)) ‘ L

ID]EEsyStem—IO/ZO Hardware Manual

B

-

B |

|

Stanford Artificial Intelligence Laboratory January 1977
Operating Note 75A

DECsystem-10/20 Hardware Manual

by

Digital Equipment Corporation
Staff of the Artificial Intelligence Laboratory
Staff of the LOTS Computer Facility

Abstract

The Hardware Reference Manual explains the PDP-10 instruction set as it exists in the KL10
processor. Appendices explain the differences between the various processors in the PDP-10
family. ‘

This manual is also published as part of LOTS Operating Note 2. This manual supersedes
SAILON-26 and SAILON-T7I.

This manual was supported, in part, by the Advanced Rescarch Projects Agency of the Department of
Defense under Contract No. MDA903-76-C-0206. ‘The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily representing the official policics,
cither expressed or implied, of Stanford University, the Advanced Rescarch Projects Agency, the U.S.
Government, or, for that matter, anyone clse.

DEC-10-XSRMA-A-D
DEC-10-XSRMA-A-DN1

decsustemic
HARDWARE REFERENCE MANUAL

Direct comments concerning this manual to Software Quality Control,
Maynard, Massachusetts.

digital equipment corporation - maynard. massachusetts

Instruction times, operating speeds and the like are
included here for reference only: they are not to be
taken as specifications.

Copyright © 1968, 1969, 1971, 1974, 1976
by Digital Equipment Corporation

Fourth edition, March 1976

Manufactured in the United States of America

Changes are indicated by a
triangle (a) in the outside margin.

d

'....\.J “a-‘ .-IJ ,—-‘ ;—J

—3

Y R

—.4

e d

- |

-y

=1 Ty TS 7Y T i

—1 Y =y)

-7

Preface

This manual explains the machine language programming and operation of
the DECsystem—10, for both instructional and reference purposes. Basically
the manual defines in detail how the central processor and the peripherals
function, exactly what their instructions do. how they handle data, what
their control and status information means, and what programming tech-
niques and procedures must be employed to utilize them effectively. The
programming is given in machine language. in that it uses only the basic
instruction and device mnemonics and symbolic addressing defined by the
assembler. The treatment relies on neither any other Digital software nor
any of the more sophisticated features of the assembler; moreover the
manual is completely self-contained — no prior knowledge of the assembler
is required.

The text of the manual is devoted almost entirely to functional description
and programming. Chapter 1 discusses the general characteristics of the
system, defines the formats of the words used for numbers and instructions,
and also explains the conventions needed to program the system and under-
stand the examples given in the text. Chapter 2 covers all phases of the
central processor, including the general principles of in-out programming and
handling the interrupt system. The remaining chapters are devoted to the
various categories of peripheral equipment. Chapters 3 and 4 cover the
simple character-oriented devices that use form paper, paper tape and cards.
Chapter 5 treats the data interfaces that are employed in the tape. disk and
data communication systems covered in the three chapters following. Finally
Chapter 9 describes the various terminals that can be used either at the
console or in communication systems; this chapter includes both pro-
gramming and operating information. :

The first three appendices contain the basic reference tables for the
programmer — word formats, instruction and device mnemonics. 10 codes,
IO bit assignments showing conditions and status. and a shorthand presenta-
tion of instruction actions in symbolic form. The next two appendices
provide additional programming information of less general use: Appendix D
gives the instruction times and Appendix E documents the differences among
the several central processor models. The final three appendices provide a
complete guide to the operation of the central processors, memories and
peripheral devices (except terminals). This treatment is entirely in hardware
terms, describing all lights and switches, how to load the devices, and so
forth, but not how to run the system in terms of interacting with any Digital
software — that information is given in the DECsystem—10 Operator’s Guide.

i

Contents

1.2

1.3

1.4

2.1
2.2

2.3

2.5

2.6

2.7
2.8
29

INTRODUCTION
Time Sharing 1-4

Number System
Floating point arithmetic 1-8

Instruction Format
Effective address calculation 1-11

Memory
KI10 memory allocation 1-14
KA10 memory allocation 1-14

Programming Conventions

CENTRAL PROCESSOR

Half Word Data Transmission

Full Word Data Transmission
Move instructions 2-10
Pushdown list 2-12

Byte Manipulation °
Special Considerations 2-17

Logic
Shift and rotate 2-24

Fixed Point Arithmetic
Double precision integer instructions 2-30
Arithmetic shifting 2-30b

Floating Point Arithmetic
Scaling 2-33
Number conversion 2-34
Single precision with rounding 2-36
Single precision without rounding 2-38
Double precision operations 2-42

Arithmetic Testing
Logical Testing and Modification

Program Control
Overflow trapping 2-69

2-15

2-17

2-26

2-31

2-45
2-51
2-58

MARCH 1976

vi

2.10

2.11

2.12

2.14

2.15

MARCH 1976

Unimplemented Operations 2-70
KL10 and KI10 2-71
KA10 2-72

Programming Examples 2-72

Processor identification 2-72

Parity 2-72

Counting ones 2-75

Number conversion 2-77

Table searching 2-78

Double precision floating point 2-79

Input-Output 2-81

A typical IO device 2-84
Readin mode 2-85
Console-program communication 2-86

Priority Interrupt 2-87

KL10 interrupt 2-88

Processor conditions 2-88e

KI10 interrupt 2-88e

Interrupt instructions 2-89
Dismissing an interrupt 2-90
Priority interrupt conditions 2-91
Timing 2-93

Special considerations 2-93
Programming suggestions 2-93
KA10 interrupt 2-94

Interrupt instructions 2-94
Dismissing an interrupt 2-95
Interrupt conditions 2-96
Timing 2-97

Special considerations, programming suggestions 2-97

Processor Conditions 2-98

KL10 processor conditions 2-98
Organization 2-98c

K110 processor conditions 2-98e
KA10 processor conditions 2-101

KL10 Program and Memory Management 2-103a

User programming 2-103a
Paging 2-103b

Page map partitioning 2-103b
Page failure 2-103f

Monitor programming 2-103g
Cache memory 2-103h
Organization 2-103i
Processor requests 2-103i
Processor reads 2-103i
Processor writes 2-103i

-y

|

B |

2.15 (Cont)

Channel reads 2-103i

Channel writes 2-103i

Programming 2-103j

Cache sweep and validate main memory 2-103j
User base 2-103m

KI10 Program and Memory Management
User programming 2-104
Paging 2-105
Associative memory 2-108
Page failure 2-109
Monitor programming 2-111
Executive XCT 2-114
Individual instruction effects 2-115
Philosophy 2-116

KA10 Program and Memory Management
User programming 2-119
Monitor programming 2-119

Real Time Clock DK10
Instructions 2-120

3. CONSOLE IN-OUT EQUIPMENT

Paper Tape Reader
Readin mode 3-3

Paper Tape Punch

Console Terminal

4. HARDCOPY EQUIPMENT

4.1
4.2
4.3
4.4

Line Printer LP10
Plotter XY10
Card Reader CR10
Card Punch CP10

S. DATA INTERFACES

5.1
5.2

Data Channel DF10

Twelve- and Eighteen-Bit Computer Interface DA10
PDP-10 instructions 5-7
Twelve-bit computer instructions 5-8
Eighteen-bit computer instructions 5-10
Programming considerations 5-11

2-104

2-117

2-120

3-1

3-1

3-4
3-6

4-1

4-8
4-11
4-15

5-1

5-1
5-7

vil

Note: in the present
publication chapters
3 through 8 have been
omitted. Also,parts
of the appendicies
are omitted.

MARCH 1976

viii

6

Part 1

6.1

6.2
6.3
6.4

6.5

Part 11

6.6
6.7
6.8

6.9

6.10

MARCH 1976

MAGNETIC TAPE

DECtape

Tape Format
Standard format DECtape 6-3
Compatibility 6-3

Tape Handling Characteristics
Instructions

Normal Programming
Timing 6-12
Readin mode 6-14

Formatting a Tape

Standard.Magnetic Tape

Tape Format
Instructions

Tape Functions
Interrupt when unit ready 6-27
Write 6-27
Mark end of file 6-28
Erase 6-28
Erase and write 6-28
Read record 6-28
Read multirecord 6-29
Read-compare record 6-29
Read-compare multirecord 6-30
Space records forward 6-30
Space file forward 6-30
Space records reverse 6-30
Space file reverse 6-31
Rewind 6-31
Rewind and unload 6-31

- Programming Considerations
Readin mode 6-32
Timing
Tape transport TU10 6-33
Tape transport TU20 6-34
Tape transport TU30 6-35
Tape transport TU40 6-35

6-1
6-2

6-4
6-5
6-11

6-14
6-16

6-16
6-19
6-27

6-31

6-33

.

—1

—

-

-

7 DISKS AND DRUMS

Part | RC10 Disk/Drum System

7.1 Data Format

7.2 Instructions

7.3 Programming Considerations
Timing 7-11

7.4 Operation

Part 11 RP10 Disk Pack System

7.5 Data Format

7.6 Instructions

7.7 Disk Pack Functions

7.8 Programming Considerations
Timing 7-29

7.9 Operation

8 DATA COMMUNICATIONS

8.1 Communication Signals and Procedures

Bell System data sets 8-6

8.2 Data Communication System DC68A

Data multiplexing 8-11

Modem control DCOSF 8-17

Call control DCO8H 8&-19

689AG: Part I, modem control

689AG: Part II, call control

8.3 Data Line Scanner DC10
Instructions 8-29
Data line programming 8-33

Modem control programming 8-35
8.4 Single Synchronous Line Unit DS10

Instructions 8-37

Programming considerations 8-40

APPENDICES

A INSTRUCTIONS AND MNEMONICS

Word Formats A-2

Mnemonic Derivation A-4
Numeric Listing A-5
Alphabetic Listing A-8

Device Mnemonics A-12
Algebraic Representation A-13

7-1
7-2
7-3
7-4
7-10

7-14
7-18
7-18
7-20
7-27
7-28

7-30

8-1
8-3

8-7

8-26

8-36

MARCH 1976

MARCH 1976

F2

H2
H2.1

IN-OUT CODES
ASCII Code B-2
Line Printer Codes B-4
Card Codes B-8

10 BIT ASSIGNMENTS
K110 Processor C-2
KA10 Processor C-6
Console IO C-8
Peripheral devices follow in alphabetical order

TIMING
K110 Instruction Times™ D-3
KA10 Instruction Times D-9

PROCESSOR COMPATIBILITY

PROCESSOR OPERATION

KI10 Operation
Indicators F1-2
Operating keys F1-6
Operating switches F1-8
Real time clock DK10 F1-13

KA10 Operation
Indicators F2-1
Operating keys F2-3
Operating switches F2-7
Real time clock DK10 F2-9

MEMORY OPERATION
Address Structure G-3
MA10 Core Memory G-4
MB10 Core Memory G-5
MD10 Core Memory G-6
ME10 Core Memory G-8
MF10 Core Memory 'G-9

OPERATION OF PERIPHERAL EQUIPMENT

Console Equipment
Paper tape reader HI1-1
Paper tape punch H1-1
Console terminal HI1-2

Hardcopy Equipment

Line Printer LP10
Models LP10F, H H2-1

D-1

F2-1

G-1

H1-1

H2-1
H2-1

~——

- |

-1

. __“‘ - ‘

=T T ™

-

-1 B |

—

Models LP10B, C, D, E H2-4
Model LP10A H2-6

H2.2 Plotter XY 10

H2.3 Card Reader CR10
Models CR10D, E, F H2-7
Model CR10A/B H2-9

H2.4 Card Punch CP10

H3 Data Interfaces (to be added)

H4 Magnetic Tape

H4.1 DECtape TD10

H4.2 Standard Magnetic Tape TM10

Tape transport TU10 H4-4
Tape transport TU20 H4-6
Tape transport TU30 H4-7
Tape transport TU40 H4-8

HS Disks and Drums (to be added)

Ho6 Data Communications
Data line scanner DC10 H6-1
Single synchronous line unit DS10 H6-2

H7 Cleaning Procedures
H7.1 Tape Equipment
DECtape H7-1
Standard magnetic tape H7-2
Tapes H7-3
H7.2 Disk Packs
H7.3 Other Equipment

Paper tape reader and punch H7-4
Line printer, H7-4
Card reader and punch H7-4

INDEX

J Modifications to the A.I. Lab PDP-6 and KA1O
K K110, KA10, and 166 I/0 Status Bits

L K110 Information

Extended Instruction Set Supplement

X1

H2-6
H2-7

H2-9
H3-1
H4-1
H4-1
H4-3

HS-1
H6-1

H7-1
H7-1

H7-3
H7-4

[-1
J-1
K-1
L-1

MARCH 1976

-y

e e Bl B R

~y =y -y =y =y =3y =

B |

|

1

Introduction

The DECsystem—10 is a general purpose. stored program computing system
that includes at least one PDP—10 central processor, a memory, and a variety
of peripheral equipment such as paper tape reader and punch. teletypewriter,
card reader and punch, line printer, DECtape. magnetic tape, disk, drum,
display and data communications equipment. Each central processor is the
control unit for an entire large-scale subsystem, in which it is connected by
an in-out bus to its own peripheral equipment and by a memory bus to one or
more memory units in a main memory. some of whose units may be shared
by several processors. Within the subsystem the central processor governs
all peripheral equipment, sequences the program, and performs all arithmetic,
logical and data handling operations. Besides central processors, there are
also direct-access processors, which have much morelimited program capabil-
ity and serve to connect large. fast peripheral devices to memory bypassing
the central processor. Every direct-access processor is connected to the in-out
bus of some central processor, to which it appears as an in-out device; the
direct-access processor is also connected to memory by its own memory bus,
and to its peripheral equipment by a device bus. The DECsystem—10 may
also contain peripheral subsystems, such as for data communications, which
are themselves based on small computers; such a subsystem in toto is con-
nected to a PDP-10 in-out bus‘and is treated by the PDP-10 as a peripheral
device. Unless otherwise specified, the words “‘processor’” and ‘‘central pro-
cessor”’ refer to the large-scale PDP-10 central processor, and “‘in-out bus”
refers to the bus from the central processor to its peripheral equipment. A
direct-access processor and the bus to its peripheral equipment are all always
referred to by their names, eg the DF10 data channel and its channel bus
(often a direct-access processor and device control are a single unit).

At present, there are three types of PDP-10 central processors, the KA10,
the KI10, and the KL10. The three processors handle words of thirty-six
bits, which are stored in a memory whose maximum capacity depends upon
the addressing capability of the processor. Internally, the processors use
18-bit addresses and can thus reference 262,144 word locations in memory.
This is the total addressing capability of the KA10. However, in the KI10
and KL10, it is only the virtual address space available to a single program.
Paging hardware supplies four additional address bits to map pages in the
program virtual address space into pages anywhere in a physical memory that
is sixteen times as large. Thus for a number of different programs, the
processor actually has access to a physical memory with a capacity of
4,194,304 words. Storage in memory is usually in the form of 37-bit words,

1-1

Confusion could result only
in a chapter dealing with a
small-computer subsystem.
Here the small processor is
usually referred to by its
name (PDP-8, PDP-11) and
the words “computer” and
“memory” refer to the small
computer. To differentiate,
the PDP-10 is referred to by
its name or as the “DEC-
system—10 central processor™,
and the-large scale memory
connected to the PDP-10
memory bus is referred to as
“DECsystem—-10 main mem-

2

ory”.

