Introduction to DECsystem-10
Assembly Language Programming

Ralph E. Gorin
Computer Science Department
Stanford University
20 July 1985

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

This work may not be photocopied, nor reproduced by any means, nor stored in any information
retrieval system without permission of the author.

The following are trademarks of Digital Equipment Corporation: DDT, DEC, DECsystem-10,
DECSYSTEM-20, DIGITAL, Massbus, PDP, and Unibus.

The drawings by Edward Koren appeared originally in The New Yorker and were copyrighted © 1976,
1977, 1978, 1979, and 1980 by The New Yorker Magazine, Inc.

This manuscript was prepared using editing and text formatting facilities on DECsystem-10,
DECSYSTEM-20, and Xerox Alto computer systems. The final version was prepared using the SCRIBE text
formatting program, a product of UNILOGIC, Ltd. It was printed on the Xerox Dover printing system.

Copyright © 1985 Ralph E. Gorin. All rights reserved.

Introduction to DECsystem-10
Assembly Language Programming

Ralph E. Gorin
Computer Science Department
Stanford University
20 July 1985

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

ABOUT THE AUTHOR

Ralph E. Gorin is Director of the Low Overhead Timesharing (LOTS) Computer Facility at Stanford
University and Director of the Computer Science Department Computer Facilities. He received his B.S. and
M.E. degrees from Rensselaer Polytechnic Institute in 1970. Since 1970, he has been associated with
Stanford University. He has taught courses in computer science and electrical engineering. He has been
actively involved in assembly language programming of the DECsystem-10 since 1969. He was responsible
for operating systems development for the DECsystem-10 at the Stanford Artificial Intelligence Laboratory
where he designed and coded the operating system support for several of the unusual peripheral devices
attached to that system. In particular, he wrote the operating system support for the Xerox Graphics Printer
and portions of the support for the Ethernet communications network. He has written many programs for the
DECsystem-10 and DECSYSTEM-20, including SPELL, the spelling correction program, portions of FAIL,
the fast one-pass assembler, and the internal data structures and sorting routines for the CREF program. His
current activities include the development of a local area computer network to connect the many disparate
computer systems at Stanford University, and the development of a networked system of multiple
microprocessors for instructional computing.

PREFACE A

*

Preface

Assembly language programs can obtain access to the full power of the particular computer system for
which they are written. Problem-oriented, high-level languages do not generally provide for this flexibility.
Assembly language programs are used where high efficiencies are required, especially in areas of
programming that do not yet have a problem-oriented language. So long as there are students of
programming who are enthusiastic and inquiring, there will be a desire to know assembly languages.

Although it might be possible to teach assembly language programming for an abstract machine, we
believe that a student’s first exposure to assembly language should be coupled to some specific computer.
Here we relate the study of assembly language to the Digital Equipment Corporation DECsystem-10. The
DECsystem-10 has been selected for several_reasons. It is gaining widespread acceptance in academic and
commercial environments. For the student of assembly language programming, the DECsystem-10 provides
a timesharing environment in which extensive editing and debugging facilities are present; assembly language
can be taught without the need for stand-alone systems. Finally, the instruction set characteristics of the
PDP-10 central processor make the DECsystem-10 an outstanding pedagogical vehicle.

The aim of this text is to provide a thorough treatment of assembly language programming for the
DECsystem-10, emphasizing the analysis of programs and various methods of program synthesis. This text
presents the detailed structure of the DECsystem-10 instruction set, explains assembly language
programming, and demonstrates useful application techniques. The diligent reader will be able to use
assembly language to write new programs and modify existing ones. The reader will also develop an
understanding of how programs, the operating system, and the computer hardware interact.

The material here is an extension of a 30-hour lecture course at Stanford. At Stanford, we recommend
that a student take courses in introductory and intermediate programming before studying an assembly
language; such a background provides a framework for disciplined programming. The understanding gained
by learning to program in one of the high-level languages is essential. The student using this text should be
able to analyze problems and develop algorithms (i.e., procedures) to solve them. He or she should be
familiar with the control structures and data structures available in a language such as Pascal. Also, he or she
should be able to use the TOPS-10 system at least to the extent of editing files and using the EXECUTE
command. :

Assembly languages are not easy to teach because of the plethora of detail involved. We have chosen
examples that gradually reveal the structure of the machine, the assembler, and the operating system. We will
describe a number of common programming tasks and introduce various practical solutions. Thus, in
addition to learning assembly language, the student will learn useful algorithms and techniques. Among these
are sorting, hash-code lookup, lists, command processing, and some lexical analysis. We have included

vi DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

explanations to allow the student to make full use of the input/output facilities provided by the TOPS-10
operating system.

This text deals primarily with those machine instructions that are useful when writing application
programs. Many advanced operating system and assembler features are not mentioned, but the material
presented here should be an adequate foundation for further individual study. This text is not intended to
replace the reference manuals for the central processor [SYSREF], the Monitor calls [MCRM], and the
MACRO assembler [MACRO].1 Rather, those references should be called upon as a supplement when
necessary.

This text is divided into two major areas:

e Sections 1 through 18 are primarily a presentation of the machine instruction set and the
assembler. Some operating system calls that deal with terminal input and output are presented
also, but the primary focus is on the instruction set. The processor and memory, various
representations of data, the purpose and function of the assembler, and the effective address
calculation procedure are included in the topics.

¢ The balance of the text presents several very useful aspects of the operating system. In this
portion we concentrate on interesting applications and programming techniques. Arrays,
sorting algorithms, list structures, file input and output techniques, and file name parsing are
among the topics covered.

As a whole, this text presents assembly language programming from the viewpoint of a systems programmer,
i.e., a person interested in implementing utility programs, high-level languages, and particularly efficient
applications.

Section 1 presents an overview of the three essential topics of interest: the central processor, the
assembler, and the operating system. The interactive debugging facilities available in the DECsystem-10 are
mentioned.

A view of the computer system as a central processor and memory is introduced in section 2. Memory is
viewed as an array of words, each with a unique address. The concept of data and instructions as objects that
are held in memory is presented. The execution of simple instruction sequences is explained.

A complete example of a small assembly language program appears in section 3. The example is
thoroughly explained, as it forms the foundation of all future examples. Three comraon system calls,
including one for string output to the terminal, are introduced. The minimal set of assembler functions that
are necessary for any program are explained; some of the most frequently used pseudo-operators are
discussed.

Section 4 discusses the representation of data inside the computer. Binary and octal notation are
explained. Fixed-point binary, two’s complement arithmetic, and conversion between radices are
demonstrated. The ASCII character code and its application in the PDP-10 are explained.

" The format of instructions in memory, the meaning of the various instruction fields, and the nature of the
translation effected by the assembler, are discussed in section 5. Every instruction computes an effective
address; the effective address computation and several examples are presented.

The most basic and most useful PDP-10 instructions are introduced in section 6. Among these
instructions are fullword manipulations, jumps, conditional jumps, and conditional skips. A set of examples
illustrates the use of these instructions.

1See appendix F, page 375 for references.

PREFACE vii

We introduce a system call that performs input from the terminal in section 7. Further assembler
features, additional pseudo-operators, and the literal facility are discussed.

Pushdown stacks are presented in section 8. The relevant instructions and pseudo-ops are shown. A
simple application of a stack for reversing an input stream is demonstrated.

The output of the assembler, the binary and listing files, are explained in section 9. A brief discussion of
the effects of the linking loader is included here.

Section 10 demonstrates the symbolic debugger, DDT, showing how it can be used to locate problems
inside a program.

Section 11 introduces the byte instructions and the POINT pseudo-op. The byte instructions in the
PDP-10 are very useful for string processing and for copying the contents of selected fields from memory to
the accumulators. This section displays several examples of their use.

The halfword instructions are explained in section 12. In the PDP-10, data is often found packed with
one item in each halfword. The items may be addresses that describe data structures, or other 18-bit items.
" The halfword instructions are useful for manipulating such data items.

The details of the program counter, its associated flags, and the various subroutine calling instructions are
introduced in section 13. Examples to demonstrate the application of the different subroutine calls are given.
The PUSHJ and POPJ instructions are discussed in detail; an example is shown in which a program is
structured into manageable subroutines.

The Test instructions and the Boolean instructions are presented in section 14. The same process
performed by the example in section 13 is re-programmed to take advantage of these instructions.

The Block Transfer instruction and the shift instructions are explained, with short sample applications, in
section 15.

Section 16 explains the integer and floating-point arithmetic instructions. The representation of
floating-point numbers and the accuracy of floating-point arithmetic are discussed.

The concepts of macros and conditional assembly are introduced in section 17. An example is presented
that demonstrates these topics and integer arithmetic operations.

Local UUOs are presented in section 18. An example of LUUQOs and of ﬂoating-pbint arithmetic is
given. Section 18 generally concludes the presentation of the instruction set; beyond this point, the text deals
with applications and additional system features.

An overview of the operating system functions that are so important in real programs appears in section
19. These topics include input and output processing; interprocess communication; and interrupts. The
sections that follow expand on these topics and apply the instruction set to more complex data structures and
examples.

A very simple first example in section 20 demonstrates the system calls that effect file output. A second
example presents a technique for managing an output buffer; the example also shows how to use the
arithmetic instructions to perform extended precision calculations.

Section 21 is a discussion of arrays. One-dimensional arrays are introduced; several examples are .given.
The use of an index register to access array elements is demonstrated. An example is given in which an array
is used to hold the digits involved in a calculation of large factorials. The discussion continues to
two-dimensional arrays; two accessing techniques, address polynomials, and the use of indirect addressing via
side-tables are demonstrated. An application of two-dimensional arrays to plotting is shown. The discussion
of arrays ends with an cxtension of address polynomials to higher dimensions.

File input operations are presented in section 22. For file input the programmer must also cope with the
end of file condition. A modecrately useful file search program is developed as an example.

viii DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

File directories are discussed in section 23. The example in this section presents a simple technique for
dynamic space allocation and demonstrates a Bubble sort. Dynamic and flexible allocation of memory space
is one of the particular attractions of assembly language programming; many high-level languages do not
provide adequate tools for storage management. Bubble sort is presented as the simplest of sorting
algorithms. However, Bubble sort is inefficient, so the Heapsort algorithm is explained and a subroutine to
implement Heapsort is developed to replace the Bubble sort subroutine.

Section 24 introduces records as a data structure and linked lists as a technique for organizing records.
An interesting program presents an example of list processing, hash-code search techniques, the use of buffers
to reduce the overhead of input and output operations, and an efficient list-oriented merge sort.

The sections following section 24 haven’t been written for the DECSystem-10 yet. When written, these
will cover the following topics

Random access input and output are discussed in section 25.

The author wishes to thank the staff and management of the Stanford Artificial Intelligence Laboratory,
on whose word processing facilities the early drafts of this manuscript were prepared. J. Q. Johnson patiently
read several drafts and refused to allow me to leave poor enough alone. My thanks also to the students who
tolerated the earlier versions of this manuscript and who made corrections and many useful suggestions.

R.E.G.
Stanford, California
July, 1985

TABLE OF CONTENTS

*

Table of Contents

. Introduction

1.1. Algorithms

1.2. Machine Instructions

1.3. Operating System - The Software Instruction Set
1.4. The Assembler

1.5. Debugging Aids

. DECsystem-10 Hardware Overview

2.1. The Memory
2.1.1. Data in Memory Py
2.1.2. Addresses in Memory
2.2. The Central Processing Unit
2.2.1. Computer Instructions
2.2.1.1. Operation Code
2.2.1.2. Operand Addressing
2.2.1.3. Instruction Sequences
2.2.1.4. Instructions in Memory
2.2.2. Historical Notes

. First Example

3.1. Review of Example 1
3.1.1. Pseudo-Operators
3.11L1LTITLE
3.1.1.2. COMMENT
3.1.1.3. ASCIZ
3.1.14.END
3.1.2. MUUOs
3.1.2.1. RESET
3.1.2.2. EXIT
3.1.2.3. OUTSTR
3.2. Programs and Memory
3.3. Exercise - Self-Identification

ix

O 0L G WWWwWN =

X DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

4. Representation of Data 25
4.1. Representations 25
4.2. Binary Integers 25
4.3. Arithmetic in the Binary System 27
4.4. Representing Negative Numbers 27

4.4.1. Odometer Arithmetic and Ten’s Complement Notation 27
4.4.2. Two’s Complement Arithmetic 29
4.43. Overflow in Two’s Complement 30
4.5, Octal Notation 31
4.6. Converting Between Number Systems 31
4.7. Octal Numbers in the PDP-10 33
4.8. The ASCII Code 33
4.8.1. The ASCII and ASCIZ Pseudo-Operators 33
4.9. Exercises 35
49.1. Decimal to Binary Conversion 35
4.9.2. Decimal to Two’s Complement Conversion 35
4.9.3. Binary to Octal Conversion 36
4.9.4. ASCII Text Assembly 36

5. PDP-10 Instructions 37
5.1. Instruction Format in Memory 37
5.2. How the Assembler Translates Instructions 38
5.3. Effective Address Computation . 41

5.3.1. Examples of Effective Address Calculation 42
5.3.1.1. Direct Addressing 42

5.3.1.2. Indexed Addressing 42

5.3.1.3. Indirect Addressing 45

5.3.2. Summary 45

5.4. Instruction Classes 46
5.5. Exercises 46
5.5.1. Instruction Components and Addressing 46

6. Data Movement and Loops 47

6.1. Full-Word Data Movement 47
6.1.1. MOVE Class 47
6.1.2. EXCH Instruction , 49

6.2. Jump and Skip Instructions ‘ . 49
6.2.1. JRST 50
6.2.2. Conditional Jumps and Skips S0

6.2.2.1. JUMP Class 50
6.2.2.2. SKIP Class 52
6.2.2.3. AOS Class 53
6.2.2.4. SOS Class 54
6.2.2.5. AOJ Class 54
6.2.2.6. SOJ Class 54
6.2.2.7. CAM Class S5

6.2.2.8. CAI Class 55

TABLE OF CONTENTS xi

6.2.3. AOBJP and AOBJN 56

6.3. Constructing Program Loops : 57
- 6.3.1. Forward Loops 57
6.3.2. Applying AOBJN ' 58
6.3.3. Backwards Loops 59
6.3.4. Nested Loops 59

6.4. Exercise v 63
7. Terminal Input 65
7.1. The INCHWL MUUO 65
7.2. The Echo Program 65
7.2.1. Program Qutline 65
7.2.2. Supplying Details 66
7.2.3. Literals 66
7.2.4. Character Processing 67
7.2.5. Testing for the End of the Line 63
7.2.6. Testing for an Empty Line 69

8. Stack Instructions 71
8.1. PUSH Instruction gl
8.2. Defining the Pushdown List : 72
8.2.1. BLOCK to Reserve Space 72

8.3. Initializing the Stack Pointer 73
8.3.1. IOWD Pseudo-Operator 73
8.3.2. Defining Symbolic Names 73
8.3.3. Symbolic Names for Accumulators 74

8.4. POP Instruction 74
8.5. ADJSP - Adjust Stack Pointer 75
8.6. Examples of PUSH and POP 75
8.7. Example 4-A 79
8.7.1. Summary of Example 4-A - , 83

9. The Assembler and Loader : ' - 85
9.1. Overview of Assembly and Loading 85
9.2. Assembler Output _ 85
9.2.1. Page Headings : 88
9.2.2. Listing the Source Lines 89
9.2.3. Listing the Symbol Table 90
9.2.4. Symbol Cross-Reference 91
9.2.5. Operator Cross-Reference 91

9.3. The Loader and Relocatable Code 91
10. Debugging with DDT 93
10.1. DDT Functions - 93
10.2. Loading and Starting DDT 94
10.3. A Sample Session with DDT 95
10.4. Methodical Debugging 99

10.5. DDT Command Descriptions 100

xii DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

10.5.1. Examines and Deposits 101
10.5.1.1. Current Location 101

10.5.1.2. Current Quantity 101

10.5.1.3. Examine Commands 101

10.5.1.4. Deposit Commands 102

10.5.2. DDT Output Modes 102
10.5.3. DDT Program Control 103
10.5.4. DDT Assembly Operations and Input Modes 104
10.5.5. DDT Symbol Manipulations 105

11. Byte Instructions 107
11.1. LDB - Load Byte) 108
11.2. DPB - Deposit Byte 108
11.3. IBP - Increment Byte Pointer 108
11.4. IL.DB - Increment Pointer and Load Byte 109
11.5. IDPB - Increment Pointer and Deposit Byte 109
11.6. POINT Pseudo-Operator 110
11.7. Programming Example : 110
11.8. ADJBP - Adjust Byte Pointer ‘ 111
11.9. Example 4-B 112
11.10. Character Processing; Example 5 115
11.11. Alternative Techniques 119
11.11.1. Flags for Control 119
11.11.2. Control Without Flags 2 119
11.12. Exercises ' 120
11.12.1. Test for an Empty Line 120
11.12.2. Interleave Program 120
-12. Halfword Instructions 121
12.1. Using Halfword Instructions 123
13. Subroutines and Program Control 125
13.1. Program Counter Format 125
13.2. Subroutine Call Instructions 126
-13.2.1. PUSHJ - Push Return PC and Jump _ 127
13.2.2. POPJ - Pop Return PC and Jump 127
13.2.3. Applications of PUSHJ and POPJ 127
13.2.3.1. Nesting Subroutines 128

13.2.3.2. Restoring Flags 128

13.2.3.3. Skip Returns 128

13.2.3.4. Recursive Subroutines 129

13.2.4. JRST Family 129
13.2.4.1. JRSTF Jump and Restore Flags 130

13.2.4.2. Other JRSTs . 130

13.2.5. JSR - Jump to Subroutine 130
13.2.6. JSP - Jump and Save PC 131

13.3. Program Control Instructions 132

TABLE OF CONTENTS xiii

13.3.1. JFCL - Jump on Flag and Clear 132
13.3.2. JFFO - Jump if Find First One 133
13.3.3. XCT - Execute Instruction 133
13.4. Example 6-A 134
13.5. Exercises 141
13.5.1. Change INDONE 141

14. Tests and Booleans 143
14.1. Logical Testing and Modification 143
14.2. Boolean Logic 146
14.3. Example 6-B - Extract Vowels 148
14.3.1. Analysis of Program 6-B 151
14.3.1.1. Two-Pass Structure 151

14.3.1.2. Inner-Loop Instructions 151

14.3.1.3. PROC1 and PROC2 Subroutines 153

14.3.1.4. ISVOW Subroutine 154

14.3.1.5. The BYTE Pseudo-op 154

14.4. Exercises 155
14.4.1. Pig Latin 155

15. Block Transfer and Shift Instructions 157
15.1. BLT Instruction ' 157
15.1.1. Warnings about BLT 157
15.1.2. BLT Programming Examples ' 159

- 15.2. Shift Instructions 160
15.2.1. LSH - Logical Shift 160
15.2.2. LSHC - Logical Shift Combined 160
15.2.3. ASH - Arithmetic Shift 161
15.2.4. ASHC - Arithmetic Shift Combined 161
15.2.5. ROT - Rotate 161
15.2.6. ROTC - Rotate Combined 161

16. Arithmetic 163
16.1. Fixed-Point Arithmetic 163
16.1.1. ADD Class 163
16.1.2. SUB Class 163
16.1.3. IMUL Class : 164
16.1.4. IDIV Class ' 164
16.1.5. MUL Class 165
16.1.6. DIV Class. 165
16.2. Double-Word Moves 165
16.3. Double-Precision Fixed-Point Arithmetic 166
16.4. Floating-Point Operations 166
16.4.1. Floating-Point Representations 166
16.4.1.1. Single-Precision Floating-Point 166

16.4.1.2. Double-Precision 168

16.4.2. Floating-Point Arithmetic Operations _ 168

xiv DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

16.4.2.1. Special Cautions 170

16.4.2.2. Floating-Point Exceptions : 170

16.4.3. Floating-Point Instruction Set 170
16.4.3.1. FIX -- Convert Floating-Point to Fixed-Point 171

16.4.3.2. FIXR -- Fix and Round 171

16.4.3.3. FLTR -- Float and Round 171

16.4.3.4. FSC - Floating Scale 172

16.5. Exercises 172
16.5.1. Date and Time Conversion 172

17. Macros and Conditionals 173
17.1. Macros 173
17.1.1. Arguments to Macros 174
17.2. Conditional Assembly 175
17.2.1. The IF Construct 175
17.2.2. The IFNDEF Conditional 175
17.2.3. Macros to Control Conditional Assembly 176
17.3. Example 7 - Numeric Evaluator 176
17.3.1. Synthesis of the Main Program 177
17.3.2. Terminal Input and Output 178
17.3.3. Decimal Output and Recursive Subroutines 179
17.3.3.1. Recursion 182

17.3.4. Expression Evaluation 182
17.3.5. Macros for Data Structures 184
17.3.6. Decimal Input Routine 184
17.3.7. Complete Program for Example 7 186
17.4. Exercises 189
17.4.1. Recursive Computation of the Sine Function 189
17.4.2. Russian Multiplication 190
17.4.3. Efficient Exponentiation 191

18. Local UUOs o ' ‘ . ' 193
18.1. Example 8 - Floating-Point Input and Output 194
18.1.1. SUBTTL Pseudo-Operator : 200
18.1.2. Local UUO Processing 201
18.1.2.1. External Symbols 201

18.1.2.2. Definitions of Local UUOs 201

18.1.2.3. Initialization of the LUUO Handler 203

18.1.2.4. The LUUO Handler 203

18.1.3. FLINPO - Floating-Point Input Scan 205
18.1.3.1. Processing the Decimal Point 205

18.1.3.2. Processing the Exponent 205

18.1.4. FLOUTP - Floating-Point Output Processing 206
18.1.4.1. FLOUTN 206

18.1.4.2. FLOUTS and FLOUTL 206

18.1.4.3. DECFIL - Decimal Output with Leading Fill 207

18.2. Exercises 207

TABLE OF CONTENTS

18.2.1. Simulate the ADJBP Instruction
18.2.2. Create the Inverse of ADJBP, SUBBP

19. Operating System Facilities

19.1. Input/Output
19.2. Other Operating System Features
19.2.1. Memory Usage Control
19.2.2. Information about the Environment
19.2.3. Interrupts and Traps
19.2.4. Interprocess Communication

20. File Output

20.1. Example 9 - File Output
20.1.1. The OPEN MUUO
20.1.2. ENTER MUUO
20.1.3. Buffer Rings and the OUTPUT MUUO
20.1.4. The CLOSE and RELEAS MUUOs
20.1.5. Where are the Buffers? .

20.2. Example 10 - Long-Precision Fixed-Point Output
20.2.1. Mathematical Basis of the DECPBG Routine
20.2.2. File Output

21. Arrays

21.1. One-Dimensional Arrays i
21.1.1. Example 11 - Factorials to 1007
21.1.2. Exercises

21.1.2.1. Compute Pascal’s Triangle
21.1.2.2. Compute e, the Base of Natural Logarithms

21.2. Two-Dimensional Arrays
21.2.1. Array Addressing via Side-Tables
21.2.2. Address Polynomials
21.2.3. Plot Program, Example 12

' 21.2.3.1. Defining the Array
21.2.3.2. Accessing the Array
21.2.3.3. Plotting Figures
21.2.3.4. Constructing SINTAB and COSTAB
21.2.3.5. Writing the Array to a File
21.2.3.6. The Completed Plot Program
21.2.4. Fortran Library SIN Function

21.3. Multi-Dimensional Arrays

21.4. Efficiency Considerations

21.5. Array Exercises
21.5.1. Magic Square
21.5.2. Tic Tac Toe
21.5.3. Triangular Matrices

Xv

207
208

209

209
210
210
210
210
211

213

213
214
215
216
218
218
219
222
224

225

225
227
235
235
235
237
237
240
241
241
242
243
244
246
247
251
254
255
256
257
258
259

xvi - DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

22. File Input 261
22.1. OPEN for Input 261
22.2. LOOKUP MUUO 261
22.3. Simple Disk Input, Example 13a 262
22.4. Search Program, Example 13b 265

22.4.1. Structured Programming 266
22.4.2. GTINPF - Get Input File 274
22.4.3. File Name Scan 275
22.44. GTSTRG - Get Search String 275
22.4.5. HEADER . 275
22.4.6. FIND 276
22.4.7. GETLIN and EOFLIN 277
22.4.8. LOOK and GTINCH 277
22.4.8.1. LOOK 278
22.4.8.2. An Optimization of LOOK 280
22.4.9. FIN - Finish Routine : 280
22.5. Exercises ' 281
22.5.1. Maze 281
22.5.2. Saddle Points in an Array 282
22.5.3. Crossword Puzzle 282

23. File Directory and Sort 285
23.1. Directory Processing . 285
23.2. Dynamic Space Allocation 286
23.3. Bubble Sort 287
23.4. Directory 170 and Sort Program 287
23.5. Discussion of this Program 293

23.5.1. RDUFD 294
23.5.2. CMPRES 296
23.5.3. SORT ‘] 297
23.5.4. PRINT 298
23.6. Heapsort 300
23.6.1. Machine Representation of a Heap 301
23.6.2. Building a Heap 301
23.6.3. Removing Sorted Data from the Heap 303
23.6.4. Intermediate Storage for Heapsort 304
23.6.5. High-Level Representation of Heapsort 304
23.6.6. Heapsort Subroutine 305
23.6.7. Discussion of the Heapsort Subroutines 307
23.6.8. Timing Analysis of Heapsort 309
23.7. Exercises 309
23.7.1. Cryptogram Program 309
23.7.2. Directory Cleaner 312

23.7.3. Fixed-Field Sorting Program 312

TABLE OF CONTENTS xvii

24. Lists and Records 313
24.1. Dictionary Program - Example 16 ' 314
24.2. Dictionary Records 316

24.2.1. Suppressed Labels 316
24.2.2. PHASE and DEPHASE Pseudo-Operators . ' 316
24.2.3. ORG Pseudo-Operator 317
24.3. Searching by Hash Code 317
24.3.1. PROCWD 319
24.3.1.1. HSHFUN 321

24.3.1.2. NAMCMP 321

24.3.1.3. BLDBLK 321

24.3.1.4. Efficiency Improvements 324

24.3.2. GETWRD 324
24.4, Dictionary and Sort Program 325
244.1. NSSORT 336
24.4.2. PRDICT 341
24.5. Exercises 342
24.5.1. Token Scanning 342
24.5.2. Cross-Reference Program 344
24.5.3. KWIC Index Program : 345
24.5.4. Set Operations 346

25. Random Access 1/0 347
25.1. Example Program 347
25.2. Update-in-Place 350
25.3. Random Access in Buffered Modes 351

Appendices

A. PC & Flags 353
A.l. Flags 353
A.2. The Program Counter c ‘ ‘ ' . : 356

B. Instruction Nomenclature . 357

C. DDT Commands 359
C.1. Examines and Deposits - 359

C.1.1. Current Location - 360
C.1.2. Current Quantity 360
C.1.3. Examine Commands 360
C.1.4. Deposit Commands 360
C.2. DDT Output Modes 361
C.3. DDT Program Control 362
C.4. DDT Assembly Operations and Input Modes . 363
C.5. DDT Symbol Manipulations 364
C.6. DDT Searches 365
C.7. Patch Insertion Facility 366

C.8. Location Sequence 366

xviii DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

C.9. Miscellaneous Features 367
D. Obsolete Instructions 369
D.1. JSA - Jump and Save AC 369
D.2. JRA - Jump and Restore AC 369
D.3. Long Floating-Point 370
D.4. DFN -- Double Floating Negate 371
D.5. UFA -- Unnormalized Floating Add 371
E. Common Pitfalls 373
F. References . 375
Glossary ‘ 377
Index of Instructions 387
Index 389

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 3-2:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 9-1:
Figure 9-2:
Figure 9-3:
Figure 9-4:
Figure 9-5:

Figure 12-1:
Figure 15-1:
Figure 15-2:
Figure 15-3:
Figure 15-4:
Figure 15-5:
Figure 15-6:
Figure 15-7:
Figure 20-1:
Figure 21-1:

LIST OF FIGURES

*

List of Figures

KL10-based DECsystem-10 Configuration
Processor and Memory Configuration
DECsystem-10 Virtual Memory
Machine Representation of the Program
Sample Homework 1
PDP-10 Instruction Formats
Instruction Loop & Effective Address Calculation
Comparison of Array Access and Record Access
Overview of the Assembler and Loader
Assembler Listing of the Source Program
Assembler Listing of the Symbol Table
Assembler Listing of the Source Program
Selected Lines from the CREF Listing

Binary Tree with Halfword Links

BLT Example

LSH Data Movement

LSHC Data Movement

ASH Data Movement

ASHC Data Movement

ROT Data Movement

ROTC Data Movement

A Two-Buffer Buffer Ring

Sample Output from the LISAJ Subroutine

Xix

22
23
37
41

86
87
88
88
90
124
158
162
162
162
162
162
162
217
251

XX

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Table 4-1:
Table 4-2:
Table 6-1:
Table 6-2:
Table 6-3:.

LIST OF TABLES

*

List of Tables

Decimal, Octal and Binary Equivalents
The ASCII Character Set

Notation for Instruction Descriptions

The MOVE Instructions

Modifiers for Jumps, Skips and Compares

Table 14-1: Boolean Functions
Table 16-1: Floating-Point Instruction Set

xxi

32
34
48
43
50
146
170

INTRODUCTION 1

Chapter 1
Introduction

Assembly language programming is the way to get close to a computer, to know the precise details of its
functioning. The computer is an obedient servant; assembly language provides precise and explicit control
over the implementation and execution of programs. Unlike high-level languages, assembly languages allow
access to a broad range of control techniques and data structures.

Programming requires clear thinking and attention to detail. Assembly language programming calls for
practicing these skills to a particularly high degree. Assembly languages exact payment for the exercise of
greater control; three, eight, or dozens of instructions may be needed to implement each high-level construct.
In assembly language programming there is an inescapable tendency towards long programs. Composing and
debugging a long program need not be difficult if approached properly. We will discuss ways to manage such
tasks.

Among the benefits of assembly language programming is the ability to use all of the hardware and
operating system features provided by the computer system. Assembly language programmers are not
restricted to the features, control structures, data structures, and input/output facilities provided by any
particular high-level language.

Assembly language is presently most suitable where the manpower expended in producing a program is
expected to be small compared to the expense of running the program. In some cases, no other language will
execute the program in a short enough time, or with so little expenditure of machine resources. The current
activity in microprocessor-based systems has spurred a new interest in assembly language programming;
assembly languages can get the job done in the minimum amount of hardware, a very important consideration
in any situation where systems are being mass produced. However, as our understanding of optimizing
compilers increases, as hardware becomes faster and cheaper, there will be fewer situations that require new
programs in assembly language.

A vast number of programs have been written in assembly language. Often, these need to be modified;
usually a patch is a more effective short-term solution than an elegant rewrite.

Assembly language skills are needed by the people who implement compilers, data base systems, and
other application packages.

Knowledge of a variety of computer systems at the assembly language level is useful for understanding
the issues of machine architecture and implementations. The most useful computers are the ones that have
been designed with a conscious understanding of the problems of programming.

" For these reasons, and perhaps for other aesthetic ones, people continue to study assembly language.
Some find it fascinating. ' :
Every computer implements a collection of primitive functions called instructions. Programs consist of

2 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

sequences of these instructions. Historically, the first computers were programmed in machine language, in
which programs are constructed by hand, literally bit by bit. When a particular primitive function, e.g.,
addition, is desired, the binary pattern corresponding to the ADD instruction is found in the instruction
manual and copied by hand into the computer’s memory. This description suggests that programming in
machine language is exceedingly tedious. Itis. Also, it is quite susceptible to errors.

Assembly language represents a significant advance over the tedium and uncertain results of machine
language. Essentially the process of looking up the binary pattern for each instruction has been mechanized.
The assembler program (together with a loader) handles the problems of allocating space in memory for the
program and variables, and generally performs useful bookkeeping chores. Note, however, that we continue
to deal with the primitive functions, the instructions that the computer itself implements.

We will study four principal aspects of assembly language programming:

e writing correct, understandable algorithms,

e proper use of the hardware instruction set,

e proper use of the software instruction set, and

o use of software aids such as the assembler, debugger, and loader.

To program in assembly language, it is necessary to learn something about each of these topics. So, we
begin, a little at a time, to show the “tip of the iceberg” for each of these subjects.

1.1. ALGORITHMS

The techniques of programming in high-level languages are relatively easily carried over into assembly
language. We shall have occasion to demonstrate algorithms - computational processes - in both a high-level
language and in assembly language.

Programming requires that problems be divided into subproblems. Divide and conquer is perhaps the
most consistently successful strategy for program development.

In, assembly language, the primitive operations are small. It takes several machine instructions to
implement each high-level construction. Because programs in assembly language are usually longer than
those in a high-level language, it is especially important to develop good habits regarding the structure and
documentation of the programs we write.

These characteristics of structure and documentation are referred to as programming style. Style is
important; a correctly functioning program is a necessary but not sufficient achievement. Beyond correct
performance, the programs we write must be understandable by others. Proper style and documentation
enhance a reader’s understanding of the program. More than any other comparable human endeavor,
programs exist to be changed. Well-commented, well-structured programs are easier to maintain and modify.

1.2. MACHINE INSTRUCTIONS

The hardware instructions are the primitive operations with which we write programs. Learning the
instruction set means learning what opcrations are performed by each of the commonly used instructions.
Programming is the art or science of combining these operations to accomplish some particular task. We'll
give examples of what we hope are correct programs and uscful techniques.

Learning the instruction sct does require some rote memorization. As we discuss the instruction set, we
will try to establish patterns to help you organize your thinking about the instructions.

INTRODUCTION 3

1.3. OPERATING SYSTEM - THE SOFTWARE INSTRUCTION SET

In most computer systems a special-purpose program.called an operating system is used to manage the
computer and to help programs perform input and output operations. Operating systems may also provide
useful extensions to the instruction set. For example, if a machine doesn’t implement multiply and divide
instructions, the operating system might provide routines to simulate these. The operating system may
‘redefine or extend the instruction set that the hardware implements.’ T'heA operating system in the
DECsystem-10 is called TOPS-10.

When a computer such as the DECsystem-10 is shared among many simultaneous users, the operating
system separates users to prevent one user’s mistakes from affecting any other users. For its own protection
and the protection of other users the TOPS-10 operating system places various restrictions on the programs
that it runs. These restrictions are implemented by running all programs (except for TOPS-10 itself) in user
mode. In user mode, programs are restricted to memory assigned to them by TOPS-10; they may not perform
any machine input/output instructions, nor can they perform certain other restricted operations (e.g., the
HALT instruction). Editors, assemblers, compilers, utilities, and programs that you write yourself are all user
mode programs.

To perform input and output operations, a program must request these functions from the operating
system. Even a high-level language such as Fortran or Cobol must request these functions, although a user of
such a language is usually not aware of the details of these operations. TOPS-10 provides various subroutines
(accessed via the MUUO operations) by which a user program can communicate its wishes to the system. We
shall have more to say about operating systems in section 19, page 209.

4

-

1.4. THE ASSEMBLER

Theoretically, understanding of the machine instructions alone is sufficient in order to program the
computer. However, since these instructions are binary quantities and because programs are complex, a
translation program, called an assembler, is available. The assembler program translates mnemonic
instruction names and symbolic addresses into the binary quantities that the computer acts on. The assembler
is a simple translation and bookkeeping device that relieves the programmer of a number of non-productive
chores. Use of the assembler makes programming the computer easier and more convenient than if the only
interface to the computer were binary. In the DECsystem-10 the assembler is called MACRO.

1.5. DEBUGGING AIDS

The DECsystem-10 has a very powerful debugging aid called DDT. The name “DDT” stands for
“Dynamic Debugging Technique” and refers to a program used to get rid of a class of program errors, called
bugs, that are impervious to dichloro-diphenyl-trichloroethane. By using DDT, a programmer can examine
and change the contents of memory, cither data or instructions. The programmer can use DDT to place
breakpoints, single-step, and otherwise control the execution of the program that is being debugged. This
form of debugging is unique to interactive computer systems. DDT is discussed further in section 10, page 93.

In other computer systems, instead of an interactive debugger, a programmer may be limited to core
dumps as the sole debugging tool. The core dump is a lengthy listing of the contents of main memory at a
specifiecd snapshot point or at an abnormal termination of the program. These listings are difficult to work
with. Minicomputer systems may have somc machine language debugging techniques that are nearly
equivalent to hardware console switches and lights.

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

DECSYSTEM-10 HARDWARE OVERVIEW 5

Chapter 2
DECsystem-10 Hardware Overview

A computer system is a whole composed of many parts. The DECsystem-10 includes a central processor,
a memory, secondary storage on disks, terminals, printers, and tape drives. A sample configuration is
depicted in figure 2-1. However, since an actual configuration is too complex to be our starting point, we shall
begin by modeling the computer system as just a memory and a central processing unit as shown in figure 2-2.

The memiory stores and retrieves data under the control of the central processor. The central processor
provides the arithmetic and logic functions in the computer system. The central processor includes a program
counter that proceeds sequentially through the running program.

2.1. THE MEMORY

The memory stores information for later retrieval. Memory is organized as an array of items called words.
Every word contains 36 binary digits (called bits) that store information; each bit stores either a 0 or a 1. The
bits in every word are numbered from left to right from 0 to 35:

00 0 1 2 2 2 2
4 5 7 1 12 5 7

o w
- w
N W
ww

0000 0 001 111111112 22 2 2 2
0123 6 890 234567890¢0 3456 8 9

Fundamentally, the central processor can store (write) data into specific memory words and subsequently
retrieve (read) that data. Any information that is contained within the computer is represented by patterns of
ones and zeros that are stored in these words.

2.1.1. Datain Memory

Though many different kinds of information are stored inside the computer, we often think of the
computer as especially well suited for arithmetical computations. Naturally, in such cases the data stored in
the computer include numbers. Some example data words appear below. If you are unfamiliar with the
binary (base two) notation, these patterns may appear to be quite meaningless; please bear with us until we
arrive at section 4.2, page 25.

6 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

The figure from page 1-6 of the DECsystem-10/20
Hardware Reference Manual, would be appropriate.

Figure 2-1: KL10-based DECsystem-10 Configuration

| Program
| Counter

Processor and Memory Configuration

.
.

DECSYSTEM-10 HARDWARE OVERVIEW

Figure 2-2

Memory

The following pattern represents a quite common number, 0:

o0
o <
m ™
MmN
o
[y =]
N O
N ©
o~
N ©
[y T o]
o~ <

2
3

N~
o
oN o
- o
- O

1
7

—t O
-t 0
- <
~ ™
- N
—
- o
oo
o
o~
o ©
o w
o <
om
oo
(=3 o
(= =]

Another familiar number is the integer 1:

6000001111111 1112222222222333333
4656678901234567890123456789012345

om

012345678901234567898012345

High-level computer languages such as Fortran or Pascal distinguish between integers and real numbers.
0000000000111111111122222°2

In many computers the same distinction is drawn in the representation of such numbers. Although the
integer 1 is represented with a simple pattern, the real (or floating-poinf) number 1.0 has a more complex

pattern:
Even if you understand binary notation, this pattern isn’t expected to make much sense until we discuss the

details of floating-point representations in section 16.4, page 166.

8 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Among the other pieces of information you might find inside a computer is text. Programs that you write
are stored and edited as characters before they are translated into a runnable form. Other text files appear in
computers: your mail file, help files, and the manuscript of this book are all examples of text files. The
following depicts a word containing the five letters “Hello™:

In section 4.8.1, page 33, we will discuss just how this representation for text comes about.

As we have mentioned, the programs that are run by the central processor consist of primitive operations
called instructions. Each instruction is an item of data in memory. Although we are not quite ready to
explain what the different instructions mean, it is instructive to look at one as it would appear in memory. As
an example instruction, we have selected MOVEI 10,0. This instruction tells the computer to copy the
constant 0 to location 10. The instruction would appear in a computer word that looks like this:

0o
01

Please scrutinize this pattern carefully. Note that it is precisely the same as the pattern that we previously
identified as the real number 1. 0. These two examples were selected to drive home this important point: the
memory stores only binary patterns; people, and the programs that people write, supply the interpretation of
each pattern.

If this pattern were executed by the computer as an instruction, it would be the MOVEI 10, 0 instruction
as we have described. If this pattern were used as an operand in a floating-point instruction, it would
represent the number 1.0. Indeed this pattern also has an interpretation as an integer (it happens to be
17381195776) and an interpretation as text (the two characters blank and zero).

Again, the idea is this: the memory does not distinguish among the varieties of data stored within it. Itis
a program that implicitly supplies an interpretation.

2.1.2. Addresses in Memory

Every word in memory has a unique address. The address of a word names the location or place where
we can find that word. As with most other things in the computer, an address is a number. A program that
runs in the DECsystem-10 sees a memory space that contains addresses in the range from 0 to 262, 1 431 we
will often use octal (i.e., radix 8) notation when we talk about addresses and the contents of memory words
(see section 4.2, page 25). In octal, addresses range from 0 to 777777, as shown in figure 2-3.

In the DECsystem-10 the memory space seen by a program is called a virtual memory, as distinct from

1The TOPS-10 operating system further restricts the program to use only those memory addresses that the program has asked for.

DECSYSTEM-10 HARDWARE OVERVIEW 9

the actual physical memory, because the operating system creates the appearance of this memory space from
fragments of real memory.

Sixteen memory locations, addresses 0 through 17 (octal), are distinguished from all other locations.
These locations are called the accumulators. In many instructions, an accumulator will be selected as one of
the operands. Also, any of the accumulators in locations 1 through 17 can be used as index registers to
modify the selection of operands. As we shall see, the accumulators are very important in assembly language
programming,.

Bit Numbers
word 000000000011111111112222222222333333
address 012345678901234567890123456789012346

000000
060001
000002
000003
000004

\ Locations 0 through 17
/ are the accumulators.

000016
000017
000020
000021

777176
777777

Figure 2-3: DECsystem-10 Virtual Memory

2.2. THE CENTRAL PROCESSING UNIT

The Central Processing Unit, or CPU, contains the arithmetic and control functions that follow the
directions specified by a program. We call the CPU a PDP-10, which is the name by which these central
processors were once known. In this book we speak of the PDP-10 to mean precisely and only the central
processor. '

The PDP-10 central processing unit implements a set of elementary functions called instructions. Each
instruction occupies precisely one word in the computer rnemory.2

The CPU contains logic and storage sufficient to execute (i.e., perform) one instruction at a time. Except
for the program counter (explained below), the execution of an instruction does not change the CPU itself.3
Instructions have the following kinds of effects:

o Instructions can change the contents of memory, including the contents of the accumulators.
o Instructions always change the program counter.

2'l'he extended instructions might be said to occupy more than one word, but for the moment we ignore such distinctions.

3’I‘he CPU also contains a small number of flags (single bit storage elements) that may be changed by the computation.

10 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

e Some privileged instructions effect changes in an input or output device. By such changes the
computer transmits information to the outside world or receives information as input.

The CPU contains a register (that is, an array of one-bit storage elements) called the program counter or
PC. The PC contains the memory address of the next instruction to execute. Each time an instruction is
performed, the constant 1 is added to the PC. Adding one to a register is called counting, hence the “counter”
portion of the name “program counter.” Because the PC increases by one each time an instruction is
executed, consecutive memory addresses usually contain consecutive instructions.

A program consists of a series of instructions. To perform an instruction, the CPU first must fetch (i.e.,
read) the instruction that the PC addresses. After the instruction is fetched, the CPU increments (adds one to)
the PC and then performs the function that was specified by the instruction. After executing the instruction,
the CPU fetches the next instruction. Thus, after the instruction in location 1234 is executed, the CPU
normally executes the instruction at 1235, etc.

Special instructions called jumps and skips can change the sequence of execution by changing the
program counter. A jump instruction supplies a completely new value for the program counter; a skip
instruction increments the program counter an extra time, thus skipping over one instruction without
executing it. By means of such instructions, program loops, control structures, and subroutine calls can be
implemented.

Each word in memory contains some binary pattern; this pattern presumably is meaningful to the
programmer. Some words that the computer reads from memory contain instructions to execute. Other
words contain data. There are many different formats for data, and some data patterns cannot be
distinguished from instructions. A word is executed as an instruction when the program counter addresses it.
Storing instructions in the same memory as data allows great flexibility in what a computer can do; at the
same time, it presents boundless opportunities for confusion.

2.2.1. Computer Instructions
In assembly language programming, every instruction that we write contains a description of what
operation to perform and which memory locations to affect. '

2.2.1.1. Operation Code

Every instruction that is executed specifies a particular function to perform. Sometimes it is relatively
simple, such as copying a word from one address to another. Sometimes the function is more complex, such
as adding two words together. Each instruction has an operation code that specifies what function to perform.

Operation codes in the computer are really numbers. However, each of these numbers has been given a
name, or mnemonic by which we expect to remember it. Among the functions of the assembler is the
translation of the name we know into the numeric operation code that the computer acts on. An example of a
mnemonic operation name is MOVEI, which we have already mentioned. You can probably guess the
meanings of the operations called ADD and SUB. When writing an instruction in assembly language, the name
of the operation appears first.

2.2.1.2. Operand Addressing

Most instructions allow two different memory addresses to be specified, but one of these addresses is
restricted as explained below. These addresses define where the data comes from and where to place the
result of the operation.

DECSYSTEM-10 HARDWARE OVERVIEW _ 11

The PDP-10 CPU architecture employs what is sometimes called one and a half address instructions. The
“one” address refers to the ability of every instruction to address any word in the memory space allocated to
the program. The “half” address means that a second address, restricted to a small number of words, is also
permitted. Since the second address is restricted, i.e., it cannot address all locations, it doesn’t count for as
much as the first one, hence, the expression “one and a half.” It might be noted that one-, two- and
three-address machines also exist.

Although the “half” address is restricted, it is very important. It names one of the first sixteen memory
locations. These sixteen locations (addresses 0 to 17 octal) are often referred to as registers, or as
accumulators (ACs). The accumulators can be used as normal memory locations whenever it is convenient to
do so. Also, the accumulators are distinguished from other memory locations in three ways:

e Accumulators can be referenced as one of the operands in all data moving and test instructions.
As such, accumulators are very useful for temporary storage.

e The addresses 1 to 17 can be used as index registers to modify any instruction’s effective
address calculation (see section 5.3, page 41).

e Accumulators are implemented in high-speed solid-state memory rather than in the slower core

or MOS memories. The accumulators are a fast and convenient place to hold frequently
referenced data items.

When writing instructions in assembly language, if an accumulator must be specified, write the
accumulator number and a comma after the operation code. Then write the general memory operand. For
example, in the instruction P

e

MOVE 1,1000

the operation code is MOVE, accumulator number 1 is specified, and 1000 is the memory operand. This
MOVE instruction copies the contents of the word at location 1000 into accumulator 1.

2.2.1.3. Instruction Sequences

Most instructions specify one arbitrary memory address and one accumulator address. Since it is not
possible to reference two arbitrary addresses in one instruction, any operation in the computer that involves
two arbitrary addresses must take at least two instructions, and must include storage of temporary results in an
accumulator.

To give a specific example, suppose we want to copy the word at location 1000 to location 1437. Since
we can’t reference both locations in one instruction, we are required to write a sequence in which we load the
contents of location 1000 into an accumulator (choose any one) and then store the accumulator into location
1437. As mentioned above, the load operation is called MOVE, i.e., MOVE data from an arbitrary memory
location to an accumulator. The store operation is called MOVEM; this means MOVE to Memory, that is, copy
data from an accumulator to memory. For this example, we must write the instruction sequence:

MOVE 1,1000

MOVEM 1,1437
Here we have arbitrarily chosen the accumulator in location 1 as the place to hold the temporary result. The
MOVE instruction destroys the previous contents of accumulator 1; the MOVEM instruction leaves register 1
unchanged but overwrites the previous contents of location 1437. (Please note that due to an occasional
lapse of terminological exactitude, and to add variety to an otherwise dry and interminable narrative, we often
use the words register and accumulator as synonyms.)

12 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

The accumulators are also involved in arithmetic operations. Suppose we must add the data in location
1000 to that in location 1234 and then store the result in 1437. A sequence to accomplish this task is given
below:

MOVE 1,1000

ADD 1,1234

MOVEM 1,1437
This sequence loads register 1 with the data from location 1000. The ADD instruction adds the data found in
location 1234 to the contents of register 1, placing the sum in register 14 Finally, the sum is stored in
location 1437. Note that the result in register 1 was constructed in several steps; register 1 has been used
here to accumulate a sum, leading to the name accumulator to describe these registers.

With these examples, we hope you now have some idea of the kind of demands that are placed upon the
programmer. The two examples approximately correspond to the Pascal statements “C:=A" and “C: =A+B”.
You can see that simple arithmetic operations can be translated in a relatively straightforward manner to
machine instructions.

When it is necessary to copy data from one accumulator to another, usually one instruction is sufficient.
The accumulator that is being copied from can appear as the memory operand in a MOVE instruction. For
example, to copy the data from register 1 to register 16 we could write:

MOVE 16,1

In this instruction, the arbitrary memory address happens to be one of the accumulators. Data is copied from
the memory operand (register 1) to the accumulator specified (register 16).

2.2.1.4. Instructions in Memory

We now expand on the ideas that programs reside in memory, and the program counter steps through
the sequence of instructions. Repeating the example above in which we wrote a sequence to add two
numbers together, let us display this program as it might appear in memory:

Memory , Central Processor
| | I |
000001 | undefined | | |
| | I |
| | | | Program | |
000454 | MOVE 1,1000 | | | Counter | |
000455 | ADD 1,1234 | | | 000454 | |
000456 | MOVEM 1,1437 | | | |
| | | |
| I I |
001000 | 125 |
I - |
001234 | 432 |
| |
001437 | undefined |
| |

We have arbitrarily selected locations 454, 455, and 456 as the three consecutive locations to hold this
program fragment. Generally speaking, this program fragment could be anywhere in memory. The only
restriction is that, as we shall see, some memory locations are changed by the program; it would be a bad idea
to place this fragment where it might change itself. '

4'l‘his ADD instruction works for numbers stored in the PDP-10’s fixed-point format.

