. done 0 at the end of execution. All terminal input and output
must go through the routines rawchar, readline, outchar, and outstr.

Lib2648 does the necessary "ErF handshaking if getenv("TERM'') returns "hp2648", as it will
if set by tset(1). Any other value, including for example "2648", will disable handshaking.

Bit matrix routines are provided to model the graphics memory of the 2648. These routines are
generally useful, but are specifically useful for the update function which efficiently changes
what is on the screen to what is supposed to be on the screen. The primative bit matrix rou­
tines are newmat, mat, and setmat.

The file trace, if non-null, is expected to be a file descriptor as returned by lopen. If so, lib2648
will trace the progress of the output by writing onto this file. It is provided to make debugging
output feasible for graphics programs without messing up the screen or the escape sequences
being sent. Typical use of trace will include:

switch (argv[l] U]) {
case'T':

trace - fopen ("trace", "w");
break;

If (trace)
fprintf(trace, "x is %d, y is %s\n", x, y);

dumpmat("before update", xmat);

ROUTINES
aloto(x,1}

Move the alphanumeric cursor to position (x, y), measured from th r . iJpl-,er left comer
of the screen.

aofl'() Tum the alphanumeric display off.

aOD () Tum the alphanumeric display on.

areaclear (rmln, cmln, rmax, cmax)
Clear the area on the graphics screen bordered by the four arguments. In normal mode
the area is set to all black, in inverse video mode it is set to all white.

beep () Ring the bell on the terminal.

bltcoP1(dest, src, rows, cols} bltmat dest,
Copy a rows by cols bit matrix from src to (user provided) dest.

clearaO
Clear the alphanumeric display.

clearaO

4th Berkeley Distribution 1 March 1980 1

LIB2648 (3X)

curoff()

curonO

UNIX Programmer's Manual LIB2648 (3X)

Clear the graphics display. Note that the 2648 will only clear the part of the screen that
is visible if zoomed in.

Tum the graphics cursor off.

Turn the graphics cursor on.

dlspmsi (str, x, y, maxlen) char -str;
Display the message str in graphics text at position (x, y). The maximum message
length is given by maxlen, and is needed to for dispmsg to know how big an area to
clear before drawing the message. The lower left corner of the first character is at (x.
y).

done() Should be called before the program exits. Restores the tty to normal, turns otT graph­
ics screen, turns on alphanumeric screen, flushes the standard output, etc.

draw(x, y)
Draw a line from the pen location to '(x, y). As with all graphics coordinates, (x. y) is
measured from the bottom left comer of the screen. (x, y) coordinates represent the
first quadrant of the usual Cartesian system.

drawbox (r, c, color, rows, cols)
Draw a rectangular box on the graphics screen. The lower left corner is at location (r.
c). The box is rows rows high and cols columns wide. The box is drawn if color is 1,
erased if color is O. (r, c) absolute coordinates represent row and column on the screen,
with the origin at the lower left. They are equivalent to (x, y) except for being reversed
in order.

dumpmat (msl, m, rows, cols) char -msl; bltmat m;
If trace is non-null, write a readable ASCII representation of the matrix m on trace. Msg
is a label to identify the output.

emptyrow(m, rows, cols, r) bitmat m;
Returns 1 if row r of matrix m is all zero, else returns O. This routine is prpvided
because it can be implemented more efficiently with a knowledge of the internal
representation than a series of calls to mat.

error(msl} char -msl;
Default error handler. Calls message(msg) and returns. This is called by certain rou­
tines in lib2648. It is also suitable for calling by the user program. It is probably a
good idea for a fancy graphics program to supply its own error procedure which uses
seymp(3) to restart the program.

IdefaultO
Set the terminal to the default graphics modes.

10ffO Tum the graphics display off.

Ion 0 Turn the graphics display on.

koffO Turn the keypad otT.

kon 0 Turn the keypad on. This means that most special keys on the terminal (such as the
alphanumeric arrow keys) will transmit an escape sequence instead of doing their func­
tion locally.

lIne(x1, y1, xl, y2)
Draw a line in the current mode from (xl. yl) to (x2. y2). This is equivalent to
mOlle(xl, yl); draw(x2. y2); except that a bug in the terminal involving repeated lines
from the same point is compensated for.

4th Berkeley Distribution 1 March 1980 2

LIB2648 (3X) UNIX Programmer's Manual LIB2648 (3X)

10wieftO
Move the alphanumeric cursor to the lower left (home down) position.

mat(m, rows, cols, I, c) bUmat m;
Used to retrieve an element from a bit matrix. Returns 1 or 0 as the value of the fr, cl
element of the rows by colsmatrix m. Bit matrices are numbered (r, c) from the upper
left corner of the matrix, beginning at (0, 0). R represents the row, and c represents
the column.

messale(str) char -str;
Display the text message str at the bottom of the graphics screen.

min max (I, rows, cols, rmln, cmln, rmax, cmax) bltmat I;
Int -rmin, -cmin, -rmax, -cmax;

Find the smallest· rectangle that contains all the 1 (on) elements in the bit matrix g.
The coordinates are returned in the variables pointed to by rmin, cmin, rmax, cmax.

move(x, y)
Move the pen to location (x, y). Such motion is internal and will not cause output until
a subsequent syncO.

movec:urs (x, y)
Move the graphics cursor to location (x, y).

bltmat newmat (rows, cols)
Create (with ma/Joc(3» a new bit matrix of size rows by cots. The value created (e.g. a
pointer to the first location) is returned. A bit matrix can be freed directly with free.

outchar (c) char c;
Print the character c on the standard output. All output to the terminal should go
through this routine or outstr.

outstr(str) ·char -str;

printlO

Print the string str on the standard output by repeated calls to outchar.

Print the graphics display on the printer. The printer must be configured as device 6
(the default) on the HPIB.

char rawcharO
Read one character from the terminal and return it. This routine or readline should be
used to get all input, rather than getchar(3).

rboffO Turn the rubber band line off.

rbon 0 Turn the rubber band line on.

char -rdchar(c) char c;
Return a readable representation of the character c. If c is a printing character it returns
itself, if a control character it is shown in the "X notation, if negative an apostrophe is
prepended. Space returns ''', rubout returns A1.

NOTE: A pointer to a static place is returned. For this reason,it will not work to pass
rdchar twice to the same fprint/I sprint! call. You must instead save one of the values in
your own buffer with strcpy.

readllne(prompt, mSl, maxlen) cliar -prompt, -mSI;
Display prompt on the bottom line of the graphics display and read one line of text from
the user, terminated by a newline. The line is placed in the buffer msg, which has size
maxi en characters. Backspace processing is supported.

set dear 0

4th Berkeley Distribution 1 March 1980 3

LIB2648 (3X) UNIX Programmer's Manual LIB2648 (3X)

Set the display to draw lines in erase mode. (This is reversed by inverse video mode.)

setmat(m, rows, cols, r, c, vaI) bltmat m;

setsetO

The basic operation to store a value in an element of a bit matrix. The {r, cl element
of m is set to val, which should be either 0 or 1.

Set the display to draw lines in normal (solid) mode. (This is reversed by inverse video
mode.)

setxorO
Set the display to draw lines in exclusive or mode.

syncO Force all accumulated output to be displayed on the screen. This should be followed by
mush (stdout). The cursor is not affected by this function. Note that it is normally
never necessary to call sync, since rawchar and readline call sync() and fflush(stdout)
automatically.

tOlvldO
Toggle the state of video. If in normal mode, go into inverse video mode, and vice
versa. The screen is reversed as well as the internal state of the library.

ttylnltO
Set up the terminal for processing. This routine should be called at the beginning of
execution. It places the terminal in CBREAK mode, turns off echo, sets the proper
modes in the terminal, and initializes the library.

update(mold, mnew, rows, cols, baser, based bitmat mold, mnew;
Make whatever changes are needed to make a window on the screen look like mnew.
Mold is what the window on the screen currently looks like. The window has size rows
by cols, and the lower left comer on the screen of the window is {baser, based. Note:
update was not intended to be used for the entire screen. It would work but be very
slow and take 64K bytes of memory just for mold and mnew. It was intended for 100
by 100 windows with objects in the center of them, and is quite fast for such windows.

vldlnvO
Set inverse video mode.

vldnormO
Set normal video mode.

zermat (m, rows, cols) bUmat m;
Set the bit matrix m to all zeros.

zoomn (size)
Set the hardware zoom to value size, which can range from 1 to 15.

zoomotfO
Turn zoom off. This forces the screen to zoom level 1 without affecting the current
internal zoom number.

zoomonO
Turn zoom on. This restores the screen to the previously specified zoom size.

DIAGNOSTICS

FILES

The routine error is called when an error is detected. The only error currently detected is
overflow of the buffer provided to readline.

Subscripts out of bounds to setmat return without setting anything.

lusr/lib/lib2648.a

4th Berkeley Distribution 1 March 1980 4

LIB2648 (3X) UNIX Programmer's Manual LIB2648 (3X)

SEE ALSO
fedO)

AUTHOR

BUGS
Mark Horton

This library is not supported. It makes no attempt to use all of the features of the terminal,
only those needed by fed. Contributions from users will be accepted for addition to the library.

The HP 2648 terminal is somewhat unreliable at speeds over 2400 baud, even with the AErF
handshaking. In an effort to improve reliability, handshaking is done every 32 characters. (The
manual claims it is only necessary every 80 characters.) Nonetheless, 1/0 errors sometimes still
occur.

There is no way to control the amount of debugging output generated on trace without modify­
ing the source to the library.

4th Berkeley Distribution 1 March .1980 5

PLOT (3X) UNIX Programmer's Manual PLOT (3X)

NAME
plot: openpl, erase, label, line, circle, arc, move, cont, point, linemod, space, closepl - graph­
ics interface

SYNOPSIS
openplO

erase 0
label(s)
ehar sU;

line(xl, yl, xl, yl)

eircle (x, y, r)

are(x, y, xO, yO, xl, y1)

move(x, y)

eont(x, y)

point(x, y)

linemod(s)
ehar s(];

spaee(xO, yO, xl, y1)

eloseplO

DESCRIPTION
These subroutines generate graphic output in a relatively device-independent manner. See
plot(S) for a description of their effect. Openpl must be used before any of the others to open
the device for writing. Closepl flushes the output.

String arguments to label and linemod are null-terminated, and do not contain newlines.

Various flavors of these functions exist for different output devices. They are obtained by the
following Id(1) options:

-Iplot device-independent graphics stream on standard output for plot (1) filters
-1300 OSI 300 terminal
-1300s OSI 300S terminal
-1450 DASI 450 terminal
-14014 Tektronix 4014 terminal

SEE ALSO
plot(S), plot(1G), graph(10)

7th Edition 19 January 1983 1

RCMD (3X) UNIX Programmer's Manual RCMD (3X)

NAME
rcmd, rresvport, ruserok - routines for returning a stream to a remote command

SYNOPSIS
rem = rcmd(ahost, inport, locuser, remuser, cmd, fd2p);
char --ahost;
u_short inport;
char -locuser, -remuser, -cmd;
int -fd2p;

s = rresvport (port) ;
int -port;

ruserok <rhost, superuser, ruser, luser>;
char -rhost;
int superuser;
char -ruser, -Iuser;

DESCRIPTION
Rcmd is a routine used by the super-user to execute a command on a remote machine using an
authentication scheme based on reserved port numbers. Rresvport is a routine which returns a
descriptor to a socket with an address in the privileged port space. Ruserok is a routine used by
servers to authenticate clients requesting service with rcmd. All three functions are present in
the same file and are used by the rshd(8C) server (among others).

Rcmd looks up the host -ahost using gethostbyname(3N), returning -1 if the host does not ex­
ist. Otherwise *ahost is set to the standard name of the host and a connection is established to
a server residing at the well-known Internet port inport.

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as stdin and stdout. If /d2p is non-zero, then an auxiliary channel to a con­
trol process will be set up, and a descriptor for it will be placed in */d2p. The control process
will return diagnostic output from the command (unit 2) on this channel, and will also accept
bytes on this channel as being UNIX signal numbers, to be forwarded to the process group of
the command. If /d2p is 0, then the stderr (unit 2 of the remote command) will be made the
same as the stdout and no provision is made for sending arbitrary signals to the remote process,
although you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd(8C).

The rresvport routine is used to obtain a socket with a privileged address bound to it. This sock­
et is suitable for use by rcmd and sevral other routines. Privileged addresses consist of a port in
the range 0 to 1023. Only the super-user is allowed to bind an address of this sort to a socket.

Ruserok takes a remote host's name, as returned by a gethostent(3N) routine, two user names
and a flag indicating if the local user's name is the super-user. It then checks the files
letclhosts.equivand, possibly, .rhosts in the current working directory (normally the local user's
home directory) to see if the request for service is allowed. A 1 is returned if the machine
name is listed in the "hosts.equiv" file, or the host and remote user name are found in the
".rhosts" file; otherwise ruserok returns O. If the superuser flag is 1, the checking of the
"host.equiv" file is bypassed.

SEE ALSO
rlogin(IC), rsh(IC), rexec(3X), rexecd(8C), rlogind(8C), rshd(8C)

BUGS
There is no way to specify options to the socket call which rcmd makes.

4th Berkeley Distribution 17 March 1982 1

REXEC (3X) UNIX Programmer's Manual REXEC (3X)

NAME
rexec - return stream to a remote command

SYNOPSIS
rem = rexec(ahost, inport, user, passwd, cmd, fd2p);
char --ahost;
u_short inport;
char -user, -passwd, .cmd;
int -fd2p;

DESCRIPTION
Rexec looks up the host *ahost using gethostbyname(3N), returning -1 if the host does not ex­
ist. Otherwise *ahost is set to the standard name of the host. If a username and password are
both specified, then these are used to authenticate to the foreign host; otherwise the environ­
ment and then the user's .netrc file in his home directory are searched for appropriate informa­
tion. If all this fails, the user is prompted for the information.

The port in port specifies which well-known DARPA Internet port to use for the connection~ it
will normally be the value returned from the call Ugetservbyname("exec", "tcp")" (see
getservent(3N». The protocol for connection is described in detail in rexecd(8C).

If the call succeeds, a socket of type SOCK_STREAM is returned to the caller, and given to the
remote command as stdin and stdout. If jd2p is non-zero, then a auxiliary channel to a control
process will be setup, and a descriptor for it will be placed in *jd2p. The control process will re­
turn diagnostic output from the command (unit 2) on this channel, and will also accept bytes
on this channel as being UNIX signal numbers, to be forwarded to the process group of the
command~ If jd2p is 0, then the stderr (unit 2 of the remote command) will be made the same
as the stdout and no provision is made for sending arbitrary signals to the remote process,
although you may be able to get its attention by using out-of-band data.

SEE ALSO
rcmd(3X), rexecd(8C)

BUGS
There is no way to specify options to the socket call which rexec makes.

3rd Berkeley Distribution 17 March 1982 1

TERMCAP (3X) UNIX Programmer's Manual TERMCAP (3X)

NAME
tgetent, tgetnum, tgetilag, tgetstr, tgoto, tputs - terminal independent operation routines

SYNOPSIS
char PC;
char eBC;
char eUP;
short ospeed;

tletent(bp, name)
char ebp, ename;

tletnam (ld)
char eld;

tlettial (ld)
char eld;

char e
tletstr (id, area)
char eld, eearea;

char e
tloto (cm, destcol, destline)
char ecm;

tputs (cp, dent, oate)
register char ecp;
lnt afrcnt;
lnt (eoute) () ;

DESCRIPTION
These functions extract and use capabilities from the terminal capability data base termcap(S).
These are low level routines; see curses(3X) for a higher level package.

Tgetent extracts the entry for terminal name into the buffer at bp. Bp should be a character
buffer of size 1024 and must be retained through all subsequent calls to tgetnum, tge(/iag, and
tgetstr. Tgetent returns -1 if it cannot open the termcap file, 0 if the terminal name given does
not have an entry, and 1 if all goes well. It will look in the environment for a TERMCAP vari­
able. If found, and the value does not begin with a slash, and the terminal type name is the
same as the environment string TERM, the TERMCAP string is used instead of reading the
termcap file. If it does begin with a slash, the string is used as a path name rather than
letcltermcap. This can speed up entry into programs that call tgetent, as well as to help debug
new terminal descriptions or to make one for your terminal if you can't write the file
letcltermcap.

Tgetnum gets the numeric value of capability id, returning -1 if is not given for the terminal.
Tge{/lag returns 1 if the specified capability is present in the terminal's entry, 0 if it is not.
Tgetslr gets the string value of capability id, placing it in the buffer at area, advancing the area
pointer. It decodes the abbreviations for this field described in termeap(S), except for cursor
addressing and padding information.

Tgoto returns a cursor addressing string decoded from em to go to column desteol in line destline.
It uses the external variables UP (from the ap capability) and BC (if bc is given rather than bs)
if necessary to avoid placing \n, AD or A(I in the returned string. (Programs which call tgoto
should be sure to tum off the XTABS bit(s), since tgoto may now output a tab. Note that pro­
grams using termcap should in general turn off XTABS anyway since some terminals use con­
troll for other functions, such as nondestructive space.) If a % sequence is given which is not
understood, then tgoto teturns "OOPS".

4th Berkeley Distribution 9 February 1983 1

TERM CAP (3X) UNIX Programmer's Manual TERMCAP (3X)

FILES

Tputs decodes the leading padding information of the string cp; qifcnt gives the number of lines
affected by the operation, or 1 if this is not applicable, outc is a routine which is called with
each character in tum. The external variable ospeed should contain the output speed of the ter­
minal as encoded by st(y(3). The external variable PC should contain a pad character to be
used (from the pc: capability) if a null ("@) is inappropriate.

lusr/lib/libtermcap.a -ltermcap library
I etc/termcap database

SEE ALSO
ex(1), curses(3X), termcap(S)

AUTHOR
William Joy

4th Berkeley Distribution 9 February 1983 2

INTRO(3C) UNIX Programmer's Manual INTRO (3C)

NAME
intro - introduction to compatibility library functions

DESCRIPTION
These functions constitute the compatibility library portion of libc. They are automatically
loaded as needed by the C compiler ccO). The· link editor searches this library under the
"-lc" option. Use of these routines should, for the most part, be avoided. Manual entries for
the functions in this library describe the proper routine to use.

LIST OF FUNCTIONS
Name

alarm
ftime
getpw
gtty
nice
pause
rand
signal
srand
stty
time
times
utime
vlimit
vtimes

Appears on Page Description

alarm.3c schedule signal after specified time
time.3c get date and time
getpw.3c get name from uid
stty.3c set and get terminal state (defunct)
nice.3c set program priority
pause.3c stop until signal
rand.3c random number generator
signal.3c simplified software signal facilities
rand.3c random number generator
stty.3c set and get terminal state (defunct)
time.3c get date and time
times.3c get process times
utime.3c set file times
vlimit.3c control maximum system resource consumption
vtimes.3c get information about resource utilization

4th Berkeley Distribution 18 July 1983 1

ALARM (3C) UNIX Programmer's Manual

NAME
alarm - schedule signal after specified time

SYNOPSIS
alarm (seconds)
unsigned seconds;

DESCRIPTION
This interface is obsoleted by setitimer(2).

ALARM (3C)

Alarm causes signal SIGALRM, see signal(3C), to be sent to the invoking process in a number
of seconds given by the argument. Unless caught or ignored, the signal terminates the process.

Alarm requests are not stacked; successive calls reset the alarm clock. If the argument is 0, any
alarm request is canceled. Because of scheduling delays, resumption of execution of when the
signal is caught may be delayed an arbitrary amount. The longest specifiable delay time is
2147483647 seconds.

The return value is the amount of time previously remaining in the alarm clock.

SEE ALSO
sigpause(2), sigvec(2), signaI(3C), sleep(3)

7th Edition 18 July 1983 1

GETPW(3C)

NAME
getpw - get name from uid

SYNOPSIS
getpw (uid, buf)
char -buf;

DESCRIPTION

UNIX Programmer's Manual

Getpw is obsoleted by getpwuid (3).

GETPW (3C)

Getpw searches the password file for the (numerical) uid, and fills in bujwith the corresponding
line; it returns non-zero if uid could not be found. The line is null-terminated.

FILES
/etc/passwd

SEE ALSO
getpwent (3), passwd (5)

DIAGNOSTICS
Non-zero return on error.

7th Edition 19 January' 1983 1

NICE (3C) UNIX Programmer's Manual NICE (3C)

NAME
nice - set program priority

SYNOPSIS
nice (incr)

DESCRIPTION
This interface is obsoleted by setpriority (2) •

The scheduling priority of the process is augmented by incr. Positive priorities get less service
than normal. Priority 10 is recommended to users who wish to execute long-running programs
without flak from the administration.

Negative increments are ignored except on behalf of the super-user. The priority is limited to
the range - 20 (most urgent) to 20 (least).

The priority of a process is passed to a child process by fork(2). For a privileged process to
return to normal priority from an unknown state, nice should be called successively with argu­
ments -40 (goes to priority -20 because of truncation), 20 (to get to 0), then 0 (to maintain
compatibility with previous versions of this call).

SEE ALSO
niceO), setpriority(2), fork(2), renice(S)

4th Berkeley Distribution 1 April 1983 1

PAUSE (3C)

NAME
pause - stop until signal

SYNOPSIS
pause 0

DESCRIPTION

UNIX Programmer's Manual PAUSE (3C)

Pause never returns normally. It is used to give up control while waiting for a signal from
kill(2) or an interval timer, see setitimer(2). Upon termination of a signal handler started dur­
ing a pause, the pause call will return.

RETURN VALUE
Always returns -1.

ERRORS
Pause always returns:

[EINTR] The call was interrupted.

SEE ALSO
ki1l(2), select(2), sigpause(2)

4th Berkeley Distribution 18 July 1983 1

RAND (3C) UNIX Programmer's Manual

NAME
rand, srand - random number generator

SYNOPSIS
srand (seed)
Int seed;

rand 0
DESCRIPTION

RAND (3C)

The newer random (3) should be used In new applications; rand remains for compatibilty.

Rand uses a multiplicative congruential random number ~enerator with period 232 to return suc­
cessive pseudo-random numbers in the range from 0 to 2 1-1.

The generator is reinitialized by calling srand with 1 as argument. It can be set to a random
starting point by calling srand with whatever you like as argument.

SEE ALSO
random (3)

7th Edition 19 January 1983 1

SIGNAL (3C) UNIX Programmer's Manual SIGNAL (3C)

NAME
signal - simplified software signal facilities

SYNOPSIS
#lnclude < silnal.h >
(-silnal (sil, func» 0
void (-func) () ;

DESCRIPTION
Signal is a simplified interface to the more general sigvec(2) facility.

A signal is generated by some abnormal event, initiated by a user at a terminal (quit, interrupt,
stop), by a program error (bus error, etc.), by request of another program (kilO, or when a pro­
cess is stopped because it wishes to access its control terminal while in the background (see
tty (4)) . Signals are optionally generated when a process resumes after being stopped, when the
status of child processes changes, or when input is ready at the control terminal. Most signals
cause termination of the receiving process if no action is taken; some signals instead cause the
process receiving them to be stopped, or are simply discarded if the process has not requested
otherwise. Except for the SIGKILL and SIGSTOP Signals, the signal call allows signals either to
be ignored or to cause an interrupt to a specified location. The following is a list of all signals
with names as in the include file <signal.h>:

SIGHUP 1 hangup
SIGINT 2 interrupt
SIGQUIT 3. quit
SIGILL 4. illegal instruction
SIGTRAP S. trace trap
SIGIOT 6. lOT instruction
SIGEMT 7. EMT instruction
SIGFPE 8. floating point exception
SIGKILL 9 kill (cannot be caught or ignored)
SIGBUS 10. bus error
SIGSEGV 11. segmentation violation
SIGSYS 12. bad argument to system call
SIGPIPE 13 write on a pipe with no one to read it
SIG ALRM 14 alarm clock
SIGTERM 15 software termination signal
SIGURG 16- urgent condition present on socket
SIGSTOP 17t stop (cannot be caught or ignored)
SIGTSTP 18t stop signal generated from keyboard
SIGCONT 19 - continue after stop
SIGCHLD 20 - child status has changed
SIGTTIN 21 t background read attempted from control terminal
SIGTTOU 22t background write attempted to control terminal
SIGIO 23- i/o is possible on a descriptor (see !cnt/(2»
SIGXCPU 24 cpu time limit exceeded (see setrlimit(2»
SIGXFSZ 25 file size limit exceeded (see setrlimit(2»
SIGVT ALRM 26 virtual time alarm (see setitimer(2»
SIGPROF 27 profiling timer alarm (see setitimer(2»

The starred signals in the list above cause a core image if not caught or ignored.

If june is SIG_DFL, the default action for signal sig is reinstated; this default is termination
(with a core image for starred signals) except for signals marked with. or t. Signals marked
with - are discarded if the action is SIG_DFL; signals marked with t cause the process to stop.
If june is SIG_IGN the signal is subsequently ignored and pending instances of the signal are

4th Berkeley Distribution 15 June 1983 1

SIGNAL (3C) UNIX Programmer's Manual SIGNAL (3C)

discarded. Otherwise, when the signal occurs further occurences of the signal are automatically
blocked and June is called.

A return from the function unblocks the handled signal and continues the process at the point
it was interrupted. Unlike previous signal facUlties, the handler June remains installed after
a signal has been dellvered.

If a caught signal occurs during certain system calls, causing the call to terminate prematurely,
the call is automatically restarted. In particular this can occur during a read or write(2) on a
slow device (such as a terminal; but not a file) and during a wait(2).

The value of signal is the previous (or initial) value of June for the particular signal.

After a /ork(2) or v/ork(2) the child inherits all signals. Exeeve(2) resets all caught signals to
the default action; ignored signals remain ignored.

RETURN VALUE
The previous action is returned on a successful call. Otherwise, -1 is returned and errno is set
to indicate the error.

ERRORS
Signal will fail and no action will take place if one of the following occur:

[EINV AL] Sig is not a valid signal number.

[EINV AL] An attempt is made to ignore or supply a handler for SIGKlLL or SIGSTOP.

[EINVAL] An attempt is made to ignore SIGCONT (by default SIGCONT is ignored).

SEE ALSO
killO), ptrace(2) , kill(2), sigvec(2) , sigblock(2) , sigsetmask(2) , sigpause(2), sigstack(2) ,
setjmp(3), tty(4)

NOTES (VAX-It)
The handler routine can be declared:

handler(sig, code, scp)

Here sig is the signal number, into which the hardware faults and traps are mapped as defined
below. Code is a parameter which is either a constant as given below or, for compatibility
mode faults, the code provided by the hardware. Sep is a pointer to the struet sigeontext used by
the system to restore the process context from before the signal. Compatibility mode faults are
distinguished from the other SIGILL traps by having PSL_CM set in the psI.

The following defines the mapping of hardware traps to signals and codes. All of these symbols
are defined in < signal. h > :

Hardware condition

Arithmetic traps:
Integer overflow
Integer division by zero
Floating overflow trap
Floating/decimal division by zero
Floating underflow trap
Decimal overflow trap
Subscript-range
Floating overflow fault
Floating divide by zero fault
Floating underflow fault

Length access control
Protection violation

4th Berkeley Distribution

Signal

SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGFPE
SIGSEGV
SIGBUS

15 June 1983

Code

FPE_INTOVF _TRAP
FPE_INTDIV _TRAP
FPE_FLTOVF_TRAP
FPE FLTDIV TRAP
FPE - FL TUND TRAP
FPE:DECOVF:TRAP
FPE_SUBRNG_TRAP
FPE_FLTOVF_FAULT
FPE_FL TDIV _FAULT
FPE_FLTUND_FAULT

2

SIGNAL (3C)

Reserved instruction
Customer-reserved instr.
Reserved operand
Reserved addressing
Trace pending
Bpt instruction
Compatibility-mode
ChIne
Chms
Chmu

4th Berkeley Distribution

UNIX Programmer's Manual

SIGILL
SIGEMT
SIGILL
SIGILL
SIGTRAP
SIGTRAP
SIGILL
SIGSEGV
SIGSEGV
SIGSEGV

15 June 1983

IL L_RES AD_FAULT

ILL PRIVIN FAULT
ILL=RESOP _FAULT

hardware supplied code

SIGNAL (3C>

3

STIY (3C> UNIX Programmer's Manual

NAME
stty, gtty - set and get terminal state (defunct)

SYNOPSIS
#include < sgtty.h >

stty (fd, bur>
int fd;
struct sgttyb *buf;

gtty (fd, buf)
int fd;
struct sgttyb .buf;

DESCRIPTION
This interface is obsoleted by ioctl (2).

STIY (3C)

Stty sets the state of the terminal associated with fd. Gtty retrieves the state of the terminal
associated with fd. To set the state of a terminal the call must have write permission.

The stty call is actually "ioctl(fd, TIOCSETP, buf)", while the gtty call is "ioctl(fd,
TIOCGETP, buf)". See ioct/(2) and tty(4) for an explanation.

DIAGNOSTICS
If the call is successful 0 is returned, otherwise -1 is returned and the global variable errno
contains the reason for the failure.

SEE ALSO
ioctl(2), tty(4)

4th Berkeley Distribution 1 Apri11983 1

TIME (3C) UNIX Programmer's Manual

NAME
time, ftime - get date and time

SYNOPSIS
long time(O)

10Dg time (tloc)
10Dg .tloc;

#include < sys/types.h >
#include < sys/timeb.h >
ftime(tp)
strud timeb .tp;

DESCRIPTION
These interfaces are obsoleted by gettimeofday (2) •

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds.

If tiDe is nonnull, the return value is also stored in the place to which tiDe points.

TIME (3C)

The ftime entry fills in a structure pointed to by its argument, as defined by < sysltimeb.h > :
1* timeb.h 6.183/07/29*1

/*
* Structure returned by ftime system call
./

struct timeb
{

};

time _ t time;
unsigned short milli tm;
short timezone;
short dstflag;

The structure contains the time since the epoch in seconds, up to 1000 milliseconds of more­
precise interval, the local time zone (measured in minutes of time westward from Greenwich),
and a flag that, if nonzero, indicates that Daylight Saving time applies locally during the
appropriate part of the year.

SEE ALSO
date (1), gettimeof day (2), settimeof day (2), ctime (3)

4th Berkeley Distribution 1 April 1983 1

TIMES (3C)

NAME
times - get process times

SYNOPSIS
#include < sys/types.h >
#include < sys/times.h >
times (buffer)
strud tms -buffer;

DESCRIPTION

UNIX Programmer's Manual

This interface is obsoleted by getrusage(2).

TIMES (3C)

Times returns time-accounting information for the current process and for the terminated child
processes of the current process. All times are in 11HZ seconds, where HZ is 60.

This is the structure returned by times:

1* times.h 6.1 83/07/29

/*
* Structure returned by timesO
*1

struct tms {
time_t tms_utime;
time_t tms_stime;
time_t tms_cutime;
time_t tms_cstime;

1* user time */
I * system time */
1* user time, children */
/* system time, children */

The children times are the sum of the children's process times and their children's times.

SEE ALSO
time(l), getrusage(2), wait3 (2), time(3)

4th Berkeley Distribution 1 April 1983 1

UTIME(3C) UNIX Programmer's Manual UTIME (3C)

NAME
utime - set file times

SYNOPSIS
#include <sys/types.h>

utime (file, timep)
char -file;
time_t timep(2);

DESCRIPTION
This interface is obsoleted by utimes (2).

The utime call uses the 'accessed' and 'updated' times in that order from the timep vector to set
the corresponding recorded times for file.

The caller must be the owner of the file or the super-user. The 'inode-changed' time of the file
is set to the current time.

SEE ALSO
utimes(2), stat(2)

4th Berkeley Distribution 1 April 1983 1

VLIMIT(3C) UNIX Programmer's Manual VLIMIT (3C)

NAME
vlimit - control maximum system resource consumption

SYNOPSIS
#include < sys/vlimit.h >
vlimit(resource, value)

DESCRIPTION
This facility is superseded by getrlimit (2) •

Limits the consumption by the current process and each process it creates to not individually
exceed value on the specified resource. If value is specified as -1, then the current limit is
returned and the limit is unchanged. The resources which are currently controllable are:

LIM_NORAISE A pseudo-limit; if set non-zero then the limits may not be raised. Only the
super-user may remove the noraise restriction.

LIM_CPU the maximum number of cpu-seconds to be used by each process

LIM_FSIZE the largest single file which can be created

LIM_DATA the maximum growth of the data+stack region via sbrk(2) beyond the end of
the program text

LIM_STACK the maximum size of the automatically-extended stack region

LIM_CORE the size of the largest core dump that will be created.

LIM_MAXRSS a soft limit for the amount of physical memory (in bytes) to be given to the
program. If memory is tight, the system will prefer to take memory from
processes which are exceeding their declared LIM_MAXRSS.

Because this information is stored in the per-process information this system call must be exe­
cuted directly ·by the shell if it is to affect all future processes created by the shell; limit is thus a
built-in command to csh(1).

The system refuses to extend the data or stack space when the limits would be exceeded in the
normal way; a break call fails if the data space limit is reached, or the process is killed when the
stack limit is reached (since the stack cannot be extended, there is no way to send a signal!).

A file i/o operation which would create a file which is too large will cause a signal SIGXFSZ to
be generated, this normally terminates the process, but may be caught. When the cpu time
limit is exceeded, a signal SIGXCPU is sent to the offending process; to allow it time to process
the signal it is given 5 seconds grace by raising the cpu time limit.

SEE ALSO
csh(1)

BUGS
If LIM_NO RAISE is set, then no grace should be given when the cpu time limit is exceeded.

There should be limit and unlimit commands in shU) as well as in csh.

This cail is peculiar to this version of UNIX. The options and specifications of this system call
and even the call itself are subject to change. It may be extended or replaced by other facilities
in future versions of the system.

4th Berkeley Distribution 18 July 198~ 1

VTIMES (3C) UNIX Programmer's Manual VTIMES (3C)

NAME
vtimes - get information about resource utilization

SYNOPSIS
vtimes (par_ vm, ch_ vm)
struct vtimes .par_ vm, *ch_ vm;

DESCRIPTION
This facility is superseded by getrusage (2) .

Vtimes returns accounting information for the current process and for the terminated child
processes of the current process. Either par_vm or ch_vm or both may be 0, in which case only
the information for the pointers which are non-zero is returned.

After the call, each buffer contains information as defined by the contents of the include file
lusrlincludelsyslvtimes. h:

struct vtimes {
int vm_utime; /. user time (.HZ) -I
int vm_stime; /- system time (.HZ) .1
/- divide next two by utime+stime to get averages -/
unsigned vmJdsrss; /- integral of d +s rss -/
unsigned vmJxrss; /- integral of text rss -I
int vm maxrss; /- maximum TSS ./

int vm - majflt; I- major page faults -/
int vm - minflt; I- minor page faults *'
int vm_nswap; /- number of swaps -I
int vmJnblk; /. block reads ./
int vm_oublk; /- block writes -/

} ;

The vm_utime and vm_stime fields give the user and system time respectively in 60ths of a
second (or 50ths if that is the frequency of wall current in your locality.) The vm_idrss and
vm_ixrss measure memory usage. They are computed by integrating the number o~ memory
pages in use each over cpu time. They are reported as though computed discretely, adding the
current memory usage (in 512 byte pages) each time the clock ticks. If a process used 5 core
pages over 1 cpu-second for its data and stack, then vm_idsrss would have the value 5-60, where
vm_utime+vm_stime would be the 60. Vm_idsrss integrates data and stack segment usage, while
vm_ixrss integrates text segment usage. Vm_maxrss reports the maximum instantaneous sum of
the text + data + stack core-resident page count.

The vm_mai/lt field gives the number of page faults which resulted in disk activity; the
vm_minflt field gives the number of page faults incurred in simulation of reference bits~
vm_nswap is the number of swaps which occurred. The number of file system input/output
events are reported in vm_inhlk and vm_oublk These numbers account only for real i/o; data
supplied by the caching mechanism is charged only to the first process to read or write the data .

. SEE ALSO

BUGS

time (2), wait3 (2)

This call is peculiar to this version of UNIX. The options and specifications of this system call
are subject to change. It may be extended to include additional information in future versions
of the system.

4th Berkeley Distribution 13 June 1983 1

INTRO (4) UNIX Programmer's Manual INTRO(4)

NAME
intro - introduction to special files and hardware support

DESCRIPTION
This section describes the special files, related driver functions, and networking support avail­
able in the system. In this part of the manual, the SYNOPSIS section of each configurable dev­
ice gives a sample specification for use in constructing a system description for the co1t/ig(S)
program. The DIAGNOSTICS section lists messages which may appear on the console and in
the system error log /usr/adm/messages due to errors in device operation.

This section contains both devices which may be configured into the system, 444" entries, and
network related information, "4N", 444P", and "4F" entries; The networking support is intro­
duced in intro(4N).

VAX DEVICE SUPPORT
This section describes the hardware supported on the DEC VAX-It. Software support for
these devices comes in two forms. A hardware device may be supported with a character or
block device driver, or it may be used within the networking subsystem and have a network inter­
lace driver. Block and character devices are accessed through files in the file system of a special
type; c,c. mknod(S). Network interfaces are indirectly accessed through the interprocess com­
munication facilities provided by the system; see socket (2) .

A hardware device is identified to the system at configuration time and the appropriate device
or network interface driver is then compiled into the system. When the resultant system is
booted, the autoconfiguration facilities in the system probe for the device on either the
UNIBUS or MASSBUS and, if found, enable the software support for it. If a UNIBUS device
does not respond at autoconfiguration time it is not accessible at any time afterwards. To
enable a UNIBUS device which did not autoconfigure, the system will have to be rebooted. If a
MASSBUS device comes "on-line" after the autoconfiguration sequence it will be dynamically
autoconfigured into the running system.

The autoconfiguration system is described in autocotif(4). VAX specific device support is
described in "4V" entries. A list of the supported devices is given below.

SEE ALSO
intro(4), intro(4N), autoconf(4), config(S)

LIST OF DEVICES
The devices listed below are supported in this incarnation of the system. Devices are indicated
by their functional interface. If second vendor products provide functionally identical interfaces
they should be usable with the supplied software. (Beware however that we promise the
software works ONLY with the hardware indicated on the appropriate manual page.)

acc
ad
css
ct
db
dmc
dmf
dn
dz
ec
en
kg
fl
hk

ACC LH/DH IMP communications interface
Data translation A/D interface
DEC IMP-IIA communications interface
C/ A/T phototypesetter
DH-ll emulators, terminal multiplexor
DEC DMC-1l/DMR-ll point-to-point communications device
DEC DMF-32 terminal multiplexor
DEC DN-ll autodialer interface
DZ-Il terminal multiplexor
3Com lOMbls Ethernet controller
Xerox 3Mb/s Ethernet controller (obsolete)
KL-ll/DL-11 W line clock
V AX-ll/7S0 console floppy interface
RK6-11/RK06 and RK07 moving head disk

4th Berkeley Distribution 27 July 1983 1

INTRO(4)

hp
ht
hy
ik
it
lp
mt
pel
ps
rx
tm
ts
tu
uda
un
up
ut
uu
va
vp
vv

UNIX Programmer's Manual

MASSBUS disk interface (with RP06, RM03, RMOS, etc.)
TM03 MASS BUS tape drive interface (with TE·16, TU·4S, TU·77)
DR·IIB or 01·13 interface to an NSC Hyperchannel
Ikonas frame buffer graphics device interface
Interlan lOMb/s Ethernet controller
LP·ll parallel line printer interface
TM78 MASSBUS tape drive interface
DEC PCL-l1 communications interface
Evans and Sutherland Picture System 2 graphics interface
DEC RX02 floppy interface
TM-l1/TE-IO tape drive interface
TS·l1 tape drive interface
VAX-I 1/730 TUS8 console cassette interface
DEC UDA-SO disk controller
DR·I1W interface to Ungermann-Bass
Emulex SC-21 V UNIBUS disk controller
UNIBUS TU-4S tape drive interface
TUS8 dual cassette drive interface (DLIO
Benson-Varian printer/plotter interface
Versatec printer/plotter interface
Proteon proNET 10Mb/s ring network interface

4th Berkeley Distribution 27 July 1983

INTRO (4)

2

INTRO (4N) UNIX Programmer's Manual INTRO (4N)

NAME
networking - introduction to networking facilities

SYNOPSIS
#Include <sys/socket.h>
#Include < net/route.h >
#lnclude < net/H.h >

DESCRIPTION
This section briefly describes the networking facilities available in the system. Documentation
in this part of section 4 is broken up into three areas: protocol-families, protocols, and network
interfaces. Entries describing a protocol-family are marked "4F", while entries describing pro­
tocol use are marked "4P". Hardware support for network interfaces are found among the
standard "4" entries.

All network protocols are associated with a specific protocol-family. A protocol-family provides
basic services to the protocol implementation to allow it to function within a specific network
environment. These services may include packet fragmentation and reassembly, routing,
addressing, and basic transport. A protocol-family may support multiple methods of addressing,
though the current protocol implementations do not. A protocol-family is normally comprised
of a number of protocols, one per socket(2) type. It is not required that a protocol-family sup­
port all socket types. A protocol-family may contain multiple protocols supporting the same
socket abstraction.

A protocol supports one of the socket abstractions detailed in socket(2). A specific protocol
may be accessed either by creating a socket of the appropriate type and protocol-family, or by
requesting the protocol explicitly when creating a socket. Protocols normally accept only one
type of address format, usually determined by the addressing structure inherent in the design of
the protocol-family/network architecture. Certain semantics of the basic socket abstractions are
protocol specific. All protocols are expected to support the basic model for their particular
socket type, but may, in addition, provide non-standard facilities or extensions to a mechanism.
For example, a protocol supporting the SOCK_STREAM abstraction may allow more than one
byte of out-of-band data to be transmitted per out-of-band message.

A network interface is similar to a device interface. Network interfaces comprise the lowest
layer of the networking subsystem, interacting with the actual transport hardware. An interface
may support one or more protocol families, and/or address formats. The SYNOPSIS section of
each network interface entry gives a sample specification of the related drivers for use in pro­
viding a system description to the co1ffig(8) program. The DIAGNOSTICS section lists mes­
sages which may appear on the console and in the system error log lusrladm/messages due to
errors in device operation.

PROTOCOLS
The system currently supports only the DARPA Internet protocols fully. Raw socket interfaces
are provided to IP protocol layer of the D ARP A Internet, to the IMP link layer (1822), and to
Xerox pUpal layer operating on top of 3Mb/s Ethernet interfaces. Consult the appropriate
manual pages in this section for more information regarding the support for each protocol fam­
ily.

ADDRESSING
Associated with each protocol family is an address format. The following address formats are
used by the system:

#define AF _UNIX
#define AF _!NET
#define AF _IMPLINK
#define AF _PUP

4th Berkeley Distribution

1
2
3
4

I. local to host (pipes, portals) .1
I. internetwork: UDP, TCP, etc . • 1
I. arpanet imp addresses .1
I. pup protocols: e.g. asp .1

7 July 1983 1

lNTRO(4N) UNIX Programmer's Manual INTRO(4N)

ROUTING
The network facilities provided limited packet routing. A simple set of data structures comprise
a "routing. table" used in selecting the appropriate network interface when transmitting packets.
This table contains a single entry for each route to a specific network or host. A user process,
the routing daemon, maintains this data base with the aid of two socket specific ioctl(2) com­
mands, SIOCADDRT and SIOCDELRT~ The commands allow the addition and deletion of a
single routing table entry, respectively. Routing table manipulations may only be carried out by
super-user.

A routing table entry has the following form, as defined in < nedroute~h >;

struct rtentry {
uJong
struct
struct
short
short
UJODg
struct

};

rt_hash;
sockaddr rt_ dst;
sockaddr rt -Bateway;
rt_Oags;
rt_refcnt;
rt_use;
ifnet -rtjfp;

with rt..flags defined from,

#define RTF_UP
#define RTF_GATEWAY
#define RTF_HOST

Ox}
Ox2
Ox4

I- route usable -I
I- destination is a gateway -I
I- host entry (net otherwise) -I

Routing table entries come in three flavors: for a specific host, for all hosts on a specific net­
work, for any destination not matched by entries of the first two types (a wildcard route). When
the system is booted, each network interface autoconfigured installs a routing table entry when
it wishes to have packets sent through it. Normally the interface specifies the route through it
is a "direct" connection to the destination host or network. If the route is direct, the transport
layer of a protocol family usually requests the packet be sent to the same host specified in the
packet. Otherwise, tbe interface may be requested to address the packet to an entity different
from the eventual recipient (i.e. the packet is forwarded).

Routing table entries installed by a user process may not specify the hash, reference count, use,
or interface fields; these are filled in by the routing routines. If a route is in use when it is
deleted (r,-,ej'cnt is non-zero), the resources associated with it. will not be reclaimed until
further references to it are released.

The routing code returns EEXlST if requested to duplicate an existing. entry, ESRCH if
requested to delete a non-existant entry, or ENOBUFS if insufficient resources were available tC'
install a new route.

User processes read the routing tables through the Ide"lkmem device.

The rt use field contains the number of packets sent along the route. This value is used to
select among multiple routes to the same destination. When multiple. routes to the same desti­
nation exist, the least used route is selected.

A wildcard routing entry is specified with a zero destination address value. Wildcard routes are
used only when the system fails to find a route to the destination host and network. The com­
bination of wildcard routes and routing redirects can provide an economical mechanism for
routing traffic.

4th Berkeley Distribution 7 July 1983 2

INTRO(4N) UNIX Programmer's Manual INTRO(4N)

INTERFACES
Each network interface in a system corresponds to a path through which messages may be sent
and received. A network interface usually has a hardware device associated with it, though cer­
tain interfaces such as the loop back interface, 10(4), do not.

At boot time each interface which has underlying hardware support makes itself known to the
system during the autoconfiguration process. Once the interface has acquired its address it is
expected to install a routing table entry so that messages may be routed through it. Most inter­
faces require some part of their address specified with an SIOCSIFADDR ioctl before they will
allow traffic to flow through them. On interfaces where the network-link layer address mapping
is static, only the network number is taken from the ioctl; the remainder is found in a hardware
specific manner. On interfaces which provide dynamic network-link layer address mapping
facilities (e.g. 10Mb/s Ethernets), the entire address specified in the ioctl is used.

The following ioetl calls may be used to manipulate network interfaces. Unless specified other­
wise, the request takes an jfrequest structure as its parameter. This structure has the form

struct ifreq {
char ifr name[16];
union { -

/- name of interface (e.g. "ecO") -/

struct sockaddr ifru_addr;
struct
short

sockaddr ifru _ dstaddr;
ifruJlags;

} ifr ifru;
#defineifr_addrifrJfru.ifru_addr /- address -/
#defineifr dstaddr ifr ifru.ifru dstaddr /- other end of p-to-p link -/
#defineifr=flagsifrJfru.ifruJlags - /- flags -/
};

SIOCSIF AD DR
Set interface address. Following the address assignment, the "initialization" routine
for the interface is called.

SIOCGIFADDR
Get interface address.

SIOCSIFDSTADDR
Set point to point address for interface.

SIOCGIFDST ADDR
Get point to point address for interface.

SIOCSIFFLAGS
Set interface flags field. If the interface is marked down, any processes currently rout­
ing packets through the interface are notified.

SIOCGIFFLAGS
get interface flags.

SIOCGIFCONF
Get interface configuration list. This request takes an i/eorif structure (see below) as a
value-result parameter. The i/c_len field should be initially set to the size of the buffer
pointed to by i/c_br,if. On return it will contain the length, in bytes, of the configuration
list.

/-
• Structure used in SIOCGIFCONF request.
- Used to retrieve interface configuration
- for machine (useful for programs which

4th Berkeley Distribution 7 July 1983 3

INTRO(4N) UNIX Programmer's Manual

- must know all networks accessible).
-/

struct if conf {
int ifcJen; /- size of associated buffer -/
union {

caddr_t ifcu_buf;
struct ifreq -ifcu_req;

} ifcjfcu;
#defineifc buf ifc ifcu.ifcu buf /- buffer address -/
#defineifc:req ifc)fcu.ifcu:req/- array of structures returned -/
};

SEE ALSO
socket(2), ioct1(2), intro(4), config(S), routed(SC)

4th Berkeley Distribution 7 July 1983

INTRO(4N)

4

ACC (4) UNIX Programmer's Manual ACC (4)

NAME
acc - ACC LH/DH IMP interface

SYNOPSIS
pseudo-device imp
device accO at ubaO csr 167600 vector accrint accxint

DESCRIPTION
The ace device provides a Local Host/Distant Host interface to an IMP. It is normally used
when participating in the DARPA Internet. The controller itself is not accessible to users, but
instead provides the hardware support to the IMP interface described in imp(4). When
configuring, the imp pseudo-device must also be included.

DIAGNOSTICS
acc%d: not alive. The initialization routine was entered even though the device did not
autoconfigure. This indicates a system problem.

acc%d: can't initialize. Insufficient UNIBUS resources existed to initialize the device. This is
likely to occur when the device is run on a buffered data path on an 11/750 and other network
interfaces are also configured to use buffered data paths, or when it is configured to use
buffered data paths on an 11/730 (which has none).

accOfod: imp doesn't respond, icsr=Ofob. The driver. attempted to initialize the device, but the
IMP failed to respond after 500 tries. Check the cabling .

. acc%d: stray xmit interrupt, csr=Ofob. An interrupt occurred when no output had previously
been started.

acc%d: output error, ocsr=%b, icsr=%b. The device indicated a problem sending data on out­
put.

acc%d: input error, csr=%b. The device indicated a problem receiving data on input.

acc%d: bad length =%d. An input operation resulted in a data transfer of less than 0 or more
than 1008 bytes of data into memory (according to the word count register). This should never
happen as the maximum size of a host-IMP message is 1008 bytes.

4th Berkeley Distribution 27 July 1983

AD(4) UNIX Programmer's Manual AD(4)

NAME
ad - Data Translation AID converter

SYNOPSIS
device adO at ubaO csr 0170400 vector adintr

DESCRIPTION

FILES

Ad provides the interface to the Data Translation AID converter. This is not a real-time driver.
but merely allows the user process to sample the board's channels one at a time. Each minor
device selects a different AID board.

The driver communicates to a user process by means of ioctls. The AD_CHAN ioctl selects
which channel of the board to read. For example,

chan = 5~ ioctJ(fd. AD_CHAN, &chan)~
selects channel 5. The AD_READ ioctl actually reads the data and returns it to the user pro­
cess. An example is

ioctl(fd, AD_READ, &data)~

Idevlad
DIAGNOSTICS

None.

4th Berkeley Distribution 27 July 1983 1

ARP(4P) UNIX Progr(lll1l1ler's ~'lallllal ARP(4P)

NAME
arp Address Rc~,olution Protocol

SYNOPSIS
pselldo-dcvicc dhcl'

I)I':SCI~II)'I'ION

t\ I{ P is " protocol w;cd to dYll;llllil';tll y Illap hel w('el1 nt\ R P/\ Illternet and 1 ()\1 b/s Fthet'llcl
<u.1dres';cs. It is used by ;tli till' 1()i\lh/s I·:the,'nct illtcrl;!t,:c drivers.

;\I~P C<lch,,~s Intcl'l1cl-rt\1ernl't ;lddres::; lll;lppings. "Vlll'lI an int('r!:lC(~ requests;1 11I:lpping for an
addn~\s not in the clch\.'. ARP qllClll'~; the illCS'\;I~~1.' \\'11:ch rellllin.'s the 1\l;lpping i111d hro~ldc;lsts a
1lH.'~;";lge Oil the (lS:-'CL'i,lt,,~d network n'ljlll'stiilg tile dddrcs'i Illapping, I I' " rl'SpOlh,' i:~ prm ided, the
new lli;tppillg is c;lCh~'d ;111<..1 all\' pelldi;l~~ IlIC'\S;ig ... ·\ .Ire Ir;IIlSntlL:,',1. i\RP will <-Ili,'lll' ;11 most olle
j1<1<:k('t wllile waiting I()r ;1 ll1apping reqw .. <.,l to he rc;pollded to: (ll1ly the IIIO:-.t rl'c('lltly "tral1slllit­
ted" p;\Ckcl is kept.

To cn:lhlc C()llllllLlllit';ltiollS with ~;\~;tl'lIIS ",hidl d(l not lise /\I{P, inctls :lrc prll\'ided to enter 'lIH.l
dckte entries in tile Illtl·rtld-t()'rtllnllcl lilhles. Usage:

-1/ illcllJ(k' (sy"Jiol't I.h)
/1 inclllcll' (s}s/sorkct.h)
1/ include <lId/if.h)
slrud arpn:q arJlrcq~

iol'tl(s. SIO! '~'" \1~P. (racldr t)~I~arflH~q):
jol'tl(s. SltH '(;,\HP. (cld!lr _l}&:trprl'q)~
iortl(s. SIO(j),\I~P. (t'addfJ)~'~a .. prl'q)~

F;!cll iudl takes tll~' S:lIlle stnll:llIl'l' d\ :111 :lrglllll~llt. SIOCS,\RP ',;\.·Is :Ill ARP l'illry. SIOCGARP
gets ;tIl ,\RP elltry, ;llld SIOC'I)ARI' lk'kll's ;111 ,\I{P l'lltry. 'I Ill'S\..' iOells 1Il:I,Y IX' ;tpplil'd to ;\I1Y
sodl'1 I.\t'scriptor s. hilI ollly by the SlIpn-lI,";l'r. Thl' (1I/'/'{'I/ strllcllll'\..' cOllt<lins:

1*
* A R P ioc II l\~q Ul'sl
'i<1

strllct ;ll'prl'q {

} :

st n Ict S(ll'k"ddr (lrp .. pa:
slnll't Sockdddr ;lrp_.h;l:
illl arpJlags;

1* arpJLJgs Ikld v;lIues */
/ldclille /\TI:._COivl
/1 <.klillCAIV, YI ~R M 4
-II <.felillci\'!'I: PUBL X

1* prutocol :Iddress '1<1
/* h;m,hvan.' ;tddl\'ss *1
1* Ibgs *1

2 1* cOlllplcted l'lllry (arp...\ll1 v<1lid) */
1* pl..'rlll;llll'lll entry *1
1* pllhlish (respolld fi.>r otllvr host) */

TIJr :Iddrl's~; 1;lIlJily 1'01' tile (/1/', J1i1 sock.lddr mllst hl' /\1: 1 N FT: I<)t' tile /(1/', hil sock:lddr it Illllst he
AI: ,lINSPLC. Tile ollly ILtg hits which 11I:IY Ill' writtl'll ;11\' XIV,PIJUd ;IIHI ATF, ,PUBI ..
ATI:,PI':Rrvl calls<..'s the l'lltry to h ... ' Iwrlll:tllcnt if till' jocll call Slll'Cl'cds, Till..' pl'culi:lr 1l;ltlire of the
A~\P t<lhks Illay C:lllse tile ioctl to Elil it' more than .~ (pl'rtll;III\.'llt) IlItt'rtll'l host ;ld.lrl·sses Iwsh to
the S:IIlIC slot. AII;_YUIU, sperilk's thalthe ARP code silould 1\,'SIHlIHlto AI{P I'l'qlll'sts for the
indicated host comin1', I'rnlll otlH.'1' Ill;lchilles. This allows a h(lst to (let as all "ARP server" which
llIay be lise I'll I ill convincing an, ;\1~J>"()llly 1I1:lchille to talk to a non·;\RP 1l1;\chinc.

;\I\P W;ltC!1CS p;lssivl'ly I'or hUSh impersonatitlg the Im,.';11 host (i.l'. ;1 host which rl'sponds lo all AI{P
tnllpping reqllest I<)r the local h()st's lIddl'l'ss).

7th Fdilioll II .Llllilary 1 ')X4

I\RP(4P) UNIX Progrdllllllcr's Mantlal /\RP(4P)

1)IA(;r'J{)S'rICS
dupliratc I P addn.'ss!! Sl'nt from l'lhl'rlh.1 :uldrl'ss: %x :%\:%\:%x:%\:% /\ RI' h;I~\ dbcovcrcd
allothcr h()~1 Oil till' local \lt~t\\ork which n:spPlllis to llIappillg requcsts I()I' its own Intcl'1IcLH.ldress.

SEI': ALSO

BU(;S

cc(4), dc(4). il(·D, illcl(41·1 ;lrp(XC), ill:onfiF,O)(.')
;\11 Flhcrnel Addn .. 'ss Resolutioll Protlll'ul, R I'{ 'X76, Dave PllIIlIllK'I', MIT.

/\I{ I) p~ick('ls 011 till' FtlH.'r/l\..,t IISl' only ~l} h~ ll.'S PI' dal;l, hm" C\'l'r, the sl1l;l1k~t leg;" Fth~~J'Ih.'1 p:lcket
is (I() hyll's (flO! illcluding ('Rt'). SOIllC sy ... tl'IIlS llIay \lot l'I!I()rCt~ the Illillillllllll pac~ct Si/C, others
will.

7th I ~dilioll II January 1984 2 .

AUTOCONF(4) UNIX Programmer's Manual AUTOCONF (4)

NAME
autoconf - diagnostics from the autoconfiguration code

DESCRIPTION
When UNIX bootstraps it probes the innards of the machine it is running on and locates con­
trollers, drives, and other devices, printing out what it finds on the console. This procedure is
driven by a system configuration table which is processed by colt/ig(8) and compiled into each
kernel.

Devices in NEXUS slots are normally noted, thus memory controllers, UNIBUS and MASSBUS
adaptors. Devices which are not supported which are found in NEXUS slots are noted also.

MASSBUS devices are located by a very deterministic procedure since MASSBUS space is com­
pletely probe-able. If devices exist which are not configured they will be silently ignored~ if
devices exist of unsupported type they will be noted.

UNIBUS devices are located by probing to see if their control-status registers respond. If not,
they are silently ignored. If the control status register responds but the device cannot be made
to interrupt, a diagnostic warning will be printed on the console and the device will not be
available to the system.

A generic system may be built which picks its root device at boot time as the Hbest" available
device (MASSBUS disks are better than SMD UNIBUS disks are better than RK07's~ the dev­
ice must be drive 0 to be considered.) If such a system is booted with the RB ASKNAME
option of (see reboot(2», then the name of the root device is read from the consoi'e terminal at
boot time, and any available device may be used.

SEE ALSO
intro(4), config(S)

DIAGNOSTICS
cpu type %d not configured. You tried to boot UNIX on a cpu type which it doesn't (or at least
this compiled version of UNIX doesn't) understand.

mba%d at tr%d. A MASSBUS adapter was found in tr%d (the NEXUS slot number). UNIX
will call it mba%d.

%d mba's not configured. More MASSBUS adapters were found on the machine than were
declared in the machine configuration~ the excess MASSBUS adapters will not be accessible.

uba%d at tr%d. A UNIBUS adapter was found in tr%d (the NEXUS slot number). UNIX will
call it uba%d.

dr32 unsupported (at tr %d). A DR32 interface was found in a NEXUS, for which UNIX does
not have a driver.

mcr%d at tr%d. A memnry controller was found in tr%d (the NEXUS slot number). UNIX
will call it mcr%d.

5 mer's unsupported. UNIX supports only 4 memory controllers per cpu.

mpm unsupported (at tr%d). Multi-port memory is unsupported in the sense that UNIX does
not know how to poll it for ECC errors.

Ofos%d at mba%d drive Ofod. A tape formatter or a disk was found on the MASSBUS~ for disks
%s%d will look like "hpO", for tape formatters like Hhtl". The drive number comes from the
unit plug on the drive or in the TM formatter (not on the tape drive~ see below).

%s%d at %s%d slave %d. (For MASSBUS de·!ices). Which would look like HtuO at htO slave
0", where tuO is the name for the tape device and htO is the name for the formatter. A tape
slave was found on the tape formatter at the indicated drive number (on the front of the tape
drive). UNIX will call the device, e.g., tuO.

4th Berkeley Distribution 27 July 1983

AUTOCONF (4) UNIX Programmer's Manual AUTOCONF(4)

%s%d at uba%d csr %0 vee %0 ipl %x. The device %s%d, e.g. dzO was found on uba%d at
control-status register address %0 and with device vector %0. The device interrupted at priority
level %x.

%s%d at uba%d esr %0 zero vector. The device did not present a valid interrupt vector. rather
presented 0 (a passive release condition) to the adapter.

%s%d at uba%d csr %0 didn't interrupt. The device did not interrupt, likely because it is bro­
ken, hung, or not the kind of device it is advertised to be.

%s%d at %s%d slave %d. (For UNIBUS devices). Which would look like HUpO at scO slave
0", where upO is the name of a disk drive and seO is the name of the controller. Analogous to
MASS BUS case.

4th Berkeley Distribution 27 July 1983 2

BK(4) UNIX Programmer's Manual BK (4)

NAME
bk - line discipline for machine-machine communication (obsolete)

SYNOPSIS
pseudo-device bk

DESCRIPTION
This line discipline provides a replacement for the old and new tty drivers described in tty (4)
when high speed output to and especially input from another machine is to be transmitted over
a asynchronous communications line. The discipline was designed for use by the Berkeley net­
work. It may be suitable for uploading of data from microprocessors into the system. If you
are going to send data over asynchronous communications lines at high speed into the system,
you must use this discipline, as the system otherwise may detect high input data rates on termi­
nal lines and disabl~s the lines~ in any case the processing of such data when normal terminal
mechanisms are involved saturates the system.

The line discipline is enabled by a sequence:

#include <sgtty.h>
int Idisc = NETLDISC, fildes; ...
ioctl (fildes, TIOCSETD, &ldisc>;

A typical application program then reads a sequence of lines from the terminal port, checking
header and sequencing information on each line and acknowledging receipt of each line to the
sender, who then transmits another line of data. Typically several hundred bytes of data and a
smaller amount of control information will be received on each handshake.

The old standard teletype discipline can be restored by doing:

Idisc = OTTYDISC;
ioctl (fildes, TIOCSETD, &ldisC>;

While in networked mode, normal teletype output functions take place. Thus, if an 8 bit out­
put data path is desired, it is necessary to prepare the output line by putting it into RAW mode
using ;oct/(2). This must be done before changing the discipline with TIOCSETD, as most
;octl(2) calls are disabled while in network line-discipline mode.

When in network mode, input processing is very limited to reduce overhead. Currently the
input path is only 7 bits wide, with newline the only recognized character, terminating an input
record. Each input record must be read and acknowledged before the next input is read as the
system refuses to accept any new data when there is a record in the buffer. The buffer is lim­
ited in length, but the system guarantees to always be willing to accept input resulting in 512
data characters and then the terminating newline.

User level programs should provide sequencing and checksums on the information to guarantee
accurate data transfer.

SEE ALSO
tty (4)

DIAGNOSTICS
None.

BUGS
The Purdue uploading line discipline, which provides 8 bits and uses timeout's to terminate
uploading should be incorporated into the standard system, as it is much more suitable for
mic;:roprocessor connections.

4th Berkeley Distribution 1 September 1981

CONS (4) UNIX Programmer's Manual CONS (4)

NAME
cons - VAX-II console interface

DESCRIPTION

FILES

The console is available to the processor through the console registers. It acts like a normal
terminal, except that when the local functions are not disabled, control-P puts the console in
local console mode (where the prompt is "> > > "). The operation of the console in this
mode varies slightly per-processor.

On an 11/780 you can return to the conversational mode using the command "set t p" (set ter­
minal program) if the processor is still running or "continue" if it is halted. The latter com­
mand may be abbreviated "c". If you hit the break key on the console, then the console will
go into ODT (console debugger mode). Hit a "P" (upper-case letter p) to get out of this
mode.

On an 11/750 or an 11/730 the processor is halted whenever the console is not in conversa­
tional mode, and typing HC" returns to conversational mode. When in console mode on an
11/750 which has a remote diagnosis module, a "D will put you in remote diagnosis mode,
where the prompt will be "ROM>". The command "ret" will return from remote diagnosis
mode to local consoJe mode.

With the above proviso's the console works like any other UNIX terminal.

Idev/console

SEE ALSO
tty(4), reboot(8)
VAX Hardware Handbook

DIAG!'lOSTICS
None.

4th Berkeley Distribution 27 July 1983 1

ess (4) UNIX Programmer's Manual ess (4)

NAME
css - DEe IMP-IIA LH/DH IMP interface

SYNOPSIS
pseudo-device imp
device cssO at ubaO csr 167600 flags 10 vector cssrint cssxint

DESCRIPTION
The ess device provides a Local Host/Distant Host interface to an IMP. It is normally used
when participating in the DARPA Internet. The controller itself is not accessible to users, but
instead provides the hardware support to the IMP interface described in imp(4). When
configuring, the imp pseudo-device is also included.

DIAGNOSTICS
css%d: not alive. The initialization routine was entered even· though the device did not
autoconfigure. This is indicates a system problem.

css%d: can't initialize. Insufficient UNIBUS resources existed to initialize the device. This is
likely to occur when the device is run on a buffered data path on an 11/750 and other network
interfaces are also configured to use buffered data paths, or when it is configured to use
buffered data paths on an 11/730 (which has none).

css%d: imp doesn't respond, icsr=%b. The driver attempted to initialize the device, but the
IMP failed to respond after 500 tries. Check the cabling.

css%d: stray output interrupt csr=%b. An interrupt occurred when no output had previously
been started.

css%d: output error, ocsr=%b icsr=%b. The device indicated a problem sending data on out­
put.

css%d: recv error, csr=%b. The device indicated a problem receiving data on input.

cssOfod: bad length =%d. An input operation resulted in a data transfer of less than 0 or more
than 1008 bytes of data into memory (according to the word count register). This should never
happen as the maximum size of a host-IMP message is 1008 bytes.

4th Berkeley Distribution 27 July 1983

CT (4) UNIX Programmer's Manual

NAME
ct . - phototypesetter interface

SYNOPSIS
device ctO at ubaO csr 0167760 vector ctintr

DESCRIPTION

CT(4)

This provides an interface to a Graphic Systems C/ A/T phototypesetter. Bytes written on the
file specify font, size, and other control information as weI) as the characters to be flashed. The
coding is not described here.

Only one process may have this file open at a time. It is write-only.

FILES
/dev/cat

SEE ALSO
troff(l)
Phototypesetter interface specification

DIAGNOSTICS
None.

4th Berkeley Distribution 27 July 1983 1

DE(4) UN IX Programmer's Manual DE (4)

NAME
de . DEC DEUN/\ 10 Mh/s Ftltemet interf~\cc

SYNOPSIS
tlt'lkc cleO at Uh'10 csr 0174310 vedOf dcintr

DESCHIPTION
The t/(' illtcrfclce provides access to a 10 i\,lh/s Ftlwl"11el network through it DEl.ll'!':\ controller.

'1'11'.' llo:-;t\; Internct <Iddress is spccilkd ;tl boot limc with all SiOCSII:i\l)1)1{ inctl. The de inlcrl~Icc
CIlII'IIlYS the add!\'\s resolution rrotocol descrilK'd ill tlJJJ('U» to dYllamically map hl'twecn (ntcl'llcl
and I :,lllCrtll't mldl'l'sSl'S 011 till' local l1etwork.

Thl" illtcrt:lce normally tries to lise a "tr:tikr" enc:qt~llhtilln to millilllilC' copying d,,:a on illPlit "lId
OUtput. This m;IY be disabled, Oil a pl'r-intcrl~lcehd~,i"i, by"ctting tlte 11:/ :_NCr! R"\ II.I':RS nag with
all :,;IUCSIFFI.!\(iS ioctl.

I)IA(;N(}S 1'li'S
"t,n:)t!: UlIlIllWllCl faikd, l'sr()=~!()h rsr1 ::-:%h. 1 leI'\..' COIIIllI:lIld i'i ()Ih,,' or rl'sl't, IKhh, nlphyad. \\trill~.

or'l\tmodt" This Jlll'SS;tt',e is printcd it' then: is an ~~ITi.>r 011 dn icc illitialil.alion.

(k?:)(I: hutTt'!' lIna,"ailahk'. Paeket~, (lrc being I'ccci\'Cd hy tllc illte'rElee 1;lstcr t!l;11l Ihi.:Y (;11\ hc ser­
viced by thc driver.

(\t'?;;il: rall't handll' af%t1. The illtl'r!;lcc was h:llltkd a IlH:'SS:lgC \·:ith addrcssl..'~; I(>nllatleu in an
lIfbllit:lhlc dddrcss !;lI11ily; tile packet W;IS dropped.

SEE A.,SO
illll'({~N). ill~~l(41·'). ;)rp(4P)

BUGS
'1'11\' PliP protocol 1;lIllily should he adtkd.

,11h Bcrkeky Dislribution NYU

DH (4) UNIX Programmer's Manual DH(4)

NAME
dh DH'·ll/DM .. 11 communications multiptexer

SYNOPSIS
device dbOat ubaO csr 0160010 vector dhrint 'dbxint
devicedmO :at ubaOcsr 0170500 \'eetor dmintl'

D£SCRI·PT,)ON

FILES

A dh-llprovides 16communicalion lines; d'm-ll "s may be optionaUy paired with dh-ll's t'O
provide modemconttol for the lines.

Each lin'e attached t'O the DH-ll co'mmunicationsmultiplexer behaves as described in t{V (4).
InpUland output roreach line may independently be set to ru:n at any 'Of 16 speeds: see tty (4)
f'Or the encoding.

Bit i offiags may be specified fer a dh to sa}' that a line is 'nct properly connected, and thal the
line should be treated :as ha.rd .. wired with carrier always .present. Thus specifying Hflags
Ox0004~' in :.the specification of dhO would cause line uyh2 t6 be treated in this way.

The dh drivernormaUy uses input sitos and pons for input at each clock tick (10 milliseconds)
rather than taki-ogan interrupt en each input character .

Idev!tty[hi) [O-9a-f]
Idev/uyd{O-9a-f]

SEE ALSO
tty (4)

Dl,AtiNOSTICS
db%ci': NX~t NOte'sponse from UNIBUS ·on a dmatransfer within a timeout period. This is
'Often :.foUowed by a UN1SUS adapter e;rrOT. This eccursmOSl freqouentlywhen the UNIBUS is
heavily :ioadeda:;nd wben devices wbich hog tbe bus (su'chas -rk07's) are presenl. It i's not seri­
ous.

dh'lt/od:siio 'ovedlow . the <:ha:racter tnput silo :overftowed ibefo:re it could be serviced. This can
hap'pen it a harde.rror occutS when the :CPU is ru'nni'ng with elevated .priority, as the system
win then,dnl :a message on tbe:conso!le w:lth tnterrupls disabled. If the Berknel is running on
a :dh linea,t .highspeed (e.g. 9600 baud.), there is only llrSthof a secend 'of buffering 'capacity
in lhe 'silo, :and overran \Sp<i)SSibJe.. Tbi's ma\y cause a :few linpulcharacters \to be lest to users
and a network ~pac:ketis likely ~to be corrupted, but the network will recover. It is not serious.

DMC(4) UNIX Programmer's Manual DMC (4)

NAME
dmc - DEC DMC-ll IDMR-ll point-to-point communications device

SYNOPSIS
device dmcO at ubaO csr 167600 vector dmcrint dmcxint

DESCRIPTION
The dmc interface provides access to a point-to-point communications device which runs at
either 1 Mb/s or 56 Kb/s. DMC-ll's communicate using the DEC DDCMP link layer proto­
col.

The dmc interface driver also supports a DEC DMR-ll providing point-to-point communication
running at data rates from 2.4 Kb/s to 1 Mb/s. DMR-ll's are a more recent design and thus
are preferred over DMC-11 'so

The host's address must be specified with an SIOCSIFADDR ioctl before the interface will
transmit or recive any packets.

DIAGNOSTICS
dmcOfod: bad control %0. A bad parameter was passed to the dmcload routine.

dmcOfod: unknown address type %d. An input packet was received which contained a type of
address unknown to the driver.

DMC FATAL ERROR 0%0.

DMC SOFT ERROR 0%0.

dmc%d: af1lfod not supported. The interface was handed a message which has addresses format­
ted in an unsuitable address family.

SEE ALSO

BUGS

intro(4N), inet(4F)

Should allow multiple outstanding DMA requests, but due to the design of the current
UNIBUS support routines this is very difficult.

4th Berkeley Distribution 27 July 1983

DMF(4) UNIX Programmer's Manual DMF(4)

NAME
dmf - DMF-32, terminal multiplexor

SYNOPSIS
device dmfO at uba? csr 0170000

vector dmfsrint dmfsxint dmfdaint dmfdbint dmfrint dmfxint dmftint

DESCRIPTION

FILES

The dmf device provides 8 lines of asynchronous serial line support with full modem control
(the DMF-32 provides other services, but these are not supported by the driver>.

Each line attached to a DMF-32 serial line port behaves as described in tty(4). Input and out­
put for each line may independently be set to run at any of 16 speeds~ see 10'(4) for the encod­
ing.

Bit i of flags may be specified for a dm/to to say that a line is not properly connected, and that
the line should be treated as hard-wired with carrier always present. Thus specifying Hflags
Ox0004" in the specification of dmjO would cause line ttyh2 to be treated in this way.

The dmfdriver normally uses input silos and polls for input at each clock tick 00 milliseconds).

Idev/tty[hi] lO-9a-fl
Idev/ttyd [0-9a-fl

SEE ALSO
tty(4)

DIAGNOSTICS
dmf'lod: NXM line '/od. No response from UNIBUS on a dma transfer within a timeout period.
This is often followed by a UNIBUS adapter error. This occurs most frequently when the
UNIBUS is heavily loaded and when devices which hog the bus (such as rk07's) are present. It
is not serious.

dmf%d: silo overflow. The character input silo overflowed before it could be serviced. This
can happen if a hard error occurs when the CPU is running with elevated priority, as the system
will then print a message on the console with interrupts disabled. If the Berknet is running on
a dh line at high speed (e.g. 9600 baud), there is only II1Sth of a second of buffering capacity
in the silo, and overrun is possible. This may cause a few input characters to be lost to users
and a network packet is likely to be corrupted, but the network will recover. It is not serious.

dmfsrint.
dmfsxint.
dmfdaint.
dmldbint.
dmflint.
One of the unsupported parts of the dmf interrupted~ something is amiss, check your interrupt
vectors for a conflict with another device.

4th Berkeley Distribution 27 July 1983

DN(4) UNIX Programmer's Manual DN (4)

NAME
dn - DN-Il autocall unit interface

SYNOPSIS
device dnO at uba? csr 0160020 vector dnintr

DESCRIPTION

FILES

The dn device provides an interface through a DEC DN-II (or equivalent such as the Able
Quadracall) to an auto-call unit (ACU). To place an outgoing call one forks a sub-process
which opens the appropriate call unit file, Idevlcua? and writes the phone number on it. The
parent process then opens the corresponding modem line Idevlcul? When the connection has
been established, the open on the modem line, Idevlcul? will return and the process will be con­
nected. A timer is normally used to timeout the opening of the modem line.

The codes for the phone numbers are:

0-9 dial 0-9
• dial· (':' is a synonym)
dial # ('~' is a synonym)

delay 20 milliseconds
< end-of-number ('e' is a synonym)

delay for a second dial tone ("w' is a synonym)
f force a hangup of any existing connection

The entire telephone number must be presented in a single write system call.

By convention, even numbered call units are for 300 baud modem lines. while odd numbered
units are for 1200 baud lines. For example, IdevlcuaO is associated with a 300 baud modem
line, Idevlcu/O, while Idevlcua 1 is associated with a 1200 baud modem line, Iderlcull. For dev­
ices such as the Quadracall which simulate multiple DN-II units, the minor device indicates
which outgoing modem to use.

/dev/cua?
/dev/cul?

call units
associated modem lines

SEE ALSO
tip(IC)

DIAGNOSTICS
Two error numbers are of interest at open time.

[EBUSY] The dialer is in use.

[ENXIO] The device doesn't exist, or there's no power to it.

4th Berkeley Distribution 27 July 1983

DR(4) UNIX Pr()gr<lllllll~r's Manua1 I)J{(4)

N:\I\IE
tlr .. I)R 11- Bit)1{ 11- \V inlcrl;lcc

SYi"iOPSIS
Ifill d IIdt, < ';)'sl t ~·I)(.'s.b >
ttim:JlIdl' <~·;)sl d ... 11>

DF~,;('I\ lI'TJON

;\ variety of 11";('1' d\.'\'iccs 1ll;IY he (lI1th.'ctel! II) till' SySh.'1l1 '.ia J)RII-B or 1)1{ II··W gClltr;,ll'tlrposc
I)i\L\ illl('rl:lc(,~" J);lla \\filh'1l tHlh\.:sl' ,k\ ices is tr;lIbkrrcd dir('Clly fj'OJll Illl' Ilf<ll":SS's hull('f to
l.lll' lISt'r d ... ,\ in' ;\Ild (:\;tla read lhllll thcs\..' d,:\ic.~'" is stll'plit'd directly to Ih.' prC)n.'~s's hnlh'f' hy the
lI\\.'r d('\icl',lld;1i1s COIll'\'I'llillg individual r~';ltlin's ofpartic'll1ar llser (k'\·i\..'\' inh.'J'I:Il'es call h<.' Itllllld
ill the (ksl.'ril1Iioll ill' till' 1\'h'\;11I1 Iiscr dl''.in.' !lIlt'rJ;Il'l'S (St\ .. ' d'/i{,q ;Ifld .!~N/d·l».

IOC'TL(',"\U/S
St'\ l'r;t1 iud/ rail..; ;Irc ;I\'"ihhk Itu' ,Ill DI-: II ·IVI>J{ II .. · \\' illlerf;ll'l'd lISl'r <1,'\ in.'s tl11kss otherwise
spu:ilkdin Ihe dl'scriptillll or IIl;!t p;tl'licuLtI· <11..'\ in'.

The call

iHrtl(liliks. I>HI(JC(~FTlt ,~drrt'~)
strurl "rfq,~ dnq~;

rdurns the l'olltl..'nh ·01' Ib\..' I(HII' I)RII-B (Iin~ I)R II-\V) dl'\ice n:gistl'rs ill Ill\.' 'Iupplied structure,
This stnll'Ull\' is d\..'/ilwd ill <.'.,r\'III1:/i) as:

strlld dIH'~
{

} ;

short d _"'t,·;
u.slwrt ,In J)a:
u.short drr __ st;
u ,short c1u.clb;
tI_ short dn . .'.· .. ;

1'1 nord l'01l11t J'q.~i ... h.'l' *1
I·r. lilts adcln.'ss ft'gistl'f *1
1* s1atus .mel t'olUmaml n,'gistl'l' *1
1* .i:tta hun", .. n'i!ish' .. *1
I J: t'HOr illformalioll f'l'gish'f (al"~t)s Hltu' IHH I-U) *1

'1'\,,0 "dditi(lll;tl l'alh pro\'hk ;t IIU.'ch;l"i~,1l1 Itll' ~dl'ctivdy selling Ill\.' conk'ills or n'rl<lill or these
dl'\ icc fq.',i'lll'r~.;, Tht..'Y ~tn::

iortl(lildl's. nnlO< 'S~d·a. &~tI}Uf)
u. __ shnrt sthuf:

\\ hit-h s\.'ls til,· conlelllS or llh.' "lalilS ,lIld (.'lllllltl<lIKI register to Ill\.' supplied valuC' (CUlTl'lllly only the
thn,'l' fllnctioll hits ""'Y h\.: clll\.X.'tl'd hy this <::111), and

iudl(lildl'S. I)JUO('SI)JUt ,~dhhuf)
II_short dhhuf;

which sets tht' contents of' thl' d;lta holler n'gistcr to the supplied v~ltlle.

All additioll;tI call

im'tI(li.ldt,s. nn IO('EN BS. &sign)
int. sign;

C'nables the SIK'cificd signal numher to be sent 10 the lIser pron."ss issuing t1h,' call if an ATTN inter­
rupt is gCIlt..'ratcd by the 1)1{ II device while no I/O operatillll is cur'lltly in progress. This signal
will he reset ollce it is sent and 11111~1 he sp\.'cHicallyn.~n"hled earh suhsequent time it is nee<kd. 1\
signal IlllmbeJ' of' zero disahks any signal froll1 hdllg sent if one is currcntly enabled,

luev/?,!,! sec illuividll~ll device ~ksl'riptioll

7th I ~dili(ln 3/.\0/82 1

DR(4) UN IX Progr,inlI1lCr'S Manual

SEE ALSO
drh{·.n. gmr(4)

IIISTOHY
15-.1 tlll-R<~ D.Sathyall<l \';IY,lI1an (ads) at Stanl()rd Un i vcrsity

Rcstlll'clllJ'cd to nm lllH.lcr 4.2bsd.

30-iVl:lr-X) ivl ike i\CCi.'tt:1 (Illja) dl Cill"llegie-rvlcl\oll Univcrsity
Created.

7lh I~diti()n 3/30/82 2

DRIH -+) UN IX Progr:Il11lflcr'S Manual DRB(4)

N:\I\IE
drb DR It"IVI)1{ II-\Y gell~ral pllrpOf;1' w;n lkvice i ntcrnlC~

SYNOPSIS
II include (S)S/tYPl'S.h)
It illl'illdl' <,a~lIlla/drh.h>

I)F~("I{IPTION

I)",:\'ices dr/II' prodde tht' inlerl;I(,:e fill' g\.'Il\.'I:d purpose lIs('r devices ('olllw('h:d to tlH.' system via a
1>1{ II-B or 1)1{ II-\V I)i\L\ illkrrace. I bt~, \\ritt\.'11 to thes\' ckvices is tr;III~;li,:I'I\:d dil\'ctly frolll the
process's btllli.'!' to the w,c!' d('\icl' alld d:II:1 I\':,d from thc:,~ devices is slIpplk:d dil\'ctly to the
proCl'SS's hlllkr hy lhe lIser <..kvicc.

B~: dcl~lllll, tlw sy~;t~'1l1 lI'i(''i till.' I :NeT I I;it I If IIh.' status <1111..1 contn>1 "q.;iSl\.'r to I.Tislinglli-;\1 Iwt ween
n.'(!d and ",rill' l"(lIIlI11;Jllds isslh:d hy the 1)1{ II til tile \I:-'t'r de\ icc (Ihe ollt\'r two rlillClioll hilS will
he /em), i\ "('clcI(.~) call will rk:lr tlH .. ' bil helin·\.' begillning till: inptlt p{ll'r:HiuIl and :t It.'ri/('P) call
\\ i:! Sl't the hit hclill'l' hegillllill:' the output opl.'r:ltioll.

