CS 110

ALGOL W (REVISED)

LANGUAGE DESCRIPTION
ERROR MESSAGES

NUMBER REPRESENTATION
DECK SET-UP

GRAMMAT ICAL DESCRIPTION

pp. lto 65
pp. 66 to 75
pp. 76 to 89
pp. 90 to 91

pp. 92 to 103

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

SEPTEMBER 1969

ALGOL W

LANGUAGE DESCRIPTION

by

Henry R. Bauer

Sheldon Becker

Susan L. Graham
Edwin Satterthwaite

"A Contribution to the Development
of ALGOL" by Niklaus Wirth and C+= A. R.
1) . ;

Hoare™’ was the basisvfor a compiler de-
veloped for the IBM 360 at Stanford Univer-
sity. This report is a description of the
implemented language, ALGOL W. Historical
background and the goals of the language

may be found in the Wirth and Hoare paper.

1) Wirth, Niklaus and Hoare, C. A. R., "A
Contribution to the Development of ALGOL",
Comm. ACM 9, 6(June 1966), pp. 413-431.

2

CONTENTS

TERMINOLOGY, NOTATION AND BASIC DEFINITIONS:::.oseces I

1.1. Notation Se et e bea e Seeeae Ceeres 6

1.2. Definitions Y

SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES...... Cerree b 9
2.1. Basic Symbols e, e N o |

2.2. Syntactic Entities....ceveeiisinenninnininionnnnns 10
IDENTIFTIERS - -« « e e v e nuonannunnnnnnennnneesseenoneneennnonnns 11
VALUES AND TUTES. ¢ e v e s enenenenesonenenesesseerarnenos ook
L.l, NUMDErS +vcosvveoneeaneonss neonscones e 15

L.2., Logical Values .ecoesereecnvusnnnnsscnses T)

4L.3. Bit Sequences et sen et 16

.k, SErings «veesoressitonontiiaoieatnaaarenaaasaaen 17

4.5, References «s...... e e e o e e e e euue e ety 18
DECLARATIONS. e et et e e e e 18
5.1, Simple Variagble Declarations ccceooveessesccoosen 18

5.2. Array Deélarations e e eeee s 20

5.3. Procedure Declarationsceeocecovvsnassns ees 21

5.4. Record Class Declarations «..oeceeoeeeveseness D)
EXPRESSIONS . ocvtiocecessonoscessasosscseovoansossosscass)
6.1. Variables «v-veeverevosonsnes e o7

6.2. Function DeSignatorsS «:eveeeceeeocnoenencncnsnsns o8

CONTENTS (cont.)

6.3. Arithmetic Expressioné .;.L:....................29

6.4, Logical EXPreSSions .iueeeiseioeeseeasvosseeesss33

6.5. Bit EXPreSSiONnS seeeeeseeiveseceseccscacaasaceesds

6.60 String E)(EreSSionS ooooo-covocoa‘oco-oo;ooooccoo.056 '

6.7. Reference Expressions . X

6.8. Precedence of OpEratorSeseeeeeececcessscss 38

STATEstCCDO.‘C.CGD..DO.‘.OC....'.l.'.'m..a’ll‘..'.l....Ov.0.39
T.1. Blocks........5................................59

T.2. Assignment Statements .c..ceeeeeceesccccnccocesesdiO

7.3. Procedure Statements .c.eeeeeeceeeecsas PR 4o

7.4, GOto SLAtEmMENTS veveeeveeeeonoreoneroeneonoanssslth

7.5.' Estatenlents ..oc.ut&mt‘o.'o.‘ooco‘cvgaolewttciollhll's

7.6« CaSe Statements '.-,aoooo'n.-.nooou.oovcr’vaulacoo.oo""6"

7.7 Tterative Statements ueeeeeeeees... N [

7.8. Standard ProCedUIeS .eeeceeeeeesssavcencneesessstO

7.8.1. The Input/Output System50
7.8.2. Read Statementscccveveenl52
7.8.3. Write Statementscceee..53

7.8.4, Control Statements5h

STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS0..4055

8.1. Standard Transfer FUNCLiOoNS ..eeeeeeeeecsosssssdD

8.2. Standard FunctionsAQ§ Analysis veeeoo.. ..;.....éﬂ

l.

8.3, Time FUnCtion ...veeecsvescesccocscsscsnsscsses59

8.4. Predeclared VariableS c..ceeececsccecccosccsossed9d

8.5. Exceptional Conditions ..eeeeeecccccsccssecsess60

APPENDIX

CI'IARACTER mCODING quoootooooooooo.0000000-0-0000000065

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure language, defined by
a formal metdlanguage. This metalanguage makes use of. the notation and
definitions explained below. The structure of the language ALGOL W
is determined by:

(1) Vv, the set of basic constituents of the language,
(2) U, the set of syntactic entities,'and
(3) P, the set of syntactic rules, or productions.

1.1. Notation
A syntaétic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form
<A = x

where <A> is a member of U, x is any possible séquence of basic con-
stituents and syntactic entities, simply to be called a "sequence".

The form
<A ii=x I y [e I 4

is used as an abbreviation for the set of syntactic rules

<A> :1:=X
<A =Yy
<A 1= 2

1.2, Definitions

1. A sequenée x is said to difectly produce & sequehce y 1: and

6 .

only if there exist (possibly empty) sequences u and w, 80 that
either (i) for some <A> in U, x = whW, ¥ = uvw; and <> 1im
v is a rule inP; or (ii) x = uw, ¥y = uvw and v is a "cdmment" A

(see below).

2. » A sequehce x is séid to produce a sequence y 1f'and only if
there exists an ordered setiéf sequences s[0], s[1], ... ,'s[n],
so that x = 8[0], s[n] =y, and g[i-l] directly produces s[ijvfor

alli=1, ..., n.

3. A sequence x is said to be an ALGOL W program if and ohly if
its constituents are members of the'éet V, and x can be produced

from the syntactic entity <program>.

The sets.V‘and U are defined through enumération of their'msmbgrs'
in Section 2 of this Reporﬁ (ef. also b.k.). The syntactic rules are
given throughout the sequel of the Report. To provide explanations
for the meéning of ALGOL W programs, the letter sequences denoting
syntactic entities have been choseﬁ to be English wofds describing
approximafely the nature of that syntactic entity ar construct. Where
words which have appeared in this menner are used elsewhere in the
text, they refer ﬁo the corresponding syntactic defiﬁition. Aiongv
with these letter séquehces the symbol T may occur. Itkis,undefébood
that this symbol must be replaced by any one qf a finité set of English
words (or word bairs). UnlessAotherwiée specified in the pgxticuigr
- section, all occurrences of the*symbOlvT witnin»ohe syntactiﬁ rulé

must be replaced consistently,tand'the“replhcing words are

7

integer logical

real bit
long real string
complex reference

long complex

For example, the production
<T term> ::= <T factor> (cf. 6.3.1.)
corresponds to

<integer term> :
<real term>

<integer factor>>

i

.
(X3
it

<real factor>

<long real term> MM

h
Y

<long real factor>

<complex term> <compliex factor>

I

<long complex term> :: <long complex factor>

The production

<T . primary> ::= long <J. primary> (ef. 6.3.1, and
0 , 1
table for long
corresponds to ‘ 6.3.2.7.)
<long real primary> ¢:= long <real primary>
<long real primary:- ;= long <integer primary>
<long complex primary> sv= long <complex primary>

It is recognized that typographical entities exist of lower order
than basic symbols, called characters. The accepted characters are
| those of the IBM System 3€0Q EBCDIC code.

The symbol comment foilowed by any sequence of characters not
contéining semicolons, followed by a semicolon, is calléd a comment.
A comment has no effect on the meaning of a program, and is ignored

during execution of the program. An identifier (cf. 3.1.) immediately

8

following the basic symbol end is also regarded as a comment.

The egecution of a program can be considered as a sequence of
units of action. The sequence of these units of action is defined as
the evaluation of expressions and the execution of statements as de-
noted by the program. In the definition cf the implemented language
the evaluation or execution of éertain constructs is either (1) de-
fined by System 360 operations, e.g., real arithmetic,‘or.(ﬁ) left
undefined, e.g., the order of evaluapion of arithmetic primaries in

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

-

|l x|s|M|N]|o]|P|
| z |

A|lB|lc|Dp|E|F|G]|H]
e|rRlslrlulviwlx]|
ol1lalzlusls|éelr]8]9]

true | false | " | null | #_I C

integer | realv| complex | logical | bits l string |»

<

reference | long real | long complex | array |

procedure | record l

sl s -1 (1) | vegin | end | if | then | else |

case | of | +| - || /| * | div | rem | shr | shl | is |
abs | long | short | and | or |-l | =]-=]c«< |

<=z |>|>=1::| |

v | goto | go to I for I steé I until | do | while |

comment | value I result

All underlined words, which we call "reserved words", are repre-
sented by the same words in capital letters in an actual program, with

nc intervening blanks.

Adjacent reserved words, identifiers (cf. 3.1.) and numbers must include

- no blanks and must be separated by at least one blank space. Otherwise

blanks have no meaning and can be used freely to improve the read-

ability of the program.

2.2, Syntactic Entities

(with corresponding section numbers)

<actual parameter list>
<actual parameter>

<bit factor>

<bit primary>

<bit secondary>

<bit sequence>

<bit term>

<block body>

<block head>

<block>

<bound pair list>
<bound pair>

<case clause>

<case statement>
<control identifier>
<declaration>

<digit>

<dimension specification>
<empty> séegbage 3L
<equality operétor>
<expression list>
<field list>

<for clause>

<for list>

<formal array parameter>
<formal parameter list>

<formal parameter segment>

7.3

4.3

5.3

6.4
6.7
5.k
1T
7T
5.3
5.3
5.3

4

10

<formal type>

'<go to statement>

<hex digit>
<identifier list>
<identifier>

<if clause>

<if statement>
<imaginary number>
<increment>
<initial value>
<iterative statement>
<label definition>
<label identifier>
<letter>

<limit>

<logical element>
<logical factor>
<logical primary>
<logical term>
<logical value>
<lower bound>
<null reference>

<procedure declaration>

<procedure heading>
<procedure identifier>
<procedure statement>

<program>

5.3
7.k
4.3
3.1

3.1 |

7.5
L.1
T
T

7.1
3.1
3.1
7.7
6.4
6.k
6.4
6.4
4.2
5.2
4.5
5.3
5.3
3.1
7.3

e e v 33| G W 61
 dsclaration 53 | 5 Srey Sectmarons. €
<record class declaratior> 5.4 <T array ideﬁtifieﬁ> 3.1 ‘
<record class idenfifieﬁ> 3.1 <T assignment statement> 7.2
<recoigs§iass identifier 5.1 <T expreséion 1ist> A | 6
<record designator> 6.7 <J expressior> 6
<relatior> : 6.4 | <T factor> ' 6.3
.<relational operator> 6.4 <T field dgsignatqﬁ> ‘ 6.1 ‘
<scale factor> ua <7T field ideqtifieﬁ> : 3.1
<sigm> : b1 <T function designatoﬁ>- 6.2
<simple bit expression> 6.5 <7 function identifier> 3.1

<simple logical expressior> 6.4 | <7 function procedure body> 5.3

<simple reference <T function procedure

expression> 6.7 - declaratior> 5.3
<simple statement> 7 <J left part> 7.2
<simple‘string expressior> 6.6 < number> b1
<simple J. expressiorn> 6.3 <¥ primary> : 6.3
<simple T variable> 6.1 g f‘c‘;::;ray designator> 225
<simple type> 5.1 | <J variable> 6.1
<simple variable '<T variable identifier> S 3.1

declaration> 5.1 | <unscaled real> .1
<statement list> - 7.6 | <upper bound> “ 5.2
<statement> 7 <while clause> 7.7
<string primary> 6.6
<string> L.y

 <subarray designator list> 7.3
<subscript> 6.1

3. IDENTIEIERS

3.1. Syntax

<identifier> ::= <letter> | <identifier> <letter> | <identifier> <digit>
‘<Y variable identifier> ::= <identifier>

11

<J array identifier> ::= <identifier>

<procedure identifier> ::= <identifier>

<7 function identifier> ::= <identifier>

<record class identifier> ::= <identifier>

<J field identifier> ::= <identifier>

<label identifier> ::= <identifier>

<control identifier> ::= <identifier>

<letter> ::= A|B|cCc|D|E|F|c|H|I]|ag]K|L]|NM]|
N|lolr[Q|rR|s|T|ulv]w]lx]|y]z

<digit> ::= O | 1|2 3|4 |s5]|6|7|8]09

<identifief list> ::= <identifier> l <identifier list> , <identifier>

3.2. Semantics
Variables, arrays, procedures, record classés.and record fields
are said to be guantities. Identifiers serve to identify quantities,"
or they stand as labels,‘formal parameﬁers or control identifiers.
Identifiers have no inherent meaning, and can be chosen freely in the
reference language. In an actual program a reserved word.canﬁot be
used as an identifier.
Every identifier used in a program must be defined. This is
achievéd through »
(a) a declaration (cf. Section 5), if the identifier identifies a
quantity. It is then said to denote that quantity and to be a
T variable identifier, ¥ array identifier, T procedure identifier,
T function identifier, record class identifier or J field iden-
tifier, where the symbol J stands for thebappropriate word re-
flecting the type of the declared quantity;

(b) a label definition (cf. 7.1.), if the identifier stands as a

12

label. It 1s then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 5.3.). It is then
said to be a formal parameter;

(d) 1its occurrence following the symbol for in a for clause (cf. 7.7.).
It is then said to be a control identifier;

(e) its implicit declaration in the language. Standard procedures,
standard functions, and predefined variables (cf. 7.8 and 8) may be

considered to be declared in’a block containing the program.

