CGTM NO. 176
DecemBer 1976

THE SKOL PROGRAMMING LANGUAGE
REFERENCE MANUAL

CHaRLES T, ZaHN, JR.

CoMPUTATION RESEARCH GROUP
STANFORD LINEAR ACCELERATOR CENTER
StanForD, CALIFORNIA 94305

Working Paper
Do not quote. cite, phstract,
or reproduce witheut Pree
,permissien. s the, authorls).

TABLE OF CONTENTS

SKOL: Summary and Genealogy
Synta; Notation and Syntax Flow Graphs
Basic Format Rules for Program Text and Comments
Programs, Segments, Specifications and Actions
Statements, Blocks and Sequential Control
Constants, Definitions and Text Substitution
Record Classes, References and Dynamic Allocation
Scalar Types, Subtypes and Case Statements
Character Strings, Contexts and String Modification
Routines, Coroutines, Processes and Recursion
Macro Procedures, Keyword Parameters and Defaults
General Formatted Input and Output
Augmentation Statements
Run-time Error Checks and Variable Traces
Error Diagnostics
Restrictions and Extensions Depeﬁdent on FORTRAN
Matrix Operations: An Example of Language Extension
Other Uses of DEFINE
Warnings
A Macro and Function for String Equality
References
APPENDICES
Formal Syntax of SKOL
Syntax Flow Graphs for SKOL
Control Commands for the SKOL Translator
Character String Utility Programs

Sample Programs in SKOL
Sample Precompiler Diagnostics

FORTRAN Equivalent of Two SKOL Programs
Explanation of Control Error Diagnostics

O
o 0 O o —= M

14
16
20
24
28
32
33
36
36
37
38
40
42
43
45
46

I oo Mmoo W >

THE SKOL PROGRAMMING LANGUAGE REFERENCE MANUAL

SKOL: SuMvARY AND GENEALOGY

The design of the SKOL language was subject to two fairly important con-
straints. Firstly, all SKOL programs are translatable into standard FORTRAN
(with one slight exception). Secondly, the translation from SKOL to FORTRAN
is accomplished using the MORTRAN macro-translator [9, 10, 11, 12] and a set
of text-substitution rules (macros) specifically designed to translate SKOL
programs into FORTRAN.

As a natural consequence of the first constraint, SKOL has a FORTRAN
"underbelly" consisting of the syntax and semantics of identifiers (called
symbolic names in FORTRAN), logical and arithmetic expressions, specifications
of the types of variables, and the bounds of arrays, assignment statements, in-
put-output statements, formats for conversion between binary and character
representation of data, subprograms and parameter communication. Some of this
underbelly is described in the following sections, but the user is urged to
have FORTRAN documentation available to resolve questions at this level of
language. Errors made at this Tevel will most 1ikely be reported by the FOR-
TRAN compiler rather than the SKOL pre-compiler, so the user will have to under-
stand these diagnostic messages. As a result of the second constraint, some
of the syntactic aspects of SKOL are somewhat awkward and "strong" type-checking
(as in PASCAL) cannot be performed with complete consistency.

The major advantages which accrue as reward for accepting these two con-
straints have been discussed by Cook and Shustek [9, 10], but we shall briefly
mention them here:

1) Standard FORTRAN compilers exist for many computers and, therefore,

a language translatable to standard FORTRAN, by a translator imple-

-1 -

2)

3)

4)

mented in standard FORTRAN*, inherits a wide pbrtabi]ity.

Many larger computer installations have substantial ‘1ibraries of
programs including general utilities as well as application
packages written in FORTRAN or in machine-language but callable
from FORTRAN. |
Considerable effort has been invested by some major computer
vendors to produce optimizing compilers for FORTRAN.

Because the MORTRAN macro-translator is based on a general param-
eterized text-substitution mechanism, any language L translated
by it to FORTRAN can be extended by the user in the same way that
the macro-translator extends FORTRAN to L.

Given SKOL's FORTRAN underbelly and the extensibility inherited from the

translation technique (i.e., MORTRAN), the remainder of the language is a hope-
fully coherent assembly of features borrowed from existing languages or sug-
gested in the literature, plus several features or modifications which appear
to be novel. The following list includes the most characterizing features of

SKOL and their origin:

Features Origin
Expressions, formats, subprograms FORTRAN
Named constants, text-substitution PASCAL, MORTRAN
Nested blocks of statements ALGOL-60
Record structures and references ALGOL-W, PASCAL, PL/1
User-defined scalar types PASCAL
Character data and string variables PL/7, ALGOL-W, PASCAL
Flexible text output facility PL/1, PASCAL, SKOL
Keyword-parameter macro-procedures Hardgrave [5]
IF...THEN...ELSEIF...ELSE...ENDIF LISP, ALGOL-68
Scalar CASE statement PASCAL

*MORTRAN is so implemented

Situation CASE statement Zahn [6, 7, 8]

LOOP. . .WHILE, . .ENDLOOP ~ Dahl (see [6])
Infinite open-ended FOR statement SKOL
Iteration statement for Tinked 1ists SKOL
Hierarchical scalar types and subtypes SKOL
User-defined character data type SKOL
ELSE block in scalar CASE Hoare [13]
Character substring contexts and replacement SKOL
Coroutine processes Conway [3],

Dahl and Hoare [4]
Recursive routines ALGOL~60

For the convenience of those readers familiar with the borrowed features,
we include here a brief description and discussion of the features thought to
be novel. The idea to make the character data type CHAR user-defined rather
than built into SKOL was an example of the cliche "Necessity is the mother of
invention". The way that FORTRAN treats input/output of characters to and
from text files necessitates additional processing to generate an internal form
of character represented by a small integer. Otherwise, character CASE state-
ments would be impossible. Since each character must be so processed, it costs
little extra to allow the user to define the allowable set of character con-
stants as well as their ordering within the scalar type CHAR. The only things
built in are the name CHAR and the form (i.e., quote-brackets) used to denote
most constants of the scalar type CHAR. It is natural to decompose a character
type into subtypes 1ike ALPHABET, DIGIT, ARITHMETIC, RELATIONAL, LOGICAL, PUNC-
TUATION, BRACKETS, QUOTES, SPECIAL. A Tlexical scanner for a language trans]ator
might find it convenient to combine ALPHABET, DIGIT and the underbar character
into a subtype identified as NAME_SYMBOL, and to further combine ARITHMETIC,
RELATIONAL, LOGICAL, PUNCTUATION, BRACKETS and QUOTES into a subtype DELIMITER,
etc. Because of the naturalness of this example as well as others, it was de-

cided to generalize the scalar type idea to include nested subtypes and to in-

-3 -

tegrate this idea into the scalar CASE statement (see Sectjon on "Scalar
types...").

Although we borrowed from PL/1 the "Varying-]ength character string with
fixed maximum size," the PL/1 notation for substrings and aésociated pseudo-
variables has never caught our fancy. The verbose notation "SUBSTR(CH,K,1)"
to indicate the K-th character of string CH is especially unappealing. After
considerable searching and discussion, we settled on a compact yet simple
notation for denoting intervals of a sequence which allows empty intervals to
be interpreted as positions before or after elements of the sequence. When
used for string intervals, we call this notation a string-context, and an ar-
bitrary string insertion, deletion or replacement can be uniformly specified
as the replacement of a string-context by a string expression. The following

string-contexts and associated meaning reflect the generality and compactness

of the notation. The '|' denotes substring length.
Notation ‘Meaning
CH(K) CH(K)
CH(1...3) CH(1), CH(2), CH(3)
CH(3...]|2) CH(3), CH(4)
CH(3|...K) CH(K-2), CH(K-1), CH(K)
CH(2...]|0) before CH(2)
CH(0]...2) after CH(2)
CH(O]...LENGTH(CH)) after last character of string CH

SKOL contains a text OUTPUT statement which is a combination of ideas from
FORTRAN, PL/1 and PASCAL. 1In PL/1, there are three flavors of text output
possible -- edit-directed, in which conversion formats must be supplied explic-
itly by the programmer; list-directed, in which the conversion format is im-
plicit but dependent on the type of each variable; data-directed, in which the

symbolic name of each variable is output before the value (under type-dependent

-4 -

format), These three kinds of output cannot, however, be mixed in a single
output statement, and the association between a variable and its explicitly
supplied format is not textually apparent, the data and format lists being
segregated rather than merged. The formatted output of FORTRAN shares this
flaw. PASCAL has a WRITE statement in which each data item may optionally be
followed by an explicit format, but the very useful data-directed output is
not available and control formats are not as flexible as in FORTRAN or PL/1.

The QUTPUT statement of SKOL requires a sequence of data and control items
which will be processed in order, the control items causing some specific modi-
fication of the current output position and the data items causing character
output after formatting in any of the three ways discussed above. For example,
OUTPUT($PAGE,:10X,I:12,") ", X(1),:/,:20X,P(I):," #'); causes the following to
happen on file $OUTPUT:

Page eject; Indent 10 spaces

Print integer I in field of width 2; Print ')’

Print ' X(I)= '; Print X(I) with G12.5 format; Print ';'
Skip to next line; Indent 20 spaces

Print P(I) with G12.5 format; Print ' #'

The infinite open-ended FOR statement allows iterations in which a scalar
control-variable takes on an arithmetic progression of values, the termination
of the iteration being accomplished via a situation exit within the iterated
block. Appendix E contains a prime-generating program exhibiting the useful-
ness of this feature.

When sequences are represented by Tinked-Tists implemented via records
and reference fields, it is often required to scan through such linked-lists
in a fashion analogous to the way a normal FOR statement can scan through the
indices of an array. For this purpose a LINK iteration statement is included

in SKOL; it causes a reference variable to take on a succession of reference

-5 -

values defined by a field and terminating when a NIL reference is encountered.

SynTAX NoTATION AND SYnTAX FLOW GRAPHS

To describe the syntax of the SKOL language, we employ an extension of
BNF defined as follows:

1) Reserved words and other terminal symbol strings of the language
are enclosed in string quotes (e.g., 'IF', '+').

2) Syntactic constructs are named by identifying words sometimes
including hyphens or operators, but no blanks (e.g., command,
segment-body) .

3) The notation G4p Gy ... o MEaAns a, followed by %y followed by
ags etc.

4) The notation [u] | oy | o,] means one of the a,.

count

5) The notation {B}0

indicates a number of repetitions of 8
separated by o, where count specifies a restriction on the
possible number of 8. If o is omitted, then the Bs are juxta-
posed without an extra separator. The count specification in-
dicates a range of non-negative integers; we have found fre-
quent need for "zero or one" which we write as 0,1 and "n or
more" which we write as > n.

For example, a rule for constructing identifiers which specifies one or

more occurrences of letters A or B, followed by an optional $, can be described

by:

1

{[IAI[!BI]}Z {|$0}O:]

Most of the syntax rules we will encounter can be very nicely and com-

pactly described in the form of syntax flow graphs and we shall so describe

-6 -

the syntax of SKOL in Appendix B, A syntax flow graph is a directed graph with
unique start and finish nodes, terminal strings enclosed in oval nodes, and
named syntactic constructs enclosed in rectangular nodes. Any valid directed
path through the graph, from start to finish, represents a valid symbol sequence
for the defining flow graph. The following flow graph™is equivalent to the

above identifier rule:

Gl
@7 @

Another example is the syntax described by:
{]abe1}?]. ':' block

and by the flow graph:

h

L3

obe! |

*These diagrams are not graphs in the strict sense but each such diagram
corresponds to a proper directed graph whose edges correspond to "smooth"
paths between nodes of the diagram.

T_RULES FO TEXT AND
Program text is essentially free-form in SKOL with no significance assigned
to ends-of-1line or particular columns within lines. The single exception to
this is that any line with a % in the first column is interpreted as a special
control Tine, and no characters on this line are considered to be part of the
program text (see Appendix C).

The normal comment convention is described by:

tnt {non_ll_symbo'l }20 1

but this can be changed (via control line) to the safer:

""" {non-"-symbol} 20 ['"'|end~0f~Tine]

so that comments never extend over 1line boundaries.

PROGRAMS, SEGMENTS, SPECIFICATIONS AND ACTIONS

A SKOL program consists of a number of program-segments followed by a
terminator-1line which contains %% in the first two columns. This can be des-
cribed by:

{program-segment}Z] terminator-line
where each program-segment is:

['BLOCKDATA! ':'.{specification}zl 'ENDBLOCKDATA' ';* |

'MAIN' ':' segment-body 'ENDMAIN® *;' |

'SUBROUTINE' Fident {parameters}*' ':t segment-body 'ENDSUBROUTINE' ';' |

'"FUNCTION' Fident parameters Ftype ':' segment-body 'ENDFUNCTION' ';']
and segment-body is:

{specificationfzo'{statement~functionf:0 {command}Z]

{routine definition]?o

and statement~function is;:

Fident ‘(" {Fident}?i. ")t ot=t Aexpr 't
and command is:

[action | definition | format-declaration | pragmat]
and parameters are:

(! {Fident}?l. ')
An example of a statement function is:

ROUND(X) = INT(X+SIGN(.5,X));
It should be prefaced by declarations:

REAL X; INTEGER ROUND;
The syntax for routine-definitions is described in the section on "Routines,
Coroutines,...". Specifications and actions are precisely defined in Appendix
A. An Ftype is defined by:

['REAL' | 'INTEGER' | 'LOGICAL' | 'COMPLEX']
and a definition is any CONSTANT, DEFINE or MACRO statement as described in
the sections on "Constants, Definitions and Text Substitution” and "Macro Pro-
cedures...".

A format-declaration is a FORMAT statement as described in the section
on "General Formatted Input and Output" and a pragmat is a RUNCHECK or TRACE
statement as described in the section on "Run-time Error Checks and Variable

Traces'.

STATEMENTS, BLocks AND SEQUENTIAL CONTROL

A11 statements in SKOL (specifications and commands) are terminated by a
semicolon. A block is a sequence of commands. Formally, it has the form:

{command}:'ZO

-9 -

Notice that it may be an empty sequence of commands having no effect. A
command is an action, a definition, a format-declaration or a pragmat (see
AppendiX A).

The most basic control statement is the "if" statement with the form:

0,1

TIF' (Lexpr ':' block)%p gpppr ('ELSE' ':' block}®*! 'ENDIF '3

where Lexpr is a FORTRAN logical expression.

The execution of this statement is performed by testing the sequence of
one or more Lexprs until one of them is true and then executing the statements
of the corresponding block. If all Lexpr are false, then the block after ELSE
is executed; when no ELSE phrase is explicitly specified, it is just as if the

empty block has been specified.

Example:
IFA<O :

J = J+1; P(J) := A;
ELSEIF A>0 :

J :=J-1; R(J) := A;
ELSE:

OUTPUT (J,S(J));

ENDIF;

Another basic control statement of rather recent vintage [6, 7, 8] is the
"situation" case statement which has the basic form:

'UNTIL' {ident}75p, ':' block 'THENCASE' ':'

| {{situation)T', ':' 'BEGIN' block 'END'}*' 'ENDUNTIL' '3’

where each situation is one of the idents in the UNTIL phrase and every ident
appears exactly once as a situation. Within the block before THENCASE,

"situation" statements of the form:

situation ';'

- 10 -

will cause immediate termination of the block and then execution of whichever
block is associated to that particular situation in the THENCASE part.
Example:
UNTIL MATCH OR NO MATCH:
FOR I =1 TO N:
IF X = TABLE(I) : MATCH ; ENDIF ;
ENDFOR;
NO _MATCH;
THENCASE :
MATCH : BEGIN COUNT(I) := COUNT(I) +1; END
NO MATCH : BEGIN N := N+1; TABLE(N) := X;
COUNT(N) := 1; |
END
ENDUNTIL;
This example shows how multiple-exit loops can be handled using the situ~
ation case.
| An auxiliary form of this statement allows the suppression of the case
part when only one situation can occur; the abbreviated form is:
'"UNTIL' ident ':' block 'ENDUNTIL® ';’
Example:
UNTIL NON_BLANK :
FOR I =1 70 81 :
IF CH(I)~= ' ' : MON BLANK ; ENDIF;
ENDFOR;
ENDUNTIL;
This program delivers the index of the first non-blank character in array

CH on assumption that CH(81) 4 ' '.

