e L INSS

eS| SN NG

STANFORD RESEARCH INSTITUTE

Menlo Park, California 94025 - U.S.A.
N\

S|\

18 February 1969

Semiannual Technical Letter Report 1
Covering the Period 9 August 1968 through 8 February 1969
Stanford Research Institute Project 7079

STUDY FOR THE DEVELOPMENT
OF
HUMAN INTELLECT AUGMENTATION TECHNIQUES

by
D. C. Engelbart
and Staff of the Augmented Human
Intellect Research Center

Contract NAS1-7897

Prepared for

National Aeronautics and Space Administration
Langley Research Center, Langley Station
Langley, Virginia 23365, Mail Stop 126

T
e
)
v

Copy No.

ABSTRACY

This report covers progress made during six months of a continuing
research program in the Augmented Human Intellect Research Center
(AHIRC) of Stanford Research Institute,

The program is directed toward the discovery of principles and
techniques for the augmentation of human effectiveness in
intellectual tasks by means of direct, on-line computer aids used on
a full-time basis,

A considerable portion of the report is devoted to developments in
the "On-lLine Svstem' (NLS), which is a unified system incorporating
many of the compnuter aids that have been developed in the project,

CONTENTS

ABSTRACT v v v v v vt v v e h e e e e e e e e e e e e e i

FOREWORD« o o o v v v v v v v v e e e e e e e e e e il

I GENERAL . . + + v v v e e et e et e e e e e e e
11 NEW NLS FEATURES . . . « . « . « o v v v v v v v v v o 3
II1 TODAS . « v v v v i e e e e e e e e e e e e e a9
IV GODOS © v v v e e e e e e 10
v 0 O &
VI SERVICE-SYSTEM DEVELOPMENTS « o o o . . . 17
VII FUTURE PLANS . . . « . « v v v v v vt e e e e e e o 19

Appendix A: AHI PARTICIPATION AT THE FJCC 24
Appendix B: THE NLS VECTOR PACKAGE 31
Appendix C: THE INFORMATION-RETRIEVAL SYSTEM 35
Appendix D: THE NLS CONTENT ANALYZER « . . 40
Appendix E: THE NLS LINKING FEATURE 52
Appendix F: TODAS USER'S GUIDE« o .., 56
Appendix G: GODOS USER'S GUIDE« . .. 60
Appendix H: NIC SYSTEM SPECIFICATIONS (PART I) 66
Appendix I: PLAN FOR REWRITING COMPILERS « « . . . 70
Appendix J: NETWORK DECODE-ENCODE LANGUAGE 78
Appendix K: IMPLEMENTATION PLAN FOR THE NIC 82

SIGNATURE SHEET . . .+ « v v v v v e v e e e s i s s oo 90

ii

FOREWORD

The Augmented Human Intellect Research Center (AHIRC) operates under
multiple sponsorship by NASA, ARPA, and the U, S, Air Force,

Although this report applies specifically to NASA Contract NAS1-7879,
not all of the work reported was runded exclusively by NASA, The
Center's multiple funding is used in a highly integrated, flexible
manner, For this reason, explicit separation of funding areas for a
report such as this one would be difficult and would result in an
unnatural division of material from a technical-information point of
view,

AHIRC is a research center operating within Stanford Research
Institute, It is devoted to research on techniques and principles
for the augmentation of human intellectual processes by means of
direct computer aid to intellectual (information-handling) tasks,

This report was composed, organized, formatted, and typed entirely by
means of some of the computer aids developed by AHIRC. The main body
of the report is a general account of activities in ALIRC during the
last six months and of plans for the future., Several of the areas
treated in the main body are expanded in greater detail in the
appendices.,

iii

I GENERAL

The three most important aspects of our progress during this
six-month period were as follows:

Becoming operational with our six-station On-Line System (NLS)
facility

Participating in the Fall Joint Computer Conference, including the
preparation for the presentation (see Appendix A for a full
account of this participation)

Hahing a significant step ahead in our "bootstrapping" by
integrating a significant portion of our software activity with
NLS,

We also have implemented quite a few new user features into NILS, and
have made significant progress in planning and specifving services to
he developed for the Network Information Center,

liaving potten our time-shared, nulticonsole system operational, we
have learned that at full-usage ratc the system will only support six
or seven work stations -- more than this degrades the response for
all uscrs to an unacceptable level,

we also realized that the evolution and maintenance of the service
systen was costing considerably more than we had budgeted, causing
the research activities to be resource-starved,