DECSYSTEM-10 HARDWARE OVERVIEW 13

Initially, we shall set the program counter in the central processor to the value 000454. This points to, or
addresses the first instruction in the sequence. If we now tell the computer to start running, it will fetch the
instruction that the PC addresses. This instruction, in location 454, is MOVE 1,1000. The effect of this
instruction is to copy the data contained in location 1000 to the accumulator at location 1. As the MOVE
instruction is being executed, the program counter is incremented to contain 455. The state of memory and
the program counter after the execution of this first instruction is now

Memory Central Processor
| | | |
000001 | 126 |] |
| | I 1
| | | | Program | |
000454 | MOVE 1,1000 | | | Counter | |
000455 | ADD 1,1234 | | | 000455 | |
000456 | MOVEM 11,1437 | | 1 | |
| | | |
| | I |
001000 | 125 |
| |
001234 | 432 |
| |
001437 | undefined |
| |

Note that the contents of location 1 have been changed. Also the program counter now points to 455.

The computer fetches the next instruction, the ADD 1,1234, from location 455. The computer
performs the ADD operation by reading the data in location 1234 and adding it to the data found in location
1. The result, 557, is stored in location 1; the program counter is incremented to 456:

Memory Central Processor
| | | |
000001 | 557 | | |
| | I I
| I | | Program | |
000454 | MOVE 1,1000 | | | Counter | |
000455 | ADD 1,1234 | | | 000456 | |
000456 | MOVEM 11,1437 | 1 | | |
| I | |
| | | |
001000 | 126 |
| _ |
001234 | 432 |
| |
001437 | undefined |
| |

Next, the central processor fetches the instruction at 456. The instruction MOVEM 1, 1437 directs the
CPU to store the contents of location 1 into location 1437; the PC advances to 457. After the execution of
this instruction, the CPU and memory look like this:

14 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Memory Central Processor
| | | |
000001 | 657 | | |
| | I | |
.- | | | | Program | |
000454 | MOVE 1,1000 | | | Counter | |
000455 | ADD 1,1234 |] | 000457 | |
000456 | MOVEM 11,1437 | | 1 | |
I | | 1
| | I I
001000 | 125 |
| I
001234 | 432 |
| |
001437 | 567 |
| |

The program fragment that we have been examining has now been executed. The computer will go on to
fetch whatever instruction is contained in location 457, because 457 is addressed by the program counter. In
the normal scheme of things, location 457 would contain further instructions.

2.2.2. Historical Notes

Historically, there have been various versions of the CPU. The original appeared in 1964 as the PDP-6.
The KA10, which was the first of the PDP-10 processors, was first built in 1968. The KI10 followed the
KA10. Two newer CPUs, the KL10 and the KS10 are being used in current systems. The KS10 appears in
the 2020 model. The KL10 is present in the 1080, 1090, 1091, 2040, 2050 and 2060 configurations. We shall
generally discuss the KIL10 as it appears in the 1090 system.6 The evolution of the DECsystem-10 and
DECSYSTEM-20 is discussed in [BELL].

Because the processors in the DECsystem-10 and DECSYSTEM-20 are identical, programs written for
one system might be expected to run on the other. This is partially true: many DECsystem-10 programs will
run on the DECSYSTEM-20, because the DECsystem-10 has had significant influence on the development of
the DECSYSTEM-20. The DECSYSTEM-20 represents some advances beyond the techniques practiced in
the DECsystem-10; consequently most DECSYSTEM-20 programs will not run on the DECsystem-10.

5We shall discuss how to stop the computer at the end of a program in section 3, page 15.

6’l‘ne 2060 provides an extension of earlier designs to support a larger address space. It is difficult to deal with these extensions in the
body of an introductory work.

FIRST EXAMPLE 15

Chapter 3
First Example

We now show a sample program that actually runs and performs an output operation. These examples
are a very important part of our method of instruction. The first several examples show primarily the
manipulation of characters and the use of the timesharing terminal for input and output. After we present the
entire machine instruction set, we shall go on to consider examples of disk input/output and other types of
calculations.

This example opens small windows through which we can begin to view the three subject areas, the
machine, the assembler, and the operating system. In later examples, we will strive to enlarge these windows,
so that our understanding extends through a larger portion of each of these three subjects.

The program that we are going to construct approximately corresponds to the following Pascal program:

PROGRAM hi(output);

BEGIN

WRITELN('Hi*)

END.
This program merely types “Hi”, a new line, and stops. In some sense, the “program” here consists only of
the portion that says WRITELN('Hi'). But Pascal has rules that require the presence of the line that says
PROGRAM and that require the BEGIN and END. In the same way, our assembly language program has a very
small portion that does the work, and a large amount of other material that is necessary but not directly
connected with our purpose.

In the DECsystem-10 the instruction that types a string on the terminal is called OUTSTR, meaning
OUTput STRing. OUTSTR is not really an instruction in the sense that MOVE and ADD are instructions.
Instead, OUTSTR is actually a subroutine call to TOPS-10 that requests an output operation. These
subroutine calls to TOPS-10 are called MUUO instructions, meaning Monitor Unimplemented User
Operation.

Since we know that our program must include a OUTSTR, we start by creating a program fragment:

6UTSTR

16 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

OUTSTR may be thought of as analogous to the WRITELN statement in Pascal.! The WRITELN statement
requires an argument that describes what string to output. Naturally, the OUTSTR subroutine also requires an
argument that describes the string to output.

Before we go on to further describe the argument that OUTSTR requires, we must examine the nature of
the string. The assembler program (together with the loader) is responsible for building a program in
memory. The program consists of machine instructions, MUUO operations, and data. As we have said, the
assembler knows how to translate mnemonic operation codes into the numeric codes that the CPU executes.
The assembler also includes a variety of functions that assist in making data appear as the appropriate
numbers in memory. These functions are accessed via pseudo-operators that are special commands to the
assembler.

The ASCIZ pseudo-operator can be used to build a text string in memory. To build a string using
ASCIZ, write the word ASCIZ and then some non-blank character that does not appear in the desired string.
Follow that delimiter character with the text of the string, and another occurrence of the delimiter character.
All the characters that appear between the two delimiters will be made into a string. For example to build a
string containing the four characters “H”, “i”, carriage return, and line feed, we write the following fragment
of assembly language:

ASCIZ /Hi

Here we have used the slash character (/) as the delimiter character. Note that the two letters “H” and “i”
follow the first slash. The carriage return and line feed follow the letter “i” and come before the closing
delimiter that appears on the next line. We’ll add this fragment to the part we had before:

OUTSTR

ASCIZ /Hi

At this point, the positioning of OUTSTR before the string is not important; we could reorder these.

Well, now we have the string. But how do we connect this string to the OUTSTR MUUQO? First, we need
to introduce the concept of a label. A label is simply a name we give to an address in memory. Since in
general we don’t know exactly the address in memory where each object has been placed, a label is a symbolic
name by which we can make reference to the various things in memory.

We will tell MACRO to create a label that describes where in memory this string can be found. We do
this by changing the line on which the string is defined to include the name of the label, MESAGE, and a colon

1Actually, it is more similar to WRITE.

FIRST EXAMPLE 17

(:) at the left margin. The colon tells the MACRO assembler to define a label called MESAGE. MESAGE
identifies the computer word that contains the start of the str'mg.2 A label can be up to six letters long; we
selected the name MESAGE as an an obvious corruption of “message”.

QUTSTR

MESAGE: ASCIZ /Hi
/

Next we will change the OUTSTR MUUO to make reference to the label MESAGE. You may say that the
resulting instruction addresses or refers to the label ME SAGE.

OUTSTR MESAGE

MESAGE: ASCIZ /Hi
/

Instructions are executed by the computer one after another. After the OUTSTR the computer will want
something to do next. Since the OUTSTR concludes the work we intended, we tell the computer to stop
running our program by including the EXIT operation. EXIT is another subroutine call to the system; it tells
the system to stop executing this program. If we don’t include an EXIT, the computer will fetch the next
word following the OUTSTR and execute it as an instruction. Since that word may not be an instruction at all,
it would be a bad idea to allow the computer to attempt to execute it. So, under the OUTSTR we add an
EXIT.

6UTSTR MESAGE
EXIT
MESAGE: ASCIZ /Hi

/

Finally, we must tell the computer where to start this program. We do this by defining a label that we
shall name START. Then, we must tell the computer that START is the name of the starting address. The

2Actually, there is only one computer word in this string. In a longer string, this label would refer to the first computer word of the

string.

18 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

assembler pseudo-operator END informs the assembler that the text of the program is complete; the argument
that follows the END pseudo-operator names the starting address:

.

.

START: .
OUTSTR MESAGE
EXIT

MESAGE: ASCIZ /Hi
/

END START

The END pseudo-operator comes after all the text of the program.

We have nearly built an entire program. There are, however, some necessities that have been omitted as
yet. The complete text of the first example appears below. We have undertaken this preliminary explanation
so that by the time you see the full program most parts of it will be familiar; the rest will be explained
following the text of this example program. The program below begins on the line containing TITLE and
ends after the line containing END. We have added comments to this program to remind us of the meaning of

each of the parts. The most frequently used form of a comment begins with a semicolon character “;” and
includes the remainder of the line. ‘

TITLE HI - Program to type "Hi". Example 1
Comment $ Example 1, Program to type "Hi"

The following program types "Hi" and carriage return 1ine feed (CRLF)
on the terminal.

$

START: RESET ;RESET the state of I/0 devices
OUTSTR MESAGE ;Output the message at MESAGE
EXIT ;Stop execution here.

MESAGE: ASCIZ /Hi
/
END START ;End of program, start at START
You can run this program yourself by creating a file that contains everything from the word TITLE
through the end of the line that says END. Be sure to finish the last line with a carriage return character. It
doesn’t matter what file name you choose, but the file type should be MAC. For instance, the file name
EX1.MAC will do fine. After creating this file, the command EXECUTE EX1 will run it.

Although this is a very modest example of assembly language programming, it is worth our attention
because it contains elements that we shall find in all other programs.

3.1. REVIEW OF EXAMPLE 1

Programs written in assembly language consist of instructions for the computer to execute when running
the program, descriptions of initial data for the program, and instructions to the assembler. Every component
of this program has a name and a specific function.

FIRST EXAMPLE 19

o The program contains four pseudo-operators. TITLE, COMMENT, ASCIZ and END.
o The program contains two user-defined labels: START and ME SAGE.

o The program contains three MUUO operations, which are requests made to the operating
system: RESET, OUTSTR, and EXIT.

e The remainder of the program is mostly comments, except for arguments to the
pseudo-operators TITLE, ASCIZ, and END.

3.1.1. Pseudo-Operators

A pseudo-operator, or pseudo-op, is an instruction to the assembler. A pseudo-operator is called an
operator because it appears in the text of the program in the same place that other operators (i.e., machine
instructions) appear. A pseudo-op is not really a machine instruction, even though it looks like one, hence the
prefix pseudo. Pseudo-ops have effect at assembly time: distinction is drawn here between things that the
assembler does while translating a program, in contrast to the computer instructions that are performed when
the program is being run. Things done by the program, rather than by the assembler, are said to be done at
run-time. The four pseudo-ops in example 1 are TITLE, COMMENT, ASCIZ, and END. Each pseudo-op
performs some particular function. The pseudo-ops in this example are described below.

3.1.1.1. TITLE

The pseudo-op TITLE usually appears on the very first line of an assembly language program. TITLE
serves two purposes. First, when the assembler makes a listing of your program, the data supplied in the
remainder of the TITLE statement will appear at the top of each page of the listing.

The second function of TITLE is analogous to the function of the PROGRAM statement in Pascal. TITLE
serves to give a name to program. As MACRO assembles a program, it builds a symbol table that contains the
name and value of each symbol that was defined by the programmer. The program name is also the symbol
table name. The TITLE pseudo-op takes the first six letters of the word following TITLE as the program and
symbol table name. In this program the symbol table name is HI. The symbol table name is used to select
particular symbols when debugging a program with DDT, as we shall demonstrate in section 10, page 93.

3.1.1.2. COMMENT

The word COMMENT begins a multi-line comment. The first non-blank character after the word
COMMENT is taken as a delimiter; in this example the delimiter character is a dollar sign. All text up to and
including the next occurrence of that delimiter character is the body of the comment. The body of the
comment is ignored by the assembler.

A second way to make a comment in the text of the program is by means of a semicolon character (;).
All text that follows a semicolon on a line is ignored by the assembler.

Comments, especially those which begin with a semicolon, should be used liberally throughout a
program. There is no need to use comments to belabor the obvious: the instructions, after all, say what they
are doing. Comments should be used to reveal the author’s intentions and expectations about the state of the
program and what is thought to be happening.

Comments are extremely important. We can all agree that a program is a means of communication from
the programmer to the computer. However, a common and important use of programs is as a means of
communication (or object of discussion) between two people. In fact, the two people, the author and the
reader, may be separated in space or in time. Becausc the program itself is not sufficient to readily convey its

20 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

meaning to the reader, we augment the program with comments to explain what we are doing. To the extent
that the author and the reader are the same person, comments are merely helpful. When the author and
reader are not the same person, comments are necessary to convey the entire meaning effectively.

Although in most circumstances the entire text of a comment is ignored by the assembler, the
programmer should be aware that sometimes the assembler will treat the characters “<” and “>” as significant
even if they appear in comments.>

3.1.1.3. ASCiZ

The ASCIZ pseudo-op tells the assembler to take the text that follows the word ASCIZ and assemble that
text into computer words. The ASCIZ pseudo-op produces a text format that is very common within the
DECsystem-10. In the example, the character “/” following the word ASCIZ is a delimiter; it defines the
extent of the text that is to be assembled by the ASCIZ pseudo-op. ASCIZ will assemble the text that it finds
between the first “/” and the next occurrence of a “/” character. Note that even though the second “/”
occurs on some other line, ASCIZ continues off the end of the first line until it finds the second “/”.

ASCIZ does not require “/” to be the delimiter. The ASCIZ pseudo-op accepts the first non-blank
character following the word ASCIZ as the delimiter; for the purpose of locating the delimiter, the tab
character is considered as equivalent to a blank. ASCIZ processes all text up to the next occurrence of that
delimiter character.

To assemble text means to take binary numbers corresponding to each character and place these numbers
into computer words. Text data is assembled character by character and stored in computer words. When a
word fills up with text, the assembler starts filling another word. The assembler program takes its name from
the function of building entire words by gathering information from several constituent fields. We will
provide a further explanation of the ASCIZ pseudo-op in section 4.8.1, page 33.

3.1.1.4. END
The END pseudo-op signifies the end of the program and it specifies the starting.address. In this case the
label START is designated as the starting address of the program.

In assembly language the starting address of the program need not be the first location loaded. In fact,
seldom is the first thing written actually the starting sequence. This is similar to Pascal and other structured
languages where declarations (of variables and procedures) come before the main program.

In a similar contrary fashion, the END statement does not signify the end of the execution of the program.
END simply flags the end of the text. Execution terminates when the EXIT MUUO is performed.

Some text editors allow the last line of a file to end without having the carriage return and line feed
characters. MACRO insists that every line end with a carriage return and line feed; if these are omitted from
the END statement, MACRO will fail to see the END.

3.1.2. MUUOs

As we have mentioned, our programs can request specific functions from the TOPS-10 operaiing system
by means of a special group of instructions called MUUOs. This program contains three MUUO operations,
RESET, OUTSTR and EXIT. Each of these can be thought of as a subroutine call to the TOPS-10 operating
system. The particular MUUO name specifics which one of the many available functions to perform.

3See the discussion of macros and conditional assembly, section 17, page 173.

FIRST EXAMPLE 21

3.1.2.1. RESET

The RESET MUUO is an appropriate initialization instruction. It terminates any input/output activity
that might have been pending and performs other useful cleanups. RESET should be at or near the start of
every program.

3.1.2.2. EXIT

The EXIT MUUO tells the operating system to stop executing the program. This is the normal way to
signify that a program has reached its end. When TOPS-10 starts running a program, the terminal is made
available to that program for its input and output activity. When the program executes the EXIT function the
operating system stops running it. Then terminal input is directed to the TOPS-10 command processor,
which prompts for further commands.

3.1.2.3. OUTSTR

The OUTSTR MUUO is used to send a string of characters to the terminal. When OUTSTR is executed,
TOPS-10 assumes that the word referred to by the address field of the OUTSTR is the beginning of a string of
ASCII characters in the format that the ASCIZ pseudo-operator builds. TOPS-10 proceeds then to copy the
string from the program and send it to the terminal.

In this program, the address field of the OUTSTR instruction refers to the symbol named MESAGE. The
symbol MESAGE is defined by writing “MESAGE :” as the first thing on the line that we want to call by the
name MESAGE. A symbol that is defined by appearing at the beginning of a line with a colon is called a /abel.
A label is a handle, i.e., a name, by which we can reference the data or the instruction at the line where the
label appears.

A symbol is an entity within the assembler that has a name and a value. One of the important functions
of the assembler is to maintain the symbol table. As we have mentioned, the symbol table is a dictionary of
symbols and their values. When the assembler sees something like “MESAGE : " it enters the name MESAGE in
the symbol table. The value of a symbol such as MESAGE is essentially the address of the first word stored in
memory immediately following the occurrence of the label. Simply stated, the definition of the symbol
ME SAGE is the address of the text on the line where MESAGE appears.

The purpose of keeping the symbol table is to permit the assembler to substitute the correct value for the
symbol whenever the name of the symbol is referenced. Thus, when the assembler is confronted by a line
containing the text OUTSTR MESAGE, it looks up MESAGE in the dictionary and substitutes the value of
symbol. In this example, the symbol MESAGE has the value 143.* When the assembler sees the text OUTSTR
ME SAGE, it substitutes the value 143 for MESAGE resulting in something equivalent to OUTSTR 143. Of
course, MUUO names such as OUTSTR also have numeric values. The entire line OUTSTR MESAGE is
translated to the octal number 051140000143.

Even though a reference to the label MESAGE appears before the definition of the label, MACRO can
make the proper substitution (of 143 for MESAGE) because MACRO really reads the program twice. On the
first reading, it assigns values to symbols. On the second reading, MACRO makes the appropriate
substitutions of values for symbols. This kind of operation, naturally enough, is called two-pass assembly.

The power of the assembler is that it frees us from having to perform rote translations (e.g., of OUTSTR to
the number 051140000000). Another benefit is that when a label moves, that is, when the program
changes so that the symbol ME SAGE takes on a new value, say 151, the assembler will change every reference

4Actually, the value 143 results from the action of the loader in addition to the action of the assembler.

22 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

we make to MESAGE to reflect the new value. Thus, we are freed from a number of dull and tiresome
bookkeeping chores.

In the MACRO assembler, symbols are limited to six characters (only the first six characters are
significant). The characters may be letters or digits, but the first character must be a letter. Included among
the letters are the three characters “.”, “%”, and “$”. Lower-case and upper-case letters are equivalent.

Legal Symbols I1legal Symbols
MESAGE 1MORE (starts with a digit)
.EXAM1 MARK!TWAIN (has an illegal character)

mesages (this is equivalent to MESAGE)

3.2. PROGRAMS AND MEMORY

Your program will occupy some portion of the virtual address space of the computer. Generally
speaking, all locations are equivalent, except for a small number of places that are reserved for special
purposes. Locations 0 to 17 are the accumulators, and may be used as such, or as memory locations,
interchangeably, at your convenience. Locations 40 and 41 are used by the hardware as the LUUO trap
locations (discussed in section 18, page 193).

In TOPS-10, the locations in the range 20 to 137 are called the Job Data Area; these locations are used
by the loader program and by TOPS-10 itself to communicate some things to the program. Except to
accomplish specific functions, it’s generally a good idea to leave these locations alone. By default the loader
will start loading your program at location 140.

The assembler together with the loader (remember the loader is biased towards loading programs starting
at 140) produces a series of computer words loaded into memory. These computer words are the machine
representation of the program. The computer words corresponding to this example are displayed in figure
3-L

Address Contents Meaning

140 047000000000 ., RESET '

i41 051140000143 OUTSTR MESAGE (MESAGE is 143)
142 047000000012. EXIT

143 443221505000 "H", "i", carriage return

line-feed, and null.

Figure 3-1: Machine Representation of the Program

Programs are primarily an instrument of communication. By programs we communicate our instructions
td the computer, and our inteniiqns to other people. Although the computer can understand the octal listed
above better than it can understand the MACRO program, we use MACRO because it is a convenient
bookkeeping tool. MACRO increases our productivity, and it provides a sensible means for communicating
programs émong people who understand it.

3.3. EXERCISE - SELF-IDENTIFICATION

Write a program similar to the one shown in figure 3-2. Put the text of the program into a file called
HW1.MAC. Execute the program by means of the TOPS-10 command EXECUTE HW1.MAC This command
will run MACRO to translate your program into a binary relocatable file named HW1.REL. The REL file will
be loaded into memory by LINK, and the program will be started.

FIRST EXAMPLE | 23

When you are satisfied with the results, use the following two TOPS-10 commands to produce a
cross-reference listing:

.COMPILE/COMPILE/CREF HW1.MAC
.CREF

The /CREF switch in the COMPILE command causes Macro to write the file HW1.CRF; the CRF file
contains a listing of your program that is augmented with special control characters for the CREF program.

The CREF command causes the CREF program to translate the CRF file into a readable cross-reference
listing. The resulting file is sent to the printer by CREF; the CRF file is deleted. Note that no changes to the
source file have been made.

Examine the cross-reference listing carefully. Turn it in. Although the cross-reference listing will not be
discussed until section 9.2, page 85, it will still be useful for you to study it.

TITLE HW1 Self-Identification

START: RESET
OUTSTR MESAGE
EXIT

MESAGE: ASCIZ /
My name is Ralph Gorin
I work at Stanford University
If I were a student in this course,
I would mention something memorable about myself.
I am studying assembly language because it is fascinating.
/ P
END START .

Figure 3-2: Sample Homework 1
Hints:

e After you get this to run, you must use the COMPILE/COMPILE/CREF command to force
reassembly with cross-reference output. If you don’t include the /COMPILE switch, the
existence of an up-to-date REL file will inhibit the reassembly.

o If you forget the CREF command, the listing output will contain a large assortment of weird
characters instead of a cross-reference. The /CREF switch causes MACRO to make a listing
including these strange characters; the extra characters are used by the CREF program.

o If you leave off the closing slash (/) in the argument to the ASCIZ statement, the assembler will
“eat” the rest of the program, including the END statement, and then complain that the END is
missing.

e If you leave off the carriage return and line feed that terminate the line where END appears,
MACRO will also complain that the END is missing.

e For more advice about what to avoid see appendix E, page 373.

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

REPRESENTATION OF DATA 25

Chapter 4
Representation of Data

The computer’s memory contains both data to be manipulated and programs stored as binary patterns.
These binary patterns are sequences of ones and zeros, grouped into units called words. These patterns are
intended to represent data that is of interest to us. Even when information is not numeric (this text for
example) it is stored in the computer as binary patterns.

The computer cannot distinguish between a number representing ar, 3.14159265..., an instruction to itself,
or part of a Shakespearian sonnet; all would be stored as binary patterns. Any distinction that is drawn
between these items is based on the interpretation of these patterns by a program.

4.1. REPRESENTATIONS ~

A representation is a convention that relates marks on paper (or marks inside the computer) to numbers
or other objects. A number such as one, two, or sixty-seven, has an existence that is independent of the
characters that we use when we write the number. The characters that we use to write a number, e.g., 1, 2, or
67, are simply a conventional representation of the number. Most people are aware of at least one other
convention for representing numbers. In Roman numerals we would represent these same numbers as I, II,
and LXVIL

The computer represents numbers using the binary or base two system. Binary numbers are at the heart
of the representation of data in the computer; when the computer does arithmetic, it manipulates numbers in
accordance with the rules of binary arithmetic. What this means to us is that we must become familiar with a
new representation for numbers; we must develop an understanding of what binary numbers are and how to
manipulate them. We start with binary integers.

4.2. BINARY INTEGERS

In the familiar decimal number system, a number is written as a pattern of digits. By convention the
column containing the rightmost digit has weight 1; the next column to the left has weight 10, the next has
weight 100, etc. Each column has a weight that is a power of ten. (In the rightmost column, the weight 1
represents 10°%) Each column holds one digit that can take any one of ten values (0 to 9).

The binary number system has a similar structure, except column weights are all powers of two, instead
of powers of ten. Each column holds one binary digit (bit); a bit can range over only two values, 0 and 1.
The column containing the rightmost bit has weight 1. Moving to the left we find columns with weights 2, 4,
8, 16, etc. '

26 : DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

In the decimal number system, a number written as 123 is interpreted as one hundred plus two tens plus
three ones. That is, the column weight is muitiplied by the digit that appears in the column; the sum of these
products is the intended number.

In the binary number system, the same interpretation applies. However, each column weight is a power
of two, instead of a power of ten. The number that is written as 101 in the binary system is interpreted as
being one four plus zero twos plus one one; the binary pattern 101 corresponds to the number five.

In a computer, binary numbers are used to represent the contents of a computer word. In a computer
with a five-bit word length, binary numbers would be written as a pattern of ones and zeros in the grid that is
shown:

-
~N
-

Column Weight

E -3
w
-
o

Power of two

——— —— ———
—————— ——
——— — —————t———
N
——— — —— — ——
N
————— — —————

By carefully selecting which bits are ones and which are zeroes, any number in the range from 0 to 31
can be formed. Some examples are

Column Weight |16 | 8} 4| 2| 1]
| | | | | |
Power of two | 41 3] 2] 1} 0]
l2 {2 |2 |2 |2 |
| | | | | |
| | | | | |
| of of of of o= 0
| I | | | |
| | | | | |
| of of o o} 1]= 1
| | | | | |
| | | | | |
| o} of of 1] 0} = 2
| | | | | |
| | | | o
| o} of o} 1} 1] -= 3 = 2+1
| | | | | |
| | | | | |
| o] o} 1} 0] 1]-= 5 = 4+1
P Y R U B
| | | | | |
| o} 1] 1] o0} 1] = 13 = 8+4+1
| 1 | | | |
I | | | |
| 11 1} 1} o O] = 28 = 16+8+4
| | | | | |
| | | | | |
] 11 1] 1} 1} t1}]= 31 = 16+8+4+2+1
| | I | | |

In a machine with a word length greater than five bits, these numbers would be represented with the
same patterns, but extra zeros would be added to the left of these binary digits.

REPRESENTATION OF DATA 27

4.3. ARITHMETIC IN THE BINARY SYSTEM

Some authors have called the binary system lazy man’s arithmetic; because the rules for doing arithmetic
are so very simple:

0+0 = 0 0+1 = 1
1+0 = 1 1+1 = 10

These authors notwithstanding, using the binary system is not really any shortcut. Although each binary digit
is easy to deal with, binary numbers are longer than their decimal equivalents.

Some examples of binary addition follow. You should make certain that you understand these and
understand how the results follow from the four rules stated above.

10 11 101 1110 1101 10000
+ 1 +1 + 11 + 101 +1011 +10000
11 100 1000 10011 11000 100000

If our machine were limited to five bits, we could not compute the sum 10000+10000 because the
correct result, 100000, does not fit into five bits.

4.4. REPRESENTING NEGATIVE NUMBERS

Before we attempt to discuss the representation of negative numbers in the binary system, we shall
investigate some representations in the more familiar decimal number system. The first representation that
comes to mind is called sign-magnitude, in which a negative number has the same representation as a positive
one except for some mark that signifies the negative sign. Our usual way of writing negative numbers, e.g.,
“-6” for negative six, is an example of sign-magnitude notation. Some computers use sign-magnitude
notation for numbers; in binary the sign is usually represented as one bit. The PDP-10 uses a representation
called mwo’s complement for negative numbers. Before we venture to explain two’s complement notation, we
will examine an analogous representation, fen’s complement, in the decimal number system.

4.4.1. Odometer Arithmetic and Ten’s Complement Notation

When desk calculators contained gears instead of integrated circuits, some calculators had the interesting
property that if you were to subtract one from zero, the result would be a string of nines. Another device that
exhibits similar behavior is the odometer - the mileage indicator - found in automobiles. If it is run
backwards, the number indicated after zero is a series of nines.! Another way to describe this is that when the
odometer indicates 999

and we add one to it (by driving one more mile) the result is

1Feder:«n law forbids actual experimentation.

28 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

| I T R

fojo]o]
RS PRSI PO

More compactly we could write 999 + 1 = 000. Some people find this result disturbing because it

appears to violate the commonly held practices of arithmetic. Perhaps we can remedy this discomfort by

declaring that in our system of “odometer arithmetic” the pattern of characters “999” represents negative

one.

Another way to think of this is to picture the number line on which the numbers are written and compare
it to the “odometer line”:

Number e Lt B LR By By B B B R
Line -4 -3 -2 -1 0 1 2 3 4
Odometer e D B b Bt bt el bl Bl LS
Line 996 997 998 999 000 001 002 003 004

This may seem like a strange way to write negative numbers, but it makes some sense: suppose we add six to
the representation of negative four. Negative four is represented by 996; adding six (006) results in 002,
representing two. For another example, let us add negative three to two. Adding 997 and 002 results in 999
which represents negative one. These examples suggest that there is some interpretation of this representation
that makes sense in familiar terms.

There are one thousand different numbers represented on this odometer as it moves through all the states
between 000 and 999. We can partition these one thousand different numbers into two groups. The
non-negative numbers are represented by the” figures 000 through 499. The negative numbers are
represented by the figures 500 through 999. There are five hundred different numbers in each group.

A more complete comparison of the number line and the “odometer line” appears below:

Number R B Bl BT TREG] Rt EEESY EEE EErr R Py PR ERO
Line -501 -500 -499 -2 -1 0 1 2 438 499 500
Odometer [====]= «en m]mmmm]mmmm | mmmm | mmem = L ==

Line 500 501 998 999 000 001 002 498 499

The number line is infinite in extent, containing all numbers. The “odometer line” that we have defined is
finite, including representations for one thousand numbers. These representations have been mapped onto
the number line. Note that there is no “odometer line” representation for any number larger than four
hundred ninety-nine, nor is there any representation for numbers smaller than negative five hundred.

The figures 999 represent the ten’s complement of 001. To compute the ten’s complement of any of the
figures in this odometer arithmetic system, perform the following steps:

o First, form the nine’s complement by subtracting the original number from 999.
e Then, to the nine’s complement, add 1.

For example, the ten’s complement of 123 is formed by subtracting 123 from 999 (the result is 876)
and then adding 1. The final result is 877. The ten’s complement of 877 is computed by subtracting 877
from 999 (122) and then adding 1. The result is 123. It is reassuring to note that taking the ten’s
complement twice restores the original value, preserving the identity -(-k) = k.

Now, you might ask, “Why not describe this process as simply a subtraction from 1000?” Well, that is
also a correct way of looking at ten’s complement arithmetic. The reason that we choose to describe this as a
subtraction from 999 and the addition of 1 is to make the process more closely analogous to the two’s

REPRESENTATION OF DATA 29

complement arithmetic that we are about to describe. From a machine arithmetic view, the subtraction from
999 is easy because it can be accomplished without borrowing; 999 is a more tractable minuend than 1000.

It might be noted that the figures 500 represent negative five hundred, a number for which there is no
positive counterpart. This must be true because there are an equal number of non-negative and negative
numbers. Since the non-negative numbers include zero, there must be one fewer positive numbers than there
are negative numbers. This leads to the inescapable fact that there is a negative number that is one larger in
magnitude than the largest positive number.

We hope that you are now somewhat fortified for the discussion of two’s complement arithmetic that
follows. There is a strong similarity between the working of two’s complement arithmetic and this “odometer
arithmetic” that we have used to demonstrate ten’s complement.

4.4.2. Two’s Complement Arithmetic

Using some specific number of bits, say, “n” bits, it is possible to represent 2" different numbers.
Instead of using these 2" different patterns to represent non-negative numbers in the range from 0 to 2"-1,
we can allocate the 2" patterns among both the positive and negative numbers. The number of bits, n, used
in the representation of numbers is often called the length, or the word length of the representation.

Let us define -1 to be the number which when added to 1 results in 0. When we are using six-bit binary
arithmetic, adding the number 111111 to 1 (i.e., 000001) results in 0. Thus, we have some reason to adopt
111111 as the representation of -1 in this six-bit system. By extending this idea to represent the negatives of
other numbers, we can define the two’s complgment system of representation.

In two’s complement representation, it is relatively easy to convert from a positive number to a negative
one and vice versa. To find the two’s complement negation of a number, first subtract the original number
from a number composed of all ones.? The result of this subtraction is called the one’s complement of the
original number. To form the two’s complement, add 1 to the one’s complement of the original number. In
the computer, the operation of subtracting the original number from all ones (ie., from 111111) is
accomplished by changing all the zeros in the original number to ones, and all the ones to zeros.

The examples below illustrate the negation of six-bit numbers by conversion to their two’s complement
form; the results are negated again to demonstrate the identity -(-k) = k:

original one’s two's one's two's
number complement complement complement complement
000001 ==> 111110 ==> 111111 ==> 000000 ==> 000001
011111 ==> 100000 ==> 100001 ==> 011110 ==> 011111
100011 ==> 011100 ==»> 011101 ==> 100010 ==> 100011
000000 ==> 111111 ==> (000000 ==> 111111 ==> 000000
100000 ==> 011111 ==> 100000 ==> 011111 ==»> 100000

In these examples, adding 1 to 111111 produces 000000 instead of 1000000, because the length of
the representations is limited to six bits. The carry out of the leftmost bit is discarded because there is no
place to put it. In this case, despite discarding the carry, the result is correct (in terms of two’s complement
arithmetic).

2l'his operation is the analog of subtracting a decimal number from 999.

30 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Another way of thinking of two’s complement arithmetic is that the weight of the leftmost bit has been
negated. The leftmost bit is sometimes called the sign bit. In all non-negative numbers the sign bit is zero. In
all negative numbers it is one. An equal number of non-negative and negative numbers are representable.
Since 0 is included among the non-negative numbers, the most negative number is one larger in magnitude
than the largest positive number.

On a computer that uses the two’s complement system in a six-bit word, we could write binary patterns in
the grid depicted below:

Column | | | | | | |
Weights | =32 | 16| 8| 4] 2| 1]

| | | | | | |

| | | | | | |

| oy of of o0} o0} O0}= 0

| | | | | | |

| | | | | | |

| o} o0} 1| of o} 1]= 9 =8+

| | | | | | |

| | | | | | |

| 1] o] o] o] o] o0]-=-32

| | | | | | |

| | | | | | |

| ¢t of o} o} O} 1]=~31 =-32+41

| | | | | | |

| | | | I | | ,

I 11 1] 1] 1] 1] 1] = -1 = -32+16+8+4+2+1

| | | i | | |

There are several other systems for representing negative numbers in binary (including sign-magnitude
and one’s complement). The two’s complement system is advantageous because the normal rules of unsigned
binary arithmetic apply without change to the addition of numbers in the two’s complement system. The
operation of subtraction, A-B is simply computed as the addition of A+{-B).3

In a positive number, any number of zeros can be added at the left end of the number without changing
the value of the number. In a negative number it is the ones at the left end of the word that are
non-significant.

4.4.3. Overflow in Two’s Complement

In some cases the carry out of the leftmost bit is significant. In such cases, the computer thinks that you
have made an error and it will so inform you. (Such errors are actually rather common, and in many cases you
might choose to ignore them.) One instance shown in the examples above where the carry significs an error is
the case of taking the two’s complement of 100000. Taking the one’s complement of this number produces
011111. Adding 1 to form the two’s complement yields 100000, which is not the correct result. In fact,
there cannot be any correct result since the original number, 100000, represents -32, and +32 is not
representable in the word length we have chosen. The way that the computer detects an error of this kind is
by comparing the carry out of the leftmost bit to the carry into the leftmost bit. If these carries are the same
(both 0 or both 1) then no error has occurred. If the carries differ, the result is wrong. In the example of
taking the two’s complement of 100000, the carry out of the leftmost bit was 0 but the carry in was 1.

In a computer implementation of the two’s complement system, you must remember that the resulting
number is limited to a fixed number of bits. Errors, i.c., the calculation of numbers that are not representable,

3"l‘echnic:ally, this is computed by A + the one’s complement of 8 + 1, without forming -B explicitly.

REPRESENTATION OF DATA 31

are signified by the carry into the leftmost bit being different from the carry out of that bit. This kind of error
is called an overflow; an overflow generally means that the result of some computation is not a representable
number.

. Some example additions may help to clarify this:

000001 (1) 000001 (1) 110011 (-13) 010000 (16) 110011 (-13)
+111111 (-1) +110001 (-15) +110000 (-16) +010011 (19) +101100 (-20)
000000 0 110010 -14 100011 -29 100011 -29 011111 31
Carry in: 1 0 1 1 0
Carry out: 1 0 1 0 1
(error) (error)

In the PDP-10 the word length for arithmetic operations is (usually) thirty-six bits. The leftmost bit is
called bit number 0. The next bit to the right is bit number 1. The carry out of bit number 0 is called
Carry0; the carry out of bit 1 (into bit 0) is called Carryl. The state of Carry0 and Carryl determine whether
the CPU thinks that there has been an overflow. The state of these carries is saved, and can be examined by
some of the PDP-10 instructions.

4.5. OCTALNOTATION

Because binary numbers are so unwieldy - they are more than three times longer than the decimal
numbers that we are used to - people adopt a more compact notation for dealing with these quantities. Two
such notations are popular, octal and hexadecimal. Octal is based on grouping three bits together into an
octal digit. Hexadecimal takes four bits at a time. Traditionally, people who program the PDP-10 have used
octal notation; hexadecimal is popular on some other computer systems. These notations allow us to write
numbers more compactly without concealing the underlying structure of the binary numbers. The selection
of either base eight or base sixteen is made because of the ease of converting between these numbers and
binary and vice versa.

The three bits that form each octal digit can represent any one of eight states. These eight states are
represented by the digits 0, 1, 2, 3, 4, 5, 6, and 7. The rightmost column of digits has weight 1. Moving left,
the column weights are multiplied by eight at each column. Thus, the second column has weight 8, the third
has weight 64, etc. '

Some examples of decimal, octal and binary numbers are presented in table 4-1.

4.6. CONVERTING BETWEEN NUMBER SYSTEMS

There is a definite algorithm that we can use to convert from one number system to another. In the
number system of the original number, we divide the given number by the base of the target number system.
Divide the resulting quotient, until the quotient becomes zero. The remainders that are calculated during this
process become the digits of the result.

For example, we shall convert the decimal number 123 to octal. We begin by dividing 123 by 8. The
quotient is 15 and the remainder is 3. Next we divide the quotient, 15, by 8 again. The new quotient is 1;
the remainder is 7. Finally, we divide 1 by 8. The quotient is 0 and the remainder is 1. Since the quotient is
now 0 we can stop dividing. The remainders that were calculated, 3, 7, and 1, are the digits of the octal
result, in reverse order. Thus, we have computed that the digits 173 are the octal representation of the
decimal number 123,

32 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Decimal Octal Binary
0 0]
1 1 1
2 2 10
5 5 101
7 7 111
8 10 1000
10 12 1010
13 15 1101
25 31 11001
31 37 11111
64 100 1000000
100 144 1100100
128 200 10000000
512 1000 1000000000
1000 1760 1111101000
1024 2000 10000000000
-1 ... 71777 ..o01111117111111
-10 ...7766 ...111111110110
-32 ...7740 ...111111100000

Table 4-1: Decimal, Octal and Binary Equivalents

15 1 _0 «third quotient
8)123 «original 8)15 «first 8)1 esecond quotient
-8 number -8 quotient -0
43 7 «second 1 «third remainder
-40 remainder
3 «first
remainder o

We should verify this result. In octal, 173 means 1*64 + 7%*8 + 3*1, which is 64+56+3 or 123
decimal.

We can of course convert octal 173 back to decimal in the same way as before. The catch is that since
173 is already in octal, we must do all our arithmetic in octal. The desired new base, decimal 10 is octal 12.
Follow these steps closely:

14 1 _0 «third quotient

12)173 «original 12)14 «first 12)1 esecond
-12 number =~12 quotient -0 quotient
53 2 esecond 1 ethird
-50 remainder remainder

3 «first
remainder

The remainders, in reverse order, represent the digits of the corresponding decimal number, 123.

There are two things about this example that might be disturbing. The first is the multiplication of
4%12 = 50. Inoctal 4*10 is 40, and 4*2 is written as 10. The sum, of course, must be 50 in octal. The
second difficulty is that a remainder of octal 10 or 11 may result during this conversion process. These
numbers represent the familiar digits 8 and 9 of the decimal number system. So, if a remainder appears as 10
or 11, write the corresponding decimal result as the digit 8 or 9, respectively.

The reason that this process works is fairly simple. Consider again the problem of converting decimal
123 to octal. In octal the representation of the number is some series of digits, say, X, Y, Z. The octal number
XYZ can be decomposed into XY0+Z. The octal number XYO0 represents a multiple of 8, and Z must be some
number between 0 and 7. Since XY *8+Z must equal decimal 123, the digits XY must represent the quotient
of 123 divided by 8 and Z must be the remainder. So, when we divide 123 by 8 the remainder is the least
significant digit of the octal result; the other digits of the result can be formed from the quotient.

REPRESENTATION OF DATA 33

4.7. OCTAL NUMBERS IN THE PDP-10

Since octal notation groups three binary digits into one octal digit, the thirty-six bits of a PDP-10 word
may be written as twelve octal digits. For example, the octal value 254000000145 might represent the
contents of one word.

Often, to make reading the number easier, we write two commas to separate the number into a left half
(bits 0: 17) and a right half (bits 18:35). The example value in the previous paragraph might be written as
254000, , 145; note that the leading zeros in the right half have been omitted in this representation.

4.8. THE ASCII CODE

We have remarked at length that everything inside the computer is a number. In order to store text or
characters within the computer, it is necessary to translate each letter or symbol into a number. In principle,
any translation would do, but by convention, the PDP-10 has adopted one standard representation for text.

The ASCII code (American Standard Code for Information Interchange) is used in the DECsystem-10
for communicating between the computer and its peripheral devices such as terminals and printers. This
same code is also used for intermediate storage of data files on the disk.

The version of the ASCII code that we use stores each character in seven bits. Seven bits allow for 123
possible characters. About ninety-five of these characters actually print things. The remainder are control
characters, some of which have special functions when sent to terminals or other devices. The line feed
character, for example, has the function of advancing the paper (or terminal screen) to make a fresh line
available for printing.

In table 4-2 we present the 7-bit ASCII code used in the DECsystem-10. Interpret this table of ASCII
characters by adding the row label and the column heading corresponding to a given character. For example,
the character D appears in column 4 at row 100, thus 104 is the code for D.

The assembler knows quite a lot about the ASCII code, so it usually isn’t necessary to memorize the
ASCII character set. Nevertheless, it is a good idea to remember some of the special characters, such as
carriage return, line feed, horizontal tab, and space. Note also that the codes for the digits are a compact set.
That is, the code for the character 9 is nine (octal 11) greater than the code for the character 0. We shall have
occasion to make use of this fact. The upper-case alphabet is also compact, and the lower-case letters are
related to the upper-case letters in a straightforward mapping: we add octal 40 to the code for an upper-case
letter to obtain the corresponding lower-case character.

The characters with values smaller than 40 do not correspond to graphic symbols. Generally these
characters are called control characters. Terminals, printers, and programs may respond in various ways to
control characters. For example, carriage return, octal 16, usually moves a print head or terminal cursor to
the left margin; line feed, octal 12, advances the paper or the video screen to the next line.

Programs may use control characters for special purposes. As terminal input, CTRL/C, octal 3, summons
~theEXECGprogram; typing CTRL /T causes theEXEC to print a line of program and system status.

4.8.1. The ASCIl and ASCIZ Pseudo-Operators

Now that we know something of the ASCII code and octal numbers, we can discuss the function of the
ASCII and ASCIZ pscudo operators.

Consider the string of text: This is ASCII. Normally, when the assembler sees text such as This in a

34 , DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

| | | | | | | | |
{ ¢ | 1 | 2 | 3 | 4| &6 | &6 | 7 |
| | | | | | | | |
- | | | | | |] | NUL Null Character
000 | NUL | I 1 | | I | BEL | BEL Bell
| | | | | | | | I
| | | | | | | | | BS Backspace
010 | BS | HT | LF |} VT | FF | CR | | | HT Horizontal Tab
| | | | | | | | | LF Line Feed
| | |] I | | | | VT Vertical Tab
020 | | | | | | | | | FF Form Feed
| | | | |] | | | CR Carriage Return
| | | | | | | | |
030 | I | | ESC | | | | | ESC Escape
| | | | | | | | |
| | | | | I | | |
040 | SP | ! | " | # | $ | % | & | * | SP Space
| | | | | | i | |
| | | | | | | | |
os0 | (|)Yy I =1 + 1 . 1 -1 17 |
| | | | | | | | |
| | | | | | | | |
060y 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| | | | | | | | I
| | | | | | | | |
070] 8 | 8 | I+ L <1 =1 > 1 7|
| | | | | | | | |
| | | | | | | | |
00| @ | A | B | C | D | E | F | G |
| | | | | | | | |
| | | | | | | | |
110 | H | I | 3 | K | L | M | N | O |
| | | | | | | | |
| | | | | | | | |
120 P | Q@ | R | s |} T | U | Vv | w |
| | | | | | | | |
| | | | | | i | |
1o} x |y [z LN T oA -
| | | | | | | | |
. | | i | | | | | |
40| * | a |.b | ¢ | d | e | f | g |
| | | | | | | | |
| | | | | | | | |
150 | h | i | 31 k| vV | m | an | o |
| | | | 1 | | | [
| | | | | | | | |
160 | p | g9 | r | s | t | u | v | w |
| | | | | | | | |
| | | | | | | | |
170} x |y V 2z v { }V 1 1 3} | ~ | DEL | DEL Delete or Rubout
| | | | | | | | |

Table 4-2: The ASCII Character Set

program, it attempts to look up the definition of the symbol THIS in its symbol table. To signify that the text
This is ASCII is meant as a string, we surround it with delimiters and use some pseudo-op, such as ASCII,
that specifies how to translate the text into the binary representation for the computer.

When the assembler sees the ASCII pseudo-op, in a context such as ASCII/This is ASCII/, it
accepts the text within the delimiters as characters to translate into an ASCII text string. The character “T”
becomes 124, the character “h” becomes 150, etc. As it translates characters according to the ASCII code,

REPRESENTATION OF DATA 35

the assembler stuffs the resulting numbers into sequential fields and sequential words. Each of these numbers
is seven bits wide; the assembler places the numbers corresponding to five characters into each word:

Text Octal and Binary Characters 36-Bit Octal
| |

This | 124 150 151 163 040 |
| 1010100 1101000 1101001 1110011 0100000 0 | 523215171500
| |
| |

is AS | 151 163 040 101 123 |
| 1101001 1110011 0100000 1000001 1010011 0 | 647464040646
I |
I |

CII | 103 111 111 000 000 |
| 1000011 1001001 1001001 0000000 0000000 O | 416231100000
| I

When the assembler runs out of text in the ASCI I pseudo-op, it fills the remainder of the final word with
zero bytes (called nulls). Since five 7-bit characters don’t fill the entire word, bit 35 is always left as zero.

If the text given to the ASCII pseudo-op includes precisely some multiple of five characters, no null
characters will be added to the final word. If a null character is desired, the ASCIZ pseudo-op guarantees at
least one null following the text of the string. The text format generated by the ASCIZ pseudo-op is
frequently used to communicate with the operating system and peripheral devices; the null byte (guaranteed
by the ASCIZ pseudo-op) signifies the end of the string.

When a system call such as QUTSTR is executed, the computer must have a means to determine the limit
of the text string. In some other computer sffstems, in addition to requiring the address of a string, a system
call such as OUTSTR might require the length of the string as an explicit argument. We find that it is easy to
use OUTSTR since it figures out the length by itself. But there is one disadvantage: a routine such as OUTSTR
cannot be used to send the null character to a terminal. Usually this isn’t really a problem; most terminals
ignore any nulls that are sent to them.

The byte instructions that we discuss in section 11, page 107 facilitate the manipulation of text that has
been packed into words in this way.

4.9. EXERCISES

4.9.1. Decimal to Binary Conversion
Convert the following decimal numbers to the binary number system:

27 39 144 255 768
299 1020 1599 2060 4201

4.9.2. Decimal to Two’s Complement Conversion
Convert the following decimal numbers into the appropriate two’s complement form. Assume the word
length is twelve bits. Are any of these numbers unrepresentable in twelve bits?

-28 -43 -159 -206 -876
-1014 -1025 -1604 -2067 ~4201

36 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

4.9.3. Binary to Octal Conversion
Express the results from the two previous exercises as octal numbers.

4.9.4. ASCIll Text Assembly

By hand, assemble the following examples into 36-bit PDP-10 words. Show the results in binary and in
octal.

ASCII /What?/

ASCIZ /MWhich/

ASCIZ /A stitch in time saves nine/

ASCIZ /A wise man doesn’'t play leapfrog with a unicorn/

PDP-10 INSTRUCTIONS 37

Chapter 5
PDP-10 Instructions

In this section we discuss several fundamentals of PDP-10 assembly language programming. The three
important ideas in this section are:

e what instructions look like in memory,
e what to write to make the assembler do what you want, and
o the meaning of the various parts of an instruction.

These ideas apply to all computer instructions that you write; it is extremely important that you

understand these three ideas and the relationship between them.
=z

-

5.1. INSTRUCTION FORMAT IN MEMORY

Every machine instruction occupies precisely one word of memory. There are two formats for
instructions; however, one of these formats is illegal in user mode, so you aren’t expected to have much
occasion to use it. These two formats are shown in figure 5-1.