MARCH 1976

MARCH 1976

INTRODUCTION

the extra bit producing odd parity for the word. The bits of a word are
numbered 0—35, left to right (most significant to least significant), as are the
bits in the registers that handle the words. The processor can handle half
words, wherein the left half comprises bits 0— 17, the right half, bits 18—35.
There is also hardware for byte manipulation — a byte is any contiguous set
of bits within a word. KA 10 registers that hold addresses have eighteen bits,
numbered 18—35 according to the position of an address in a word. The
KI10 and KL10 internal address registers have eighteen bits, but a register
that must supply a complete address to physical memory has twenty two
bits (numbered 14—35). Words are used either as computer instructions in
the program, as addresses, or as operands (data for the program).

Of the internal registers shown in the illustration on the next page, only
PC, the 18-bit program counter, is directly relevant to the programmer. The
processor performs a program by executing instructions retrieved from the
locations addressed by PC. At the beginning of each instruction PC is
incremented by one so that it normally contains an address one greater than
the location of the current instruction. Sequential program flow is altered by
changing the contents of PC, either by incrementing it an extra time in a skip
instruction or by replacing its contents with the value specified by a jump
instruction. Also of importance to the KA10 and KI10 programmer are the
sense switches and the 36-bit data switch register DS on the processor
console; through these switches the program can read information supplied
by the operator. The processor also contains flags that detect various types
of errors, including several types of overflow in arithmetic and pushdown
operations, and provide other information of interest to the programmer.

The processor has other registers, but the programmer is not usually
concerned with them except when manually stepping through a program to
debug it. On the KA10 and KI10, the operator can use the address switch
register AS, to examine the contents of, or deposit information into, any
memory location; stop or interrupt the program whenever a particular
location is referenced; and through AS, the operator can supply a starting
address for the program. Through the memory indicators MI the program
can <display data for the operator. In the KL10, these functions are provided
by the PDP-11 console, which is connected to the KL10 by a hardware
interface. The instruction register IR contains the left half of the current
instruction word, ie, all but the address part. The memory address register
MA (PMA in the KL10) supplies the address for every memory access. The
heart of the processor is the arithmetic logic, principally the 36-bit
arithmetic register AR. This register takes part in all arithmetic, logical and
data handling operations; all data transfers to and from memory, peripheral
equipment and console are made via AR. Associated with AR are an
extremely fast full adder, a buffer register that holds a second operand in
many arithmetic and logical instructions, a multiplier-quotient register MQ
that serves primarily as an extension of AR for handling double length
operands, and smaller registers that handle floating point exponents and
control shift operations and byte manipulation.

From the point of view of the programmer however the arithmetic logic
can be regarded as a black box. It performs almost all of the operations

.y -3 -2 _I3 _ 1 _13 _1]

s

CORE MEMORY

CORE MEMORY

MEMORY BUS o
[_ (MEMORY ADAPTER)
DMA20
MEMORY CENTRAL
SYSTEM PROCESSOR
BUS
(SBUS) MBO
- CACHE
MB3 2K
1
: PMA
41 18
FAST
MEMORY
16 x 36
VMA
ARITHMETIC
LOGIC IR

PC (AD, AR ,BR,MQ)
18
IN-QUT SYSTEM BUS (EBUS)

IN-OUT BUS PRIORITY DTE20 (10-11

ADAPTER INTERRUPT INTERFACE)
IN-0UT BUS UNIBUS
PDP-1 PDP-11

DECSYSTEM-10 SIMPLIFIED,

KL10

10- 2256

1-2a

MARCH 1976

—

CORE MEMORY

CORE MEMORY

I

I

CORE MEMORY

MEMORY BUS CENTRAL
1 ¥ PROCESSOR
FAST
MEMORY
16 X 36
v Y L]
: MA — < IR
i 18 18
ARITHMETIC
LOGIC —— MI
36
, (AR, BR, MQ)
4 18 18 36
IN-OUT BUS t
PRIORITY PAPER TAPE PAPER TAPE
INTERRUPT READER PUNCH TELETYPE

DECSYSTEM—10 SIMPLIFIED, KA10 AND K110

necessary for the execution of a program, but it never retains any
information from one instruction to the next. Computations performed in
the black box either affect control elements such as PC and the flags, or
produce results that are always sent to memory and must be retrieved by the
processor if they are to be used as operands in other instructions.

An instruction word has only one 18-bit address field for addressing any
location throughout all of the virtual address space. But most instructions
have two 4-bit fields for addressing the first sixteen memory locations. Any
instruction that requires a second operand has an accumulator address field,

MARCH 1976

The KII10 actually has four
fast memory blocks (eight in
the KL10), but only one of
these is available to a program
at any given time.

The KI10 and KL10 allow
unrestricted in-out with a

limited number of devices for
special real time applications.

MARCH 1976

INTRODUCTION

which can address one of these sixteen locations as an accumulator; in other
words as though it were a result held over in the processor from some
previous instruction (the programmer usually has a choice of whether the
result of the instruction will go to the location addressed as an accumulator
or to that addressed by the 18-bit address field, or to both). Every
instruction has a 4-bit index register address field, which can address fifteen
of these locations for use as index registers in modifying the 18-bit memory
address (a zero index register address specifies no indexing). Although all
computations on both operands and addresses are performed in the single
arithmetic register AR, the computer actually has sixteen accumulators,
fifteen of which can double as index registers. The factor that determines
whether one of the first sixteen locations in memory is an accumulator or an
index register is not the information it contains nor how its contents are
used, but rather how the location is addressed. These first sixteen memory
locations are not actually in core memory, but are rather in a fast solid state
memory contained in the processor. This allows much quicker access to
these locations whether they are addressed as accumulators, index registers
or ordinary memory locations. They can even be addressed from the
program counter, gaining faster execution for a short but oft-repeated
subroutine.

Besides the registers that enter into the regular execution of the program
and its instructions, the processor has a priority interrupt system and
equipment to facilitate time sharing. The interrupt system facilitates
processor control of the peripheral equipment by means of a number of
priority-ordered channels over which external signals may interrupt the
normal program flow. The processor acknowledges an interrupt request by
executing the instruction contained in a particular location for the channel
or doing some special operation specified by the device (such as
incrementing the contents of a memory location). Assignment of channels
to devices is entirely under program control. One of the devices to which
the program can assign a channel is the processor itself, allowing internal
conditions such as overtlow or a parity error to signal the program.

.Time Sharing. Inherent in the basic machine hardware are restrictions that
apply universally: only certain instructions can be used to respond to a
priority interrupt, and certain memory locations have predefined uses. But
above this fundamental level, the time share hardware provides for different
modes of processor operation and establishes certain instruction restrictions
and memory restrictions so that the processor can handle a number of user
programs (programs run in user mode) without their interfering with one
another. The memory restrictions are dependent to a great extent on the
processor, but the instruction restrictions are not, and these are relatively
obvious: a program that is sharing the system with others cannot usually be
allowed to halt the processor or to operate the in-out equipment
arbitrarily. A program that runs in executive mode — the Monitor — is
responsible for scheduling user programs, servicing interrupts, handling
input-output needs, and taking action when control is returned to it from a
user program. Any violation of an instruction or memory restriction by a
user transfers control back to the Monitor. Dedication of the entire facility
to a single purpose, in other words with only one user, is equivalent to

.

-1 2 _)

- |

-

=1

—

operation in executive mode (specifically kernel mode in the KI10 and
KL10).

The KA10 has the two modes discussed above, user and executive. It also
has protection and relocation hardware to confine the user virtual address
space within a particular range, and to relocate user memory references to
the appropriate area in physical core. A user ordinarily has access to two
separate core areas, one of which may be write-protected.ie the user cannot
alter its contents.

The KI10 and KL10 have paging hardware for the mapping of pages from
the limited virtual address space into pages anywhere in physical memory. A
page map for each program specifies not only the correspondence from
virtual address to physical address, but also whether an individual page is
accessible or not, alterable or not, and public or concealed. Both user and
executive modes are subdivided according to whether the program is running
in a public area or a concealed area. Within user mode these are the public
and concealed modes; within executive mode, the supervisor and kernel
modes. A program in concealed mode can reference all of accessible user

memory, but the public program cannot reference the concealed area except The QOHCCaled area would or-
to transfer control into it at certain legitimate entry points. dinarily be used for proprie-

‘In kernel mode the Monitor handles the in-out for the system, handles tary programs that the user
can call but cannot read or

Rp—

-

—

-

B |

-— v-‘

..

priority interrupts, constructs page maps, and performs those functions that
affect all users. This mode has no instruction restrictions and in the KI10
processor the program can even address some of memory directly (ie
unpaged). In the KL10 processor, the entire executive address space is paged.
In the paged address space, individual pages may be restricted as inaccessible
or write-protected, but it is the kernel mode program that establishes these
restrictions. In supervisor mode, the Monitor handles the general manage-
ment of the system and those functions that affect only one user at a time.
This mode has essentially the same instruction and memory restrictions as
user mode, although the supervisor mode program can read, but not alter,
the concealed areas; in this way the kernel mode Monitor supplies the
supervisor program with information the latter cannot alter (even though the
information is not write-protected from the kernel program). In either mode
the Monitor automatically uses fast memory block O (the hardware requires
this). The kernel program is responsible for assigning fast memory blocks to
the various user programs: ordinarily blocks 2 and 3 are for special real time
applications, and block 1 is assigned to all other users.

The illustration on the next page shows a typical layout of the virtual
address space for the various modes. The space is 256K, made up of 512
pages numbered 0—777 octal. Any program can address locations 0—17 as
these are in a fast memory block and are completely unrestricted (although
the same addresses may be in different blocks for different programs). The
public mode user program operates in the public area, part of which may be
write-protected. The public program cannot access any locations in the
concealed areas except to fetch instructions from prescribed entry points.
The concealed mode user program has access to both public and concealed
areas, but it cannot alter any write-protected location whether public or
concealed, and fetching an instruction from the public area automatically
returns the processor to public mode.

alter.

MARCH 1976

1-6

400

m

INTRODUCTION

USER MODE

PUBLIC

(=]

CONCEALED

FAST MEMORY

0

FAST MEMORY

WRITE-PROTECTED

CONCEALED
ENTRY POINTS

L
T

PUBLIC PUBLIC
WRITEABLE WRITEABLE
7
CONCEALED
WRITEABLE
o
7
-,
//
%
PUBLIC PUBLIC

* WRITE-PROTECTED

CONCEALED
WRITE-PROTECTED

77

SHADED AREAS ARE INACCESSIBLE

MARCH 1976

400

717

340 /

EXECUTIVE MODE

SUPERVISOR

o

FAST MEMORY

CONCEALED

PUBLIC
WRITEABLE

PUBLIC
WRITE- PROTECTED

CONCEALED

\

\

0

340

400

KERNEL

FAST MEMORY

("o’)

PUBLIC

CONCEALED

PUBLIC
WRITEABLE

PUBLIC
WRITE-PROTECTED

CONCEALED
WRITEABLE

CONCEALED
WRITE-PROTECTED

//

TYPICAL VIRTUAL ADDRESS SPACE CONFIGURATION

-

RV

Bl |

=

=1 T ™

-

§1.1 » NUMBER SYSTEM

In the KI10 only, the supervisor mode program is confined within the
paged area of the address space, pages 340 and above. Part of the public area
in this space may be write-protected, but the program can read information
in the concealed areas — it cannot alter any location in a concealed area
whether that area is write-protected or not. Pages 340—377 constitute the
per-process area, which contains information specific to individual users and
whose mapping accompanies the user page map. In other words the physical
memory corresponding to these virtual pages can be changed simply by
switching from one user to another, rather than the Monitor changing its
own page map. The kermnel mode program can access all of the unpaged area
without restriction and can reference all of the accessible paged area, both
public and concealed, with the usual restriction that it cannot alter a
write-protected area. As in the case of concealed user mode, fetching an
instruction from a public area returns control to supervisor mode.

1.1 NUMBER SYSTEM

The program can interpret a data word as a 36-digit. unsigned binary num-
ber, or the left and right halves of a word can be taken as separate 18-bit
numbers. The PDP-10 repertoire includes instructions that effectively add
or subtract one from both halves of a word, so the right half can be used for
address modification when the word is addressed as an index register, while
the left half is used to keep a control count.

The standard arithmetic instructions in the PDP-10 use twos comple-
ment, fixed point conventions to do binary arithmetic. In a word used as a
number, bit O (the leftmost bit) represents the sign, O for positive, 1 for
negative. In a positive number the remaining 35 bits are the magnitude in
ordinary binary notation. The negative of a number is obtained by taking its
twos complement. If x is an n-digit binary number, its twos complement is
2" —x, and its ones complement is (2" — 1) — x, or equivalently (2" — x) — 1.
Subtracting a number from 2" — 1 (ie, from all 1s) is equivalent to perform-
ing the logical complement, ie changing all Os to 1s and all 1s to Os. There-
fore, to form the twos complement one takes the logical complement
(usually referred to merely as the complement) of the entire word including
the sign, and adds 1 to the result. In a negative number the sign bit is 1, and
the remaining bits are the twos complement of the magnitude.

+153,, = +231, =|OOOOOOOOO 000 000 000 000 000 000 010011 0011
0 35
-153,, = —-2314 =llll 111111 P11 111 11 1t 111 111 101 100111|
0 35

Zero is represented by a word containing all Os. Complementing this
number produces all 1s, and adding 1 to that produces all Os again. Hence
there is only one zero representation and its sign is positive. Since the
numbers are symmetrical in magnitude about a single zero representation, all
even numbers both positive and negative end in 0, all odd numbers in 1| (a

1-7

In the KI10, the kernel
address space (low 112K) is
unpaged. In the KLI10, the
entire kernel address space is
normally paged.

The adder actually acts as
though the words represented
36-bit unsigned numbers, ie
the signs are treated just like
magnitude bits. In the absence
of a carry into the sign stage,
adding two numbers with the
same sign produces a plus sign
in the result. The presence of
a carry gives a positive answer
when the summands have dif-
ferent signs. The result has a
minus sign when there is a
carry into the sign bit and
the summands have the same
sign, or the summands have
different signs and there is
no carry.

Thus the program can in-
terpret the numbers processed
in fixed point addition and
subtraction as signed numbers
with 35 magnitude bits or as
unsigned 36-bit numbers. A
computation on signed num-
bers produces a result that

MARCH 1976

1-8

is correct as an unsigned 36-
bit number even if overflow
occurs, but the hardware in-
terprets the result as a signed
number to detect overflow.
Adding two positive numbers
whose sum is greater than or
equal to 235 gives a negative
result, indicating overflow;
but that result, which has
a 1 in the sign bit, is the
correct answer interpreted as
a 36-bit unsigned number
in positive form. Similarly
adding two negatives gives
a result which is always correct
as an unsigned number in
negative form.

Multiplication produces a
double length product, and
the programmer must remem-
ber that discarding the low
order part of a double length
negative leaves the high order
part in correct twos comple-
ment form only if the low
order part is null.

This convention for bit 0 of
the low order word is incon-
sistent with that used for
floating point arithmetic [see
below]. This should cause no
problem however, as fixed
divide ignores bit 0 of the
low order word in a double
length dividend.