The recognition of the definition of a given identifier is

determined by the following rules:

. Step 1. If the identifier is defined by a declaration of a
_quantity or by its standing as a label within the smallest block
(cf. 7.1.) embracing a given occurrence.of that identifier, then
it denotes that quantity or label. A statement following a-
procedure heading (cf. 5.3.) or a for clause (cf. 7.7.) is considered

to be a block.

Step 2. Otherwise, if that block is a procedure body and if the
given identifier is identical with a formal parameter in the asso-

ciated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for clause
and the identifier is identical to the control identifier of

-that for clause, then it stands as that‘control identifier.

Otherwise, these rules are aﬁplied considering the smallest

block embracing the‘block which has previously been considered.

13

If either step 1 or step 2 could lead to more than one definition,
then the identification is undefined.

The scdpe of a quantity, a label, a formal parameter, or a con-
trol identifier is the set of statements in which occurrences of an
iQentifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.3. Examgles
I
PERSON
ELDERS IBLING
X15, X20, X25

k. VALUES AND TYPES

Constants and variables (cf. 6.1.) are said to possess a value.
The value of & constant is determined by the denotation of the con-
stant. In the language, all constants (except references) have a
reference denotation {(cf. 4.1.-4.4.). The value of a variable is the
one most recentiy assigned to that variable. A value is (recursively)
defined as either a simple value or a structured value (an ordered set
of one or more values). Every value is said to be of a certain type.
‘The foilowing types of simple values are distinguished:

integer: the value is a 32 bit integer,
real: the value is a 32 bit floating point number,
long real: the value is a 64 bit floating point number,

complex: the value is a complex number composed of two
numbers of type real,

1L

long complex: the value is a complex number composed of two
long real numbers,

logical: the value is a logical value,
bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256 char-
" acters, o .

reference: the value is a reference to a record.
The following types of structured values are distinguished:-

array: the value is an ordered set of values, all of identi-
cal simple type, ‘

record: the value is an:ordered set of simpie values.

A procedure may yield a value, in which case it is said to be a
function procedure, or it may ndtﬁyieid & value, in which case it is
called a proper procedure. The value of a function proéedure is de~
fined as the value which results from the execution of the procedure
body (cf. 6.2.2.). |

Subsequently, thé reference denotation of constants is defined.
The :eference denotation of any constant cénsists of a sequence of
characteré. This; howevef, does not imply that the Qalue of the de-
noted constant is a sequence of charac@eré, nor that'it.has the pro-
perties of a sequence of characters, except, of course, in the case

of strings.

4.1. Numbers

4.1.I. Syntax

1]

<long complex number> ::= <complex number>L
<complex number> ::= <imaginary number>

<imaginary number> ::= <real number>I | <integer number>I

15

<long real number> ::= <real number>L | <integer number>L

<real number> ::= <unscaled real> | <unscaled real> <scale factor> |

<integer number> <scale factor> l <scale factor>

<unscaled real> ::= <integer number> . <integer number> |

»<integer number> I <integer number>

<scale factor> ::= '<integer number> | '<gign> <integer number>

<integer number> ::= <digit> | <integer number> <digit>
<sign> ::= +] -

h.1.2.

Semantics

Numbers are interpreted according to the conventional decimal

notation.

A scale factor denotes an integral power of 10 which is

.multiplied by the unscaled real or integer number preceding it. Each

number has a uniquely defined type. (Note that all <J number>s are

unsigned.)
4.1.3. Examples
1 <5
0100 1'3
3.1416

6.02486" +23

1I
0.671
1IL

2.718281828459045235360287L 2.3'-6

L.2.

L. 3.

Logical Values

4.2.1. Syntax
<logical valu

Bit Sequences

4.3.1. Syntax

::= true | false

<bit sequence> ;:= # <hex digit> | <bit sequence> <hex digit>

<hex digit> ::=

0|1
c|p

le|3|4]5]6l7]8|9lals]
|E|F

16

Note that 2 | ... | F correl§onds to 2, | oo] 154

4.3,2. Semantics |

The number of bits in.a biﬁ'seqnénce ig 32 or 8 hex digita.. The
bit sequence is always represented by‘a 32 bit word with the specified
bit sequence right justified in the word and zeros filled in en the

left.

%.3.3. Examples

#4F = 0000 0000 0000 0000 0000 0000 0100 111l
#9 = 0000 0000 Q000 0000 0000 0000 0000 1001
L.4. Strings

L.4.1. Syntax

<string> ::=. "<seguence of characters>"

4.4.,2, Semantics

Strings consist of aﬁy sequence of (at most 256) chqracters ac~
cepﬁed by the System 360 enclosed by ", the gtring quote. - If the'
string qﬁote appears in the sequence of characters it must be imme-
diately'followed by a second string quqte whiéh“is then ignored. The
number of characters in a string is said to be the length of the

string.
4.4.3. Examples

" JOImH
"N is the string of length 1 censisting of the string

quote.

17

4.5, References
4.5.1. Syntax
<null reference> ::= null

4L.5.2. Semantics
The reference value null fails to designate a record; if a refer-
ence expression occurring in a field designator (cf. 6.1.) has this

hvalue, then the field designator is undefined.

5. DECLARATIONS
| Declarations serve to associate identifiers with the quantities
used in the program, to attribute certain permanent properties tov
thesé quantities (e.g. type, structure), and to deﬁermine their scope.
The quantities declared by declarations are simple variables, arrays,
procedures and record classes.

Upon exit from a block, all quantities declared or defined within

that block lose their value and significance (cf. 7.1.2. and 7.4.2.).

,Syntax:

<declaration> ::= <simple variable declaration> | <7 array
declaration> | <procedure declaratior> |

<record class declaration>

5.1. Simple Variable Declarations

5.1.1, Syntax

- <simple variable declaratior> ::= <simple type> <identifier list>
<simple type> ::= integer | real | long real | complex | long
 complex | logicel | bits | bits (32) |

18

strihg | string (<integer number>) | reference
(<record class identifier list>)

<record class identifier list> ::= <record class identifer> |
<record class identifier list> ,
<record class identifier>

5.1.2. Semantics

Each identifier of the identifier list is associated with a
variable which is declared to be of the indicated type. A variable is
called a simple variable, if its value is simple (cf; Section 4). If
a variable is declared to be of a certain type, then tﬂis impliés that
only values which are assignment compatible with this'type.(cf. 7.2.2.)
can be aSsigned to it. It is understood that the value of a variable
is equal to the value of the expression most recently assigned to it.

A variable,of'type‘gizg is always of length 32 whether' or not
the declaration specification-is included.

A variable of type string has a length equal to the unsigned
integer in the declaration sPecification. If the simple type is
given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to records of the
record classes thse identifiers appear in the record class ideﬁti—

fier list of the reference declaration specification.

5.1.3. ‘Examples
integer I, J, K, M, N
real X,'Y, z

long complex C

logical L
bits G, H

19

string (10) S, T
reference (PERSON) JACK; JILL

5.2. .Array Declarations

5 .2 dl.) Synta.x

<7 éfray,declaration> t3= <simple type> array <identifier 1list>
(<bound pair list>) ;
<bound pair 1ist> ::= <bound pair> |<bound peir 1ist>,<bound

pair>
<bound pair> ::= <lower bound> :: <upper bound>
<lower bound> ::= <integer expressior>

<upper bound> ::= <integer expressior>

5.2.2. Semantics
Each identifier of the identifier iist of an array declaration is
associated with d variable which is declared to be of type array. A

variable of type array is an ordered set of variables.whose'type‘is'the

the nnmberﬂof;entfies in the bound pair list.

| Every element of an array is identified by a list ofkindices.
?he indices are the integérs between and including the values of the
lower bound and the upper bound. Every expressién in the bound pair
list is evaluated exactly once upon entry to the block in which the
declaration occurs. The bound.pair cxpressions can depend only on
variables and procedures global to the block in which the declaration
ocecurs. In,order to be va;id, for eﬁery bound palr, the value‘of the

upper bound must not be less than the value of the lower bound.’

5' 2030 Exa.mples

intgggg array H(1::100)
| 20

5

T

u,«lo

real array A, B{1::M, 1::N
string (12) arrsy STREET, TOWN, CITY (J::K + 1)

Procedure Declarations

5.3.1., Syntax

<procedure declaratior> ::= <proper procedure declaratior> |
<7 function procedure declaration>
<proper procedure declaratior> ::= procedure <procedure heading>;
| ; <proper procedure body>
<J function procedure declaration> ::= <simple type> procedure
| ' <procedure heading>;
<T function procedure body>
<proper procedure body> ::= <statement>
<T functioh procedure body> 3= <J expressiorn> l <block body>
<T expressior> end
<procedure heading> ::= <identifier> | <identifie:> C<formal
| parameter list>)
<formal parameter list> ::= <formal parameter segment> |
<formal parameter list> ; <formal
parameter segment> '
<formal parameter segment> ::= <formal type> <identifier list> |
<formal array parameter>
<formal type> ::= <simple type> | <simple type> value [<simple
type> result] <simple type> value result

<simple type> procedure | procedure

<formal array parameter> ::= <simple type> array <identifier
list> i<dimension specificatiorn>)

<dimension specificatiorn> ::= * |<dimension specification> , *

5.%.2. Semantics

A procedure declaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal

21

part of the procedure declaration is the procedure body. Other parts
of the block in whose heading the procedure is declared can then cause '
kthis procedure body to be executed or evaluated. A proper procedure
is activated by a procedure.statement (cf. 7.3.), & funétion procedure
by a function designator (cf. 6.2.). Associated with the procedure
body is a heading containing the procedure identifier and possibly a

list of formal parameters.

5.3.2.1. Type specification of formal parameters. All formal para-
meters of a formal parameter segment are of the same indicated type.
The'type must be such that the replacement of the formal parameter by
the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3,2.2. The effect of the symbols value and result appearing in a

formal type is explained by the following rule, which is applied to
the procedure body before the procedure is invoked:

(1) The procedure body is enclosed by the symbols begin and end

if it is not already enclosed by these symbols;
(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

(a) & declaration followed by a semicolon is inserted after
the first begin of the procedure body, with a simple
type as indicated in the formal type, and Wifh.an iden-
tifier different from any identifier valid at the place
of the declaration. |

(b) throughout the proceduﬁe body, every occurrence of the

ez

formal parameter identifier is replaced by the iﬁentifier
defined in step 2a;

(3) If the formal type contains the symbol value, an assignment
statement (cf. 7.2.) followed by a semicolon is inserted
after the declarations of the procedure body. Its left part
contains the identifier defined in step 2a, and its expression
consists of the formal parameter identifier. The symbol
value is then deleted;

(4) If the formal type contains the symbol result, an assignment
statement preceded by a semicolon is inserted before the symbol
end which terminates a proper procedure body. In the case
of a function procedure, an assignment statement preceded
5y a semicolon is inserted after the final expression
of the function procedure body. Its left part contains the
formal pafameter identifier, and its expression consists of
the identifier defined in step 2a. The symbol result is

then deleted.

5.3.2.3. Specification of array dimensions. The number of "*"'g
appearing in the formal array specification is the dimension of the

array parameter.

5.3.3. Examples .
procedure INCREMENT; X := X+1

real procedure MAX (real value X, Y);

32 X<Y then Y else X

23

“~

procedure COPY (real array U, V (*,%); integer value A, B);

for I :=1 until A do
for J :=1 until B do U(I,J) := V(I,J)

real procedure HORNER (real array A (*); integer value N;
real value X); |
begin real S; S := 0;
for I:=0 until N do S :=8 *X + A(I);
S

end

long real procedure SUM (integer K, N; long real X);

begin long real Y; Y := 0; K := N;
while K> =1 do

begin Y :=Y +X; K:=K-1
end;
Y

end

reference (PERSON) Erocedure~YOUNGESTUNCLE (reference (PERSON) R);
begin reference (PERSON) P, M;
P := YOUNGESTOFFSPRING (FATHER (FATHER (R)));
while (P - = pull) and (-~ MALE (P)) or
(P = FATHER (R)) do
P := ELDERSIBLING (P);
M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));
while (M- =null) and (- MAIE (M) do
M := ELDERSIBLING (M);
if P = null _tpg_r_l_ M else
if M= null then P else
AGE(P) < AGE(M) then ,P else M

1L

H

i

end

2k

5.4, Record Class Declarations

5.4,1. Syntax
<record class declaration> ::= record <identifier> (<field list>)
<field list> ::= <simple variable declaration> | <field list> ;

<simple variable declaration>

5;4.2; -Semantics

A record class declaration serves to define the structural pro-
perties of records belonging ﬁo the class. The principal‘constituent
of a record class declaration is a sequence of simple variable declar-
ations which define the fields and their simple types for the records
of this class and associate identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) LEFT, RIGHT)

record PERSON (string NAME; integer AGE; logical MAILE;
referénce (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRING,

ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed
from existing ones., These néw values are obtained by performing the
operation% indicated by'the operators on the values of the operands.
The operands are either.constants, variables or function designators,
or other expressions, enclosed by parentheses if necessary. The evalu-

ation of operands other than constants may involve smaller units of

25

action such as the.evaluation of other expressions or the execution
vof statements. The Qalue of an expression between parentheses is
obtained by evaluating that expression. If an operator has two operandé,
then these operands may be evaluated in any order with the exception
of the logical operators discussed in 6.4.2.2. Several simple types
of expressions are distinguished. Their structure is defined by the
following rules, in which the symbol T has to be replaced consistently
as described in Section 1, and where the triplets IO’ Il’ 72 have to
be either all three replaced by the same one of the words

logical

bit

string

reference
or by any combination of words as indicated by the following table,

which yields T, given Ii and ,Ié:

0
12. ‘

1 integer real complex
integer integer real complex
real real . real complex
complex § = complex complex complex

T has the quality "long" if either both Tl and 7 , have that quality,

or if one has the quality and the other is "integer".
Syntax:

<J expression> ::= <simple J expression>] <case clause>
(T expression list>)
<To expression> ::= <if eclaguse> <Il expression> else

<72'expression>

26

<Y expression list> ::= <T expression>

<TO expression list> ::= <Tl expression list> , <12 expression>

<if clause> ::= if <logical expression> then

<case clause> ::= case <integer expression> of
The construction

<if clause> <Tl expression> else <32 expression>

causes the selection and evaluation of an expression on the basis of
the current value of the logical expression contained in the if clause.
If this value is true, the expression following the if clause is
selected; if the value is false, the expreséion following else is se-
lected. If Tl and 12‘ are simple type string, both string expgessions
must have the same length. The construction

<case clause> (J expression'list>)
causes the selection of the expression whose ordinal number in the
expression list is equal to the current value of the integer expression
contained in the case clause. In order that the case expression be
defined, the current value of this- expression must-be the ordinal number
of some expression in the expression list., IfTis simple type string,

all the string expressions must have the same length.