000000000 0111 1 1111 112222222222333333
012345678 9012 3 4567 890123456789012345

| | I 1 | |
| opP | AC I} X | Y | Normal Instruction

000 0000000 111 1 1111 112222222222333333
012 3456789 012 3 4567 890123456789012346

| | :
X | Y | Input/Output Instruction

| | |
|111] DEV |IOF|I

|
|
1 | I
OP = operation code Bits 0:8
AC = accumulator field Bits 9:12
I = indirect bit Bit 13
X = index field Bits 14:17
Y = address field Bits 18:356
DEV = Input/Output device number Bits 3:9 of I/0 instructions
IOF = Input/Output function code Bits 10:12 of I/0 instructions

Figure 5-1: PDP-10 Instruction Formats

38 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Recall that we number the bits of a word from left to right, from 0 to decimal 35. Instructions are stored
as words in the PDP-10. Each instruction word is logically subdivided into areas, called fields, that have
names. Except in privileged programs, Input/Output instructions are illegal. Thus, you are not expected to
have occasion to write any Input/Output instructions soon. For completeness, we mention that the
Input/Output instructions differ from the normal instruction format.!

5.2. HOW THE ASSEMBLER TRANSLATES INSTRUCTIONS

In assembly language, we write one instruction on a line. Each instruction line in assembly language is
translated to one machine instruction. The assembler follows very simple rules for performing this
translation. Essentially, a one-to-one correspondence exists between things written in assembly language and
instruction fields that are assembled.

For the moment, we are concentrating on how the assembler translates what we write into fields of
machine instructions as they are stored in memory. The meaning of these fields, particularly the significance
of the index register and indirect bit in the calculation of an effective address will be discussed in section 5.3,
page 41.

A PDP-10 instruction (other than an Input/Output instruction) includes the following fields:

o the operation code,

e an accumulator field,

e an indirect bit,

e an index register field, and
e an address field.

In assembly language we write each instruction in the following sequence. If any field is omitted, that
field will be assembled as zero. However, when we make use of an operand whose value is 0, we write the 0
explicitly.

o First, we write the mnemonic operation name. For example, we have talked of the MOVE
operation. The assembler translates the operation name to a number and stores that number in
the OP field (bits 0: 8) of the instruction word that is being assembled. Usually the mnemonic
operation name is indented by one tab; this leaves room at the left margin for labels. Follow
the operation name with a space or tab character.

o Following the operation name, if an accumulator is needed, write the accumulator number (or a
symbolic name for the accumulator). Write a comma after the accumulator specification. This
number (or the number corresponding to the symbolic name) is placed in the AC field (bits
9:12) of the word being assembled. If no accumulator specification is needed in an
instruction, don’t write anything for the accumulator field; zero will be assembled.

o The next fields specify the address. The address portion defines the effective address (see
section 5.3, page 41) of the instruction. The I, X, and Y fields that are present in every
instruction contribute to the effective address. Although the assembler is quite flexible and
permits a departure from the format described below, the I, X, and Y fields are conventionally
written in the following sequence:

1In the KS10 (2020) no Input/Output instructions exist as such.

PDP-10 INSTRUCTIONS

o When an at-sign character (@) is present in the address portion of the instruction, the I
bit will be set to 1, signifying indirect addressing. Otherwise, the I bit will be 0.

oThe Y field is set from the number, symbolic name, or expression representing the

address portion.

o If a non-zero X field (index register) is wanted, the desired index register name or

number is placed in parentheses following the address field.

o Finally, a comment can be written on any instruction line. Comments form a very important
part of every assembly language program. In MACRO, a semicolon (in most circumstances)

makes the remainder of the line a comment.

Some of the general forms in which we write instructions are

opP ;A11 unspecified fields are zero

op Y ;AC, I, and X are zero

OP AC, ;I, X, and Y are zero

OP AC,Y ;The most usual. I and X are zero

OP AC,Y(X) ;I is zero

OP AC,QY ;Including "@" sets the I bit; X is zero
OP AC,B8Y(X) ;:This is the most complex form

Some specific examples appear below. The assembler generally is free-format.

39

Spacing and

capitalization are not important. Only one instruction is written per line. By convention, instructions are
usually indented by one tab to leave room at the left margin for labels. This improves readability. Some
people leave a tab after the operation code; others leave a space. In the examples, unless otherwise stated or

implied from context, all numbers (except bit numbers) are written in octal notation.
Our first example is quite simple:

JFCL

JFCL is the operation code; JFCL is translated to octal 255. All other fields are zero. The assembler will

build the following binary pattern:

000000000 0111 1 1111 112222222225333333.
012345678 9012 3 4567 890123456789012345

Octal Source Text
]010101101}0000|0]0000|000000000000000000] 255000 000000 JFCL

| I -1 I I
Consider another example, one that we have seen before:

MOVE 1,1000

MOVE is the operation code; the assembler translates MOVE to 200. The accumulator field (AC portion) is 1;
the address field (Y part) is 1000. There is no indirect addressing and no indexing. This instruction

assembles to the following binary pattern:

000000000 0111 1 1111 112222222222333333
012345678 9012 3 4567 890123456789012345

| Octal Source Text
]010000000|0001{0|0000{000000001000000000] 200040 001000 MOVE 1,1000

| | -1 | |
A more complicated example shows how we set the X field of an instruction:

40 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

HRRZ 17,1(3)

Here, HRRZ is the opcode with value 550; the accumulator field is 17. The Y portion of the address is 1. The
3 in parentheses signifies the value of the X field. This assembles the following binary word:

000000000 0111 1 1111 112222222222333333
012345678 9012 3 4567 890123456789012345

| | || | Octal Source Text
[101101000]1111]0]0011]000000000000000001 | 550743 000001 HRRZ 17,1(3)

| | Il | |
Our next example requests indirect addressing;:

S0S 12,017240

In this instruction line, SOS is the opcode with value 370; the accumulator field is 12. There is no X field,
but the “@” character specifies that indirect addressing is to be used; the assembler sets bit 13, the I bit,toa 1
because the “@” is present. The address (Y field) is 17240. This assembles a binary pattern that looks like
this:

000000000 0111 1 1111 112222222222353333
012345678 9012 3 4567 890123456789012345

| | Octal Source Text
1011111000{1010]1}0000/000001111010100000] 370520 017240 SO0S 12,017240

| | -l | |
We have mentioned that the accumulators gan be used as normal memory locations whenever it is
convenient to do so. If an address in the range from 0 to 17 appears in the Y field, an accumulator is being
referred to as memory. There is often confusion about whether to reference an accumulator as memory or as
an accumulator. The following two examples contrast some of the differences. First consider the instruction:

AOSGE 5

In this example, accumulator number 5 is being referenced as a memory location. The accumulator field has
been omitted and is assembled as zero. The binary pattern assembled for this instruction is

000000000 0111 1 1111 112222222222333333
012345678 9012 3 4567 890123456789012345

Octal Source Text
]011101101{0000]|0}0000]000000000000000101 355000 000005 AOSGE 5

| | -1 ! |
Compare the instruction above to this one:

AOSGE 5,

In this instruction, accumulator number 5 is being referenced as an accumulator. The address field has been
omitted and is assembled as zero. The binary pattern is quite different from the previous example. You
might well expect that these two instructions don’t do the same thing. A comma makes a big difference!

000000000 0111 1 1111 112222222222333333
012345678 9012 3 4567 890123456789012345

| | 11 | Octal Source Text
}011101101/0101}0{0000]000000000000000000] 355240 000000 AOSGE 5,

PDP-10 INSTRUCTIONS o 41

5.3. EFFECTIVE ADDRESS COMPUTATION

Without exception, when the computer executes an instruction it first calculates an effective address. The
effective address is an 18-bit quantity;2 In the execution of an instruction the effective address may be used as
data itself, or it may be used to address the operand or result word. The effective address is computed before
the operation specified by the instruction takes place. It is not possible for any instruction to affect its own
effective address computation in any way, because this computation is finished before the instruction
operation is performed.

The program fragment in figure 5-2 depicts the entire instruction execution cycle, including the effective
address computation. This program resembles the Pascal language, but differs slightly in that the notation
[m:n] denotes that the specific bits m through n are selected from the memory word. This program
introduces some further CPU internals. Among these are

e The Memory Address register (MA) is an internal register by which the CPU specifies the
address of the word in memory that it wants to read or write. The result of the effective address
calculation will appear in MA.

e The RUN flag. RUN is true while the computer is running. A privileged instruction can stop
the entire computer by setting this flag to false. In the programs that we write there is an
analogy to the RUN flag; Our program is started by the EXEC’s START or EXECUTE
command, and halted by an error or when it executes the EXIT MUUO.

e The Instruction Register (IR) holds an image of the instruction portion (bits 0:12) of the
current instruction word. This normally holds the operation code (bits 0:8) and the
accumulator field (bits 9:12). In an Input/Output instruction the IR is interpreted as
containing the device number (bits 3 : 9) and the Input/Output function code (bits 10:12).

RUN := TRUE; (* The computer runs while RUN is true. *)
PC := STARTPC; (* The program counter is initialized. *)
WHILE RUN DO BEGIN (* The instruction fetch and execution loop: *)
MA := PC; (* Get the instruction word addressed by the PC *)
IR := MEM[MA][0:12] (* Instruction Register 1is set from bits 0:12 *)
& of the instruction word. *)

REPEA (* Compute the effective address: *)

Y := MEM[MA][18:356]; (* Initialize I, X, and Y fields from the *)

X := MEM[MAJ[14:17]; (* memory word addressed by MA., Initially, *)

I := MEM[MA][13:13]; (* this word is the instruction word. *)

IF X = 0 THEN MA := Y (* In Direct Addressing, the effective address, *)

(* in MA, is the Y field of the instruction. *)

ELSE MA := Y + (* In Indexed Addressing, the effective address *)
MEM[X][18:356]; (* is the sum of the contents of index register *)

* X plus the Y field of the instruction word. *)

UNTIL I = 0; (* The calculation is finished when an address *)
(* word is found in which the Indirect field is *)

(* zero. While I is one, the effective address *)

(* computation will Toop. *)

PC := PC + 1; (* Advance the program counter. *)
ExecuteInstruction; (* Execute the instruction *)
END; (* and Joop to the next instruction, *)

Figure 5-2: Instruction Loop & Effective Address Calculation

We will summarize the meaning of the effective address calculation in the following paragraphs. We will
then present some examples.

2In the 2060, a wider effective address is possible.

42 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

In the most usual case, where the I and X fields of an instruction are both zero, the effective address is
just the Y field (bits 18:35) of the instruction word.

If the X field is non-zero, then X specifies the particular accumulator (one of the registers 1 through 17)
that is to be used as an index register. The value that is contained in the specified index register is added to
the Y field to produce the effective address. The sum is truncated to 18 bits.

When the I field is 1, indirect addressing is called for. To compute an indirect address, the CPU fetches
the memory word specified by the effective address computed thus far (by considering the X and Y fields).
That word is assumed to contain I, X, and Y fields in the same format as in an instruction word. The effective
address computation continues, with the new values of I, X, and Y as specified in the word that was just
fetched. Indirect addressing continues until a word is found in which the I bit is zero.

5.3.1. Examples of Effective Address Calculation

The effective address calculation process is very important to our further progress with assembly
language. As mentioned above, every instruction calculates an effective address; all instructions calculate
their effective addresses in precisely the same way. The computation of the effective address is the first thing
that the CPU does when executing an instruction; the action of the instruction itself does not take place until
the effective address has been calculated.

Since it is vitally important that you understand the effective address calculation, we offer several
examples that you may find helpful.

5.3.1.1. Direct Addressing

In the most usual case of effective address calculation, the I and X fields are zero. This is called direct
addressing because the Y field in the instruction directly specifies the address. For example, consider the
familiar instruction

MOVE 1,1000

In this case, the effective address calculation proceeds as follows: ' »

In the instruction loop program, the instruction word that is addressed by the program counter is read
into the instruction register and into the I, X, and Y variables. The instruction register holds bits 0: 12 of the
instruction; these bits are the operation code and accumulator fields.

The X field of this instruction word contains zero, so the MA is set from the Y field, bits 18:35 of the
instruction word. In this example, the value is 1000.

Since the indirect bit is zero in this instruction, the UNTIL clause is satisfied, and no repetition of the
addressing cycle takes place. The effective address computation is complete; the result, 1000, is in the MA
register.

Again, in direct addressing, the Y field of the instruction supplies the entire effective address.

5.3.1.2. Indexed Addressing

Index registers can be used to modify the address of an instruction. One of the common reasons for
wanting to modify the address of an instruction is for accessing the data elements in an array or other data
structure. Any of the accumulators 1 through 17 (but not 0!) can be used as an index register to affect the
effective address calculation of any instruction that involves indexing.

For example, suppose the symbolic name TABLE refers to an array containing 100 (octal) words. The

PDP-10 INSTRUCTIONS 43

words of this array would have addresses TABLE+0, TABLE+1, TABLE+2, etc., through TABLE+77. Itis
important to remember that when we write an expression such as TABLE+32 we mean the value of the
symbol called TABLE (which is an address) plus (octal) 32. This is unlike most high-level languages in which
such an expression would mean the contents of the word called TABLE plus decimal 32.

When we want to refer to some specific word, we could write a direct address such as TABLE+43 in an
instruction. However, if the address that we want is not explicitly known when we are writing the program,
e.g., the address is based on the result of some computation, then we can use indexing to help form the
effective address.

Consider the program fragment:

MOVE 3,IDXVAL
MOVE 1, TABLE(3)

IDXVAL: 2
TABLE: 1000
1234
2456

7661

The instruction MOVE 3, IDXVAL copies the data in the memory word IDXVAL (which contains 2 in
this example) to register 3. As a result of this instruction, register 3 now contains the value 2.

The instruction MOVE 1,TABLE(3) specifies register 3 as an index register. From our previous
discussion of how the assembler translates what we write, we know that the X field of this instruction word is
set to 3. Suppose that the assembler has placed the array TABLE in memory locations starting at location
752; then the Y field of this instruction would contain the value 752.

From the instruction loop program, we can see that since X is non-zero, MA is set from the sum of the Y
field plus the contents of register 3. Y is 752; register 3 contains 2. The sum, placed in MA, is 754 or,
symbolically, TABLE+2. The indirect bit is zero in this instruction, so the effective address computation
terminates. The resultis 754. .)

To summarize, when register 3 contains the value 2, the address that was written as TABLE(3) is
effectively TABLE+2. The contents of the specified index register have, in effect, been added to the Y portion
of the instruction. Naturally, any change to the contents of the specified index register would change the
result of an effective address calculation involving that index register. If the contents of the location called
IDXVAL were changed to 15, execution of this fragment would result in an effective address of TABLE+15
being computed. Index registers are useful when accessing array elements, lists, and record structures.

As a further example of indexed addressing, suppose accumulator 17 contains the value 555. Then the
instruction

HRRZ 3,-1(17)

would have an effective address of 554, as follows.

The assembler can’t fit a 36-bit -1 into the Y field of a word, so it truncates the -1 to an 18-bit quantity,
octal 777777. The X field of this instruction is 17.

Referring to the program, MA is set to the sum of the Y field plus the contents of the specified index

44 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

register. The Y field is 777777; index register 17 contains 555. These are added; the result of this addition
is 1000554. However, the result is truncated to 18 bits in the MA. After this truncation, the result in MA is
554, No indirection is called for, so the effective address computation is complete.

There are basically two ways to think of index registers. In our first example of indexed addressing, the
index is thought of as an offset to a fixed address that is supplied in the Y field of an instruction. For example,
when we wrote the address expression TABLE (3), register 3 is used to modify the address TABLE; this is the
‘usual viewpoint when TABLE is an array (see section 21, page 225). The second way of thinking of an index
register is to use it as the address of (or pointer to) a record in memory.3 Then the Y portion of the instruction
represents a field name within the record. In this view, the index register contains the address of the record;
the Y field is thought of as a modification to the record address. Of course, the arithmetic done by the
computer’s effective address calculation is the same in either case; it is just our view of which part of the
address expression is the base of the structure and which part of the address forms the offser that differs. We
illustrate these two views in figure 5-3.

Array Access Record Access
MOVEI 3,5 ;index value MOVEI 5,R0 ;record origin
TABLE(3) . 4(5) ;offset to the
;fourth word
:in the record
0 0

|
Contents of 5

Address of TABLE
RO: record

origin

TABLE: array

origin

+
@ c—ph—0 ¢—

+ Contents of 3

+
®

@ ¢ ——

Figure 5-3: Comparison of Array Access and Record Access

To summarize, the use of an index register in an instruction allows the address to be modified under the
control of the program.

Before index registers were available in computers, the indexing arithmetic was performed in an
accumulator, and the result was stored into the instruction itself. This requires that the program change itself;
programs that change themselves are inherently more difficult to debug. For this reason, and to increase
system efficiency, programs should avoid changing themselves.

3Records will be discussed in section 24, page 313.

PDP-10 INSTRUCTIONS 45

5.3.1.3. Indirect Addressing

Indirect addressing is another technique by which the effective address of an instruction can be changed.
On the whole, indirect addressing is less frequently used than indexed addressing. However, there are some
special situations where indirection is just the right thing; we shall have examples later on where indirect
addressing is very helpful,

In indirect addressing, the effective address calculated from the combination of the X and Y fields
specifies a word that contains a further set of I, X, and Y fields that are used to continue the address
calculation.

For example, suppose location 17240 contains the value 167. Then the instruction

SO0S 12,017240

would have an effective address of 167, as follows:

The Y field is 17240; the X field is zero. Because the assembler sees an at-sign character (@) in the
instruction, it sets the I field (bit 13) of the instruction word to 1.

In the instruction loop program, MA is st to 17240, as X is zero. However, since I is one, the UNTIL
clause is not satisfied. Hence, a portion of the address calculation must be repeated. The program returns to
the statement following the word REPEAT, in which new I, X, and Y values are read from the word addressed
by MA. Note that MA now addresses the word at 17240. We have specified that location 17240 contains
167, this means that the new Y field is 167 and I and X are both zero. The MA is setto 167. Since the new
1 bit is zero, the UNTIL clause is satisfied, and the effective address computation terminates with the value
167 in MA. :

For our final example of this section, recall that in a previous example we stipulated that register 17
contains the value 555. Suppose also that location 1767 contains the octal quantity 000017000002. Then,
the instruction

MOVEM 12,@1767

would calculate an effective address of 557, by the following means:

The MA is set from the Y field of the instruction, 1767. Since indirect addressing is spec1ﬁed the
UNTIL clause is unsatisfied and the REPEAT loop is executed again. The word addressed by the MA, location
1767, is fetched to supply new values for the I, X, and Y fields. The word at 1767 supplies a new Y field of
2: the new X field is 17, and I is zero.

Now, the MA is set from the value of the Y field plus the contents of register 17. Y is 2 and 17 contains
555. The sum, 557, is placed in MA. Since I is now zero, the effective address computation terminates.
The effective address in this case is 557.

Because indirect addressing will continue to fetch address words until one is found in which bit 13 is
zero, there is a possibility that a mistaken use of indirect addressing can cause a loop that will not terminate.
Such a loop is no more harmful (and no more beneficial) than any other kind of non-terminating loop.

5.3.2. Summary

We hope that you will come to regard the effective address calculation as a simple process, but we must
say that many people find themselves somewhat confused by their first exposure to this calculation. We do
not expect that you fully understand the effects or applications of indexed or indirect addressing at this point.
When we come to require these ideas, we will review them.

46 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

5.4. INSTRUCTION CLASSES

Although the PDP-10 has more than 350 different instructions, learning the instruction set is somewhat
simplified by the fact that large numbers of instructions fall into general classes whose characteristics are
easily understood.

Instruction classes are formed by a mnemonic class name and one or more modifier letters. The
modifiers usually signify some transformation on the data, or the direction of data movement, or the skip or
jump condition. Some functional duplications and some no-ops (i.e., instructions that don’t do anything)
result from this scheme. However, despite these drawbacks, this notion of instruction classes and modifiers
makes the instruction set easy to learn. For example, we shall see there are sixteen full-word MOVE
instructions, which are four basic types each with four address modifiers. Since the modifiers for all types are
the same, we really need to jam only eight facts (the four types plus the four modifiers) into our heads, rather
than the sixteen facts (four types times four modifiers).

The power of this scheme is more evident in the half-word class where there are sixty-four instructions,
composed of two sources (times) two destinations (times) four other-half specifiers (times) four address
modifiers. Thus, rather than remember sixty-four unique instructions (including some that are quite useless),
we need remember only 2+2+4+4 ideas. Also, there’s some overlap, in that the address modifiers in the
half-word class are similar to the ones in the MOVE class.

5.5. EXERCISES

5.5.1. Instruction Components and Addressing
In the following lines of code, identify the text that contributes to the OP field, and determine the octal
value of the fields AC, I, X and Y. Values are stated in octal.

MOVE 5,1
A0S 674
. HRROI 1,5004
XCT 2025(6)
JRST @672

SETOM -5(7)
FMPRI 3,204500
MOVE 2,08561(1)

Now, compute the effective address for each of the lines of code that is listed above. The values of the
accumulators and memory locations are as indicated below. Calculate each effective address using the values
listed below. Ignore any alterations in these values that might result from the execution of this instruction
sequence.

accumulator 1: 14
accumulator 6: 10427
accumulator 7: 3612
location 675: 1000673

location 672: 301000001772

DATA MOVEMENT AND LOOPS 47

Chapter 6
Data Movement and Loops

Eighty-four different instructions are presented in this section. As you will discover, some of these are
among the most frequently used instructions in PDP-10 assembly language programming. On the other hand,
some of these are really quite useless. We will comment on the utility of particular instructions; some
applications are demonstrated in section 6.3, page 57.

6.1. FULL-WORD DATA MOVEMENT

These instructions include some of the most frequently used instructions in the PDP-10. The general
purpose is to move data between accumulatogs and memory, occasionally with some minor transformation of
the data.

Recall that the accumulators are the same as memory locations 0 to 17 (octal). The accumulators are
special though; an accumulator address appears in all of these data movement instructions. An accumulator
holds one of the operands in any arithmetic operation. Therefore, accumulators are an important resource.
You will find that any program you write will contain numerous instructions involved with bringing data into
the accumulators, modifying the accumulators, and storing results in memory. The MOVE class that is
described below is most frequently used for the purposes of loading and storing accumulators.

6.1.1. MOVE Class

The MOVE class of instructions perform full word data transmission between an accumulator and a
memory location. In some cases, minor arithmetic operations are performed, such as taking the magnitude or
negative of a word.

There are sixteen instructions in the MOVE class. All mnemonics begin with MOV. The first modifier
specifies a data transformation operation; the second modifier specifies the source of data and the destination
of the result. We summarize the sixteen MOVE instructions in this table:

MoV
|E no modification |} from memory to AC
|N negate source |I Immediate. Source is 0,,E to AC
|M magnitude IM from AC to memory .
|S swap source IS to self. If AC>0 to AC also

In the “algebraic” representations of these instructions that follow, a number of notational conventions
apply. These conventions are explicated in table 6-1. After you examine this attempt at terminological
exactitude, you should be able to understand the details of the MOVE class as presented in table 6-2.

48 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

E The effective address of the I, X, and Y parts of the instruction.

C(E) The contents of the word addressed by E. .

AC - The value of the accumulator field of the instruction.

C(AC) The contents of the accumulator selected by AC.

CR(E) The contents of the right half of the word addressed by E.

CL(E) The contents of the left half of the word addressed by E.

L,,R The fullword composed of L in the left half and R in the right half.
CS(E) The fullword composed of the swapped contentsof E: CR(E),,CL(E)
C(AC,AC+1) A doubleword accumulator in which C(AC) is most significant.

PC The 18-bit contents of the program counter.

Table 6-1: Notation for Instruction Descriptions

MOVE C(AC) := C(E)

MOVEI C(AC) := 0,,E

MOVEM C(E) := C(AC)

MOVES C(E) := C(E); if AC>0 then C(AC) := C(E)

MOVN C(AC) := -C(E)

MOVNI C(AC) := -E

MOVNM C(E) := -C(AC) '

MOVNS Temp := -C(E); C(E) := Temp; 1if AC>0 then C(AC) := Temp
MOVM C(AC) := |C(E)] i.e., absolute value

MOVMI C(AC) := 0,,E

MOVMM C(E) := |C(AC)]|

MOVMS C(E) := |C(E)|; if AC>0 then C(AC) := |C(E)]

MOVS C(AC) := CS(E)

MOVSI C(AC) := E,,O

MOVSM C(E) := CS(AC)

MOVSS Temp := CS(E); C(E) := Temp; if AC>0 then C(AC) := Temp

Table 6-2: The MOVE Instructions

The MOVE instruction is the second most frequently executed PDP-10 instruction. It is used to read data
from a memory location into an accumulator. MOVE may also be used to copy from one accumulator to
another (the effective address names the source accumulator, the accumulator field names the destination).

MOVE 7,1000 ;copy the data in location 1000 to
H location 7
MOVE 16,1 ;copy the data in location 1 (an

H accumulator) to location 16

The MOVE I (MOVE Immediate) instruction is also quite popular; it is useful for loading small constants
into an accumulator. The mode immediate, signaled by the letter I in the instruction mnemonic, means that
the effective address is the data itself. This contrasts to the usual case where the effective address locates the
memory word that contains the data. For example, MOVEI 16,7 loads accumulator 16 with the constant 7.
Note the contrast to MOVE 16, 7 which loads register 16 with the contents of location 7. MOVETI can be used
for numbers in the range from 0 to 777777 (0 to decimal 262, 143).

Note that you cannot use MOVEI to load an accumulator with a negative constant. If you‘wrote
MOVEI 3, -6 the assembler would translate the instruction to MOVEI 3,777772. The result in register 3

DATA MOVEMENT AND LOOPS 49

would be the value 000000777772; but -6 is really 777777777772. Use the MOVNI instruction, e.g.,
MOVNI 3,86, to load small negative numbers into an accumulator.

MOVEM copies the contents of an accumulator to a general memory location. MOVEM is the usual way to
store calculated results in a more permanent place. It is the nature of this machine to require the use of the
accumulators for intermediate calculations. Since the accumulators are a scarce resource, we often copy the
results to memory, thus allowing the accumulator to be used for other calculations.

MOVEM 7,1005 ;copy data from location 7 to location 1005

MOVEM should be avoided for storing data into an accumulator. Although MOVEM 7,1 works properly
to copy data from 7 to 1, the computer works faster when you ask it to execute MOVE 1,7.

The direction of information movement is defined by the particular instruction we use, not by the
arrangement of the operands. The order that we write the operands is always the same: first the opcode, then
the accumulator field and a comma, finally, the effective address. You must select the opcode appropriate to
the desired direction of data movement.! Compare the two instructions below. Note that in each case the
form or syntax is the same. The direction of data movement is defined by the difference in the opcode.

MOVE AC,MEM Accumulator « Memory
MOVEM AC,MEM Accumulator - Memory

The MOVN class computes the two’s-complement of the source word. This is the proper way to negate an
integer or single-precision floating point number.

The MOVST instruction is useful for loading constants that have only zero bits in the right half. This is
sometimes used for floating-point numbers that represent small whole numbers. MOVSI is also useful for
initializing an accumulator with a left-half control count, such as is used in the AOBJN instruction.

The MOVM class computes the absolute value of the source operand. If the source is positive, MOVMx is
equivalent to the corresponding MOVE x instruction; otherwise, MOVMx acts like MOVNx. This is the correct
way to compute the absolute value of an integer or single-precision floating point number. Note that MOVMI
is equivalent to MOVEI since the immediate operand, 0, , E, is always a positive number.

6.1.2. EXCH Instruction
The EXCH instruction exchanges the contents of the selected accumulator with the contents of the
effective address.

EXCH Temp := C(AC); C(AC):=C(E); C(E):=Temp;

6.2. JUMP AND SKIP INSTRUCTIONS

One of the most powerful tools available to the programmer is the computer’s ability to decide whether
to repeat groups of instructions. This ability allows the computer to deal with special conditions in a flexible
way based on the state of the calculations thus far.

1In contrast, some other computers, e.g,. the PDP-11, define the direction of data movement by the order of the operands.

50 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

6.2.1. JRST
The most frequently executed instruction in the PDP-10 is JRST. The JRST instruction really has
several different functions; the particular function is selected by the accumulator field.

When the accumulator field is zero, a JRST instruction is simply an unconditional jump. When a JRST
instruction is executed, the program counter is changed to the value given in the effective address of the
instruction. That is, the execution of JRST 12345 will cause the next instruction to be taken from 12345.

JRST O, PC := E; Unconditional jump. The AC field must be zero.

We shall discuss the other functions of JRST in section 13.2.4, page 129.

6.2.2. Conditional Jumps and Skips

The next sixty-four instructions are eight types with eight modifiers. The purpose of these instructions is
to modify the flow of control in the program, the modification being based on the result of an arithmetic
comparison.

There are two kinds of modifications of control, jumps and skips. A jump, if the specified condition
obtains, will cause the computer to alter its normal sequence of instructions and resume the program at the
address specified by the effective address of the jump instruction. A skip, if satisfied, will skip over the
instruction that immediately follows the skip. Skips often are placed immediately before unconditional
jumps, and have the effect of making such an instruction conditional.

Six of the eight modifiers are arithmetic conditions, such as equal, greater, less or equal, etc. The other
two modifiers are “A” meaning always jump (or skip), and blank meaning never jump (or skip). The eight
condition modifiers are displayed in table 6-3.

blank Never

L Less than

LE Less than or Equal

E Equal

N Not Equal

GE Greater than or Equal
G Greater than

A Always

Table 6-3: Modifiers for Jumps, Skips and Compares

6.2.2.1. JUMP Class

A JUMP class instruction compares the contents of the selected accumulator to the constant zero. The
instruction will jump (i.e., change the PC to be a copy of the effective address of this instruction) if the
specified relation is true.

JUMP No Operation. Do not Jump.
JUMPL If C(AC) < 0 then PC := E;
JUMPLE If C(AC) < 0 then PC := E;
JUMPE If C(AC) = 0 then PC := E;
JUMPN If C(AC) = 0 then PC := E;
JUMPGE If C(AC) 2 0 then PC := E;
JUMPG If C(AC) > 0 then PC := E;
JUMPA PC := E;

It should be noted that the PDP-10 is unique among computers, in that it possesses an instruction named
JUMP that means never jump.

DATA MOVEMENT AND LOOPS ‘ 51

The instruction JUMPA is an unconditional jump. However, the JRST instruction is preferred because
JRST is faster than JUMPA on all CPU models.2

We have mentioned that the ASCIZ string format - a string that ends with a zero character - is very
popular in the PDP-10; the JUMP class instructions, particularly JUMPE and JUMPN, make the detection of
the zero character very easy.

The following loop performs some processing on every character in a string, terminating after processing
the zero character that terminates the string:

.o ;initialize
LOOP: . ;get a character into accumulator 1
ce ;process the character
JUMPN 1,LO0P ;continue processing until a null has been done
. ;here after the null character has been processed

This loop format is very similar to the Pascal REPEAT ... UNTIL ... statement.

It is probably more common to omit the processing of the zero character at the end of the string. To
accomplish this, we must move the test for zero into the middle of the loop. This more complex structure
often appears as

. e ;initialize
LOOP: .. ;do whatever is necessary to get the next character
e e . ;into some specific accumulator, say number 1.
JUMPE 1,LOOPX ;test for the end of string, jump to loop exit if
;a null is seen

e . ;process this character
JRST LoorP ;jump back to get another character.

LOOPX: . . . ;here when the string to process has been finished.

In this loop, whatever processing is applied to characters is omitted for the zero character. This
approximates the Pascal WHILE ... DO ... statement, but it is somewhat more flexible. Occasionally in a
structured language such as Pascal we are forced into an awkward construction because of limits of the control
structure. A very common thing to see.in Pascal is a fragment such as this:

READ(...); ' (* read the first record *)

WHILE NOT eof DO BEGIN
(* process one record *)
READ(...) (* read the next record *)
END; '

The occurrence of READ twice is awkward; it is possible to avoid this awkwardness in Pascal by
introducing a Boolean function to read a record, but that partially conceals the purpose of the loop. It seems
much more natural to write in assembly language something like

2.] RST was discovered to be faster than JUMPA on the first CPU, the PDP-6. As a result JRST was adopted by programmers as the
best unconditional jump, making JRST the most frequently executed instruction. Because they knew that JRST was executed with great
frequency, the designers of the KL.10 made a special effort to make JRST faster.

52 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

sinitialize

LOOP: . e ;read a record
- MOVE 1,EOF ;get the End of File flag
JUMPN 1,ENDLOO ;Jump if EOF is true (non-zero)
e ;process the record
JRST LoopP ;go do another record
ENDLOO: ;here at end of file.

6.2.2.2. SKIP Class

A SKIP class instruction compares the contents of the effective address to the constant zero and skips
past the next instruction if the specified relation is true. If a non-zero accumulator field appears, the selected
AC is loaded from memory.

To say that an instruction skips means that it causes the CPU to avoid executing the instruction
immediately following the skip. The skip is accomplished by incrementing the program counter one extra
time.

SKIP If AC > 0 then C(AC) := C(E); do not skip;

SKIPL If AC > 0 then C(AC) := C(E); 1If C(E) < 0 then skip;
SKIPLE If AC > 0 then C(AC) := C(E); 1If C(E) =< O then skip;
SKIPE If AC > 0 then C(AC) := C(E); If C(E) = 0 then skip;
SKIPN : If AC > 0 then C(AC) := C(E); If C(E) = 0 then skip;
SKIPGE If AC > 0 then C(AC) := C(E); If C(E) = 0 then skip;
SKIPG If AC > 0 then C(AC) := C(E); If C(E) > 0 then skip;
SKIPA If AC > 0 then C(AC) := C(E); always skip;

As the JUMP instruction fails to jump, so too the SKIP instruction fails to skip.

Among the uses of the SKIP class is the testing of Boolean flags. A flag variable is one that takes on only
two values, usually True and False. Although many representations are possible, when full words are used for
flags the typical representation of False is 0; True is represented as -1. This choice is made because the
Boolean instructions (that we shall discuss in section 14.2, page 146) allow logical operations (e.g., AND, OR,
etc.) to be performed on these quantities. The following four instructions are commonly used for dealing with
full-word flags:

SETZM FLAG ;set FLAG to zero (false)

SETOM - FLAG " ;set FLAG to all ones, -1 (true)
SKIPE FLAG ;skip if FLAG is false

SKIPN FLAG ;skip if FLAG is true

Suppose BV is the name of a Boolean variable. The Pascal WHILE bv DO ... loop can be
approximated by the following assembly language structure:

WLOOP: SKIPN BV ;skip if BV is true
JRST XLOOP ;BV is false, exit from While loop
JRST wLOOP ;back to the top of the loop.
XLOOP: ;here when BV is false.

It should be noted that it is somewhat wasteful to use an entire 36-bit word to store a two-valued flag.
The Test class instructions allow a convenient way to manipulate single-bit flags; see section 14.1, page 143.

6.2.2.3. AOS Class

An AOS class (Add One to memory and Skip) instruction increments (adds 1 to) the contents of a
memory location and places the result back in memory. If the accumulator field is non-zero, the incremented
result will also be copied to the specified AC. Finally, the incremented result is compared to the constant

DATA MOVEMENT AND LOOPS

zero. If the specified condition is true, an AOS class instruction will then skip.

AOS Temp :
AOSL Temp :
AOSLE Temp :
AOSE Temp :
AOSN Temp :
AOSGE Temp :
AOSG Temp :
AOSA Temp :

The AOS instruction can be used to increment any memory address including an accumulator, e.g.,

C(E)+1; C(E) := Temp; If
Do not skip.

C(E)+1; C(E) := Temp; If
If Temp < 0 then skip.

C(E)+1; C(E) := Temp; If

If Temp < 0 then skip.

C(E)+1; C(E) := Temp; If
If Temp = 0 then skip.
C(E)+1; C(E) := Temp; If

If Temp = 0 then skip.

C(E)+1; C(E) := Temp; If

If Temp 2= 0 then skip.

C(E)+1; C(E) := Temp; If
If Temp > 0 then skip.

C(E)+1; C(E) := Temp; If
Always skip.

A0S 5. Note once again that the instruction we write as

A0S 6

is a shorthand for

A0S 0,5

This instruction adds one to memory location 5 (which is also accumulator 5). Since the accumulator field is

0, no accumulator receives a copy of the result.

This is quite different from

A0S 5,

or

AOS 5,0

either of which would add one to the contents of location 0 and copy the result to accumulator 5.

Unless a skip is needed, or unless a second accumulator must be loaded, avoid using AGS to increment an
accumulator; ADDI 5,1 is faster. Often, when it is necessary to increment an accumulator, a jump is nearby;
see the discussion of the AQJ class to combine incrementing an accumulator with a conditional jump.

AC > 0 then C(AC) :=
AC > 0 then C(AC) :=
AC > 0 then C(AC) :=
AC > 0 then C(AC) :=
AC > 0 then C(AC) :=
AC > 0 then C(AC) :=
AC > 0 then C(AC) :=

AC

v

0 then C(AC) :=

Temp;
Temp;
Temp;
Temp;
Temp;
Temp;
Temp;

Temp;

54 : DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

6.2.2.4. SOS Class

Each of the SOS (Subtract One from memory and Skip) instructions decrements (subtracts 1 from) the
contents of the memory location specified by the effective address and stores the result back in the same
location. The result is compared to zero to determine whether or not to skip. If a non-zero accumulator field
appears in any of these instructions then the decremented result will be copied to the selected accumulator.

S0S Temp := C(E)-1; C(E) := Temp; If AC > 0 then C(AC) := Temp;
Do not skip.

SOSL Temp := C(E)-1; C(E) := Temp; If AC > 0 then C(AC) := Temp;
If Temp < 0 then skip.

SOSLE Temp := C(E)-1; C(E) := Temp; If AC > 0 then C(AC) := Temp;
If Temp < 0 then skip.

SOSE Temp := C(E)-1; C(E) := Temp; If AC > 0 then C(AC) := Temp;
If Temp = 0 then skip.

SOSN Temp := C(E)-1; C(E) := Temp; If AC > 0 then C(AC) := Temp;
If Temp = 0 then skip.

SOSGE Temp := C(E)-1; C(E) := Temp; If AC > 0 then C(AC) := Temp;
If Temp 2= 0 then skip.

S0SG Temp := C(E)-1; C(E) := Temp; If AC > 0 then C(AC) := Temp;:

If Temp > 0 then skip.
C(E)-1; C(E) := Temp; If AC > 0 then C(AC) := Temp;
Always skip.

SOSA Temp :

A SOS class instruction can be used to increment or decrement any memory address, including an
accumulator. The discussion following AOS applies to SOS as well. See also the SOJ class.
6.2.2.5. AOJ Class

An AO0J (Add One to AC and Jump) class instruction increments the contents of the selected
accumulator. If the result bears the indicated relation to the constant zero then the instruction will jump to
the effective address, otherwise the next instruction in the normal sequence will be executed.

A0J C(AC) := C(AC)+1;

AOJL C(AC) := C(AC)+1; If C(AC) < 0 then PC := E;
AOJLE C(AC) := C(AC)+1; If C(AC) s 0 then PC := E;
AQJE C(AC) := C(AC)+1; If C(AC) = 0 then PC := E;
AOJIN C(AC) := C(AC)+1; 1If C(AC) = 0 then PC := E;
AOJGE C(AC) := C(AC)+1; If C(AC) = 0 then PC := E;
A0JG . C(AC) := C(AC)+1; If C(AC) > 0 then PC := E;
AOJA C(AC) := C(AC)+1; PC := E;

The A0J instruction will increment the selected accumulator without jumping; ADDI AC,1 is more
commonly used for that purpose.
6.2.2.6.S0J Class

A SO0J (Subtract One from AC and Jump) class instruction decrements the contents of the selected
accumulator. If the result bears the indicated relation to zero then the instruction will jump to the effective
address.

$0J C(AC) := C(AC)-1:

S0JL ~ C(AC) := C(AC)-1; If C(AC) < 0 then PC := E;
SOJLE C(AC) := C(AC)-1; If C(AC) =< 0 then PC := E;
SOJE C(AC) := C(AC)-1; If C(AC) = O then PC := E;
SOJN C(AC) := C(AC)-1; If C(AC) = O then PC := E;
SOJGE C(AC) := C(AC)-1; If C(AC) =2 0 then PC := E;
S0J6G C(AC) := C(AC)-1; If C(AC) > O then PC := E;
SOJA C(AC) := C(AC)-1; PC := E;

S0J will decrement the accumulator without jumping, but SUBI AC, 1 is preferred for clarity.

DATA MOVEMENT AND LOOPS } M

The A0J and SOJ class instructions are often used for loop control. For example, the following
instruction sequence (or code) will repeat a loop five times:

MOVEI 16,5 ;1oop control count
LOOP: .es ;execute for 15 containing 5,4,3,2,1
N ;any code that doesn’t change 15

S0JG 15,L00P ;decrement control count and loop

6.2.2.7. CAM Class

Each of the CAM (Compare Accumulator to Memory) class instructions compares the contents of the
selected accumulator to the contents of the effective address. If the indicated condition is true, the instruction
will skip. The CAM class instructions are suitable for arithmetic comparison of either fixed-point quantities or
normalized floating-point quantities. For the comparison to be meaningful both C(AC) and C(E) should be in
the same format (i.e., either both fixed or both floating).

CAM no op (references memory)
CAML If C(AC) C(E) then skip;

A

CAMLE If C(AC) < C(E) then skip;
CAME If C(AC) = C(E). then skip;
CAMN If C(AC) = C(E) then skip;
CAMGE ~ If C(AC) = C(E) then skip;
CAMG If C(AC) > C(E) then skip;
CAMA (reference memory) skip:

The CAM class, and the CAI class described below, are the only instructions by which two arbitrary

numbers can be compared. Other control instructions implicitly use the constant zero as one of the operands.
=z

e

6.2.2.8. CAl Class

The CAI (Compare Accumulator Immediate) instructions each compare the contents of the selected
accumulator to the 36-bit quantity composed of zeros in left half and the effective address in the right half. If
the indicated condition is true, the instruction will skip. Note that the immediate operand is always
considered to be a positive number.

CAI no op

CAIL If C(AC) < E then skip;
CAILE If C(AC) < E then skip;
CAIE If C(AC) = E then skip;
CAIN If C(AC) = E then skip;
CAIGE If C(AC) =2 E then skip;
CAIG If C(AC) > E then skip;
CAIA skip;

The immediate compare instructions are useful in loop control. Another application of these instructions
is in character processing. The ASCII characters are all small numbers (from 0 to octal 177), and so may
appear as the immediate operand in a comparison. For example, the following fragment inspects the
character in accumulator 1 to determine if it is a carriage return (octal 15) or a line feed (octal 12):

;1oad character into accumulator 1

CAIN 1,15 ;test for carriage return

JRST DOCR ;go process a carriage return

CAIN 1,12 ;test for a line feed

JRST DOLF ;process a line feed.

. . e ;character is neither carriage return nor
H line feed.

We can do other forms of processing as well. The following is a way to test to see if a character is a
lower-case letter:

56 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

CAIGE 1,141 ;skip if it is larger than or equal to lower-case A
JRST NOTLOW ;not a lower-case letter

CAILE 1,172 ;skip if smaller than or equal to a lower-case Z
JRST NOTLOW ;not a lower-case letter

e ;the character is a lower-case letter.

This fragment can be improved in two ways. First, rather than be bothered by looking up the ASCII
codes for lower-case A and Z, we can let the assembler do some of the work. When we write "a", i.e., the
letter a enclosed in double quotes, the assembler will translate the letter to what we call right-justified ASCIL
In this case the assembler produces the number 141 as the translation. When ASCII characters are stored in
strings, they are left-justified within the computer word. However, due to the nature of the byte instructions
(see section 11, page 107), when single characters appear in an accumulator, they are right-justified. Anyway,
to continue, the second way that this fragment can be improved is by means of what we call nested skips. We
observe that in two cases this program fragment executes the instruction JRST NOTLOW. By means of
making one skip instruction skip over another skip instruction, we save writing one of these JRST
instructions:

CAIL 1,"a" ;skip if smaller than lower-case A

CAILE 1,"z" ;skip if smaller than or equal to lower-case Z
JRST NOTLOW ;either smaller than "a" or larger than "2z"
e ;this character is a lower-case letter.

Here is another example of combining instructions that skip in order to effect the AND of logical
expressions. In this case imagine that the variable called I is being used as a subscript of an array that is
defined to have legal subscripts in the range from 1 to decimal 100. We want to make sure that the following
relation is true:

(1 s I) AND (I < 100)

This is easily accomplished by the following sequence:
MOVE 1,1 ;copy the value I to an accumulator
CAIL 1,1 ;skip if I is too small

CAILE 1,144 ;skip if I is less than or equal to decimal 100
JRST ARYERR ;jump to Array Subscript Error routine

By the way, this is equivalent to the Pascal statement:3

IF (I < 1) OR (I > 100) THEN GO TO ARYERR

6.2.3. AOBJP and AOBJN

The AOBJ (Add One to Both halves of the accumulator and Jump) instructions allow forward indexing
through an array while maintaining a control count in the left half of an accumulator. Use of AOBJN and
AOBJP can reduce loop control to one instruction.

AOBJN C(AC) := C(AC)+<1,,1>; If C(AC) < 0 then PC := E;
AOBJP C(AC) := C(AC)+<1,,1>; If C(AC) 2= 0 then PC := E;

In the typical use of the AOBJN instruction, the left half of an accumulator is set to the negative of the

3But, in Pascal there are no symbolic labels.

DATA MOVEMENT AND LOOPS ~ 57

desired number of iterations. The right half of the accumulator is usually initialized either to zero (the MOVSI
instruction is good for this) or else it is set to the first address of an array.: An application example to
demonstrate the AOBJN instruction will appear in the discussion of loops that follows. Further
demonstrations will be given in the larger examples.

6.3. CONSTRUCTING PROGRAM LOOPS

These instructions, the jumps, the skips, and the compares, are quite useful in the construction of
program loops. Some simple examples will be shown, as well as the improvements that are possible.

6.3.1. Forward Loops

One of the most frequent loop constructions starts the loop variable at some small constant and counts it
by one up to some maximum. This is the usual case in Fortran DO loops and Pascal FOR statements. There
are a variety of ways to implement this function. In many cases, it is a good idea to keep the loop variable in
an accumulator for easy access to it. The following is an example of one way to do this:

MOVEI 12,5 ;Initial count value is 5§
LOOP: :Jdump back to here to perform
; the function that is being repeated
ADDI 12,1 ;add the constant 1 to the accumulator
CAIG 12,7 ;End test. Skip if the contents of 12 are
H greater than 7
JRST LooP ;1ess than or equal to 7, repeat LOOP function
RN ;leave loop '

In this example, the loop variable, kept in accumulator 12, takes on the values 5, 6, and 7. As soon as
the contents of the accumulator exceed 7, the CAIG instruction will skip, and the program will leave this loop.

This loop can be generalized in several ways. If a variable contains the initial lower bound, then the
MOVE I that precedes the label LOOP can be changed to a MOVE that initializes the accumulator with a copy of
that variable. Similarly, if the upper bound were in a variable, the CAIG could be changéd to CAMG. The
following is an example to display this modification:

MOVE 12,L0 ;:Initialize count value to lower bound

LOOP: i ;Jump back to here to perform
; the function that is being repeated
ADDI 12,1 ;add the constant 1 to the accumulator
CAMG 12,HI :Skip if the AC 1is greater than high bound
JRST LooP) ;the AC is smaller than high bound, repeat

It should be noted that this loop will execute at least once, even though the high bound might be smaller
than the low bound. This is typical of the way that the Fortran-IV language implements DO loops.4

As long as the step size is one, we can save one instruction by making this code (i.e., instruction sequence)
more compact:

4A new standard for the Fortran language, Fortran-77, specifies that DO loops may avoid executing entirely. At the time this book is
being written, the old Fortran-IV standard continues in widespread use.

58 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

MOVEIL 12,5 ;Initial count value is §
LOOP: ;Jump back to here to perform
; the function that is being repeated
CAIGE 12,7 ;End test. Skip if the AC is greater than 6
AOJA 12,L00P ;Was LT 7. Increment & repeat LOOP function

By rewriting this loop’s end test, we have saved an instruction. Moreover, the instruction that we saved
was one that normally would have been executed every time through the loop.

The first example showed that incrementing the loop index, testing for loop termination, and jumping
back to the top of the loop could be thought of as three separate functions. This improved way of doing
things bundles the increment and jump into one instruction. With respect to the operation of this loop, there
is one further difference. In the first example, the loop was executed for accumulator 12 containing the
values 5, 6, and 7. The same is true in the example that uses AOJA. However, at loop exit, in the first case,
the accumulator has been incremented to 10 (octal); in the second case, our loop that uses AOJA avoids
incrementing the accumulator at the end of the loop, so register 12 is left at 7 when the loop exits.
Depending on the instructions that follow this loop, that difference may or may not be significant.

There are other ways to implement loops. By placing the test at the end of the loop (called a bottom test)
we force the program to perform the repeated function at least once. If this is objectionable, the test can be
moved to the beginning (or fop) of the loop. The top test loop is characteristic of Pascal and the Algol-style
languages. Here is an example of one implementation of the top test loop:

MOVE 12,L0 ;initial lower bound
LOOP: CAMLE 12,HI ;compare to upper bound

JRST LOOPX ;exit>from the loop

. e . ;the instructions to repeat

ACJA 12,L00P ;increment count, jump to the Toop top
LOOPX: ;here when done.

Although three instructions are used inside the loop to effect control, it should be noted that only two of
them are executed as part of the loop. The instruction JRST LOOPX is executed only once to escape from the
loop.

6.3.2. Applying AOBJN

Sometimes the best way to accomplish a forward loop is to use the AOBJN instruction. AOBJN is
especially useful in those circumstances where indexing is required also. For example, to increment the 12
(octal) words starting at TABLE, you could write the following loop:

MOVSI 1,-12 ;Initialize register 1 to -12,,0
LOOP: AOS TABLE(1) sincrement one array element.
AOBJN 1,LOOP ;increment both the index and the

;control. Loop until the AOS has
:been done 12 (octal) times.

In this loop, the left half of register 1 counts up from -12 to 0. The loop is executed while the left half is
negative (i.e., for the left half values -12 through -1, a total of 12 times). Meanwhile, the right half of the
accumulator is counting up, from 0 to 12; the values 0 through 11 appear in the right half of register 1
during the execution of this loop.