-1 -

The most basic repétetive statement in SKOL is the repeat statement of
the form: |

'REPEAT' {Iexpr 'TIMES'}9°! ':' block 'ENDREPEAT' ';'
where Iexpr is an integer expression whose value should be non-negative. If
the optional TIMES phrase is absent, the repetition is infinite and, therefore,
the programmer must satisfy himself that eventually some "situation" statement
within the repeated block will terminate an outer block enclosing the entire
REPEAT statement.

Example:

REPEAT 5 TIMES : QUTPUT('*****') . ENDREPEAT;

An extremely useful repetitive statement is the "Dahl-loop" which sub-
sumes the familiar "while-do" and "repeat-until" statements from structured
programming. Its form is:

'LOOP' ':' block 'WHILE' Lexpr ':' block 'ENDLOOP' ';'

The first command sequence is executed and if Lexpr is false, the repe-
tition is terminated; if Lexpr is true, then the second command sequence is
executed, followed immediately by the first sequence and the test and possible
termination, etc.

Example:

SUM := 0.0; COUNT := 0;

LOOP : INPUT (I:I5, X:F10.5);

WHILE T >0 :

SUM := SUM + X; COUNT := COUNT + I;

ENDLOOP;

OUTPUT ($SKIP2, COUNT, SUM);

SKOL has two forms of "for" statements, one infinite and one finite des-

cribed by:

-12 -

'"FOR' Ivar '=' Iexpr 'BY' Iexpr ':' block 'ENDFOR' ‘';'
or

'FOR' Ivar '=' Iexpr'{'BY'_Iexpr}o’]

'TO' Iexpr ':' block 'ENDFOR' ';'
where Ivar and Iexpr are any integer variables or expressions, respectively.
Ivar may be a subscripted variable and the increment expression may be negative.
In this context, integer includes any programmer defined scalar types as des-
cribed later.

The second form may fail to execute block even once if the iteration
phrase specifies an empty arithmetic progression of integer values as in I =1
BY 1 to 0. In this case, the value of Ivar will be unchanged. If a non-empty
arithmetic progression terminates normally, then Ivar will have the exact ter-
minal value at completion of the FOR statement. A runtime error may occur if
the terminal expression does not differ from the initial expression by an exact
multiple of the increment expression. For example, I = 11 BY -2 TO 0 is con-
sidered to be in error.

Example:

FOR P(J) = 0 BY -(INC+1) : ... ENDFOR;

FOR IND = 2 BY DELTA TO N-1 : X(2,IND) := 0; ENDFOR;

FOR K =1 T0 100 : P(K) := A(K) + B(K); ENDFOR;

The default increment value is +1 when the BY phrase is omitted.

The infinite form of FOR carries the same warning concerning termination
as was given for the analogous infinite REPEAT.

To cater for simple iterations in the most efficient way, a FORTRAN-1ike
"DO0" statement of the following form may be used:

'DO' simplelvar '=' simplelexpr 'TO' simplelexpr ':' block 'ENDDO' ';'
where simplelvar means non-subscripted integer variable and simplelexpr means

a positive integer constant or non-subscripted integer variable.

- 13 -

ConsTANTS. DEFINITIONS AND TEXT SUBSTITUTION
The programmer can declare that certain names are to be considered equi-
valent to constant values dsing a constant-definition of the form:
- 'CONSTANT' {ident '=' va]ue}?l, e
Whenever such an ident occurs subsequently in the program text (preceded
and followed by blanks!), it will be replaced by the corresponding value.
| Examgie: |
CONSTANT PI = 3.14159, CM_PER_INCH = 2.54;

X := (2.0% PI * RADIUS)* CM_PER_INCH ;
CONSTANT $INPUT

5, $OUTPUT = 10, $GENFORM = G20.7;

CONSTANT LIMIT = 50;

REAL A(LIMIT , LIMIT), B(2, LIMIT);

FOR I =1 TO LIMIT : B(1,I) := 0; ENDFOR;

The constant-definition facility is really a special case of a more gen-
eral definition statement whose form is:

'DEFINE' o pattern '''' '=' '''! peplacement '''' ';'
where pattern and replacement are sequence of characters and special "operators"
as defined in the user documentation for the MORTRAN2 macro-preprocessor [12].
Rather than repeat that description here, we will simply give several simple
examples of the use of this text substitution facility.

In its simplest form, a pattern is just a sequence of characters (with '
and # and @ represented by 'Y ## and 0@, respective]y) and replacement is simi-
lar.

Example:

DEFINE ';INITIALIZE;' = ';A := 03 B := 13 P(2) := 3;' 3

Every subsequent instance of the pattern will be replaced by a copy of

the replacement. In this form, the DEFINE is a parameterless macro facility.

- 14 -

By placing # at various places in the pattern, and by placing #8 where
§ is a digit in the replacement, one can create parameterized text substitution
rules. Indeed, SKOL is translated into FORTRAN by just such rules.
Example:
DEFINE ';SWAP(#,#);' = ';R99999 := #1 ; #1 :
SWAP(A(I,J),A(J,I));

#2 ; #2 := R99999;' 3

The swap statement will be translated to:

R99999 := A(I,J) ; A(I,Jd) := A(J,I) ; A(J,I) :

R99999;

Each # in pattern will match any character sequence which is propek]y
parenthesized and contains no semicolon. Each #§ in replacement means the
actually matching text for the s-th # in pattern.

Macro definitions may be placed in replacement text to create some very
powerful effects.

Example:

DEFINE ';TRACE #;' =

;DEFINE'';#1:=##5 ! '=" 1150 41 o= #41 5
QUTPUT(' "' "#****TRACE '''',#1);'"3" 3

TRACE Z;

Z := F(Y)*Z; ... Z := A(2,K);

The above 3-Tine macro definition essentially extends the language by
adding a trace statement of the form:

'"TRACE' variable ';'

This statement will cause all subsequent assignments to variable to be
followed by a well-annotated dump of the newly assigned value. The statement
TRACE Z; will be replaced by the following text:

DEFINE ';Z:=#;' =

"M Z i= #1 5 OUTPUT(! '*****TRACE '',Z);';

- 15 -

This macro-definition causes the statement Z := F(Y)*Z; to be replaced
by | |

Z:= F(Y)?Z;

OUTPUT(' *****TRACE ',Z);

When Z := F(Y)*Z; is executed, a 1ine like the following will be printed
on $OUTPUT: |

*****TRACE Z = 114.72;

The double-quotes " around ; are merely to prevent an infinite recursion
in the rescan mechanism of MORTRANZ.

This trace facility is actually included in the SKOL language and its im-

plementation requires Tittle more than the above 3-1ine macro.

A record is a structure consisting of a fixed number of components called
fields, each identified by a field-identifier. Each field may be of any simple
type or array thereof or may be a reference field pointing to another record
(also possibly an array‘of such).

A record class consists of a fixed number of records, all of the same
form used as a pool for the dynamic creation and release of record variables
directly accessible to the programmer. Each record class is named and intro-
duced via the specification:

"RECORD' 'CLASS' '(' +Iconst ')' 'OF' Fident4 ':' {field-group ';'}2]

'ENDRECORD" ';'
where each field-group is of the form:

0,121

['REF'| Ftype | 'CHAR'] ':' {ident {array-bounds}”* }7 ,

- 16 -

array-bounds is:
'("{+Iconst}?l. "
and Fident4 is a FORTRAN symbolic name of 4 characters or less.
Example:
RECORD CLASS (100) OF PERS:
REF : NEXT,FATHER;
INTEGER : AGE, ID NUMBER,LEAVE(12);
REAL : PAY ;
LOGICAL : MARRIED ;
CHAR : NAME (15) ;
ENDRECORD;
A reference variable identifies a record of a particular class once such
a record has been dynamically created and associated with the variable. Each
reference variable is restricted to refer to records of only one class and is
introduced by a specification:
'REF' 'TO' class ':' {Fident {array—bounds}o’1}?z, "yt
Example:
REF TO PERS : WORKER, FORMAN (6), P, LAST;
Before any use can be made of a record class, it must be initialized by
a statement of the form:
'"MAKEAVAIL' class ';!
The effect of this statement is to return all records of the designated
class to the available pool ready for re-use.
To allocate a new record to a reference variable requires a statement of
the form:
'NEW' reference ';'
Analogously, a record is released by:

'"FREE' reference ';

- 17 -

In each case, the variable designated must have been declared as a ref-

erence to some record class; otherwise, a diagnostic message will ensue.

To access a field of a record associated with a reference variable re-

quires a special form called a field-designator:

'@' '(' reference '.' field ')’

The reference and/or the field may be subscripted if that corresponds to

the declarations. If the field is not among those declared for the record

class

to which the reference has been bound, then an error diagnostic is given.

Notice that designators 1ike @(@(P.NEXT).VAL) are not legal and must be

replaced by

where

field.

Q := @(P.NEXT) ; ... @(Q.VAL) ...

Q has been properly declared as REF to the class of records having a VAL

Example:

MAKEAVAIL PERS ; NEW WORKER ;

@(WORKER,AGE) := 25; @(WORKER.LEAVE(3)) := 2;
FORMAN(1) := WORKER ; @(WORKER.NAME(1)) := 'Z' 3

IF @(FORMAN(1).LEAVE(K)) >2 : ... 3
FREE WORKER;

When a portion of program text concentrates its attention on a particular

record, it is possible to abbreviate the field-designators by employing a "WITH"

statement of the form:

"WITH' reference ':' block 'ENDWITH' ';'

Inside the block, any fields of the record identified by the designated

reference may be accessed by the shorter form:

'e' 'L field ' !

- 18 =~

Example:
WITH WORKER : @.AGE := 25; @,LEAVE(3) := 2; ENDWITH;

There is a standard identifier NIL which indicates an undefined reference
value and is often used to mark the ends of Tinked lists. To traverse a linked
list defined by a REF field in some record class, there is an analogue of the
familiar for statement having the form:

'LINK' reference '=' reference 'BY' field ':' block 'ENDLINK' ';'

The iteration is discontinued at the first NIL value encountered (which
may be the first).

Example:

@(FORMAN(6) .NEXT) := NIL; SUM := 0;

LINK P = WORKER BY NEXT : SUM := SUM + @(P.AGE) ; ENDLINK;

A record class is actually an array of records so if the programmer de-
sires, he may use it as a simple array while avoiding any dynamic allocations
vis a vis the record class. Access to the records must stiltl be through vari-
ables declared REF TO class, but these variables can be treated as integers,
which they actually are.

Example:

"ASSUMING NO RECORDS CURRENTLY ACTIVE FROM PERS"

LAST := NIL ;

FOR WORKER = 1 TO 50 :

@(WORKER.NEXT) := LAST 3 LAST := WORKER ;

ENDFOR;

TOP := 50;

LINK P = TOP BY NEXT :

WITH P : @.NAME(1) := '#';@.AGE := 20; ENDWITH;

ENDLINK;

-19 -

The programmer may introduce a new finite ordered primitive type (called
a scalar) by naming it and supplying a Tist of the unique identifiers which
denote the constant values of the new type. The values of the new type may be
arranged in a hierarchy of groups or named subtypes. The definition of a new
type takes the form:
'TYPE' ident '=' list-of-subtypes ';'
where 1ist-of-subtypes has the form:
[empty |'('{subtype}?1. ']
and subtype is
[ident | ident '=' list-of-subtypes | char-const]
The possibility of an empty list-of-subtypes is restricted to the CHAR scalar
| type and char-const is also so restricted. The definition of CHAR will be dis-
cussed later in this section.
Example:
TYPE AUTO =
(GEN_MOTORS = (CHEVY,PONTIAC,CADDIE),
FORD
FIAT

(MUSTANG ,MERCURY=(MONTEREY ,COUGAR)) ,
(COUPE,S128,5131));

This declaration specifies that a value of type AUTO will be a value of
one of the subtypes GEN_MOTORS, FORD or FIAT. The values of subtype GEN_MOTORS
are the three constants CHEVY, PONTIAC and CADDIE. FORD consists of MUSTANG
and a subtype MERCURY, which itself consists of two constants MONTEREY and
COUGAR. finally, the subtype FIAT has three constant values as indicated. In
subsequent use, these scalar constants must be preceded and followed by a blank!

Scalar variables are declared in a fashion similar to normal FORTRAN dec-
larations: | |

03'] 2] 1.1

scalar {Fident {array-bounds} >}, . ';

- 20 -

Example:
AUTO FAMILY(2) , MINE ;
The scalar case statement allows one from a group of blocks to be executed,
the‘selection being determined by the current value of some scalar variable.
The form of the statement is:
'CASE' scalar-var ':' scalar 'OF'
{{Tabel}T', ':' 'BEGIN' block 'END')! {'ELSE' ':' 'BEGIN' block 'ENp'}0°"
'"ENDCASE' '3
where scalar may be the name of any scalar type or subtype, and each label is
a constant or subtype of that type. In the latter case, it is simply an abbre-
viation for the 1list of all constants included in the subtype.
Example:
CASE FAMILY(K) : FORD OF
COUGAR, MUSTANG : BEGIN J := J+1; END
ELSE : BEGIN J := J-1; END
ENDCASE;;
CASE MINE : AUTO OF

MERCURY ,COUPE :
BEGIN ... END
s128 :
BEGIN ... END
GEN_MOTORS :
BEGIN

CASE MINE : GEN_MOTORS OF

PONTIAC,CADDIE : BEGIN ... END
ELSE : BEGIN ... END

ENDCASE 3

END

- 21 -

ELSE : "MUSTANG AND‘S131ﬁ
BEGIN ... END

ENDCASE;

Each constant of the indicated scalar must occur exaft]y once as a label
unless an ELSE block is present. In the latter case, ELSE collects all con-
stants not explicitly listed. If the scalar-var is not within the range of
values of scalar, an error has occurred which will be diagnosed at run-time if
the runcheck option is enabled for case statements.

In the first example above, the only valid labels are those constants in
subtype FORD, that is, MUSTANG, MONTEREY and COUGAR. As a consequence, the
ELSE is identical to MONTEREY. The order of occurrence of labels is completely
irrelevant except for ELSE wh1ch, if present must come last.

In the SKOL language, the character data-type is not built-in as a lan-
guage-defined primitive but is recognized as a special case since most constants
have the special form of a single character symbol enclosed in apostrophes (').
The CHAR scalar type is declared explicitly by the programmer as a scalar type
and can be hierarchically substructured 1ike any other scalar. Most constants
conform to the normal convention for characters, however.

To ease the burden for the programmer, there are some character subtypes
built-in. The subtype ALPHABET consists of the capital letters 'A' through 'Z'
and DIGIT means 'O' through '9'. In addition, certain installation-dependent
subtypes may be supplied; for example, RELATIONAL = ('<', '=', '>') or ARITH-
METIC = ('+', '=', '*', /1),

A special facility is available to ask if a given scalar value is con-
tained in a particular scalar subtype. The form of the expression is:

"IN ' scalar '(' scalar-expr ')’

- 22 -

Example:
IF IN DIGIT(CH(K)) : ...