6.1. Variables
6.1.1. Syntax

<simple J variable> ::= <J variable identifier> | < field designator> |
<J array designator>

<J variable> ::= <simple T variable>

<string variable> ::= <substring designator>

<J field designator> ::= < Tfield identifier> (<reference expression>)

<I array designator> ::= < Tarray identifier> (<subscript list>)

<subscript list> ::= <subscript> | <subscript list>, <subscript>

<subscript> ::= <integer expression>

27

6.1.2. Semantics

An array designator denotes the variable whose indices are the
current values of the expressibns in the subscript list. The value of
each subscript must lie within the declared bounds for that subscript
position.

A field designator designates a field in the record referred to
by its reference expression. The simple type of the field designator
is defined by the declaration of that field identifier in the record
class designated by\the'reference expression of the field designator

(ef. 5.4.).

6.1.3. Examples

X A(1) M(I+J, I-J)
FATHER (JACK) MOTHER (FATHER (JILL))

6.2. Function Designators

6.2.1. Syntax

<T function designator> ::= <J function identifier> | <T function
identifier> (<actual parameter list>)

6.2.2. Semantics

A function designator defines a value which can be obtained by a

process performed in the following steps:
Step 1. A copy is made of the body of the function procedure
whose procedure identifier is given by thevfunction designator

-,

and of the actual parameters of the latter.

Steps 2, 3, 4, As specified in 7.3.2.

28

Step 5. The copy of the functioﬂ procedure body, modified as indicated
in steps 2-U4, is executed. Execution of the expression which constitutes
-or is part of the modified procedure body consists of evaluation of that
expression, and the resulting value is the value of the function desig-
nator. The simple type of the function déesignator is the simple type

in the corresponding function procedure declaration.

6.2.3. Examples

MAX (X *% 2, Y *x 2)

SuM (I, 100, H(I))

SutM (I, M, SUM (J, N, A(I,J)))
YOUNGESTUNCIE (JILL)

SuM (I, 10, X(I) * ¥(1))
HORNER (X, 10, 2.7)

6.3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol T
must be systematically replaced by one of the following words (or
word pairs):

integer
real

long real

complex
long complex

The rules governing the replacement of the symbols TO’ Tl and 3'2 are
given in 6.3.2.

<simple J expression> ::= <Tterm> | + <T term> | - <T term>

29

<simple II'O expression> ii= <simple Tl expression> + <I’2 term>
<simple :rl expression> - <rz term>
<J term> ::= <J factor>
T <T, term> ::= <J. term> ¥ <12 factor>
T, term> ::= <. term> / <J, factor>
<integer term> ::

=

<integer term> div <integer factor>
<integer term> rem <integer factor>
<TO factor> 1::= <TO primary> | <Tl factor> ¥* <integer primary>
<IO primary> ::i= abs <Tl primary>
<TO primary> ::= long <Tl primary>
<To primary> ::= short <Tl primary>
<J primary> ::= <J variable> | <T function designator>
(T expression>) | < number>

<integer primary> ::= <control identifier>

6.3.2. Semantics

An arithmetic expression is a rule for éomputing a number.

According to its simple type it is called an integer expression,
real expression, long real expression, compleXx expression, or long

complex expression.

6.3.2.1. The operators +, -, ¥, and / have the conventional meanings
of addition, subtractidn, multiplication and division. In the relevant
syntactic rules of 6.3.1. the symbols TO’ Tl and 12 have to be replaced
by any combination of words according to the following table which

indicates TO for any combination of Tl and 12.

Operators + | -

integer complex

integer integer real complex
real real real complex
complex complex ' complex complex

30

IO has the quality "long" if both Tl and 72 have- the quality

"long", or if one has the quality "long" and the other is "integer".

Operator *

Tl Te integer real complex

integer | integer long real long complex
real long real long real long complex
complex | long complex long complex long complex

Tl or Té having the quality "long" does not affect the type of

the result.
Operator /
T .
Tl 21 . integer real complex
integer long real real complex
real , real resal complex
complex complex complex complex

TO has the qﬁality "long" if both Tl and T2 have the quality
"long", or if one has the quality "long" and the other is "integer",
or if both are "integer".

6.%.2.2. The operator "-" standing as the first symbol of a simple
expression denotes the monadic operation~of sign inversion. The type
of the result is the type of the operand. The operator ;+" standing
as the first symbol of a simple expression denotes the monadic opera-~
tion of identity.

6.3.2.3, Thé operator div is mathematically defined (for B £ 0) as

A div B = SGN (A x B} x D (abs A, abs B) (cf. 6.3.2.6.)

31

where the function procedures SGN and D are declared as |

integer procedure SGN (integer value A);
if A< O then -1 else 1;

integer procedure D (integer value A, B);
if A < B then O else D(A-B, B) + 1

6.3.2.4. The operator rem (remainder) is mathematically defined as
AremB=A- (AdivB) x B

6.3.2.5. The operator ** denotes exponentiation of the first»operand
to the power of the second operand. In the relevant syntactic rule of
6.5,1. the symbols ?O and Tl are to be repleced by any of the follow-

ing combinations of words:

: TO Tl
long real integer
real real
complex complex
T, has the quality "long" if T, does or if T, is "integer".

6.3.2.6. The monadic operator abs yields the absolute value or modulus
of the operand. In the relevant syntactic rule of 6.3.1l. the symbols IO

and Tl have to be replaced by any of the following combinations of words:

TO , Tl
integer ‘integer
real real
real complex

If Tl has the quality "long", then so does TO.A
_ -

6.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation is of simple type real, complex, long real, or long complex

ﬁhen it is the mathematically under;tood result of the operation per-
formed on operands which may deviate from actual operands.

.In the relevant syntactic rules of 6.3.1. the symbols TO and Tl'
must be replaced by aﬁy of the following combinations of words (or

word pairs):

Operator long

To | T
long real " real
long real integer
long complex complex

Operator short

TO [_ Tl

real I long real

complex long complex

6.3.3. Examples

C + A(I) * B(I)
EXP (-X/(2 * SIGMA)) / SQT (2 * SIGMA)

6.4. Logical Expressions

6:4.1. Syntax
In the following rules for <relation> the symbols TO and Tl‘must

either be identically replaced by any one of the following words:

33

bit
string

reference
or by any of the words from:

complex

long complex
real

long real

integer

and the symbols Tg or T, must be identically replaced by string or

3

must be replaced by any of real, long real. integer.

<simple logical expression> ::= <logical element>] <relatiomn>
<logical element> ::= <logical term> [<logical elément> or
| <logical tern>
<logical term> ::= <logical factor>] <logical term> and
<logical factor> |
<logical factor> ::= <logical primary> | — <logical primary>

<logical primary> ::= <logical value> | <logical variable> l
<logical function designator> I
, (<logical expression>)
<relatior> ::= <simple IO expressiorn> <equallty operator>

<simple Tl expressiorn> | <logical element>
<equality operator> <logical element>]

<simple reference expressiqn>-i§
<record class identifier> |
<simple T, expression> <relational operator>
; <simple 3'3 expression>
<relational operator> ::=< |<=[>=|>
<equality operatoﬁ>' 1= = l-ﬂ =
6.4.2, Semantics’

A logical expreésion is a rule for computing a logical valug.

3k

6.4.2.1. The relational operators represent algebraic ordering for
arithmetic arguments and EBCDIC ordering for string arguments. If two
strings of unequal length are compared, the shorter string is extended

to the right by characters less than any possible string character.

The relafional operators yield the logical value true if the relation

| is satisfied for the values of the two operands; false otherwise. Two
references are equal if and only if they are both null or both refer

to the same record. Two strings are equal if and only if they havé

the same length and the same ordered sequence of characters. The operator
is yields the logical value true if the reference expression designates a
record of the indicated record class; fﬁlﬁi otherwise. The reference.

value null fails to designate a record of any record class.

6.4.2.2. The operators — (not), and, and or, operating on logical

values, are defined by the following equivalences:

-~ X » iﬁ X then false else true
Xand Y if X then Y else false
X or Y if X then true else Y

6.4.3. Examples

Por Q

(X < ¥Y) and (Y < 2)
YOUNGESTOFFSPRING (JACK) — = null
FATHER (JILL) is PERSON

6.5. Bit Expressions

6.5.1. Syntax

<simple bit expression> ::= <bit term> | <simple bit expression>
or <bit term>

<bit term> ::= <bit factor> | <bit term> and <bit factor>
<bit factor> ::= <bit secondary> | — <bit secondary>
<bit secondary> ::= <bit primary> | <bit secondary> shl

<integer primary> | <bit secondary> shr

<integer primary>
<bit primary> ::= <bit sequence> | <bit variable> | <bit PAGE 35

function designator> | (<bit expression>)

6.5.2. Semantics

A bit expression is a rule for computing a bit sequence.

The operators and, or, and — produce a result of type bits, every
bit being dependent on the corresponding bit(é) in the operand(s) as

follows:

The operators shl and shr denote the shifting operation to the
left and to the right respectively by the number of bit positions
indicated by the absolute value of the integer primary. Vacated bit
positions to the right or left respecfively are assigned the bit

value O.

6.5.3. Examples

G and H or #38
G and = (H or G) shr 8

6.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary> ::= <string> | <string variable> | <string
function designator> | (<string expression>)

<substring designator> ::= <simple string variable>

(<integer expressiom>l <integer number>)

36

6.6.2. Semantics

A string expression is a rule for computing a string (sequence of

.characters).

6.6.2.1. A substring designator denotes a sequence of characters of
the string designated by the string variable. The integer expression
preceding the @ selects the starting character of the sequence. The
value of the expression indicates the position in the string variable.
The value must be greater fhan or equal to O and iess than the declared
length of the string variable. The first character cf the string has
position O. The integer number following the § indicates the length
of the selected sequence and is the length of the string expression.
The sum of the integer expression and the integer number must be less

than or equal to the declared length of the string variable.

6.6.3. Example

string (10) S;
s (403)
s (T+Jw1)

‘string (10) array T (1l::m,2::n);
T (4,6) (385)

6.7. Reference Expressions

6.7.1. Syntax

<simple reference expression> ::= <null reference> l <reference
variable> | <reference function
designator> | <record designator> |

(<reference expression>)

37

<record designator> ::= <rec6rd class identifier> | <record
class identifier> (<expression list>)
<expression list> ::= <J expression> | <expression list>,
<J expression>

6.7.2. Semantics

A reference expression is a rule for computing a reference to a
record.

The value of a record designator is the reference to a newly
created record belonging to the designated record class., If the
record designator contains an expression list, then the values of the
expressions are assigned to the fields of the new record. The entries
in the expression list are taken in the same order as the fields in
the record class declaration, and the simple types of the expressions must
be assignment compatible with the simple types of the record fields

(cf. 7.2.2.).

6.7.3. Example

PERSON ("CAROL", O, false, JACK, JILL, null, YOUNGESTOFFSPRING
(JACK))

6.8. Precedence of Operators

The syntax of 6.3.1., 6.4.1., and 6.5.1. implies the following

hierarchy of operator precedences:

long, short, abs
shl, shr, %¥ '
—/

*, [/, div, rem, and

38

Example

A=Band C is equivaelent to A = (B and C)

7. STATEMENTS

A statement denotes a unit of action. By the execution of a
statement is meant the performance of this unit of action,which may
consist of smaller units of action suph as the evaluation of expres-
sions or the execution of other statements.