A series of negotiations with ARPA during this past six months has
led to an increasc in the level of funding (through our RADC
contract) to bolster service-system support, and especially to
provide some additional core menory, The additional memory
capacity will alleviate the time-sharing bottlenecks so that all
12 work stations may be served adequately,

we have also submitted two other facility-expansion proposals to
ARPA:

One proposal is to develop a multiprocessor subsystem that would
take ruch of the higher-frequency service load off the 940 and
enable us to support about 32 NLS users (some over the network,
but 24 here at SRI -- the proposal also includes adding 12 more
work stations).,

The other proposal is to provide an on-line CRT-to-film output
capability such that we can autonatically publish multipage
documents (or microfiche) containing the mixture of text and
illustrations that we are now beginning to accommodate in HLS
felils Facility is especiclly relevant to the proposed services of
the Netwoerk Infornation Centery.,

I GENERAL

In the miscellaneous category, there have been several noteworthy
developments:

As a byproduct of our FJCC activity, we have developed a cheap and
flexible technique for making 16-rm movies directly from the
display screen of a slaved console, with sound from a microphone
at the command console,

Using this technique, we now have a l-hour, 40-rdnute film that
captures the projected video and audio that the audience of our
FICC session saw and heard, We also have a 22-minute reel
specially made for the subseauent ARPA contractors' meeting in
Hawaii, The big movie is an overview of our project; the
smaller movie is a special feature oriented toward programners,

We plan to keep copies of both movies available for loan to
interested parties,

We have evolved a prototype work station that departs
significantly from conventional console design., In association
with this, we are experimenting also with work-space layout and
cquipment (walls, tables, shelves, etc,) of a new degree of
flexibility and modularity,

The work station uses the same display and control devices, but
houses and mounts them differently. The controls are separated
from the display and are integrated into a self-contained
"control console" that may be mounted conveniently on the users
chair or placed upon any flat surface; the display is
independently adjustable in position and attitude,

These developments have been made in cooperation with the
lierman Miller Research Corporation, of Ann Arbor, Michigan.
Their parent company has just come on the market with the new
line of office furnishings (including the walls), and they have
cooperated eagerly in styling and producing the prototype work
station.

We expect within the next six months to make considerable
progress toward housing our crew in experimental working space
and equipping them with the new work stations,

With the increased level of our service-system activity, and with the
development of NIC services becoming a major activity, we anticipate
expanding our staff by perhaps a dozen people within the next few
months.

II NEW NLS FEATURES

A. VECTOR PACKAGE

1.

3.

INTRODUCTION

The Vector Package is a first-stage graphics system operating
as an integral part of NLS,

Every drawing created with the vector package is associated
with a statement in an NLS file. The drawing consists of
straight lines (vectors) and labels (text, with the same
character set as NLS itself).

VECTORS

The Insert Vector command allows the user to define two
endpoints with the mouse; a vector is then automatically drawn
between these endpoints, The second endpoint may be used as
the first endpoint of the next vector, or the next vector may
start elsewhere,

After a vector has been created with this command, it may be
moved, translated, deleted, or projected to the vertical or
horizontal. Each of thesc operations makes use of a selection
made with the mouse, The user points to the vector and hits
the Cormand Accept (CA) button; the system then marks the ends
of the vector with an O and an X,

In the Delete Vector command, the vector is immediately
deleted upon execution of the command.

In the Move Vector command, the end marked X moves to a new
position selected with the mouse, and the end marked O
remains fixed. In the Translate Vecctor cormand, the end
marked X aain moves to a new position selected with the
nouse, but the end marked () also moves in such a way as to
preserve the length and direction of the vector.

In the liorizontal and Vertical commands, the end marked X
moves vertically until the vector is horizontal, or
horizontally until the vector is vertical,

LABELS

In the Insert Label command, the user tvpes the text of a label
and this text is then "attached" to the cursor. The user moves
it to the desired location and hits CA; the label is then

fixed, In the Delete Label command, the user simply points to
a label and it is deletcd on CA; to nove a label, the user may
cause it to he "attached" to the cursor again and move it to
any desired position,

II

1

NEW NLS FEATVRES

4. OTHER COMMANDS

The user wav nove the entire drawing (set of existing vectors
and labels) relative to the associated statement text, or he
may delete the entire drawing and start over. A grid of dots
mav be superimposed for use as a guide in drawing vectors and
locating labels,
A portion of the MNLS User's Guide relating to the vector package
is given as Appendix B,

b KREYWORD RETRIEVAL SYSTEM

The keyvword information-retrieval system is essentially a method
of reordering a leyworded catalog of NLS files in accordance with
sone selected and weighted subset of the available keywords.