The following three functions are also included:
FIRST , LAST (scalar)
VALUE (digit-expr)

For example, FIRST (ALPHABET) = 'A', LAST (DIGIT) = '9' and VALUE ('3')= 3.
Example:
TYPE CHAR =

(NAME_SYMBOL = (ALPHABET=,DIGIT=, ' '),

DELIMETER=

(ARITHMETIC=('+', '=', '*', /')
RELATIONAL=('<', '=', '>'),
LOGICAL=('=', '&', '|'),
PUNCTUATION=(",", "3', ':', ' ', ', ', '24),
BRACKET=("'("', ')'),
QUOTE=('""*, ''*'')),

SPECIAL=('$', '@', '#', '%'),

EOL "NOTICE THAT IDENTS ARE OKAY FOR CHAR CONSTS"

)s
This flexibility of the character data-type allows the programmer to

arrange the various character subtypes and special characters in an order that
corresponds to their use in a particular application.

The declaration for the CHAR type must be followed by three constant defi-

nitions:

]
-~

CONSTANT BITS_PER BYTE = ?,

1]
~

BITS _PER WORD = ?,

"
-~

SHORT BYTE 23

- 23 -

where the value of SHORT BYTE should be

2 **(BITS_PER BYTE - 1)
The user must also supply the auxiliary subprograms RDSTR9, WTSTR9, INIT99,
INCV99, IRPL99, IRPL98 and IDEL99 which are used to implement the character
facilities (see Appendix D and sample programs in Appendix ﬁ).

Special functions $INCHAR and $OUTCHAR are provided to map external char-
acters to their internal integers and vice versa; for example, with the above
declared CHAR and I containing character 'B' read under Al format, we get
$INCHAR(I) = 2 and $OUTCHAR(' ') output under an Al format is ' '.

Each user subprogram which uses $OUTCHAR or the C format in an OUTPUT command
must contain the specification:

‘CHAR_COMMON' '3
and before any character manipulation is performed, the following initializing
command must be performed: |

'CHAR SETUP' ';'

CHARACTER STRINGS, C(ONTEXTS AND STRING MoDIFICATION

In addition to fixed-length character arrays 1like CHAR CARD(81), it is
possible to have varying length character strings with a fixed maximum Tength
called the size. They are declared in the form:

'STRING' (Fident '(* +Iconst)1)T!, ‘'

Example:

STRING NAME(30), WORD(10);

Built-in functions SIZE (string) and LENGTH (string) are available to
obtain the size and current length of any string. Actually, the latter is an

integer variable which can be changed by assignment, but is intended to be im-

- 24 -

plicitly reset by string updating statements. Prior to use, the string should
be initialized to the empty string by the command:

DELETE string;
which is described in the following.

To designate substrings of a string, there is a notation for string-con-

text whose form is one of:
string '(' index {'...' index}o’] "
or
string '(' index '...' '|' length ')
or
string '(' length '|' '..."' index ')'
where index means a valid integer index into the string and length is a posi-
tive integer.

The first form denotes the substring consisting of all indices between
the two limits inclusive. If there is only one, then the limits are equal.
The second form denotes a substring of the indicated length which begins with
the indicated index. The third form denotes a substring of the indicated
length which ends with the indicated index.

Example:

NAME (2 ... K+2)

WORD (4] ... LENGTH(WORD))

NAME (1 ... |5)

WORD (5)

Notice the second example which denotes the last four characters of the
current value of the string WORD.

The notation introduced above for substrings can be used to denote any

“empty position in or at the ends of a string if the proper meaning is attached

- 25 -

to substring denotations involving a length of 0. If we redefine the notation
(index ... | length) to mean the subsequence (possibly empty) beginning just
before index and having the given length, then the notation |

WORD (2 ... | 0)
denotes the position before the second character of WORD.’

Because of the symmetry‘of our notation, the extremes of WORD can be

described by the following two denotations
WORD (1 ... | 0)

and
WORD (0 | ... LENGTH (WORD))

The reason for wanting to denote empty substrings within a string is so
that a single all-powerful replacement command can be indicafed by a string
context and a replacing string expression.

The general string replacement statement takes the form:

'"REPLACE' [string-context | string] 'BY'
['NULL' | char-expr | string-context] ';'

Example:

REPLACE WORD (2 ... 4) BY 'Z' ;

REPLACE WORD (1 ... | O) BY NAME (3 | ... K);

REPLACE NAME BY WORD (2);

Arbitrary substring "deletions" can be accomplished by replacement using
NULL and "insertions" using an empty (length = 0) string context. SKOL con-
tains the following statement forms for this:

'DELETE' [string | string-context] ';'
'INSERT' [char-expr | string-context]
['BEFORE' | 'AFTER'] string '(' index ')' '3’

..26..

Example:
DELETE WORD ; DELETE NAME (6 ... LENGTH (NAME));

INSERT NAME (1 ... | 3) BEFORE WORD (2);

INSERT CH AFTER WORD (LENGTH (WORD));

For reasons of efficiency, there is a concatenation statement which is
implemented separately from the general replacement command. The form of the
statement is:

'CATENATE' string-expr 'ONTO' string ';'
where string-expr is:

{[char-expr | string-const | string | string-context]}?;.

and '&' indicates concatenation.

Example:

CATENATE '@''B' & CH & NAME (1 ... | 2) ONTO WORD;

CATENATE NAME (2 ... 4) ONTO WORD;

Because the conversion between external character format and internal
integers is not defined by FORTRAN but rather by the programmer's type declar-
ation, special facilities are required for input and output of character string
data. These are of the form:

['READ' | 'WRITE'] 'STRING' {'(' file ')"30!
string {'(' index '...' index ')'}O’] !
The default index range is 1 ... LENGTH (string) for WRITE and 1 ... SIZE
(string) for READ.

Example:

STRING CARD (81);

READSTRING (MYFILE) CARD (2 ... 81) ; LENGTH(CARD) := 81;

CARD (1) := '1' 3 "FOR PAGE-EJECT"

WRITESTRING CARD; "DEFAULT RANGE = 1 ... LENGTH(CARD)"

- 27 -

Notice that READSTRING‘doeé not set the LENGTH; the standard files for
text input and output are the defaults and the initial character is used for
control Oh output. In the example above, the first 80 characters of the next
record of thé file named MYFILE are converted to internal format and stored
into the string CARD at positions 2 through 81. This character sequence 1is
then listed after a page eject on the standard print file.

It is quite easy for the programmer to implement a MOVE statement which
has the form:

'MOVE' string-context 'TO' string-context ';!'
and causes a substring of one string to replace a string-context of a second
ﬁtring while being deleted from the first string.

The following macro-definition will implement such a MOVE statement:

DEFINE ';MOVE # TO #;' =
' ;REPLACE #2 BY #1 ; DELETE #1 ;' 3
The meaning of the # within a define statement is exp]ained in the section on
"Constants, Definitions and Text Substitution".
There is a special string assignment statement of the form:
'#' string ':=' string-expr ';'
Example:
CANAME := 'JONES' & BLANK & 'JOHN' ;
SNOTHING := '' “SAME AS DELETE"

Routines, CoroUTINES, PROCESSES AND RECURSION

Simple parameterless routines can be defined and executed at different
places within a major program segment (the subprograms of FORTRAN). The rou-
tine definitions are placed after the RETURN statement for that segment. The
form of the routine definition is simply:

-28 -

'ROUTINE' ident ':' block 'ENDROUTINE' ';!
To invoke execution of such a routine requires:
'"EXECUTE' routine ';'

Example:

EXECUTE IN_CARD;

ROUTINE IN CARD : ... ENDROUTINE;

It is also possible to declare a process to consist of several cooper-
ating coroutines which resume one another or suspend the entire process. The
main program (i.e., body of the segment) controls resumption of the suspended
process and also decides which coroutine will be invoked first. The process
declaration has the form:

'PROCESS' ident '=' ‘(' {ident)3', ')t ;!

where the 1ist of idents refer to coroutines to be defined later. To initialize

a process so that each constituent coroutine 1is asleep at its beginning, and
so that the initial resumption of the process invokes a particular coroutine
requires:

'START' process 'AT' coroutine ';'
The main program resumes the process by:

'RESUME' process ';'
and any of the constituent coroutines suspend the process in favor of the main
program by:

"SUSPEND' process ';'
Within a coroutine, its own execution may be postponed in favor of another co-
routine by:

'RESUME' coroutine 'FROM' coroutine ';'

The coroutines are defined (like routines) after the RETURN from the program

segment and the form is:
'"COROUTINE' ident ':' block 'ENDCOROUTINE' '3

- 29 -

Example:
PROCESS LIVE = (PRODUCE, CONSUME);

START LIVE AT PRODUCE;
RESUME LIVE;

COROUTINE PRODUCE : ... RESUME CONSUME FROM PRODUCE; ... ENDCOROUTINE;

COROUTINE CONSUME :
... RESUME PRODUCE FROM CONSUME; ... SUSPEND LIVE ; ...
ENDCOROUTINE;

Each RESUME process in the main program sends control back to the place
where the Tast SUSPEND process was executed unless a START statement has more
recently been executed. In the latter case, control passes to the beginning
of the coroutine named in the START statement. Because of this protocol, it
is convenient to view the group of coroutines (i.e., the process) as a "semi-
coroutine" of the main program; there is a master/slave relationship between
the main program and the coroutine process, but each subsequent resumption of
the slave process retains the context at termination of its previous period
of activity. Our use of the word "semi-coroutine" is similar to but not quite
the same as found in Dahl and Hoare [4].

If execution of a coroutine reaches the end of the block defining its
body, a terminal error message is generated and' the program aborts.

Some routines may have integer "value" parameters, local integer vari-
ables, and may freely invoke themselves recursively. Such routines must be

predeclared in a specification of the form:

-30-

'RECUR' ‘(' +Iconst ') ':"{ident'{'(‘{'*‘}ﬁl, ')‘}05]}?1, Y

Example:

RECUR (100) : TREE (*), WHAT (*,*), P;

This example introduces three potentially recursive routines, TREE
having one parameter, WHAT having two parameters, and P without parameters.
A stack of maximum size 100 will be used to implement the recursive executions
of these routines,

The subsequent routine-definitions for such recursive routines have the

form:
1 [PR Y A R Z-|||0,.|‘| VAN 2]||Os]|.|
ROUTINE' ident{'('{ident}y , ')'} *>" {'LOCAL' '('{ident}T7 ', ')'} :
block 'ENDROUTINE' ';'
Example:

ROUTINE TREE (TOP) LOCAL (LSON,RSON):
.. .ENDROUTINE;

In this example, TREE has one parameter TOP and two local variables
LSON and RSON whose values will remain intact over recursive calls, etc.

Recursive routines are invoked by execute statements of the form:

"EXECUTE" routine‘{'('{expr}?l.')'}o’] 't

Example:

EXECUTE WHAT (2-J, CH);

The expressions are calculated and assigned to the formal parameters at
entry to the routine body. This mode of parameter communication is commonly
refered to as "call by value".

The use of recursive routines is subject to one rather annoying restric-
tion. If a FOR statement or DO statement in a recursive routine contains
potentially recursive calls with different increments or final values for the

iteration phrase, then unpredictable and usually incorrect behavior will re-

- 31 -

sult. Safety is provided by the use of LOOP ... ENDLOOP, making the control,
increment, and 1imit variables LOCAL to the routine,

Appendix E contains a SKOL program which closely resembles a PASCAL pro-
gram described in Wirth's recent book [14] to illustrate the use of recursive
routines in conjunction with recursive data.

To consistently integrate the recursive capability with the situation
terminations provided in the situation case statement, the following extension
is available. A single-situation UNTIL statement may have the form:

'UNTIL' {'GLOBAL'3}0"]

ident ':' block 'ENDUNTIL' 'j;'
and the presence of the word GLOBAL will cause all situation terminations with
the indicated name to reset the recursion stack to its status at entry to the
UNTIL statement.

Major subroutines (inherited from FORTRAN) are invoked by:

'CALL' subroutine {'("' farg)3', *)101 1y

where arg is defined in Appendix A.

The programmer may define macro procedures with formal parameters some
or all of which have specified default actual parameters; these macro procedures
are invoked by a calling sequence in which the correspondence between formal
parameters ("keywords") and actual parameters is explicit and non-positional.
Unspecified formals are given the defaults associated with them in the macro
definition; if no default was specified, then an error message ensues.

A macro procedure definition has the form:

0,121

'MACRO' ident '('{ident {'=' Xexpr} * }7°, ')' 'st '''' gext 'rrr oty

where text is a piece of program text. Xexpr is explained below.

- 32 -

Example:
MACRO ORDER (REL=<, X,Y) =

'; IF NOT (X REL Y) : SWAP (X , Y); ENDIF; ' ;
A macro procedure invocation has the form:
macro '(' {keyword '=' Xexpr}?l.')' 't
where each keyword is one of the formal parameters in the definition of macro.
Example:
ORDER (X=A(2) , Y = B(K));
ORDER (REL = >=, Y = T, X= P(J));
These two statements are translated into the following program text:
IF NOT (A(2) < B(K)):
SWAP (A(2), B(K)); ENDIF;
IF NOT (P(J) >=T) :
SWAP (P(J), T); ENDIF;
Notice that formal parameters can represent relations, operators, state-
ments and procedure names as well as variables and expressions. An Xexpr is

an extended expression which includes these.

GenErAL FORMATTED INPUT AND QuTPUT

SKOL provides input and output statements to and from text files, em-
ploying a syntax in which the data format associated with a variable is text-
ually adjacent to the variable rather than being in a separate list. All con-
trol format items occur within the sequence of data items at the appropriate
positions.

In the case of output, each variable may be printed according to an ex-

plicitly specified format, an implicit format appropriate to the type of vari-

-33 -

able or an implicit format preceded by the name of the variable and followed
by a semicolon.

The input statement takes the form:

VINPUT' '('{[':' control | variable ':' data-format]}?z. e
where control is

[{'/'}Z] I'{+Iconst}0’] '%']
and data-format is a valid FORTRAN data format item.

Example:

INPUT (:5%, J : I3, A(J) :F10.5, :/, :X, WHAT : L1);

The general output statement has the form:

'OUTPUT' '(' {[':"' carriage-control | ':' control | output—item]f?l. DR
where carriage-control fis:

['$PAGE' | '$SKIP' | '$SKIP2' | '$OVER']
and output-item is:

[variable {':' {[data-format | 'C']}O’]}O’] | output-text]

When variable is followed simply by : then the general type-dependent
format is used, and when variable stands alone, then its name is printed before
the data. Output-text is printed as is. The carriage-controls should come in
first position or after a '/' control item. In first position, the colon may
be omitted before a carriage-control. The format specification :C indicates
conversion of internal character (CHAR) representation to external text.

Example:

OUTPUT ($PAGE , : 3X,J: ,A(J) ,:5X,CH:C,'$')

This statement will print on the first line of a new page (assuming J=42,
A(J)=142.36, and CH='P')

42 A(J) = 142.36; P$

-34 -

The input and ou'":* ;tatemests read from and write to text files $INPUT
and $OUTPUT respectively. Tnesc file identifiers are associated with the
standard text input and output files unless the programmer requests otherwise
by redefining them in the program text (see section on text substitution).

The general format used in the OUTPUT statement is governed by the cur-
rent definition of $GENFORM which is FORTRAN format G12.5, but can be rede-
fined by the programmer.