IOC TL (':\ LLS
.. \Il iuCl1 Gills dl..'scrihed ill dd·\) IIlay Iw ;tpplicd to thesl' lk\"ilT:-'. Two 'ldditiol1al iocllcalls:

and

iorll{liltks. naBIl)('(;VTP. &clrh(»
strurl (Irhi>ar~lm drhp;

iortl{!iIl\ts, I>HBIO{ 'SFTP. &drhll)
~trul't drhparam ilrhp:

\\lli·Jl, 1\'Slwcti\cly. ktch ;"11..1 "il,.~t til\.' dl'\ in' p:!ralllctl'rs to/rl"lllH the Slljlpli\.'d slrllctllr~ ~II\~ also
(\\;tibhk. This IXIr<tllleter strllclurl' is ddill,-'d ill (sysld,.",h> as:

strlld drhj)arilm
{

} :

II .short drtWJl'OIII;
tI_ .short "rhp. _.'t' l'OIll:
I()II~ drhll.III"J(()I~

1* fOlllltl:lIHI hils for rl'ael Olwratioll *1
1* l'OIllIll:llld hils rm' \i rill' Olll'l"atioll *1
1* H'~;nH'd for flllufl' l'\llllnsion *1
1* (Illust hl' Il'ro) *1

TIH~ read <Inti write cOlllllland hits arc set to the d<..'I~IlI1t \·alll('s when the dl'yicc is opcnl'd (as inui­
cated aho\d. Clirrently, (lIlly the three fUllction hits (\:N< '1'1, I:NCTl, alld FNeTJ) ~llld the
prime bus cycles hil ((,Y(,I.F) lIlay be sd wilh tile UnBIO< 'SFTP call; al\ other bils are ignored.

I de\' I <.irb* generic DIU I-IV I)1{ 11- \V i Ilterl~lccs

SFE AI.SO
dr(4), gllll(4)

Not Tested ulluer 4.2bsd.

IIISTOr~Y

19-Jull-R2 J),SathyallarilY~lI1(1I1 (ads) at Slanl()rd Univcrsity
Restructured flU' 4.?hsd.

J()-Mar-82 M ike Accetta (Illja) at Carnegie-Mellon Univcrsity
Crc(lte<.i.

7th Edition 3/.\0/82

DRUM (4) UNIX Programmer's Manual DRUM (4)

NAME
drum - paging device

DESCRIPTION

FILES

BUGS

This file refers to the paging device in use by the system. This may actually be a subdevice of
one of the disk drivers, but in a system with paging interleaved across multiple disk drives it
provides an indirect driver for the multiple drives.

/dev/drum

Reads from the drum are not allowed across the interleaving boundaries. Since these only
occur every .SMbytes or so, and since the system never allocates blocks across the boundary,
this is usually not a problem.

4th Berkeley Distribution 10 May 1981 1

DZ(4) UNIX Programmer's Manual DZ(4)

NAME
dz - DZ-II communications multiplexer

SYNOPSIS
device dzO at ubaO csr 0160100 vector dzrlnt dzxlnt

DESCRIPTION

FILES

A dz-ll provides 8 communication lines with partial modem control, adequate for UNIX dialup
use. Each line attached to the DZ-II communications multiplexer behaves as described in
tty(4) and may be set to run at any of 16 speeds; see tty(4) for the encoding.

Bit i of flags may be specified for a dz to say that a line is not properly connected, and that the
line should be treated as hard-wired with carrier always present. Thus specifying "flags Ox04"
in the specification of dzO would cause line tty02 to be treated in this way.

The dz dri\'~r normally uses its input silos and polls for input at each clock tick (10 mil­
liseconds) rather than taking an interrupt on each input character.

Idev/tty[O-9] [0-9]
Idev/ttyd[O-9a-f] dial ups

SEE ALSO
tty (4)

DIAGNOSTICS
dzo/ed: silo overflow. The 64 character input silo overflowed before it could be serviced. This
can happen if a hard error occurs when the CPU is running with elevated priority, as the system
will then print a message on the console with interrupts disabled. If the Berknet is running on
a dz line at high speed (e.g. 9600 baud), there is only I/iSth of a second of buffering capacity
in the silo, and overrun is possible. This may cause a few input characters to be lost to users
and a network packet is likely to be corrupted, but the network will recover. It is not serious.

4th Berkeley Distribution 27 July 1983 1

EC(4) UNIX Programmer's Manual EC(4)

NAME
ec - 3Com 10 Mb/s Ethernet interface

SYNOPSIS
device ecO at ubaO csr 161000 vector ecrlnt eccolUde ecxint

DESCRIPTION
The ec interface provides access to a 10 Mb/s Ethernet network through a 3com controller.

The hardware has 32 kilobytes of dual-ported memory on the UNIBUS. This. memory is used
for internal buffering by the board, and the interface code reads the buffer contents directly
through the UNIBUS.

The host's Internet address is specified at boot time with an SIOCSIFADDR ioct!. The ec
interface employs the address resolution protocol described in arp(4P) to dynamically map
between Internet and Ethernet addresses on the local network.

The interface software implements an exponential back off algorithm when notified of a collision
on the cable. This algorithm utilizes a 16-bit mask and the VAX-II's interval timer in calculat­
ing a series of random backoff values. The algorithm is as follows:

1. Initialize the mask to be all 1 'so

2. If the mask is zero, 16 retries have been made and we give up.

3. Shift the mask left one bit and formulate a back off by masking the interval timer with the
mask (this is actually the two's complement of the value).

4. Use the value calculated in step 3 to delay before retransmitting the packet. The delay is
done in a software busy loop.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on input
and output. This may be disabled, on a per-interface basis, by setting the IFF _NOTRAILERS
flag with an SIOCSIFFLAGS ioctl.

DIAGNOSTICS
ec%d: send error. After 16 retransmissions using the exponential backoff algorithm described
above, the packet was dropped.

ed'od: input error (offset -O/Od). The hardware indicated an error in reading a packet off the
cable or an illegally sized packet. The buffer offset value is printed for debugging purposes.

ec%d: can't handle af%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

intro(4N), inet(4F), arp(4P)

The PUP protocol family should be added.

The hardware is not capable of talking to itself. The software implements local sending and
broadcast by sending such packets to the loop interface. This is a kludge.

Backoff delays are done in a software busy loop. This can degrade the system if the network
experiences frequent collisions.

4th Berkeley Distribution 27 July 1983 1

EN(4) UNIX Programmer's Manual EN(4)

NAME
en - Xerox 3 Mb/s Ethernet interface

SYNOPSIS
device enO at ubaO esr 161000 vector enrlnt enxlnt eneollide

DESCRIPTION
The en interface provides access to a 3 Mb/s Ethernet network. Due to limitations in the
hardware, DMA transfers to and from the network must take place in the lower 64K bytes of
the UNIBUS address space.

The network number is specified with a SIOCSIFADDR ioctl; the host's address is discovered
by probing the on-board Ethernet address register. No packets will be sent or accepted until a
network number is supplied.

The interface software implements an exponential backoff algorithm when notified of a collision
on the cable. This algorithm utilizes a 16-bit mask and the VAX-It's interval timer in calculat­
ing a series of random back off values. The algorithm is as follows:

1. Initialize the mask to be all 1 's.

2. If the mask is zero, 16 retries have been made and we give up.

3. Shift the mask left one bit and formulate a backoff by masking the interval timer with the
mask (this is actually the two's complement of the value).

4. Use the value calculated in step 3 to delay before retransmitting the packet.

The interface handles both Internet and PUP protocol families, with the interface address main­
tained in Internet format. PUP addresses are converted to Internet addresses by subsituting
PUP network and host values for Internet network and local part values.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on input
and output. This may be disabled, on a per-interface basis, by setting the IFF _NOTRAILERS
flag with an SIOCSIFFLAGS ioctl.

DIAGNOSTICS
en%d: output error. The hardware indicated an error on the previous transmission.

en~d: send error. After 16 retransmissions using the exponential backoff algorithm described
above, the packet was dropped.

en%d: Input error. The hardware indicated an error in reading a packet off the cable.

en%d: can't handle af'Iod. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

intro(4N), inet(4F)

The device has insufficient buffering to handle back to back packets. This makes use in a pro­
duction environment painful.

The hardware does word at a time DMA without byte swapping. To compensate, byte swapping
of user data must either be done by the user or by the system. A kludge to byte swap only IP
packets is provided if the ENF _SW ABIPS flag is defined in the driver and set at boot time with
an SIOCSIFFLAGS ioctl.

4th Berkeley Distribution 27 July 1983 1

ENET(4) UN IX Pmgmmmer's Manual ENET(4)

NAME
cnet _. cthcrnet p<lckcl nItcr

DESCI~IPTION

The Illes /dcv/cl/c!* providc a raw intcr/ilCe to JllIb <IIH\ IOmh Ftllerncts. Packets \"('ccived that are
not lIsed by the kernel (i.e., to support \P, alld on SOIllC systcllIs X N S, protol'()l:~) arc available
through this Illcch'lIlislll. Associated with ('deh ('lIeI fik is it lIser Sl'll<lhh: pdekcl filter \\ hieh is lIscd
to ddiver illcoming cthcrtlet p(lckets to lile approjni;llc process. \Vhcllc\er;\ Pilckct is received
from the l1<.'t, suCCCSSiH~ PilCkct filters frulIJ lile list or /Iller') 1'01' ;111 open ('/l('! rtks (II"': <lpplicd to the
p:lCket. \Vhen it filler ;Iccepts the packd, it is p\;K'l~d Oil the p(lck~~l iltput quclle or the associated
file. 11'110 filters acceplthe pal'kct, il is disctr<kd. Tile 1(II'lI1at or a p;lekct IiIler is <kst.Tibed below.

Each imli\idl.lal ('1/('/ file tllay be I.lIW;l\'d. 11:,: ollly Olle prou .. 'ss :!t rl tillle. ~llthOllf:!,h the ethernet lIlay
ellccti\cly be shilred hy llIultiple processes, each spcciryilW, its own individual filler Oil (\ dill'...·rent
Pi/('! !ill'.

RC:lt!\ {'roil I thc\l' devices return the lIe\t p:ld,et fro II I the p(lck~'l input ljuelll' or the (Ippropriilte
lile. If ilNlllicicll1 hl.ll1'l'r SPdce to st()I"L' tllt. .. · \.'Iltire P<IChl'l is SIWcilil'd ill till' n . .\Id, tile packet \vill he
tl'lJllcatcd <\Ild tile ILlilillf', contents lost. \Vritl's to tlll'~;C devin's tr;tIlslllit paekL'ts Oil Ihe ethernet
\,vith e<lch write gellcr<ltillg exactly olle p;tcket.

This device is an illt~rf~lce to a v(\riety or dine-rent "I,:tIH:rnet" dilLI-link levels:

3iJlb I ~Lhernet p<lckets cOllsist of·1 or more bytes \\ ith t!t\.· lir t byte \pecil~il\g the source
etlll'rnet ;Iddress. the secolld hyte Spt,.'cil\illg tile lkstilldtioll l'thernct
,\(Jdress. ;lIld till' 11('\t two hylL's spl..'Cil~\ illg the packet I.:. 11\.'. (.\ctllally, Oil

the network Ihe ~)()l1l\.:e ;lIld dcstill;ltiull ;Iddres~l's :Irc iii the opposile
order.)

byte-s\\'<lppi Ilg Jill\) I ~thernet

IOlIIh I ~thcrtlet

p;lckcts consist or 4 or mOl'\.' hytes "ith the lirst hyte :,IWcil)'illg the source
cthcrtlet ;Iddrl'ss. the s(,.'L"olld hy tl' sp\.'l'ir~ illg Ihe dl .. ,till:ltinn l'tl1Ct"IlCt
,Iddress, illld the IIl'xt t\\O hyles sJl\"(:il\ill~l. till' p;lckL,t tYlh'. Farh short
wonl (pair of h)tl'S) is snappt'!1 frolll Iht, IId\\ork h!tt· onll-I': this device
type is (lnly pwvid\"d ;IS ;1 l'oI1Cl's;-,ioll to h:lcK\\drds··ctlIlIP:llihilily.

p:ll'kels COllsist or I·l or Illorl' hytl'S \\ itll Ill\.' lir';(six hyt(.'s specil~'il\g till'
tkstin<lti()11 l'lltertlL't addl\'ss, Ille Jlext ~,ix hylt's 11K' s(lurce I.·themel address,
<lnd the lI\.'xl two hyks SIK·l'if.:.illg till..' pdck\.,t type.

TIll' relllaining words <Ill' inlcrprel\.'d ;ll'Cordillg 10 the p<lch'l IYIh.'. Note tll:lt \() hit ~\lld 32··hit
qUillltities Illay have to be hyleSw;tpped (;lI\d possihle slwrt-s\\(lpped) to he illtclligablc Oil a Vax.

IOCTt. CALLS

Stallrord

III addition to FIONRFi\I), tCIl special iocl! c(llIs may he ;Ipplied to an open ('1/('/ file. The first
two Sl't (\lId felch p;lrilllll'tl'l"S rur till' lik illld arc of the 1'01'111:

1/ illl'iucll' <s}s/typcs.h>
II inducll' <s}s/cnd.h>
iocll(liIdl's, l'Olil', I)aram)
strurt l'niol'h -tparam;

where J}(flWII is defined in <.\)'s/ (,lIel.h> as:

sll'l1ct l'nioch
{"

u._ch:ll' CH ..)Hldr:
lI_clwr l~II __ llIaxnllcrs;

18 October)1)84 1

ENET(4)

};

u_l'har t.\n_m~l'(\\aiting:

u_l'har l'll_maxpriol'ity;
IOllg cu_rlout;

with the clpplicabk codes heing:

'·:ltJCGI ~'I'I)
h:tl'il the parameters for this file.

I':IOCSEIV
Set till' par<lllietcrs for lhis liIe.

ENE'I'(4)

Oil a 31llh t'tlH.'rtH.'t. tlH,~ ;1I.ldn.''i:-> paranH.'kr i:..; till' l,th\.~rrwt 'H.ldl\'ss or tlK' "I,whine. IThis f1l'ld is
l'SSI..'lllially oh:;'.Iil'tc. bUI i'i illl.'ludl'ul{lr L'(llllP:llihilily \\itlJ II/lin code.1 The lllaximulIl Ijller lellgth
p;lr;!II\1.,'I\.'r illdicClIl'S tlw Illjl\:iiillllli p()~~ihk p~lch~t liltl.'!' ClIIIllIljllH.I Ii"t kll~~th (s..:c FJOCSI·:TF
hl'low). '1'1\\.' 11l;1:·:iIllIJllI illPUI \\ait qll~'lH.' ",ill.' P;II';III11. .. 'II.'r illdir;lll.'s Ilw 1ll;I\ill1!!l1l Illllillh,'J' or p;lckcts

which 111;1) h\.' qll\.'lI\.'d /il!' ;111 \.:II1l'I'II1..'1 lik ;II Olll' tillll' (s\.'I.' I':IOCSFT\V below). '1'111..' m,l',illllllll
priority P;ll';lllIdl..'l' ilaliccll'..''i I II\.' l1iglll.'sl liltn pri'lrity \\ hicll 1lI;IY Ih.' set I()r lile !ill: (-;\'\" Lloc'SF'!'F
below). Till.' 1\';ld lill1\.'OIlI p;lr;lI11ctl'r spl't'i!k~; till' Illlllll>'~'r (If' c1()ck ticks l(l w<lit h\.',t.1r(' tillling olll
Oil ;1 rtad I\'qlll.:~t ;1I1d 1\'lurllilig ,Ill H)F. I'llis p<lrallll.'k'r is illiti;lli/.l.~d to lero hy o/,CI/(}). illdicat­
illg IlO tillH'(lllt. Ifil is Ill.'g;llin.'. lhell rCjH.I J't'qlli.:sls will 1\.'1111'11 ,Ill 1':01: illlllh.'diatl..'ly if tlwre Clre no
packets ill llll' illpUI qllelle. (Not(.., lh;11 ,III P:.IJ'ClIlli:tcrs l'.\c~pl I{)r the rl'ad tilllcolit ;In .. ' read-ollly and
arc ignorl'd wl1\.'n changed.)

;\ ')0111(.,'\\ h;11 dilkrl'llt iud! is IIscd 10 get tkvicc pClralllct\:r-.; or tllc cli'tl'l'Ill'l IIII\.krlyillg llll' minor
device. II i~ (II' thl' 1()('Ill:

II illrilldt., <sr";/t~ pt.'s.h>
II illl:llIdt., <s)·s/t.'IIt'l.h>
iortl{lildt's. FIO('DF.YP. param)

s(rud ('I\(ll'll> I

}:

1I_ .. l'har l'lHl.clt.'l ..lYllC:
1I._.rha.. rnd.:ulcl r_Jcn:
lI_short rllll_ hel r Jcn:
u ... short l'IHI.J' rn J:
lI_rhal' l'lltl:uldrll-:NJ\J A \ .. ,\ I)I>R_.I ,EN I:
1I (,'hal' t'l1ct.i>roadaddrl EN_~ L\ X __ A I)Un_1 IFNI;

The fields arl' as 1()lIows:

S,wcifk's the device lYPl': currently olle of I·:N I JI'_.JM B, I·:N DI'_ .. BSJM B
or FN J)' l'_lOM B.

end_addrJcn

elHt.hdrJen

end_MTU

l'Jld_addr

clld_broadaddr

St;lI1rord

Specifics the address lellgth in hytes (c.g .• I or 6).

Specifics the toL.1I IW;I(kr length ill bytes (c.g., 4 or 14).

Specifics the maximulll packct sil.t" incillding header, in bytes.

The ~Iddress or this illlcrnlce: aligned so that the low order bytc or the
"ddl\'SS is thc first hyte ill the llrray.

The hardware destinal.ioll audrcss for bi'oadcasts 01l this Ilt'lwork.

) 8 Octoher 1984 2

l--:NF~T(4) UNIX Programmer's Manual ENET(4)

The next two calls enable and disahk thc input pack<:t signal mcchanism I(Jr the me and arc of the
form:

include <s),,',;/lYllCS.h>
tt include <sys/cnct.h>
ioctl(rIIdt's, (otIc, signp)
u_int *signp;

where sif:.!I1/J is a pointer to a word containing the ntllll\)er of the signet! to be s\.:nt whcn an input
packel arrivcs and witll lhe (lpplic:lhlc codes bcing:

FIOCI~NBS

Fndhlc the specirkd signal \-\h,,~n' ;1Ii iilp'l!i p;\ckel' is reC\:iv,~d I'llI' this f1k. hillher signals
arc autolll~\tk~t1ly dis;\hkd \\I\,,'\1e\er a signal is ';(,l1t tn pn.'\(,lll Ih.'stillg ;lIld 1l\.'liC~ musl be
spccillcally re-el1abled after pr<)c('\sillg (hut see I 01 0(' Ivl HIS helm",), \Vhell;i sigllal numher
or 0 is supplied. lhis call is cqui\'aklll to FIOCI NilS.

FIOCIN lIS
I)isablc :lI1y sign:" whcn :1Il input p;lckd is 1\:cl'i\Td for lilis file (the ,\iglll' p<lralllcter is
ignorL'd). This is the tkl:llilt \\'ll~1l the lik i~ lir';t opened.

Tht' next lwo calls set ;llld (1e;lr "Ill()d~ bits" for tht.: for till' lih.' allll ;\1\.' oj' tll~ furm:

II indude (s~'s/IYl)cs.h>
II inrludl' (s:,'\/l'llcl.h)
iOl't I(tildes, rode, hits)
lI __ shorl *hils;

\v\1('re "(IS is a s\1()I·t work biHll;lsk sp~'Cij'yillg \A,hich hits to set or ck;lr. ('urn,'llll:;. the only hit
111;\\k n~coglli/.ed is 1'~NIIOI.I)SI(i, \\hicl! (it' st.:t) t,,'lIs the drin .. 'r 1I('/I() dis;lhk (kli\\.'rill~!, a signal
OJ1r:l' it has done so, Selling this hit 1ll"\\llS tl);lt YOll IHxd lise 1':IOlTN HS only onn', Tilt.: ;Ipplica­
hk codes ;Irl':

":IOi\l HIS
Sets tlw Slwcirkd mode hits

I':IO('r,,1 BIC
Ckars the specified 1l1o(k hits

Another ill('11 call is lIsed to set th\.~ 1ll:lxilllUIll Sill' or th\.~ pdckL't input qllL'Ul' I()r all opell ('IIl'1 file.
It is or th~ rorm:

II inrhuh,' (sys/l)'l)l's.h>
II inrtudl' (s)'slt'IIl'l.h>
iOl't J(lildl's, VIO('SVr\". ma\ wail iJlgl»)
lI_jnl *111:1\ wait ingl);

where IJ/lI.U\'lIiliJl)!/' is a poillter to a word C<lIlt<linillg thc input qllCliC si/c to be sct. II' lhis is
gr~al<.'r than 1l1<lxilllUlll ;dlow;,hlc SilC (sec 1':IOCClETP ;tho\'e), it is sct to the lllaXillllllll, and if it is
zero, it is sd to a dd~lltlt value.

Another io('11 call Ilushes thc quetle or incoming packets. It is of the I()rlll:

1/ indlldl' (sys/tYPt's.h>
II indudl' (syslt'Ill't.h>
icu:t I(lildl's, FIO(:FLlJSII. 0)

I X Octolwr I C)S4 J

ENI~T(4) UN IX Programmer's Manual

The final iu('11 call is llsed to sd lhe packet filler fI))' an open (,lIel me. It is of the form:

it !Ildlldc (sys/(ypcs.h)
it inl'lmlc (sys/cllcLh)

. jodl(iilill'S, FIOCSFTF, filler)
~tl'lIl'l l'llliltcri<filtcr

where ell nt leI" is deli ned ill <.,>ys/ ('/lcl. It) as:

slruct cllriltcr
{

};

u._.l'har clICPrinrity:
u_ .. l'har l'lIt'. Xi Itl'rI ,l'lI:
u_short l'III~J'iltt'l"l FN!\ 1.\ X FII JTEI~SI:

ENI·:'I'(4)

:\ packet !ilter cOllsists or ;1 priority, lhl..' Iilt\.'!" Cllllllll;IIHI li"l kngth (ill "hortwon.is), and the Iilter
cOllllllalH.l li~.t ihl'lf. Fach liltl'r cort1I1l:l1Id list Slh.'l"ilics a ~\.·q\l\.'llce of ;lctiollS which opl'rak Oil an
inlernal stack, Each shorl'.\ord or tlk' COlIlIll;lIld list "Iwcilirs all ;I!;tion ('mm the set {
EN 1·'_J)llSIII.IT, VN F_ PUSII/,F IH), FN I'. PliSII\\'OI~ D + N l which rl'spccti n:ly pl.I':h the next
sh()l"Iword or the C0l1l111;IIHI li-;l. 1.1.'1'0, or -.;11I11"l\\ord N or til\.' incollling packet 011 the slack, and a
billary (llwr:ltor Ihun till' sct { FNF._H), VNI;J'n-:<), FNFLT. ENF.I.L ENF_'<~T. I':NF_GE,
FNF_AND, FNI"_OIt FNI;_XOH } which then operdll's Oil the top two ('lclllents or t.he stack and
replaces thelll \vith its result. \Vllell both :1Il action and olwr~ltor are spcdlkd in the ~,~lllle short­
word. thc action is perli.lrIJll'd Il)lIm\l'd hy till' opl'ration.

The binary olH.'rator C;l1\ ;t1so he fro1ll the set { FNF __ ('Olt FNI"_(''\ND, FNF.J'NOI~,
E~V_(,i':\NI> }, Thc'\c arc "sIHlI'l-·cin:lIit" opn;ltors, in tll:lt tiley tcrlllillClte till' en'clIlion or the
filter illlllH.'diatcly if till' conditioll they ;11\'. lJll'ckilig I()r is I<HIIH.l, and cOl1litllll' otherwise. /\\1 pop
t\'vO c1emcnts froll1 the stack :llld compare tlH:llI f(H' \.'qudlity: FNV_C.\NI) returns 1:llse if the result
is I:dse: FNF_.COn retllrns tnl~~ ir till' ITslllt is tnll': FNF_J 'N.\ND returns trlle if the result is 1:llsc;
FNF_J 'NOH retllrns (;tlse if tll(' re:.,ult is II Ill'. Unlike the other hinary operators, these rour do not
leave a result Oil tile stack, e\·ell if tlley COlllilllle.

The short-circlIit operators sholild he lIsl'd whell possihle, to n.'titl4;e the a:J101l1lt of tinl\.' SPt'llt
evaluating filters. Whell they arc used, you should also ;IITange the order of the tests so th;lt thc
filter will slIcceed or 1:lil CIS soon ;IS possihh..': ror example, checking the SOCkl'l [kid or a Pup packet
is more likl'ly to indicale I:ti lure than lhl' P<lck('l type field.

The special action EN 1" __ NOPlJSII and the -;pecial operator EN F_NOP can he used to only pcr­
HlJ'Il1 the binary operation or to only pll~h a vallie on the stack. Since both are (collveniently)
denlled lo be zero, indic;ltillg (lnly an actioll ;Iclllally specilks Ihe action 1()lIowed by FNI·' __ NOP.
and inuicatillg ollly ~In Plwr;ltioll actually sp\.'cilil·s FN 1·'_._NOPlISII I(lllowcd hy the operation.

/\Ikr executing tile filter rOIlIlIl;IIHI list. CI IlOIl·/I.'ro vallie (trlll,') II..'It on top of the stack (or all empty
stack) C;lllSCS the incoming p;tckct to Ill' ilCCl'ptl'd 1'01' lhe cOITl.'sponding ('//fl file and a I.ero valuc
(I:tlsc) callses the packet to he passcd throllrh till' next packet filter. (I r tile filter exits as the result
of a short-circliit operator, lhe top-of-st<lck valuc is ignorl'd.) Spl..'ci I}·ing all ulHlcflnl'd operation or
action in the command list or pl'rl()J'Jlling all illegal operation or action (such as pushing a short­
word onset past the end or the packet or execlIlillg a binary operator with (ewer than two short­
words on the stack) callses a filler to reject the packet.

In an attempt to dcal wilh the prohlem or ovcrlapping and/or cOllllictillg packet fillers, the filters
f(.>r each open {'/lei file are ordered by the driver according to t.hdr priority (lowest priority is 0,
highest is 255). \Vhen processing incoming l'thertlel. packets, IiIlers a 1\' applied according to their.
priority (from highest to lowest) and ItH' identical priority values according to their rdative

I H Octoh<.'1' 1984

ENET(4) UN I~~ ProgralllJl1(,'r's rvlanual [~NI~T(4)

"bu.;;yncss" (the filler that h;lS previollsly matched the rnosl p~ld:cts is checked first) until one or
more filters accept the packet or ;111 i11lcrs reject it and it is di:~carded.

Filters at a priority of 2 or higher arc called "high priority" filters. Once a p;ldet is delivered to
one of t.hese "high priority" el1l'1 flks, no t'l.Inher fillers arc eXi:lmined, i.e. the p;!d:et is delivered
only to the first ene! fik \"lith a "high pi iority" [i Ill:l' which accepts til\: packet. /\ r<lckCl may be
delivered to more tlull one liller with a priority helow 2: this might be lIsef'ul, fur example, in
building replicated programs. Ilowevcr. the lise of' hnv-priority filters imposes an ::dditional cost on
the system. as thc'se lilt'-~rs each must be chccked d~}tinS(all rackets not accepted hy a high-priority
filter.

The packet filter ror an (,l1el fIlc is iil:fbli/.ed \-v~lh kl1~th 0 at priority 0 by ojJcl/(7), and hcnce by
dc!;lI.Ilt acccpts all packets which Illl "high priority" filLer is illlcrested in.

Prinrilks should he assigned so tha\, ill gencr~t1, the Illore p:1ckels a [iller is expected to match. the
higher its priority. This will prevent a I<'l of needless checking or packets against filtcrs that aren't
Ii kcly to match them.

FILTEU EXAi\1PLE..~
Th~' 1~)llowing filler \You!Ll accept (til incoming PUJ) J)(/c/~I'IS on a Jlllb ethernet with Pup types in the
r<lllge l-02UO:

struct cnllltcr f =
{

10. It).
FNF_.PtiSi1\YOI~I)+I. FNF_,Pt;~~III.lT. 2. FNF_EQ,
FNF._PlJSII\\,OHI)-I-3, FNl,'_PllS!(I.IT. O,FFOO. FNF_AND.
FNI" __ P~ ISIIJ.FHO, ENF_,(~T.
FNF_PlI,'"'i! I\\{)IU)-I-.\ FNl"_PUSI-ILlT, O,I,'FOO. ENF_,\ND.
I':N 1"_PllSIII.lT. 0100, EN FJ ,E,
ENF_ANI>,

FNF_AND
};

1* priority and length *1
1* parkd typc = = PUP *1
1* llla~J. hi hyte *1
1* I'lIpT)'llc) 0 *1
1* 1lI;t<;k hi hytc *1
1* Pup'l'ypc < = 0100 *1
1* 0 < PupType <=.0100 *1

1* f..~& p:lrkl.'l t~I)C = = PUP *1

Note th:lt shorl\V()rds, slich (IS th\,..' p(lckl'l type f!l'Id, ;Irc hytc-sw;lpped ~ltHI so the literals you COIll­

pilre them to IlIlisl I>e hytc-swapped, Abo, (tlthough for this example the \vorLl onsets (Ire cOIl~tal1ls.
colle lhat must rlln \\ ilh eilller 31l1h or lOmh cll1l:rm:t~; must lISC oll"sl'ls that dCP~IH.I on the Llevice
type.

By tilk ing (H.lV<lnt(lge or the ,1bility to specify both (Ill action and operation in each \vord or the COI11-

tnand list, the filter could be abbrcviated to:

sf ruct cnrillcr f =
{

If), 14,
EN 1"_PllSII\\,OH I> -I- I. FNJ"_ PllSl1 LIT I FN F __ EQ, 2.
ENI,'_.PlISII\YORI>+.', FNFJ)lJSIII.IT I FNI'_AND, (lxFHHl.
EN FJ)l lSlll.FHO I EN F_,(~T.
ENF_Pl JSII\YOHI>-I-J, Vr~lt',.YliSIILIT I FNlt'_ANI>. Oxl,'H10,
ENF_PllSIILIT I FNF_LE. ()I 00.
ENF_ANI).

EN It'_ANI>
};

1* priority allli Il'ngth */
1* I):lrkd type = = PU P */
1* 111:1';1\ hi bytc *1
1* PupTYI)l') 0 *1
1* mask hi hyte *1
1* PUI1'i'JI)l' < = ()tOO */
1* () < PUI)'i'ypc < = 0100 */

/* .. ~ .. ~ packet tYl>l~ = = PUP *1

A dillcrent eX<llllple shows the lise or "short-circllit" ()per~ltors to c('etlte a more cllkicnt filter. This
one accepts Pup packets (Oil a 3Mbit eLhernct) with a Socket field of 12345. Note tlwt w·c check

1 ~ October 19X4 5

ENET(4) UN I X Prot',r:lIl1mCr'S ivta11 ual I~NET(4)

the Sockd (kid beforc the p;!ckct type r1dd, ')ince in 1ll0'it p~lck\.'ts thc Socket i:·~ not likely in nntch.

st I'lll't (\nfilt~r f =
{

10,9,
FNFJ)lJSII'.\'OIH)+7. Fl'·lF_ .. PUS~ILtT I FNF __ C;\;':n, 0.
ENI" __ PlJSII\\Oj~D··:a. :':i\lI;_PU~';1 !UT I ENF __ C;\.~·d), 12.~45,
F.NI;_PUSII\VOi~D+ I, FNF_P~ is! P .1'1' I FNF_'{ :,\1'11>, 2

I~; lidority an:! k!lI~1h *1
/."r. : ii \HHd o!' ~;od:.d */
1* I,{) word of soc!,d */
I:;' l.i~:d\ct type :;:;:::: Pup */

J;
SEE ALSO

FrLK~

BUGS

de(l), ecCD, el1(4), il(·l), ell~.I(lt(S)

/t\('V /CI1Clr;I'III-{ (), 1.2 ,3 I}

Th~ currcllt illlpklllel1t;llioll C;1Il only (iltl'l 011 words wilhill tl1\.' first "mhlll~' til' thl' iXll'k~l: this is
arollnd Ion hill'S (or 50 wortls).

Bccausl' p;ickcts an: strc~IIIlS or h) tes. yl'l till' filters OI1l..'r;ltc on short words. ,lIld st~l11dard 111.~1 work
hyt,~ oHkr is IIslI;t1ly nppl,~,ilL' rroll1 V;IX hytl.' order, the rcLiliul1al O[H?r;ltop.; :':1\11"_1.'1'. FNF_LE,
Fi\lF_GT. :llld FNF_<a: al\' Ilol ;t11 llwl 11.<.I .• 'fid. hH'llillilil'1y. they w\..'rc J1iit oncll lIsed \\IICIl the
p~ILkl'ts were lre~lll'd ;IS "ll\'(IIllS or SllOrlS. ,,(l this is prohably not a sc,,'cn: prohlem. I r this bccomes
a ~;c\'en~ prohlem, (\ h.yll'-sw<lppil1g opl.'ralllr uilJld be <ltkkd.

IllS rOI{Y
10-0ct-X~~ Jefl'rey Mogul at Sl;lI1rord University

;\thkd sllOrl-cilulil operators, Chdll~.\l'd disclissioll or prioritics to rdl('Ct new arr;mgclllcnt.

lX-Jall-X-l .klrrcy i'v1oglll :II SI;lIlford l.,Jniver:-.ily
t.lpdaled I'or 4 .. ~BSI) (device-indepelldent) vcr~;i()ll. incluuing doclllllenlatiol1 or ;tIl non­
kernel ioctls.

17-No\'-X I r-.l ike :\ccCll;, (llIja) al Carnegie \lclloll U nivel'sily
Added 11Il'lltioll or <sy'JtYPl's.h> ttl illrludc eX;\111p!cS.

21)-Sl~p-X I IVlike i\cel'll;1 (1l1j;,) ;It l'arnl.'~'.ic··!\ldl()n UniH'rsily
Ch<!lIgl'd to descrihe Ilew 1·:lOCSI·T\V illH.l 1,:IOtVLUSIl ioell calls ~\Ild thc ncw multiple
packet qucuing I\.~atllres.

12-Nov-X() Mike AcceU;, (llIj<l) .It Carncgic- i\,kllol1 U nivcrsity
Addl'd descriplion or signal mechanism I()J' input packets.

07-Mar-XO rVlikc Accelta (mja) at C(\rnegic-M~ll()n Univcrsity
Crl'alco.

] X October 1984' 6

FL (4) UNIX Programmer's Manual FL (4)

NAME
fl - console floppy interface

DESCRIPTION

FILES

This is a simple interface to the DEC RXOI floppy disk unit, which is part of the console LSI-
11 subsytem for VAX-ll/780's. Access is given to the entire floppy consisting of 77 tracks of
26 sectors of 128 bytes.

All i/o is raw; the seek addresses in raw transfers should be a multiple of 128 bytes and a mul­
tiple of 128 bytes should be transferred, as in other "raw" disk interfaces.

/dev/floppy

SEE ALSO
arft"(8V)

DIAGNOSTICS
None.

BUGS
Multiple console floppies are not supported.

If a write is given with a count not a multiple of 128 bytes then the trailing portion of the last
sector will be zeroed.

4th Berkeley Distribution 27 July 1983 1

(iMR(4) UN IX I'rogrdlllllll'r's Mallual (j iVI R (4)

NAME
glllr·· (irinlldl SY-it\:IllS di:.;play

DESCHIP nON
I)e\'iccs .i!JJ/I· ;lIld .!.!./J/J/()··3/ pro\'id(' the illtl'rClcl' to the (ilillildl Systems gl'ilphics,di"phy. /\. Cirin-
1Il~lIdl'\;il.'\,.' 111:1\' ollly Ih,,' IlIWIlCd by at Illll-.;t 11Il(' ;lppliC:ltillll ,it a' time., Sllh~;cqllCllt (1)('11 atlelll(HS

\\ hili.- a dc\ in,' i'; ;i1l"l"llly ill w;,,' rctllrtl ;111 i.:rror status.'

011 "ysll'lw; wilh only Oll~ 111I.tf',i.' Functioll \'idco (';II"I.\. klllTClltly the II is-V:lx ;ll1d Ihe VI.SI"V;tx),
dl'\ tce ,!:II1,. i\ IIsed (as ill Pi\'\ iOlls il\ipk!lh'lil:lti()Il~) Ill!' II(lil,;Il;lred ;tCl'l,'SS tll Ill\,! (jrinndl. 011 sys­
tl'llh \\illl tillll' dilkrclIl 111!;1:~'" h.lllcti()11 \'i,k'll (';Ird:, (ClIIT(,f1lly ille (~P·\':IX). The dc\ice\ .1;1I11!()-
3/.",,: IIs(d II) :i1lm'; lip to,' ·:,·p;lr~II·.' ;Il""!:' ,; 'w ""f"",':! ,t,., (;,illl1('l1 ;11 ()Il(~ linw.

By I"S \\'rilll..'l1 10 tlwse d\.'\ il'I.''; :11\' Ir<lIl·,.r~rr","1 to 1111.' (irilllh.'11 illl\..'J'f:II,:e to p"'r!{I('IlI clJ!l!rol dlld 1/0
OPi.."";lli()lh :lIld 11,\ (I .. '" l"l'ad 1"(1111 tit,,' d~'\'ic(";ti\' slIpplied h~ thL' (irilllll'il illb:rl:ll'c dl'V'I!',li:lg 011 pre­
\ iOIl" cOllIn" 111"",',;1F-1..'S, UII"~ Sll'IIIS \\ i1l'I\.· tIll.' (irilllll'lI is ,,1l;lrcd h\.'I\\\.'l'l1 CIJill'III'1\.'IH applications,
a 11,,'\\ \\.'1 III' "h;lriIlL~ prilllili\i,'" is prm ilkd to IWI'IIIil r~lliilll;tI ;(CC~s:; hy !l1ll1lipk ;!ppli(.';lli!llIS. On
'-iill!!k-II~;I~I,~' ~~ "kllt'.ll1\.' ',Iuring prillli1i\\.'\ ill:l) he s:IIl'ly it~II(1rl'd Ltlthough III~y l'xisl ;llld fUllclion
\..'x;li.lly ;1" 011 slI;II\'d SY sl\..' I liS).

IO{, I I. C\I.LS

Se\,~r;d i()cll cdb ;Irl' prm ill"'d to Illalliptll;ill' the Grinncil slllte ;l1id t;lcilila!l...' sharillg (all sYllIbols
alc tklilh'd ill <,\ys/gllll:h».

Till: !iI'\! t\\I) l';dls <11\.' u"" .. d It) II1(ldi!~' 11ll' illtvmal device ',I<lt\.' ;lIld arc:

iortl(fiIlft''>, G\t HI(}(';'\0\\"('. NULl.)
iOl'Ii{lihll's, (~i\IHIO("\\(,. NULL)

Till..' (~i\JI~I()(,~O\\'C c;III dis;lhks till' word COUllt clll'ck \\ililin the {kvicl' for usc wilh packl'd­
hytl' wrill,''', <llld till' (;i\IHIO{ "\\'(' c;t1ll'II<1hlcs it.

I:j\e additi(lIl;1I cdl'-i ilre ;11"0 prodded l()r sll;lred Grilllll..'l1 lise Oil systellls wilh 1lI1111ipic II:YC's.
Th,,'sl' 'ih:llillg prilllilin.:s IH(I\id\.' ;(vcry siJllpll' alloc:ltioll/(\i..';t1loc:ltion 1Il"'I.'il'lIliSIlI hased on the
(lSSllIlIpliulI lh;lt ;Ipplicaliull'; \· .. ill lIot (1111)(';11\,' n.'SotlrCe\ \\'itllOul Ilel'ding Ihl'll\ ;lIld will not lise
rl'soun:t':, wliich !l:l\'t' !lot h't'll ;lilocClIt .. '1..1. TIII.'Y do lIot pro\ ide ;IJI} levcl of regulation or (irinllell
act'"'",, Ix'yolld whal till.· dri\l'J' CIIl d,,'kJ'lllilH..' I'nllll the state or its o\\'n dat:l ~lrllClllres (ill particlllar
the drivcl' do,,'s lIol il1ll'q)rl'l in ,IllY 111:lI1l1l'r the contl'llts 01 (jrillllell 1/0 r~~qllests to, (lr example.
illSlIl'\.' that only alloclll'd IIll'IIH)ry challlK'ls ;1J't' hdng used).

The first two of these calls <11\' lIsed to control access to the Grinnell I/O channel and are:

iortl(lilfll's. Ci\IHH)('nFSEH\'Jo:, NULL)
iorll(liIdl's. (~i\IHIO("HELFASJt:. NULl.)

The (ji\IIUOCI~FSl<:n\,E call reserves th~' I/O channel f(l!' the cOffesponding device. If Ih~ I/O
channel is not cmfently t'l'sl.'rvl'd by some other devin'. it is reserved I' Of the exclu"ive use of the
current d~viCl'. AllY GIVIIUO('nFSFHVE illcl/, read or write call on another Grinlll'lI dcvice will
block until the I/O rhannl'l is released and the call C,1Il he completed. If the 1/0 channel is
already reserved hy some other device, the call will block unlil lhl' 1/0 challlld is relcascu and can
be assigncd to the current device. .

The Gl\J IUOCIU:I ;EASE call rdl'as(.'s the reserved 1/0 challnel. If the I/O challlld had Ilot heen
reseJ'\Td by the corresp()nding dcvice, ~'n errof is rctllt'lll.'d. If any other Gl\lIlIOCHESKHVI·: iocll.
rcad or UTile calls arc blocked waiting liJI' the 1/0 challlll:l, the least recently blocked sllch call is

7th Edition 7/}"U81

GMR(4) UN IX Prograil1Jllcr's Manual GMR(4)

resumed.

BUill the n'llc/ and H'li/(' system calls perl{)rtll ~1Il ill1piicil (~l\iI~lOCnFSFH\,Jo: op,,·t';ltioil on the 1/0
L'l),l1l1wl herore pnll_Tdillg with th\.~ I/n requl'st. Silllibrly,;1II implicit Gl\l HIC~'n FLI':ASE opera­
tion Ull the I/O dunnel is ;t1so pl'l'li)l'lilC<i ~Il tl1\' CI,'lllplclioll or tlw rcqlll.:st if'thi: 1/0 challllci was
implicitly rcserved ,It t.lH." start or thc I\Xllil.·sf. It i~·; thl.'r(,'I(II\~ (lilly :1CCC:';";try to cxplicitly r(!scrvc dlld
n.'k::::c tlie I/O Ch;1l11Ii.:1 ir it is inil'lirt:1l1l thaI sOllie 1;\.''-I<lIIC(e (')1' 1'1\ld ;(nd \\Tile \.)i~~~rillions be pcr"
Il)J'Ill(.'d \·viti1ollt ;II1Y intervening ()pc,);ttions "rolll 1)lh' Ill' the (llher Grinllcll de"iCl.:s.

Ti1(' fil1;11 three calls lll;miplIl:ttc tilc 'ih;:rcd CiriJllll'll mcmory Ch:lllilCls which arc "lIoctted alllong
tIle di Ikl\'llt ilpplical i(llls. They :m::

iOl'tI(lill.ks, C:\lHIOCCIIV(,f\i\lFl'l. H.'rp)
iOt't J(fildes. (;,\) I~IOC.\ I ,1.0('i\ I Vi' 1, H'rp)
iOl'II{1iltll-s. (;i\lHIOCI>F.\UJH 'i\II':1\1, \l'rp)

long *H'rp

The f;i\lRIOCCIIL('1\I\U:i\l elll 1\'SLT\("j Ihe Illl'llllll'Y chafllll'l ;dlocatioll hil \('ctor /<)(' the
CUITl'SPIlllding de\"iu ... '. II't.hl' Illl'lllory ;dl(lclti()11 \Tcll)r i"i not currcl1tl) 1\'scl'\e<.l II) '';()IIK' otiler d,,'v"
icc. it is rl·ser\'l.~d 1<11' the excillsih' II \..' or Ihl' CIII"I'l'llt dc\icc dlHI Ilh.' cOllklll'i or 111'.' hil vector is
retlll"lled in till' IOIl,~I.word poillted to hy \'('(p. ,\IlY (;i\lIUO('('III-:("I\i\IVI\J 01 (;i\iI~IO(,:\LLOC­

I\IVf\1 iocl! cdl Oil ;11l(lther (irilllll'll dl'\'icl' \\'ill hllld; llntil thl' 1Ill'llInry ;dloc(ltioll \L'Ctor is rdl';lsed
;1I1t! till' c;dl L';11I Iw ulIlIpkted. It' Ille Ilh'illlll'J :dl(l~';lti()1l \\.'ctor is ;drl':lti) rL'''"'I'\~'d hy Ollll· other
dL',ice, the l,;tli \\ ill hl\)ck !llllil till' \ ector i, Il'Iv;I<.;L·d ;I1HI L':111 hl' ds\iglll'd to the L'1Il'1\'llt device.

The (~;\II{IOC,\LI.O(,i\IFi\l c(lll ;t1llll'(ltl'S the 1IlL'lIHlry challllcis cnn\'sponding to the hits "Cl ill
the \'l.·dor poillted t() hy \'('('jJ. 11'111\' \'l'L!or i" lIot ;1I1\\I<.ly rl' el"\l·d hy tile l'ltrl\.'llt dc\ice it \\illlirsl
he n.'~;\.'nTd 1(11' tlle Cllrrl'llt tk\iL'l' LIS (Ihml'). II' ;IllY or tIll' illdiC:lk'd IIlL'lIlOry CILllIllcls (Ire ,t1I'L'"dy
<tlloc:ttl'd hy ;IIIY dnice, till nror i'i rl'ttlJ'\ll'd ;tlltl 11<1 lllellHlry CILlllllcls <Ire ,dlocltl'(1. ,\t Uw COI\l­

pletiOIl or till' c;1I1. Ill\' IllL'III01Y cll:1I111C1 ,dlol';tlillll '.ector is l\·iI..,;tsed ;tlld if ;1I1~ othl'r (;i\IIUOC­
CIIV{'!\I\JFf\l or (;f\lI~IOC.\U ,OC:\IFi\l itlt'l! c;dls <Ire hlol...'knl \v;titillg to reSl'i'\l' till' vector, the
k;tst recl'lItly hlocked ~;lIch cdl is I'L·SlIllICd.

Tile (;i\IRIO{'UF\LI.()('I\IVi\l c,tll <.k;tlloc(ltcs thl..' Illl'IIlory challncls con\'~,;polldiIl1~ to lhe bils set
in the \cctor poillh.'d to hy 1'('('1'. II' <III)' or till' illdic;t«..'d IIll'lllOry cil;lIl1lcls ;II'L' Ilut ,t110Cttleu to the
ClIIT\'nl device, (Ill error is relurncd ;lIld no ch<tnncls ;,,\~ dl';dloc;tled.

Il is considered extrelllely h;l<.1 /l)1'I11 to pCrf()J'Jll ;IIlY opcr<ltions which afrL'cl Cirinncll mcmory
correspolH.lillg to 1lH'lllory c1ttllllcls which /);1\(' not heL'1l allocall'd to thc currcllt device. It is also
;Id\'i~,;thk to ollly allllc;ltc as 1l1;IIlY ch;tIlllels as arc actll;dly Ilcl'<.kd ;IIH.I to dealloctte tlwllI illlllledi­
;Itdy "ncr finishing with thclll.

Idev IgJlu
I de\' I gill rjO- 31

SEE ALSO

Oil the IUS-Vax ;llId the VLSI-Vax
on the GP-Vax

C;rvl R-J7 (jraphic Television I)isplay Syslem User's Manual

IllSTonv
IS-.JlIll-X/l I).S;lthY;IIl<lraYilllall (<Ids) at Stanf()rd University

R('strllclllJ'cd 1(1J' 4.2bsd.

ll·-.Jul-gl Mike Accetta (mja) ~tt CdJ'llegie-i"'klloll UniversilY

7th Edition 7/24/XI 2

liN IX I'rugrallllllcr's rVlclllll:.11

iVlodilk'd to describe Ill'\\' llIultiple IFVC sharing IlH.\:\tallisms.

L!.- \1:lr-gO iv1 i h' "ccelt;, (lllj .. I) at Carncgic··i\;klloll , Iniv"l'sily
Ad'.h:d descriptioll or IH.'\\' iocll Glib I()r packl'd'h} Ie writes.

(H l:d1-X() i\li~,(' "cecll;1 (11I.h) ill C;Irncgil' ~kllull l.It:in.'rsily
l'1\';I\C<.l.

7th I ~dilion 7/24/81 3

HK(4) UNIX Programmer's Manual HK(4)

NAME
hk - RK6-11/RK06 and RK07 moving head disk

SYNOPSIS
controller hkO at uba? csr 0177440 vector rklntr
disk rkO at hkO drive 0

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor dev­
ices 8 through 15 refer to drive 1, etc. The standard device names begin with "hk" followed
by the drive number and then a letter a-h for partitions 0-7 respectively. The character? stands
here for a drive number in the range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single read
or write call results in exactly one I/O operation and therefore raw I/O is considerably more
efficient when many words are transmitted. The names of the raw files conventionally begin
with an extra 'r.'

In raw 1/0 counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should
specify a multiple of 512 bytes.

DISK SUPPORT

FILES

The origin and size (in sectors) of the pseudo-disks on each drive are as follows:

RK07 partitions:
disk
hk?a
hk?b
hk?c
hk?g

RK06 partitions
disk
hk?a
hk?b
hk?c

start
o
15906
o
26004

start
o
15906
o

length
15884
10032
53790
27786

length
15884
11154
27126

cyl
0-240
241-392
0-814
393-813

cyl
0-240
241-409
0-410

On a dual RK-07 system partition hk?a is used for the root for one drive and partition hk?g for
the lusr file system. If large jobs are to be run using hk?b on both drives as swap area provides
a 10Mbyte paging area. Otherwise partition hk?c on the other drive is used as a single large file
system.

Idev/hk[O-7] [a-h]
Idev/rhk[O-7] [a-h]

block files
raw files

SEE ALSO
hp(4), uda(4), up(4)

DIAGNOSTICS
rk%d%c: hard error sn%d csl-O/Ob ds-'ltb er-'ltb. An unrecoverable error occurred during
transfer of the specified sector of the specified disk partition. The contents of the cs2, ds and
er registers are printed in octal and symbolically with bits decoded. The error was either unre­
coverable, or a large number of retry attempts (including offset positioning and drive recalibra­
tion) could not recover the error.

4th Berkeley Distribution 27 July 1983 1

HK(4)

BUGS

UNIX Programmer's Manual HK(4)

rk%d: write locked. The write protect switch was set on the drive when a write was attempted.
The write operation is not recoverable.

rk~d: not ready. The drive was spun down or off line when it was accessed. The i/o operation
is not recoverable.

rk'ltd: not ready (came back!). The drive was not ready. but after printing the message about
being not ready (which takes a fraction of a second) was ready. The operation is recovered if
no further errors occur.

rk'ltd~oc: soft ecc sn'ltd. A recoverable ECC error occurred on the specified sector in the
specified disk partition. This happens normally a few times a week. If it happens more fre­
quently than this the sectors where the errors are occurring should be checked to see if certain
cylinders on the pack, spots on the carriage of the drive or heads are indicated.

hk%d: lost interrupt. A timer watching the controller detected no interrupt for an extended
period while an operation was outstanding. This indicates a hardware or software failure.
There is currently a hardware/software problem with spinning down drives while they are being
accessed which causes this error to occur. The error causes a UNIBUS reset, and retry of the
pending operations. If the controller continues to lose interrupts, this error will recur a few
seconds later.

In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scrib­
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices,
read, write and /seek(2) should always deal in 512-byte multiples.

DEC-standard error logging should be supported.

A program to analyze the logged error information (even in its present reduced form) is
needed.

The partition tables for the file systems should be read otT of each pack, as they are never quite
what any single installation would prefer, and this would make packs more portable.

4th Berkeley Distribution 27 July 1983 2

HK(4)

BUGS

UNIX Programmer's Manual HK(4)

rk%d: write locked. The write protect switch was set on the drive when a write was attempted.
The write operation is not recoverable.

rk%d: not ready. The drive was spun down or off line when it was accessed. The i/o operation
is not recoverable.

rk'lad: not ready (came back!). The drive was not ready. but after printing the message about
being not ready (which takes a fraction of a second) was ready. The operation is recovered if
no further errors occur.

rk%d%c: soft tee sn%d. A recoverable ECC error occurred on the specified sector in the
specified disk partition. This happens normally a few times a week. If it happens more fre­
quently than this the sectors where the errors are occurring should be checked to see if certain
cylinders on the pack, spots on the carriage of the drive or heads are indicated.

hk%d: lost Interrupt. A timer watching the controller detected no interrupt for an extended
period while an operation was outstanding. This indicates a hardware or software failure.
There is currently a hardware/software problem with spinning down drives while they are being
accessed which causes this error to occur. The error causes a UNIBUS reset, and retry of the
pending operations. If the controller continues to lose interrupts, this error will recur a few
seconds later.

In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scrib­
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices,
read, write and lseek(2) should always deal in 512-byte multiples.

DEC-standard error logging should be supported.

A program to analyze the logged error information (even in its present reduced form) is
needed.

The partition tables for the file systems should be read otT of each pack, as they are never quite
what any single installation would prefer, and this would make packs more portable.

4th Berkeley Distribution 27 July 1983 2

HP(4) UNIX Programmer's Manual HP(4)

NAME
hp - MASSBUS disk interface

SYNOPSIS
disk bpO at mbaO drive 0

DESCRIPTION
Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor dev­
ices 8 through 15 refer to drive 1, etc. The standard device names begin with "hp" followed
by the drive number and then a letter a-h for partitions 0-7 respectively. The character? stands
here for a drive number in the range 0-7.

The block file's access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single read
or write call results in exactly one 110 operation and therefore raw 110 is considerably more
efficient when many words are transmitted. The names of the raw files conventionally begin
with an extra 'r.'

In raw I/O counts should be a multiple of 512 bytes (a disk sector). Likewise seek calls should
specify a multiple of 512 bytes.

DISK SUPPORT
This driver handles both standard DEC controllers and Emulex SC750 and SC780 controllers.
Standard DEC drive types are recognized according to the MASSBUS drive type register. For
the Emulex controller the drive type register should be configured to indicate the drive is an
RM02. When this is encountered, the driver checks the holding register to find out the disk
geometry and, based on this information, decides what the drive type is. The following disks
are supported: RM03, RM05, RP06, RM80, RP05, RP07, MLllA, MLllB, CDC 9775, CDC
9730, AMPEX Capricorn (32 sectors/track), FUJITSU Eagle (48 sectors/track), and AMPEX
9300. The origin and size (in sectors) of the pseudo-disks on each drive are as follows:

RM03 partitions
disk
hp?a
hp?b
hp?c
hp?d
hp?e
hp?f
hp?g

RM05 partitions
disk
hp?a
hp?b
hp?c
hp?d
hp?e
hp?f
hp?g
hp?h

RP06 partitions
disk
hp?a
hp?b

4th Berkeley Distribution

start
o
16000
o
49600
65440
121440
49600

start
0
16416
0
341696
358112
414048
341696
49856

start
0
15884

length
15884
33440
131680
15884
55936
10080
82080

length
15884
33440
500384
15884
55936
86176
158528
291346

length
15884
33440

cyls
0-99
100-309
0-822
309-408
409-758
759-822
309-822

cyls
0-26
27-81
0-822
562-588
589-680
681-822
562-822
82-561

cyls
0-37
38-117

27 July 1983 1

HP(4) UNIX Programmer's Manual HP(4)

hp?e 0 340670 0·814
hp?d 49324 15884 118·155
hp?e 65208 55936 156·289
hp?f 121220 219296 290-814
hp?g 49324 291192 118·814

RM80 partitions
disk start length eyls
hp?a 0 15884 0·36
hp?b 16058 33440 37·114
hp?e 0 242606 0·558
hp?d 49910 15884 115·151
hp?e 68096 55936 152·280
hp?f 125888 120466 281·558
hp?g 49910 192510 115·558

RP05 partitions
disk start length eyts
hp?a 0 15884 0·37
hp?b 15884 33440 38·117
hp?e 0 171798 0·410
hp?d 2242 15884 118·155
hp?e 65208 55936 156-289
hp?f 121220 50424 290·410
hp?g 2242 122320 118·410

RP07 partitions
disk start length eyls
hp?a 0 15884 0·9
hp?b 16000 66880 10·51
hp?e 0 1008000 0·629
hp?d 376000 15884 235·244
hp?e 392000 307200 245·436
hp?f 699200 308600 437·629
hp?g 376000 631800 235·629
hp?h 83200 291346 52·234

CDC 9775 partitions
disk start length eyls
hp?a 0 15884 0·12
hp?b 16640 66880 13·65
hp?e 0 1079040 0·842
hp?d 376320 15884 294·306
hp?e 392960 307200 307·546
hp?f 700160 378720 547·842
hp?g 376320 702560 294·842
hp?h 84480 291346 66·293

CDC 9730 partitions
disk start length eyts
hp?a 0 15884 0·49
hp?b 16000 33440 50·154
hp?e 0 263360 0·822
hp?d 49600 15884 155·204
hp?e 65600 55936 205-379
hp?f 121600 141600 380-822

4th Berkeley Distribution 27 July 1983 2

HP(4)

FILES

UNIX Programmer's Manual HP(4)

hp?g 49600 213600 155-822

AMPEX Capricorn partitions
disk start length cyls
hp?a 0 15884 0-31
hp?b 16384 33440 32-97
hp?c 0 524288 0-1023
hp?d 342016 15884 668-699
hp?e 358400 55936 700-809
hp?f 414720 109408 810-1023
hp?g 342016 182112 668-1023
hp?h 50176 291346 98-667

FUJITSU Eagle partitions
disk start length cyls
hp?a 0 15884 0-16
hp?b 16320 66880 17-86
hp?c 0 808320 0-841
hp?d 375360 15884 391-407
hp?e 391680 55936 408-727
hp?f 698880 109248 728-841
hp?g 375360 432768 391-841
hp?h 83520 291346 87-390

AMPEX 9300 partitions
disk start length cyl
hp?a 0 15884 0-26
hp?b 16416 33440 27-81
hp?c 0 495520 0-814
hp?d 341696 15884 562-588
hp?e 358112 55936 589-680
hp?f 414048 81312 681-814
hp?g 341696 153664 562-814
hp?h 49856 291346 82-561

It is unwise for all of these files to be present in one installation, since there is overlap in
addresses and protection becomes a sticky matter. The hp?a partition is normally used for the
root file system, the hp?b partition as a paging area, and the hp?c partition for pack-pack copy­
ing (it maps the entire disk). On disks larger than about 205 Megabytes, the hp?h partition is
inserted prior to the hp?d or hp?g partition; the hp?g partition then maps the remainder of the
pack. All disk partition tables are calculated using the diskpart(8) program.

Idev/hp[0-7] [a-h]
Idev/rhp[0-7] [a-h]

block files
raw files

SEE ALSO
hk(4), uda(4), up(4)

DIAGNOSTICS
bp%d%c: bard error sn%d mbsr-flb erl-flb erl-"'b. An unrecoverable error occurred dur­
ing transfer of the specified sector of the specified disk partition. The MASSBUS status register
is printed in hexadecimal and with the error bits decoded if any error b:ts other than MBEXC
and DTABT are set. In any case the contents of the two error registers are also printed in octal
and symbolically with bits decoded. (Note that er2 is what old rp06 manuals would call er3; the
terminology is that of the rm disks). The error was either unrecoverable, or a large number of
retry attempts (including offset positioning and drive recalibration) could not recover the error.

4th Berkeley Distribution 27 July 1983 3

HP(4)

BUGS

UNIX Programmer's Manual HP(4)

hp%d: write locked. The write protect switch was set on the drive when a write was attempted.
The write operation is not recoverable.

hp%d: not ready. The drive was spun down or off line when it was accessed. The i/o opera­
tion is not recoverable.

hp'lod'loc: soft ecc sn%d. A recoverable ECC error occurred on the specified sector of the
specified disk partition. This happens normally a few times a week. If it happens more fre­
quently than this the sectors where the errors are occurring should be checked to see if certain
cylinders on the pack, spots on the carriage of the drive or heads are indicated.

During autoconfiguration one of the following messages may appear on the console indicating
the appropriate drive type was recognized. The last message indicates the drive is of a unk­
nown type.

hp%d: 9775 (direct>.
hp%d: 9730 (direct>.
hp%d: 9300.
hp'lod: 9762.
hp%d: capricorn.
hp%d: eagle.
hp%d: ntracks IYod, nsectors "od: unknown device.

In raw I/O read and write(2) truncate file offsets to S12-byte block boundaries, and write scrib­
bles on the tail of incompiete blocks. Thus, in programs that are likely to access raw devices,
read, write and Iseek(2) should always deal in 512-byte multiples.

DEC-standard error logging should be supported.

A program to analyze the logged error information (even in its present reduced form) is
needed.

The partition tables for the file systems should be read off of each pack, as they are never quite
what any single installation would prefer, and this would make packs more portable.

4th Berkeley Distribution 27 July 1983 4

HT(4) UNIX Programmer's Manual HT(4)

NAME
ht - TM-03/TE-16,TU-4S,TU-77 MASSBUS magtape interface

SYNOPSIS
master htO at mba? drive?
tape tuO· at htO slave 0

DESCRIPTION
The tm-03/transport combination provides a standard tape drive interface as described in
mtio(4). All drives provide both 800 and 1600 bpi; the TE-16 runs at 4S ips, the TU-4S at 7S
ips, while the TU-77 runs at 12S ips and autoloads tapes.

SEE ALSO
mt(l), tar(l), tp(I), mtio(4), tm(4), ts(4), mt(4), ut(4)

DIAGNOSTICS

BUGS

tuo/td: no write rlnl. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

tu%d: not online. An attempt was made to access the tape while it was oftline; this message is
written on the terminal of the user who tried to access the tape.

tu%d: can't switch density In mid-tape. An attempt was made to write on a tape at a different
density than is already recorded on the tape. This message is written on the terminal of the
user who tried to switch the density.

tu%d: hard error bn%d mbsr-~b er-~b ds-~b. A tape error occurred at block bIT. the ht
error register and drive status register are printed in octal with the bits symbolically decoded.
Any error is fatal on non-raw tape; when possible the driver will have retried the operation
which failed several times before reporting the error.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

4th Berkeley Distribution 27 July 1983 1

HY(4) UNIX Programmer's Manual HY (4)

NAME
hy - Network Systems Hyperchannel interface

SYNOPSIS
device hyO at ubaO csr 0172410 vector hyint

DESCRIPTION
The hy interface provides access to a Network Systems Corporation Hyperchannel Adapter.

The network to which the interface is attached is specified at boot time with an SIOCSIFADDR
ioctl. The host's address is discovered by reading the adapter status register. The interface will
not transmit or receive packets until the network number is known.

DIAGNOSTICS
hy%d: unit number Ox%x port %d type %x microcode level Ox%x. Identifies the device during
autoconfiguration.

hy%d: can't handle af%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

hy%d: can't initialize. The interface was unable to allocate UNIBUS resources. This is usually
due to having too many network devices on an 11/750 where there are only 3 buffered data
paths.

hy%d: NEX - Non Existent Memory. Non existent memory error returned from hardware.

hy%d: BAR overflow. Bus address register overflow error returned from hardware.

hy%d: Power Off bit set, trying to reset. Adapter has lost power, driver will reset the bit and
see if power is still out in the adapter.

hy%d: Power Off Error, network shutdown. Power was really off in the adapter, network con­
nections are dropped. Software does not shut down the network unless power has been off for
a while.

hy%d: RECVD MP > MPSIZE (%d). A message proper was received that is too big. Prob­
able a driver bug. Shouldn't happen.

hy%d: xmit error - len> hy _olen (%d > %dJ. Probable driver error. Shouldn't happen.

hy%d: DRIVER BUG - INVALID STATE %d. The driver state machine reached a non­
existent state. Definite driver bug.

hy%d: watchdog timer expired. A command in the adapter has taken too long to complete.
Driver will abort and retry the command.

hy%d: adapter power restored. Software was able to reset the power off bit, indicating that the
power has been restored.

SEE ALSO

BUGS

intro(4N), inet (4F)

If the adapter does not respond to the status command issued during autoconfigure, the adapter
is assumed down. A reboot is required to recognize it.

The adapter power fail interrupt seems to occur sporadically when power has, in fact, not failed.
The driver will believe that power has failed only if it can not reset the power fail latch after a
"reasonable" time interval. These seem to appear about 2-4 times a day on some machines.
There seems to be no correlation with adapter rev level, number of ports used etc. and whether
a machine will get these "bogus powerfails". They don't seem to cause any real problems so
they have been ignored.

4th Berkeley Distribution 27 July 1983

IK(4) UNIX Programmer's Manual IK(4)

NAME
ik - Ikonas frame buffer, graphics device interface

SYNOPSIS
devlee lkO at uba? csr 0172460 vector lklntr

DESCRIPTION

FILES

lk provides an interface to an Ikonas frame buffer graphics device. Each minor device is a
different frame buffer interface board. When the device is opened, its interface registers are
mapped, via virtual memory, into the user processes address space. This allows the user pro­
cess very high bandwidth to the frame buffer with no system call overhead.

Bytes written or read from the device are DMA'ed from or to the interface. The frame buffer
XY address, its addressing mode, etc. must be set up by the user process before calling write or
read.

Other communication with the driver is via ioctls. The IK GET ADDR ioctl returns the virtual
address where the user process can find the interface -registers. The IK_ W AITINT ioctl
suspends the user process until the ikonas device has interrupted (for whatever reason - the
user process has to set the interrupt enables).

/dev/ik

DIAGNOSTICS
None.

BUGS
An invalid access (e.g., longword) to a mapped interface register can cause the system to crash
with a machine check. A user process could possibly cause infinite interrupts hence bringing
things to a crawl.

4th Berkeley Distribution 27 Ju~y 1983 1

IL (4) UNIX Programmer's Manual IL (4)

NAME
il - Interlan 10 Mb/s Ethernet interface

SYNOPSIS
device 1I0 at ubaO csr 161000 vector llrlnt llclnt

DESCRIPTION
The iI interface provides access to a 10 Mb/s Ethernet network through an Interlan controller.

The host's Internet address is specified at boot time with an SIOCSIFADDR ioctl. The ec
interface employs the address resolution protocol described in arp(4P) to dynamically map
between Internet and Ethernet addresses on the local network.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on input
and output. This may be disabled, on a per-interface basis, by setting the IFF _NOTRAILERS
nag with an SIOCSIFFLAGS ioctl.

DIAGNOSTICS
llo/Gd: Input error. The hardware indicated an error in reading a packet off the cable or an ille­
gally sized packet.

llo/Gd: can't handle afOlod. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO
intro(4N), inet(4F), arp(4P)

BUGS
The PUP protocol family should be added.

4th Berkeley Distribution 27 July 1983 1

IMP (4) UNIX Programmer's Manual IMP(4)

NAME
imp - 1822 network interface

SYNOPSIS
pseudo-device Imp

DESCRIPTION
The imp interface, as described in BBN Report 1822, provides access to an intelligent message
processor normally used when participating in the Department of Defense ARPA network. The
network interface communicates through a device controller, usually an ACC LH/DH or DEC
IMP-IIA, with the IMP. The interface is "reliable" and "flow-controlled" by the host-IMP
protocol.

To configure IMP support, one of acc(4) and css(4) must be included. The network number on
which the interface resides is specified at boot time using the SIOCSIFADDR ioctl. The host
number is discovered through receipt of NOOP messages from the IMP.

The network interface is always in one of four states: up, down, initializing, or going down.
When the system is booted, the interface is marked down. If the hardware controller is suc­
cessfully probed, the interface enters the initializing state and transmits three NOOP messages
to the IMP. It then waits for the IMP to respond with two or more NOOP messages in reply.
When it receives these messages it enters the up state. The going down state is entered only
when notified by the IMP of an impending shutdown. Packets may be sent through the inter­
face only while it is in the up state. Packets received in any other state are dropped with the
error ENETDOWN returned to the caller.

DIAGNOSTICS
Imp%d: leader error. The IMP reported an error in a leader (1822 message header). This
causes the interface to be reset and any packets queued up for transmission to be purged.

Imp%d: lolnl down In 30 seconds.
Imp%d: lolnl down for hardware PM.
Imp%d: 10101 down for reload software.
Imp%d: lolnl down for emel'lency reset. The Network Control Center (NCC) is manipulating
the IMP. By convention these messages are reported to all hosts on an IMP.

Imp%d: reset (bost foci/imp ¥tel). The host has received a NOOP message which caused it to
reset its notion of its current address. This normally occurs at boot time, though it may also
occur while the system is running (for example, if the IMP-controller cable is disconnected,
then reconnected).

ImpO/Od: host dead. The IMP has noted a host, to which a prior packet was sent, is not up.

Imp'!.d: host unreachable. The IMP has discovered a host, to which a prior packet was sent, is
not accessible.

lmp%d: data error. The IMP noted an error in data transmitted. The host-IMP interface is
reset and the host enters the init state (awaiting NOOP messages).

Imp%d: interface reset. The reset process has been completed.

imp%d: marked down. After receiving a "going down in 30 seconds" message, and waiting 30
seconds, the host has marked the IMP unavailable. Before packets may be sent to the IMP
again, the IMP must notify the host, through a series of NOOP messages, that it is back up.

imp%d: can't handle I""d. The interface was handed a message with addresses formatting in
an unsuitable address family; the packet was dropped.

SEE ALSO
intro(4N), inet(4F), acc(4), css(4)

4th Berkeley Distribution 27 July 1983 1

IMP (4P) UNIX Programmer's Manual IMP (4P)

NAME
imp - IMP raw socket interface

SYNOPSIS
#include <sys/socket.h>
#include < netinet/in.h >
#include <netimp/if_imp.h>

s = socket(AF _IMPLINK, SOCK_RAW, IMPLINK_IP);

DESCRIPTION
The raw imp socket provides direct access to the imp(4) network interface. Users send packets
through the interface using the send(2) calls, and receive packets with the recv(2), calls. All
outgoing packets must have space for an 1822 96-bit leader on the front. Likewise, packets
received by the user will have this leader on the front. The 1822 leader and the legal values for
the various fields are defined in the inel ude file < netimpliL imp. h > .
The raw imp interface automatically installs the length and destination address in the 1822
leader of all outgoing packets~ these need not be filled in by the user.

DIAGNOSTICS
An operation on a socket may fail with one of the following errors:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified .and the
socket is already connected~

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected~

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRNOT A V AIL]
when an attempt is made to create a socket with a network address for which
no network interface exists.

SEE ALSO
intro(4N), inet(4F), imp(4)

4th Berkeley Distribution 26 March 1982 1

INET (4F) UNIX Programmer's Manual INET (4F)

NAME
inet - Internet protocol family

SYNOPSIS
#include < sys/types.h >
#include < netinet/in.h >

DESCRIPTION
The Internet protocol family is a collection of protocols layered atop the Internet Protocol (IP)
transport layer, and utilizing the Internet address format. The Internet family provides protocol
support for the SOCK_STREAM, SOCK_DGRAM, and SOCK_RAW socket types~ the
SOCK_RA W interface provides access to the IP protocol.

ADDRESSING
Internet addresses are four byte quantities, stored in network standard format (on the V AX
these are word and byte reversed). The include file <netinetlin.h> defines this address as a
discriminated union.

Sockets bound to the Internet protocol family utilize the following addressing structure,

struct sockaddr jn {
short sin_family;
u_short sin_port~
struct in addr sin addr;
char sin_zero[8f

} ;

Sockets may be created with the address INADDR_ANY to effect Hwildcard" matching on
incoming messages.

PROTOCOLS
The Internet protocol family is comprised of the IP transport protocol, Internet Control Mes­
sage Protocol (ICMP), Transmission Control Protocol (Tep), and User Datagram Protocol
(UDP). TCP is used to support the SOCK_STREAM abstraction while UDP is used to support
the SOCK_DGRAM abstraction. A raw interface to IP is available by creating an Internet
socket of type SOCK_RAW. The ICMP message protocol is not directly accessible.

SEE ALSO
tcp(4P), udp(4P), ip(4P)

CAVEAT
The Internet protocol support is subject to change as the Internet protocols develop. Users
should not depend on details of the current implementation, but rather the services exported.

4th Berkeley Distribution 19 March 1982 1

IP (4P) UNIX Programmer's Manual IP (4P)

NAME
ip - Internet Protocol

SYNOPSIS
#Include <sys/socket.b>
#Include <netlnet/ln.b>
s - socket(AF_INET, SOCK_RAW, 0);

DESCRIPTION
IP is the transport layer protocol used by the Internet protocol family. It may be accessed
through a "raw socket" when developing new protocols, or special purpose applications. IP
sockets are connectionless, and are normally used with the sendto and recvfrom calls, though the
connect(2) call may also be used to fix the destination for future packets (in which case the
read(2) or recv(2) and write(2) or send(2) system calls may be used).

Outgoing packets automatically have an IP header prepended to them (based on the destination
address and the protocol number the socket is created with). Likewise, incoming packets have
their IP header stripped before being sent to the user.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has one, or
when trying to send a datagram with the destination address specified and the
socket is already connected;

[ENOTCONN] when trying to send a datagram, but no destination address is specified, and
the socket hasn't been connected;

[ENOBUFS] when the system runs out of memory for an internal data structure;

[EADDRNOTAVAIL]
when an attempt is made to create a socket with a network address for which
no network interface exists.

SEE ALSO

BUGS

send(2), recv(2), intro(4N), inet(4F)

One should be able to send and receive ip options.

The protocol should be settable after socket creation.

4th Berkeley Distribution 2S March 1982 1

I PBRt)i\ I)('/\S' I' (41)) UN IX Prllgrall1lll(:r's Mallual II'BROi\ I)CAST (41')

NAME
iplml:ldcast ---. IlJ'O;I<.IGlstillg Int ... 'rIIct Prlltocol p;lckels

SYNOPSIS
/1 includl,,' (sys/Iypl.'s.h> It inrhllk (IICtilwt/ill.h>

I>F~-i(,HlPTION

BUGS

Nni,': '1'111,,' ;Iddl\~\',illt', C()IlH'llliolb dl..'S~,Tibl'd ill thi~, 1I1:IIlU;!1 p;I~~~ cOlllin'lll to til' .Ii/(I:) Internel stall­
d:,l!', IS. They do /i(!/l:{)rr\.'\p(llld In the l"OIl\ l'lll illll\ 1I~;I..'d hy IlH l'il Ikrkcky ·l:,BSI) illlpkl1leJ)Lllions.

Oil ill.,'I\\prks IIl;lt Sllpport it. it i-; rtl';';ihk Itl ')I,,'lId :1Il Internct Prolucol (II» p:lch,t ;1''; a hroadca~t:
111:11. i~" il \vill he i'l'Cci\'('d hy \'\1..'1')' !l()st Oil 111.11 1l1.·'lwork. i\ sci or hosl ;lddre'iSl'S i\ reserved to
lkl'ltlll' hro,ldc;ISIS: Ilh.'), 11:.1\'1,,' in COllllllOIi tll;lt riL'ld~, nonn;tlly 1I~I.'d 10 specified (\ Slk'(ific !lOSIS dre
!ilk:l \\ itb bits "II SI..'[to 0111,,'.

Tll,,'re ;11\.' tlm.'I..' kinds or II) hr(l;Idl';!';1 dddl\";S\~s:

Th i'; Ilctwork Tile di ... lill)',\Ii~lh'd ;lddl\:S~; I;'L\I)I)1(HROI\l)C'/\S'/' L»)5,~S).~55,})S)

1..1(,11011.::-; ;1 hro:II.h.:,I~,l t(l Ih..' sellt 011 lill..' Ill,'1 \" or:':' this IlOSI is dll;.lcil,:d to; i I' it
is illLlclwd to 1ll()I'I..' tl1;III OIH.' Ild\\'ork th:tt "llpporh hr(l;Idc;Isting, the sys­
t('lll Illiglll nol s\.'IHI Ille P:Ich'l Oil all (lrthl'se nel\\'orks. ,\ packet with
this dcslin;lliPII ;lddl\.'S ... \\illlH.,'\l'r I>l' I~)r\'.;tnkd by a g;Il('w;IY.

Till' l..iI.'still,IliulI ;Iddrl..'~s is C(llllpnsed or the Ildwork Illllllber f()J' the
(ksired ~II..'Slill;Ili()1l 1Ii.'1\\'llrk. wilh the rest or till' ;Iddri~'-," Iilkd wilh OIlC'S.

h,l' I..'X;llllpk. 10 hm:ldc;:'>t" ptll'ket on lid work 12~;.12,II,O (,I CI:lss B ncl­
\'Ol'k), ;Iddl\'SS it to 1,:~;.I.') .. :55,::S5. It Illay not he p(l',sihk to sl'nd this
sor! Ill' hro;Id~';ISI III \'\\'1) Ill'! \\'ork.

'I'll\..' tk\lilLIliPtl :tddrl'ss is cOIIIPosed or Illl' llet\\'orJ... tlllJllhl.'r ;\11<.1 slIbtlet
IHllllhl'1 1(11' tl1(' dl..'~;i rl'd deslillalioll ~;lIhlll'l, \\ illl the I\~~;t or till' address
lilies \\ illl IIlll'S. !-'til' cX;\Illpk. to hroadcast ;1 p;Ickl't Oil slIhncl 40 or
12.X,I.'.Il,O. :lddl\\~S it to I.?X.I.? .. I().~55. !-'Ilr;I nl'tw(lrk tlt;lt is lIot di\'ilkd
illlo IIll1n.' 111;111 o Ill' suhtle!, this kind or ;Iddre~s is i<.il'lltir;t1 ttl Ihe "Sl1l.'cilic
Nl'lw(\rk" ;Iddrl'~;s 1l11..'llti()lH.'d ;t1JOve.

Tlwn,' is 110 singk ;Iddl\.'\S 10 I..klHlle "hro:ldrasl to till' cluire IntnllcC', as Ihis cOllsidered a bad
tllillg to do.

To lilld oul the hn>;tdC;lst addrc~.;s I'()J' Ill\.' Ildwork to which ;\11 intl'rf~lcc is "tLIehed, lise the
SI()('(iBRI);\I)I)1{ ioell. \\hich is l,,\;tctly Ihe salllc as tll(~ SIOC(ill:AI)I)R ioctl (SCI,,' illlro(4n»,
eXl'l'pl that it relurns the "Specific Sltlmct" broadclsl address I()r till' illterl~lcc. (If' the intcrf~lce
does !lot support broadcasts, thl,,' ioctl will 1~lil.)

TIll.' restriction th;ll only thc SlIIWI'-USI,,'r Illay scnd a broadcast has been rellloved. Il is possibk' lo
hroadcast a TCP packet; it is not possible to do anylhing lise I'u I this way.

Till' currclll il1lpkI1H.'llt~llioll of IP hro;aicasls in 4.) is deficicilt in scver;11 ways:

A broadcast Sl'llt to <I "Specilic Network" will not necessilrily he delivered to all the hosts on that
network, hUl rathcr to some suhsl'l or its subllClS.

A broadcasl receivcd by Unix I()r which it is Illcant to act as a gateway will 110t be delivcred prop­
erly ir the ueslination is a locally"collncclcd network.

Alt.hough hroadcasls addrcssed by the old-slyle Bcrkeley addressing convcntioll (all/eros insLead of
;tll olles) will he accq)ted by the systelll if' rl'CI..'i\'cd. they C<llHlOt he sent.

'I'll\.' illl,t,Jlwkeaddr() rUllction (sec ill('/~3n)) dOL'S IHll work properly li)r hroadc(lst addresses. Also,
inl'l.JletworkO (IIHI iIlCI._ilddr() return the sanll' \':t1l1C (-I) I'llI'I N;\ DI>I(-'~ROA D(,AS'!' and to illdi­
c;'Ite 1~liltire. This rcquires SOIll<.: caution Oil the p:lrl or the program Iller.

'/111 hlitio/\

KG(4) UNIX Programmer's Manual

NAME
kg - KL·II/DL·IIW line clock

SYNOPSIS
device klO at abaO csr 0176500 vector kllock

DESCRIPTION

KG(4)

A kl·ll or dl·ll w can be used as an alternate real time clock source. When configured, certain
system statistics and, optionally, system profiling work will be coUected each time the clock
interrupts. For optimum accuracy in profiling, the dl·ll w should be configured to interrupt at
the highest possible priority level. The kg device driver automatically calibrates itself to the line
clock frequency.

SEE ALSO
kgmon(8), config(8)

4th Berkeley Distribution 27 July 1983 1

LO(4) UNIX Programmer's Manual LO(4)

NAME
10 - software loopback network interface

SYNOPSIS
pseudo-clevlce loop

DESCRIPTION
The loop interface is a software loopback mechanism which may be used for performance
analysis, software testing, and/or local communication. By default, the loopback interface is
accessible at address 127.0.0.1 (non-standard); this address may be changed with the SIOCSI­
FADDR ioctl.

DIAGNOSTICS
lo~: can't bandle al%d. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

SEE ALSO

BUGS

intro(4N), inet(4F)

It should handle all address and protocol families. An approved network address should be
reserved for this interface.

4th Berkeley Distribution 26 March 1982 1

LP(4) UNIX Programmer's Manual LP(4)

NAME
Ip - line printer

SYNOPSIS
device IpO at ubaO elr 0177514 vector Iplntr

DESCRIPTION

FILES

Lp provides the interface to any of the standard DEC line printers on an LP-l1 parallel inter­
face. When it is opened or closed, a suitable number of page ejects is generated. Bytes written
are printed.

The unit number of the printer is specified by the minor device after removing the low 3 bits,
which act as per-device parameters. Currently only the lowest of the low three bits is inter­
preted: if it is set. the device is treated as having a 64-character set, rather than a full 96-
character set. In the resulting half-ASCII mode, lower case letters are turned into upper case
and certain characters are escaped according to the following table:

((
)) . ,

I +

The driver correctly interprets carriage returns, backspaces, tabs, and form feeds. Lines longer
than the maximum page width are truncated. The default page width is 132 columns. This
may be overridden by specifying, for example, "flags 256" .

/dev/lp

SEE ALSO
Ipr(1)

DIAGNOSTICS
None.

4th Berkeley Distribution 27 July 1983 1

MEM(4) UNIX Programmer's Manual MEM (4)

NAME
mem, kmem - main memory

DESCRIPTION

FILES

BUGS

Mem is a special file that is an image of the main memory of the computer. It may be used, for
example, to examine (and even to patch) the system.

Byte addresses in mem are interpreted as physical memory addresses. References to non­
existent locations cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only
or write-only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather than physical
memory is accessed.