MARCH 1976

INTRODUCTION §1.1

number all Is represents —1). But since there are the same number of
positive and negative numbers and zero is positive, there is one more negative
number than there are nonzero positive numbers. This is the most negative
number and it cannot be produced by negating any positive number (its
octal representation is 400000 0000004 and its magnitude is one greater
than the largest positive number).

If ories complements were used for negatives one could read a negative

number by attaching significance to the Os instead of the Is. In twos

complement notation each negative number is one greater than the
complement of the positive number of the same magnitude, so one can read
a negative number by attaching significance to the rightmost 1 and attaching
significance to the Os at the left of it (the negative number of largest
magnitude has a | in only the sign position). In a negative integer, 1s may be
discarded at the left, just as leading Os may be dropped in a positive
integer. In a negative fraction, Os may_ be discarded at the right. So long as
only Os are discarded, the number remains in twos complement form because
it still has a 1 that possesses significance; but if a portion including the
rightmost 1 is discarded, the remaining part of the fraction is now a ones
complement.

The computer does not keep track of a binary point — the programmer
must adopt a point convention and shift the magnitude of the result to con-
form to the convention used. Two common conventions are to regard a
number as an integer (binary point at the right) or as a proper fraction
(binary point at the left); in these two cases the range of numbers repre-
sented by a single word is =235 to 23— 1 or —1 to 1 — 273, Since multiplica-
tion and division make use of double length numbers, there are special
instructions for performing these operations with integral operands.

The format for double length fixed point numbers is just an extension of
the single length format. The magnitude (or its twos complement) is the
70-bit string in bits 1-35 of the high and low order words. Bit O of the high
order word is the sign, and bit O of the low order word is made equal to
the sign. The range for double length integers and proper fractions is thus
-2 102 —land —1to1—-277°,

Floating Point Arithmetic. The KI10 and KL10 have hardware for
processing single and double precision floating point numbers; the KA10 can
generally process only single precision numbers, although the hardware does
include features that facilitate double precision arithmetic by software
routines. The same format is used for a single precision number and the high
order word of a double precision number. A floating point instruction
interprets bit O as the sign, but interprets the rest of the word as an 8-bit
exponent and a 27-bit fraction. For a positive number the sign is 0, as
before. But the contents of bits 9—35 are now interpreted only as a binary
fraction, and the contents of bits 1 -8 are interpreted as an integral exponent
in excess 128 (200g4) code. Exponents from —128 to +127 are therefore
represented by the binary equivalents of 0 to 255 (0—3774). Floating point
zero and negatives are represented in exactly the same way as in fixed point:
zero by a word containing all .Os, a negative by the twos complement. A
negative number has a 1 for its sign and the twos complement of the
fraction, but since every fraction must ordinarily contain a 1 unless the
entire number is zero (see below), it has the ones complement of the
exponent code in bits 1—8. Since the exponent is in excess 128 code, an

e

B |

. |

e

1.1 NUMBER SYSTEM

actual exponent x is represented in a positive number by x +128, in a
negative number by 127— x. The programmer, however, need not be
concerned with these representations as the hardware compensates auto-
matically. Eg, for the instruction that scales the exponent, the hardware
interprets the integral scale factor in standard twos complement form but
produces the correct ones complement result for the exponent.

+153,0 = 42315 = +.462,X28 =
loto 001 000[100 110 010 000 000 000 000 000 000]
01 89 35
~153,, = -—231y = —.4624X2% =

|]|01 110 111{011 001 110 000 000 000 000 000 OOO]

01 89 35

Except in special cases the floating point instructions assume that all
nonzero operands are normalized. and they normalize a nonzero result. A
floating point number is considered normalized if the magnitude of the
fraction is greater than or equal to 2 and less than 1. The hardware may not
give the correct result if the program supplies an operand that is not
normalized or that has a zero fraction with a nonzero exponent.

Single precision floating point numbers have a fractional range in
magnitude of % to 1 —27?7. Increasing the length of a number to two
words does not significantly change the range but rather increases the
precision; in any format the magnitude range of the fraction is % to |
decreased by the value of the least significant bit. In all formats the
exponent range is —128 to +127.

The precaution about truncation given for fixed point multiplication
applies to most floating point operations as they produce extra length
results; but here the programmer may request rounding, which automatically
restores the high order part to twos complement form if it is negative. In
single precision division the two words of the result are quotient and
remainder, but in the other operations they form a double length number
which is stored in two accumulators if the instruction is executed in “long”
mode. (Long mode division uses a double length dividend.) A double length
number used by the single precision instructions is in software double
precision format. As such it contains a 54-bit fraction, half of which is in
bits 9-35 of each word. The sign and exponent are in bits O and 1-8
respectively of the word containing the more significant half, and the
standard twos complement is used to form the negative of the entire 63-bit
string. In the remaining part of the less significant word, bit 0 is 0, and bits
1 -8 contain a number 27 less than the exponent, but this is expressed in
positive form even though bits 9-35 may be part of a negative fraction. Eg
the number 2! +27'® has this two-word representation in software

1-9

An instruction that generates
a double length result sets
the low word exponent part
to zero whenever the low
order fraction is zero, and
sets the whole low order word
to zero whenever the low
order exponent overflows or
underflows.

MARCH 1976

Essentially there are five num-
ber formats. Fixed point
additive operations can be
regarded as being performed
on 36-bit unsigned numbers,
which are equivalent to logical
words. Otherwise fixed point
arithmetic uses the fixed point
format; numbers are single
length with the exception that
products and dividends can be
double length, and there is
provision for shifting a double
length operand arithmetically.
Double length format is an
extension of single length for-
mat to two 36-bit words.
Single precision floating
point instructions use two
formats: single precision float-
ing point format and soft-
ware double precision floating
point format. The latter ap-
pears only in the result of a
long mode add, subtract or
multiply, as the dividend in a
long mode divide, and as the
operand for an instruction
that negates a number specifi-
cally in that format. Operands
for double precision floating
point instructions are exclu-
sively in hardware double
precision floating point for-
mat (and these instructions are
not available on the KA10).

AUGUST 1974

INTRODUCTION §1.2

double precision format:

lo]10 010 011]100 000 000 000 000 000 000 000 000]

01 89 35

oo1 111 000]000 000 000 100 000 000 000 000 000]

01 89 35

whereas its negative is

[1/01 101 100[011 111 111 111 111 111 111 111 111]

01 89 35

[0jo1 111 000[111 111 111 100 000 000 000 000 000]

01 89 35

The double precision floating poin{ instructions use a more straight-
forward double length format with greater precision than is allowed by the
software format. For these instructions all operands and results are double
length, and all instructions except division calculate a triple length answer,
which is rounded to double length with the appropriate adjustment for a
twos complement negative. In hardware double precision format the high
order word is the same as a single precision number, and bits 1-35 of the
low order word are simply an extension of the fraction, which is now
sixty-two bits. Bit O is ignored. The number used above as an example of
software double precision format has this representation in hardware format:

loJto 010 011]100 000 000 000 000 000 000 000 000]

01 89 35

IQE)O 000 000 010 000 000 000 000 000 000 000 0@

01 35

and its negative is

|l]Ol 101 100[01T 111 111 110 11 11t i1 111 111

01 89 35

[O[11 111 111 110 000 000 000 000 000 000 000 000]

01 35

1.2 INSTRUCTION FORMAT

In all but the input-output instructions, the nine high order bits (0-8)
specify the operation, and bits 9-12 usually address an accumulator but are
sometimes used for special control purposes, such as addressing flags. The

—1

-3 3 _)

- |

d

.

-4

S R—

. =1)

-4

e s Biee iut B P B Bl |

§1.2 INSTRUCTION FORMAT

rest of the instruction word usually supplies information for calculating the
effective address, which is the actual address used to fetch the operand or
alter program flow. Bit 13 specifies the type of addressing, bits 1417 spec-
ify an index register for use in address modification, and the remaining
eighteen bits (18-35) address a memory location. The instruction codes

ADDRESS TYPE

ACCUMULATOR INDEX REGISTER
ADDRESS\ / ADDRESS
! I
INSTRUCTION CODE I \ | l I MEMORY ADDRESS
0 89 121314 1718 35

BASIC INSTRUCTION FORMAT

that are not assigned as specific instructions are performed by the processor
as so-called ‘‘unimplemented operations™.

An input-output instruction is designated by three 1s in bits 0-2. Bits
3-9 address the in-out device to be used in executing the instruction, and
bits 10-12 specify the operation. The rest of the word is the same as in
other instructions.

ADDRESS TYPE

INSTRUCTION INDEX REGISTER
CODE \ | ADDRESS

N T T
| I I MEMORY ADDRESS
0 23 910 121314 1718 35

7
l 7 IDEVICE CODE

IN-OUT INSTRUCTION FORMAT

Effective Address Calculation. Bits 13-35 have the same format in every
instruction whether it addresses a memory location or not. Bit 13 is the

il x| Y

1314 1718 35

indirect bit, bits 14—17 are the index register address, and if the instruction
must reference memory, bits 18-35 are the memory address Y. The
effective address £ of the instruction depends on the values of /. X and Y.
If X is nonzero, the contents of index register X are added to Y to produce a
modified address. If / is O, addressing is direct, and the modified address is
the effective address used in the execution of the instruction; if / is I,
addressing is indirect, and the processor retrieves another address word from
the location specified by the modified address already determined. This new
word is processed in exactly the same manner: X and Y determine the
effective address if [is 0, otherwise they are used for yet another level of
address retrieval. This process continues until some referenced location is
found with a 0 in bit 13; the 18-bit num"er calculated from the X and Y
parts of this location is the effective address E.

The calculation outlined above is carried out for every instruction even
if it need not address a memory location. If the indirect bit in the instruc-

Among the unimplemented
operations are some that are
specified as “‘unimplemented
user operations”™ or UUOs (a
mnemonic that means nothing
to the assembler). Half of
these are for the local use of a
program (LUUOs) and the
other half are for commu-
nication with the Monitor
(MUUOs). In general. unas-
signed codes act like MUUO:s.

On the other hand, please note
that this calculation is carried

1-12

out only for words indicated
in the text as having the for-
mat shown. Do not assume
that the procedure is used for
any miscellaneous pointer sim-
ply because it happens to con-
tain an address [see page C-2].

<

PLEASE READ THis
The calculation of E is the

first step in the execution of

every instruction. No other
action taken by any instruc-
tion, no matter what it s,
can possibly precede that cal-
* culation. There is absolutely
nothing whatsoever that any
instruction can do to any
accumulator or memory locu-
tion that can in any way
affect its own effective ad-
dress calculation.

The KL10 contains a high-
speed cache which holds some
selection of words from the
main memory system. This
reduces access time and the
percentage of main memory
cycles required by the central
processor.

MARCH 1976

INTRODUCTION §1.3

tion word is O and no memory reference is necessary, then Y is not an ad-
dress. It may be a mask in some kind of test instruction, conditions to be
sent to an in-out device, or part of it may be the number of places to shift in
a shift or rotate instruction or the scale factor in a floating scale instruction.
Even when modified by an index register, bits 18—35 do not contain an ad-
dress when / is 0. But when / is 1, the number determined from bits 14-35
is an indirect address no matter what type of information the instruction
requires, and the word retrieved in any step of the calculation contains an
indirect address so long as / remains 1. When a location is found in which /
is 0, bits 18-35 (perhaps modified by an index register) contain the desired
effective mask, effective conditions, effective shift number, or effective scale
factor. Many of the instructions that usually reference memory for an oper-
and even have an “‘immediate” mode in which the result of the effective
address calculation is itself used as a half word operand instead of a word
taken from the memory location it addresses.

The important thing for the programmer to remember is that the same
calculation is carried out for every instruction regardless of the type of infor-
mation that must be specified for its execution, or even if the result is
ignored. In the discussion of any instruction, £ refers to the actual quantity
derived from /, X and Y and used in the execution of the instruction, be it
the entire half word as in the case of an address, immediate operand, mask or
conditions, or only part of it as in a shift number or scale factor.

1.3 MEMORY

The internal timing for each in-out device and each memory is entirely
independent of the central processor. Because core memory readout is
destructive, every word read must be written back in unless new information
is to take its place. But the processor need never wait the entire cycle
time. To read, it waits only until the information is available and then
continues its operations while the memory performs the write portion of the
cycle; to write, it waits only until the data is accepted, and the memory then
performs an entire cycle to clear and write. To save time in an instruction
that fetches an operand and then writes new data into the same location, the
memory executes a read-modify-write cycle in which it performs only the
read part initially and then completes the cycle when the processor supplies
the new data. This procedure is not used however in a lengthy instruction
(such as multiply or divide), which would tie up a memory that may be
needed by some other processor. Such instructions instead request separate
read and write access. The KI10 further increases the speed of memory
operation by overlapping memory cycles. £g it can start one memory to
read a word before receiving a word previously requested from a different
memory.

Access times for the accumulator-index register locations are decreased
considerably by substitution of a fast memory (contained in the processor)
for the first sixteen core locations. Readout is nondestructive, so the fast
memory has no basic cycle: the processor reads or writes a word directly
(note: to write, the KA 10 must first clear the location and then load it).

—y

—d]

.-l

1T YT T 7Y T T TY ™

T T Y 71 T

—

g
)

MEMORY

The following table gives the characteristics of the various memories.
Modify completion is the time to finish a read-modify-write cycle after the
processor supplies the new data. Times are in microseconds and include the
delay introduced by ten fect (three meters) of cable. Fast memory times are
for referencing as a memory location (18-bit address); when a fast memory
location is addressed as an accumulator or index register, the access time is
considerably shorter.

Reud Write Modify

Access Access Cycle Completion Size
161 Core Memory 2.5 .49 4.7 2.69 16K
163 Core Memory .94 .49 1.8 1.33 16K
164 Core Memory 60% 0% 1.65% 97 16K
MB10 Core Memory
MA 10 Core Memory .01 .20 1.00 .57 16K
MD10 Core Memory .83 .33 1.8 1.23 32-128K
ME 10 Core Memory .61 .20 1.00 .65 16K
MF 10 Core Memory .61 .20 1.00 .63 32K,64K
MG 10 Core Memory .67 23 1.00 32- 128K
KA10 Fast Memory 21 2 16K
K110 Fast Memory .28 .0 16K
KL10 Fast Memory 12 .08 16K
KL10 Cache Memory 16 2 2K

Fromr the simple hardware addressing point of view, the entire memory is
a set of coutiguous locations whose addresses range from zero to a maximum
dependerit upon the capacity of the particular installation. In a system with
the greatest possible capacity, the largest KA10 address is octal 777777,
decimal 262,143; the largest KI10 or KL10 address is 17777777, decimal
4.194,303. (Addresses are always in octal notation unless otherwise
specified.) But the whole memory would usually be made up of a number of
core memories of different capacities as listed above. Hence a given address
actually selects a particular memory and a specific location within it. For a
16K memory with 18-bit addressing, the high order four address bits select
the memory, the remaining fourteen bits address a single location in it;
selecting a 32K memory takes three bits, leaving fifteen for the location. The
times given above assume the addressed memory is idle when access is
requested. To avoid waiting for a previously requested memory cycle to end,
the program can make consecutive requests to different memories by taking
instructions from one memory and data from another. All memories can be
interleaved in pairs i such a way that consecutive addresses actually alternate
between the two memories in the pair (thus increasing the probability that
consecutive references are to different memories). Appropriate switch
settings at the memories interchange the least significant address bits in the
memory selection and location parts, so that in any two memories numbered
n and n+l where n is even, all even addresses are locations in the first
memory, all odd addresses are locations in the second. Hence memories O
and 1 can be interleaved as can 6 and 7, but not 3 and 4 or 5 and 7. Some

*Add .1 ina multiproces-
sor system.

