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NOTES ON AVO]J)ING "GO TO" STATEMENTS 

D. E. Knuth and R. W. Floyd 

During the last decade there has been a growing sentiment that the 

use of "go to" statements is undesirable, or actually harmful. This 

attitude is apparently inspired by the idea that programs expressed 

solely in terms of conventional iterative constructions ("for", "while", 

etc.) are more readable and more easily proved correct. In this note 

we will make a few exploratory observations about the use and disuse of 

go to statements, based on two typical programming examples (from 

"symbol table searching ll and "backtracking"). 

In the first place let us consider systematic ways for eliminating 

go to statements. There are two apparent ways to achieve this: 

(a) Recursive procedure method. Suppose that each statement of a 

program is labeled. Replace each labeled statement 

L: S 

by 

procedure L; begin S; Lf end 

where Lf is the static successor of the statement S. A go to statement 

becomes simply a procedure call. The program ends by calling a null 

procedure. This construction shows that the mere elimination of go to 

statements does not automatically make a program better or easier to 
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follow; "go to" is in some sense a special case of the procedure calling 

mechanism. (It is instructive in fact to consider this construction in 

reverse, realizing that it is sometimes more efficient to replace 

procedure calls by go to statements~) 

(b) Regular expression method. For convenience, imagine a program 

expressed in flowchart form, as a directed graph. It is well known that 

all paths through this graph can be represented by "regular expressions!! 

involving the operations of concatenation, alternation, and "star"; these 

latter correspond to familiar constructions in programming languages 

which do not depend on go to statements. Therefore it appears that 

!go to! statements can be eliminated, although it may be necessary to 

duplicate the code for other statements in several places. This process 

is essentially what John Cocke calls "nOde splitting". 

Consider, for example the following well-known programming 

situation: 

for i := 1 step 1 until n do 

if A[i] x then go to found; 

not found: n . - i; A [i] . - x; B [ i] . - 0; 

found: B[i] .- B[i]+l; 

(Let us assume, for convenience, that i n+l if the for loop is 

exhausted.) It is not obvious that the go to statement here is all that 

unsightly, but let us suppose that we are reactionary enough that we 

really want to abolish them from programming languages. [See Dijkstra 

Comm. ACM 11 (1968L 147-148.] One way to avoid the go to is to use a 

recursive procedure: 
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procedure find; 

if i > n then begin n := i; A[i] := x; B[i] := 0 end 

else if A[ i] 1= x then begin i . - i+l; find end; 

i := 1; find; B[i] := B[i]+l; 

An optimizing compiler could perhaps produce the same code for both 

programs, but again it is debatable which program is most readable and 

simple. 

Other solutions change the structure of the program slightly: 

(a) i := 1; 

while i ~ n and A(i] 1= x do i := i+l; 

if i > n then begin n := i; A[i] := x; B[i] .- 0 end; 

B[i] := B[i]+l; 

(b) i:=l; 

while A[ i] 1= x do 

begin i := i+l; 

if i > n then begin n .- i; A[i] := x; B[i] .- 0 end 

end; 

B [ i] : = B [ i ]+ 1; 

Solution (b) assumes that n > O. Both solutions increase the amount of 

calculation that is specified: (a) tests "i > nil twice, while (b) 

tests "A[i] 1= x" af'ter n has been increased. 

The flowchart of the original program is: 
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START 

STOP 

i := 1 

02 == i .- i+l 

03 == n .- i; A[i] := x; B[i] .- 0 

04 == B[i] := B[i]+l 

By a suitable extension of BNF we can write a grammar for all 

flowcharts producible by a language without procedure calls or go to 

statements: 

<program> START 

~ 
<statement> 

1 
STOP 

J, 
<statement> 

J, l 1-
<basic statement> 

1 
<statement> 

~ 

! "'- J, 
<basic statement> <conditional statement> <iterative statement> 

L 1 J, 
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J, 
<conditional statement> 

~ 
cb 
7~ 

<statement> <statement> 

\/ 
~ 

<iterative statement> <stat~~ 
~ 

YES NO 

yo rs 
<statement> <statement> 

Here cr denotes a "statement" and 'r denotes a "test". 

We have not completely analyzed this grammar, although it appears to 

be unambiguous; there is probably an efficient parsing algorithm which 

will decide whether or not a given flowchart is derivable from the 

grammar, constructing a derivation when one exists. But we can easily 

prove that the above flowchart is E:.2! producible by this grammar. In fact, 

a stronger result is true: 

Theorem. No flowchart producible by the above grammar specifies 

precisely the computations of the above example flowchart (*). 

This theorem contradicts our observations above about regular 

expressions being reducible to concatenation, alternation, and iteration; 

5 



for our flowcharts provide each of these operations, yet they cannot 

reproduce the computations in (*). What went wrong? Perhaps it is 

that regular expressions are nondeterministic, while computations are 

inherently deterministic; but no, it is well known that regular expressions 

may be considered to be deterministic. The difference really lies in 

the nature of computational tests. 