On PDPll 's, the I/O page begins at location 0160000 of kmem and per-process data for the
current process begins at 0140000. On VAX 11/780 the I/O space begins at physical address
20000000(16); on an 11/750 110 space addresses are of the form fxxxxx(l6); on all VAX'en
per-process data for the current process is at virtual 7ffffOO0(16).

/dev/mem
Idev/kmem

On PDP11 's and VAX's, memory files are accessed one byte at a time, an inappropriate
method for some device registers.

4th Berkeley Distribution 9 February 1983 1

MT(4) UNIX Programmer's Manual MT(4)

NAME
mt - TM78/TU-78 MASSBUS magtape interface

SYNOPSIS
master mtO at mba? drive ?
tape muO at mtO slave 0

DESCRIPTION
The tm78/tu-78 combination provides a standard tape drive interface as described in mtio(4).
Only 1600 and 6250 bpi are supported; the TU-78 runs at 125 ips and autoloads tapes.

SEE ALSO
mtH), tarO), tpO), mtio(4), tm(4), ts(4), ut(4)

DIAGNOSTICS

BUGS

muO/od: no write ring. An attempt was made to write on the tape drive when no write ring was
present; this message is written on the terminal of the user who tried to access the tape.

muOfod: not online. An attempt was made to access the tape while it was offline; this message is
written on the terminal of the user who tried to access the tape.

muOfod: can't switch density In mid-tape. An attempt was made to write on a tape at a
different density than is already recorded on the tape. This message is written on the terminal
of the user who tried to switch the density.

muOfed: hard enor bnOfed mbsr-Ofob er-Ofox ds-Ofob. A tape error occurred at block bn:, the mt
error register and drive status register are printed in octal with the bits symbolically decoded.
Any error is fatal on non-raw tape; when possible the driver will have retried the operation
which failed several times before reporting the error.

muOfod: blank tape. An attempt was made to read a blank tape (a tape without even end-of-file
marks).

muOfod: oflline. During an i/o operation the device was set oftline. If a non-raw tape was used
in the access it is closed.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

4th Berkeley Distribution 27 July 1983 1

MTIO(4) UNIX Programmer's Manual MTIO (4)

NAME
mtio - UNIX magtape interface

DESCRIPTION
The files mlO, ... , ml15 refer to the UNIX magtape drives, which may be on the MASSBUS
using the TM03 formatter hl(4), or TM78 formatter, ml(4), or on the UNIBUS using either
the TMll or TSII formatters Im(4), TU45 compatible formatters, uI(4), or ts(4). The follow­
ing desc.ription applies to any of the transport/controller pairs~ .. The files mlO, ... , ml7 are
800bpi, m18, ... , ml15 are 1600bpi, and mtl6, ... , ml2l are 6250bpL (But note that only 1600
bpi is available with the TSll.) The files mlO, ... , mtJ, m18, ... , mtll, and m116, •.. , ml19 are
rewound when closed; the others are not. When a file open for writing is closed, two end-of­
files are written. If the tape is not to be rewound it is positioned with the head between the two
tapemarks.

A standard tape consists of a series of 1024 byte records terminated by an end-of-file. To the
extent possible, the system makes it possible, if inefficient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte at a time. Writing in
very small units is inadvisable, however, because it tends to create monstrous record gaps.

The ml files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records
are to be read or written, the 'raw' interface is appropriate. The associated files are named
rmlO, ... , rml2l, but the same minor-device considerations as for the regular files still apply. A
number of other ioctl operations are available on raw magnetic tape. The following definitions
are from < syslmtio. h > :
/ .
• Structures and definitions for mag tape io control commands
./

/. structure for MTIOCTOP - mag tape op command ./
struct mtop {

short mt_op;
daddr_t mt_count;

};

/. operations ./
#define MTWEOF
#define MTFSF
#define MTBSF
#define MTFSR
#define MTBSR
#define MTREW
#define MTOFFL
#define MTNOP

o
1
2
3
4
5
6
7

/- operations defined below -/
/. how many of them ./

/- write an end-of-file record -/
/- forward space file -/
/ - backward space file -/
/ - forward space record -/
/- backward space record -/
/- rewind -/
/- rewind and put the drive omine -/
/ - no operation, sets status only -/

/- structure for MTIOCGET - mag tape get status command -/

struct mtget {
short mt_type; /- type of magtape device -/

/- the following two registers are grossly device dependent -/
short mt_dsreg; /- "drive status" register -/
short mt_erreg; /- "error" register -/

/- end device-dependent registers -/
short mt_resid; /- residual count -/

4th Berkeley Distribution 27 July 1983 1

MTIO (4) UNIX Programmer's Manual MTIO (4)

FILES

/. the following two are not yet implemented ./
daddr t mt fileno; /. file number of current position ./
daddr=t mt=blkno; /. block number of current position ./

/. end not yet implemented ./
};

/ .
• Constants for mt_type byte
./

#defineMT_ISTS OxOI
#defineMT_ISHT Ox02
#define MT ISTM Ox03
#defineMT=ISMT Ox04
#define MT _ISUT OxOS
#define MT _ISCPC Ox06
#defineMT_ISAR Ox07

/. mag tape io control commands ./
#defineMTIOCTOP _IOW(m, 1, struct mtop)
#defineMTIOCGET _IOR(m, 2, struct mtget)

#ifndef KERNEL
#define DEFT APE
#endif

" /dev/rmt12"

/. do a mag tape op ./
/. get tape status ./

Each read or write call reads or writes the next record on the tape. In the write case the record
has the same length as the buffer given. During a read, the record size is passed back as the
number of bytes read, provided it is no greater than the buffer size; if the record is long, an
error is indicated. In raw tape I/O seeks are ignored. A zero byte count is returned when a
tape mark is read, but another read will fetch the first record of the new tape file.

/dev/mt?
/dev/rmt?

SEE ALSO
mt(1), tar(1), tp(1), ht(4), tm(4), ts(4), mt(4), ut(4)

BUGS
The status should be returned in a device independent format.

4th Berkeley Distribution 27 July 1983 2

NULL (4)

NAME
null - data sink

DESCRIPTION

UNIX Programmer's Manual

Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

7th Edition 9 February 1983

NULL (4)

1

PCL(4) UNIX Programmer's Manual PCL(4)

NAME
pel - DEC CSS PCL-11 B Network Interface

SYNOPSIS
device pclO at uba? csr 164200 vector pclxlnt pclrlnt

DESCRIPTION
The pel device provides an IP-only interface to the DEC CSS PCL-ll time division multiplexed
network bus. The controller itself is not accessible to users.

The hosts's address is specified with the SIOCSIFADOR ioctl. The interface will not transmit
or receive any data before its address is defined.

As the PCL-11 hardware is only capable of having 15 interfaces per network, a single-byte
host-on-network number is used, with range [l .. 15J to match the TDM bus addresses of the
interfaces.

The interface currently only supports the Internet protocol family and only provides "natural"
(header) encapsulation.

DIAGNOSTICS
pcl%d: can't Intt. Insufficient UNIBUS resources existed to initialize the device. This is likely
to occur when the device is run on a buffered data path on an 11/750 and other network inter­
faces are also configured to use buffered data paths, or when it is configured to use buffered
data paths on an 111730 (which has none).

pcl%d: can't handle afO/od. The interface was handed a message with addresses formatted in an
unsuitable address family; the packet was dropped.

pcl%d: stray xmlt Interrupt. An interrupt occured when no output had previously been
started.

pcl%d: master. The TOM bus had no station providing "bus master" timing signals, so this
interface has assumed the "master" role. This message should only appear at most once per
UNIBUS INIT on a single system. Unless there is a hardware failure, only one station may be
master at at time.

pc:l%d: send error, ter-O/Ob, tsr-O/Ob. The device indicated a problem sending data on output.
If a "receiver offline" error is detected, it is not normally logged unless the option
PCL_TESTING has been selected, as this causes a lot of console chatter when sending to a
down machine. However, this option is quite useful when debugging problems with the PCl
interfaces.

pc:l%d: rev error, rer-%b rsr-O/Ob. The device indicated a problem receiving data on input.

pc:l%d: bad len -%d. An input operation resulted in a data transfer of less than 0 or more than
1008 bytes of data into memory (according to the word count register). This should never hap­
pen as the maximum size of a PCl message has been agreed upon to be 1008 bytes (same as
ArpaNet message).

SEE ALSO
intro(4N), inet (4F)

4th Berkeley Distribution 27 July 1983 1

PS(4) UNIX Programmer's Manual PS (4)

NAME
ps - Evans and Sutherland Picture System 2 graphics device interface

SYNOPSIS
device psO at uba? csr 0172460 vector psintr

DESCRIPTION
The ps driver provides access to an Evans and Sutherland Picture System 2 graphics device.
Each miner device is a new PS2. When the device is opened, its interface registers are
mapped, via virtual memory, into a user process's address space. This allows the user process
very high bandwidth to the device with no system call overhead.

DMA to and from the PS2 is not supported. All read and write system calls will fail. All data is
moved to and from the PS2 via programmed 110 using the device's interface registers.

Commands are fed to and from the driver using the following ioctls:

PSIOGETADDR
Returns the virtual address through which the user process can access the device's
interface registers.

PSIOAUTOREFRESH
Start auto refreshing the screen. The argument is an address in user space where the
following data resides. The first longword is a count of the number of static refresh
buffers. The next count longwords are the addresses in refresh memory where the
refresh buffers lie. The driver will cycle thru these refresh buffers displaying them one
by one on the screen.

PSIOAUTOMAP
Start automatically passing the display file thru the matrix processor and into the refresh
buffer. The argument is an address in user memory where the following data resides.
The first longword is a count of the number of display files to operate on. The next
count longwords are the address of these display files. The final longword is the address
in refresh buffer memory where transformed coordinates are to be placed if the driver
is not in double buffer mode (see below).

PSIODOUBLEBUFFER
Cause the driver to double buffer the output from the map that is going to the refresh
buffer. The argument is again a user space address where the real arguments are
stored. The first argument is the starting address of refresh memory where the two
double buffers are located. The second argument is the length of each double buffer.
The refresh mechanism displays the current double buffer, in addition to its static
refresh lists, when in double buffer mode.

PSIOSINGLEREFRESH
Single step the refresh process. That is, the driver does not continually refresh the
screen.

PSIOSINGLEMAP
Single step the matrix process. The driver does not automatically feed display files thru
the matrix unit.

PSIOSINGLEBUFFER
Turn off double buffering.

PSIOTIMEREFRESH
The argument is a count of the number of refresh interrupts to take before turning off
the screen. This is used to do time exposures.

PSIOW AITREFRESH
Suspend the user process until a refresh interrupt has occurred. If in TIMEREFRESH

4th Berkeley Distribution 27 July 1983

PS (4) UNIX Programmer's Manual PS (4)

mode, suspend until count refreshes have occurred.

PSIOSTOPREFRESH
Wait for the next refresh, stop all refreshes, and then return to user process.

PSIOW AITMAP
Wait until a map done interrupt has occurred.

PSIOSTOPMAP
Wait for a map done interrupt, do not restart the map, and then return to the user.

FILES
/dev/ps

DIAGNOSTICS

BUGS

ps device intr.
ps dma intr. An interrupt was received from the device. This shouldn't happen, check your
device configuration for overlapping interrupt vectors.

An invalid access (e.g., longword) to a mapped interface register can cause the system to crash
with a machine check. A user process could possibly cause infinite interrupts hence bringing
things to a crawl.

4th Berkeley Distribution 27 July 1983 2

PTY (4) UNIX Programmer's Manual PTY(4)

NAME
pty - pseudo terminal driver

SYNOPSIS
pseudo-device pty

DESCRIPTION
The pty driver provides support for a device-pair termed a pseudo terminal. A pseudo terminal
is a pair of character devices, a master device and a slave device. The slave device provides
processes an interface identical to that described in tty(4). However, whereas all other devices
which provide the interface described in tty(4) have a hardware device of some sort behind
them, the slave device has, instead, another process manipulating it through the master half of
the pseudo terminal. That is, anything written on the master device is given to the slave device
as input and anything written on the slave device is presented as input on the master device.

In configuring, if no optional "count" is given in the specification, 16 pseudo terminal pairs are
configured.

The following ioctl calls apply only to pseudo terminals:

TIOCSTOP
Stops output to a terminal (e.g. like typing "S). Takes no parameter.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing "S). Takes no parameter.

TIOCPKT
Enable/disable packet mode. Packet mode is enabled by specifying (by reference) a
nonzero parameter and disabled by specifying (by reference) a zero parameter. When
applied to the master side of a pseudo terminal, each subsequent read from the terminal
will return data written on the slave part of the pseudo terminal preceded by a zero byte
(symbolically defined as TIOCPKT_DATA), or a single byte reflecting control status
information. In the latter case, the byte is an inclusive-or of zero or more of the bits:

TIOCPKT _FLUSHREAD
whenever the read queue for the terminal is flushed.

TIOCPKT _FLUSHWRITE
whenever the write queue for the terminal is flushed.

TIOCPKT STOP
whenever output to the terminal is stopped a la "s.

TIOCPKT_START
whenever output to the terminal is restarted.

TIOCPKT _DOSTOP
whenever ,-stope is "s and ,-startc is "Q.

TIOCPKT NOSTOP
whenever the start and stop characters are not "srQ.

This mode is used by rlogin(1C) and rlogind(8C) to implement a remote-echoed, locally
"srQ flow-controlled remote login with proper back-flushing of output; it can be used
by other similar programs.

TIOCREMOTE
A mode for the master half of a pseudo terminal, independent of TIOCPKT. This
mode causes input to the pseudo terminal to be flow controlled and not input edited
(regardless of the terminal mode). Each write to the control terminal produces a record
boundary for the process reading the terminal. In normal usage, a write of data is like
the data typed as a line on the terminal; a write of 0 bytes is like typing an end-of-file

4th Berkeley Distribution 7 July 1983 1

PTY (4) UNIX Programmer's Manual PTY(4)

character. TIOCREMOTE can be used when doing remote line editing in a window
manager, or whenever flow controlled input is required.

FILES
Idev/pty[p-r] [O-9a-f]
Idev/tty[p-r] [O-9a-f1

DIAGNOSTICS
None.

BUGS

master pseudo terminals
slave pseudo terminals

It is not possible to send an EOT.

4th Berkeley Distribution 7 July 1983 2

PUP (4F) UNIX Programmer's Manual PUP (4F)

NAME
pup - Xerox PUP-I protocol family

SYNOPSIS
#lnclude < sys/types.h >
#lnclude < netpup/pup.h >

DESCRIPTION
The PUP-I protocol family is a collection of protocols layered atop the PUP Level-O packet for­
mat, and utilizing the PUP Internet address format. The PUP family is currently supported
only by a raw interface.

ADDRESSING
PUP addresses are composed of network,
< netpuplpup. h > defines this address as,

host, and port portions. The include file

struct pupport {
u_char
u_char
u_char

pup_net;
pup_host;
pup_socket[4];

};

Sockets bound to the PUP protocol family utilize the following addressing structure,

struct sockaddr -pup {
short spup _family;
short spup _zero 1 ;
u_char spup_net;
u_char spup_host;
u_char spup_sock[4];

};
char spup_zer02[4];

HEADERS
The current PUP support provides only raw access to the 3Mb/s Ethernet. Packets sent
through this interface must have space for the following packet header present at the front of
the message,

struct pup header (
u_short pup Jength;
u_char pup_tcontrol;
u_char pup_type;
uJong pupjd;
u_char ru~ _dnet;
u_char pup_dhost;
u_char pup_dsock[4];
u_char pup_snet;
u_char pup_shost;

);
u_char pup_ssock[4];

I- transport control -I
I- protocol type -I
I- used by protocols -I
I- destination -I

I- source -I

The sender should fill in the pup_tcontrol, pup_type, and pup_id fields. The remaining fields are
filled in by the system. The system checks the message to insure its size is valid and, calulates
a check.sum for the message. If no checksum should be calculated, the checksum field (the last
16-bit word in the message) should be set to PUP _NOCKSUM.

4th Berkeley Distribution 7 July 1983 1

PUP (4F) UNIX Programmer's Manual PUP (4F)

The pup_tcontro! field is restricted to be 0 or PUP_TRACE; PUP_TRACE indicates packet trac­
ing should be performed. The pup_type field may not be O.

On input, the entire packet, including header, is provided the user. No checksum validation is
performed.

SEE ALSO

BUGS
intro(4N), pup(4P), en(4)

The only interface which currently supports use of pup's is the Xerox 3 Mb/s en(4) interface.

With the release of the second generation, PUP-II, protocols it is not clear what future PUP-I
has. Consequently, there has been little motivation to provide extensive kernel support.

4th Berkeley Distribution 7 July 1983 2

PUP(4P) UNIX Programmer's Manual PUP (4P)

NAME
pup - raw PUP socket interface

SYNOPSIS
#include < sys/socket.h>
#include < netpup/pup.h>

socket(AF_PUP, SOCK_RAW, PUPPROTO_BSP);

DESCRIPTION
A raw pup socket provides PUP-I access to an Ethernet network. Users send packets using the
sendto call. and receive packets with the ren:(rom call. All outgoing packets must have space
present at the front of the packet to allow the PUP header to be filled in. The header format is
described in pup(4F). Likewise. packets received by the user will have the PUP header on the
front. The PUP header and legal values for the various fields are defined in the include file
< netpuplpup. h> .

The raw pup interface automatically installs the length and source and destination addresses in
the PUP header of all outgoing packets~ these need not be filled in by the user. The only con­
trol bit that may be set in the tCOl11ro! field of outgoing packets is the "trace" bit. A checksum
is calculated unless the sender sets the checksum field to PUP _NOCKSUM.

DIAG!'lOSTICS
A socket operation may fail and one of the following will be returned:

[EISCONN] when trying to establish a connection on a socket which already has one. or
when trying to send a datagram with the destination address specified and the
socket is already connected:

[ENOTCONN] when trying to send a datagram. but no destination address is specified. and
the socket hasn't been connected~

[ENOBUFS] when the system runs out of memory for an internal data structure~

[EADDRNOT A V All]
when an attempt is made to create a socket with a network address for which
no network interface exists.

A selldro operation may fail if one of the following is true:

[EINV AL] Insufficient space was left by the user for the PUP header.

[EINVAl] The pup_type field was 0 or the pup_tcomro! field had a bit other than
PUP_TRACE set.

[EMSGSIZE] The message was not an even number of bytes, smaller than MINPUPSIZ. or
large than M AXPUPSIZ.

[ENETUNREACH]
The destination address was on a network which was not directly reachable
(the raw interface provides no routing support).

SEE ALSO
send(2), recv(2), intro(4N), pup(4F)

BUGS
The interface is untested against other PUP implementations.

4th Berkeley Distribution 7 July 1983

RX (4) UNIX Programmer's Manual RX (4)

NAME
rx - DEC RX02 floppy disk interface

SYNOPSIS
controller fxO at ubaO csr 0177170 vector rxintr
disk rxO at fxO slave 0
disk rxl at fxO slave 1

DESCRIPTION

NOTES

The rx device provides access to a DEC RX02 floppy disk unit with M8256 interface module
(RX211 configuration). The RX02 uses 8-inch. single-sided. soft-sectored floppy disks (with
pre-formatted industry-standard headers) in either single or double density.

Floppy disks handled by the RX02 contain 77 tracks. each with 26 sectors (for a total of 2.002
sectors>. The sector size is 128 bytes for single density. 256 bytes for double density. Single
density disks are compatible with the RXOI floppy disk unit and with IBM 3740 Series Diskette
1 systems.

In addition to normal ('block' and 'raw') i/o, the driver supports formatting of disks for either
density and the ability to invoke a 2 for 1 interleaved sector mapping compatible with the DEC
operating system RT -11.

The minor device number is interpreted as follows:

Bit Description
o Sector interleaving (I disables interleaving)
1 Logical sector 1 is on track 1 (Q no, 1 yes)
2 Not used, reserved
Other Drive number

The two drives in a single RX02 unit are treated as two disks attached to a single controller.
Thus, if there are two RX02's on a system, the drives on the first RX02 are "rxO" and "rx I".
while the drives on the second are "rx2" and "rx3".

When the device is opened. the density of the disk currently in the drive is automatic,tlly deter­
mined. If there is no floppy in the device. open will fail.

The interleaving parameters are represented in raw device names by the letters 'a' through 'd'.
Thus. unit 0, drive 0 is called by one of the following names:

Mapping De\'ice name Starting track
interleaved /dev/rrxOa 0
direct /dev/rrxOb 0
interleaved Idev/rrxOc I
direct /dev/rrxOd 1

The mapping used on the 'c' device is compatible with the DEC operating system RT-Il. The
'b' device accesses the sectors of the disk in strictly sequential order. The 'a' device is the most
efficient for disk-to-disk copying.

110 requests must start on a sector boundary, involve an integral number of complete sectors,
and not go otT the end of the disk.

Even though the storage capacity on a floppy disk is quite small, it is possible to make filesys­
terns on double density disks. For example, the command

% mkfs /dev/rxO 1001 13 1 4096 512 32 04
makes a file system on the double density disk in rxO with 436 kbytes available for file storage.
Using tar(1) gives a more efficient utilization of the available space for file storage. Single den­
sity diskettes do not provide sufficient storage capacity to hold file systems.

4th Berkeley Distribution 27 July 1983

RX (4) UNIX Programmer's Manual

A number of ioctJ(2) calls apply to the rx devices, and have the form
#include < ~·axuba/rxreg.h>
ioctHfildes, code, arg)
int ·arg;

The applicable codes are:

RX (4)

RXIOC_FORMAT Format the diskette. The density to use is specified by the arg argument. 0
gives single density while non-zero gives double density.

RXIOC_GETDENS
Return :the density of the diskette (0 or ! =0 as above).

RXIOC WDDMK On the next write. include a deleted data address mark in the header of the
first sector.

RXIOC RDDMK Return non-zero if the last sector read contained a deleted data address mark
in its header. otherwise return O.

ERRORS

FILES

The following errors may be returned by the above ioctl calls:

[ENODEV] Drive not ready: usually because no disk is in the drive or the drive door is open.

[ENXIO] Nonexistent drive (on open): offset is too large or not on a sector boundary or
byte count is not a multiple of the sector size (on read or write): or bad
(undefined) ioctl code.

[EIO]

[EBUSY]

[EBADF]

A physical error other than "not ready". probably bad media or unknown format.

Drive has been opened for exclusive access.

No write access (on format). or wrong density: the latter can only happen if the
disk is changed without closing the de\ ice (i.e .• calling c/ose(2)).

/dev/rx '?
/dev/rrx? [a-d]

SEE ALSO
rxformad8V). newfs(8). mkfs(8). tar<l). artT(8V)

DIAGNOSTICS

BUGS

rx%d: hard error, trk %d psec '',Iud cs=tYl,b, db=tYl,b. err=oA,x, %x, ty.,x, %x. An unrecoverable
error was encountered. The track and physical sector numbers. the device registers and the
extended error status are displayed.

rx%d: state %d (reset>. The driver entered a bogus state. This should not happen.

A floppy may not be formatted if the header info on sector 1. track 0 has been damageu.
Hence. it is not possible to format completely degaussed disks or disks with other formats than
the two known by the hardware.

If the drive subsystem is powered down when the machine is booted. the controller won't inter­
rupt.

4th Berkeley Distribution 27 July 1983 2

TCP(4P) UNIX Programmer's Manual TCP(4P)

NAME
tcp - Internet Transmission Control Protocol

SYNOPSIS
#include < S}"s/socket.h>
#include < netinet/in.h>

s = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPTION
The TCP protocol provides reliable. flow-controlled. two-way transmission of data. It is a byte­
stream protocol used to support the SOCK_STREAM abstraction. TCP uses the standard Inter­
net address format and. in addition, provides a per-host collection of "port addresses". Thus.
each address is composed of an Internet address specifying the host and network. with a specific
TCP port on the host identifying the peer entity.

Sockets utilizing the tcp protocol are either "active" or "passive". Active sockets initiate con­
nections to passive sockets. By default TCP sockets are created active~ to create a passive
socket the Iis{en(2) system call must be used after binding the socket with the billd(2) system
call. Only passive sockets may use the accepr(2) call to accept incoming connections. Only
active sockets may use the cOflllecr(2) call to initiate connections.

Passive sockets may "underspecify" their location to match incoming connection requests from
multiple networks. This technique. termed "wildcard addressing", allows a single server to
provide service to clients on multiple networks. To create a socket which listens on all net­
works, the Internet address INADDR_ANY must be bound. The TCP port may still be
specified at this time~ if the port is not specified the system will assign one. Once a connection
has been established the socket's address is fixed by the peer entity's location. The address
assigned the socket is the address associated with the network interface through which packets
are being transmitted and received. Normally this address corresponds to the peer entity's net­
work.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN]

[ENOBUFS]

[ETIMEDOUT]

[ECONNRESET]

when trying to establish a connection on a socket which already has one:

when the system runs out of memory for an internal data structure:

when a connection was dropped due to excessive retransmissions:

when the remote peer forces the connection to be closed:

[ECONNREFUSED] when the remote peer actively refuses connection establishment (usually
because no process is listening to the port> ~

[EADDRINUSE] when an attempt is made to create a socket with a port which has already
been allocated:

[EADDRNOT A V AIL]
when an attempt is made to create a socket with a network address for
which no network interface exists.

SEE ALSO

BUGS

intro(4N), ined4F)

It should be possible to send and receive TCP options. The system always tries to negotiates
the maximum TCP segment size to be 1024 bytes. This can result in poor performance if an
intervening network performs excessive fragmentation.

4th Berkeley Distribution 7 July 1983

TM (4) UNIX Programmer's Manual TM (4)

NAME
tm - TM-ll/TE-IO magtape interface

SYNOPSIS
controller tmO at uba? csr 0172520 vector tmintr
tape teO at tmO drhe 0

DESCRIPTION
The tm-Illte-l0 combination provides a standard tape drive interface as described in tnrio(4)'
Hardware implementing this on the V AX is typified by the Emulex TC-ll controller operating
with a Kennedy model 9300 tape transport, providing 800 and 1600 bpi operation at 125 ips.

SEE ALSO
md}), tarO), tp(l), mtio(4), ht(4), ts(4), mt(4), ut(4)

DIAGNOSTICS

Bl'GS

te%d: no write ring. An attempt was made to write on the tape drive when no write ring was
present~ this message is written on the terminal of the user who tried to access the tape.

te%d: not online. An attempt was made to access the tape while it was omine: this message is
written on the terminal of the user who tried to access the tape.

tecYod: can't switch density in mid-tape. An attempt was made to write on a tape at a different
density than is already recorded on the tape. This message is written on the terminal of the
user who tried to switch the density.

te%d: hard error bn'Ytld er = IYllb. A tape error occurred at block bIT. the tm error register is
printed in octal with the bits symbolically decoded. Any error is fatal on non-raw tape: when
possible the driver will have retried the operation which failed several times before reponing
the error.

te%d: lost interrupt. A tape operation did not complete within a reasonable time. most likely
because the tape was taken off-line during rewind or lost vacuum. The controller should. but
does not, give an interrupt in these cases. The device will be made available again after this
message. but any current open reference to the device will return an error as the operation in
progress aborts.

If any non-data error is encountered on non-raw tape. it refuses to do anything more until
closed.

4th Berkeley Distribution 27 July 1983

TS(4) UNIX Programmer's Manual TS(4)

NAME
ts - TS-ll magtape interface

SYNOPSIS
controller zsO at uba? csr 0172520 vector tsintr
tape tsO at zsO drive 0

DESCRIPTION
The ts-ll combination provides a standard tape drive interface as described in mtio(4). The ts-
11 operates only at 1600 bpi, and only one transport is possible per controller.

SEE ALSO
mt< 1), tar(n, tp(1), mtio(4), h(4), tm (4), m1(4), ut (4)

DIAGNOSTICS

BUGS

ts%d: no write ring. An attempt was made to write on the tape drive when no write ring was
present~ this message is written on the terminal of the user who tried to access the tape.

ts%d: not online. An attempt was made to access the tape while it was omine~ this message is
written on the terminal of the user who tried to access the tape.

ts%d: hard error bn'Ytld xsO =tV4lh. A hard error occurred on the tape at block bIT. status register
o is printed in octal and symbolically decoded as bits.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

The device lives at the same address as a tm-ll (m(4)~ as it is very difficult to get this device to
interrupt, a generic system assumes that a ts is present whenever no tm-II exists but the csr
responds and a ts-l1 is configured. This does no harm as long as a non-existent ts-l1 is not
accessed.

4th Berkeley Distribution 27 July 1983

TTY (4) UNIX Programmer's Manual TTY(4)

NAME
tty - general terminal interface

SYNOPSIS
#include < sgtt~·.h>

DESCRIPTION
This section describes both a particular special file Ide" Itty and the terminal drivers used for
conversational computing.

Line disciplines.

The system provides different line disciplines for controlling communications lines. In this ver­
sion of the system there are three disciplines available:

old The old (standard) terminal driver. This is used when using the standard shell sh(1)
and for compatibility with other standard version 7 UNIX systems.

new A newer terminal driver, with features for job control~ this must be used when using
c:sh(1).

net A line discipline used for networking and loading data into the system over communi­
cations lines. It allows high speed input at very low overhead, and is described in
bk<4>.

Line discipline switching is accomplished with the TIOCSETD ioc[/:

int Idisc = LDISe: ioctHfiledes, TIOCSETD, &Idisc>:

where LDISe is OTTYDISC for the standard tty driver. NTTYDISC for the new driver and
NETLDISC for the networking discipline. The standard (currently old) tty driver is discipline 0
by convention. The current line discipline can be obtained with the TIOCG ETD ioct!. Pending
input is discarded when the line discipline is changed.

AU of the low-speed asynchronous communications ports can use any of the available line dis­
ciplines. no matter what hardware is involved. The remainder of this section discusses the
"old" and "new" disciplines.

The control terminal.

When a terminal file is opened. it causes the process to wait until a connection is established.
In practice. user programs seldom open these files~ they are opened by illi1(8) and become a
user's standard input and output file.

If a process which has no control terminal opens a terminal file. then that terminal file becomes
the control terminal for that process. The control terminal is thereafter inherited by a child
process during a /ork(2). even if the control terminal is closed.

The file Ide\-!tty is. in each process. a synonym for a c:olltrol terminal associated with that pro­
cess. It is useful for programs that wish to be sure of writing messages on the terminal nJ
matter how output has been redirected. It can also be used for programs that demand a file
name for output. when typed output is desired and it is tiresome to find out which terminal is
currently in use.

Process groups.

Command processors such as csh(1) can arbitrate the terminal between different jobs by placing
related jobs in a single process group and associating this process group with the terminal. A
terminals associated process group may be set using the TIOCSPG RP iOC1/(2):

iocti<fildes, TIOCSPGRP, &pgrp)

4th Berkeley Distribution 9 February 1983

TTY (4) UNIX Programmer's Manual TTY (4)

or examined using TIOCGPGRP rather than TIOCSPGRP, returning the current process group
in pgrp. The new terminal driver aids in this arbitration by restricting access to the terminal by
processes which are not in the current process group~ see Job access contml below.

Modes.

The terminal drivers have three major modes. characterized by the amount of processing on the
input and output characters:

cooked The normal mode. In this mode lines of input are collected and input editing is
done. The edited line is made available when it is completed by a newline or when
an EOT (control-D, hereafter "D) is entered. A carriage return is usually made
synonymous with newline in this mode. and replaced with a newline whenever it is
typed. All driver functions (input editing, interrupt generation, output processing
such as delay generation and tab expansion, etc.) are available in this mode.

CBREAK This mode eliminates the character, word, and line editing input facilities, making
the input character available to the user program as it is typed. Flow control.
literal-next and interrupt processing are still done in this mode. Output processing is
done.

RAW This mode eliminates all input processing and makes all input characters available as
they are typed~ no output processing is done either.

The style of input processing can also be very different when the terminal is put in non­
blocking i/o mode: see !cmf{2L In this case a remJ(2) from the control terminal will never
block, but rather return an error indication (EWOULOBLOCK) if there is no input available.

A process may also request a SIGIO signal be sent it whenever input is present. To enable this
mode the F ASYNC flag should be set using fCI1l/(2)'

I nput editing.

A UNIX terminal ordinarily operates in full-duplex mode. Characters may be typed at any
time, even while output is occurring, and are only lost when the system's character input
buffers become completely choked. which is rare. or when the user has accumulated the max­
imum allowed number of input characters that have not yet been read by some program.
Currently this limit is 256 characters. In the old terminal driver all the saved characters are
thrown away when the limit is reached, without notice: the new driver simply refuses to accept
any further input, and rings the terminal bell.

Input characters are normally accepted in either even or odd parity with the parity bit being
stripped off before the character is given to the program. By clearing either the EVEN or ODD
bit in the flags word it is possible to have input characters with that parity discarded (see the
Summary below')

In all of the line disciplines, it is possible to simulate terminal input using the TIOCSTI ioctl.
which takes, as its third argument. the address of a character. The system pretends that this
character was typed on the argument terminal. which must be the control terminal except for
the super-user (this call is not in standard version 7 UNIX).

Input characters are normally echoed by putting them in an output queue as they arrive. This
may be disabled by clearing the ECHO bit in the flags word using the srry(3) call or the
TIOCSETN or TIOCSETP ioctls (see the Summary below).

In cooked mode, terminal input is processed in units of lines. A program attempting to read
will normally be suspended until an entire tine has been received (but see the description of
SIGTTIN in Modes above and FIONREAO in Summary below.) No matter how many charac­
ters are requested in the read call, at most one line will be returned. It is not. however. neces­
sary to read a whole line at once~ any number of characters may be requested in a read. even
one, without losing information.

4th Berkeley Distribution 9 February 1983 2

TTY (4) UNIX Programmer's Manual TTY(4)

During input. line editing is normally done. with the character '#' logically erasing the last
character typed and the character '@' logically erasing the entire current input line. These are
often reset on crt's; with "H replacing #, and "U replacing @. These cha.acters never eiase
beyond the beginning of the current input line or an "D. These characters may be entered
literally by preceding them with .\ '~ in the old teletype driver both the '\ ' and the character
entered literally will appear on the screen~ in the new driver the t.\ ' will normally disappear.

The drivers normally treat either a carriage return or a newline character as terminating an
input line. replacing the return with a newline and echoing a return and a line feed. If the
CRMOD bit is cleared in the local mode word then the processing for carriageteturn is dis­
abled. and it is simply echoed as a return. and does not terminate cooked mode input.

In the new driver there is a literal-next character "V which can be typed in both cooked and
CBREAK mode prec~ding any character to prevent its special meaning. This is to be preferred
to the use of '\ • escaping erase and kill characters, but .\ • is (at least temporarily) retained with
its old function in the new driver for historical reasons.

The new terminal driver also provides two other editing characters in normal mode. The
word-erase character, normally "W. erases the preceding word, but not any spaces before it.
For the purposes of "W. a word is defined as a sequence of non-blank characters. with tabs
counted as blanks. Finally, the reprint character. normally -R. retypes the pending input begin­
ning on a new line. Retyping occurs automatically in cooked mode if characters which would
normally be erased from the screen are fouled by program output.

Input echoing and redisplay

In the old terminal driver. nothing special occurs when an erase character is typed~ the erase
character is simply echoed. When a kill character is typed it is echoed followed by a new-line
(even if the character is not killing the line. because it was preceded by a ~\ '!.)

The new terminal driver has several modes for handling the echoing of terminal input. con­
trolled by bits in a local mode word.

Hardcopy Terminals. When a hardcopy terminal is in use, the LPRTERA bit is normally set in
the local mode word. Characters which are logically erased are then printed out backwards pre­
ceded by .\ · and followed by or in this mode.

Crr terminals. When a crt terminal is in use, the LCRTBS bit is normally set in the local mode
word. The terminal driver then echoes the proper number of erase characters when input is
erased~ in the normal case where the erase character is a "H this causes the cursor of the termi­
nal to back up to where it w.as before the logically erased character was typed. If the input has
become fouled due to interspersed asynchronous output. the input is automatically retyped.

EraSing characters from a crT. When a crt terminal is in use, the LCRTERA bit may be set to
cause input to be erased from the screen with a hbackspace-space-backspace" sequence when
character or word deleting sequences are used. A LCRTKIL bit may be set as well. causing th'~
input to be erased in this manner on line kill sequences as well.

Echoing' oj control characters. If the LCTLECH bit is set in the local state word, then non­
printing <ControD characters are normally echoed as "X (for some X) rather than being echoed
unmodified~ delete is echoed as "?

The normal modes for using the new terminal driver on crt terminals are speed dependent. At
speeds less than 1200 baud, the LCRTERA and LCRTKILL processing is painfully slow. so
suy(I) normany just sets LCRTBS and LCTLECH~ at speeds of 1200 baud or greater all of
these bits are normally set. SIIY(1) summarizes these option settings and the use of the new
terminal driver as Hnewcrt."

4th Berkeley Distribution 9 February 1983 3

TTY (4) UNIX Programmer's Manual TTY (4)

Output processing.

When one or more characters are written, they are actually transmitted to the terminal as soon
as previously-written characters have finished typing. (As noted above, input characters are
normally echoed by putting them in the output queue as they arrive.> When a process produces
characters more rapidly than they can be typed, it will be suspended when its output queue
exceeds some limit. When the queue has drained down to some threshold the program is
resumed. Even parity is normally generated on output. The EOT character is not transmitted
in cooked mode to prevent terminals that respond to it from hanging up~ programs using raw or
cbreak mode should be careful.

The terminal drivers provide necessary processing for cooked and CBREAK mode output
including delay generation for certain special characters and parity generation. Delays are
available after backspaces AH, form feeds AL, carriage returns AM, tabs AI and newlines AJ. The
driver will also optionally expand tabs into spaces, where the tab stops are assumed to be set
every eight columns. These functions are controlled by bits in the tty flags word: see Summar)'
below.

The terminal drivers provide for mapping between upper and lower case on terminals lacking
lower case, and for other special processing on deficient terminals.

Finally, in the new terminal driver, there is a output flush character, normally AO, which sets
the LFLUSHO bit in the local mode word, causing subsequent output to be flushed until it is
cleared by a program or more input is typed. This character has effect in both cooked and
CBREAK modes and causes pending input to be retyped if there is any pending input. An ioctl
to flush the characters in the input and output queues TIOCFLUSH, is also available.

Upper case terminals and Hazeltines

If the LCASE bit is set in the tty flags, then all upper-case ietters are mapped into the
corresponding lower-case letter, The upper-case letter may be generated by preceding it by '\',
If the new terminal driver is being used, then upper case letters are preceded by a '\ . when
output. In addition, the following escape sequences can be generated on output and accepted
on input:

for
use \. \ ! \ A

{
\ {

}
\)

To deal with Hazeltine terminals, which do not understand that - has been made into an ASCII
character. the L TILDE bit may be set in the local mode word when using the new terminal
driver: in this case the character - will be replaced with the character' on output.

Flow control.

There are two ('haracter~ <the stop character, normally 'S, and the start character. normally AQ)
which cause output to be suspended and resumed respectively. Extra stop characters typed
when output is already stopped have no effect, unless the start and stop characters are made the
same, in which case output resumes.

A bit in the flags word may be set to put the terminal into TANDEM mode. In this mode the
system produces a stop character (default "'S) when the input queue is in danger of overflowing,
and a start character (default "'Q) when the input has drained sufficiently. This mode is useful
when the terminal is actually another machine that obeys the conventions.

Line control and breaks.

There are several ioerl calls available to control the state of the terminal line. The TIOCSBRK
ioctl will set the break bit in the hardware interface causing a break condition to exist: this can
be cleared (usually after a delay with sleep(3» by TIOCCBRK. Break conditions in the input
are reflected as a null character in RAW mode or as the interrupt character in cooked or
CBREAK mode. The TIOCCDTR ioctl will clear the data terminal ready condition: it can be

4th Berkeley Distribution 9 February 1983 4

TTY(4) UNIX Programmer's Manual TTY (4)

set again by TIOCSDTR.

When the carrier signal from the dataset drops (usually because the user has hung up his termi­
naf) a SIGHUP hangup signal is sent to the processes in the distinguished process group of the
terminat this usually causes them to terminate (the SIGHUP can be suppressed by setting the
LNOHANG bit in the local state word of the driver.> Access to the terminal by other processes
is then normally revoked. so any further reads will fail. and programs that read a terminal and
test for end-of-file on their input will terminate appropriately.

When using an ACU it is possible to ask that the phone line be hung up on the last close with
the TIOCHPCL ioctl~ this is normalJy done on the outgoing line.

I nterrupt characters.

There are several characters that generate interrupts in cooked and CBREAK mode~all are sent
the processes in the control group of the terminal. as if a TIOCGPGRP ioctl were done to get
the process group and then a killpg(2) system can were done. except that these characters also
flush pending input and output when typed at aterm.inal Ui 'fa TIOCFLUSH >. The characters
shown here are the defaults~ the field names in the structures (given below) are also shown.
The characters may be changed. although this is not often done.
A? t_intrc (Delete) generates a SIGINT signal. This is the normal way to stop a process

which is no longer interesting, or to regain control inan interactive program.

t_quitc (FS) generates a SIGQUIT signal. This is used to cause a program to terminate
and produce a core image, if possible. in the file core in the current directory.

t_suspc (EM) generates a SIGTSTP signal. which is used to suspend the current pro­
cess group.

t_dsuspc (SUB) generates a SIGTSTP signal as AZ does. but the signal is sent when a
program attempts to read the Ay, rather than when it is typed.

Job access control.

When using the new terminal driver, if a process which is not in the distinguished process
group of its control terminal attempts to read from that terminal its process group is sent a
SIGTTIN signal. This signal normally causes the members of that process group to stop. If,
however. the process is ignoring SIGTTIN. has SIGTTIN blocked. is an orphan process. oris in
the middle of process creation using vjork(2», it is instead returned an end-of-file. (An orphan
process is a process whose parent has exited and has been inherited by the init(8) process.)
Under older UNIX systems these processes would typically have had their input files reset to
/del-!null, so this .is a compatible change.

When using the new terminal driver with the LTOSTOP bit set in the local modes. a process is
prohibited from writing on its control terminal if it is not in the distinguished process group for
that terminal. Processes which are holding or ignoring SIGTTOUsignals. which are orphans. or
which are in the middle of a ~fork(2) are excepted .and allowed to produce output.

Summary of modes.

Unfortunately, due to the evolution of the terminal driver.. there are 4 different structures
which contain various portions of the driver data. The first of these (sgttyb) contains that part
of the information largely common between version 6 and version 7 UNIX systems. The
second contains additional control characters added in version 7. The third is a word of local
state peculiar to the new terminal driver, and the fourth is another structure of special charac­
ters added for the new driver. In the future a single structure may be made available to pro­
grams which need to access all this information~ most programs need not concern themselves
with all thi·s state.

4th Berkeley Distribution 9 February 1983 5

TTY (4) UNIX Programmer's Manual

Basic modes: Sgttv.

The basic ioctls use the structure defined in < sgtty. h> :

struct sgttyb {
char sg_ispeed;
char sg_ospeed;
char sg_ erase;
char sg_kill:
short sg_ftags;

} ;

TTY (4)

The sg_ispeed and sg_ospeed fields describe the input and output speeds of the device according
to the following table, which corresponds to the DEC DH-ll interface. If other hardware is
used, impossible speed changes are ignored. Symbolic values in the table are as defined in
< sgtty.h>.

BO 0
B50 1
B75 2
BII0 3
B134 4
B150 5
B200 6
B300 7
B600 8
B1200 9
B1800 10
B2400 11
B4800 12
B9600 13

(hang up dataphone)
50 baud
75 baud
110 baud
134.5 baud
150 baud
200 baud
300 baud
600 baud
1200 baud
1800 baud
2400 baud
4800 baud
9600 baud

EXT A 14 External A
EXTB 15 External B

In the current configuration, only 110, 150, 300 and 1200 baud are really supported on dial-up
lines. Code conversion and line control required for IBM 2741's (} 34.5 baud) must be imple­
mented by the user's program. The half-duplex line discipline required for the 202 dataset
(1200 baud) is not supplied: full-duplex 212 datasets work fine.

The sg_erase and sg_kill fields of the argument structure specify the erase and kill characters
respectively. (Defaults are # and @,)

The sg-,!iags field of the argument structure contains several bits that determine the system's
treatment of the terminal:

ALLDELA Y 0177400 Delay algorithm selection
BSDELA Y 0100000 Select backspace delays (not implemented):
BSO 0
BSI 0100000
VTDELA Y 0040000 Select form-feed and vertical-tab delays:
FFO 0
FFI 0100000
CRDELA Y 0030000 Select carriage-return delays:
CRO 0
CRI 0010000
CR2 0020000
CR3 0030000

4th Berkeley Distribution 9 February 1983 6

TTY (4)

TBDELAY
TABO
TABI
TAB2
XTABS
NLDELAY
NLO
NLI
NL2
NL3
EVENP
ODDP
RAW
CRMOD
ECHO
LCASE
CBREAK
TANDEM

UNIX Programmer's Manual

0006000 Select tab delays:
o
0001000
0004000
0006000
0001400 Select new-line delays:
o
0000400
0001000
0001400
0000200 Even parity allowed on input (most terminals)
OOOO} 00 Odd parity allowed on input
0000040 Raw mode: wake up on aU characters, 8-bit interface
0000020 Map CR into LF~ echo LF or CR as CR-LF
0000010 Echo (full duplex)
0000004 Map upper case to lower on input
0000002 Return each character as soon as typed
0000001 Automatic flow control

TTY(4)

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In an cases a value of 0 indicates no delay.

Backspace delays are currently ignored but might be used for Terminet 300's.

If a form-feed/vertical tab delay is specified. it lasts for about 2 seconds.

Carriage-return delay type 1 lasts about .08 seconds and is suitable for the Terminet 300. Delay
type 2 lasts about .16 seconds and is suitable for the VT05 and the TI 700. Delay type 3 is suit­
able for the concept-} 00 and pads lines to be at least 9 characters at 9600 baud.

New-line delay type 1 is dependent on the current column and is tuned for Teletype model
37's. Type 2 is useful for the VT05 and is about .10 seconds. Type 3 is unimplemented and is
O.
Tab delay type 1 is dependent on the amount ·of movement and is tuned to the Teletype model
37. Type 3. called XT ABS. is not a delay at all but causes tabs to be replaced by the appropri­
ate number of spaces on output.

Input characters with the wrong parity, as determined by bits 200 and 100. are ignored in
cooked and CBREAK mode.

RA W disables all processing save output flushing with LFLUSHO~ full 8 bits of input are given
as soon as it is available: all 8 bits are passed on output. A break condition in the input is
reported as a null character. If the input queue overflows in raw mode it is discarded: this
applies to both new and old drivers.

CRMOD causes input carriage returns to be turned into new-lines~ input of either CR or LF
causes LF-CR both to be echoed (for terminals with a new-line function).

CBREAK is a sort of half-cooked (rare?) mode. Programs can read each character as soon as
typed, instead of waiting for a full line: all processing is done except the input editing: character
and word erase and line kill. input reprint. and the special treatment of \ or EOT are disabled.

TANDEM mode causes the system to produce a stop character (default "5) whenever the input
queue is in danger of overflowing. and a start character (default "Q) when the input queue has
drained sufficiently. It is useful for flow control when the 4terminal' is really another computer
which understands the conventions.

4th Berkeley Distribution 9 February 1983 7

TTY (4) UNIX Programmer's Manual TTY(4)

Basic ioctls

In addition to the TIOCSETD and TIOCGETD disciplines discussed in Line disciplines above,
a large number of other ioctl(2) calls apply to terminals, and have the general form:

#include < sgtty.h>

ioctHfildes, code, arg)
struct sgttyb ·arg:

The applicable codes are:

TIOCGETP Fetch the basic parameters associated with the terminal. and store in the
pointed-to sguyb structure.

TIOCSETP Set lhe parameters according to the pointed-to sgltyb structure. The interfuce
delays until output is quiescent. then throws away any unread churacters,
before changing the modes.

TIOCSETN Set the parameters like TIOCSETP but do not delay or flush input. Input is
not preserved, however, when changing to or from RAW.

With the following codes the arg is ignored.

TIOCEXCL Set "'exclusive-use" mode: no further opens are permitted until the file has
been closed.

TIOCNXCL Turn off "exclusive-use" mode.

TIOCHPCL \Vhen the file is closed for the last time. hang up the terminal. This is useful
when the line is associated with an ACU used to place outgoing culls.

TIOCFLUSH All characters waiting in input or output queues are flushed.

The remaining calls are not available in vanilla version 7 UNIX. In cases where arguments are
required, they are described: arg should otherwise be given as O.

TIOCSTI the argument is the address of a character which the system pretends was typed
on the terminal.

TIOCSBRK the break bit is set in the terminal.

TIOCCBRK the break bit is cleared.

TIOCSDTR data terminal ready is set.

TIOCCDTR data terminal ready is cleared.

TIOCGPGRP arg is the address of a word into which is placed the process group number of
the control terminal.

TIOCSPG RP arg i ... i.t word (typically a process id) which becomes the process group for the
control terminal.

FIONREAD returns in the long integer whose address is arg the number of immediately
readable characters from the argument unit. This works for files, pipes. and
terminals. but not (yet> for multiplexed channels.

The second structure associated with each terminal specifies characters that are special in both
the old C!nd new terminal interfaces: The following structure is defined in < sys/;ocll.h>. which
is automatically included in < sgtty.h> :

struct tchars {
char t_intrc;
char t_quitc;

4th Berkeley Distribution

/. interrupt • /
/. quit ./

9 February 1983 8

TTY (4) UNIX Programmer's Manual TTY(4)

};

char
char
char
char

t_startc;
t_stopc;
t_eofc;
t_hrkc;

/- start output -/
/- stop output-/
/- end-o.f-file -/
/- input delimiter Hiken» -/

The default values for these characters are"?, "\, "Q. "s. "D. and -1. A character value of
-1 eliminates the effect of that character. The Cbrkf character, by default -1. acts like a
new-line in that it terminates a 'line.' is echoed. and is passed to the program. The 'stop' and
'starf characters may be the same. to produce a toggle effect. It is probably counterproductive
to make other special characters (including erase and kill) identical. The applicable ioctl calls
are:

TIOCGETC Get the special characters and put them in the specified structure.

TIOCSETC Set the special characters to those given in the structure.

Local mode

The third structure associated with each terminal is a local mode word~ except for the
LNOHANG bit. this word is interpreted only when the new driver is in use. The bits of the
local mode word are:

LCRTBS
LPRTERA
LCRTERA
LTILDE
LMDMBUF
LLITOUT
LTOSTOP
LFLUSHO
LNOHANG
LETXACK
LCRTKIL
LINTRUP
LCTLECH
LPENDIN
LDECCTQ

000001 Backspace on erase rather than echoing erase
000002 Printing terminal erase mode
000004 Erase character echoes as backspace-space-backspace
000010 Convert - to . on output (for Hazeltine terminals)
000020 Stop/start output when carrier drops
000040 Suppress output translations
000100 Send SIGTTOU for background output
000200 Output is being flushed
000400 Don't send hangup when carrier drops
001000 Diablo style buffer hacking (unimplemented)
002000 BS-space-BS erase entire line on line kill
004000 Generate interrupt SIGTINT when input ready to read
010000 Echo input control chars as "X. delete as "?
020000 Retype pending input at next read or input character
040000 Only "Q restarts output after "S, like DEC systems

The applicable ioell functions are:

TIOCLBIS arg is the address of a mask which is the bits to be set in the local mode word.

TIOCLBIC

TIOCLSET

TIOCLGET

arg is the address of a mask of bits to be cleared in the local mode word.

arg is the address of a mask to be placed in the local mode word.

arg is the address of a word into which the current mask is placed.

Local special chars

The final structure associated with each terminal is the Ilehars structure which defines interrupt
characters for the new terminal driver. Its structure is:

struct Itehars (
char
char
ehar
char

t_suspc;
t_dsuspc;
,-rprnte;
t_flushc;

4th Berkeley Distribution

/- stop process signal -/
/- delayed stop process signal - /
/- reprint line -/
/- flush output <toggles) - /

9 February 1983 9

TTY (4) UNIX Programmer's Manual TTY(4)

FILES

char t_ werasc; /* word erase * /

} ;
char t_lnextc; /* literal next character * /

The default values for these characters are ·Z, ·Y, ·R, ·0, ·W, and AV. A value of -1 disables
the character.

The applicable ioctl functions are:

TIOCSL TC args is the address of a Itchars structure which defines the new local special charac­
ters.

TIOCGL TC args is the address of a Itchars structure into which is placed the current set of
local special characters.

/dev/tty
/dev/tty·
/dev/console

SEE ALSO
csh(I), stty(I), ioctH2), sigved2), suy(3C), getty (8), init(8)

BliGS
Half-duplex terminals are not supported.

4th Berkeley Distribution 9 February 1983 10

TV (4) UNIX Programmer's Manual TV (4)

NAME
tu - VAX-11/730 and VAX-1l/750 TU58 console casseue interface

SYNOPSIS
options MRSP (for VAX-Il/750's with an MRSP prom)

DESCRIPTION

FILES

The tu interface provides access to the V AX II /730 and 11/750 TV 58 console cassette
drive(s).

The interface supports only block i/o to the TV58 cassettes. The devices are normally manipu­
lated with the arjf(8V) program using the uf' and Hrn" options.

The device driver is automatically included when a system is configured to run on an 11/730 or
11/750.

The TU58 on an 11/750 uses the Radial Serial Protocol (RSP) to communicate with the cpu
over a serial line. This protocol is inherently unreliable as it has no flow control measures built
in. On an 11/730 the Modi·fied Radial Serial Protocol is used. This protocol incorporates flow
control measures which insure reliable data transfer betwe,en the cpu and the device. Certain
11/750's have been modified to use the MRSP prom used in the 11/730. To reliably use the
console TU58 on an 111750 under UNIX, the MRSP prom is required. For those 11/750'5
without an MRSP prom, an unreliable but often useable interface has been developed. This
interface uses an assembly language Hpseudo-dma" routine to m.inimize the receiver interrupt
service latency. To include this code in the system, the co·nfiguration must not specify the sys­
tem will run on an 11/730 or use an MRSP prom. This unfortunately makes it impossible to
configure a single system which will properly handle TU58's on both an 11/750 and an 11/730
(unless both machines have MRSP proms).

/dev/tuO
/dev/tul (only on a VAX-11/730)

SEE ALSO
arff(8V)

DIAGNOSTICS

BUGS

tuOfod: no bp, active Ofod. A transmission complete interrupt was received with no outstanding
i/o request. This indicates a hardware problem.

tu%d protocol error, state==%s, op==%x, cnt=o/od, block==%d. The driver entered an illegal
state. The information printed indicates the illegal state, operation cu.rrently being executed,
the i/o count. and the block number on the cassette ..

tuOfod receive state error, state==Ofo·s, byte==Ofox. The' drive.r entered an illegal state in the
receiver finite state machine. The state is shown along with the control byte of the received
packet.

tuOfod: read stalled. A timer watching the controller detected no interru.pt for an extended
period while an operation was outstanding. This usually indicates that one or more recei ver
interrupts were lost and the transfer is restarted (I 1/750 only).

tu%d: hard error bn%d, pk_mod Ofoo. The device returned a status code indicating a hard error.
The actual error code is shown in octal. No retries are attempted by the driver.

The VAX-Il/750 console interface without MRSP prom is unuseable while the system is
multi-user~ it should be used only with the system running single-user and, even then, with
caution.

4th Berkeley Distribution 27 July 1983,

UI)A(4) UN IX Progr;IIJlIIICr's Manual U \)/\ (4)

NAi\U:
ucla UnA-50 disk controller illterlilec

SY I'l() l'SIS

cnnlrolkl' lllbO at llhaO fsr 0171150 ,'cctor udilltr
disk raO at udall dri\'c 0

DFS{ 'HiPTION
This is a drin'r for the I)LC Un;\-SO di(;!.: cOJltroller. The U\)/\-SO cOl1lnllll1icatcs 'A'ith the IlOst
Illt"llugh a p;lcL:t oriented pr,l!i)cul termed lltl' iV1:Iss SlOJ";.lgl' COlltrol Protocol (i\ISCP). COllsult the
file (1'lI.\/IJIS('I'.IJ) I()r a deldikd lkscriptiol) ur this protocol.

hks with lilillor deYice 1111111hcrs () through 7 reter to \'<lriOII\ portiolls or drive 0; minor tIL-vices 8
thnH'gh IS I\.'kr to driv(, I. I.'le. The st<llll.l;:rd tll..'\ ice n<lllil'S h'.;'t·,ill with "r(l" f()lloweu hy the drive
1I11111\1er ;IIH.\ t\1ell a letler a-h I()r P;lrtiliolls {)-7 rC'"'IHxlively. The char;lctcr '! stallds here II)r a drive
11I1111I1Cl" ill the r;lllge 0-7.

The hlock liks ;Iecess tlh.~ disk "i;1 the Syskill's Ilorlllal hllll'l.'ring 1lh.'l.'1l;1I1i~;1Il ;IIHI 1l1ay hI..' re;H\ anu
wriul'll without regard to plly.·.;ic;t\ disk r('curds. There is ;!lso (\ 'r;I\\" inlcrl;lcl' \\hkh provides I()('

direct tr;IINllis:-,ioll bCtWl'l'll Ille disk ;lI1d tll': lIser's reill! (lr \Hile huller. /\ sil1~~1c f'l',ld ur write ca\1
results in ex,lc!ly one I/O (lpl.'r;llion ;llld li1l'rl't(lf"I,? r,l\\' I/{) is cOllsider,thly Illore ctliciclll when
llIi1ny \-"ords (l1\~ tri\ll~fllilt':d. Till' Ilallll'S (II' thl..' ril\\, Ilks cOI)Vc'llliollal\y h.'gill wilh an cxtra 'r.'

III ril\\, I/O COllllts should h\"., (J IIIl1ltiple or 512 bytes (;1 disk s~:ctor). I.ikewisc s('('/..: ellis sllnllid
speciry a Illulliple or SI2 hyll'S.

DISK Sl; I'POIU'
'I his dri\'(~r 11;Jlldlcs ;tli dri\l'S \',hidl III;IY I,.,' l'OlllllYkd 10 til\".' l.iJ){\-)(). J)rivl' types per se .II\,' Ilot

1"t'C()1.1,Il.i/('(1, hilt r;llher tilt' \;ililhk Ieng(h pdrtitioll:-' <11\' d\..'III1\..'<.I ;IS h;1\ ill~I, ;\11 "illlillile" length ;lIKl

lhe conlrolkr is relil'd Oil to rellll'll ;tll l'ITor \\'Ih.'11 <Ill ill,It.'c\.'~';'ihk hlock is 1 ... ·I.llI\".'Sl\.'d. !-"<>I. construct­
ing file Sy:-'ll' I liS, IH)\\c\\.'\" tl1-' p;lrtitiPlls SillS ;\1\' n.'quil\.'tl. Till' origin ;1111.1 Sill' (in s\.'ctOf"';) or the
p~;clld()-disks Oil l'<lch dri\l' (II\.' sl!mvll Iwl()\\'. \';ll'titi(lIlS ,11\' 1101 rOllllded 1(1 cylillder lHHlIllLtries, as
Oil other driH'\, hec;llI~;e the lypl' or dri\'c dtLlclwd to the cOlllrolkr is discm \.Ted too !:ill' ill the
;llltoc'(lnligllr<ltiol1 PJ"OL'l'SS t() IIl<1illt<lill S\""p;I~':I'" p~lrtiti()1l (;Ihks for l'(lch dri\l,'. (rill' \;Ick or proper
dri\'C type recognilioll \\olild ht' lIlorc (,;I',il~ lil':I1l \\ itll if' llIl' Pilrtiti()11 Llhks were I\\\(.\ oil' the
drive.)

I{ A(,() p(lrl itiolls (SLlI1l()\·d ·spl'ci lie!)
di~,k Sl;llt length
m?a 0 l5XR4
ra?b ISXX4 JJ140
m'!e 0 ~I()()I7 ()
ra'!d l3IJO.:~ ?OOO()O
ra'!e .U IJ04 (,XS72
ra?g 4<)324 g:~()XO

ra?h IJI404 }(,X772

R;\XO partitions
disk start length
ra?a 0 l5XR4
ra'!b IS884 J.H40
ra?c 0 747()()G
ra?g 4lJJ24 8J.{)XO
ra?1l 131404 111202

RAg I pilrtiti()II~; (Slanl()("(J'spccilic!)
disk start length
ra?a 0 IS884

4tll Ikrkcky I)islrii>utioll 1

unA (4) UN IX Programmcr's I\buual lIDA (4)

"'II.K~

ra'!h 15XX4 JJ4~O

ra'!c 0 XI) I 072
ra'!d 1313(H 2(H)(H)()

ra'!c .nl3tH ?79X~'~
ra'!l' ()IIlXX '279X~4

ra'!g ,~t)J!4 X~()X()

ra'!h 131~IO·t 751)()6X

'1'111..' 1'.1'\1 pClnilioll is IlOnnally lIs\'d li)1' tht,' root fik S~\ll'l1l. llh' ra?h partition ~tS (I p<I~I.illg an.\I, <IIK1
til\.' ra'!c p;lrlitioll for p;ll'k-p;tck copyillg (illllaps Ill\.' elllire disk).

/ lk \' / r;lf O-l) 1Ia-11
/lk\/IT<l11l ·911a-1l

n I" (; NOS fI ('S

BlJ(;S

IHb: IIhiJlfo 00\. (V'i\" II/7S0 Iml\'.) \\'Jl\.'11 ;t1loL':ltillg Ui':IBl'S 1'1'SOllrn's, Lll\' dri\cl' Ii.HIIHI it
;!In:;td\ 1';ld n·SlIlIl't:\.':-; prl...'viollsly ;t11()c~lll...'d. TIl;s ilidiLll\.'S a hllg ill Ill\.' driv(.'1'.

lulasa 0;10, stall~ (,loll. (i\ddili()Il;t1 ~l;tltlS illf()rmatioll givl.'ll ;lIkr a b;ll'd i/o l...'rror.) I'h~ "allics or the
til):\-50 st;ltllS rt,:gi-;tl'r illHllhl..' illlernal driH'1' slate ;II'l,' prillted.

uda";;tI: r;lIulolH inkrrupt ignon'cl. 1\11 Ulh..'XPl'Ctl\.1 i!lkrnlpl \\,:1', I\.'cci\cd k.g. when no i/o w",\
f!\.'Il<..lillg). '1'11(.' int(,'ITupl is igllored.

ucl:{,;,d: inll'rrupt ill 1I1lknOWII slall' o;ld igllOrl'cl. :'Il ink'rnlpt \\;IS l'l'<:ci'.'l'd whcll the driver was in
;til lIllk IHl\\ Il intern:" '1t<ltl'. Indic;lll'S;1 11; 11'<.1 \\';1 n: pn Ihklll or ;1 drin~r hllg.

IllLt°;,tI: ralal l'ITOI' (0;10), Th,~' liJ),\)() il\~:ical\..'d :1 "1:11;11 error" ill thl..' ~;tatlls rctlll'!h.'d to lite hust.
Till' Ct IIltellh or till' ~l:ltllS rl'gi\(l'r ;11\' di-.plliyed.

01-'10'1.1 N F. (Addition;!I st;ltllS illf'orrll~tti()11 ~~i\'cll ,dh:r a 11;11'<1 i/o CIT(lr.) A hard i/o l'I'I'OI' occurrcd
hl'L';IlISl' (he dri".l' \\ ;IS Ilot OIl"liIlL'.

status %0. (..\dditi\)Il;d S(;ltlis inl(lrJll<ltioll gi\'l'1I ;tlkr a 1l;ll'd i/o crror.) TIll' '-lI<ltIlS inl(mna'lion
rl'tllrn~'d from the til)/\'5() is 1,lcked olllo lhl' elld or lIlt' 11;lnl \'ITor 1IIl':~S;lgl' prilll\.'d Oil the console.

ucla: ullkll(mn I)ad,l't. All 1\1SCP P;lckCl or llllkllllWIl l)'lll' was h.'L'L'in.'d fro II I lhe til),\-SO. l'hl'ck
lhl' c;lhlillg to till' COllI rollcl'.

The 1()llowing errors are illll'rprct;lliolls or ivlSCP error 1I1l'ss;lges returncd by lite til)A-SO l<') thl'
h()st.

mla%<I: %s crrol', l'()lllmll{~r ('HOI', l'H'ul 0%0.

uda%d: %s crror, host IHl'UICH,), an'css l'l'ror, eVl'lIt W';,o, addr 0%0.

uda%cl: %s l'lTCll', disk trallsfl'r l'I'I'OI', unit %d.

uda%d: o;,s l'rwl'. SI H {'ITOI', unil %11, {','cnt U%o.

lHlao;,cI: %s l'ITOI', sllIall disk crror, ullit %c1, {'H'1I1 w";I(), l'yl %d.

ud~,%d: %s crror, unknown error, ullit %d, formal U%o, l'vcnt 0%0.

Th~ partition tilhks werc so poorly I<lid out that they almosl certainly forced each site to t<lilor
thelll to their indi\'id,wl nCl'ds. Th~ problem is even worsc \-vhen a site has a mixcd collection of
driv(.'s. The hest sollltion would be to rl'<ld the p~lJ'tit ion tahks 011' the drive, .

The pilrtitions in the Slan(()J'(,1 version of the systell1 (Ire somewhat hetter, ,,!though thcy don't con­
((>rill <"Illirdy with the results or diskplII't(X).

.. ~th Berkeley Distrihution 27 .!uly l'nO 2 '

UDP (4P) UNIX Programmer's Manual UDP (4P)

NAME
udp - Internet User Datagram Protocol

SYNOPSIS
#include < sys/socket.h>
#include < netinet/in.h>

s = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION
UDP is a simple, unreliable datagram protocol which is used to support the SOCK_DGRAM
abstraction for the Internet protocol family. UDP sockets are connectionless. and are normally
used with the sendto and reCl'/rom calls. though the connect(2) call may also be used to fix the
destination for future packets (in which case the reCl,(2) or read(2) and send(2) or write{]) sys­
tem calls may be used).

UDP address formats are identical to those used by TCP. In particular UDP provides a port
identifier in addition to the normal Internet address format. Note that the UDP port space is
separate from the TCP port space (i.e. a UDP port may not be "connected" to a Tep port). In
addition broadcast packets may be sent (assuming the underlying network supports this) by
using a reserved "broadcast address"~ this address is network interface dependent.

DIAGNOSTICS
A socket operation may fail with one of the following errors returned:

[EISCONN] when trying to establish a connection on a socket which already has one. or
when trying to send a datagram with the destination address specified and the
socket is already connected:

[ENOTCONN] when trying to· send a datagram. but no destination address is specified. and
the socket hasn't been connected:

[ENOBUFS] when the system runs out of memory for an internal data structure:

[EADDRINUSE]
when an attempt is made to create a socket with a port which has already been
allocated~

[EADDRNOT A V AlL]

SEE ALSO

when an attempt is made to create a socket with a network address for which
no network interface exists.

send(2), recv(2). intro(4N). ined4F)

4th Berkeley Distribution 25 March 1982

UN (4) UNIX Programmer's Manual UN (4'

NAME
un - Ungermann-Bass interface

SYNOPSIS
device unO at ubaO csr 0160210 "ector unintr

DESCRIPTION
The un interface provides access to a 4 Mb/s baseband network. The hardware uses a standard
DEC DRII-W DMA interface in communicating with the host. The Ungermann-Bass
hardware incorporates substantial protocol software in the network device in an attempt to
offload protocol processing from the host.

The network number on which the interface resides must be specified at boot time with an
SIOCSIF AD DR ioctl. The host's address is discovered by communicating with the interfac~.
The interface will not transmit or receive any packets before the network number has been
defined.

DIAGNOSTICS
un'Yud: can't initialize. Insufficient UNIBUS resources existed for the device to complete ini­
tialization. Usually caused by having multiple network interfaces configured using butTered data
paths on a data path poor machine such as the 11/750.

unoAld: unexpected reset. The controller indicated a reset when none had been requested.
Check the hardware (but see the bugs section below).

un'Vr.d: stray interrupt. An unexpected interrupt was received. The interrupt was ignored.

un%d: input error csr=%b. The controller indicated an error on moving data from the device
to host memory.

un%d: bad packet type %d. A packet was received with an unknown packet type. The packet
is discarded.

un%d: output error csr=%b. The device indicated an error on moving data from the host to
device memory.

un'Ycld: invalid state utlld csr =%b. The driver found itself in an invalid internal state. The
state is reset to a base state.

un%d: can't handle af%d. A request was made to send a message with an address format
which the driver does not understand. The message is discarded and an error is returned to the
user.

un%d: error limit exceeded. Too many errors were encountered in normal operation. The
driver will attempt to reset the device. desist from attempting any i/o for approximately 60
seconds. then reset itself to a base state in hopes of resyncing itself up with the hardware.

un'Yod: rest::rting. \fter exceeding its error limit and resetting the device. the driver is restart­
ing operation.

SEE ALSO

BUGS

intro(4N), inet (4F)

The device does not reset itself properly resulting in the interface getting hung up in a state
from which the only recourse is to reboot the system.

4th Berkeley Distribution 27 July 1983

UP(4) UNIX Programmer's Manual UP(4)

NAME
up - unibus storage module controller/drives

SYNOPSIS
controller scO at uba? csr 0176700 vector upintr
disk upO at scO drive 0

DESCRIPTION
This is a generic UNIBUS storage module disk driver. It is specifically designed to work with
the Emulex SC-21 controller. It can be easily adapted to other controllers (although bootstrap­
ping witt not necessarily be directly possible.)

Files with minor device numbers 0 through 7 refer to various portions of drive 0; minor dev­
ices 8 through 15 refer to drive 1, etc. The standard device names begin with "up" followed
by the drive numb~r and then a letter a-h for partitions 0-7 respectively. The character'? stands
here for a drive number in the range 0-7.

The block files access the disk via the system's normal buffering mechanism and may be read
and written without regard to physical disk records. There is also a 'raw' interface which pro­
vides for direct transmission between the disk and the user's read or write buffer. A single read
or write call results in exactly one I/O operation and therefore raw I/O is considerably morc
efficient when many words are transmitted. The names of the raw files conventionally begin
with an extra 'r.'

In raw I/O counts should be a multiple of 512 bytes (a disk sector>. Likewise seek calls should
specify a multiple of 512 bytes.

DISK Sl:PPORT
The driver interrogates the controller's holding register to determine the type of drive attached.
The driver recognizes four different drives: AMPEX 9300, CDC 9766, AMPEX Capricorn. and
FUJITSU 160. The origin and size of the pseudo-disks on each drive are as follows:

CDC 9766 300M drive partitions:
disk start length
up?a 0 15884
up?b 16416 33440
up?c 0 500384
up?d 341696 15884
up?e 358112 55936
up?f 414048 861760
up?g 341696 158528
up?h 49856 291346

AMPEX 9300 300M drive partitions:

cyl
0-26
27-81
0-822
562-588
589-680
681-822
562-822
82-561

disk slall length cyl
up?a 0 15884 0-26
up?b 16416 33440 27-81
up? c 0 495520 0-814
up'?d 341696 15884 562-588
up?e 358112 55936 589-680
up?f 414048 81312 681-814
up?g 341696 153664 562-814
up?h 49856 291346 82-561

AMPEX Capricorn 330M drive partitions:
disk start length cyl
hp?a 0 15884 0-31
hp?b 16384 33440 32-97

4th Berkeley Distribution 27 July 1983

UP(4)

FILES

UNIX Programmer's Manual UP(4)

hp?c 0 524288 0-1023
hp?d 342016 15884 668-699
hp?e 358400 55936 700-809
hp?f 414720 109408 810-1023
hp?g 342'016 182112 668-1023
hp?h 50176 291346 98-667

FUJrTSU 160M drive partitions:
disk start length cyl
up?a 0 15884 0-49
up?b 16000 33440 50-154
up?c 0 263360 0-822
up?d 4960() 15884 155-204
up?e 65600 55936 205-379
up?! 121600 141600 380-822
up?g 49600 213600 155-822

It is unwise for all of these files to be present in one installa.tion. since there is overlap in
addresses and protection becomes a sticky matter. The up?a partition is normally used for the
root file system. the up?b partition as. a paging area. and the up?c partition for pack-pack copy­
ing (it maps the entire disk). On 160M drives the up?g pa.rtition. maps the rest of the pack. On
other drives both up'!g and up?h are used to map the remaining cyftnders.

I dev I up [0-71 [a-hI
Ide.vlrup[O-7Ha-hl

block files
raw files

SEE ALSO
hk (4). hp(4)i. uda (4)

DIAG~OSTICS

up6f6dOlitc: hard error sn'Yod cs2' =%·b erl =°lttb: er2 =I~tb. An unrecovera,ble error occurred during
transfer of the spedned: sector in the: s.pecified disk partiition. The content's of the cs2. er 1 and
er2 regis,ters are printed in octat and symbolicalJ'y wiith brts decoded. Th.e error was either unre­
coverable, or a large number of retry attempts (including o.ffset positioning and drive recalibra­
tion) could not recover the error.

up%d: write· lot ked. The write protect swj;tch was set on the drive when a write was attempted.
The write operation is not recoverable.

upIYud.: not ready. The drive was spun down Dr off line when it was accessed. The i/o operation
is not recoverable.

up%di : not ready (ftake-y). The drive was not ready. but aftef printing the message about bei.ng
not ready (which takes a fraction of a second)' was ready. The' operation is recovered if no
further errors. occ.Ur.

up%d%c: so·ft ftC snlt/od; A rec.overable ECC error occurred on the' spedfied sector of the
specified disk partition. This happens normally a few time's- a; week. if it happens more fre­
quently than this the sec.tors where the errors are occurring sbould be c.necked to see if certain
cylinders on the pack., spots on the carriage of the' ddv.e 0·J' beads are i,ndicated.

sc%d: lost interrupt A tim.er watching the controller det~.ting nD) i.nte:rrupt for an extended
period while an: operation was outstan<Hng. This indicates a hardware or software failure.
There is. currently a hardware/software probte.m with sptonin,g down drives while: they are being
accessed which causes this error to occ.ur. The error causes a UNIBUS reset, and retry of the
pen<i'i'ng operations. If the controller continues to' lose i:nte·rrupts.. this error win recur a few
seconds later.

4th Berkeley Distribution 27 July 1983 2

UP(4)

BUGS

UNIX Programmer's Manual UP(4)

In raw I/O read and write(2) truncate file offsets to 512-byte block boundaries, and write scrib­
bles on the tail of incomplete blocks. Thus, in programs that are likely to access raw devices.
read. write and /seek(2) should always deal in 512-byte multiples.

DEC-standard error logging should be supported.

A program to analyze the logged error information (even in its present reduced form) is
needed.

The partition tables for the file systems should be read off of each pack, as they are never quite
what any single installation would prefer, and this would make packs more portable.

4th Berkeley Distribution 27 July 1983 3

UT(4) UNIX Programmer's Manual UT(4)

NAME
ut - UNIBUS TU45 tri-density tape drive interface

SYNOPSIS
controller utO at ubaO csr 0172440 vector utintr
tape tjO at utO drh'e 0

DESCRIPTION
The ut interface provides access to a standard tape drive interface as describe in mlio(4).
Hardware implementing this on the V AX is typified by the System Industries Sf 9700 tape sub­
system. Tapes may be read or written at 800. 1600. and 6250 bpi.

SEE ALSO
md}). mtio(4)

DIAGNOSTICS

BUGS

tj%d: no write ring, An attempt was made to write on the tape drive when no write ring was
present~ this message is written on the terminal of the user who tried to access the tape.

tj%d: not online. An attempt was made to access the tape while it was omine~ this meSS"lgc is
written on the terminal of the user who tried to access the tape.

tj%d: can't change density in mid-tape. An attempt was made to write on a tape at a different
density than is alre<.tdy recorded on the tape. This message is written on the terminal of the
user who tried to switch the density.

ut%d: soft error bn%d csl ='Vob er='Yt,b cs2=%b ds=%b. The formatter indicated a corrected
error at a density other than 800bpi. The data transferred is assumed to be correct.

ut%d: hard error bn%d csl =%b er=%b cs2 =%b ds=tYtlb. A tape error occurred at block hn.
Any error is fatal on non-raw tape: when possible the driver will have retried the operation
which failed several times before reporting the error.

tjOA,d: lost interrupt. A tape operation did not complete within a reasonable time. most likely
because the tape was taken off-line during rewind or lost v<.tcuum. The controller should. but
does not, give an interrupt in these cases. The device will be made avail"ble again after this
message, but any current open reference to the device will return an error as the operution in
progress aborts.

If any non-data error is encountered on non-raw tape, it refuses to do anything more until
closed.

4th Berkeley Distribution 27 July 1983

UU (4) UNIX Programmer's Manual UU (4)

NAME
uu - TU58/DECtape II UNIBUS cassette interface

SYNOPSIS
options UUDMA
device uuO at ubaO csr 0176500 vector uurintr uuxintr

DESCRIPTION

NOTES

The Ull device provides access to dual DEC TU58 tape cartridge drives connected to the
UNIBUS via a DLII-W interface module.

The interface supports only block i/o to the TU58 cassettes. The drives are normally manipu­
lated with the ar.ff{8V) program using the ""m" and Hr' options.

The driver provides for an optional write and verify (read after write) mode that is activated by
specifying the "a" device.

The TU58 is treated as a single device by the system even though it has two separate drives.
~~uuO" and "uu 1". If there is more than one TU58 unit on a system. the extra drives are
named "uu2". "uu3" etc.

Assembly language code to assist the driver in handling the receipt of data (using a pseudo-dma
approach) should be included when using this driver~ specify "options UUDMA" in the
configuration file.

ERRORS

FILES

The following errors may be returned:

[ENXIO] Nonexistent drive (on open); offset is too large or bad (undefined) ioctl code.

[EIO] Open failed. the device could not be reset.

[EBUSY]

/dev/uu?
/dev/uu?a

Drive in use.

SEE ALSO
tu(4). arff(8V)

DIAGNOSTICS
uu%d: no bp, acth'e 'Yod. A transmission complete interrupt was received with no outstanding
i/o request. This indicates a hardware problem.

uu%d protocol error, state=%s, op=%x, cnt='Vt.d, block=%d. The driver entered an illegal
state. The information printed indicates the illegal state. the operation currently being exe­
cuted. the i/o count. and the block number on the cassette.

uu°lc.d: break received, transfer restarted. The TU58 was sending a continuous break signal
and had to be reset. This may indicate a hardware problem. but the driver will attempt to
recover from the error.

uu%d receh'e state error, state=%s, byte=%x. The driver entered an illegal state in the
receiver finite state machine. The state is shown along with the con~rol byte of the received
packet.

uu%d: read stalled. A timer watching the controller detected no interrupt for an extended
period while an operation was outstanding. This usually indicates that one or more receiver
interrupts were lost and the transfer is restarted.

4th Berkeley Distribution 27 July 1983

UU (4) UNIX Programmer's Manual UU (4)

uu'Y.,d: hard error bn%d. pk_mod 'Vt,o. The device returned a status code indicating a hard
error. The actual error code is shown in octal. No retries are attempted by the driver.

4th Berkeley Distribution 27 July 1983 2

VA (4) UNIX Programmer's Manual VA (4)

NAME
va - Benson-Varian in terf ace

SYNOPSIS
controller vaO at ubaO csr 0164000 vector vaintr
disk vzO at vaO drh'e 0

DESCRIPTION

FILES

(NOTE: the configuration description, while counter-intuitive, is actually as shown abo\'e.)

The Benson-Varian printer I plotter in normally used wi th the programs vpr(1), vprim(}) or
vtro.D(l). This description is designed for those who wish to drive the Benson-Varian directly.

In print mode. the Benson-Varian uses a modified ASCII character set. Most control characters
print various non-ASCII graphics such as daggers, sigmas, copyright symbols. etc. Only LF and
FF are used as format eRectors. LF acts as a newline, advancing to the beginning of the next
line, and FF advances to the top of the next page.

In plot mode, the Benson-Varian prints one raster line at a time. An entire raster line of bits
(2112 bits = 264 bytes) is sent. and then the Benson-Varian advances to the next raster line.

Note: The Benson-Varian must be sent an even number of bytes. If an odd number is sent.
the last byte will be lost. Nulls can be used in print mode to pad to an even number of bytes.

To use the Benson-Varian yourself, you must realize that you cannot open the device, /dev/rafJ
if there is a daemon active. You can see if there is an active daemon by doing a Ipq(1) and
seeing if there are any files being printed.

To set the Benson-Varian into plot mode include the file < 5"vs/\'cmd.h> and use the following
ioct/(2) call

ioctl (fileno(va). VSETST ATE, plotmd):

where p/ormd is defined to be

int plotmd[] = I VPLOT, 0, 0 l:
and va is the result of a call to lopell on stdio. When you finish using the Benson-Varian in plot
mode you should advance to a new page by sending it a FF after putting it back into print
mode. i.e. by

int prtmd [] = I VPRINT. O. 0 L

mush (va):
ioctl(fileno(va), VSETSTATE, prtmd):
write(fileno(va), "\f\0", 2):

N.B.: If you use thf> ~t'I"dard I/O library with the Benson-Varian you must do

setbuf(vp, vpbuf):

where vpbulis declared

char vpbur[BUFSIZ]~

otherwise the standard 1/0 library, thinking that the Benson-Varian is a terminal (since it is a
character special file) will not adequately buffer the data you are sending to the Benson-Varian.
This will cause it to run extremely slowly and tend to grind the system to a halt.

Idev/vaO

SEE ALSO
vfont(S), Ipr(I). Ipd(8), vtroff(l), vp(4)

4th Berkeley Distribution 27 March 1983

VA (4) UNIX Programmer's Manual VA (4)

DIAGNOSTICS

BUGS

The following error numbers are significant at the time the device is opened.

[ENXIO] The device is already in use.

[EIO] The device is omine.

The following message may be printed on the console.

va%d: npr timeout. The device was not able to get data from the UNIBUS within the timeout
period, most likely because some other device was hogging the bus. (But see BUGS below).

The 1 's (one's) and 1'5 Clower-case el's) in the Benson-Varian's standard character set look very
similar~ caution is advised.

The interface hardware is rumored to have problems which can play havoc with the UNIBUS.
We have intermittent minor problems on the UNIBUS where our "0 lives, but haven't ever
been able to pin them down completely.

4th Berkeley Distribution 27 March 1983 2

VP(4) UNIX Programmer's Manual VP(4)

NAME
vp - Versatec interface

SYNOPSIS
device vpO at ubaO csr 0177510 vector vpintr vpintr

DESCRIPTION

FILES

The Versatec printer/plotter is normally used with the programs vprO), vprilll(I) or \'If(~tl(} >.
This description is designed for those who wish to drive the Versatec directly.