MDIO can be increased in
units of 32K up to 128K.

KITO access to accumulators
and index registers effectively
takes no time - it is done in
parallel with instruction oper-
ations that are required any-
way. Retrieval of instructions
or memory operands from
fast memory is generally
not worthwhile because of
the extensive overlapping that
speeds up core access. How-
ever, except in instructions
that use two accumulators,
storage of a memory operand
in fast memory not only takes
no time but actually decreases
slightly the nonmemory time.

Information on memory set-
up is given in Appendix G.

MARCH 1976

In the KI10, the kernel
mode program can always
address locations 0-337777
as these are unpaged. Virtual
pages 340 and above ure
mapped.

The Monitor keeps a user
process table for each user
program and one executive
process table for itself for
each KI10 processor. In the
text, the phrase ‘‘the user
process table™ refers to the
process table currently speci-
fied by the Monitor as the
one for the user, even if that
user is not currently running.
The Monitor must also specify
the whereabouts of the ex-
ecutive process table for the

processor under consideration.

The initial control word ad-
dress for the DF10 Data
Channel must be less than
1000.

MARCH 1976

INTRODUCTION §1.3

memories can be interleaved in contiguous groups of four, where the number
of the first memory in the group is divisible by four (¢g memories 0—3 or
14—17). In this case all addresses ending in O or 4 reference the first memory
in the group, all ending in 1 or 5 reference the second, and so forth.

In terms of the virtual address space (the addresses that can be specified
within the limits of the instruction format) or the subset of it that is
accessible to a user, the situation may be quite different. In the KAI10 the
user program has a continuous address space beginning at 0, or two
continuous spaces beginning at 0 and 400000. In the KI10 the possible
program address space is the set of all 18-bit addresses just as in the KA10,
but which addresses a program can actually use depends entirely upon which
of the 512 virtual pages (512 words per page) are accessible to it. For a
so-called “small user”, the accessible space must lie within the ranges
0-37777 and 400000-437777. In any event all programs have access to fast
memory, whether as accumulators, index registers or ordinary memory
references (ie addresses 0—17 are never restricted or relocated).

KI10 Memory Allocation. The KI10 hardware defines the use of certain
memory locations, but most are relative to pages whose physical location is
specified by the Monitor. The auto restart uses location 70. The only other

physical locations uniquely defined by the hardware are those in fast memory,

whose addresses are the same for all programs: location 0 holds a pointer
word during a bootstrap readin, 0—17 can be addressed as accumulators, and
1-17 can be addressed as index registers. The only addresses uniquely speci-
fied in the uscr virtual space are for user local UUOs — locations 40 and 41.

All other addresses defined by the hardware, for use in page mapping,
responding to priornty interrupts, or other hardware-oriented situations, are
to locations within a page specificd by the Monitor for a particular uscr
(including itself). For each user the Monitor keeps a process table, which
must begin at location 0 of some page. The locations used by the hardware
for the page map, traps, etc. of a given user are all in the first page of the
table for that user. The parts of a user process table not used by the
hardware may be used by the Monitor to keep accumulators (when the user
is not running), a pushdown list that the Monitor uses for the job, and
various user statistics such as running time, memory space, billing
information, and job tables. The detailed configuration of the
hardwarce-defined parts of the process tables (user and executive) is given in
§2.15.

KA10 Memory Allocation. The usc of certain memory locations is
defined by the KA10 hardware.

0 Holds a pointer word during a bootstrap readin

0-17 Can be addressed as accumulators

1-17 Can be addressed as index registers

40-41 Trap for unimplemented user operations (UUQs)

42-57 Priority interrupt locations

60-61 Trap for remaining unimplemented operations: these include

the unassigned instruction codes that are reserved for future
use, and also the byte manipulation and floating point instruc-
tions when the hardware for them is not installed

-y

NI PROGRAMMING CONVENTIONS

140-161 Allocated to second processor if connected (same use as 40-61
for first processor)

In a user program the trap for a local UUO is relocated to locations 40 and
41 of the user area; a Monitor UUO uses unrelocated locations. All other
addresses listed are for physical (unrelocated) locations.

1.4 PROGRAMMING CONVENTIONS

The computer has five instruction classes: data transmission, logical, arith-
metic, program control and in-out. The instructions in the in-out class con-
trol the peripheral equipment, and also control the priority interrupt and
time sharing, control and read the processor flags, and communicate with the
console. The next chapter describes all instructions mentioned above,
presents a general description of input-output, and describes the effects of
the in-out instructions on the processor, priority interrupt and time share
hardware. Effects of in-out instructions on particular peripheral devices are
discussed with the devices.

The Macro—10 assembly program recognizes a number of mnemonics and
other initial symbols that facilitate constructing complete instruction words
and organizing them into a program. In particular there are mnemonics for
the instruction codes (Appendix A), which are six bits in in-out instructions,
otherwise nine or thirteen bits. Eg the mnemonic

MOVNS ‘
assembles as 213000 000000, and
MOVNS 2570

assembles as 213000 002570. This latter word, when executed as an instruc-

tion, produces the twos complement negative of the word in memory loca-
tion 2570. :

NoTe

Throughout this manual all numbers representing instruction words,
register contents, codes and addresses are always octal, and any num-
bers appearing in program examples are octal unless otherwise indi-
cated. On the other hand, the ordinary use of numbers in the text to
count steps in an operation or to specify word or byte lengths, bit
positions, exponents, etc employs standard decimal notation.

The initial symbol @ preceding a memory address places a 1 in bit 13 to
produce indirect addressing. The example given above uses direct addressing,
but

MOVNS @2570
assembles as 213020 002570, and produces indirect addressing. Placing the

1-15

All information given in this
manual about memory loca-
tions 40-61 for a KAIQ ap-
pliesinstead to locations 140-
161 for programming a second
KA10 connected to the same
memory.

The assembler translates
every statement into a 36-bit
word, placing Os in all bits

whose values are unspecified.

I-16

INTRODUCTION §1.4

number of an index register (1-17) in parentheses following the memory
address causes modification of the address by the contents of the specified
register. Hence

MOVNS @2570(12)

which assembles as 213032 002570, produces indexing using index register
12, and the processor then uses the modified address to continue the effec-
tive address calculation.

An accumulator address (0—17) precedes the memory address part (if any)
and is terminated by a comma. Thus

MOVNS 4,@2570(12)

assembles as 213232 002570, which negates the word in location £ and
stores the result in both £ and in accumulator 4. The same procedure may
be used to place ls in bits 9-12 when these are used for something other
than addressing an accumulator, but mnemonics are available for this pur-
pose.

The device code in an in-out instruction is given in the same manner as an
accumulator address (terminated by a comma and preceding the address
part), but the number given must correspond to the octal digits in the word
(000-774). Mnemonics are however available for all standard device codes.
To control the priority interrupt system whose code is 004, one may give

CONO 4,1302
which assembles as 700600 001302, or equivalently
CONO PI,1302

The programming examples in this manual use the following addressing
conventions:
¢ A colon following a symbol indicates that it is a symbolic location name.

A: ADD 6.5704

indicates that the location that contains ADD 6,5704 may be addressed sym-
bolically as A.
¢ The period represents the current address, eg

ADD 5,42
is equivalent to
A: ADD S,A+2

¢ Square brackets specify the contents of a location, leaving the address of
the location implicit but unspecified. Eg

ADD 12,[7256004]
and

ADD 12,A

~q -

e |

s |

-

B |

B |

B

NI PROGRAMMING CONVENTIONS

A: 7256004

are equivalent. The bracketed quantity can be given as the left and right
halves separated by a double comma, not only eliminating the need to insert
leading zeros for the right half, but allowing use of a minus sign for a
negative half word as well. In other words

[-246,.135]
is equivalent to
[777532000135]

Anything written at the right of a semicolon is commentary that explains
the program but is not part of it.

AUGUST 1974

B |

2

Central Processor

This chapter describes all PDP-10 instructions but does not discuss the
effects of those in-out instructions that address specific peripheral devices.
In the description of each instruction, the mnemonic and name are at the
top, the format is in a box below them. The mnemonic assembles to the
word in the box, where bits in those parts of the word represented by letters
assemble as Os. The letters indicate portions that must be added to the mne-
monic to produce a complete instruction word.

For many of the non-l1O instructions, a description applies not to a unique
instruction with a single code in bits 0—8, but rather to an instruction set
defined as a basic instruction that can be executed in a number of modes.
These modes define properties subsidiary to the basic operation; eg in data
transmission the mode specifies which of the locations addressed by the in-
struction is the source and which the destination of the data, in test instruc-
tions it specifies the condition that must be satisfied for a jump or skip to
take place. The mnemonic given at the top is for the basic mode; mnemonics
for the other forms of the instruction are produced by appending letters
directly to the basic mnemonic. Following the description is a table giving
the mnemonics and octal codes (bits 0-8) for the various modes.

In a description E refers to the effective address, half word operand, mask,
conditions, shift number or scale factor calculated from the 7, X and Y parts
of the instruction word. In an instruction that ordinarily references mem-
ory, a reference to E as the source of information means that the instruction
retrieves the word contained in location E; as a destination it means the in-
struction stores a word in location E. In the immediate mode of these
instructions, the effective half word operand is usually treated as a full word
that contains E in one half and zero in the other, and is represented either as
0, E or E,0 depending upon whether F is in the right or left half.

Most of the non-IO instructions can address an accumulator, and in the
box showing the format this address is represented by A in the description,
“AC” refers to the accumulator addressed by A. “AC left” and ““AC right”
refer to the two halves of AC. If an instruction uses two accumulators, these
have addresses A and A+ 1, where the second addressis 0 if A is 17. In some
cases an instruction uses an accumulator only if 4 is nonzero: a zero address
in bits 9—-12 specifies no accumulator.

The instructions are described in terms of their effects as seen by the user
in a normal program situation, and on the assumption that nothing is amiss —
the program is not attempting to reference a memory that does not exist or
to write in a protected area of core. In general, all descriptions apply equally

2-1

Letters representing modes
are suffixes, which produce
new mnemonics that are rec-
ognized as distinct symbols
by the assembler.

<>

PLEASE READ THIS

The calculation of E is the
first step in the execution of
every instruction. No other
action taken by any instruc-
tion, no matter what it is,
can possibly precede that cal-
culation. There is absolutely
nothing whatsoever that any
instruction can do to any
accumulator or memory loca-
tion that can in any way
affect its own effective ad-
dress calculation.

CENTRAL PROCESSOR §2.1

well to operation in executive mode. For completeness, the effects of restric-
tions on certain instructions are noted, as are the effects of executing
instructions in special circumstances. But for the details of programming in
such special situations the reader must look elsewhere. In particular, §2.9
discusses trapping, §2.13 describes the priority interrupt, and § §2.15, 2.16,
and 2.17 describe the special effects and restrictions associated with program
and memory management in the KL 10, KI10, and KA respectively.

To minimize processor execution time the programmer should minimize
the number of memory references and the number of shifts and other
iterative operations. When there is a choice of actions to be taken on the
basis of some test, the conditions tested should be set up so that the action
that results most often takes the least time. There are also various subtleties
that affect timing (such as the nature of the arithmetic algorithms), but
these are generally not worth considering except in very special circum-
stances (to determine the effect often takes more than the time saved).

No execution times are given with the instruction descriptions as the time
may vary greatly depending upon circumstances. At the outset the time
depends upon which processor performs the instruction, the mode the
processor is in, and the speeds of the memories used for fetching the instruc-
tion, fetching its operands, and storing its results. Beyond this the time
depends in many cases on the configuration of the operands and the number
of iterative steps specified by the programmer as in a shift. Lastly the
processor is designed to save time wherever possible by inspecting the
operands in order to skip unnecessary steps.

The text sometimes refers to an instruction as being ‘‘executed.” To
“execute” an instruction means that the processor performs the instruction
out of the normal sequence, ie the sequence defined by the program counter
(which sequence may not be consecutive, as when a skip or jump or some
special circumstance changes PC). The processor fetches an executed instruc-
tion from a location whose address is supplied not by PC, but rather by an
execute instruction (whose operand is itself interpreted as an instruction)
or by some feature of the hardware such as a priority interrupt, trap. etc.
It is assumed that control will shortly be returned to PC, at the location it
originally specified before the interruption unless the instruction executed
or the hardware feature itself changes PC.

Some simple examples are included with the instruction descriptions, but
more complex examples using a variety of instructions are given in §2.11.

2.1 HALF WORD DATA TRANSMISSION

These instructions move a half word and may modify the contents of the
other half of the destination location. There are sixteen instructions deter-
mined by which half of the source word is moved to which half of the des-
tination, and by which of four possible operations is performed on the other

. |

-1 1

. |

.

—d A

§2.1 HALF WORD DATA TRANSMISSION

half of the destination. The basic mnemonics are three letters that indicate
the transfer

HLL Left half of source to left half of destination
HRL Right half of source to left half of destination
HRR Right half of source to right half of destination
HLR Left half of source to right half of destination

plus a fourth, if necessary, to indicate the operation.

Operation Suffix Effect on Other Half of Destination
Do nothing None

Zeros Z Places Os in all bits of the other half
Ones (@) Places 1s in all bits of the other half
Extend E Places the sign (the leftmost bit) of

the half word moved in all bits of the
other half. This action extends a right
half word number into a full word
number but is valid arithmetically
only for positive left half word num-
bers — the right extension of a number
requires Os regardless of sign (hence
the Zeros operation should be used to
extend a left half word number).

An additional letter may be appended to indicate the mode, which deter-
mines the source and destination (_)f the half word moved.

Mode Suffix Source Destination
Basic E AC
Immediate I The word 0, F AC
Memory M AC E
Self S - E E. but full word result also

goes to AC if A is nonzero

Note that selecting the left half of the source in immediate mode merely
clears the selected half of the destination.

HLL Half Word Left to Left
[soo [m] a4 [x | Y |
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination. The source and the destination right half are un-
affected; the original contents of the destination left half are lost.

3]

llJ
N

HLLI merely clears AC left.
If A is zero, HLLS is a no-op,
otherwise it is equivalent to
MOVE.

HLLZI merely clears AC. If 4
is zero, HLLZS merely clears
the right half of location E.

HLLOI sets AC to all Os in
the left half, all 1s in the

right.

CENTRAL PROCESSOR §2.1

HLL Half Left to Left ' 500
HLLI Half Left to Left Immediate 501
HLLM Half Left to Left Memory 502
HLLS Half Left to Left Self 503
HLLZ Half Word Left to Left, Zeros

sto (M| 4 il x | Y
0 617 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un-
affected, the original contents of the destination are lost.

HLLZ Half Left to Left, Zeros 510
HLLZI Half Left to Left, Zeros, Immediate 511
HLLZM Half Left to Left, Zeros, Memory 512
HLLZS Half Left to Left, Zeros, Self 513
HLLO Half Word Left to Left, Ones

520 M| a4 |1l x | Y]
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HLLO Half Left to Left, Ones 520
HLLOI Half Left to Left, Ones, Immediate 521
HLLOM Half Left to Left, Ones, Memory : 522
HLLOS Half Left to Left, Ones, Self 523
HLLE Half Word Left to Left, Extend

530 M| 4 1] x] Y
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit 0 of the source. The source is unaffected, the original contents of the
destination are lost.