The user should especially note that the carriage-control character will
be set to blank if no explicit carriage-control ‘has been specified!

If a particular sequence of data-format and-control items is used in
several places in a program, then this "format" may be named and defined by a
FORMAT definition of the form:

'FORMAT' ident '=' '(' format-Tist ')' ';'
where format-list is:

{[control | data-format | output-text | +Iconst '(' format-list ')']}?1,

These formats can then be used in read and write statements of the form:
['READ' | "WRITE'] '(* file ',' format ')' {variable}:C, ';'
~ where format is the name of a previously defined format sequence.

Example:
FORMAT PERSON

(1X, 215, F10.2);
READ ($MYFILE , PERSON) @(WORKER.AGE),J,@.PAY ;

FORMAT PRETTY = ('1', 1X, I3, ') ', F10.5,/,' ');

WRITE ($OUTPUT , PRETTY) K, B(K);

- 35 -

NG S17
Because of the ubiquitous requirement to update the values of variables
by incrementing or decrementing their current values, the SKOL language pro-
vides - an augmentation statemenf'of the form:
| ['INCR' | 'DECR'] variable {'BY" expk}o’] 't
The BY phra§é»defau]ts to BY 1 if omitted, and INCR, DECR mean, respectively,

"add to", "subtract from".

Run-T1ME ERROR CHECKS AND VARIABIE TRACES

The SKOL/FORTRAN precompiler will insert run-time consistency checks
info the target FORTRAN code for certain statement forms, but the decision of
when and where to insert checks is under very precise user control. For this
purpose, there is a runcheck option statement of the form:

' RUNCHECK" * (" =10 ['ALL'|'FOR'|'CASE‘l'UNTIL'I'TRACEﬁ}?I. DERFS
A minus means suppress checks for the designated class of statements and the
absence of minus means insert checks until told otherwise. The ALL means all
the others. When TRACE is enabled, major control flow is traced by printout.
This means that CALL, EXECUTE, RESUME and SUSPEND generate output messages, and
for each repetition of a LOOP...WHILE...ENDLOOP,REPEAT...ENDREPEAT,FOR...ENDFOR
or LINK...ENDLINK an output message is generated.

It is quite easy to suppress run-checks for short time-critical loops
while leaving them on for less critical portions of a large program.

A variable tracing statement is available of the form:
] 1.

b

'TRACE' {variable}>',

and causes subsequent assignments of new values to variable to be accompanied

by a "dump" of the variable name and the new value. The section on "Constants,

- 36 -

Definitions, and Text Substitution" describes how this {is accomplished.

Example:

RUNCHECK (ALL,-FOR);

TRACE A(K),@.VAL,P;

These two statements cause run-time checks to be inserted everywhere but
in FOR statements, and tracing of all assignments of the form A(K) := expr,
@.VAL := expr or P := expr. Implicit assignments generated by the implemen-

tation of iterations and the NEW statement are also traced.

Error D1AGNOSTICS

Every effort has been made to diagnose errors in the non-FORTRAN features
of SKOL at the time of the SKOL to FORTRAN precompilation. The degree to which
this has been achieved is somewhat surprising for precompilers, not to mention
macro-implemented precompilers. In particular, the compile-time checks on the
use of records, references and the CASE statement approach what could be accom-
plished by a very good compiler. Appendix F contains a sample of SKOL diag-
nostics with explanations. Appendix H explains messages which diagnose serious
control syntax errors.

Run-time error messages are issued for zero increments in FOR statements,
final value not exact in iteration phrases of FOR statements, terminations of
UNTIL blocks without encountering a situation statement, expressions out-of-
range in CASE statements, space exhausted in record classes, illegal termination
of coroutines, attempts to read or write illegal characters, character string
modifications which exceed the maximum size allowed, collision in character
mapping (usually a duplicate occurrence of the same character constant in the
CHAR type specification), stack underflow and overflow in invocations and re-
turns for recursive routines.

-37 -

Whenever Fident appears ‘in the syntax of SKOL, it means any valid iden-
tifier (symbolic name) in the FORTRAN language dialect being used. However,
if portability is desired, each Fident should be of form:

1etter'{[1etter|digit]}0"'5
where a...b means any integer between a and b inclusive.

The name of a record class must be an Fident4 which must be a valid
FORTRAN identifier after the appending of two digits. For standard FORTRAN,
this means:

Tetter {[1etter|digit]}0“'3
Other names indicated as simply ident should conform to:
[1etter|specia1-symbo1]’{[1etter|spec1a1-symb01Idigit]}zo
where special-symbol is any non-alphanumeric character which is not used as a
meaningful symbol of FORTRAN or SKOL. The simplest rule is to avoid everything
in the 48~character FORTRAN set, ':', ';', '@', ‘"', '|', '&" and ' (but '$'
is okay).

A few FORTRANs (including the standard) do not allow an integer subscript
expression to be itself a subscripted array element (e.g., A(P(K)) is illegal).
When such a restriction is in effect, it implies the following restriction in
SKOL:

Reference variables may not be arrays
For example, REF TO class: S(5); would be i11ega1§ Note thatv@(@(P.NEXT)
.AGE) must be expressed by use of a temporary reference variable Q, as follows:
Q := @(P.NEXT);
... 0(Q.AGE) ...
Some dialects of FORTRAN (notably IBM FORTRAN IV) allow the programmer

to indicate what should be done in case an input (i.e., READ) statement encoun-

..38..

ters an end-of-file or the attempted read results in an error. In this case,
SKOL is extended so that the new syntax of READ statement (not including
string version) is:

'READ' ‘(' file ',' format {',' 'END' '=' situation}®’’

{'," 'ERR' '=' situation}0! ')"{variableff?. '

Other non-standard features available in a local dialect of FORTRAN may
be used with a certain loss of portability. Such features might include mul-
tiple ENTRYs to a subprogram, direct-access I/0, etc. Warning: the direct-
access I/0 available in IBM FORTRAN IV may not be used in SKOL because that
extension uses the single-quote character as a separator. Such statements can
be used only if the SKOL precompiler is turned off temporarily (see Appendix C).

The optional data portion of a variable speciffcation is not strictly
standard FORTRAN so on some compilers the programmer will be forced to use the
separate FORTRAN DATA statement.

Items of the form

variable ':' data-format
may be replaced by
iterated-data ':' +Iconst '(' format-list ')’
in READ, WRITE, INPUT and OUTPUT commands where iterated-data has the form:
"(" '"FOR' simpleIvar '=' simplelexpr 'TO' simplelexpr ':'
{[1terated—data|variab]e]}?1. e

Example:

INPUT ((FOR I=1 TO 3 : (FOR J=1 TO 3 : I,J,A(I;J))) : 3(3 (212,F10.5,5X),//));

Coroutine resume and suspend are not legal within DO iteration statements
for some FORTRAN compilers (e.g., WATFIV) which don't implement the extended DO.
The remedy is to simply change such a DO to the more general FOR statement pro-

vided by SKOL.

-39 -

M 0 Y L ANGUAGE. ExTEns]

To give a general feeling for the kind of language extension that can be
implemented with a‘modest amount of effort by someone reasonably familiar with
the use of the MORTRAN2 macro-translator [12], we shall describe the implemen-
tation of some simple operations on matrices of REAL values. First, the syntax
of the new features:

Matrices are declared in the form:

'MATRIX' {Fident '(' +Iconst ',' +Iconst ')'}%1. 5!
and are modified by simple MATRIX assignments of the form:
'SET' matrix ':=' Mexpr ';' |
where Mexpr is one of:
(" Rexpr ‘)
or
{'$.'}O’] matrix {['+']'*'] {'$.’}0’] matrix}0’1
The notation $.MAT shall indicate the transpose of matrix MAT and the paren-
thesized real expression will be assigned to all positions of the matrix.
Example:
MATRIX A(5,10), B(10,10), C(5,10), D(10,5);

SET A := (0); SET B := (1.0); SET C := (.5-X**2);
SET A := A+C; SET D := $.A;

SET C := A*B;

SET B := $.C*C;

We make no pretense that these facilities are completely satisfying for all
possible applications. Furthermore, to simplify the implementing macros, we
have suppressed all error checking (see [12] for examples of that). The follow-
ing macros will provide the above matrix facilities. Note that text of the
form %' ... '=' ... ' is a macro-definition which may appear anywhere in program

text.
-40 -

DEFINE ';MATRIX #;' = '";REAL " $%%2#1,;' ;
DEFINE '$%%2#(#,#),' =

UGHLT = 1 g
B2 = g3
4SS AT = g3
% 1$5.41.200 = 0 g2 0

#1 (#2, #3), $5%2'
DEFINE ',$%%2;' = ';' 3
DEFINE ';SET #:=#;' =
'";"@LGELSO" DO "@LCOO IEeLCO2 "=" 1,$#1.2
";D0" @LCOO IGLCOT "=" 1,$#1.1;$%%1#1 := #2;
©OLCOO CONTINUE ;' H
DEFINE '$%%1#:=#;' =
' #1 (IeLco1,IeLco2) :

#2 (I@LCO1,IGLCO2);BLUO";
DEFINE '$%%1#:=(#);' =

' #1 (IeLCO1,I6LCO2) :
DEFINE '$%%1#:=#+#;" =

(#2);@LUD';

' #1 (IeLco1l,IeLcoz2) :
+ #3 (IGLCO1,IBLCO2);6LUO";

#2 (1@LCOo1,I6LCO2)

DEFINE '$%%14#:=#*4;' =
'ROLCO4 := 0.0 ";DO"@LCO5 IELCO3 "=" 1,$#2.2;
@LCO5 RELCO4 := ROLCO4+ #2 (ILCO1,IELCO3)
* #3 (IELCO3,IELCO2); #1 (IELCO1,IRLCO2) :=
RGLCO4;6LUO';

DEFINE '$.#(#,#)' = " #1 (#3 , #2)' 3

The replacement parts of these macro-definitions can be understood after

~a moderate amount of study of [12]. the full 1ist of definitions is included

here to indicate how Tittle extra machinery is necessary to implement some use-

- 41 -

ful features. A simi]ar‘example in [12] checks for errors and issues warnings.

Oruer Uses oF DEFINF
The small program INPOST, in Appendix E, contains some simple but very
useful applications of the DEFINE text-substitution facility of SKOL inherited
from MORTRAN. The program converts simple expressions with infix operators
to the postfix notation using a temporary stack for operators and parentheses.
The algorithm used to implement INPOST requires commands NEXTCH tb obtain
the next input character, STACK to push thg current input character onto the
stack, UNSTACK to move the top element from the stack to the end of the par-
tially completed postfix string, and POP to discard the topmost element of
the stack. An expression TOP is needed to inspect the topmost stack element.
A character string OPSTK(20) is used to implement the stack and strings
CARD(80), LINE(120) for input and output. The above commands are then imple-
by the following DEFINEs:
DEFINE ';NEXTCH;' = ';INCR IC; CH := CARD(IC);"' ;
DEFINE ‘;STACK;'

';CATENATE CH ONTO OPSTK; NEXTCH;' ;
DEFINE ' TOP '

I

'OPSTK(LENGTH(OPSTK))' ;
';DECR LENGTH(OPSTK);'

DEFINE ';POP;'

DEFINE ';UNSTACK;' = ';CATENATE TOP ONTO LINE;POP;' 3
and then the program is described in terms of these composite commands. Note
that STACK employs the command NEXTCH and UNSTACK uses both TOP and POP. The
clarity of the program would probably be enhanced by an additional command de-
fined by:

DEFINE ';PASS THRU;' = ';CATENATE CH ONTO LINE;NEXTCH;' ;

- 42 -

Program INPOST also uses the DEFINE facility to allow debug output to be
incorporated into the program which will be erased or left intact, depending
on a single DEFINE located at the top of the program. The keyword DEBUG is
appended as prefix to any command which should only be generated when DEBUG
‘mode is active and then the DEBUG mode is activated or deactivated by:

DEFINE ';DEBUG ' = '; ' 3 'MON"
or

DEFINE ';DEBUG #;' = '5' ;3 "OFF"
The first DEFINE causes removal of all DEBUG prefixes and the second causes re-

moval of all DEBUG-prefixed statements.

WARNINGS

FORTRAN demands that the symbolic names of variables, functions and sub-
routines be restricted to no more than 6 letters or digits. In order to use
longer names (possibly with embedded special characters) in SKOL programs, one
should simply use the desired name (carefully delimited by blanks!!) in all
specifications and uses of the variable, function or subroutine, and then in-
sert a DEFINE before the first occurrence of the desired name; the definition
should call for replacement of the blank-embedded name by a blank-embedded valid

FORTRAN symbolic name.

Example:
DEFINE ' $A LONG_NAME ' = ' REALO1 '
CONSTANT ARRAY_MAX SIZE = 120 ;

REAL $A_LONG_NAME (ARRAY_MAX SIZE),X;

X := $A_LONG NAME (J)+2.5 ;
FOR I = 1 TO ARRAY MAX SIZE -1 : ... ENDFOR;
- 43 -

Notice that the constant ARRAY MAX SIZE does not require a DEFINE (FORTRAN
will only see 120) but all occurrences must be blank-embedded just Tike the
variables, functions and subroutines.

| The need to embed cebtain names in blanks is an embarassment caused by
the lack of a lexical scanner in the MORTRAN translator. Given this annoyance,
the best solution is probably to systematically embed all names in blanks. It
is difficult to know exactly when the blanks are needed in the source program
since occasionally the SKOL precompiler will put them in. For example,

FOR I = 1 TO ARRAY_MAX_SIZE:

will work but

FOR I =1 TO ARRAY_MAX_SIZE+1:

n

will not work!

A run-time error message indicating a "collision in character mapping"
means either a duplicate occurrence of the same character constant in the user-
defined CHAR data-type or else that the character conversion scheme implemented
by the SKOL subprograms in Appendix D does not work for the given machine/char-
acter code/FORTRAN combinatfon being used. |

Users are reminded to end all programs and all files included by %Ud cards
by a terminator control card with %% in the first two columns.

A11 SKOL statements are terminated by a semicolon and the programmer is
strongly advised to carefully make sure that no semicolons are missing. The
diagnostic capabilities of the SKOL precompiler are quite good so long as the
program isn't missing statement terminators. Especially beware omission of
the terminating semicolon for d DEFINE statement!

The one place where semicolons are not wanted but might be mistakenly
placed is after the END terminating a CASE group in a scalar or situation CASE

statement,

- 44 .

A Macro ann FUNCTION For STRING EQuAIITY
It is very convenient in some applications to be able to test for
equality between two variable-length strings with a notation like
EQUAL (STR1, STR2)
which can be embedded in logical expressions.
To this purpose we propose the following macro DEFINE and supporting
LOCIGAL FUNCTION:
DEFINE' EQUAL(#,#)' = 'EQU999(#1 ,
SIZE(#1), LENGTH(#1), #2 , SIZE(#2), LENGTH(#2))' ;
FUNCTION EQU999(STR1,S1,L1,STR2,S2,L2)LOGICAL:
"TEST EQUALITY OF TWO STRINGS"
INTEGER S1,S2,L1,L2,1;
CHAR STR1(S1), STR2(S2);

UNTIL ALL_SAME OR MISMATCH:
IF L1== L2 : MISMATCH; ENDIF;
FORI =17T0LI :
IF STR1(I)—= STR2(I) : MISMATCH; ENDIF;
ENDFOR;
ALL_SAME;
THENCASE :

ALL SAME : BEGIN EQU999 := TRUE ; END

MISMATCH : BEGIN EQU999 :

FALSE ; END
ENDUNTIL;
RETURN;
ENDFUNCTION;
Each subprogram in which EQUAL is used must have the specification:

LOGICAL EQU999 ;

- 45 -

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

BEFERENCES

N. Wirth, "The Programming Language PASCAL," Acta Informatica, 1,
35-63 (1971).

K. Jensen and N. Wirth, "PASCAL: User Manual and Report," Vol. 18 of
Lecture Notes in Computer Science, edited by G. Goos and J. Hartmains,
Springer-Verlag, Berlin-Heidelberg-New York, 1974,

M.E. Conway, "Design of a Separable Transition-Diagram Compiier," CACM
Vol. 6, No. 7, (1963), 396-408.