To use the Versatec yourself, you must realize that you cannot open the device, /del'/\,pO if
there is a daemon active. You can see if there is a daemon active by doing a Ipq(1), and seeing
if there are any files being sent.

To set the Versatec into plot mode you should include < s.vs/vcmd.h> and use the iocl/(2) call

ioctHfileno(vp), VSETSTATE, plotmd)~

where plolmd is defined to be

int plotmd [] == { VPLOT, 0, 0 k
and vp is the result of a call to jopen on stdio. When you finish using the Versatec in plot mode
you should eject paper by sending it a EaT after putting it back into print mode, i.e. by

int prtmd[] = { VPRINT, 0, 0 }~

mush(vp)~
ioctl (fileno (vp), VSETST ATE, prt md) ~
write(fileno(vp), "\04", I)~

N.B.: If you use the standard I/O library with the Versatec you must do

setbuf(vp, vpbuf)~

where rpbufis declared

char vpbuf[BUFSIZL

otherwise the standard I/O library, thinking that the Versatec is a terminal <since it is a chant(­
ter special file) will not adequately buffer the data you are sending to the Versatec. This will
cause it to run extremely slowly and tends to grind the system to a halt.

/dev/vpO

SEE ALSO
vfont(S), IprO), Ipd(S), vtroff(}), va(4)

DIAGNOSTICS

BUGS

The following error numbers are significant at the time the device is opened.

[ENXIO] The device is already in use.

[EIO] The device is omine.

The configuration part of the driver assumes that the device is set up to vector print mode
through 0174 and plot mode through 0200. As the configuration program can't be sure which
vector interrupted at boot time, we specify that it has two interrupt vectors, and if an interrupt
comes through 0200 it is reset to 0174. This is safe for devices with one or two vectors at
these two addresses. Other configurations with 2 vectors may require changes in the driver.

4th Berkeley Distribution 27 July 1983

VV (4) UNIX Programmer's Manual VV (4)

NAME
vv - Proteon proNET 10 Megabit ring

SYNOPSIS
device vvO at ubaO csr 161000 vector vvrint vvxint

DESCRIPTION
The vvinterface provides access to a 10 Mb/s Proteon proNET ring network.

The network number to which the interface is attached must be specified with an SIOCSI­
FADDR ioctl before data can be transmitted or received. The host's address is discovered by
putting the interface in digital loopback mode (not joining the ring) and sending a broadcast
packet from which the source address is extracted. the Internet address of the interface would
be 128.3.0.24.

The interface software implements error-rate limiting on the input side. This provides a
defense against Situations where other hosts or interface hardware failures cause a machine to
be inundated with garbage packets. The scheme involves an exponential backotf where the
input side of the interface is disabled for longer and longer periods. In the limiting case, the
interface is turned on every two minutes or so to see if operation can resume.

If the installation is running CTL boards which use the old broadcast address of 0 instead of the
new address of Oxtf. the define OLD_BROADCAST should be specified in the driver.

If the installation has a Wirecenter, the define WIRECENTER should be specified in the driver.
N.B.: Incorrect definition of WIRECENTER can cause hardware damage.

The interface normally tries to use a "trailer" encapsulation to minimize copying data on input
and output. This may be disabled, on a per-interface basis, by setting the IFF NOTRAILERS
flag with an SIOCSIFFLAGS ioct!. -

DIAG!'lOSTICS
vv%d: host %d. The software announces the host address discovered during autoconfiguration.

vv%d: can't initialize. The software was unable to discover the address of this interface. so it
deemed "dead" will not be enabled.

vv%d: error vvocsr==%b. The hardware indicated an error on the previous transmission.

vv%d: output timeout. The token timer has fired and the token will be recreated.

vv'Yod: error v\·icsr==%b. The hardware indicated an error in reading a packet off the ring.

enoAld: can't handle arYtld. The interface was handed a message with addresses formatted in an
unsuitable address family~ the packet was dropped.

v\'%d: vs_olen =='Yt.d. The ring output routine has been handed a message with a preposterous
length. This rt:~uil~ ill all immediate panic: "5_ olen.

SEE ALSO
intro(4N), inet(4F)

4th Berkeley Distribution 27 July 1983

A.OUT (5) UNIX Programmer's Manual A.OUT (5)

NAME
a.out - assembler and link editor output

SYNOPSIS
#lnclude < a.out.h >

DESCRIPTION
A.out is the output file of the assembler as(1) and the link editor IdO). Both programs make
a.out executable if there were no errors and no unresolved external references. Layout infor­
mation as given in the include file for the VAX-ll is:

/ .
• Header prepended to each a.out file . . /

struct exec {

};

long
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

a_magic;
a_text;
a_data;
a_bss;
a_syms;
a_entry;
a_trsize;
a_drsize;

#define OMAGIC 0407
#define NMAGIC0410
#define ZMAGIC 0413

/.

/. magic number ./
/. size of text segment ./
/. size of initialized data ./
/. size of uninitialized data -/
/- size of symbol table -/
/- entry point -/
/. size of text relocation -/
/- size of data relocation -/

/- old impure format -/
/. read-only text ./
/. demand load format ./

- Macros which take exec structures as arguments and tell whether
• the file has a reasonable magic number or offsets to text I symbols I strings.
-/

#define N BADMAG(x) \
«(x).a_magic)!==OMAGIC && «x).a_magic)!-NMAGIC && «x).a_magic)!-ZMAGIC)

#define N TXTOFF(x) \
«x).a_magic== ==ZMAGIC ? 1024 : sizeof (struct exec»

#define N SYMOFF(x) \
(N TXTOFF(x) + (x).a text + (x).a data + (x).a trsize + (x).a drsize)

#define N STROFF(x) \ - - - -
n~'_SYMOFF(x) + (x).a_syms)

The file has five sections: a header, the program text and data, relocation information, a symbol
table and a string table (in that order). The last three may be omitted if the program was
loaded with the '-s' option of /d or if the symbols and relocation have been removed by
strip(I) .

In the header the sizes of each section are given in bytes. The size of the header is not
included in any of the other sizes.

When an a.our file is executed, three logical segments are set up: the text segment, the data
segment (with uninitialized data, which starts off as all 0, following initialized), and a stack.
The text segment begins at 0 in the core image; the header is not loaded. If the magic number
in the header is OMAGIC (0407), it indicates that the text segment is not to be write-protected
and shared, so the data segment is immediately contiguous with the text segment. This is the

4th Berkeley Distribution 25 February 1983 1

A.OUT(S) UNIX Programmer's Manual A.OUT (S)

oldest kind of executable program and is rarely used. If the magic number is NMAGIC (0410)
or ZMAGIC (0413), the data segment begins at the first 0 mod 1024 byte boundary following
the text segment, and the text segment is not writable by the program; if other processes are
executing the same file, they will share the text segment. For ZMAGIC format, the text seg­
ment begins at a 0 mod 1024 byte boundary in the Q.out file, the remaining bytes after the
header in the first block are reserved and should be zero. In this case the text and data sizes
must both be multiples of 1024 bytes, and the pages of the file will be brought into the running
image as needed, and not pre-loaded as with the other formats. This is especially suitable for
very large programs and is the default format produced by Id(1).

The stack will occupy the highest possible locations in the core image: growing downwards from
Ox7ffffOOO. The stack is automatically extended as required. The data segment is only
extended as requested by brk(2).

After the header in the file follow the text, data, text relocation data relocation, symbol table
and string table in that order. The text begins at the byte 1024 in the file for ZMAGIC format
or just after the header for the other formats. The N_TXTOFF macro returns this absolute file
position when given the name of an exec structure as argument. The data segment is contigu­
ous with the text and immediately followed by the text relocation and then the data relocation
information. The symbol table follows all this; its position is computed by the N_SYMOFF
macro. Finally, the string table immediately follows the symbol table at a position which can be
gotten easily using N_STROFF. The first 4 bytes of the string table are not used for string
storage, but rather contain the size of the string table; this size INCLUDES the 4 bytes, the
minimum string table size is thus 4.

The layout of a symbol table entry and the principal flag values that distinguish symbol types
are given in the include file as follows:

/.
• Format of a symbol table entry . . /

struct nlist {
union {

char
long

} nun;

.n_name; /. for use when in-core ./
n_strx; /. index into file string table ./

unsigned char n_type; /. type flag, i.e. N_TEXT etc; see below ./
char n_other;
short n_ desc; /. see <stab.h> ./
unsigned n_ value; /. value of this symbol (or offset> ./

};
#define n_hash n_desc /. used internally by Id ./

/.
• Simple values for n_type . . / .

#define N_ UNDF
#define N_ABS
#define N_TEXT
#define N_DATA
#define N_BSS
#define N_COMM
#define N_FN

4th Berkeley Distribution

OxO
Ox2
Ox4
Ox6
Ox8
Ox12
Oxlf

01

/. undefined ./
/. absolute ./
/. text ./
/. data ./
/. bss ./
/. common (internal to ld) ./
/. file name symbol ./

/. external bit, or'ed in ./

2S February 1983 2

A.OUT(5) UNIX Programmer's Manual A.OUT(5)

#define N _TYPE Oxle /- mask for all the type bits -/

/-
- Othe! permanent symbol table entries have some of the N_STAB bits set.
- These are given in < stab.h >
-/

#define N_STAB OxeO /- if any of these bits set, don't discard -/

/-
- Format for namelist values.
-/

#define N_FORMAT "%08x"

In the a.out file a symbol's n_un.n_strx field gives an index into the string table. A n_strx
value of 0 indicates that no name is associated with a particular symbol table entry. The field
n_un.n_name can be used to refer to the symbol name only if the program sets this up using
n_strx and appropriate data from the string table.

If a symbol's type is undefined external, and the value field is non-zero, the symbol is inter­
preted by the loader Id as the name of a common region whose size is indicated by the value of
the symbol.

The value of a byte in the text or data which is not a portion of a reference to an undefined
external symbol is exactly that value which will appear in memory when the file is executed. If
a byte in the text or data involves a reference to an undefined external symbol, as indicated by
the relocation information, then the value stored in the file is an offset from the associated
external symbol. When the file is processed by the link editor and the external symbol
becomes defined, the value of the symbol will be added to the bytes in the file.

If relocation information is present, it amounts to eight bytes per relocatable datum as in the
following structure:

/-
- Format of a relocation datum.
-/

struct relocationJnfo {

} ;

int r_address~
unsigned r_symbolnum:24,

r,J>crel: 1,
rJength:2,
r _extern: 1,
:4;

/- address which is relocated -/
/- local symbol ordinal -/
/- was relocated pc relative already -/
/- O-byte, I-word, 2-long -/
/- does not include value of sym referenced -/
/- nothing, yet -/

There is no relocation information if a trsize+a drsize- -0. If r extern is 0, then
r_symbolnum is actually a n_type for the relocation (i.e. N_TEXT meaning relative to segment
text origin.)

SEE ALSO

BUGS

adb(I), as(I), IdO), nm(I), dbx(I), stab(5), strip(I)

Not having the size of the string table in the header is a loss, but expanding the header size
would have meant stripped executable file incompatibility, and we couldn't hack this just now.

4th Berkeley Distribution 25 February 1983 3

ACCT(S) UNIX Programmer's Manual

NAME
acct - execution accounting file

SYNOPSIS
#Include < sys/acct.h >

DESCRIPTION

ACCT (5)

The acct(2) system call makes entries in an accounting file for each process that terminates.
The accounting file is a sequence of entries whose layout, as defined by the include file is:

/- acct.h 4.5 82/10/10-/

/-
- Accounting structures;
- these use a comp_t type which is a 3 bits base 8
- exponent, 13 bit fraction "floating point" number.
-/

typedef u_short comp_t;

struct acct
{

char ac_comm(10);
comp_t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
time_t ac_btime;
short ac_uid;
short aCJid;
short ac_mem;
comp_t acjo;
dev_t ac_tty;
char ac_flag;

};

#defineAFORK 0001
#define ASU 0002
#define ACOMPAT 0004
#defineACORE 0010
#defineAXSIG 0020

#define ACCTLO 30
#defineACCTHI 100

#ifdef KERNEL
struct acct
struct inode
#endif

acctbuf;
.acctp;

/* Accounting command name */
/* Accounting user time */
/* Accounting system time */
/* Accounting elapsed time */
/* Beginning time -/
/* Accounting user ID -/
/* Accounting group ID */
/* average memory usage */
/- number of disk 10 blocks -/
/- control typewriter -/
/- Accounting flag -/

/- has executed fork, but no exec */
/- used super-user privileges */
/- used compatibility mode -/
/- dumped core -/
/- killed by a signal -/

/- acctg off when space < this -/
/- acctg resumes at this level -/

If the process does an execve(2), the first 10 characters of the filename appear in ac_comm. The
accounting flag contains bits indicating whether execve(2) was ever accomplished, a:ld whether
the process ever had super-user privileges.

SEE ALSO
acct(2), execve(2), sa(8)

7th Edition 15 January 1983 1

ALIASES (5) UNIX Programmer's Manual ALIASES (5)

NAME
aliases - aliases file for sendmail

SYNOPSIS
lusr llibl aliases

DESCRIPTION
This file describes user id aliases used by lusrlliblsendmail. It is formatted as a series of lines of
the form

name: name_I, name2, name_3, ...
The name is the name to alias, and the name_n are the aliases for that name. Lines beginning
with white space are continuation lines. Lines beginning with '#' are comments.

Aliasing occurs only on local names. Loops can not occur, since no message will be sent to any
person more than once.

After aliasing has been done, local and valid recipients who have a ".forward" file in their
home directory have messages forwarded to the list of users defined in that file.

This is only the raw data file; the actual aliasing information is placed into a binary format in
the files lusrlliblaliases.dir and lusrlliblaliases.pag using the program newaliases(1). A newaliases
command should be executed each time the aliases file is changed for the change to take effect.

SEE ALSO

BUGS

newaliases(1), dbm(3X), sendmail(S)
SENDMAIL Installation and Operation Guide.
SENDMAIL An Internetwork Mail Router.

Because of restrictions in dbm(3X) a single alias cannot contain more than about 1000 bytes of
information. You can get longer aliases by "chaining"; that is, make the last name in the alias
be a dummy name which is a continuation alias.

7th Edition 15 January 1983 1

AR(S) UNIX Programmer's Manual AR(S)

NAME
ar - archive (library) file format

SYNOPSIS
#lnclude < ar.h >

DESCRIPTION
The archive command ar combines several files into one. Archives are used mainly as libraries
to be searched by the link-editor Id.

A file produced by ar has a magic string at the start, followed by the constituent files, each pre­
ceded by a file header. The magic number and header layout as described in the include file
are:

#define ARMAG "!<arch>\n"
#define SARMAG 8

#define ARFMAG "'\n"

struct ar _ hdr (
char
char
char
char
char
char
char

};

ar name[16];
ar - date[I2);
ar -uid[6];
ar=gid[6] ;
ar model8];
ar-size[IO);
ar=fmag(2);

The name is a blank-padded string. The arJmag field contains ARFMAG to help verify the
presence of a header. The other fields are left-adjusted, blank-padded numbers. They are
decimal except for ar_mode, which is octal. The date is the modification date of the file at the
time of its insertion into the archive.

Each file begins on a even (0 mod 2) boundary; a new-line is inserted between files if neces­
sary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

There is no provision for empty areas in an archive file.

The encoding of the header is portable across machines. If an archive contains printable files,
the archive itself is printable.

SEE ALSO

BUGS

ar(I), Id(I), nm(l)

File names lose trailing blanks. Most software dealing with archives takes even an incl uded
blank as a name terminator.

7th Edition 1 S January 1983 1

CORE (5) UNIX Programmer's Manual CORE (5)

NAME
core - format of memory image file

SYNOPSIS
#include < machine/param.h>

DESCRIPTION
The UNIX System writes out a memory image of a terminated process when any of various
errors occur. See sigvec(2) for the list of reasons~ the most common are memory violations,
illegal instructions, bus errors, and user-generated quit signals. The memory image is called
'core' and is written in the process's working directory (provided it can be~ normal access con­
trols apply).

The maximum size of a core file is limited by serrlimit(2). Files which would be larger than the
limit are not created.

The core file consists of the u. area, whose size (in pages) is defined by the UPAGES manifest
in the < machil1e/param.h> file. The u. area starts with a user structure as given in
< sys/user.h>. The remainder of the core file consists first of the data pages and then the stack
pages of the process image. The amount of data space image in the core file is given (in pages)
by the variable lI_dsize in the 1I. area. The amount of stack image in the core file is given (in
pages) by the variable lI_ssi:e in the u. area.

In general the debugger adb(1) is sufficient to deal with core images.

SEE ALSO
adb(I), dbx(), sigved2), setrlimit(2)

7th Edition 27 July 1983

DIR (5)

NAME
dir - format of directories

SYNOPSIS
#Include < sys/types.b >
#Include <sys/dlr.h>

DESCRIPTION

UNIX Programmer's Manual DIR (5)

A directory behaves exactly like an ordinary file, save that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the Oag word of its i-node entry; see
fs(S). The structure of a directory entry as given in the include file is:

I-
- A directory consists of some number of blocks of DIRBLKSIZ
- bytes, where DIRBLKSIZ is chosen such that it can be transferred
- to disk in a single atomic operation (e.g. 512 bytes on most machines).

-- Each DIRBLKSIZ byte block contains some number of directory entry
- structures, which are of variable length. Each directory entry has
- a struct direct at the front of it, containing its inode number,
• the length of the entry, and the length of the name contained in
- the entry. These are followed by the name padded to a 4 byte boundary
- with null bytes. All names are guaranteed null terminated.
• The maximum length of a name in a directory is MAXNAMLEN .
•
- The macro DIRSIZ(dp) gives the amount of space required to represent
• a directory entry. Free space in a directory is represented by
• entries which have dp->d_rec1en > DIRSIZ(dp). All DIRBLKSIZ bytes
• in a directory block are claimed by. the directory entries. This
- usually results in the last entry in a directory having a large
• dp->d_reclen. When entries are deleted from a directory, the
• space is returned to the previous entry in the same directory
• block by increasing its dp- > d_reclen. If the first entry of
• a directory block is free, then its dp->djno is set to O.
• Entries other than the first in a directory do not normally have
• dp- >djno set to O . . /
#~fdef KERNEL
#define DIRBLKSIZ DEV _BSIZE
#else
#define DIRBLKSIZ 512
#endif

#define MAXNAMLEN 255

/ .
• The DIRSIZ macro gives the minimum record length which will hold
- the directory entry. This requires the amount of space in struct direct
- without the d_name field, plus enough space for the name with a terminating
- null byte (dp- >d_namlen + 1), rounded up to a 4 byte boundary . . /

#undef DIRSIZ
#define DIRSIZ(dp) \

«sizeof (struct direct) - (MAXNAMLEN+1) + «(dp)->d_namlen+l + 3) Ie: 3»

4th Berkeley Distribution 15 January 1983 1

DIR (5) UNIX Programmer's Manual

struct direct (
uJong djno;
short d_reclen;
short d_namlen;
char d name [MAXNAMLEN + 1];
/- typically shorter -/

);

struct _ dirdesc {
int
long
long
char

};

dd_fd;
ddJoc;
dd size;
dd=buf(DIRBLKSIZ] ;

DIR (5)

By convention, the first two entries in each directory are for'.' and' .. '. The first is an entry for
the directory itself. The second is for the parent directory. The meaning of ' .. ' is modified for
the root directory of the master file system (" /"), where ' .. ' has the same meaning as '.'.

SEE ALSO
fs(5)

4th Berkeley Distribution 15 January 1983 2

DISKTAB(S) UNIX Programmer's Manual

NAME
disktab - disk description file

SYNOPSIS
#lnclude < dlsktab.h >

DESCRIPTION

DISKTAB(S)

Disktab is a simple date base which describes disk geometries and disk partition characteristics.
The format is patterned after the termcap(S) terminal data base. Entries in disktab consist of a
number of ':' separated fields. The first entry for each disk gives the names which are known
for the disk, separated by 'I' characters. The last name given should be a long name fully iden­
tifying the disk.

FILES

The following list indicates the normal values stored for each disk entry.

Name
ns
nt
nc
ba
bd
be
bf
bg
bh
fa
fd
fe
ff
fg
fb
pa
pb
pc
pd
pe
pf
pg
ph

Type
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num
num

Description
Number of sectors per track
Number of tracks per cylinder
Total number of cylinders on the disk
Block size for partition 'a' (bytes)
Block size for partition 'd' (bytes)
Block size for partition 'e' (bytes)
Block size for partition 'f (bytes)
Block size for partition 'g' (bytes)
Block size for partition 'h' (bytes)
Fragment size for partition 'a' (bytes)
Fragment size for partition 'd' (bytes)
Fragment size for partition 'e' (bytes)
Fragment size for partition 'f (bytes)
Fragment size for partition 'g' (bytes)
Fragment size for partition 'h' (bytes)
Size of partition 'a' in sectors
Size of partition 'b' in sectors
Size of partition 'c' in sectors
Size of partition 'd' in sectors
Size of partition 'e' in sectors
Size of partition 'f in sectors
Size of partition 'g' in sectors
Size of partition 'h' in sectors

se num Sector size in bytes
ty str Type of disk (e.g. removable, winchester)

Disktab entries may be automatically generated with the diskpart program.

I etcl disktab

SEE ALSO
newfs(S), diskpart(8)

BUGS
This file shouldn't exist, the information should be stored on each disk pack.

4th Berkeley Distribution 2 March 1983 1

DUMP (5) UNIX Programmer's Manual

NAME
dump, dumpdates - incremental dump format

SYNOPSIS
#include < sysltypes.h>
#include < sys/iilode.h>
#include < dumprestor.h>

DESCRIPTION
Tapes used by dump and res/ore(8) contain:

a header record
two groups of bit map records
a group of r~(vrds describing directories
a group of records describing files

DUMP (5)

The format of the header record and of the first record of each description as given in the
include file < dumpreslOr,h> is:

#define NTREC 10
#define MLEN 16
#define MSIZ 4096

#define TS _TAPE
#define TSJNODE
#define TS_BITS
#define TS_ADDR
#define TS_END
#define TS_CLRI
#define MAGIC
#define CHECKSUM

struct spcl I
int
time_t
time_t
int
daddr _t
ino_t
int
int

1
2
3
4
5
6
(int) 60011
(int) 84446

c_type:
c_date:
c_ddate:
c_volume:
c_tapea:
c_inumber:
c_magic:
c_checksum:

struct dinode c_dinode:

} spcl~

struct

k

int
char

idates (
char
char
time_t

l count:
c=adddBSIZEL

id_name [I 6):
idJncno:
id_ddute:

#define DUMPOUTFMT II(~h-16s %c %s"

#define DUMPINFMT III1.I16s %c % [A\nl\n"

/* for printf */
/* name. incno. ctime (date) */
/* inverse for scanf */

4th Berkeley Distribution 18 July 1983

DUMP (5) UNIX Programmer's Manual DUMP (5)

FILES

NTREC is the number of 1024 byte records in a physical tape block. MLEN is the number of
bits in a bit map word. MSIZ is the number of bit map words.

The TS_ entries are used in the c_type field to indicate what sort of header this is. The types
and their meanings are as follows:

TS TAPE Tape volume label
TS INODE A file or directory follows. The c_dillocle field is a copy of the disk inode and

TS BITS
TS ADDR
TS END
TS CLRI

contains bits telling what sort of file this is.
A bit map follows. This bit map has a one bit for each inode that was dumped.
A subrecord of a file description. See (:...addr below.
End of tape record.
A bit map follows. This bit map contains a zero bit for all inodes that were
empty on the file system when dumped.

MAGIC All header records have this number in c_magic.
CHECKSUM Header records checksum to this value.

The fields of the header structure are as follows:

c_type The type of the header.
c_date The date the dump was taken.
c_ddate The date the file system was dumped from.
c_ volume The current volume number of the dump.
c_tapea The current number of this (1 024-byte) record.
cjnumber The number of the inode being dumped if this is of type TSJNODE.
c_magic This contains the value MAGIC above. truncated as needed.
c_checksum This contains whatever value is needed to make the record sum to CHECKSUM.
c_dinode This is a copy of the inode as it appears on the file system: see .(s(S>'
c_count The count of characters in c addr.
c_addr An array of characters desc;ibing the blocks of the dumped file. A character is

zero if the block associated with that character was not present on the file sys­
tem. otherwise the character is non-zero. If the block was not present on the file
system. no block was dumped: the block will be restored as a hole in the file. If
there is not sufficient space in this record to describe all of the blocks in a file.
TS_ADDR records will be scattered through the file. each one picking up where
the last left otT.

Each volume except the last ends with a tape mark (read as an end of file>. The last volume
ends with a TS_END record and then the tapemark.

The structure idates describes an entry in the file letcldumpdates where dump history is kept.
The fields of the structure are:

id_name
idjncno
id_ddate

The dumped filesystem is '/dev/ id "am'.
The level number of the dump tape: see dump(SL
The date of the incremental dump in system format see fYpes(S).

/ etc/ dumpdates

SEE ALSO
dump(S), restore(S), fs(5), types(S)

4th Berkeley Distribution 18 July 1983 2

FS (5) UNIX Programmer's Manual FS (5)

NAME
fs, inode - format of file system volume

SYNOPSIS
#Include < sys/types.h >
#lnclude < sys/fs.h >
#lnclude < sys/lnode.h >

DESCRIPTION
Every file system storage volume (disk, nine-track tape, for instance> has a common format for
certain vital information. Every such volume is divided into a certain number of blocks. The
block size is a parameter of the file system. Sectors 0 to 15 on a file system are used to contain
primary and secondary bootstrapping programs.

The actual file system begins at sector 16 with the super block. The layout of the super block as
defined by the include file < sys/js.h > is:

#defineFS MAGIC Ox0119S4
struct fs r

struct fs -fsJink; /- linked list of file systems -/
struct fs -fs rlink; /- used for incore super blocks -/
daddr t fs sbllmo; /- addr of super-block in filesys -/
daddr_t fs_cblkno; /- offset of cyl-block in filesys -/
daddr_t fsjblkno; /- offset of inode-blocks in filesys -/
daddr_t fs_dblkno; /- offset of first data after cg -/
long fs_cgoffset; /- cylinder group offset in cylinder -/
long fs_cgmask; /- used to calc mod fs ntrak -/
time t fs time; /- last time written -/-
long - fs=size; /- number of blocks in fs -/
long fs_dsize; /- number of data blocks in fs -/
long fs_ncg; /- number of cylinder groups -/
long fs_bsize; /- size of basic blocks in fs -/
long fs_fsize; /- size of frag blocks in fs -/
long fs_frag; /- number of frags in a block in fs -/

/- these are configuration parameters -/
long fs_minfree; /- minimum percentage of free blocks -/
long fs_rotdelay; /- num of ms for optimal next block -/
long fs_rps; /- disk revolutions per second -/

/- these fields can be computed from the others -/
long fs_bmask; /- "blkoff" calc of blk offsets -/
long fs_fmask; /- "fragoif" calc of frag offsets -/
long fs_bshift; /- "lblkno" calc of logical blkno -/
long fs_fshift; /- "numfrags" calc number of frags ./

/. these are configuration parameters -/
long fs_maxcontig; /- max number of contiguous blks -/
long fs_maxbpg; /- max number of blks per cyl group -/

/- these fields can be computed from the others -/
long fs_fragshift; /- block to frag shift ./
long fs fsbtodb; /- fsbtodb and dbtofsb shift constant -/
long fs=sbsize; /- actual size of super block ./
long fs_csmask; /- csum block offset -/
long fs_csshift; /- csum block number -/
long fs_nindir; /- value of NINDIR -/
long fsjnopb; /- value of INOPB -/
long fs_nspf; /- value of NSPF -/

4th Berkeley Distribution 18 July 1983 1

FS (5) UNIX Programmer's Manual FS (5)

long fs_sparecon(6); /- reserved for future constants -/
/- sizes determined by number of cylinder groups and their sizes -/

daddr _ t fs _ csaddr; /- blk addr of cyl arp summary area -/
long fs_cssize; /- size of cyl grp summary area -/
long fs_cgsize; /- cylinder group size -/

/- these fields should be derived from the hardware -/
long fs_ntrak; /- tracks per cylinder -/
long fs_nsect; /- sectors per track -/
long fs_spc; /- sectors per cylinder -/

/- this comes from the disk driver partitioning -/
long fs_neyl; /- cylinders in file system -/

/- these fields can be computed from the others -/
long fs_cpg; /- cylinders per group -/
long fsJpg; /- inodes per group -/
long fs_fpg; /- blocks per group" fs_frag -/

/- this data must be re-computed after crashes -/
struct csum fs_cstota1;/- cylinder summary information -/

/- these fields are cleared at mount time -/
char fs_fmod; /- super block modified Oag -/
char fs_clean; /- file system is clean Oag -/
char fs_ronly; /- mounted read-only Oag -/
char fsJIags; /- currently unused Oag -/
char fs_fsmnt[MAXMNTLEN); /- name mounted on -/

/- these fields retain the current block allocation info -/
long fs _ cgrotor; /- last cg searched -/
struct csum -fs csp[MAXCSBUFS);I- list of fs cs info buffers -/
long fs_cpc; - /- cyl per cycle iD postbl -/
short fs-postbI[MAXCPGl [NRPOS1;/. head of blocks for each rotation -/
long fs_magic; /- magic number -/
u_char fs_rotbl[11; /- list of blocks for each rotation -/

/- actually longer -/
};

Each disk drive contains some number of file systems. A file system consists of a number of
cylinder groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in tum describes the cylinder groups. The
super-block is critical data and is replicated in each cylinder group to protect against catastrophic
loss. This is done at file system creation time and the critical super-block data does not change,
so the copies need not be referenced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of 'blocks'. File system blocks
of at most size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is
addressable; these pieces may be DEV _BSIZE, or some multiple of a DEV _BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last
data block of a small file is allocated as only as many fragments of a large block as are neces­
sary. The file system format retains only a single pointer to such a fragment, which is a piece
of a single large block that has been divided. The size of such a fragment is determinable from
information in the inode, using the "blksize(fs, ip, Ibn)" macro.

The file system records space availability at the fragment level; to determine block availability,
aligned fragments are examined.

4th Berkeley Distribution 18 July 1983 2

FS (5) UNIX Programmer's Manual FS (5)

The root inode is the root of the file system. Inode 0 can't be usedJor normal purposes and
historically bad blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer
used for this purpose, however numerous dump tapes make this assumption, so we are stuck
with it). The lost+found directory is given the next available inode when it is initially created
by mlifs.

fs_mirifree gives the minimum acceptable percentage of file system blocks which may be free. If
the freelist drops below this level only the super-user may continue to allocate blocks. This may
be set to 0 if no reserve of free blocks is deemed necessary, however severe performance
degradations will be observed if the file system is run at greater than 90% full; thus the default
value of fs_mirifree is 10%.

Empirically the best trade-off between block fragmentation and overall disk utilization at a load­
ing of 90% comes with a fragmentation of 4, thus the default fragment size is a fourth of the
block size.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different
rotational positions, so that sequential blocks can be laid out with minimum rotational latency.
NRPOS is the number of rotational positions which are distinguished. With NRPOS 8 the reso­
lution of the summary information is 2ms for a typical 3600 rpm drive.

fs_rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the
same cylinder. It is used in determining the rotationally optimal layout for disk blocks within a
file; the default value for fs_rotdelay is 2ms.

Each file system has a statically allocated number of inodes. An inode is allocated for each
NBPI bytes of disk space. The inode allocation strategy is extremely conservative.

MAXIPG bounds the number of inodes per cylinder group, and is needed only to keep the
structure simpler by having the only a single variable size element (the free bit map).

N .B.: MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to
create files of size 2A 32 with only two levels of indirection. MINBSIZE must be big enough to
hold a cylinder group block, thus changes to (struct cg) must keep its size within MINBSIZE.
MAXCPG is limited only to dimension an array in (struct cg); it can be made larger as long as
that structure's size remains within the bounds dictated by MINBSIZE. Note that super blocks
are never more than size SBSIZE.

The path name on which the file system is mounted is maintained in fsJsmnt. MAXMNTLEN
defines the amount of space allocated in the super block for this name. The limit on the
amount of summary information per file system is defined by MAXCSBUFS. It is currently
parameterized for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group's
data blocks. These blocks are read in from fs_csaddr (size js_cssize) in addition to the super
block.

N.B.: size of (struct csum) must be a power of two in order for the "fs_cs" macro to work.

Super block jor a file system: MAXBPC bounds the size of the rotational layout tables and is lim­
ited by the fact that the super block is of size SBSIZE. The size of these tables is Inversely
proportional to the block size of the file system. The size of the tables is increased when sector
sizes are not powers of two, as this increases the number of cylinders included before the rota­
tional pattern repeats (fs_cpc). The size of the rotational layout tables is derived from the
number of bytes remaining in (struct fs).

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the fact
that cylinder groups are at most one block. The size of the free block table is derived from the
size of blocks and the number of remaining bytes in the cylinder group structure (struct cg).

4th Berkeley Distribution 18 July 1983 3

FS (5) UNIX Programmer's Manual FS (5)

Inode: The inode is the focus of all file activity in the UNIX file system. There· is a unique
inode allocated for each active file, each current directory, each mounted-on file, text file, and
the root. An inode is 'named' by its device/i-number pair. For further information, see the
include file < syslinode. h > .

4th Berkeley Distribution 18 July 1983 4

FSTAD (5) UNIX Programmer's Manual FSTAD (5)

NAME
fstab - static information about the filesystems

SYNOPSIS
#lnclude < fstab.h >

DESCRIPTION

FILES

The file letc/fstab contains descriptive information about the various file systems. letc/fstab is
only read by programs, and not written; it is the duty of the system administrator to properly
create and maintain this file. The order of records in letc/fstab is important because fsck, mount,
and umount sequentially iterate through letc/fstab doing their thing.

The special file name is the block special file name, and not the character special file name. If a
program needs the character special file name, the program must create it by appending a "r"
after the last "I" in the special file name.

If fs_type is "rw" or "ro" then the file system whose name is given in the fsJile field is nor­
mally mounted read-write or read-only on the specified special file. If fs_type is "rq", then the
file system is normally mounted read-write with disk quotas enabled. The IsJreq field is used
for these file systems by the dump(S) command to determine which file systems need to be
dumped. The fsJKlssno field is used by the fsck(S) program to determine the order in which
file system checks are done at reboot time. The root file system should be specified with a
fsyassno of 1, and other file systems should have larger numbers. File systems within a drive
should have distinct numbers, but file systems on different drives can be checked on the same
pass to utilize parallelism available in the hardware.

If Is_type is "sw" then the special file is made available as a piece of swap space by the
swapon(S) command at the end of the system reboot procedure. The fields other than Is_spec
and Is_type are not used in this case.

If Is_type is "rq" then at boot time the file system is automatically processed by the quota­
check(S) command and disk quotas are then enabled with quotaon (S). File system quotas are
maintained in a file "quotas", which is located at the root of the associated file system.

IC Is_type is specified as "xx" the entry is ignored. This is useful to show disk partitions which
are currently not used.

#define FST AB R W "rw"
#defineFSTAD - RO "ro"
#defineFSTAB:RQ "rq"
#define FST AB SW "sw"
#define FST AD :XX "xx"

struct fstab {

I- read-write device -I
I- read-only device -I
I- read-write with quotas -I
I- swap device -I
I- ignore totally -I

char
char
char

-fs_spec; /- block special device name -I

};

. int
int

-fs_file; /- file system path prefix -/
-fs_type; I- rw,ro,sw or xx -/
fs_freq; I- dump frequency, in days -I
fSJ)assno; I- pass number on parallel dump -I

The proper way to read records from letc/fstab is to use the routines getfsentO, getfsspecO,
getfstype 0, and getfsfile 0 .

letc/fstab

4th Berkeley Distribution 26 June 19S3 1

FSTAB (S)

SEE ALSO
getfsent(3X)

4th Berkeley Distribution

UNIX Programmer's Manual FSTAB(S)

26 June 1983 2

GETIYTAB (5) UNIX Programmer's Manual GETIYT AB (5)

NAME
gettytab - terminal configuration data base

SYNOPSIS
letc/gettytab

DESCRIPTION
Getty tab is a simplified version of the termcap(S) data base used to describe terminal lines. The
initial terminal login process getty(S) accesses the getty tab file each time it starts, allowing
simpler reconfiguration of terminal characteristics. Each entry in the data base is used to
describe one class of terminals.

There is a default terminal class, default, that is used to set global defaults for all other classes.
(That is, the default entry is read, then the entry for the class required is used to override par­
ticular settings.)

CAP ABILITIES
Refer to termcap(S) for a description of the file layout. The default column below lists defaults
obtained if there is no entry in the table obtained, nor one in the special default table.

Name Type Default Description
ap bool false terminal uses any parity
bd num 0 backspace delay
bk str 0377 alternate end of line character (input break)
cb bool false use crt backspace mode
cd num 0 carriage-return delay
ce bool false use crt erase algorithm
ck bool false use crt kill algorithm
cl str NULL screen clear sequence
co bool false console - add \n after login prompt
ds str Ay delayed suspend character
ec bool false leave echo OFF
ep bool false terminal uses even parity
er str A? erase character
et str AD end of text (EOF) character
ev str NULL initial enviroment
fO num unused tty mode flags to write messages
f1 num unused tty mode flags to read login name
1'2 num unused tty mode flags to leave terminal as
fd num 0 form-feed (vertical motion) delay
11 str AO output flush character
hc bool false do NOT hangup line on last close
he str NULL hostname editing string
hn str hostname hostname
ht boo I false terminal has real tabs
ig bool false ignore garbage characters in login name
im str NULL initial (banner) message
in str AC interrupt character
is num unused input speed
kl str AU kill character
Ic boo I false terminal has lower case
1m str login: login prompt
In str AV "literal next" character
10 str Ibin/login program to exec when name obtained
nd num 0 newline (line-feed) delay

4th Berkeley Distribution 18 July 1983 1

GEITYTAB(S) UNIX Programmer's Manual GETTYT AB (5)

nl bool false terminal has (or might have) a newline character
nx str default next table (for auto speed selection)
op bool false terminal uses odd parity
os num unused output speed
pc str \0 pad character
pe bool false use printer (hard copy) erase algorithm
ps bool false line connected to a MICOM port selector
qu str "\ quit character
rp str lOR line retype character
rw bool false do NOT use raw for input, use cbreak
sp num unused line speed (input and output)
su str "Z suspend character
tc str .none table continuation
to num o timeout (seconds) .
tt str NULL terminal type (for enviroment)
ub bool false do unbuffered output (of prompts etc)
uc bool false terminal is known upper case· only
we str lOW word erase character
xc bool false do NOT echo control chars as "X
xf str "S XOFF (stop output) character
xn str "Q XON (start output) character

If no line speed is specified, speed will not be altered from that which prevails when getty is
entered. Specifying an input or output speed will override line speed for stated direction only.

Terminal modes to be used for the output of the message, for input of the login name, and to
leave the terminal set as upon completion, are derived from the boolean fiags specified. If the
derivation should prove inadequate, any (or all) of these three may be overriden with one of
the ro, fi, or fl numeric specifications, which can be used to specify (usually in octal, with a
leading 'O') the exact values of the fiags. Local (new tty) nags are set in the top 16 bits of this
(32 bit) value.

Should getty receive a null character (presumed to indicate a line break) it will restart using the
table indicated by the nx entry. If there is none, it will re-use its original table.

Delays are specified in milliseconds, the nearest possible delay available in the tty driver will be
used. Should greater certainty be desired, delays with values 0, 1, 2, and 3 are interpreted as
choosing that particular delay algorithm from the driver.

Theel screen clear string may be preceded by a (decimal) number of milliseconds of delay
required (a la termcap). This delay is simulated by repeated use of the pad character pc.

The initial message. and login message, 1m and 1m may include the character sequence 'leb to
obtain the hostname. <"''Ie obtains a single '%' character,> The hostname is normally obtained
from the system, but may be set by the hn table entry. In either case it may be edited with be.
The he string is a sequence of characters, each character that is neither '@' nor '#' is copied
into the final hostname. A '@' in the he string, causes one character from the real hostname
to be copied to the final hostname. A' #' in the be string, causes the next character of the real
hostname to be skipped. Surplus'@' and '#' characters are ignored.

When getty execs the login process, given in the 10 string (usually "/bin/login"), it will have set
the enviroment to include the terminal type, as indicated by the tt string (if it exists). The ev
string, can be used to enter additional data into the environment. It is a list of comma
separated strings, each of which will presumably be of the form name-value.
If a non;.zero timeout is specified, with to, then getty will exit within the indicated number of
seconds, either having received a login name and passed control to login, or having received an

4th Berkeley Distribution 18 July 1983 2

GETIYTAB (S) UNIX Programmer's Manual GETIYT AB (S)

alarm signal, and exited. This may be useful to hangup dial in lines.

Output from getty is even parity unless op is specified. Op may be specified with ap to allow
any parity on input, but generate odd parity output. Note: this only applies while getty is being
run, terminal driver limitations prevent a more complete implementation. Getty does not check
parity of input characters in RA W mode.

SEE ALSO

BUGS

termcap(S), getty(8).

Some ignorant peasants insist on changing the default special characters, so it is wise to always
specify (at least) the erase, kill, and interrupt characters in the default table. In all cases, '#'
or 'AH' typed in a login name will be treated as an erase character, and '@' will be treated as a
kill character.

The delay stuff is a real crock. Apart form its general lack of flexibility, some of the delay algo­
rithms are not implemented. The terminal driver should support sane delay settings.

Currently login(1) stomps on the environment, so there is no point setting it in getty tab.

The he capability is stupid.

Termcap format is horrid, something more rational should have been chosen.

4th Berkeley Distribution 18 July 1983 3

GROUP (5) UNIX Programmer's Manual GROUP (5)

NAME
group - group file

DESCRIPTION
Group contains for each group the following information:

group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; Each group is separated from the next
by a new-line. If the password field is null, no password is demanded.

This file resides in directory letc. Because of the encrypted passwords, it can and does have
general read permiSSion and can be used, for example, to map numerical group ID's to names.

FILES
letclgroup

SEE ALSO
setgroups(2), initgroups(3X), crypt(3), passwd(l), passwd(S)

BUGS
The passwd(l) command won't change the passwords.

7th Edition IS January 1983 1

HOSTS (5) UNIX Programmer's Manual HOSTS (5)

NAME
hosts - host name data base

DESCRIPTION

FILES

The hosts file contains information regarding the known hosts on the DARPA Internet. For
each host a single line should be present with the following information:

official host name
Internet address
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment~ characters up to the end of the line are not interpreted by routines
which search the file. This file is normally created from the official host data base maintained at
the Network Information Control Center (NIC), though local changes may be required to bring
it up to date regarding unofficial aliases and/or unknown hosts.

Network addresses are specified in the conventional "." notation using the ineLaddrO routine
from the Internet address manipulation library, inet(3N). Host names may contain any print­
able character other than a field delimiter, newline, or comment character.

/etc/hosts

SEE ALSO

BUGS
gethosten t (3 N)

A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

7th Edition 15 January 1983 1

LDA (5) UNIX Pl'Ogr:illlmcr's Manllal LDA (5)

NAME
Ida absululC load format

DESCi~1 :)TION
'J'l1\:' (()\Iowing i.; a dc:;criptioll of the ··.Ida" objcl.'l t'unn,1t: Typkal record:
By le I < i) "I'says 1
Byle 2 <() ignored by the loader
Byte 3 <) low 1",11' or Nhytes
Byte 4 <) high half or Nhytes
Byk 5 <) low half' of load pnint
Byte 6 <) high half or load point
Byll: 7 < > first data byte
Byk' N hyte <) last da(~1 byte of re(;'ord
B\'I,~ Nbyte+ 1 <) Cllc(;kslItn
Notes: Nhytes -.- The lotal IIlllllher of hYles in the record NOT indl.lding the checksulll hyte.
Clh.'CksullI \\,11\'11 ;lddcd to Ilk' IlIod})(, ~1I111 or all or the hytes ill the I\.'conl will n.'sillt ill a l.el"O

rl",l lit.
BYI\~ 1
Hyk 2
B~ Ie J
By te 4
B~,I.I: 5
Byt,~ 6
.By~..? 7

SEE ALSO

I :xl'clIti()1l .. \ddl\.'ss th'cord:
<I) always 1
<0) ignorcd by the loader
<) always(,(;'\Jhyleslow)
<) alw;IYs () (N hytt'~; high)
<) ('Xl'ClIli(l1l ;Iddre~s low
<) l'Xl'Clitiotl ~Iddn.'ss high
<) Chcd,SlIlll by te

kbcllk(I), Idasav(I)

7th Edition

MTAB (5) UNIX Programmer's Manual MTAB (5)

NAME
mtab - mounted file system table

SYNOPSIS
#include < fstab.h >
#include < mtab.h >

DESCRIPTION

FILES

Mtab resides in directory fete and contains a table of devices mounted by the mount command.
Umount removes entries.

The table is a series of mtab structures, as defined in < mtab.h > . Each entry contains the
null-padded name of the place where the special file is mounted, the null-padded name of the
special file, and a type field, one of those defined in <jstab. h >. The special file has all its
directories stripped away~ that is, everything through the last ~/' is thrown away. The type field
indicates if the file system is mounted read-only, read-write, or read-write with disk quotas
enabled.

This table is present only so people can look at it. It does not matter to mount if there are
duplicated entries nor to umount if a name cannot be found.

letc/mtab

SEE ALSO
mount(8)

4th Berkeley Distribution 26 June 1983

NETWORKS (5) UNIX Programmer's Manual NETWORKS (5)

NAME
networks - network name data base

DESCRIPTION

FILES

The networks file contains information regarding the known networks which comprise the
DARPA Internet. For each network a single line should be present with the following informa­
tion:

official network name
network number
aliases

Items are separated by any number of blanks and/or tab characters. A H#" indicates the
beginning of a comment~ characters up to the end of the line are not interpreted by routines
which search the file. This file is normally created from the official network data base main­
tained at the Network Information Control Center (NIC), though local changes may be
required to bring it up to date regarding unofficial aliases and/or unknown networks.

Network number may be specified in the conventional u. "·notation using the inet_networkO
routine from the Internet address manipulation library, inet(3N). Network names may contain
any printable character other than a field delimiter, newline, or comment character.

/etc/networks

SEE ALSO
getnetent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

4th Berkeley Distribution 15 January 1983 1

NEWSRC(5) UNIX Programmer's Manual NEWSRC(5)

NAIIE
newsrc - information file for readnews(l} and checknews{l)

DESCRIPTION
The . newsrc file contains the list of previously read articles and an optional
options line for readnews(l} and checknews{l}. Each newsgroup that articles
have been read from has a line of the form:

newsgroup: range

The ra.nge is a list of the articles read. It is basically a list of no.'s separated by
commas with sequential no. 's collapsed with hyphens. For instance:

general.: 1-78.80.85-90
fainfo-epm: 1-7
net.news: 1
fa.info-vax! 1-6

If the: is replaced with an ! (as in info-vax above) the newsgroup is not sub­
scribed to and will not be shown to the user.

An options line starts with the word options (left-justified). Then there are the
list of options just as they would be on the command line. For instance:

options -n all !fa.sf-lovers !fahuman-nets--i:'
options -c -r
A string of lines beginning with a space or tab after the initial options line will be
considered continuation lines.

1"IoI/.newsrc

SEE ALSO
readnews{ 1), checknews{ 1)

4th Berkeley Distribution

Options and list of previously read articles

28 July 1983 1

PASSWD(5) UNIX Programmer~s Manual PASSWD(S)

NAME
passwd - password file

DESCRIPTION

FILES

Passwd contains fot each user the following information:

name (login name~ contains no upper case)
encrypted password
numerical user ID
numerical group ID
user's real name, office., extension, home phone.
initial working directory
program to use as Shell

The name may contain '&', meaning insert the login name. This information is set by the
c/tfn (l) command and used by the ./ingerO) command.

This is an ASCII file. Each field within each user's entry is separated from the next by a colon.
Each user is separated from the next by a new-line. If the password field is null, no password is
demanded; if the Shell field is null, then Ibinlsh is used.

This file resides in directory letc. Because of the encrypted passwords, it can and does have
general read permission and can be used, for example, to map numerical user ID's to names.

Appropriate precautions must be taken to lock the file against changes if it is to be edited with a
text editor; vipw(S) does the necessary locking.

letc/passwd

SEE ALSO

BUGS

getpwent(3), login(l)., crypt (3) , passwd(l), group(S), chfn(l), finger(I), vipw(S), adduser(S)

A binary indexed file format should be available for fast access.

User information (name, office, etc,) should be stored elsewhere.

7th Edition 15 January 1983 1

PHONES(S) UNIX Programmer's Manual PHONES (S)

NAME
phones - remote host phone number data base

DESCRIPTION

FILES

The file letclphones contains the system-wide private phone numbers for the tip(1C) program.
This file is normally unreadable, and so may contain privileged information. The format of the
file is a series of lines of the form: <system-name> [\t1.<phone-number>. The system
name is one of those defined in the remote(S) file and the phone number is constructed from
[01234S6789--.%]. The "-" and "." characters are indicators to the auto call units to pause
and wait for a second dial tone (when going through an exchange). The "-" is required by
the DF02-AC and the U." is required by the BIZCOMP 1030.

Only one phone number per line is permitted. However, if more than one line in the file con­
tains the same system name tip(1C) will attempt to dial each one in turn, until it establishes a
connection.

letclphones

SEE ALSO
tip(1C), remote(5)

4th Berkeley Distribution 15 January 1983 1

PLOT(5) UNIX Programmer's Manual PLOT(5)

NAME
plot - graphics interface

DESCRIPTION
Files of this format are produced by routines described in plot(3X), and are interpreted for vari­
ous devices by commands described in plot(lO). A graphics file is a stream of plotting instruc­
tions. Each instruction consists of an ASCII letter usually followed by bytes of binary informa­
tion. The instructions are executed in order. A point is designated by four bytes representing
the x and y values; each value is a signed integer. The last designated point in an I, m, D, or p
instruction becomes the 'current point' for the next instruction.

Each of the following descriptions begins with the name of the corresponding routine in
plot(3X).

m move: The next four bytes give a new current point.

D cant: Draw a line from the current point to the point given by the next four bytes. See
plot(IO).

p point: Plot the point given by the next four bytes.

I line: Draw a line· from the point given by the next four bytes to the point given by the fol­
lowing four bytes.

t label: Place the following ASCII string so that its first character falls on the current point.
The string is terminated by a newline.

a arc: The first four bytes give the center, the next four give the starting point, and the last
four give the end point of a circular arc. The least significant coordinate of the end point is
used only to determine the quadrant. The arc is drawn counter-clockwise.

c circle: The first four bytes give the center of the circle, the next two the radius.

e erase: Start another frame of output.

f Iinemod: Take the following string, up to a newline, as the style for drawing further lines.
The styles are 'dotted,' 'solid,' 'longdashed,' 'shortdashed,' and 'dotdashed.' Effective only
in plot 4014 and plot lIeT.

s space: The next four bytes give the lower left comer of the plotting area~ the following four
give the upper right corner. The plot will be magnified or reduced to fit the device as
closely as possible.

SEE ALSO

Space settings that exactly fill the plotting area with unity scaling appear below for devices
supported by the filters of plot (1 G) . The upper limit is just outside the plotting area. In
every case the plotting area is taken to be square; points outside may be displayable on dev­
ices whose face isn't square.

4014 space(O, 0, 3120, 3120);
ver space (0, 0, 2048, 2048);
300, 300s space(O, 0, 4096, 4096);
450 space(O, 0, 4096, 4096);

plot(lG), plot(3X), graph(lG)

7th Edition 15 January 1983 1

PRINTCAP (5) UNIX Programmer's Manual PRINTCAP (5)

NAME
printcap - printer capability data base

SYNOPSIS
/ etc/printcap

DESCRIPTION
Printcap is a simplified version of the termcap(S) data base used to describe line printers. The
spooling system accesses the printcap file every time it is used, allowing dynamic addition and
deletion of printers. Each entry.in the data base is used to describe one printer. This data base
may not be substituted for, as is possible for termcap, because it may allow accounting to be
bypassed.

The default printer is normally Ip, though the environment variable PRINTER may be used to
override this. Each spooling utility supports an option, - P printer, to allow explicit naming of a
destination printer.

Refer to the 4.2BSD Line Printer Spooler Manual for a complete discussion on how setup the
database for a given printer.

CAPABILITIES
Refer to termcap for a description of the file layout.

Name Type Default Description
af str NULL name of accounting file
br num none if lp is a tty, set the baud rate (ioetl call)
cf str NULL dfplot data filter
elf str NULL tex data filter (DVI format)
fc num 0 if lp is a tty, clear flag bits (sgtty.h)
ff str "\r' string to send for a form feed
fo bool false print a form feed when device is opened
fs num 0 like 'fc' but set bits
gf str NULL graph data filter (plot (3X) format)
ic bool false driver supports (non standard) ioctl to indent printout
if str NULL name of text filter which does accounting
If str " / dev I console" error logging file name
10 str "lock" name of lock file
Ip str "/dev/lp" device name to open for output
mx num 1000 maximum file size (in BUFSIZ blocks), zero - unlimited
nd str NULL next directory for list of queues (unimplemented)
nf str NULL ditroff data filter (device independent trotO
of str NULL name of output filtering program
pI num 66 page length (in lines)
pw num 132 page width (in characters)
px num 0 page width in pixels (horizontal)
py num 0 page length in pixels (vertical)
rf str NULL filter for printing FORTRAN style text files
rm str NULL machine name for remote printer
rp str "lp" remote printer name argument
rs bool false restrict remote users to those with local accounts
rw bool false open the printer device for reading and writing
sb bool false short banner (one line only)
sc bool false suppress mUltiple copies
sd str "/usr Ispoolllpd" spool directory
sf bool false suppress form feeds
sh boo 1 false suppress printing of burst page header

4th Berkeley Distribution 18 July 1983 1

PRINTCAP (S l UNIX Propammer's Manual PlUNTCAP (S)

st str ··statusn statuS' tie name
If str NULL, tl:ofr data, filter (ad phlltotypesettet)
tr sIt NULL trailer strinl to' print, wileD queue empties
vf str NULL raster image: fifter
xc num 0 if Ip is a tty, clear loal mode bits (tty! (4»
xs num 0: like 'xc' but se't bits
Error messalcs sent to the cnsole have a carriap rctum IUld, a line feed' appended to them,
rather tUn' just a line feed.

If the local line printer driver supports: indentatiolly the daemon mUst understand bow to invoke
it.

SEE ALSO
termcap(Sl, Ipc{S), Ipd(S)" pac(S), Ipr(l), Ipq(l), Iprm(J)
4.2BSD Line Printer Spooler Manual

4th Berkeley Distribution 18 July 1983 2

PROTOCOLS (5) UNIX Programmer's Manual PROTOCOLS (5)

NAME
protocols - protocol name data base

DESCRIPTION

FILES

The protocols file contains information regarding the known protocols used in the DARPA
Internet. For each protocol a single line should be present with the following information:

official protocol name
protocol number
aliases

Items are separated by any number of blanks and/or tab characters. A "#" indicates the
beginning of a comment; characters up to the end of the line are not interpreted by routines
which search the file.

Protocol names may contain any printable character other than a field delimiter, newline, or
comment character.

/ etc/protocols

SEE ALSO

BUGS

getprotoent (3N)

A name· server should be used instead of a static file. A binary indexed file format should be
available for fast access.

7th Edition 15 January 1983 1

ReSI:II.I·: (5) UN IX Progr~lmm~r's Manual RCSFH J~(5)

NAi\IE
restik . ·/(wmal of l{CS liIe

DESCHIPTION
'\11 lU.'S fik is all ASCII lik. Its cOlllents ;is d('seril·h .. 'd hy thl' grammar below. The lext is frc(, for­
mal. i.t'., span's, ltlhs .111<.1 Jll'\\' lim's h.I\'c nu sit'l}jf'it,:;tIIcc cxcl'pl ill strings. Strings arc ctl<:1osl'd by
'(!' '. If a strillgcoHlains a 'VI', it IlII!:,! he uouhll'u.

Tlw)lIi.'ta S) ntax W'l'S the I(lllo\\'illg COIlVl..'lIlion-;: T (hal') sl'pilr<th~''i a1tcrllaliv~.'s; 'r ami 'r enclosc
optin<ll pltras\.'s; 'r and '}:r' l'nc!tlSI..' plll"<ls\.'~ th~lllII;IY lH.' n.'lll:all'd 1<.'1"0 or Jll()H~ ti"H.'~: '{' allu '} +'
l'llclosc phrases that 1III.Ist (lPI1\.'<lr (It ka~t \HICC "tat lIlay be r('ll(~ati..'ll: '<' illlU '>' l'IIc!(l';C lIo11tl'l'Ini­
n:lIs.

<;,,1111 in)

<delta>

<d~sc)

<ddlalexl)

<nUlll>

<digit)

<i<l>

(kUer)

<idchar>

<SP<"Ci~lt>

<string>

.. -
, ... -

"­.. -

: ?

IH.'ad l<lHllu>l:
:tl'l'l'SS t<id>}*:
symhols t<id) : <ll1un>.} *:
It) '" ks :<ill> : (num)}*:
l'O Illllle lit {<string)} :

<Ilum)
date <num>;
author <itt>:
state {<itt>} :
hraHl'hes {<JUIIII) }*:
Ill'" {<nuu">} :

tll'Sl' <string>

< Illllll)
log <string>
(ext (striug>

{<digi1){.J} +

01 1 I .. , 19

<ktter){<idchar>}*

AIBI .. ·IZlalhJ ... I'I.

Any printing AS(,lJdlafactcr CXl'('pt space,
t<lh,carriagc rctufu, new lim.". and <SI}cchll).

IdClllilit'fSarc case scnsitl\'c. Keywords arc in lowercase only. 'rhe sets of keywords and identifiers
may overlap.

Purdue Univt'rsity 6/29/8]

RCSFII.E(5) UN IX Progr:llnmcr's Manual RCSI:II.(~(5)

The (dell,,) IHH.le<; t()fIn a tree. All nodes whosc llllllllwrs consist of'" sillgk p:tir (e.g., 2.\ 2.1. 1.3,
etc.) arc on the "trunk", (lild arc linkl'd thruugh the "Hext" lidel in order or decrew;illg llumbcrs.
The "head" fk'id ill tile ("dlllin) nodc points lo the he~\(.1 of' th;ll seqllence (i.e., contains tlie highest
pair).

All (dclt<l) nodes whose numbers consist of In fidds (n>-:2) (e.g., 3.1.1.1, ?I.).), elc.) arc linked as
f()\\ows. All IHH.ks whu~;e III's! (211)-1 Ill!ll1hcr liclds (Ire itk'lltic;d arc linked tilrough Ihe "next" field
ill order or illcn .. ,(I'.;ing numhers. h)r C;tl'!1 Stich Sl.'l]lICIlCC, tile <ddt:l> node \\'llO~;C 11l1l1\her i') identi­
cal to tlw lirs! 2(11-1) Ilumher field:; or til>.' del(<ls Oil til;! [Sl,'qW'llCC i') L',tlkd the hr'PlL'hpoilll. Thc
"hr:\Ilchcs" IiL'ld or a nodc cOIl(ains a li~.;t or the Illlnlbcrs or the first Iwdes or :111 sequences for
which it is "hranchpoint. This list is o\'(J,.'rcd ill illcrcasing numbers.

I ~x(\ll1pk:

IDENTII,'ICATION

1 \
1 \

1 \
11.2. I. J\

t

I
I

1 \
1 \

1 \
1 1.2.1. 1\

t

I
I
I

1 \
1 \

1 \
11. J. I . 1 \

t

I
I
I
I \
------.---\

Ilead

\

I
I
\'

2. I

v

I. J 1
1

1
\ 1

I
I
v

1 \
1 \

1 \
11.2.2.2\

t

1 \
1 \

1 \
ILL2.1.1.1\

t

I I
I I

1 \ I
1 \ I

1 \-----------
11.2.7..1\

t

I
I
I

I \ 1.2 1 I
- - -- - -- -- -- - - - - - - -- ---\

\ 1
\ 1
I
I
v

1---------

\ 1. 1 1
\ 1

\ /
\ /

Fig. 1: A rL'vision trec

Author: \V:dtcr I:. Tichy, PllrdlJl.' Univl'rsity, \Vest l.al:lyt'ilC. IN, 47907.
Revisioll N 1I111hL'r: .LO ; Rdc;lsl' Date: X}/ 11/18 .

Pu I'd lie till i vl'rsily ()/2')/XJ 2

RCSFII.E(S) UN IX Programmer's Manual RCSI:ILI·:(5)

('oJlyright © 19X2 hy \Vaher F. Tichy.

SEE ALSO
ci (I), co (I), ident (1), res (l). resdilr (I), resinlro (I). rcslIlcrgc (I), rlog (I). scestores on.

PurUlW University 6/29/83 J

REMOTE (5) UNIX Programmer's Manual REMOTE (5)

NAME
remote - remote host description file

DESCRIPTION
The systems known by tip(tC) and their attributes are stored in an ASCII file which is struc­
tured somewhat like the termcap(5) file. Each line in the file provides a description for a single
system. Fields are separated by a colon (":"). Lines ending in a \ character with an immedi­
ately following newline are continued on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a system,
the names are separated by vertical bars. Mter the name of the system comes the fields of the
description. A field name followed by an '-' sign indicates a string value follows. A field
name followed by a • #' sign indicates a following numeric value.

Entries named "tip-" and "cu-" are used as default entries by tip, and the cu interface to tip,
as follows. "ben tip is invoked with only a phone number, it looks for an entry of the form
"tip300", where 300 is the baud rate with which the connection is to be made. When the cu
interface is used, entries of the form "cu300" are used.

CAPABILITIES
Capabilities are either strings (str), numbers (num), or boolean flags (boot). A string capability
is specified by capability-value; e.g. "dv-/dev/harris". A numeric capability is specified by
capability#value; e.g. "xa#99". A boolean capability is specified by simply listing the capabil­
ity.

at (str) Auto call unit type.

br (num) The baud rate used in establishing a connection to the remote host. This is a
decimal number. The default baud rate is 300 baud.

(:m (str) An initial connection message to be sent to the remote host. For example, if a
host is reached through port selector, this might be set to the appropriate sequence
required to switch to the host.

(:U (str) Call unit if making a phone call. Default is the same as the 'dv' field.

dl (str) Disconnect message sent to the host when a disconnect is requested by the user.

du (bool) This host is on a dial-up line.

dv (str) UNIX device (s) to open to establish a connection. If this file refers to a terminal
line, tip(1C) attempts to perform an exclusive open on the device to insure only one
user at a time has access to the port.

el (str) Characters marking an end-of-line. The default is NULL. ,-, escapes are only
recognized by tip after one of the characters in 'el', or after a carriage-return.

fs (str) Frame size for transfers. The default frame size is equal to BUFSIZ.

hd (boot) The host uses half-duplex communication, local echo should be performed.

Ie . (str) Input end-of-file marks. The default is NULL.

oe (str) Output end-of-file string. The default is NULL. When tip is transferring a file,
this string is sent at end-of-file.

pa (str) The type of parity to use when sending data to the host. This may be one of
"even", "odd", "none", "zero" (always set bit 8 to zero), "one" (always set bit 8 to
1). The default is even parity.

pn (str) Telephone number(s) for this host. If the telephone number field contains an @
sign, tip searches the file fetc/phones file for a list of telephone numbers; c.f. phones (5) .

t(: (str) Indicates that the list of capabilities is continued in the named description. This is

4th Berkeley Distribution 1 March 1983 1

REMOTE(S) UNIX Proarammer's Manual REMOTE(S)

FILES

used primarily to share common capability information.

Here is a short example showing the use of the capability continuation feature:

UNIX-I 200:\
:dv-/dev/cauO:el-"O"U"C"S"Q"O@:du:at-venlel:ie-#S%:oe-"O:br#1200:

arpavai,lx:\
:pn -76S4321%:tc - UNIX· 1 200

letc/remote

SEE ALSO
tip(lC), phones(S)

4th Berkeley Oistribution 1 March 1983 2

SERVICES (5) UNIX Programmer's Manual SERVICES (5)

NAME
services - service name data base

DESCRIPTION

FILES

The services file contains information regarding the known services available in the DARPA
Internet. For each service a single line should be present with the following information:

official service name
port number
protocol name
aliases

Items are separated by any number of blanks and/or tab characters. The port number and pro­
tocol name are considered a single item; a "I" is used to separate the port and protocol (e.g.
"SI2/tcp"). A "#" indicates the beginning of a comment; characters up to the end of the line
are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter, newline, or
comment character.

I etcl services

SEE ALSO
getservent(3N)

BUGS
A name server should be used instead of a static file. A binary indexed file format should be
available for fast access.

4th Berkeley Distribution 15 January 1983 1

STAB (S) UNIX Programmer's Manual STAB (S)

NAME
stab - symbol table types

SYNOPSIS
#IDclude < stab.h >

DESCRIPTION
Stab.h defines some values of the n_type field of the symbol table of a.out files. These are the
types for permanent symbols (i.e. not local labels, etc.) used by the old debugger sdb and the
Berkeley Pascal compiler pe(l). Symbol table entries can be produced by the .stabs assembler
directive. This allows one to specify a double-quote delimited name, a symbol type, one char
and one short of information about the symbol, and an unsigned long (usually an address). To
avoid having to produce an explicit label for the address field, the .stabd directive can be used
to implicitly address the current location. If no name is needed, symbol table entries can be
generated USing the .stabn directive. The loader promises to preserve the order of symbol table
entries produced by .stab directives. As described in a.out(S), an element of the symbol table
consists of the following structure:

/-
- Format of a symbol table entry.
-/

struct nlist {
union {

char -n_name; /- for use when in-core -/
long n_strx; /- index into file string table -/

} nun;
unsigned char n_type; /- type flag -/
char n_other; /- unused -/
short n_desc; I-see struct desc, below -/

};
unsigned n value; /- address or offset or line -/

The low bits of the n_type field are used to place a symbol into at most one segment, according
to the following masks, defined in <a.out.h>. A symbol can be in none of these segments by
having none of these segment bits set.

/-
- Simple values for n_type.
-/

#define N _ UNDF OxO /- undefined -/
#define N_ABS Ox2 /- absolute -/
#define N _TEXT Ox4 /- text -/
#define N_DATA Ox6 /- data-/
#define N _BSS Ox8 /- bss -/

#define N_EXT 01 /- external bit, or'ed in -/

The n_ value field of a symbol is relocated by the linker, IdO) as an address within the appropri­
ate segment. N_ value fields of symbols not in any segment are unchanged by the linker. In
addition, the linker will discard certain symbols, according to rules of its own, unless the n_ type
field has one of the following bits set:

/-
- Other permanent symbol table entries have some of the N ST AB bits set.
- These are given in <stab.h> -
-/

#define N_STAB OxeO/- if any of these bits set, don't discard -/

4th Berkeley Distribution 1 April 1983 1

STAB (5) UNIX Programmer's Manual STAB(5)

This allows up to 112 (7 • 16) symbol types, split between the various segments. Some of
these have already been claimed. The old symbolic debugger, sdb, uses the following n_type
values:

#define N_GSYM Ox20 /. global symbol: name"O,type,O ./
#define N_FNAME Ox22 /. procedure name (n7 kludge): name"O ./
#define N_FUN Ox24 /- procedure: name"O,linenumber,address ./
#define N_STSYM Ox26 /. static symbol: name"O,type,address ./
#define N_LCSYM Ox28 /- .lcomm symbol: name"O,type,address ./
#define N_RSYM Ox40 /. register sym: name"O,type,register ./
#define N_SLINE Ox44 /- src line: O"O,linenumber,address ./
#define N_SSYM Ox60 /. structure elt: name"O,type,struct_offset -/
#define N_SO Ox64 /. source file name: name"O,O,address -/
#define N_LSYM Ox80 /- local sym: name"O,type,offset ./
#define N_SOL Ox84 /- #included file name: name"O,O,address ./
#define N_PSYM OxaO /. parameter: name"O,type,oifset -/
#define N_ENTRY Oxa4 /. alternate entry: name,linenumber,address -/
#define N_LBRAC pico /. left bracket: O"O,nesting level,address -/
#define N_RBRAC/OxeO /- right bracket: O"O,nesting level,address -/
#define N BCOM'M Oxe2 /- begin common: name" -/
#define N ECOMMOxe4 /- end common: name" -/
#define N=ECOML Oxe8 /- end common (local name): "address -/
#define N;;..LENG Oxfe /- second stab entry with length information -/

where the comments give sdb conventional use for .stabs and the n name, n other, n desc, and
n_ value fields of the given n_type. Sdb uses the n_desc field to hold a type specifier it1 the form
used by the Portable C Compiler, cd 1), in which a base type is qualified in the following struc­
ture:

struct desc {

};

short q6:2,
q5:2,
q4:2,
q3:2,
q2:2,
q1:2,
basic:4;

There are four qualifications, with q1 the most significant and q6 the least significant: ° none
1 pointer
2 function
3 array

The sixteen basic types are assigned as follows: ° undefined
1 function argument .
2 character
3 short
4 int
5 long
6 float
7 double
8 structure
9 union

4th Berkeley Distribution 1 April 1983 2

STAB (5) UNIX Programmer's Manual STAB(S)

10 enumeration
11 member of enumeration
12 unsigned character
13 unsigned short
14 unsigned int
1 S unsigned long

The Berkeley Pascal compiler, pe(O, uses the following n_type value:

#defineN_PC Ox30 /. global pascal symbol: name"O,subtype,line ./

and uses the following subtypes to do type checking across separately compiled files:
1 source file name
2 included file name
3 global label
4 global constant
S global type
6 global variable
7 global function
8 global procedure
9 external function
10 'external procedure
11 library variable
12 library routine

SEE ALSO

BUGS
as(1), Id(1), dbx(1), a.out(S)

Sdb assumes that a symbol of type N_GSYM with name name is located at address _name.

More basic types are needed.

4th Berkeley Distribution 1 April 1983 3

TAR(5) UNIX Programmer's Manual TAR (5)

NAME
tar - tape archive file format

DESCRIPTION
Tar, (the tape archive command) dumps several files into one, in a medium suitable for tran­
sportation.

A "tar tape" or file is a series of blocks. Each block is of size TBLOCK. A file on the tape is
represented by a header block which describes the file, followed by zero or more blocks which
give the contents of the file. At the end of the tape are two blocks filled with binary zeros, as
an end-of-file indicator.

The blocks are grouped for physical 110 operations. Each group of n blocks (where n is set by
the b keyletter on the tar(1) command line - default is 20 blocks} is written with a single sys­
tem call; 9n nine-track tapes, the result of this write is a single tape record. The last group is
always written at the full size, so blocks after the two zero blocks contain random data. On
reading, the specified or default group size is used for the first read, but if that read returns less
than a full tape block, the reduced block size is used for further reads.

The header block looks like:

#define TBLOCK 512
#define NAMSIZ 100

union hblock {

};

char dummy [TBLOCK];
struct header {

char name[NAMSIZ];
char mode[8]~
char uid[8];
char gid [8];
char size [I 2] ;
char mtime[I2];
char chksum [8] ;
char linkflag;
char linkname [N AMSIZ];

} dbuf;

Name is a null-terminated string. The other fields are zero-filled octal numbers in ASCII. Each
field (of width w) contains w-2 digits, a space, and a null, except size and mtime, which do not
contain the trailing null. Name is the name of the file, as specified on the tar command line.
Files dumped because they were in a directory which was named in the command line have the
directory name as preilx and /filename as suffix. Mode is the file mode, with the top bit masked
off. Uid and gid are the user and group numbers which own the file. Size is the size of the file
in bytes. Links and symbolic links are dumped with this field specified as zero. Mtime is the
modification time of the file at the time it was dumped. Chksum is a decimal ASCII value
which represents the sum of all the bytes in the header block. When calculating the checksum,
the chksum field is treated as if it were all blanks. Lin/iflag is ASCII '0' if the file is "normal"
or a special file, ASCII '1' if it is an hard link, and ASCII '2' if it is a symbolic link. The name
linked-to, if any, is in linkname, with a trailing null. Unused fields of the header are binary
zeros (and are included in the checksum).

The first time a given i-node number is dumped, it is dumped as a regular file. The second and
subsequent times, it is dumped as a link instead. Upon retrieval, if a link entry is retrieved,
but not the file it was linked to, an error message is printed and the tape must be manually re­
scanned to retrieve the linked-to file.

7th Edition 15 January 1983 1

TAR(S) UNIX Programmer's Manual

The encoding of the header is designed to be portable atross machines.

SEE ALSO
tarO)

BUGS

TAR (5)

Names or linknames longer than NAMSIZ produce error reports and cannot be dumped.

7th Edition 1 S January 1983 2

TERMCAP(S) UNIX Programmer's Manual TERMCAP (5)

NAME
termcap - terminal capability data base

SYNOPSIS
letc/termcap

DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by vi (1) and curses (3X) . Terminals are
described in termcap by giving a set of capabilities which they have, and by describing how
operations are performed. Padding requirements and initialization sequences are included in
termcap.

Entries in termcap consist of a number of ':' separated fields. The first entry for each terminal
gives the names which are known for the terminal, separated by 'I' characters. The first name is
always 2 characters long and is used by older version 6 systems which store the terminal type in
a 16 bit word in a systemwide data base. The second name given is the most common abbrevi­
ation for the terminal, and the last name given should be a long name fully identifying the ter­
minal. The second name should contain no blanks; the last name may well contain blanks for
readability.

CAP ABILITIES
(P) indicates padding may be specified
(P*) indicates that padding may be based on no. lines affected

Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
bc str Backspace if not AH
bs bool Terminal can backspace with AH
bt str (P) Back tab
bw bool Backspace wraps from column 0 to last column
CC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
cr str (P*) Carriage return, (default AM)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed
dc str (P*) Delete character
dF num Number of millisec of if delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
do str Down one line
dT num Number of millisec of tab delay needed
ed str End delete mode

3rd Berkeley Distribution 10 May 1980 1

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

ei str End insert mode; give ":ei=-:'" if ic
eo str Can erase overstrikes with a blank
ff str (p.) Hardcopy terminal page eject (default "'L)
hc bool Hardcopy terminal
hd str Half-line down (forward 112 linefeed)
ho str Home cursor (if no em)
hu str Half-line up (reverse 112 linefeed)
hz str Hazeltine; can't print -'s
ic str (P) Insert character
if str Name of file containing is
im bool Insert mode (enter); give H:im-:" if ie
in boo I Insert mode distinguishes nulls on display
ip str (p.) J nsert pad after character inserted
is str Terminal initialization string
kO-k9 str Sent by "other" function keys 0-9
kb str Sent by backspace key
kd str Sent by terminal down arrow key
ke str Out of "keypad transmit" mode
kh str Sent by home key
kl str Sent by terminal left arrow key
kn num Number of "other" keys
ko str Termcap entries for other non-function keys
kr str Sent by terminal right arrow key
ks str Put terminal in "keypad transmit" mode
ku str Sent by terminal up arrow key
10-19 str Labels on "other" function keys
Ii num Number of lines on screen or page
II str Last line, first column (if no em)
ma str Arrow key map, used by vi version 2 only
mi bool Safe to move while in insert mode
ml str Memory lock on above cursor.
ms boo I Safe to move while in standout and underline mode
mu str Memory unlock (turn off memory lock).
nc bool No correctly working carriage return (DM2S00,H2000)
nd str Non-destructive space (cursor right)
nl str (p.) Newline character (default \0)
ns bool Terminal is a CRT but doesn't scroll.
os bool Terminal overstrikes
pc str Pad character (rather than null)
pt bool Ha!) hardware tabs (may need to be set with is)
se str End stand out mode
sf str (P) Scroll forwards
sg num Number of blank chars left by so or se
so str Begin stand out mode
sr str (P) Scroll reverse (backwards)
ta str (P) Tab (other than '"lor with padding)
tc str Entry of similar terminal - must be last
te str String to end programs that use em
ti str String to begin programs that use em
uc str Underscore one char and move past it
ue str End underscore mode
ug num Number of blank chars left by us or ue

3rd Berkeley Distribution 10 May 1980 2

TERMCAP(S) UNIX Programmer's Manual TERMCAP (S)

ul bool
up str
us str
vb str
ve str
vs str
xb bool
xn bool
xr boo I
xs bool
xt bool

A Sample Entry

Terminal underlines even though it doesn't overstrike
Upline (cursor up)
Start underscore mode
Visible bell (may not move cursor)
Sequence to end open/visual mode
Sequence to start open/visual mode
Beehive (fl =escape, f2=ctrl C)
A newline is ignored after a wrap (Concept)
Return acts like ce \r \n (Delta Data)
Standout not erased by writing over it (HP 264?)
Tabs are destructive, magic so char (Teleray 106I)

The following entry, which describes the Concept-100, is among the more complex entries in
the termcap file as of this writing. (This particular concept entry is outdated, and is used as an
example only.)

cllclOOlconceptlOO:is==\EU\Ef\E7\ES\E8\EI\ENH\EK\E\200\Eo&\200:\
:al==3.\E"'R:am:bs:cd= l6.\E"C:ce= l6\E"'S:cl = 2· ... L:cm =\Ea% + %+ :co#80:\
:dc== l6\E'" A:dl=31!<\E"'B:ei =\E\200:eo:im=\E"'P:in:ip== l6.:1i#24:mi:nd=\E=:\
:se=\Ed\Ee:so=\ED\EE:ta=8\t:ul:up=\E~:vb=\Ek\EK:xn:

Entries may continue onto multiple lines by giving a \ as the last character of a line, and that
empty fields may be included for readability (here between the last field on a line and the first
field on the next). Capabilities in termcap are of three types: Boolean capabilities which indicate
that the terminal has some particular feature, numeric capabilities giving the size of the termi­
nal or the size of particular delays, and string capabilities, which give a sequence which can be
used to perform particuiar terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the Concept has '"automatic
margins" (i.e. an automatic return and linefeed when the end of a line is reached) is indicated
by the capability am. Hence the description of the Concept includes am. Numeric capabilities
are followed by the character 4#' and then the value. Thus co which indicates the number of
columns the terminal has gives the value 480' for the Concept.

Finally, string valued capabilities, such as ce (clear to end of line sequence) are given by the
two character code, an 4 =', and then a string ending at the next following 4:'. A delay in mil­
liseconds may appear after the 4 =' in such a capability, and padding characters are supplied by
the editor after the remainder of the string is sent to provide this delay. The delay can be
either a integer, e.g. 420'. or an integer followed by an '.', i.e. 43.'. A 4.' indicates that the
padding required is proportional to the number of lines affected by the operation, and the
amount given is the per-affected-unit padding required. When a 4.' is specified, it is sometimes
useful to give a delay of the form 43.5' specify a delay per unit to tenths of milliseconds.

A number of escape sequences are provided in the string valued capabilities for easy encoding
of characters there. A \E maps to an ESCAPE character, AX maps to a control-x for any
appropriate x, and the sequences \n \r \t \b \f give a newline, return, tab, backspace and
formfeed. Finally, characters may be given as three octal digits after a \, and the characters A

and \ may be given as \ A and \ \. If it is necessary to place a : in a capability it must be escaped
in octal as \072. If it is necessary to place a null character in a string capability it must be
encoded as \200. The routines which deal with termcap use C strings, and strip the high bits of
the output very late so that a \200 comes out as a \000 would.

3rd Berkeley Distribution 10 May 1980 3

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a
terminal description is by imitating the description of a similar terminal in termcap and to build
up a description gradually, using partial descriptions with ex to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the termcap file to
describe it or bugs in ex. To easily test a new terminal description you can set the environment
variable TERMCAP to a path name of a file containing the description you are working on and
the editor will look there rather than in /etc/termcap. TERMCAP can also be set to the termcap
entry itself to avoid reading the file when starting up the editor. (This only works on version 7
systems.)

Basic capabilities

The number of columns on each line for the terminal is given by the co numeric capability. If
the terminal is a CRT, then the number of lines on the screen is given by the Ii capability. If
the terminal wraps around to the beginning of the next line when it reaches the right margin,
then it should have the am capability. If the terminal can clear its screen, then this is given by
the cl string capability. If the terminal can backspace, then it should have the bs capability,
unless a backspace is accomplished by a character other than "H (ugh) in which case you
should give this character as the be string capability. If it overstrikes (rather than clearing a
position when a character is struck over) then it should have the os capability.

A very important point here is that the local cursor motions encoded in lermcap are undefined
at the left and top edges of a CRT terminal. The editor will never attempt to backspace around
the left edge, nor will it attempt to go up locally off the top. The editor assumes that feeding
off the bottom of the screen will cause the screen to scroll up, and the am capability tells
whether the cursor sticks at the right edge of the screen. If the terminal has switch selectable
automatic margins, the termcap file usually assumes that this is on, i.e. am.

These capabilities suffice to describe hardcopy and "glass-tty" terminals. Thus the model 33
teletype is described as

t3133Itty33:co#72:os

while the Lear Siegler ADM - 3 is described as

clladm3/3~si adm3:am:bs:cI == "Z:li#24:co#80

Cursor addressing

Cursor addressing in the terminal is described by a em string capability, with printj(3S) like
escapes O/DX in it. These substitute to encodings of the current line or column position, while
other characters are passed through unchanged. If the em string is thought of as being a func­
tion, then its arguments are the line and then the column to which motion is desired, and the
D/O encodings have the following meanings:

%d as in print/, 0 origin
%2 like %2d
%j like %3d
%. like %c
% + x adds x to value, then %.
% > xy if value > x adds y, no output.
%r reverses order of line and column, no output
%i increments line/column (for 1 origin)
%% gives a single %
%n exclusive or row and column with 0140 (DM2S00)
%8 BCD (I6.(x/lO)) + (x%10), no output.
%D Reverse coding (x-2.(x%16»), no output. (Delta Data).

3rd Berkeley Distribution 10 May 1980 4

TERMCAP(S) UNIX Programmer's Manual TERMCAP (S)

Consider the HP264S, which, to get to row 3 and column 12, needs to be sent \E&aI2c03Y
padded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and
that the row and column are printed as two digits. Thus its em capability is
"cm-6\E&%r%2c%2Y". The Microterm ACT·IV needs the current row and column sent pre­
ceded by a AT, with the row and column simply encoded in binary, Bcm==AT%.%.". Terminals
which use B%." need to be able to backspace the cursor (bs or be), and to move the cursor up
one line on the screen (up introduced below). This is necessary because it is not always safe to
transmit \t, \n AD and \r, as the system may change or discard them.

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
"cm-\E==%+ %+ ".