B |

B

-

§2.1 HALF WORD DATA TRANSMISSION
HLLE Half Left to Left, Extend 530
HLLEI Half Left to Left, Extend, Immediate 531
HLLEM Half Left to Left, Extend, Memory 532
HLLES Half Left to Left, Extend, Self 533
HRL Half Word Right to Left

so4 M| 4 [l x | Y]
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the

specified destination.

fected; the original contents of the destination left half are lost.

The source and the destination right half are unaf-

HRL Half Right to Left 504
HRLI Half Right to Left Immediate 505
HRLM Half Right to Left Memory 506
HRLS Half Right to Left Self 507
HRLZ Half Word Right to Left, Zeros

[514 M| a4 [1] x | Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and clear the destination right half. The source is un-
affected, the original contents of the destination are lost.

HRLZ Half Right to Left, Zeros 514
HRLZI Half Right to Left, Zeros, Immediate 515
HRLZM Half Right to Left, Zeros, Memory 516
HRLZS Half Right to Left, Zeros, Self 517
HRLO Half Word Right to Left, Ones

| 524 [m] a4 1] x | Y]
o 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and set the destination right half to all 1s. The source
is unaffected, the original contents of the destination are lost.

HLLEI is equivalent to HLLZI
(it merely clears AC).

HRLZI loads the word E,0Q
into AC.

If A is zero, HRRS is a no-op;
otherwise it is equivalent to
MOVE.

CENTRAL PROCESSOR : §2.1
HRLO Half Right to Left, Ones 524
HRLOI Half Right to Left, Ones, Immediate 525
HRLOM Half Right to Left, Ones, Memory . %26
HRLOS Half Right to Left, Ones, Self 527
HRLE Half Word Right to Left, Extend

s34 M| 4 1] x | Y

0 67 89 121314 1718 35

Move the right half of the source word specified by M to the left half of the
specified destination, and make all bits in the destination right half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRLE Half Right to Left, Extend 534

HRLE!I Half Right to Left, Extend, Immediate 535
HRLEM Half Right to Left, Extend, Memory , 536
HRLES Half Right to Left, Extend, Self 537
HRR Half Word Right to Right

s40 M| 4 Ji] x | Y }
0 67 89 1213 14 1718 _ 35

Move the right half of the source word specified by M to the right half of the
specified destination. The source and the destination left half are unaffected;
the original contents of the destination right half are lost.

HRR Half Right to Right ' 540
HRRI Half Right to Right Immediate 541
HRRM Half Right to Right Memory 542
HRRS Half Right to Right Self 543
HRRZ Half Word Right to Right, Zeros

sso (M| 4 |i] x | Y
0 67 89 121314 1718 ’ 35

Move the right half of the source word specified by M to the right half of the

|

I |

—

Y

§2.1 HALF WORD DATA TRANSMISSION

specified destination, and clear the destination left half. The source is unaf-
fected, the original contents of the destination are lost.

HRRZ Half Right to Right, Zeros 550
HRRZI Half Right to Right, Zeros, Immediate 551
HRRZM Half Right to Right, Zeros, Memory 552
HRRZS Half Right to Right, Zeros, Self 553
HRRO Half Word Right to Right, Ones

se0 (M| 4 1] x | Y
0 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and set the destination left half to all 1s. The source is
unaffected, the original contents of the destination are lost.

HRRO Half Right to Right, Ones 560
HRRO! Half Right to Right, Ones, Immediate 561
HRROM Half Right to Right, Ones. Memory 562
HRROS Half Right to Right, Ones, Self 563
HRRE Half Word Right to Right, Extend

s70 |m| a4 1] x | Y]
o 67 89 121314 1718 35

Move the right half of the source word specified by M to the right half of the
specified destination, and make all bits in the destination left half equal to
bit 18 of the source. The source is unaffected, the original contents of the
destination are lost.

HRRE Half Right to Right, Extend 570

HRREI Half Right to Right, Extend, Immediate 571
HRREM Half Right to Right, Extend, Memory 572
HRRES Half Right to Right, Extend, Self 573
HLR Half Word Left to Right

| saa Im] 4] x] %

0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the

2-7

HRRZI loads the word O,F
into AC. If A4 is zero, HRRZS
merely clears the left half of
location E.

HLRI merely clears AC right.

HLRZI merely clears AC and
is thus equivalent to HLLZI.

HLROI sets AC to all 1s in
the left half, all Os in the
right.

CENTRAL PROCESSOR §2.1

specified destination. The source and the destination left half are unaffected:
the original contents of the destination right half are lost.

HLR Half Left to Right 544
HLRI Half Left to Right Immediate 545
HLRM Half Left to Right Memory 546
HLRS Half Left to Right Self 547
HLRZ Half Word Left to Right, Zeros

ssa M| a4 i x | Y 1
0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the
specified destination, and clear the destination left half. The source is un-
affected, the original contents of the destination are lost.

HLRZ Half Left to Right, Zeros 554
HLRZI Half Left to Right, Zeros, Immediate 555
HLRZM Half Left to Right, Zeros, Memory 556
HLRZS Half Left to Right, Zeros, Self : 557
HLRO Half Word Left to Right, Ones

| sea M| 4 |1] x | Y |
0 67 89 1213 14 1718 35

Move the left half of the source word specified by M to the right half of the

specified destination, and set the destination left half to all 1s. The source is

unaffected, the original contents of the destination are lost.

HLRO Half Left to Right, Ones 564
HLROI Half Left to Right, Ones, Immediate 565
HLROM Half Left to Right, Ones, Memory 566
HLROS Half Left to Right, Ones, Self 567
HLRE Half Word Left to Right, Extend

| 574 [m] a4 Ji] x] Y

0 67 89 121314 1718 35

Move the left half of the source word specified by M to the right half of the

B |

B

-

B |

§2.2 FULL WORD DATA TRANSMISSION

specified destination, and make all bits in the destination left half equal to

bit O of the source. The source is unaffected, the original contents of the
destination are lost.

HLRE Half Left to Right, Extend 574
HLREI Half Left to Right, Extend, Immediate 575
HLREM Half Left to Right, Extend, Memory 576
HLRES Half Left to Right, Extend, Self 577

ExampLes. The half word transmission instructions are very useful for
handling addresses, and they provide a convenient means of setting up an
accumulator whose right half is to be used for indexing while a control count
is kept in the left half. Eg this pair of instructions loads the 18-bit numbers
M and N into the left and right halves respectively of an accumulator that is
addressed symbolically as XR.

HRLZI XR.M
HRRI XR,N

Of course the source program must somewhere define the value of the
symbol XR as an octal number between 1 and 17.

Suppose that at some point we wish to use the two halves of XR inde-
pendently as operands (taken as 18-bit positive numbers) for computations.
We can begin by moving XR left to the right half of another accumulator
AC and leaving the contents of XR right alone in XR.

HLRZM XR,AC

HLLI XR, :Clear XR left

2.2 FULL WORD DATA TRANSMISSION

These are the instructions whose basic purpose is to move one or more full
words of data from one place to another, usually from an accumulator to a
memory location or vice versa. In a few cases instructions may perform
minor arithmetic operations, such as forming the negative or the magnitude
of the word being processed.

EXCH Exchange
| 250 | 4 [if x | Y |
0 89 121314 1718 35

Move the contents of location £ to AC and move AC to location E.

HLREI is equivalent to
HLRZI (it merely clears AC).

It is not necessary to clear the
other half of XR when load-
ing the first half word. But
any instruction that modifies
the other half is faster than
the corresponding instruction
that does not, as the latter
must fetch the destination
word in order to save half of
it. (The difference does not
apply to self mode, for here
the source and destination are
the same.)

-10

(§9]

For a reverse BLT procedure
(highest addresses first), refer
to the POP instruction on
page 2-13. A

Besides the move instructions
for single words there are also

MARCH 1976

CENTRAL PROCESSOR §2.2
BLT Block Transfer
| 251 [4] x | Y |
0 89 121314 1718 35

Beginning at the location addressed by AC left, move words to another area
of memory beginning at the location addressed by AC right. Continue until a
word is moved to location E, The total number of words in the block is thus
E - ACR + 1, If ACR' =2 E, the BLT moves one word to location ACR.

CAUTION
Priority interrupts are allowed during the execution of this instruction,
following the processing of each word. If an interrupt or a page failure
occurs, the BLT stores the source and destination addresses for the next
word in AC, so when the processor restarts upon the return to the
interrupted program, it actually resumes at the correct point within the
BLT.

‘Therefore, unless the interrupt system is inactive and paging is turned
off, A and X must not address the same register as this would produce a
different effective address upon resumption should an interrupt or page
failure occur; and the instruction must not attempt to load an
accumulator addressed either by A or X unless it is the final location
being loaded. Furthermore, the program cannot assume that AC is the
same after the BLT as it was before.

In the KL10, if AC is not in the destination block, the final result in
AC is the address of the first word following the source block in AC
and the address of the first word following the destination block in
ACp.

ExampLes. This pair of instructions loads the accumulators from memory
locations 2000-2017.

HRLZI 17,2000 ;Put 2000 000000 in AC 17
BLT 17,17

But to transfer the block in the opposite direction requires that one accumu-
lator first be made available to the BLT:

MOVEM 17,2017 ;Move AC 17 to 2017 in memory
MOVEI 17,2000 ;Move the number 2000 to AC 17
BLT 17,2016

If at the time the accumulators were loaded the program had placed in loca-
tion 2017 the control word necessary for storing them back in the same
block (2000), the three instructions above could be replaced by

EXCH 17,2017
BLT 17,2016

Move Instructions

Each of these instructions moves a single word, which may be changed in the
process (eg its two halves may be swapped). There are four instructions,

-1

§2.2 FULL WORD DATA TRANSMISSION

each with four modes that determine the source and destination of the word
moved.

Mode Suffix Source Destination
Basic E AC
Immediate | The word 0, E AC
Memory M AC E
Self S E FE, but also AC

if A is nonzero

MOVE Move
200 M| 4 1] x | Y]
0 67 89 1213 14 1718 35

Move one word from the source to the destination specified by M. The
source is unaffected, the original contents of the destination are lost.

MOVE Move 200
MOVEI Move Immediate : 201
MOVEM Move to Memory 202
MOVES Move to Self 203
MoVvs Move Swapped

206 M| a4 1] x | Y
0 67 89 121314 1718 35

Interchange the left and right halves of the word from the source specified
by M and move it to the specified destination. The source is unaffected, the
original contents of the destination are lost.

MOVS Move Swapped ' 204
MOVSI Move Swapped Immediate 205
MOVSM Move Swapped to Memory 206
MOVSS Move Swapped to Self 207
MQOVN Move Negative

210 [m] a4 [1] x | Y |
4] 67 89 121314 1718 35

Negate the word from the source specified by M and move it to the specified
destination. If the source word is fixed point —235 (400000 000000) set the

2-11

four transmission instructions
that handle double length
operands (operands of (wo
adjacent words). These are
available, however, only in
the KI10; and since they are
principally for use in hardware
double precision floating point
operations, they are described
with the floating point instruc-
tions in §2.6

MOVEI loads the word 0,E
into AC and is thus equiva-
lent to HRRZI. If 4 is zero,
MOVES is a no-op; otherwise
it is equivalent to MOVE.

Swapping halves in immediate
mode loads the word £,0 into
AC. MOVSI is thus equivalent
to HRLZI.

2-12

In the KI10 a move executed
as an interrupt instruction can
set no flags.

MOVNI loads AC with the
negative of the word 0, E and
can set no flags.

In the KI10 a move executed
asan interrupt instruction can
set no flags.

The word 0,E is equivalent
to its magnitude, so MOVMI
is equivalent to MOVEL

MARCH 1976

CENTRAL PROCESSOR §2.2

Overflow and Carry 1 flags. (Negating the equivalent floating point —1 X 2'?7
sets the flags, but this is not a normalized number.) If the source word is
zero, set Carry 0 and Carry 1. The source is unaffected, the original contents
of the destination are lost. Setting Overflow also sets the Trap 1 flag in the
KI10 and KL10.

MOVN Move Negative ' 210
MOVNI Move Negative Immediate 211
MOVNM Move Negative to Memory 212
MOVNS Move Negative to Self 213
MOVM Move Magnitude

214 M| 4 |1 x | Y

0 67 89 121314 1718 35

Take the magnitude of the word contained in the source specified by M and
move it to the specified destination. If the source word is fixed point —23%
(400000 000000) set the Overflow and Carry 1 flags. (Negating the equiva-
lent floating point —1 X 2'?7 sets the flags, but this is not a normalized num-
ber.) The source is unaffected, the original contents of the destination are
lost. Setting Overflow also sets the Trap 1 flag in the KI10 and KL10.

MOVM Move Magnitude 214
MOVMI Move Magnitude Immediate 215
MOVMM Move Magnitude to Memory 216
MOVMS Move Magnitude to Self 217

An example at the end of the preceding section demonstrates the use of a
pair of immediate-mode half word transfers to load an address and a control
count into an accumulator. The same result can be attained by a single move
instruction. This saves time but still requires two locations. Eg if the num-
ber 200 001400 is stored in location M, the instruction

MOVE ACM

loads 200 into AC left and 1400 into AC right. If the same word, or its nega-
tive, or with its halves swapped, must be loaded on several occasions, then
both time and space can be saved as each transfer requires only a single move
instruction that references M.

Pushdown List

These two instructions insert and remove full words in a pushdown list. The
address of the top item in the list is kept in the right half of a pointer in AC,

eed b

i

- |

=T B |

B |

§2.2 FULL WORD DATA TRANSMISSION

and the program can keep a control count in the left half. There are also
two subroutine-calling instructions that utilize a pushdown list of jump ad-
dresses [§2.9].

PUSH Push Down
[261 | a4 [i] x | Y]
0 89 121314 1718 35

Add one to each half of AC, then move the contents of location £ to the
location now addressed by AC right. If the addition causes the count in AC
left to reach zero. set the Pushdown Overflow flag in the KA10, set the
Trap 2 flag in the KI10. The contents of E are unaffected, the original
contents of the location added to the list are lost.
Note:

The KA10 increments the two halves of AC by adding 10000014 to the

entire register. In the KI10 and KL10, the two halves are handled

independently.

POP Pop Up

262 | 4 [1] x | Y]

0 89 121314 1718 35

Move the contents of the location addressed by AC right to location E, then
subtract one from each half of AC. If the subtraction causes the count in AC
left to reach —1, set the Pushdown Overflow flag in the KA 10, set the Trap 2
flag in the KI10. The original contents of E are lost,

In the KA10 and KI10, because of the order in which the operands are
stored, the instruction POP AC, AC would load the contents of the location
addressed by AC right into AC on top of the pushdown count, destroying it.

In the KL10, POP AC, AC stores the pushdown count after (E), and
therefore merely discards the top item from the stack.

Note: .

The KA10 decrements the two halves of AC by subtracting 10000014

from the entire register. In the KI10 and KL10 the two halves are

handled independently.

In the KA10, incrementing and decrementing both halves of AC together
is effected by adding and subtracting 1 0000014. Hence a count of —2 in AC
left is increased to zero if 2'8 —1 is incremented in AC right, and conversely,
] in AC left is decreased to —1 if zero is decremented in AC right.