Thus, let us consider a special class R of regular expressions; 

R describes all computational sequences (paths in the flowchart) 

producible by flowcharts corresponding to a language without go-to 

statements: 

the empty sequence is in R. 

aER, for all statements a. 

R1R2ER, for all Rl and R2ER. 

(~yR11~NR2)' for all Rl and R2ER and all tests ~. 

(~yRl)*~NER' (~~l)*~yER' for all R1ER and all tests ~. 

Here the subscripts Y and N denote the "YES" or "NO" branches in 

the flowchart. 

To prove the theorem, consider the computational sequences producible 

by the flowchart (*); they may be described by the regular expression 

We will show that the corresponding regular event (the sequences defined 

by this regular expression) cannot be defined by any of the regular 

expressions in R . 
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Every regular expression in R which specifies infinitely many 

sequences includes some test T with one of the following two properties: 

(i) Every occurrence of Ty is followed by at least one occurrence 

of TN 

or (ii) Every occurrence of TN is followed by at least one occurrence 

of Ty . 

The infinitely many sequences specified by (**) do not have any 

such test since the sequences include 

Hence no regular expression in R can produce the regular event (**), 

and the theorem is proved. I 
Perhaps the reader feels that the above proof is too "slick", or 

that something has been concealed. In fact, this is quite true; we 

have penalized the class of flowcharts too severely! Compound tests 

such as liT and T" have not been allowed sufficient latitude. Our 
1 2 

flowchart grammar should be extended as follows: Replace 

in the definitions of <conditional statement> and <iterative statement> 

by 

t 
<condition> 

YEt ":0 
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and add the new definition 

<c ond{ t ion> 
1 

<condition> 
1 

<condition> 

YEs! ~o iNO N?/ \YES 
<condition> 

YES! ~o 

The grammar now becomes ambiguous in several cases, although the ambiguity 

can be removed at the expense of some complications which are irrelevant 

here. More important is the change to grammar R, where we are allowed 

to substitute 

1" ' Y 
for 1"N 1" ' N for 1"y 

or 1"'-r" for -r 
NN N (1"' 11"'1"") N NY for 1"y 

whenever -r,1"',-r" are tests. Thus since * CY 1 (1" NCY 2 ) 1" yCY 4 ER, , so is 

* CY l ('1: lN1"2NCY 2) (1"lyl'1:lN'1:2Y)CY 4 ' 

and this is the same as (**) with deleted. The theorem above is 

almost false! But we can still prove it by an exhaustive case analysis, 

considering all possible substitutions of compound tests and showing 

that none are permissible because of the presence of CY 3 . 

The theorem becomes almost false in another sense too, when compound 

conditions are considered, since the expression 

* CY 1 (1" IN'1: 2NCY 2) (1" lY 1 1" lN1" 2Y) (1" lYCY 31'1: IN)CY 4 
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is in and it differs from (**) only in that ~lY becomes and 

becomes The sequences are essentially the same 

except that redundant tests are made. We could therefore consider 

equivalence operations on regular expressions, allowing commutativity 

of successive tests, and an idempotent law ~Y~Y = ~Y. In that case 

our theorem would become false; but we can easily find another flowchart 

for which the theorem still applies: Simply put another statement box cr 5 

between ~l and ~2. Then no two tests are adjacent, and our original 

"slick" proof immediately shows that the regular event defined by 

is not equivalent to any regular event definable with R. (When no 

two tests are adjacent compound conditions cannot appear, nor do any of 

the equivalences apply, so none of the extensions affect the original 

proof of the theorem.) 

Therefore our "slick" proof is vindicated, and ~ have proved the 

existence of programs whose go to statements cannot be eliminated 

without introducing procedure calls. 

Let us now consider a second example program, taken this time from 

a typical "backtracking" or exhaustive enumeration application. Most 

backtrack problems can be abstracted into the following form: 
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start: m[l] := 0; k := 0; 

up: k:= k+l; list(k); a[k] := m[k]; 

try: if a[k] < m[k+l] then begin move (a[k]); go to up end; 

down: k:= k-l; 

if k = 0 then go to done; 

unmove (a[k]); 

a[k] := a[k]+l; go to try; 

done: 

Here the procedures list, move, unmove may be regarded as manipulating 

a variable-width stack s[O],s[l], ••• of possible choices in this 

abstracted algorithm. Procedure list(k) determines all possible choices 

at the k-th level of backtracking, based on the previously made choices 

a[l], •.• ,a[k-l]. If there are c choices now possible, list(k) will 

set m[k+l] := m[k]+c , and it will also set the stack entries 

s[m[k]+l], ••• ,s[m[k]+c] to identify the choices. (Note that c can 

be zero. The choices might be, for example, where to place the k-th 

queen on a chessboard, given positions of k-l other queens, if we are 

trying to solve the queens' problem.) Procedure move(t) makes the 

decision to choose alternative s[t] this usually means that some 

internal tables need to be updated. Procedure unmove(t) reverses the 

decisions made by move(t) . 