Cursor motions

If the terminal can move the cursor one position to the right, leaving the character at the
current position unchanged, then this sequence should be given as nd (non-destructive space).
If it can move the cursor up a line on the screen in the same column, this should be given as
up. If the terminal has no cursor addressing capability, but can home the cursor (to very upper
left corner of screen) then this can be given as ho; similarly a fast way of getting to the lower
left hand corner can be given as II; this may involve going up with up from the home position,
but the editor will never do this itself (unless II does) because it makes no assumption about
the effect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line, leaving the cursor
where it is, this should be given as ceo If the terminal can clear from the current position to
the end of the display, then this should be given as cd. The editor only uses cd from the first
column of a line.

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be
given as al; this is done only from the first position of a line. The cursor must then appear on
the newly blank line. If the terminal can delete the line which the cursor is on, then this
should be given as dl; this is done only from the first position on the line to be deleted. If the
terminal can scroll the screen backwards, then this can be given as sb, but just al suffices. If
the terminal can retain display memory above then the da capability should be given~ if display
memory can be retained below then db should be given. These let the editor understand that
deleting a line on the screen may bring non-blank lines up from below or that scrolling back
with sb may bring down non-blank lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using tc/'mcap. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other ter­
minals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed
and untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on
the screen which is either eliminated, or expanded to two untyped blanks. You can find out
which kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type Babc def' using local cursor motions (not spaces) between the "abc" and the
Bdef'. Then position the cursor before the Habc" and put the terminal in insert mode. If typ­
ing characters causes the rest of the line to shift rigidly and characters to fall off the end. then
your terminal does not distinguish between blanks and untyped positions. If the "abc" shifts
over to the "def' which then move together around the end of the current line and onto the
next as you insert, you have the second type of terminal, and should give the capability in,
which stands for "insert null". If your terminal does something different and unusual then you

3rd Berkeley Distribution 10 May 1980 S

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

may have to modify the editor to get it to use the insert mode your terminal defines. We have
seen no terminals which have an insert mode not not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and terminals which send a
simple sequence to open a blank position on the current line. Give as im the sequence to get
into insert mode, or give it an empty value if your terminal uses a sequence to insert a blank
position. Give as ei the sequence to leave insert mode (give this, with an empty value also if
you gave im so). Now give as ie any sequence needed to be sent just before sending the char­
acter to be inserted. Most terminals with a true insert mode will not give ie, terminals which
send a sequence to open a screen position should give it here. (Insert mode is preferable to the
sequence to open a position on the screen if your terminal has both.) If post insert padding is
needed, give this as a number of milliseconds in ip (a string option). Any other sequence
which may need to be sent after an insert of a single character may also be given· in ip.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (e.g. if there is a tab after the insertion position). If your terminal allows motion
while in insert mode you can give the capability mi to speed up inserting in this case. Omitting
mi will affect only speed. Some terminals (notably Datamedia's) must not have mi because of
the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and exit delete mode, and de
to delete a single character while in delete mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these can be given as so and se
respectively. If there are several flavors of standout mode (such as inverse video, blinking, or
underlining - half bright is not usually an acceptable ~4standout" mode unless the terminal is
in inverse video mode constantly) the preferred mode is inverse video by itself. If the code to
change into or out of standout mode leaves one or even two blank spaces on the screc:n, as the
TVI 912 and Teleray 1061 do, then ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue respectively. If the
terminal has a code to underline the current character and move the cursor one space to the
right, such as the Microterm Mime, this can be given as ue. (If the underline code does not
move the cursor to the right, give the code followed by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout mode when they move to a
new line or the cursor is addressed. Programs using standout mode should exit standout mode
before moving the cursor or sending a newline.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement)
then this can be given as vb~ it must not move the cursor. If the terminal should be placed in a
different mode during open and visual modes of ex, this can be given as vs and ve, sent at the
start and end of lh~~~ illvJc:S respectively. These can be used to change, e.g., from a underline
to a block cursor and back.

If the terminal needs to be in a special mode when running a program that addresses the cur­
sor, the codes to enter and exit this mode can be given as ti and teo This arises, for example,
from terminals like the Concept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor addressing, a one screen-sized
window must be fixed into the terminal for cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

Jrd Berkeley Distribution 10 May 1980 6

TERMCAP(S) UNIX Programmer's Manual TERMCAP(S)

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information
can be given. Note that it is not possible to handle terminals where the keypad only works in
local (this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as ks and ke. Otherwise the keypad is assumed to
always transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and
home keys can be given as kl, kr, ku, kd, and kb respectively. If there are function keys such
as fO, fl, ... , f9, the codes they send can be given as kO, kl, ... , k9. If these keys have labels
other than the default fO through f9, the labels can be given as 10, 11, ••• , 19. If there are other
keys that transmit the same code as the terminal expects for the corresponding function, such
as clear screen, the term cap 2 letter codes can be given in the ko capability, for example,
H:ko==cl,ll,sf,sb:". which says that the terminal has clear, home down, scroll down, and scroll
up keys that transmit the same thing as the cl, II, sf, and sb entries.

The rna entry is also used to indicate arrow keys on terminals which have single character arrow
keys. It is obsolete but still in use in version 2 of vi, which must be run on some minicomput­
ers due to memory limitations. This field is redundant with kl, kr, ku, kd, and kh. It consists
of groups of two characters. In each group, the first character is what an arrow key sends, the
second character is the corresponding vi command. These commands are b for kl, j for kd, k
for ku, I for kr, and H for kb. For example, the mime would be :ma=AKj"ZkAXI: indicating
arrow keys left ("H), down ("K), up ("Z), and right ("X). (There is no home key on the
mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pc.

If tabs on the terminal require padding, or if the terminal uses a character other than "I to tab,
then this can be given as tao

Hazeltine terminals, which don't allow ~-, characters to be printed should indicate hz.
Datamedia terminals, which echo carriage-return linefeed for carriage return and then ignore a
following linefeed should indicate nco Early Concept terminals, which ignore a linefeed
immediately after an am wrap, should indicate xn. If an erase-eol is required to get rid of stan­
dout (instead of merely writing on top of it), xs should be given. Teleray terminals, where tabs
turn all characters moved over to blanks, should indicate xt. Other specific terminal problems
may be corrected by adding more capabilities of the form xx.

Other capabilities include is, an initialization string for the terminal, and if, the name of a file
containing long initialization strings. These strings are expected to properly clear and then set
the tabs on the terminal, if the terminal has settable tabs. If both are given, is will be printed
before if. This is useful where if is lusrllibltabsetlstd but is clears the tabs first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with cer­
tain exceptions. The string capability tc can be given with the name of the similar terminal.
This capability must be last and the combined length of the two entries must not exceed 1024.
Since term lib routines search the entry from left to right, and since the tc capability is replaced
by the corresponding entry, the capabilities given at the left override the ones in the similar ter­
minal. A capability can be canceled with xx@ where xx is the capability. For example, the
entry

hn 12621nl:ks@:ke@:tc==2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence does not turn on the
function key labels when in visual mode. This is useful for different modes for a terminal, or
for different user preferences.

3rd Berkeley Distribution 10 May 1980· 7

TERMCAP(S) UNIX Programmer's Manual

FILES
letc/termcap file containing terminal descriptions

SEE ALSO
ex(I), curses(JX), termcap(3X}, tset(I}, viOl, ulO), more(I}

AUTHOR
William Joy
Mark Horton added underlining and keypad support

BUGS

TERMCAP(5)

Ex allows only 256 characters for string capabilities, and the routines in termcap(3X) do not
check for overflow of this buffer. The total length of a single entry (excluding only escaped
newlines) may not exceed 1024.

The ma, VS. and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not supported by any program.

3rd Berkeley Distribution 10 May 1980 8

TP(S) UNIX Programmer's Manual TP(S)

NAME
tp - DEC/mag tape formats

DESCRIPTION
Tp dumps files to and extracts files from DECtape and magtape. The formats of these tapes are
the same except that magtapes have larger directories.

Block zero contains a copy of a stand-alone bootstrap program. See reboot(8).

Blocks 1 through 24 for DECtape (1 through 62 for magtape) contain a directory of the tape.
There are 192 (resp. 496) entries in the directory; 8 entries per block; 64 bytes per entry. Each
entry has the following format:

struct {

};

char
unsigned short
char
char
char
char
long
unsigned short
char
unsigned short

pathname[32];
mode;
uid;
gid;
unusedl;
size[3];
modtime;
tapeaddr;
unused2[I6];
checksum;

The path name entry is the path name of the file when put on the tape. If the path name starts
with a zero word, the entry is empty. It is at most 32 bytes long and ends in a null byte.
Mode, uid, gid, size and time modified are the same as described under i-nodes (see file system
jS(5». The tape address is the tape block number of the start of the contents of the file.
Every file starts on a block boundary. The file occupies (size+ 511)/512 blocks of continuous
tape. The checksum entry has a value such that the sum of the 32 words of the directory entry
is zero.

Blocks above 25 (resp. 63) are available for file storage.

A fake entry has a size of zero.

SEE ALSO
fs(5), tpC

BUGS
The pathname, uid, gid, and size fields are too small.

7th Edition IS January 1983 1

TTYS(S) UNIX Programmer's Manual TIYS(S)

NAME
ttys - terminal initialization data

DESCRIPTION

FILES

The ttys file is read by the init program and specifies which terminal special files are to have a
process created for them so that people can log in. There is one line in the ttys file per special
file.

The first character of a line in the ttys file is either '0' or '1'. If the first character on the line is
a '0', the in it program ignores that line. If the first character on the line is a '1', the init pro­
gram creates a login process for that line. The second character on each line is used as an argu­
ment to getty (8) , which performs such tasks as baud-rate recognition, reading the login name,
and calling login. For normal lines, the character is '0'; other characters can be used, for exam­
ple, with hard-wired terminals where speed recognition is unnecessary or which have special
characteristics. (Getty will have to be fixed in such cases.) The remainder of the line is the
terminal's entry in the device directory, Idev.

letclttys

SEE ALSO
gettytab(S), init(8), getty(8), 10gin(1)

7th Edition 18 July 1983 1

TIYTYPE(5) UNIX Programmer's Manual

NAME
ttytype - data base of terminal types by port

SYNOPSIS
1 etcl ttytype

DESCRIPTION

TTYTYPE(5)

Tty type is a database containing, for each tty port on the system, the kind of terminal that is
attached to it. There is one line per port, containing the terminal kind (as a name listed in
termcap (5», a space, and the name of the tty, minus 1 dey I.

This information is read by tset(1) and by login (1) to initialize the TERM variable at login time.

SEE ALSO
tset (I), login (1)

BUGS
Some lines are merely known as "dialup" or "plugboard".

7th Edition 25 October 1979 1

TYPES (5) UNIX Programmer's Manual TYPES (5)

NAME
types - primitive system data types

SYNOPSIS
#include < sys/types.h >

DESCRIPTION
The data types defined in the include file are used in UNIX system code~ some data of these
types are accessible to user code:

/. types.h 6.1 83/07/29./

/ .
• Basic system types and major/minor device constructing/busting macros . . /
/. major part of a device */
#define major(x) «int)«(unsigned)(x)> >8)&0377»

/* minor part of a device */
#define minor(x) «(jnt)«x)&0377»

/* make a device number */
#define makedev(x,y) «dev_t)«(x) < <8) I (y»)

typedef unsigned char
typedef unsigned short
typedef unsigned int
typedef unsigned long
typedef unsigned short

u_char~
u_short~
ujnt~

uJong~
ushorti* sys III compat -/

#ifdef vax
typedef struct
typedef struct

} label_t;
#endif

int

typedef struct
typedef long
typedef char.
typedef U-'o"~
typedef long
typedef int
typedef int
typedef short
typedef int

-physadr { int r[I]~ } .physadr~
label t {
val(I4]~

_quad { long vaI[2]~ } quad;
daddr_t;
caddr_t;
ino_t:
swblk_t~
size_t;
time_t;
dev_t;
off t· -'

typedef struct fd_set { int fds_bitsUl; } fd_set;

The form dadd,_t is used for disk addresses except in an i-node on disk, see jS(S). Times are
encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a
device code specify kind and unit number of a device and are installation-dependent. Offsets
are measured in bytes from the beginning of a file. The /abett variables are used to save the
processor state while another process is running.

4th Berkeley Distribution 1 April 1983 1

TYPES (5) UNIX Programmer's Manual TYPES (5)

SEE ALSO
fs(5), time(3), Iseek(2), adb(1)

4th Berkeley Distribution 1 April 1983 2

UT~'lP(5) UN 1 X I)mg r; ~IlIlIlC(S ~lanuc.d UTMP(5)

NAME
ulmp. wlmp ., .. login records

SY!';OI'SIS
1/ include (UhUjl.h>

DFS('IHP nON

FII,ES

The IIll11/-, Hie r\:rords in 1(H"lll:ltioll about \\"ho hClIITentfy llSiug llw sy~tem. The file j~ a sequence
or entries \\,ilh th~ (hlhm illg ~trlll.:tl\I\' decbr .. :d ill the inL'1utk 11k:

1* ulmp,h 4.2 ~B/()5/22 *-1

1*
* SlnK'lure ()futmp and wtmp Ilk: ...
*-

To ;\SSlIlIlillg the 1I11111!>t'r X is ullwise.
*1

ut,JillclXI:
lIt.Jl;\Illl'1 XI:

1* tty n<1I11~! *1
1* us\'r ill *1

Slflll:t !ltmp t
char
char
char
long'

IIl.JlOSl\ 1(,1: 1* host H~Hn~,if remote */
1* timc OJ) *1

}:
This :-.trllctllrc f,in's the 1l;lIllC or til\.' special lile associated with the user's lcftninal. the user's login
n;IIlli..', :alld lhl..'lilllL' of theh'.",in in tlll'fill'lll of liolc(JC}.

The Irllllplikn.'I'prds all '1)~I,ill'-, ;Ill<.! IOgllllh, t\ null user 'IUlll\:' indkatcs a logout')!l lht' <1<';:-;tK'i<l{eti

h.'rtllill:'1. Furthermore, tile I\,'rmill:J1 1l:IIll,jlic~lil';llbht' sysh:'1H \\;,'\ H'hopl("d ;It the indiclll'd tilll~; lhe
<Id.i;lc\'~Jlt p;lir of entries \'.ilh l\.Tlllinal 1l;IIW.'S T .:md 'I' ind.iI,.';lh' thc SY'ill'llI-ul;lilltainl'd tim!..! just
hdtll'e ':11\(.1 jllst ;dh.'1' (l dUlt' (ollllll;lIld hascll;IIlged the sy,h.'HI':-' idea ofllw linH.'.

U-'/Jllpis maintained hy /U,l:ill(I) ;lIld ill/In:). Neither oj' tth·~'I..' programs nl,.'(It(,'S th" file, so if it is
removcd f("t'oul'kcepillg is lllrm'd oIL Jt is slIllllHaril.ed hy adS).

/etc/lIltllp
/usr/a,lm/wlmp

SEE ALSO
logill{ 0, iniH~O, whoO), adS)

4lh Ikrkc1ey Di~;tdhfliion ~6 July P'J83 1

UUENCODE (5) UNIX Programmer's Manual UUENCODE (5)

NAME
uuencode - format of an encoded uuencode file

DESCRIPTION
Files output by uuencodeO C) consist of a header line, followed by a number of body lines, and
a trailer line. UudecodeOC) will ignore any lines preceding the header or following the trailer.
Lines preceding a header must not, of course, look like a header.

The header line is distinguished by having the first 6 characters "begin ". The word begin is
followed by a mode (in octal), and a string which names the remote file. A space separates the
three items in the header line.

The body consists of a number of lines, each at most 62 characters long (including the trailing
newline). These consist of a character count, followed by encoded characters, followed by a
newline. The character count is a single printing character, and represents an integer, the
number of bytes the rest of the line represents. Such integers are always in the range from 0 to
63 and can be determined by subtractir;tg the character space (octal 40) from the character.

Groups of 3 bytes are stored in 4 characters, 6 bits per character. All are offset by a space to
make the characters printing. The last line may be shorter than the normal 45 bytes. If the
size is not a multiple of 3, this fact can be determined by the value of the count on the last
line. Extra garbage will be included to make the character count a multiple of 4. The body is
terminated by a line with a count of zero. This line consists of one ASCII space.

The trailer line consists of "end" on a line by itself.

SEE ALSO
uuencode(1C), uudecode(1C), uusend(1C), uucp(1C), mail(I)

7th Edition 1 June 1980 1

VFONT(S) UNIX Programmer's Manual VFONT(S)

NAME
vfont - font formats for the Benson-Varian or Versatec

SYNOPSIS
lusr/llb/vfoat/.

DESCRIPTION

FILES

The fonts for the printer/plotters have the following format. Each file contains a header, an
array of 2S6character description structures, and then the bit maps for the characters them­
selves. The header has the following format:

struct header {
short

} header;

unsigned short
short
short
short

magic;
size;
maxx;
maxy;
xtnd;

The magic number is 0436 (octal). The maxx, maxy, and xtnd fields are not used at the current
time. Maxx and maxy are intended to be the maximum horizontal and vertical size of any
glyph in the font, in raster lines. The size is the size of the bit maps for the characters in bytes.
Before the maps for the characters is an array of 256 structures for each of the possible charac­
ters.in the font. Each element of the array has the form:

struct dispatch {
unsigned short
short
char
char
char
char
short

};

addr;
nbytes;
up;
down;
left;
right;
width;

The nbytes field is nonzero for characters which actually exist. For such characters, the addr
field is an offset into the rest of the file where the data for that character begins. There are
up+down rows of data for each character, each of which has leji+right bits, rounded up to a
number of bytes. The width field is not used by vcat, although it is to make width tables for
trolf. It represents the logical width of the glyph, in raster lines, and shows where the base
point of the next glyph would be.

/usr /lib/vfont/·

SEE ALSO
troff(l), ptiO), vpr(l), vtroff(1), vfontinfo(1)

7th Edition 26 February 1979 1

VGRINDEFS (5) UNIX Programmer's Manual VGRINDEFS (5)

NAME
vgrindefs - vgrind's language definition data base

SYNOPSIS
lusr Illb/vgrindefs

DESCRIPTION

FIELDS

Vgrinde/s contains all language definitions for vgrind. The data base is very similar to
termcap(5) .

The following table names and describes each field.

Name Type Description
pb str regular expression for start of a procedure
bb str regular expression for start of a lexical block
be str regular expression for the end of a lexical block
cb str regular expression for the start of a comment
ce
sb
se
lb
Ie
tl

oc
kw

str
str
str
str
str
boo 1

boo 1
str

regular expression for the end of a comment
regular expression for the start of a string
regular expression for the end of a string
regular expression for the start of a character constant
regular expression for the end of a character constant
present means procedures are only defined at the top
lexical level
present means upper and lower case are equivalent
a list of keywords separated by spaces

Example

The following entry, which describes the C language, is typical of a language entry.

Qc: :pb-"\d?*?\d?\p\d??):bb- {:be- }:cb-/*:ce--/:sb-":se-\e":\
:lb- ':le-\e':tl:\
:kw-asm auto break case char continue default do double else enum\
extern float for fortran go to if int long register return short\
size of static struct switch typedef union unsigned while #define\
#else #endif #if #ifdef #ifndef #include #undef # define else endif\
if ifdef ifndef include undef:

Note that the first field is just the language name (and any variants of it). Thus the C language
could be specified to vgrind(I) as "c" or "C".

Entries may continue onto multiple lines by giving a \ as the last character of a line. Capabili­
ties in vgrinde/s are of two types: Boolean capabilities which indicate that the language has some
particular feature and string capabilities which give a regular expression or keyword list.

REGULAR EXPRESSIONS

Vgrinde/s uses regular expression which are very similar to those of ex(I) and lex(I). The char­
acters 'A', '$', ':' and '\' are reserved characters and must be "quoted" with a preceding \ if they
are to be included as normal characters. The metasymbols and their meanings are:

$ the end of a line

the beginning of a line

\d a delimiter (space, tab, newline, start of line)

\a matches any string of symbols (like . - in lex)

\p matches any alphanumeric name. In a procedure definition (pb) t.he string that matches

4th Berkeley Distribution 11 February 1981 1

VGRINDEFS (5) UNIX Programmer's Manual VGRINDEFS (5)

FILES

this symbol is used as the procedure name.

o grouping

I alternation

? last item is optional

\e preceding any string means that the string will not match an input string if the input
string is preceded by an escape character (\). This is typically used for languages (like
C) which can include the string delimiter in a string b escaping it.

Unlike other regular expressions in the system, these match words and not characters. Hence
something like " (trampJsteamer) flies?" would match "tramp", "steamer", "trampflies", or
"steamertlies" .

KEYWORD LIST
The keyword list is just a list of keywords in the language separated by spaces. If the "oc"
boolean is specified, indicating that upper and lower case are equivalent, then all the keywords
should be specified in lower case.

lusr llib/vgrindefs

SEE ALSO

file containing terminal descriptions

vgrind (1), troff(1)

AUTHOR
Dave Presotto

BUGS

4th Berkeley Distribution 11 February 1981 2

AARDVARK (6) UNIX Programmer's Manual

NAME
aardvark - yet another exploration game

SYNOPSIS
IUlr/.alDes/aardvark

DESCRIPTION

AARDVARK (6)

Aardvark is yet another computer fantasy simulation game of the adventure/zork genre. This
one is written in DDL (Dungeon Definition Language) and is intended primarily as an example
of how to write. dungeon in DDL.

FILES
lusr/games/lib/ddlrun ddl interpreter
lusr/games/lib/aardvarkintemal form of aardvark dungeon

AUTHOR
Mike Urban, UCLA

4th Berkeley Distribution 1 February 1983 1

ADVENTURE (6) UNIX Programmer's Manual ADVENTURE (6)

NAME
adventure - an exploration game

SYNOPSIS
lusr/.ammes/adyenture

DESCRIPTION

BUGS

The object of the game is to locate and explore Colossal Cave, find the treasures hidden there,
and bring them back to the building with you. The program is self-describing to a point, but
part of the game is to discover its rules.

To terminate a game, type 'quit'; to save a game for later resumption, type 'suspend'.

Saving a game creates a large executable file instead of just the information needed to resume
the game.

7th Edition 1 February ·1983 1

ARITHMETIC (6) UNIX Programmer's Manual ARITHMETIC (6)

NAME
arithmetic - provide drill in number facts

SYNOPSIS
lusr/l.mes/.rlthmetl~ [+-x/] [range]

DESCRIPTION
Arithmetic types out simple arithmetic problems, and waits for an answer to be typed in. If the
answer is correct, it types back "Right!", and a new problem. If the answer is wrong, it replies
"What?", and waits for another answer. Every twenty problems, it publishes statistics on
correctness and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be generated; + - xl respec­
tively cause addition, subtraction, multiplication, and division problems to be generated. One
or more characters can be liven; if more than one is given, the different types of problems will
be mixed in random order; default is +-
Range is a decimal number; all addends, subtrahends, differences, multiplicands, divisors, and
quotients will be less than or equal to the value of range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to appear. If the respon­
dent makes a mistake, the numbers in the problem which was missed become more likely to
reappear.

As a matter of educational philosophy, the program will not give correct answers, since the
learner should, in principle, be able to calculate them. Thus the program is intended to provide
drill for someone just past the first learning stage, not to teach number facts de novo. For
almost all users, the relevant statistic should be time per problem, not percent correct.

7th Edition 1 February 1983 1

BACKGAMMON (6)

NAME
backgammon - the game

SYNOPSIS
lusr/.ammeslbaeklamBmmOD

DESCRIPTION

UNIX Programmer's Manual BACKGAMMON (6)

This program does what you expect. It will ask whether you need instructions.

7th Edition 1 February'1983 1

BANNER (6) UNIX Programmer's Manual BANNER (6)

NAME
banner - print large banner on printer

SYNOPSIS
lusr/.ameslboner [-wn] message ...

DESCRIPTION

BUGS

Banner prints a large, hiSh quality banner on the standard output. If the message is omitted, it
prompts for and reads one line of its standard input. If -w is given, the output is scrunched
down from a width of 132 to n • suitable for a narrow terminal. If n is omitted, it defaults to
80.
The output should be printed on a hard-copy device, up to 132 columns wide, with no breaks
between the pages. The volume is enough that you want a printer or a fast hardcopy terminal,
but if you are patient, a decwriter or other 300 baud terminal will do.

Several ASCII characters are not defined, notably <, >, [,], \, A, _, {, }, L and -. Also, the
characters ., " and & are funny looking (but in a useful way.)

The -w option is implemented by skipping some rows and columns. The smaller it gets, the
grainier the output. Sometimes it runs letters together.

AUTHOR
Mark Horton

3td Berkeley Distribution 1 February 1983 1

BCD (6) UNIX Proarammer's Manual

NAME
bed - convert to antique media

SYNOPSIS
lusr/.ameslbed text

DESCRIPTION
Bcd converts the literal text into a form familiar to old-timers.

SEE ALSO
dd(l)

7th Edition 1 February 1983

BCD(6)

1

BOGGLE (6) UNIX Programmer's Manual BOGGLE (6)

NAME
boggle - play the game of boggle

SYNOPSIS
lusr/lameslboille [+] [++]

DESCRIPTION
This program is intended for people wishing to sharpen their skills at Boggle (TM Parker
Bros.) . If you invoke the program with 4 arguments of 4 letters each, (e.g. "boille appl epie
moth erhd") the program forms the obvious Boggle grid and lists all the words from
lusr/dlet/words found therein. If you invoke the program without arguments, it will generate a
board for you, let you enter words for 3 minutes, and then tell you how well you did relative to
lusr/diet/words.

The object of Boggle is to find, within 3 minutes, as many words as possible in a 4 by 4 grid of
letters. Words maybe formed from any sequence of 3 or more adjacent letters in the grid. The
letters may join horizontally, vertically, or diagonally. However, no position in the grid may be
used more than once within anyone word. In competitive play amongst humans, each player is
given credit for those of his words which no other player has found.

In interactive play, enter your words separated by spaces, tabs, or newlines. A bell will ring
when there is 2:00, 1:00, 0:10, 0:02, 0:01, and 0:00 time left. You may complete any word
started before the expiration of time. You can surrender before time is up by hitting 'break'.
While entering words, your erase character is only effective within the current word and your
line kill character is ignored.

Advanced players may wish to invoke the program with 1 or 2 + 's as the first argument. The
first + removes the restriction that positions can only be used once in each word. The second
+ causes a position to be considered adjacent to itSelf as well as its (up to) 8 neighbors.

4th Berkeley Distribution 1 February 1983 1

CANFIELD (6) UNIX Proarammer's Manual CANFIELD (6)

NAME
canfield, dscores - the solitaire card pme canfield

SYNOPSIS
lusr/lames/can8eld
lusr/lllDes/efscores

DESCRIPTION

FILES

BUGS

If you have never played solitaire before, it is recommended that you consult a solitaire instruc­
tion book. In Canfield, tableau cards may be built on each other downward in alternate colors.
An entire pile must be moved as a unit in building. Top cards of the piles are available to be
able to be played on foundations, but never into empty spaces.
Spaces must be filled from the stock. The top card of the stock also is available to be played on
foundations or built on tableau piles. After the st~k is exhausted, tableau spaces may be filled
from the talon and the player may keep them open until he wishes to use them.

Cards are dealt from the band to the talon by threes and this repeats until there are no more
cards in the hand or the player quits. To have cards dealt onto the talon the player types 'ht' for
his move. Foundation base cards are also automatically moved to the foundation when they
become available.
The command 'c' causes ca'f/ield to maintain card counting statistics on the bottom of the
screen. When properly used this can areatly increase ones chances of winning.
The rules for betting are somewhat less strict than those used in the official version of the
game. The initial deal costs S13. You may quit at this point or inspect the game. Inspection
costs $13 and allows you to make as many moves as is possible without moving any cards from
your hand to the talon. (the initial deal places three cards on the talon; if all these cards are
used, three more are made available.) Finally, if the same seems interesting, you must pay the
final installment of S26. At this point you are credited at the rate of 55 for each card on the
foundation; as the game proaresses you are credited with S5 for each card that is moved to the
foundation. Each run through the hand after the first costs S5. The card counting feature costs
$1 for each unknown card that is identified. If the information is toggled on, you are only
charged for cards that became visible since it was last turned on. Thus ,he maximum cost of
information is $34. Playing time is charged at a rate of Sl per minute.
With no arguments, the proaramt;/scores prints out the current status of your canfield account.
If a user name is specified, it prints out the status of their canfield account. If the - a flag is
specified, it prints out the canfield accounts for all users that have played the game since the
database was set up.

lusr I gamesl canfield the game itself
lusr I gamesl cfscores the database printer
lusr/games/lib/cfscoresthe database of scores

It is impossible to cheat.

AUTHORS
Originally written: Steve Levine
Further random hacking by: Steve Feldman, Kirk McKusick, Mikey Olson, and Eric Allman.

4th Berkeley Distribution 1

CHASE (6) UNIX Programmer's Manual CHASE (6)

NAME
chase - Try to escape to killer robots

SYNOPSIS
lusr/.ames/chase [nrobots] [tifences]

DESCRIPTION
The object of the game chase is to move around inside of the box on the screen without getting
eaten by the robots chasing and without running into anything.

If a robot runs into another robot while chasing you, they crash and leave a junk heap. If a
robot runs into a fence, it is destroyed.

If you can survive until all the robots are destroyed, you have won!

If you do not specify either nrobots or 1ffences, chase will prompt you for them.

4th Berkeley Distribution 1 April 1981 1

CHESS (6)

NAME
chess - the game of chess

SYNOPSIS
lusr/.ammes/chess

DESCRIPTION

UNIX Programmer's Manual CHESS (6)

Chess is a computer program that plays class D chess. Moves may be given either in standard
(descriptive) notation or in algebraic notation. The symbol '+' is used to specify check; '0-0'

and '0-0-0' specify castling. To play black, type 'first'; to print the board, type an empty line.

Each move is echoed in the appropriate notation followed by the program's reply.

FILES
lusr/lib/chess binary image to run in compatibility mode

DIAGNOSTICS
The most cryptic diagnostic is 'eh?' which means that the input was syntactically incorrect.

BUGS
Pawns may be promoted only to queens.

7th Edition 1 February 1983 1

CHING (6) UNIX Programmer's Manual CHING (6)

NAME
chins - the book of changes and other cookies

SYNOPSIS
lusr/lames/chinl [hexagram]

DESCRIPTION
The I Ching or Book 0/ Changes is an ancient Chinese oracle that has been in use for centuries
as a source of wisdom and advice.

The text of the oracle (as it is sometimes known) consists of sixty-four hexagrams, each sym­
bolized by a particular arransement of six straisht (- - -) and broken (- -) lines. These
lines have values ransing from six throush nine, with the even values indicatins the broken
lines.

Each hexasram consists of two maUor sections. The Judaemen·t relates specifically to the matter
at hand (E.S., "It furthers one to have somewhere to 10. ttl while the . Image describes the sen­
eral attributes of the hexaaram and how they apply to one's own life ("Thus the superior man
makes himself strons and untirinS. tt).

When any of the lines have the values six or nine, they are movins lines; for each there is an
appended judsement which becomes sisnificant Furthermore, the movins lines are inherently
unstable and chanse into their opposites; a second hexasram (and thus an additional judse­
ment) is formed.

Normally, one consults the oracle by fixins the desired question firmly in mind and then castins
a set of chanses (lines) usinS yarrow-stalks or tossed coins. The resultins hexagram will be
the answer to the question.

Using an algorithm suggested by S. C. Johnson, the UNIX oracle simply reads a question from
the standard input (up to an EOF) and hashes the individual characters in combination with the
time of day, process id and any other magic numbers which happen to be lying around the sys­
tem. The resulting value is used as the seed of a random number generator which drives a
simulated coin-toss divination. The answer is then piped through nroft for formatting and will
appear on the standard output. .

For those who wish to remain steadfast in the old traditions, the oracle will also accept the
results of a personal divination usinS, for example, coins. To do this, cast the chanse and then
type the resulting line values as an argument.

The impatient modem may prefer to settle for Chinese cookies; try /ortune(6).

SEE ALSO
It furthers one to see the great man.

DIAGNOSTICS

BUGS

The areat prince issues commands,
Founds states, vests families with fiefs.
Inferior people should not be employed.

Waiting in the mud
Brings about the arrival of the enemy.

If one is not extremely careful,
Somebody may come up from behind and strike him.
Misfortune.

4th Berkeley Distribution 1 February 1983 1

CRIBBAGE (6) UNIX Proaranuner's Manual CRIBBAGE (6)

NAME
cribbage - the card game cribbage

SYNOPSIS
lusrllameslcrlbbage [-req] name ..•

DESCRIPTION
Cribbage plays the card game cribbage, with the program playing one hand and the user the
other. The program will initially ask the user if the rules of the game are needed - if so, it
will print out the appropriate section from According to Hoyle with more (I).
Cribbage options include:

-e When the player makes a mistakes scoring his hand or crib, provide an explanation of
the correct score. (This is especially useful for beginning players.)

-q Print a shorter form of all messages - this is only recommended for users who have
played the game without specifying this option.

-r Instead of asking the player to cut the deck, the proaram will randomly cut the deck.

Cribbage first asks the player whether he wishes to playa short game ("once around", to 61) or
a long game ("twice around", to 121). A response of's' will result in a short game, any other
response will play a long game.

At the start of the first game, the program asks the player to cut the deck to determine who
gets the first crib. The user should respond with a number between 0 and 51, indicating how
many cards down the deck is to be cut. The player who cuts the lower ranked card gets the first
crib. If more than one game is played, the loser of the previous game gets the first crib in the
current game.

For each hand, the program first prints the player's hand, whose crib it is, and then asks the
player to discard two cards into the crib. The cards are prompted for one per line, and are
typed as explained below.

After discarding, the program cuts the deck (if it is the player's crib) or asks the player to cut
the deck (if it's its crib); in the later case, the appropriate response is a number from 0 to 39
indicating how far down the remaining 40 cards are to be cut.

After cutting the deck, play starts with the non-dealer (the person who doesn't have the crib)
leading the first card. Play continues, as per cribbage, until all cards are exhausted. The pro­
gram keeps track of the scoring of all points and the total of the cards on the table.

After play, the hands are scored. The program requests the player to score his hand (and the
crib, if it is his) by printing out the appropriate cards (and the cut card enclosed in brackets).
Play continues until one player reaches the game limit (61 or 121).

A carriage return when a numeric input is expected is equivalent to typing the lowest legal
value; when cutting the deck this is equivalent to choosing the top card.

Cards are specified as rank followed by suit. The ranks may be specified as one of: 'a', '2', '3',
'4', '5', "6', '7', '8', '9', 't', 'j', 'q', and 'k', or alternatively, one of: "ace", "two", "three",
"four", "five", "six", "seven", "eight", "nine", "ten", "jack", "queen", and "king".
Suits may be specified as: 's', 'h', 'd', and 'c', or alternatively as: "spades", "hearts", "dia­
monds", and "clubs". A card may be specified as: <rank> " " <suit>, or: <rank> " of"
<suit>. If the single letter rank and suit designations are used, the space separating the suit
and rank may be left out. Also, if only one card of the desired rank is playable, typing the rank
is sufficient. For example, if your hand was "2H, 40, 5C, 6H, JC, KD" and it was desired to
discard the king of diamonds, any of the follOwing could be typed: "k", "king", "kd", "k d",
"k of d", "king d", "king of d", "k diamonds", Uk of diamonds", "king diamonds", or
"king of diamonds" .

4th Berkeley Distribution 1 February 1983 1

CRIBBAGE (6)

FILES
/usr/games/cribbage

AUTHORS

UNIX Programmer's Manual CRIBBAGE (6)

Earl T. Cohen wrote the logic. Ken Arnold added the screen oriented interface.

4th Berkeley Distribution 1 February 1983 2

DOCTOR (6) UNIX Programmer's Manual

NAME
doctor - interact with a psychoanalyst

SYNOPSIS
lusr/lammes/doctor

DESCRIPTION

DOCTOR (6)

Doctor is a lisp-language version of the legendary ELIZA program of Joseph Weizenbaum. This
script "simulates" a Rogerian psychoanalyst. Type in lower case, and when you get tired or
bored, type your interrupt character (either control-C or Rubout). Remember to type two car­
riage returns when you want it to answer.

In order to run this you must have a Franz Lisp system in /usr/ucb/lisp.

AUTHORS
Adapted for Lisp by Jon L White, moved to Franz by John Foderaro, from an original script by
Joseph Weizenbaum.

4th Berkeley Distribution 1 February 1983 1

FISH (6) UNIX Programmer's Manual FISH (6)

NAME
fish - play "Go Fish"

SYNOPSIS
lusr/lames/fish

DESCRIPTION
Fish plays the game of "Go Fish", a childrens' card game. The Object is to accumulate 'books'
of 4 cards with the same face value. The players alternate turns; each tum begins with one
player selecting a card from his hand, and asking the other player for all cards of that face
value. If the other player has one or more cards of that face value in his hand, he gives them
to the first player, and the first player makes another request. Eventually, the first player asks
for a card which is not in the second player's hand: he replies 'GO FISH!' The first player then
draws a card from the 'pool' of undealt cards. If this is the' card he had last requested, he
draws again. When a book is made, either through drawing or requesting, the cards are laid
down and no further action takes place with that face value.

To play the computer, simply make guesses by typing a, 2, 3, 4, S, 6, 7, 8, 9, 10, j, q, or k
when asked. Hitting return gives you information about the size of my hand and the pool, and
tells you about my books. Saying 'p' as a first guess puts you into 'pro' level; The default is
pretty dumb.

4th Berkeley Distribution 1 February 1983 1

FORTUNE (6) UNIX Programmer's Manual

NAME
fortune - print a random, hopefully interesting, adage

SYNOPSIS
lusrllameslfortune [-] [-wslao]

DESCRIPTION
Fortune with no arguments prints out a random adage. The flags mean:

FORTUNE (6)

-w Waits before termination for an amount of time calculated from the number of characters
in the message. This is useful if it is executed as part of the logout procedure to guaran­
tee that the message can be read before the screen is cleared.

- s Short messages only.

-I Long messages only.

-0 Choose from an alternate list of adages, often used for potentially offensive ones.

- a Choose from either list of adages.

FILES
lusr/games/lib/fortunes.dat

AUTHOR
Ken Arnold

4th Berkeley Distribution 1 February 1983 1

HANGMAN (6) UNIX Programmer's Manual

NAME
hangman - Computer version of the game hangman

SYNOPSIS
/usr /games/hangman

DESCRIPTION

HANGMAN (6)

In hangman, the computer picks a word from the on-line word list and you must try to guess it.
The computer keeps track of which letters have been guessed and how many wrong guesses
you have made on the screen in a graphic fashion.

FILES
/usr/dict/words On-line word list

AUTHOR
Ken Arnold

4th Berkeley Distribution 1 February 1983 1

MILLE (6) UNIX Programmer's Manual MILLE (6)

NAME
mille - play Mille Bournes

SYNOPSIS
/usr/lames/mille [file]

DESCRIPTION
Mille plays a two-handed game reminiscent of the Parker Brother's game of Mille Bournes with
you. The rules are described below. If a file name is given on the command line, the game
saved in that file is started.

When a game is started up, the bottom of the score window will contain a list of commands.
They are:

P Pick a card from the deck. This card is placed in the 'P' slot in your hand.

D Discard a card from your hand. To indicate which card, type the number of the card in
the hand (or "P" for the just-picked card) followed by a <RETURN> or <SPACE>.
The < RETURN or < SP ACE> is required to allow recovery from typos which can be
very expensive, like discarding safeties.

U Use a card. The card is again indicated by its number, followed by a <RETURN> or
<SPACE>.

o Toggle ordering the hand. By default off, if turned on it will sort the cards in your
hand appropriately. This is not recommended for the impatient on slow terminals.

Q Quit the game. This will ask for confirmation, just to be sure. Hitting <DELETE>
(or < RUBOUT >) is equivalent.

S Save the game in a file. If the game was started from a file, you will be given an oppor­
tunity to save it on the same file. If you don't wish to, or you did not start from a file,
you will be asked for the file name. If you type a < RETURN> without a name, the
save will be terminated and the game resumed.

R Redraw the screen from scratch. The command AL (control 'L') will also work.

W Toggle window type. This switches the score window between the startup window (with
all the command names) and the end-of-game window. Using the end-of-game window
saves time by eliminating the switch at the end of the game to show the final score.
Recommended for hackers and other miscreants.

If you make a mistake, an error message will be printed on the last line of the score window,
and a bell will beep.

At the end of each hand or game, you will be asked if you wish to play another. If not, it will
ask you if you want to save the game. If you do, and the save is unsuccessful, play will be
resumed as if you had said you wanted to play another hand/game. This allows you to use the
"S" command to reattempt the save.

AUTHOR
Ken Arnold
(The game itself is a product of Parker Brothers, Inc.)

SEE ALSO

CARDS

curses(3X), Screen Updating and Cursor Movement Optimization: A Library Package, Ken Arnold

Here is some useful information. The number in parentheses after the card name is the
number of that card in the deck:

. 4th Berkeley Distribution 1 February 1983 1

MILLE (6) UNIX Programmer's Manual MILLE (6)

RULES

Hazard

Out of Gas (2)
Flat Tire (2)
Accident (2)
Stop (4)
Speed Limit (3)

Repair

Gasoline (6)
Spare Tire (6)
Repairs (6)
Go (14)
End of Limit (6)

Safety

Extra Tank (1)
Puncture Proof (1)
Driving Ace (1)
Right of Way (1)

25 - (10), so - (10), 75 - (10), 100 - (12), 200 - (4)

ObJeet: The point of game is to get a total of 5000 points in several hands. Each hand is a race
to put down exactly 700 miles before your opponent does. Beyond the points gained by putting
down milestones, there are several other ways of making points.

Ove"iew: The game is played with a deck of 101 cards. Distance cards represent a number of
miles traveled. They come in denominations of 25, SO, 75, 100, and 200. When one is played,
it adds that many miles to the player's trip so far this hand. Hazard cards are used to prevent
your opponent from putting down Distance cards. They can only be played if your opponent
has a Go card on top of the Battle pile. The cards are Out 0/ Gas, Accident, Flat Tire, Speed
Limit, and Stop. Remedy cards fix problems caused by Hazard cards played on you by your
opponent. The cards are Gasoline, Repairs, Spare Tire, End 0/ Limit, and Go. Sa/ety cards
prevent your opponent from putting specific Hazard cards on you in the first place. They are
Extra Tank, Driving Ace, Puncture Proo/, and Right 0/ Way, and there are only one of each in
the deck.

Board Layout: The board is split into several areas. From top to bottom, they are: SAFETY
AR.EA (unlabeled): This is where the safeties will be placed as they are played. HAND: These
are the cards in your hand. BATTLE: This is the Battle pile. All the Hazard and Remedy
Cards are played here, except the Speed Limit and End 0/ Limit cards. Only the top card is
displayed, as it is the only effective one. SPEED: The Speed pile. The Speed Limit and End 0/
Limit cards are played here to control the speed at which the player is allowed to put down
miles. MILEAGE: Miles are placed here. The total of the numbers shown here is the distance
traveled so far.

Play: The first pick alternates between the two players. Each turn usually starts with a pick
from the deck. The player then plays a card, or if this is not possible or desirable, discards one.
Normally, a play or discard of a single card constitutes a turn. If the card played is a safety,
however, the same player takes another tum immediately.

This repeats until one of the players reaches 700 points or the deck runs out. If someone
reaces700, they have the option of going for an Extension, which means that the play continues
until someone reaches 1000 miles.

Hazard and R.emedy Cards: Hazard Cards are played on your opponent's Battle and Speed
piles. Remedy Cards are used for undoing the effects of your opponent's nastyness.

Go (Green Light) must be the top card on your Battle pile for you to play any mileage,
unless you have played the Right 0/ Way card (see below).

Stop is played on your opponent's Go card to prevent them from playing mileage until they
play a Go card.

Speed Limit is played on your opponent's Speed pile. Until they play an End 0/ Limit they
can only play 25 or SO mile cards, presuming their Go card allows them to do even that.

End of Limit is played on your Speed pile to nullify a Speed Limit played by your opponent.
Out of Gas is played on your opponent's Go card. They must then playa Gasoline card, and

then a Go card before they can play any more mileage.

4th Berkeley Distribution 1 February 1983 . 2

MILLE (6) UNIX Programmer's Manual MILLE (6)

Flat Tire is played on your opponent's Go card. They must then playa Spare Tire card, and
then a Go card before they can play any more mileage.

A~~ldent is played on your opponent's Go card. They must then playa Repairs card, and
then a Go card before they can play any more mileage.

Safety Cards: Safety cards prevent your opponent from playing the corresponding Hazard cards
on you for the rest of the hand. It cancels an attack in progress, and always entitles the player to
an extra turn.

Rllht of Way prevents your opponent from playing both Stop and Speed Limit cards on you.
lt also acts as a permanent Go card for the rest of the hand, so you can play mileage as long as
there is not a Hazard card on top of your Battle pile. In this case only, your opponent can play
Hazard cards directly on a Remedy card besides a Go card.

Extra Tank When played, your opponent cannot play an Out 0/ Gas on your Battle Pile.
Puncture Proof When played, your opponent cannot play a Flat Tire on your Battle Pile.
Drlvinl Ace When played, your opponent cannot play an Accident on your Battle Pile.

Distance Cards: Distance cards are played when you have a Go card on your Battle pile, or a
Right of Way in your Safety area and are not stopped by a Hazard Card. They can be played in
any combination that totals exactly 700 miles, except that you cannot play more than two 200
mile cards in one hand. A hand ends whenever one player gets exactly 700 miles or the deck
runs out. In that case, play continues until neither someone reaches 700, or neither player can
use any cards in their hand. If the trip is completed after the deck runs out, this is called
Delayed Action.

Coup Foune: This is a French fencing term for a counter-thrust move as part of a parry to an
opponents attack. In Mille Bournes, it is used as follows: If an opponent plays a Hazard card,
and you have the corresponding Safety in your hand, you play it immediately, even be/ore you
draw. This immediately removes the Hazard card from your Battle pile, and protects you from
that card for the rest of the game. This gives you more points (see "Scoring" below).

S~orinl: Scores are totaled at the end of each hand, whether or not anyone completed the trip.
The terms used in the Score window have the following meanings:

Milestones Played: Each player scores as many miles as they played before the trip ended.
Ea~h Safety: 100 points for each safety in the Safety area.
All 4 Safeties: 300 points if all four safeties are played.
Ea~h Coup Foure: 300 points for each Coup Foure accomplished.

The following bonus scores can apply only to the winning player.
Trip Completed: 400 points bonus for completing the trip to 700 or 1000.
Safe Trip: 300 points bonus for completing the trip without using any 200 mile cards.
Delayed Action: 300 points bonus for finishing after the deck was exhausted.
Extension: 200 points bonus for completing a 1000 mile trip.
Shut-Out: 500 points bonus for completing the trip before your opponent played any

mileage cards.

Running totals are also kept for the current score for each player for the hand (Hand TotaI} ,
the game (Overall TotaI), and number of games won (Games).

4th Berkeley Distribution 1 February 1983 3

MONOP(6) UNIX Programmer's Manual MONOP(6)

NAME
monop - Monopoly gatne

SYNOPSIS
lusr/lames/monop [file]

DESCRIPTION
Monop is reminiscent of the Parker Brother's game Monopoly, and monitors a game between 1
to 9 users. It is assumed that the rules of Monopoly are known. The game follows the stan­
dard rules, with the exception that, if a property would go up for auction and there are only two
solvent players, no auction is held and the property rel1lains unowned.

The game, in effect, lends the player money, so it is possible to buy something which you can­
not afford. However, as soon as a person goes into debt, he must "fix the problem", i.e.,
make himself solvent, before play can continue. If this is not possible, the player's property
reverts to his debtee, either a player or the bank. A player can resign at any time to any person
or the bank, which puts the property back on the board, unowned.

Any time that the response to a question is a string, e.g., a name, place or person, you can type
'?' to get a list of valid answers. It is not possible to input a negative number, nor is it ever
necessary.

A Summary of Commands:

quit: quit game: This allows you to quit the game. It asks you if you're sure.

print: print board: This prints out the current board. The columns have the following
meanings (column headings are the same for the where, own. holdings, and hold­
inls commands):

where:

Name The first ten characters of the name of the square

Own The number of the owner of the property.

Price The cost of the property (if any)

Mg This field has a '.' in it if the property is mortgaged

If the property is a Utility or Railroad, this is the number of such owned by
the owner. If the property is land, this is the number of houses on it.

Rent Current rent on the property. If it is not owned, there is no rent.

where players are: Tells you where all the players are. A '.' indicates the current
player.

own holdiDgs:
List your own holdings, i.e., money, get-out-of-jail-free cards, and property.

holdiDgs: holdings list: Look at anyone's holdings. It will ask you whose holdings you wish to
look at. When you are finished, type "done".

shell: shell escape: Escape to a shell. When the shell dies, the program continues where
you left off.

mortgage: mortgage property: Sets up a list of mortgageable property, and asks which you wish
to nlol1gage.

unmortgage:
unmortgage property: Unmortgage mortgaged property.

buy: buy houses: Sets up a list of monopolies on which you can b}.1y houses. If there is

4th Berkeley Distribution 1 February 1983 1

MONOP(6) UNIX Programmer's Manual MONOP(6)

more than one, it asks you which you want to buy for. It then asks you how many
for each piece of property, giving the current amount in parentheses after the pro­
perty name. If you build in an unbalanced manner (a disparity of more than one
house within the same monopoly), it asks you to re-input things.

sell: sell houses: Sets up a list of monopolies from which you can sell houses. it operates
in an analogous manner to buy

eard: card for jail: Use a get-out-of-jail-free card to get out of jail. If you're not in jail, or
you don't have one, it tells you so. .

pay: pay for jail: Pay SSO to get out of jail, from whence you are put on Just Visiting.
Difficult to do if you're not there.

trade: This allows you to trade with another player. It asks you whom you wish to trade
with, and then asks you what each wishes to give up. You can get a summary at the
end, and, in all cases, it asks for confirmation of the trade before doing it.

reslln: Resign to another player or the bank. If you resign to the bank, all property reverts
to its virgin state, and get-out-of-jail free cards revert to the deck.

save: save game: Save the current game in a file for later play. You can continue play
after saving, either by adding the file in which you saved the game after the manop
command, or by using the restore command (see below). It will ask you which file
you wish to save it in, and, if the file exists, confirm that you wish to overwrite it.

restore: restore game: Read in a Rrevious]y saved game from a file. It leaves the file intact.

roll: Roll the dice and move forward to your new location. If you simply hit the
< RETURN> key instead of a command, it is the same as typing roll.

AUTHOR
Ken Arnold

FILES
lusr I gamesllibl cards. pck Chance and Community Chest cards

BUGS
No command can be given an argument instead of a response to a query.

4th Berkeley Distribution 1 February 1983 2

NUMBER (6) UNIX Programmer's Manual

NAME
number - convert Arabic numerals to English

SYNOPSIS
lusrllameslnumber

DESCRIPTION

NUMBER (6)

Number copies the standard input to the standard output, changing each decimal number to a
fully spelled out version.

7th Edition 1 February 1983 1

QUIZ (6) UNIX Programmer's Manual QUIZ (6)

NAME
quiz - test your knowledge

SYNOPSIS
/ulr/lamel/quiz [-I file] [-t] [categoryl category2]

DESCRIPTION

FILES

BUGS

Quiz Jives associative knowledge tests on various subjects. It asks items chosen from category 1
and expects answers from category 2. If no categories are specified, quiz gives instructions and
lists the available categories.

Quiz tells a correct answer whenever you type a bare newline. At the end of input, upon inter­
rupt, or when questions run out, quiz reports a score and terminates.

The -t flag specifies 'tutorial' mode, where missed questions are repeated later, and material is
gradually introduced as you learn.

The -I flag causes the named file to be substituted for the default index file. The lines of
these files have the syntax:

line - category newline I category ':' line
category -alternate I category ,t alternate
alternate - empty I alternate primary
primary - character I '[' category ']' I option
. option ..' (' category ')'

The first category on each line of an index file names an information file. The remaining
categories specify the order and contents of the data in each line of the information file. Infor­
mation files have the same syntax. Backslash '\' is used as with shU) to quote syntactically
significant characters or to insert transparent newlines into a line. When either a question or its
answer is empty, quiz will refrain from asking it.

lusr I gamesl quiz.k/*

The construct 'alab' doesn't work in an information file. Use 'alb)'.

7th Edition 1 February 1983 1

RAIN (6) UNIX Proll'ammer's Manual RAIN (6)

NAME
rain - animated raindrops display

SYNOPSIS
lusr/games/rain

DESCRIPTION
Rain's display is modeled after the V AX/VMS prOll'am of the same name. The terminal has to
be set for 9600 baud to obtain the proper effect.

As with all proarams that use termeap, the TERM environment variable must be set (and
exported) to the type of the terminal being used.

FILES
I etc/termcap

AUTHOR
Eric P. Scott

4th Berkeley Distribution 1 February 1983 1

ROGUE (6) UNIX Programmer's Manual ROGUE (6)

NAME
rogue - Exploring The Dungeons of Doom

SYNOPSIS
lusr/aames/rogue [-r] [saveJile] [-I] [-d]

DESCRIPTION
Rogue is a computer fantasy game with a new twist. It is crt oriented and the object of the
game is to survive the attacks of various monsters and get a lot of gold, rather than the puzzle
solving orientation of most computer fantasy games.

To get started you really only need to know two commands. The command? will give you a
list of the available commands and the command I will identify the things you see on the
screen.

To win the game (as opposed to merely playing to beat other people high scores) you must
locate the Amulet of Yendor which is somewhere below the 20th level of the dungeon and get
it out. Nobody has achieved this yet and if somebody does, they will probably go down in his­
tory as a hero among heros.

When the game ends, either by your death, when you quit, or if you (by some miracle) manage
to win, rogue will give you alist of the top-ten scorers. The scoring is based entirely upon how
much gold you get. There is a 100/0 penalty for getting yourself killed.

If salleJile is specified, rogue will be restored from the specified saved game file. If the -r
option is used, the save game file is presumed to be the default.

The -5 option will print out the list of scores.

The -d option will kill you and try to add you to the score file.

For more detailed directions, read the document A GUide to the Dungeons of Doom.

AUTHORS
Michael C. Toy, Kenneth C. R. C. Arnold, Glenn Wichman

FILES
lusr / games/lib/ rogue_roll Score file
-/rogue.save Default save file

SEE ALSO

BUGS

Michael C. Toy and Kenneth C. R. C. Arnold, A guide to the Dungeons of Doom

Probably infinite. However, that Floating Eyes sometimes transfix you permanently is not a
bug. It's a feature.

4th Berkeley Distribution 3 April 1983 1

SNAKE (6) UNIX Programmer's Manual SNAKE (6)

NAME
snake, snscore - display chase game

SYNOPSIS
/ulr/lames/snake [-wn] [-In]
/usr/lames/snscore

DESCRIPTION

FILES

BUGS

Snake is a display-based game which must be played on a CRT terminal from among those sup­
ported by viOl. The object of the game is to make as much money as possible without getting
eaten by the snake. The -I and -w options allow you to specify the length and width of the
field. By default the entire screen (except for the last column) is used.

You are represented on the screen by an I. The snake is 6 squares long and is represented by
S's. The money is $, and an exit is #. Your score is posted in the upper left hand corner.

You can move around using the same conventions as vi (1), the h, j, k, and I keys work, as do
the arrow keys. Other possibilities include:

sefc These keys are like hjkl but form a directed pad around the d key.

HJKL These keys move you all the way in the indicated direction to the same row or column
as the money. This does not let you jump away from the snake, but rather saves you
from having to type a key repeatedly. The snake still gets all his turns.

SEFC Likewise for the upper case versions on the left.

A TPB These keys move you to the four edges of the screen. Their position on the keyboard
is the mnemonic, e.g. P is at the far right of the keyboard.

x This lets you quit the game at any time.

p Points in a direction you might want to go.

w Space warp to get out of tight squeezes, at a price.

Shell escape

AZ Suspend the snake game, on systems which support it. Otherwise an interactive shell is
started up.

To earn money, move to the same square the money is on. A new S will appear when you earn
the current one. As you get richer, the snake gets hungrier. To leave the game, move to the
exit (#).

A record is kept of the personal best score of each player. Scores are only counted if you leave
at the exit, getting eaten by the snake is worth nothing.

As in pinball, matching the last digit of your score to the number which appears after the game
is worth a bonus.

To see who wastes time playing snake, run /usr/games/snscore .

lusr/games/lib/snakerawscores database of personal bests
lusr/games/lib/snake.log log of games played
/usr/ganies/busy . program to determine if system too busy

When playing on a small screen, it's hard to tell when you hit the edge of the screen.

The scoring function takes into account the size of the screen. A perfect function to do this
equitably has not been devised.

4th Berkeley Distribution 1 February 1983 . 1

TREK (6) UNIX Programmer's Manual TREK (6)

NAME
trek - trekkie game

SYNOPSIS
lusr/aames/trek [[-a] file]

DESCRIPTION
Trek is a game of space glory and war. Below is a summary of commands. For complete docu­
mentation, see Trek by Eric Allman.

If a filename is given, a log of the game is written onto that file. If the -a flag is given before
the filename, that file is appended to, not truncated.

The game will ask you what length game you would like. Valid responses are "short",
"medium", and "long". You may also type "restart", which restarts a previously saved game.
You will then be prompted for the skill, to which you must respond "novice", "fair", "good",
"expert", "commadore", or "impossible". You should normally start out with a novice and
work up.

In general, throughout the game, if you forget what is appropriate the game will tell you what it
expects if you just type in a question mark.

AUTHOR
Eric Allman

SEE ALSO
/usr/doc/trek

COMMAND SUMMARY
abandon
cloak up/down
computer request; ...
destruct
help
lrscan
phasers automatic amount

capture

damages
dock
impulse course distance
move course distance

pbasers manual amtl coursel spread! ...
torpedo course [yes] angle/no
ram course distance
shell
srscan [yes/no]
status
undock
warp warp_factor

4th Berkeley Distribution

rest time
shields up/down

terminate yes/no
visual course

1 February 1983 1

WORM (6) UNIX Programmer's Manual WORM (6)

NAME
worm - Play the growing worm game

SYNOPSIS
lusrllameslworm [size]

DESCRIPTION

BUGS

In worm, you are a little worm, your body is the "OW's on the screen and your head is the "@".
You move with the bjk1 keys (as in the game snake). If you don't press any keys, you continue
in the direction you last moved. The upper case HIKL keys move you as if you had pressed
several (9 for HL and S for JK) of the corresponding lower case key (unless you run into a
digit, then it stops).

On the screen you will see a digit, if your worm eats the digit is will grow longer, the actual
amount longer depends on which digit it was that you ate. The object of the game is to see
how long you can make the worm grow.

The game ends when -the worm runs into either the sides of the screen, or itself. The current
score (how much the worm has grown) is kept in the upper left comer of the screen.

The optional argument, if present, is the initial length of the worm.

If the initial length of the worm is set to less than one or more than 75, various strange things
happen.

4th Berkeley Distribution 2 April 1981 1

WORMS (6) UNIX Programmer's Manual

NAME
worms - animate worms on a display terminal

SYNOPSIS
/usr/games/worms [-field] [-length #] [-number #] [-trail]

DESCRIPTION

WORMS (6)

Brian Horn (citheplbdh) showed me a TOPS-20 program on the DEC-2136 machine called
WORM, and suggested that I write a similar program that would run under Unix. I did, and no
apologies.

FILES

-field makes a "field" for the worm(s) to eat; -trail causes each worm to leave a trail behind
it. You can figure out the rest by yourself.

letc/termcap

AUTHOR
Eric P. Scott

SEE ALSO
Snails, by Karl Heuer

BUGS
The lower-right-hand character position will not be updated properly on a terminal that wraps at
the right margin.

Terminal initialization is not performed.

4th Berkeley Distribution 1 February 1983 1

WUMP(6) UNIX Programmer's Manual WUMP(6)

NAME
wump - the game of hunt-the-wumpus

SYNOPSIS
lusr/aames/wump

DESCRIPTION
Wump plays the game of 'Hunt ~he Wumpus.' A Wumpus is a creature that lives in a cave with
several rooms connected by tUllnels. You wander among the rooms, trying to shoot the
Wumpus with an arrow, meanwhile avoiding being eaten by the Wumpus and falling into Bot­
tomless Pits. There are also Super \3ats which are likely to pick you up and drop you in some
random room.

The program asks various questions whicll you answer one per line; it will give a more detailed
description if you want.

This program is based on one described in riople's Computer Company, 2, 2 (November 1973).

7th Edition 1 February 1983 1

ZORK(6) UNIX Programmer's Manual ZORK (6)

NAME
zork - the game of dungeon

SYNOPSIS
lusr/aalOes/lork

DESCRIPTION

FILES

Dungeon is a computer fantasy simulation based on Adventure and on Dungeons & Dragons,
originally written by Lebling, Blank, and Anderson of MIT. In it you explore a dungeon made
up of various rooms, caves, rivers, and so on. The object of the game is to collect as much
treasure as possible and stow it safely in the trophy case (and, of course, to stay alive.)

Figuring out the rules is part of the game, but if you are stuck, you should start off with "open
mailbox", "take leaflet", and then "read leaflet". Additional useful commands that are not
documented include:

quit (to end the game)

!cmd (the usual shell escape convention)

> (to save a game)

< (to restore a game)

lusr/games/lib/d.

4th Berkeley Distribution 1 February 1983 1

INTRO (7) UNIX Programmer's Manual

NAME
miscellaneous - miscellaneous useful information pages

DESCRIPTION

INTRO (7)

This section contains miscellaneous documentation, mostly in the area of text processing macro
packages for troff{I).

ascii
environ
eqnchar
hier
mailaddr
man
me
ms
term

4th Berkeley Distribution

map of ASCII character set
user environment
special character definitions for eqn
file system hierarchy
mail addressing description
macros to typeset manual pages
macros for formatting papers
macros for formatting manuscripts
conventional names for terminals

9 February 1983 1

ASCII (7) UNIX Programmer's Manual

NAME
ascii - map of ASCII character set

SYNOPSIS
eat lusrlpublasdl

DESCRIPTION

ntiS

Ascii is a map of the ASCII character set, to be printed as needed. It contains:

1
000 nuiIOO} sohlo02 stx. 1003 etx 004 eotl005 enql006 ackl007 bel
010 bs 1011 ht 1012 nl 1013 vt 014 np 015 cr 1016 so 1017 si

1
020 dlel021 dc1 022 dc2 023 de3 024 dc4 025 nakl026 synl027 etb
030 canl031 en 1032 SUbl033 esc 034 fs 035 IS 1036 rs 1037 us
040 sp 1041 ! 042 " 043 # 1044 S 045 % 1046 & 047 '
050 (051) 052 • 1053 + 054 , 055 - 1056 . 057 /
060 0 1061 1 062 2 063 3 064 4 065 5 1066 6 067 1
070 8 1071 9 1072 : 073 ; 074 < 075 - 1076 > 077 ?
100 @ 1101 A 1102 B 103 C 104 D 1105 E 106 F 107 G
110 H 1111 I 1112 J 113 K 114 L 1115 M 1116 N 1117 0

1
120 P 1121 Q 1122 R 1123 S 1124 T 1125 U 126 V 127 W
130 X 1131 Y 1132 Z 1133 [1134 \ 135] 1136 .. 1137 _

·1140 ' 1141 a 142 b 1143 c 144 d 145 e 146 f 147 I
150 h 1151 i 152 j 153 k 154 1 155 m 1156 n 1157. 0
160 p 1161 q 162 r 1163 s 164 t 165 u 166 v 1167 w
170 x 1171 y 1172 z 173 (174 I 1175) 1176 - 1177 del

00 null 01 soh
08 bs I 09 ht
10 die I 11 de 1
18 can 19 em
20 sp 21
28 (29)
30 0 31 1
38 8 39 9
40 @ 41 A
48 H 49 I
50 P 51 Q
58 X 59 Y
60 ' 61 a
68 h 69 i
70 p 71 q
78 x 79 y

/usr/pub/ascii

02 stxl 03 etxl 04 eotl 05 enql 06 ackl 07 bel
Oa nl I Ob vt I Oc np Od cr I Oe so I Of si
12 dc2 13 de31 14 dC41 15 nakl 16 syn 17 etb
1a subl 1b escl Ie fs . 1d IS Ie rs I If us
22 " I 23 # I 24 $ I 25 % I 26 & I 27 '
2a • 2b + 2c , 2d - 2e . 2f I
32 2 I 33 3 I 34 4 35 5 I 36 6 I 37 7
3a 3b; I 3c < 3d - I 3e > I 3f ?
42 B 43 C I 44 D 45 E 46 F 47 G
4a J 4b K 4e L I 4d M I 4e N 4f 0
52 R I 53 S 54 T I 55 U 56 V 57 W
Sa Z 5b [5e \ I 5d] 5e .. I 5f _
62 b I 63 c 64 d I 65 e 66 f I 67 I
6a j 6b k 6c 1 6d m I 6e n I 6f 0

72 r I 73 s I 74 t I 75 u I 76 v I 77 w
7a z I 7b (I 7c I I 7d) I 1e - 7f del

7th Edition 1 February 1983

ASCII (7)

1

ENVIRON (7) UNIX Programmer's Manual ENVIRON (7)

NAME
environ - user environment

SYNOPSIS
extern char **eDviroD;

DESCRIPTION
An array of strings called the 'environment' is made available by execve(2) when a process
begins. By convention these strings have the fOfm 'name- value'. The following names are
used by various commands:

PATH The sequence of directory prefixes that sh, time, nice(I), etc., apply in searching for
a file known by an incomplete path name. The prefixes are separated by ':'.
Login (I) sets PATH - :/usr lucb:/bin:/usr Ibin.

HOME A user's login directory, set by login(I) from the password file passwd(S).

TERM The kind of terminal for which output is to be prepared. This information is used
by commands, such as nroff or plot(IG), which may exploit special terminal capa­
bilities. See letcltermcap (termcap(S» for a list of terminal types.

SHELL The file name of the users login shell.

TERMCAP The string describing the terminal in TERM, or the name of the termcap file, see
termcap(S) , termcap(3X).

EXINIT A startup list of commands read by ex (I), edit (I), and vi (I).

USER The login name of the user.

PRINTER The name of the default printer to be used by Ipr(I), /pq (I), and ·/prm (I) .

Further names may be placed in the environment by the export command and 'name-value'
arguments in sh (I), or by the setenv command if you use csh (I). Arguments may also be
placed in the environment at the point of an execve(2). It is unwise to conflict with certain
sh(I) variables that are frequently exported by '.profile' files: MAIL, PSI, PS2, IFS.

SEE ALSO
csh(I), exO), 10gin(I), sh(I), execve(2), system(3), termcap(3X), termcap(S)

4th Berkeley Distribution 5 February 1983 1

EQNCHAR(7) UNIX Programmer's Manual EQNCHAR(7)

NAME
eqnchar - special character definitions for eqn

SYNOPSIS
eqn lusr/pub/eqnchar (files] I troff [options]

neqn lusr/pub/eqnchar [files] I nroff [options]

DESCRIPTION
Eqnchar contains troff and nroff character definitions for constructing characters that are not
available on the Graphic Systems typesetter. These definitions are primarily intended for use
with eqn and neqn. It contains definitions for the following characters

FILES

cip/us ED II II square
citimes ~ langle / circle

~ wig rangle / blot
-wig - hbar 1i bullet
>w~ ~ p¢
<wig ~ <->
"wig
star
bigstar
-dot
orsign
andsign
-=de/
oppA
oppE
angstrom

* *
v

" ~ -TI

A~

<->
1<
I>
ang
rang
3dot
thf
quarter
3quarter
degree

1. prop - empty .. member
-t nomem
:> cup
L cap
L incl

subset
.. supset
1/4 !subset
314 !supset
0

lusr/pub/eqnchar

SEE ALSO
troff(1), eqn(1)

3rd Berkeley Distribution 1 February 1983

o
o
• •
ex

13
E
~
u
n
t:
C
::>
~
~

1

HIER(7) UNIX Programmer's Manual

NAME
hier - file system hierarchy

DESCRIPTION
The following outline aives a quick tour through a representative directory hierarchy.

I root
Ivmunix

the kernel binary (UNIX itself)
Ilost+found

directory for connecting detached files for jSck(S)
I dev I devices (4)

MAKEDEV
shell script to create special files

MAKEDEV.local
site specific part of MAKEDEV

console
main console, ~(4)

tty. terminals, ~(4)
hp. disks, hp(4)
rhp. raw disks, hp(4)
up. UNIBUS disks up(4)

Ibinl utility programs,cf lusr/binl (1)
as assembler
cc C compiler executive, cf llib/ccom, llib/cpp, Ilib/c2
csh C shell

llibl object libraries and other stuff, cf lusr/libl
libc.a system calls, standard 110, etc. (2,3,3S)·

ccom C compiler proper
cpp C preprocessor
c2 C code improver

letcl essential data and maintenance utilities; sect (S)
dump dump program dump(S)
passwd password ftle, passwd(S)
group group file, group(S)
motd message of the day, login (1)
termcap

description of terminal capabilities, termcap(S)
ttytype table of what kind of terminal is on each port, t&O'pe(S)
mtab mounted ftle table, mtab(S)
dumpdates

dump history, dump(S)
fstab file system configuration table !stab(S)
disktab disk characteristics and partition tables, disktab(S)
hosts host name to network address mapping file, hosts(S)
networks

network name to network number mapping flle, networks(S)
protocols

protocol name to protocol number mapping flle, protoco/s(S)
services

4th Berkeley Distribution 1 February 1983

HIER (7)

1

HIER(7) UNIX Programmer's Manual

network services definition fUe, service$(S)
remote names and description of remote hosts for t(pUC), remote(S)
phones private phone numbers for remote hosts, as described in phone$(S)
ttys properties of terminals, t~$(S)
getty part of login, geny(S)
init the parent of all processes, init(S)
rc shell program to bring the system up
rc.local site dependent portion of rc
tron the clock daemon, cron(S)
mount mount(S)

Isysl system source
hI header (include) fUes

acct.h acct(S)
stat.h $tat(2)

sysl machine independent system source
init_main.c
uipc_socket.c
ufs_syscalls.c

coml site configuration files
GENERIC

netl general network source
netinetl

netiinpl
DARPA Internet network source

network code related to use of an IMP
ifjmp.c
if imphost.c
if:imphost.h

vaxl source specific to the V AX
locore.s
machdep.c

vaxubal
device drivers for hardware which resides on the UNIBUS
uba.c
dh.c
up.c

vaxmbal
device drivers for hardware which resides on the MASBUS
mba.c
hp.c
ht.c

vaxif network interface drivers for the V AX
if en.c
if:ec.c

4th Berkeley Distribution 1 February 19S3

HIER (7)

2

HIER(7) UNIX Programmer's Manual

Itmpl temporary files, usually on a fast device,cf lusr/tmpl
e- used by ed(l)
ctm- used by ce(1)

lusrl general-pupose directory, usually a mounted file system
adml administrative information

lusr Ibin

wtmp login history, utmp(S)
messages

hardware error messages
tracet phototypesetter accounting, trqff(l)
lpacct line printer accounting ~r(1)
vaacct, vpacet

varian and versatec accounting vpr(1), vtroff{l), pac(8)

utility programs, to keep Ibinl small
tmpl temporaries, to keep Itmpl small

stm- used by sort(1)
raster used by plot(1G)

dictl word lists, etc.

gamesl

words principal word list, used by look(l)
spellhist

history file for spell(1)

hangman
libl library of stuff for the games

quiz.kl what quiz(6) knows
index category index
africa countries and capitals

includel
standard #include files
a.out.h object file layout, a.out(S)
stdio.h standard 110, intro(3S)
math.h (3M)

sysl system-defined layouts, cf Isys/h
nett symbolic link to sys/net
machine I

symbolic link to sys/machine

libl object libraries and stuft, to keep llibl small
atrun scheduler for at(1)
·lintl utility files for lint

lint (12)

4th Berkeley Distribution

subprocesses for lint(1)
llib-lc dummy declarations for llib/libe.a, used by lint(l)
llib-lm dummy declarations for llib/libe.m

1 February 1983

HIER (7)

3

IDER(7) UNIX Proll'ammer's Manual

structl passes of .rtruct(t)

tmacl macros for trqff(l)
tmac.an

macros for man(7)
tmac.s macros for m.r(7)

fontl fonts for troff{l)
ftR Times Roman
ftB Times Bold

uucpl programs and data for uucp(1C)
L.sys remote system names and numbers
uucico the r~ copy proll'am

units conversion tables for unit.r(t)
eign list of English words to be ignored by ptx(l)

lusrl manl
volume 1 of this manual, manU)

manOI general
intra introduction to volume 1, m.r(7) format
xx template for manual page

manll chapter 1
as. I
mount. 1m

cat 1 I preformatted pages for section 1

msgsl messages, cf m.rg.r(1)
bounds highest and lowest message

newl binaries of new versions of programs
preservel

editor temporaries preserved here after crashes/hangups
publicI binaries of user proll'ams • write permission to everyone
spool! delayed execution files

atl used by at(1)
lpdl used by ~r(1)

lock present when line printer is active
cf- copy of file to be printed, if necessary
df- daemon control file, 1pd(8)
tf - transient control file, while ~r is working

uucpl work files and staging area for uucp(1C>
LOGFILE

summary log
LOG. - log file for one transaction

mail! mailboxes formail(t)
name mail file for user name
name.lock

lock file while name is receiving mail
secretmail!

like mail!

4th Berkeley Distribution 1 February 1983

BIER (7)

4

BIER (7) UNIX Programmer's Manual HlER (7)

uucpl work files and staging area for uucp(1C)
LOGFILE

summary log
LOG.- log file for one transaction
mqueuel

mail queue for sent/mail(8)
wd initial working directory of a user, typically wdis the user's login name

.profile set environment for shU), enlliron(7)

.project
what you are doing (used by·(jinger(1))

.cshrc startup file for csh(t)

.exrc startup file for ex(1)
.• plan what your short-term plans are (used by jinger(l))
.netrc startup file for various network programs
.msgsrc

startup file for msgs(t)
.mailrc startup file for mail(1)
calendar

user's datebook for calendar(1)
docl papers, mostly in volume 2 of this manual, tyPically in ms(7) format

asl assembler manual
c C manual

lusrl srcl
source programs for utilities, etc.
binI source of commands in Ibin

usr.binl

asl assembler
ar.c source for arO)

source for commands in lusrlbin
troffl source for nroffand tro.D{l)

fontl source for font tables, lusrlliblfontl
ftR.c Roman

terml terminal characteristics tables, lusrlliblterml
tab300.c

DASI300

ucb source for programs in lusrlucb
gamesl source for lusrlgames
libl source for programs and archives in llib

libel C runtime library
csul startup and wrapup routines needed with every C program

ertO.s regular startup
mertO.s modified startup for cc -p

sysl system calls (2)
access.s
brk.s

stdiol standard 1/0 functions (3S)

4th Berkeley Distribution 1 February 1983 s

HIER(7)

SEE ALSO

UNIX Proarammer's Manual

flets.c
fopen.c

len! other functions in (3)
abs.c

net/ network functions in (3N)
lethostbyname.c

locall source which isn't normally distributed
newt source for new versions of commands and library routines
oldl source for old versions of commands and library routines
ucbl binaries of programs developed at UeB

edit editor for belinners
ex command editor for experienced users

mail mail readinl/sendinl subsystem
man on line documentation

pi Pascal translator
px Pascal interpreter

vi visual editor

HIER(7)

Is(1), apropos(1), whatis{l), whereis(l), ftnaer(1), which(1), ncheck(S), ftnd(l), grep(l)
BUGS

The position of files is subject to change without notice.

4th Berkeley Distribution 1 February .1983 6

MAILADDR (7) UNIX Programmer's Manual MAILADDR (7)

NAME
mailaddr - mail addressing description

DESCRIPTION
Mail addresses are based on the ARPANET protocol listed at the end of this manual page.
These addresses are in the general format

user@domain

where a domain is a hierarchical dot separated list of subdomains. For example, the address

eric@monet.Berkeley.ARPA

is normally interpreted from right to left: the message should go to the ARPA name tables
(which do not correspond exactly to the physical ARPANET), then to the Berkeley gateway,
after which it should go to the local host monet. When the message reaches monet it is
delivered to the user "eric".

Unlike some other forms of addressing, this does not imply any routing. Thus, although this
address is specified as an ARPA address, it might travel by an alternate route if that was more
convenient or efficient. For example, at Berkeley the associated message would probably go
directly to monet over the Ethernet rather than going via the Berkeley ARPANET gateway .

. Abbreviation. Under certain circumstances it may not be necessary to type the entire domain
name. In general anything following the first dot may be omitted if it is the same as the
domain from which you are sending the message. For example, a user on
"calder.Berkeley.ARPA" could send to "eric@monet" without adding the ".Berkeley.ARPA"
since it is the same on both sending and receiving hosts.

Certain other abbreviations may be permitted as special cases. For example, at Berkeley
ARPANET hosts can be referenced without adding the ".ARPA" as long as their names do not
contlict with a local host name.

Compatibility. Certain old address formats are converted to the new format to provide compati­
bility with the previous mail system. In particular,

host:user

is converted to

user@host

to be consistent with the rep 0 C) command.

Also, the syntax:

host!user

is converted to:

user@host.UUCP

This is normally converted back to the "host!user" form before being sent on for compatibility
with older UUCP hosts.

The current implementation is not able to route messages automatically through the UUCP net­
work. Until that time you must explicitly tell the mail system which hosts to send your mes­
sage through to get to your final destination.

Case Distinctions. Domain names (Le., anything after the "@" sign) may be given in any lniX­
ture of upper and lower case with the exception of UUCP hostnames. Most hosts accept any
mixture of case in user names, with the notable exception of MUL TICS sites.

DiJferences with ARPA Protocols. Although the UNIX addressing scheme i~ based on the ARPA
mail addressing protocols, there are som~ .significant differences.

4th Berkeley Distribution 1

MAILADDR (7) UNIX Programmer's Manual MAILADDR (7)

At the time of this writinl the only "top level" domain defined by ARPA is the ".ARPA"
domain itself. This is further restricted to havinl only one level of host specifier. That is, the
only addresses that ARPA accepts at this time must be in the format "user@host.ARPA"
(where "host" is one word). In particular, addresses such as:

ericCimonet.Berkeley.ARP A

are not currently lepl under the ARPA protocols. For this reason, these addresses are con­
verted to a different format on output to the ARPANET, typically:

eric%monet@Berkeley.ARPA

Route-addrs. Under some circumstances it may be necessary to route a messale through several
hosts to let it to the final destination. Normally this routinl is done automatically, but some­
times it is desirable to route the message manually. An address that shows these relays are
termed "route-addrs. n These use the syntax:

< @hosta,@hostb:user@hostc>

This specifies that the messale should be sent to hosta, from there to hostb, and finally to
hoste. This path is forced even if there is a more efficient path to hostc.

Route-addrs occur frequently on return addresses, since these are generally auamented by the
software at each host. It is Ie nerally possible to ianore all but the "user@host" part of the
address to determine the actual sender.

Postmaster. Every site is required to have a user or user alias desianated "postmaster n to which
problems with the mail system may be addressed.

CSNET. Messaaes to CSNET sites can be sent to "user.host@UDel·Relay".

BERKELEY
The followinl comments apply only to the Berkeley environment.

Host Names. Many of the old familiar host names are beinl phased out. In particular, single
character names as used in Berknet are incompatible with the larger world of which Berkeley is
now a member. For this reason the followinl names are beinlobsoleted. You should notify
any correspondents of your new address as soon as possible.

OLD NEW j inlvax
p ucbcad r arpavax
v csvax ucbemie
n ucblcim y

The old addresses will be rejected as unknown hosts sometime in the near future.

What's My Address? If you are on a local machine, say monet, your address is

youmameClmonet.Berkeley.ARP A

ucbinlres
ucbarpa

ucbcory

However, since most of the world does not have the new software in place yet, you will have to
live correspondents sliahtly different addresses. From the ARPANET, your address would be:

youmame%monet@Berkeley.ARPA

From UUCP, your address would be:

ucbvax!youmame%monet

Computer Center. The Berkeley Computer Center is in a subdomain of Berkeley. Messales to
the computer center should be addressed to:

user%host.CCClBerkeley.ARP A

4th Berkeley Distribution 2

MAILADDR (7) UNIX Programmer's Manual MAILADDR (7)

The alternate syntax:

user@host.CC

may be used if the message is sent from inside Berkeley.

For the time being Computer Center hosts are known within the Berkeley domain, i.e., the
".CC" is optional. However, it is likely that this situation will change with time as both the
Computer Science department and the Computer Center grow.

Bitnet. Hosts on bitnet may be accessed using:

user@host.BITNET

SEE ALSO
mail(U, sendmai1(8); Crocker, D. H., Standard for the Format 0/ Arpa Internet Text Messages,
RFC822.

4th Berkeley Distribution 3

MAN(7) UNIX Programmer's Manual MAN(7)

NAME
man - macros to typeset manual

SYNOPSIS
Droff -man file .. .

troff -man file .. .

DESCRIPTION

FILES

These macros are used to layout pages of this manual. A skeleton page may be found in the
file lusr/man/manO/xx.

Any text argument t may be zero to six words. Quotes may be used to include blanks in a
'word'. If text is empty, the special treatment is applied to the next input line with text to be
printed. In this way .1 may be used to italicize a whole line, or .SM followed by .B to make
small bold letters.

A prevailing indent distance is remembered between successive indented paragraphs, and is
reset to default value upon reaching a non-indented paragraph. Default units for indents i are
ens.

Type font and size are reset to default values before each paragraph, and after processing font
and size setting macros.

These strings are predefined by - man:

\-R '.', '(Reg)' in nroff.

\ -S Change to default type size.

lusr/lib/tmac/tmac.an
lusr/man/manO/xx

SEE ALSO
trofrO), man (1)

BUGS
Relative indents don't nest.

REQUESTS
Request

.B t

. BI t

.DR t

. DT

.HP i

.I t

.IB t

.IP xi

.IR t

.LP

.PD d

.PP

. RE

. RB t

. RI t

.RS i

. SH t

7th Edition

Cause If no Explanation
Break Argument
no I-n.t.1.- Text t is bold .
no I-n.t.1.
no I-n.t.1.
no .Si Ii.. .
yes i-p.i.-
no I-n.t.1.
no t-n.t.1.
yes x-""
no I-n.t.1.
yes
no d-.4v
yes
yes
no t-n.t.1.
no t-n.t.l.
yes i-p.i.

yes I-n.t.1.