A pushdown list is simply a set of consecutive memory locations from
which words are read in the order opposite that in which they are written.
In more general terms, it is any list in which the only item that can be re-
moved at any given time is the last item in the list. This is usually referred
to as “‘first in, last out” or “last in, first out”. Suppose locationsq, b, c, ...
are set aside for a pushdown list. We can deposit data in g, b, ¢, d, then read

2-13

In the KI10 a PUSH executed
as an interrupt instruction
cannot set Trap 2.

In the KI10 a POP executed
as an interrupt instruction
cannot set Trap 2.

A POP can be used to imple-
ment a reverse BLT, ie to
transfer a block of words
from one area of memory to
another, starting at the largest
addresses and proceeding to
the smallest. To move a block
of N words from a source area
to a destination area whose
maximum addresses are S and
D respectively, the program
must first set up a push-
down pointer in accumula-
tor T, where T left contains
N — 1 + 400000 and T right
contains S. The transfer is
then effected by this pair
of instructions

POP T,D-S(T)
JUMPL T,.—1

MARCH 1976

2-14

where the jump returns to the
POP until T left is less than
400000, ie until it looks posi-
tive. The 400000 added into
T left prevents pushdown
overflow, but also limits the
block to 2'7 words.

AUGUST 1974

CENTRAL PROCESSOR §2.2

d, then write in d and e, then read e, d, ¢, etc.

Note that by trapping or checking overflow and keeping a control count in
AC left, the programmer can set a limit to the size of the list by starting the
count negative, or he can prevent the program from extracting more words
than there are in the list by starting the count at zero, but he cannot do both
at once. The common practice is to limit the size of the list.

Pushdown storage is very convenient for a program that can use data
stored in this manner as the pointer is initialized only once and only one
accumulator is required for the most complex pushdown operations. To ini-
tialize a pointer P for a list to be kept in a block of memory beginning at
BLIST and to contain at most /N items, the following suffices.

MOVSI P -N
HRRI P,BLIST-1

Of course the programmer must define BLIST elsewhere and set aside loca-
tions BLIST to BLIST + N — 1. Using MAcro to full advantage one could
instead give

MOVE P, [IOWD N,BLIST]
where the pseudoinstruction
IOWD J, K

is replaced by a word containing —J in the left half and K — | in the right.
Elsewhere there would appear

BLIST: BLOCK N

which defines BLIST as the current contents of the location counter and sets
aside the N locations beginning at that point.

In the PDP-10 the pushdown list is kept in a random access core mem-
ory, so the restrictions on order of entry and removal of items actually apply
only to the standard addressing by the pointer in pushdown instructions —

-other addressing methods can reference any item at any time. The most

convenient way to do this is to use the right half of the pointer as an index
register. To move the last entry to accumulator AC we need simply give

MOVE AC,P)

Of course this does not shorten the list — the word moved remains the last
item in it.

One usually regards an index register as supplying an additive factor for a
basic address contained in an instruction word, but the index register can
supply the basic address and the instruction the additive tactor. Thus we can
retrieve the next to last item by giving

MOVE AC,—1(P)
and so forth. Similarly

PUSH P,—3(P)

Bl |

' -‘

§2.3 BYTE MANIPULATION

adds the third to last item to the end of the list;
POP P.—2(P)

removes the last item and inserts it in place of the next to last item in the
shortened list. '

2.3 BYTE MANIPULATION

This set of five instructions allows the programmer to pack or unpack bytes
of any length anywhere within a word. Movement of a byte is always
between AC and a memory location: a deposit instruction takes a byte from
the right end of AC and inserts it at any desired position in the memory
location; a load instruction takes a byte from any position in the memory
location and places it right-justified in AC.

The byte manipulation instructions have the standard memory reference
format, but the effective address £ is used to retrieve a pointer, which is used
in turn to locate the byte or the place that will receive it. The pointer has
the format

P s [l x | Y

0 56 11121314 1718 35

where S is the size of the byte as a number of bits, and P is its position as the
number of bits remaining at the right of the byte in the word (eg if P is 3 the
rightmost bit of the byte is bit 32 of the word). The rest of the pointer is
interpreted in the same way as in an instruction: /, X and Y are used to cal-
culate the address of the location that is the source or destination of the
byte. Thus the pointer aims at a word whose format is

7755 7/ IR

V] 35-P-S+1 35-P 35-P+1 35

where the shaded area is the byte.

To facilitate processing a series of bytes, several of the byte instructions
increment the pointer, ie modify it so that it points to the next byte position
in a set of memory locations. In the KL10, one of these instructions may
modify the pointer so that it points to any byte. Bytes are processed from
left to right in a word, so incrementing merely replaces the current value of P
by P — S, unless there is insufficient space in the present location for another
byte of the specified size (P — S < 0). In this case Y is increased by one to
point to the next consecutive location, and P is set to 36 — S to point to the
first byte at the left in the new location,

CAUTION (K410 ONLY)
Do not allow Y to reach maximum value. The whole pointer is incre-

2-15

Note that £ is calculated
before the contents of P are
changed.

In a KA10 without byte ma-
nipulation hardware, all of the
instructions presented in this
section are trapped as un-
assigned codes [§2.10] .

Bit 12 is reserved for future
use and should be 0.

MARCH 1976

2-16

In the KLIO and KIIO,
incrementing maximum Y
produces a zero address with-
out aftecting X.

The A field must be zero. A
nonzero A field is the ADJBP
instruction below,

The A field must be nonzero.
A zero A field is the IBP
instruction,

MARCH 1976

CENTRAL PROCESSOR §2.3

mented, so if Y is 2!¥—1 it becomes zero and X is also incremented.
The address calculation for the pointer uses the original X, but if a pri-
ority interrupt should occur before the calculation is complete, the in-
cremented X is used when the instruction is repeated.

Among these five instructions one simply increments the pointer, the
others load or deposit a byte with or without incrementing.

LDB Load Byte

135 | a4 1] x | Y

0 89 121314 1718 . 35

Retrieve a byte of S bits from the location and position specified by the
pointer contained in location E, load it into the right end of AC, and clear
the remaining AC bits. The location containing the byte is unaffected, the
original contents of AC are lost.

DPB Deposit Byte
| 137 | 4 1] x | Y
0 89 121314 1718 35

Deposit the right S bits of AC into the location and position specified by the
pointer contained in location £. The original contents of the bits that receive
the byte are lost, AC and the remaining bits of the deposit location are
unaffected.

1BP Increment Byte Pointer
133 |4 1] x| Y
0 X 89 121314 1718 35

Increment the byte pointer in location £ as explained above.

ADJBP Adjust Byte Pointer (KL10 only)
133 AF0|/ X Y
0 89 121314 1718 35

Retrieve the byte pointer from location E. Adjust the pointer by the number
of bytes specified by AC. Place the adjusted byte pointer in AC. The
location containing the original byte pointer is unaffected; the original
contents of AC are lost.

- |

- —

-~y

§2.4 BYTE MANIPULATION

If AC contains a positive value, ADJBP advances the pointer. If AC contains
a negative value, ADJBP backs up the pointer. In both cases, the byte
alignment is preserved across word boundaries.

The term byte alignment refers to the position of the left-most byte of a
word, as implied by the P and S fields. Numerically, it is the remainder of

36-P
S

Ordinary strings are packed with the alignment equal to zero because IBP,
ILDP, and IDPB force the alignment to zero at every word boundary.
ADIJBP, however, preserves the byte alignment across word boundaries.

ADIJBP always returns a byte pointer designating a complete byte within a
word. For example, ADJBP by O bytes on a byte pointer with P equal to 36
will return a byte pointer addressing the right-most byte in the previous
word.

Adjustment is performed by dividing (AC) by the number of bytes per
word, which is computed as:

Fix (362 + 1F1x (£)

If the number of bytes that fit in a word is 0 (eg S > 36), then ADJBP will
set No Divide and go to the next instruction without modifying AC or
memory,

ILDB Increment Pointer and Load Byte
134 | 4 [1] x | Y B
0 89 121314 1718 35

Increment the byte pointer in location E as explained above. Then retrieve a
byte of S bits from the location and position specified by the newly incre-
mented pointer, load it into the right end of AC, and clear the remaining AC
bits. The location containing the byte is unaffected, the original contents of
AC are lost.

2-16a

MARCH 1976

|

§2.4 LOGIC

iDPB Increment Pointer and Deposit Byte

| 136 | a4 1] x | Y N
0 89 121314 1718 35

Increment the byte pointer in location E as explained above. Then deposit
the right S bits of AC into the location and position specified by the newly
incremented pointer. The original contents of the bits that receive the byte
are lost, AC and the remaining bits of the deposit location are unaffected.

Note that in the pair of instructions that both increment the pointer and
process a byte, it is the modified pointer that determines the byte location
and position. Hence to unpack bytes from a block of memory, the program
should set up the pointer to point to a byte just before the first desired, and
then load them with a loop containing an ILDB. If the first byte is at the
left end of a word, this is most easily done by initializing the pointer with a
P of 36 (44;4). Incrementing then replaces the 36 with 36 — S to point to the
first byte. At any time that the program might inspect the pointer during
execution of a series of ILDBs or IDPBs, it points to the last byte processed
(this may not be true when the pointer is tested from an interrupt routine
[§2.13]).

Special Considerations. If S is greater than P and also greater than 36,
incrementing produces a new P equal to 100 — S rather than 36 —S. For
S > 36 the byte is at most the entire word; for P = 36 no byte is processed
(loading merely clears AC). If both P and S are less than 36 but P+ .5 > 36,
a byte of size 36 — P is loaded from position P, or the right 36 — P bits of the
byte are deposited in position P.

The Extended Instruction Set executed by the KL10 is described in a
separate supplement.

2.4 LOGIC

For logical operations the PDP-10 has instructions for shifting and rotating
as well as for performing the complete set of sixteen Boolean functions of
two variables (including those in which the result depends on only one or
neither variable). The Boolean functions operate bitwise on full words, so
each instruction actually performs thirty-six logical operations simultane-
ously. Thus in the anp function of two words, each bit of the result is the
AND of the corresponding bits of the operands. The table on page 2-23 lists
the bit configurations that result from the various operand configurations for
all instructions.

Each Boolean instruction has four modes that determine the source of the
non-AC operand, if any, and the destination of the result. For an instruction
without an operand (one that merely clears a location or sets it to all 1s) the
modes differ only in the destination of the result, so basic and immediate

2-17

MARCH 1976

2-18

SETZ and SETZI are equiva-
lent (both merely clear AC).
In them, /, X and Y are re-
served for future use and
should be zero (at present £
is ignored).

MAcCrO also recognizes
CLEAR, CLEARI, CLEARM
and CLEARB as equivalent to
the set-to-zeros mnemonics.

SETO and SETOI are equiva-
lent. In them, I, X and Y are
reserved for future use and
should be zero (at present E
is ignored).

AUGUST 1974

CENTRAL PROCESSOR

§2.4

modes are equivalent. The same is true also of an instruction that uses only
an AC operand. When specified by the mode, the result goes to the accumu-

lator addressed by A4, even when there is no AC operand.

Source of non- Destination
Mode Suffix AC operand of result
Basic E AC
Immediate I The word 0, E AC
Memory M E E
Both B E ACand E
SETZ Set to Zeros
400 |m| 4 || x | Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to all Os.

Make the contents of the destination specified by M equal to AC.

SETZ Set to Zeros 400
SETZI Set to Zeros Immediate 401
SETZM Set to Zeros Memory 402
SETZB Set to Zeros Both 403
SETO Set to Ones

474] a4 I x] Y
0 67 89 1213 14 1718 35

‘ Change the contents of the destination specified by M to all 1s.

SETO ‘Set to Ones 474
SETOI Set to Ones Immediate 475
SETOM Set to Ones Memory 476
SETOB Set to Ones Both 477
SETA Set to AC

424 Im| a 1] x] Y |
0 67 89 1213 14 1718 35

. |

-1

-1

oy

§2.4 LOGIC

SETA Set to AC 424
SETAI Set to AC Immediate 425
SETAM Set to AC Memory 426
SETAB Set to AC Both 427
SETCA Set to Complement of AC

450 |m| 4 [if x | Y
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement
of AC.

SETCA Set to Complement of AC 450
SETCAI Set to Complement of AC Immediate 451
SETCAM Set to Complement ot AC Memory 452
SETCAB Set to Complement of AC Both 453
SETM Set to Memory

| 414 M| 4 [1] x | Y

0 67 89 1213 14 1718 35

Make the contents of the destination specified by M equal to the specified
operand.

SETM Set to Memory 414
SETMI Set to Memory Immediate 415
SETMM Set to Memory Memory 416
SETMB Set to Memory Both 417
SETCM Set to Complement of Memory

460 M| 4 il x | Y
(1] 67 89 1213 14 1718 35

Change the contents of the destination specified by M to the complement of
the specified operand.

2-19

SETA and SETAI are no-ops.
In them, /, X and Y are re-
served for future use and
should be zero (at present £
is ignored).

SETAM and SETAB are
both equivalent to MOVEM
(all move AC to location E).

SETCA and SETCAI are
equivalent (both complement
AC). In them, /I, X and Y are
reserved for future use and
should be zero (at present £
is ignored).

SETM and SETMB are equiv-
alent to MOVE. SETMI
moves the word 0,F to AC
and is thus equivalent to
MOVEI. SETMM is a no-op
that references memory.

AUGUST 1974

SETCMI moves the comple-
ment of the word 0, E to AC.
SETCMM complements loca-
tion £.

CENTRAL PROCESSOR §2.4

SETCM Set to Complement of Memory 460

SETCMI Set to Complement of Memory Immediate 461

SETCMM Set to Complement of Memory Memory 462

SETCMB Set to Complement of Memory Both 463
AND And with AC

404 M| a |1 x | Y]

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the aNDp function
of the specified operand and AC.

AND And 404
ANDI And Immediate 405
ANDM And to Memory : 406
ANDB And to Both 407

ANDCA And with Complement of AC

410 [m| a |1 x | Y

0 ' 67 89 121314 1718 35

Change the contents of the destination specified by M to the anp function
of the specified operand and the complement of AC.

ANDCA And with Complement of AC 410
ANDCAI And with Complement of AC Immediate 411
- ANDCAM And with Complement of AC to Memory 412
ANDCAB And with Complement of AC to Both 413

ANDCM And Complement of Memory with AC

420 |m] 4] x] Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the aND function
of the complement of the specified operand and AC.

ANDCM And Complement of Memory 420
ANDCMI And Complement of Memory Immediate 421

§2.4 LOGIC

ANDCMM And Complement of Memory to Memory 422
ANDCMB And Complement of Memory to Both 423

ANDCB And Complements of Both

| 440 |m| a 1] x | Y

0 67 89 1213 14 1718 35

Change the contents of the destination specified by M to the anp function of*

the complements of both the specified operand and AC. The result is the
Nor function of the operands.

ANDCB And Complements of Both 440
ANDCBI And Complements of Both Immediate 441
ANDCBM And Complements of Both to Memory 442
ANDCBB And Complements of Both to Both 443
I0R Inclusive Or with AC

| 434 [m| a4 1] x | Y

0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and AC.

IOR Inclusive Or 434
I0ORI Inclusive Or Immediate 435
I0RM Inclusive Or to Memory 436
I0ORB Inclusive Or to Both 437
ORCA Inclusive Or with Complement of AC

454 M| a4 1] x | Y
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the specified operand and the complement of AC.

ORCA Or with Complement of AC 454
ORCAI Or with Complement of AC Immediate 455
ORCAM Or with Complement of AC to Memory 456

ORCAB Or with Complement of AC to Both 457

1
(W]

MAcCRO also recognizes OR,
ORI, ORM and ORB as equiv-
alent to the inclusive OR mne-
monics.