Syntax:

<program> ::= <block>
<statement> ::= <simple statement> | <iterative statement> |
<if statement>] <case statement>
<simple statement> ::= <block> | <T assignment statement> |
<empty> | <procedure statement> |
<goto statement>

7.1. Blocks

7.1.1. Syntax

<block> ::= <block body> <statement> end

<block body> ::= <block head> | <block body> <statement>;
<block body> <label definitiom>

<block head> ::= begin | <block head> <declaratiom> ;

<label definition> ::= <identifier> :

7.1.2. Semantics

Every block. introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:

39

Step 1. If an identifier, say A, defined in the block head or
in a label definition of the block body is already defined at
the place from which the block is entered, then every occurrence
of that identifier, A, within the block except for occurrence in
array bound expressions is systematically replaced by another
identifier, say APRIME, which is defined neither within the

block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

s

Step 3. Execution‘of the statements contained in the block body
begins with the execution of the first statement following thé
block head.

After execution of the last statement of the block body (unless
it is a goto statement) a block exit occurs, and the statement follow-
ing the entire block is executed.

7.1.3. Example

begin real U;

end

7.2. Assignment Statements

T.2.1. Syntax
In the following rules the symbols To and Il must be replaced by
words as indicated in Section 1, subject to the restriction that the

type Tl is assigmment compatible with the type TO as defined in 7.2.2.

Lo

<TO assignment statement> ::= <TO left part> <Tl expression>
T, left part> <J, assignment

statement>

<J left part> ::= <I variable>

it

T.2.2. Semantics

The execution of é simple assigﬁment statement

<jo assignment statement> ::= <Io left part> <Il expression>
causes the assignment of the value of the expression to the variable,
If a shorter string is to be assigned to a longer one, the shorter
string is first extended to the right with blanks until the lengths are
equal. In a multiple assignment statement

(<TO assignment statement> ::= <TO left part> <Tl assignment
statement>)

the assignments are performed from right to left. For each left part
variable, the simple type of the expression or assignment variable immediately
to the right must be assignment compatible with the simple type of that
variable;

A simple type Tl is said to be assignment compatible with a simple

type T, if either

0
(1) the two types are identical (except that if T, and T are
string, the length of the‘TO variéble must be greater than
or equal to the length of the Il expression or assignment), or
(2) IO is real or long-real, and Tl is‘intéger, real or long

real or

(3) T, is complex or long complex, and T, is integer, real,

long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer
to a record of one of the classes specified by the record class identifiers

associated with the reference variable in its declaration.

41

7.2.3. Examples

Z := AGE(JACK) := 28
X:=Y+ abs 2
C:=I+X+C¢C
Pi=X—=Y

T.3. Procedure Statements

T.3.1. Syntax

<procedure statement> ::= <procedure identifier> | <procedure
identifier> (<actual parameter list>)
<actual parameter list> :t:= <actual parameter> | <actual
parameter list> , <actual parameter>

<actual parameter> ::= <J expression> | <statement> | <J subarray

designator> | <procedure identifier> |
<T function identifier>
<T subarray designator> ::= <J array identifier> | <T array
identifier> (<subarray designator
1ist>)
<subarray designator list> ::= <subscript> | ¥ | <subarray
designator list>,<subscript>
<subarray designator list>,%
T.3.2. Semantics
The execution of a procedure statement is equivalent to a process
performed in the following steps:
Step 1. A copy is made of the body of the proper procedﬁre whose
procedure identifier is given by the procedure statement, and of

the actual parameters of the latter. The procedure statement is

replaced by the copy of the procedure body.

Step 2. If the procedure body is a block, then a systematic

change of identifiefs in its copy is performed as specified by

42

step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in an
undefined order as follows: If the copy is an expression
different from a variable, then it is enclosed by a pair of
parentheses, or if it is a statement it is enclosed by the symbols

begin and end.

Step 4. In the copy of the procedure body every occurrence of an
identifier identifying a formal parameter is repléced‘by the copy
of the corresponding actual parameter (cf. 7.3.é;l.). In order
for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

steps 2-L, is executed.

7.3.2.1. Actual-formal correspondence. The correspondence between
the actual parameters and the formal parameters 1s established as
follows: The actual parameter list of the.procedure statement (or
of the function designator) must have the same number of entries as
the formal parameter list of the procedure declaration heading. The
correspondence is obtained by taking the entries of these two lists

in the same order.

T.3.2.2, Formal specifications. If a formal parameter is specified by
value, then the simple type of the actual parameter must be assignment
Vcompatible with the formal type. If it is specified as result, then the
formal type must be assignment compatible with the simple type of the

actual parameter. If it is specified by value result, both the above

b3

conditions must be satisfied. In all other cases, the types must be
identical. If an actual parameter is a statement, then the specification

of its corresponding formal parameter must be procedure.

7.3.2.3. Subarray designators. A complete array may be passed to a
procedure by specifying the name of the array if the number of subscripts
of the acfual barameter equals the number of subscripts of the
corresponding formal parameter. If the actual array parameter has
more subscripts than the éorre3pond;ngvformal parameter, enough subscripts
must be specified by integer expressions so that the number of *'s appearing
in the subarray designator equals the number of subscripts of the
corresponding formal parameter. The subscript positions of the formal
array designator are matched withithe positions with *'s in the subarray
designator in the order they appear.

7.3.3. Examples

INCREMENT
COPY (A, B, M, N)
INNERPRODUCT (IP, N, A(I,*), B(*,J))

e
7.4. Goto Statients

7.4.1. Syntax

<goto statement> ::= goto <label identifier> | go to <label

identifier>

7.4.2. Semantics .

An identifier is called a label identifier if it stands as a

label.

Wy

A goto statement determines that execution of the text be contin-

ued after the label definition of the label identifier. The identifie

cation of that label definition is accomplished in the following steps:

7.5,

Step 1. If some label definition within the most recently actie
vated but not yet terminated block contains the label identifier,

then this is the designated label definition. Otherwise,

Step 2. The execution of that block is considered as terminated
and Step 1 is taken as specified abéve.

If Statements

7.5.1. Synteax

<if statement> ::= <if clause> <statement> | <if clause>

' <simple statement> else <statement>
<if clause> ::= if <logical expression> then

T7.5.2. Semantics

The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical ex-

pressions. An if statement of the form

<if clause> <statement>

is executed in the folldwing steps:

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the statement
following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

b5

An if statement of the form

<if clause> <simple statement> else_<statement> _

is executed in the following steps:

Step 1. The logical expression in the if clause is eValuated.

Step 2. If the result of step 1 is true, then the simple state-
ment following the if clause is executed. Otherwise the state-.

ment following else is executed.

T.5.3. Examples

~if X = Y then goto L

if X< Y thenU :=X else if Y< Z thenU :=Y elseV := 2

7.6. Case Statements
~T7.6.1. Syntax
<case statement> = <case clausé> begin <statement list> end
<statement list> = <statement> | <statement 1list> ; <statement>
<case clause> ::= case <integer expressiom> of
7.6.2. Semantics
The execution of a case statement proceeds in the following

steps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list
is equal to the value obtained in Step 1 is executed. In order
that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some

L6

T-7-

statement of the statement list.

7.6.5, Examples

case I of

begin X := X + Y;
Y i= Y + 23
Z =7 + X

case j of

begin H(I) := -H(I); ,
begin H(I-1) := H(I-1) + H(I); I := I-1 end;
begin H(I-1) := H(I-1) x H(I); I := I-1 end;
begin H(H(I-1)) := H(I); I := I-2 end

Iteré,tive Statements

7.7.-1. Syntax

<iterative statement> ::: <for clause> <st. Lement> | <while
» clause> <statement>
<for clause> ::= for <identifier> := <initial value>
step <increment> until <limit> do | for
<identifier> := <initial value> until <limit>
do | for <identifier> := <for list> do

<for list>

<integer expressior> l <for list> , <integer
expression>

<initial value> ::= <integer expression>

<increment> ::= <integer expressior>

<limit> s:= <integer expression>

<while clause> ::= while <logical expression> do

T.7.2. Sementics
The iterative statement serves to express that a statement be

k7

executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause
or the while clause always acts as a block, whether it has the form of
a block or not. The value of the control identifier (the identifier
following 233) cannot be changed by assignment within the controlled
statement.

(a) An iterative statement of the form

for <identifier> := El step E2 until E3 do <statement>

is exactly equivalent to the block

begin <statement-0>; <statement-1> ... ; <statement-I>;
«eo 3 <statement-N> end

in the Ith statement every occﬁrrence of‘tﬁe control identifier
is replaced by the value of the expression (E1 + T x E2).

The index N of the last statement is determined by
N < (E3-E1) / B2 < N+1. If N< 0, then it is understood that
the sequence is empty. The expressions El, E2, and E3 are
evaluated exactly once, namely before execution of <statement-0>.

Therefore they can not depehd on the control identifier.
(b) An iterative statement of the form

for <identifier> := El until E3 do <statement>
is exactly equivalent to the iterative statement

for <identifier> := El step 1 until E3 do <statement>

(¢) An iterative statement of the form
for <identifier> := El, E2, ... , EN do <statement>

is exactly equivalent to the block

48

begin <statement-1>; <statement-2> ... <statement-I> ; ...
<statement-N> end

when in the Ith statement every occurrence of the control identifier

is replaced by the value of the expression EIL.

(d) An iterative statement of the form
while E do <statement>
is exactly equivalent to
L: if E then

begin <statement> ; goto L end

‘end
where it is understood that L represents an identifier which is not

defined at the place from which the while statement is entered.

7.7-3. Examples

for V := 1 step 1 until N-1 do S := § + A(U,V)

while (J > 0) and (CITY(J) ~=8) do J :=J-1

for I := X, X+ 1, X+ 3, X +7 do P(I)

7.8. Standard Procedures

Standard procedures are provided in ALGOL W for the purpose of
communication with the input/output system. These standard procedures
differ from explicitly declared procedures in thatvthe number and type
of actual parameters need not be identical in every procedure statement
in which the standard procedure identifier'appearé. In the following

descriptions, each T, is to be replaced by any one of

ko

integer string (<integer number>)

real logical
~long real bits
complex

long complex
7.8.1. The Input/Output System

.ALGOL5W provides a single legible input stream and a single legible
output stream. These streams are conceived as sequences of records, each
record consisting of a character sequence of fixed length. The input
stream has the logical properties of a sequencé of cards in a card reader;
- records consist of 80 characters. The output stream has the logical
properties of a sequence of lines on a line printer; records consist
of 132 characters, and the récords are grouped into logical pages.

Each page consists of not less than one nor more than 60 lines.

Input records may be transmitted as strings without analysis.
Alternatively, it is possible to invoke a procedure which will scan the
sequence of records for data items to be interpreted as numbers, bit
sequencés; sfrings, or logical values. If such analysis is specifiéd,
data items may be reference denotations of the corresponding constants
(cf. Section 4). In addition, the following forms of arithmetic expressions
are acceptablé data items, and the corresponding simple types are those

determined by the rules for expressions (cf. 6.3.):

(1) <sign> <T number>
‘where : T is one of integer, real, long real, complex, long

complex;

50

(2) <T, number> <sign> <J, number>
<sign> <To number> <sign> <Il numbexr>
where : T, is one of integer, real, long real, and
il is one of complex, long complex.
Data items‘are separated by one or mdre blanks. Scanning for data items
initially begins with the first character of the input stream; after
the initial scan, it normally begins with the character foilowing the
one which terminatgd the most recent previous scan. ILeading blanks are
ignored. The scan is terminated by the first blank fbllowing the data
item. In the process, new records are fetched as necessary; character
position 80 of one record is considered to be immediately followed by
character position 1 of the next record. There exist procedures to
cause the scanning process to begin with the first character of a record;
if scanning would not otherwise start there, a new record is fetched.
Outputiitems are assembled into records by an editing procedure.

. Items are automatically converted to character sequences and placed

in fields according to the simple type of each item, as described below:

Simple Type Field Description

integer right justified in a fiéld containing
the number of characters specified by
the current value of INTFLELDSIZE
(initialized to 14, cf. 8}?;.) and followed
by 2 blanks .

real right justified in a field of 14 characters
and followed by 2 blanks

51

long real right justified in a field of 22 characters.
and followed by 2 blanks '

~ complex two adjacent real fields
long complex two adjacent long real fields
logical right justified in a field of 6 characters

followed by 2 blanks

- string placed in a field exactly the length of
the string
‘bits same as real

The first field transmitted begins the oufput stream; thereafter, eéch
field is normally placed immediateiy following the most recent previously
transmitted field. If, however, the field corresponding to an item
‘cannot be placed entirely within a non-empty record, that item is made the
first field of the next record. In addition, there exist procedures to
cause the field corresponding to an item to begiﬁ a new record. Each
page group is automatically terminated after 60 records; procedures

are provided for causing earlier terminatioh.
7.8.2. Read Statements

Implicit declaration headings:
procedure READ (Tl result X)5 «es 3 T result Xn);
procedure READON (Il result X, ; e T, result Xh)5

(where n > = 1)

“Both READ and READON designate free field input procedures. Input
records are scanned as described in 7.8.1. Values on input records are
read, matched with the variables of the actual parameter list in order

of appearance, and assigned to the corresponding variables. The simpie

52

type of each data item must be assignment compatible with the simple
type of the corresponding variable. For each READ statement, scanning
for the first data item is caused to begin with the first character of
a record; for a READON statement, scanning continues from the previous
point of termination as determined by prior use of READ, READON, or
IOCONTROL (cf. 7.8.1.).