O.J; Dahl and C.A.R. Hoare, "Hierarchical Program Structures" in

Structured Programming by Dahl, Dijkstra and Hoare, Academic Press,

New York, 1972.

W.T. Hardgrave, "Positional versus Keyword Parameter Communication in
Programming Languages," SIGPLAN Notices, Vol. 11, No. 5, May 1976,
pp 52-58.

D.E. Knuth, "Structured Programming with GOTO Statements,” Computing
Surveys, Vol. 6, No. 5, (1974), 261-301.

C.T. Zahn, "A Control Statement for Natural Top-Down Structured Pro-

gramming," in Programming Symposium: Proceedings, Colloque sur la

Programmation, edited by B. Robinet, Springer-Verlag, Berlin (1974),
170-180.

D.E. Knuth and C.T. Zahn, "I11-chosen use of Event," CACM, Vol. 18,
No. 6, (June 1975), 360.

A.Jd. Cook and L.J. Shustek, "MORTRANZ2, A Macro-based Structured FORTRAN
Extension," Conference Digest of Spring 1975 IEEE COMPCON.

A.J. Cook, "Experience with Extensible, Portable FORTRAN Extensions,"
SIGPLAN Notices (summer 1976).

-46 -

[11] A.J. Cook and L.J. Shustek, "A User's Guide to MORTRANZ2," Computation
Group Technical Memo No. 165, available from Computation Research
Group (Bin 88), SLAC, Stanford, Ca. 94305, U.S.A.

[12] C.T. Zahn, "A User Manual for the MORTRAN2 Macro-translator," Compu-
tation Group Technical Memo No. 167 (see [11]).

[13] C.A.R. Hoare, "Notes on Data Structuring," in Structured Programming
(see [4]).

[14] N. Wirth, Algorithms + Data Structures = Programs, Prentice-Hall,

Englewood Cliffs, N.J., 1976.
[15] P. Henderson and R. Snowdon, "An Experiment in Structured Programming,"

BIT (European), Vol. 12, 1972, pp 38-53.

..47.-

APPENDIX A

>

Aexpr = { sign }O’T {{{ Aprimary }Tl*. }TI*. | '/'].}E]+' | -]

Aprimary = [Aconst | '(' Aexpr ')' | Avar | Afunction '(' { arg'}?].')']

action = [initialization | assignment | invocation | interruption | selection |

repetition | input-output | augmentation | allocation | focussing]
allocation = ['NEW' | 'FREE'] reference ';'
arg = [expr | array-name | function | subroutine]

array-bounds = '(' { +Iconst }?1. !
assignment =
[variable ':=' expr ';' | '#' string ':=' string-expr ';'
'"REPLACE' [string-context | string] 'BY'
['NULL' | char-expr | string-context] ';' |
'DELETE' [string | string-context] ';' |
"INSERT' [char-expr | string-context]
['BEFORE' | 'AFTER'] string '(' index ')' ';']

augmentation =
['CATENATE' string-expr 'ONTO' string ';' |
['INCR' | 'DECR'] variable { 'BY' expr 10! ';']

- A] -

block = { command }-°

1

Cconst = '(' {{ sign 30> Rconst'}? A

carriage-control =

['$PAGE' | '$SKIP' | '$SKIP2' | '$OVER']
char-const = '''' [non-'-char | '''''']ttt
char-expr = [char-const | char-var]

command =

[action | definition | format-declaration | pragmat]

common-declaration = 'COMMON' '/' Fident '/!

{ Fident { array-bounds }0’]'}?1. !

control = [{ '/! }Z] | { +Iconst }0’] X']
data = '/' { [{ '~ 191 aconst | Lconst | char-const | 'NIL'] }?I. A

data-format =
[{ +Iconst 0.1 ['T' | 'L" | 'A"] +Iconst |

0,1 1

{ sign}o’]{Iconst P!} { +Iconst }0’

['F' | '6" | 'E* | 'D'] +Iconst '.' Iconst]

- A2 -

definition =
['CONSTANT' { ident '=',Va1ue'}§1, »
'"DEFINE' '''' pattern ''‘' '='
v replacement '''' ';' |
'MACRO' ident '(' { ident { '=' Xexpr }0’1'}?1' Y

tz! HILU oyt LU l;l]

1 1,2

exponent = 'E' { sign }0’ { digit }

expr = [Lexpr | Aexpr | char-expr | 'NIL']

Fident = letter { [Tetter | digit] }0"'5

Fident4 = letter { [letter | digit] }0"'3

Ftype = ['REAL' | 'INTEGER' | 'LOGICAL' | 'COMPLEX']

field-group = ['REF' | Ftype | 'CHAR'] ':'
0,1 }:1
| .}

{ ident { array-bounds }
focussing = 'WITH' reference ':' block 'ENDWITH' ';'

format-declaration = 'FORMAT' ident '=' '(' format-l1ist ')' ';'

format-1ist = { [contro] | data-format | output-text |

+Iconst '(' format-list ')'] }?1.

- A3 -

Iconst = { digit }2]
ident = [letter | special-symbol]
{ [letter | special-symbol | digit] fzo

index = [+Iexpr | scalar-expr]

initialization =
['CHAR SETUP' ';' |
'MAKEAVAIL' class ';' |

'START' process 'AT' coroutine ';']

input-output =
["INPUT' '(" { [':' control | variable ':' data-format] }?].')' 5
'OUTPUT' '(' { [carriage-control | ':' control | output-item] 2, s

['READ' | 'WRITE'] '(' file ',' format ')' { variable 70, 1y |

-

['ENDFILE' | 'REWIND' | 'BACKSPACE'] file ';* |
['READ' | 'WRITE'] 'STRING' { '(* file ')' 30"

string { '(' index '...' index ')' 30s1 s]
interruption =

['STOP' ';' | 'PAUSE' ';' | 'RETURN' ';' |

'SUSPEND' process ';' | situation ';']

- A -

invocation =
['CALL' subroutine { '(' { arg }?1. " 3051 R
EXECUTE! routine { (' (Texpr 171, 1) 30T e
'RESUME' process ';' |
'RESUME' coroutine 'FROM' coroutine ';' |

macro '(' { keyword '=' Xexpr }?1. ")t]

Lconst = ['TRUE' | ‘FALSE']

0,1

Lexpr = {{ 'NOT' }”*' Lprimary }T]OR'I'AND']

Lprimary = [Lconst | '(' Lexpr ')' | Lvar |
2 top |

3 1 I 2]] 1
Lfunction '(' { arg I)' | { Aexpr }re1op

"IN ' scalar '(' scalar-var ')']
label = [scalar-const | scalar]
length = non-negative-Iexpr
1ist—of~subtype§ = [empty | '(' { subtype }?I, ']

output-item = [output-text |

variable { ':' { [data-format | 'C'] }0’] }0’]]

output-text = rrre g [non_'_symbo'l I tirt] }2] tia

parameters = '(' { Fident 3, "'

- A5 -

pragmat =
['TRACE' { variable }?1. S
'RUNCHECK' ' (' ¢ *-"1%7 ['ALL' | 'FOR' |
'CASE' | 'UNTIL' | 'TRACE'] }?1. D]

process-declaration =
'PROCESS' ident '=' '(' { ident 13!, ') ;"

’

program = { program-segment }2] terminator-line

program-segment =
['MAIN' ':' segment-body 'ENDMAIN' ';' |
'SUBROUTINE' Fident { parameters }O’1 t!
segment-body 'ENDSUBROUTINE' ';' |
"FUNCTION' Fident parameters Ftype ':'

segment-body 'ENDFUNCTION' ';' |

'BLOCKDATA' ':' { specification }=' 'ENDBLOCKDATA' ';']
Rconst =
[{ digit }Z] .U { digit }20 { exponent }0’] |
{ digit}Z] exponent | '.' { digit }2] { exponent }O’]]

record-class-declaration =
"RECORD' 'CLASS' '(' +Iconst ')' 'OF' Fident4 ':'

{ ['REF' | Ftype | 'CHAR'] ":'

0,1

{ ident { array-bounds } }%1. !

1 'ENDRECORD' ;'

- A6 -

recursion-declaration = 'RECUR' ‘(' +Iconst ')' ';!

{ ident { ‘(' { '*' }?1. ") }0’] }?]. !
refop = ['=' | ‘==t <t [t] test [teet]

repetition =
['REPEAT' { Iexpr 'TIMES' }O’] ':' block 'ENDREPEAT' ';' |
'LOOP' ':' block 'WHILE' Lexpr ':' block 'ENDLOOP' ';' |
'FOR' Ivar '=' Iexpr 'BY' Iexpr ':' block 'ENDFOR' ';' |
'"FOR' Ivar '=' Iexpr { 'BY' Iexpr }O’]
'TO' Iexpr ':' block 'ENDFOR' ';' |
'LINK' reference '=' reference 'BY' field ':'
block "ENDLINK' ';' |
'DO' simplelvar '=' simplelexpr 'TO' simplelexpr ':'

block 'ENDDO' ';']

routine-definition =
['ROUTINE' ident { '(* { ident 1, ') 1%
CULOCAL (' Cddent 151, 1)t 30T
block 'ENDROUTINE' ';' |
'COROUTINE' ident ':' block 'ENDCOROUTINE' ';']

scalar-type-definition =

'"TYPE' ident '=' list-of-subtypes ';'

segment-body = { specification }20 { statement-function PZO

{ command }21'{ routine-definition }20

- A7 -

selection =

['IF' { Lexpr ':' block }?ELSEIF'

{ 'ELSE' ':' block 197 'ENDIF' ';' |
'NTIL' { ident }?SR. "' block 'THENCASE' ':*

{1 situation ¥>', *:' 'BEGIN' block 'END' 3! 'ENDUNTIL' ';' |
'UNTIL' { '6LOBAL' }°*7 ident ':' block 'ENDUNTIL' ';' |
'CASE' scalar-var ':' scalar 'OF'

{{ 1abel 33V, ':* 'BEGIN' block 'END' 3!

{ 'ELSE' ':' 'BEGIN' block 'END' 3°°1 'ENDCASE' ';']
sign = ['+ | '-']
simplelexpr = [+Iconst | simplelvar]

special-symbol =
['$' | symbol-not-in-FORTRAN-set-and-not-:;8"[8-~]

specification =
[definition | pragmat | format-declaration |
scalar-type-definition | record-c]ass-dec]aration |
variable-declaration | process-declaration | recursion-declaration |
common-declaration | 'CHAR COMMON' ';' |
EXTERNAL' { Fident 1, '5']

statement-function =
1

\
£

Fident '(' { Fident ¥ "Y' '=' Aexpr ';'

- A8 -

string-const = "' { [non-‘~char | 'ttt] 0 i

string-context = string '('
[index { '...' index 1% | index '..." '[' Tength |

Tength '|' '..." dindex] ')

string-expr =

{ [char-expr | string-const | string | string-context] }?;:
2 U [2"] 1
subscripts = '(' { Iexpr ', ')
subtype = [ident | char-const | ident '=' 1ist-of-subtypes]

terminator-1ine = Tline-with-%%-in-first-two-columns

text = { [non-'@#-symbol | '''''' | '@@' | '##'] y=0
value = [Aconst | '(' '~' Aconst ')' | Lconst | char-const | 'NIL']
variable = [Fident { subscripts }°°! |

'@' '(' reference '.' field ')' | '@' '.' field ' ']

variable-declaration =
['STRING' { Fident '(' +Iconst ')’ Y?]. R
L]

[Ftype | scalar | 'REF' 'TO' class ':']

0,1 =]

{ data }0’] 1o ';']

]

{ Fident { array-bounds }

Xexpr = text-without-semicolons

- A9 -

APPENDIX B
SYNTAX FLow GrAPHS FoR SKOL

The following pages contain syntax flow graphs for a large part
of the SKOL language. Those syntactic categories whose definition
seemed to be readily understandable from the Tinear notation of

Appendix A have been omitted.

- Bl -

Notes:

1) Scalar, class, reference, field, subroutine, routine, process,
coroutine, macro, keyword, situation, string, file, integer
and format must be identifiers for objects of the type des-
cribed by the word.

2) Capital letters, I, R, L, C, A are codes for integer, real, logical,
complex, arithmetic where the latter includes integer, real and
complex. The character '+' means strictly positive.

3) ?var, ?expr, ?function, ?const mean, respectively, variable,
expression, function, constant of type ?, where ? is one of the

built-in or programmer declared types.

- A10 -

i

o v ' 1
S | program-segment E .

b
i .

i

i

—T“H s ,: -

GO

PW“’“W‘D

(o=

——.—.ansuszrzoum@—J

 (Foction{faak

| panameters —o‘Fkﬂpej

C@-{segmwt- Lm@

BLOCKDATA

-—@Fm\mno@—/

specificatvon |

”meiﬂefinitionﬁfmj L

s ol
S

+ =—+{ CONSTANT }—

‘H‘ ‘ rRQQQVn

R)+]

e

} neplacemert: o@
~(MACRO }{ idert] |

variable~declaration

Text —>(' -

—

ﬁ-——-@@CFiM

Fuype |

~
Scalar class

j routine-definition %

COROUTINE)-—"ia\em-(: ' block. ENDCORouTme)T-o@-—-—

ROUTINE)—" ident]

record-class-declaration

invocation

SWLrou'Hm

EXECUTE nowhwa L@-C%Eg—o@ —/

| process _/

RESUME .‘me‘_w crwwhma W,
—{mec () (2 Xexpr d

input—output

1

READ

WRITE

INPUT

WRITE

O ite (O fomat

(

b
' fle
D f
L

vmhue

\.

:*Shﬁg-—if:}{igéz

- B6 -

; selection

block.

- B7 -

END,

:“3 :repetiﬁion’.g‘
- ~—»(RePEAT Toxpr ((TiMes block [+{(ENDREPEAT ()

'~ L00P () ok |-+ WHIE){ Lo |-+ Hck |-(ENDLO0P) —

@‘E‘E BY M Lexpr {74 block {ENDFoR -
o]

—Q{refeama |- ~{fousce - @D-{Fit |0

| @) »
_-—.@—.\saMf\eIW—)

. sim(,\eIw‘,,. Tk @J

Rconst

digit | o exponerds —

T, et
= J

- T

- B8 -

assignment ! =

~H INSERT)'J

string-context

format~list

))
-
W +Iconst

_ y

data~-format

=g g
Lt (P

v

: +Ic<ms‘€ 0

-
N— +Tconst
—

output-item

L voiable -l

char-const

string-const

‘hnh~.-cknn

output-text -

A Mwhr‘~<4nm& >

- B -

PPEND
Co S OL T 0

The translator can be controlled by Tines with % in column 1, according

to the following command formats in which no embedded blanks are allowed:

Command

%%

Ui or %Uij

%F
%M
%Cij

%A0
%A1
%A2

%Q0
%Q1

%L
%N
%E

Action
Resume reading input characters from the previous file used
for input. If current file was the first, then no more
characters are read.