Join words of t alternating bold and italic.
Join words of t alternating bold and Roman.
Restore default tabs.
Set prevailing indent to i. Begin paragraph with hanging indent.
Text t is italic .
Join words of t alternating italic and bold.
Same as .TP with tag x.
Join words of t alternating italic and Roman .
Same as .PP.
Interparagraph distance is d.
Begin paragraph. Set prevailing indent to .Si.
End of relative indent. Set prevailing indent to amount of starting .RS .
Join words of t alternating Roman and bold .
Join words of t alternating Roman and italic .
Start relative indent, move left margin in distance i. Set prevailing
indent to .Si for nested indents.
Subhead .

7 March 1983 1

MAN(7)

. SM t no I-n.t.1 .

.TH n ex v myes

.TP i yes i-p.i.

UNIX Programmer's Manual MAN(7)

Text t is small.
Begin page named n of chapter e,' x is extra commentary, e.g. 'local', for
page foot center; v alters page foot left, e.g. '4th Berkeley Distribution';
m alters page head center, e.g. 'Brand X Programmer's Manual'. Set
prevailing indent and tabs to .Si.
Set prevailing indent to i. Begin indented paragraph with hanging tag
given by next text line. If tag doesn't fit, place it on separate line.

• n.t.1. - next text line; p.i. - prevailing indent

7th Edition 7 March 1983 2

ME(7) UNIX Programmer's Manual ME(7)

NAME
me - macros for formatting papers

SYNOPSIS
Droff - me [options] file .. .
troff - me [options] file .. .

DESCRIPTION

FILES

This package of nroffand troffmacro definitions provides a canned formatting facility for tech­
nical papers in various formats. When producing 2-column output on a terminal, filter the
output through co/(1).

The macro requests are defined below. Many nroffand troffrequests are unsafe in conjunction
with this package, however these requests may be used with impunity after the first .pp:

.bp begin new page

. br break output line here

.sp n insert n spacing lines

.Is n (line spacing) n -1 single, n - 2 double space

.na no alignment of right margin

.ce n center next n lines

. ul n underline next n lines

.sz + n add n to point size

Output of the eqn, neqn, refer, and tbl(1) preprocessors for equations and tables is acceptable as
input.

/usr/lib/tmac/tmac.e
lusr/lib/me/-

SEE ALSO
eqn(1), trotI(1), refer(1), tbl(l)
-me Reference Manual, Eric P. Allman
Writing Papers with NrotI Using -me

,EQUESTS
In the following list, "initialization" refers to the first .pp, .1p, .ip, .np, .sh, or .uh macro. This
list is incomplete; see The -me Reference Manual for interesting details.

Request Initial Cause Explanation
Value Break

.(c

.(d

.(f

.0

.(q

.(x x

.(z

.)c

.)d

.)f

.)1

.)q

.)x

.)z

.++ mH-

yes Begin centered block
no Begin delayed text
no Begin footnote
yes Begin list
yes Begin major quote
no Begin indexed item in index x
no Begin floating keep
yes End centered block
yes End delayed text
yes End footnote
yes End list
yes End major quote
yes End index item
yes End floating keep
no Define paper section. m defines the part of the paper, and can be C (chapter),

A (appendix), P (preliminary, e.g., abstract, table of contents, etc.), B

3rd Berkeley Distribution 16 November 1979 1

ME(7)

. +c T

.1c 1

.2c 1

. EN

.EQ x y

. TE

. TH

. TSx

.ac A N

. bx no

.ba +n 0

.be no

.bi x no

. bx x no

.ef'xii

.eh 'xii

.fo 'xii

. hx

.he 'xii

.hl

.i x no

.ip xy no

.lp yes

.10

. np 1

. of'xii

.oh 'xii

.pd

. pp no

. r yes

. re

.sc no

.sh nx

. sk no

.sz +n lOp

. th no

. tp no

. ux

. uh

. xpx

UNIX Proll'ammer's Manual ME(7)

(biblioll'aphy), RC (chapters renumbered from page one each chapter), or RA
(appendix renumbered from page one).

yes Begin chapter (or appendix, etc., as set by . + +) . T is the chapter title .
yes One column format on a new page.
yes Two column format.
yes Space after equation produced by eqn or neqn .
yes Precede equation; break out and add space. Equation number is y. The

optional argument x may be J to indent equation (default), L to left-acljust the
equation, or C to center the equ.tion.

yes End table .
yes End heading section of table .
yes Begin table; if x is H table has repeated heading .
no Set up for ACM style output. A is the Author's name(s), N is the total

number of pages. Must be given before the first initialization.
no Print x in boldface; if no argument switch to boldface .
yes Augments the base indent by n. This indent is used to set the indent on regular

text (like parall'aphs).
yes Begin new column
no Print x in bold italics (noftll only)
no Print x in a box (noftll only) .
no Set even footer to x y z
no Set even header to x y z
no Set footer to x y z
no Suppress headers and footers on next page .
no Set header to x y z
yes Draw a horizontal line
no Italicize x,' if x missing, italic text follows .
yes Start indented paragraph, with hanging tag x. Indentation is yens (default 5) .
yes Start left-blocked parall'aph .
no Read in a file of local macros of the form .ex. Must be given before

initialization .
yes Start numbered parall'aph •
no Set odd footer to x y z
no Set odd header to x y z
yes Print delayed text.
yes Begin paragraph. First line indented .
no Roman text follows .
no Reset tabs to default values .
no Read in a file of special characters and diacritical marks. Must be given before

initialization.
yes Section head follows, font automatically bold. n is level of section, x is title of

section.
no Leave the next page blank. Only one page is remembered ahead .
no Augment the point size by n points.
no Produce the paper in thesis format. Must be given before initialization .
yes Begin title page .
no Underline argument (even in trojJ). (Nofill only) .
yes Like .sh but unnumbered .
no Print index x .

lrd Berkeley Distribution 16 November 1979 2

MS(7) UNIX Programmer's Manual MS(7)

NAME
ms - text formatting macros

SYNOPSIS
8roft -ms [options] file .. .
troft - ms [options] file .. .

DESCRIPTION

FILES

This package of nroff and troff macro definitions provides a formatting facility for various styles
of articles, theses, and books. When producing 2-column output on a terminal or lineprinter,
or when reverse line motions are needed, filter the output through col(1). All external -ms
macros are defined below. Many nroff and troff requests are unsafe in conjunction with this
package. However, the first four requests below may be used with impunity after initialization,
and the last t~o may be used even before initialization:

.bp begin new page

. br break output line

.sp n insert n spacing lines

.ce n center next n lines

.Is n line spacing: n -1 single, n - 2 double space

.na no alignment of right margin
Font and point size changes with \fand \s are also allowed; for example, "\flword\fR" will
italicize word. Output of the tbl, eqn, and r({er(t) preprocessors for equations, tables, and
references is acceptable as input.

lusr llib/tmac/tmac.x
lusr/lib/ms/x. ???

SEE ALSO
eqn(1), refer(1), tbl(1), trotr(1)

REQUESTS
Macro Initial Break? Explanation
Name Value Reset?

.ABx y begin abstract; if x - no don't label abstract

.AE y end abstract

.AI y author's institution

.AM n better accent mark definitions

.AU y author's name

.Bx n embolden x; if no x, switch to boldface

.Bl y begin text to be enclosed in a box

.B2 y end boxed text and print it

.DT date n bottom title, printed at foot of page

.BXx n print word x in a box

.CM ift n cut mark between pages

.CT y,y chapter title: page number moved to CF (TM only)

.DAx ifn n force date x at bottom of page; today if no x

.DE y end display (unfilled text) of any kind

.DSxy I y begin display with keep; x-I,L,C,B; ,-indent

.ID y 8n,.Si y indented display with no keep; y -indent

.LD y left display with no keep

.CD y centered display with no keep

.BD y block display; center entire block
.. EF x n even page footer x (3 part as for .tt)
.EHx n even page header x (3 part as for .tt)

4th Berkeley Distribution 18 July 1983 1

MS(7) UNIX Programmer's Manual MS(7)

.EN y end displayed equation produced by eqn

.EQxy 'I break out equation; x-L,I,C; y-equation number

.FE n end footnote to be placed at bottom of page

.FP n numbered footnote paragraph; may be redefined

.FS x n start footnote; x is optional footnote label

.HD undef n optional page header below header margin

.Ix n italicize x; if no x, switch to italics

.IPxy y,y indented paragraph, with hanging tag x; y-indent

.lXxy y index words x y and so on (up to S levels)

.KE n end keep of any kind

.KF n begin fioating keep; text fills remainder of page

.KS y begin keep; unit kept together on a single page

.LG n larger; increase point size by 2

. LP y,y left (block) paragraph .

.MCx y,y multiple columns; x -column width

.NDx ift n no date in page footer; x is date on cover

.NHxy y,y numbered header; x -level, x - 0 resets, x - S sets to y

.NL lOp n set point ~ize back to normal

.OFx n odd page footer x (3 part as for .tl)

.OHx n odd page header x (3 part as for .tl)

.Pl ifTM n print header on 1st page

.PP y,y paragraph with first line indented

.PT - %- n page title, printed at head of page

.PXx y print index (table of contents); x-no suppresses title

.QP y,Y quote paragraph (indented and shorter)

.R on n return to Roman font

.RE Sn y,y retreat: end level of relative indentation

.RPx n released paper format; x-no stops title on 1st page

.RS Sn y,y right shift; start level of relative indentation

.SH y,Y section header, in boldface

.SM n smaller; decrease point size by 2

.TA 8n,Sn n set tabs to 8n 16n ... (orom Sn IOn ... (trom

.TCx y print table of contents at end; x - no suppresses title

.TE y end of table processed by tbl

.TH y end multi-page header of table

.TL y title in boldface and two points larger

.TM off n UC Berkeley thesis mode

.TSx y,y begin table; if x - H table has multi-page header

.ULx n underline x, even in troJ!

.UXx n UNIX; trademark message first time; x appended

.XAxy y another index entry; x-page or no for none; y-indent

.XE y end index entry (or series of .IX entries)

.XP y,y paragraph with first line exdented, others indented

.XSxy y begin index entry; x -page or no for none; y -indent

.IC on y,y one column format, on a new page

.2C y,y begin two column format

.J- n beginning of refer reference

.[0 n end of unclassifiable type of reference

.[N n N- l:journal-article, 2:book, 3:book-article, 4:report

4th Berkeley Distribution 18 July 1983 2

MS(7) UNIX Programmer's Manual MS(7)

REGISTERS

BUGS

Formatting distances can be controlled in -ms by means of built-in number registers. For
example, this sets the line length to 6.S inches:

.nr LL 6.Si
Here is a table of number registers and their default values:

Name Register Controls Takes Effect Default

PS point size paragraph 10
VS vertical spacing paragraph 12
LL line length paragraph 6i
LT title length next page same as LL
FL footnote length next .FS S.Si
PD paragraph distance paragraph 1 v (if n), .3v (if t)
DD display distance displays Iv (if n), .Sv Of t)
PI paragraph indent paragraph Sn
QI quote indent next .QP Sn
PI footnote indent next .FS 2n
PO page oWset next page 0 (if n), -1 i (if t)
HM header margin next page Ii
PM footer margin next page Ii
FF footnote format next .FS 0 (1, 2, 3 available)

When resetting these values, make sure to specify the appropriate units. Setting the line length
to 7, for example, will result in output with one character per . line. Setting FF to 1 suppresses
footnote superscripting; setting it to 2 also suppresses indentation of the first line; and setting it
to 3 produces an .IP-like footnote paragraph.

Here is a list of string registers available in -ms; they may be used anywhere in the text:

Name String's Function

\ -Q quote (" in nroff, " in troff)
\ -U unquote (" in nroff, " in troff)
\ - - dash (•• in nroff, - in troff)
\-{MO month (month of the year)
\-{DY day (current date)
\-- automatically numbered footnote
\-' acute accent (before letter)
\-~ grave accent (before letter)
\-.. circumflex (before letter)
\-, cedilla (before letter)
\-: umlaut (before letter)
\-. tilde (before letter)

When using the extended accent mark definitions available with .AM, these strings should
come after, rather than before, the letter to be accented.

Floating keeps and regular keeps are diverted to the same space, so they cannot be mixed
together with predictable results.

4th Berkeley Distribution 18 July 1983 3

TERM (7) UNIX Programmer's Manual TERM (7)

NAME
term - conventional names for terminals

nESCRIPTION
Certain commands use these terminal names. They are maintained as part of the shell environ­
ment (see sh(l),environ(7».

adm3a
2621
hp
cl00
h19
mime
1620
300
33
37
43
735
745
dumb
dialup
network
4014
vt52

Lear Seigler Adm-3a
Hewlett-Packard HP262? series terminals
Hewlett-Packard HP264? series terminals
Human Designed Systems Concept 100
Heathkit H19
Microterm mime in enhanced ACT IV mode
DIABLO 1620 (and others using HyType II)
DASIIDTC/GSI 300 (and others using HyType I)
TELETYPE- Model 33
TELETYPE Model 37
TELETYPE Model 43
Texas Instruments TI735 (and TI725)
Texas Instruments TI74S
terminals with no special features
a terminal on a phone line with no known characteristics
a terminal on a network connection with no known characteristics
Tektronix 4014
Digital Equipment Corp. VT52

The list goes on and on. Consult letc/termcap (see termcap(5» for an up-to-date and locally
correct list.

Commands whose behavior may depend on the terminal either consult TERM in the environ­
ment, or accept arguments of the form -Tterm, where term is one of the names given above.

SEE ALSO

BUGS

stty(1), tabs (1) , plot (1 G) , sh(l) , environ (7) ex(1), clear(l), more (1) , ul(l), tset(1) ,
termcap(5), termcap(3X), ttytype(5)
troffU) for nroff

The programs that ought to adhere to this nomenclature do so only fitfully.

4th Berkeley Distribution 1 February 1983 1

INTRO (S) UNIX' Programmer's Manual INTRO(S)

NAME
intro - introduction to system maintenance and operation commands

DESCRIPTION
This section contains information related to system operation and maintenance. In particular,
commands used to create new file systems, new/s, mk/s, and verify the integrity of the file sys­
tems, jsck, icheck, dcheck, and ncheck are described here. The section format should be con­
sulted when formatting disk packs. The section crash should be consulted in understanding
how to interpret system crash dumps.

LIST OF PROGRAMS
Program

ac
accton
adduser
analyze
arc v
arff
bad144
badsect
bugfiler
cat man
chown
clri
comsat
con fig
crash
cron
dcheck
diskpart
dmesg
drtest
dump
dumpfs
edquota
fastboot
fasthalt
flcopy
format
fsck
ftpd
gettable
getty
halt
htable
icheck
ifconfig
implog
implogd
in it
kgmon
Ipc
Ipd

Appears on Page

ac.8
sa.8
add user. 8
analyze.8
arcv.8
arff.Sv
bad144.8
badsect.8
bugfiler.8
catman.8
chown.8
clri.8
comsat.8c
config.8
crash.8v
cron.8
dcheck.8
diskpart.8
dmesg.8
drtest.8
dump.8
dumpfs.8
edquota.8
fastboot.8
fastboot.8
arff.8v
format.8v
fsck.8
ftpd.8c
gettable.8c
getty. 8
halt. 8
htable.8
icheck.8
ifconfig.8c
implog.8c
implogd.8c
init.8
kgmon.8
Ipc.8
Ipd.8

4th Berkeley Distribution

Description

login accounting
system accounting
procedure for adding new users
Virtual UNIX postmortem crash analyzer
convert archives to new format
archiver and copier for floppy
read/write dec standard 144 bad sector information
create files to contain bad sectors
file bug reports in folders automatically
create the cat files for the manual
change owner
clear i-node
biff server
build system configuration files
what happens when the system crashes
clock daemon
file system directory consistency check
calculate default disk partition sizes
collect system diagnostic messages to form error log
standalone disk test program
incremental file system dump
dump file system information
edit user quotas
reboot/halt the system without checking the disks
reboot/halt the system without checking the disks
archiver and copier for floppy
how to format disk packs
file system consistency check and interactive repair
DARPA Internet File Transfer Protocol server
get NIC format host tables from a host
set terminal mode
stop the processor
convert NIC standard format host tables
file system storage consistency check
configure network interface parameters
IMP log interpreter
IMP logger process
process control initialization
generate a dump of the operating systems profile buffers
line printer control program
line printer daemon

18 July 1983 1

INTRO(8) UNIX Programmer's Manual INTRO (8)

makedev makedev.8 make system special files
makekey makekey.8 generate encryption key
mkfs mkfs.8 construct a file system
mklost + found mklost+found.8 make a lost+found directory for fsck
mknod mknod.8 build special file
mkproto mkproto.8 construct a prototype file system
mount mount. 8 mount and dismount file system
ncheck ncheck.8 generate names from i-numbers
newfs newfs.8 construct a new file system
pac pac.8 printer/ploter accounting information
pstat pstat.8 print system facts
quot quot.8 summarize file system ownership
quotacheck quotacheck.8 file system quota consistency checker
quotaoff quotaon.8 turn file system quotas on and off
quotaon quotaon.8 turn file system quotas on and off
rc rc.8 command script for auto-reboot and daemons
rdump rdump.8c file system dump across the network
reboot reboot. 8 UNIX bootstrapping procedures
renice renice.8 alter priority of running processes
repquota repquota.8 summarize quotas for a file system
restore restore. 8 incremental file system restore
rexecd rexecd.8c remote execution server
rlogind rlogind.8c remote login server
rmt rmt.8c remote magtape protocol module
route route.8c manually manipulate the routing tables
routed routed.8c network routing daemon
rrestore rrestore.8c restore a file system dump across the network
rshd rshd.8c remote shell server
rwhod rwhod.8c system status server
rxformat rxformat.8v format floppy disks
sa sa.8 system accounting
savecore savecore.8 save a core dump of the operating system
sendmail sendmail.8 send mail over the internet
shutdown shutdown. 8 close down the system at a given time
sticky sticky. 8 executable files with persistent text
swapon swapon.8 specify additional device for paging and swapping
sync sync.8 update the super block
syslog syslog.8 log systems messages
telnetd telnetd.8c DARP A TELNET protocol server
tftpd tftpd.8c DARP A Trivial File Transfer Protocol server
trpt trpt.8c transliterate protocol trace
tunefs tunefs.8 tune up an existing· file system
umount mount. 8 mount and dismount file system
update update. 8 periodically update the super block
uuclean uuclean.8c uucp spool directory clean-up
uusnap uusnap.8c show snapshot of the UUCP system
vipw vipw.8 edit the password file

4th Berkeley Distribution 18 July 1983 2

750ROM(8) UNIX Programmer's Manual 750ROM(8)

NAME
750 rom - details of Vax-11/750 boot ROMs .\: .

SYNOPSIS
tp :~!':'

») nIl loading x,x(O,O)boot
Boot
: xx(0,0)750rom

then re-boot the CPU

DESCRIPTION
The Vax-11/750 has a four-position rotary switch on its front panel labeled "Boot Device". This
switch is used to select one of four bootstrap loaders. Each loader is contained in a ROM on the
memory controller board (board 1.0011 on earlier machines, 1..0016 on later Olies.)

One way to discover what bootstrap ROMs are present is to use 750roll1, a stand-alone program
(Le., you must shutdown Unix before lIsing it.) Therc are no options; just load it and it will rcport
the ROM configuration.

CI-IECKING BY HAND
tp
») .E/P F20400 to check "A t. ROAf
») E/P F20500 to check "IJ" RaNI
») E/PF20600 to check HC" ROAI
») Elf> F20700 10 check "J)" ROAI
») C . to contillllC CPU, ifdesired

PROCEDUIU~

If you don't want to have to reboot Unix, or the 750roll1 program is not present on your root dev­
ice, you can still Hnd out what ROMs arc present.

To find out what bootstrap ROMs arc loaded. follow the procedure dcscribed ab(lVc to look at the
contents of the ROMs (which appear in the physical "ddress space.) The low-oreier eight bits (2
hexadecimal digits) should cell you the boot device type:

42
44

4C

4D

53

55

FF

DEC Massbus (CMl) disks (RP06/RP07)

TU58 console cassette (Dectape-II)

RI.02 cartridge disk

RK07 cartridge disk

Systems Industries eM I interface disks (Eagle)

DEC UDA50 disks (RA2S/RA60/RA80/RA8l)

No ROM installed ill this position

Normally, the machines scem to arrivc with the TU58 ROM at position HA". the RK07 ROM at
position "B", and the RI,02 ROM at position "C". Position "I)" is usually empty unless the system'
is shipped by DEC with a disk other t.han RK07 or RL02.

If you have foreign vendor disks (such as SI Eagles) installed, make sure t.he installer instatJs a
ROM fbI' you. You should mark the memory controlJer board so that if it is replaced by Field Ser­
vic~, they transfer the ROMs.

Other, 1l1ore complicated ways to determine what ROMs are installed arc to run l.he HCK AIlI diag­
nostic (memory diagnostic. supposedly on cassctte # 5), or, if you havc the Rcmote Diagnostic
Option installcd, run the microdiagnostics HeK II /J and ECKAC (supposedly on cassettes # 1 and

7th Edition 1 .

750ROM(8) UNIX Programmer's Manual 750ROM(8)

BUGS

#2). Either of these methods will display the ROM configuration at some point during the test.
(For more details, see Vax-II 1750 Installation and Acceptance Manual for ECKAlJ,f, or KC750
Nficrodiagnostics and Technical Afanual, for ECKAlJI RCKAC.)

There may be other possible ROM types that are not listed here.

The names of the diagnostics are subject to change .

..... ... ,.: ~ ..• -:1' :~;. ,.. "'.: ~

7th Edition 2

AC(8) UNIX Programmer's Manual AC(8)

NAME
ac - login accounting

SYNOPSIS
/etc/ac [-w wtmp 1 [-p 1 [-d 1 [people 1 ...

DESCRIPTION

FILES

Ac produces a printout giving connect time for each user who has logged in during the life of
the current wtmp file. A total is also produced. -w is used to specify an alternate wtmp file.
-p prints individual totals; without this option, only totals are printed. -d causes a printout
for each midnight to midnight period. Any people will limit the printout to only the specified
login names. If no wtmp file is given, lusrladmlwtmp is used.

The accounting file lusrladmlwtmp is maintained by init and login. Neither of these programs
creates the file, so if it does not exist no connect-time accounting is done. To start accounting,
it should be created with length O. On the other hand if the file is left undisturbed it will grow
without bound, so periodically any information desired should be collected and the file trun­
cated.

/usr/adm/wtmp

SEE ALSO
init(8), sa(8), 10gin(1), utmp(S).

4th Berkeley Distribution 4 February 1983 1

ADDUSER(S) UNIX Programmer's Manual ADDUSER(S)

NAME
adduser - procedure for adding new users

DESCRIPTION

FILES

A new user must choose a login name, which must not already appear in letc/passwd. An
account can be added by editing a line into the passwd file; this must be done with the password
file locked e.g. by using vtjJw(S).

A new user is given a group and user ide User id's should be distinct across a system, since
they are used to control access to files. Typically, users working on similar projects will be put
in the same group. Thus at UCB we have groups for system staff, faculty, graduate students,
and a few special groups for large projects. System staff is group "10" for historical reasons,
and the super-user is in this group.

A skeletal account for a new user "ernie" would look like:

ernie::235:20:& Kovacs,50SE, 7925 ,642S202:/mntl gradl ernie:/binl csh

The first field is the login name "ernie". The next field is the encrypted password which is not
given and must be initialized using passwd(1). The next two fields are the user and group id's.
Traditionally, users in group 20 are graduate students and have account names with numbers in
the 200's. The next field gives information about ernie's real name, office and office phone and
home phone. This information is used by the finger(1) program. From this information we
can tell that ernie's real name is "Ernie Kovacs" (the & here serves to repeat "ernie" with
appropriate capitalization), that his office is 50S Evans Hall, his extension is x2-7925, and this
his home phone number is 642-S202. You can modify the finger(1) program if necessary to
allow different information to be encoded in this field. The UCB version of finger knows
several things particular to Berkeley - that phone extensions start "2 - ", that offices ending in
"E" are in Evans Hall and that offices ending in "C" are in Cory Hall.

The final two fields give a login directory and a login shell name. Traditionally, user files live
on a file system which has the machines single letter netO) address as the first of two charac­
ters. Thus on the Berkeley CS Department V AX, whose Berknet address is "csvax" abbrevi­
ated "v" the user file systems are mounted on "Iva", "/vb", etc.. On each such filesystem
there are subdirectories there for each group of users, i.e.: "Iva/staff" and "/vb/pror'. This is
not strictly necessary but keeps the number of files in the top level directories reasonably small.

The login shell will default to "/bin/sh" if none is given. Most users at Berkeley choose
" Ibinl csh" so this is usually specified here.

It is useful to give new users some help in getting started, supplying them with a few skeletal
files such as .profile if they use "/bin/sh", or .cshrc and .login if they use "/bin/csb". The
directory "/usrlskel" contains skeletal definitions of such files. New users should be given
copies of these files which, for instance, arrange to use tsetO) automatically at each login.

letc/passwd
lusrlskel

password file
skeletal login directory

SEE ALSO
passwd(t), finger(t), chsh(l), chfn(l), passwd(5), vipw(S)

BUGS
User information should be stored in its own data base separate from the password file.

4th Berkeley Distribution 4 February i 9S3 1

ANALYZE (8) UNIX Programmer's Manual ANALYZE (8)

NAME
analyze - Virtual UNIX postmortem crash analyzer

SYNOPSIS
/etc/analyze [-s swapfile] [-f] [-m] [-d] [- D] [-v 1 corefile [system]

DESCRIPTION

FILES

Analyze is the post-mortem analyzer for the state of the paging system. In order to use analyze
you must arrange to get a image of the memory (and possibly the paging area) of the system
after it crashes (see crash(8V».

The analyze program reads the relevant system data structures from the core image file and
indexing information from /vmunlx (or the specified file) to determine the state of the paging
subsystem at the point of crash. It looks at each process in the system, and the resources each
is using in an attempt to determine inconsistencies in the paging system state. Normally, the
output consists of a sequence of lines showing each active process, its state (whether swapped
in or not), its pObr, and the number and location of its page table pages. Any pages which are
locked while raw if 0 is in progress, or which are locked because they are intransit are also
printed. (Intransit text pages often diagnose as duplicated; you will have to weed these out by
hand.)

The program checks that any pages in core which are marked as not modified are, in fact,
identical to the swap space copies. It also checks for non-overlap of the swap space, and that
the core map entries correspond to the page tables. The state of the free list is also checked.

Options to analyze:

- D causes the diskmap for each process to be printed.

-d causes the (sorted) paging area usage to be printed.

-f which causes the free list to be dumped.

-m causes the entire coremap state to be dumped.

-v (long unused) which causes a hugely verbose output format to be used.

In general, the output from this program can be confused by processes which were forking,
swapping, or exiting or ·happened to be in unusual states when the crash occurred. You should
examine the flags fields of relevant processes in the output of a pstat(8) to weed out such
processes.

It is possible to look at the core dump with adb if you do

adb - k Ivmunix Ivrncore

Ivmunix default system namelist

SEE ALSO
adb(l), ps(1), crash (8V) , pstat(8)

AUTHORS .
Ozalp Babaoglu and William Joy

DIAGNOSTICS
Various diagnostics about overlaps in swap mappings, missing swap mappings, page table entries
inconsistent with the core map, inc ore pages which are marked clean but differ from disk-image
copies, pages which are locked or intransit, and inconsistencies in the free list.

It would be nice if this program analyzed the system in general, rather than just the paging sys­
tem in particular.

4th Berkeley Distribution 4 February. 1983 1

ARCV(S) UNIX Programmer's Manual

NAME
arev - convert archives to new format

SYNOPSIS
/etc/arev file ...

DESCRIPTION

ARCV(S)

Arcv converts archive files (see or(1), ar(5» from 32v and Third Berkeley editions to a new
portable format. The conversion is done in place, and the command refuses to alter a file not
in old archive format.

Old archives are marked with a magic number of 0177545 at the start; new archives have a first
line "! <arch>".

FILES
/tmp/v., temporary copy

SEE ALSO
ar(l), ar(5)

4th Berkeley Distribution 4 February 1983 1

ARFF(8V) UNIX Programmer's Manual ARFF(8V)

NAME
arif, flcopy - archiver and copier for floppy

SYNOPSIS
/ etcl arff [key] [name ... 1
/etc/flcopy [-h] [-tn]

DESCRIPTION

FILES

Arif saves and restores files on the console floppy disk. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter and possibly
one or more function modifiers. Other arguments to the command are file names specifying
which files are to be dumped or restored.

Files names have restrictions, because of radixSO considerations. They must be in the form 1-6
alphanumerics followed by "." followed by 0-3 alphanumerics. Case distinctions are lost. Only
the trailing component of a pathname is used.

the function portion of the key is specified by one of the following letters:

r The named files are replaced where found on the floppy, or added taking up the
minimal possible portion of the first empty spot on the floppy.

x The named files are extracted from the floppy.

d The named files are deleted from the floppy. Arff will combine contiguous deleted
files into one empty entry in the rt-ll directory.

t The names of the specified files are listed each time they occur on the floppy. If no
file argument is given, all of the names on the floppy are listed.

The following characters may be used in addition to the letter which selects the function
desired.

v The v (verbose) option, when used with the t function gives more information
about the floppy entries than just the name.

f causes arif to use the next argument as the name of the archive instead of
Idev/floppy;

m causes arff not to use the mapping algorithm employed in interleaving ·sectors
around a floppy disk. In conjunction with the f option it may be used for extracting
files from rtll formatted cartridge disks, for example. It may also be used to speed
up reading from and writing to rx02 floppy disks, by using the 'c' device instead of
the 'b' device. . >

c causes arffto create a new directory on the floppy, effectively deleting all previously
existing files.

Flcopy copies the console floppy disk (opened as '/dev/floppy') to a file created in the current
directory, named "floppy", then prints the message "Change Floppy, hit return when done".
Then jicopy copies the local file back out to the floppy disk.

The - h option to jicopy causes it to open a file named "floppy" in the current directory and
copy it to /dev/floppy,' the -t option causes only the first n tracks to participate in a copy.

Arff may also be used with the console TUS8 cassettes on the 11/730. To do so, the m key
must be specified. Normally, the f key is also used.

Idev/floppy or Idev/rrx??
floppy (in current directory)

4th Berkeley Distribution 18 July 1983 1

ARFF(8V) UNIX Programmer's Manual ARFF(8V)

SEE ALSO
fl(4), rx(4), rxformat(8V)

AUTHORS
Keith Sklower, Richard Tuck

BUGS
Floppy errors are handled ungracefully; Ar:tfdoes not handle multi-segment rtll directories.

4th Berkeley Distribution 18 July 1983 2

ARP(8C) UNIX Programmer's Manual ARP(8C)

NAME
arp - address resolution display and control

SYNOPSIS
~lf(l hos/name
,up ·a [vlJ1unix] [krnem]
al'p ·d IlOs/name
arp ·s IlOs/name e/hecaddr [tcnl(>] [pub]
arp ·f filename

DESCRIPTION
The arp program displays and modifies the Internet-to-Ethernet address translation tables used by .

. . ',th.e {\d~r~s~ resolution. PI"o~oGol. (. Gl1J(.:lP)}" " '. '-. . -.: t 'l. .

With no flags, tJ1C program displays the current ARP entry for IlOstllame. With the ·~l nag, the pro­
gram displays all of the CUlTent ARP entries by reading thc table from the file kmem (default
/dev /kmem) based on the kernel me vl11unix (default Ivtnunix).

With the -d flag, a super-user may delete an entry for the host called ILOs/name.·

The ·s flag is given to create an ARP entry for the host called JlOstllome with the Ethernet address
ether_add,: The Ethernet address is given as six hex bytes separated by colons. The entry will be
pennanent unless the word temp is given in the command. If the word pub is given, the entry will
be "published", C.g., this system will respond to ARt> requests for IlOs/name even though the host­
name is not it') own.

The ·f flag causes the file filename to be read and multiple entries to be set in the A RP tables.
Entries in the file should be of the form

, IlOstname ether_addr [temp] [pub]

with argument meanings as given above.

SEE ALSO
arp(4p), HtonOg(8c)

7th Edition 12 January 1984 1

BADI44 (8) UNIX Programmer's Manual BAD144 (8)

NAME
bad144 - read/write dec standard 144 bad sector information

SYNOPSIS
letclbad144 [-f) disk type disk [sno [bad ...]]

DESCRIPTION
Bad144 can be used to inspect the information stored on a disk that is used by the disk drivers
to implement bad sector forwarding. The format of the information is specified by DEC stan­
dard 144, as follows.

The bad sector information is located in the first S even numbered sectors of the last track of
the disk pack. There are five identical copies of the information, described by the dkbad struc­
ture.

Replacement sectors are allocated starting with the first sector before the bad sector information
and working backwards towards the beginning of the disk. A maximum of 126 bad sectors are
supported. The position of the bad sector in the bad sector table determines which replacement
sector it corresponds to.

The bad sector information and replacement sectors are conventionally only accessible through
the "c" file system partition of the disk. If that partition is used for a file system, the user is
responsible for making sure that it does not overlap the bad .. sector information or any replace­
ment sectors.

The bad sector structure is as follows:

struct dkbad {

);

long bt_csn;
u_short bt_mbz;
u_short bt_flag;
struct bt_bad (

u_short bt_cyl;
u_short bt_trksec;

) bt_badU26];

/. cartridge serial number ./
/. unused; should be 0 ./
/. -1 =- > alignment cartridge */

/. cylinder number of bad sector ./
/. track and sector number ./

Unused slots in the bCbad array are filled with all bits set, a putatively illegal value.

Bad144 is invoked by giving a device type (e.g. rk07, rm03, rmOS, etc.), and a device name
(e.g. hkO, hp 1, etc.). It reads the first sector of the last track of the corresponding disk and
prints out the bad sector information. It may also be invoked giving a serial number for the
pack and a list of bad sectors, and will then write the supplied information onto the same loca­
tion. Note, however, that bad144 does not arrange for the specified sectors to be marked bad
in this case. This option should only be used to restore known bad sector information which
was destroyed.

If the disk is an RP06, Fujitsu Eagle, or Ampex Capricorn on a Massbus, the -f option may be
used to mark the bad sectors as "bad". NOTE: this can only be done safely when there is
no other disk activity, preferably while running single-user. Otherwise, new bad sectors can
be added only by running a formatter. Note that the order in which the sectors are listed deter­
mines which sectors used for replacements; if new sectors are being added to the list on a drive
that is in use, care should be taken that replacements for existing bad sectors have the correct
contents.

SEE ALSO
badsect(8), format(8V)

4th Berkeley Distribution 18 July 1983 1

BADI44(S) UNIX' Programmer's Manual BAD144 (S)

BUGS
It should be possible to format disks on-line under UNIX.

It should be possible to mark bad sectors on drives of all type.

On an 11/750, the standard bootstrap drivers used to boot the system do not understand bad
sectors, handle ECC errors, or the special SSE (skip sector) errors of RMSO type disks. This
means that none of these errors can occur when reading the file Ivmunix to boot. Sectors 0-15
of the disk drive must also not have any of these errors.

The drivers which write a system core image on disk after a crash do not handle errors; thus
the crash dump area must be free of errors and bad sectors.

4th Berkeley Distribution 18 July 1983 2

BADSECT(8) UNIX Programmer's Manual BADSECT(8)

NAME
badsect - create files to contain bad sectors

SYNOPSIS
I etclbadsect bbdir sector ...

DESCRIPTION
Badsect makes a file to contain a bad sector. Normally, bad sectors are made inaccessible by the
standard formatter, which provides a forwarding table for bad sectors to the driver; see
bad144(8) for details. If a driver supports the bad blocking standard it is much preferable to
use that method to isolate bad blocks, since the bad block forwarding makes the pack appear
perfect, and such packs can then be copied with dd(1). The technique used by this program is
also less general than bad block forwarding, as badsect can't make amends for bad blocks in the
i-list of file systems or in swap areas.

On some disks, adding a sector which is suddenly bad to the bad sector table currently requires
the running of the standard DEC formatter. Thus to deal with a newly bad block or on disks
where the drivers do not support the bad-blocking standard badsect may be used to good effect.

Badsect is used on a quiet file system in the following way: First mount the file system, and
change to its root directory. Make a directory BAD there. Run badsect giving as argument the
BAD directory followed by all the bad sectors you wish to add. (The sector numbers must be
relative to the beginning of the file system, but this is not hard as the system reports relative
sector numbers in its console error messages.) Then change back to the root directory,
unmount the file system and run jSck(8) on the file system. The bad sectors should show up in
two files or in the bad sector files and the free list. Have jsck remove files containing the
offending bad sectors, but do not have it remove the BADI nnnnn files. This will leave the bad
sectors in only the BAD files.

Badsect works by giving the specified sector numbers in a mknod(2) system call, creating an ille­
gal file whose first block address is the block containing bad sector and whose name is the bad
sector number. When it is discovered by fsck it will ask "HOLD BAD BLOCK"? A positive
response will cause jSck to convert the inode to a regular file containing the bad block.

SEE ALSO
badl44(8), fsck(8), format(8V)

DIAGNOSTICS

BUGS

Badsect refuses to attach a block that resides in a critical area or is out of range of the file sys­
tem. A warning is issued if the block is already in use.

If more than one sector which comprise a file system fragment are bad, you should specify only
one of them to badsect, as the blocks in the bad sector files actually cover all the sectors in a file
system fragment.

4th Berkeley Distribution 2S February' 1983 1

DR EATHLIFE (8) UNIX Programmer's Manual

NAME
breathlifc - breath-of-life server for bootloading 3mb Altos

SYNOPSIS
/ctc/pup/brcathlifc

DESCRIPTION

BREA THLli"'E (8)

This is a simple server that blindly sends out an Alto "breath of life" packet on the 3mb ethemet
every few seconds. Use it only if you have an Alto on the same network as your system.

FILES
! etc/pup/ pupnettab

AUTHOR
Jeffrey Mogul

7th Edition

for list of networks

1

DUOFILER (8) UNIX Programmer's Manual DUOFILER (8)

NAME
bugfiler - file bug reports in folders automatically

SYNOPSIS
bUlfller [mail directory]

DESCRIPTION

FILES

Bugfiler is a program to automatically intercept bug reports, summarize them and store them in
the appropriate sub directories of the mail directory specified on the command line or the (sys­
tem dependent) default. It is designed to be compatible with the Rand MH mail system.
Bugfiler is normally invoked by the mail delivery program through aliases(S) with a line such as
the following in lusr/lib/aliases.

bugs:;'ugfiler lusr Ibugs/mail"

It reads the message from the standard input or the named file, checks the format and returns
mail acknowledging receipt or a message indicating the proper format. Valid reports are then
summarized and filed in the appropriate folder. Users can then log onto the system and check
the summary file for bugs that pertain to them. Bug reports are submitted in RFC822 format
and must contain the following header lines:

Date: <date the report is received>
From: <valid return address>
Subject: <short summary of the problem>
Index: < source directory> I <source file> < version> [Fix]

In addition, the body of the message must contain a line which begins with "Description:" fol­
lowed by zero or more lines describing the problem in detail and a line beginning with
"Repeat-By:" followed by zero or more lines describing how to repeat the problem. If the key­
word 'Fix' is specified in the 'Index' line, then there must also be a line beginning with "Fix:"
followed by a diff of the old and new source files or a description of what was done to fix the
problem.

The 'Index' line is the key to the filing mechanism. The source directory name must match one
of the folder names in the mail directory. The message is then filed in this folder and a line
appended to the summary file in the following format:

<folder name> I <message number> <Index info>
<Subject info>

lusr/new llib/mhl deliver
lusr/new/lib/mhlunixtomh
maildir/.ack
maildir/.format
maildir/summary
maildir IDf?? ????
maildir/Rp????? ?

mail delivery program
converts unix mail format to mh format
the message sent in acknowledgement
the message sent when format errors are detected
the summary file
temporary copy of the input message
temporary file for the reply message.

SEE ALSO

BUGS
mh(1), newaliases(1), aliases(S)

Since mail can be forwarded in a number of different ways, bugjiler does not recognize for­
warded mail and will reply/complain to the forwarder instead of the original sender unless there
is a 'Reply-To' field in the header.

Duplicate messages should be discarded or recognized and put somewhere else.

4th Berkeley Distribution 18 July 1983 1

I3UILDNETDIR (8) UN IX Programmer's Manual nUILDNETDIR (8)

NAME
buildnetdir - build binary"fOlmat Pup Network Directory

SYNOPSIS
bnildnctdir [- p] [- d] [- s 1 [. -] [infile [outfile]]

DESCRIPTION
Buildnetdir parses the human-readable version of Pup Network dircctory and produces a binary­
formatted version. The default input file is /etc/pup/Pup-Network.txt; the default output file is
/et.c/pup/Pup-Nctwork.Dir; you cannot specify the output file unless you also specify the input file.

Options are:

-p

-s

"d

Parse Only:"'" . the iilput "fire is parsed', aha a new version' numbcris found, but the
output file is not changed.

S.torage statistics arc printed.

Debugging infOlmation is printed.

The standard input is read tor input.

PROPER WAY OF USING TI-IIS PROGRAM

FILE...'i

In order to reduce confusion, we (at Stanford) have established a procedure for updating the direc­
tory.

The "official" copy of the 11l1man-readable directory lives on [Navajo]<System)Pup-Network.txt.
ltetrieve this file to your local /etc/pup/Pup-Network.txt. edit it, and run buildnetdir; you might
first want to use it with the - p nag, to make sure that the file is syntactically correct. If it is ok,
run buildncldir withouth the - p l1ag, which will "install" the new binary directory. The miscserver
on the local machine will notice this within a minute or so, and propagate the new directory to all
other machines.

Meanwhile, you should store the new human-readable directory back at Navajo and at the IFS;
bet()I'c doing this, you should probably check to see if anyonc else has modified it in parallel with
you. Of this has happened, the two of you will have to agree on a co~,.ect version, then proceed
again from the beginning.)

If any old-fashioned miscservers (those that do not use the network directory update protocol) still
exist on your network, please copy the new human-readable directory to those machines.

/etc/pup/Pup-Network.txt
/ elc/pllp/PlIp-Network. Dir

defillllt input file
default output file

SEE AIBO
miscserver(8)

DIAGNOSTICS
More or less self-explanatory. If the program cannot determine a new version number (Le., no
server on the net provide the current version number), you will be asked for one .

. AUTHOR
JclTreyMogul

BUGS
Doesn't understand "attributes" attached to addresses (understands attributes attached to entries,
though.)

7th Edition Stanford 1

CATMAN(8) UNIX Programmer's Manual

NAME
catman - create the cat files for the manual

SYNOPSIS
letc/catman [-p] [-n] [-w] [sections]

DESCRIPTION

CATMAN(8)

CaIman creates the preformatted versions of the on-line manual from the nroff input files.
Each manual page is examined and those whose preformatted versions are missing or out of
date are recreated. If any changes are made, caIman will recreate the lusr/llb/whatis database.

FILES

If there is one parameter not starting with a '-', it is take to be a list of manual sections to
look in. For example

catman 123

will cause the updating to only happen to manual sections 1, 2, and 3.

Options:

-n prevents creations of lusr/llb/whatis.

-p prints what would be done instead of doing it.

-w causes only the lusr/llb/whatis database to be created. No manual reformatting is
done.

lusr/man/man?I-.­
lusr/man/cat? I •.•
lusr llib/makewhatis

raw (nroff input) manual sections
preformatted manual pages
commands to make what is database

SEE ALSO
manU)

BUGS
Acts oddly .on nights with full moons.

4th Berkeley Distribution 4 February 1983 1

CHOWN(S)

NAME
chown - change owner

SYNOPSIS

UNIX Programmer's Manual

letc/chown [-f] owner file ...

DESCRIPTION

CHOWN(S)

Chown changes the owner of the files to owner. The owner may be either a decimal UID or a
login name found in the password file.

Only the super-user can change owner, in order to simplify accounting procedures. No errors
are reported when the -f (force) option is given.

FILES
/etc/passwd

SEE ALSO
chgrp(I), chown(2), passwd(S), group(S)

4th Berkeley Distribution IS July 1983 1

CLRI (S) UNIX Programmer's Manual CLRI (S)

NAME
clri - clear i-node

SYNOPSIS
letc:/c:lrl filesystem i-number ...

DESCRIPTION
N.B.: Clr; is obsoleted for normal file system repair work by jsck(S).

Clr; writes zeros on the i-nodes with the decimal i-numbers on the jilesystem. After cir;, any
blocks in the affected file will show up as 'missing' in an icheck(S) of the jilesystem.

Read and write permission is required on the specified file system device. The i-node becomes
allocatable.

The primary purpose of this routine is to remove a file which for some reason appears in no
directory. If it is used to zap an i-node which does appear in a directory, care should be taken
to track down the entry and remove it. Otherwise, when the i-node is reallocated to some new
file, the old entry will still point to -that file. At that point removing the old entry will destroy
the new file. The new entry will again point to an unallocated i-node, so the whole cycle is
likely to be repeated again and again.

SEE ALSO
icheck(S)

BUGS
If the file is open, c1r; is likely to be ineffective.

4th Berkeley Distribution 4 February-1983 1

COMSAT(8C) UNIX Programmer's Manual COMSAT(8C)

NAME
comsat - biff server

SYNOPSIS
I etcl comsat

DESCRIPTION

FILES

Comsat is the server process which listens for reports of incoming mail and notifies users if they
have requested this service. Comsat listens on a datagram port associated with the "biff" ser­
vice specification (see services(S» for one line messages of the form

user@mailbox-offset

If the user specified is logged in to the system. and the associated terminal has the owner exe­
cute bit turned on (by a "biff y"), the offset is used as a seek offset into the appropriate mail­
box file and the first 7 lines or 560 characters of the message are printed on the user's terminal.
Lines which appear to be part of the message header other than the "From", "To", "Date",
or "Subject" lines are not included in the displayed message.

letc/utmp

SEE ALSO

to find out who's logged on and on what terminals

BUGS

biff(l)

The message header filtering is prone to error.

Users should be notified of mail which arrives on other machines than the one they are
currently logged in to.

The notification should appear in a separate window so it does not mess up the screen.

4th Berkeley Distribution 18 July 1983 1

CONFIG (8) UNIX Programmer's Manual CONFIG (8)

NAME
config - build system configuration files

SYNOPSIS
letc/config [-p] configJile

DESCRIPTION

FILES

Config builds a set of system configuration files from a short file which describes the sort of sys­
tem that is being configured. It also takes as input a file which tells config what files are needed
to generate a system. This can be augmented by a configuration specific set of files that give
alternate files for a specific machine. (see the FILES section below) If the -p option is sup­
plied, config will configure a system for profiling; c.f. kgmon(8), gproj{l).

Config should be run from the conI subdirectory of the system source (usually Isys/conf).
Config assumes that there is already a directory . .IconfigJile created and it places all its output
files in there. The output of config consists of a number files: ioconl.c contains a description of
what i/o devices are attached to the system,; ubglue.s contains a set of interrupt service rou­
tines for devices attached to the UNIBUS; makefile is a file used by make(1) in building the
system; a set of header files which contain the number of various devices that will be compiled
into the system; and a set of swap configuration files which contain definitions for the disk areas
to be used for swapping, the root file system, argument processing, and system dumps.

After running config, it is necessary to run "make depend" in the directory where the new
makefile was created. Config reminds you of this when it completes.

If you get any other error messages from config, you should fix the problems in your
configuration file and try again. If you try to compile a system that had configuration errors,
you will likely meet with failure.

Isys/conf/makefile.vax generic makefile for the VAX
Isys/conf/files list of common files system is built from
Isys/conf/files.vax list of VAX specific files
Isys/conf/devices.vax name to major device mapping file for the VAX
Isys/conf/files.ERNIE list of files specific to ERNIE system

SEE ALSO
"Building 4.2BSD UNIX System with Config"
The SYNOPSIS portion of each device in section 4.

BUGS
The line numbers reported in error messages are usually off by one.

4th Berkeley Distribution 28 July 1983 1

CRASH (SV) UNIX Programmer's Manual CRASH (SV)

NAME
crash - what happens when the system crashes

DESCRIPTION
This section explains what happens when the system crashes and how you can analyze crash
dumps.

When the system crashes voluntarily it prints a message of the form

panic: why i gave up the ghost

on the console, takes a dump on a mass storage peripheral, and then invokes an automatic
reboot procedure as described in reboot(S). (If auto-reboot is disabled on the front panel of the
machine the system will simply halt at this point.) Unless some unexpected inconsistency is'
encountered in the state of the file systems due to hardware or software failure the system will
then resume multi-user operations.

The system has a large number of internal consistency checks; if one of these fails, then it will
panic with a very short message indicating which one failed.

The most common cause of system failures is hardware failure, which can reflect itself in dif­
ferent ways. Here are the messages which you are likely to encounter, with some hints as to
causes. Left unstated in all cases is the possibility that hardware or software error produced the
message in some unexpected way.

10 err In push
hard 10 err In swap

The system encountered an error trying to write to the paging device or an error in
reading critical information from a disk drive. You should fix your disk if it is broken
or unreliable.

timeout table overflow
This really shouldn~t be a panic, but until we fix up the data structure involved, run­
ning out of entries causes a crash. If this happens, you should make the timeout table
bigger.

KSP not valid
SBI fault
CHM? In kernel

These indicate either a serious bug in the system or, more often, a glitch or failing
hardware. If SBI faults recur, check out the hardware or call field service. If the other
faults recur, there is likely a bug somewhere in the system, although these can be
caused by a flakey processor. Run processor microdiagnostics.

machine check '/ox:
description

machine dependent machine-check in/ormation
We should describe machine checks, and will someday. For now, ask someone who
knows (like your friendly field service people).

trap type %d, code=%d, pc=%x
A unexpected trap has occurred within the system; the trap types are:

o reserved addressing fault
1 privileged instruction fault
2 reserved operand fault
3 bpt instruction fault
4 xfc instruction fault
5 system call trap

4th Berkeley Distribution 1 September 1981 1

CRASH (8V) UNIX Programmer's Manual CRASH (8V)

6 arithmetic trap
7 ast delivery trap
8 segmentation fault
9 protection fault
10 trace trap
11 compatibility mode fault
12 page fault
13 page table fault

The favorite trap types in system crashes are trap types 8 and 9, indicating a wild refer­
ence. The code is the referenced address, and the pc at the time of the fault is printed.
These problems tend to be easy to track down if they are kernel bugs since the proces­
sor stops cold, bu~ random flakiness seems to cause this sometimes.

Init died
The system initialization process has exited. This is bad news, as no new users will
then be able to log in. Rebooting is the only fix, so the system just does it right away.

That completes the list of panic types you are likely to see.

When the system crashes it writes (or at least attempts to write) an image of memory into the
back end of the primary swap area. After the system is rebooted, the program savecore(8) runs
and preserves a copy of this core image and the current system in a specified directory for later
perusal. See savecore(8) for details.

To analyze a dump you should begin by running adb(I) with the - k flag on the core dump.
Normally the command "*(intstack-4)$c" will provide a stack trace from the point of the crash
and this will provide a clue as to what went wrong. A mote complete discussion of system
debugging is impossible here. See, however, "Using ADB to Debug the UNIX Kernel".

SEE ALSO
adb(I), analyze(8), reboot(8)
VAX 111780 System Maintenance Guide for more information about machine checks.
USing ADB to Debug the UNIX Kernel

4th Berkeley Distribution 1 September 1981 2

CRON(S) UNIX Programmer's Manual CRON(S)

NAME
cron - clock daemon

SYNOPSIS·
letc/cron

DESCRIPTION

FILES

Cron executes commands at specified dates and times according to the instructions in the file
lusr llibl crontab. Since cron never exits, it should only be executed once. This is best done by
running cron from the initialization process through the file letc/rc; see init(S).

Crontab consists of lines of six fields each. The fields are separated by spaces or tabs. The first
five are integer patterns to specify the minute (0-59), hour (0-23), day of the month (1-31),
month of the year (1-12), and day of the week (1-7 with I-Monday). Each of these patterns
may contain a number in the range above; two numbers separated by a minus meaning a range
inclusive; a list of numbers separated by commas meaning any of the numbers; or an asterisk
meaning all legal values. The sixth field is a string that is executed by the Shell at the specified
times. A percent character in this field is translated to a new-line character. Only the first line
(up to a % or end of line) of the command field is executed by the Shell. The other lines are
made available to the command as standard input.

Crontab is examined by cron every minute.

lusr/lib/crontab

7th Edition 4 February 1983 1

DCHECK(S) UNIX Programmer's Manual DCHECK(S)

NAME
dcheck - file system directory consistency check

SYNOPSIS
letcldchec:k [-I numbers] [filesystem]

DESCRIPTION

FILES

N.B.: Dcheck is obsoleted for normal consistency checking by ftck(S).

Dcheck reads the directories in a file system and compares the link-count in each i-node with
the number of directory entries by which it is referenced. If the file system is not specified, a
set of default file systems is checked.

The -I flag is followed by a list of i-numbers; when one of those i-numbers turns up in a
directory, the number, the i-number of the directory, and the name of the entry are reported.

The program is fastest if the raw version of the special file is used, since the i-list is read in
large chunks.

Default file systems vary with installation.

SEE ALSO
fsck(S), icheck(S), fs(5) , clri(S), ncheck(S)

DIAGNOSTICS

BUGS

When a file turns up for which the link-count and the number of directory entries disagree, the
relevant facts are reported. Allocated files which have 0 link-count and no entries are also
listed. The only dangerous situation occurs when there are more entries than links; if entries
are removed, so the link-count drops to 0, the remaining entries point to thin air. They should
be removed. '\'hen there are more links than entries, or there is an allocated file with neither
links nor entries, some disk space may be lost but the situation will not degenerate.

Since dcheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

Dcheck is obsoleted by ftck and remains for historical reasons.

4th Berkeley Distribution 4 February 19S3 1

DDACcr(8) UNIX Programmer's Manual DDACCr(8)

NAME
ddacct - Dump Dover Accounting

SYNOPSIS
ddacct [-cpuP]

DESCRIPTION
Dumps dover accounting infbnnation which consists of the num~er of pages and files printed for
each user and the percentage of total dover usage represented by that user (only for the current
machine, of course).

Normally the listing is sorted by pages printed, the -P switch causes it to be sorted by user id and
, .,- .. - ~ ':. ~-q cflu?e~ it to'be.sortedby .1Jsqr·logiq qatnc: " " • t .~ .

FILES

The -c switch causes the accounting information to be cleaned out after the listing' is made. It
resets all counters to zero.

lusr/adm/dover-accnt accounting information.

SEE ALSO
cz (1)

DIAGNOSTICS

BUGS

"There is no accounting file to dump": a system administrator can enable dover accounting by
creating an empty accollting file.

Only accounts for stuff sent to the Dover with czarina (cz(1) and dlrojJ(I). The accounting (nfor­
mation should really be kept by dpr(l), since all files printed go through that program.

The accounting database cannot separately account for multiple printers.

HISTORY
06-Mar-81 James Gosling (jag) at Carnegie-Mellon University

Created.

7th I ~dili()n 1

DISKPART (8) UNIX Programmer's Manual DISKPART(8)

NAME
diskpart - calculate default disk partition sizes

SYNOPSIS
letc/dlskpart [-p] [-d] disk-type

DESCRIPTION
Diskpart is used to calculate the disk partition sizes based on the default rules used at Berkeley.
If the -p option is supplied, tables suitable for inclusion in a device driver are produced. If
the -d option is supplied, an entry suitable for inclusion in the disk description file letcldisktab
is generated; c.f. disktab(5). Space is always left in the last partition on the disk for a bad sec­
tor forwarding table~ The space reserved is one track for the replicated copies of the table and
sufficient tracks to hold a pool of 126 sectors to which bad sectors are mapped. For more infor­
mation, see bad144 (8).

The disk partition sizes are based on the total amount of space on the disk as give in the table
below (all values are supplied in units of 512 byte sectors). The 'c' partition is, by convention,
used to access the entire physical disk, including the space reserved for the bad sector forward­
ing table. In normal operation, either the 'g' partition is used, or the 'd', 'e', and 'r partitions
are used. The 'g' and 'r partitions are variable sized, occupying whatever space remains after
allocation of the fixed sized partitions. If the disk is smaller than 20 Megabytes, then diskpart
aborts with the message "disk too small, calculate by hand". ."

Partition 20-60 MB 61-205 MB 206-355 MB 356+ MB
a 15884 15884 15884 15884
b 10032 33440 33440 66880
d 15884 15884 15884 15884
e unused 55936 55936 307200
h unused unused 291346 291346

If an unknown disk type is specified, diskpart will prompt for the required disk geometry infor­
mation.

SEE ALSO

BUGS
disktab(5), badl44(8)

Certain default partition sizes are based on historical artifacts (e.g. RP06), and may result in
unsatisfactory layouts.

When using the -d flag, alternate disk names are not included in the output.

Does not understand how to handle drives attached to a UDA50.

4th Berkeley Distribution 18 July 1983 1

DMESG(8) UNIX Programmer's Manual DMESG (8)

NAME
dmesg - collect system diagnostic messages to form error log

SYNOPSIS
I etcl dmesg [- 1

DESCRIPTION

FILES

BUGS

Dmesg looks in a system buffer for recently printed diagnostic messages and prints them on the
standard output. The messages are those printed by the system when device (hardware) errors
occur and (occasionally) when system tables overflow non-fatally. If the - flag is given, then
dmesg computes (incrementally) the new messages since the last time it was run and places
these on the standard output. This. is typically used with cron (8) to produce the error log
/usr/adm/messages by running the command

letc/dmesg - > > /usr/adm/messages

every 10 minutes.

/usr/adm/messages
/usr/adm/msgbuf

error log (conventional location)
scratch file for memory of - option

The system error message buffer is of small finite size. As dmesg is run only every few
minutes, not all error messages are guaranteed to be logged. This can be construed as a bless­
ing rather than a curse.

Error diagnostics generated immediately before a system crash will never get logged.

4th Berkeley Distribution 4 February 1983 1

DRTEST(8) UNIX Programmer's Manual DRTEST(8)

NAME
drtest - standalone disk test program

DESCRIPTION
Drtest is a standalone program used to read a disk track by track. It was primarily intended as a
test program for new standalone drivers, but has shown useful in other contexts as well, such
as verifying disks and running speed tests. For example, when a disk has been formatted (by
format(8», you can check that hard errors has been taken care of by running drtest. No hard
errors should be found, but in many cases quite a few soft ECC errors will be reported.

While drtest is running, the cylinder number is printed on the console for every 10th cylinder
read.

EXAMPLE
A sample run of drtest is shown below. In this example (using a 750), drtest is loaded from the
root file system; usually it will be loaded from the machine's console storage device. Boldface
means user input. As usual, "#'" and "@" may be used to edit input.

DIAGNOSTICS

»>B/3
%%
loading hk(O,O)boot
Boot
: hk(O,O)drtest
Test program for stand-alone up and hp driver

Debugging level (l-bse, 2-ecc, 3 -bse+ecc)?
Enter disk name [type (adapter, unit) , e.g. hp(l,3)]? hp(O,O>
Device data: #cylinders-1024, #tracks~16, #sectors-32
Testing hp(O,O), chunk size is 16384 bytes.
(chunk size is the number 0/ bytes read per disk access)
Start •.. Make sure hp(O,O) is online

(errors are reported as they occur)

f. .. program restarts to allow checking other disks)
f. .. to abort halt machine with "P)

The diagnostics are intended to be self explanatory. Note, however, that the device number in
the diagnostic messages is identified as typeX instead of type(a,u) where X - a.8+u, e.g.,
hp(l,3) becomes hpl1.

SEE ALSO
format(8), badI44(8)

AUTHOR
Helge Skrivervik

4th Berkeley Distribution 26 January 1983 1

DUMP (8) UNIX Programmer's Manual DUMP (8)

NAME
dump - incremental file system dump

SYNOPSIS
/etc/dump [key [argument ..•] filesystem]

DESCRIPTION
Dump copies to magnetic tape all files changed after a certain date in the jilesystem. The key
specifies the date and other options about the dump. Key consists of characters from the set
01234S6789fusdVVn.

0-9 This number is the 'dump level'. All files modified since the last date stored in the file
letcldumpdates for the same filesystem at lesser levels will be dumped. If no date is deter­
mined by the level, the beginning of time is assumed; thus the option 0 causes the entire
filesystem to be dumped.

f Place the dump on the next argument file instead of the tape. If the name of the file is
" - ", dump writes to standard output.

u If the dump completes successfully, write the date of the beginning of the dump on file
letcldumpdates. This file records a separate date for each filesystem and each dump level.
The format of letcldumpdates is readable by people, consisting of one free format record
per line: filesystem name, increment level and ctime(3) format dump date. letcldumpdates
may be edited to change any of the fields, if necessary.

s The size of the dump tape is specified in feet. The number of feet is taken from the next
argument. When the specified size is reached, dump will wait for reels to be changed. The
default tape size is 2300 feet.

d The density of the tape, expressed in BPI, is taken from the next argument. This is used
in calculating the amount of tape used per reel. The default is 1600.

VV Dump tells the operator what file systems need to be dumped. This information is gleaned
from the files letcldumpdates and letc/fstab. The VV option causes dump to print out, for
each file system in letcldumpdates the most recent dump date and level, and highlights
those file systems that should be dumped. If the VV option is set, all other options are
ignored, and dump exits immediately.

w Is like W, but prints only those filesystems which need to be dumped.

n Whenever dump requires operator attention, notify by means similar to a wallO) all of the
operators in the group "operator".

If no arguments are given, the key is assumed to be 9u and a default file system is dumped to
the default tape.

Dump requires operator intervention on these conditions: end of tape, end of dump, tape write
error, tape open error or disk read error (if there are more than a threshold of 32). In addition
to alerting all operators implied by the n key, dump interacts with the operator on dump's con­
trol terminal at times when dump can no longer proceed, or if something is grossly wrong. All
questions dump poses must be answered by typing "yes" or "no", appropriately.

Since making a dump involves a lot of time and effort for full dumps, dump checkpoints itself
at the start of each tape volume. If writing that volume fails for some reason, dump will, with
operator permission, restart itself from the checkpoint after the old tape has been rewound and
removed, and a new tape has been mounted.

Dump tells the operator what is going on at periodic intervals, including usually low estimates of
the number of blocks to write, the number of tapes it will take, the time to completion, and the
time to the tape, change. The output is verbose, so that others know that the terminal control-
ling dump is busy, and will be for some time. .

4th Berkeley Distribution 4 February 1983 1

DUMP (8) UNIX Programmer's Manual DUMP (8)

FILES

Now a short suggestion on how to perform dumps. Start with a full level 0 dump

dump Oun

Next, dumps of active file systems are taken on a daily basis, using a modified Tower of Hanoi
algorithm, with this sequence of dump levels:

3254769899 ...
For the daily dumps, a set of 10 tapes per dumped file system is used on a cyclical basis. Each
week, a level 1 dump is taken, and the daily Hanoi sequence repeats with 3. For weekly
dumps, a set of 5 tapes per dumped file system is used, also on a cyclical basis. Each month, a
level 0 dump is taken on a set of fresh tapes that is saved forever.

Idev/oplg
Idev/rmt8
letc/ddate
letc/dumpdates
letc/fstab
letc/group

default filesystem to dump from
default tape unit to dump to
old format dump date record (obsolete after - J option)
new format dump date record
dump table: file systems and frequency
to find group operator

SEE ALSO
restore(8), dump(5), fstab(5)

DIAGNOSTICS

BUGS

Many, and verbose.

Sizes are based on 1600 BPI blocked tape; the raw magtape device has to be used to approach
these densities. Fewer than 32 read errors on the filesystem are ignored. Each reel requires a
new process, so parent processes for reels already written just hang around until the entire tape
is written.

It would be nice if dump knew about the dump sequence, kept track of the tapes scribbled on,
told the operator which tape to mount when, and provided more assistance for the operator
running restore.

4th Berkeley Distribution 4 February 1983 2

DUMPFS (8) UNIX Programmer's Manual DUMPFS (8)

NAME
dumpfs - dump file system information

SYNOPSIS
dumpfs filesy~evice

DESCRIPTION
Dump/s prints out the super block and cylinder group information for the file system or special
device specified. The listing is very long and detailed. This command is useful mostly for
finding out certain file system information such as the file system block size and minimum free
space percentage.

SEE ALSO
fs(S), disktab(S), tunefs(8), newfs(8), fsck(8)

4th Berkeley Distribution 4 March 1983 1

EDQUOTA(8) UNIX Programmer's Manual EDQUOTA(8)

NAME
edquota - edit user quotas

SYNOPSIS
edquota [-p proto-user] users •.•

DESCRIPTION

FILES

Edquota is a quota editor. One or more users may be specified on the command line. For .each
user a temporary file is created with an ASCII representation of the current disc quotas for that
user and an editor is then invoked on the file. The quotas may then be modified, new quotas
added, etc. Upon leaving the editor, edquota reads the temporary file and modifies the binary
quota files to reflect the changes made.

If the - p option is specified, edquota will duplicate the quotas of the prototypical user specified
for each user specified. This is the normal mechanism used to initialize quotas for groups of
users.

The editor invoked is viOl unless the environment variable EDITOR specifies otherwise.

Only the super-user may edit quotas.

quotas
letc/fstab

at the root of each file system with quotas
to find file system names and locations

SEE ALSO
quota(l), quota(2), quotacheck(8), quotaon(S), repquota(8)

DIAGNOSTICS
Various messages about inaccessible files; self-explanatory.

BUGS
The format of the temporary file is inscruitable.

4th Berkeley Distribution 181uly 1983 1

ENSTAT(8) UN rx Programmer's Manual ENSTAT(8)

NAME
enstat - print enet (packet filter) information

SYNOPSIS
/(,tc/cnstut [- cdfkpqsvOl 234567] [system-image [corefile]]

DESCRIPTION
En'tlal interprets the data structures of the Ethernet packet filler driver enel(4). If system-image is
given, the required namelist is taken from there: otherwise, it is taken from / Vll1ullix. If coreft1e is
given, the data structures are sought there, otherwise in 1 de,'/ klJlclJl. (I r corejile is a core dump,
then the - k option must be given.)

OPTIONS
c (Counts): give variolls counts (per·ethernct· unit). including .. numbcr o.f packets sent aild

received .

. d (Descriptors): show Open Descriptors for each minor device.

f (Filters): show packet filters f()r each minor device.

k The corefile is a crash dump, not a running system's /dev/kmem.

p (Parameters): give device parameters including device type, header and address lengths,
MTU, and interface and broadcast addresses.

q (Queuel':lements): show the QueueElements.

s (Scavenger): show the FreeQuelle and Scavenger statistics.

v (Verbose): show inf(mllation for minor devices not aclually in use, and complete quclle
information, only if this Ilag is givcn.

<digit> Limit output to information about spccifkd units; ifno digits are given,
then alt units are displaycd.

If no options are given, then all are assumcd (cxcept for -y [Verbose\).

OUTPUT FOI~MAT
.. /\ 111)cscriptors"

LOC
USED
1,INK-Ql)EUE

STATE

\VAIT-QUEUE
NQ'[)

TOUT

SIGN
PROC
(PID)

4th Berkeley Distribution

Minor uevice number for open descriptor; followcd by "K" if opened by
kernel.
Descriptor location
"ycs" or "no"
Forward and Backward links to othcr descriptors; three leading digilC;
suppressed
Blank, or one of:
wait waiting for input, indefinite wait
timed waiting for input, timcd wait
tout has timcd out
anything elsc shouldn't happcn
Forward and Backward links to waiting packets
number of packeL.;; quelled for input (maximum for this queuc shown in
parent.hcses)
timcout duration in clock ticks (if the - y [Verbose] option is not given,
then times may be expressed as minutes [with a trailing "Ill"], hours [with
a trailing "h"], or simply "long", to kccp the columns lined up.)
signal number to be delivered when a packet arrives
process to he signaled when a packct arrives
process id whi~h enabled the signal

4/1/81 1

ENSTAT(S)

"Filters"
LOC
Pltl
LEN
FJCrHR

"Queue EI ts"
LOC
r .INK-QUEUE
FUNC
COUNT
REF
. ", ,'. .-

...... , 'l "\

FILES
/vmunix namelist

UNIX Programmer's Manual

location of descriptor
priority of filter
length of filter (in shortwords)
see enet(4) for interpretation of Ethernet packet filters

I .ocation of queue element
Forward and backward links
Address of completion function (used by kernel-mode access)
packet size

. R>ef~l:?n.~~ C~>U.I~t. r-(~r 9u,elle el~mc.~t. i. 1

/dev/kmclll default source of tables

SEE ALSO
etherport(1). netstat(1). cnet(4), pstat(S)
K. Thompson. UN I X IlIIplclJlelltation

AU Til OR. .

ENSTA'T'(S)

Jeffrey Mogul at Stanford, after work done by Mike Accetta at eMU, based on pslal(8).

BUGS
Some of thc output is a bit cramped so as to fit on an SO-character line. It should be possible to get
a less verbose but more readable listing.

Since t.hings happen pretty fast. it's not likely t.hat ('liS/at will provide a consistent view of a running
system. I t is mostly lIseful f()r analyzing static problems, not transient ones.

4th Berkeley Distribution 4/1/S1 2

EXPIRE(S} UNIX Programmer's Manual EXPIRE(S}

NAME
expire - remove outdated news articles

SYNOPSIS
lusr/lib/news/expire [-n newsgroups] [-i] [-I] [-v [level]] [-edays] [
-a]

DESCRIPTION
Erpire is normally started up by cron(S} every night to remove all expired news.
If no newsgroups are specified, the default is to expire all.

Articles whose specified expiration date has already passed are considered
expirable. The -e. option causes expire to archive articles in
/usr/spo ol/oldnews. Otherwise, the articles are unlinked.

The -v option causes expire to be more verbose. It can be given a verbosity
level (default 1) as in -:va for even more output. This is useful if articles aren't
being expired and you want to know why.

The -e flag gives the number of days to use for a default expiration date. If 'not
given, an installation dependent default (often 2 weeks) is used.

·The -i and --I flags tell expire to ignore any expiration date explicitly given on
articles. This can be used when disk space is really tight. The -I flag will always
ignore expiration dates, while the -i flag will only ignore the date if ignoring it
would expire the article sooner. WARNING: If you have articles archived by giv­
ing them expiration dates far into the future, these options might remove these
tiles anyway.

SEE ALSO
checknews{l). inews(l), readnews{l), recnews{B}, sendnews{S}, uurec(8)

4th Berkeley Distribution 28 July 1983 1

FASTBOOT(8) UNIX Programmer's Manual

NAME
fastboot, fasthalt - reboot/halt the system without checking the disks

SYNOPSIS
/etc/fastboot [boot-options]
/etc/lasthalt [halt-options]

DESCRIPTION

F ASTBOOT (8)

Fastboot and fasthalt are shell scripts which reboot and halt the system without checking the file
systems. This is done by creating a file /fastboot, then invoking the reboot program. The sys­
tem startup script, /etc/re, looks for this file and, if present, skips the normal invocation of
ftek(8).

SEE ALSO
halt(8), reboot(8), rc(8)

4th Berkeley Distribution 4 March 1983 1

FILETIME(8) UNIX Programmer's Manual Fll,ETlME(8)

NAME
filetime - tcll minutes since file (access, modification) time

SYNOPSIS
filctimc [-c I -Ill I -a] filename

DESCIUPTION
On thc standard output, print the numbcr of minutcs since the filc specified in the argument was {
created, modified, accessed}. An optional argument -X whcre "X" is one of { c, m, a } selects
which file time to usc; the dcf11l1lt is the modification time.

This program was written fi)l" .login or .profile files as part of the login startup script; here is an
example for /bin/csh; the version for /bin/sh would be quite similar:

if ('filetimc .IasCdonc· > 20). then .. .; .. ' :1 "

endif

« commands that should be executed periodically»
« »

tOllch .1asCdone

The purpose is to avoid checking for ncws, mail on other systems, etc, if you just logged in 5
minutes ago and did it bcforc. Thus thc user can adjust the granularity of pcrforming thesc tasks
and thus specd up her/his login.

AUTHOR
Steve Hartwell. Manual page by nrianRcid.

7th I ~dition 1

FINGD(8) UNIX Programmer's Manual FINGD(8)

NAME
fingd - network finger server

SYNOPSIS
/cte/fingd

OESCIUPTION
Fillgd listens on Tep port 79 (decimal) for connections. When a ,connection is made, it reads the
string (assuined to be a user name or maU alias) and executes jingO) with that argument, sending
the output back on the connection.

Connection history is logged on standard error.

AUTHOR
: ,,:, ': :. c"ildsti>ph~'rA.'Kc~t'· ,. , " ,

~.. ~ .~' .. -
"4 • "' ,

SI~E ALSO

NOTES

fing(I), finger(l)

Since the name being sent to the server may be a forwarded request (due to a user having his mail
forwarded to one central machine via a deliverlllail(8) alias), the filJg command will be invoked with
the -Ill flag to force matches on login names only. Untortunately, this doesn't allow people to be
fingered by last nallie unless there is a delivennail alias to handle it. The alternative can ,cause
excessive return information if a user has a gecos string that textually overlaps someone's login ide

7th Edition 1

FORMAT (SV) UNIX Programmer's Manual FORMAT (SV)

NAME
format - how to format disk packs

DESCRIPTION
There are two ways to format disk packs. The simplest is to use the format program. The alter­
native is to use the DEC standard formatting software which operates under the DEC diagnos­
tic supervisor. This manual page describes the operation of format, then concludes with some
remarks about using the DEC formatter.

Format is a standalone program used to format and check disks prior to constructing file sys­
tems. In addition to the formatting operation, format records any bad sectors encountered
according to DEC standard 144. Formatting is performed one track at a time by writing the
appropriate headers and a test pattern and then checking the sector by reading and verifying the
pattern, using the controller's ECC for error detection. A sector is marked bad if an unrecover­
able media error is detected, or if a correctable ECC error greater than 5 bits in length is
detected (such errors are indicated as "ECC" in the summary printed upon completing the for­
mat operation). After the entire disk has been formatted and checked, the total number of
errors are reported, any bad sectors and skip sectors are marked, and a bad sector forwarding
table is written to the disk in the first five even numbered sectors of the last track. Format may
be used on any UNIBUS or MASSBUS drive supported by the up and hp device drivers which
uses 4-byte headers (everything except RP's).

The test pattern used during the media check may be selected from one of: OxfOOf (RH750
worst case), Oxec6d (media worst case), and Oxa5a5 (alternating 1 's and O's). Normally the
media worst case pattern is used.

Format also has an option to perform an extended Hsevere burnin," which makes 46 passes I.

using different patterns. Using this option, sectors with any errors of any size are marked bad.
This test runs for many hours, depending on the disk and processor.

Each time format is run a completely new bad sector table is generated based on errors encoun­
tered while formatting. The device driver, however, will always attempt to read any existing
bad sector table when the device is first opened. Thus, if a disk pack has never previously been
formatted, or has been formatted with different sectoring, five error messages will be printed
when the driver attempts'-to read the bad sector table; these diagnostics should be ignored.

Formatting a 400 megabyte disk on a MASSBUS disk controller usually takes about 20 minutes.
Formatting on a UNIBUS disk controller takes significantly longer. For every hundredth
cylinder formatted format prints a message indicating the current cylinder being formatted.
(This message is just to reassure people that nothing is is amiss.)

Format uses the standard notation of the standalone i/o library in identifying a drive to be for­
matted. A drive is specified as zz(x,y), where zz refers to the controller type (either hp or up),
x is the unit number of the drive; S times the UNIBUS or MASSBUS adaptor number plus the
MASSBUS drive number or UNIBUS drive unit number; and y is the file system partition on
drive x (this should always be 0). For example, "hp(1,O)" indicates that drive 1 on MASSBUS
adaptor 0 should be formatted; while "up(10,0)" indicates UNIBUS drive 2 on UNIBUS adap­
tor 1 should be formatted.

Before each formatting attempt, format prompts the user in case debugging should be enabled
in the appropriate device driver. A carriage return disables debugging information.

Format should be used prior to building file systems (with llewjS(8» to insure all sectors with
uncorrectable media errors are remapped. If a drive develops uncorrectable defects after for­
matting, the program badsect(8) must be used.

EXAMPLE
A sample run of format is shown below. In this example (using a VAX-ll/780), format is
loaded from the console floppy; on an 11/750 format will be loaded from the root file system.

4th Berkeley Distribution 25 February 1983

FORMAT (8V) UNIX Programmer's Manual FORMAT (SV)

Boldface means user input. As usual, u#" and u@" may be used to edit input.

DIAGNOSTICS

»>L FORMAT
LOAD DONE, 00004400 BYTES LOADED

»>S2
Disk format/check utility

Enable debugging (O==none, 1 ==bse, 2-ecc, 3-=bse+ecc)? °
Device to format? hp(S,O>
(error messages may occur as old bad sector table is read)
Formatting drive hpO on adaptor 1: verify (yes/no)? yes
Device data: #cylinders==842, #tracks==20, #sectors==48
Available test patterns are:

1 - (fOOf) rh 7 50 worst case
2 - (ec6d) media worst case
3 - (a5a5) alternating 1 's and O's
4 - (ffff) Severe burnin (takes several hours)

Pattern (one of the above, other to restart)? 2
Start formatting ... make sure the drive is online

(soft ecc's and other errors are reported as they occur)

(if 4 write check errors were found, the program terminates like this .. .>

Errors:
Write check: 4
Bad sector: 0
ECC:O
Skip sector: 0
Total of 4 hard errors found.
Writing bad sector table at block 808271
(808271 is the block # of the first block in the bad sector table)
Done
(. .. program restarts to allow formatting other disks)
(. .. to abort halt machine with A p)

The diagnostics are intended to be self explanatory.

USING DEC SOFTWARE TO FORMAT
Warning: These instructions are for people with 11/780 CPU's. The steps needed for 11/750
or 11/730 cpu's are similar, but not covered in detail here.

The formatting procedures are different for each type of disk. Listed here are the formatting
procedures for RK07's, RPOX, and RMOX disks.

You should shut down UNIX and halt the machine to do any disk formatting. Make certain
you put in the pack you want formatted. It is also a good idea to spin down or write protect the
disks you don't want to format, just in case.

Formatting an RK07. Load the console floppy labeled, "RXll VAX DSK LD DEV #1" in the
console disk drive, and type the following commands:

»>BOOT
DIAGNOSTIC SUPERVISOR. ZZ-ESSAA-X5.0-119 23-JAN-1980 12:44:40.03
DS>ATTACH DW780 SBl DWO 3 5

4th Berkeley Distribution 25 February 1983 2

FORMAT (SV) UNIX Programmefs Manual FORMAT (SV)

DS>ATTACH RK611 DMA
DS>ATTACH RK07 DWO DMAO
DS>SELECT DMAO
DS>LOAD EVRAC
DS>START/SEC:PACKINIT

Formatting an RPOX. Follow the above procedures except that the A IT ACH and SELECT
lines should read:

DS> A IT ACH RH780 SBI RHO S 5
DS>ATTACH RPOX RHO DBAO(RPOX is, e.g. RP06)
DS>SELECT DBAO

This is for drive 0 on mbaO; use 9 instead of 8 for mbal, etc.

Formatting an RMOX. Follow the above procedures except that the A IT ACH and SELECT
lines should read:

DS>ATTACH RH780 SBI RHO 8 5
DS>ATTACH RMOX RHO DRAO
DS>SELECT DRAO

Don't forget to put your UNIX console floppy back in the floppy disk drive.

SEE ALSO

BUGS

badI44(8), badsect(8), newfs(8)

An equivalent facility should be available which operates under a running UNIX system.

It should be possible to define more precisely what a "hard ECC" error is~ e.g. the maximum
unacceptable ECC width.

4th Berkeley Distribution 25 February 1983 3

FSCK(8) UNIX Programmer's Manual FSCK(8)

NAME
fsck - file system consistency check and interactive repair

SYNOPSIS
letc/fsck -p [filesystem ...]
/etc/fsck [-b block#] [-y] [-n] [filesystem] ...

DESCRIPTION
The first form of fsck preens a standard set of filesystems or the specified file systems. It is
normally used in the script / etc/rc during automatic reboot. In this case fsck reads the table
letc/fstab to determine which file systems to check. It uses the information there to inspect
groups of disks in parallel taking maximum advantage of i/o overlap to check the file systems as
quickly as possible. Normally, the root file system will be checked on pass 1, other "root"
("a" partition) file systems on pass 2, other small file systems on separate passes (e.g. the "d"
file systems on pass 3 and the ".e" file systems on pass 4), and finally the large user file systems
on the last pass, e.g. pass 5. A pass number of 0 in fstab causes a disk to not be checked; simi­
larly partitions which are not shown as to be mounted "rw" or "ro" are not checked.

The system takes care that only a restricted class of innocuous inconsistencies can happen
unless hardware or software failures intervene. These are limited to the following:

Unreferenced inodes

Link counts in inodes too large

Missing blocks in the free list

Blocks in the free list also in files

Counts in the super-block wrong

These are the only inconsistencies which jsck with the -p option will correct; if it encounters
other inconsistencies, it exits with an abnormal return status and an automatic reboot will then
fail. For each corrected inconsistency one or more lines will be printed identifying the file sys­
tem on which the correction will take place, and the nature of the correction. After success­
fully correcting a file system, jsck will print the number of files on that file system and the
number of used and free blOCks.

Without the - p option, jsck audits and interactively repairs inconsistent conditions for file sys­
tems. If the file system is inconsistent the operator is prompted for concurrence before each
correction is attempted. It should be noted that a number of the corrective actions which are
not fixable under the -p option will result in some loss of data. The amount and severity of
data lost may be determined from the diagnostic output. The default action for each con­
sistency correction is to wait for the operator to respond yes or no. If the operator does not
have write permission fsck will default to a -n action.

Fsck has more consistency checks than its predecessors check, dcheck, /check, and icheck com­
bined.

The following flags are interpreted by jsck.

- b Use the block specified immediately after the flag as the super block for the file system.
Block 32 is always an alternate super block.

-y Assume a yes response to all questions asked by jsck; this should be used with great cau­
tion as this is a free license to continue after essentially unlimited trouble has been
encountered.

-n Assume a no response to all questions asked by jsck,· do not open the file system for
writing.

4th Berkeley Distribution 4 February 1983 1

FSCK(8) UNIX Programmer's Manual FSCK(8)

FILES

If no filesystems are given to ftck then a default list of file systems is read from the file
/ etc/fstab.

Inconsistencies checked are as follows:

1. Blocks claimed by more than one inode or the free list.
2. Blocks claimed by an inode or the free list outside the range of the file system.
3. Incorrect link counts.
4. Size checks:

Directory size not of proper format.
S. Bad inode format.
6. Blocks not accounted for anywhere.
7. Directory checks:

File pointing to unallocated inode.
Inode number out of range.