It is not necessary to understand the exact mechanism of this 

construction, although people familiar with backtracking should find 

the previous paragraph self-explanatory; the main point is that essentially 

all backtracking programs have the form of the above program, when 

appropriate sequences of code are substituted for list(k), move(a[k]) , 

and unmove(a[k]) , hence the program is worth considering from the 

standpoint of go-to elimination. 
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First we can eliminate go-tots by introducing a procedure: 

procedure backtrack(k); value k; integer k; 

begin list(k); a[k] ::::: m[k]; 

while a[k] < m[k+l] do 

begin move(a[k]); backtrack(k+l); unmove(a[k]); 

a [k ] . - a [k]+ 1 

end 

end backtrack; 

mel] ::::: 0; backtrack(l); 

This use of recursion is rather clean, so the above program is attractive 

except for the procedure-calling overhead (which is important since 

backtrack programs typically involve many millions of iterations). 

It is an interesting exercise to prove this program e<luivalent to our 

first version. 

Now let's try to eliminate the go to statements without introducing 

a new procedure. The flowchart is: 

START 
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cr l = mel] ::::: 0; k := 0 

cr 2 = k ::::: k+l; list(k); a[k] ::::: m[k] 

'r 1 = a[k] < m[k+l'] 

cr 3 = move(a[k]) 

cr 4 = k : = k-l 

'r 2 =k=0 

cr 5 = unmove(a[k]); a[k] ::::: a[k]+l 



Here we have the basic flowchart structure 

instead of the previous situation when we had 

It turns out that node-splitting works in this case but not the other; 

we can make two copies of node cr 2 

obtain 

START 

STOP 

in the above flowchart and we 

This diagram obviously satisfies the conditions of our flowchart grammar 

above, so we can avoid the go to statements. 
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What is the resulting program? Our flowchart grammar above allows 

more general iterative statements than present-day programming languages 

will admit. A general iterative construction might be written 

but today's languages only consider the case that a l is empty: 

or if a2 is empty: 

We can always re1o.Tite (***) in the equivalent form 

but this is quite unattractive when al is long, so a programmer will 

certainly prefer to use go to statements in that case. If we want to 

teach programmers to avoid go to statements, we must provide them with 

a suffiCiently rich syntax of iterative statements to serve as a 

substitute. 

Using (***) leads to the following program for backtracking without 

go to statements: 

m[l] := 0; k := 1; 1ist(1); all] .- 0; 

begin loop 

while ark] < m[k+1] do 

begin move(a[k]); 

k .- k+l; 1ist(k); ark] := m[k] 

end; 

k := k-l; 

exit loop if k 0; 

unmove(a[k]); ark] := a[k]+l 

end loop; 
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This code, although free of "go to statements", involves an uncomfortable 

element which may not make it very palatable: the "while a[k] < m[k+l]1I 

is a rather peculiar condition since k varies and the test involves 

different variables each time. This is quite different in effect from 

the appearance of' the same clause in our recursive procedure backtrack(k) 

It is possible to think of the program in a fairly natural way nevertheless, 

for example (in tree language) as follows: 

start at root of search tree; 

begin loop 

while possible to go down and left in tree do so; 

move up one level in the tree; 

exit loop if at the root; 

move to the right in the tree; 

end loop; 

this is a typical tree traversal algorithm. Yet it is debatable whether 

or not the elimination of go to statements was an improvement. 

The syntax in (***) is perhaps not the best way to improve 

iteration statements. An alternative proposal, based on some unpublished 

ideas of Wirth, has just been implemented as an extension to stanford's 

ALGOL W compiler: The statement 

repeat <block> 

has the effect of 

and the statement 

exit 

has the effect of 
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where L2 is the second implicit label corresponding to the smallest 

repeat block statically enclosing the ~ statement. Thus, (***) 

becomes 

repeat begin 0"1; if' 1"1 then exit; 0"2 end; 

and we can even write our symbol table search routine without go to 

statements: 

i := 1; 

repeat begin 

while i < n do if' A[i] = x then exit else i := i+l; 

n . - i; A [ i ] : = x; B [i] : = 0 ; exit 

end; 

B[i] .- B[i]+l; 

Here the "repeat loop" is never repeated, but the desired ef'f'ect has 

been achieved. It appears doubtful that this repeat-exit mechanism 

will be able to eliminate go to statements in general, since it only 

allows a "one-level exit"; further study of' these issues is indicated. 
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