Start reading input from device given by decimal digit i
or digits ij.

Assume subsequent text is FORTRAN.
Resume reading SKOL input.

Read subsequent input from columns 1 through n where n is
given by the two decimal digits ij.

SKOL source text is not output as FORTRAN comments.
SKOL source text is output as FORTRAN comments.

Each 1ine of SKOL text is listed on two FORTRAN comment cards
using columns 41-80.

SKOL comments must be between pairs of ".

SKOL comments are terminated by an end-of-line unless closed
by " on the same line.

Begin 1isting lines of SKOL text.
Stop listing SKOL text.

Start new page in SKOL Tisting.

Default modes are %Ul, %M, %C80, %A0, %Q0, %N

- Cl -

CHARACTER STRING UTILITY PROGRAMS

The following seven subprograms are required for character and
string manipulations. They will usually be installed on a file so
that their inclusion into the user program requires only one control
card. Tﬁe declaration for the CHAR data type must precede the in-
clusion of character utilities and both must Tie outside other pro-

gram segmenfs (see examples in Appendix E).

- D] -

"ROUTINES FOR BASIC CHARACTER SETUP AND INPUT/OUTPUT"

" ALSO STRING REPLACEMENT !
"THESE ROUTINES SHOULD WORK IF: "
" 1-—— MACHINE INTEGER ARITHMETIC IS 1-COMPLEMENT, "
" 2-COMPLEMENT, OR SIGN-MAGNITUDE AND IS "
" FULL WORDLENGTH. "
" 2--— SIGN-BIT IS LEFTMOST IN WORD. "
" 3——— A_SINGLE CHARACTER READ INTO AN INTEGER UNDER"
" Al FORMAT IS LEFT ADJUSTED IN THE WORD WITH "
" BLANK FILL., "
" 4-—— THE BIT REPRESENTATION FOR CHARACTER ZERO IN "
:: YOUR MACHINE'S CODE IS NOT ALL ZEROES. ::
"ON CDC 6000 OR 7000 SERIES USE THE R1 FORMAT OF "
" EXTENDED FORTRAN AND REIMPLEMENT THE CONVERSION "
:: PORTIONS OF RDSTRY,WISTR9,INIT99 AND INCV99. "

"PDP/11 ALSO REQUIRES SOME WORK. "

RUNCHECK (-ALL) ;
"THESE 3 CONSTANTS ARE MACHINE DEPENDENT"
" SHORT BYTE = 2*%*(BITS PER BYTE — 1) "
CONSTANT SHORT BYTE=128,BITS PER WORD=32,BITS PER BYTE=8;
SUBROUTINE RDSTRO (NDEV ARRAYTSIZ'NI,NZ%: - =
"READ ARRAY(N1...N2} FROM DEVICE'NDEV AND CONVERT TO ™
" INTERNAL CODES FOR CHAR., STRING LENGTH IS NOT SET."

INTEGER NDEV,N1,N2,SIZ ARRAY(SI%%&
CHAR COMMON; EQﬁIVALEN§E$%§1) 0 H9§%%)SST(l,l),INCHQ(l,l));

INTEGER C(LAST(CHAR) SHORT B
INTEGER I,J,W,WSTAR, INDTAB , BUFFER (200) ,NCHAR;
FORMAT STR999=(200al);

"READ RECORD OF CHARS INTO SUBARRAY"
READ (NDEV 81'35999) (FOR I=N1 TO N2:ARRAY(I));

DO I=N1 TO

:=ARRAY(I);
‘:/[JET%R:=IAB (W) /BSHIFT+1;

INDTAB:=2;
ENDIF';
ARRAY IS){:(?T(INgI‘AB,WSTAR);
CALL RUNERR(SCONVERT);
ENDIF;
ENDDO;

RETURN;
ENDSUBROUTINE;

-D2 -

SUBROUTINE WTSTRY(NDEV,ARRAY,SIZ ,N1,N2

"‘/\YR,LTE STRING ARRAY (Nl

- ..12) ONTO DEVICE NDEV "

AFTER APPROPRIATE CONVERSION FROM INTERNAL "

" CHAR CODES TO Al
INTEGER NDEV,N1,N2,SI
CHAR COMMON; 'EQUIVALE
INTEGER C(LAST(CHAR)
INTEGER I,J,W, WSTAR 1
FORMAT STR999=(20021);
NCHAR: —‘\12—Nl+l
IF NCHAR < 1: RETURN;
I=Nl TO N2:
IF IN CHAR(ARRAY (I
IFC (ARRAY(I)
BUFFER (1-N1+

LSE
CALL RUNERR (
ENDIF
ELSE:

F ”
IZ\léE'}'C§1§ OU}‘(SH9§1 (T(l 1),INCHI(1,1));
NDI‘AB BUFFER(‘ZOO) NCHAR

ENDIF ;

D)z,
+1):=CARRAY (1))
$CONVERT);

CALL RUNERR($CONVERT);

ENDIF;

ENDDO;
WRITE(NDEV,STR999) (FOR I=1 TO NCHAR :BUFFER(I));

RETURN
ENDSUBROUTINE;

SUBROUTINE INIT99:
"INITIALIZE CHARACTER

CONVERSION TAB

LES"
CHAR COMMON; EQUIVALENC é’Cgl)éOUTCH%l)) (T(l 1),INCHI9(1,1));

INTEGER C({AST (CHAR

INTEGER I,J,W,WSTAR, NUfAB éUFW‘ER(?OO) NCHAR;

BSHIFT: —2**(BITS PER |

WORD - BITS PER BYTE),

DO I=1 TO 2:
DO J=1 TO SHORT BYTE:
T(1,J):=0;
ENDDO;

DO I=1 TO LAST(SCHAR)

IF CIgI&ISD%AB

WSTAR' =IABS (WéIA&/BSHIFT+1 ;

IF T(INDTAB,
CALL RUNERR($
ENDIF
T(INDfi'AB WSTAR) :
ENDIF;

ENDDO;
ENDSUBROUTINE ;

HARMAP);
-I.

FUNCTION INCV99 éCH) INTEGER:

"COMPUTE INT
CHAR COMMON;
INTEGER CH,CHSTAR, IND;

RNAL CODE FOR CHAR CH READ BY Al FORMAT"

CHSTAR: =IABS (CH) /BSHIFT +1;

IF (IZ _0.

ELSE:
IND:=2;

ENDIF

Ichgé Q%NCHg(IND ,CHSTAR) ;

IF INC

CALL RUNERR($CONVERT);

ENDIF ;
ENDFUNCTION;

- D3 -

"STRING UPDATING ROUTINES"

FUNCTION IRPLO9(S,SIZ,LEN,Il,I2,T,K1,K2) INTEGER:
"REPLACE S(Il,..I2) BY T(K1,..K2) AND RETURN "
55 CORRENT LENGTH OF 'S,

" WHILE CHECKING THAT S DOES NOT OVERFLOW "
" TTS MAXIMUM SIZE, SIZ.
INTEGER SIZ 5(512% TiKZ) ,SHIFT;
SHIFT:=(K2— 1)-(1I
IF SHIFT < 0:
FOR I=I2+l TO LEN:
S(I+SHIFT):=S(I);
ENDFOR;
ELSEIF SHIFT > O:
IF LEN+SHIFT > SIZ:
CALL RUNERR($REPL);
ENDIF ;
FOR I=LEN BY -1 TO I2+l:
S(I+SHIFT):=S(I);
ENDFOR;
ENDIF ;
FOR K=K1 TO K2:
S(I1+(K=K1)):=T(K);
ENDFOR
IRPL99 := LEN + SHIFT ;

RN '
ENDFUNCTION~

FUNCTION IRPL98(S,SIZ,LEN,Il,I2,CH) INTEGER:
WREPIACE S(Il...12) BY THE SINGLE ELEMENT CH, "
" OTHERWISE LIKE IRPLO9 "
INTEGER S17,S(SI1Z),SHIFT,CH;
SHIFT:=I1-12;
IF SHIST < 0:
FOR I=I2+l TO LEN:
S(I¥SHIFT):=S(1);

ENDFOR;
ELSEIF SHIFT > O:
IF LEN+SHIFT > SIZ:
CALL RUNERR(SREPL);
ENDIF;
FOR I‘LEN BY -1 TO I2+1:
S(I+SHIFT):=S(1);

ENDFOR;
ENDIF-
S(I1):
IRPL 8 = LEN + SHIFT ;
RETURN;
ENDFUNCTION;
FUNCTION IDEL99(S,SIZ, LEN 11,12) INTEGER:
"DELETE Séll...IZ) TURN THE NEW CURRENT "
INTEGER S17,5(szz (SHIFT;
SHIFT:= —iIé—I ¥1
FOR I=I2+1 TO LEN:
S I+SHIFT)°—S(I);
ENDFOR
IDEL99 := LEN + SHIFT ;
RETURN;
ENDFUNCTION;
RUNCHECK (ALL) ;

3L
2%

- D4 -

APPENDIX E

SampLE Procrams IN SKOI

This appendix contains four SKOL programs which are briefly

described as follows:

1. Generate the first 100 prime numbers.
2. Build and print a perfectly balanced binary tree.
3. Read and print listing of a stream of telegrams (see

reference [15]).
4, Convert simple expressions from infix to postfix

operator notation (see pp 73-75 of reference [2]).

- E1 -

3L
3AJ
" SKOL PROGRAM TO GENERATE PRIMES "
RUNCHECK (-ALL) ;
MAIN:
CONSTANT NPRIME=100;
INTEGER PRIME(NPRIME) ,TRIAL,ITEST,NXTPRM,IPR;

PRIME (1):=2; PRIME(2):=3;
FOR IPR=3 TO NPRIME:
UNTIL FOUND NEXT PRIME:
FOR TRIAL=PRIME (IPR-1)+2 BY 2:
UNTIL IS _PRIME OR IS_COMPOSITE:
FOR ITEST=2 TO IPR-1:
IF MOD(TRIAL,PRIME(ITEST)) = 0 :
IS_COMPOSITE;
ELSEIF PRIME (ITEST)**2 > TRIAL
IS_PRIME;
ENDIF;
ENDFOR;
IS_PRIME;
THENCASE :
IS _PRIME:
BEGIN NXTPRM:=TRIAL; FOUND_NEXT PRIME; END
IS_COMPOSITE:

"BEGIN END
ENDUNTIL;
ENDFOR;
ENDUNTIL;
PRIME (IPR) : =NXTPRM;
ENDFOR;

OUTPUT ($PAGE, :5X, "THE ',IPR:I4,'-TH PRIME IS ',PRIME(NPRIME):);
ENDMAIN;
2%

- E2 -

o

303

"PRCGRAM TO BUILD PERFECTLY BALANCED BINARY TREE"
" SEE PROGRAM 4.3 ON PAGE 196 OF N. WIRTH'S NEW"
" BOOK ON ALGORITHMS + DATA STRUCTURES = PROGRAMS"
TYPE CHAR=(' ','X','.');
"INCLUDE CHAR FACILITIES"
MAIN:
PROCESS NEXT NUMBER= (GETNUM) ;
RECORD CLASS(30) OF NODE:
INTEGER:KEY; REF:LEFT,RIGHT;
ENDRECORD;
REF TO NODE:NEWNOD,ROOT,T;
INTEGER NUM,ARRAY (20),I,DEPTH;
STRING OUTLIN(580) ,BLANKS(5);
CHAR_COMMON;
RECUR(108) : TREE (*) ,PRINT_TREE(*,*);

RUNCHECK (-ALL) ;

MAKEAVAIL NODE; CHAR_SETUP; START NEXT_NUMBER AT GETNUM;
DELETE BLANKS; REPEAT 5 TIMES: CATENATE ' ' ONTO BLANKS:;
RESUME NEXT NUMBER;

DEPTH:=0; K:=1;

LOOP: WHILE NUM >= K: INCR DEPTH; K:=2*K; ENDLOOP;

DECR DEPTH; '

"2**DEPTH < = NUM < 2** (DEPTH+1)"

EXECUTE TREE (NUM) ; '

OUTPUT (SPAGE, : 20X, 'INDENTED TREE',:/,:$SKIP2);

EXECUTE PRINT_ TREE (ROOT,d) ;

OUTPUT (SPAGE) ;

RETURN

COROUTINE GETNUM: "ALIAS FOR PROCESS NEXT_NUMBER"
"DELIVERS NEXT INPUT VALUE IN GLOBAL NUM"
REPEAT:

INPUT ((FOR I=1 TO 20: ARRAY(I)):20I4);
FOR I=1 TO 20:
NUM:=ARRAY (I); SUSPEND NEXT_NUMBER;
ENDFOR;
ENDREPEAT;
ENDCOROUTINE;

ROUTINE TREE (N) LOCAL (NL,NR,NEWNOD) :
"BUILD BALANCED N-NODE BINARY TREE"
"RETURNS REF TO TOP NODE IN GLOBAL ROOT"

IF N = 8:
ROOT:= NIL ;
ELSE:

NL := N /2; NR := N - NL -1;
RESUME NEXT NUMBER;
NEW NEWNOD ;
WITH NEWNOD:
@.KEY := NUM;

EXECUTE TREE(NL);@.LEFT :=ROOT;
EXECUTE TREE(NR);Q@.RIGHT :=ROOT;
ENDWITH;
ROOT:= NEWNOD ;
ENDIF;
ENDROUTINE;

- E3 -

ENDREPEAT;

33

ROUTINE PRINT TREE(T,H):
"PRINT BINARY TREE T WITH INDENTATION H"

IF T = NIL:
IF H <= DEPTH:
DELETE OUTLIN; CATENATE ' ' ONTO OUTLIN;
REPEAT H TIMES:
CATENATE BLANKS (l...5) ONTO OUTLIN;
ENDREPEAT;
CATENATE '.' ONTO OUTLIN;
WRITESTRING OUTLIN;
ENDIF;
ELSE:
WITH T:
EXECUTE PRINT TREE(Q.LEFT , H +1);
DELETE OUTLIN; CATENATE ' ' ONTO OUTLIN;
REPEAT H TIMES:
CATENATE BLANKS(l...5) ONTO OUTLIN;
ENDREPEAT;
CATENATE 'X' ONTO OUTLIN;
WRITESTRING OUTLIN;
OUTPUT (SOVER, :60X,@.KEY :);
EXECUTE PRINT TREE(@.RIGHT , H +1);
ENDWITH;
ENDIF;
ENDROUTINE;
ENDMAIN;

- E4 -

3L,
'I’YP%U3E CHAR= (ALPHABET=,DIGIT=,"' ','*',',");

2A2

MAIN:

"OENDERSON ET AL TELEGRAM PROBLEM, COROUTINE SOLUTION"
RUNCHECK (~TRACE) ;

CONSTANT OVERLENGTH LIMIT=5,SPACE=' ';

g’gl‘ﬁIRN(éIEERMWD (4) ,NOCHRG (4) ,SPACES (3) ;

STRING WORD (1@}){ LINE(31) ,BUFFER(80);
INTEGER CWCéQ(] é

Ié:gGAII{CAL ow
DFFINE U U999 (#1 , SIZE(#1), LENGTH(#1),
SPI:%E #5), LENG’I'H(Eg (.} (1) (#1)

PROCESé HENDERZAHN—(NEXT INPUT LETTER NEXT INPUT WORD,
TELEGRAM READER,OUTPUT LISTING) ;