Implicit declaration heading:

procedure READCARD (string(80) result X, ..., X);

(where n > = 1)

READCARD designates a procedure transmitting 80 character input
records without analysis. For each variable of the actual parameter list,
the scanhing process is set to Begin at the first character of a record
(by fetching a new record if necessary), all 80 characters of that record
are assigned to the corresponding string variable, and subsequent input
scanning ié set to begin at the first character of the next sequential

record.
7.8.3. Write Statements

Implicit declaration headings:
procedure WRITE (Il value X;; ... 3 T value Xn);
procedure WRITEON (Tl xglgg X5 ... 3 T, value xn);
(where n > = 1)
WRITE and WRITEON designate output procedures with automatic format
conversion. Values of expressions of thenactuai parameter list‘ére converted

to character fields which are assembled into output records in order of

appearance (cf. 7.8.1.). For each WRITE statement, the field corresponding

53

to the first value is caused to begin an output record; for a WRITEON

statement, assembly continues from the previous point of termination.
7.8.4. Control Statements

Implicit declaration heading:

procedure IOCONTROL (integer value X, ... , X);

(where n > = 1)
IOCONTROL designates a procedure which affects the state of the
input/output system. Argument values with defined effect are listed below;
other values currently have no effect but are explicitly made available u

for local use or future expansion.

Value Action (cf. 7.8.1.)

1 Subsequent input scanning is set to begin
with the first character of a record,

2 Subsequent output assembly is set to begin
with the first field of a record.

3 Subsequent output assembly is set to begin
with the first field of a record which, in

turn, is caused to begin a new output page.

7.8.5. Examples

READ (X, A(1))

READCARD (S, LINE(10|80))
WRITE ("AVERAGE =", SUM/N)
WRITEON (x(1,J))
TIOCONTROL (2)

54

8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

The ALGOL W environment includes declarations and initialization of
certain procedures and variables which supplement the language facilities
previously described. Such deciarations and initialization are considered
to be included in a block which encloses each ALGOL W program (with
terminating period eliminated). The corresponding identifiers are said

" to be predeclared.

8.1. Standard Transfer Functions

Certain functions for conversion of values from one simple type
to another are provided. These functions are predeclared; the
corresponding implicit declaration headings are listed below:

integer procedure TRUNCATE (real value X);

comment the integer i.such that ‘
il <= |x] < |i] + 1 and i > =0

integer procedure ENTIER (real value X);

comment the integer i such that
i<=X<i+1;

integer procedure ROUND (real value X);

comment the value of the integer expression
- if X < O then TRUNCATE(X-0.5) else TRUNCATE(X+0.5) ;
real procedure ROUNDTOREAL (long real value X);

comment the properly rounded value of X ;

real procedure REALPART (complex value Z);

comment the real component of Z ;
long real procedure LONGREALPART (long complex value Z);
real procedure IMAGPART (complex value Z);

comment the imaginary component of Z ;

long real procedure LONGIMAGPART (long complex value Z);

25

complex procedure IMAG (real value X);

comment the complex number O + Xi ;

long complex procedure LONGIMAG (long real value X);

logical procedure ODD (integer value N);

comment the logical value
Nrem?2 =1 ;
bits procedure BITSTRING (integer value N);

comment two's complement representation of N ;

integer procedure NUMBER (bits value X);

comment integer with two's complement representation X ;

integer procedure DECODE (string(l) value S);

comment numeric code for the character S (cf. Appendix 1) ;

string(l) procedure CODE (integer value N);

comment character with numeric code (cf. Appendix 1) given by

abs (N rem 256) ;

In the following comments, the significance of characters in the prototype

formats is as follows:

D decimal digit in a mantissa or integer

E decimal digit in an exponent

A hexadecimal digit in a mantissa or integer

B hexadecimal digit in an exponent

+ sign (blank for positive mantissa or integer)
s = Dblank

Each exponent is unbiased. Decimal exponents represent powers of 10;
hexadecimal exponents represent powers 0f_l6. Each mantissa (except O)
represents a normalized fraction less than one. Ieading zeroes are not

suppressed.

56

string(12) procedure BASELO (real value X);
comment string encoding of X with format
wHEE+DDDDDDD 5
string(12) procedure BASEL6 (real value X);

comment string encoding of X with format
L PBBHAAAAAA
string(20) procedure LONGBASE1O (long real value X);

comment string encoding of X with format
s+EE+DDDDDDDDDDDDDDD
string(20) procedure LONGBASE16 (long real value X);
comment string encoding of X with format
o FBBHAAAAAAAAAAAAAA
string(12) procedure INTBASE1O (integer value N);
comment string encoding of N with format
LéDDDDDDDDDD H
string(12) procedure INTBASE16 (integer value N);

comment unsigned, two's complement string encoding of N with format

s AAAAARAA

8.2. Standard Functions of Analysis

The following functions of analysis are provided in the system
environment. In some cases, they are partial functions; action for
arguments outside of the allowed domain is described in 8.5. These
functions are predeclared; the corresponding implicit declaration headings
are listed below:

real procedure SQRT (real value X);

comment the positive square root of X,
domain : X > =0 3 _ ‘
long real procedure LONGSQRT (long real value X);

comment the positive square root of X,

domain : X > =0 ;

o7

complex procedure COMPLEXSQRT (complex value Z);

comment principal square root of Z ;
long complex procedure LONGCOMPLEXSQRT (long complex value Z);

comment principal square root of Z ;

real procedure EXP (real value X);

comment e ** X ,
domain : X < 17kL.67 ;
long real procedure LONGEXP (long real value X);

comment e ¥* X ,
domain : X < 17h4.67 ;

real procedure IN (real value X);

comment logarithm of X to the base e,
domain : X > 0 3
long real procedure LONGLN (real value X);

comment logarithm of X to the base e,
domain : X > 0 ;

real procedure LOG (real value X);

comment logarithm of X to the base 10,
domain : X > 0O ;
long real procedure LONGLOG (long real value X);

comment logarithm of X to the base 10,
domain : X > 0 ; - '

real procedure SIN (real value X);

comment sine of X (radians),
domain : -82355Q < X < 823550 ;
long real procedure LONGSIN (long real value X);

comment sine of X (radians),
domain : -3,537'+15 < X < 3.537'+15 ;

real procedure COS (real value X);

comment cosine of X (radians)
domain : -823550 < X < 823550 ;
long real procedure LONGCOS (long real value X);

comment cosine of X (radians),

domain : -3,537'+15 < X < 3.537'+15 ;

58

real procedure ARCTAN (real value X);

comment arctangent (radians) of X,
range : -m/2 < ARCTAN(X) < n/2 ;
long real procedure LONGARCTAN (long real value X);
comment arctangent (radians) of X,
range : -m/2 < LONGARCTAN(X) < m/2 ;

8.3. Time Function

The AILGOL W environment includes a clock which measures elapsed
time since the beginning of program execution. The resolution of that
clock is 1/60 second. A predeclared function is provided for reading

the clock.

integer procedure TIME (integer value N);

comment returns elapsed time, in hundredths of a minute if N=0,

in sixtieths of a second otherwise;

8.4, Predeclared Variables

The following variables are £o be considered declared and initialized
by assignment in the conceptual block enclosing the entire ALGOL W program.
The values indicated for real and long real quantities are to be understood
as decimal dpproximations’to the actual machine-format vaiues provided.

integer INTFIELDSIZE;
comment initialized to 1k ,
controls output field size for integers (cf. 7.8.1.);
integer MAXINTEGER;
comment initialized to 21k74836L7 ,

the maximum positive integer allowed by the implementation;

59

real EPSILON;
comment initialized to 9.536743'-07 ,

the largest pbsitive real number ¢ provided by the

implementation such that
l+e=1;
long real LONGEPSILON;
comment initialized to 2.22044604925031'-16L ,
the largest positive long real number ¢ provided by
the implementation such that
1l+e=1;
long real MAXREAL;
comment initialized to 7.23700557733%226'+75L ,
the largest positive long'real number provided by the
implementation;
long real PI;
comment initialized to 3.14159265358979L ;

8.5. Exceptional Conditions

The facilities described below are provided in ALGOL W to allow
defection and control of certain exceptional conditions arising in
the evaluation of arithmetic ekpressions and standard functions.

Implicit declarations:

record EXCEPTION (logical XCPNOTED; integer XCPLIMIT, XCPACTION;
logical XCPMARK; string(6h) XCPMSG) 3
reference (EXCEPTION)
OVFI, UNFL, DIVZERO,
INTOVFL, INTDIVZERO,
SQRTERR, EXPERR, INLOGERR, SINCOSERR ;

60

Associated with each exceptional condition which can be processed

is a predeclared reference variable to which references to records of

the class EXCEPTION can be assigned.

Fields of such records control the

processing of exceptions. The association between conditions and

reference variables is as follows:
Reference Variable

OVFL

UNFL
DIVZERO
INTOVFL
INTDIVZERO
SQRTERR
EXPERR

INLOGERR

SINCOSERR

Conditions

real, long real, complex, long
complex (exponent) overflow

real, long real, complex, long
complex (exponent) underflow

real, long real, complex, long
complex division by zero

integer overflow

integer division by zero

negative argument for SQRT, LONGSQRT

argument of EXP, IONGEXP out of
domain (cf. 8.2.)

argument of IN, ILOG, LONGIN,
LONGIOG out of domain (cf. 8.2.)

argument of SIN, COS, LONGSIN,
LONGCOS out of domain (cf. 8.2.)

When one of the conditions listed above is detected, the corresponding

reference variable is interrogated, and one of the alternatives described

below is chosen.

If the value of the reference variable interrogated is null, the

condition is ignored and execution of the AIGOL W program continues.

In such situations, a value of O is returned as the value of a standard

61

function. For other conditions the result is that provided by the
underlying IBM System/360 hardwareg/. In determining such a result, it

is to be noted that in those cases in which the detection of eXceptional
conditions can be inhibited at the hardware level, namely integer overflow
and exponent underflow, detection is so inhibited when the corresponding
reference is NULL.

If the value of the reference variable interrogated is not NULL,
the fields of the record designated by that reference are interrogated,
and processing action is that described by the algorithm given below in
the form of an extended ALGOL W procedure. Identifiers in lower case
represent quantities which franscen¢ the ALGOL W language; they are
explained subsequently.

procedure PROCESSEXCEPIION (reference(EXCEPTION) value CONDITION);
XCPNOTED(CONDITION) := true;
XCPLIMIT(CONDITION) := XCPLIMIT(CONDITION) - 1;
if (XCPLIMIT(CONDITION) < O) or XCPMARK(CONDITION) then
WRITE (" %¥%%%% EXCEPTION NEAR CARD nnnn - ", XCPMSG(CONDITION));
if XCPLIMIT (CONDITION) < O then endexecution else

if integercondition then

resultant := default else
resultant := if XCPACTION(CONDITION) = 1 then adjustment else

if XCPACTION(CONDITION)
default
end PROCESSEXCEPTION

2 then OL else

It

This procedure is invoked with the value of the reference Variable
appropriate to the condition as actual parameter.‘ The significance of

the special identifiers used is as follows:

g/IBM System/360 Principles of Operation, IBM Systems Library, Form A22-6821

62

nnnn _ approximate line number of the source code
which was being executed when the exceptional

condition was detected -

endexecution procedure to terminate execution of the AILGOL W
program » _
integercondition logical value which is true if, and only if,

the condition being processed is integer overflow
or integer division by zero ,

default result of the operation or function provided
by the AIGOL W system prior tb invocéation of
the exception processing procédure; this is
defined by the hardwareé/ for arithmetic v
operations and is the value O for standard
functions | |

resultant falue to be returned as the result of the

' arithmetic evaluation or standard function

invocationv

adjustment adjusted result of the operation according to
the following table

Condition | Adjustment

exponent overflow, if default < O then
division by zero -MAXRFAL else MAXREAL
exponent underflow oL

argument X out of domain for :

SQRT, LONGSQRT SQRT (abs X), LONGSQRT(abs X)
EXP, LONGEXP MAXRFAL

IN, IONGIN -MAXREAL

10G, LONGLOG -MAXREAL

SIN, LONGSIN oL

CO0S, LONGCOS oL

z IBM System/360 Principles of Operation, IBM Systems Library, Form A22-6821

63

The reference variable UNFL is initialized by the system to NULL.
‘All other reference variables listed above are initialized to references
to a special record which is accessible only by the system., Interrogation
of this record by the procedure described above has the effect of causing
the ALGOL W ﬁrogram to be terminated witﬁ a message indicating the type

of exception. Any other attempt to access any field of this record will

result in a reference error.

APPENDIX 1 - CHARACTER ENCODINGS

‘The fol}oWing table presehts the correspondence between printable
string characters and their (EBCDIC) integer encodings. This encoding
}establishes the ordering relation on characters and thus on strings.
. Those characters in parentheses are not available on the line printer.

Integer codes not listed below do not correspond to any established

character;

64 space 129 (a) 193 A 240 0
s (A) 130 (b) 194 B 2h1 1
G 131 (c) 195 ¢ 22 2
76 < 132 (d) 196 D 243 3
77 (133 (e) 197 E ahy 4
78+ 134 (f) 198 F 245 5
79 | 135 (g) 199 G 246 6
80 & 136 (h) = 200 H et 7
9 (1) 137 (i) . 201 I 248 8
91 $ 15 (3) 209 J 2k 9
92 * 146 (k) 210 X
%) 147 (1) 211 L
ok 5 148 (m) 212 M
95 - 149 (n) 213 N
96 - 150 (o) 214 0
g / 151 (p) 215 P

o7, 152 (aq) 216 Q

108 % 155 (r) 217 R

109 _ 162 (s) 226 s

110 > 163 (t) 227 T

111 ? 164 (u) 228 U

122 165 (v) 229 v

125 # 166 (w) 230 W

124 c) 167 (x) 231 X

125 ' 168 (y) 232 Y

126 = 169 (z) 233 Z

127 "

65

ALGOL W

-ERROR MESSAGES

by
Henry R. Bauer

~ Sheldon Becker
Susan L. Graham

66

ALGOL W ERROR MESSAGES

I. PASS ONE MESSAGES
All Pass One messages appear on the first page following the program

listing. The message format is
CARD NO. (number) -- (message)

The (number) corresponds to the card number on which the error

was found. The (message) is one of those listed below. -

INCORRECT SPECIFTN ' syntactic entity of a declaration is

incorrect, e.g. variable string length.