2-22

)

CENTRAL PROCESSOR §2.4

ORCM Inclusive Or Complement of Memory with AC
464 (M| 4 I x Y |
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the complement of the specified operand and AC.

ORCM Or Complement of Memory 464
ORCMI Or Complement of Memory Immediate 465
ORCMM Or Complement of Memory to Memory 466
"ORCMB Or Complement of Memory to Both 467
ORCB Inclusive Or Complements of Both

| 470 [m| a4 |1l x | Y |
V] 67 89 121314 1718 35

Change the contents of the destination specified by M to the inclusive or
function of the complements of both the specified operand and AC. The
result is the NaND function of the operands.

ORCB Or Complements of Both 470
ORCBI Or Complements of Both Immediate 471
ORCBM Or Complements of Both to Memory 472
ORCBB Or Complements of Both to Both 473
"XOR Exclusive Or with AC
430 (M| a4 1] x | Y
67 89 121314 1718 35

Change the contents of the destination specified by M to the exclusive or
function of the specified operand and AC.

XO0R Exclusive Or 430
XORI Exclusive Or Immediate 431
XORM Exclusive Or to Memory 432
XORB Exclusive Or to Both 433

The original contents of the destination can be recovered except in XORB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the exclusive or of the remaining operand and the result.

-4

§2.4 LOGIC

EQV Equivalence with AC
| 444 M| 4 |1l x | Y]
0 67 89 121314 1718 35

Change the contents of the destination specified by M to the complement of
the exclusive or function of the specified operand and AC (the result has s

wherever the corresponding bits of the operands are the same).
»

EQv Equivalence 444
EQVI Equivalence Immediate 445
EQVM Equivalence to Memory 446
EQVB Equivalence to Both 447

The original contents of the destination can be recovered except in EQVB,
where both operands are replaced by the result. In the other three modes
the replaced operand is restored by repeating the instruction in the same
mode, ie by taking the equivalence function of the remaining operand and
the result.

For the four possible bit configurations of the two operands, the above
sixteen instructions produce the following results. In each case the result as
listed is equal to bits 3—-6 of the instruction word.

AC 0 1 0 1

Mode Specified Operand 0O 0 1 1
SETZ 0 o0 0 0
AND 0 O 0 1
ANDCA 0 0 1 0
SETM 0 O 1 1
ANDCM 0 1 0 0
SETA 0 1 0 1
XOR 0 1 1 0
IOR 0 1 1 1
ANDCB 1 0 O 0
EQV 1 0 0 1
SETCA 1 0 1 0
ORCA 1 0 1 1
SETCM i 1 0 0
ORCM 1 1 0 1
ORCB 1 1 1 0
SETO 1 1 1 1

LSH

LSHC

ROT

ROTC

ASH

ASHC

CENTRAL PROCESSOR §2.4

Shift and Rotate

The remaining logical instructions shift or rotate right or left the contents of
AC or the contents of two accumulators, A and A+1 (mod 20g), concat-
enated into a 72-bit register with 4 on the left. The illustration below
shows the movement of information these instructions produce in the accu-

0 A 0
0 35
0 A ' A+1 0
0 35 0 35
A
0 35
A A +1
0 35 0 35
A A 0
0 1 35
A A+
0 0
A ‘ A+1 0
1 35 1 35

ACCUMULATOR BIT FLOW IN SHIFT AND ROTATE INSTRUCTIONS

§2.4 Locic

mulators. In a (logical) shift the contents of a register are moved bit-to-bit
with Os brought in at the end being vacated; information shifted out at the
other end is lost. [For a discussion of arithmetic shifting see §2.5.]1 In
rotation the contents are moved cyclically such that information rotated out
at one end is put in at the other.

The number of places moved is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 28 in magnitude. In other words the effective shift £ is the number
composed of bit 18 (which is the sign) and bits 28—-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc-
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive E produces motion to the left, a negative £ to the right.
In the KA10, maximum movement is 255 places. The KI10 eliminates re-
dundant movement by logical shifting at most 72 places regardless of the
value of E. and rotating £ mod 72 places (except 72 places if E is a nonzero
multiple of 72).

LSH Logical Shift

242 | 4 [/ x | Y]

0 89 121314 1718 35

Shift AC the number of places specified by E. If E is positive, shift left
bringing Os into bit 35; data shifted out of bit O is lost. If E is negative, shift
right bringing Os into bit O; data shifted out of bit 35 is lost.

LSHC Logical Shift Combined
[246 [4 [1] x | Y]
0 89 ~|2 1314 1718 35

Concatenate accumulators 4 and A+1 with A on the left, and shift the
72-bit combination the number of places specified by E. If E is positive,
shift left bringing Os into bit 71 (bit 35 of AC A+1): bit 36 is shifted into bit
35; data shifted out of bit O is lost. If E is negative, shift right bringing Os
into bit O; bit 35 is shifted into bit 36: data shifted out of bit 71 is lost.

ROT Rotate
[241 [4 1] x | Y
0 89 121314 1718 35

Rotate AC the number of places specified by E. If E is positive, rotate left;
bit O is rotated into bit 35. If E is negative, rotate right; bit 35 is rotated
into bit 0.

AUGUST 1974

2-26

Overflow is determined di-
rectly from the carries, not
from the carry flags, as their
states may reflect events in
previous instructions.

MARCH 1976

CENTRAL PROCESSOR §2.5

ROTC Rotate Combined
245 | 4 1] x | Y 1
0 89 1213 14 1718 35

Concatenate accumulators A and A+1 with A on the left, and rotate the
72-bit combination the number of places specified by E. If E is positive,
rotate left; bit O is rotated into bit 71 (bit 35 of AC A+1) and bit 36 into bit
35. If E is negative, rotate right; bit 35 is rotated into bit 36 and bit 71 into
bit 0.

2.5 FIXED POINT ARITHMETIC

For fixed point arithmetic the PDP-10 has instructions for arithmetic shift-
ing (which is essentially multiplication by a power of 2) as well as for per-
forming addition, subtraction, multiplication and division of numbers in
fixed point format [§1.1]. In such numbers the position of the binary point
is arbitrary (the programmer may adopt any point convention). The add and
subtract instructions involve single or (KL10 only) double length numbers,
whereas multiply supplies a double or (KL10 only) quadruple length
product, and divide uses a double or (KL10 only) quadruple length dividend.
The high and low order words respectively of a double length fixed point
number are in accumulators A and A+1 (mod 204), where the magnitude is
the 70-bit string in bits 1-35 of the two words and the signs of the two are
identical. The four words respectively of a quadruple fixed pointer number
are in accumulators A, A+1, A+2, and A+3 (mod 204), where the magnitude
is the 140-bit string in bits 1-35 of the four words, and the signs of the four
are the same. There are also integer multiply and divide instructions that
involve only single length numbers and are especially suited for handling
smaller integers, particularly those of eighteen bits or less such as addresses
(of course they can be used for small fractions as well provided the
programmer keeps track of the binary point). For convenience in the
following, all operands are assumed to be integers (binary point at the right).

The processor has four flags, Overflow, Carry 0, Carry 1 and No Divide,
that indicate when the magnitude of a number is or would be larger than can
be accommodated. Carry O and Carry 1 actually detect carries out of bits O
and 1 in certain instructions that employ fixed point arithmetic operations:
the add and subtract instructions treated here, the move instructions that
produce the negative or magnitude of the word moved [§2.2], and the
arithmetic test instructions that increment or decrement the test word
[§2.7]1. In these instructions an incorrect result is indicated — and the Over-
flow flag set — if the carries are different, ie if there is a carry into the sign
but not out of it, or vice versa. The Overflow flag is also set by No Divide
being set, which means the processor has failed to perform a division because
the magnitude of the dividend is greater than or equal to that of the divisor,
or in integer divide, simply that the divisor is zero. In other overflow cases

-4

- |

B |

.

S |

o

. |

FIXED POINT ARITHMETIC

only Overflow itself is set: these include too large a product in multiplica-
tion, too large a number to convert to fixed point [§2.6], and loss of signi-

ficant bits in left arithmetic shifting. In the KI10 any condition that sets .

Overtlow also sets the Trap 1 flag.
These flags can be read and controlled by certain program control instruc-
tions [§82.9, 2.10]. KI10 overflow is handled by trapping through the

2-26a

In the KII0 an arithmetic
instruction executed as an
interrupt instruction can set
no flags.

MARCH 1976

§2.5 FIXED POINT ARITHMETIC

setting of Trap 1 [§2.9], but in the KA10, the program must make direct
use of the Overflow flag, which is available as a processor condition (via an
in-out instruction) that can request a priority interrupt if enabled [§2.14].
The conditions detected can only set the arithmetic flags and the hardware
does not clear them, so the program must clear them before an instruction
if they are to give meaningful information about the instruction afterward.
However, the program can check the flags following a series of instructions
to determine whether the entire series was free of the types of error detected.

All but the shift instructions have four modes that determine the source
of the non-AC operand and the destination of the result.

Source of non- Destination

Mode Suffix AC operand of result
Basic E AC
Immediate | The word O, £ AC
Memory M E E
Both B E ACand E
ADD Add
| 270 [m| a4 i x] Y
0 67 89 121314 1718 35

Add the operand specified by M to AC and place the result in the specified
destination. If the sum is = 235 set Overflow and Carry 1; the result stored
has a minus sign but a magnitude in positive form equal to the sum less 235.
If the sum is < —23 set Overflow and Carry 0; the result stored has a plus
sign but a magnitude in negative form equal to the sum plus 235. Set both
carry flags if both summands are negative, or their signs differ and their mag-
nitudes are equal or the positive one is the greater in magnitude.

ADD Add 270
ADDI Add Immediate 271
ADDM Add to Memory 272
ADDB Add to Both 273
suB Subtract

274 M| a i x | Y |
0 67 89 121314 1718 35

Subtract the operand specified by M from AC and place the result in the
specified destination. If the difference is = 23% set Overflow and Carry 1;
the result stored has a minus sign but a magnitude in positive form equal to
the difference less 235, If the difference is < —23% set Overflow and Carry O;
the result stored has a plus sign but a magnitude in negative form equal to

2-27

User overflow is handled by
the Monitor according to
instructions from the user.
Refer to Chapter 3 of
DECsystem—10 Monitor Calls.

Besides indicating error types,
the carry flags facilitate per-
forming multiple precision
arithmetic.

AUGUST 1974

A Remember that bit O of the
low order word is equal to
the sign of the product.

CAUTION
In the KA10, an AC operand
of =23 is treated as though
it were +23%, producing the
incorrect sign in the product.

FEBRUARY 1975

CENTRAL PROCESSOR §2.5

the difference plus 235. Set both carry flags if the signs of the operands are
the same and AC is the greater or the two are equal, or the signs of the
operands differ and AC is negative.

SUB Subtract 274
SUBI Subtract Immediate . 275
SUBM Subtract to Memory 276
SuBB Subtract to Both 277
MUL Multiply

[224 M| a4 [l x | Y |
0 67 89 121314 1718 35

Multiply AC by the operand specified by M, and place the high order word
of the double length result in the specified destination. If M specifies AC as
a destination, place the low order word in accumulator A+1. If both oper-
ands are —23 set Overflow; the double length result stored is —27.

MUL Multiply 224
MULI Multiply Immediate 225
MULM Multiply to Memory 226
MULB Multiply to Both 227
IMUL Integer Multiply

[220 [m] a4 i x | Y |
0 67 89 121314 1718 35

Multiply AC by the operand specified by M, and place the sign and the 35
low order magnitude bits of the product in the specified destination. Set

‘Overflow if the product is = 23% or < —23 (je if the high order word of the

double length product is not null); the high order word is lost.

IMUL Integer Multiply 220
IMULI Integer Multiply Immediate 221

IMULM Integer Multiply to Memory 222

IMULB Integer Multiply to Both 223

DIV Divide

[234 M| a4 |1l x | Y B
0 67 89 121314 1718 35

a If the high order word of the magnitude of the double length number in

A

B

=1 Ty =1

.

D B |

§2.5 FIXED. POINT ARITHMETIC

accumulators 4 and A+1 is greater than or equal to the magnitude of the
operand specified by M, set Overflow and No Divide, and go immediately to
the next instruction without affecting the original AC or memory operand in
any way. Otherwise divide the double length number contained in accumula-
tors A and A+1 by the specified operand, calculating a quotient of 35
magnitude bits including leading zeros. Place the unrounded quotient in the

specified destination. If M specifies AC as a destination, place the remainder,

with the same sign as the dividend, in accumulator A+1.

DIv Divide 234
DIVI Divide Immediate 235
DIVM Divide to Memory 236
DIVB Divide to Both 237
IDIV Integer Divide

[230 [m] 4 Jif x | Y

0 67 89 121314 1718 35

If the operand specified by M is zero, or AC contains —23° and the operand
specified by M is 1, set Overflow and No Divide, and go immediately to the
next instruction without affecting the original AC or memory operand in
any way. Otherwise divide AC by the specified operand, calculating a
quotient of 35 magnitude bits including leading zeros. Place the unrounded
quotient in the specified destination. If M specifies AC as the destination,
place the remainder, with the same sign as the dividend, in accumulator A+1.

iDIv Integer Divide 230
1DIVI Integer Divide Immediate 231
IDIVM Integer Divide to Memory 232
IDIVB Integer Divide to Both 233

ExampLes. The integer multiply and divide instructions are very useful for
computations on addresses or character codes, or performing any integral
operations in which the result is small enough to be accommodated in a
single register. '

Suppose we wish to reverse the order of the digits in the 6-bit character
abcdef, where the letters represent the bits of the character. We first dupli-
cate it three times to the left and shift the result left one place producing

a bed efa bed efa bed efa bed efO

where the bits are grouped corresponding to the octal digits in the word.
Anding this with

1 000 100 100 010 010 000 001 000

2-29

This restriction is required
since the quotient developed
would exceed 36 bits.

MARCH 1976

*HAKMEM 140, page 78
(Artificial Intelligence Memo-
randum, No. 239, February
29, 1972, MIT Artificial In-
telligence Laboratory).

These examples require that
the rest of A, outside the
character, be clear.

MARCH 1976

CENTRAL PROCESSOR §2.5

gives
a 000 e00 00 0f0 OcO 000 004 000

Now it just so happens this number is configured such that the residues of
the values of its bits modulo 28 — 1 are in exactly the opposite order from
the bits of the original character and have the binary orders of magnitude
0-5. In other words this number is equal to the sum of the numbers in the
upper row below, and dividing each of these summands by 255 gives the
remainder listed in the lower row.

Dividend X213 eX220 gXx23 X210 pX217T gX2%*
Remainder FX25 eX?24 dXx?23¥ ¢X?2? b X2! aX?2°

The remainder in a division is equal to the sum, modulo the divisor, of the
remainders left by dividing each of the dividend summands by the same
divisor. And the sum of the terms in the lower row is obviously fedcba.
The above procedure is implemented by this sequence (due to Schroeppel*)
where the character is right-justified in accumulator A, and its reverse
appears right-justified in accumulator A+1.