CHAR SETUP;
IF STZE (WORD) > SIZE(LINE)-1:
OUTPU'I‘($PAGE,'WORDSIZE TOO BIG FOR LINE');

ENDIF;

START HENDERZAHN AT OUTPUT ' LISTING;
RESUME HENDERZAHN;

RETURN;

COROUTINE OUTPUT LISTING'

#5P
OUTPUT($PAGF'
UNTIL LAST TE]‘..EGRAM
REPEAT: ™ “EACH TELEGRAM"
RESUME TELEGRAM READER FROM OUTPUT LISTING-
REPERTd (WORD)'TJ TAST " TELPGRAM; ENDIF
OUTPUT ($SKIP2) ;
UNTIL END OF TELEGRAM:
REPE%’%;E TEACH OUTPUT LINE OF TELEGRAM"
f50p:° "EalH TELEGRAM WORD" :
CATENATE WORD ONTO LINE;
RESUME TELEGRAM READER FROM OUTPUT LISTING’
, IF LENGTH {wom =): END OF TELEGRAM? END
WHILE LENGTH (LINE)+ LENGTH (SPACES)+ LENGTH (wbRD) .
<= SIZE(LINE) :
CATENATE SPACES ONTO LINE;
ENDLOOP
WRITESTRING LINE;
ENDREPEAT 3

ENDUNTIL;
WRITESTRING LINE; ,
OUTPUT ($SKIP,CWC WORDS CHARGED')

- QUTPUT { NOROLENGTR EXCEEDe éVERLENGTH LIMIT :I3); ENDIF;

ENDUNTIL;
QUTPUT (SSKIP2, " *****' .5% 'AT], TELEGRAMS LISTED', :5X,'*¥**x1).,

SUSPEND HENDERZAHN;
ENDCOROUTINE;

- E5 -

COROUTINE TELEGRAM READER:
#TERMWD:='72%% "7 #NOCHRG:='STOP';
REPEAT: "“EACH TELEGRAM"
CWC:=0; OW:=
UNTIL 'I‘ELE‘.GRAM TERMINATED
REPEAT: "EACH WORD"
RESUME NEXT INPUT WORD FROM TELEGRAM READER;
IF EQUAL (WORD , TERFMWD) :
DELETE WORD; TELEGRAM TERMINATED;

IF NO‘I‘ éTB?UAL (WORD,NOCHRG)) : INCR CWC; ENDIF;
H{WORD) > OVERL H LIMIT : OW:= TRUE ; ENDIF;

IF LEN
RESUME OUTPUT | LISTING FROM TELEGRAM READER;
ENDREPEAT;
ENDUNTIL;
RESUME O(JTPUT LISTING FROM TELEGRAM READER;
ENDREPEAT;
ENDCOROUTINE,

COROUTINE NEXT INPUT WORD:
%‘éﬁ NEXT_INPUT‘LETI‘ER FROM NEXT INPUT WORD;
EXECUTE SKIP BLANKS;
UNTIL END OF WORD:
FOR LENGTH (WORD)=1 TO SIZE (WORD)

WORD (LENGTH (WORD)) :=
RESUME NEXT INPUT LE'I'I‘ER EROM NEXT INPUT WORD;
IF CIL= SPACE : END OF WORD; ENDIF7

ENDFOR;
V\DRD(LENGTH(VDRD)) = '*'.

RESUME NEXT INPUT LETTER FROM NEXT INPUT WORD;
IF CIL = SPACE : END OF WORD; ENDIF;
ENDREPEAT;
ENDUNTIL;
RESUME TELEBRAM READER FROM NEXT INPUT WORD;
ENDREPEAT';
ENDCOROUTINE;

ROUTINE SKIP BLANKS:
UNTIL NON SPACE:
REPEAT?
IF CIL "= SPACE :
NON SPACE;
ELSE:
ENDIIESUME NEXT INPUT LETTER FROM NEXT INPUT WORD;
ENDREPEAT;
ENDUNTTIL;
ENDROUTINE;

COROUTINE NEXT INPUT LETTER:
REPEAT:

READSTRING (SINPUT) BUFFER;
FOR IBP=1 TO SIZE (BUFFER] :
CIL:=BUFFER (IBP) ;
RESUME NEXT INPUT WORD FROM NEXT INPUT LETTER;
ENDFOR;
ENDREPEAT
ENDCOROUTINE §

ENDMAIN;

- E6 -

FUNCTION EQU999 (STR1,S1,L1,STR2,S2,L2) LOGICAL:
WTEST %UALITY oF WO StrINGS™ '
INTEGER S1,82,L1,L2,1;

CHAR STRI (§1),STR2(52§;

UNTIL ALL SAME OR MISMATCH:
IF L1 7= L2 : MISMATCH; ENDIF;
FOR I=]1 TO Ll: _
IF STR1(I) “= STR2(I): MISMATCH; ENDIF;
ENDFOR;
ALL SAME;
THENCASE:
ALL SAME: BEGIN EQU99
MISMATCH: BEGIN EQU99
ENDUNTIL;

RETURN;
ENDFUNCTION;

%%

\O\O
W
2

- E7 -

L
"SKOL PROGRAM TO CONVERT INFIX TO POSTF
TYPE CHAR= (ALPHABET=,' ',* (*,")" ADD=("+','="),'*"');
ﬁt& "INCLUDE CHAR UTILITIES'

CHAR COMMON; CHAR CH; STRING CARD (890) ,LINE (120) ;

STRING OPSTI'(620% IN’f'EGE
DEFINE ';DEBUG ; R['JNCHECK (-ALL) ;
DEFINE °NEXTCHi = .iNcR'IC; CH:=CARD(IC);' ;
DEFINE ';STACK;'= '-CATENATE CH ONTO OPSTK; NEXTCH;
BUG UTPUTE" STA(;K LA
DEFINE ' TOP '= ' OPS‘I'K(LENGTH (OPSTK))
DEFINE ';POP;'= ';DECR LENGTH(OPSTK);' ;
DEFINE ';UNSTACK;'= ';CATENATE TOP ONTO LINE .
DEBUG OUTPUT ("' | UNSTACK ' , TOP :C);POP;';
CHAR SETUP; DELETE LINE; CATENATE ' ' ONTO LINE;
READSTRING CARD; 1c:=1; CH:=CARD (IC) ;
CATENATE CARD(1l... SIZE(CARD)) ONTO LINE;

WRITESTRING LINE; OUTPUT $$SKIP2) ;
DELETE LINE; CATENATE ' ' ONTO LINE;

LOOP: WHILE CH = ' ' . NEXTCH; ENDLOOP'
DELETE OPSTK CATENATE ' (° ONTO OPSTK,
UNTIL FINISHED:
REPEAT':
DEBUG OUTPUT (CH C);
CASE CH:CHAR O
ALPHABET:
BEGIN

CATENATE CH ONTO LINE; NEXTCH;
IE)EBUG OUTPUT (' PASS THRU');

ND
:(::'B}|3GIN STACK; END

IN
IF TOP = '('
POP;
IFCH="": FINISHED; ENDIF;
NEXTCH,

UNSTACK,
ENDIF;
END
ADD:
BEGIN
IF TOP = '(': STACK; ELSE: UNSTACK;:; ENDIF;
END
T .
BEGIN
IF TOP

END
ENDCASE;
ENDREPEAT'
ENDUNTIL
WRITESTRING LINE; ;
ENDMAIN;

%%

'*!: UNSTACK; ELSE: STACK; ENDIF;

- E8 -

APPENDIX F

S GNOSTICS

The following listing was produced by the SKOL compiler and
illustrates most of the diagnostic facilities. There are notes
after the listing to explain some of the less obvious messages.

Appendix H should be consulted to decode the control error diagnostics

"UNCLOSED x FOUND AT y".

-F -

e @ o & o 0 6 0 o s 0 s 0 e 0 0 0 o

W LW LWL W LWNINIRNI N NN N NN H I I e H = S
UL W RO 00~IULS W N RO 00~IOVUTLIB (W R0

et b ot ottt o oottt b ottt ettt b b et et e o e e b et e b e e e et e

OYOYUTUTUTUTU UTUTUTUTUTES B b B B S S B S S L0 W W

& 0 & 0 4 0 0 0 ¢ P T e 0 2 0 O G S S O O O O S O O S G S 0 e 0 0

RO CO~IOVUTE (O RO 00 I OVUTH W N RO 00 ~IOY

N.
"PEST OF SKOL DIAGNOSTICS"
TYPE CHAR-(ALPHABET‘(‘A','B','C') ,EOL,TAB,"' ');

CHAR C

STRING éTRl(2ﬂi STR3 +STRA (10) ;

CONSTANT PI=3 'NDIM=

2?2 BAD CONSTANT DEFINITIéN BAD
n'n TYPE COLOR= (REDS= (RED, PINK) ,GREEN, BLUE, BLACK) ;

COLOR HUE;
SCALl SC1,SC2; COLOR:Cl /C2;
2?2 UNEXPECTED COLON

(SIS TSI TS TS

I

o

T RECORD CLASS (N) OF WHAT:
) COLOR:C1 ; CHAR: CH] ; REF:LL,RL;
??7? BAD TYPE COLOR IN FIELD LIST
o ENDRECORD;
) REF TO WHAT p 9(4),
0 REF TO NONO: P
??? RECORD CLASS NONO UNDECLARED
- PROCESS XYZ=(AA
g RECUR (100) x1 xé(*
) MAKEAVAIL NONO; START XYZ AT X1; CHAR SETUP;

2?2 RECORD CLASS NONO UNDECLARED
227 UNDECLARED COROUTINE X1
= DELETE STR1;

g REPLACE STR_'L(l...Il BY 'A' ;
@ MACRO MACI (KEYl KEY2)='ZZ°= KEY1 ;%2(KEY2):= KEYl +1' ;
g UNTIL S1 OR S2 o s3
IF P: S4; END
) DELETE sél CATENATE 'AB' ONTO STR2(l...3);
22?2 UNDECLARED STRING SCI

sc

2?27 UNDECLARED STRING STR2(1l...3
2?27 UNDECLARED STRING STR2(1...3
227 UNDECLARED STRING STR2(1...3
227 UNDECLARED STRING STR2(1...
227 UNDECLARED STRING STR2(1...3
2?7 UNDECLARED STRING STR2(1...3

) MACngEY2—3),

] MAC1 (3 4),
222 BAD KEYWORD PARAMETE 3 2
227 BAD KEYWORD PARAMETER
2?27 OBLIGATORY PARAMETER KEY2 MISSING

T LOOP.
0 (SINPUT, PERSON)LIST;
??? UNDEFINED FORMAT 15ERSO
-0 = O: REPEAT 7 TIMES:
0 ENDLOOP-
) FOR I=10 BY -1 DO BEGIN END; S2;

2?22 UNCLOSED D FOUND AT X

2277 UNCLOSED 7 FOUND AT X

227 MISSING WHILE

227 BAD SYNTAX AT-—-I=1¢ BY -1 DO BEGIN END
227 UNEXPECTED BEGIN

- F2 -

e 0 o o s 0 0 2 0 0 0 0 @

8 0 ® ¢ 8 0 6 & 0 0 s O 2 & 0 5 O 0 8 0 @ @

ot bt o e et et b e et et et e e b et et
LOLOLO O OO O 4O 0000 00 00 00 00 0000 00~~~ I~ <l ~I~I~J <IN N AN

) THENCASE :
B S5: BEGIN WRITE STRING($MYFILE)NON STRING;
222 SITUZ$\TION LABEL S5 NOT DECLARED

N)EMWK
7?7 UNDECLARED STRING NON STRING
227 UNDECLARED STRING NON_STRING

] EGIN J:= LENGTH (STR2) ;
22?2 __ UNDECLARED STRI STR2
) I=1 TO 10 A:=0; mmuy

22?2 °“PMSHM)HS' INTERPRETED AS COLON

IF SIZE(STR2) = 0:

222 UNDECLARED STRING STR2
TR1(2):="2";

S
22?2 UNKNOWN CHARACTER [2]

DELETE STR2;
??? UNDECLARED STRING STR2
INSERT '+' AFTER STR1(SIZE(STR1));
22?2 UNKNOWN CHARACTER |+
CATENATE EOL ONTO STR4; OUTPUT (EOL:C);
?2?2? UNDECLARED STRING STR4
227 " UNDECLARED STRING STR4
227 " UNDECLARED STRING STR4
2?72 CHAR EOL CANNOT BE OUTPUT
- CASE I:SCAL2 OF
??? UNDECLARED SCALAR TYPE SCAL2
227 UNDECLARED SCALAR TYPE SCAL2
2?7 " UNDECLARED SCALAR TYPE SCAL2
0 % I;_ggGIN END

BEGIN
CASE CH:ALPHABET OF
A"Dhmmnamm
WHILE B <= N: A:=1;
222 CASE LABEL AND BEGIN MISSING
227 UNCLOSED C FOUND AT A
227 mWMBH)BEWmDATA
227 UNCLOSED C FOUND AT %
A
A

i1,

[

=

1

[NSTSTaST LS

227 UNCLOSED W FOUND AT
227 UNCLOSED Y FOUND AT
227 UNCLOSED T FOUND AT
227 MISSING LOOP

0 LINK P=Q(2) BY NEXT:
??2?__ BAD FIELD NEXT

) END

] ENDCASE ;
222 UNCLOSED J FOUND AT B
227 MISSING BEGIN

) ENDIF;

END
] ENDUNTIL;
?22? MISSING IF
777 MISSING BEGIN
UNTIL A OR B:
IZ) EXFCU'I‘E X2(1,0.4);
2272 MISSING UNTIL
2?27 WRONG NUMBER OF PARMS FOR X2
) FOR A(I) TO N: K:=2;
?27?? mmEWR%??E

e TIMES:
] FOR I=10 BY -1l:
a ENDDO;
222 BAD SYNTAX AT——-7 TIMES: FOR I=19 BY -1: ENDDO

277 —UNEXPECTED QOLON
4] ENDUNTIL;

- F3 -

DO BRINIDI NI NN NN NN NN
* o o ¢ o o o L[] * o o @ ¢ & o . . o

QIOTOT S Bl B B b i S (WL W W W W W W W

BN RO CO~JIOVUTH LW NHERIO CO~IV UL W= RO GO~ VU LW N RO QO IV UT i WIN = IO CO~J YU W Mo —

S 8 0 ° & 0 0 8 0 0 2 0 2 4 0 0 0 ¢ 0 0 0 0 0 0 4 0 s 0 e e 0 s 0

BRI RININ NN NN BN RN N BRI NN BRI R NINI PRI NI NI BININD

Q0 00 C0 O~~~ JIIJooyonoroxonaonoyonovuighuionuoinn

&
P

LORINI R BRI RNIBI NI RONI B RIBIBRI N RORI DI NI DININ)
.