INCORRECT CONSTANT syntax error in number or bitstring.
MISSING END ' an END needed to close block.
MISSING BEGIN an attempt to close outer block

before end of code.

MISSING)) is needed.

ILLEGAL CHARACTER : a character, not in a string, is
unrecognizable,

MISSING FINAL . program must be terminated by a period.

STRING LNGTH ERROR ‘ string is of O length or length

greater than 256. -

BITS LENGTH ERROR bits constant denotes no bits or
more than 32 bits.

MISSING ((is needed.

TABLE OVERFLOW terminating error - a compile time

table has exceeded its bounds.

67

TOO MANY ERRORS ~ the meximum nudber of errors for Pass
| | One r_ecorqls' has been resched. Com-
pilation continues ‘but mes’soées for
succeeding errors détected by Pass
One are suppressed;; |

ID LENGTH > 256 ' mo're‘ than 256 cha.ra‘ctgrs in :L"dent_ifiei.
See alsc discussion of PROGRAM CHECK in IV.. ' '
II. PASS TWO MESSAGES

The format of Pass Two error messages is

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS' (incoming

symbol)

If a $STACK card is included anywhere in the source deck, the

.SYNTAX ERROR message is followed by

STACK CONTAINS:
(beginning of file)

<symbol-1>

<symbol-n> - (top of stack)
The symbol names may differ somewhat from the metasymbols of
the syntax.
If any Pass One or Pass Two errors occur, compilation'is termi-~

nated at the end of Pass Two.

INCORRECT SIMPLE TYPE <number> <simple type> of entity is improper
as used. Number indic;ates explana-

tion on list of simple type errors.

68"

ARRAY USED INCORRECTLY

IDENTIFIER MUST BE RECORD
CIASS ID

MISMATCHED PARAMTER
MULTIPLY-DEFINED SYMBOL <iden-
tifier>

UNDEFINED SYMBOL <identifier>

INCORRECT NUMBER OF ACTUAL
PARAMETERS

INCORRECT DIMENSION

DATA AREA EXCEEDED

INCORRECT NUMBER OF FIELDS

INCOMPATIBLE STRING LENGTH

INCOMPATIBLE REFERENCES
BLOCKS NESTED TOO DEEP

REFERENCE MUST REFER TO
RECORD CIASS

EXPRESSION MISSING IN
PROCEDURE BODY

a variable must be used heré.

reference declaration is incorrect.

formel parameter does not correspond

to actual parameter,

symbol defined more than once in a
block

symbol is not declared or defined,

the number of actual parameters to
a procedure does not equal the number
of formal parameters declared for

the procedure.

the array has appeared previously

with a different number of dimensions.
too many declarations in the block.

the number of fields specified in a
record designator does not equal the
number of fields the declaration of

the record indicates.

length of assigned string is greater

than length of string assigned to.

record class bindings are inconsistent.

blocks are nested more than 7 levels,

reference must be bound to a record

class.

body of typed procedure must end

with an expression.

69

- RESULT PARAMETER MUST BE - the actual parameter corresponding

<T VAR> to a result formal pérameter must
be a <J VARTABLE>.
PROCEDURE HEAD IACKS SIMPLE proper procedure ends with an
TYPE .
expression
<SYMBOL-1> UNREIATED TO the symbol'at the top of the stack
<SIMBOL-2> - (<SYMBOL-1>) should not be followed
by the incoming symbol (<SYMBOL-2>).
SYNTAX ERROR ' construction violates the rules of

25.
29,
32,

T1.
73,
Th.
76.
7
81.
8h.,
88.
93.
gk,
9.

the grammar. The input string is
skipped until the next END, ";",
BEGIN, or the end of the program.
More than one error message may be

generated for a single syntax error.

Simple Type Errors

Upper and lower bounds must be integer.

Upper and lower bounds must be integer.

Simple type of procedure and simple type of expression in
procedure body do not agree.

Substring index must be integer.

Simple variable preceding '(' must be string.

Substring length must be integer.

Field index must be reference or record class identifier.

Array subscript must be integer.

Array subscript must be integer.

Actual parameters and formal parameters do not agree.

Actual parameters and formal parameters do not agree.

Expressions in if expression do not agree.

Expressions in case expression do not agree.

Expression in if clause must be logical.

70

98.
99.
101.
102,

103.
106.
107.
108.
109,

“110.
112.
117.
118.
119.
120.
121.
123.
125.

126,

130.
134,
135.
136.
148.
181.
182.
188.
190.
191.
193.
195.
197.

Expressions in case expression do not agree,.
Expression in case clause must be integer.
Arguments of = or —=do not agree.

Arguments of relational operators must be integer, real, or

long real.
Argument before is must be reference.

Argument of unary + must be arithmetic.

Argument of unary - must be arithmetic.

Arguments of + must be arithmetic.

Arguments of - must be arithmetic.

Arguments of or must be both logical or both bits.
Record field must be assignment compatible with declaration.
Arguments of * must be arithmetic.

Arguments of / must be arithmetic.

Arguments of div must be integer.

Arguments of rem must be integer.

Arguments of and must be both logical or both bits.

Argument of — must be logical or bits.

Exponent or shift quantity must be integer; expression to be
shifted must be bits.

Shift quantity must be integer; expression to be shifted must be
bits.

Actual parameter of standard function has incorrect simple type.

Argument of long must be integer, reél, or complex.

Argument of short must be long real or long complex.
Argument of §E§ must be arithmetic.

Record field must be as§ignment compatible with declaration.
Expression is not assignment compatiblé with variable. -
Result of assignment cannot be assigned to variable.

Limit expression in for clause must be integer.

Expression in for list must be integer.

Assignment to for variable must be integer.

Expression in for list must be integer.

‘SteB element must be integer.

Expression in while clause must be logical.

71

III. PASS THREE ERROR MESSAGES

The form of Pass Three error messages is

**%%* (message)
*¥¥%%¥% NEAR CARD (number)

The number indicates the number of the card near which the error

occurred, The message may be

PROGRAM SEGMENT OVERFLOW

COMPILER STACK OVERFLOW

CONSTANT POINTER TABLE TOO IARGE

BLOCKS NESTED TOO DEEPLY

DATA SEGMENT OVERFLOW

TOO MANY PROCEDURES

CARD TABLE OVERFLOW

IV. RUN TIME ERROR MESSAGES

the amount of code generated for a

procedure exceeds 8192 bytes.
constructs nested too deeply.

too many literals appear in a

procedure.

parameters in procedure call are nested
too deeply; procedure calls in block

nested too deeply.

too many variables declared in the
block.

the program contains too many procedure
declarations; the number of procedures
allowed depends on the size of each

procedure and cannot exceed 52,

density of information on (non-blank

and non-commeni,) source cards is too low.

The form of run error messages is

RUN ERROR NEAR CARD (number) - (message)

SUBSTRING INDEXING

CASE SELECTION INDEXING

ARRAY SUBSCRIPTING

substring selected not within named string.

index of case statement or case expression

is less than 1 or greater than number of cases.

array subscript not within declared bounds.

T2

- LOWER BOUND > UPPER BOUND

ARRAY TOO LARGE

ASSIGNMENT TO NAME PARAMETER

DATA AREA OVERFLOW

ACTUAL-FORMAL PARAMETER MISMATCH
IN FORMAL PROCEDURE CALL

RECORD STORAGE AREA OVERFLOW

lower bound is greater than upper

bound in array declaration.

The (n-1) dimensional array obtained
by deleting the right-most bound-

pair of the array being declared has
too many elements. The maximum number
of elements allowed in this (n-1)
dimensional array is given below,
according to the declared type of

the array.

-maximum # of
elements in

first (n-1)

type dimensions
logical, string : 32767
integer, real 8191
bits, reference 8191
long real, complex 4095
long complex 2047

assignment to a formal name parameter
whose corresponding actual parameter
is an expression, a literal, control

identifier, or procedure name.

storage available for program execu-~

tion has been exceeded.

the number of actual parameters in

a formal procedure call is different
from the number of formal parameters
in the called procedure, or the
parameters are not assignment

compatible.

no more storage exists for records.

[

LENGTH OF STRING INPUT

LOGICAL INPUT

'NUMERICAL INPUT

REFERENCE INPUT

READER EOF

REFERENCE

LINE ESTIMATE EXCEEDED

TIME ESTIMATE EXCEEDED

I/0 ERROR

PROGRAM CHECK #nn

string read is not assignment compatible

with corresponding declared string.

quantity corresponding to logical

quantity is not true or false.

numerical input not assignment compatible
with specified quantity.
reference quantities cannot be read.

s system control card has been

encountered during a read request.

the null reference has been used to
address a record, or a reference bound
to two or more record classes was used
to address a record class to which it

was not currently pointing.

line estimate on %ALGOL card is

exceeded.

time estimate on %ALGOL card is

exceeded.
see consultant.

see consultant.

Counts of certain exceptional conditions detected during program

.compilation or execution are maintained. If any of these are non-zero,

they are listed after the post-compilation or post-execution elapsed

time message in the following format:

nnnn PROGRAM CHECK NO xx

The number of times the condition was detected (modulo 10000) is

given by nnnn; the nature of the condition is indicated by xx according

“~n the following table:

Th

08
09
12
13
15

integer overflow

integer division by zero
real exponent overflow
real exponent underflow

real division by zero

This counting is inhibited for integer overflow and exponent

underflow whenever the value of the corresponding reference variable

is null (cf. IANGUAGE DESCRIPTION, Section 8.5.).

V. OTHER

PRG PSW

COMPILER ERROR

INSUFFICIENT
STORAGE

see consultant.
see consultant.

insufficient memory available to complete compilation.

75

NOTES ON NUMBER REPRESENTATION
ON SYSTEM/360

AND RELATIONS TO ALGOL W
by

George E. Forsythe

76

The following notes are intended to give the
student of Computer Science 136 some orientation
into how numbers are represented in the IBM System/360
computers. Because we are using Algol W, somé refer-
ences are made to that language. However, very little
of what is said here depends on the peculiarities of
Algol W, and this exposition is mostly applicable to
Fortran or Algol 60 with slight chénges in wording.
- It will also do for the floating-point numbers and
full-word integers of PL/l. Users of shorter or
longer integers or decimal arithmetic in PL/1 will

need more orientation.

7

On IBM's system 360, the following units of information storage '
are used:
a) the bit, a single O or 1
b) the byte, a group of eight consecutive bits
¢) the (short) word, a group of four consecutive bytes--
i.e,, %2 consecutive bits
d) the long word, a group of two consecutive short words--
i.e., eight bytes or 64 bits. |
For number representation in Algol W the words and long words are
the main units of interest. '

INTEGERS .

Integers are stored in (shoit) words. Of the 32 bits of a short
word, one is reserved for the sign (O for + and 1 for -), leaving
31 bits to represent the magnitude. A positive or zero integer is
stored in a binary (base 2) representation. Thus 21, (the subscript
means base 10) is stored as

0000 0000 0000 0000 0000 0000 Q001 0101 ,

;ign bit A
To confirm this, note that
21_:9x230+.4,+gx2-+;x2"*‘+gx23+_1_x22;+9><21+;x2°.
The largest integer that can be stored in a word is

2204 P9y a0l (21&7&836&7)10

5

Any attempt fo create or store an integer larger than 231—]. will
produce erroneous results, and (unfortunately) the user will not always
be warned of the error. (See below.) |

To save space in writing words on paper, each groupr of four bits
in a word is frequently converted to a single base-16 (hexadecimal)
digit, according to the followihg code:

78

base 2 base 16 base 2 base 16
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 . 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

~ Thus A, B, C, D, E, F are used as basge-16 representations of the decimal
numbers 10, 11, 12, 13, 14, 15 respecfivelj.' Nevertheless, integers are
stored as base-2 numbers. '
Using hexadecimal notation, the decimal number 21 is represented
by ‘
OOOOOOJ.S16

Note that 1516 is the base-16 representation of 21,4
Negative integers are stored in what is called the "two's camplement

"

form”. For example, -1 is stored as

1111 1111 1111 1111 1111 1111 1111 1111 |

= FFFFFFFF16 .

Also, -21 is stored as
1111 1111 1111 1111 1111 1111 1110 1011

= FFFFFFEB16 .

The representation for -21 1s obtained from that for +21 by changing

every O to 1 and every 1 to 0O, and then adding + 1 in base-2 arithmetic
to'the result. Similarly for any negative integers. Every negative
integer has 1 as its sign bit, The smallest integer storable in
System/350 is —231 = -2147483648 , and is represented by 8000000016
Another way to think of the representation of negative numbers is

to consider a 32-place binary accumulating register (the base-2 equivalent
of the decimal accumulating register in a desk calculating machine).

If one starts with all zeros in this register, one gets the representation
for -1 by subtracting 1. The process requires a "borrow" to propagate

to the left all the way across the register, leaving all ones, Just as

on a decimal accumulator this would leave all nines. Continued sub-

traction will give the representations for -2, -3, ...