IMUL A,[2020202] ;4 copies shifted left one
AND A.[104422010] :Pick bits for reverse
IDIVI A3777 ;Divide by 28 — 1

To reverse eight bits we can use asimilar procedure (also due to Schroeppel)
where again the original character is right-justified in A and its reverse
appears right-justified in A+1. But this time we cannot manage the manipu-
lation within a single length word, so we must use multiply, divide, and a
pair of ANDs.

MUL A.,[100200401002] :5 copiesin A and A+1
AND A+1,[20420420020] ;Pick bits for reverse via
ANDI A4l :residues mod 2'° — 1

DIVI A 1777 :Divide by 210 — 1

Double Precision Integer Instructions

(KL10 Only)
DADD Double Add
114 A 1 X Y
0 8 9 12 13 14 17 18 35

“Double add the contents of £ and E+1 to the contents of AC and AC+1 and

place the double word result in AC and AC+1. If the sum is = 279, set
Overflow and Carry |; the result stored has a minus sign but a magnitude in
positive form equal to the sum less 27°. If the sum is < —279, set Overflow

-t = h bl |

L

— ‘

-_

-1 ™

-

-_—

§2.5 FIXED POINT ARITHMETIC

L J
and Carry O; the result stored has a plus sign but a magnitude in negative
form equal to the sum plus 27°, Set both Carry 0 and Carry 1 flags if both
summands are negative or their signs differ and their magnitudes are equal or
the positive one is the greater in magnitude.

DSUB Double Subtract
115 | A |/ X Y
0 8 9 1213 14 17 18 35

Double subtract the contents of £ and £E+1 from AC and AC+1 and place the
double word result in AC and AC+1. If the difference is = 279, set Overflow
and Carry 1; the result stored has a minus sign but a magnitude in positive
form equal to the difference less 279, If the difference is < —27° set
Overflow and Carry O; the result has a plus sign but a magnitude in negative
form equal to the difference plus 27°. Set both carry flags if the signs of the
operands are the same and the operand in AC and AC+1 is greater or the
signs differ and AC, AC+1 is negative,

DMUL Double Multiply
16 | A |/ X Y
0 89 1213 14 17 18 35

Double multiply AC and AC+1 by E and E+1, placing the high order word of
the four word result in AC, the next order word in AC+1, the third word in
AC+2, and the low order word in AC+3. The signs of the words in E+1 and
AC+I are ignored during multiplication. The signed product is stored in the
four ACs where bit 0 of each AC contains the sign of the high order word. If
both double word operands before multiplication are =279, set Overflow:
the quadruple length result stored is —2*4°,

DDIV Double Divide
1171 A |/ X Y
0 89 12 13 14 17 18 35

If the high order double word of the magnitude of the quadruple length
number in accumulators 4 through A+3 is greater than or equal to the
magnitude of the double word operand at E, set overflow and no divide, and
go immediately to the next instruction without affecting the original ACs or
memory operands in any way, Otherwise. divide the quadruple length
number contained in accumulators A through A+3 calculating a quotient of
70 magnitude bits including leading zeros. Place the double word quotient in
accumulators A and A+1, and the double word remainder, with the same
sign as the dividend in 4 and A+1. The double word operand at £ remains
unchanged, the original contents of accumrtlators A through 4+3 are lost.
Bit O of all but the high order word of each operand is ignored in the
computation,

2-30a

MARCH 1976

MARCH 1976

FIXED POINT ARITHMETIC §2.5

Bit O of accumulators A and A+1 is set to the sign of the quotient, which
is determined algebraically from the signs of the original dividend and
divisor. Bit 0 of accumulators A+2 and A+3 is set to the sign of the
remainder which is the same as that of the dividend (unless the remainder is
Z€ero).

Arithmetic Shifting

These two instructions produce an arithmetic shift right or left of the num-
ber in AC or the double length number in accumulators 4 and A+1. Shifting
is the movement of the contents of a register bit-to-bit. The operation dis-
cussed here is similar to logical shifting [see §2.4 and the illustration on
page 2-241, but in an arithmetic shift only the magnitude part is shifted —
the sign is unaffected. In a double length number the 70-bit string made up
of the magnitude parts of the two words is shifted, but the sign of the low
order word is made equal to the sign of the high order word.

Null bits are brought in at the end being vacated: a left shift brings in Os at
the right, whereas a right shift brings in the equivalent of the sign bit at the
left. In either case, information shifted out at the other end is lost. A single

§2.5 FIXED POINT ARITHMETIC
shift left is equivalent to multiplying the number by 2 (provided no bit of
significance is shifted out); a shift right divides the number by 2.

The number of places shifted is specified by the result of the effective
address calculation taken as a signed number (in twos complement notation)
modulo 22 in magnitude. In other words the effective shift E is the number
composed of bit 18 (which is the sign) and bits 28-35 of the calculation
result. Hence the programmer may specify the shift directly in the instruc-
tion (perhaps indexed) or give an indirect address to be used in calculating
the shift. A positive E produces motion to the left, a negative E to the right;
E is thus the power of 2 by which the number is multiplied. In the KA10,
maximum movement is 255 places. The KI10 eliminates redundant move-
ment by shifting at most 72 places regardless of the value of E.

ASH Arithmetic Shift
240 | 4 1] x | Y }
0 89 121314 1718 35

Shift AC arithmetically the number of places specified by £. Do not shift
bit 0. If E is positive, shift left bringing Os into bit 35; data shifted out of bit
1 is lost; set Overflow if any bit of significance is lost (a 1 in a positive num-
ber, a 0 in a negative one). If E is negative, shift right bringing Os into bit 1
if AC is positive, 1s if negative; data shifted out of bit 35 is lost.

Al

ASHC Arithmetic Shift Combined
244 | 4 |1l x | Y]
0 89 121314 1718 35

Concatenate the magnitude portions of accumulators A and A+1 with 4 on
the left, and shift the 70-bit combination in bits 1-35 and 37-71 the num-
ber of places specified by £. Do not shift AC bit 0, but make bit 0 of AC
A+1 equal to it if at least one shift occurs (ie if E is nonzero). If E is posi-
tive, shift left bringing Os into bit 71 (bit 35 of AC A+1); bit 37 (bit 1 of AC
A+1) is shifted into bit 35; data shifted out of bit 1 is lost; set Overflow if
any bit of significance is lost (a 1 in a positive number, a O in a negative one).
If E is negative, shift right bringing Os into bit 1 if AC is positive, 1s if nega-
tive; bit 35 is shifted into bit 37; data shifted out of bit 71 is lost.

2.6 FLOATING POINT ARITHMETIC

For floating point arithmetic the PDP-10 has instructions for scaling the
exponent (which is multiplication of the entire number by a power of 2)

2-31

An arithmetic right shift trun-
cates a negative result differ-
ently from IDIV if 1s are
shifted out. The result of the
shift is more negative by one
than the quotient of IDIV.

To obtain the same quo-
tient that IDIV would give
with a dividend in A divided
by N = 2K use

SKIPGE A
ADDI AN-1
ASH A—K

For K <20 this is only slightly
faster than IDIVI, except in
the KA10 where it takes only
5-6 us as opposed to about
16 us for IDIVI.

Note that the effect of a shift
on bit 0 of the low order word
is consistent with the conven-
tion used for double length
fixed point numbers. When
there is no shift however, the
result may be inconsistent
with that convention.

In a KA10 without floating
point hardware, all of the in-
structions presented in this
section are trapped as un-
assigned codes [§2.10].

AUGUST 1974

A

12
w
o

A subtraction involving two
like-signed numbers whose
exponents are equal and
whose fractions differ only in
the LSB gives a result con-
taining only one bit of signi-
ficance.

CENTRAL PROCESSOR §2.6

and negating double length numbers (software format) as well as performing
addition, subtraction, multiplication and division of numbers in single pre-
cision floating point format. Moveover the KI10 has instructions for per-
forming the four standard arithmetic operations on floating point numbers
in hardware double precision format, for moving double precision numbers
(with the option of taking the negative) between a pair of accumulators and
a pair of memory locations, and for converting single precision numbers
from fixed format to floating and vice versa. Except for the conversion in-
structions and the simple moves, all instructions treated here interpret all
operands as floating point numbers in the formats given in §1.1, and
generate results in those formats. The reader is strongly advised to reread
§ 1.1 if he does not remember the formats in detail.

For the four standard arithmetic operations in single precision, the pro-
gram can select whether or not the result shall be rounded. Rounding
produces the greatest consistent precision using only single length operands.
Instructions without rounding have a ‘““long’” mode, which supplies a two-
word result for greater precision; the other modes save time in one-word
operations where rounding is of no significance.

Actually the result is formed in a double length register in addition, sub-
traction and multiplication, wherein any bits of significance in the low order
part supply information for normalization, and then for rounding if re-
quested. Consider addition as an example. Before adding, the processor
right shifts the fractional part of the operand with the smaller exponent until
its bits correctly match the bits of the other operand in order of magnitude.
Thus the smaller operand could disappear entirely, having no effect on the
result (“‘result” shall always be taken to mean the information (one word or
two) stored by the instruction, regardless of the number of significant bits it
contains or even whether it is the correct answer). Long mode is likely to
retain information that would otherwise be lost, but in any given mode the
significance of the result depends on the relative values of the operands.
Even when both operands contain twenty-seven significant bits, a long addi-
tion may store two words that together contain only one significant bit. In
division the processor always calculates a one-word quotient that requires no
normalization if the original operands are normalized. An extra quotient bit
is calculated for rounding when requested; long mode retains the remainder.

Among the floating point instructions available only in the KI10, those
that convert between number types operate only on single words. The in-
struction that converts to floating point assumes the operand is an integer
and always normalizes and rounds the result. In the opposite direction, only
the integral part of the result is saved, and rounding is an option of the pro-
gram. The instructions for the four standard operations using double pre-
cision have no modes. In division the processor always calculates a two-word
quotient that is normalized if the original operands are normalized. but
rounding is not available. In addition. subtraction and multiplication, the
result is formed in a triple length register, wherein bits of significance in the
lowest order part supply information for limited normalization and then
for rounding, which is automatic.

The processor has four flags, Overflow, Floating Overflow, Floating
Underflow and No Divide, that indicate when the exponent is too large or

=1 =y =y Ty v TV TV

-y =y =1 ¥ =V

|

. |

=

§26 FLOATING POINT ARITHMETIC

too small to be accommodated or a division cannot be performed because of
the relative values of dividend and divisor. Except where the result would be
in fixed point form, any of these circumstances sets Overflow and Floating
Overflow. If only these two are set, the exponent of the answer is too large;
if Floating Underflow is also set, the exponent is too small. No Divide being
set means the processor failed to perform a division, an event that can be pro-
duced only by a zero divisor if all nonzero operands are normalized. Any con-
dition that sets Overflow in the K110 also sets the Trap 1 flag. These flags can
be read and controlled by certain program control instructions [§§2.9, 2.10].
KI10 overflow is handled by trapping through the setting of Trap 1 [§2.9],
but in the KA 10, the program must make direct use of Overflow and Floating
Overflow, which are available as processor conditions (via an in-out instruc-
tion) that can request a priority interrupt if enabled [§2.14]. The conditions
detected can only set the arithmetic flags and the hardware does not clear
them, so the program must clear them before a floating point instruction if
they are to give meaningful information about the instruction afterward.
However, the program can check the flags following a series of instructions
to determine whether the entire series was free of the types of error detected.

The floating point hardware functions at its best if given operands that
are either normalized or zero, and except in special situations the hardware
normalizes a nonzero result. An operand with a zero fraction and a nonzero
exponent can give wild answers in additive operations because of extreme
loss of significance; eg adding %2 X 2% and 0 X 2%° gives a zero result, as the
first operand (having a smaller exponent) looks smaller to the processor and
is shifted to oblivion. A number with a 1 in bit 0 and Os in bits 9-35 is not
simply an incorrect representation of zero, but rather an unnormalized
“fraction” with value —1. This unnormalized number can produce an incor-
rect answer in any operation. Use of other unnormalized operands simply
causes loss of significant bits, except in division where they can prevent its
execution because they can satisfy a no-divide condition that is impossible
for normalized numbers.

Scaling

One floating point instruction is in a category by itself: it changes the
exponent of a number without changing the significance of the fraction. In
other words it multiplies the number by a power of 2, and is thus analogous
to arithmetic shifting of fixed point numbers except that no information is
lost, although the exponent can overflow or underflow. The amount added
to the exponent is specified by the result of the effective address calculation
taken as a signed number (in twos complement notation) modulo 28 in mag-
nitude. In other words the effective scale factor £ is the number composed
of bit 18 (which is the sign) and bits 28-35 of the calculation result. Hence
the programmer may specify the factor directly in the instruction (perhaps
indexed) or give an indirect address to be used in calculating it. A positive E
increases the exponent, a negative E decreases it; E is thus the power of 2 by

which the number is multiplied. The scale factor lies in the range —256 to
+255.

2-33

In the KI10 an arithmetic
instruction executed as an in-
terrupt instruction can set no
flags.

The processor normalizes the
result by shifting the fraction
and adjusting the exponent to
compensate for the change in
value. Each shift and accom-
panying exponent adjustment
thus multiply the number
both by 2 and by % simulta-
neously, leaving its value un-
changed.

Note that with normalized
operands, the processor uses
at most two bits of informa-
tion from the lowest order
part to normalize the result.
In multiplication this s
obvious, since squaring the
minimum fractional magni-
tude ' gives a result of Y%. In
an addition or subtraction of
numbers that differ greatly in
order of magnitude, the result
is determined almost com-
pletely by the operand of
greater order. A subtraction
involving two like-signed num-
bers with equal exponents re-
quires no shifting beforehand
so there is no information in
the lowest order part. Hence
an addition or subtraction
never requires shifting both
before the operation and in
the normalization; when there
is no prior shifting, the nor-
malization brings in Os.

This instruction can be used
to float a fixed number with
27 or fewer significant bits.
To float an integer contained
within AC bits 9-35,

FSC AC,233

inserts the correct exponent
to move the binary point
from the right end to the left
of bit 9 and then normalizes
(2333 = 155, = 128 +27).

In the KA1O these instruc-
tions are trapped as unassigned
codes.

This overflow test checks for
a value > 2% assuming the
operand is normalized.

This is the standard Fortran
truncation (“‘fixation”). For
it, the processor drops the

CENTRAL PROCESSOR §2.6
FSC Floating Scale
| 132 | a4] x | Y |

0 89 121314 1718 35

If the fractional part of AC is zero, clear AC. Otherwise add the scale factor
given by E to the exponent part of AC (thus multiplying AC by 2%), normal-
ize the resulting word bringing Os into bit positions vacated at the right, and
place the result back in AC.

Note

A negative E is represented in standard twos com-
plement notation, but the hardware compensates
for this when scaling the exponent.

If the exponent after normalization is > 127, set Overflow and Floating
Overflow; the result stored has an exponent 256 less than the correct one.
If < —128, set Overflow, Floating Overflow and Floating Underflow; the
result stored has an exponent 256 greater than the correct one.

Number Conversion

Although FSC can be used to float a fixed point number, the KI10 and
KL10 have three single precision instructions specifically for converting
between integers and floating point numbers. In all cases the operand is
taken from location E, and the converted result is placed in AC.

FIX Fix
[122 | 4 i x | Y |
0 89 121314 1718 35

If the exponent of the floating point number in location £ is > 35, set
Overflow and Trap |, and go <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>