Since effective address calculation only considers the right half of the index register, we have
accomplished references to TABLE+0 through TABLE+11. The loop that uses AOBJN contains fewer
instructions and is usually supcrior to the loop that uses CAIGE and AQJA:

DATA MOVEMENT AND LOOPS 59

MOVEI 1,0
LOOP: AOS TABLE(1)
CAIGE 1,11

AQJA 1,L00P

One additional technique should be mentioned. Suppose that the function “increment every element of
an array” is needed at several places in the program and that it is needed for several different arrays. Then we
could write a subroutine that performs this function, in which the size of array and the name of the array are
carried in register 1 as an argument. (The details of calling subroutines and returning from them will be
discussed in section 13.2, page 126.)

CX: ~-12,,TABLE ;the negative size, and address of the array.
MOVE 1,CX ;initialize register 1
CALL LOOP ;Call LOOP as a subroutine

LOOP: A0S 0(1) sincrement one array element.
AOBJN 1,L00P ;increment the index and the control count.
RET ;return from this subroutine.

The key difference between this example and the previous example of AOBJN is that the reference to
TABLE has been removed from the interior of the loop. This is important because some other piece of the
program could initialize register 1 with some other count and array address. Then, by calling this subroutine
this same function could be applied to a different array.

6.3.3. Backwards Loops

It is easy to run the loop index backwards by means of the SOJ class instructions. Sometimes it is
possible to make either zero or one the last value of index variable. In such cases the SOJG or SOJGE
instructions are quite useful. Some examples will appear in the discussion of nested loops.

6.3.4. Nested Loops

Nested loops are quite simple to do. For example, let us write a program to produce the triangular
pattern depicted below:
LEL XX
L L 2 3
* &k

*e
*

There are several ways to approach this problem. Perhaps the simplest is to number the lines, from top
to bottom, 5 through 1. Then, for each line number, we must output exactly that number of asterisks. We
will attempt to write the assembly language program corresponding to the Pascal program that writes this
triangle:

60 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

PROGRAM TRIANGLE;
VAR i, j : INTEGER;
BEGIN
FOR i := 5 DOWNTO 1 DO
BEGIN
FOR j := i DOWNTO 1 DO WRITE('*');
WRITELN
END
END.

First, we need an outer loop that counts the lines from 6 down to 1. This is an easy loop to implement.
We will use the SOJG instruction:

MOVEI 10,5 ;let register 10 contain the line number.
;set it to 6.
LINE: C e ;print one line
S0JG 10,LINE ;decrement the 1ine number held in 10.

;s If the result is positive, do another 1line

Next, we have to install the inner loop. This loop is responsible for printing one line. The environment
to which the inner loop must be accommodated is that register 10 contains the line number (which is also the
number of asterisks to print). '

Again, we use SOJG as the appropriate instruction. Since register 10 is busy counting the line number,
we must write the inner loop to avoid modifying register 10. Not only is register 10 important to the outer
loop, it is important to the inner loop: it specifies the number of asterisks to type. So, our first necessary
action is to copy the data in register 10 to some other place; the inner loop will use and modify the copy,
leaving register 10 unchanged.

LINE: MOVE 11,10 ;copy the line number to register 11
STARS: . . . ;Print one asterisk
S0JG 11,STARS ;decrement star count, loop if more
e . ;print carriage return and line feed

; to prepare for the next line.

These two fragments can be put together:

_MOVEI 10,5 ;let register 10 be the Tine number ..
;set it to 6.
;print one 1line

LINE: MOVE 11,10 ;copy the line number to register 11
STARS: . . ;Print one asterisk

S0JG 11,STARS . ;decrement star count, loop if more
e ;print carriage return and line feed
; to prepare for the next line.
S0JG 10,LINE ;decrement the 1ine number held in 10.
; If the result is positive, do another line

The remainder of the program can be added. This program can be typed in and run.

DATA MOVEMENT AND LOOPS 61

TITLE TRIANGLE Example 2-A
Comment $ Program to print a Triangle $

START: RESET

MOVEI 10,5 ;let register 10 be the line number.
;set it to 6.
;print each line
LINE: MOVE 11,10 ;copy the line number to register 11
;print the stars on each line
STARS: OQUTSTR ASTER ;Print one asterisk
S046G 11,STARS ;decrement star count, loop if more
OUTSTR NEWLIN ;print carriage return and line feed. end line.
S0JG 10,LINE ;decrement the Tine number held in 10.
; If the result is positive, do another 1line
EXIT ;stop here

ASTER: ASCIZ /*/

NEWLIN: ASCIZ /

/

END START
Perhaps the preceding example is sufficient to demonstrate the reasoning process necessary for

constructing loops in assembly language. The problem of writing the triangle is decomposed into a repetition
of the problem of writing one line. The problem of writing one line is decomposed into the problem of
writing the correct number of stars and then writing the end of line characters.

The decomposition of this problem in assembly language follows the same outlines as problem solving in
Pascal or Fortran. The major difference in assembly language is that the level of detail is much greater.
Careful attention must be paid to the interface between the instruction segments that solve each subproblem.

At the risk of over-doing examples, let us try one more problem. Again the pattern is a triangle, but it’s
quite a change from the previous one.

LA E R 2 T3
EhRRRS
TITL
11
T
T

»

This pattern contains seven lines. Each line has seven characters in it. If these lines were numbered from
the top to the bottom, 0 to 6, then the line number would also be the same as the number of spaces to write at
the front of the line. The number of stars is whatever is necessary to fill out the seven characters on each line.

The inner loop will write seven characters (columns 0 to 6) on each line. We will install a test in the
inner loop so that when the column number is less than the line number, blanks are written. Stars are written
when the column number is larger than (or equal to) the line number. The Pascal program that performs this
function should make clear what we are doing:

PROGRAM TRI;

VAR i, j : INTEGER;

BEGIN

FOR i := 0 TO 6 DO BEGIN
FOR j := 0 TO 6 DO IF j < i THEN WRITE(' *) ELSE WRITE('*');
WRITELN
END

END.

The outer loop will run a variable up from 0 to 6:

62 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

MOVEI 12,0 ;sAC 12 contains the line number
LINE: N ;Print one line
CAIGE 12,6 ;have we done enough lines?
AQJA 12,LINE ;no, increment the line number & loop

The inner loop is somewhat more complex. We must print seven characters on each line. These can be
numbered left to right 0 to 6. A character loop is needed to step through each character (or column) number.

LINE: MOVEIL 13,0 ;character counter
CHAR: I sprint one character
CAIGE 13,6
AOJA 13,CHAR
e ;print carriage return and line feed.

To make the decision about which character, space or asterisk, to print in each position, we observe that a
space should be printed if the character count (register 13) has a smaller value than the line count (register
12). This is easily coded (i.e., written as an instruction sequence):

CAML 13,12 ;skip if character count is
;1ess than the line count
JRST PSTAR ;go print a star
. e . : ;print a blank
JRST ELIN ;test for end of line
PSTAR: . . . ;Print a star
ELIN: ;perform end-of-1ine test

These fragments can be combined (and augmented) as follows:

TITLE TRI AGAIN - Example 2:3

Comment $ A different triangle §

START: RESET ;begin execution here
MOVEI 12,0 ;initial line count
;here to print each line
LINE: MOVEI 13,0 ;initial character count
;print one character on a line
CHAR: CAML 13,12 ;skip if printing spaces
JRST PSTAR ;go print a star
QUTSTR BLANK ;print a blank
JRST ELIN ;test for end of line
PSTAR: OQUTSTR ASTER ;print a star
ELIN: CAIGE 13,6 ;have we reached the end of 1ine?
AOJA 13,CHAR ;print the next character
OUTSTR NEWLIN ;print the carriage return & 1line feed
CAIGE 12,6 ;finished all lines yet?
AOJA 12,LINE ;yno. do more.
EXIT ;all done

BLANK: ASCIZ / /

ASTER: ASCIZ /%/

NEWLIN: ASCIZ /

’ END START

An alternative approach to controlling the execution of this program is presented below. Also, a new

MUUO, OUTCHR, OUTput CHaRacter is presented. In this approach, we assume that we will have to print a
blank character. At the label CHAR the program loads a blank character into register 1. Then, the program
determines whether this assumption was right: the CAML instruction will skip if we are close to the left side of
the line. However, if the program has already placed enough blanks on the line, the CAML does not skip and
an asterisk character is loaded into register 1, obliterating the blank that was there. Then, the OUTCHR

MUUO is used to print the one character that it finds in register 1.

DATA MOVEMENT AND LOOPS 63

CHAR: MOVEI i,"" ;sAssume we must send a blank
CAML 13,12 :Skip if near front of 1line
MOVEI 1,"*" ;Past the blanks, print a star
OUTCHR 1 ;Send either a blank or a star
CAIGE 13,6 ;Have we done enough here yet?

AOJA 13,CHAR ;:Not yet. Bump count and loop
;write end of line, do next line

We have already mentioned that the notation "*" causes MACRO to assemble the number
corresponding to the asterisk character. The OUTCHR MUUO sends the one character it finds at the right-end
(bits 29:356) of the word at its effective address. Note too that although address 1 is an accumulator, it

appears in the address field of the OUTCHR instruction.
6.4. EXERCISE

Write a program that uses the conditional jumps, skips, compares, etc, to type the following pattern on
your terminal:

»
L2 2]
ook ok
L2 RS X2)
LR L2222 2
LR R E RS L)
LA E SR XL L LD L
BRERBEKRERR
KAEREEERER
o e ool ook &
LEE X L)
L1
*

Some hints:

e You haven’t been told how to do arithmetic. If you had a desire to write, for example, a FOR
statement such as FOR j:=0 TO 19-i DO, you could not form the difference 19-i.
Instead, you can transformitto be FOR j:=i TO 19 DO.

e You haven’t been told how to multiply by two. One way to do it is to execute some piece of
program twice. Another approach might be to output two asterisks at a time instead of one.

e Assume there are no blanks to the left of the longest line of asterisks.

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

TERMINAL INPUT 65

Chapter 7
Terminal Input

We turn our attention next to the problem of obtaining character input from the terminal. The program
will prompt for a line, read the line, and then type the line back to the user’s terminal. The program will loop
until the user types a line in which the first character is either a carriage return or a line feed. When an empty
line is typed in, the program will stop itself.

7.1. THEINCHWL MUUO

We will use the INCHWL MUUO to wait for a complete line of terminal input and then read the terminal
characters one by one. When the program executes INCHWL, TOPS-10 makes the program wait until the user
types a complete line on the terminal. Then, TOPS-10 reactivates the program and returns to it the first
character from the line. INCHWL returns the character right-adjusted in the word at its effective address. On
a subsequent call to INCHWL, the program will not be made to wait; the next available character on the line
will be returned immediately.

7.2. THEECHO PROGRAM

We begin the process of writing the Echo program, as described at the beginning of this chapter, by
writing an outline.

7.2.1. Program Outline

We write an outline to reveal the structure of the proposed program. Not every detail needs to be filled
in. From the program outline we can tell if the structure is adequate to serve the need. We will check the
outline to determine if it addresses all the concerns stated in the problem description.

For the Echo program we propose the following outline:

START: initialize the program
GETLIN: initialize for another input Tine
CHLOOP: obtain a character and process it
‘ if not end of line, jump to CHLOOP
if not empty line, jump to GETLIN
EXIT

The outline leaves some questions unanswered. For example, the outline does not specify the method by
~ which the program identifies an empty line. These details are important, and they will be supplied in due
course. : '

66 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

7.2.2. Supplying Details
Once a satisfactory outline is made, we can turn our attention to any portion of it and work on the details.
We will begin at START and supply some of the “boilerplate” needed with any program:

TITLE Echo a Line of Input. Example 3

START: RESET ;initialize the program
OUTSTR GREET ;send a friendly message
GETLIN: dinitialize for another input line
CHLOOP: obtain a character and process it
if not end of 1ine, jump to CHLOOP
if not empty 1line, jump to GETLIN
EXIT

GREET: ASCIZ/Welcome to the Echo Program

END START

7.2.3. Literals

Before we contine supplying details of how this program is constructed, we digress to the entralling
subject of literals in MACRO-10. Before we define what we mean by a literal, we offer an example.

Every time that we have used OUTSTR we have had to invent a label for the message that we wanted to
send. We have just written an OUTSTR in which we’ve repeated this practice:

OUTSTR GREET

GREET: ASCIZ/Welcome to the Echo Program
/

A literal saves us from having to write the label and make a reference to it. We will rewrite this sequence
making use of a literal, thus:

OUTSTR [ASCIZ/Welcome to the Echo Program
/]

The square brackets denote a literal. A literal is a word or group of words that is specified by telling the
assembler what the words contain. When you write a literal, MACRO replaces it with the address where it
will store the contents that you specified. '

In this case, by putting the ASCIZ inside a literal you are telling the assembler to

e Make a group of words that contain the binary representation of the material found within the
square brackets.

e Put those words somewhere, in consecutive locations. The first location used is the address of
the literal.

o Store the address of the literal in the place where the literal text appears. That is, MACRO
supplies the address of where it put the material that was present between the square brackets.

A literal is just a way to avoid having to think up a name for a label, and having to write the label twice.
More than one line and more than one word can appear in a literal.

It is vital that you always consider the contents of a literal to be a constant. Never allow the execution of

TERMINAL INPUT 67

your program to change the contents of a literal. There are two reasons for this. First, the user should be able
to restart the program. If literals have been changed, the program will not be restartable. Second, if two
literals have the same value, the assembler builds only one copy. The one value is shared among all the places
in your program that refer to that value. If some part of a program changes that value, that change affects all
other places that refer to that value.

You may place instructions in literals, but the use of literals for vast numbers of instructions is a poor
practice; it leads to difficulties in debugging. Literals can be nested. That is, a literal can appear inside
another literal.

7.2.4. Character Processing

It is now time to focus our attention on the processing done by this program. As we add more detail, we
may discover a need to revise the outline that we made. In this program, we have added detail to the outline,
and discovered a few changes in detail. The outline has been revised in the vicinity of CHLOOP as follows:

CHLOOP: obtain a character
if this character is a 1ine feed, jump to EOLN
print the character
jump to CHLOOP

EOLN: perform any end-of-1ine C]eanup
if not empty 1ine, jump to GETLIN
EXIT

The revision of the outline occurs not because the original outline was particularly faulty, but because as
we come to examine the outline at this level of detail, it is necessary to unfold the meaning of vague
expressions such as “read and process a character.” Although lack of detail somewhat obscures this revision,
we are much closer to the level of detail necessary for writing the program.

As we examine the outline, some of the program becomes apparent. We will use the INCHWL MUUO to
obtain a character from the input line. INCHWL will place the character in the word that the INCHWL
addresses. This can be any memory word. However, looking ahead to the point in the program where we
must determine if the character is a line feed, we can expect to need one of the compare instructions. Because
the compare instructions require that one of the operands be present in an accumulator, we will write the
INCHWL to bring the character into an accumulator. Our decision about which accumulator to use appears to
be quite unconstrained; we’ll use register number 1.

We have made considerable progress thus far. Since the character will appear in register 1, we know
what instruction will be used to print the character. We will now fill in the outline where we know how:

68 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

TITLE Echo a Line of Input. Example 3

START: RESET ;initialize the program
OUTSTR [ASCIZ/Welcome to the Echo Program
/] :send a friendly message
GETLIN: initialize for another input line
CHLOOP: INCHWL 1 ;obtain a character
if this character is a line feed, jump to EOLN
OUTCHR 1 ;print the character
JRST CHLOCOP ;loop to process another character
EOLN: perform any end-of-line cleanup
if not empty line, jump to GETLIN
EXIT
END START

This is beginning to look quite a lot like a program. Notice that we have carefully recycled our outline by
turning it into the comments that go with the code.

7.2.5. Testing for the End of the Line

In the DECsystem-10 the end of a line of terminal input is signalled by the presence of a line feed
character. Referring to the table of ASCII characters (section 4.8) we see that line feed is octal 12. The
character that appears in register 1 is right-justified; that is, it is held in bits 29:35. The CAIE or CAIN
instructions are appropriate for making character comparisons. We can replace the portion of the outline that
says “if this character is a line feed, jump to EOLN; with the following fragment:

CAIN 1,12 ;skip unless this is a line feed
JRST EOLN ;this is a 1ine feed. Jump to EOLN
As a user of the DECsystem-10 you are aware that usually you end a line by typing the carriage return

key. When TOPS-10 sees the return key, it adds a line feed after the return. Thus, usually, a program will see
both a carriage return and a line feed when it reads the terminal. However, please note that TOPS-10
considers the line feed to be end of the line, so a program that is searching for the end of a line should not be
satisfied until it finds the line feed. The characters carriage return and line feed are talked about so often that
we refer to them as CR and LF respectively. The usual sequence of both characters is called CRLF.

We are left with the question of what to do when we see a carriage return. The traditional answer, and
one which has been proven efficatious in many applications, is to discard the carriage return.

We will adjust the program to discard the carriage return, by augmenting our fragment thus:

CAIN 1,15 ;skip unless this is a carriage return
JRST CHLOOP ;discard CR: go get the next character
CAIN 1,12 ;skip unless this is a line feed

JRST EOLN ;this is a line feed. Jump to EOLN

Whenever a well-written program wants input from the terminal it will prompt with an informative
message. Even better, a program should be ready to supply help to the user to make the user better able to
decide what function is wanted. Extensive help facilities are beyond the scope of this program. However,
some prompting is within our capabilities. We will add input prompting and other refinements to our
program. The program outline, which is rapidly being transformed into the program itself, now appears as
this:

TERMINAL INPUT 69

TITLE Echo a Line of Input. Example 3

START: RESET ;initialize the program
OUTSTR [ASCIZ/Welcome to the Echo Program
/] ;send a friendly message

GETLIN: OQUTSTR [ASCIZ/Please type a line: /]
initialize for another input line

CHLOOP: INCHWL 1 ;obtain a character
CAIN 1,15 ;skip unless this is a carriage return
JRST CHLOOP ;discard CR: go get the next character
CAIN 1,12 ;skip unless this is a line feed
JRST EOLN ;this is a line feed. Jump to EOLN
OUTCHR 1 ;print the character
JRST CHLOOP ;loop to process another character
EOLN: OUTSTR [ASCIZ/
/] ;add carriage return and line feed
if not empty line, jump to GETLIN
EXIT
END START

7.2.6. Testing for an Empty Line

The one area of the program that still needs work is the test for an empty line. An empty line is a line
that contains either line feed alone, or carriage return and line feed. We will effect this test in the following
way: notice that if any character other than return or line feed appears, then that character will be echoed by
the OUTCHR MUUO. If we simply count the number of times that OUTCHR is executed, if that count is
non-zero then the line was not empty.

We will count the number of times that OUTCHR is executed in register 2. Before we start processing the
line, we should set register 2 to zero. We will replace the JRST that follows the OUTCHR with an AQJA
instruction that unconditionally jumps and which also increments register 2. Thus, register 2 will contain the
count of how many times the OUTCHR has been executed. In the case of an empty line, the OUTCHR is never
executed, and register 2 will be zero. '

Also, we embellish the program somewhat by adding a caption to the echoed line. Note how a SKIPG
instruction is used to avoid printing the caption more than once.

70

START:

/]

sinitialize for

GETLIN:

CHLOOP:

EOLN:
/]

/]

TITLE

RESET
OUTSTR

OUTSTR
MOVEI
INCHWL
CAIN
JRST
CAIN
JRST
SKIPG
OUTSTR
OUTCHR
AQJA

OUTSTR

JUMPG
OUTSTR

EXIT

END

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Echo a Line of Input. Example 3

;initialize the program
[ASCIZ/Welcome to the Echo Program

;send a friendly message
another input line
[ASCIZ/Please type a line: /]

2,0 ;Initialize character Counter

1 ;obtain a character

1,15 ;skip unless this is a carriage return

CHLOOP ;discard CR: go get the next character

1,12 ;skip unless this is a line feed

EOLN ;this is a 1ine feed. Jump to EOLN

2 :Skip unless this is the first time here
[ASCIZ/The 1ine you typed is: /] ;first time: write message
1 ;print the character

2,CHLOOP ;Increase the character count

; and loop to process another character

[ASCI1Z/

;add carriage return and line feed
2,GETLIN ;If 1ine wasn't empty, get another line
[ASCIZ/A11 done.

START

STACK INSTRUCTIONS 71

Chapter 8
Stack Instructions

A pushdown list or stack is a data structure in which items are removed from it (popped) in the reverse
order that they were added to it (pushed). This reversal property, sometimes called last-in, first-out, is quite
important in some algorithms.

The PUSH and POP instructions insert and remove full words in a pushdown list. In the PDP-10, a stack
pointer that describes the location and extent of the area allocated to the pushdown list is usually kept in an
accumulator. This accumulator is referenced in the PUSH and POP instructions. The right half of the stack
pointer addresses the current stack top; the left half of the stack pointer is usually a control count that
describes how many unused locations are available in the stack.

8.1. PUSH INSTRUCTION

The instruction

PUSH AC.E

inserts (pushes) a copy of the word located at the effective address onto the pushdown list that is defined by
the stack pointer contained in the accumulator. This stack pointer is updated to reflect the addition of this
item to the stack.

The accumulator in the PUSH instruction initially addresses the old stack top. A PUSH instruction
changes the stack pointer by adding 1 to both the left and right halves.! The new stack pointer addresses the
new stack top at an address one higher than its previous value; the data at the effective address is copied to the
new stack top. :

If, as a result of the addition, the left half of the stack pointer becomes positive, a pushdown overflow
condition results (but the instruction proceeds to completion). Usually, the left half is initialized to make this
warning mechanism effective.

PUSH C(AC) := C(AC) + <1,,1>; C(CR(AC)) := C(E)

1In the KI10 and later processors, any carry from bit 18 to bit 17 is suppressed.

72 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

8.2. DEFINING THE PUSHDOWNLIST

In the PDP-lO a pushdown list is simply an array of consecutive locations in memory When we use the
stack instructions we must reserve consecutive locations in memory for the pushdown list.

When welspeak of the pushdown list, we mean the one area in a program that has been allocated as a
stack for general data and subroutine returns (see also the PUSHJ and POPJ instructions). When we speak of
a stack, we mean any such area that is used as a stack. Generally, programs will have only one stack area.
However, when complex interactions among the various sections of a program are possible, multiple stacks
may become necessary. For instance, the TOPS-10 operating system requires several different stacks. Each
stack requires a unique stack pointer; multiple stack pointers need not be kept in separate accumulators, but a
stack pointer must be in an accumulator in order to use these instructions to affect it.

8.2.1. BLOCK to Reserve Space

The MACRO assembler provides the BLOCK pseudo-operator to reserve space in memory. The BLOCK
pseudo-op takes one argument, a number or symbolic expression that tells how many words to reserve. For
example, the following fragment reserves 200 octal (i.e., 128 decimal) locations. We label the first location
with the symbolic name PDLIST:

PDLIST: BLOCK 200 :Reserve space for the stack

The symbol PDLIST labels the first location reserved by the BLOCK pseudo-op. Symbolically, the locations
in this region may be referred to as PDLIST+0, PDLIST+1, PDLIST+2, etc., through PDLIST+177:

PDLIST+0
PDLIST+1
PDLIST+2

PDLIST+176
PDLIST+177 A
It-is important to note that when we write something like PDLIST+25 we mean the value of the symbol

PDLIST plus octal 25; in the case of a label such as PDLIST, the value of the symbol is the location or
address of PDLIST at runtime. In most high-level languages such an expression would mean the contents of
the location called PDLIST plus decimal 25. Apart from the difference between octal and decimal numbers,
the interpretation of symbolic names is quite different. In the assembler, symbols usually refer to addresses of
things. In most high-level languages, symbols in expressions usually refer to the contents of addresses.

Another way of looking at the difference is that the assembler can not possibly compute anything that has
to do with the contents of memory locations at runtime. That is what your program is for. If you want to
compute the contents of location PDLIST plus octal 25, you must write something like

MOVE 5,PDLIST
ADDI 5,25

Again, the assembler does arithmetic based on the values of symbols. These values are often addresses. This
arithmetic has nothing at all to do with what your program can compute at runtime.

STACK INSTRUCTIONS ‘ 73

8.3. INITIALIZING THE STACK POINTER

From the description of the PUSH instruction it is possible to deduce how to initialize a stack pointer.
Since the stack pointer always points at the current stack top, the initial pointer, which describes an empty
stack, should point to one address before the first location allocated to the stack area. Symbolically, the right
half of the stack pointer should be initialized to the address PDLIST-1,

The left half of the stack pointer can be used as a control count. In the most usual case, we initialize the
control count to be negative the number of words allocated to the stack area. In short, we can initialize the
accumulator that will be used to hold the stack pointer by means of one instruction:

MOVE 17,[-200,,PDLIST-1]

8.3.1.I0WD Pseudo-Operator
It happens that there is a pseudo-operator called I0WD that assembles this format of descriptor word.
The following statement is equivalent to the previous:

MOVE 17,[IOWD 200,PDLIST]

The I0WD ps:eudo-op assembles the negative of the first argument in the left half, and one less than the
second argument in the right half.?

8.3.2. Defining Symbolic Names

One of the things about programming that is certain is that programs change. Note that we have used the
length of the stack in two places. We arbitrarily selected 200 as the length of the pushdown list in the BLOCK
pseudo-op. Having made this choice, we find we must use 200 when we describe the initial stack pointer.
Fundamentally it is a bad practice to sprinkle constants throughout a program. The decision to use the
number 200 as the stack size was purely arbitrary, and it was made without any information about what the
stack would be used for. It would not be surprising then to discover that 200 was an inappropriate size.

If we ever wanted to change the stack size in this program we would have to go back, reread the program
carefully and find all the places where the number 200 appears as the pushdown list length and change them.
It might be a very difficult task.

To avoid the use of constants throughout the program, MACRO allows us to define new symbolic names
and assign to these symbols the values that we choose. We will define a symbol whose value is the desired
length of the stack. Then, instead of writing 200 everywhere, we write the name of this symbol instead.

We can define a symbol by writing the symbol name, an equal sign, and the value that we want the
symbol to have, e.g., PDLEN=200. This form of definition is called an assignment (in contrast to labels that
are defined with a colon). We will ask MACRO to make such a definition. However, by writing two equal
signs we instruct MACRO to suppress this symbol so the debugger will not type it out.? To our program
fragment we add the definition of the symbolic name PDLEN, signifying the length of the pushdown stack:

7'I‘he name I0WD means Input/Output descriptor Word. The PDP-10 block input and output instructions (BLKO and BLKI) use this
kind of descriptor. Moreover, some of the TOPS-10 input and output operations are characterized by descriptors of this format.

3See the discussion of DDT, section 10, page 93.

74 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

PDLEN==200 ;define the size of the pushdown list

PDLIST: BLOCK PDLEN ;allocate space for the pushdown list

MOVE 17,[I0OWD PDLEN,PDLIST]

There is one important restriction on the use of symbolic names such as PDLEN. The assembler insists
that the argument to the BLOCK pseudo-op be completely defined by the time BLOCK is seen. This dictates
that we must place the definition of PDLEN before the BLOCK pseudo-op.

8.3.3. Symbolic Names for Accumulators

Programs that use a pushdown list usually make a permanent allocation of one accumulator to hold the
stack pointer. Conventionally, register 17 is used for the stack pointer.4 Just as we wrote PDLEN==40 to
define a symbolic name for the length of the stack, we can write P=17 to define the symbolic name P (short
for pushdown stack pointer) as having the value 17. Then when we write the symbol P, for instance

P=17

MOVE P,[IOWD PDLEN,PDLIST]

the assembler will treat the instruction as though we had written

MOVE 17,[IOWD PDLEN,PDLIST]

When we define a symbolic name for an accumulator we use only one equal sign. This makes the
symbolic name available to DDT for typeout during symbolic disassembly.

8.4. POP INSTRUCTION

The POP instruction undoes the effect of PUSH as follows: the contents of the word at the top of the stack
(addressed by the right half of the accumulator) are copied to the effective address. Then the stack pointer in
the accumulator is decremented by subtracting 1 from both halves.”

If the accumulator becomes negative as a result of the subtraction, a pushdown overflow results. This
condition is actually an underflow, but the hardware calls it overflow anyway. Although this warning
mechanism exists, it can be used only at the expense of abandoning the warning available from the PUSH
instruction. In most cases, the condition of stack overflow from too many pushes is considered to be most
likely and most damaging. Therefore, it is far more common to see programs guard against stack overflow
than stack underflow. '

POP C(E) := C(CR(AC)): C(AC) := C(AC) - <1,,1>

4The hardware allows any accumulator to be used as a stack pointer. It is best to avoid register 0, as sometimes a stack pointer is
needed as an index register.

51n the K110 and later processors, any carry from bit 18 to bit 17 is suppressed.

STACK INSTRUCTIONS 75

8.5. ADJSP - ADJUST STACK POINTER

While we are on the subject of stacks, it seems appropriate to mention ‘the ADJSP instruction. This
instruction exists in the KLL10 and later processors. The ADJSP instruction adds E (the effective address) to
each half of the specified accumulator. There is no carry between halves of the accumulator.

If E is positive, this instruction effectively allocates space on the stack. If E is negative, this instruction
deallocates space on the stack. If a negative adjustment changes CL(AC) from positive to negative, or if a
positive adjustment changes CL(AC) from negative to positive, then a stack overflow condition is reported.

ADJSP C(AC) := C(AC) + <E,,E>: Stack Overflow is possible

8.6. EXAMPLES OF PUSH AND POP

Stacks are useful in recursive subroutines and for temporary storage. Since we are not quite ready to talk
about recursive subroutines, for the present we shall discuss only the use of stacks for temporary storage.

Let us examine some pushes and pops. Suppose we have executed the instruction

MOVE 17,[I0OWD 40,1234]

Here location 1234 is the first word of an array in memory that we have reserved for our stack. Register 17,
the stack pointer, will contain the value -40, ,1233 or 777740, ,1233.
We set up memory to contain some data and a short program:

Memory Central Processor
|
000017 777740,,1233 | | |
| | Program |
000454 -PUSH 17,1000 | | Counter |
000455 PUSH 17,1103 | | 000454 |
000456 POP 17,706 | | I
000457 PUSH 17,1437 |
000460 POP 17,720 |
000461 POP 17,762
000705 undefined
000720 undefined
000752 undefined
001000 125
001103 525262
«Stack top (1233)
001234 undefined
001235 undefined
001437) -1

76

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

When this program is executed, the PUSH instruction in location 454 will advance the stack pointer in
register 17; register 17 now addresses location 1234, the first location in the stack. The PUSH instruction
goes on to read the word at location 1000 and copy it to the word addressed by the stack pointer. As a result
of executing the PUSH in location 454, the CPU and memory now have the following appearance:

000017
000454
000455
000456
000457
000460
000461
000705
000720
000762
001000
- 001103

001234
001235

001437

Memory

777741,,1234
PUSH 17,1000
PUSH 17,1103
POP 17,705
PUSH 17,1437
POP 17,720
POP 17,752
undefined
undefined
undefined
125
625252

125
undefined

-1

Central Processor

|

| Program
| Counter
| 000455
|

«Stack top (1234)

4

Note that the stack pointer in register 17 has been changed. Also, location 1234, the current stack top,
has been changed to be a copy of the data that is in location 1000. The stack pointer generally addresses the

current stack top.

~ Next, the PUSH in location 455 is executed. The stack pointer is advanced and the data at location 1103
is copied to the stack. The program counter is incremented to address the instruction at location 456:

000017
000454
000455
000456
000457
000460
000461
0007056
000720
000752
001000
001103

001234
001235

001437

Memory

777742,,1235
PUSH 17,1000
PUSH 17,1103
POP 17,708
PUSH 17,1437
POP 17,720
POP 17,752
undefined
undefined
undefined
126
525252

1256
525252

-1

Central Processor

Program
Counter
000456

«Stack Top (1235)

STACK INSTRUCTIONS

T

The POP instruction at location 456 undoes the previous PUSH by copying data from the stack to
location 705. The stack pointer is backed up to reflect the removal of an item from the stack. Note that the
popped item is still present in the memory allocated to the stack; it is considered to be removed from the stack
because the stack pointer no longer includes that item.

000017
000454
000455
000456
000457
000460
000461
000705
000720
000752
001000
001103

001234
001235

001437

The next PUSH obliterates the stale copy of the item that we just removed from the stack:

000017
000454
000455
000456
000457
000460
000461
000705
000720
000752
001000
001103

001234
001235

001437

Memory

777741,,1234
PUSH 17,1000
PUSH 17,1103
POP 17,705
PUSH 17,1437
POP 17,720
POP 17,752
525252
undefined
undefined
1256
5265252

125
525252

-1

Memory

777742,,1235
PUSH 17,1000
PUSH 17,1103
POP 17,705
PUSH 17,1437
POP 17,720
POP 17,752
525262
undefined
undefined
125
525252

125
-1

-1

Central Processor

Program
Counter
000457

«Stack Top (1234)

=z

-

Central Processor

Program
Counter
000460

«Stack Top (1235)

78

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Now, we execute the POP at location 460. The stack unwinds:

Memory Central Processor

000017 777741,,1234 | |
| Program |

000454 PUSH 17,1000 | Counter |

000455 PUSH 17,1103 -] 000461 |

000456 POP 17,705 | |

000457 PUSH 17,1437

000460 popP 17,720

000461 POP 17,752

000705 5256252

000720 -1

000752 undefined

001000 125

001103 525252

001234 125 «Stack Top (1234)

001235 -1

001437 -1

Another POP succeeds in emptying the stack:

Memory Central Processor
| |
000017 777740,,1233 | | | |
| | Program | |
000454 PUSH 17,1000 | | Counter | |
000455 PUSH 17,1103 | | 000462 | |
000456 POP 17,705 | 1 | |
000457 PUSH 17,1437 { |
000460 POP 17,720 | |
000461 POP 17,752
000705 525252
000720 -1
0007562 125
001000 125
001103 525252
«Stack Top (1233)
001234 125
001235 -1
001437 -1

Again, the essence of a stack is that the last thing added will be the first thing removed. Also, although
the operations we perform on the stack are called PUSH and POP, the data on the stack doesn’t move; it is the
stack pointer that changes to indicate the current stack top.

In the PDP-10, stacks grow toward higher addresses.
consecutively increasing addresses.

As items are pushed, they are placed in

A more usual example of the use of stacks appears below. If a block of code is expected to modify some
accumulators (or other locations) that you must preserve, one neat place to save them is on the stack:

STACK INSTRUCTIONS : 79

PUSH P,A ;save accumulator A on the stack

PUSH P,COUNT ;save location COUNT on the stack

e ;instructions or subroutines that modify
NN ;accumulator A and the memory location COUNT.
POP P,COUNT :restore COUNT

POP P,A ;restore A

v e e

It is important to notice that because A is pushed before COUNT, it is necessary to pop COUNT before popping
A.

8.7. EXAMPLE 4-A

In this example we read a line and reverse it. A pushdown list is used to reverse the order of characters in
the line.S

Let us start with an outline, similar to the one we made for the previous example:

START: initialize the program
GETLIN: initialize for another input line
CHLOOP: obtain a character

if end of line, jump to EOLN

add character to the stack

jump to CHLOOP

EOLN: if the line is empty, EXIT
POPIT: remove a character from the stack
print the charater
if the stack isn’t empty, jump to POPIT
finish output 1line
jump to GETLIN
We have elected to learn from our experience with example 3: This outline reflects some of what we have
learned from doing that example. We start with an outline that is somewhat more detailed than we used at

the start of example 3.

We will fill in this example by copying as much as we think appropriate from example 3. Much of the
outline is replaced with actual-code:

6Perhaps this is a silly and contrived example. However, we’ll have good reason to employ a stack for this purpose when we come to
the DECOUT subroutine in section 17.3.

30

A=1
START:

/]

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

TITLE Reverse a Line of Input. Example 4A
;symbolic names for accumulators

RESET ;initialize the program
OUTSTR [ASCIZ/Welcome to the Reverse Program

' ;send a friendly message
initialize stack

;initialize for another input line

GETLIN:
CHLOOP:

EOLN:

POPIT:

STOP:
/1]

OUTSTR [ASCIZ/Please type a line: /]

INCHWL A ;obtain a character

CAIN A,15 ;skip unless this is a carriage return
JRST CHLOOP ;discard CR: go get the next character
CAIN A,12 ;skip unless this is a line feed

JRST EOLN ;this is a line feed. Jump to EOLN
add character to the stack

JRST CHLOOP ;loop to obtain another character

if the line is empty, jump to STOP

OUTSTR [ASCIZ/The reversed line is: /]

remove a character from the stack

OUTCHR A ;print the charater

if the stack isn't empty, jump to POPIT

finish output line .)

JRST GETLIN ;go get another dinput Tine

OUTSTR [ASCIZ/A11 done.
EXIT

END START

One change from example 3 is that we have’édopted a symbolic name for register 1. We assign to the
symbol A the value 1. Now, when we refer to A the assembler will use the value 1. Symbolic names for
accumulators are useful. Often, they have some mnemonic significance; also, symbol names appear in the

cross-reference listing. Hereafter, all our accumulators will have symbolic names.

We have already explained that we are going to use a pushdown list to effect the reversal of the
characters. In order to use a stack, we must set aside one accumulator for the stack pointer. Also, we must
allocate some storage space to the stack. Finally, we had better initialize the stack pointer before we get to the

code at CHLOOP. All of this is accomplished by the following augmentation of the outline:

STACK INSTRUCTIONS . 81

TITLE Reverse a Line of Input. Example 4A

A=1 . ;symbolic names for accumulators
P=17 ;register for the stack pointer
PDLEN==200 ;room for 128 characters
PDLIST: BLOCK PDLEN ;reserve space for the stack
START: RESET ;initialize the program

OUTSTR [ASCIZ/Welcome to the Reverse Program
/] :send a friendly message

MOVE P,[IOWD PDLEN,PDLIST] ;initialize stack pointer
;initiatize for another input line

GETLIN: OUTSTR [ASCIZ/Please type a line: /]

CHLOOP: INCHWL A ;obtain a character
CAIN A,15 ;skip unless this is a carriage return
JRST CHLOOP :discard CR: go get the next character
CAIN A,12 ;skip unless this is a line feed
JRST EOLN ;this is a line feed. Jump to EOLN
add character to the stack
JRST CHLOOP ;loop to obtain another character

EOLN: if the line 1is empty, jump to STOP
OUTSTR [ASCIZ/The reversed line is: /]
POPIT: remove a character from the stack
OUTCHR A ;print the charater
if the stack isn’t empty, jump to POPIT
finish output line

JRST GETLIN ;go get another input line
STOP: OQUTSTR [ASCIZ/A11 done.
/1]

EXIT

END START

We can now specify the nature of the input processing done in the loop at CHLOOP. All we have to do is
to add each successive character to the pushdown stack. This is accomplished by the instruction PUSH P, A,
which adds the character in A to the stack. Rather than display the entire program as it has developed, we
show only the interior of the loop:

CHLOOP: INCHWL A ;obtain a character
CAIN A,16 ;skip unless this is a carriage return
JRST CHLOOP ;discard CR: go get the next character
CAIN A,12 ;skip unless this is a line feed
JRST EQOLN sthis is a line feed. Jump to EOLN
PUSH P,A ;save character on the stack
JRST CHLOOP :loop to obtain another character

Let us turn now to the problem of outputting the reversed line. As the stack is popped, it will yield the
characters in reverse sequence. The OUTCHR MUUO will send a character to the terminal. We start our
fragment of output loop with an instruction to pop a character into register A, followed by an OUTCHR
MUUO:

POPIT: . . .
PoP P,A ;get one character from stack
OUTCHR A ;send it to the terminal
JRST POPIT ;Toop.

We must solve the problem of exiting from a loop at the right moment. There are a variety of ways we
might do it. One of the very simplest ways to detect the emptying of the stack is to understand that a
sequence of PUSH instructions followed by the precise same number of POP instructions will return the stack

82 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

pointer to its original value. Since we know the value to which we initially set the stack pointer, we can use a
CAME or CAMN instruction to test for the stack pointer having returned to that value. We want to pop
characters from the stack until the stack is empty. When the stack is empty, the stack pointer will have been
restored to its original value.

There are two ways that we can write this loop. Either we can test the stack pointer before we pop it, or
we can test it afterwards. Compare these methods:

Top Test Bottom Test
POPIT: CAMN P,[IOWD PDLEN,PDLIST] POPIT: POP P,A
JRST OUTFIN OUTCHR A
POP P,A CAME P,[IOWD PDLEN,PDLIST]
QUTCHR A JRST POPIT
JRST POPIT shere when done

OUTFIN: ;here when done

These two loops implement control techniques known as top fest and bottom test, so named because of
the position of the loop exit test. Note that in this case the bottom test is accomplished ir: fewer instructions.
However, bottom test loops are not satisfactory for all applications. In this case, for example, if the line that is
input is empty, i.e., contains no characters apart from a carriage return and line feed, then the bottom test
loop will be faulty. This is because the program will arrive at POPIT with the stack already empty. By
popping the stack before testing for empty, we obtain from the stack a word that we never pushed. Moreover,
since we are testing for the equality of the stack pointer with its initial value, that condition will never
happen.7 The program will loop, transmitting rubbish to the terminal.

In the absence of further adornment, the bottom test loop could not be used in this program. However,
since we said that the program should stop when an empty line in input, we can add some code in front of the
output loop to ensure proper operation of the program.

CAMN P,[I0WD PDLEN,PDLIST] ;is the stack empty?

JRST STOP ;empty line, stop running.
POPIT: POP P,A ;get one character from stack

OUTCHR A . ;send it to the terminal

CAME P,[IOWD PDLEN,PDLIST] ;is the stack empty now?

JRST POPIT » ;not yet. Loop again.

;here when done

During our input processing, we removed the characters carriage return and line feed from the original
input line. We must put them back into the line after outputting the reversed sequence of characters:

CAMN P,[IOWD PDLEN,PDLIST] ;is the stack empty?

JRST STOP ;empty line, stop running.
POPIT: POP P,A ;get one character from stack
OUTCHR A ;send it to the terminal
CAME P,[IOWD PDLEN,PDLIST] ;:is the stack empty now?
JRST POPIT ;jnot yet. Loop again.
OUTSTR [ASCIZ/
/] ;add CR LF to end of the output line

When this fragment is added to our program outline, the program is complete:

7After some 262,144 characters have been typed, the program will escape from this loop, unless some other error supervenes.

STACK INSTRUCTIONS 83

TITLE Reverse a Line of Input. Example 4A

Comment $
Program to reverse the characters on each line of input.
Program will stop when an empty line is input.

This program demonstrates the last-in, first-out property
of push-down stacks.

$
A=1 ssymbolic names for accumulators
P=17 ;register for the stack pointer
PDLEN==200 ;room for 128 characters
PDLIST: BLOCK PDLEN ;reserve space for the stack
START: RESET ;initialize the program

QUTSTR [ASCIZ/Welcome to the Reverse Program
/] ;send a friendly message

;initialize for another input line
GETLIN: OUTSTR [ASCIZ/Please type a line: /]
MOVE P,[IOWD PDLEN,PDLIST] ;initialize stack pointer

CHLOOP: INCHWL A ;obtain a character
- CAIN A,15 ;skip unless this is a carriage return
JRST CHLOOP ;discard CR: go get the next character
CAIN A,12 ;skip unless this is a line feed
JRST EOLN ;this is a line feed. Jump to EOLN
PUSH P,A ;add character to the stack
JRST CHLOOP ;loop to obtain another character
EOLN: CAMN P,[IOWD PDLEN,PDLng] ;is the stack empty?
JRST STOP ;empty line, stop running.
OUTSTR [ASCIZ/The reversed line is: /]
POPIT: POP P,A ;get one character from stack
OUTCHR A ;send it to the terminal
CAME P,[IOWD PDLEN,PDLIST] ;is the stack empty now?
JRST POPIT ;not yet. Loop again.
OUTSTR [ASCIZ/ .
/] ;add CR LF to end of the output 1line
JRST GETLIN) ;go get another input line
STOP: QUTSTR [ASCIZ/A11 done.
/]
EXIT
END START

8.7.1. Summary of Example 4-A

The starting code executes a RESET, sends a greeting message and initializes the pushdown sta}ck.
Register P is used as a stack pointer. As we discussed in the descriptions of PUSH and POP, the stack pointer
is initialized using an IOWD pseudo-op. IOWD forms a word that contains ~PDLEN in the left half and
PDLIST-1 in the right half. The negative count in the left is used as a control count to indicate when the
stack has overflowed the area allocated to it. The address PDLIST-1 in the right half of P points to one word
before the first word of the stack. Recall that the first thing that PUSH does is to add one to both halves of P
to determine where to store the data that is being pushed. When PDLIST-1 is incremented by one, it will
address precisely the first word of the stack area. 7 '

The code at GETLIN prompts for a line of input. As characters are read at CHLOOP, they are pushed
onto the stack. One characteristic of a stack is that the last thing that was pushed is the first thing that will be
popped. It is this feature of the stack that accomplishes the reversal of characters.

84 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

The loop at CHLOOP reads the input line character by character. The INCHWL reads one character from
the terminal; the character appears in register 1, which we call A. CHLOOP pushes most characters onto the
stack; it avoids pushing either the carriage return or line feed characters that terminate the input line. When
the line feed is seen, the sequence: ‘

CAIN A,12
JRST EOLN
will branch to EOLN to leave the input loop.

At EOLN the program tests to see if the stack is empty. An empty stack is indicated by the stack pointer
(register P) being equal to its original value. Since the original value was a full-word quantity, it is not
possible to use a CAIN instruction here; so CAMN is used instead. If the stack is empty, the sequence at EOLN
jumps to STOP; the program will halt.

At POPIT, we know the stack is not yet empty. It is safe to POP one character from the stack and send it
to the terminal via QUTCHR. We have reduced the number of characters on the stack. By means of the CAME
instruction, the stack pointer is tested to see if it now indicates an empty stack. The CAME will skip when the
stack is empty. If the stack is not yet empty, the CAME will not skip, and the instruction JRST POPIT will be
executed to take us around the output loop once more. The program loops through the code sequence at
POPIT until the stack becomes empty.

When the stack is empty, the CAME instruction will skip; this allows the program to escape from the
output loop. After we finish with POPIT, the program prints a carriage return and line feed and then jumps
to GETLIN to read another line.

It should be noted that these examples are imperfect in some respects. A carefully written version of this
program would guard against a line that was too long for the stack size that is given. To show a perfect
program, designed to defend against all manner of erratic input, would distract us from the main purpose.
We want to show examples of how the instructions fit together to form programs; the extra complication of
dealing with error checking would disrupt the presentation of examples.

There is one further infelicity of this program. The repeated calls to OUTCHR are inherently wasteful.
Every system call is relatively expensive, regardless of how little useful work is performed. OUTSTR moves an
entire string from the program to the system in just one system call. OUTCHR, in contrast, must be called once
for every character that is printed: the program must repeat the system call many times to process each line.
Each system call includes some number of overhead operations that are unavoidable, but that do not
contribute to the performance of the desired function. The overhead activity is proportional to the number of
system calls that your program executes, and may exceed the amount of useful work done by each MUUO
call. '

Part of the overhead in each monitor call is the operation called a confext swiich, in which the computer
changes from running your program to running the operating system, and then changes back to running your
program. Fewer system calls and fewer context switches allow TOPS-10 to run a program more efficiently.

We have used OUTCHR in this example because we are not ready to deal with a string on a
character-by-character basis. Where practicable, the overhead of repetitive monitor calls can be avoided by
building an entire output string and sending it to the terminal with OUTSTR. In example 4-B, after we have
demonstrated the byte instructions, we shall show a better way to perform this function.

THE ASSEMBLER AND LOADER 85

Chapter 9
The Assembler and Loader

As we have said before, the programs that the computer actually executes are composed of a series of
binary words; these words are the instructions and the data for the computer.

At the origins of computer development, programs were created by placing the appropriate binary
patterns in memory by hand. Often, results were obtained by examining the binary patterns appearing in
particular memory locations.

If we wanted to, we could program the DECsystem-10 by dealing only with binary patterns in memory.
Rather than do that, it is vastly more convenient to deal with an assembler and loader program that do many
of the bookkeeping chores that are necessary in programming.

Given our background of having examihed several sample programs already, it is now time to delve
somewhat deeper into the functions of the assembler, and to introduce the loader program.

9.1. OVERVIEW OF ASSEMBLY AND LOADING

Figure 9-1 represents the relationships between the assembler and loader, and between the assembler and
cross-reference program.

The inputs to the assembler include the files that contain our source code plus any universal files that we
might request, e.g., SYS: UUOSYM.UNV. A universal file is a file containing definitions; when we speak of the
more complicated system calls, we will make use of such definitions. .

The output of the assembler will be the translation of the source code into a binary relocatable file, and
an optional listing of the source code with the assembled data shown with the source code.

The relocatable file is read by the loader program which builds an image of the the program in memory.
When the loader has finished, the program resides in memory and is ready to be started. This result is called a
core-image.

9.2. ASSEMBLER OUTPUT

The assembler together with the CREF program will produce a listing of a program that contains much
useful information. As an example of the CREF output we have prepared a listing of (a slightly modified
version of) our example 4-A, the Reverse program. The listing that follows was obtained by entering the text
of the program into the file EX4A . MAC and then issuing the commands:

86 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

. : JE O e T TP T Program | Other . "
Universal | o Libraries | REL files
File(s) | b S |
4 . 4
Source | | Binary Relocatable | | '
------- +] MACRO |-==---===-==-=—=—-c----=3] - LINK - |
File(s) | Assembler | (REL) File | Loader |
| |
Listing | |
File | +
s Executable Core-Image
| N : . o . .
| CREF |========--- -+ Cross-Reference Listing
| Program |
e

Figure 9-1: Overview of the Assembler and Loader

.COMPILE/COMPILE/CREF EX4A.MAC .
.CREF

The COMPILE command runs the MACRO assembler. The command switch /COMPILE forces a new
assembly even though an up-to-date REL file may exist. The /CREF switch tells MACRO to create an
assembly listing that is augmented by the inclusion of information for the CREF program. Note that this
extra information is not meant for people to read; it is included to help CREF make its cross-reference tables.
An examination of the file that MACRO makes for CREF will reveal numerous binary characters that can not
be printed intelligibly on a line printer. ’

The CREF command runs the CREF program. CREF reads the listing that MACRO produced,
reformats the listing, writes the cross-reference tables, and sends the resulting file to the printer.