8. Super Block checks:

More blocks for inodes than there are in the file system.
9. Bad free block list format.
10. Total free block andlor free inode count incorrect.

Orphaned files and directories (allocated but unreferenced) are, with the operator's con­
currence, reconnected by placing them in the lost + found directory. The name assigned is the
inode number. The only restriction is that the directory lost+found must preexist in the root of
the filesystem being checked and must have empty slots in which entries can be made. This is
accomplished by making lost+found, copying a number of files to the directory, and then
removing them (before ftck is executed).

Checking the raw device is almost always faster.

letc/fstabcontains default list of file systems to check.

DIAGNOSTICS
The diagnostics produced by ftck are intended to be self-explanatory.

SEE ALSO

BUGS

fstab(S), fs(S), newfs(8), mkfs(8), crash(8V), reboot(8)

Inode numbers for. and •• in each directory should be checked for validity.

There should be some way to start a fsck - p at pass n.

4th Berkeley Distribution 4 February 1983 2

FSC K B IJKS (8) UN IX Programmer's Manual FSCKBLKS (8)

NAME
fsckblks - print alternate super block numbers for fsck -b

SYNOPSIS
/etc/fsckhlks [- v] [mkls-options] sf1cdal disk-tYf1e

DESCrUPTION

FILE.,,)

Fsckblks is used to print out the alternate super block numbers for a disk, fi)r usc with the - b
option of jkk(8). This is useful in case your primary super block is trashed and you f()I"got to write
down (or lost) the numbers that mk/s(8) printed three years ago when you constructed the me sys­
tem. You really don't want to have to run IIlkfs or lleJVj..~ because that would crase the file system
you're trying to repair.

J':w.:kblks looks up the type of disk the file system is on in the disk description file / elc/ dis/aab, cal­
culates the parameters that would be used in calling IJlkf~" then print<; UlC configuration information
that mkft would print. One way to view f'ickblks is as "llewJ~' without side-en~cts".

]f the - v option is supplied, fsckblks will print out its actions, including the parameters which
would be passed to mkfs.

Options which may be used to override default parameters which would passed to IIlkjs are:

- s size The size of the file system in sectors.

- b block-size
The block size of the file system in bytes.

- f frag-size
The fragment size of the file sys~em in bytes.

- t If tracks/cylinder

- c # cylinders/grollf1
The number of cylinders pel: cylinder group in a file system. The default value used is
16.

- III free SIl,lce %
The percentage 'or-space reserved from normal users; the minimum free space thresh­
hold. The dcl~llIlt value lIsed is 10%.

-- r re,'olutions/minute
The spced of the disk in revolutions per minute (normally 3()OO).

-5 sector-size
The size of a sector in bytes (almost never anything but 512).

- i number of bytes per inode
This specifics the density of inodes in the file system. The default is to create an inode
«)r each 204R bytes of data space. I f fewer inodes are desired. a larger number should
be used: to create more inodes a smaller number ~holild be given.

/et.c/disktab for disk geometry and file system partition in(()llnation

SEE ALSO

BUGS

disktab(5), [.;;(5), diskparl(8), ['lck(8), forl11at(8), mkfs(8), newfs(8), tunefs(8)

McKusick, Joy, Lerner; "A Fast File System for Unix", Computer Systems Research Group, Dept
of EECS, Berkeley, CA 94720: TR 117, September 1982.

Should figure out the type of the disk wit.hout the user's help.

7th Edition 23 .JulY' 1984 1 -

FSCKBLKS(8) UN IX Programmer's Manual FSCKBLKS(8)

Might not print OLlt all the diagnostic warnings that IIIkJ~' would; however, fkkblks is useful only
with disk parameters that have already been used to construct the broken filcsystem.

Might not print the right answers if someone changes mkfs or Ilewj's and doesn't change j'>ckblks.

Not much use if the root partitiOli is broken; however, you can run it on any system with an identi­
cal /etc/disktab, even if the specified special device doesn't exist, since it's never actually used by
fsckblks anyway.

7th Edit.ion 23 July 19~4 . 2

FSTAT(8) UNIX Programmer's Manual FSTAT(8)

NAME
fstat - filter filenames according to commands in a status file

SYNOPSIS ,
find I -Ilfint I fshlt spccfilc

DEscnlPTION
No documentation yet. Here are some examples I culled from Har~welrs usage of the program.
get rid of junk files which haven't been accessed in 3 days

atime >= lw
type f
anyof {

,', '. , "basqnc)me ' .. , ")1<\ rs:$~' . ,

}

basename ".CKP$"
basename
basename
base name
basenamc
basename

".otl$"
"t a.out$If
"tcore$"
"t .emacs_[O-9][O-9]*$"
"t#"

exec "rm - '%N'"
get rid of ,* files 1 day old

atime >= Id
type f
basename "t,"
exec fIrm - '%N'"

malth Itmp/Emacs-tty* files (so next paltern is not done)
name Itt Itmp/Emacs-tty[t /][t 1]*$"

If clean out regular files in /tmp and lusrit.mp (not subdirectories)
atime >= Ih
type f
anyof {

name Itt IUnp/[t /Ut 1]*$"
name 1ft lusr/tmp/l t In t 1]*$"

'}
exec fIrm - '%N'"

This spccilkation file weeds out files which should not be backed up.

7th Ellition

anyof {
size = Ob
size > 500kb
type d
type c
type b
type I
basename
basemulle
basename
basename
basename
basename
basename
basename
base name

"tcore$"
"t rogue.save$"
"tml)(}x$"
II t .emacs_[O-9][O-9]*$If
If.BAK$If
".CKP$"
".0$"
".b$~'
".a$"

FSTAT(8)

}

basename
bascname
base name
basename
magic

succeed

UN IX Programmer's Manual

".press$"
".imp$"
" .stip[ABC]$"
"1' .. ,
"0407,0410,0413,0404,0411,0700200000"

Anything that get'; thrll is a file that ought to be backed up.
echo "%NO

AUTHOR
Steve Hartwell. rv1anual page by Brian Reid.

7th Edition

1;'ST;\t(8)

2 .

FI'PD (SC) UNIX Programmer's Manual FI'PD (SC)

NAME
ftpd - DARPA Internet File Transfer Protocol server

SYNOPSIS
letc/ftpd [-d) [-1] [-ttimeout]

DESCRIPTION
Ftpdis the DARPA Internet File Transfer Prototocol server process. The server uses the TCP
protocol and listens at the port specified in the "ftp" service specification; see services (5) .

If the -d option is specified, each socket created will have debugging turned on (SO.DEBUG).
With debugging enabled, the system will trace all TCP packets sent and received on a socket.
The program trpt(8C) may then be used to interpret the packet traces.

If the -1 option is specified, each ftp session is logged on the standard output. This allows a
line of the form '/etc/ftpd ·1 > Itmp/ftplog" to be used to conveniently maintain a log of ftp
sessions.

The ftp server will timeout an inactive session after 60 seconds. If the -t option is specified,
the inactivity timeout period will be set to timeout.

The ftp server currently supports the following ftp requests; case is not distinguished.

Request Description
ACCT specify account (ignored)
ALLO allocate storage (vacuously)
APPE append to a file
CWO change working directory
DELE delete a file
HELP give help information
LIST give list files in a directory ("Is -lg")
MODE specify data transfer mode
NLST give name list of files in directory ("Is")
NOOP do nothing
PASS specify password
PORT specify data connection port
QUIT terminate session
RETR retrieve a file
RNFR specify rename-from file name
RNTO specify rename-to file name
STOR store a file
STRU specify data transfer structure
TYPE specify data transfer type
USER specify user name
XCUP change to parent of current working directory
XCWD change working directory
XMKD make a directory
XPWD print the current working directory
XRMD remove a directory

The remaining ftp requests specified in Internet RFC 765 are recognized, but not implemented.

Ftpdinterprets file names according to the "globbing" conventions used by csh(l). This allows
users to utilize the metacharacters "-? [] n-".
Ftpd authenticates users according to three rules.

1) The user name must be in the password data base, letclpasswd, and not have a null
password. In this case a password must be provided by the client before any file

4th Berkeley Distribution 4 March 1983 1

FI'PD (8C) UNIX Programmer's Manual FrPD (8C)

operations may be performed.

2) The user name must not appear in the file /etc/flpusers.

3) If the user name is "anonymous" or "ftp", an anonymous ftp account must be present
in the password file (user "ftp"). In this case the user is allowed to log in by specify­
ing any password (by convention this is given as the client host's name).

In the last case, ftpd takes special measures to restrict the client's access privileges. The server
performs a chroot(2) command to the home directory of the "ftp" user. In order that system
security is not breached, it is recommended that the "ftp" subtree be constructed with care;
the following rules are recommended.

-rtp) Make the home directory owned by "ftp" and unwritable by anyone.

-ftp/bin)
Make this directory owned by the super-user and unwritable by anyone. The program
isO) must be present to support the list commands. This program should have mode
111.

-ftp/etc)
Make this directory owned by the super-user and unwritable by anyone. The files
passwd(S) and group(S) must be present for the Is command to work properly. These
files should be mode 444.

-ftp/pub)
Make this directory mode 777 and owned by "ftp". Users should then place files
which are to be accessible via the anonymous account in this directory.

SEE ALSO
ftp{1C),

BUGS
There is no support for aborting commands.

The anonymous account is inherently dangerous and should avoided when possible.

The server must run as the super-user to create sockets with privileged port numbers. It main­
tains an effective user id of the logged in user, reverting to the super-user only when binding
addresses to sockets. The possible security holes have been extensively scrutinized, but are
possibly incomplete.

4th Berkeley Distribution 4 March 1983 . 2

FTPSER(8) UNIX Programmer's Manual FTPSER(8)

NAME
ftpscr - PUP File Transcr Protocol Service

SYNOPSIS
/ etc/ pup/jtpser [urgl] [~lrg2]

DESCIUPTION .
Jiipser provides the PUP File Transfer Protocol service for a Unix lime-sharing system. You must
have a valid user name and password to access any files. The server normally runs as root, and
then does a setuid to users for each connection.

If one command line argument is given, then helpful debugging infbrmation will be written in the
argv area to be seen with the. ps com.mansI. ,. Witt) twq argtlents, much more debugging information
will be printed. " . . ., .~". ." _.' ., "". .-;. .. .

SEE ALSO
pupftp(I), puptelnet(l), netalias(l), relllote(l)

AUTHOR
Bill Nowicki

BUGS
There should be a way of provjding or prohibiting annonymous logins, like the 4.2 IP fip server.

7th Edition 1

GAT'EWAYINFO(8) UN IX Programmer's Manual GATEW A YINFO (8)

NAME
gatewayinfo - Pup Gatcwaylnfo routing table server

SYNOPffiS .
/ctc/Ilup/gatewayinfo[-b][-d][-e][-ill -r][-s][-t]

DESCRIPTION
Galewayinfo is a server that keeps track of Pup routing information. Other programs can ask
galewayillfij for this information using IPC requcsts. For the format of these requests, sec the
header me (pup/puprouler.h>. If the Pup gateway program is funning, galewayilljo also tells other
hosts and gateways how the network topology looks from our point of yiew.

Gal('wayinfo should be run out of / ClC/ pup/ rc before any other programs; .it should be run without
- , , , , .:. 'all '&'; so-that it has time 'to'get 're~ldy 'befo're"other 'prograinsMart making requests. When it is

ready, it will fork and the parent process will exit. It must run as root.

/ elc/pup/pupllellab must be properly configured before gatewayilljiJ is rUll.

If the gateway program is running, it is supposed to tell gatewayiJljb about this every 30 seconds;
this is so galewayilljiJ will not advertise us as a route to other nets if the gateway program dies.

OPTIONS
-b Broadcast our routing table every 30 seconds, and when it changes, even if no

FILES

-d
-e

-i

-I'

-g

gatcway process is running. .

Dcbug; prints inflmnation about error conditions on stdcrt' ..

Send empty tables Oil the network in broadcasts orin response to request packel~.
This option should only be lIseo in conjunction with - b or - r when thc gateway
process is known not to be running. Itl;) purpose is to avoid advertising ollrsc1fas a
route to any other n~twork.

[PC debug; prints debugging information about I PC requests ..

Respond to request packets from the network even if the gateway process is not
running.

Slow-gateway mode; routing tables send out on the nctwrlrk show route-lengths
one hop longer than they actually arc; this is to cncourage other hosts not to use
us as a gatcw<lY if there arc other, morc willing, gateways.

-.t Tracc most operations.

Thc - d and - t options are lIseful only to wizards. The - b, - r, and - c options arc probably
useful only on isolated networks with no gatcways.

/etc/pup/pupncttab list of nctwork interfaces

SEE AI",<)O
pupgaleway(8), pupnetlab(9)

AUTllOn
Jcffrey Mogul

7th Edition 1

GETIABLE(8C) UNIX Programmer's Manual GETIABLE(8C)

NAME
gettable - get NlC format host tables from a host

SYNOPSIS
letc/lettable host

DESCRIPTION
Gettable is a simple program used to obtain the NlC standard host tables from a "nicname"
server. The indicated host is queried for the tables. The tables, if retrieved, are placed in the
file hosts. txt.

Gettable operates by opening a TCP connection to the port indicated in the service specification
for "nicname". A request is then made for "ALL" names and the resultant information is
placed in the output file.

Gettable is best used in conjunction with the htable(8) program which converts the NIC stan­
dard file format to that used by the network library lookup routines.

SEE ALSO
intro(3N), htable(8)

BUGS
Should allow requests for only part of the database.

4th Berkeley Distribution 4 March 1983 1

GETTY (8) UNIX Programmer's Manual GEITY(8)

NAME
getty - set terminal mode

SYNOPSIS
Jete/getty [type 1

DESCRIPTION

FILES

Getty is invoked by init(8) immediately after a terminal is opened, following the making of a
connection. While reading the name getty attempts to adapt the system to the speed and type of
terminal being used.

Init calls getty with.an argument specified by the ttys file entry for the terminal line. The argu­
ment can be used to make getty treat the line specially. This argument is used as an index into
the gettytab{S) database, to determine the characteristics of the line. If there is no argument,
or there is no such table, the default table is used. If there is no /etc/gettytab a set of system
defaults is used. If indicated by the table located, getty will clear the terminal screen, print a
banner heading, and prompt for a login name. Usually either the banner of the login prompt
will include the system hostname. Then the user's name is read, a character at a time. If a
null character is received, it is assumed to be the result of the user pushing the 'break' ('inter­
rupt') key. The speed is usually then changed and the 'login:' is typed again; a second 'break'
changes the speed again and the 'login:' is typed once more. Successive 'break' characters cycle
through the some standard set of speeds.

The user's name is terminated by a new-line or carriage-return character. The latter results in
the system being set to treat carriage returns appropriat~ly (see tty (4)).

The user's name is scanned to see if it contains any lower-case alphabetic characters; if not, and
if the name is nonempty, the system is told tQ map any future upper-case characters into the
corresponding 10wer-c8$e characters.

Finally, login is called with the user's name as argument.

Most of the default actions of getty can be circumvented, or modified, by a suitable getty tab
table.

Getty can be set to timeout after some interval, which will cause dial up lines to hang up if the
login name is not entered reasonably quickly.

/etc/gettytab

SEE ALSO

BUGS

gettytab{S), init(8), 10gin(1), ioctI(2), tty(4), ttys{S).

Currently, the format of /etc/ttys limits the permitted table names to a single character, this
should be expanded.

/etc/ttys should be replaced completely.

4th Berkeley Distribution 18 July 1983 1

GSA(8) UNIX Programmer's Manual GSA(8)

NAME
gsa - group system accounting

SYNOPSIS
gsa [- cprsunx] [- g group] [- f filename] [. - w filename]

DESCRIPTION
Gsa reads and formats system accounting infhrmation by group. This is meant to help managers of
project-oriented systems to keep track of usage on a higher level than by user. .

Gsa lists each group and the priJnary users of that group, "primary" meaning that the users default
to that group on login. For each user, selected fields arc printed; these default to the user's real
,iame, his totc'll cpu time in minutes, and his total connect time in hours. With each numeric field
the percentage of system grand total is printed.

After the users of each group afe listed, system usage is summarized by group:

Gsa requires that sa(8) be run in advance to create a per-user sumriwry file; /usr/adlJ,1/usracct is the
output file of sa, and it is the default input file for gsa. Many systems run sa as part of a daily rou­
tine, making it unnecessary to run it manually before running gsa. 'fhis is the case on Diablo.

The default file for connect time information is /usr/adm/wtlllp.

Options to gsa are:

c Don't include connect time information. This saves a great deal of time on execution.

f Read filename instead of /usr/adm/usraccl for per-user cpu summary.'

g Print only information about group: percentages become those of that group's totals rather
than the system totals. The system-wide group summary is omitted, unless torced with the
'sO option. Useful fbr group managers.

p Print stats about number of processes.

r Don't prii1t users' real names. Useful if you need more horizontal space on the screen ..

s Print only the system-wide group summary, omit stats on individual users.

u Don't print cpu titHe statistics.

w Read filcl/ame instead of /usr/ adm/wImp for connect-time inf(mnation.

n Give names of groups which have no primary (i.e., login) users, as well as groups wllich
have no users at all, at the end of the summary.

x Exclude (ignore) w.tmp entries made after the given lIsracci file was written. Useful for
synchronizing usraccl and wImp files last updated at grossly dillcrent times. I f the first.
entry in the wImp file was made after the usmccl file was written, the entire wImp file will
be ignored. If the two files were inilialized at diflcrent times, this option will not help Ulat.

AUTIIO£{

FILE.4;)

Bill Burgess

/etc/group
/etc/passwd
/usr/adm/usracct
/usr/adm/wtmp

group names and numbers·
user names and default groups
defillllt per-LIseI' summary
default connect-time log

SI~I~ AL.'.:>O

HUGS

grollp(5), passwd(5), wtmp(5), sa(8)

Gsa can't know when the usraccl file was rtrst written. The only way to know the time when the
cpu statistics began to be collected is to know when sa first CREATED (NOT·modifled) lIsracct. If

7th Edition 7/12/83 1

OSA(8) UN IX Programmer's Manual OS1\(8)

sa is run as part of a daily and/or monthly routine, this should not be too difficult. Look for files
like lusr/adm/daily.ctl or lusr/adm/monlhly.ctl, or in /usr/lib/crontab. On Diablo both cpu and
connect accounting files are initialized on the first day of each month.

7th Edition 7/12/83 2

HALT (8) UNIX Programmer's Manual HALT (8)

NAME
halt - stop the processor

SYNOPSIS
letc/halt [-n] [-q] [-7]

DESCRIPTION
Halt writes out sandbagged information to the disks and then stops the processor. The machine
does not reboot, even if the auto-reboot switch is set on the console.

The -0 option preventS the sync before stopping. The -q option causes a quick halt, no
graceful shutdown is attempted. The -7 option is needed if you are trying to halt the system
from a dialup.

SEE ALSO

BUGS
reboot(8), shutdown(8)

It is very difficult to halt a VAX, as the machine wants to then reboot itself. A rather tight
loop suffices.

4th Berkeley Distribution 11 May 1981 1

HTABLE(8) UNIX Programmer's Manual HTABLE(8)

NAME
htablc - convcrt NIC standard format host tablcs

SYNOPSIS ,
Ictc/htahlc [- c connected-nels 1 [-I local-nels 1 file

DESCRIPTION
Iltable is used to convclt host filcs in the format spccificd in Intcfnct RFC 810 to thc format used
by thc network library routines. Three files are created as a result of running htable: hOSlS, net­
works. and gale ways. Thc hosts file is used by the gethostellt(3N) routines in mapping host names
to addresses. The networks filc is used by thc gelnetent(3N) routines in mapping network names to
numbers. The gateways file is llsed by the routing daemon in identifying "passivc" Intcrnet gate-

'.~ " .. ,: .: ' -: ,,~, :w;;ly~;, ~e<; r.ou/e(i(SC) fo~ art, 9xplanatipl, .. , . I •• ". ' '. : t ,<l, '

If any of the files loca/hosts, localnetworks, or localgateways are present in the current directory, the
file's contcnts is prepcnded to the output file. Of thcse, only the gateways file is interpreted. This
allows sites to maintain local aliascs and entries which are not normally ,present in the master data­
base. Only one gateway to each network will bc placed in the gateways file; a gateway listed in the
localgateways filc will override any in thc input filc.

A list of networks to which thc host is directly connected is specified with the - c flag. Thc net­
works. separated by j:ommas, may be given by namc or in interne~-st.andard dot notation, c.g. - c
arpanet,128.32,local-ether-net. Jltable only includes gateways which are directly connected to one
of the networks specificd, or which can be reached from another gateway on a connected nct.

If the -I option is given with a list of networks (in the same format as for - c), these networks will
be treated as "local," and information about hosts on local networks is taken only from 'the
localhosL.;; file. Entries for local hosts from the main database will be omitted. This allows the
localh6sts Jile to completely override any entries in the input filc.

Htable is best lIsed in conjunction with the gettab/e(8C) program which retrievcs the NYC database
from a host. '

SEE ALSO
intro(3N), gettable(8C)

4th Berkeley Distribution 4 March 1983 1

ICHECK(S) UNIX Programmer's Manual ICHECK(S)

NAME
icheck - file system storage consistency check

SYNOPSIS
I etc:/lc:heck [- s] [-b numbers] [filesystem]

DESCRIPTION

FILES

N.B.: lcheck is obsoleted for normal consistency checking by!sck(S).

lcheck examines a file system, builds a bit map of used blocks, and compares this bit map
against the free list maintained on the file system. If the file system is not specified, a set of
default file systems is checked. The normal output of icheck includes a report of

The total number of files and the numbers of regular, directory, block special and char­
acter special files.

The total number of blocks in use and the numbers of single-, double-, and triple­
indirect blocks and directory blocks.

The number of free blocks.

The number of blocks missing; i.e. not in any file nor in the free list.

The -s option causes icheck to ignore the actual free list and reconstruct a new one by rewrit­
ing the super-block of the file system. The file system should be dismounted while this is
done; if this is not P9ssible (for example if the root file system has to be salvaged) care should
be taken that the system is quiescent and that it is rebooted immediately afterwards so that the
old, bad in-core copy of the super-block will not continue to be used. Notice also that the
words in the super-block which indicate the size of the free list and of the i-list are believed. If
the super-block has been curdled these words will have to be patched. The -s option causes
the normal output reports to be suppressed.

Following the - b option is a list of block numbers; whenever any of the named blocks turns
up in a file, a diagnostic is produced.

lcheck is faster if the raw version of the special file is used, since it reads the i-list many blocks
at a time.

Default file systems vary with installation.

SEE ALSO
fsck(S), dcheck(S), ncheck(S), fs(5), clri(S)

DIAGNOSTICS

BUGS

For duplicate blocks and bad blocks (which lie outside the file system) icheck announces the
difficulty, the i-number, and the kind of block involved. If a read error is encountered, the
block number of the bad block is printed and icheck considers it to contain O. 'Bad free block'
means that a block number outside the available space was encountered in the free list. 'n dups
in free' means that n blocks were found in the free list which duplicate blocks either in some
file or in the earlier part of the free list.

Since icheck is inherently two-pass in nature, extraneous diagnostics may be produced if applied
to active file systems.

It believes even preposterous super-blocks and consequently can get core images.

The system should be fixed so that the reboot after fixing the root file system is not necessary.

4th Berkeley Distribution 4 February 19S3 1

IFCONFIG (8e) UNIX Programmcr's Manual lFCONFIO«8C)

NAME
ifconfig - configllre network interface parameters

SYOPNSIS
/ctc/ifconfig interface [address] [parameters]

DESCRIPTION
Ifcollfig is used to assign an address to a network interface and/or configure network interface
parameters. lfconfig must be used at boot time to define the network address of each interface
present on a machine; it may also be used at a later time to redefine an interface's address. The
interface parameter is a string of the form "name unit", e.g. "enD", while the address is either a host
name present in the host name data base, hoSls(S), or a DARPA Internet address expressed in the
Internet standard "dot notation".

The following parameters may be set with ifcollfig:

up

down

tmilcrs

-trailers

arp

Mark an interface "up".

Mark an interface "down". When an interface is marked "d()wn", the system will
not attempt to transmit messages through that intertllcc.

Enable the usc of a "trailer" link level encapsulation when sending (defau]t).lf a
network interlace supports trailers, the systelu will, when possible, encapsulate
outgoing messages in a manner which minimizes the number of memory to
memory copy operations performed by the receiver.

Disable the usc of a "trailer" link level cncapsulation.

Enable the use of the Address Resolution Protocol in mapping between network
level addresses and link level addresses (default). This is currently impleIllented
for mapping between DARPA Internet addreses and lOMb/!? Ethernet addresses.

Disable the lise of the Address Resolution Protocol.

iJ)suhwidth IIflfl Sets the "1 nternet Protocol Sub net width" for the interface .to nflll. This should be
used bejhre setting the interHlce address; for example,

/etc/if<;on fig ellO ipsubwidth 8
I elcl i fcon fig enD 36.40.0.102 -trailers

IJ('ultfig displays the current conllguration Ihr a network interface when no optional parameters are
supplied.

Only the super-user may modi fy the configuration of a network interface.

DIAGNOSTICS
Messages indicating the specified interface docs not exit, the requestcd addrcss is unknown, the user
is not privileged and tl:ied to alter an interfllcc's configuration.

SEE ALSO
rc(8), intro(4N), neL.;;tal(I)

4th Berkeley Distribution 28 August 1983 1 .

IMPLOG (8C) UNIX Programmer's Manual IMPLOG (8C>

NAME
imp log - IMP log interpreter

SYNOPSIS
/etc/implog [-D] [-r] [-c] [-1 [/ink]] [-h host#] [-1 imp#] [-t message-type]

DESCRIPTION
Imp/og is program which interprets the message log produced by imp/ogd(8C).

If no arguments are specified, imp/og interprets and prints every message present in the message
file. Options may be specified to force printing only a subset of the logged messages.

- D Do not show data messages.

-r Follow the logging process in action. This flags causes imp/og to print the current con-
tents of the log file, then check for new logged messages every 5 seconds.

-c In addition to printing any data messages logged, show the contents of the data in hexa­
decimal bytes.

-1 [Iink#]
Show only those messages received on the specified "link". If no value is given for
the link, the link number of the IP protocol is assumed.

-h host#
Show only those messages received from the specified host. (Usually specified in con­
junction with an imp.)

-i imp#
Show only those messages received from the specified imp.

- t message-type
Show only those messages received of the specified message type.

SEE ALSO
imp(4P), implogd(8C)

BUGS
Can not specify multiple hosts, imps, etc. Can not follow reception of messages without look-
ing at those currently in the file. .

4th Berkeley Distribution 2 Apri11983 1

IMPLOGD (8C) UNIX Programmer's Manual IMPLOGD (8C)

NAME
implogd - IMP logger process

SYNOPSIS
letc/lmplogd [-d]

DESCRIPTION
Implogd is program which logs messages from the IMP, placing them in the file lusrladmlimplog.

Entries in the file are variable length. Each log entry has a fixed length header of the form:

struct sockstamp {

};

short sin_family;
u_short sinyort;
struct in_addr sin_addr;
time_t sin_time;
int sinJen;

followed, possibly, by the message received from the IMP. Each time the logging process is
started up it places a time stamp entry in the file (a header with sin_len field set to 0).

The logging process will catch only those message from the IMP which are not processed by a
protocol module, e.g. IP. This implies the log should contain only status information such as
"IMP going down" messages and, perhaps, stray NCP messages.

SEE ALSO

BUGS
imp (4P) , implog(8C)

The messages should probably be sent to the system error logging process instead of maintain­
ing yet another log file.

4th Berkeley Distribution 4 March 1983 1

INETD(8C) UNIX Programmer's Manual INETD(8C)

NAME
inetd - DARPA little protocol server

SYNOPSIS
letc/inctd [- d] [- f program] [-.0 options] [- q program] protocol/service ...

DESCRIPTION .
. The inetd server implements a number of the so-called "little" protocols in the IP/TCP protocol

suite. Tn particular, the following protocols are implemented at this time:

Service RFC Description
echo 862 sends back whatever you send it
sink 863 throws away whatever you send it
daytime 867 provides the day ·and -time··in.:-ASCII-·. ... _._.......
time 868 provides the number of seconds fi'om a reference time
usefS 866 lists the currently active users
chargen 864 sends you ASCI r data
qotd 865 sends you a short "sen message
finger 742 provides information on the activity of a llser

See services (5) for the list of POltS that illetd will operate at. The illeld server supports these ser­
vices using both 'rcp and UDP (sec protocols (5».

If the '-d' option is specified, each socket created by illeld will have debugging enabled (see
SO_DEBUG in socket (2». rf the' - r option is given, the following argument is taken to be the
path name of the program to run when servicing fillger requests. Similarly, if the' - 0' option is
given, the following argument is take to be the options that should be given to this program.
Finally. if the • -q' option is given, the following argument is taken to be the pathnamc of the pro-
gram to fun when servicing qotd requcsts. .

SEE ALSO' .
rfinger(lC)

4lh Berkeley Dislribution]/27/83 1

INIT (8) UNIX Programmer's Manual !NIT (8)

NAME
init - process control initialization

SYNOPSIS
/etc/lnlt

DESCRIPTION
Init is invoked inside UNIX as the last step in the boot procedure. It normally then runs the
automatic reboot sequence as described in reboot (8) , and if this succeeds, begins multi-user
operation. If the reboot fails, it commences single user operation by giving the super-user a
shell on the console. It is possible to pass parameters from the boot program to init so that sin­
gle user operation is commenced immediately. When such single user operation is terminated
by killing the single-user shell (i.e. by hitting AD), init runs letc/rc without the reboot parameter.
This command file performs housekeeping operations such as removing temporary files, mount­
ing file systems, and starting daemons.

In multi-user operation, init's role is to create a process for each terminal port on which a user
may log in. To begin such operations, it reads the file letc/ttys and forks several times to create
a process for each terminal specified in the file. Each of these processes opens the appropriate
terminal for reading and writing. These channels thus receive file descriptors 0, 1 and 2, the
standard input and output and the dfagnostic output. Opening the terminal will usually involve
a delay, since the open is not completed until someone is dialed up and carrier established on
the channel. If a terminal exists but an error occurs when trying to open the terminal init com­
plains by writing a message to the system console; the message is repeated every 10 minutes for
each such terminal until the terminal is shut off in letc/ttys and init notified (by a hangup, as
described below), or the terminal becomes accessible (init checks again every minute). After
an open succeeds, letc/getty is called with argument as specified by the second character of the
ttys file line. Getty reads the user's name and invokes login to log in the user and execute the
Shell.

Ultimately the Shell will terminate because of an end-of-file either typed explicitly or generated
as a result of hanging up. The main path of init, which has been waiting for such an event,
wakes up and removes the appropriate entry from the file utmp, which records current users,
and makes an entry i~. lusr/adm/wtmp, which maintains a history of logins and logouts. The
wtmp entry is made only if a user logged in successfully on the line. Then the appropriate ter­
minal is reopened and getty is reinvoked.

Init catches the hangup signal (signal SIGHUP) and interprets it to mean that the file fetc/ttys
should be read again. The Shell process on each line which used to be active in ttys but is no
longer there is terminated; a new process is created for each added line; lines unchanged in the
file are undisturbed. Thus it is possible to drop or add phone lines without rebooting the sys­
tem by changing the ttys file and sending a hangup signal to the init process: use 'kill - HUP 1.'

Init will terminate multi-user operations and resume single-user mode if sent a terminate
(TERM) signal, i.e. "kill - TERM 1". If there are processes outstanding which are deadlocked
(due to hardware or software failure), init will not wait for them all to die (which might take
forever), but will time out after 30 seconds and print a warning message.

Init will cease creating new getty's and allow the system to slowly die away, if it is sent a termi­
nal stop (TSTP) signal, i.e. "kill - TSTP 1". A later hangup will resume full multi-user opera­
tions, or a terminate will initiate a single user shell. This hook is used by reboot(8) and halt(8).

Init's role is so critical that if it dies, the system will reboot itself automatically. If, at bootstrap
time, the init process cannot be located, the system will loop in user mode at location Ox13.

DIAGNOSTICS
Inlt: tty: cannot open. A terminal which is turned on in the rc file cannot be opened, likely
because the requisite lines are either not configured into the system or the associated device

4th Berkeley Distribution 1 Apri11981 1

INIT (S) UNIX Programmer's Manual INIT (S)

was not attached during boot-time system configuration.

WARNING: Something is hung (wont die); ps axl advised. A process is hung and could not
be killed when the system was shutting down. This is usually caused by a process which is
stuck in a device driver due to a persistent device error condition.

FILES
/dev/console, /dev/tty., /etc/utmp, /usr/adm/wtmp, /etc/ttys, /etc/rc

SEE ALSO
login(l), kUHl), shU), ttys(S) , crash(SV), getty(S), rc(S), reboot(S), halt{S), shutdown{S)

4th Berkeley Distribution 1 April 1981 2

INSECURE (8) UNIX Programmer's Manual INSECURE(8)

NAME
insecure - user security monitor

SYNOPSIS
/etc/insecure [-s] [usenlame ...

DESCUIPTION
Insecure is useful in spotting potential security holes due to easily~guessed passwords. It will try to
guess the pilsswords of the specified users, (or of all users, if none arc specified.) If an account has
an easily-guessed password, the account name and shell will be on the standard output.

The -s flag suppresses guessing for users whose login shell is not one'of those allowed by chsh(l).
This avoids fillse positives fiJI' pseudo-users which arc meant to be open accounts; c.g., a uscr

~ "" .~ ,_. ~ ": '-:ntinied "'fingcr'~" with no "password with"a-logitl-shell of /uSi"/liclVf1nger~

DIAGNOSTICS
The exit status is the number of passwords guessed.

SEE ALSO
chsh(1), passwd(l)

BUGS
It takes about 7 cpu ~econds on a Vax-ll/750 to check each user.

The very existence of this program might bc a sccurity hole. Install it so as to "be
unreadable/unexecutable by random users.

The -s mechanism leaves something to be desired, especially if additional interactive login shells
are allowed by chsh(l). "

7lh Edition 1

KGMON(8) UNIX Programmer's Manual KGMON(8)

NAME
kgmon - generate a dump of the operating system's profile buffers

SYNOPSIS
letc/kgmoD [-b) [-h) [-r] [-p] [system] [memory]

DESCRIPTION

FILES

Kgmon is a tool used when profiling the operating system. When no arguments are supplied,
legmon indicates the state of operating system profiling as running, off, or not configured. (see
co1f/ig(S» If the -p flag is specified, legmon extracts profile data from the operating system and
produces a gmon.out file suitable for later analysis by gproj{I).

The following options may be specified:

- b Resume the collection of profile data.

- h Stop the collection of profile data.

-p Dump the contents of the profile buffers into a gmon.out file.

-r Reset all the profile buffers. If the -p flag is also specified, the gmon.out file is gen-
erated before the buffers are reset.

If neither - b nor - h is specified, the state of profiling collection remains unchanged. For
example, if the - p flag is specified and profile data is being collected, profiling will be momen­
tarily suspended, the operating system profile buffers will be dumped, and profiling will be
immediately resumed.

Ivmunix - the default system
Idev/kmem - the default memory

SEE ALSO
gprof(l), config(8)

DIAGNOSTICS
Users with only read permission on Idev/kmem cannot change the state of profiling collection.
They can get a gmon. out file with the warning that the data may be inconsistent if profiling is in
progress. .-

4th Berkeley Distribution 18 July -1983 1

LEAF(8) UNIX Programmer's Manual

NAME
leaf - PUP Leaf Remote File Access Protocol Server

SYNOPSIS
/elc/pup/lcaf[-i] [-d] [-42] [-p] [-t] I-I]

DESCRIPTION
The Leaf server provides the Leaf remote file access protocol service for a Unix time-sharing sys­
tem. YOll must have a valid user name and password to access any files. The server normally runs
as root, and then does a setuid to users for each connection.

-1 This option is used to enable version number siInulation as used in Xerox InterLisp on the
1100 series workstations.

-d This option turns on much debugging information.

-42 This option indicates that socket 42 {octal} is to be used instead of the default socket of
043.

-p This option dumps every packet, resulting in a huge amount of debugging information.

-t This option sends the debug" output to the terminal (standard output) instead of the default
of /usr/adm/leaf.log.

-1 This option logs all leaf-level operations like opcning and closing files.

SEE ALSO
ftpscr(8)

Leaf and Seqiun Protocols The protocol specification by Jcff Mogul, 1982

Unix Leaf Server Documentation by Crilig, Mogul, and Nowicki, updated 1984.

AUTIIORS

BUGS

Originally written by Doug Ilartman and John Craig. Bill Nowicki of Stanford University has
been maintaining it for the last few years. JefT Moglli of Stanford, Jim K()da of lSI, and Craig
Milo Rogers or lSI have also made cOlltributions.

There should be a way of providing or prohibiting annonymous logins, like t11e 4.2 lP ftp server.

7th Edition 1 "

LPC (8) UNIX Programmer's Manual LPC (8)

NAME
Ipc - line printer control program

SYNOPSIS
letc/lpc [command [argument ...]]

DESCRIPTION
Lpc is used by the system administrator to control the operation of the line printer system. For
each line printer configured in /etc/printcap, /pc may be used to:

• disable or enable a printer,

• disable or enable a printer's spooling queue,

• rearrange the order of jobs in a spooling queue,

• find the status of printers, and their associated spooling. queues and printer dameons.

Without any arguments, /pc will prompt for commands from the standard input. If arguments
are supplied, /pc interprets the first argument as a command and the remaining arguments as
parameters to the command. The standard input may be redirected causing /pc to read com­
mands from file. Commands may be abreviated; the following is the list of recognized com­
mands.

~ (comm~d ...]

help [command .. 0]

Print a short description of each command specified in the argument list, or, if no argu­
ments are given, a list of the recognized commands.

abort { all I printer .. 0 }

Terminate an active spooling daemon on the local host immediately and then disable
printing (preventing new daemons from being started by /pr) for the specified printers.

clean { alii printer ... }
Remove all files ~ginning with "cr', "tr', or "df" from the specified printer
queue(s) on the local machine.

enable { alII printer ... } ._

exit

quit

Enable spooling on the local queue for the listed printers. This will allow /pr to put new
jobs in the spool queue.

Exit from Ipc.

disable { alII printer ... }
Tum the specified printer queues off. This prevents new printer jobs from being
entered into the queue by /pro

restart { alii printer ... }
Attempt to start a new printer daemon. This is useful when some abnormal condition
causes the daemon to die unexpectedly leaving jobs in the queue. Lpq will report that
there is no daemon present when this condition occurs.

start { alii printer .0. }
Enable printing and start a spooling daemon for the listed printers.

status [all] [printer ...]
Display the status of daemons and queues on the local machine.

stop { alII printer ... }
Stop a spooling daemon after the current job completes and disable. printing.

4th Berkeley Distribution 41uly 1983 1

LPC (8) UNIX Programmer's Manual

topq printer [jobnum ...] [user ...]
Place the jobs in the order listed at the top of the printer queue.

FILES
/etc/printcap printer description file
/usr/spool/- spool directories
/usr/spool/-/lock lock file for queue control

SEE ALSO
Ipd(8), Ipr(I), Ipq(l), Iprm(I), printcap(S)

DIAGNOSTICS
? Ambiguous command
?Invalid command
?Privileged command

4th Berkeley Distribution

abreviation matches more than one command
no match was found
command can be executed by root only

4 July 1983

LPC(8)

2

LPD (8) UNIX Programmer's Manual LPD (8)

NAME
Ipd - line printer daemon

SYNOPSIS
lusr/llb/lpd [·1] [·L logfile] [port #]

DESCRIPTION
Lpd is the line printer daemon (spool area handler) and is normally invoked at boot time from
the rc(8) file. It makes a single pass through the printcap(S) file to find out about the existing
printers and prints any files left after a crash. It then uses the system calls listen (2) and
accept(2) to receive requests to print files in the queue, transfer files to the spooling area,
display the queue, or remove jobs from the queue. In each case, it forks a child to handle the
request so the parent can continue to listen for more requests. The Internet port number used
to rendezvous with other processes is normally obtained with getservbyname(3) but can be
changed with the port# argument. The - L option changes the file used for writing error condi­
tions from the system console to logfile. The -I flag causes /pd to log valid requests received
from the network. This can be useful for debugging purposes.

Access control is provided by two means. First, All requests must come from one of the
machines listed in the file letclhosts.equiv. Second, if the "rs" capability is specified in the
printcap entry for the printer being accessed, /pr requests will only be honored for those users
with accounts on the machine with the printer ..

The file lock in each spool directory is used to prevent multiple daemons from becoming active
simultaneously, and to store information about the daemon process for /prO), ~O), and
/prm(l). After the daemon has successfully set the lock, it scans the directory for files begin­
ning with c/. Lines in each cf file specify files to be printed or non-printing actions to be per­
formed. Each such line begins with a key character to specify what to do with the remainder of
the line.

I lob Name. String to be used for the job name on the burst page.

C Classification. String to be used for the classification line on the burst page.

L Literal. The line contains identification info from the password file and causes the
banner page to be pilnted.

T Title. String to be used as the title for prO).

H Host Name. Name of the machine where /pr was invoked.

P Person. Login name of the person who invoked /pro This is used to verify ownership
by Iprm.

M Send mail to the specified user when the current print job completes.

f Formatted File. Name of a file to print which is already formatted.

Like "r' but passes control characters and does not make page breaks.

p Name of a file to print using prO) as a filter.

t Troff File. The file contains troff(l) output (cat phototypesetter commands).

d DVI File. The file contains Tex(I) output (DVI format from Standford).

g Graph File. The file contains data produced by plot (3X) .

c Cifplot File. The file contains data produced by cifpiot.

v The file contains a raster image.

r The file contains text data with FORTRAN carriage control characters.

1 Troff Font R. Name of the font file to use instead of the default.

4th Berkeley Distribution 18 Iuly 1983 1

LPD (8) UNIX Programmer's Manual LPD (8)

FILES

2 Troff Font I. Name of the font file to use instead of the default.

3 Troff Font B. Name of the Cont file to use instead of the deCault.

4 Troff Font S. Name of the Cont file to use instead of the default.

W Width. Changes the page width (in characters) used by prO) and the text filters.

I Indent. The number of characters to indent the output by (in ascii).

U Unlink. Name oC file to remove upon completion of printing.

N File name. The name of the file which is being printed, or a blank for the standard
input (when Ipr is invoked in a pipeline).

If a file can not be opened, a message will be placed in the log file (normally the console). Lpd
will try up to 20 times to reopen a file it expects to be there, after which it will skip the file to
be printed.

Lpd uses jlock(2) to provide exclusive access to the lock file and to prevent multiple deamons
from becoming active simultaneously. If the daemon should be killed or die unexpectedly, the
lock file need not be removed. The lock file is kept in a readable ASCII Corm and contains two
lines. The first is the process id of the daemon and the second is the control file name of the
current job being printed. The second line is updated to reflect the current status of /pd for the
programs 1pq(1) and Iprm(l).

I etc/printcap
lusrlspooll*
Idev/lp*
Idev/printer
I etc/hosts.equiv

printer description file
spool directories
line printer devices
socket Cor local requests
lists machine names allowed printer access

SEE ALSO
Ipc(8), pac (1) , Ipr(1), Ipq (1), Iprm(1), printcap(S)
4.2BSD Line Printer Spooler Manual

4th Berkeley Distribution 18 July 1983 2

MAILER(8) UNIX Programmer's Manual MAILI~R(8)

NAME
mailer - Mailing list, forwarding, and alias manager

SYNOPSIS
nmil nmiler

DESCHIPTION
Alailer is a pseudo-user to which you can mail commands to change aliases, mail forwarding, and
mailing lists. The commands can be given as the first line of the body of the message, or the "Sub­
ject:" line if the body is empty. Most of the arguments are optional; omitting the user name
assumes the operation is to be d(>ne on the user sending the message .. A response is mailed back
with the results of the command. For users who insist on being terse, you can even say "add list"
instead of "add me to list." or "alias smith" instead of "alias smith for me."

COMMANDS

FILES

~ldd /lame to list Adds a name to a mailing list which already exists. Valid only if the list is
public, or if it is sent by a mail-wizard or a mailing list maintainer.

ulhlS name for user Set up an alias for the current user. The alias must not conflict with any
existing aliases. user names. or mailing list~.

crenle list with name,... Creates a mailing Jist with the indicated users as the members and the
maintainers. I f the word "public" is included, then anybody will be
allowed to add themselves to the list. The rest of .the message body is
used as a description 0(' the purpose of the mailing list.

delete name from list The indicated· name is deleted from the mailing list. Anybody can delete
themselves, or be deleted by a mail wizard or a maintainer of the mailitlg
list.

forward user to Ilame The user's mail will be fiJrwarded to the indicated name {which may be at
another host}. 1."01' example. "forward smith to ds«.&sai1." "

help Mails you back a message containing a list of the commahds.

keep USCI' at host Disables any f(Jrwarding fbI' the indicated user. This may be abbreviated
to bnc word, Hkeep".

list name.... Mails you a message describing the indicated names. They may be aliases.
users, or mailing lists.

piuslols list Adds loll;) of users to the list. The user addresses are provided in the
ret~lainder of the body of the message, separated by commas.

remove Ilame for user Removes the alias for the indicated user. If someone has an alias that you
want, mail a message to mail-wiz.ards.

/usr/lib/aliases lusr/lib/lllailinglisL'i 11Isrlst~m('ord/lib/vinegar

SEE AU~O
mail(l), aliases(5), newaliases(l), delivermail(8)

AUTIIOR.
Bill Nowicki, Stanford University

DIAGNOSTICS
Mailed back in a message.

BUGS
Once a mailing list is cretlted, there is no way to modify its parameters (other than its membership),
or destroy it, except by editing the text file. Simllll~lllcoliS update is not checked.

. .

7th Edition 1

MAKEDEV(8) UNIX Programmer's Manual MAKEDEV(8)

NAME
makedev - make system special files

SYNOPSIS
IdevlMAKEDEV device ...

DESCRIPTION
MAKEDEV is a shell script normally used to install special files. It resides in the Idev directory,
as this is the normal location of special files. Arguments to MAKEDEVare usually of the form
deVice-name? where device-name is one of the supported devices listed in section 4 of the
manual and "?" is a logical unit number (0-9). A few special arguments create assorted collec­
tions of devices and are listed below.

std Create the standard devices for the system; e.g. Idev/console, Idev/tty. The VAX-
11/780 console floppy device, Idev/floppy, and VAX-11/7S0 and VAX-11/730 console
cassette device(s), Idev/tu?, are also created with this entry.

local Create those devices specific to the local site. This request causes the shell file
IdevlMAKEDEY.local to be executed. Site specific commands, such as those used to
setup dialup lines as "ttyd?" should be included in this file.

Since all devices are created using mknod(8), this shell script is useful only to the super-user.

DIAGNOSTICS
Either self-explanatory, or generated by one of the .programs called from the script. Use "sh -x
MAKEDEV" in case of trouble.

SEE ALSO

BUGS

intro(4), config(8), mknod(8)

When more than one piece of hardware of the same "kind" is present on a machine (for
instance, a dh and a dmf), naming conflicts arise.

4th Berkeley Distribution 18 July 1983 1

MAKEKEY(8) UNIX Programmer's Manual MAKEKEY(8)

NAME
makekey - generate encryption key

SYNOPSIS
lusr/llb/makekey

DESCRIPTION
Makekey improves the usefulness of encryption schemes depending on a key by increasing the
amount of time required to search the key space. It reads 10 bytes from its standard input, and
writes 13 bytes on its standard output. The output depends on the input in a way intended to
be difficult to compute (that is, to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII characters. The last two (the
salt) are best chosen from the set of digits, upper- and lower-case letters, and '.' and 'I'. The
salt characters are repeated as the first two characters of the output. The remaining 11 output
characters are chosen from the same set as the salt and constitute the output key.

The transformation performed is essentially the following: the salt is used to select one of 4096
cryptographic machines all based on the National Bureau of Standards DES algorithm, but
modified in 4096 different ways. Using the input key as key, a constant string is fed into the
machine and recirculated a number of times. The 64 bits that come out are distributed into the
66 useful key bits in the result.

Makekey is intended for programs that perform encryption (for instance, ed and crypt(I).
Usually makekey's input and output will be pipes.

SEE ALSO
crypt(l), ed(l)

7th Edition 4 February 1983 1

M ISCSER VER (8) UN IX Programmer's Manual M ISCSER VER (8)

NAME
miscserver - MiscServices server for Pup

SYNOPSIS
/etc/miscscrver [aAdDILmMnNsStT]

DE..,,)CRIPTION .
Aliscserver is a server program which listens fhr MiscServices requests directed to the Unix system
from the Pup I nternet. It implemcnts a subset of the MiscServices requests dcfined in Edition 3 of
the Xerox Parc mcmorandum 011 Miscellancous Services. It also implements local extensions to
these services.

The program is structured as a loop which listens for packets directed to the M ISCSERVICES Pup
socket (it accepts both packeL~ specificallydesti.ned for t.he loc"l host,. and bro.adcast packets, .l)ut
some services reject broadcast packets). Thc PupType field is extracted from a received packet, and
a switch statement is used to dispatch the received packet to one of several action routines. The
program can only handle one rcquest at a time, so most of the action routines <lre entirely included
in the server program: this eliminates the time wasted in reading programs olf of the disk. How­
ever, to achieve some concurrency (and to protect the server against "lost resources"), requests are
hanuled by fork processes.

The services currently implemented arc:

1\1aitCheck - The server responds equivalently to both Msg-style and Laurel-style mai1check
requests, and returns the appropriate rcsponse. If new mail exists, the PupDat.a portion of the reply
include the message" since <time mail was last wrilten)", which can be used by the inquiring pro­
gram, such as ilia ilcheck(I).

\Vhcrclsl]scr - The server indicates whether the user is logged in or not; it returns an error if the
lIs .. ~r is not known. (This service has been disabled on Stanford systems, since it confuses the Alto
Chat and Tclnel programs and causes them to uispJay p<\sswords at odu times.)

I

SelldUserMess~lge - This is a locally defineu protocol which is explained in detail in the manual
entry fill' I1ISCllclUl1Isg(9). Tllis service accepts broadcast packets.

AltoTimeChel'k (New standard) - This service rcturns the time in seconds since midnight, January
1, 1901, which is the Alto internal time format. It also returns timezone and Daylight Savings Time
information, in Xerox format.

l\issOfl>eath - This is a non-standard lise of the KissOfl)cath protocol; the server process ter­
minates when it receives a KissOIDcath n'om a process that is newer than iL~elf: (The sending pro­
cess puts its proccss creation lime into PupID.) This should only be sent by another miscserver
process on the same host; the illtent is that this is used to prevent more· than one miscservcr to be
running at.a time.

Authenticate - This service takes a lIsernamc and p<lssword, and inuicates whether the host system
considers them to he valid. If a L1sername contains a period followed by a registry name, the user­
name is extracted.

Namc lookull - Translates a host name to a Pup internet audress. This service conforms fairly
welt with the Xerox definition of a Pup name.

Address lookup - Translates a Pup int~rnet address to lhe preferred name ..

Sun Boot Load Download a program file to a Sun workstation. Sec

7th Edition 1

MISCSERVER(8) UNIX Programmer's Manual MISCSER VER (8)

lusrlsun/doc/sunboot/Sunlloot.press for details.

Sun Boot Directory - Return a directory of standard Sun bootfiles. [-ike the Alto Boot Directory
Protocol, but with different Pup types.

UNcw" Sun Boot Directory -]mproved version of Sun Boot Directory protocol. Directory is
returned wi~h an EFl'P to the requesting Port.

Alto Boot Load - Download a program file to an Alto. Files are read from lusr/altobootc;.

Alto Boot Dir~ctory - Return a directory of Alto bootfiles.
: .": "; :;". ""; "-, """; ~,," .', -, '. '" ',' , " . • . ."" ; t "'I"

FILES

Net Directory Attributes - This is a locally-defined protocol that allows access to the "attributes"
field of Network Directory entries. The request format is a packet with a Pup address (Port) as
data: the reply is a string. Normally, the attributes of an entry include its, location.

Lmld Doll)hin Microcode - Download a microcode file to a Dolphin. Files arc read from
lusr/dolphin_ucode. This function is not well-tested. '

The program is l11e£l'1t to be run (with an ampersand) from letc/pup/rc; only one copy of it should
be running, although there is no obvious harm caused by running a second copy, since the proto­
cols are all conncctionless. A running copy can be killed without any ill effects (actually, thcre is a
tiny chancc that this might corrupt the local copy of the binary-format network directory: as long as
there is another copy somewhere on the net, this is not a problem.) However. in general the servers
agree aniong themselves which one is newer. and the older one goes away; thus, therc is not much
reason .to actually ki11 onc.

Options:

If an argument is givcn, it is taken as a kcy; each letter of the key may bc used to control an
option. For each option, a lower case occurance of the key letter turns it "on", while an upper case
kcy lettcr turns it "ofT". Thc possible options are:

a If on, server I~csponds to Alto boot request (and Alto boot directory request<\.)
Dcflllllt: 011.

d,

1

In

n

s

t

If on, server prints debugging infonnation on stderr. De flm It: ofT.

]f on, scrver prints a log of all requests on stdout. Default: off.

If on, servcr responds to Dolphin microcode loader requcsts. Default: on.

If on. servcr responds to broadcast name/addrcss requcsts.] f off, server responds
to name/address requcsts only if directed to local host. Default: on.

If on, server responds to Sun boot requcst (and Sun boot directory requcsts.)
Default: on.

If on, server rcsponds to broadcast time requests. If o(f, scrver responds to time
requests only if directed to local host. Dcfault: on.

/bin/nwrite used for SendUserMcssage service
letc!pup/Pup-Network.txt Human-readable Name serviccs d~tabasc
letc/pup/Pup-Network.Dir Binary-f()rmat NameServer database
lusr/slIll/bootfile dcfllllIt dircctory «Jr Sun booUlles
lusr/altoboots directory for Alto booUiles
lusr/dolphill_llcode dircGtory 'f~)r Dolphin microcode files

7th Edition 2

MJSCSER VER (8) UN IX Programmer's Manual MISCSERVI·~lt(8)

In order to make this program more portable, the name and location of each of these files is
defined in a header me, Hmiscservcr.h" in the directory conutining the miscserver sources. The sys-
tem manager may wish to edit this file before compiling the server. .

Another compile-time option is whether the Nameserver uses a binary or human-readable database;
the fbrmer is prefcred. If the binary database exists, it will be automatically updated; otherwise, it
will 110/ be created. New versions may be created with the buildllcldir(8) program.

AUTIIOR
Jeffrey l\10g111

SEE ALSO
mscndllmsg(9), mmailcheck(9), buildnetdir(8)

DIAGNOSTICS
This is a server program, so no diagnostics should appear. It nwy cause a core-clump if badly­
writtcn action routines are included, of course.

7th Edition 3 .

MKFS(8) UNIX Programmer's Manual MKFS (S)

NAME
mkfs - construct a file system

SYNOPSIS
letc/mkfs special size [nsect] [ntrack] [blksize] [fragsize] [ncpg] [minfree] [rps]

DESCRIPTION
N.B.: file system are normally created with the newft(S) command.

Mlifs constructs a file system by writing on the special file special. The numeric size specifies the
number of sectors in the file system. Mlifs builds a file system with a root directory and a
lost+/ound directory. (seejsck(S» The number of i-nodes is calculated as a function of the file
system size. No boot program is initialized by mlifs (see newft(S).)

The optional arguments allow fine tune control over the parameters of the file system. N sect
specify the number of sectors per track on the disk. Ntrack specify the number of tracks per
cylinder on the disk. Blkslze gives the primary block size for files on the file system. It must
be a power of two, currently selected from 4096 or S192. Fragslze gives the fragment size for
files on the file system. The fragslze represents the smallest amount of disk space that will be
allocated to a file. It must be a power of two currently selected from the range 512 to 8192.
Ncpg specifies the number of disk cylinders per cylinder group. This number must be in the
range 1 to 32. Mlnfree specifies the minimum percentage of free disk space allowed. Once the
file system capacity reaches this threshold, only the super-user is allowed to allocate disk blocks.
The default value is 10%. If a disk does not revolve at 60 revolutions per second, the rps
parameter may be specified. Users with special demands for their file systems are referred to
the paper cited below for a discussion of the tradeoffs in using different configurations.

SEE ALSO

BUGS

fs(5), dir(5), fsck(S), newfs(S), tunefs(S)

McKusick, Joy, Leffier; "A Fast File System for Unix", Computer Systems· Research Group,
Dept of EECS, Berkeley, CA 94720; TR #7, September 1982.

There should be some way to specify bad blocks.

4th Berkeley Distribution 10 May 19S1 1

MKLOST + FOUND (8) UNIX Programmer's Manual

NAME
mklost+found - make a lost + found directory for fsck

SYNOPSIS
letc:/mklost + found

DESCRIPTION

MKLOST+FOUND (8)

A directory lost+/ound is created in the current directory and a number of empty files are
created therein and then removed so that there will be empty slots for /sck(8). This command
should not normally be needed since mkjS(8) automatically creates the lost+/ound directory
when a new file system is created.

SEE ALSO
fsck(8), mkfs(8)

4th Berkeley Distribution 2S February 1983

MKNOD(8) UNIX Programmer's Manual MKNOD(8)

NAME
mknod - build special file

SYNOPSIS
letc/mknod name [c] [b] mlijor minor

DESCRIPTION
Mknod makes a special file. The first argument is the name of the entry. The second is b if the
special file is block-type (disks, tape) or c if it is character-type (other devices). The last two
arguments are numbers specifying the major device type and the minor device (e.g. unit, drive,
or line number).

The assignment of mlijor device numbers is specific to each system. They have to be dug out
of the system source file corif. c.

SEE ALSO
mknod(2)

4th Berkeley Distribution 4 February 1983 1

MKPROTO(8) UNIX Programmer's Manual MKPROTO(8)

NAME
mkproto - construct a prototype file system

SYNOPSIS
/ete/mkproto special proto

DESCRIPTION
Mkproto is used to bootstrap a new file system. First a new file system is created using
newft(8). Mkproto is then used to copy files from the old file system into the new file system
according to the directions found in the prototype file proto. The prototype file contains tokens
separated by spaces or new lines. The first tokens comprise the specification for the root direc­
tory. File specifications consist of tokens giving the mode, the user-id, the group id, and the
initial contents of the file. The syntax of the contents field depends on the mode.

The mode token for a file is a 6 character string. The first .character specifies the type of the
file. (The characters - bed specify regular, block special, character special and directory files
respectively.) The second character of the type is either u or - to specify set-user-id mode or
not. The third is I or - for the set-group-id mode. The rest of the mode is a three digit octal
number giving the owner, group, and other read, write, execute permissions, see chmod(I).

Two decimal number tokens come after the mode; they specify the user and group ID's-of the
owner of the file.

If the file is a regular file, the next token is a pathname whence the contents and size are
copied.

If the file is a block or character special file, two decimal number tokens follow which give the
major and minor device numbers.

If the file is a directory, mkproto makes the entries. and.. and then reads a list of names and
(recursively) file specifications for the entrie~ in the directory. The scan is terminated with the
token S.
A sample prototype specification follows:

d--77731
usr d--7773 1

sh -- ---755 3 I/bin/sh
ken d--7556 1

$
bO b--6443 100
cO c- - 644 3 1 0 0
$

$

SEE ALSO

BUGS

fs(5), dir(5), fsck(8), newfs(8)

There should be some way to specify links.

There should be some way to specify bad blocks.

Mkproto can only be run on virgin file systems. It should be possible to copy files into existent
file systems.

4th Berkeley Distribution 10 May 1981 1

MOUNT (8) UNIX Programmer's Manual MOUNT (8)

NAME
mount, umount - mount and dismount file system

SYNOPSIS
/etc/mount [special name [-r]]

/etc/mount -a
/etc/umount special

/etc/umount· -a

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present on the device special.
The file name must exist already; it must be a directory (unless the root of the mounted file
system is not a directory). It becomes the name of the newly mounted root. The optional
argument -r indicates that the file system is to be mounted read-only.

Umount announces to the system that the removable file system previously mounted on device
special is to be removed.

If the -a option is present for either mount or umount, all of the file systems described in
letc/fttab are attempted to be mounted or unmounted. In this case, special and name are taken
from letc/fstab. The special file name from letc/fttab is the block special name.

These commands maintain a table of mounted devices in letclmtab. If invoked without an argu­
ment, mount prints the table.

Physically write-protected and magnetic tape file systems must be mounted read-only or errors
will occur when access times are updated, whether or not any explicit write is attempted.

letc/mtab
letc/fstab

mount table
file system table

SEE ALSO
mount (2) , mtab(S), fstab(S)

BUGS
Mounting file systems full of garbage will crash the system.
Mounting a root directory on a non-directory makes some apparently good pathnames invalid.

4th Berkeley Distribution 4 February 1983 1

NCHECK(S) UNIX Programmer's Manual NCHECK(8)

NAME
ncheck - generate names from i-numbers

SYNOPSIS
letc/ncheck [-1 numbers] [-a] [-s] [filesystem]

DESCRIPTION
N.B.: For most normal file system maintenance, the function of ncheck is subsumed by /sck(8).

Ncheck with no argument generates a pathname vs. i-number list of all files on a set of default
file systems. Names of directory files are followed by 'I.'. The -1 option reduces the report to
only those files whose i-numbers follow. The -a option allows printing of the names '.' and
' •• " which are ordinarily suppressed. The -s option reduces the report to special files and files
with set-user-ID mode; it is intended to discover concealed violations of security policy.

A file system may be specified.

The report is in no useful order, and probably should be sorted.

SEE ALSO
sortO), dcheck(S), fsck(8), icheck(8)

DIAGNOSTICS
When the filesystem structure is improper, I??' denotes the 'parent' of a parentless file and a
pathname beginning with ' ... ' denotes a loop. .

4th Berkeley Distribution 4 February 1983 1

NE'l'DIRl)Rl Nrr (8) UNIX Programmer's Manual NETDI RPR INT (8)

NAME
netdirprint - print text version of Pup Network Directory

SYNOPSIS
nctdirprint

nctdirprint [- ip] [- nie] [dirmc] Igrcp -y

DESCRIPTION'

FJLFS

Netdirprilll reads the binary-format Pup Network directory file and reproduces, more or less, a
properly formatted text version of this file. (Necessarily, the fonnat is not as useful as that of the
original text network directory.)

If the -ill nag is given, the output is ·inste-ad. in- the: format.,required. as input to Ule.BBN host table
"compi1er". The OUlput must be fi1tered to remove lines marked "BAD" before further usc.
(.. 13/\ D" lines arc those refering to hoste;; not on the local IP-subnet, or to addresses' that do not sim­
ple speci fy a host.)

I f the -uie Hag is given, the output is instead in the N IC's host table format. This output also mllst
be filtered to remove lines marked "nAD" before further usc.

Normal1y, lIeldirprinl reads from a default file (the same as is used by lIliscserver(8) and buildnel­
dir(8». Specifying the diljile argument causes that file to be llsed, instead.

/etc/pup/Pup-Network.Dir

SEE ALSO

Default Pup-Network binary name table.

miscserver(8}, buildnetdir(8}

AUTHOR·
Jeffrey ~ogul

HUGS
The program has a buill-in idea of the local IP subncl number (Stanford's is 36). and assumes that
it is a "class-A" subnet. . Prob<.lbly a bunch or other assumptions are made, as well.

7th Edition 1

NEWFS (8) UNIX Programmer's Manual NEWFS (8)

NAME
newfs - construct a new file system

SYNOPSIS
/etc/newCs [-v] [-n] [mkCs-options] special disk-type

DESCRIPTION

FILES

Newfs is a "friendly" front-end to the mk/s(8) program. Newfs will look up the type of disk a
file system is being created on in the disk description file letcldisktab, calculate the appropriate
parameters to use in calling m/ifs, then build the file system by forking mkfs and, if the file sys­
tem is a root partition, install the necessary bootstrap programs in the initial 8 sectors of the
device. The -n option prevents the bootstrap programs from being installed.

If the -v option is supplied, newfs will print out its actions, including the parameters passed to
mk/s.

Options which may be used to override defau't parameters passed to mk/s are:

- s size The size of the file system in sectors.

- b block-size
The block size of the file system in bytes.

-C frag-size
The fragment size of the file system in bytes.

-t #tracks/cylinder

-c #cylinders/group
The number of cylinders per cylinder group in a file system. The default value used
is 16.

-m free space %
The percentage of space reserved from normal users; the minimum free space
threshhold. The default value used is 10%.

-r revolutions/minute
The speed or-the disk in revolutions per minute (normally 3600).

-S sector-size
The size of a sector in bytes (almost never anything but 512).

-i number of bytes per in ode
This specifies the density of inodes in the file system. The default is to create an
in ode for each 2048 bytes of data space. If fewer inodes are desired, a larger
number should be used; to create more inodes a smaller number should be given.

/ etc/ disktab
letc/mkfs
lusr/mdec

for disk geometry and file system partition information
to actually build the file system
for boot strapping programs

SEE ALSO

BUGS

disktab(5), fs(5), diskpart(8), fsck(8), format (8) , mkfs(8), tunefs(8)

McKusick, Joy, Leffler; "A Fast File System for Unix", Computer Systems Research Group,
Dept of EECS, Berkeley, CA 94720; TR #7, September 1982.

Should figure out the type of the disk without the user's help.

4th Berkeley Distribution 20 February 1983 1

NU(8) UNIX Programmer's Manual NU(8)

NAME
nu - manage user login accountc; (create, modify, destroy Unix accountc;)

SYNOPSIS
fetcfnu -~l
fete/nu -m
fetcfnu -d
fetcfnu -k userl user2 ...

DESCIUPTION
Nu is a program to help a Unix system manager create, modify, delete., and flush accounts on that
machine. While everything accomplished by IlU can be done manually by editing files and issuing

'. ~sh~lt cprprQands, ,JIU \ViH. stc~r. YOll. thro~,gh ~gc~ting a11 the detai!s.lrigllt, worrying about file locking,
checking t()r typos, etc.

When flU is fun with the "a" option, it adds new accountc;. The program promplc; you thr the login
id, password, name, and other information about each new user, and then goes off and creates the
a~count, creates its directories, initializes their contents, and makes an entry in a log file.

When fIU is run with the "Ill" option, it modifies existing accounts. It repeatedly asks for account
names and instructions for the changes that you want to make t6 those accounl'i, untit you tell it
that you arc done making changes. At that time it sorts the updated account records and merges
them all at once into /etc/passwd.

When flU is run with the "d" option, it al10ws you to interactively delete accounts. For each
account that you specify, IlU deletes the login directory and all of its contents, and deletes the mail­
box. It docs nol delete Ule entry from /etc/passwd, but it changes the password field so that the
user cannot log in. It is a good idea to leave the /etc/passwd entry for a while after an Hccouilt is
deleted, 56 that accounting information and "lost" files can be related to a user's name.

When flU is run with the "k" option and a list of login id's, it deletes from the system almost an
information pertaining to those login id's. Specilically, it removes the ent':y from /etc/passwd,
deletes the login directory and all of its contents, and deletes the mailbox. It docs not currently
remove that lIser from any mailing lists in lusr/lib/aliases. The Uk" option is not interactive: the
complete list of account'i to bc- deleted is provided on the cOl11mand line after' the U - k".

CONFIGUUATION
When 111/ is started up, it reads configuration commands from the HIe /etc/nu:cf. This file specifics
the details of how new accounts are to be created on your machine. Typical1y you wi1l need to
change only t.he Groupl-lome declarations in that me, which declare- the file systems that hold the
login directories I<l!' members or dillcrent groups. However, you can change anything that you find
there if your system management policies require it.

When I1U wantc; to create a new directory, it rUIlS a shell script named in /etc/nu.cf. Similarly, when
it wahl') to initialize U1C flies in a newly-created directory, it runs another shell script whose name it
determines from fetc/nu.cr. By way of configuration and customization, you can edit those shel1
scripts to conl<mn to local practices. When YOLI do thal editing, please remember that /lU rUlls as
root and t.hat t.he shell scripts contain statements like "rm - rf *"; it gocs without saying that you
mllst be quite cautiolls. There is a debug mode available, in which IIlI will try not to hurt anything,
but whcnever you arc running ,IS root you should be ullusually careful. Nu can be run by non-root
users if it'i debug mode is enabled by a "Debug= l" statement in /etc/nu.cf.

CONFIGllnATION FILE FonMAT
The ·configuration file /etc/nu.cf is a text me containing a series '()f statements, one statement per
line. 1\ semicolon thal is not illside a quoted string causes the rest of that line to be treated as a
comment. Each line in the file that is nonblank after stripping comments is treated as an assignment
statement. Each statement assigns a value to one variable. 'vVilh the exception or the variable
"GroupHol11e", which is speCial, al1 of the variables act like ordinary shell variables, which is to say

7t.h Edition .1

NU(8) UNIX Programmer's Manual NU(8)

that they can take either integer values or string values. All integers are decimal; all strings mllst be
delimit.ed with double-quotes ("). There is no quoting or doubling convention for putting a double-
quote character inside a string. .

Here arc the configuration variables and what they mean. Case is significant.

n~lckuJ>me
This string variable givcs the path name that Jill will use to make a backup copy of
Ictc/passwd, to protect itc;c1f from disaster in case something happens while ·it is writing
letc/passwd. Typical value <?f B<tckupfite is "/usr/adm/nu.passwd".

CrcatcDir
This string variable identifies the shell script that is run whenever IIlI needs to create a new
directory. That shell script must be executable. It is called with 6 argumenL<;: 1, the integer
uid; 2, thc integer groupid; 3, the Ilame of the user's actual home directory; 4, the name of a
symbolic link that should be set up to point to that home directory;' 5, an integer that is
nonzero ifl' it is ok to clobber <tn existing directory of the samc name as argument 4; and 6,
an integcr that is Ilonzero iff nu is running in debug mode. The standard valuc fbI' CreatcDir
is "/etc/nulib/nul.sh".

CrcatcFilcs
This string variable idelltifies the shell script that is run whenever IJU needs to initialize a
directory (newly-created or otherwise) with some slandard files. For example, /usrlskel/.[a-z]*
are often copied into a new login directory. This shell script must be e~eclJtable. It is called
with 5 arguments: 1, the name of the login directory to be initialized: 2, the integer uid of the
user; 3, the integer grollpid of the user: 4, an integer that is nonzero iff an MH-t()rmat mail­
box is to be set up with some initial contents: and 5, an integer that is nonzero in' IllI is run­
ning in debug mode. The standard value for CreatcFiles is .. letc/nulib/nu2.sh".

Dc bug
This integer variable is set nonzero to cause JIll to fun in debug mode. Debug mode is
intended to help you get the bugs out of your shell scripL<; bcf()re you go'roolishly funning
them as root. I r Dcbug is nonzero, then you do not need to be logged on as root to fUll IlU.

The standard value Ihr Dcbug is O.

DcfaultGroul)
This illteger variable is set to thc group number or the deHlult lIser group. The deHlult is
used if the person running lilt types a carriage return in response to the question asking for a
group id /(Jr thc new USCI'. IlU requires that a valid GroupHollle assignment exist for the
default group nllmbe~·. The standard value for DcnlllltGroup is any group number from
letc/group.

DcfaultHomc
This string variable is set to the file system or top-level directory that will be lIsed to hold thc
login directory ror accounts in groups not explicitly set up to have their login directories
somewhere else. Whcn you are crc'lting a new account. lilt asks you what group Ilumber you
would like the account in. If' that group number iSlllcntioncd in a Grouplloll1c dcclaraLion
(see below), then thc home directory for the group is the one named in that GrotlpHome
declaration. If thc group number is not mentioneu in a Groupilolllc declaration, then login
accounts cre<tted in that group will have their login directories put into Dcfl.ullHome. The
standard value for l)el:llIltGroup is "/l11nt".

))cl~llIltShcll

This st.ring variable is set lo the nallle of the shcll rile to use by den.lIlt. The stall(brd value
f()r J)cf~lultShell is "/bin/csh".

7th I ~dition 2 '

NU(8) UNIX Programmer's Manual NU(8)

Dest roy Accts
This string variable identifies the shell script that is run whenever flU needs to destroy a user's
account that was created in some earlier session with IlU. Destroying accounts involves remov­
ing the user from the password file, deleting all of his files and directories, and deleting his
mailbox. This shell script mllst be executable. It is called with 5 arguments: 1, the-login id of
the account to be deleted: 2, the login directory for that account; 3, the name given in
/etc/passwd t()r the login directory (which might possibly be a symbolic link to item 2, above,
and therefore needs to be named separately); 4, the name of the log file in which account
changes arc being logged, and 5, an integer that is nonzero iff IlU is running in debug mode.
The standard value for DestroyAccts is "/etc/nulib/nu3.sh".

DelctcAects ,
This string variable identifies theslicWsci"ilJtthat is (un whenever IlU needs to delete a user's
account that was created in some earlier session with llLi. Deleting accounts involves removing
all the user's files and directories, and deleting his mailbOX. It should not tOllch /etc/passwd.
This shell script must be executable. It is called with 5 arguments: I, the login id of the
account to be deleted; 2, the login directory for that account; 3, the name' given in
/etc/passwd for the login directory (which might possibly be a symbolic 1ink to item 2, above.
and therefore needs to be named separately); 4, the name of the log file in which account
changes are being logged, and 5, an integer that is nonzero itf I1U is running in debug mode.
The standard value fi)r Dcletel\ccts is "/etc/nulib/nu4.sh".

Dummyfile
This string variable holds the name of the hard link that is created as part of the locking pro­
cess on /etc/passwd: see viPH,(lO. The correct value for Dummyfile is "/etc/vipw.lock". The
only reason that it is specified in the configuration me and not hardwired into the code of flU

is that in debugging you do not want to muck WiUl the real lock (and might iIi fact not even
have permissions to lock it).

GroupHomc
This pseudo-variable j's the only name defined in the configuration file that has any trickery
attached to it. GroupHome is not really a variable: rather. it is a name by which the
configuration code can 'load entries into a directory location table., In partjcular~ if you pro­
vide two Grollpllol1le declarations, t.hey are both processed. while if you provide two of any
other declaration. only the latest one has any encct. 1\ typical set of Groupllome declarations
might look something like this:

GroupHome= 10 "/usr"
GrollpHome= 20 "/mnt"
Groupllome= 25 "/usr/cis"
GroupHome = 31 "/usr/gllest"

The Groupllome declarations serve as default login directory location information for new
accounts. You can put any account anywhere you want: the GroupHome inl()rmatioll is used
to make the deHllIIL') come out in the right places, so t.hat the process or cre<lting a new
account consists Illostly or hitting the rcturn key to accept t.he de nllllts. The sample declara­
tions above cause group 10 to dcf~llIlt to /usr, i.e. /usr/smith or /usr/jolles, and group 31 to
derault to /usr/gllest, i.e. /usr/guest/smith or /usr/gllest/jones. [I' the login group is not
mentioned in a GroupHoll1c declaration, then the DclllllltHome variable is used. A
GroupHome declaration is required for the default group (see variable DefllllltGroup); all
others are optional.

Lin k rile
See also ·'1)ullllllyfile". This string variable gives the name of the file to which links are made
for the purpose of locking the pas;')word file. AllY valuc besides tr/etc/ptmp" is slispect.

7th Edition 3

NU(8) UNIX Prog·rammcr's Manual NU(8)

Logfilc
This string variable names the file in which all IlU transactions arc logged. The standard value
of Logfile is "/usr/adm/nu.1og".

MnxNamcLength
This integcr variablc gives the maximum numbcr of charactcrs pcrmittcd in a login namc.
For unmodificd 4BSD systems it should be set to 8.

P~lsswd File'
This string variable gives the namc of the filc into which IIU will write its ncw account cntries.
Unlcss you are debugging, its valuc should be "/ctc/passwd".

SymbolicLinkDir
. " .:. This stting variable givcs·· thc" nalTlC 'of u "directory that cant.11c filled with symbolic links to real

login directories. The value of SymholicLinkDir is ignored unless the variable WantSymboli­
cI ..inks is nonzero. See its description, below, for morc information. Standard valucs for Sym­
holicLinkDir arc "/user" or "/udir".

Tcmpfilc
This string variahle namcs thc file that IIlI will use for building a scratch copy of /etc/passwd
during the account modification process. The valuc doesn't really matter much; it is created
at the bcginning of an nu execution and destroyed bcforc exit. 1\ typical value for Tempfilc is
"/usr/adm/nu.temp" .

'V~mtl\1 (lsetup
This integer variable should be set to 1 if you would likc flU to take carc of initializing mail­
box contents. Initializing an MH mailbox turns out to bc a pleasant way to provide new users
with in Ihrmation about the system. and to give them a tutorial on the usc of MIl. Nu just
passes the value of WantM Ilsctup through to the shell script named in Create Filcs, which is
responsible for uoing the actual" initialization. Standard valuc is 1.

'V~lI1tSymholicLinks .

This integcr variable controls whether login dircctory names or symbolic links to them arc put
in thc actual /elc/p;lsswd file. If WanlSymbolicLinks is nonzero, then ail c·reatcd accounts arc
given unilt1rln login directory names in some directory that exists only for the purpose of
holding symbolic links. c.g. /user/smith and /user/jones; the me /user/smith or /user/joncs
is then madc to bc a symbolic link to t.he real login directory. This is preferable to t.he -smith
or -jones schcmc for finding login directories because thc - notation is not handled by the
kerncl. but must bc handled individually by all programs that open files. If thc variable
WantSymbolicLinks is 0, then accounts will bc created such that the truc directory namc is
storcd in /etc/passwd.

SYSTEM ISSUES

FILFS

Nu obeys t.he standard locking protocol It)r /ctc/passwu; see v;pn(8). It traps INTR chamclers (e.g.
te) and refuses to die if you try to stop it in the middle of a critical sectioll. Critical sections arc
primarily the updates or /etc/passwd. ;\ list of all changes is recorded in a log mc, usually
/usr/adlll/nu.tog.

/etc!passwd
/ctc/group
/etc/ptmp
/etc/vipw.lock
/ctc/nu.cf

system password file
system group me
lock file
dummy m~ linked to by /etc/ptmp
Configuration filc

7th I ~dilion 4

NU(8)

letc/nulib/*.sh
others

UN IX ProgramlTIer'S Manual

Shell scriptc; to perfonn the work
nu.cf and nulib/*.sh reference other
files.

NU(8)

SEE ALSO
adduser(8), getgrent(3), getpwent(3), group(S), passwd(5), vipw(8)

AUTHOR

BUGS

Brian Reid, Erik ·Hedberg, Fred Yankowski

The extensive use of shell scripts for doing sensitive things like purging accounts means that some­
body can make flU fail in horrible ways without having access to the source code. With increased
flexibility comes increased responsibility.

Delete mode takes a long time per account, thus making deletion of many tlsei-s at one go some­
what painful. It could be arranged to do this much faster, but at the risk· of leaving an incon­
sistency between the/etc/passwd file and the rest of the system.

Since delete mode docs not actually remove the user from letc/passwd, incoming mail fbr that user
will still be accepted. Perhaps IlU sho~lld arrange for such mail to be bounced.

7th Edition 5 .

PAC(8) UNIX Programmer's Manual PAC (8)

NAME
pac - printer/ploter accounting information

SYNOPSIS
/etc/pac [-Pprinter 1 [-pprice 1 [-5 1 [-r 1 [-c 1 [name ... 1

DESCRIPTION

FILES

BUGS

Pac reads the printer/plotter accounting files, accumulating the number of pages (the usual
case) or feet (for raster devices) of paper consumed by each user, and printing out how much
each user consumed in pages or feet and dollars. If any names are specified, then statistics are
only printed for those users; usually, statistics are printed for every user who has used any
paper.

The -P flag causes accounting to be done for the named printer. Normally, accounting is done
for the default printer (site dependent) or the value of the environment variable PRINTER is
used.

The -p flag causes the value price to be used for the cost in dollars instead of the default value
of 0.02.

The -c flag causes the output to be sorted by cost; usually the output is sorted alphabetically
by name.

The - r flag reverses the sorting order.

The -5 flag causes the accounting information to be summarized on the summary accounting
file; this summarization is necessary since on a busy system, the accounting file can grow by
several lines per day.

/usr / adm/? acct
/usr/adm/?_sum

raw accounting files
summary accounting files

The relationship between the computed price and reality is as yet unknown.

4th Berkeley Distribution 21 February 1981 1

PATCHROUTE(8) UNIX Programmer's Manual PATCHROUTE(8)

_NAM~
patch-routc-- kludge to support Stanford Pup-based subnet routing

SYNOPSIS '"
pa~chroutc [- v] [- d] [- s sleep-time]

DESCIUPTION
Patchroute gets a copy of the Pup routing table from gate wayin!o (8), converts it into an IP subnet
routing table, and stulfl) it into the kernel.

Except in debug mode, must be ruin by the super-user.

OPTIONS
-d
-v
-s time

BUGS
'rhis is a kludge.

Debug mode - doesn't change the kernel table, just prints some information. '
Verbose mode - tel1s YOl;' ~'h~'; i'f'~~d(;ing: ~. - ,

Sleep mode - instead of exiting, te11s palcliroule to sleep for the specified number
or seconds. then rUll again. PalcitroLitc is smart enough not to do too much extra
work if the tables don't change. If time is not specified, it defaults to 300 seconds
(5 minutes).

- VCfbose- mode is really slow.

Stanford's Class A. IP net number is compiled in; this is perhaps a safe assumption, perhaps not.

7th Edition 1

PSTAT(8) UNIX Programmer's Manual PSTAT(8)' .

NAME
pstat - print system facts p'.\

SYNOPSIS
/ ctc/pstat - ~lixptuikT [suboptions] [system] [·corcfilc]

DESCRIPTION
Pstat interprets the contents of celtain system tables. If corefile is given, the tables are sought there,
otherwise iil / dev/ kmem. (If corefile is a core dump, then the - k option must be given.) The.
required namelist is taken from / VlIlullix unless .\J'slem is specified. Options are

-a Under -p, describe all process slote; rather than just active ones .

. .. ' .. _. _ _ .. -J... .' Print the. ino<;ie tapl~ with ~11G tJle~e .h~adings,:
.. • .. .' • ''l " ". '.' '. '. , ~ ", • ", " • " ,I. '" '. t rt

LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:

L locked
U update time (fS(5)) must be corrected
A access time mllst be corrected
M file system is mounted here
W wanted by another process (I.. flag is on)
T contains a text file
C changed time must be corrected
S shared lock applied
E exclusive lock applied
Z someone waiting for an exclusive lock

CNT Number of open file table entries fhr this inode.
DEY Major and minor device number of nte system in which this inode resides.
RDC Reference count of shared locks on the inode.
\VRC Reference count of exclusive locks on the inode (this may be > 1 if, for example, a file

descriptor is inherited acr()ss a fork).
INO I-number wilhin the device.
MODE Mode bits! see cJllllOd(2).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV

-x
I,OC
FI./\GS

Number of bytes in an ordinary file, or major and minor device of special file.