79

From the point of view of an accumulator we can also see what
happens when we create a positive number larger than 251 -1l. For
example, 1f we add 1 to 231-1 the resultlng carry will go all the
way into the sign bit, leaving a sign bit of 1 with all other dlglts
zero. But this is the representation of -23 . Thus the attempt to
produce positive numbers in the range from 231'to approximately 232
will yield a negative sign bit. Consequently, positive integers that
"overflow” into this range are sensed as negative by System/360. The
mechanisms of AIGOL W for detecting integer oyerflow (not described in
this document) can be used to detect additions, subtractions, or
multiplications that produce integers outside the range from 231 o

21 (so-called integer overflow). Attempts to divide an integer by O

will yield an error message and an irrelevant quotient and remainder.

Thé behavior of System/560 on integer overflow is quite different
from the Burroughs B5500., In the latter machine, any integer that
oﬁerflows is replaced by a rounded floating-point number. There are
advantages to either approach to integer overflow, depending on the
application. _ | | '

If the user suspects that integers in his program are getting
- anywhere near 109; he should convert them to double-precision floating-
point numbers by use of the Algol W operator LONG. Conversion to Single-
precision floating-point numbers may lose some precision. |

The most important thing for a scientific user to remember is thét
integers in the range ;251 to 231-1 are stored without any approximation.
Moreover, operations on integers (adding, subtracting, multiplying) are
done without any error, so long as all intermediate and final results
are integers between -231 and 25141. It is perhaps easier to remember
as safe the interval from -2 X 109 to 2 x 109 , obtained from the

10 ;103

useful approximation 2

o {le

80

The operations of division without remainderu(called DIV in Algol
W) and taking the remainder on division (called REM in Algol W) always
give integer answers. If the divisor is O, an error message is given.

In Algol W two operations on integers give results that are not
stored as integers--nsmely / and **

FLOATING- POINT NUMBERS

Numbers in many scientific computations will grow in magnitude
well beyond the range of integers described sbove, To provide for
this, System/360 and most scieatific computers have a second way to

represent numbers-~the so-called floating-boint representation.

The significance of the name "floating-point" is that the radix point
--for example, the decimal point in base-10 numbers--is permitted to
float to the right or left, thus permitting scaling of numbers by
various powers of the radix. Although a decimal point that has floated
off to “he left will produce a number written like 0,001345, the
numbers are actually represented in a form closer to what is often
called scientific notation, here 10545X10‘3

In System/360, floating- ,int numbers sre always represented in

base-16 notation; i.e.. the re¢ ix or number base .s 16. This permits

us to write numbers in abbrevi *ed form (as we did with integers eariier).

More important, the use of ba§e~l6 conforms with the hardware arithmetic

processes in which shifting is done four bits at a time to speed up the

operations. The speed-up is achieved at a slight cost in precision,

as it learned from detailed error analyses which we cannot go into here.
We first consider the floating-point representation of numbers by

a single word of 32 bits. This is the sgwcalled single-precision

or short real number, the number of type REAL in Algol W. The 32 bits

of a word are numbered fram O to 31, from left to right, Just to identify
them, In floating-point representation tﬁe left-hand eight bits (bits 0
to 7, equivalent to two hexadecimal digits) are devoted to the sign of
the number and the exponent of 1€ associated with the number. The right-
hand 24 bits (bits 8 to 31, edhivalent to 8ix hexadecimal digits)

81

represent six significant hexadecimal digits (the significand) of the
number. ' |

" As with integers, the sign of the number is denoted by bit 0,
with O representing + and 1 representing -

Bits 1 to 7 give the binary (base-2) representation of a non-
negative integer in the range O10 to 12710 s inclusive. This‘in-'
teger is called the biased exponent, for reasons now to be explained.
If this integer were taken directly as the exponent, we would have no
negative exponents, and our range of floating-point numbers could not
include such numbers &8s 16 25. It is desirable to have an exponent
range that is approximately symmetric asbout zero. In System/360 one
obtains the true exponent of the floating-point number by subtracting
64 from the biased exponent represented by bits 1 to 7. As a result,
the actual exponents range from -64 to 63.

The 24 bits 8 to 31 of a number are regarded as six haxadecinal
digits with a hexadecimal point at the left-hand end. If the floating-
point number zero is being represented, all the hexadecimal digits are
gero, ac are all the other bits. Otherwise, at least one of the hexa-
decimal digits must be nonzero. A floating»point number is said to be
normalized if the‘left-hand hexadecimal digit (the most significant
digit) of the significand is nonzero. In System/360 the floating-point
nivibers are ordinarily normalized, and we will not consider any other

forms,

We now give the floating-point representations of some semple
numb:rs, As we saild before, the number zero is represented by 32 zero
bits, i.e., by eight O hexadecimal digits. Thus zero is represented
by the same words in floating-point or integer form. No other number
has this property.

The number 1.0 is represented by the word

siifaéit |
0,100 0001, 0001 0000 © 000 0000 0000
biased _
exponent significand

82

To check this, note that the sign is O (representing +). The biased
exponent is 10000012 or ~6510 . Subtracting '6“10 vields 1 as the
true exponent. The hexadecimal significend is 10000016 . Putting g
hexadecimal point at the left end gives the hexadecimal fraction
.100000, which equals 1/16, . Thus the above word represents

+ 1/16 times 16t , or 1,0 . ;

To save writing, the above word is ordinarily written in the
hexadecimal form 41100000 . While one gradually learns to recognize
some floating-point numbers in this'form, the author knows no easy wﬁy
to convert such a hexadecimal word into & real number. One Just has
to take the right-hand six hexadecimal digits, and prefix a hexadecimal
point. Then one exsmines the left-hand two-hexadecimal-digit number
(here 41). If this is less than 8016 » the floating-point number is
positive and one gets the true exponent by subtracting h016 = éhlo
If the left-hand two-hexadecimal-digit number is 8016 or larger, the
floating=-point number is negative, and one gets the true exponent by
gubtracting CO 16 = 8016 + 40 16 = 192lo and affixing & minus sign.

Some facility with hexadecimal arithmetic is required, if one has to
deal with such numbers.

In this presentation, we Lave considered the radical point to be
at the left of the six significant hexadecimal digits, and regarded.
the exéonent as biaged high by Ghlo . As an alternative, the reader
may prefer to place the radix point Jjust to the right of the most
significant digit of the significand, and regard the exponent as blased
high by 6510 . This brings the significand closer to usual scientific
notation but, of course, requires a trickier conversion to get the
true exponent. The fact that either interpretation (and many others)
are possible shows that really the radical point is just in the eye of
‘the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa-
decimal notation, with the confirmation left to the reader.

8

decimal floating-point

0.0 = 00000000
1.0 = 141100000
0.0625 = 40100000
16.0 = 42100000
256.0 = 13100000
-1.0 = €1100000
-16.0 = €2100000
- 3.5 = 141380000

The largest floating~-point number is T7FFFFFFF, representing
JFFFFFF X 167 or (1 - 167%) x 1657 £ 7.23 x 107°. (Here 10 ana 16
denote decimal numbers.) ‘

The smallest positive normalized floating-point number is 00100000,

representing

-64

& X 16 5.40 x 10777

(3]

Negatives of these two numbers can also be represented, and are
the extremes in magnitude of representable negative numbers.

Very few numbers can be exactly represented with six significént
decimal digits. (Exercise: Which ones can?) For example, 1/3 =~;53333310
only approximately. In the same way, very few numbers can be exactly
represented with six significant nexadecimal digits. (Exercisg:

Which ones can?) Fo; example, 3/5 = .55555516 cnly approximately.
Moreover, some numbers that are exactly representable in decimal are
only approximately representable in hexadecimal; for example,
1/10 610000010
1/10 = ,19999Al6 only approximately.

Thus round-off error enters into the representation of most

exactly; but

floating-point numbers on System/360, and the round off differs from
that with decimal numbers. This can easily give rise to unexpected
results. For example, if the above number u19999Al6 (2 0’110) is
multiplied by the integer lOOlo = 6&16
10.0lo , but instead A,,OOOOB16 , as a cumulative effect of the slightly:

high approximation to O.ll And A.OOOO516 rounds to 10.00002

, one gets not A.OOOOO16 =

0° 10
on conversion to decimal.
The precision of a single-precision hexadecimal number is roughly -

10-7, One can think of this as being crudely equivalent to seven sig-

84

nificant decimel digits,

Not only do errors sppear in the representation of numbers inside
System/360 (or any computer), but they arise from arithmetic operations
performed on numbers. For example, the product of two floating-point
numbers may have up to 12 significant hexadecimal digits. When the
product is stored as a single-precision floating-point number, it must
be rounded to six hexadecimal digits. This introduces an error, even .
‘though the factors might have been exact. |

The story of round off and its effect on arithmetic is a complex:
and interesting one. Only within the current decade have there'begun
to appear even partly satisfactory methods to analyze round off, ﬁnd
we cannot go into the matter now. Some idea of this is obtained in
Computer Science 137. ‘ '

When an Algol W progrem assigns decimal ndeers or integer values
to variables of type REAL, these are immediately converted to hexadecimml
floating-point numbers, with (usually) a round-off error. When one
outputs numbers from the computer in Algol W; they are converted to
decimal. Both conversions are done as well as possible, but introduce
changes in the numbers that the »rogrammer must be aware of;- And, of
course, all intermediate opera+ions introduce further round offs and
possible errors. It is unthin.able to do the anaiysis necessary to
- counteract these errors and get the true answer to the problem. If the
| user wishes answers uncontaminated by round off, he should use integers
and integer afithmetic,'and be prepared to guard against overflow.

Fortuhately most users can accept an indeterminate amount of
round off in their numbers, provided théy have some assurance that
round off is not growing out of control. It is the buginess of numerical
analysts to provide algorithms whose round-off properties are reasonably
under control. This has‘been well accomplished in some areas, and hardly
" at 81l in others. |

DOUBLE PRECISION

The precision of single-precision floating-point numbers seems

85

'_ very adequdte for most scientific and engineering purposes,being at~the
level of seven decimals. However, a ccnsiderable number of computations.
require still more precision in thzs middle somewhere, Just in order to
came out with ordinary accuracy at the end. As a result, System/360

has provided an easy mechanism for getting(a great deal more precision
in the computations. For this purpose a double word of &4 bits is used
to store a floating~point number of so-called double pracision or long

precision. In this representation, the sign and biased exponent are
found in the first word of‘the double-word, with precisely the same

interpretation as with single-precision floating-point numbers, The
second word of the double-word consists of eight hexadecimal digits

immediately following the six found in.the first word. There is no

sign or exponent in the second word. Thus a double-word represents

a signed floating hexadecimal number with 1k significant hexadecimal
digits. As before, nonzero numbers are normalized so that the most

significant digit of the 14 is nonzero, '

Examples:
long significand
1.0L = 1417100000 00000000
0.1L = L0 199999 99999994

There is a full set of arithmetic operations for both single
- and double-precision operations. Very crudely, for an example, single-
" precision multiplication of single-precision factors takes around L} micro-
- seconds, while that for double-precision factors takes around 7 micro-
seconds. For modest problems the extras time is completely lost in the .
several seconds of time lost to'systems and compilers, and the use of
double-precision is strongly recommended for all seientific computation.
Normally the only possible disadvantage of using long precision is the
doubling in the amount of storage needed. If one has arreys with tens
of thousands of elements, the extra storage may be very costly. Other-
wise, 1t should not matter. | o
 Since 167 < 10-17, the double-precision numbers are crudely

equivalent in precision to;17 significant decimal digits.

For a machine with the speed of the 360/67, a number precision of

86

six hexadecimal digits (roughly seven decimals) is considered very low,
while a precision of 14 hexadecimal digits (roughly 17 decimals) is’
very adequate.

‘ _ T2 floating-point arithmetic
hardware of System/360 provides the possibility of detecting when
numbers have gone outside the exponent range stated above. The reader
may think that & range from rcughly 10 > to 107 snould cover all
reasonable camputations. Whiie exponent overflow and ggppneht underflbw

are not very common, they can be the cause of very elusive errors. ‘
The evaluation of a determinant is a common computation, and for a matrix
" of order 40 is quite rapidiy done-(if‘you know how). If the matrix
elements are of the quite reasonable magniﬁude 1003, the magnitude of
the determinant will be no larger than roughly 10-90 (and probabdbly’
much smaller), well below the range of representable floating-point
numbers. Such problems are a frequent source of exponent underflow.

'~ We shall not discuss here the mechanisms of Algol W for detecting
exponeant overflow and undertlow, for these should be written up in
- another place. Even without these. we see thaﬁ floating-point numbers
behave well for numbers that are at least 1066 times as large as the
largest integer in the system. Hence usze of fioating point numbers
meets almost all the problems -aised by integer .verflow. And, of
course, it permits the use of a large set of rational numbers, which
do not even enter the integer system.

’
L4

ALGOL W REALS AND LONG REALS

The Algol W manual tells how to represent real variables and
numbers to take advantage of both single-and double-precision. The
purpose of this section is to bring this information into repport with
the hardware representation of numbers. If a variable X is declared
REAL, one word is set aside for its valuseg, and it will be stored in
single-precision floating-point form. Iif a variable is declared to be
LONG REAL, a double-word is set aside to hold its values, and it will
be stored in double-precision form. ”

87

If a number is written in one of the decimal forms without an L
at the end, it will be chopped to single-precision, no matter how many
digits are set down. Thus 3.1415926535897932 will be immediately
chopped to single-precision in the program, and all the superfluous
digits are lost at once. Thus the assignment statement

' XX 1= 3.1415926535897932
will result in the double-word XX receiving an approximation to m
in the more significant half, and all zeros in the less significant
half! Thus one gets a precision of only approximately seven décimals
for the pain of writing 17, and this may well contaminate all the rest
of the computation.