The resulting listing has three components. The first, shown in figure 9-2, is the listing of the original
source program, augmented by octal numbers representing the location and contents of the assembled
instructions and data. Any error messages from MACRO will be present in this portion. This listing also
includes line numbers at the left margin; these were added by the CREF program.

The second component of the listing is MACRO’s symbol table, shown in figure 9-3. Each symbolic
name defined or used by the programmer appears here, together with its corresponding octal value.

The third component of the listing file is the cross-reference section, shown in figure 9-4. This is the
main contribution of the CREF program. The cross-reference of symbols shows the line number of every
occurrence of each symbol name.

By itself, MACRO can produce a listing that includes

e An informative heading at the top of each page,
o The location counter, and assembled code for each line of the program, and
e A symbol table of all user-defined symbols. ‘

The /CREF switch in the COMPILE command requests extra output from MACRO. This extra output
information is processed by the CREF program to produce a cross-reference listing. The cross-reference
listing includes

o Line numbers at the left margin, and
e Two tables at the end of the listing: the first table contains the names of normal user-defined

THE ASSEMBLER AND LOADER "+ 87

Reverse a Line of Input. Example 4A MACRO %B63A(1182) 18:17 28-Aug-81 Page 1.
EX4A MAC 283-Aug-81 15:18

-1 i TITLE Reverse & Line of Input. Example 4A
2
3 RS ' Comment $: :
4 Program to reverse the characters on each Vine of input.
8 " Program will stop when an empty line {s input.
8. i (RIS . T . Yo, 1
7 This program demonstrates the last-in, first-out property
8 of push-down stacks.
9 $
10 . :
11 000001 A=1 ;symbolic names for accumulators
12 000017 P=17 iregister for the stack pointer
13 : .
14 000200 POLEN==200 sroom for 128 characters
18
16 000000' 127 145 164 143 157 WELCOM: ASCIZ /Welcome to the Reverse Program
17 000001' 155 145 040 164 157
18 000002' 040 164 150 145 040
19 000003' 122 148 168 145 182
20 000004' 163 145 040 120 162
21 000006°' 157 147 182 141 158
22 000006' 015 012 000 000 000 /
23 ’
24 000007 PDLIST: BLOCK PDLEN ireserve space for the stack
26 . .
26 000207' 047 00 0 00 000000 START: RESET :initialize the program
27 000210' 051 03 0 00 000000 OUTSTR WELCOM :send a friendly message
28 sinitialize for another input line
29 000211' 051 03 0 00 000238° GETLIN: OUTSTR [ASCIZ/Please type a line: /]
30 000212' 200 17 0 00 000242' MOVE P,[IOWD PDLEN,PDLIST] ;infttalize stack pointer
31 000213' 051 04 0 00 000001 CHLOOP: INCHWL A iobtain a character
32 000214°' 308 01 0 00 000015 CAIN A,18 ;skip unless this 1s a carriage return
33 000218' 284 00 0 00 000213' JRST CHLOOP ;discard CR: go get tho next charecter
34 000216° 306 01 0 00 000012 CAIN A,12 iskip unless this is a 1ino feed
36 000217°' 264 00 0 00 000222' JRST EOLN sthis 1s a 1ine feed. Jump to EOLN
36 000220° 261 17 0 00 000001 PUSH P.A ;add character to the stack
37 000221' 254 00 0 00 000213 JRST CHLOOP :loop to obtain another character
38 .o ' .
39 000222 316 17 0 00 000242’ EOLN: CAMN P,[IOWD PDLEN,PDLIST] :1s the stack empty?
40 000223°* 264 00 0 00 000233°' - JRST STOP sempty 1ine, stop running.
41 000224° 081 03 0 00 000243°' OUTSTR [ASCIZ/The reversed line fs: /]
42 000228' 262 17 0 00 000001 POPIT: POP P.A :get one character from stack
43 000226°' 061 01 0 00 000001 OUTCHR A ;send it to the terminal
44 000227' 312 17 0 00 000242' ° CAME P.[IOWD PDLEN,PDLIST] :1s the stack empty now?
45 000230° 254 00 0 00 000226° JRST POPIT inot yet. Loop agsin.
48 OUTSTR [ASCIZ/
47 000231' 061 03 0 00 000260 /] ;add CR LF to end of the output line
48 000232°' 254 00 0 00 000211' JRST GETLIN ;go get another input line
49
80 STOP: OUTSTR [ASCIZ/A11 done.
81 000233' 051 03 0 00 000251 7]
52 000234°' 047 00 0 00 000012 EXIT
53
84 000207° END START

NO ERRORS DETECTED

PROGRAM BREAK IS 000254
CPU TIME USED 00:00.233

17P CORE USED

Figure 9-2: Assembler Listing of the Source Program

88 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Reverse a Line of Input. Example 4A. MACRO %63A(1152) 15:17 28-Aug-81 Ngo S-1

EX4A MAC 28-Aug-81 15:16 SYMBOL TABLE
A 000001

CHLOOP 000218

EOLN 000222°

EXIT ~ 047000 000012

GETLIN 000211'

INCHWL 051200 000000
OUTCHR 081040 000000
OUTSTR 061140 000000

P ’ 000017
PDLEN 000200 spd
PDLIST 000007
POPIT 000228°*
RESET 047000 000000
START 000207°
STOP 0002383
WELCOM 000000
Figure 9-3: Assembler Listing of the Symbol Table
Symbol Cross-Reference
A 118 3 32 34 38 42 43
CHLOOP 3 - 33 a7
EOLN 36 30
GETLIN 208 48
P 12# 30 38 39 42 44
PDLEN 14# 24 30 39 44
PDLIST 24# 30 39 44
POPIT A2n 48
START 20# 54 ~
STOP 40 50#
WELCOM 16# 27 .
Operator Cross-Reference
EXIT 52
INCHWL 31
OUTCHR 43
OUTSTR 27 29 41 46 50
RESET 26

Figure 9-4: Assembler Listing of the Source Program

symbols; the second includes all the special operators and macros used in the program.1 For
each symbol, the line number of every line on which the symbol is referenced is printed. A
sharp sign (#) is printed next to the line number where a symbol is defined.

The listing that MACRO can produce by itself (via the /LIST switch in the COMPILE command) is
much less useful than the combined efforts of MACRO and CREF. When you need a program listing, make
a CREF listing rather than a simple listing of your source.

9.2.1. Page Headings
MACRO produces a page heading on each page of the listing file. A sample headmg appears below:

Reverse a Line of Input. Example 4A MACRO %53A(1152) 15:17 28-Aug-81 Page 1
EX4A MAC 28-Aug-81 15:15

1See the discussion of OPDEF, section 13.4, page 134, and the discussion of macros in section 17, page 173.

THE ASSEMBLER AND LOADER 89

The first line of the heading contains the text argument to the TITLE statement, the version of MACRO,
and the date and time when MACRO was run. : ! *

The page numbering corresponds to the page numbers in the source file; each time a form-feed character
appears in the source, MACRO starts a new piece of paper and counts the file page number. This-
corresponds to the notion of pages in the SOS editor (and to form-feed characters in a TECO file). When a
file page is too long to fit on one piece of paper, MACRO will number subsequent pieces of paper with, e.g.,
1-1, 1-2, etc. It is a good 1dea to use separate pages for independent blocks of mstrucmons e.g., large\
subroutines. ; S e ‘ : :

The second line of the heading shows the name and write-date of the source file.

9.2.2. Listing the Source Lines

From left to right, each line in the listing contains the following:

e The CREF line number. This number counts by one in decimal for each line that MACRO
writes. These are line numbers that are referred to in the cross-reference tables that appear after
the program listing. : : - : Co

e MACRO’s storage location counter. ThlS number shows where MACRO is planning to put the
binary code generated for this line. Usually this number counts by one in octal for each line of -
code. Some pscudo-ops, for example, BLOCK, may cause the location counter to advance by
more than one; see lines 16 and 24.

e The location counter may be flagged with an apostrophe character (') signifying that the value

of the counter is relocatable. The section that follows this discusses relocatable symbols and the
loader.

e Next on the line are octal numbers signifying the contents of various fields of the assembled
word. For most instructions, five octal fields are printed. These correspond to the OP, AC, I, X
and Y fields of the instruction. For words other than instructions, MACRO displays the data it
assembled in some other format. For example, lines 16 through 22 each show the five 7-bit
fields that MACRO assembled for the ASCIZ pseudo-op. "

o Finally, the source text of the line is printed. If the SOS editor is used for the preparation of the
source program, the SOS line numbers will appear with the text of each line.

We will now examine the features found on several lines of this output listing. Please refer to figure 9-5.

On line 33 we see that the assembler is planning to store a word in location 215; the apostrophe after the
215 signals that this value is relocatable. To say that a word or address is relocatable means that the loader is
going to add some relocation constant to each of these addresses; this location will be moved to be 215 words
after the first location that is loaded. We will discuss relocation further in the next section; meanwhile, it is
important to note that locations such as relocatable 6 are not included among the accumulators, even though
it looks like a small enough address.

Continuing on line 33, the operation code has been assembled as 254; this corresponds to the JRST
instruction. - The accumulator field is 0. The Y field is relocatable 213; this must be the assembler’s
translation of the symbol CHLOOP. We can verify this assumption by examining line 31 where the symbol
CHLOOP is defined: note that the location counter there has the value relocatable 213. Thus we see the effect
of some of the assembler’s bookkeeping functions. The symbol CHLOOP is defined as 000213"' (ie,
relocatable 213); at places where CHLOOP is referred to, that definition has been substituted for the symbolic
name. On line 37, for example, the reference to CHLOOP has also been translated to 213 .

90 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

16 000000° 127 145 184 143 157 WELCOM: Asc:;v Iﬂolcouoﬁtp the Reverse Proqrcﬂ N TR i
22 000008° 015 012 000 000 000 7 ‘) CoToanTEm e !
23 : [. : ! (RO S
24 000007 : PDLIST: BLOCK ~ PDLEN . . ireserve space for the stack .. . ; :
28
26 000207' 047 00 0 00 000000 START: RESET'' ' = i1nitialize the program = ©
27 000210° 051 03 0 00 000000° . OUTSTR WELCOM isend a friendly message - O
28 sinitialize for another input 1tne
20 000211' 081 03 0 00 000235°' GETLIN: OUTSTR [ASCIZ/Ploase type a line: /] T R S LRI VST
30 000212°* 200 17 0 00 000242° MOVE P.[IOWD PDLEN,PDLIST] :initialfze stack po'ntor ; N
31 000213' 051 04 0 00 000001 CHLOOP: INCHWL A ;obtain a character .
32 000214' 306 01 0 00 000018 CAIN A, 18 ;skip unless this s & carriage roiurn '
33 000215' 254 00 0 00 0002183°* JRST CHLOOP : ;discard CR: go get the next character
+ + t ottt + +
| | (I I I | |
| | P 11 | *--~ the source text begins here
| (I T N I | $omcmmnen- Y portion ‘
| | | || $e=ccecccccrcuecn- X portion
| | |] ®-cccsccmococcoccocnne I part
| | | - AC f1eld
| | Senne Opcode
| . Location counter
S mm e ——————— == Cref Line number

Figure 9-5: Selected Lines from the CREF Listing

On line 32, the expression 15 has been assembled to 15. Note that no apostrophe follows the 15 in the:
code. This means that 15 is not relocatable; symbols and expressions that are not relocatable are said to be
absolute. '

Line 29 displays the first literal in the program. Note that MACRO indicates 235" as the address part-
of this instruction. Thus, MACRO must have decided to put the assembled code corresponding to this literal-
at location 235'. To verify this, note that line 54 in figure 9-2, the last line that was assembled, uses location
234'. This literal has been placed in the first location following the code listed with the text of the program _
therals are normally placed after all other material has been assembled. _ : o

Another literal is displayed in lines 30, 39 and 44. Note that in every case, the same address is-
assembled. When MACRO sees two or more coples of the same literal, it assembles only one copy. Each-
reference to that literal uses the same copy.

Lines 16 through 22 show the assembler’s translation of the ASCIZ pseudo-op. Line 16 shows the!
location counter, 0 ', and the octal for the first five characters of the prompting message. The other characters
appear on subsequent lines,

9.2.3. Listing the Symbol Table

Examination of figure 9-3 shows the entire symbol table, with symbol names arranged alphabetically. On
this page too, the symbol CHLOOP appears with the value 000213 "'.

Most labels have relocatable values. These include START, GETLIN, and STOP. The symbols A, P, and
PDLEN are not relocatable.

Some symbols have 36-bit values. EXIT, for example, is defined as 047000 000012. You might
notice that all the MUUO values start with operation codes in the range from 40 to 77. The codes for RESET

2See also the discussion of the LIT Pseudo-op in [MACRO].

THE ASSEMBLER AND LOADER 91

and EXIT start with opcode 047; this is the CALLI MUUO, which decodes its effective address as the
function number. The right half value, 12 in the case of EXIT, specifies which system function is wanted.
The terminal input and output calls all begin with opcode 051; this is the TTCALL MUUO, which decodes its
accumulator field as the function number. INCHWL, for instance, contains an accumulator field of 4
(appearing as 200). In the bad old days we would have to write TTCALL 4,A instead of INCHWL A;
fortunately, MACRO has been augmented by the inclusion of many useful definitions.

Some symbol values are followed by a three-letter code. The code “spd” means suppressed, and applies
to our one suppressed symbol, PDLEN. The code “int” means internal and does not occur in this example.
Internal symbols are those that are available or visible to other programs that you load. The code “ext”
means external; again, we have none in this example. External symbols are those that are are referred to in
this program module, but which are not defined here; it is assumed that they are internal to some other
program module.

9.2.4. Symbol Cross-Reference
The section that we have labeled “Symbol Cross-Reference” contains a line for every user-defined
symbol. These lines report all references to and definitions of each symbol.

The line for the symbol STOP reports that STOP appears on lines 40 and 50. The sharp sign (#) after 50
means that STOP is defined there. These numbers refer to the line numbers at the extreme left of the listing.

9.2.5. Operator Cross-Reference

The operator cross-reference has the same format as the symbol cross-reference. Operators (including
the MUUO names) are listed in this section along with the line numbers where they are used. Operators can
be defined by the user, see section 13.4, page 134; such operators would be listed here also.

9.3. THE LOADER AND RELOCATABLE CODE

The assembler reads a text file containing a program and writes a file containing the binary relocatable
version of the program; this file has file type REL signifying relocatable. This REL file contains a version of
the program that is very close to machine language.

However, the REL file cannot be run directly. In order to run a program, the program must first be
loaded into memory. A special program called a loader is used for this purpose. The name of the loader
program is LINK.

LINK reads REL files and loads them into memory. By default, LINK loads programs starting at
location 140. TOPS-10 uses the locations in the range from 20 through 137 for communication between the
program and the operating system. This region is called the Job Data Area, and we shall occasionally make
use of some of the locations that are provided there.

Normally, MACRO will assemble what is called relocatable code. The loader can place relocatable code
anywhere in memory. Symbols that label relocatable code are themselves relocatable values. Because
MACRO doesn’t know where the program will be put by LINK, MACRO includes enough information in
the REL file to allow LINK to relocate the program anywhere in the memory space of the job.

In example 1, when we said that MACRO assigned the value 143 to the symbol MESAGE we did not tell
the entire truth. Actually MACRO assigned the value 3' to the symbol MESAGE. Again, the apostrophe after

92 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

the 3 means that the value is relocatable. The relocation mark (or its absence) is associated with every symbol
definition and with every word that MACRO assembles.> When MACRO sees a reference to a relocatable
symbol, that reference is passed to LINK as a relocatable reference. Specifically, when MACRO saw the line
OUTSTR MESAGE it assembled a word containing 051140000003 '; 3" is the value of MESAGE.

When LINK sees a relocatable value, it adds the relocation constant to it to obtain an absolute address;
the relocation constant is essentially the address of the first location where LINK started loading the program.
In this way, MACRO defers until load-time the decision about where to put the program. In the case of this
OUTSTR instruction, LINK will add the relocation constant, 140, to produce 051140000143. This value is
what LINK actually places into memory. The entire program is relocated in this fashion.

Not all symbols are relocatable. Usually labels are relocatable and most other symbols are not. For
example, the symbol EXIT, value 047000000012, is absolute. Absolute symbols and expressions are not
relocated by LINK.

If you would examine line 32 in the assembler listing, the value of the expression 15 is simply 15; note
that the 156 does not have an apostrophe. Because the 16 is absolute LINK will not change it when the
program is loaded into memory.

Relocatable code is used for several reasons. The predominant reason is that the loader is more flexible
than we have yet described. LINK allows your program to be combined with other programs that have been
assembled or compiled separately. This allows you to take advantage of subroutines inside of other program
sources, and written in other languages. Because the author of a subroutine cannot know what kind of
program will call the routine, the he or she cannot be sure where to put the program in memory.

Relocatable code solves the problem of where to put things. Instead of deciding in advance where to put
the various pieces of code, such decisions are deferred until the various program modules are loaded together.
Relocatable code allows each module to be loaded wherever it’s convenient. By contrast, if extensive use is
made of absolute locations, conflicts over the use of particular locations can arise when several routines are
loaded. ' g

Large programs are built from several separately assembled modules. When one module changes, the
program can be reconstructed by reassembling only the changed module. In some circumstances, modules
can be developed and debugged independently. This is a great savings in program development time. The
use of separately assembled programs is made possible by the linking loader.

Further information detailing the features of the assembler and loader can be found in [MACRO] and
[LINK].

3Actually, there are two relocation marks (or absences) for each word - one for the left half and one for the right.

DEBUGGING WITH DDT : 93

Chapter 10
Debugging with DDT

DDT is a program that helps us examine a program and debug it. DDT includes many powerful
functions to assist our efforts to understand what the program is doing.

In addition to knowing about DDT, you should be aware of the list of common pitfalls displayed in
appendix E, page 373. When a problem arises, you might want to review that list before attacking the
problem with DDT.

10.1. DDT FUNCTIONS

Among the functions included in DDT are

Symbolic Addressing
The symbol table that MACRO builds is generally loaded into memory along with the
program. DDT allows us to reference locations in the program by their symbolic name.
When we mention a symbolic name, such as START, DDT will look up that name in the
symbol table. The name will be translated to the appropriate numeric address.

Examine and Deposit . ‘
: The first important tool that DDT implements is the ability to examine and deposit
locations in memory. The program and its data areas reside in memory; they can be
referenced by the symbolic names that were used as labels in the source program.

Symbolic Disassembly
The ability to examine locations in memory is extremely important; DDT would be quite
useful even if it were limited to displaying the contents of memory as octal quantities.
However, DDT will interpret and display memory locations in any of several different
formats.

The contents of a location can be interpreted and displayed as instructions, ASCII text,
octal numbers, decimal numbers, floating-point numbers, bytes, and in several other ways.

Symbolic Assembly
DDT permits us to change the contents of memory by means of depositing new values in
specified locations. DDT allows us to express the value that we want to deposit in several
different formats.

DDT understands how to assemble instructions. It can assemble octal, decimal, and
floating-point numbers. It assembles ASCII text and some other formats.

Breakpoints in the Instruction Stream

94 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

We can use DDT to replace an instruction with a breakpoint instruction. The breakpoint
instruction is actually a subroutine call to DDT. When the computer executes the
breakpoint instruction, control is transferred to DDT. When DDT is entered from a
breakpoint, the instruction at which the breakpoint was placed has not yet been executed.
We can then examine and deposit locations, place additional breakpoints, and either
proceed from this breakpoint or single step.
DDT uses the keyboard for control. Therefore, it’s nearly impossible to use DDT to single
-~ step or breakpoint the portion of the program that reads from the terminal.

Since breakpoints are implemented by storing different instructions in your program, you
must avoid placing a breakpoint at any instruction that is used as data elsewhere in the
program. :

Single Step Instruction Execution
When DDT reaches a breakpoint, you may single-step the instruction at which DDT is
pausing. When an instruction is single stepped, DDT displays the instruction, the
operands, and the results. After one instruction has been single stepped, DDT pauses
before the next instruction. After any examines or deposits, the next instruction can be
single stepped, or DDT can be told to allow the program to proceed at full speed to the
next breakpoint.

10.2. LOADING AND STARTING DDT

In TOPS-10, DDT must be added to the program at the time it is loaded into memory by LINK. DDT
can be included with a program by using the DEBUG command or by use of the /D switch in LINK.

Once DDT is present with a program, it can be entered by either

o the DDT command in the TOPS-10 command processor,
e by executing a breakpoint instruction, or
e by executing an instruction that explicitly jumps to DDT.

While in DDT, you can examine and modify the contents of the accumulators and other memory
locations. The execution of the program may be started or resumed by:

e the command adr$G. That is, type a numeric or symbolic address, the escape key, and G to
start execution at the specified address, or

o the $P command (type escape followed by P) to proceed from a breakpoint instruction.

After you interrupt the execution of a program by typing CTRL/C, you can then enter DDT by typing
the DDT command. When you do so, TOPS-10 stores the old value of the program counter in the job data
area location called . JBOPC, JoB OId PC, 1t will be necessary to use this value of the program counter if you
decide to continue the execution of the program after your session in DDT.

When DDT is loaded with a program, the starting address of DDT can be found in the right half of the
word called .JBDDT.

DEBUGGING WITH DDT 95

10.3. A SAMPLE SESSION WITH DDT

Before we go into the details of all the DDT commands, a brief demonstration of DDT seems
appropriate. We will use DDT to examine our program from example 4A, Reverse Line.

We begin by using the DEBUG command to assemble and load the file EX4A . MAC:

.debug ex4a.mac
MACRO: Revers
LINK: Loading
[LNKDEB DDT execution]
DDT
The DEBUG command causes LINK to load DDT with the program and to start DDT. When DDT is

started, it types the message “DDT” and awaits our commands.

The first thing to do is to open this program’s symbol table. Remember, the name of the symbol table is
taken from the first word of the TITLE statement in the program. MACRO tells us the symbol table name as
it assembles the program. In this case the name is REVERS. We tell DDT to open the symbols for the
program named REVERS by mentioning the program name and typing the command characters escape and
colon.

Notice that when we type the escape key, DDT displays a dollar sign character. Throughout this
discussion of DDT, the dollar sign characters that appear in the examples represent places where we have
typed the escape key. (If your terminal does not have a key labeled escape or ESC, you might try A1t-Mode
or CTRL/[.)

We type precisely the eight characters “R”, “E”, *“V”, “E”, “R”, “S”, escape, and colon:

.debug ex4a.mac
MACRO: Revers

LINK: LLoading
[LNKDEB DDT execution]
DDT

rever S§ H
DDT types a tab character after our colon to signify that it has accepted our command. The symbols for
the REVERS program are now available to DDT.
We type a symbol name, START, and a slash character (/) to open the location called START. When
DDT opens a location, it examines the contents of the location and displays them in the prevailing fype-out
mode. Initially, the display mode is symbolic; locations are interpreted as instructions and symbolic addresses.

[LNKDEB DDT execution]

DDT
revers$: START/ RESET

The contents of the location called START have been displayed. This is the RESET MUUO. To continue
examining locations, type the line feed key. The symbolic name of the next location will be displayed,
followed by a slash, and the contents of that location. After the location START is displayed, we type line feed
once:

[LNKDEB DDT execution]
DDT
revers$: START/ RESET type line feed
START+1/ OUTSTR WELCOM
“The instruction that follows the RESET is displayed. Note that in addition to displaying the contents of
cach location as an instruction and symbolic address, DDT has also displayed the location address itself in

symbolic form.

96 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

It will be interesting to examine the string at WELCOM. We could type the name WELCOM and a slash.
However, DDT provides the tab command (either the tab key or CTRL/I) to examine the location that the
present instruction addresses. We type the tab character next:

[LNKDEB DDT execution]
DDT
revers$: START/ RESET type line feed

START+1/ OUTSTR WELCOM type tab
WELCOM/ HRLES 2,8461736(15)
Now, at WELCOM we discover one of the failings of DDT. Up to this point, DDT has been doing a fine
job of symbolic disassembly. Each word has been interpreted properly as an instruction. However, at

WELCOM DDT has stumbled; it has wrongly interpreted the contents of the word as an instruction.

This is yet one more reminder of a point that we have been trying to make: everything inside the
computer is a number. The correct interpretation of the number is the responsibility of the programmer.
Simply stated, the source program cannot be recovered by DDT. As the user of DDT, you must be
sufficiently familiar with the program (or clever) to avoid going astray here.

Because we recognize this output as an anomaly of DDT, we can ask DDT for an alternative
interpretation. By the command characters escape, “T”, and semicolon, we instruct DDT to change the
output mode to text and to retype the current quantity in the new mode:

[LNKDEB DDT execution]}

DDT

revers$: START/ RESET ppe line feed
START+1/ OUTSTR WELCOM type tab

WELCOM/ HRLES 2,@461736(15) $t;Welco

In response to these commands, DDT retypes the contents of the word at WELCOM as text. In this case,

we discover the word holds the five characters “Welco”. We can go on to examine additional words by typing
the line feed key: ‘

[LNKDEB DDT execution]

DDT

revers$: START/ RESET type line feed

START+1/ OUTSTR WELCOM fype tab :
WELCOM/ HRLES 2,8461736(15) $t:Welco typeline feed
WELCOM+1/ me to type line feed

WELCOM+2/ the type line feed

WELCOM+3/ Rever type line feed

WELCOM+4/ se Pr type line feed

WELCOM+5/ ogram type line feed

WELCOM+6/

The command characters escape and “t” set the temporary output mode to text. The line feed command does
not clear the temporary mode, so while we type line feed characters, the output mode remains set to text
mode.

The contents of the word at WELCOM+6 are not obvious from this display. We can change the mode
again, this time by typing the command characters escape, 7, the letter 0, and semicolon. This command
changes the output mode to display left-adjusted seven-bit bytes and requests that the current quantity be
re-typed: ‘

WELCOM+5/ ogram ype line feed

WELCOM+6/
$70:15,12,0,0,0,0

DEBUGGING WITH DDT 97

The command $70 changes the output mode to 7-bit bytes. The semicolon command character requests
that the current value be retyped. The consecutive 7-bit fields of the word are displayed. The number 15
corresponds to the carriage return, 12 is the line feed. Then three zero bytes fill the word. The sixth field is
present because five 7-bit fields do not entirely exhaust the 36-bit word. The sixth field represents only one
bit.

Type a carriage return to close this location. When carriage return is typed, the display mode reverts to
whichever mode has been selected as the permanent mode. We have seen two mode changing commands, $T
and $70. To change the output mode permanently, type two escape characters instead of one, e.g., $$T
permanently changes the display mode to show words as text. Of course, a “permanent” change lasts only
until the next “permanent” change. By the way, to change the mode back to the symbolic display of
instructions, use the command $S or $$S.

WELCOM+6/ ogram type line feed
WELCOM+6/
$70;15,12,0,0,0,0 type carriage return

After typing carriage return the output mode reverts to symbolic. We now resume our progress through
the program by typing START+1 and a slash, followed by some line feed characters:

WELCOM+6/

$70:15,12,0,0,0,0 type carriage return

start+1/ OUTSTR WELCOM type line feed
GETLIN/ QUTSTR STOP+2 type line feed
GETLIN+1/ MOVE P,STOP+7 type line feed
CHLOOP/ INCHWL A type line feed
CHLOOP+1/ CAIN A,15 pe line feed
CHLOOP+2/ JRST CHLOOP type line feed
CHLOOP+3/ CAIN A,12 type line feed
CHLOOP+4/ JRST EOLN zype line feed
CHLOOP+5/ PUSH P,A type line feed
CHLOOP+6/ JRST CHLOOP type line feed
EOLN/ CAMN P,STOP+7

DDT does a credible job of disassembly. Occasionally there are minor problems, such as the literals
being turned into symbolic names that are not especially meaningful (e.g., STOP+7).

To demonstrate the concept of breakpoints, we will place a breakpoint at EOLN. To accomplish this, we
must mention the address where we want to place the break. In DDT, the symbolic name period (.) signifies
the current location; at this moment, EOLN is the current location. We type the characters period, escape, and
B to establish a breakpoint here. (We might just as well have typed the command EOLN$B, but .$B is a
convenient shorthand.)

EOLN/ CAMN P,STOP+7 .$b

Now that we have a breakpoint, we can start the program. The command characters escape and G tell
DDT to start the program at its normal starting location; in this case, we begin execution at START:

EOLN/ CAMN P,STOP+7 -$b $q
Welcome to the Reverse Program
Please type a line:

The program prompts for input, via the OUTSTR MUUO. Now, the INCHWL is being executed;
TOPS-10 is collecting a line of input to give to the program. We supply the line, “This is a test” and type
return. When we type carriage return, TOPS-10 adds a line feed character and gives the entire line, character
by character, to the program via the repeated executions of the INCHWL MUUO. The program runs until the
INCHWL read the line feed character and jumps to EOLN. Instcad of executing the instruction at EOLN, the

98 " DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

breakpoint there causes DDT to be called. DDT displays the location and contents of the current breakpoint:

EOLN/ CAMN P,STOP+7 .$b $q
Welcome to the Reverse Program
Please type a line: this is a test

$1B>>EOLN/ CAMN P,STOP+7

We are once again in DDT. Further examines are now permitted. We type the symbolic name of an
accumulator, P, and a slash, to examine what the accumulator contains:

EOLN/ CAMN P,STOP+7 .$b - 3q
Welcome to the Reverse Program
Please type a line: this is a test

$1B>>EOLN/ CAMN P,STOP+7 P/ -162,,PDLIST+15 type return

The contents of register P, the stack pointer, are displayed. We can tell that 16 (octal) data items have
been pushed on the stack, since the right half of register P has been advanced from PDLIST-1 to
PDLIST+15. We shall now proceed to examine the contents of the stack. First, we type carriage return to
close the current register. Then we type the name PDLIST and a slash:

$1B>>EOLN/ CAMN 17,STOP+7 17/ -162,,PDLIST+15 fype return
pdlist/ PDLIST+15
Once again DDT has failed us. The contents of the word at PDLIST have been interpreted by DDT as
PDLIST+15. Let us not go astray. We think there are characters to be seen there. First, let us type the
command character equal-sign. When we do so, DDT responds by reporting the octal value of the current
quantity:
$1B>>EOLN/ CAMN 17,STOP+7 17/ -162,,PDLIST+15 fype return
pdlist/ PDLIST+15 =164
DDT reveals that the word at PDLIST contains octal 164. This is still insufficently responsive. We will
once again try telling DDT to use text mode. We type escape, t, and semicolon:

$1B>>EOLN/ CAMN 17,STOP+7 17/ -162,,PDLIST+15 fype return
pdlist/ PDLIST+15 =164 $t:t

At last, a resonable response. The first location in the stack contains the letter “t”. Let us now examine
the rest of the stack. We will type a series of line feed characters to examine the successive locations:

$1B>>EQLN/ CAMN 17,STOP+7 17/ ~-162, ,PDLIST+15 type return
pdlist/ PDLIST+15 =164 $t:t oypeline feed

PDLIST+1/ h type line feed
PDLIST+2/ i type line feed
PDLIST+3/ s type line feed
PDLIST+4/ type line feed
PDLIST+5/ i type line feed
PDLIST+6/ s type line feed
PDLIST+7/ type line feed
PDLIST+10/ a type line feed
PDLIST+11/ type line feed
PDLIST+12/ t type line feed
PDLIST+13/ e type line feed
PDLIST+14/ s type line feed
PDLIST+15/7 t

We sec exactly what we expected: the first data item in the stack corresponds to the first character we
typed; the last data item is the final “t” in “test.” The stack top addresses the last character that was input.

DEBUGGING WITH DDT 99

We have now reached a point where we should be comfortable about allowing the program to proceed.
Type the command characters escape and P. The instruction at the breakpoint will be executed, and
execution resumes:

PDLIST+15/ t $o
The reversed line is: tset a si siht
Please type a line:
As the program continues, it types a heading and the reversal of the line that we typed. It loops to
prompt again for input. We will now supply an empty line. After we type carriage return, the program runs
until it hits the breakpoint:

Please type a line: type return
$1B>>EQOLN/ CAMN P,STOP+7
We will now experiment with single-stepping. We will type escape and “X”. DDT will execute the
current instruction:

Please type a line:
$1B>>EOLN/ CAMN P,STOP+7 $x
P/ -200, ,WELCOM+6 STOP+7/ -200,,WELCOM+6
EOLN+1/ JRST STOP
DDT types the contents of register P and the contents of the memory location STOP+7. We can observe
that the contents are identical. DDT then executes the CAMN instruction; the CAMN does not skip. DDT then
displays the next instruction that will be executed. Again we type escape and “X” to single step this

instruction:

Pilease type a line:
$1B>>EOLN/ CAMN P,STOP+7 $x
P/ -200, ,WELCOM+6 STOP+7/ -200, ,WELCOM+6
EOLN+1/ JRST STOP $x
STOP
<JUMP>
STOP/ OUTSTR STOP+18
~ Observe that DDT has executed (or rather simulated the execution of) the JRST to the label STOP. We
can continue single-stepping, or we can allow the program to proceed at full speed. We will type escape and

“p” for full-speed execution:

STOP/ OUTSTR STOP+16 - $p
A1l done.

EXIT

AC

10.4. METHODICAL DEBUGGING

Since few complicated programs are written without mistakes, some words about debugging programs
systematically scem appropriate. There is no magic recipe for effective debugging. However, there are
guidelines that are generally useful. Among these are

o Plan your debugging when you write the program.
o Divide the program into well-defined loops and subroutines.
e Don't expect anything to work the first time; be suspicious of your code. Test cach subroutine

100

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

and each loop. There’s little point in checking the second subroutine until you have verified
that the first one works.

o Loops should be verified by a breakpoint before the loop to establish that the initial conditions
are properly set up, and a breakpoint following the loop to check that the loop itself has
functioned properly. This applies to subroutines as well.

e If you can, avoid breakpoints in the loop itself, although if the loop has failed, you must
investigate the interior. Loops that don’t terminate, improper use of index registers, and
incorrect indices are all potential sources of trouble inside a loop.

o Failure to properly initialize memory and the accumulators can cause incorrect results that are
difficult to reproduce. Among the possible oversights are failure to initialize the stack pointer
register, failure to explicitly zero memory locations (and accumulators) in the initialization of
the program, and failure to perform a RESET in the startup sequence.

o Erroneous arguments to system calls and subroutines can cause much confusion.

o DDT and your program compete for the use of your terminal and keyboard. In particular, you
cannot place a breakpoint in a loop that has an INCHWL MUUO. This is because DDT can not
distinguish the keystrokes that you send to the program from the keystrokes that serve to
control DDT. When it's necessary to debug a program that uses terminal input, the wisest thing
to do is to read the entire terminal line at once and store the characters in a buffer. In this way,
the terminal input portion will be in a simple and very localized region. Once that part works,
DDT won’t interfere with the use of the terminal. In the next chapter we’ll discuss how to build
such a buffer for terminal input.

,}' . .
When your program doesn’t work, it is wise to adopt a skeptical attitude towards the code that you have
written. The most difficult bugs to find are those located in the place where you know the program works

“perfectly.”

10.5. DDT COMMAND DESCRIPTIONS

DDT is a large and changing program. It contains many features, some of which are confusing to novice
users. The command descriptions that follow are an attempt to present the most widely used commands. A

more complete, though terse, description of DDT features appears in appendix C, page 359.

You might scan the material here once to become familiar with the range of DDT commands. Detailed
reading of selected portions of the appendix may be undertaken when it is necessary to apply DDT to debug

specific problems.

In the description of DDT commands, the following rules of nomenclature apply:

o The dollar sign character ($) signifies places where the escape key must be typed. This key is
labeled as ESC or ALT-MODE on most terminals. When you type the escape key, DDT will
display a dollar sign.

o Numbers are represented by n. Numbers are interpreted as octal, except that digits followed by
a decimal point are base ten; if digits follow the decimal point, a floating-point number is
assumed.

e A number that follows an escape, written as $n, is interpreted as a decimal number.

DEBUGGING WITH DDT ‘ 101

10.5.1. Examines and Deposits

In order to examine a location, you must first specify the address of that location. You may specify the
location that you wish to examine by any numeric or symbolic address expression. Simple symbolic
expressions, such as TABLE+5, are allowed. Type the name or number of the memory location (or
accumulator) that you wish to examine, followed by one of the command characters, e.g., TABLE+5/.

When a location is examined, the contents of that location are displayed. Initially, the mode in which
locations are displayed is symbolic; that is, the contents of locations will be interpreted as instructions. The
addresses of locations will be interpreted as labels where possible. The radix for displaying numbers initially
is octal. See section 10.5.2, page 102 for the commands by which you can change the display mode or the
radix. :

To open a location means to read and (usually) display the contents of the location. You may deposit
new data into an open location by typing a new value followed by a command that performs a deposit; DDT
will store the new value, obliterating the previous contents. Data, instructions, or the contents of the
accumulators may all be changed in this way.

Some special symbols exist in DDT. Among the most important of these are the current location, called
by the symbolic name period (.), and the current quantity called $Q. Additionally, there are special symbols
called masks. Each mask controls some function within DDT; for example, the search mask ($M) affects the
DDT word searches.

10.5.1.1. Current Location
The character period (.) is the symbolic name of the current location. Most commands that open
locations set the current location to the address that has just been opened.

10.5.1.2. Current Quantity

The symbol $Q is the symbolic name of the current quantity. The current quantity is either the last value
typed by DDT (i.e., the value of the location most recently displayed), or any new address or value that you
have typed. Some DDT commands use the right half of the current quantity as an address when no address
argument is specified.

The value of the current quantity with right and left halves swapped is accessible by the symbolic name
$%0Q.

10.5.1.3. Examine Commands

addr/ Opens the location specified by the address expression addr. The contents of that location
are displayed in the current mode. The current location (.) is set to this address.

If no address expression is mentioned, DDT will open and display the location addressed
by the right half of the current quantity; when no address expression is mentioned, DDT

99

will avoid changing the value of “.”.

addr[Opens the specified location; displays its contents as a number in the current radix; DDT
will change “.” to this address. If no address expression appears, “.” is not changed; the
address to open is taken from the right half of the current quantity.

102

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

10.5.1.4. Deposit Commands

CR

LF

Back Space

TAB

If a new value has been typed, that value is deposited. The open location is closed. Any
temporary display mode that is in effect is cancelled; further displays will default to the
prevailing permanent display mode.

Deposits any new value and closes the open location. Opens .+1, that is, the next
consecutive location. Displays the contents in the current (temporary) mode.

Deposits any new value and closes the location. Opens . -1; displays the contents of that
location in the current mode.

The back space (CTRL/H) command is the same as the A command; it deposits any new
value and closes the current location. Then . -1 is opened and displayed in the current
mode. - - :

Deposits any new value and closes the current cell. Use the right half of the current
quantity as the address of the next cell to open. Does not clear temporary modes. Changes

(T3]
.

10.5.2. DDT Output Modes

In the commands that follow, use the escape key once to set the mode temporarily. Type the escape key
twice in succession to set the mode “permanently.” The temporary mode is cleared by the CR command. The
permanent mode may be changed by a subsequent command that sets a new “permanent’”’ mode.

$F

$n0

$nR

$s
$T

The semi-colon character tells DDT to retype the current value in the current display
mode. This command usually follows a command that changes the display mode.

If the current radix is octal, the equal sign command makes DDT retype the current value
in halfword numeric format. Otherwise, the current value is retyped as a fullword number
in the current radix.

Display quantities as floating-point or decimal integer. DDT scrutinizes the quantity that
is being displayed; if it looks as though it might be a normalized floating-point number,
DDT will display it as a floating-point number. Otherwise the quantity will be displayed as
a decimal integer.

Display quantity as left-justified n-bit bytes. The number n is interpreted as decimal. If n
does not evenly divide 36, then one extra byte will be output, but that byte represents
some smaller number of bits. The extra byte will be displayed with extra zeros added at
the right. ‘

If n is omitted, the value of n set by the previous $n0 command will be used.

Set the display radix for numbers to n. The number n is decimal. His-net-meaningfat-for
Ao befarger-than-decimal-16-

Display the contents of locations in symbolic mode, i.c., as instructions.

Display quantities as 7-bit ASCII text. DDT tries to decide if the quantity is left-justified
text or right-justified text, and displays the quantity accordingly. Sometimes, DDT guesses
wrong, in which case the command $70 is helpful.

DEBUGGING WITH DDT 103

10.5.3. DDT Program Control

DDT allows you to stop the execution of your program at specific instructions by the installation of
breakpoints. This section describes breakpoints, single stepping, and other ways by which you can use DDT
to control the execution of the program.

CTRL/Z

adr$G

Exit from DDT. If you intend to resume debugging the current program, but need to get
to the EXEC, this is the right command. For example, if you want to save a program that
includes breakpoints, you must exit from DDT by CTRL/Z. If you were to leave DDT by
typing CTRL/C, then DDT would not have the opportunity to put the accumulators and
breakpoints where they belong.

Start execution at the location specified by the address expression. If the address
expression is omitted, DDT will start the program at the same address that the EXEC-
START command would use.

adr2 ,<ad r1$nBThis is the command by which a breakpoint is installed. In this command, the address

$B
0$nB
$pP

n$P
$$P

$X

expression adr1 specifies the location of the instruction at which to place the breakpoint.
You cannot place a breakpoint at location zero.

The decimal number n is the breakpoint number. If you omit n, the first available
breakpoint number will be assigned to this new breakpoint. You may specify n to recycle
an old breakpoint to a new location. If you exhaust DDT’s supply of breakpoints (usually
limited to eight, numbered from 1 to 8), you will have to select one to overwrite.

The address expression adr2 specifies the address of the location to automatically open
and display whenever this breakpoint is hit. It is not possible to automatically display
location zero. If you omit the expression adr2, no location will be automatically
displayed.

If a breakpoint is installed by a command with two consecutive escape characters, e.g.,
$$nB, then DDT will proceed from the breakpoint automatically. Automatic proceed
continues until DDT detects that characters are available from the terminal when the
breakpoint is executed. See the description of $$P below.

Remove all breakpoints.
Remove breakpoint n.

Proceed from the present breakpoint, or following the previous single stepped instruction.
Execution of the program resumes at full speed until another (or the same) breakpoint is
executed.

Automatically proceed n times past this breakpoint, or until terminal input is present.

Proceed automatically until the breakpoint is executed while input characters from the
terminal are available. That is, this breakpoint will be passed automatically until you type
something. Automatic proceed can make the program run very slowly: each time the
breakpoint is passed DDT must perform a system call to determine if any terminal input is
present. This test can add several hundred instruction times to a loop.

Single step the next instruction. You must be at a breakpoint or you must have previously
used $X to single step an instruction. Repetitions of $X cause subsequenc instructions to
be single stepped. After single stepping, a $P command will resume the normal full-speed
execution of the program.

When an instruction is single stepped, the argument and results of the instruction are
displayed. Although single stepping is a very slow way to find out what a program is doing,
it is worthwhile for novice users who may be uncertain of the effects of particular
instructions.

104 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

The command n$X will single step the next n instructions.
$$X Single step automatically and without typeout until the program counter reaches one or
two locations beyond the address of the instruction that you are $$X-ing. :

This command is useful for “single stepping” instructions that call subroutines. Single
stepping is a very slow process. If the subroutine that is being $$X-ed is complex, it would
be better to insert a breakpoint after the call to the subroutine, and then execute the
subroutine at full speed.

instr$x If the expression instr is a full-word quantity, then DDT will execute it as an instruction.
If the left half of the given expression is zero, then the expression is interpreted as a repeat
count as in the command n$X. '

10.5.4. DDT Assembly Operations and Input Modes

DDT allows you to deposit new values into memory locations. First, open a location, then type a
description of the new value. Finally, type one of the commands that closes a location and deposits a value
(e.g., any of the CR, LF, A, etc. commands).

To help you form the new values, several assembler functions are built into DDT. The general
instruction format

0P AC,@8Y(X)

is recognized and assembled as MACRO would assemble it. Specifically the names of the machine
instructions are recognized by DDT. MUUO names that are used by the program are recogmzed Symbols
defined by the program are available for use by DDT’s instruction assembler.

Neither literals, pseudo-ops, nor macros are available in DDT. However, DDT does provxde commands
for entering text and numbers.

DDT evaluates expressions using integer arithmetic. The operators +, -, and * work as you might expect
for addition, subtraction, and multiplication, respectively. Because the slash character is used to open
locations, division is signified by the apostrophe character (').

A single comma in an instruction signifies the end of the accumulator field.! A pair of commas separates
left half and right half quantities. ‘

Parentheses may be used to signify the index register field. Technically, the expression that appears
within parentheses is swapped (as in the MOVS instruction) and added to the word being assembled.

The at-sign character (@) sets bit 13, the indirect bit, in the expression being assembled

The blank character is a separator and adding operator in the instruction assembler.

Numeric input is octal except that digits followed by a decimal point are decimal. If further digits
following the decimal point are typed, input is floating-point. A floating-point number may be followed by E
an optional plus or minus, and an exponent.

In addition to the input formatting functions described above, special commands exist by Wthh various
text formats can be entered:

"/text/ Left-justified ASCII text, at 5 characters per word. Instead of the slash (/) you may use
any character that doesn’t appear in the text itsclf. Repeat that character to end the input
string. '

llf an input/output instruction is being assembled, the comma signifies the end of the device number field.

"x$

DEBUGGING WITH DDT 105

To enter the sequence CRLF you must type only CR. To get a LF alone, you may type LF.
CR alone can’t be had.

For example: "\this is a sample\
One right-justified ASCII character. Example: "w$

10.5.5. DDT Symbol Manipulations

DDT can change the symbol table that MACRO supplies. The changes include adding new symbols,
removing symbols, and suppressing symbols.

To say that a symbol is suppressed means that the symbolic disassembler in DDT will not consider this
symbol name as a possible name to output. However, the definition of a suppressed symbol is available when
you use the symbol name as input. Suppressed symbols are sometimes called half-killed symbols.

sym$:

sym$K
sym$ $K

sym?
sym:

val<sym:

Open the symbol table of the program named sym. As we have mentioned, the program
name is set from the first six letters of the first word that follows the TITLE statement.

Once a program’s symbols are opcned, they are available for symbolic input and output.
The reason that DDT insists that you specify a symbol table name is that in an
environment where separately assembled programs have been loaded together there may
be repetitions of symbol names among the several programs. Opening one program’s
symbols serves to eliminate any ambiguity in such cases.

Suppress (i.e., half-kill) the specified symbol. This symbol will no longer be available for
output, but it will be recognized on input.

Kill this symbol. This symbol is removed from the symbol table and will no longer be
available for either input or output.
Type out the name of each program in which the symbol named sym is defined.

66 3y

Define the symbolic name sym to have the value of the current location (i.e., “.”). If sym
is already defined, this changes the old definition; otherwise, a new definition is added to
the symbol table.

Define the symbolic name sym to have the value specified by the expression val.

106 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

BYTE INSTRUCTIONS 107

Chapter 11
Byte Instructions

In the PDP-10 a byte is some number of contiguous bits within one word. A byte pointer is a word that
describes a byte. There are three parts to the description of a byte: the word (i.e., the address) in which the
byte occurs, the position of the byte within the word, and the length of the byte. We will discuss six
instructions that manipulate byte pointers and bytes.1

A byte pointer has the following format:

000000 000011 1 1 1111 112222222222333333
012345 678901 2 3 4567 8901234567890123456

| I L | |

I P | s JujIp x | Y |

I | 1-1-l | |
Several fields are present in a byte pointer word:

e The P field specifies the byte position within the word. The contents of the P field is the count
of bits to the right of the desired byte, (i.e, decimal 35 minus the bit number of the rightmost
bit in the byte).

e The S field specifies the byte size in bits.
e The U field is ignored by older processors. In the extended KL10, this field should be zero.
e The I, X, and Y fields are the same as in an instruction.

Pictorially, a byte within a word looks like this:

0 35
| R
| |
| ASSSSSSSSY I
I I\ byte \] |
| ASSESSSSSY I
| I I |

t *

| |
36-P-S 35-P

1There are also instructions in the KL.10 extended instruction set that manipulate strings; we will not discuss these, but you may

consult [SYSREF] for details.

108 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

The byte includes consecutive bits starting at bit number 36-P-S through bit number 35-P. The byte
includes S bits and is located P bits to the left of the right end of the word.

11.1.LDB - LOAD BYTE

The contents of the effective address of the LDB instruction is interpreted as a byte pointer. The byte
described there is loaded, right adjusted, into the accumulator. The other bits in the accumulator are set to
Z€ero.

LDB C(AC) := the byte described by C(E)

Example:

LDB 5,[270400,,40]

This instruction loads register 5 with a 4-bit byte composed of bits 9: 12 of the word at location 40. Bits
9:12 are the accumulator field, so this instruction copies the AC field from location 40 to accumulator 5.

11.2. DPB - DEPOSITBYTE

The contents of the effective address of the DPB instruction is interpreted as a byte pointer. The
rightmost S bits of the accumulator are deposited into the byte specified by the byte pointer at the effective
address. The accumulator and the other bits of the word into which the byte is deposited remain unchanged.

DPB the byte described by C(E) := bits 36-5:35 of C(AC)

11.3. IBP - INCREMENT BYTE POINTER

To increment a byte pointer means to change the pointer to refer to the next byte in sequence following
the byte that it presently points to. The “next” byte is the same size as the current byte and is immediately to
the right of the current byte in this word, if it fits. Otherwise, the next byte is the first S bits of the next word.