Print the text table with these headings:

The core location of this table entry.
Miscellaneous state variables encoded thus:
T plrace(2) in clTect
\V text not yet written on swap device
L loading in progress
K locked
w wanted (I. flag is on)
P resulted from demand-page-from-inode exec format (sec exccve(2»

I)AI)DR Disk address in swap, measurcd in multiples of 512 bytes.

C/\ I)DRHead of a linked list of loaded processes using this text segment.

SIZE

IIYI'R

CNT
CCNT

Size of text segment, measured in mUltiples of 512 bytes.

Core location of corresponding inoc\c.

Number of processes lIsing this text segment.

Number of processes in core using this text segment.

4th Bcrkeley Distribution 1 /\pril 1981 '1

PSTAT(8) UNIX Programmer's Manual pSTAt(8)

-p

LaC
S

Print process table for active processes with these headings:

The core location of this table entry.
R un state encoded thus:
a no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace

,_'C

Miscellaneous state variables, or-ed together (hexadecimal):
000001 loaded
000002 the scheduler process
000004 locked for swap out
000008 swapped out
000010 traced
000020 used i 11 traci ng
000080 in page-wait
000100 prevented from swapping during /ork(2)
000200 gathering pages for raw i/o
000400 ex i ti ng
001000 proccss rcsultcd from a v/ork(2) which is not yct complete·
002000 anothcr flag for 1'/ork(2) .
004000 process has no virtual memory, as it is a parent in the context of vjork(2)
008000 proccss is dcmand paging data pages from it') text inode.
010000 process has advised of anomalous behavior with vatil'ise(2).
020000 proccss has advised of sequential behavior with vadv ise (2).
040000 proccss is in a sleep which will timeout.
080000 a parent of this process has exited and this process is now considered detached.
100000 process used 4.1 BSJ) compatibility mode signal primitiv·cs, no system ca11s . will

restart.
200000 process is owed a profiling tick.

POII' number of pages cu·iTently being pushed out from this process.
PR I Scheduling priorily, see selpriorily(2).
SIONAL Signals received (signals 1-32 coded· in bits 0-31),
UID Real user lD.
SL.P Amount of time process has been blocked.
TI.M Time resident in seconds: times over 127 coded as 127.
CPU \Veighted integral of CPU time, for scheduler.
Nl Nice level, see sClpriorily(2).
PO RP Process number of root of process group (the opener of the cOlllrotling terminal).
PID The process II) Ilumber.
PPI \) The process II) or parent process.
ADDR If in core, the page fi·ame number of the first page of the 'u-area' of the process. If

swapped out, the position in the swap area measured in multiples of 512 bytes.
RSS Resident set size - the number or physical page frames allocated to this process.
SRSS RSS at last swap (0 if never swapped).
SIZE Virtual size of process image (data+stack) in multiples of 512 bytes.
WCHAN Wait channel number of a waiting process.
LINK Link pointer in list of rUllnable processes.
TEXTP I r text is pure, pointer to location of text table entry.
CLK,), Countdown for real interval timer, setililller(2) measured in clock ticks (10 mil Ii sec 011 ds).

- t Print table for terminals with these headings:

4th Berkeley Distribution 1 April 1981 2

PSTAT(8) UNIX Programmer's Manual PSTAT(8)

FILES

RAW
CAN
OUT
MODE
ADDR
DEL
COL
STATE

PGR}>
DISC

-11

Number of characters in raw input que lie.
Number of characters in canonicalized input queue.
Number of characters in putput queue.
See lIy(4).
Physical device address:
Number of delimiters (newlines) in canonicalized input queue.
Calculated column position of terminal.
Miscellaneous state variables encoded thus:
\V waiting for open to complete
o open
S has special (output) start routine
C carrier is on .,'",: .. ':f ,,; ..• : ' .. _ ~.
B busy doing output
A process is awaiting output
X open for exclusive use
H hangup on close
S output stopped by ctrlls
Q tandem queue blocked
Process group for which this is controtting terminal.
Line discipline; blank is old tty OTTYDISC or "new tty" for NT'TYDISC or "net" for
NETLDISC (sec bk(4».

print information about a user process; the next argument is its address as given by ps(l).
The proces..() must be in main memory, or the file used can be a core image and the
address O.

- f Print the open file table with these headings:

LaC . The core location of this table entry.

'rYPE The type of object the file table entry points to.
FLG Miscellaneous state variables encode<.1 thus:

R open. for reading
W open fbr-·writing
A open for appending

eNT Number of processes that know this open file.
INa The location of the inode table entry for this file.
OFFS/SOCK

. The file offset (sec /seck(2}), or the core address of the associated socket structure.

-5 print information about swap space usage: the number of (1 k byte) pages llsed and free is given
as well as the number of used pages which belong to text images.

- T prinL'i the number of used. and free slots in the several system tables and is useful for checking
to sec how full system tables have become i r the system is 1I1l<kr heavy 10a<.1.

/vl11unix nameTist
/dev/kmem dd~lUlt source of tables

SEE ALSO

BUGS

ps(1), stat(2), fs(5)
K. Thompson, UN IX Implcmentation

It would be very useful if the systelll recorded "rnaximulll .occupancy" qn the tables reported by
- '1'; even more useful if these tables w'ere dynamically allocated.

4th Berkeley Distribution 1 April 198.1 . 3

pup-~1AILER (8) UNIX Programmer's Manual PUP-M AlLER (8) "

NAME
pup-mailer - deliver mail over the PUP network

SYNOPSIS "
lusr/local/lib/IlUp-mailcr from-address to-host to-user
lusr/loc~ll/lib/Jlupdacmon [file [debug] J

DESCRIPTION
Pup-mailer "queues the letter found on its standard input for delivery to the host and user specified.
The actual delivery wi1l be performed by the PUP mailer daemon.

If the tetter does not appear-to have a full ARPANET style header, pup-mailer will insert "Date:"
and "From:" fields in the proper format. The "From:" person is determined by the from-address

": -":atgument,;'with "at <hostnam:e)" "appended 'where the hosthalrrc is obtained from <whereamLh>.
The from-address argument is also used by the pupdaemoll to return the mail to you" if there is a
problem at the receiving host.

Pupdaemoll is invoked by the pup-mailer with the name of the file containing the message to be
sent. It will attempt to make a connection to the given PUP host and send the mail. If the host
docs n()t respond or returns a transient error, the lnessage is left in the queue. If the host returns a
"no sllch user" response, that status is returned. "

When Pupdaemon is invoked without any arguments it attempts to send all the files in the queue.
'rhis should be done periodically by an entry in letc/crontab. Mail that is not sent in two days is
returned to the sender.

AUTHOR
Dill NoWicki, based on the Arpanet mailer.

FILES
IusI' Ispool/pupmaill *

SEE ALSO
delivermail(8) cron(8)

7th Edition 1

PUPIOARPSER (8) UNIX Programmer's Manual

NAME
puplOarpser - Pup Gatewaylnfo routing table server

SYNOPSIS
/ etc/pup/pup 1 Oarpscr

DESCRIPTION

PUPIOARPSEk (8)

J>uplOarpser is a server for the 10mb Pup Address Resolution Protocol (ARP). Othcr programs
can ask pupJOarpser to resolve addresses, using IPe requests. For the format of these requests, see
the header file <pup/puparpser.h> ~

~)upIOa,.psershould be run out of /e/c/pup/rc before any other programs.

/etc/pup/pupneuab must be properly configured before pupJOmpser is n1n.

FILES
/ ctc/ pup/pupnettab

SEE AL..'iO
pupncttab(9)

AUTHOR
Jeffrey Mogul

7th Edition

list of network interfaces

1 .

PUPGATEWAY(8) UN IX Programmer's Manual PUPGATEWAY(8)

NAME
gateway - a Pup gateway program

SYNOPSIS
",tc/pup/gateway [- d 1 [- t] [·-1]

DESCRIPTION .
Gateway is a program that turns the host into a Pup gateway between two Ethcrnet'i. It must be
run out of /ctc/pup/rc aftcr gatewayill!o(8) (bccausc gatewayinfo is etTcctively part of the gateway
fUllction) and before much of anything else (because it needs to acquire a so-called "high-priority"
cthernet minor device on each network: see cllel(4).)

Gateway must run WWl the same UID as gatewayinfo; i.e., it must be run as root. This is becaus~ it
uses Unix signals to inform gatewayinfo that it is up and Jlealthy, and a process-can only selid sig­
nals to anothcr if their U IDs match.

It is alright to run gateway out of /ctc/pup/rc even if the host may only have one interface; it will
exit if there is nothing for it to do.

OPTIONS
-d Debug~ print information about error conditions on stderr.

-t

-1

Trace~ print lots of information on stdout.

"One-intertllcc" mode: the gateway will function as a forwarder even if only one
interface is present. This is not an "incorrect" thing to do, but it's inefficient
and/or unneccssary in almost any conceivable situation.

SEE AIA.<)O
gatewayinfo(8)

AUTIIOR

BUGS

Jeffrey Mogul

It doesn't gather any statistics ahout its operations.

It should be one process wilh gatcwayinfo: splilling this scrvice into two processes is an inellicient
lise or ethernet minor devices, CPU timc and memory, and complicates things. It also makes use of
the Xerox «gatecontrol" protocol pretty ncar impossible. On lhe other hand, this way was easier
It)r historical reasons.

It's slow to use a Vax like this. (Maybe gatewayinfo should increase hop counts slightly when it
send out routing tables, to encourage the use of oUlcr gatcways.) .

7th Edilion Stanlbrd 1

QUOT(S) UNIX Programmer's Manual QUOT(8)

NAME
quot -.;. summarize file system ownership

SYNOPSIS
/etc/quot [option 1 ... [filesystem 1

DESCRIPTION

FILES

Quot prints the number of blocks in the named jilesystem currently owned by each user. If no
jilesystem is named, a default name is assumed. The following options are available:

-0 Cause the pipeline ocheck fllesystem I sort +On I quot -n fllesystem to produce a list
of all files and their owners.

-c Print three columns giving file size in blocks, number of files of that size, and cumula­
tive total of blocks in that size or smaller file.

-f Print count of number of files as well as space owned by each user.

Default file system varies with system.
I etc/passwd to get user names

SEE ALSO
Is (1) , duO)

4th Berkeley Distribution 4 February 1983 1

QUOTACHECK (8) UNIX Programmer's Manual QUOT ACHECK (8)

NAME
quotacheck -- file system quota consistency checker .

SYNOPSIS
letc/quotacheck [-v] filesystem .•.
letcl quotacheck [-y] - a

DESCRIPTION

FILES

Quotacheck examines each file system, builds a table of current disc usage, and compares this
table against that stored in the disc quota file for the file system. If any inconsistencies are
detected, both the quota file and the current system copy of the incorrect quotas are updated
(the latter only occurs if an active file system is checked).

If the -a flag is supplied in place of any file system names, quotacheck will check all the file
systems indicated in letc/fttab to be read-write with disc quot~.

Normally quotacheck reports only those quotas modified. If the -Y option is supplied,quota­
check will indicate the calculated disc quotas for each user on a particular file system.

Quotacheck expects each file system to be checked to have a quota file named quotas in the root
directory. If none is present, quotacheck will ignore the file system.

Quotacheck is normally run at boot time from the letclre.local file, see re(8), before enabling
disc quo~ with quotaon(8).

Quotacheek accesses the raw device in calculating the actual disc usage for each user. Thus, the
file systems checked should be quiescent while quotacheck is running.

letc/fstab default file systems

SEE ALSO
quota(2), setquota(2), quotaon(8)

4th Berkeley Distribution 18 July 1983 1

QUOTAON(8) UNIX Programmer's Manual QUOTAON(8)

NAME
quotaon, quotaoff - turn file system quotas on and off

SYNOPSIS
letc/quotaoD [-y] jilsys •••

letc/quotaoD [-Y] -a

letc/quotaoff [-y] jilsys ..•

letc/quotaoff [-y] -a

DESCRIPTION

FILES

Quotaon announces to the system that disc quotas should be enabled on one or more file sys­
tems. The file systems specified must have entries in I etc/fstab and be mounted at the time.
The file system quota files must be present in the root directory of the specified file system and
be named quotas. The optional argument -y causes quotaon to print a message for each file
system where quotas are turned on. If, instead of a list of file systems, a -a argument is give
to quotaon, all file systems in letc/fstab marked read-write with quotas will have their quotas
turned on. This is normally used at boot time to enable quotas.

Quotaoffannounces to the system that file systems specified should have any disc quotas turned
off. As above, the -y forces a verbose message for each file system affected; and the -a
option forces all file systems in letc/fstab to have their quotas disabled.

These commands update the status field of devices located in letclmtab to indicate when quotas
are on or off for each file system.

letc/mtab
letc/fstab

mount table
file system table

SEE ALSO
setquota(2), mtab(S), fstab(S)

4th Berkeley Distribution 28 June 1983 1

RC(8) UNIX Programmer's Manual RC(8)

NAME
rc - command script f~r auto-reboot and daemons

SYNOPSIS
letc/rc
I etc/rc.local

DESCRIPTION
Rc is the command script which controls the automatic reboot and rc.local is the script holding
commands which are pertinent only to a specific site.

When an automatic reboot is in progress, rc is invoked with the argument autoboot and runs a
fsck with option -p to "preen" all the disks of minor inconsistencies resulting from the last
system shutdown and to check for serious inconsistencies caused by hardware or software
failure. If this auto-check and repair succeeds, then the second part of rc·is run.

The second part of rc, which is run after a auto-reboot succeeds and also if rc is invoked when a
single user shell terminates (see init(8», starts all the daemons on the system, preserves editor
files and clears the scratch directory Itmp. Rc.local is executed immediately before any other
commands after a successful /sck. Normally, the first commands placed in the rc.local file
define the machine's name, using hostname(l), and save any possible core image that might
have been generated as a result of a system crash, savecore(8). The latter command is included
in the rc.local file because the directory in which core dumps are saved is usually site specific.

SEE ALSO
init(8), reboot(8), savecore(8)

BUGS

4th Berkeley Distribution 4 February 1983 1

RDUMP(SC) UNIX Programmer's Manual

NAME
rdump - file system dump across the network

SYNOPSIS
letc/rdump [key [argument ...] filesystem]

DESCRIPTION

RDUMP(SC)

Rdump copies to magnetic tape all files changed after a certain date in the jilesystem. The com­
mand is identical in operation to dump(S) except the /key should be specified and the file sup­
plied should be of the form machine:device.

Rdump creates a remote server, letclrmt, on the client machine to access the tape device.

SEE ALSO
dump(S), rmt(8C)

DIAGNOSTICS
Same as dump(S) with a few extra related to the network.

4th Berkeley Distribution IS January 1983 1

REBOOT(S) UNIX Programmer's Manual REBOOT(S)

NAME
reboot - UNIX bootstrapping procedures

SYNOPSIS
/etc/reboot [-n] [-q]

DESCRIPTION
UNIX is started by placing it in memory at location zero and transferring to zero. Since the
system is not reenterable, it is necessary to read it in from disk or tape each time it is to be
bootstrapped.

Rebooting a running system. When a UNIX is running and a reboot is desired, shutdown (S) is
normally used. If there are no users then /etc/reboot can be used. Reboot causes the disks to
be synced, and then a multi-user reboot (as described below) is initiated. This causes a system
to be booted and an automatic disk check to be performed. If all this succeeds without
incident, the system is then brought up for many users.

Options to reboot are:

-n option avoids the sync. It can be used if a disk or the processor is on fire.

-q reboots quickly and ungracefully, without shutting down running processes first.

Power fall and crash recovery. Normally, the system will reboot itself at power-up or after
crashes. Provided the auto-restart is enabled on the machine-- front panel, an automatic con­
sistency check of the file systems will be performed then and unless this fails the system will
resume multi-user operations.

Cold starts. These are processor type dependent. On an 11/780, there are two floppy files for
each disk controller, both of which cause boots from unit 0 of the root file system of a con­
troller located on mbaO or ubaO. One gives a single user shell, while the other invokes the
multi-user automatic reboot. Thus these files are HPS and HPM for the single and multi-user
boot from MASSBUS RP06/RM03/RM05 disks, UPS and UPM for UNIBUS storage module
controller and disks such as the EMULEX SC-21 and AMPEX 9300 pair, or HKS and HKM for
RK07 disks.

Giving the command

»>BOOTHPM

Would boot the system from (e.g.) an RP06 and run the automatic consistency check as
described in ftck(S). (Note that it may be necessary to type control-P to gain the attention of
the LSI-II before getting the> > > prompt.) The command

»>BOOT ANY

invokes a version of the boot program in a way which allows you to specify any system as the
system to be booted. It reads from the console a device specification (see below) followed
immediately by a pathname.

On an 11/750, the reset button will boot from the device selected by the front panel boot dev­
ice switch. In systems with RK07's, position B normally selects the RK07 for boot. This will
boot multi-user. To boot from RK07 with boot flags you may specify

»>B/nDMAO

where, giving a n of 1 causes the boot program to ask for the name of the system to be
bootstrapped, giving a n of 2 causes the boot program to come up single user, and an of 3
causes both of these actions to occur.

The 11/750 boot procedure uses the boot roms to load block 0 off of the specified device. The
lusr/mdec directory contains a number of bootstrap programs for the various disks which
should be placed in a new pack automatically by newft(8) when the "a" partition file system on

4th Berkeley Distribution 10 May 19S1 1

REBOOT(S) UNIX Programmer's Manual REBOOT(S)

FILES

the pack is created.

On both processors, the boot program finds the corresponding file on the given device, loads
that file into memory location zero, and starts the program at the entry address specified in the
program header (after clearing off the high bit of the specified entry address.) Normal line edit­
ing characters can be used in specifying the pathname.

If you have a MASSBUS disk and wish to boot off of a file system which starts at cylinder ° of
unit 0, you can type "hp(O,O)vmunix" to the boot prompt; "up(O,O)vmunix" would specify a
UNIBUS drive, "hk(O,O)vmunix" would specify an RK07 disk drive, "ra(O,O)vmunix" would
specify a UDASO disk drive, and "rb(O,O)vmunix" would specify a disk on a 730 IDC.

A device specification has the following form:

device(unit, minor)

where device is the type of the device to be searched, unit is S. the mba or uba number plus the
unit number of the device, and minor is the minor device index. The following list of sup­
ported devices may vary from installation to installation:

hp MASS BUS disk drive
up UNIBUS storage module drive
ht TEI6,TU4S,TU77 on MASS BUS
mt TU7S on MASSBUS
hk RK07 on UNIBUS
ra storage module on a UDASO
rb storage module on a 730 IDe
rl RL02 on UNIBUS
tm TMII emulation tape drives on UNIBUS
ts TS 11 on UNIBUS
ut UNIBUS TU4S emulator

For tapes, the minor device number gives a file offset.

In an emergency, the bootstrap methods described in the paper "Installing and Operating
4.2bsd" can be used to boot from a distribution tape.

Ivmunix
Iboot

system code
system bootstrap

SEE ALSO
crash(SV), fsck(S), init(8), rc(8), shutdown(8), halt(S), newfs(8)

4th Berkeley Distribution 10 May 1981 2

RECNEWS(8) UNIX Programmer's Manual RECNEWS(8)

NAIIE
recnews - receive unprocessed articles via mail

SYNOPSIS
IUBr/lib/news/recnews [newsgroup [sender]]

DESCRIPTION
Recnews reads a letter from the standard input: determines the article title,
sender, and newsgroup; and gives the body to inews with the right arguments for
insertion.

If newsgroup is omitted, the to line of the letter will be used. If sender is omit­
ted, the sender will be determined from the from line of the letter. The title is
determined from the subject line.

SEE ALSO
inews(l), uurec(8), sendnews(8). readnews(l). checknews{l)

4th Berkeley Distribution 28.July 1983 1

RENlCE (8) UNIX Programmer's Manual RENlCE(8)

NAME
renice - alter priority of running processes

SYNOPSIS
letc:/renlce priority [[-p] pid ...] [[-g] pgrp ...] [[-u] user ...]

DESCRIPTION

FILES

Renice alters the scheduling priority of one or more running processes. The who parameters are
interpreted as process ID's, process group ID's, or user names. Renice'ing a process group
causes all processes in the process group to have their scheduling priority altered. Renice'ing a
user causes all processes owned by the user to have their scheduling priority altered. By
default, the processes to be affected are specified by their process ID's. To force who parame­
ters to be interpreted as process group ID's, a -g may be specified. To force the who parame­
ters to be interpreted as user names, a -u may be given. Supplying -p will reset who
interpretation to be (the default) process ID's. For example,

letc/renice + 1 987 -u daemon root -p 32

would change the priority of process ID's 987 and 32, and all processes owned by users daemon
and root.

Users other than the super-user may only alter the priority of processes they own, and can only
monotonically increase their "nice value" within the range 0 to PRIO_MIN (20). (This
prevents overriding administrative fiats.) The super· user may alter the priority of any process
and set the priority to any value in the range PRIO_MAX (-20) to PRIO_MIN. Useful priori­
ties are: 19 (the affected processes will run only when nothing else in the system wants to), 0
(the "base" scheduling priority), anything negative (to make things go very fast).

letc/passwd to map user names to user ID's

SEE ALSO

BUGS

getpriority(2), setpriority(2)

If you make the priority very negative, then the process cannot be interrupted. To regain con­
trol you make the priority greater than zero. Non super-users can not increase scheduling
priorities of their own processes, even if they were the ones that decreased the priorities in the
first place.

4th Berkeley Distribution 24 July 1983 1

REPQUOT A (8) UNIX Programmer's Manual

NAME
repquota - summarize quotas for a file system

SYNOPSIS
repquota jilesys •..

DESCRIPTION

REPQUOT A (8)

Repquota prints a summary of the disc usage and quotas for the specified file systems. For each
user the current number files and amount of space (in kilobytes) is printed, along with any
quotas created with edquota (8) .

Only the super-user may view quotas which are not their own.

FILES
quotas at the root of each file system with quotas
letc/fstab for file system names and locations

SEE ALSO
quota(1), quota(2), quotacheck(8), quotaon(8), edquota(8)

DIAGNOSTICS
Various messages about inaccessible files; self-explanatory.

4th Berkeley Distribution 7 July 1983 1

RESTORE (8) UNIX Programmer's Manual RESTORE (8)

NAME
restore - incremental file system restore

SYNOPSIS
/etc/restore key [name ...]

DESCRIPTION
Restore reads tapes dumped with the dump(8) command. Its actions are controlled by the key
argument. The key is a string of characters containing at most one function letter and possibly
one or more function modifiers. Other arguments to the command are file or directory names
specifying the files that are to be restored. Unless the h key is specified (see below), the
appearance of a directory name refers to the files and (recursively) subdirectories of that direc­
tory.

The function portion of the key is specified by one of the following letters:

r The tape is read and loaded into the current directory. This should not be done lightly;
the r key should only be used to restore a complete .dump tape onto a clear file system or
to restore an incremental dump tape after a full level zero restore. Thus

letc/newts Idev/rrpOg eagle
letc/mount Idev/rpOg Imnt
cd Imnt
restore r

is a typical sequence to restore a complete dump. Another restore can be done to get an
incremental dump in on top of this.
A dump(8) followed by a newjS(8) and a restore is used to change the size of a file system.

R Restore requests a particular tape of a multi volume set on which to restart a full restore
(see the r key above). This allows restore to be interrupted and then restarted.

x The named files are extracted from the tape. If the named file matches a directory whose
contents had been written onto the tape, and the h key is not specified, the directory is
recursively extracted. The owner, modification time, and mode are restored (if possible).
If no file argume.nt is given, then the root directory is extracted, which results in the
entire content of the tape being extracted, unless the h key has been specified.

t The names of the specified files are listed if they occur on the tape. If no file argument is
given, then the root directory is listed, which results in the entire content of the tape
being listed, unless the h key has been specified. Note that the t key replaces the func­
tion of the old dumpdir program.

1 This mode allows interactive restoration of files from a dump tape. After reading in the
directory information from the tape, restore provides a shell like interface that allows the
user to move around the directory tree selecting files to be extracted. The available com­
mands are given below; for those commands that require an argument, the default is the
current directory.

Is [arg] - List the current or specified directory. Entries that are directories are appended
with a "I". Entries that have been marked for extraction are prepended with a".".
If the verbose key is set the inode number of each entry is also listed.

cd arg - Change the current working directory to the specified argument.

pwd - Print the full pathname of the current working directory.

add [arg] - The current directory or specified argument is added to the list of files to be

4th Berkeley Distribution 19 January 1983 1

RESTORE (8) UNIX Programmer's Manual RESTORE (8)

extracted. If a directory is specified, then it and all its descendents are added to the
extraction list (unless the h key is specified on the command line). Files that are on
the extraction list are prepended with a "." when they are listed by Is.

delete [arg] - The current directory or specified argument is deleted from the list of files
to be extracted. If a directory is specified, then it and all its descendents are deleted
from the extraction list (unless the h key is specified on the command line). The
most expedient way to extract most of the files from a directory is to add the direc­
tory to the extraction list and then delete those files that are not needed.

extract - All the files that are on the extraction list are extracted from the dump tape.
Restore will ask which volume the user wishes to mount. The fastest way to extract
a few files is to start with the last volume, and work towards the first volume.

verbose - The sense of the v key is toggled. When set, the verbose key causes the Is
command to list the in ode numbers of all entries. It also causes restore to print out
information about each file as it is extracted.

help - List a summary of the available comm~ds ..

quit - Restore immediately exits, even if the extraction list is not empty.

The following characters may be used in addition to the letter that selects the function desired.

v Normally restore does its work silently. The v (verbose) key causes it to type the name of
each file it treats preceded by its file type.

f The next argument to restore is used as the name of the archive instead of Idev/rmt? If
the name of the file is "--", restore reads from standard input. Thus, dump(8) and restore
can be used in a pipeline to dump and restore a file system with the command

dump Of - lusr I (cd Imnt; restore xf -)

'1 Restore will not ask whether it should abort the restore if gets a tape error. It will always
try to skip over the bad tape block(s) and continue as best it can.

m Restore will extract by inode numbers rather than by file name. This is useful if only a
few files are being extracted, and one wants to avoid regenerating the complete pathname
to the file.

h Restore extracts the actual directory, rather than the files that it references. This prevents
hierarchical restoration of complete subtrees from the tape.

DIAGNOSTICS
Complaints about bad key characters.

Complaints if it gets a read error. If '1 has been specified, or the user responds "y", restore will
attempt to continue the restore.

If the dump extends over more than one tape, restore will ask the user to change tapes. If the x
or 1 key has been specified, restore will also ask which volume the user wishes to mount. The
fastest way to extract a few files is to start with the last volume, and work towards the first
volume.

There are numerous consistency checks that can be listed by restore. Most checks are self­
explanatory or can "never happen". Common errors are given below.

Converting to new file system format.
A dump tape created from the old file system has' been loaded. It is automatically

4th Berkeley Distribution 19 January 1983 2

RESTORE (8) UNIX Programmer's Manual RESTORE (8)

FILES

converted to the new file system format.

<filename>: not found on tape
The specified file name was listed in the tape directory, but was not found on the tape.
This is caused by tape read errors while looking for the file, and from using a dump tape
created on an active file system.

expected next file <inu"mber>, got <inumber>
A file that was not ltsted in the directory showed up. This can occur when using a dump
tape created on an active file system.

Incremental tape too low
When doing incremental restore, a tape that was written before the previous incremental
tape, or that has too Iowan incremental level has been loaded.

Incremental tape too high
When doing incremental restore, a tape that does not begin its coverage where the previ­
ous incremental tape left off, or that has too high an incremental level has been loaded.

Tape read error while restoring <filename>
Tape read error while skipping over inode <inumber>
Tape read error while trying to resynchronize

A tape read error has occurred. If a file name is specified, then its contents are probably
partially wrong. If an inode is being skipped or the tape is trying to resynchronize, then
no extracted files have been corrupted, though files may not be found on the tape.

resync restore, skipped < num > blocks
After a tape read error, restore may have to resynchronize itself. This message lists the
number of blocks that were skipped over.

Idev/rmt? the default tape drive
Itmp/rstdir* file containing directories on the tape.
Itmp/rstmode* owner, mode, and time stamps for directories .
.lrestoresymtab information passed between incremental restores.

SEE ALSO

BUGS

rrestore(8C) dump(S), newfs(S), mount(S), mkfs(8)

Restore can get confused when doing incremental restores from dump tapes that were made on
active file systems.

A level zero dump must be done after a full restore. Because restore runs in user code, it has
no control over inode allocation; thus a full restore must be done to get a new set of directories
reflecting the new inode numbering, even though the contents of the files is unchanged.

4th Berkeley Distribution 19 January 1983 3

REXECD(8C) UNIX Programmer's Manual REXECD (8C)

NAME
rexecd - remote execution server

SYNOPSIS
letclrexecd

DESCRIPTION
Rexecd is the server for the rexec(3X) routine. The server provides remote execution facilities
with authentication based on user names and encrypted passwords.

Rexecd listens for service requests at the port indicated in the "exec" service specification; see
services (5) • When a service request is received the following protocol is initiated:

1) The server reads characters from the socket up to a null ('\0') byte. The resultant
string is interpreted as an ASCII number, base 10.

2) If the number received in step 1 is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to the
specified port on the client's machine.

3) A null terminated user name of at most 16 characters is retrieved on the initial socket.

4) A null terminated, encrypted, password of at most 16 characters is retrieved on the ini­
tial socket.

5) A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system's
argument list.

6) Rexecd then validates the user as is done at login time and, if the authentication was
successful, changes to the user's home directory, and establishes the user and group
protections of the user. If any of these steps fail the connection is aborted with a diag­
nostic message returned.

7) A null byte is returned on the connection associated with the stderr and the command
line is passed to the normal login shell of the user. The shell inherits the network con­
nections established by rexecd.

DIAGNOSTICS
All diagnostic messages are returned on the connection associated with the stderr, after which
any network connections are closed. An error is indicated by a leading byte with a value of 1
(0 is returned in step 7 above upon successful completion of all the steps prior to the command
execution) .

uusemame too long"
The name is longer than 16 characters.

upassword too long"
The password is longer than 16· characters.

ucommand too long "
The command line passed exceeds the size of the argument list (as configured into the system).

"Login Incorrect."
No password file entry for the user name existed.

"Password Incorrect. tt
The wrong was password supplied.

"No remote directory."
The chdir command to the home directory failed.

4th Berkeley Distribution 4 March 1983 1

REXECD(8C) UNIX Programmer's Manual REXECD (8C)

"Try again."
A fork by the server failed.

" Ibinl sh: ... tt
The user's login shell could not be started.

BUGS
Indicating "Login incorrect" as opposed to "Password incorrect" is a security breach which
allows people to probe a system for users with null passwords.

A facility to allow all data exchanges to be encrypted should be present.

4th Berkeley Distribution 4 March 1983 2

RLOGIND (8C) UNIX Programmer's Manual RLOGIND (8C)

NAME
rlogind - remote login server

SYNOPSIS
letc/rloglnd [-d]

DESCRIPTION
Rlogind is the server for the rlogin(IC) program. The server provides a remote login facility
with authentication based on privileged port numbers.

Rlogind listens for service requests at the port indicated in the "login" service specification; see
services (5) • When a service request is received the following protocol is initiated:

1) The server checks the client's source port. If the port is not in the range 0-1023, the
server aborts the connection.

2) The server checks the client's source address. If the address is associated with a host
for which no corresponding entry exists in the host name data base (see hosts(5», the
server aborts the connection.

Once the source port and address have been checked, rlogind allocates a pseudo terminal (see
pty(4», and manipulates file descriptors so that the slave half of the pseudo terminal becomes
the stdln , stdout , and s.derr for a login process. The login process is an instance of the
login(l) program, invoked with the -r option. The login process then proceeds with the
authentication process as described in rshd(8C) , but if automatic authentication fails, it
reprompts the user to login as one finds on a standard terminal line.

The parent of the login process manipulates the master side of the pseduo terminal, operating
as an intermediary between the login process and the client instance of the rlogin program. In
normal operation, the packet protocol described in pty(4) is invoked to provide "srQ type facil­
ities and propagate interrupt signals to the remote programs. The login process propagates the
client terminal's baud rate and terminal type, as found in the environment variable, "TERM";
see environ (7).

DIAGNOSTICS

BUGS

All diagnostic messages are returned on the connection associated with the stderr, after which
any network connections are closed. An error is indicated by a leading byte with a value of 1.

"Hostname for your address unknown."
No entry in the host name database existed for the client's machine.

"Try again."
A fork by the server failed.

" Ibinl sh: ••• "
The user's login shell could not be started.

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

4th Berkeley Distribution 4 March 1983 1

RMT(8C) UNIX Programmer's Manual RMT(8C)

NAME
rmt - remote magtape protocol module

SYNOPSIS
letc/rmt

DESCRIPTION
Rmt is a program used by the remote dump and restore programs in manipulating a magnetic
tape drive through an interprocess communication connection. Rmt is normally started up with
an rexec(3X) or rcmd(3X) call.

The rmt program accepts requests specific to the manipulation of magnetic tapes, performs the
commands, then responds with a status indication. All responses are in ASCII and in one of
two forms. Successful commands have responses of

Anumbet\n
where number is an ASCII representation of a decimal number. Unsuccessful commands are
responded to with

Eerror-numbet\nerror-m~ssagtAn,

where error-number is one of the possible error numbers described in intro (2) and error-message
is the corresponding error string as printed from a call to perror(3). The protocol is comprised
of the following commands (a space is present between each token).

o device mode Open the specified device using the indicated mode. Device is a full pathname
and mode is an ASCII representation of a decimal number suitable for passing
to open (2). If a device had already been opened, it is closed before a new
open is performed.

C device . Close the currently open device. The device specified is ignored.

L whence offset Perform an /seek(2) operation using the specified parameters. The response
value is that returned from the /seek call.

W count

R count

Write data onto the open device. Rmt reads count bytes from the connection,
aborting if a premature end-of-file is encountered. The response value is that
returned from the write(2) call.

Read count bytes of data from the open device. If count exceeds the size of the
data buffer (10 kilobytes), it is truncated to the data buffer size. Rmt then per­
forms the requested read(2) and responds with Acount-rea~n if the read was
successful; otherwise an error in the standard format is returned. If the read
was successful, the data read is then sent.

I operation count
Perform a MTIOCOP ioctl(2) command using the specified parameters. The
parameters are interpreted as the ASCII representations of the decimal values
to place in the mLop and mLcount fields of the structure used in the ioctl call.
The return value is the count parameter when the operation is successful.

S Return the status of the open device, as obtained with a MTIOCGET ioctl call.
If the operation was successful, an "ack" is sent with the size of the status
buffer, then the status buffer is sent (in binary).

Any other command causes rmt to exit.

DIAGNOSTICS
All responses are of the form described above.

4th Berkeley Distribution 4 March 1983 1

RMT(8C) UNIX Programmer's Manual RMT (8C)

SEE ALSO
rcmd(3X), rexec(3X), mtio(4), rdump(8C), rrestore(8C)

Bues
People tempted to use this for a remote file access protocol are discouraged.

4th Berkeley Distribution 4 March 1983 2

ROUTE(SC) UN IX Programmer's Manual ROUTE(SC)

NAME
route - manually manipulate the routing tables

SYNOPSIS
/etc/route [- n] [- f] [command args]

DESCRIPTION
Route is a program used to manually manipulate the network routing tables. 1t normally is not
needed, as the system routing table management daemon, routed(SC}, should tend to this task.

Rou/e accepts three commands: add, to add a route; dele/e, to delete a route; and change, to
~odify an existing route.

All commands have the following syntax:

/etc/route command destination gatew~lY [metric]

where des/inatioll is a host or network for which the route is "to", .gateway is "the gateway to which
packelc; should be addressed, and metric is an optional cOllnt indicating the number of hops to the
destination. I f no metric is specified, roUll' assumes a value of O. Routes to a particular host are
distinguished from those to a network by a metric of "host"; e.g.,
/etc/route add sri-nic emu-gateway host
If the route is to a destination connected via a gateway, the metric should be greater than O. All
symbolic names specified for a destination or galelvay are looked up first in the host name database,
/wsls(5). [f this lookup fhils, the name is then looked for in the network· name database, net­
works{5}.

RoUle uses a raw socket and the SIOCI\I)DRT and SIOCDELRT ioclts to do its work. I\s such,
only the super-user may modify the routing tables.

If the -f option is specified, route will "flush" the routing tables of all gateway entries. If this is
used in conjunction with one of the commands described above, the tables are flushed prior to the
command's application.

1 f the - n option is specified, rou/e will not print the names of hosts, networks, or gateways ill ilc;
diagnostic messages. This makes it run much faster .

. - .
DIA(;NOSl'ICS

"add %s: gateway %s nags %x"
The specified route is being added to the tables. The valucsprinted are from the routing table
entry supplied in the ioCl1 call.

"delete %s: gateway %5 flags %x"
I\.s above, but when deleting an entry.

"%s %s done"
When the - f flag is specified, each routing table entry deleted is indicated with a message of this
form.

··1101 in tahle"
1\ delete operation was attempted for an entry which wasn't present in the tables.

"routing tahle overflow"
1\ n add operation was attempted, but the system was low on resources and was unable to allocate
memory to create the new entry.

SEE ALSO
intr~)(4N), routed(8C}

RUGS
The change operation is not implemented, one should ndd the new route, then delete the old one.

4th Berkeley Distribution 5 May ·1983 1 "

SENDNE\VS (8) UNIX Programmer's Manual

NAME
sendnews - send news articles via mail

SYNOPSIS
sendnews [- 0] [- a] [- b] [- n ncwsgroups] destination

DE .. ,";CRIPTION

SENDNEWS(8)

scm/news reads an article from it's standard input, performs a set of changes to it, and gives it to the
mail program to mail it to des/ina/iolJ.

An 'N' is prepended to each line for decoding by uurec(l).

The - 0 flag handles old format articles.

"fhe - a flag is used for sending artic1~s __ :yi.a Jh~ AR.P6NKI'. ~~ .!nap~ the ~rq_c1e's path- f1~dm
UUCpIIOS/! xxx to xxX({f}aJ1Ja/zos/. . . -

The - b flag is llsed for sending atticles via the Bcrknct. It maps the article's path from
uucplwsl! xxx to bcrkllOs/:XXX.

The -II flag changes the article's newsgroup to the specified lIewsgroup.

SI~14: ALSO
inews(l), lIurec(8), recncws(8), readnews(l), checknews(l)

4th Berkelev Distrihlltion 1R JlIlv 19R] .

ROUTED (SC) UNIX Programmer's Manual ROUTED (SC)

NAME
routed - network routing daemon

SYNOPSIS
lete/routed [-s 1 [-q 1 [-t 1 [/ogfiie 1

DESCRIPTION
Routed is invoked at boot time to manage the network routing tables. The routing daemon uses
a variant of the Xerox NS Routing Information Protocol in maintaining up to date kernel rout­
ing table entries.

In normal operation routed listens on udp(4P) socket 520 (decimal) for routing information
packets. If the host is an internetwork router, it periodically supplies copies of its routing tables
to any directly connected hosts and networks.

When routed is started, it uses the SIOCGIFCONF ioetl to find those directly connected inter­
faces configured into the system and marked "up" (the software loopback interface is ignored).
If multiple interfaces are present, it is assumed the host will forward packets between networks. .
Routed then transmits a request packet on each interface (using a broadcast packet if the inter­
face supports it) and enters a loop, listening for request and response packets from other hosts.

When a request packet is received, routet! formulates a reply based on the information main­
tained in its internal tables. The response packet generated contains a list of known routes, each
marked with a "hop count" metric (a count of 16, or greater, is considered "infinite"). The
metric associated with each route returned provides a metric relative to the sender.
Response packets received by routed are used to update the routing tables if one of the following
conditions is satisfied:

(1) No routing table entry exists for the destination network or host, and the metric indi­
cates the destination is "reachable" (i.e. the hop count is not infinite).

(2) The source host of the packet is the same as the router in the existing routing table
entry. That is, updated information is being received from the very internetwork router
through which packets for the destination are being routed.

(3) The existing entry in the routing table has not been updated for some time (defined to
be 90 seconds) and the route is at least as cost effective as the current route.

(4) The new route describes a shorter route to the destination than the one currently stored
in the routing tables; the metric of the new route is compared against the one stored in
the table to decide this.

When an update is applied, routed records the change in its internal tables and generates a
response packet to all directly connected hosts and networks. Routed waits a short period of
time (no more than 30 seconds) before modifying the kernel's routing tables to allow possible
unstable situations to settle.

In addition to processing incoming packets, routed also periodically checks the routing table
entries. If an entry has not been updated for 3 minutes, the entry's metric is set to infinity and
marked for deletion. Deletions are delayed an additional 60 seconds to insure the invalidation
is propagated throughout the internet.

Hosts acting as internetwork routers gratuitously supply their routing tables every 30 seconds to
all directly connected hosts and networks.

Supplying the -s option forces routed to supply routing information whether it is acting as an
internetwork router or. not. The -q option is the opposite of the -s option. If the -t option
is specified, all packets sent or received are printed on the standard output. In addition, routed
will not divorce· itself from the controlling terminal so that interrupts from the keyboard will
kill the process. Any other argument supplied is interpreted as the name of file in which

4th Berkeley Distribution 3 February 1983 1

ROUTED (8C) UNIX Programmer's Manual ROUTED (8C)

FILES

routed's actions should be logged. This log contains information about any changes to the rout­
ing tables and a history of recent messages sent and received which are related to the changed
route.

In addition to the fadlities described above, routed supports the notion of "distant" passive and
active gateways. When routed is started up, it reads the file Jetc/gateways to find gateways which
may not be identified using the SIOGIFCONF ioetl. Gateways specified in this manner should
be marked passive if they are not expected to exchange routing information, while gateways
marked active should be willing to exchange routing information (i.e. they should have a
routed process running oil the machine). Passive gateways are maintained in the routing tables
forever and information regarding their existence is included in any routing information
transmitted. Active gateways are treated equally to network interfaces. Routing information is
distributed to the gateway and if no routing information is received for a period of the time, the
associated route is deleted.

The Jetc/gateways is comprised of a series of lines, each in the following format:

< net I host > namelaateway name2 metric value < passive I active >
The net or host keyword indicates if the route is to a network or specific host.

Namel is the name of the destination network or host. This may be a symbolic name located in
Jetc/networks or Jete/hosts, or an Internet address specified in "dot" notation; see inet(3N).

Name2 is the name or address of the gateway to which messages should be forwarded.

Value is a metric indicating the hop count to the destination host or network.

The keyword passive or active indicates if the gateway should be treated as passive or active (as
described above). \

JetcJgateways for distant gateways

SEE ALSO

BUGS

"Internet Transport Protocols", XSIS 028112, Xerox System Integration Standard .
. udp(4P)

The kernel's routing tables may not correspond to those of routed for short periods of time
while processes utilizing existing routes exit; the only remedy for this is to place the routing .
process in the kernel.

Routed should listen to intelligent interfaces, such as an IMP, and to error protocols, such as
ICMP, to gather more information.

4th Berkeley Distribution 3 February 1983 2

RRESTORE (8e) UNIX Programmer's Manual

NAME
rrestore - restore a file system dump across the network

SYNOPSIS
letc/rrestore [key [name .•.]

DESCRIPTION

RRESTORE (8e)

Rrestore obtains from magnetic tape files saved by a previous dump (8) . The command is identi­
cal in operation to restore(8) except the Ikey should be specified and the file supplied should be
of the form machine:device.
Rrestore creates a remote server, letclrmt, on the client machine to access the tape device.

SEE ALSO
restore (8) , rmt(8C)

DIAGNOSTICS
Same as restore(8) with a few extra related to the network.

BUGS

4th Berkeley Distribution 18 January 1983 1

RSHD (SC) UNIX Programmer's Manual RSHD (SC)

NAME
rshd - remote shell server

SYNOPSIS
letc/rshd

DESCRIPTION
Rshd is the server for the rcmd(3X) routine and, consequently, for the rshOC) program. The
server provides remote execution facilities with authentication based on privileged port
numbers.

Rshd listens for service requests at the port indicated in the "cmd" service specification; see
services(S). When a service request is received the following protocol is initiated:

1) The server checks the client's source port. If the port is not in the range 0-1023, the
server aborts the connection.

2) The server reads characters from the socket up to a null ('\0') byte. The resultant
string is interpreted as an ASCII number, base 10.

3) If the number received in step 1 is non-zero, it is interpreted as the port number of a
secondary stream to be used for the stderr. A second connection is then created to the
specified port on the client's machine. The source port of this second connection is
also in the .range 0-1023.

4) The server checks the client's source address. If the address is associated with a host
for which no corresponding entry exists in the host name data base (see hosts(S», the
server aborts the connection.

S) A null terminated user name of at most 16 characters is retrieved on the initial socket.
This user name is interpreted as a user identity to use on the server's machine.

6) A null terminated user name of at most 16 characters is retrieved on the initial socket.
This user name is interpreted as the user identity on the client's machine.

7) A null terminated command to be passed to a shell is retrieved on the initial socket.
The length of the command is limited by the upper bound on the size of the system's
argument list.

S) Rshd then validates the user according to the following steps. The remote user name is
looked up in the password file and a chdir is performed to the user's home directory. If
either the lookup or chdir fail, the connection is terminated. If the user is not the
super-user, (user id 0), the file letclhosts.equiv is consulted for a list of hosts considered
"equivalent". If the client's host name is present in this file, the authentication is con­
sidered successful. If the lookup fails, or the user is the super-user, then the file .rhosts
in the home directory of the remote user is checked for the machine name and identity
of the user on the client's machine. If this lookup fails, the connection is terminated.

9) A null byte is returned on the connection associated with the stderr and the command
line is passed to the normal login shell of the user. The shell inherits the network con­
nections established by rshd.

DIAGNOSTICS
All diagnostic messages are returned on the connection associated with the stderr, after which
any network connections are closed. An error is indicated by a leading byte with a value of 1
(0 is returned in step 9 above upon successful completion of all the steps prior to the command
execution) .

"locuser too long"
The name of the user on the client's machine is longer than 16 characters.

4th Berkeley Distribution

RSHD(8C) UNIX Programmer's Manual RSHD(8C)

"remuser too lonl"
The name of the user on the remote machine is longer than 16 characters.

"command too lonl "
The command line passed exceeds the size of the argument list (as configured into the system).

"Hostname for four address unknown."
No entry in the bost name database existed for the client's machine.

"Lolln incorrect."
No password file entry for the user name existed.

"No remote directory."
The chdir command to the home directory failed.

"PermIssIon denied."
The authentication procedure described above failed.

"Can't make pipe."
The pipe nee~ed for the stderr, wasn't created.

"Try agaIn."
A fork by the server failed.

" IbInl sh: ••• "
The user's login shell could not be started.

SEE ALSO

BUGS

rsh (1 C), rcmd (3X)

The authentication procedure used here assumes the integrity of each client machine and the
connecting medium. This is insecure, but is useful in an "open" environment.

A facility to allow all data exchanges to be encrypted should be present.

4th Berkeley Distribution 4 March 1983 2

RWHOD(SC) UNIX Programmer's Manual RWHOD(SC)

NAME
rwhod - system status server

SYNOPSIS
letc/rwhod

DESCRIPTION
Rwhod is the server which maintains the database used by the rwho(1C) and ruptime(lC) pro­
grams. Its operation is predicated on the ability to broadcast messages on a network.

Rwhod operates as both a producer and consumer of status information. As a producer of
information it periodically queries the state of the system and constructs status messages which
are broadcast on a network. As a consumer of information, it listens for other rwhod servers'
status messages, validating them, then recording them in a collection of files located in the
directory lusrlspooUrwho.

The rwho server transmits and receives messages at the port indicated in the "rwho" service
specification, see services(S). The messages sent and received, are of the form:

struct outmp {
char outJine[S];I- tty name -/
char out_name[S];I- user id -I

};
long out_time;l- time on -I

struct whod {
char wd_vers;
char wd_type;
char wd_fill[2];
int wd_sendtime;
int wd_recvtime;
char wd_hostname[32];
int wdJoadav[3];
int wd_boottime;
struct whoent {

struct outmp we_utmp;
int wejdle;

} wd_ we U 024 1 sizeof (struct whoent)];
};

All fields are converted to network byte order prior to transmission. The load averages are as
calculated by the w(1) program, and represent load averages over the 5, 10, and 15 minute
intervals prior to a server's transmission. The host name included is that returned by the
gethostname(2) system call. The array at the end of the message contains information about the
users logged in to the sending machine. This information includes the contents of the utmp(S)
entry for each non-idle terminal line and a value indicating the time since a character was last
received on the terminal line.

Messages received by the rwho server are discarded unless they originated at a rwho server's
port. In addition, if the host's name, as specified in the message, contains any unprintable
ASCII characters, the message is discarded. Valid messages received by rwhod are placed in
files named whod.hostname in the directory lusrlspooUrwho. These files contain only the most
recent message, in the format described above.

Status messages are generated approximately once every 60 seconds. Rwhod performs an
nlist(3) on Ivmunix every 10 minutes to guard against the possibility that this file is not the
system image currently operating.

4th Berkeley Distribution 4 March 19S3 1

RWHOD(8C) UNIX Programmer's Manual RWHOD(8C)

SEE ALSO
rwho(1C), ruptime(1C)

BUGS
Should relay status information between networks. People often interpret the server dieing as a
machine going down.

4th Berkeley Distribution 4 March 1983 2

RXFORMAT(8V) UNIX Programmer's Manual RXFORMAT(8V)

NAME
rxformat - format floppy disks

SYNOPSIS
letc/rxformat [-d] special

DESCRIPTION
The ~OTmat program formats a diskette in the specified drive associated with the special device
special. (Special is normally Idev/rrxO, for drive 0, or Idev/rrxl, for drive 1.) By default, the
diskette is formatted single density; a -d flag may be supplied to force double density format­
ting. Single density is compatible with the IBM 3740 standard (128 bytes/sector). In double
density, each sector contains 256 bytes of data.

Before formatting a diskette ~OTmat prompts for verification (this allows a user to cleanly abort
the operation; note that formatting a diskette will destroy any existing data). Formatting is
done by the hardware. All sectors are zero-filled.

DIAGNOSTICS

FILES

'No such device'means that the drive is not ready, usually because no disk is in the drive or
the drive door is open. Other error messages are selfexplanatory.

/dev/rx?

SEE ALSO
rx(4V)

BUGS
A floppy may not be formatted if the header info on sector 1, track 0 has been damaged.
Hence, it is not possible to format a completely degaussed disk. (This is actually a problem in
the hardware.)

4th Berkeley Distribution 28 April i983 1

SA(8) UNIX l'rogrammer's Manual SA(8)

NAME
sa, accton - system accounting

SYNOPSIS
fete/sa [--abedDejkKlnrstuv] [file]

/ete/aec:ton [file]

DESCRIPTION
With an argument naming an existing file, aeeton causes system accounting information for
every process executed to be placed at the end of the file. If no argument is given, accounting
is turned off.

Sa reports on, cleans up, and generally maintains accounting files.

Sa is able to condense the information in lusrladm/aeet into a summary file lusrladmlsavaeet
which contains a count of the number of times each command was called and the time
resources consumed. This condensation is desirable because on a large system lusrladmlaeet can
grow by 100 blocks per day. The summary file is normally read before the accounting file, so
the reports include all available information.

If a file name is given as the last argument, that file will be treated as the accounting file;
lusrladmlaeet is the default.

Output fields are labeled: "cpu" for the sum of user+system time (in minutes), "re" for real
time (also in minutes), "k" for cpu-time averaged core usage (in Ik units), "avio" for average
number of i/o operations per execution. With options fields labeled "tio" for total i/o opera­
tions, "k.sec" for cpu storage integral (kilo-core seconds), "u" and "s" for user and system
cpu time alone (both in minutes) will sometimes appear.

There are near a googol of options:

a Place all command names containing unprintable characters and those used only once
under the name ' ••• other.'

b Sort output by sum of user and system time divided by number of calls. Default sort is
by sum of user and system times.

c Besides total user, system, and real time for each command print percentage of total
time over all commands.

d Sort by average number of disk i/o operations.

o Print and sort by total number of disk ilo operations.

f Force no interactive threshold compression with - v flag.

Don't read in summary file.

j Instead of total minutes time for each category, give seconds per call.

k Sort by cpu-time average memory usage.

K Print and sort by cpu-storage integral.

Separate system and user time; normally they are combined.

m Print number of processes and number of CPU minutes for each user.

n Sort by number of calls.

r Reverse order of sort.

s Merge accounting file into summary file lusrladmlsavaeet when done.

t For each command report ratio of real time to the sum of user and system times.

u Superseding all other flags, print for each command in the accounting file the user 10

7th Edition 20 April 1980 1

SA(8)

FILES

UNIX Programmer's Manual SA(8)

and command name.

v Followed by a number n, types the name of each command used n times or fewer.
Await a reply from the terminal; if it begins with 'y', add the command to the category
'--junk--.' This is used to strip out garbage.

lusr I adml acct
lusr/adm/savacct
lusr I adm/usracct

raw accounting
summary
per-user summary

SEE ALSO
ac(8), acct(2)

BUGS
The number of options to this program is absurd.

7th Edition 20 April 1980 2

SA VECORE (8) UNIX Programmer's Manual SAVECORE(8)

NAME
savecore - save a core dump of the operating system

SYNOPSIS
letc/savecore dirname [system]

DESCRIPTION

FILES

BUGS

Savecore is meant to be called near the end of the letc/rc file. Its function is to save the core
dump of the system (assuming one was made) and to write a reboot message in the shutdown
log.

Savecore checks the core dump to be certain it corresponds With the current running unix. If it
does it saves the core image in the file dirname/vmcore.n and it's brother, the namelist,
dirname/vmunix.n The trailing ".n" in the pathnames is replaced by a number which grows
every time savecore is run in that directory.

Before savecore writes out a core image, it reads a number from the file dirnamelminfree. If
there are fewer free blocks on the filesystem which contains dirname than the number obtained
from the minfree file, the core dump is not done. If the minfree file does not exist, savecore
always writes out the core file (assuming that a core dump was taken).

Savecore also writes a reboot message in the shut down log. If the system crashed as a result of
a panic, savecore records the panic string in the shut down log too.

If the core dump was from a system other than Ivmunix, the name of that system must be sup­
plied as sysname.

lusr/adm/shutdownlog shut down log
Ivmunix current UNIX

Can be fooled into thinking a core dump is the wrong size.

4th Berkeley Distribution 28 April 1981 1

SEND MAIL (8) UNIX Programmer's Manual SEND MAIL (8)

NAME
sendmail - send mail over the internet

SYNOPSIS
lusr Illbl sendmall [flags] [address ...

newaliases
mallq

DESCRIPTION
Sendmail sends a message to one or more people, routing the message over whatever networks
are necessary. Sendmail does internetwork forwarding as necessary to deliver the message to
the correct place.

Sendmail is not intended as a user interface routine; other programs provide user-friendly front
ends; sendmail is used only to deliver prc;-formatted messages.

With no flags, sendmail reads its standard input up to a control-D or a line with a single dot and
sends a copy of the letter found there to all of the addresses listed. It determines the network
to use based on the syntax and contents of the addresses.

Local addresses are looked up in a file and aliased appropriately. Aliasing can be prevented by
preceding the address with a backslash. Normally the sender is· not included in any alias expan­
sions, e.g., if 'john' sends to 'group', and 'group' includes 'john' in the expansion, then the
letter will not be delivered to 'john'.

Flags are:

-ba

-bd

-bi

-bm
-bp

-bs

-bt

-by

-bz

-Cjile
-dX .
- FJullname
-fname

-hN

-n

4th Berkeley Distribution

Go into ARPANET mode. All input lines must end with a CR-LF, and all
messages will be generated with·a CR-LF at the end. Also, the "From:"
and "Sender:" fields are examined for the name of the sender.

Run as a daemon. This requires Berkeley IPC.

Initialize the alias database.

Deliver mail in the usual way (default).

Print a listing of the queue.

Use the SMTP protocol 8$ described in RFC821. This flag implies all the
operations of the -ba flag that are compatible with SMTP.

Run in address test mode. This mode reads addresses and shows the steps
in parsing; it is used for debugging configuration tables.

Verify names only - do not try to collect or deliver a message. Verify
mode is normally used for validating users or mailing lists.

Create the configuration freeze file.

Use alternate configuration file.

Set debugging value to X.

Set the full name of the sender.
Sets the name of the "from" person (i.e., the sender of the mail). -f can
only be used by the special users root, daemon, and network, or if the person
you are trying to become is the same as the person you are.

Set the hop count to N. The hop count is incremented every time the mail is
processed. When it reaches a limit, the mail is returned with an error mes­
sage, the victim of an aliasing loop.

Don'l do aliasing.

1

SENDMAIL (8)

-ox value
-qltime)

-rname

-t

UNIX Programmer's Manual SENDMAIL (8)

Set option x to the specified value. Options are described below.

Processed saved messages in the queue at given intervals. If is omitted,
process the queue once. is given as a tagged number, with's' being
seconds, 'm' being minutes, 'h' being hours, 'd' being days, and 'w' being
weeks. For example, "-qlh30m" or "-q90m" would both set the
timeout to one hour thirty minutes.

An alternate and obsolete form of the -I flag.

Read message for recipients. To:, Cc:, and Bec: lines will be scanned for
people to send to. The Bec: line will be deleted before transmission. Any
addresses in the argument list will be suppressed.

-v Go into verbose mode. Alias expansions will be announced, etc.

There are also a number of processing options that may be set. Normally these will only be
used by a system administrator. Options may be set either on the command line using the -0

fiag or in the configuration file. These are described in detail in the Installation and Operation
Guide. The options are:

AJile Use alternate alias file.

c .' On mailers that are considered "expensive" to connect to, don't initiate
immediate connection. This requires queueing.

dx Set the delivery mode to x. Delivery modes are Ii' for interactive (synchro­
nous) delivery, 'b' for background (asynchronous) delivery, and 'q' for
queue only - i.e., actual delivery is done the next time the queue is run.

o Try to automatically rebuild the alias database if necessary.

ex Set error processing to mode x. Valid modes are 'm' to mail back the error
message, 'w' to "write" back the error message (or mail it back if the
sender is not logged in), 'p' to print the errors on the terminal (default), 'q'
to throwaway error messages (only exit status is returned), and Ie' to do
special processing for the BerkNet. If the text of the message is not mailed
back by modes 'm' or 'w' and if the sender is local to this machine, a copy
of the message is appended to the file "dead.1etter" in the sender's home
directory.

F mode The mode to use when creating temporary files.

f Save UNIX-style From lines at the front of messages.

gN The default group id to use when calling mailers.

HJile The SMTP help file.

Do not take dots on a line by themselves as a message terminator.

Ln The log level.

m Send to "me" (the sender) also if I am in an alias expansion.

o If set, this message may have old style headers. If not set, this message is
guaranteed to have new style headers (i.e., commas instead of spaces
between addresses). If set, an adaptive algorithm is used that will correctly
determine the header format in most cases.

Qqueuedir Select the directory in which to queue messages.

rtimeout The timeout on reads; if none is set, sendmail will wait forever for a mailer.

Sfile Save statistics in the named file.

4th Berkeley Distribution 2

SENDMAIL (8) UNIX Programmer's Manual SEND MAIL (8)

FILES

s Always instantiate the queue file, even under circumstances where it is not
strictly necessary.

Ttime Set the timeout on messages in the queue to the specified time. After sit­
ting in the queue for this amount of time, they will be returned to the
sender. The default is three days.

tstz,dtz

uN

Set the name of the time zone.

Set the default user id for mailers.

If the first character of the user name is a vertical bar, the rest of the user name is used as the
name of a program to pipe the mail to. It may be necessary to quote the name of the user to
keep sendmail from suppressing the blanks from between arguments.

Sendmail returns an exit status describing what it did. The codes are defined in < sysexits. h >
EX_OK Successful completion on all addresses.
EX_NOUSER User name not recognized.
EX_UNAVAILABLE Catchall meaning necessary resources were not available.
EX SYNTAX Syntax error in address.
EX:SOFrW ARE Internal software error, including bad arguments.
EX_OSERR Temporary operating system error, such as "cannot fork".
EX_NOHOST Host name not recognized.
EX_TEMPFAIL Message could not be sent immediately, but was queued.

If invoked as newaliases, sendmail will rebuild the alias database. If invoked as mailq, sendmail
will print the contents of the mail queue.

Except for lusr/lib/sendmail.cf, these pathnames are all specified in lusr/lib/sendmail.cf.
Thus, these values are only approximations.

lusr/lib/aliases raw data for alias names
lusr llibl aliases. pag
lusr/lib/aliases.dir
lusr llibl sendmai1.cf
lusr/lib/sendmai1.fc
lusr/lib/sendmail.hf
lusr llib/sendmail.st
lusr/bin/uux
lusr/net/bin/v6mail
lusr Inet/binl sendberkmail
lusr/lib/mailers/arpa
lusr Ispoollmqueue/*

data base of alias names
configuration file
frozen configuration
help file
collected statistics
to deliver-uucp mail
to deliver local mail
to deliver Berknet mail
to deliver ARPANET mail
temp files

SEE ALSO

BUGS

biff(1), binmai1(l), mai1(l), aliases(5), sendmai1.cf(5), rmail(l), mailaddr(7);
DARPA Internet Request For Comments RFC819, RFC821, RFC822;
Send mail - An Internetwork Mail Router,·
Sendmail Installation and Operation GUide.

Sendmail converts blanks in addresses to dots. This is incorrect according to the old ARPANET
mail protocol RFC733 (NIC 41952), but is consistent with the new protocols (RFC822).

4th Berkeley Distribution 3

SENDNEWS(a) UNIX Programmer's Manual SENDNEWS(a)

NAME
sendnews - send news articles via mail

SYNOPSIS
sendnews [-0] [-a] [-b] [-n newsgroups] destination

DESCRIPTION
send-news reads an article from it's standard input, performs a set of changes to
it, and gives it to the mail program to mail it to destination.

An 'N' is prep ended to each line for decoding by v:urec(l).

The -0 flag handles old format articles.

The -a flag is used for sending articles via the ARPANET. It maps the article's
path from 'U'Ucphost!x:r:x to %xx@a:rpahost.

The -b flag is used for sending articles via the Berknet. It maps the article's
path from 'U'Ucphost!xxx to berkhost:%xx.

The -n flag changes the article's newsgroup to the specified newsgro'Up.

SEE ALSO
inews(l), uurec{B), recnews(8), readnews{l), checknews(l)

4th Berkeley Distribution 28 July 1983 1

SHUTDOWN (8) UNIX Programmer's Manual SHUTDOWN (8)

NAME
shutdown - close down the system at a given time

SYNOPSIS
/etc/shutdown [-k] [-r] [-h] time [warning-message ...]

DESCRIPTION

FILES

Shutdown provides an automated shutdown procedure which a super-user can use to notify
users nicely when the system is shutting down, saving them from system administrators, hack­
ers, and gurus, who would otherwise not bother with niceties.

Time is the time at which shutdown will bring the system down and may be the word now (indi­
cating an immediate shutdown) or specify a future time in one of two formats: +number and
hour:min. The first form brings the system down in number minutes and the second brings the
system down at the time of day indicated (as a 24-hour clock).

At intervals which get closer together as apocalypse approaches, warning messages are displayed
at the terminals of all users on the system. Five minutes before shutdown, or immediately if
shutdown is in less than 5 minutes, logins are disabled by creating letc/nologin and writing a
message there. If this file exists whe~ a user attempts to log in, login(1) prints its contents and
exits. The file is removed just before shutdown exits.

At shutdown time a message is written in the file lusr/adm/shutdownlog, containing the time
of shutdown, who ran shutdown and the reason. Then a terminate signal is sent at init to bring
the system down to single-user state. Alternatively, if -r, -h, or -k was used, then shutdown
will exec reboot(8), halt(8), or avoid shutting the system down (respectively). (If it isn't obvi­
ous, - k is to make people think the system is going down!)

The time of the shutdown and the warning message are placed in letc/nologin and should be
used to inform the users about when the system will be back up and why it is going down (or
anything else).

letc/nologin tells login not to let anyone log in
lusr/adm/shutdownlog log file for successful shutdowns.

SEE ALSO

BUGS
login(l), reboot(8)

Only allows you to kill the system between now and 23:59 if you use the absolute time for
shutdown.

4th Berkeley Distribution 1 April 1981 1

STICKY (8) UNIX Programmer's Manual STICKY (8)

NAME
sticky - executable files with persistent text

DESCRIPTION

BUGS

While the 'sticky bit" mode 01000 (see chmod(2», is set on a sharable executable file, the text
of that file will not be removed from the system swap area. Thus the file does not have to be
fetched from the file system upon each execution. As long as a copy remains in the swap area,
the original text cannot be overwritten in the file system, nor can the file be deleted. (Direc­
tory entries can be removed so long as one link remains.)

Sharable files are made by the -n and -z options of IdO).

To replace a sticky file that has been used do: (1) Clear the sticky bit with chmod(l). (2) Exe­
cute the old program to flush the swapped copy. This can be done safely even if others are
using it. (3) Overwrite the sticky file. If the file is being executed by any process, writing will
be prevented; it suffices to simply remove the file and then rewrite it, being careful to reset the
owner and mode with chmod and chown(2). (4) Set the sticky bit again.

Only the super-user can set the sticky bit.

Are self-evident.

Is largely unnecessary on the VAX; matters only for large programs that will page heavily to
start, since text pages are normally cached incore as long as possible after all instances of a text
image exit.

4th Berkeley Distribution 4 February 1983 1

SWAPON(S) UNIX Programmer's Manual SWAPON (S)

NAME
swapon - specify additional device for paging and swapping

SYNOPSIS
I etc/swapon -a
letc/swapon name ...

DESCRIPTION
Swapon is used to specify additional devices on which paging and swapping are to take place.
The system begins by swapping and paging on only a single device so that only one disk is
required at bootstrap time. Calls to swapon normally occur in the system multi-user initializa­
tion file letclre making all swap devices available, so that the paging and swapping activity is
interleaved across several devices.

Normally, the -a argument is given, causing all devices marked as "sw" swap devices in
/etc/fstab to be made available.

The second form gives individual block devices as given in the system swap configuration table.
The call makes only this space available to the system for swap allocation.

SEE ALSO

FILES

BUGS

swapon(2), init(S)

/dev/[ru] [pk]?b normal paging devices

There is no way to stop paging and swapping on a device. It is therefore not possible to make
use of devices which may be dismounted during system operation.

4th Berkeley Distribution 4 February 19S3 1

SYNC(S) UNIX Programmer's Manual SYNC (S)

NAME
sync - update the super block

SYNOPSIS
/etc/sync

DESCRIPTION
Sync executes the sync system primitive. Sync can be called to insure all disk writes have been
completed before the processor is halted in a way not suitably done by reboot(S) or halt(S).

See sync(2) for details on the system primitive.

SEE ALSO
sync (2) , fsync(2), halt(S), reboot(S), update(S)

4th Berkeley Distribution 4 February 19S3 1

SYSLOG (8) UNIX Programmer's Manual SYSLOG (8)

NAME
syslog - log systems messages

SYNOPSIS
/etc/syslog [-mN] [-fname] [-d]

DESCRIPTION
Sys/og reads a datagram socket and logs each line it reads into a set of files described by the
configuration file /ete/syslog.conf. Sys/og configures when it starts up and whenever it receives
a hangup signal.

Each message is one line. A message can contain a priority code, marked by a digit in angle
braces at the beginning of the line. Priorities are defined in <sys/og.h>, as follows:

LOG_ALERT this priority should essentially never be used. It applies only to messages
that are so important that every user should be aware of them, e.g., a seri­
ous hardware failure.

LOG_EMERG

messages of this priority should be issued only when immediate attention is
needed by a qualified system person, e.g., when some valuable system
resource dissappears. They get sent to a list of system people.

Emergency messages are not sent to users, but represent major conditions.
An example might be hard disk failures. These could be logged in a
separate file so that critical conditions could be easily scanned.

these represent error conditions, such as soft disk failures, etc.

such messages contain critical information, but which can not be classed as
errors, for example, 'su' attempts. Messages of this priority and higher are
typically logged on the system console.

LOG_WARNING issued when an abnormal condition has been detected, but recovery can
take place.

something that falls in the class of "important information"; this class is
informational but important enough that you don't want to throw it away
casually. Messages without any priority assigned to them are typically
mapped into this priority.

LOG_INFO information level messages. These messages could be thrown away without
problems, but should be included if you want to keep a close watch on your
system.

LOG_DEBUG it may be useful to log certain debugging information. Normally this will
be thrown away.

It is expected that the kernel will not log anything below LOG_ERR priority.

The configuration file is in two sections separated by a blank line. The first section defines files
that sys/og will log into. Each line contains a single digit which defines the lowest priority
(highest numbered priority) that this file will receive, an optional asterisk which guarantees that
something gets output at least every 20 minutes, and a pathname. The second part of the file
contains a list of users that will be informed on SALERT level messages. For example, the
configuration file:

S·/dev/console
8/usr/spool/adm/syslog
3/usr / adm/ eri tical

eric

4th Berkeley Distribution 1

SYSLOG(S) UNIX Programmer's Manual SYSLOG(S)

FILES

BUGS

kridle
kalash

logs all messages of priority 5 or higher onto the system console, including timing marks every
20 minutes; all messages of priority 8 or higher into the file lusrlspool!adm/syslog; and all
messages of priority 3 or higher into lusr I adml cri tical. The users "eric", "kridle", and
"kalash" will be informed on any subalert messages.

The flags are:

-m Set the mark interval to N (default 20 minutes).

-f Specify an alternate configuration file.

-d Tum on dehugging Of compiled in).

To bring sys/og down, it should be sent a terminate signal. It logs that it is going down and
then waits approximately 30 seconds for any additional messages to come in.

There are some special messages that cause control functions. "<. > N" sets the default mes­
sage priority to N. "< $ >" causes sys/og to reconfigure (equivalent to a hangup signa}). This
can be used in a shell file run automatically early in the morning to truncate the log.

Sys/og creates the file letc/syslog.pid if possible containing a single line with its process ide This
can be used to kill or reconfigure sys/og.

letc/syslog.conf - the configuration file
letc/syslog.pid - the process id

\

LOG_ALERT and LOG_SUBALERT messages should only be allowed to privileged programs.

Actually, sys/og is not clever enough to deal with kernel error messages in the current imple­
mentation.

SEE ALSO
syslog(3)

4th Berkeley Distribution 2

TELNETD (8C) UNIX Programmer's Manual TELNETD (8C)

NAME
telnetd - DARPA TELNET protocol server

SYNOPSIS
letc/telnetd [-d] [port]

DESCRIPTION
Telnetd is a server which supports the DARPA standard TELNET virtual terminal protocol.
The TELNET server operates at the port indicated in the "telnet" service description; see ser­
vices (5) . This port number maybe overridden (for debugging purposes) by specifying a port
number on the command line. If the -d option is specified, each socket created by te/nerd will
have debugging enabled (see SO_DEBUG in socket(2».

Te/netd operates by allocating a pseudo-terminal device (see pty(4» for a client, then creating a
login process which has the slave side of the pseudo-terminal as stdln, stdout, and stdell. Tel­
netd manipulates the master side of the pseudo terminal, implementing the TELNET protocol
and passing characters between the client and login process.

When a TELNET session is started up, te/netd sends a TELNET option to the client side indi­
cating a willingness to do "remote echo" of characters. The pseudo terminal allocated to the
client is configured to operate in "cooked" mode, and with XTABS and CRMOD enabled (see
10'(4». Aside from this initial setup, the only mode changes te/netd will carry out are those
required for echoing characters at the client side of the connection.

Telnetd supports binary mode, and most of the common TELNET options, but does not, for
instance, support timing marks. Consult the source code for an exact list of which options are
not implemented.

SEE ALSO
telnet(1C)

BUGS
A complete list of the options supported should be given here.

4th Berkeley Distribution 4 March 1983 1

TELSER(8) UNIX Programmer's Manual

NAME
telser - PUP Tclnet Protocol Service

SYNOPSIS
/ etc/ pup/ lelser [arg 1) [Debug]

DESCRIPTION

TELSER(8)

Telser p'rovides the PUP Telnet service for a Unix time-sharing ,system. This allows users from
other systerns (including EthcrTips) running PUP Telnet to log into the system. This command is
normally run only by the supcr-user when the system is brought into multi-user mode.

If one command line argument is given, then helpful debugging information will be written in the
~ '.':' -: ': : ... argv~ are{l t,ot)e secn wi~h, the. ps, Gotnrr~a.nd ... With two argUQnts,t m<?re debugging information will

be printed, and if the second argument slarts with the letter D then BSP debug infonnation will be
printed.

SEE ALSO
puptc1net(1), ftpser(8)

AUTHOR
Rill Nowicki

BUGS
There are some suspected bugs in the pty device drivers. If you figure them out, please let us
know.

7th Edition 1

TFfPD(8C) UNIX Programmer's Manual TFfPD (8C)

NAME
tftpd - DARPA l'rivial File Transfer Protocol server

SYNOPSIS
/etc/tftpd [-d] [port]

DESCRIPTION
Tftpd isa server which supports the DARPA Trivial File Transfer Protocol. The TFfP server
operates at the port indicated in the "tftp" service description; see serv;ces(S). This port
number may be overridden (for debugging purposes) by specifying a port number on the com­
mand line. If the -d option is specified, each socket created by tftpd will have debugging
enabled (see SO_DEBUG in socket(2».

The use of tjtp does not require an account or password on the remote system. Due to the lack
of authentication information, tftpd will allow only publicly readable files to be accessed. Note
that this extends the concept of "public" to include all users on all hosts that can be reached
through the network; this may not be appropriate on all systems, and its implications should be
considered before enabling tftp service.

SEE ALSO
tftp(1C)

BUGS
This server is mown only to be self consistent (i.e. it operates with the user TFTP program,
tjtp(1C». Due to the unreliability of the transport protocol (UDP) and the scarcity of TFTP
implementations, it is uncertain whether it really works.

The search permissions of the directories leading to the files accessed are not checked.

4th Berkeley Distribution 4 March 1983 1

TIMECK(8C) UNIX Programmer's Manual TIMECI<{8C)

NAME
timeck - poll the local net for the current time

SYNOPSIS
/ctc/timcck [- s1

D~:SCRIPTION

The lil1leck program sends a broadcast message to the localnet (as defined in I elcl lIe/works, see net­
works (5», requesting thc current time (as defined in I elclservices, see services (5».

If the • - s' option is specified, then timeck will set the current hosfs time to the time reported by
the first host responding.

SEE ALSO
inetd(8C)

BUGS
If the local network doesn't support broadcasting. limeck should consult I elcl hosl.~ (see hoSIS (5»
and send a message to each host it finds there that resides Oil the local network.

It is a feature, not a bug, that the name and address of the local net arc detennined by looking at
I elcl lIelworks instead of I de vi kmem ..

4th Bcrkeley Distribution 1/27/83 1 .

TRPT(8C) UNIX Programmer's Manual TRPT(8C)

NAME
trpt - transliterate protocol trace

SYNOPSIS
trpt [-a] [-5] [-t] [-J] [-p hex-address] [system [core]]

DESCRIPTION

FILES

Trpt interrogates the buffer of TCP trace records created when a socket is marked for "debug­
ging" (see setsockopt(2», and prints a readable description of these records. When no options
are supplied, trpt prints all the trace records found in the system grouped according to TCP con­
nection protocol control block (PCB). The following options may be used to alter this
behavior.

- 5 in addition to the normal output, print a detailed description of the packet sequencing
information,

-t in addition to the normal output, print the values for all timers at each point in the
trace,

-J just give a list of the protocol control block addresses for which there are trace records,

-p show only trace records associated with the protocol control block who's address fol-
lows,

-a in addition to the normal output, print the values of the source and destination
addresses for each packet recorded.

The recommended use of trpt is as follows. Isolate the problem and enable debugging on the
socket(s) involved in the connection. Find the address of the protocol control blocks associated
with the sockets using the -A option to netstat(1). Then run trpt with the -p option, supply­
ing the associated protocol control block addresses. If there are many sockets using the debug­
ging option, the -J option may be useful in checking to see if any trace records are present for
the socket in question.

If debugging is being performed on a system or core file other than the default, the last two
arguments may be used to supplant the defaults.

Ivmunix
Idev/kmem

SEE ALSO
setsockopt(2), netstat(l)

DIAGNOSTICS

BUGS

"no namelist" when the system image doesn't contain the proper symbols to find the trace
buffer; others which should be self explanatory.

Should also print the data for each input or output, but this is not saved in the race record.

The output format is inscrutable and should be described here.

4th Berkeley Distribution 2 March 1983 1

TUNEFS (8) UNIX Programmer~s Manual TUNEFS (8)

NAME
tunefs - tune up an existing file system

SYNOPSIS
fetcftunefs tuneup-options speciaA./ilesys

DESCRIPTION
Tune/s is designed to change the dynamic parameters of a file system which affect the layout
policies. The parameters which are to be changed are indicated by the flags given below:

-a maxcontig
This specifies the maximum number of contiguous blocks that will be laid out before
forcing a rotational delay (see -d below). The default value is one~ since most device
drivers require an interrupt per disk transfer. Device drivers that can chain several
buffers together in a single transfer should set this to the maximum chain length.

-d rotdelay
This specifies the expected time Gn milliseconds} to service a transfer completion inter­
rupt and initiate a new transfer on the same disk. It is used to decide how much rota­
tional spacing to place between successive blocks in a file.

-e maxbpg
This indicates the maximum number of blocks any single file can allocate out of a
cylinder group before it is forced to begin allocating blocks from another cylinder
group. Typically this value is set to about one quarter of the total blocks in a cylinder
group. The intent is to prevent any single file from using up all the blocks in a single
cylinder group~ thus degrading access times for all files subsequently allocated in that
cylinder group. The effect of this limit is to cause big files to do long seeks more fre­
quently than if they were allowed to allocate all the blocks in a cylinder group before
seeking elsewhere. For file systems with exclusively large files~ this parameter should
be set higher.

-m minfree
This value specifies the percentage of space held back from normal users~ the minimum
free space threshold. The default value used is 10%. This value can be set to zero,
however up to a factor of three in throughput will be lost over the performance
obtained at a 10% threshold. Note that if the value is raised above the current usage
level~ users will be unable to allocate files until enough files have been deleted to get
under the higher threshold.

SEE ALSO

BUGS

fs(5}~ newfs(8}~ mkfs(8)

McKusick~ Joy~ Lemer~ "A Fast File System for Unix"~ Computer Systems Research Group,
Dept of EECS~ Berkeley, CA 94 720~ TR #7 ~ September 1982.

This program should work on mounted and active file systems. Because the super-block is not
kept in the buffer cache, the program will only take effect if it is run on dismounted file sys­
tems. (if run on the root file system~ the system must be rebooted)

You can tune a file system, but you can't tune a fish.

4th Berkeley Distribution 20 February 1983

UPDATE (8) UNIX Programmer's Manual UPDATE (8)

NAME
update - periodically update the super block

SYNOPSIS
/etc/update

DESCRIPTION
Update is a program that ex"ecutes the synd2) primitive every 30 seconds. This insures that the
file system is fairly up to date in case of a crash. This command should not be executed
directly, but should be executed out of the initialization shell command file.

SEE ALSO

BUGS

sync(2), sync(S), init{S), rc(S)

With update running, if the CPU is halted just as the sync is executed, a file system can be dam­
aged. This is partially due to DEC hardware that writes zeros when NPR requests fail. A fix
would be to have syndS) temporarily increment the system time by at least 30 seconds to
trigger the execution of update. This would give 30 seconds grace to halt the CPU.

7th Edition 4 February' 19S3

UTIME(8) UN [X Programmer's Manual UTIME(8)

NAME
utime - adjust the access or modification time of a file

SYNOPSIS
utime b\ I-m] Hie [+-]nnU ...

DESCRIPTION
Ulime adjusts the access (with -a option) or modification (-m option) time of a Unix fiie. The time
is adjusted to be later (+) or earlier (-) than its current value by <nn> lIniL~ U of time. <nn> is an
integer~ U is a single character standing for the units: s for seconds, m for minutes, h for hours, d
for days, w for weeks.

This program is just a simple interface to utime(3). The dctault time option is -m (modification
time). There is no default unit. ~ .. ,.: ". ,;- ,'.: '" '.-~' . "

AUTHO({

BUGS

Steve Hartwell. Manual page by Brian Reid.

No way to set the time to an absolute value, although see filetime(l) for a means by which it can be
hacked.

7th Edition 1

UUREC(B) UNIX Programmer's Manual

NAIIE
uurec - receive processed news articles via mail

SYNOPSIS
uurec

DESCRIPTION

UUREC(B)

'U'Urec reads news articles on the standard input sent by send:news(B), decodes
them. and gives them to inews(l) for insertion.

SEE ALSO
inews(l), readnews(l). recnews(B), sendnews{8}, newscheck{l)

4th Berkeley Distribution 28 July 1983 1

UUSNAP (8C) UNIX Programmer·s Manual UUSNAP (8e)

NAME
uusnap - show snapshot of the UUCP system

SYNOPSIS
uusnap

DESCRIPTION
Uusnap displays in tabular format a synopsis of the current UUCP situation. The format of
each line is as follows:

site N Cmds N Data N Xqts Message

Where "site" is the name of the site with work, "N" is a count of each of the three possible
types of work {command, data, or remote execute}, and "Message" is the current status mes­
sage for that site as found in the ·STST file.

Included in "Message" may be the time left before UUCP can re-try the call, and the count of
the number of times that UUCP has tried to reach the site.

SEE ALSO
uucp(1C), UUCP Implementation Guide

4th Berkeley Distribution 7 July 1983

VIPW (8) UNIX Programmer's Manual VIPW (8)

NAME
vipw - edit the password file

SYNOPSIS
vip\\'

DESCRIPTION
Vipwedits the password file while setting the appropriate locks, and does any necessary process­
ing after the password file is unlocked. If the password file is already being edited, then you
will be told to try again later. The vi editor will be used unless the environment variable EDI­
TOR indicates an alternate editor. Vipw performs a number of consistency checks on the pass­
word entry for root, and will not allow a password file with a Hmangled" root entry to be
installed.

SEE ALSO
chfn(t), chsh(I), passwd(I), passwd(S), adduser(8)

FILES
letclptmp

4th Berkeley Distribution 4 July 1983