If one ﬁants XX to be precise to approximately full double precisidn;
one must write the statement in the form

| XX := 3.1415926535897932L .

With the declaration REAL X, the statement

' X := 3.1415926535897932L
will result in X having a single-precision approximation to ¢ , as
the long representation of ¢ 1is chobped upon assignment to X.

The reader shouid now go back and examine the specifications of
the types of various arithmetic expressions, as stated on pages 9, 10,
11 of the Algol W Notes, and on pp. 25, 26 of the language Definition.

Some of the less expected effects are the following: Suppose we have
declarations

REAL X, Y, Z;

IONG REAL XX, YY, ZZ;

INTEGER I, J, K;

Then X*Y, I**J, and I*X are all long real.

The assignment statement

A XX := X 1= Y¥Z
will result in XX having a single-precision chopped version of Y¥Z in
the more significant half, and zeros in the less significant word.

Moreover, I*I is INTEGER, but I*¥2 is LONG REAL.

88

If the reader understands the language Algol W and the preceding
‘pages on rium’ber representation, he should have a good basis for under-
standing the effects of methematical algorithms. But he should always
remain wary of what a computer is actually doing to his numbers

89

APPENDIX

Algol W Deck Set-Up
(Job Card)
//JOBLIB DD DSNAME=SYS2.PROGLIB,DISP=(OLD,PASS)
// EXEC AIGOLW

//ALGOLW.SYSIN DD *

%AIGOL
88 (program)
{ FEOF
§ (data)
9 %EOF
/*
§ Optional

§§ May be repeated

Note: The Stanford ALGOL W system monitors execution time and number

of lines of output for each job., The default limits on these quantities
are 10 seconds execution time and 500 lines of printed output. Alternately,
the programmer may explicitly specify limits on the PAIGOL card.

Columns 10-29 of that card are scanned for such specification according

to the following syntax:

90

(1imit specification) HEE (time limit) | (time limit), (line limit)
(time 1limit) ::= {minutes specification) |
{minutes specification) : {seconds specification)
(minutes specification) ::= {unsigned integer) | {empty)
{seconds specification) ::= {unsigned integer) | {empty)

(1ine 1imit) ::= {unsigned integer) | {empty)

An empty field is given the corresponding default value. The program
is automatically terminated if necessary at the end of the indicated.
time, Similarly, the program is automatically terminated if necessary

after the indicated number of lines have been printed.

91

GRAMMATICAL DESCRIPTION OF ALGOL W

R. Floyd

92

In the grammatical description of ALGOL W on the following pages,
Roman capital letters, such as A B C D, stand for themselves. A script
letter, possibly accented, stands for a defined infinite class of symbol
strings; for example, d , as defined, stands for the class which includes
the symbols A, B, C, ..., Z, AA, AB, ...,A9, BA,...,B9,...Z9, AAA, ...,
Z99, AAAA, A Greek letter, such as A , stands for a given finite
set of characters.v

The symbol | means "or"; if @ is'defined as B|C , this means that
a particular inscription is an @ if it isa B or if it isa C .

The notation G , or equivalently {0}* , means any number (including
zero) of inscriptions, one after another, each of which is an @ . For
example, {AlB}* means A or B or AA or AB or BA or BB or AAA
or ..., or A , where A means no inscription at all.

The notation 0+ means any number (but at least one) of inscriptions,
one after another, each of which is an @ . It abbreviates Gﬂ* . For
example, {A‘B}+ means A or B or AA or ... or BB or AAA , etc.

The ndtation [a@] means an optional occurrence of @ ; it abbreviates
falal.

The»notation'é‘*-g means Q@ or 050 or QA3 , etc; it abbreviates

afmy’” .

The notation G |\ B means @ and/or B ; it abbreviates alBlas .

The curly brackets { } are used simply as parentheses to show the
scope of the above operators.

All other characters, such as / - , () / < etc., stand for themselves,

including ¥ and + when they are not raised.

93

6

Descriptive
Name

letter
digit
identifier
symbol
constant

function value

expression

simple statement
statement

block
declaration

type

procedure heading

program

The Grammar of a Simple Subset of ALGOL W

Symbol

® o

VR B

Definition

AlBlcIplEl...|x|¥|z

ol1|2|3}...]8l9

M

Any symbol on the keypunch, except the double quote
677.6™)| "ot

gL (ETN

i
. 1

(-1 (SICFI (e =i*|/} (+]-3 {<l<e]=[>=|>] ==)
s:=€| L (E)]|ao 0 8 |B

S'|IF & THEN S|IF & THEN S' ELSE S|FOR $:=€ UNTIL € DO S
* *
BEGIN {83} {S;|9: } s END
-+ ¥ *
T 3 ,|T PROCEDURE ¥ ;{&|BEGIN{#;} {S;|9:} € END}

INTEGER | REAL | L.OGICAL | STRING(C)

$(T{VALUE | PROCEDURE}S , ;)
Bo

a6

Descriptive
Name

letter
digit
identifier
variable
symbol

constant

function value
simple expression

simple expression
or relation

expression
argument

simple statement
empty

statement

Symbol

.

v 9

-

The Grammar of ALGOL W

Definition
AlBlc|plE] -~ |X|Y]Z
ol1[2|3]++|8]9
alsl”

(slse) (@) ehC)]
Any character on the keypunch, except the double Quote.

(¥ 1.6%11.673 A ['[+]-] 6"} T1[L] |TRUE|FALSE
4 (8]alBlclnllr)" " (o] "} " |muLL

3[(@)]

L
)

[+]-1[~1{aBs |LonG|sHORT} (v [c|#] (€) }: {**Ismlsrmii*l/lDIVIREMlAbm}Hl - |or}

e" e {<|<=|=|>=|>}=}e" |&" 18 8

¢'|IF € THEN € ELSE &|CASE €& OF (&7

els| S1({E[T;)]

v:=Yelco 7o s[s1(@,)1lale

The empty statement; no character at all, or a space.

S'|IF € THEN S|IF € THEN S’ ELSE S|CASE € OF BEGIN S END
|WHILE € DO S|FOR $:=& {[sTEP ¢] UNTIL €|{,e} }po s

96

Descriptive

Name Symbol Definition
*
block I&; BEGIN {8;} {53|=9:}*S END
declaration 8 T 3% |7 ARRAY J""(e :€ ,)IPROCEDURE av,
————1—
|T PROCEDURE %; {&|BEQIN {93} (S;|9:} e Enp} |RECORD (T 3%, ;)
type T INTEGER | [LONG]{ REAT. | cCOMPLEX} | LOGICAL | BITS[(32)] | STRING[(c)] IREFERENCE(J)
procedure heading N S[({7 [VALUE][RESULT]|([T] PROCEDURE}S ', ,|T ARRAY S :(* ,))1
program P B

The Operators and Fungtions of ALGOL W, Their Formats, Meanings

and Type Constraints

Use of Symbols

¢. = any ALGOL W expression.
o, = value of expression 81.

k. = kind of data represented by ai corresponding to expression 61
The kinds of data are:

.- 1. N = numeric
2. L = logical
3. S = string
4, B = bits

5. R = reference

d. = domain of o, when k, = N.
1 1 1

The domains are:

1. I = integer
2. R = real
3. C

complex
They are ordered as follows: IC RcC C.

p; = precision of o when ki = N.
They are ordered as follows: S < L.
If di = I, then p, = L.

Kinds of Arguments Domains of Numeric Precision of Numeric

86

Format | Meaning and Results Arguments and Results Arguments and Results
el+ &, oy -j- a, - N+ N->N d +d, > max(dl, d2)- Py +P, - m.n(pl,pa)
61- 32 dl - 02 N-N->N d-l"d2 - max(dl’ d2) _ pl-PQ i mn(Pl’pa)
: * ¥*

_51* e, oy X o N*N-o>M d,*d, - max(dl,da) P, *p, » L
e,/ &, o /o, N/N >N d,/d, - max(d,,d,,R) p;/p, - min(p,,p,)

@

a,

¥ : TNX *%
el e, | o N*¥*N - N 4, ¥ max(dl,R) P **L - py
L+ 81 @y +N - N +d) - 4y '*‘Pl.—)pl
- 81 -0y N> N -dl - dl -p; ° Py
e, DIV &, TRUNCATE(ql/ag) IDIVIoI
- *x

e REME, o (¢ DIV a,) oy, IREM I I

the remainder of

61 DIV 62
ABS & lall ABS N » N ABS d, - min(d,,R) ABS P, - Dy
LONG &, oy LONG N > N LONG d; - max(dj, R) LONG p; —» L where p;=s or d,=I
SHORT 61 oy SHOR‘I N->N SHORT dl - dl SHORT pl — S where pl=L and dl=|= I

Kinds of Arguments Domains of Numeric Precision of Numeric

66

Format Meaning and Results Arguments and Results Arguments and Results
€. OR € o, Va LORL-L
1 . B OR B — B
e, AND € o. N o LANDL-»L
1 2 1 e B AND B - B
- & NOT o, - L->L
1 1 -1 B-B
e, =&, @ =0, K =k o L(where k1=k2) any" any
&, ==&, oy + ap ky =k, - L(where kl=k2) A any any
e.<e a, <a N<N-L d, SR any
1< & 1<% S<s_t 459,
€. <=t a_{ot N<=N-L ,d, € R any
18 o S sl1 . Ypdc
g, >=¢ o, >a N>NoL ,d,C R any
1>= & 12% i 4p8 <
e >¢e o, >ao N>N-L ' »4, C R - any
1= e S>8 oL i
e, IS ¢92 ay belongs to the R IS =92 - L
record class 82
61 SHL 52‘ otl shifted left - BSHL N—- B d2 =1
p places
81 SHR &2 @y shifted right BSHR N-B d2 =1
oy places
v.(e.le)) characters « S(N|N) - s A =4 =1
1273 through 2 2 d3

d2+ a3 -1ofo:l

Kinds of Arguments

Domains of Numeric

Precision of Numeric

Format Meaning and Results Arguments and Results Arguments and Results
| IF 8’1 THEN 82 ELSE 83 if o:l then otg, IF L THEN k2 ELSE 1% -k IF"L THEN dl ELSE d2 IF L THEN pl ELSE p2
otherwise o where k, = 1% =k - max(dl, d2) - min(pl, p2)

oot

CASE e, of (e]‘_,...,&n) ozayo(l <ag n)

CASE N OF (kl,ke,...,kn)
- k where

kl=k2= O lsn =k

CASE L OF (dl,d2,_...,dn)
- max(dl, dys e .‘,dn) '

CASE L OF (pl,...,pn)

- min(pl, oo .,pn)

TOT

All the following functions have the format F(&l), where F is the function name.

We shall omit reference to the format, accordingly.

Function

Meaning Kinds Domains Precision
TRUNCATE The integer i, with the same sign |
as ay, such that
Jagl = 1< 14l € oy
ENTIER The integer i such that N-oN R-o1I Any
o, =1<i<e
1 -1
ROUND The integer i, with the same sign
s such that
Iall -1/2< |i] < lall + 1/2 J
ROUNDTOREAL oy N‘—>N R > R L o8
REALPART The real part of @y
' *
IMAGPART The imeginary part of o N-N C-R Any - 8
IMAG o, */-1 NN 4 »C Any — S*
(4, € R)

*¥Note: A asterisk on a short precision-result means that prefixing the letters LONG to the function
name yields .a long precision result.

c0T

represents o, in binary.

1
See manuals for details.

Function Meaning Kinds Domains Precision
SQRT Jal, for oy >0 N-N dl - R Any — S%*
| (4, € R)
~ COMPLEXSQRT /ozl NN Any - C Any — S¥
%
EXP e, for oy < 174 .67
LN . loge(al), for a; >0
LOG log, (al), for o) >0 N >N d, >R Any — S%
- SIN sin(e,), for Iozll'< 823550 (dl S R)
cos cos(a), for lozll < 823550
ARCTAN tan_l(ozl) , in the range
(- “/21 1'\‘/2)
TIME elapsed time, in units of 1/100 . I-1I
minute if o= 0, otherwise in
units of 1/60 second.
ODD ozi is an odd number I->L
BITSTRING The sequence of bits which . I->B

€T

representing o, in hexadecimal,
using two's cofiplement notation.

Function Meaning Kinds Domains Precision
NUMBER The integer which oy represents B-o>1I
in binary. ‘
DECODE The number which is used as a code S(1) »1
for the character Q. '
CODE The character for which @, is used T - S(1)
as a code.
BASE10 A string of the form b+12+1234567 ¥ 5 s5(12) 4, cR Any
representing @, as a power of ten
times a fraction. (b represents a
blank space).
LONGBASE10 As above, for b+12+123456789012345 N - S(20) dl CR Any
BASE16 A string of the form bbt+12+123L456 N - s(12) 4 CR Any
representing otl as a power of
sixteen times a fraction, both in
hexadecimal,
LONGBASE16 As above, for bb+12+12345678901234 N - 5(20) 4 cR Any
INTBASE1O A string of the form b+1234567890 I - s(12)
representing oy in decimal.
INTBASE16 A string of the form bbbbl2345678 I - s(12)

FFR 0 Q1000 WTUNPAWY