0 Word Address "E" 35]0 Word Address "E+1" 35
!

i I |
ESSSSSSNSV AN NS S NN A ANNNNNNNNY
IN A NV B\ N €\
ASSSSSSSSYASSSSS SNV AN ANNNNNNNNY

+ +
|
-P

.
| |
36-P-S 35 |
|
-p

Vo —— >

35+S
fewer than S bits

This diagram depicts three consecutive bytes. When a byte pointer that points to the byte labeled “A™ is
incremented, the resulting pointer will point to “B”. The byte “B” is adjacent to and immediately to the right
of “A”. When a pointer to “B” is incremented, then, because there are fewer than S bits left in the word, a
new pointer will be constructed that points to “C”. The byte “C” is in the word immediately following the
word that contains “B”. Byte “C” includes bits 0 through S-1 of that word. Note that a byte never crosses a
word boundary. When fewer than S bits remain at the right end of a word, those bits are ignored.

BYTE INSTRUCTIONS 109

In detail, a byte pointer is incremented as follows: a new position field is computed by subtracting S from
P, i.e., P-S. If the result is non-negative, it will be stored as the new value of the P field. If the result of the
subtraction is negative, no more bytes of size S will fit in the current word; consequently, the Y field of the
byte pointer is incremented (to point to the next word) and the new P field is computed from P := 36-S
(where 36 is decimal). The new P field selects the leftmost byte of size S in the word addressed by the new
value of the Y field.

When there is no room for another byte in a word, the Y field of the byte pointer is incremented.?
Because the Y field of a pointer may be changed in this way, the programmer should avoid indirect
addressing in any byte pointer that is incremented.

There are three instructions that increment byte pointers in the manner that we have described. The first
of these is the IBP instruction. Although we mention IBP first, generally the next two instructions, ILDB and
IDPB, are more often used.

The IBP, Increment Byte Pointer, instruction increments a byte pointer as we have described. The
accumulator field must be zero in the IBP instruction; a non-zero AC field specifies the ADJBP instruction as
we shall explain below. The IBP instruction will fetch the contents of the effective address. That word is
interpreted as a byte pointer; it is incremented. The updated byte pointer is stored at the effective address,
replacing the original byte pointer.

1BP C(E) := Incremented byte pointer in C(E).
The AC field of the IBP instruction must be zero.

11.4.ILDB - INCREMENT POINTER AND LOAD BYTE

Increment the byte pointer contained at the effective address. Then perform a LDB function using the
updated byte pointer.

ILDB C(E)
C(AC) :

Incremented byte pointer in C(E).
Byte described by the new C(E).

0o

11.5.IDPB - INCREMENT POINTER AND DEPOSIT BYTE

Increment the byte pointer contained at the effective address. Then perform a DPB function using the
updated byte pointer.
1DPB C(E) := Incremented byte pointer in C(E).
Byte described by the new C(E) := Bits 36-8:35 of C(AC).
The two instructions ILDB and IDPB are immensely useful in handling character strings and other
sequences of data objects.

One of the characteristics of these two instructions is that they advance the byte pointer before loading or
depositing a byte. On the whole, this is more convenient than the alternative, but it does provide some
difficulty when initializing for string processing. We shall see that the POINT pseudo-op neatly allows us to
handle this problem.

2On the old processors, the PDP-6 and the KA10, when Y contains 777777, incrementing the address ficld produces a carry into the X
field. In the case of ILDB and IDPB this causes unpredictable results. No such problem exists on the K110 or newer processors.

110 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

11.6. POINT PSEUDO-OPERATOR

For convenience, the assembler has a pseudo-op for creating byte pointers. The POINT pseudo-op has
three parameters, the size, the address, and the position. In the POINT pseudo-op, the position argument
specifies the bit number of the rightmost bit in the byte. Note that the position argument to the POINT
pseudo-op is not the same as the P field of a byte pointer. In the POINT pseudo-op, both the size and
position fields are interpreted as decimal (rather than as octal) numbers. %

Some examples of the POINT pseudo-op:

POINT 7,1000,6 350700, ,1000
Byte is 7 bits from 0 to 6

POINT 9,3214,26 111100,,3214
Byte is 9 bits, 18 to 26

POINT 1,67(3),4 370103, ,67
Selects bit 4
Once again, the size and position are interpreted as decimal numbers.

Since the ILDB and IDPB functions increment a byte pointer before performing the load or store
operation, it is sometimes necessary to resort to a subterfuge for initializing byte pointers. Let us try an
example. Suppose that the word at address 1000 contains several 7-bit bytes starting at the left end of the
word. It would be desirable to use the simplest possible loop to read this sequence of bytes. An ILDB
instruction in a loop would be satisfactory if only we could determine how to make a byte pointer which,
when incremented, addresses the first byte in the word at 1000.

The byte that we want to process first is described by the pointer 350700,,1000 (or as
POINT 7,1000,6). We also want the first instruction that processes this string to be an ILDB. In order to
make the first ILDB pick up the first byte, we must back up the byte pointer so that when it is incremented it
will point to the first byte in this word. Recall that a byte pointer is incremented by subtracting S from P. If
we add the byte size, 7, to the position, 35, we get 440700, ,1000. This byte pointer points to the
non-existent bits -7 : -1 of word 1000. It doesn’t matter that this byte doesn’t exist, so long as we avoid
trying to load or store using this pointer. If the first thing we do is increment the pointer prior to a load or
deposit, then everything will be satisfactory. The initialization of a byte pointer to point to a non-existent byte
is analogous to the initialization of a stack pointer where we made it point to a word that is outside of the
actual area allocated to the stack.

The POINT pseudo-op can be used to build a byte pointer that points at the non-existent byte to the left
of the first byte in a word. To use POINT in this way, simply omit the position field. The byte pointer that is
built will have the position field set to octal 44.

POINT 7,1000 440700, ,1000

The non-existent 7-bit byte to the
left of all bits at location 1000.

11.7. PROGRAMMING EXAMPLE

The POINT pseudo operator is very commonly used with ASCII strings. The byte instructions are quite
useful for string processing.

BYTE INSTRUCTIONS 111

MOVE B,[POINT 7,[ASCIZ/This is a string

/1]
LOOP: ILDB A,B ;get a character from the string

JUMPE A,LOQOPX ;if null, exit from loop

e ;process character

JRST LOOP ;continue in loop, process all characters
LooPX: . . . ;finished processing.

Usually this loop structure will be implemented in a subroutine.

11.8. ADJBP - ADJUST BYTE POINTER

The ADJBP instruction has the same operation code as the IBP instruction; ADJBP is distinguished from
IBP by a non-zero accumulator field.? In the ADJBP instruction the accumulator contains an adjustment
count, either positive or negative. In the execution of this instruction, the computer will fetch the byte pointer
at the effective address, increment or decrement it by the number of bytes specified in the accumulator, and
then place the adjusted byte pointer in the accumulator. The original byte pointer is unchanged. This differs
from the way that the IBP instruction stores its result.

ADJBP C(AC) := The byte pointer from C(E) adjusted by the original
contents of AC. The AC field of the ADJBP idinstruction
must be non-zero.
ADJBP is not quite the same as iterating IBP. The difference lies in the fact that ADJBP preserves the
byte alignment across word boundaries. The tgrm byte alignment refers to the position of the left-most byte of
a word, as defined by the P and S fields. Numerically, the byte alignment is:

36-P modulo S (36 is decimal)

Ordinarily, strings are packed with zero alignment because the IBP, ILDB and IDPB instructions all force the
alignment to zero when a word boundary is crossed. ADJBP, however, preserves byte alignment when
crossing a word boundary.

When given a reasonable byte pointer, ADJBP will returns a byte pointer that describes a complete byte
within a word. For example, if the accumulator contains zero and the byte pointer has a P field of octal 44
(i.e., a byte pointer to the non-existent byte to the left of a word) then ADJBP will return a byte pointer to a
real byte that is contained within the previous word.

ADJBP computes the number of bytes that will fit in a word by the formula:

((36-P) DIV S) + (P DIV S) DIV means divide and truncate the quotient
to an integer. The 36 is decimal.
The first portion of this expression is how many bytes, including the specified byte itself, will fit at and to the
left of the byte. The second portion is how many bytes will fit to the right of the specified byte.4

If the number of bytes per word is zero, the divide check flag (see section 13, page 125) is set and the
instruction avoids changing the accumulator or memory. Otherwise, the adjustment count found in the the
accumulator is divided by the specified number of bytes per word. The quotient is added to the effective
address of the byte pointer; the remainder specifies an adjustment to make to the P field of the resulting byte
pointer. (In the process of adjusting P, the effective address of the byte pointer may change by one.)

3ADJBP does not exist in the KI10 and earlier processors.

4If S is zero, the ADJBP instruction simply copies C(E) to the accumulator.

112 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

11.9. EXAMPLE 4-B

In this version of the reverse program we will build the output line in an output buffer before sending the
line to the terminal. An output buffer is simply a place in memory where we collect data prior to sending it to
an output device. Sending the entire output buffer to the terminal via OUTSTR is much more efficient than
the repetitions of OUTCHR that we resorted to in example 4-A.

The input processing remains unaffected by this change.- Let us reexamine the output loop from example
4-A:

EOLN: CAMN P,[IOWD PDLEN,PDLIST] ;is the stack empty?

JRST STOP ;empty line, stop running.
OUTSTR [ASCIZ/The reversed line is: /]
POPIT: POP P.A ;get one character from stack
OUTCHR A ;send it to the terminal
CAME P,[IOWD PDLEN,PDLIST] ;is the stack empty now?
JRST POPIT ;not yet. Loop again.
OUTSTR [ASCIZ/
/] ;add CR LF to end of the output line
JRST GETLIN ;go get another input 1line

We focus on the OUTCHR at POPIT+1. Itis this instruction that we should change. Our plan is to define
an output buffer, establish a byte pointer to that buffer, and then to deposit characters into that buffer using
the given byte pointer. When the POPIT loop terminates, we will have to add the characters carriage return,
line feed and null to the output buffer. Then one OUTSTR operation will transmit the buffer to the terminal.

Let us begin by defining the output buffer. The buffer, again, is simply a group of consecutive memory
locations that we will use for temporary storage. We define a symbolic name for the length of the buffer
BUFLEN, and then use a BLOCK pseudo-op to actually reserve space:

BUFLEN==40
OBUFR: BLOCK BUFLEN

Now, given that we have a buffer, we must have a byte poiunter that we can use to deposit characters into
the buffer. Here we have to plan ahead a little ways. We are intending to use OUTSTR to send the data to the
terminal. Thus far, we have always used OUTSTR in conjunction with text strings that have been created by
our use of the ASCIZ pseudo-op. We should be certain that the buffer we build exactly matches the format
of the strings made by that pseudo-op. The relevant characteristics of the ASCIZ pseudo-op are these:

o Strings are composed of 7-bit bytes, left-adjusted in consecutive words.
o The first character of a string begins at the left-end of a word.
e The string ends with a null (zero) byte.

This doesn’t seem to be too difficult. Since the string is composed of 7-bit bytes, the byte size is dictated.
Since the IDPB and ILDB functions already work with left-adjusted strings, it will come as no surprise that
we’ll use IDPB to store into the buffer. We will have to initialize the byte pointer so that the first IDPB stores
into the character at the left-end of the word at OBUFR.

We know how to make such a byte pointer. It is simply POINT 7,0BUFR. We must initialize some
location to contain this byte pointer prior to the first time through the output loop.

We shall hold the byte pointer in an accumulator that we will call B. It is not nccessary that the byte
pointer be held in an accumulator; it may be in any memory location. It is just convenient to hold it in an
accumulator.

BYTE INSTRUCTIONS 113

B=2

- MOVE B,[POINT 7,0BUFR]

POPIT:

" Recall the explanation of the POINT pseudo-op: the byte pointer that is formed from the expression

POINT 7,0BUFR points to the non-existent byte to left of the first real byte in the word at 0BUFR. The use

of a pointer to a non-existent byte should not disturb you; we shall increment this pointer to make it point to a

real byte before we attempt to store a byte. The instruction to replace OUTCHR at POPIT+1 should now be
obvious. The byte pointer is in B; the byte is in A. An IDPB instruction does the trick:

B=2

BUFLEN==40
OBUFR: BLOCK BUFLEN

EOLN: CAMN P,[IOWD PDLEN,PDLIST] ;is the stack empty?
JRST STOP ;empty line, stop running.
OUTSTR [ASCIZ/The reversed line is: /]
MOVE B,[POINT 7,0BUFR]

POPIT: POP P,A ;get one character from stack
IDPB A,B ;send it to the output buffer
CAME P,[IOWD PDLEN,PDLIST] ;is the stack empty now?

JRST POPIT ;not yet. Loop again.

e ;add CR LF and NULL to end the
;output Tine

JRST GETLIN ;go get another input line

We must also add the instructions to place the sequence carriage return, line feed, and null at the end of
the string we have composed in OBUFR:

EOLN: CAMN P,[IOWD PDLEN,PDLIST] ;is the stack empty?
JRST STOP ;empty line, stop running.
OUTSTR [ASCIZ/The reversed line is: /]
MOVE B,[POINT 7,0BUFR]

POPIT: POP P.A ;get one character from stack
1DPB A,B ;send it to the output buffer
CAME P,[IOWD PDLEN,PDLIST] ;is the stack empty now?:

JRST POPIT : ;not yet. Loop again.

MOVEI A,15 ;add carriage return to the buffer
IDPB A,B

MOVEI A,12 ;add line feed to the buffer

1DPB A,B .

MOVEI A,0 ;end with a null byte

IDPB A.B :to make OQUTSTR happy

OUTSTR OBUFR ;Send the buffer to the terminal.
JRST GETLIN ;Go get another 1line

The instruction sequence at POPIT, notably the addition of a null to the end of the string, has built an
ASCIZ-format string that is suitable for use with the OUTSTR MUUO.

The entire program that we have constructed appears below:

114

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

TITLE REVERSE - Example 4-B

Comment $
This is another program to demonstrate the reversal of the
characters on an input line.

The structure or organization of this program is similar to
that found in example 4-A. In contrast to example 4-A, this
program uses the byte instructions to make character processing

easier,
$
A=1 ;Assign symbolic names to
B=2 ;the accumulators
P=17 ;Symbolic for push down pointer
BUFLEN==40
PDLEN==200
OBUFR: BLOCK BUFLEN+1 ;buffer for output line

PDLIST: BLOCK PDLEN

START: RESET ;initialize I0

QUTSTR [ASCIZ/Welcome to the Reverse Program
/] ;send a friendly message
;initialize for another input line

GETLIN: OUTSTR [ASCIZ/Piease type a line: /]

MOVE P,[IOWD PDLEN,PDLIST] ;initialize stack pointer
CHLOOP: INCHWL A ;obtain a character
CAIN A,15 .- iskip uniess this is a carriage return
JRST CHLOOP " ;discard CR: go get the next character
CAIN A,12 ;skip unless this is a line feed
JRST EOLN ;this is a line feed. Jump to EOLN
PUSH P,A ;add character to the stack
JRST CHLOOP ;loop to obtain another character
EOLN: CAMN P,[IOWD PDLEN,PDLIST] ;is the stack empty?
JRST sTOP ;empty line, stop running.
OUTSTR [ASCIZ/The reversed line is: /]
MOVE B,[POINT 7,0BUFR]
POPIT: POP P,A ;get one character from.stack
1DPB A,B ;send it to the output buffer
CAME P,[IOWD PDLEN,PDLIST] ;is the stack empty now?
JRST POPIT ;not yet. Loop again.
MOVEI A,15 ;add carriage return to the buffer
IDPB A,B
MOVEI A,12 ;add line feed to the buffer
1DPB A,B
MOVEI A0 ;end with a null byte
1DPB A,B ;to make OUTSTR happy
OUTSTR OBUFR ;Send the buffer to the terminal.
JRST GETLIN ;Go get another line
STOP: OUTSTR [ASCIZ/A11 done.
/]
EXIT

END

START

BYTE INSTRUCTIONS 115

11.10. CHARACTER PROCESSING; EXAMPLE 5

We shall now build a program in which we read a line of input and type the odd characters (i.e., the first,
third, fifth, etc.) on one output line and the even characters on the next line. This program stops when a
blank line is typed as input.

Type a line: This is a sample input line
T i sasml nu ie
hs i apeiptln
Type a line:
We begin by writing an outline plus the fragment that reads a line of input from the terminal. We will
define a buffer space, called BUFFER, and the length of the buffer area, BUFLEN. The symbolic accumulator
names that we have introduced will again be present. We label this fragment GETLIN; the program will

return to this point to obtain another input line, except when a blank line is present.

BUFLEN==40
BUFFER: BLOCK BUFLEN ;space for an input line
e ;initialize
GETLIN: OUTSTR PROMPT ;prompt for input
MOVE B,[POINT 7,BUFFER] ;read input to buffer area
GETCHR: INCHWL A ;read a character
CAIN A,15 . ;is it a carriage return?
JRST GETCHR ;yes, discard CR
CAIN A,12 " ;is it a line feed?
MOVEI A,0 ;yes, convert it to null to end line
IDPB A,B ;store the character in the buffer
JUMPN A,GETCHR ;loop, uniess end of line.
;process the characters
;decide when to stop, or
;print the results
JRST GETLIN ;get another line of input

If the input line is empty, then the first character in the buffer will be a null: we discarded the carriage
return, and we have converted the line feed to a null before storing it. We will load the first character from
the input buffer and test for the end of line in the following sequence:

LDB A,[POINT 7,BUFFER,6] ;read the first character
JUMPE A,STOP ;if line is empty, stop now.

The next problem is to produce the odd and even output lines. We have a choice here. Either we can
use one output buffer and scan the input line twice, or we can use two output buffers and scan the line once.
Generally, if you have a chance to do a function once instead of twice, it is faster to do it only once. On the
other hand, space considerations may dictate that that a second pass is preferable. In this case, the space
requirements are very modest, so we will scan the line once, producing two output buffers. We have the
following general form for this portion of the program:

116 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

e ;initialize line processing
LOOP: e ;get an odd character
. e ;exit loop if end of 1line
R ;store odd character in odd buffer
.. ;store space in even buffer
. v ;get an even character

;exit loop if end of 1line

;store even character in even buffer
R ;store blank in odd buffer
JRST LOOP ;get another odd character

LOOPX: ;here at end of line

We must initialize three byte pointers. One for the input line, the second for the odd output line, and the
third for the even output line. Again, we find it convenient to hold these byte pointers in accumulators. Also,
it will be convenient to use one accumulator, B, to hold an ASCII blank character.

MOVE INP,[POINT 7,BUFFER] ;input line pointer
MOVE ODDP,[POINT 7,0LINE] - ;o0dd 1line
MOVE EVENP,[POINT 7,ELINE] ;even line
MOVEI B," " ;one blank character

An ILDB is used to obtain a character from the input buffer:

LOOP: ILDB A,INP ;read an odd character

The test for the end of line is quite simple: when we read the input line, we placed a null character in the
buffer to mark the end. Each time we read a character from the buffer, we check to see if it’s zero. Note that
the existence of instructions such as JUMPE and JUMPN make it easy to test for a null character.

LOOP: ILDB A,INP ;get an odd character
JUMPE A,LOOPX ;leave loop if null is seen

Next we must add the odd character to the odd buffer and add a blank to the even buffer. The byte
pointer in ODDP addresses the odd buffer; the pointer in EVENP addresses the even buffer:

1DPB A,0DDP ;deposit an odd character
1DPB B,EVENP ;deposit a blank in even line

Putting these fragments together, in the framework we described above, we get the following more nearly
complete program:

;initialize

MOVE INP,.[POINT 7,BUFFER] :input line pointer
MOVE ODDP,[POINT 7,0LINE] ;odd 1ine
MOVE EVENP,[POINT 7,ELINE ;even line
MOVEI B," " : ;one blank character

LOOP: ILDB A,INP ;read an odd character
JUMPE A,LOOPX ;leave loop if null 1is seen
10PB A,ODDP ;deposit an odd character

IDPB B,EVENP ;deposit a blank in even line
Coe ;get an even character
;exit loop if end of line
;store even character in even buffer
e ;store blank in odd buffer
JRST LooP ;get another odd character

LOOPX:

We can now write the fragment for dealing with the even characters. It is quite similar to what we have
just been through for the odd characters:

BYTE INSTRUCTIONS

117
I1LDB A,INP ;read an even character
JUMPE A, LOOPX :leave loop if null is seen
1DPB A,EVENP ;deposit even char in even buffer
I1DPB B,0DDP ;deposit a blank in odd buffer

After the end of the input line is found, we must add the sequence carriage return, line feed, and null to

each of the output lines.

shere when input line is exhausted.

LOOPX: MOVEI B,156 ;add carriage return
1DPB B,0DDP ;to odd buffer
IDPB B,EVENP ;to even buffer
MOVEI B,12 ;add line feed
I1DPB B,0DDP ;to the odd 1line
10PB B,EVENP ;and to the even line
MOVEI B,0 ;finally, add a null
10PB B,0DDP :to both 1lines,
IDPB B,EVENP ;to make QUTSTR happy.

Now that the lines have been created, they must be printed:

OUTSTR
OUTSTR
OUTSTR
OUTSTR

HEAD

HEAD

OLINE

ELINE

;print leading spaces
;print the odd 1ine

;print more spaces

;print the even characters

We can now put all these fragments together and add the several definitions that are necessary to form
the complete program for Example 5:

TITLE EVEN
Comment $

This program reads a
first, third, fifth,
the next line. This

Type a line: This is
T i s
h s i
Type a line:

3

OmMmEHO WD
o< 0 0
OMmTVWN P
o2
oo
~N W

[

0ODD - Examplerb

line of input and types the odd characters (i.e., the
etc.) on one output line and the even characters on
program stops when a blank 1ine is typed as input.

a sample input line
asml nu ie
apeiptiln

;input line pointer
;even line pointer
;odd line pointer

118

START: RESET

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

;a good way to start

OUTSTR [ASCIZ/Welcome to Even-0dd

/]
GETLIN: OUTSTR
MOVE
an inpu
INCHWL
CAIN
JRST
CAIN
MOVEI
1DPB
JUMPN
;determine if t
L.DB
JUMPE
;initialize to
MOVE
MOVE
MOVE
MOVEI
;process an odd
LOOP: ILDB
JUMPE
1DPB
I1DPB
;process an eve
I1LDB
JUMPE
1DPB
1DPB
JRST

;obtain
GETCHR:

;here when the dinput line is exhausted.
and null to each output Tline

;add carriage r
LOOPX: MOVEI
1DPB
IDPB
MOVEI
IDPB
1DPB
MOVEI
1DPB
IDPB
;print the odd
OQUTSTR
QUTSTR
OUTSTR
OUTSTR
;done with one
JRST
STOP: EXIT
BUFLEN==40
BUFFER: BLOCK
OLINE: BLOCK
ELINE: BLOCK
HEAD: ASCIZ
PROMPT: ASCIZ
END

PROMPT

B,[POINT 7,BUFFER]
t line

A

A,15

GETCHR

A, 12

A,0

A,B

A,GETCHR
he line is empty
A,[POINT 7,BUFFER,6]
A,STOP
process the input line
INP,[POINT 7,BUFFER]
0DDP,[POINT 7,0LINE]
EVENP,[POINT 7,ELINE]
B," "

character

A,INP

A,LOOPX

A,0ODDP

B,EVENP
n character

A, INP

A,LOOPX

A,EVENP

B,0DDP

LOOP

eturn, line feed,
B,15

B,0DDP

B,EVENP

B,12

B,0DDP

B,EVENP

B,0

B8,0DDP

B,EVENP

Tine,

HEAD

OLINE
HEAD

ELINE
Tine.

GETLIN

BUFLEN

BUFLEN+1
BUFLEN+1

/ /
/Type a line: /
START

then the even line

;send greetings
iprompt for dinput
;read input to buffer area

;read a character

;is it a carriage return?
;yes, discard CR

;is it a line feed?

jyes,
;store the character in the buffer
;:loop, unless end of line.

;read the first character
;if 1ine is empty, stop now.

;input Tine pointer
;odd line

;even line

;one blank character

;read an odd character

;leave loop if null is seen
;deposit an odd character
;deposit a blank in even line

;read an even character

;leave Toop if null is seen
;deposit even char in even buffer
;deposit a blank in odd buffer
;get the next odd character

;add carriage return
;to odd buffer

;to even buffer

;add 1ine feed

;to the odd line

;and to the even line
;finally, add a null
;to both lines,

;to make OUTSTR happy.

;print leading spaces
;print the odd line

;print more spaces

;print the even characters

;do another line

;input buffer

;odd line buffer

;even line buffer
;same length as PROMPT

convert it to null to end line

BYTE INSTRUCTIONS v 119

11.11. ALTERNATIVE TECHNIQUES

One of the more unfortunate characteristics of the loop at LOOP is that the end of line test appears twice.
There are at least two basic ways to avoid the repetition. One way is to make a subroutine from the fragment
that reads the next input character and tests for end of line; we will discuss this further when we get to
subroutines. The second way to avoid the repetition of this fragment is to wrap the two different parts of the
loop into one. There are several ways to group these two parts together. We will examine two of them in
more detail,

11.11.1. Flags for Control

We can restructure the loop so that a flag or switch variable controls the action of the program within the
loop. Suppose we have a variable called ODDC which has value 1 when an odd character is being processed,
and value 0 when an even character is being done. We will keep this flag in an accumulator. Then we could
write the processing loop as follows:

e e ;initialize
MOVEI 0nDC, 1 ;set to odd character

LOOP: N 1get a character,
e ;exit loop if end of 1line
JUMPE 0DDC, ELOOP ;if not odd, process even character.
e . ;process odd character
MOVET 0ooDC, 0 ;set next character is even
JRST LOOP
ELOOP: .. ;process even character
MOVEI 0nDC, 1 ;set next character is odd
JRST LooP

It isn’t difficult to fill in the blanks. Also, we can take advantage of the SOJA and AOJA instructions to
set the ODDC flag and jump in one operation:

MOVE INP,[POINT 7,BUFFER] ;input line pointer
MOVE ODDP,[POINT 7,0LINE] ;odd line
MOVE EVENP,[POINT 7,ELINE] ;even line

MOVEI B," " . ;one blank character

MOVEI 0ODDC,1 iset to odd character first
LOOP: ILDB A, INP ;get a character

JUMPE A, LOOPX ;leave loop if null is seen

JUMPE ODDC, ELOOP ;jump when doing an even character

IDPB A,0DDP ;deposit an odd character

IDPB B,EVENP ;deposit a blank in even 1line

S0JA 0DDC, LOOP ;set to even for next time; loop
ELOOP: 1IDPB A,EVENP ;deposit an even character

10PB B,0DDP ;deposit a blank in odd line

AOJA 0DDC, LOOP ;set to odd for next time; loop

11.11.2. Control Without Flags

We can remove all the extra control logic if we simply remember that each character causes an
alternation. By interchanging the byte pointers that are kept in ODDP and EVENP after each character is
processed we can force the first character into OLINE, the second into ELINE, the third into OLINE, etc. This
interchange is accomplished by means of the EXCH instruction. It should be noted that in using EXCH we
confuse the mnemonic significance of the names ODDP and EVENP; we hope that is all we confuse.

120 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

MOVE INP,[POINT 7,BUFFER] ;input Tline pointer
MOVE ODDP,[POINT 7,0LINE] ;odd Tine
MOVE EVENP,[POINT 7,ELINE] ;even line
MOVEI B," " ;one blank character
LOOP: ILDB A,INP iget a character
JUMPE A,LOOPX ;leave loop if null is seen
1DPB A,0DDP ;deposit the character in one place
IDPB B,EVENP ;and a blank in the other.
EXCH ODDP,EVENP ;exchange odd and even pointers!
JRST LOOP

11.12. EXERCISES

11.12.1. Test for an Empty Line
In example 5, we wrote the test for an empty line using the LDB instruction. Why did we avoid the
following bad example?

;This is a bad example. What is wrong with it?
ILDB A,[POINT 7,BUFFER] ;read the first character
JUMPE A,STOP ;1ine is empty. Stop now.

11.12.2. Interleave Program
Create a program to read two lines from the .t&rminal. Then output the characters from the two lines in
interleaved order. That is, output characters in the order:

line 1 char 1, tine 2 char 1, line 1 char 2, line 2 char 2, line 1 char 3, line 2 char 3, etc.

Your program should be capable of processing many input pairs. That is, after you’ve successfully
output an interleaved line, you should ask for more input.

If the input lines are not of equal length, after interleaving as much as you can, output the remainder of
the longer input line.

If the first line contains nothing more than a carriage return and line feed, make the program stop.

Examples:

linel: ABCDEFG

Tine2: 1234567

output line: A1B2C3D4E5F6G7
linel: THIS IS

1ine2: this is a test

output 1ine: TtHhIiSs 1IiSs a test

HALFWORD INSTRUCTIONS 121

Chapter 12
Halfword Instructions

The halfword class of instructions perform data transmission between one half of an accumulator and
one half of an arbitrary memory location. There are sixty-four halfword instructions. Each mnemonic begins
with the letter H and has four modifier letters. The first modifier selects one half of the source word; the
second selects one half of the destination word. The third modifier specifies what modification to perform on
the other half of the destination. Finally, the fourth modifier specifies the direction of data movement, e.g.,
from memory to an accumulator or from the accumulator to memory.

I
000000000011111111)112222222222333333
012345678901234567]890123456789012345

|
| |
| Left Half | Right Half |
|

H halfword from the

IR right half of source
jL left half of source

to the [R right half of destination
JL left half of destination
with | no modification of the other half of the
destination

|Z zero the other half of the destination

|0 set the other half of the destination to ones

|E sign extend the source halfword into the other
half of the destination :

where | source is memory and destination is AC

|I source is the immediate quantity 0,,E and the
destination is AC

IM destination is memory and source is AC

|S source and destination are the same memory
location; if the selected accumulator is
other than AC 0 a copy of the entire
resulting destination word is stored in
the selected accumulator.

In the algebraic representation of the halfword instructions that follow, we introduce some additional
nomenclature. The notations CO(E) and C18(E) mean the contents of bit 0 of E and the contents of bit 18
of E, respectively. We have used the notation A, , B before; it means the 36-bit word composed of the 18-bit
quantity A on the left and the 18-bit quantity B on the right.

122 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

HRR C(AC) = CL(AC),,CR(E)
HRRI C(AC) = CL(AC),.E
HRRM: C(E) = CL(E),,CR(AC)
HRRS Temp = C(E) := CL(E),,CR(E);
- if AC>0 then C(AC) := Temp
HRRZ C(AC) = 0,,CR(E)
HRRZI C(AC) =0,,E MOVEI is usually preferred
HRRZM C(E) = 0,,CR(AC)
HRRZS Temp = C(E) := 0,,CR(E);
if AC>0 then C(AC) := Temp
HRRO C(AC) := 777777, ,CR(E)
HRROI C(AC) = 7777717, .,k
HRROM C(E) = 777777, ,CR{AC)
HRROS Temp = C(E) := 777777,,CR(E);
if AC>0 then C(AC) := Temp
HRRE C(AC) := 777777*C18(E),,CR(E);
HRREI C(AC) = 777777*E18, ,E
HRREM C(E) = 777777*C18(AC), ,CR(AC)
HRRES Temp = C(E) := 777777*C18(E),,CR(E);
if AC>0 then C(AC) := Temp
HRL C(AC) = CR(E),,CR(AC)
HRLI C(AC) = E,,CR(AC)
HRLM C(E) = CR(AC),,CR(E)
HRLS Temp = C(E) := CR(E),,CR(E);
if AC>0 then C(AC) := Temp
HRLZ C(AC) := CR(E),.O
HRLZI C(AC) = E,,0 MOVSI is usually preferred
HRLZM C(E) = CR(AC),,0
HRLZS Temp = C(E) := CR(E),,O0;
if AC>0 then C(AC) := Temp
HRLO C(AC) := CR(E),,777777
HRLOI C(AC) := E,,777777
HRLOM C(E) = CR(AC),,777777
HRLOS Temp = C(E) := CR(E),,777777;
. ’ . if AC>0 then C(AC) := Temp
HRLE C(AC) := CR(E),,777777*C18(E)
HRLEI C(AC) = E,,777777*E18
HRLEM C(E) = CR(AC),,777777*C18(AC)
HRLES Temp = C(E) := CR(E),,777777*C18(E);
if AC>0 then C(AC) := Temp
HLR C(AC) := CL(AC),,CL(E)
HLRI C(AC) = CL(AC),,O not useful
HLRM C(E) = CL(E),,CL(AC)
HLRS Temp = C(E) := CL(E),,CL(E);
if AC>0 then C(AC) := Temp
HLRZ C(AC) = 0,,CL(E)
HLRZI C(AC) =0
HLRZM C(E) = 0,,CL(AC)
HLRZS Temp = C(E) := 0,,CL(E);
if AC>0 then C(AC) := Temp
HLRO C(AC) := 777777, ,CL(E)
HLROI C(AC) = 777777,,0
HLROM C(E) = 777777, ,CL(AC)
HLROS Temp = C(E) := 777777,,CL(E);

if AC>0 then C(AC) := Temp

HALFWORD INSTRUCTIONS 123

HLRE C(AC) := 777777*CO(E),,CL(E)
HLREI C(AC) =0
HLREM C(E) = 777777*C0(AC),,CL(AC)
HLRES Temp = C(E) := 777777*CO(E),,CL(E);
if AC>0 then C(AC) := Temp
HLL C(AC) = CL(E),,CR(AC)
HLLI C(AC) = 0,,CR(AC)
HLLM C(E) = CL(AC),,CR(E)
HLLS Temp = C(E) := CL(E),,CR(E);
if AC>0 then C(AC) := Temp
HLLZ C(AC) := CL(E),,0
HLLZI C(AC) :=0
HLLZM C(E) = CL(AC),.,0
HLLZS Temp = C(E) := CL(E),,0;
if AC>0 then C(AC) := CL(E),,O
HLLO C(AC) = CL(E),.7777717
HLLOI C(AC) :=0,,777777
HLLOM C(E) = CL(E),,777777
HLLOS Temp = C(E) := CL(E),,777777;
if AC>0 then C(AC) := Temp
HLLE C(AC) = CL(E),,777777*CO(E)
HLLEI C(AC) =0
HLLEM C(E) = CL(AC),,777777*CO(AC)
HLLES Temp = C(E) := CL(E),,777777*CO(E);
if AC>0 then C(AC) := Temp
L

12.1. USING HALFWORD INSTRUCTIONS

In the PDP-10, data is often found packed with one item in each half word. The items may be addresses
that describe data structures, or other 18-bit items. The halfword instructions are useful for manipulating
such data items.

For example, suppose we want to implement a binary tree in which each node consists of two words in
the form:

word 0: Address of left subtree,,Address of right subtree
word 1: Data for this node

An example of such a tree appears in figure 12-1. The pointers are simply the address of word 0 of a node, or
if there is no node to point to, the field is zero. When A contains the pointer to some node, the instruction
HRRZ A,0(A) changes A to point to the right subtree, or HLRZ A, 0(A) would change A to point to the left
subtree.

Assuming the address of the topmost node of a tree is held in the location named ROOT, the following
code will return the address of the leftmost leaf of the tree:

SKIPN A,ROOT ;Get the address of the root node
JRST EMPTY ;there is no tree at all
LOOP: MOVE B,A ;save the address of the current node in B
HLRZ A,0(RA) ;change A to point to left subtree
JUMPN A,LOOP ;Loop while the left subtree isn't empty

MOVE A,1(B) ;Load A with datum from the leftmost leaf
. ;B contains the address of the leftmost leaf

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

124

Root of the Tree

R E LT

Po—=m==

|
v
|
|
|

e¢-----8

|
datum

QEmmmmmm =

I
®-=====38

|

|

|

I

]
|
I
+
I
I
|

Figure 12-1: Binary Tree with Halfword Links

SUBROUTINES AND PROGRAM CONTROL - 125

Chapter 13
Subroutines and Program Control

This chapter discusses the instructions that we use to call subroutines and return from them. Also, we
will present miscellaneous program control instructions. Before we discuss the benefits of subroutines and the
instructions that we use to implement subroutines, we will discuss the program counter in greater detail.

As we have already said, the program counter usually advances through consecutive memory locations as
instructions are executed. The skip instructions change the program counter by incrementing it an extra time.
The jump instructions supply an entire new value for the program counter. The subroutine calling
instructions are similar to jump instructions in that the PC is set to a new value. The subroutine calling
instructions save the value of the program counter before jumping to a new address. These instructions,
together with some instructions that restore the program counter from a previously saved value, allow us to
implement subroutines. ’

13.1. PROGRAM COUNTER FORMAT

An instruction that calls a subroutine must store the current program counter before jumping to the
subroutine. The stored program counter can then be used by the subroutine to exit and return control to the
calling program.

The subroutine call instructions (PUSHJ, JSR, and JSP) store a full word that contains the program
counter and the central processor flags. The flags reflect some of the state of the computation. If a subroutine
means to be completely transparent to the calling program, it will make an effort to restore these flags. This
kind of transparency is more important in the transactions between the operating system and the user
program than in the activities that are wholly within the user program.

The format of the program counter and flags word is depicted below:!

1 11111 112222222222333333
2 34567 890123456789012345

PC

1In the 2060 a double word may be needed in some circumstances.

126 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

For many of our programs, a detailed understanding of the PC flags is not important. The explanation of
the more obscure flags appears in appendix A, page 353.

AROV The AROQV flag indicates that some instruction has caused an arithmetic overflow, cither in
integer or floating-point arithmetic.

FOV The FOV flag signifies the occurrence of an exponent overflow or underflow in some
floating-point arithmetic operation.

USER The USER flag indicates that the processor is operating in user mode, subject to the

applicable restrictions on program behavior. The program must operate within the
memory area assigned to it by the operating system. Input/Output instructions are illegal.
Some other instructions, such as HALT, are illegal.

TRAP2 If TRAP1 is not also set, TRAP2 signifies that a pushdown overflow has occurred. If traps
are enabled, setting this flag immediately causes a trap. At present no hardware condition
sets both TRAP1 and TRAP2 simultaneously.2

TRAP1 If TRAP2 is not also set, TRAP1 signifies that an arithmetic overflow has occurred. If traps
are enabled, setting TRAP1 immediately causes a trap. At present no hardware condition
sets both TRAP1 and TRAP2 simultaneously.3

FXU The FXU flag signifies that a floating exponent underflow has occurred. Some
floating-point instruction has computed a result that has an exponent smaller than -128.
The AROV and FOV flags will be set also.

DCK The DCK flag signifies that a divide check has occurred. Usually this signifies that a
division by zero has been attempted. AROV will also be set. If the divide check occurs as a
result of a floating-point instruction, then FOV will be set also.

The program counter that is stored by a subroutine calling instruction will already have been
incremented to point to the instruction immediately following the subroutine call; this is the normal return
address. This 18-bit address is stored in bits 18:35 of the PC word. Thus, when a subroutine calling
instruction stores a PC word, that word contains the address to which the subroutine should return. Bits
13:17 of the PC word are always stored as zero to facilitate the use of indirect addressing to return from a
subroutine.

13.2. SUBROUTINE CALL INSTRUCTIONS

~ Subroutines are an important programming concept. Subroutines provide at least two important
benefits. First, by means of subroutines we can partition a program into manageable subtasks, with clearly
defined interfaces between sections. Second, by means of parameter lists, we can cause a subroutine to be
applied to various different cases; one piece of code can be made to serve several functions.

The PDP-10 provides a variety of subroutine calling instructions. Most of the subroutine linkage
techniques found in other computers are implemented in the PDP-10. However, current experience shows
that not all of them are useful. Of the subroutine calling instructions described below, the most frequently
used is PUSHJ and its corresponding return instruction, POPJ. The subroutine calling instructions JSR and
JSP are used occasionally for special purposes. One pair of instructions, the subroutine call JSA and

?’I'he TRAP2 flag does not exist in the KA10 and earlier machines.

3'Ihe TRAP1 flag does not exist in the KA10 and earlier machines.

SUBROUTINES AND PROGRAM CONTROL 127

associated return JRA are now so out of favor that they are discussed in the appendix of obsolete instructions
(appendix D, page 369). Also, several additional forms of the JRST instruction will be described.

13.2.1. PUSHJ - Push Return PC and Jump

This instruction uses a stack that is identical in format to the one used by the PUSH instruction. PUSHJ is
very much like the PUSH instruction except the data that is stored on the stack is the return address. The
effective address specifies the location that the instruction will jump to.

PUSHJ C(AC) := C(AC)+<1,,1>; C(CR(AC)) := <flags,,PC>; PC := E;

As in the PUSH instruction, a pushdown overflow condition occurs if the stack pointer becomes positive
when it is incremented. The saved value of the PC points to the address following the PUSHJ instruction.
The return from a subroutine called by PUSHJ is effected by the POPJ instruction.

PUSHJ is very useful; it is the most commonly used subroutine call instruction. PUSHJ has the
disadvantage of requiring that an accumulator be set aside for the stack pointer. This disadvantage aside,
PUSHJ is reentrant and recursive; it allows multiple entry points, and it enforces a last-in, first-out discipline
for subroutine calls and returns.

13.2.2. POPJ - Pop Return PC and Jump
The POPJ instruction is the usual return from PUSHJ. The POPJ instruction copies the right half of the
word at the top of the stack to the right half of the program counter. The left half of the stack top is ignored.4
The POPJ instruction unwinds the stack by decrementing both halves of the accumulator containing the
stack pointer by 1. The effective address of the POPJ instruction is ignored.

POPJ PC := CR(CR(AC)); C(AC) := C(AC)-<1,,1>

A pushdown overflow (actually an underflow) condition results if the stack pointer becomes negative
when it is decremented.

The same stack that is used with the PUSH and POP instructions can be used with the PUSHJ and POPJ
instructions. It is the programmer’s responsibility to make sure that a POPJ pops a return PC and not some
other data.

13.2.3. Applications of PUSHJ and POPJ

The most straightforward application of PUSHJ and POPJ is to the simple case of calling a subroutine. A
stack pointer must be set up before using PUSH or PUSHJ. The subroutine is called by the instruction
PUSHJ P, SUBR. P is the symbolic name for the accumulator that contains the stack pointer and SUBR is the
symbolic label of the first instruction in the subroutine.

The subroutine may then do whatever computation is desired, and return to the calling program by
means of a POPJ P, instruction. :

4Except, while the extended machine is operating in a non-zero section, the left half word is assumed to contain the return PC section
number.

.wr

128 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

PUSHJ P,SUBR
e :SUBR will return to this point.
SUBR:
POPJ P,
Note that it is important to write the comma in the instruction POPJ P, ; if you forget the comma,
accumulator zero will be used as the stack pointer!

13.2.3.1. Nesting Subroutines
If the subroutine SUBR also needs to call subroutines, that can be accomplished by means of PUSHJ and
POPJ also:

MAIN: .
PUSHJ P,SUBR
e ;SUBR will return to this point.
SUBR: e
PUSHJ P,READ
... ;READ will return to this point.
POPJ P,
READ:
POPJ P,

In this example, SUBR calls the READ routirié The READ subroutine performs its work and executes a
POPJ instruction. Since the most recently pushed PC is the return address inside SUBR, the CPU resumes
executing inside SUBR. When SUBR finishes and executes a POPJ, the current stack top contains the address
in the main program to which to return.

Any number of PUSH or PUSHJ instructions can occur within SUBR or in the subroutines that it calls.
However, an equal number of POP and POPJ instructions must be used to undo the effects of the PUSH and
PUSHJ instructions. In order for SUBR to exit properly to its caller, the stack pointer at the time when SUBR
exits must be the same as it was when SUBR was entered. Generally, keeping the stack straight is not a big
problem. For every PUSH a POP is needed. If a subroutine is called by PUSHJ it must return via POPJ.

13.2.3.2. Restoring Flags
If the program counter flags must be restored, instead of POPJ, you must resort to something like the
following (see also the discussion of the JRSTF instruction in section 13.2.4.1, page 130):

POP P,TEMP ;pop the return pc and flags
JRSTF QTEMP ;restore flags and return.

13.2.3.3. Skip Returns
If a subroutine called by PUSHJ P, wants to skip over one instruction immediately following the
PUSHJ, the following sequence accomplishes that result:
A0S (P) ;Increment the PC word. For indexing to work,
POPJ P, ;P should not be accumulator number zero.

The AOS instruction specifies a zero Y field, no indirection, and uses P as an index register. By the rules
of cffective address calculation, the effective address will be formed by adding the Y field and the right-half

SUBROUTINES AND PROGRAM CONTROL ; ' 129

contents of P. The result, since Y is zero, will be identical to the address contained in the right half of the
stack pointer. This is the address of the stack top.

The stack top contains the return PC; the return PC is incremented by means of the AOS instruction.
The POPJ instruction will copy this incremented value to the PC. Thus, the instruction immediately
following the PUSHJ will be skipped. This is called a skip return from a subroutine.

A skip return can be used to indicate the success or failure of a subroutine. For example, a subroutine
that reads the next character from a file might skip to indicate that it is returning a valid character; a direct
return (also called a non-skip return) might be used to signal that the end of the file has been reached.

13.2.3.4. Recursive Subroutines

A subroutine is said to be recursive when it calls itself to perform its computation. In order for it to make
sense for a subroutine to call itself, the problem that it is working on must somehow be simplified before
making the recursive call.

As an example of the use of PUSHJ to implement recursion, consider the following routine to count the
nodes in a binary tree. The format of this tree is discussed in section 12.1, page 123.

MOVEI 4,0) ;initial count is zero
MOVE 1,R00T ;get the root address
PUSHJ P,COUNT ;count the nodes, return result in 4

COUNT: JUMPE 1,CPOPJ ;nothing to count if empty
ADDI 4,1 ;count this node
PUSH P,1 ;save the address of this node
HLRZ 1,(1) ;:make a pointer to the left sub-tree
PUSHJ P,COUNT ;count the left sub-tree
POP P,1 ;restore pointer to original node
HRRZ 1.(1) ;make a pointer to the right sub-tree
PUSHJ P,COUNT ;count the right side

CPOPJ: POPJ P,

Often it is convenient to have one POPJ instruction in the program labeled with the name CPOPJ for
Constant POPJ3 Then if you have a situation such as exists in the COUNT subroutine depicted above, where
some conditional jump to a POPJ is needed, you’ll have one that is already labeled.

Note that the sequence

PUSHJ P,COUNT
POPJ P, .
might be replaced with simply JRST COUNT, provided the COUNT routine does not attempt to perform a skip
return.

13.2.4. JRST Family

As we have seen before, JRST is an unconditional jump instruction. The accumulator field in the JRST
instruction does not address an accumulator; instead, the accumulator field is decoded to select specific
operations, as summarized in this table:

5Another convention is to use the label R, return, for this purpose.

130 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

JRST 0, PC := E;

JRST 1, PC := E; Portal Instruction

JRST 2, PC := E; Restore Flags

JRST 4, PC := E; Halt the Processor

JRST 10, PC := E; Dismiss Current Interrupt

JRST 12, PC := E; Restore Flags and Dismiss Interrupt

When the accumulator field is zero, a simple unconditional jump occurs; we have already mentioned that
JRST is the favorite unconditional jump instruction.

13.2.4.1. JRSTF Jump and Restore Flags

JRST 2, (i.e., a JRST instruction in which the accumulator field has been set to 2) signifies the jump
and restore flags operation; MACRO recognizes the mnemonic JRSTF for JRST 2,. If indirection is used
in JRSTF, then the flags are restored from the last word fetched in the address calculation. Ifindexing is used
with no indirection, the flags are restored from the left half of the specified index register. If neither indexing
nor indirection is used in the address calculation the flags are restored from the left half of the JRSTF
instruction itself; that is usually a mistake. A JRSTF will not allow a user mode program to give itself
additional privileges. Thus, the USER flag cannot be cleared to escape from user mode limitations. Extra
privileges can be relinquished; for example, a program can clear the I0T flag.

13.2.4.2. Other JRSTs

JRST 1, The PORTAL instruction allows entry into a concealed program. Normally, if an
unconcealed (public) program jumps to a concealed program, the CPU refuses to allow the
public program to execute the concealed one. However, if the first instruction taken from
the concealed program is a PORTAL instruction, the CPU allows the public program to
enter concealed mode, and jumps to the effective address specified in the PORTAL
instruction. It is presumed that a concealed program will contain PORTAL instructions
only where it is willing to be entered.

The following modes of JRST are all illegal in user mode and are trapped as unimplemented instructions
(MUUOS).

JRST 4, The HALT instruction sets the PC from E and stops the processor.

JRST 10, This instruction dismisses the current priority interrupt. Usually JRST 12, is used for
this purpose since JRST 10, fails to restore flags.
JRST 12, The JEN instruction will dismiss the current priority interrupt and restore the PC and flags

of the interrupted process. JEN combines the functions of JRST 10, and JRST 2,.

Additional subfunctions of JRST exist in the extended KL10 processor. Some of these will be discussed
when we explain extended addressing.

13.2.5. JSR - Jump to Subroutine

The JSR instruction stores the program counter in the word addressed by the effective address and
jumps to the word following the word where the PC is stored. This is the only PDP-10 instruction that stores
the PC and flags without modifying any accumulators; however, it is non-reentrant, so PUSHJ is favored in
most cases. The usual return from a subroutine that was called by a JSR is via JRST (or JRSTF) indirect
through the PC word.

SUBROUTINES AND PROGRAM CONTROL 131

JSR C(E) := <flags,.PC>; PC := E+1;
Programming example:
JSR suB1 ;call subroutine SUB1
SUB1: 0 ;1eave room for the PC word

RN ;first instruction of SUB1 is here
JRSTF @esus1 ;return to caller, restoring flags
;JRST @SUB1 may be used if flags are unimportant.
Note that the line where the label SUB1 appears contains just the number zero. When the assembler sees
a number or an arithmetic expression appearing instead of an instruction word, it assembles that number and
places it in a word. Thus, the assembler produces a word containing zero corresponding to the label SUB1.
This zero is a place-holder for the PC word that will be stored by the JSR SUB1. When the program is
assembled and loaded, a zero word will be present at SUB1. After the program is run, a return PC will appear
there. As an alternative we could write:

SUB1: BLOCK 1 ;leave room for the PC word

In this example, we use 0 since that is easier to type than BLOCK 1.