OO LOLOLOLOLO O OO 00 0O COCO 00 0O
QOO ~JOVUTLR W N0 O~ U

2?22 UNCLOSED H FOUND AT I
227 UNCLOSED U FOUND AT I
2?27 MISSING DO

a ROUTINE D:

2 REPEAT J:=0; B:=3; UNTIL P < 1;
22?2 MISSING UNTIL
2?27 "ROUTINE D DECLARED BEFORE AN EXECUTE
227 BAD SYNTAX AT-——J:=0
227 —BAD SYNTAX AT-—-P < 1

0 IF IN REDSPECTRUM(Cl) THEN A:=0;
2?22 UNDECLARED SCALAR TYPE REDSPECTRUM
227 UNDECLARED SCALAR TYPE REDSPECTRUM
222 := HAS HAD ITS : INTERPRETED AS COLON

2 OUTPUT X XX;

g EXECUTE D'
??? _ ILLEGAL BACKWARD ROUT

@(P ZZ): @(Q(Z) CHl),

??? __ BAD FIELD

WI‘I‘H Q(K):
OUTPUT (@.CHL :C,Q@.XX);
?2?? BAD FIELD xx

@@H

Wl

222 BAD SYNTAX AT———A
2?7 UNEXPECTED OOLON
2 RESUME XYZ;

2
@ COROUTINE AA:
2?2 UNCLOSED Z FOUND AT G
2271 INCLOSEDNEW F%UND3 F%%‘EGQ(l)
I
??? REF P3 UNDECLAIQE
' =F; RESUME BB FROM AA;
0 CASE HUE:COLOR OF REDS:BEGIN END ENDCASE;
g ENDCOROUTINE;
2?? UNTREATED CASE VALUE
222 UNTREATED CASE VALUE
2?7 UNTREATED CASE VALUE

@ ROUTINE EFG:

222 ROUTINE EFG DECLARED BEFORE AN EXECUTE
0 INCR K; @(SS3 LL) := NIL ;

??7 _ UNDECLARED REF S

' SUSPEND xyz-
ENDROUTINE;
i
) ROUTINE X1 (P2) LOCAL(Z):
) RUNCHECK (~FOR, +CASE) ;

??? WRONG NUMBER OF PARMS FOR
o READSTRING CARD;
2?2 UNDECLARED STRING CARD
??7—-'1. INDECLARED STRING CARD
IF IN DIGIT(CH):
9” UNDECLARED SCALAR TYPE DIGIT
2?7 —UNDECLARED SCALAR TYPE DIGIT
o C:= VALUE (CH) 3
??? UNDECLARED SCALAR TYPE DIGIT
7 ENDIF;
g EXECUTE X1;
@ EXECUTE A;
g RESUME EFG;
??? UNDECLARED COROUTINE EFG
—w—@ ENDROUTINE ;

@ ROUTINE D:
2?22 ROUTINE g DECL%RED BEFORE AN EXECUTE

P
2?2 PARM OR LOCAL OUTSIDE SCOPE
2?27 _PARM OR LOCAL OUTSIDE SCOPE

- F4 -

4 8. @ @ 6 6 0 . 0 6 6 @ 0 0 © 0 @ 0 ® 0 0 & 5 & @

LWL WLV LD LI LILI L (W WD LI LW L (0 LW LW LD LI W W W LS
WRINNN NN NNIN bt i it el e [= R QRN OI R S
VWO UL W N\ 0O~JOYULE (WO N RO 0 ~JUTE (W N

] MOVE STR1 TO STR2(1...3);
??? UNDECLARED STRING STR2
2?27 UNDECLARED STRING STR2
2?7 UNDECLARED STRING S
s REPLACE STRl 3|...Iﬂ) BY CH;
??2? INCORRECT PIACE FOR LENGTH
227 INCORRECT PLACE FOR STRING LENGTH

[WRITESTRING OUTLIN;
222 UNDECLARED STRING QUTLIN
227 UNDECLARED STRING OUTLIN
ENDROUTINE;

@ ENDMAIN;
%3

3L
g $BLOCKDATA$
] %%" END OF SKOL COMPILATION" $FINISHS

22?2 MISSING MAIN
227 ROUTINE OR CORQUTINE BB NOT DEFINED
???—ROUTINE OR COROUTINE X2 NOT DEFINED

222 ROUTINE OR CORQUTINE A NOT DEFINED
222 LABEL LEFT ON STACK
222 LABEL LEFT ON STACK
222 LABEL LEFT ON STACK
227 _LABEL LEFT ON STACK

- F5 -

Notes on Diagnostics:

Lines

" 157-159

160-161

164

165-170

175

179

189

200-~207

209

212

213, 217
218, 221

222

Explanation
The IF statement and REPEAT statement on line 154 are

not properly terminated and the WHILE phrase is missing
from the LOOP: ... ENDLOOP; command on lines 151-155.

The FOR statement on line 156 is incorrectly formed.

The name S5 does not occur as a situation in the UNTIL
phrase on line 136.

The names $MYFILE and NON_STRING have not been defined
or declared.

There is a missing : after 10 on line 174.

'?'" is not among the characters of CHAR defined on
line 111.

Characters denoted by identifiers may not be output.

WHILE phrase on line 199 does not have a corresponding
LOOP: 1in the previous lines.

P has been declared as a reference to record class WHAT
on line 124, but NEXT is not among the fields declared
for WHAT on lines 120-123.

LINK statement on 1line 208 not terminated.

Spurious messages caused by attempt to find LOOP corres-
ponding to WHILE on T1ine 199.

X2 is declared as recursive routine with one parameter
on Tine 128, but invoked with two parameters on line 220.

- F6 -

231-233 FOR statement on line 226 not properly terminated; DO
phrase on line 225 is incorrectly formed and is not
recognized as matching the ENDDO on line 227.

237 Spurious message caused by foulup on lines 225-227.

244 THEN in line 241 should be colon.

249 Z7 is not a field of record class WHAT to which reference
P refers.

252 @.XX is an abbreviation for @(Q(K).XX); Q is an array

of references to WHAT, but XX is not a field in WHAT.

260-261 IF on 1ine 241 and ROUTINE on 1ine 235 not terminated
before COROCUTINE on Tine 259.

- 267-269 Three constant values of type COLOR (namely GREEN, BLUE,
BLACK) defined in line 116 do not appear as case labels
in Tine 265.
280 Recursive routine X1 declared without parameters in line

128, but defined with one in Tine 278.
299-300 Z and P2 are respectively a local variable and a parameter

of recursive routine X1 on lines 278-294. The occurrences
on line 298 are outside the valid scope.

- F7 -

APPENDIX G

FORTRAN EquivaLENT oF Two SKOL PRoGRAMS

The following FORTRAN is the equivalent of the prime-generator SKOL

program in Appendix E.

INTEGER PRIME(100),TRIAL,ITEST,NXTPRM,IPR

PRIME(1)= 2
PRIME§2 3
1026 1

Ilﬂ264‘ 190

110265=_3
IF((Il@264—11ﬂ265)*11ﬂ263 .LT. @) GOTO 10266
IPR —1 110265

10261 _CONTINUE
I 4)GOTO 10266

I
10262 CONTINUE

10281 CONTINUE

TRIAL = TRIAL +I110282
10283 CONTINUE

I10313= 1

113314= %Per

110315=
IF((I10314-110315)*110313 .LT. @) GOTO 12316
ITEST = I1@315

GOTO 10312
10311 _CONTINUE
IF(ITEST .E Il@3l4§GOTO 12316
ITEST = ITEST +11031
10312 CONTINUE
IF((MODéTRIAL,PRIME(ITEST)) .NE. @))GOTO 10331
GOTO 18309

GOTO 12321

10331 CONTINUE
IF ((_PRIME(ITEST)**2 .LE. TRIAL))GOTO 14341
GOTO 10299

10341 CONTINUE

10321 CONTINUE
GOTO 19311

10316 CONTINUE

10290 CONTINUE

E
PRIME (IPR)= NXTPRM
GOTO 1026

10266 CONTINUE
lﬂ36@*FORMAT(1Hl , 5%, 4HTHE , 1I4 , 13H-TH PRIME IS , Gl

2.5
WRI%E(6 ,10360) IPR , PRIME(100)

RETURN
END

-Gl -

The following is the FORTRAN for the SKOL program to build and print a

balanced binary tree given in Appendix E.

INTEGER NODE@
INTEGER NODE 1§3m
INTEGER NODE 30 NODE 3(39)
NTEGER NEWNOD, ROOT T
INTEGER NUM,ARRAY(Z@)
INTEGER OUTLIN sé), @751, (5) Ilﬂ76l
COMMON,/ CHCODE / OUTC 3)7, INCH9(2 AN e), BSHI
%NnggR ogggggé1§c?géBSHxT99999 /1/, B99999 /@/, RC9999 /B/
NT R ’ RC
DO 14791 NODEZ = 1 %b !
NODEl(NODE@) NODEQ—l
10791 CONTINU
NODE#= £
CALL INIT99
ASSIGN 13720TO J10720
ASSIGN 10720TO J10690
110761= 0
110802= 5
IF(110802.LT.1)GOTO 10801
DO1#811 I19820=1,110802
110761 =I16761 +1
BLANKS (T10761)= 1
14811 CONTINUE
10801 CONT
ASSIGN Ta838 T0 110690
GOTO 14790
19830 CONTINUE

10841 CONTINUE
IF((NOM .LT. K))GOTO 10851

12851 CONTINUE

DEPTH -1
599999 (T99999)= B99999
599999 (T99999 +1)= 1
T99999 = T99999 +(2)
599999 (T99999)= NUM

799999 799999 +1
B99999 = T99939 (" 1 +1)
GOTO 19779
19860 CONTINUE
10879 FORMAT(1H1 20X , 13HINDENTED TREE , / , 1H-)
WRITEé 6 ,10879)
59999 2 T99999)= B99999
$99999 (T99999 +1)= 2
T99999 = 799999 +(2)
599999 (T99993)= ¥
T99999 = ~"T99999 +1
$99999 (T99939)= @
T9999) = = T99999 +1
B99999 = T99999 -(" 2 +1)
GOTO 12780

19888 CONTINUE
19890 FORMAT(1Hl ;
WRITE(6 ,10890)
RETURN
RETURN
2720 CONTINUE
2991 CONTINUE
7919 FORMAT

READ (
I119923=

Ul

2014 ;
,%ﬂ9lﬂ (ARRAY(I) , I =1, 20)

- (2 -

s o
IF((Ilﬂ9%%—11ﬂ925)*110923 .LT. @) GOTO 19926

GOTO 1@922
10921 CONTINU
IF(I .EQ. 110924)GOTO 10926
I = 1 +I10923
19922 CONTINUE
M= ARRAY (I)
ASSIGN 10930 TO J10690
GOTO 16710
19930 CONTINUE
172921
10926 CONTINUE

18776 CO
9999 = 999 + 4- 1)
IF((899999 (B999 9+ 1) .NE. @))GOTO 10951
ROOT=_#

GOTO 10941
10951 CONTINUE
S$99999 2 B99
599999
*999 + 2) -1
ASSIGN 10960 TO 110699
GOTO 10790
10960 _CONTINUE
IF((NODE@ .NE. @))GOTO 1£981
CALL RUNFRR(5)
10981 CONT
S99999 (B99999 + 4). = NODE@
NODE@= NODE1 (NODE@)
NODE 1499999999 (_B99999 + 4))= NUM

599999 é B99999 + 1) /2
$99999 (B99999 + 1) = 599999 (B99

w

©

O
1 WO
OO
O
H o 4+
WK
- =
(I}

599999 99)= B99999
S99999 (T99999 +1)= 3
T99999 = T99999 + %
599999 (T999399 é= S99 99 (B99999 + 2)
T99999 = TY9999 +1
B99999 = T99999 -(1 +1)
GOTO 12770
10999 CONTINUE
NODE 2(899999 (B99999 + 4))= ROOT
599999 E 99999)= B99999
S99999 (T99999 +1) 4
T99999 = T99999 +(2 5
S$99999 (T99999 $= S99 99 (B99999 + 3)
T99999 = T99999 +1
B99999 = T99999 -(1 +1)
GQTO 12770
11900 CONTINUE
NODE Bé 599999 (B99999 + 4))= ROOT
ROOT= S99999 (B99999 + 4)
19941 CONTINUE
GOTO 99999

RETURN

10780 CONTINU
IF S99999 B999
I{ 512 S99999 B999

119751 ‘11@751 +1
OUTLIN ;— 1
111052= S9999 B99999 + 2)

99 + 1; .NE. 0))GOTO 11021
99 + 2) .GT. DEPTH))GOTO 11041

- G3 -

IF(111952.LT. l)GOTO 11051
DO11961 111079=1,111852
116751 = IRPL99(OUTLIN ,
*1), BLANK%,(), (5))
11061 CONTINU
11951 CONTINU
o071 110751 41
OUTLIN (I1d751)= 3
CALL WTSTRO(6 , OUTLIN ,
11841 CONTINUE
GOTO 11011
11021 CONTINUE
599999 $ T99999)= B99999
599999 (T99399 +1)=
T93999 = 799999 +(2)
599999 (T99999)= NODE
T99999 = T99999 +1
S99999 (T 99999 é— 599999
T99999 =
B99999 = T99999 —(2 +1
GOTO 10780
11080 CONTINUE
110751= 0
110751 =I1@751 +1
OUTLIN (I10751)= 1
111092= 599999 (B99999 +

11101
11991

11120

IF(I11092,LT.1)GOTO_ 11491
DO11191 Til1i¢=1,T1192

11 751 gNKéRP%9%()O?T%I§),
CONTINU ! !
CONTINU

110751 —1107 1
OUTLIN (I18751) 2
CALL WISTR9(6 , OUTLIN ,
FORMAT (1H+ 60X ,G12.5)
WRITE (120) VODE 1
599999 f 9999)— 99999
599999

T99999
T99999
599999
T99999
599999

+1

2
ook

T999 1
T99999)= 599999

T99999 +1
T99999 —(2 +1

o~ | ~ l| ~—~O)
=

GOTO 10780
CONTINUE

GOTO J13699,
GOTO 110699,
GOTO J19728, (
CONTINUE
RC9999
799999
B99999 S9
GOTO (14868 ,108
RETU

BLOCKDA

COMMON/ CHCODE / OUTCHQ(
INTEGER OUTCH9,INCHO,BSHIFT
EQUIVALENCE (C(lg,OUTCH9(1)
INTEGER C(3

DATA C(1)/ ~ 1H /,C(
END

5¢ ,I10751, ((I1@751)-(8)+1),(11075

50 , 1 ,110751)

(B9999Y +
2) +1

2(S99999
(B99999 +
)

n)

2)

50 ,110751, ((I19751)-(@)+1), (11075

56 , 1 ,118751)
899999 (B99999 + 1))

3(599999 (B99999 +

(B99999 + 2) +1

)

1))

3) , INCH9(2, 128)
)
2)/

, BSHIFT

18X/,C(3)/ 14./

..64..

APPENDIX H
ExpLANATION oF CoNTROL ERROR DIAGNOSTICS

Errors in the use of SKOL control structures are diagnosed by messages
of the form:
UNCLOSED x FOUND AT y

where x and y are single letter codes whose meanings are given below:

UNCLOSED A means LOOP:
B " BEGIN (scalar case group)
C " CASE ... OF
D " REPEAT ... TIMES:
E K ROUTINE
F " ELSEIF
G " COROUTINE
H " FOR...BY...
I . DO
J " LINK
K " MAIN
L " ‘ SUBROUTINE
" M " FUNCTION
Q " UNTIL (single situation)
R " WITH
S " FOR...TO...
T " THENCASE
U " UNTIL (multiple situation)
v " REPEAT:
W " ELSE
X " LOOP
Y " BEGIN (sit. case group)
Z " IF
9 " BEGIN (unexpected)

- H1 -

FOUND AT

- H2 -

WHILE ...
END

ENDCASE
ROUTINE
ELSEIF
COROUTINE
ENDDO
ENDLINK
MAIN
SUBROUTINE
FUNCTION
ENDMAIN
ENDSUBROUTINE
ENDFUNCTION
ENDWITH
ENDFOR
THENCASE
ENDUNTIL
ENDREPEAT
ELSE
ENDLOOP
ENDIF
ENDCOROUTINE
ENDROUTINE