13.2.6. JSP - Jump and Save PC
The JSP instruction saves the PC in the selected accumulator and jumps. Return can be effected
through indirection or by an indexed jump.

JSP C(AC) := <flags,,PC>; PC := E;
Programming example:

JSP AC,SUB2 ;call subroutine SUB2

SuB2: e ;first instruction of SUB2
éééTF @AC ;return, restoring flags. JRST @AC

; is permitted if flags are unimportant

JRSTF 0(AC) ;g;store flags and return
JRST 1(AC) §§:1p one instruction immediately following

;the normal return address caller

JSP is somewhat nicer than JSR because it is reentrant (i.e., JSP avoids storing into the instruction
stream). However, JSP overwrites an accumulator. JSP is convenient in some cases; because the return PC
is held in an accumulator, it is easy to effect skip returns. Also, arguments can be placed in the instruction
strcam immediately following the call; arguments can be picked up by using the specified accumulator as an
index register. Finally, on return the argument list can be skipped over, again by using the accumulator as an
index register. When a subroutine has more than one entry point, JSP is better than JSR. For JSR, in order
to return, you must know which entry point was called.

132 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

JSP may also be used to implement co-routines in a relatively clean way:

Jsp AC,CO1 ;jump to initial co-routine entry point

Jsp AC, (AC) - s:reenter co-routine
;note the effective address, 0(AC), is
;computed before the JSP instruction
;changes the contents of AC

Co1: vee
Jse AC, (AC) ;return to original caller,
ce ;second call will resume here
Jsp AC, (AC) ;return to caller...

;third call resumes here, etc.

13.3. PROGRAM CONTROL INSTRUCTIONS

There are three additional control instructions to discuss. These are JFCL, JFFO, and XCT. The first two
of these are conditional jumps. The XCT instruction allows an arbitrary machine word to be executed as an
instruction, without modifying the actual instruction stream.

13.3.1. JFCL - Jump on Flag and Clear

The JFCL instruction is another instance in which the accumulator field is decoded to modify the
instruction. Each bit from the AC field of the instruction selects one of the PC flag bits. Instruction bits
9:12 select PC bits 0: 3 respectively.

The JFCL instruction will jump if any PC flag corresponding to a one in the accumulator field is set. All
PC flag bits that correspond to ones in the AC field will be set to zero. The mnemonic JFCL means Jump on
Flag and CLear flag: if any of the selected flags is set, the instruction will jump; the selected flags will be set to
Zero. :

JFCL if PC[0:3] AND IR[9:12]
0 then PC : = E; PC[0:3] : = PC[0:3] AND (NOT IR[9:12]) }
JFCL 0, This instruction does not select any PC bits, and so it is a no-op; i.e., it performs no
operation. JFCL is the most commonly used no-op; on the older processors it was the

fastest no-op. On the KL10, TRN is faster. Somehow, it doesn’t seem to matter how fast a
no-op is executed. :

JFCL 17, This instruction clears all flags; it will jump if any of the PC flags AROV, CRYO0, CRY1, or
FOV are set.

JFCL 1, This instruction, also known as JFOV, jumps if the floating overflow flag, FOV, is set. The
FOV flag is cleared by this instruction.

JFCL 2, This instruction, known also as JCRY 1, jumps if the Carry 1 flag, CRY1, is set. The CRY1
flag will be cleared.

JFCL 4, The JCRYO instruction jumps if the Carry 0 flag, CRYO, is set. The CRYO flag will be
cleared.

JFCL 10, This instruction will jump if the arithmetic overflow flag, AROV, is set. This instruction,

which is also called JOV, will clear AROV.

SUBROUTINES AND PROGRAM CONTROL 133

JFCL is most often used to determine whether the immediately preceding instruction has caused an
overflow. The following is one of the ways to use JFCL:

JFCL 17 ,NEXT ;clear all flags. Jump to next instruction
NEXT: inst ;instruction that may cause overflow
Jov OVFLOW ;jump to handle any overflow

The first JFCL in this sequence is needed because flags stay set until they are cleared. Any previous
unprocessed overflow may leave ARQV set; the first JFCL clears any stray flags.

13.3.2. JFFO - Jump if Find First One

The JF FO instruction tests the selected accumulator. If the accumulator contains zero then AC+1 is set to
zero and no jump occurs.? If the sclected accumulator does not contain zero then AC+1 is set to the bit
number of the leftmost one bit in the accumulator and the processor jumps to the effective address. The
contents of the original accumulator are not changed.

JFFO If C(AC) = 0 then C(AC+1) := 0
Else C(AC+1) := the bit number of the leftmost one
in C(AC); PC :=E
The JF FO instruction is not used very often, but when it is needed there is no plausible substitute. It can
be useful in searching arrays of single bits (called bit tables).

MACRO implements an arithmetic operator that applies the JFFO instruction to its operand. In
MACRO when it is necessary to determine the bit number of the leftmost one bit in an expression we can use
the AL operator. For example, the value of AL4152 is 30 (i.e,, bit 24). Note that the operator AL is two
characters, a caret and the letter L; it is not CTRL/L.

13.3.3. XCT - Execute Instruction

The XCT instruction fetches the word specified by the effective address and executes that word as an
instruction. If an instruction that stores the PC is executed from an XCT, then the return PC that is stored
points to the instruction following the XCT. If an instruction executed via XCT should skip, then that skip is
relative to the location of the XCT. The accumulator field of the XCT should be zero.’

XCT Execute the instruction found in C(E)

The XCT instruction is quite helpful in two particular circumstances. First, there are situations where it is
necessary to compute some portion of an instruction while the program is running. In such a case, the binary
- image of the instruction is assembled by the program, into memory or into an accumulator. When the
instruction is ready, it is executed by means of the XCT instruction. An alternative, now considered
disreputable, is to store the computed instruction into the normal stream of instructions. For example, if the
effective address of a MOVE instruction has been computed in accumulator 6, we would use the following
sequence to execute the instruction: '

6When we speak of AC+1 we mean (AC+1 modulo octal 20). Thatis, 17+1is 0.

7ln exec mode, an XCT with a non-zero accumulator ficld is called PXCT, Previous Context Execute, and is used to reference data in
the user’s address space.

134 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

shere with the effective address in 6
HLL 6,[MOVE 1,] ;set the appropriate left half
XCT 6 ;half in register 6 and Execute it

The following sequence is quite disreputable. For compatibility with future processors, we strongly
recommend against storing into the instruction stream:

;A bad example: don’t change the instruction stream!
;here with the effective address in 6
NEXT ;store address into the next word
0 ;the right half of this instruction
igets changed.

HRRM 6,
NEXT: MOVE 1,

The second important application of the XCT instruction is to implement a CASE statement. For
example:

MOVE 7 ,CASNUM ;copy case number to 7

XCT CASTAB(7) ;execute appropriate case
CASTAB: PUSHJ 17,CASEO . ;The case table simply contains

SOS 6,J ;instructions appropriate for

MOVE 6,J ;each case.

AOS 6,J

13.4. EXAMPLE 6-A _

This example program demonstrates the use of subroutines and skip or non-skip returns. The program
will read a line of text from the terminal; the output will be all the even characters followed by the odd
characters that are not vowels, followed by the odd characters that are vowels. We would not expect to find
any realistic application of this peculiar function, but it does demonstrate some new ideas in a relatively
uncomplicated framework.

Sample output:

Type a line: This is a test of the vowel extraction program.
hsi eto h oe xrcinpormT sts ftvwltt rg.iaeeaoa
Type a line:

We shall take this opportunity to introduce subroutines. We will write a subroutine that réads an entire
line into a buffer region and stores a null byte to mark the end of it. The subroutine will be called GETLIN,
GET LINe.

The most commonly used subroutine calling instruction in the PDP-10 is PUSHJ. We have already
established register P as the stack pointer. We can use the instruction PUSHJ P,GETLIN to call this
subroutine. The GETLIN routine is expected to return to the calling program by means of a POPJ P,
instruction.

Because PUSHJ and POPJ are used to call and return from subroutines, the alternative mnemonics CALL
and RET are often employed. These names are somewhat easier to type than PUSHJ P, and POPJ P,;
moreover, the names CALL and RET have greater mnemonic significance to most people.

In order to use CALL and RET, we must define these names for MACRO. This definition is
accomplished in each case by means of the OPDEF (opcrator definition) pscudo-op. In essence, OPDEF is not
any different from the other means we have used to make MACRO aware of our symbolic definitions.
However, MACRO distinguishes between labels and operators, so we must define operators in a different
way.

SUBROUTINES AND PROGRAM CONTROL 135

We use the OPDEF pseudo-op to define the name CALL by writing on one line the word OPDEF,
followed by the name we are defining, CALL, followed by a quantity enclosed in square brackets. MACRO
defines the operator CALL to have the value found inside the square brackets. The definitions of CALL and
RET appear below:

OPDEF CALL [PUSHJ P,]
OPDEF RET [POPJ P,]
These definitions are usually placed following the accumulator name definitions, and before the names
CALL or RET can be used.?

We will use nearly the same code as appears in example 5. The main difference is that GETLIN has been
transformed into a subroutine. The GETLIN subroutine will use registers A and B; it will store the input line
in the region called BUF FER; the input line will end with a null character.

We begin by writing a fragment that includes the initialization code and the call to the GETLIN
subroutine. The usual definitions and buffer space declarations are made:

TITLE EXTRACT - Example 6-A

Comment $

This program will read a line of text from the terminal. The output will
be all the even characters followed by the odd characters that are not
vowels, followed by the odd characters that are vowels. The program will
halt when given an empty line.

Sample session:

Type a line: This is a test of the vowel extraction program.
hsi eto h oe xrcinpormT sts ftvwltt rg.iaeeaoa

Type a line:
$
A=1
B=2
P=17 ;symbolic for push-down pointer
OPDEF CALL [PUSHJ P,] ;Call a subroutine
OPDEF RET [porPJ P,] ;Return from a subroutine.
BUFLEN==40 ; sbuffer size
PDLEN==100 . ;stack size
START: RESET ;reset i/0
MOVE P,[IOWD PDLEN,PDLIST] ;initialize stack

NXTLIN: OUTSTR PROMPY ;ask for input
CALL GETLIN -

8There is an obsolete TOPS-10 system call named CALL. The use of the CALL UUO has lapsed in recent years for a number of good
reasons. However, in very old programs you might still find some instances of the CALL UUO. You must not add the OPDEF CALL to
an old program unless you first check to make sure that there are no CALL UUOs. Note also that when you use CALL instead of PUSHJ
P, you must be certain that you add the appropriate OPDEF, lest you get the CALL UUO instead.

136 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

GETLIN: MOVE B,[POINT 7,BUFFER] ;jread input to buffer area
GETCHR: INCHWL A ;read a character
CAIN A,15 ;is it a carriage return?
JRST GETCHR ;yes, discard CR
CAIN A,12 ;is it a 1ine feed?
MOVEI A,0 ;yes, convert it to null to end line
1DPB A,B ;store the character in the buffer
JUMPN A,GETCHR ;loop, unless end of line.
RET
STOP: EXIT

BUFFER: BLOCK BUFLEN

PDLIST: BLOCK PDLEN

PROMPT: ASCIZ /Type a line: /
END START

Now that we have read a line into the buffer area called BUFFER, we must process that line. We will
make one pass through the line to move the odd characters to a second buffer, BUFR2, while moving the even
characters to the output buffer, OBUFR. After the program makes this pass through the line, all of the even

characters will have been moved to the output buffer; all the odd characters will be concentrated in BUFR2
for our perusal on a second pass.

The loop structure that we will adopt for the first pass looks somewhat like the following:

PN sinitialize
INLOOP: . . . ;get an odd character

e ;exit -from loop if end of line
;store an odd character in BUFR2
;get an even character
;exit from loop if end of 1line

e e . ;store an even character in OBUFR

JRST INLOOP ;continue until end of 1ine

OBUFR: BLOCK BUFLEN ;output buffer area
BUFR2: BLOCK BUFLEN ;odd character buffer

In order to read the characters from BUFFER we will need a byte pointer. We will define the name
INPTR to be one of the accumulators and initialize that accumulator to contain a byte pointer to BUFFER.

INPTR=5
.. sinitialize
MOVE INPTR,[POINT 7,BUFFER] ;byte pointer to the input line

INLOOP: ILDB A,INPTR ;get an odd character
JUMPE A, INDONE ;exit from loop if end of line
PR :store an odd character in BUFR2
ILDB A,INPTR ;get an even character
JUMPE A, INDONE ;exit from loop if end of Tine
e ;store an even character in OBUFR
JRST INLOOP ;continue until end of line

Observe that this loop requires us to store characters in BUFR2 and in OBUFR. This suggests that we
must have two byte pointers, one for each of these areas. The store character instruction must certainly be an
IDPB. We can place the IDPB instructions in the loop. Also, we add instructions to initialize registers
ODDPTR and OUTPTR with byte pointers to the odd character buffer and the output buffer, respectively.

SUBROUTINES AND PROGRAM CONTROL 137

INPTR=5 ;input byte pointer
ODDPTR=6 ;odd buffer pointer
OUTPTR=7 soutput buffer pointer

e sinitialize

MOVE INPTR,[POINT 7,BUFFER] ;byte pointer to the input line

MOVE OUTPTR,[POINT 7,0BUFR] ;pointer to output buffer

MOVE ODDPTR,[POINT 7,BUFR2] ;pointer for storing the odd letters

INLOOP: ILDB A,INPTR ;get an odd character
JUMPE A, INDONE ;exit from loop if end of 1line
IDPB A,ODDPTR ;store an odd character 1in BUFR2
ILDB A,INPTR ;get an even character
JUMPE A, INDONE ;exit from loop if end of line
1DPB A,QUTPTR ;store an even character in OBUFR
JRST INLOOP ;continue until end of line

;here at the end of the first scan.
INDONE :

Next, we must design the second pass. The odd characters are concentrated in BUFR2. We must read
the characters, passing all non-vowels to the output buffer and collecting the vowels in another buffer. When
we are done with this pass, the output buffer will contain the even characters followed by the odd non-vowels.
The vowel buffer will have all the odd vowels. We send the output buffer to the termainal, followed by the
vowel buffer, to which we have added CR, LF, and null

INDONE: . . . ;Jump to STOP if the input Tine is empty
. ;initialize for second pass
oLooP: . . . ;get a character from odd buffer

;jump to ODONE 1if odd buffer is empty
;Is it a vowel? If so jump to OLOOP1
;deposit a non-vowel in the output buffer

JRST oLOOP ;process another

oLoopP1: . . . ;deposit a vowel in the vowel buffer
JRST OLOOP ;process another character

ODONE: . . . ;add null to the output buffer

;add cr 1f null to vowel buffer
e ;print output buffer; print vowel buffer
JRST NXTLIN ;get the next line
We can begin to complete the details as follows. The test for an empty input line can check to see if
ODDPTR has been changed. If the line is empty, there will be no first character; ODDPTR will not have been
changed. We write the following fragment:
INDONE: CAMN ODDPTR,[POINT 7,BUFR2] ;skip unless Tine is empty
JRST STOP : ;empty line. go halt this program
Assuming that the line is not empty, after making this test it is important to deposit a null byte at the end
of the string of odd letters. We know that register A contains a null, so after the test for the empty line, we add
the instruction IDPB A,ODDPTR. The null byte will be used in the second pass to signal the end of the
buffer of odd characters.
The loop at OLOOP requires three byte pointers. First, we need a pointer to the odd buffer, which is
being read as input at this time. Sccond, we need a pointer to the vowel buffer, the place where we store the
odd characters that are vowels. Finally, we will continue to usc OUTPTR as the pointer to the output buffer.

Since the character buffer is being read as input this time, let us use INPTR as the byte pointer for taking
characters out of BUFR2. One of the unfortunate things about giving accumulators names that have
significance is that often an accumulator will be used for an entirely different purpose in another part of the

138 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

program. In such a case, a mnemonic can be misleading. We recycle the accumulator ODDPTR as the pomter
to the odd vowels.

Another trick we can make use of is this: we can recycle the buffer space that presently holds the odd
characters and make it hold the odd vowels. Let us start by initializing the pointer INPTR to point to the
buffer area for the odd characters. Also, we initialize ODDPTR to point to the same space. INPTR will be used
as the fake pointer; ODDPTR will be the put pointer.

We can fill in most of the second pass without too much difficulty:

INDONE: CAMN ODDPTR,[POINT 7,BUFR2] ;skip unless line is empty

JRST STOP ;empty line. go halt this program
1DPB A,0DDPTR ;store null to end buffer
MOVE INPTR,[POINT 7,BUFR2] ;"take" odd characters
MOVE ODDPTR, INPTR ;"put" odd vowels

OLOOP: 1ILDB A,INPTR ;get a character from odd buffer
JUMPE A,ODONE ;jump to ODONE if odd buffer is empty
e ;Is it a vowel? If not, go to OLOOP1
1DPB A,ODDPTR ;deposit a vowel in the vowel buffer
JRST oLooP ;process another character

OLOOP1: IDPB A,QUTPTR ;deposit a non-vowel 1in output buffer
JRST OLOOP ;process another character

ODONE: IDPB A,OUTPTR ;add null to the output buffer
MOVEI B,15 ;add cr 1f null to vowel buffer
1DPB B,ODDPTR
MOVEI B,12

IDPB B,0DDPTR
I1DPB A,ODDPTR

OUTSTR OBUFR ;print output buffer
OUTSTR BUFR2 iprint vowel buffer
JRST NXTLIN ;go get the next line

Note how INPTR and ODDPTR are initialized to point to the same buffer area. Using ODDPTR as a
deposit pointer will overwrite the contents of BUFR2, the odd-character list. However, reusing that buffer
space causes no harm: the byte pointer INPTR is guaranteed to be running ahead of ODDPTR, removing and
processing characters before they can be harmed by being deposited onto via ODDPTR. The structure of the
loop at OLOOP ensures that a byte is taken by INPTR before anything is deposited by ODDPTR. As soon as any
non-vowel is seen, ODDPTR will fall behind INPTR without any possibility of catching up. :

The loop at OLOOP takes a character from the odd-character list (via INPTR). For characters other than
null, we will have to determine if the character is a vowel. Non-vowels will be handled by depositing them
into the output buffer. A vowel will be deposited, via the byte pointer in ODDPTR into the buffer area at
BUFR2. After each character is deposited, the program loops to OLOOP. When a null character appears
OLOOP exits to ODONE ; a null signals the end of the odd list.

Finally, at ODONE the program is finished processing the input line. Register A contains zero (ﬁecause
the way we got here was via JUMPE A, ODONE). That zero is deposited via OUTPTR to end the output buffer.
Carriage return, line feed, and null are added to the end of BUFR2 (via ODDPTR). Then OBUFR and BUFRZ
are printed. The program jumps to NXTLIN where it hopes to process another line.

One item remains unfinished. We must determine if a character is a vowel. Let us suppose that we could
write a subroutine to perform this determination. We can define the characteristics of the subroutine as we
choose. In this case we specify three characteristics: '

o The input character will be in register A.
e Register A will not be changed by this subroutine.

SUBROUTINES AND PROGRAM CONTROL 139

e If the given character is not a vowel, the subroutine will return to the instruction immediately
following the subroutine call; if the character is a vowel, the subroutine will skip past one
instruction immediately following the subroutine call.

Given this specification, we can finish coding OLOOP and then write the subroutine. The name of this
subroutine will be ISVOW, meaning, IS this character a VOWel?.

OLOOP:

;Test character

ISVOW:

CPOPJ1:

iLb8
JUMPE
CALL
JRST
IDPB
JRST

CAIE
CAIN
JRST
CAIE
CAIN
JRST
CAIE
CAIN
JRST
CAIE
CAIN
JRST
CAIE
CAIN
JRST
CAIE
CAIN
A0S

RET

A,INPTR
A,ODONE
ISvow
0LOOP1
A,ODDPTR
oLoop

in A; skip if it is a vowel.

A, "A"
A,”a"
CPOPJ1
A,"E"
A."e"
CPOPJ1
A,"I"
A, i
CPOPJ1
A‘no"
A, "o"
CcPOPJI1
A,"U"
A,"U"
cPOPI1
A, nyn
A, nyn
(®)

The instruction sequence

CPOPJ1L:

AOS
POPJ

(P)
P,

;get a character from odd buffer
;jump to ODONE if odd buffer is empty
;Is it a vowel?

; Not a vowel. Go to OLOOP1

;deposit a vowel in the vowel buffer
;process another character

No skip if it is not a vowel.
;Skip if "A"

;skip if not "a"

;"A" or "a" is a vowel

;skip to CPOPJ1 if this is "Y"
;skip to the RET if this is no vowel
;perform a skip-return.

;(written as RET above)

effects the skip return from ISVOW, as we discussed in section 13.2.3.3, page 128.
The ISVOW subroutine uses nested skip instructions to cut down the number of i mstructlons that we have
to write. Two consecutive tests are written as two nested tests and a jump:

CAIE
CAIN
JRST

A’"All
A,"a"
CPOPJ1

;skip
;skip
;Here
;here

if capital A is seen
unless lower-case A is seen
if either "A" or "a"

if neither kind of "A" was seen

ISVOW contains a number of such nested skips. It is approximately the most straightforward way to test for a
vowel that could be devised for this example. When a vowel is found, ISVOW jumps to CPOPJ 1, which, as we

have already seen, performs a skip return.

If no vowel is seen, ISVOW rumbles through all the tests and

eventually falls into the RET at the bottom of the routine. When we visit this problem again, we’ll see another
way that ISVOW can be done.

The complete program for example 6-A appears below:

140 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

TITLE EXTRACT - Example 6-A

Comment $

This program will read a line of text from the terminal. The output will
be all the even characters followed by the odd characters that are not
vowels, followed by the odd characters that are vowels. The program will
halt when given an empty line.

Sample session:

Type a line: This is a test of the vowel extraction program.
hsi eto h oe xrcinpormT sts ftvwltt rg.iaeeaoa

Type a line:
$
A=1
B=2
C=3
INPTR=6 ;input line pointer
ODDPTR=6 ;odd buffer pointer
OQUTPTR=7 ;output buffer pointer
P=17 ;symbolic for push-down pointer
BUFLEN==40 ;buffer space
PDLEN==100 ;stack size
OPDEF CALL [PUSHJ P,]
OPDEF RET [poPJ P,]
START: RESET ;reset i/0

MOVE P,[IOWD PDLEN,PDLIST] ;initialize stack
NXTLIN: QUTSTR PROMPT ;ask for dinput

CALL GETLIN ;read the input line

sprepare for first scan. separate odd and even characters
MOVE INPTR,[POINT 7,BUFFER] ;pointer for processing input
MOVE OUTPTR,[POINT 7,0BUFR] ;pointer to output buffer
MOVE ODDPTR,[POINT 7,BUFR2] ;pointer for storing the odd letters

INLOOP: ILDB A,INPTR ;get an odd character
JUMPE A, INDONE ;jump if end of line
1DPB A,ODDPTR ;store odd character in buffer
ILDB A,INPTR ;get an even character
JUMPE A, INDONE ;jump if end of 1line
IDPB A,OUTPTR ;store even character for output
JRST INLOOP ;go on

;here at the end of the first scan. .
INDONE: CAMN ODDPTR,[POINT 7,BUFR2] ;were there any odd characters?
JRST STOP ;no. empty line. stop now.
1DPB A,0DDPTR ;Store null to end the odd buffer
:prepare for second scan
MOVE INPTR,[POINT 7,BUFR2] ;fetch odd characters from here

MOVE ODDPTR, INPTR ;store vowels here.
OLOOP: ILDB A,INPTR ;get a character
JUMPE A,O0DONE ;jump if done
CALL ISVOw ;is this a vowel?
JRST 0LOOP1 ;not a vowel. type it
1DP8B A,ODDPTR ;store vowel
JRST oLoop ;get more
OLOOP1: 1DPB A,QUTPTR ;not a vowel, store in output buffer

JRST oLoop ;do more

SUBROUTINES AND PROGRAM CONTROL

;here at the end of the second scan.

ODONE: MOVEI B,15

: 1DPB B,0DDPTR
MOVEI B,12
IDPB B,0DDPTR
IDPB A,ODDPTR
1DPB A,QUTPTR
OUTSTR OBUFR
OUTSTR BUFR2
JRST NEXT

;Obtain an input line from the terminal.
GETLIN: MOVE B,[POINT 7,BUFFER]

GETCHR: INCHWL A

CAIN A,15
JRST GETCHR
CAIN A,12
MOVEIL A0
iDPB A,B

" JUMPN A,GETCHR
RET

Print things.

;here when donse.
;add cr, then 1f
;to the vowel Tist

;add nulls for OQUTSTR

;end output buffer

;1ist of even chrs and odd consonants
;address of odd vowel string

;time for another dinput line

Put it in BUFFER. End with a Null
;Initial byte pointer to buffer area
;read a character from the input
;is this a carriage return?

;yes, discard CR.

;Is it a 1ine feed?

;yes, change to a null

;store character in the buffer
;1oop for more, unless end of line

;Test character in A; skip if it is a vowel. No skip if it is not a vowel.

ISVOW: CAIE A,"A"
CAIN A,"a"
JRST CPOPJ1
CAIE A,"E"
CAIN A,"e"
JRST CPOPJ1

CAIE A"I"
CAIN A"
JRST CPOPJ1
CAIE A,"0"

CAIN A,"o0"
JRST CPOPJ1
CAIE A,"u"
CAIN A,"U"
JRST CPOPJ1
CAIE A,"Y"
CAIN A,"y"

CPOPJ1: AOS (P)
RET
STOP: EXIT

BUFFER: BLOCK BUFLEN

BUFR2: BLOCK BUFLEN

OBUFR: BLOCK BUFLEN

PDLIST: BLOCK POLEN

PROMPT: ASCIZ /Type a line: /
END START

13.5. EXERCISES

13.5.1. Change INDONE

;skip to CPOPJ1 if this is "Y"
;skip to the RET if this.is no vowel
;perform a skip-return

;input buffer area

;odd characters buffer/vowel buffer
;output buffer

;stack space

141

It has been proposed that the test at INDONE be simplified. Instead of the CAMN and JRST it has been
suggested that the single instruction JUMPL ODDPTR, STOP be used instead.

Why does the JUMPL work correctly? Can you suggest why it might not be a good idea to use JUMPL
here? What ways could be used to overcome these objections?

142 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

TESTS AND BOOLEANS 143

Chapter 14
Tests and Booleans

You might have reached a point where you’re tired of learning instructions. Unfortunately, there are
many more. Besides the 128 instructions in this section, we haven’t even talked about doing arithmetic. Well,
relax. You don’t have to use every one of them; you only need to know where to look.

14.1. LOGICAL TESTING AND MODIFICATION

The test instructions are used for testing and modifying bits in an accumulator. There are sixty-four
instructions. Each mnemonic begins with the letter T and is followed by three modifiers.

T Test accumulator

|IR Immediate right side mask
|L Immediate left side mask
|D Direct mask
|S Swapped mask

IN No modification of AC

|Z Zero the bits in AC selected by the mask

|0 Set the bits in AC selected by the mask to One
|C Complement the bits in AC selected by the mask

| Do not skip
I[N Skip if Not all the selected bits are zero
|E Skip if all the selected bits Equal zero
|A Always skip
The test operation considers two 36-bit quantities. One of these is the contents of the selected
accumulator. The other quantity, called the mask, is specified by the first modifier letter. For R the mask is
<0, ,E>; for Litis <E,,0>. The letter D specifies the contents of the memory word, C(E), as the mask; for
S the mask is CS(E), the swapped contents of E.
When the skip condition N is specified, the test instruction will skip if the Boolean AND of the mask and
the accumulator operand is Non-zero.
The skip condition E specifies that the test instruction will skip when the Boolean AND of the mask and
the accumulator operand is Equal to zero.
When the modification code Z appears in a test instruction, bits that are one in mask are set to zero in the
accumulator. C(AC) := C(AC) AND (NOT mask).
When the modification code 0O appears, bits that are one in mask are set to one in the accumulator.
C(AC) := C(AC) OR mask.

144 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

When the modification code C appears, bits that are one in mask are complemented in the accumulator.
C(AC) := C(AC) XOR mask.

The modification code N means no modification. The accumulator will not be changed by the
instruction.

Note that the skip condition is determined on the basis of the contents of the accumulator prior to the
modification of the accumulator.

The principal use for the test instructions is in testing and modifying single-bit flags that are kept in an
accumulator.

Programming Examples:

TRO 1.4 ;turn on bit 33 in register 1

TRZ 1,20 sturn off bit 31 in register 1

TLON 2,400000 sturn on bit 0 in register 2. Skip if it was
; on before this instruction was executed.

TDZA 4.4 ;Turn off the register 4 bits that are on in

; register 4, i.e., set 4 to zero. Skip.

The Test instructions are described below. In these descriptions, several new or unfamiliar operators
appear:

A Boolean AND

Boolean Inclusive OR

Boolean Negation (One's Complement)
XOR Boolean Exclusive OR

Boolean Equivalence

<

1

TRN No-op

TRNE If CR(AC) A E = 0 then skip

TRNN If CR(AC) A E = 0 then skip

TRNA Skip

TRZ CR(AC) := CR(AC) A -E

TRZE If CR(AC) A E = 0 then skip; CR(AC) := CR(AC) A -E
TRZN If CR(AC) A E #= 0 then skip; CR(AC) := CR(AC) A -E
TRZA Skip; CR(AC) := CR(AC) a =E

TRO CR(AC) := CR(AC) v E

TROE If CR(AC) A E = 0 then skip; CR(AC) := CR(AC) v E
TRON If CR(AC) A E = 0 then skip; CR(AC) := CR(AC) v E
TROA Skip; CR(AC) := CR(AC) v E

TRC CR(AC) := CR(AC) XOR E

TRCE If CR(AC) A E = 0 then skip; CR(AC) := CR(AC) XOR E
TRCN If CR(AC) A E = 0 then skip; CR(AC) := CR(AC) XOR E

TRCA Skip; CR(AC) := CR(AC) XOR E

TLN

TLNE
TLNN
TLNA

TLZ

TLZE
TLZN
TLZA

TLO

TLOE
TLON
TLOA

TLC

TLCE
TLCN
TLCA

TON

TDNE
TDNN
TDNA

TDZ

TDZE
TDZN
TDZA

TDO

TDOE
TDON
TDOA

TDC

TDCE
TDCN
TDCA

TSN

TSNE
TSNN
TSNA

LY A
TSZE
TSZN
TSZA

TS0

TSOE
TSON
TSOA

TSC

TSCE
TSCN
TSCA

TESTS AND BOOLEANS

No-op

If CL(AC) A E = 0 then skip

If CL{(AC) A E = 0 then skip

Skip

CL(AC) := CL(AC) A -E

If CL(AC) A E = 0 then skip; CL(AC)
If CL(AC) A E = 0 then skip; CL(AC) :

Skip; CL(AC) :

CL(AC) := CL(A
If CL(AC) A E
If CL(AC) A E
Skip; CL(AC) :

CL(AC) := CL(A
If CL(AC) A E
If CL(AC) A E
Skip; CL(AC) CL(AC) XOR E
No-op

If C(AC) A C(E) = 0 then skip
If C(AC) A C(E) = 0 then skip
Skip

C(AC) := C(AC) A -C(E)

If C(AC) A C(E) = 0 then skip;
If C(AC) A C(E) = 0 then skip;
Skip; C(AC) := C(AC) A -~C(E)

C(AC) := C(AC) v C(E)

If C(AC) A C(E) = 0 then skip;
If C(AC) A C(E) = 0 then skip;
Skip; C(AC) := C(AC) v C(E)

C(AC) := C(AC) XOR C(E)

If C(AC) A C(E) = 0 then skip;
If C(AC) A C(E) = 0 then skip;
Skip; C(AC) := C(AC) XOR C(E)

No-op
If C(AC) A CS(E) =
If C(AC) A CS(E) =
Skip

0 then skip
0 then skip

C(AC) := C(AC) A -CS(E)

If C(AC) A CS(E) = 0 then skip;
If C(AC) A CS(E) = 0 then skip;
Skip; C(AC) := C(AC) A -CS(E)

C(AC) := C(AC) v CS(E)

If C(AC) A CS(E) = 0 then skip:
If C(AC) A CS(E) = 0 then skip;
Skip; C(AC) := C(AC) v CS(E)

C(AC) := C(AC) XOR CS(E)

If C(AC) A CS(E) = 0 then skip;
If C(AC) A CS(E) = 0 then skip;
Skip; C(AC) := C(AC) XOR CS(E)

C
= 0 then skip; CL(AC)
= 0 then skip; CL(AC)

c
= 0 then skip; CL(AC)
= 0 then skip; CL(AC)

CL(AC)
CL(AC)

= CL(AC)

C(AC) :
C(AC) :

C(AC) :
C(AC) :

C(AC) :
C(AC) :

uon

C(AC) :

c(AC)

C(AC)
C(AC)

C(AC)
C(AC)

CL(AC)

CL(AC)
CL(AC)

C(AC)
C(AC)

C(AC)
C(AC)

C(AC)
C(AC)

C(AC)
C(AC)

:= C(AC)
:= C(AC)

C(AC)
C(AC)

XOR E
XOR E

A ~C(E)
A =~C(E)

v C(E)
v C(E)

XOR C(E)
XOR C(E)

A ~CS(E)
A ~CS(E)

v CS(E)
v CS(E)

XOR CS(E)
XOR CS(E)

145

146

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

14.2. BOOLEAN LOGIC

There are sixteen possible Boolean functions of two single-bit variables. The PDP-10 has sixteen
instruction classes (each with four modifiers) that perform these operations. Each Boolean function operates
on the thirty-six bits of the accumulator and the thirty-six bits of the memory operand as individual bits.

C(AC)
Mem

SETZ
AND
ANDCA
SETM
ANDCM
SETA
XOR
IOR
ANDCB
EQV
SETCA
ORCA
SETCM
ORCM
ORCB
SETO

oo

PR R R RRMRERO0000000O0

1
0

- e OO0 00O R R R R OO0OO0O0

-0

NP OORRPOORRPOORMRLOO

-

P ORORORORPRORORORPLO

SET to Zero

AND

AND with Complement of AC
SET to Memory

AND with Complement of Memory
SET to AC

eXclusive OR

Inclusive OR

AND with Complements of Both
EQuivalence

SET to Complement of AC

OR with Complement of AC

SET to Complement of Memory
OR with Complement of Memory
OR with Complements of Both
SET to One

Table 14-1: Boolean Functions

Each of the sixteen instructions shown in table 14-1 has four modifiers that specify the memory operand
and destination of the result.

A blank modifier means the memory operand is C(E); the result will be stored in the accumulator.

The modifier letter I means Immediate. The memory operand is <0, ,E>. The result is stored in the

accumulator,

M as a modifier means store the result in memory; the accumulator is unaffected.

B as a modifier means store the result in both memory and in the accumulator.

Programming examples:

MOVEI
IORM

MOVSI

ANDCAM

SETZB

SETZM

1,1400
1,677

2,2000
2,600

3.4

500

sturn on 1400 (Bits 26 and 27) in location 577

sturn off bit 7 in location 600
;store zero in 3 and 4

;store zero in location 500

The Boolean instruction set is now presented in detail:

SETZ

SETZI1
SETZIM
SETZB

AND

ANDI
ANDM
ANDB

C(AC) :
C(AC) :

C(E)

C(AC) :

C(AC) :
C(AC) :

C(E)
Temp

oo ow

oo oo

; C(E) := 0

C(AC)
C(AC)
C(AC)
C(AC)

> > > >

C(E); C(AC) := Temp; C(E) := Temp

TESTS AND BOOLEANS 147

Besides the usual arithmetic operations that MACRO performs on symbols and values, the Boolean
AND of two values can be obtained by the ampersand operator. Thus, in MACRO, the expression 5&11 has

the value 1.
ANDCA C(AC) :=
ANDCAI C(AC) :=
ANDCAM C(E) =
ANDCAB Temp =
SETM C(AC) :=
SETMI C(AC) :=
SETMM C(E) :=
SETMB C(AC) :=
ANDCM C(AC) :=
ANDCMI C(AC) :=
ANDCMM C(E) =
ANDCMB Temp =
SETA C(AC) :=
SETAI C(AC) :=
SETAM C(E) :=
SETAB C(AC) :=
XOR C(AC) :=
XORI C(AC) :=
XORM C(E) :=
XORB Temp =

In the MACRO assembler,

~C(AC)
~C(AC)
-~C(AC)
~C(AC)

C(E)
o,,.E
C(E)
C(E); C(AC) :=

Temp; C(E) := Temp
C(E)

0,,E!

C(E)

C(E); C(E) := C(E)

C(AC)
C(AC)
C(AC)
C(AC)

A ~C(E)

A -<0,,E>

A ~C(E)

A =-C(E); C(AC) := Temp; C(E) := Temp
C(AC)

C(AC)

C(AC)

C(AC); C(E) := C(AC)

C(AC) XOR C(E)
C(AC) XOR 0, ,E
C(AC) XOR C(E)
C(AC) XOR C(E); C(AC) :=

Temp; C(E) := Temp

the exclusive OR of two values can be obtained by the operator A!. For

example, if the symbol SNARK has the value 577 then the assignment BOOJUM==SNARKA ! 173 would define
the symbol BOOJUM to have the value 404. Note that this operator is composed of two characters.

IOR C(AC) :=
IORI C(AC) :=
IORM C(E) :=
IORB Temp :=

C(AC)
C(AC)
C(AC)
C(AC)

C(E)
0,.E
C(E)

v
v
v
v C(E): C(AC) := Temp; C(E) := Temp

In MACRO the Boolean OR of two values can be obtained by the exclamation point operator. Thus, the

expression 5! 11 has the value 15.
MACRO recognizes OR, ORI,

ANDCB C(AC) :=
ANDCBI C(AC) :=
ANDCBM C(E) =
ANDCBB Temp =
EQV C(AC) :=
EQVI C(AC) :=
EQVM C(E) =
EQVB Temp =
SETCA C(AC) :=
SETCAI C(AC) :=
SETCAM C(E) =
SETCAB Temp =

1

etc. as alternative mnemonics for the I0R instructions.

~C(AC) A -C(E)

-C(AC) A =-<0,,E>

-~C(AC) A -C(E)

~C(AC) A -C(E); C(AC) := Temp; C(E) := Temp
C(AC) = C(E)

C(AC) = 0, ,E

C(AC) = C(E)

C(AC) = C(E); C(AC) := Temp; C(E) := Temp
~C(AC)

-~C(AC)

~C(AC)

~C(AC); C(AC) := Temp; C(E) := Temp

When an extended KL10 (the DECSYSTEM-2060) is operating in a non-zero PC section, the instruction SETMI will load an

extended address into the selected accumulator. When used for this purpose, the approved mnemonic is XMOVEI, eXtended MOVE

Immediate.

148 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

ORCA C(AC) := -C(AC) v C(E)

ORCAI C(AC) := -C(AC) v O0,,E

ORCAM C(E) := -C(AC) v C(E

ORCAB Temp := -C(AC) v C(E); C(AC) := Temp; C(E) := Temp
SETCM C(AC) := -C(E)

SETCMI C(AC) := -<0,,E>

SETCMM C(E) := -C(E)

SETCMB C(AC) := -C(E); C(E) := -C(E)

In the MACRO assembler, the Boolean negation (i.e., the NOT or one’s complement) of a value can be
obtained by the operator A-. For example, if the symbol XYZZY has the value 173, then the expression
A=-XYZZY would have the value 777777777604. Note this operator is composed of two characters.

ORCM C(AC) := C(AC) v -C(E)

ORCMI C(AC) := C(AC) v =<0, ,E>

ORCMM C(E) := C(AC) v =C(E)

ORCMB Temp := C(AC) v -C(E); C(AC) := Temp; C(E) := Temp
ORCB C(AC) := =-C(AC) v ~C(E)

ORCBI C(AC) := -C(AC) v -<0,,E>

ORCBM C(E) := ~C(AC) v -~C(E)

ORCBB . Temp := -C{AC) v -C(E); C(AC) := Temp; C(E) := Temp
SETO C(AC) := 777777,,777777

SETOI C(AC) := 777777,,777777

SETOM C(E) := 777777,,777777

SETOB C(AC) := 777777,,777777; C(E) := 777777,,777777

=z

14.3. EXAMPLE 6-B - EXTRACT VOWELS

- This program performs the same function as the program in example 6-A. Program control techniques
that are quite different from those used in 6-A have been chosen to demonstrate these alternatives. The
fundamental difference between this program and the one exhibited in example 6-A is that we use the fact
that the function required by this program can be described by two loops (in example 6-A, these are called
INLOOP and OLOOP) each having the same structure:

initialize

LOOP: get a character

exit from 1oop if end of 1line or end of odd buffer

decide on the disposition of this character

dispose of this character

JRST LOOP

Since we have two loops that have the same essential structure, it is possible to fold these two into one

loop by the addition of further instructions to repeat the one loop twice, with whatever modifications are
necessary the second time, In this program, the loop at PSTART (Pass START) is executed twice. The first
time, PSTART executes with the accumulator called PASS containing -1; the second time through PSTART,
PASS contains zero.

Instead of synthesizing this program - building it in small steps - we shall present the entire program first,
and then analyze it.

TESTS AND BOOLEANS 149

TITLE EXTRACT - Alternate Version - Example 6-B

Comment $

This program will read a line of text from the terminal. The output will
be all the even characters followed by the odd characters that are not
vowels, followed by the odd characters that are vowels. The program will
halt when given an empty line.

Sample session:
Type a line: This is a test of the vowel extraction program.

hsi eto h oe xrcinpormT sts ftvwitt rg.iaeeaoa
Type a line:

$
A=1 ;Temp AC, usually a character
B=2
C=3
D=4 ;Control AC. First pass Second pass
H -1 Even Chr Vowel
H 0 0dd Chr Non-Vowel
INPTR=5 ;input buffer pointer
OUTPTR=6 ;Output line pointer
COUNT=7 ;character count in each pass
PASS=10 ;pass count. -1 for first pass,
H 0 for second pass
P=17 ;stack pointer
OPDEF CALL [PUSHJ P,]
OPDEF RET [POPJ P,]
START: RESET ;Begin execution here

MOVE P,[IOWD PDLEN,PDLIST] ;initialize a stack pointer
OUTSTR [ASCIZ/Welcome to Extract

/]

NXTLIN: OUTSTR PROMPT ;request an input line
CALL GETLIN ;get the input line

MOVE OUTPTR,[POINT 7,0BUFR] ;initialize output pointer.

SETO PASS, ;Initialize for pass 1 (PASS := -1)
;Here to start a pass. '
PSTART: MOVE INPTR,[POINT 7,BUFFER] ;fetch characters from here

MOVE B,INPTR ;store odd characters here
MOVEI COUNT, 1 ;Character Count on this line
LOOP: ILD8 A,INPTR ;get a character from the input buffer
JUMPE A,PEND : ;end of input buffer. end of pass
XCT DECIDE(PASS) ;decide how to dispose of character
XCT DISPOSE(D) ;:Dispose of this character
AOJA COUNT, LOOP ;increment character count, get another.
;End of a pass
PEND: CAIG COUNT, 1 ;skip unless no characters were seen.
JRST STOP ;no character, stop program.
1DPB A,B ;store 0 to terminate odd/vow 1list
AQJE PASS,PSTART ;increment PASS, jump to second pass
IDPB A,OUTPTR ;after 2nd pass, store null (A is zero)
OUTSTR OBUFR ;send even + odd non-vowels
OUTSTR BUFFER ;send buffer (odd vowels)
OUTSTR CRLF ;send crlf

JRST NXTLIN :get next line

150

DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

:The next two instructions are a table used to determine the disposition of each
;character

CALL PROC1 s ;D 0 if even; -1 if odd chr
DECIDE: CALL PROC2 ;D 0 if non vowel; -1 if vowel

;:The next two instructions are the table called DISPOSE

H Pass 1 Pass 2
;D=-1, ODD CHARACTER VOWEL
;D=0, EVEN CHARACTER Non-Vowel

10PB A,B
DISPOSE:IDPB A,OUTPTR

:PROC1 is the first pass routine to set up D for the disposal of a character.
;During the first pass, PROC1 returns D=0 to signal an even character,
: D=-1 for an odd character.

:The SETD routine is returned to from PROC2. It is used to set D appropriately

H depending on whether the character is a
: vowel or not. See also PROC2 and the text
PROC1: TRNN COUNT, 1 ;skip if character count is odd
SETD: TDZA D,D ;set D to zero (for even) and skip
SETO D, ;set D to -1 (odd)
RET
:0btain an input line from the terminal. Put it in BUFFER. End with a Null
GETLIN: MOVE B,[POINT 7,BUFFER] ;Initial byte pointer to buffer area
GETCHR: INCHWL A ;read a character from the input
CAIN A,15 ;is this a carriage return?
JRST GETCHR ;yes, discard CR.
CAIN A,12 :Is it a line feed?
MOVEI A,0 ;yes, change to a null
IDPB A,B ;store character in the buffer
JUMPN A,GETCHR :loop for more, unless end of line
RET

;Process characters on second pass. PROC2 will cause ISVOW to return
;to SETD (no vowel, D := 0) or to SETD+1 (character is a vowel, D := -1).

;ISVOW is prepared to be called by a PUSHJ; it will skip if the character
;in A is a vowel. Otherwise, no skip.

PROC2: PUSH P,[SETD] .;store SETD as the return address
ISVOW: MOVE C.,A ;copy character to C

CAIL c,"a") ;test to see if C is lowercase

CAILE c,"z2"

JRST .+2 ;C is not lower case.

TRZ C,40 ;convert lower-case to UPPER

MOVSI D,-VOWTLN ;-length of vowel table,,0
ISVOW1: CAMN C,VOWTAB(D) ;Does character match a vowel?
CPOPJ1: AOSA (P) ;Yes.

AOBJN D,ISVOW1 ;not yet. Loop unless at end of table
CPOPJ: = RET ireturn
VOWTAB: "A"

” E "

" I "

"0"

"U"

I'Y"

VOWTLN==.-VOWTAB

TESTS AND BOOLEANS 151

STOP: EXIT

BUFLEN==40

BUFFER: BLOCK BUFLEN

OBUFR: BLOCK BUFLEN

PDLEN==40

PDLIST: BLOCK PDLEN

CRLF: BYTE (7)156,12

PROMPT: ASCIZ /Type a line: /
END START

14.3.1. Analysis of Program 6-B
The portions of the program at START and NXTLIN should, by now, require no explanation. In these
areas, this program is quite similar to example 6-A and earlier examples.

14.3.1.1. Two-Pass Structure
Let us start with the fragment that controls the two passes through PSTART.

. MOVE OUTPTR,[POINT 7,0BUFR] ;initialize output pointer.

SETO PASS, ;Initialize for pass 1 (PASS := -1)
PSTART: . . . ;start a pass.
PEND: . e ;end a pass

AOJE PASS,PSTART . ;increment PASS, jump to second pass

We initialize the output buffer pointer, OUTPTR, and the pass counter, PASS, before entering the loop at
PSTART. For the first pass; the pass counter is set to -1 by the instruction SETO PASS, that appears before
PSTART. Note that the comma in the SETO instruction is very important; it places PASS in the accumulator
field. The SETO instruction sets an accumulator to all ones (i.e., to -1); SETO does not affect the location
specified by its effective address.

The AOJE instruction at PEND, Pass END, will increment PASS and jump back to PSTART to start
another pass provided that PASS becomes zero when it is incremented. Thus, PSTART is executed with PASS
containing -1 and then with PASS containing 0. After the second pass, PASS is incremented to 1 and the
AOJE instruction will not jump a second time.

14.3.1.2. Inner-Loop Instructions
The instructions inside each pass are also interesting:

PSTART: MOVE INPTR,[POINT 7,BUFFER] ;fetch characters from here

MOVE B,INPTR :store odd characters here
MOVEI COUNT, 1 ;Character Count on this line
LOOP: ILDB A, INPTR ;:get a character from the input buffer
JUMPE A,PEND ;end of input buffer. end of pass
XCT DECIDE(PASS) ;decide how to dispose of character
XCT DISPOSE(D) ;Dispose of this character
AOJA COUNT, LOOP sincrement character count, get another.
;End of a pass
PEND: CAIG COUNT,1 ;skip unless no characters were seen.
JRST STOP ;no character, stop program.
IDPB A,.B ;store 0 byte to terminate odd/vow 1ist
AOJE PASS,PSTART ;increment PASS, jump to second pass

At the start of each pass, INPTR is set up to point to BUFFER. On the first pass, BUFFER contains the

152 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

input line. Accumulator B is initialized to point to BUFFER also. On pass one, B is used as the deposit pointer
for the odd characters. The same trick that we first demonstrated in example 6-A is used again: characters are
fetched from and stored into the same buffer area. INPTR is the take pointer; B is the put pointer.
Examination of the loop reveals that the take pointer will never fall behind the put pointer, so our recycling of
buffer space is without hazard.

Another accumulator, COUNT, is initialized to 1. This register will be used to count the characters in the
line as they are processed; at LOOP, COUNT contains the character number of the next character to be
processed.

Inside the loop at LOOP, ILDB A, INPTR is performed to obtain a character from the input buffer.
When no further characters are available, a zero appears in register A. When the input line is exhausted, the
program will jump to PEND to terminate this pass.

Once a character has been fetched by this ILDB, the program must decide what to do with it, and then
dispose of it. After each character is disposed of, the program executes the instruction AOJA COUNT, LOOP
to advance COUNT and repeat the loop.

The instruction XCT DECIDE(PASS) will make the determination of what to do with each character.
Note that PASS appears as an index register in this instruction. On the first pass, when PASS contains -1, the
effective address computed for the execution of this instruction is DECIDE-1. Recall that the XCT instruction
performs the instruction found at its effective address. Thus, on pass one, the instruction located at
DECIDE-1 is performed to make the decision about each character.

The instruction contained at DECIDE-1 is CALL PROC1. The PROC1 subroutine will set register D to
zero if this is an even character; otherwise it will set D to -1 signifying an odd character. Before we examine
the instructions in PROC1, let us finish describing the code at LOOP. Assuming that PROC1 works as
described, the next instruction is XCT DISPOSE(D). Note that the result in D, as returned by PROC1, is
used to modify this instruction.2 If this is an odd character, D will contain -1 and the instruction at
DISPOSE-1 will be executed. That instruction is IDPB A,B; the odd character will be deposited in the
buffer for odd characters. If this is an even character, D will contain zero; the instruction at DISPOSE will be
executed. That instruction, IDPB A, OUTPTR, sends the even character to the output buffer.

The student should review the explanation of the instructions at LOOP thus far. The decision about each
character is made by executing an instruction in the table DECIDE; during the first pass, that decision is
always made by the PROC1 subroutine. After each decision the character is disposed of by executing one of
the instructions in the DISPOSE table. The disposition consists of depositing odd characters into the buffer
for odd characters, addressed by B, or depositing even characters into the output buffer, addressed by
OUTPTR.

When the end of the line is seen in pass one, the program jumps to PEND. There, the character count,
COUNT is tested. If COUNT is greater than one, then characters were present in the input line; otherwise, the
line is empty and the program jumps to STOP. Assuming the line was not empty, the IDPB A, B instruction
deposits a zero byte to end the buffer of odd characters. PASS is incremented to zero, and the program jumps
to PSTART where the second pass is started. :

For the second pass, registers INPTR and B are again initialized to point to BUFFER. Again, INPTR is
the take pointer; it takes odd characters. Also, B is used again as the put pointer; it deposits odd vowels.

The description of the action of the code at LOOP is the same for the second pass; the difference is that

2Ihe seven-letter name, DISPOSE, is longer than allowable symbol names; MACRO will shorten the name to DISPOS.

TESTS AND BOOLEANS 153

the instruction XCT DECIDE(PASS) calls the subroutine PROC2 to make the decision about each character.
The PROC2 subroutine will return 0 in D for non-vowels, and return -1 in D for vowels. The disposition of
characters is the same as in the first pass: when D is 0, non-vowel characters are sent to the output buffer;
when D is -1, vowels are stored in the vowel buffer. At the end of the second pass, a zero byte is deposited
into the vowel buffer to end it; the AOJE instruction does not jump; the program falls into the output routines
where OBUFR, BUFFER, and a carriage return and line feed are printed.

14.3.1.3. PROC1 and PROC2 Subroutines
The PROC1 subroutine is not too complicated.

PROC1: TRNN COUNT, 1 ;skip if character count is odd
SETD: TDZA D,D ;set D to zero (for even) and skip
SETO D, :set D to -1 (odd)
RET

In PROC1 the instruction TRNN COUNT, 1 tests bit 35 of the character count. Bit 35 of COUNT will be
one when the program is processing an odd character; it will be zero while processing an even character. The
TRNN instruction will skip if bit 35 is a one. If bit 35 is a zero, the TRNN will not skip; the following
instruction, TDZA D, D will be executed. Careful reading of the description of the test instructions should
convince you that this TDZA will set register D to 0 and skip. If the TRNN skips, the instruction SETO D, is
executed; this sets D to -1. Finally, PROC1 returns to its caller. In summary, if COUNT is odd, D is set to -1;
when COUNT is even, D is set to 0.

The instruction sequence at PROC2 introduces a new concept. Let us start with a more obvious version
of PROC2: ~

PROC2: CALL ISVOW ;Test for vowel. Skip if Vowel
TDZA D,D :Not a vowel. Set D to 0 and skip
SETO D, ;Vowel, Set D to -1
RET

This version of PROC2 is similar in structure to PROC1. The ISVOW subroutine (which we describe in
detail below) will decide if the character in A is a vowel. If A contains a vowel, ISVOW will skip. Essentially,
the instruction CALL ISVOW can be thought of as a conditional skip, like the TRNN instruction in PROC1.
The non-skip return from ISVOW causes the instruction TDZA D,D to be executed. The skip return causes
the SETO to be executed. When the character in A is a vowel, -1 is returned in D; otherwise, D is set to 0.

Now, this isn’t the version of PROC2 that we have used in this program. To understand what we have
done, it is necessary to review the details of the PUSHJ instruction. Recall that PUSHJ pushes the return
address onto the stack and jumps. If we use a PUSH instruction to push a data item onto the stack, and then
jump (e.g., by means of JRST) to a subroutine, we have simulated the effects of PUSHJ. When the
subroutine eventually executes a POPJ (or as we call it, a RET) instruction, then the data item that we pushed
will be taken as the return address by the POPJ instruction.

The return address that we push is the label SETD. This label appears on the TDZA, SETO sequence that
follows PROC1. Thus, we can rewrite PROC2 as:

PROC2: PUSH P,[SETD] ;save return address
JRST ISVOW ;jump to the ISVOW routine

ISVOW will now return to SETD or to SETD+1. We have avoided the repetition of the TDZA, SETO, and
RET that was present in our first version of PROC2.

Finally, we climinate the JRST ISVOW in PROC2 by the trivial expedient of moving PROCZ to
immediately precede ISVOW:

154 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

PROC2: PUSH P,[SETD] ;save return address
ISVOW:

14.3.1.4.1SVOW Subroutine

The other area that is changed is at ISVOW. A copy of the character is made in register C. By means of
nested skips, the program decides whether the character is lower-case; a lower-case character is greater than or
equal to “a” and less than or equal to “z”. If C contains a lower-case character, that character is changed to
upper-case by the instruction TRZ C, 40. From the table of ASCII characters, you can see¢ that a lower-case
character differs from the corresponding upper-case one by having an additional 40 in the character code.
For example, the code for “I”is 111, and that for “i” is 151. By turning off the bit with value 40 (bit 30 in

register C) a lower-case letter can be transformed into an upper-case one.

The AOBJN instruction is used to cycle through a table of vowels, comparing the input character to the
table. If a match is seen, the program effects a skip by executing the instruction at CPOPJ1. Otherwise, a
non-skip return is taken.

The loop control in the subroutine is accomplished with an AOBJN instruction. Accumulator D is set up
via the MOVSI instruction that occurs before the loop ISVOW1. As we will show later, the symbol VOWTLN,
VOWel Table LeNgth, has value 6. So, D is initialized to -6, , 0. The instruction at ISVOW1 compares C to
VOWTAB(D). The effective address of this instruction is modified by the right half of D.3 Initially the right
half of D is 0, so the first address compared to is just VOWTAB+0. If the character in C matches VOWTAB+0,
the CAMN will not skip, and the instruction at CPOPJ 1 is executed. Assuming that C contains something other
than the letter “A”, the CAMN will skip. The instruction AOBJN D, ISVOW1 will increment both halves of D;
D becomes -5, , 1. Since the resulting value is negative, the AOBJIN instruction will jump back to ISVOW1.

At ISVOW1, this time, D contains -5, , 1. So the CAMN references VOWTAB+1. If register C is not an E,
the CAMN will skip to the AOBJN. This process continues; if a vowel is present in register C, eventually, the
CAMN instruction will find it and avoid skipping; the instruction at CPOPJ1 will be executed. If no vowel is
present, eventually, D will contain -1, , 5 while ISVOW1 tests to see if C contains the character Y. If the CAMN
skips, the AOBJN instruction will increment D to 0, ,6. Since this is now a positive number, the AOBJN will
not jump back to the ISVOW1; the subroutine executes RET and returns without skipping.

The instruction at CPOPJ1 will increment the return address and skip over the AOBJN to execute the
RET, which returns with one skip.

The symbol VOWTLN takes its value from the assignment VOWTLN==.-VOWTAB. The period symbol (.)
in the assembler represents the current value of the location counter. After assembling the word containing
the character Y (which MACRO places at VOWTAB+5), the location counter will be advanced to point to the
next word, VOWTAB+6. The expression .-VOWTAB then has the value 6. This is a neat way to find out how
many entries there are in a table. It is especially useful because if something is added to the table the program
adjusts itself to the new entry. Thus, the programmer avoids having to search through the program for those
instances of the number 6 that signify the count of entries in this table.

14.3.1.5. The BYTE Pseudo-op
This program introduces another pseudo-operator, BYTE, which can be used to generate data words
composed of arbitrary fields. In the example that was given, the word at CRLF was defined by:

3Only the right half of an index register is significant in address calculations (except in a system that is using extended addressing).

TESTS AND BOOLEANS 155

CRLF: BYTE(7)15,12

This defines a word composed of two 7-bit bytes (the remainder of the word has not been specified and is
assembled as zero). The byte size of the field was set by the number 7 in parentheses following the word
BYTE. The data for each field is supplied by the number or list of numbers that follows the byte size. In this
case the data are octal values 15 and 12; these represent carriage return and line feed, respectively.

The BYTE pseudo-op can handle more than one byte size. For example, an instruction word can be
defined by the description:

BYTE (9)OP (4)AC (1)I (4)X (18)Y
Here, the value of the symbol OP will be assembled into bits 0: 8 of the word, the opcode field. The value of
AC will be assembled into the next four bits, 9: 12, etc.

Note that the numbers inside parentheses, the byte sizes, are interpreted as decimal numbers. The data
arguments are interpreted in the prevailing radix (usually octal).

When a list of data arguments, all with the same byte size, is written, commas appear between the data
items. Note, however, that no comma appears before a new byte size. For example:

BYTE (11)X,Y (3)BRT,SIZE (2)MODE,TYPE (4)6

In this example, the value of X will be placed in an 11-bit byte, bits 0: 10. The value of Y also will be placed
in an 11-bit byte, bits 11:21. The fields BRT and SIZE are each three bits, bits 22:24 and 25:27,
respectively. The MODE and TYPE fields are two bits each, 28:29 and 30:31. Finally the constant value 6
is placed into the four bits 32:35.

In a BYTE pseudo-op, if a field cannot fit into the remainder of a word, a second (or subsequent) word is
started; that field then appears in the left-most byte of the new word. Any unused bits will be zeroed.

14.4. EXERCISES

14.4.1. Pig Latin

Write a program that will input a line of text and translate it to plg latin. The rules for pig latin are:

o If a word begins with a vowel, then the translation of the word is the word itself, unchanged.
o If a word begins with a consonant, then the translation of that word consists of three parts:

1. the first vowel in the word, followed by all letters that followed the first vowel in the
English word.

2. the first consonant, followed by all letters up to but excluding the first vowel.
3. the letters AY.

o If there are no vowels in the word, output the word and the letters AY.

Your program should work for lines of text where spaces or punctuation separate the words. Perhaps the
best way to think of this is that letters are parts of words, and anything other than a letter is a word delimiter.

Your program should be able to accept either upper-case, lower-case, or mixed text. The case that you
select for your output is not important.

156 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Words with internal punctuation, such as “don’t”, need not be handled properly.
Example:

Input: I said, *''Oh, what a strange homework assignment!’’
Output: I aidsay, ''Oh, atwhay a angestray omeworkhay assignment!’’

Input: this is an example of pig latin.
Qutput: isthay is an example of igpay atinlay.

Note that the punctuation has been preserved.

BLOCK TRANSFER AND SHIFT INSTRUCTIONS 157

Chapter 15
Block Transfer and Shift Instructions

We continue our exposition of the PDP-10 instruction set by introducing the block transfer, BLT,
instruction, and the various shift instructions.

15.1. BLT INSTRUCTION

The BLT (BLock Transfer) instruction copies a block of consecutive words from one place in memory to
another. In order to specify such a copying operation, three items of information must be given:

o The first source location,
o the first destination location, and
e how many words to copy.

The accumulator in the BLT instruction must be set up to contain the first two of these items of
information. The length of the transfer does not appear explicitly; instead, it is encoded by specifying the
address of the last word to store into. The final destination address (the last word to store into) appears in the
effective address of the BLT instruction.

More specifically, the left half of the BLT accumulator specifies the first source address. The right half of
the accumulator is the first destination address. The effective address of the BLT is the last destination
address. Words are copied, one by one, from the source to the destination, until a word is stored at an address
greater than or equal to the effective address of the BLT. Figure 15-1 shows an example of the BLT
instruction. ,

The BLT instruction is somewhat complicated. BLT has a loop inside it that controls the copying process.
Essentially, you may think of BLT as copying from the first source to the first destination. Then both halves
of the accumulator are incremented to address the second source and second destination words. The copying
process repeats until a word is stored at or above the location specified by the effective address.

15.1.1. Warnings about BLT

Because there are so many different things going on inside BLT, there are some things that must be
avoided when using a BLT. Despite the following list of warnings, BLT is quite useful, but it must be used
carefully.

e BLT modifies its accumulator. On the KL10 and KS10 processors, when BLT is finished, the

158 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

0 | |
| I
| |
| | Example: copy 100 (octal) words
. | | from locations 12340:12437
1000 | | to locations 1000:1077.
| destination |
| region |
1077 | |
| | MOVE 15,[12340,,1000]
| | BLT 15,1077
| |
I I
| | Load an accumulator (15 in this
| | example) with the first source
12340 | | address, 12340, in the left half
| source | and the first destination address, 1000
| region | in the right half. The effective
12437 | | address, 1077, is the address of
| | the last word to store into.
I |
I I
I |
7777717 | |

Figure 15-1: BLT Example

accumulator is set to the next source and next destination addresses that would have been
transferred. On the earlier processors the contents of the AC are indeterminate after any BLT
that moves more than one word.

o Because BLT modifies its accumulator, you must never allow the BLT accumulator to be used as
an index register in the address calculation of the BLT. The reason for this is a little involved.
A time-sharing computer system must be able to respond promptly to external events; a long
wait for the loop inside BLT to finish cannot be tolerated. Therefore, BLT has been designed so
that its execution can be interrupted between each word that it moves. When a BLT instruction
is interrupted, it will store an updated source and destination pointer in the accumulator.

_ Because it updates this pointer, it can resume its execution without repeating any work that it
did previously. Note that when the execution of an interrupted BLT is resumed, the effective
address is calculated again. If the accumulator that is used by BLT is also used as an index
register in the effective address calculation, then a different effective address will be used when
the BLT instruction is resumed.

e A BLT that changes anything having to do with its own effective address calculation will be
unpredictable. If indexing is used, don’t let the index register be among the destination
addresses.

o If the source and destination addresses overlap, remember that BLT moves the lowest source
word (that is, the source word with the lowest address) first.

e If the destination of the BLT includes the accumulator of the BLT, then the BLT accumulator
must be the last destination address.

o If the destination of the BLT includes the BLT instruction itself, then that BLT should be at the
last destination address.

BLOCK TRANSFER AND SHIFT INSTRUCTIONS 159

15.1.2. BLT Programming Examples

The accumulators are very important in programming the PDP-10. Often, their contents must be saved
and later restored. An example of this would be a subroutine that wants to avoid changing any of the
accumulators in the main program. The BLT instruction is useful for saving and restoring the accumulators.

Define a storage area for accumulators called SAVAC.

SAVAC: BLOCK 20

Save all the accumulators in 20 words starting at SAVAC.

MOVEM 17 ,SAVAC+17 ;save one accumulator first
MOVEI 17,SAVAC ;Source is 0, destination is SAVAC
BLT 17,SAVAC+16 ;Store through SAVAC+16

Restore all the accumulators from SAVAC. Note that this stores into the BLT accumulator, but it does so
as the last word that is moved.

MOVSI 17,SAVAC ;:Source 1is SAVAC, destination is 0
BLT 17,17 ;Store through 17
Another use for BLT is clearing memory to zero, or storing some other pattern in consecutive memory
words. In this example, the program will store zero in 100 words starting at TABLE. We start by using the
SETZM instruction (set zeroes to memory) to store a zero at TABLE+0.

Then, by overlapping the source and destination addresses we use BLT to propagate this zero throughout
the array TABLE. The first source address is TABLE, the first destination address is TABLE+1. The BLT
instruction copies the zero at TABLE to TABLCE+1. Then it increments the source and destination addresses,
and copies the word at TABLE+1 to TABLE+2. This word is zero, so the BLT instruction keeps moving this
zero to higher addresses. The BLT stops when TABLE+76 is copied to TABLE+77.

SETZM TABLE ;Start by setting the first to zero
MOVE AC,[TABLE, ,TABLE+1] ;Source and
BLT AC,TABLE+77 ; destination overlap

In this next example, we want to move 76 words from TABLE through TABLE+75 to TABLE+2 through
TABLE+77. The BLT instruction cannot be used in this example because the source and destinations overlap
in the wrong way.

To perform this copy, we must start by moving TABLE+75 to TABLE+77. This makes room at
TABLE+75 for a word (TABLE+73) to be stored there. Of course, we move TABLE+74 to TABLE+76 before
moving TABLE+73, but the main idea is that we have to start at the highest source address and move data
upwards to the highest destination address. There is no single instruction to do this function; we resort to a
loop.

The trick here is to use the POP instruction because POP, unlike most instructions, can move data
between two memory locations. The locations are not arbitrary; one location is specified by a stack pointer.
We start with a stack pointer that addresses TABLE+75 as the stack top. If we execute a POP instruction, the
word at TABLE+75 will be read from the stack top. Now, where to put it?

There is a constant offset of 2 from the stack top to the desired destination address. That is, TABLE+75
is copied to TABLE+77, TABLE+0 is copied to TABLE+2, etc. We can use indexed addressing to help us:

MOVE A,[400075,,TABLE+75]
LOOP: POP A,2(A) ;:Store TABLE+75 into TABLE+77, etc.
JUMPL A,LOOP ;Jump until 76 words have moved.

The control count in the left half of the stack pointer is used to tell the JUMPL when to stop.

160 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

The first time through LOOP the word at TABLE+75 is popped into TABLE+77. The stack pointer is
changed to 400074, ,TABLE+74. The second time through LOOP, TABLE+74 is copied to TABLE+78.
The last time through the loop, the stack pointer contains 400000, , TABLE. The word at TABLE is copied
to TABLE+2; the stack pointer is changed to 377777, , TABLE-1. The JUMPL will not jump.

This use of a stack pointer is completely unrelated to the normal use of stacks or stack instructions; this is
an example of the way that instructions can be used for purposes other than the obvious or usual ones.

15.2. SHIFT INSTRUCTIONS

The following instructions shift or rotate the accumulator or the double word formed by AC and AC+1.
The number of places to shift is specified by the effective address, which is considered to be a signed number
modulo decimal 256 in magnitude. That is, the effective shift is the number composed of bit 18 (the sign) of
the effective address and bits 28:35 of the effective address. If E is positive, a left shift occurs. If E is
negative a right shift occurs.

15.2.1. LSH - Logical Shift
The contents of the selected accumulator are shifted as specified by the effective address, E. Zero bits are
shifted into the accumulator, as depicted in figure 15-2.

As you are now aware, MACRO is willing to perform arithmetic using the values of symbols and
constants that are known while it is assembling the program. In addition to the usual arithmetic operators,
MACRO has a shift operator, written as an underscore character. Thus the expression 5_11 represents the
value 5 left-shifted by nine (octal 11) places, which is equivalent to 5000. To perform a right shift, make the
second operand negative.

15.2.2. LSHC - Logical Shift Combined

Combined mode shifts involve the double-word accumulator pair formed from AC and AC+1 as shown in
figure 15-3. The doubleword accumulator, denoted by C(AC AC+1), is shifted as a 72-bit quantity. Zero
bits are shifted in. Note that when we speak of AC+1, we mean the accumulator selected by the address
(AC+1) modulo 20 (octal). Thatis, if AC is 17 then AC+1 is accumulator 0.

We offer a short example to demonstrate the LSHC instruction. A subset of the ASCII code is used for
file names and device names in TOPS-10. In this subset, for compactness, each character is stored in six bits
instead of seven. This subset of ASCII is called SIXBIT in the PDP-10. In SIXBIT, the ASCII codes in the
range octal 40 to 137 are mapped into the range 0 to 77.

The word in register B, representing up to six characters in the SIXBIT code, is translated by this
subroutine to a sequence of ASCII characters which are printed:

A=1
B=2 ;For LSHC, B must be A+1
:Enter here with B containing a SIXBIT word. Convert to ASCII and print
SIXOUT: JUMPE B,[RET] ;Return when nothing but blanks remain
MOVEI A,0 :Clear the accumulator on the left
LSHC A,6 :Left-shift a character out of B to A.
ADDI A,40 ;Convert from SIXBIT to ASCII
RBOUTF OUTCHIL N ;Print the ASCII character

JRST SIXOUT ;Loop until B is empty.

BLOCK TRANSFER AND SHIFT INSTRUCTIONS 161

15.2.3. ASH - Arithmetic Shift

In an arithmetic shift, bit 0 is the sign bit; the sign is preserved. In a left-shift, zero bits are shifted into
the right end of the accumulator. In a left-shift, if any bit of significance is shifted out of bit 1, then the AROV
flag is set to signify that an arithmetic overflow has occurred. In a right-shift, bit 0 is copied into bit 1; this
provides non-significant bits at the left end of the accumulator. See figure 15-4.

The ASH instruction can be used to multiply an integer by a power of 2. For example, ASH AC, 1 will
double the contents of AC. A right-shift will divide a positive integer by a power of 2. A right arithmetic shift
of a negative integer does not always produce the same result as the corresponding divide operation. For
example if a register containing -5 is shifted right one place, the result will be -3, in contrast to the -2 that
would be obtained from a divide instruction.

15.2.4. ASHC - Arithmetic Shift Combined

In the ASHC instruction, bit 0 of the specified accumulator provides the sign of the result. This bit
remains unchanged. If the effective address, E, is non-zero then bit 0 of AC will be copied to bit 0 of AC+1.
C(AC AC+1) is shifted as a 70-bit quantity, as shown in figure 15-5. In a left-shift, zero bits are shifted into
the right end of AC+1. In a left-shift, if any bit of significance is shifted out of AC bit 1 then the AROV flag
will be set. In a right-shift, AC bit 0 is extended to AC bit 1.

15.2.5. ROT - Rotate

The 36-bit contents of the selected accdr?lulator are rotated as shown in figure 15-6. In a left-rotate, bits
shifted out of bit 0 are shifted into bit 35. In a right-rotate, bit 35 is shifted into bit 0.

15.2.6. ROTC - Rotate Combined

The data movement for the ROTC instruction is shown in figure 15-7: AC and AC+1 are rotated as a
72-bit quantity. In a left-rotate, AC bit 0 shifts into AC+1 bit 35; AC+1 bit 0 shifts into AC bit 35. In a
right-rotate, AC+1 bit 35 shifts into AC bit 0; AC bit 35 shifts into AC+1 bit 0.

162 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

Shift and Rotate Data Movement

0 ‘ 35

discard «-| Je- O Left Shift
| AC |
Right Shift 0 --| |-» discard

Figure 15-2: LSH Data Movement

0 ' 35 0 35
discard «-| |«-1 |«- 0 Left Shift
| AC 1 AC+1 |
Right Shift 0 =-»| |=-1 |-+ discard
Figure 15-3: LSHC Data Movement
0 1 35
| | discard «-| |«= 0 Left Shift
| AC]
Right Shift |_|---==--- d| |-» discard
Figure 15-4: ASH Data Movement
0 1 35 1 35
| | discard e-| Jemm-] |- 0 Left Shif
|1 | AC | | AC+1 | :
Right |_|--====---- ad | J====| |-+ discard
Shift |
0
+ |
@ - mmmemm e mmmmm o — e m e -1 |
-l ,
Figure 15-5: ASHC Data Movement
R bbbttt e +9
u |
| 0 5 |
| +
e~} |]<-e Left Rotate
| AC |
Right Rotate =~ |+
T |
| ¢
L b b bbbl kbt ikt ®

Lt R ittt +®
* |
| 0 35 0 35 |
| ¥
oc-| le=1 |- Left Rotate
| AC I AC+1 |
Right Rotate e--| |-=1 : |-~
* |
| ¥
L et bdel bl e ®

Figure 15-7: ROTC Data Movement

ARITHMETIC 163

Chapter 16
Arithmetic

You might have thought that computers were used for arithmetic. It is true that quite often they are. We
have come a long way without resorting to adding or dividing things. But now, the time has come to talk of
arithmetic and the instructions that we use to perform numeric calculations.

16.1. FIXED-POINT ARITHMETIC

The instructions that follow deal with fixed-point binary numbers that are (usually) thirty-six bits long.
Two’s complement binary arithmetic is performed and two’s complement results are produced. You might
want to take this opportunity to review the discussion of binary arithmetic in section 4.2, page 25.

The usual convention is to consider that the binary point is placed to the right of bit 35. Using this
convention, positive numbers in the range 0 to 235-1 are represented in a straightforward binary pattern.
The arithmetic weight of bit number n is given by 235", Negative numbers are in two’s complement form;
bit 0, the sign bit, has weight -235.

Other conventions for placing the binary point can be used with fixed-point arithmetic. For example, in
TOPS-40, the operating system internal date format represents integral days in the left half of a word, and
fractional days in the right half. For this purpose, the binary point might be said to lie between bits 17 and
18. '

16.1.1. ADD Class

The instructions in the ADD class form the arithmetic sum of two fixed-point numbers. The operands
include the accumulator and the contents of the effective address (or the effective address itself in the case of
ADDI). The destination of the result is determined by the instruction modifier.

ADD C(AC) := C(AC) + C(E);

ADDI C(AC) := C(AC) + E;

ADDM C(E) := C(AC) + C(E);

ADDB Temp := C(AC) + C(E); C(AC) := Temp; C(E) := Temp;

16.1.2. SUB Class

The SUB instructions compute the difference of the contents of the accumulator minus the memory
operand. The destination of the result is determined by the instruction modifier.

164 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

sus C(AC) := C(AC) - C(E);:

SUBI C(AC) := C(AC) - E;

SUBM C(E) := C(AC) - C(E);

suss Temp := C(AC) - C(E); C(AC) := Temp; C(E) := Temp;

The ADD or SUB class instructions will overflow if the result of the operation is greater than or equal to
235 or less than -23%. In case of an overflow, the result that is stored will be arithmetically correct, except the
sign bit will be wrong.

16.1.3. IMUL Class

The IMUL instructions are for multiplying numbers where the product is expected to be representable as
one word.

IMUL C(AC) := C(AC) * C(E);

IMULI C(AC) := C(AC) * E;

IMULM C(E) = C(AC) * C(E);

IMULB Temp = C(AC) * C(E); C(AC) := Temp; C(E) := Temp;

The IMUL class instructions will overflow if the result of the operation is greater than or equal to 235 or
less than -235,

16.1.4.IDIV Class

The IDIV instructions are for divisions in which the dividend is a one-word quantity. The dividend is in
the accumulator; the divisor is the memory opérand. The quotient will be stored as specified by the
instruction modifier. The remainder will have the same sign as the dividend; the remainder is stored in AC+1
(that is, AC+1 modulo 20 octal), except the IDIVM instruction does not store a remainder.

If the divisor is zero, the AROV and DCK (arithmetic overflow and no divide) flags are set in the PC;
neither the accumulator nor the memory operand is changed.

IDIV C(AC) := C(AC) / C(E); C(AC+1) := remainder;
IDIVI C(AC) := C(AC) / E; C(AC+1) := remainder;
IDIVM C(E) = C(AC) 7/ C(E); i
IDIVB Temp := C(AC) / C(E); C(AC+1) := remainder;

C(AC) := Temp; C(E) := Temp;

In division, the sign of the quotient is positive when the signs of both the dividend and divisor are
identical. Otherwise, the sign of the quotient is negative. The sign of the remainder is always the same as the
sign of the dividend. In all cases the magnitude of the quotient and remainder are the same as though both
the dividend and divisor were positive, The relation
Dividend = (Quotient * Divisor) + Remainder alwaysholds. Some examples are

Dividend Divisor Quotient Remainder
5 2 2 1

-5 2 -2 -1
5 -2 -2 1

-6 -2 2 -1

ARITHMETIC ‘ 165

16.1.5. MUL Class

The MUL instructions produce a double-word product. A double-word integer has seventy bits of
significance. Bit 0 of the high-order word is the sign bit. In results, bit 0 of the low-order word is the same as

bit 0 in the high-order word. MUL will set overflow if both operands are -235,
mMuL C(AC AC+1) := C(AC) * C(E);
MULI C(AC AC+1) := C(AC) * E;
MULM C(E) := high-order word of product of C(AC) * C(E);
MULB C(AC AC+1) := C(AC) * C(E);
C(E) := high-order word of product, as stored in AC;

16.1.6. DIV Class

The DIV instructions are for divisions in which the dividend is a two-word quantity (such as produced by
MUL). The DIV instructions will not perform a division if the divisor is zero or if the divisor is smaller than
the contents of AC. If either condition obtains, AROV and DCK are set in the PC flags. Bit 0 of the low-order
word of the dividend is ignored by this instruction.

DIV C(AC) := C(AC AC+1) / C(E); C(AC+1) := remainder;
DIVI C(AC) := C(AC AC+1) / E; C(AC+1) := remainder;
DIVM C(E) := C(AC AC+1) / C(E);

DIVB Temp := C(AC AC+1) / C(E); C(AC+1) := remainder;

C(AC) := Temp; C(E) := Temp;

16.2. DOUBLE-WORD MOVES

There are four double-word move instructions. These are suitable for manipulating KI10 and KL10
double-precision floating-point numbers. These instructions do not exist on the KA10 or PDP-6.1

DMOVE C(AC AC+1) := C(E E+1)
DMOVEM C(E E+1) = C(AC AC+1)
DMOVN C(AC AC+1) := -C(E E+1)
DMOVNM C(E E+1) = -C(AC AC+1)

In the KL10, DMOVN and DMOVNM can be used to manipulate double-precision integers. One word of
. caution however: the instructions that produce double-precision integers (MUL, DADD, DSUB, DDIV) always
set bit 0 of the second word to be the same as the sign bit of the first word. The DMOVN and DMOVNM
instructions always set bit 0 of the second word to zero (double-precision floating-point format). In
arithmetic operations, bit 0 of the second word is ignored. In comparisons, however, bit 0 of the second word
would be looked at. For safety, if you use DMOVN to negate a double-precision integer, you should probably
use a sequence like:
DMOVN AC,E

SKIPGE AC ;skip if result is positive
TLO AC+1,400000 ;set sign bit of second word.

1'I‘ne DMOVN and DMOVNM instructions must not be used with any KA10-format double-precision floating-point numbers; see also
appendix D, page 369.

166 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

16.3. DOUBLE-PRECISION FIXED-POINT ARITHMETIC

There are four instructions for double-precision fixed-point arithmetic. None of these instructions have
any modifier: they all operate on double (or quadruple) accumulators and double-words in memory with
results to double (or quadruple) accumulators. These instructions exist on the KLL10 and later machines.

The format for a double-word fixed-point number is the same as that produced by MUL, ie., a 70-bit
integer in two’s complement; bit 0 of the most significant word is the sign; in operands, bit 0 of the low-order
word is ignored. A quadruple word has 140 bits; bit 0 of the most significant word is the sign; in operands,
bit 0 in all other words is ignored. An instruction that produces a double (or quadruple) arithmetic result will
store the same value in bit 0 of the low-order word(s) as it stores in bit 0 of the high-order word.

DADD C(AC AC+1) := C(AC AC+1) + C(E E+1);

DSUB C(AC AC+1) := C(AC AC+1) - C(E E+1);

DMUL C(AC AC+1 AC+2 AC+3) := C(AC AC+1) * C(E E+1);

DDIV ~ C(AC AC+1) quotient of C(AC AC+1 AC+2 AC+3) / C(E E+1);
C(AC+2 AC+3) := remainder of C(AC AC+1 AC+2 AC+3) / C(E E+1)

16.4. FLOATING-POINT OPERATIONS

When it performs floating-point arithmetic operations, the computer hardware takes upon itself the
burden of scaling numbers properly to make sensible results. Since the hardware helps in this way,
floating-point is more suitable than fixed-point arithmetic for many purposes.

16.4.1. Floating-Point Representations

The PDP-10 offers two formats of floating-point numbers: single- and double-precision. We will discuss
the representation used for single precision floating-point numbers in great detail. Following our discussion
of the single-precision representation, we will briefly explain the double-precision format.

16.4.1.1. Single-Precision Floating-Point
Single-precision floating-point numbers are represented in one 36-bit word as follows:

0 00000000 011111111112222222222333333
0 12345678 901234567890123456789012345
| | o
|S| Exp | Fraction |
[-1 | |
The field S is the sign bit. When S is zero, the sign is positive. When S is one, the sign is negative and
the word is in two’s complement format. The exponent is held in bits 1: 8. The exponent represents a power
of 2; it appears in excess-200 (octal) notation. The fraction, held in bits 9:35, is interpreted as having a
binary point to the left of bit 9.2 Conventionally, the fraction takes on some value greater than or equal to
one-half and less than one.
A floating-point zero is represented by a word in which all bits are zero.

In a properly normalized, non-zero floating-point number (see section 16.4.2, page 169) bit 9 is different

28y a mistaken analogy to logarithms, the fraction is sometimes called the mantissa.

ARITHMETIC 167

from bit 0.3

Floating-point numbers can represent numbers with magnitudes within the range from 0. 5327128 ¢
(1-2727)*2127 and 0. In more familiar notation, the magnitude range is approximately from 1.4*1073°
to1.7*103%8 and 0.

We will look at some examples of floating-point numbers. First, we will examine the number 1.0. To
convert a number to floating-point, it must be broken into a fraction that is less than 1 and an exponent. The
number 1.0 is equivalent to 1. 0#29, but the 1.0 is too large. So we divide the 1.0 by 2, and increase the
exponent: 0,5%2 1 Now, 0.5 is easy to write as a binary fraction. Itis 0. 1. So we build a word that contains
the binary pattern:

0]10 000 001|100 000 000 000 000 000 000 000 000
1+ exponent 1 fraction
sign binary point
In octal, this would be 201400, , 0. Note that 200 has been added to offset the exponent. This offset is
used in lieu of keeping a sign bit for the exponent.

For a second example, let us try to convert 2. 0 to floating-point. First, in binary, 2.0 is 10.0. Again
the number is too large, so we must make it a fraction. 10. 0*2%is changed to 0.100 *22 S0 we write the
binary pattern:

0]10 000 010]100 000 000 000 000 000 000 000 000
+ exponent 7t fraction
sign binary point
Notice that this is the same as the patte’r‘n for 1.0, except the exponent is different. Adding 1 to the
exponent doubles a floating-point number.

Next, we try to represent decimal 10.0. In binary we would have 1010.0 or 0. 101*2%. Thus we
write:

0110 000 100101 000 000 000 000 000 000 000 000
.+ exponent * fraction
sign binary point ‘

As our next example, we will demonstrate the conversion of an internal format floating-point number to
decimal notation. For this example, we will convert the internal number 202500, ,0 to decimal. The
exponent field is 202, meaning 22 or 4. The fraction field, in binary is 0.101000. Multiplying the fraction
by 4, we obtain the binary number 10.1000. This number is equivalent to binary 101. 00 divided by 2.
Since 101 is 5, this number must be 2.5. To check our work, we can compare the original octal pattern,
202500, ,0 to the octal pattern corresponding to 10.0. The floating-point representation of 10.0 is
204500, , 0 which differs from our number by 2 in the exponent. A difference of 2 in the exponent means a
factor of 4 difference in the values represented. Indeed, 10.0/4is 2.5.

3An exception to this is that a negative floating-point number in which bits 0 and 9 are both one is normalized if all the other fraction
bits, bits 10: 356, are zero. This is because negative numbers are in two’s complement form; a normalized positive number in which bits
10: 35 are zero has a two’s complement in which bits 10: 35 are also zero.

168 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

As a final example, we shall try a hard one. We will convert 4/3 to a floating-point number. We begin
by converting the numerator and denominator to binary, and doing long division:

1.010101...
11) 100.000000...
-11
1 00
-11
100
=11
100
=11
1..

It should be apparent that the pattern 01 will repeat. The resulting binary floating-point number is

0}10 000 001}101 010 101 010 101 010 101 010 101

16.4.1.2. Double-Precision
In many applications, the single-precision format does not produce sufficiently accurate results. A

second format of floating-point numbers is available for circumstances where extra precision is necessary.
Increased precision comes from the inclusion of a second word which contains thirty-five additional fraction
bits in bits 1:35; bit 0 of the second word is always zero. The additional fraction bits do not materially affect
the range of representable numbers, rather they extend the precision. Double-precision floating-point is
available in the KI10 and later processors. :

0 00000000 011111111112222222222333333 0 00000000011111111112222222222333333
0 12345678 901234567890123456789012345 0 12345678901234567890123456789012345

[1 | |
IS| Exp | Fraction |0
|

Extended Fraction |

16.4.2. Floating-Point Arithmetic Operations

When the computer does addition (or subtraction) involving floating-point numbers, it is necessary to
make the exponents of both numbers the same before adding them. Suppose we add 2.0 to the
representation of 4/3 that we computed earlier.

The representations of both numbers are shown below:

2.0 0]10 000 010}100 000 000 000 000 000 000 000 000
1.3333... 0)10 000 001}101 010 101 010 101 010 101 010 101
Before adding, the PDP-10 performs a pre-normalization process to make the smaller number (i.e, the
operand of smaller magnitude) have the same exponent as the larger one. The fraction is shifted right,
halving the value at each shift; simultaneously, the exponent is incremented, doubling the value at each shift.
Except for loss of precision that occurs if significant bits are shifted off the right end of the fraction,
pre-normalization does not change the value of the original operand; the process stops when the smaller
number has been changed to have an exponent that is identical to the exponent of the larger operand. Since
this shifting takes place inside the CPU, a result that is longer than one word can be kept. A guard bit,
essentially bit 36, remembers the most significant of the bits that were shifted out during pre-normalization.

ARITHMETIC 169

010 000 010|100 000 COC 000 000 00O 000 000 000
.333... 0|10 000 010]010 101 010 101 010 101 010 101 010|1 (after shift)
+ o

guard bit

. The addition proceeds, resulting in a new number. If| as is usual, addition with rounding is requested, the
presence of a one in the guard bit modifies the result. If the guard bit is a one, rounding is accomplished by
adding 1 to the least significant position. Note the effect this has on the result in this case:

2.0 0|10 000 010|100 000 000 000 000 000 000 000 000
1.333... 0]10 000 010010 101 010 101 010 101 010 101 0101 (after shift)
3.333... 0/10 000 010|110 101 010 101 010 101 010 101 011 (sum with rounding)

It would be possible to verify that the result is equivalent to (approximately) 3.333...

Because there are a limited number of bits available to represent the floating-point number, some loss of
precision occurs on conversion from external numbers to internal format. Further loss of precision results
from performing arithmetic operations. For example, if we now subtract 3.0 from this sum, the result can be
computed as follows:

3.333... 0j10 000 010110 101 010 101 010 101 010 101 011
3.000 0}10 000 010|110 000 000 000 000 000 000 000 000
0.333... 0}10 000 010]000 101 010 101 010 101 010 101 011 (difference)

This result differs from previous floating-point numbers in the following way. In all examples thus far,
bit 9 has been a one. Making bit 9 a one is a goal of the hardware. The result of this subtraction is said to be
unnormalized: a normalized result has a significant bit in position 9. The PDP-10 hardware would not be
satisfied to leave this result alone. It would post-normalize the result by shifting the fraction left and
decrementing the exponent. A left shift of the fraction doubles the fraction; decreasing the exponent by one
halves the value of the number. Thus, when these actions are coupled, there is no change to the value of the
number, but the number becomes normalized. Normalization is desirable for at least two reasons. First,
normalization eliminates non-significant bits at the left, making room for guard bits to be shifted in at the
right. Second, two floating-point numbers that are both normalized can be compared with the same CAM class
instructions that are used to compare integers; unnormalized numbers cannot be compared so readily.

When we shift this number three places and subtract three from the exponent the result is

0.333... 0j01 111 111]101 010 101 010 101 010 101 011 000

Note that subtracting 3 from the exponent field of 202 leaves us an exponent field containing 177. This
number corresponds to 0. 101010101010101010101011000*27%,

Pay special attention to the fact that as a result of these manipulations the low-order three bits of the
result are now zero. The low-order four bits taken together have the value 8; a more nearly correct result
would be 5. Arithmetic done on imprecise quantities produces even less precise results. Care must be taken
when considering the results from extensive floating-point calculations. The area of computer science called
numerical analysis concerns itself with questions of precision and effective algorithms for a variety of
mathematical problems. Further information about algorithms to implement floating-point arithmetic can be
found in [KNUTH 2}].

170 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

16.4.2.1. Special Cautions ;

A number in which bit 0 is one and bits 9:35 are zero can produce an incorrect result in any
floating-point operation. A word with a zero fraction and non-zero exponent can produce extreme loss of
precision if used as an operand in a floating-point addition or subtraction.

16.4.2.2. Floating-Point Exceptions
Under some circumstances, floating-point operations will produce incorrect results. If an attempt is
made to compute a number that is smaller in magnitude than 0. 5*2 128 then the FOV and FXU (Floating

OVerflow and Floating eXponent Underflow) flags will be set in the PC.

2127

If a number that is larger in magnitude than is computed, FOV will be set.

In cases where FOV is set, you may expect that the fraction portion of the result is arithmetically correct;
however, the exponent will be wrong by decimal 256. In case of overflow, the exponent will be too small by
256; for underflow, the exponent is too large by 256.

16.4.3. Floating-Point Instruction Set
Table 16-1 sets forth the PDP-10 floating-point arithmetic instruction set. The PDP-10 also includes
instructions to perform conversion between the fixed-point and floating-point formats.

Result to AC
R Rounded |I Immediate. Result to AC
[M Result to Memory
.~ |B Result to Both memory and AC

|
|AD ADd |

F Floating |SB SuBtract |
IMP MultiPly |
|

|

|DV Divide
no rounding | Result to AC
IM Result to Memory
|B Result to Both memory and AC
|AD ADd |
DF Doubie Floating |SB SuBtract | Memory Operand is C(E, E+1)
|MP MultiPly | Result to C(AC, AC+1)
|bv Divide |
FIX Convert Floating-Point to Fixed-Point | No Rounding

IR With Rounding
FLTR Convert Fixed-Point to Floating-Point with Rounding
FSC Floating SCale
Table 16-1: Floating-Point Instruction Set
Most of the floating-point arithmetic instructions are straightforward and need no detailed explanation.
However, the immediate mode instructions are somewhat unusual. Just as the TL instructions swap the
effective address into the left halfword of the mask, the floating point immediate instructions swap the
effective address into the left halfword to form the sign, exponent and high-order fraction bits of a floating

point operand. In an immediate mode floating-point instruction, the memory operand is <E, , 0>. Often you
may see an instruction written as:

FMPRI AC,(10.0)

This instruction makes use of an assembler trick. Since the X field of an instruction is in the right end of the
left halfword, the assembler processes the notation (B) by evaluating the expression B, swapping the halves

ARITHMETIC ' 171

of the result, and then adding the swapped result to the word that is being assembled. In the case of an index
register, a small number, perhaps 0, ,2, is swapped to make 2,,0; this is added to the word being
assembled, setting the X field to 2.

In this example, the 10. 0 is evaluated to octal 204500, ,0. When 10. 0 appears in parentheses where
MACRO is expecting an address field, MACRO swaps this number (getting 0, ,204500). The swapped
number is then added to the word being assembled. The result is a word containing FMPRI AC,204500.
When executed, this instruction has the effect of multiplying AC by floating-point 10.0. Another common
version of the same trick is to use a MOVSI to load an accumulator with a floating-point number, e.g.,

MOVSI AC,(1.0)

Naturally, one should be certain that the floating-point number in question has only zeros in the right
halfword.

The instructions that follow are used to convert between fixed and floating formats, and to scale
floating-point numbers.

16.4.3.1. FIX -- Convert Floating-Point to Fixed-Point

FIX will convert a floating-point number to an integer. If the exponent of the floating-point number in
C(E) is greater than (decimal) 35 (i.e., an exponent field larger than octal 243) then this instruction will set
the arithmetic overflow flag, AROV, and not affect the accumulator. Otherwise, the FIX instruction will
convert the floating-point number at the effective address to fixed-point by the following procedure: Move
C(E) to the accumulator, extending the sign bit, bit 0 of C(E), into bits 0: 8 of accumulator. Then perform
an arithmetic shift the accumulator by EXP-233 bits, where EXP is the exponent field from bits 1:8 of
C(E). FIX will always truncate towards zero, i.e., 1.9 is fixedto 1 and -1.9 is fixed to -1.

FIX C(AC) := fixed-point version of the floating number C(E)

16.4.3.2. FIXR -- Fix and Round

The FIXR instruction will convert a floating-point number to an integer by rounding. If the exponent
field of the floating-point number in C(E) is greater than octal 243 then this instruction will set AROV and
not affect the accumulator. Otherwise, C(E) is converted to fixed-point by the following procedure: move
C(E) to the accumulator, extending the sign bit into bits 1:8 of AC. Then arithmetic shift the accumulator
by EXP-233 bits (where EXP is the exponent from bits 1:8 of C(E). If EXP-233 is non-negative then no
rounding will take place.

When EXP-233 is negative, the word in the accumulator has been shifted right. The rounding process
will consider the most significant bit that was shifted off the right end of the accumulator. If the last bit
shifted off the right end of the accumulator was a one, then one will be added to bit 35 of the result.

Rounding is always in the positive direction: 1.4 becomes 1, 1.5 becomes 2, -1.5 becomes -1, and
-1.6 becomes -2. ‘

FIXR C(AC) := fixed, rounded version of the floating number C(E)

16.4.3.3. FLTR -- Float and Round

This instruction will convert an integer in C(E) to a floating-point number in AC. The data from C(E) is
copied to AC where it is shifted right 8 places, extending the sign and retaining the bits that were shifted off
the right end. The exponent 243 is inserted in bits 1: 8; if the number is negative, the exponent field is set to
the one’s complement of 243, 534.

172 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

The resulting number is normalized until bit 9 becomes significant; normalization may result in some or
all of the bits that were right-shifted being brought back into the result. Finally, if any of the bits that were
right-shifted still remain outside the accumulator then the result is rounded by looking at the bit to the right
of the accumulator.

FLTR C(AC) := floating, rounded version of the fixed number C(E)

16.4.3.4. FSC - Floating Scale

This instruction will add E (i.e., an immediate quantity) to the exponent of the number in AC and
normalize the result. This is useful for multiplying or dividing a single-precision floating-point number by a
power of two. Each unit added to the exponent doubles the number. FSC AC,2 would add two to the
exponent, multiplying the number in AC by four. Similarly, FSC AC, -3 would effectively divide by eight.
FSC will set AROV and FOV if the resulting exponent exceeds decimal 127. FXU (and AROV and FOV) will be
set if the exponent becomes smaller than -128.

In the KA10 and earlier processors, FSC is sometimes used to convert an integer to floating-point. The
FLTR instruction that is available in the KI10 and newer processors is more general, so FLTR is more
frequently used. To use FSC to float a small irteger, copy the integer to an accumulator. Perform the
instruction FSC AC, 233 (excess 200 and shift the binary point 27 bits). The integer being floated must not
have more than 27 significant bits.

FSC C(AC)[1:8] := C(AC)[1:8]+E; normalize result

-4

16.5. EXERCISES

16.5.1. Date and Time Conversion

At the beginning of this section we stated that in TOPS-30 the date and time is represented in one word
in which the left half represents integral days, and the right half word represents a fraction of a day.

Often it’s useful to know the difference between two times, as in the case where a program wants to know
how long a user has been logged-in. Write a subroutine that takes two times, STIME and ET IME (i.e., starting
time and ending time) and computes their difference in seconds.

That is, write the conversion from the day and fraction format to seconds.

Hint: the resulting subroutine should be quite short, perhaps as few as four to six instructions. Also,
beware of overflows! You may want to use DDT to verify that your subroutine works properly.

MACROS AND CONDITIONALS 173

Chapter 17
Macros and Conditionals

The assembler is a text processor. It reads text, makes some straightforward translations, and outputs
those translations. In the process of making translations it frequently looks up symbolic names to find their
translation. Thus far, the only kind of translation that we have discussed is from a symbol name to a number.
However, the assembler is capable of translating from a symbolic name to another text string; the new text
string is then processed as though it, rather than its symbolic name, had appeared in the original file.

17.1. MACROS

The idea of a macro is to give a name to a block of text. Then when we mention the name, the
corresponding text appears. To give a specific example, suppose we frequently need the following code
fragment:

MOVEI B,1
1DPB B,A
MOVEIL B,1
IDPB B,A
MOVEIL B,0
1DPB B,A

This code adds carriage return, line feed, and null to the end of a string that is addressed by a byte pointer in
A.

It would be tiresome to write these six lines repeatedly in various parts of the program.1 The assembler
provides a tool that enables us to avoid this drudgery. We define a macro by means of the pseudo-op
DEFINE. In this case we shall associate the name ACRLF, Add CR and LF, with this block of text:

DEFINE ACRLF <
MOVEI B,1
10PB B,A
MOVEL B,1
0P8 B,A
MOVEI 8,0
1DPB B,A
>;End of ACRLF

The word DEFINE is followed by the name of the macro that is being defined. The macro body, the

1In this example, calling a subroutine would probably be a better choice. However, we shall see that macros with arguments permit
extra flexibility not found in the usual subroutine call.

174 DECSYSTEM-10 ASSEMBLY LANGUAGE PROGRAMMING

actual text that we associate with this definition, is enclosed in pointed brackets following the macro name.
The comment that follows the closing pointed bracket is not necessary, but, like other comments, it is a good
idea.

After making this definition, when the name ACRLF appears in a context where it is recognized as an
identifier, MACRO will expand the name into the six lines corresponding to the macro definition.

You should understand that all processing of macros (and of conditional assembly functions that we shall -
discuss below) occurs inside the assembler. By the time your program runs, the macros themselves have been
completely forgotten; only their effects remain.

17.1.1. Arguments to Macros

In the previous example, the macro definition specified that the byte pointer to the string be set up in
location A (which might or might not be one of the accumulators). Also, the code generated by the expansion
of this macro will change register B. This lack of flexibility might cause problems when this macro is used. B
may be valuable, or the byte pointer may be somewhere other than in A. We can generalize the usefulness of
a macro by adding arguments.

The following definition of ACRLF allows the specification of the accumulator and byte pointer to use.
In the definition, after the n