A catalog file for use with this system consists of two parts:
A list of keywords used, with information as to their meanings

A list of files referenced, with information as to their
contents, nmachine-rcadable lists of applicable keywords, and
machine-executable "1link" text for retrieving the actual files,

To use the catalog, the user examines the keyword listing and
selects (with the mouse) any keywords that relate to desired types
of information, lie may also assign weights to the keywords, on a
scale from 1 to 10.

Upon execution, the system assigns "scores' to the entries in the
file listing, according to the number and weights of Keywords
applying to each entry,

It then displays a list of entries with nonzero scores, in oxrder
of decreasing score, This constitutes an ordered list of files
containing the types of information desired by the user,

The user may now retrieve individual files with the Jump to Link
feature (described in another section of this report).

Detailed information on the operation of the information-retrieval
svstem 1s given in Appendix C,

11

NEW NLS FEATURES

Ce

CONTENT ANALYZER

The Content Analyzer feature of NLS is a highly flexible system
allowing the user to specify a particular "pattern" of content,
and then cause display of only those statements in a file which
satisfy that pattern,

The pattern specification is written into the file itself, as
text, in a special high-level language. The pattern may be simple
-- e.g., it may call for the occurrence anywhere in a statement of
some particular word -- or it may be highly complex -- e.g., it
mav involve the occurrence of several words or characters in some
special relationship within the statement.

The specification of simple patterns is simple and easy; complex
patterns nay require fairly intricate formulation,

Stored with every statement in a file is information giving the
initials of the last person to change the text of the statement
and the date and time on which this occurred. This information
may be interrogated by the content analyzer: thus the user may
write a pattern whose meaning is "display statements written or
changed by anyone except me since the beginning of this week,"

Detailed information on the operation of the content analyzer is
given in Appendix D,

FILE CLEANUP

Every NLS file contains not only the actual text and drawings
written into it but a great deal of information used by the system
in transferring it from one location to another, relating
statements to one another structurally, displaying the file, etc.

Occasionally, hardware errors cause bad spots in these data or bad
characters in the text; also, because of the couplexity of the
software and its constant state of revision, software bugs
sormetimes cause errors in file information,

Such errors can be very serious in their effect on a file.
Certain types make the file completely unoeadable by NLS, and
these must be corrected by accessing the file directly in core
with an on-line debugging system. Many errors, however, affect
the user's use of the file only when a particular statement is
displayed or a particular operation attempted,

A user command in NLS executes a program which can automatically.
correct many of these errors and can detect and list others, This
system, called File Cleanup, has drastically reduced the number of

II

NEW NLS FEATURES

files lost through systenm errors, particularly those errors which
are not immediately apparent but which may propagate into other,
more serious errors when some operation is executed on the file,

LINK JUMPS

By means of "links," it is now possible for the user to nove about
in several different files as easily as he formerly moved in a
single file,

All files used in this fashion must be stored on one of the
rapid-access devices (disc or drum)., The current configuration of
the system limits the number of files that can be so stored, but

plans for the near future include the ability to store many files
in this fashion,

A link is a string of text specifying a particular file, a
location in that file, and a set of viewing parameters to be used
in displaying the file initially. The format of the link is
(USERNAME , FILENAME , LOCATION : VIEWSPECS) .

The user name is omitted if the referenced file belongs to the
same user as the current file.

The file name is omitted if the link refers to a location in
the current fiie,

If the location is omitted, the beginning of the file is
assumed,

If the VIEWSPECs are omitted, the current VIEWSPE(Cs are
assumed,

This text string, which is readable by the user or by the systenm,
is inserted in the file text in the same way that a
cross-reference would be used in hardcopy. Note that it may refer
to another file or to another location in the current file.

When a user encounters the link, he may follow it simply by giving
the command "Jump to Link" and pointing to the link with the
cursor, The referenced material is immediately displayed; the
user may then return to the previous display, or he may follow
another link if there is one.

Detailed information on the use of links is given in Appendix E.
VIEWCHANGE

A large set of user commands has been implemented to give the NLS

6

i1

NEW NLS FEATURES

user the power to reformat his display. The various feedback
entities normally displayed at the top of the screen may be
individually moved, modified, or deleted, as may the main text
area of the display,

Any of these display entities may be suppressed completely, or
noved to a different part of the screen, or displayed in larger or
smaller characters than normal., They may also be displayed in
italic, underlined, or flashing characters.,

The command feedback line may also be displayed in abbreviated
form, showing only the initial letters of the words normally
displayed.

In the main text area, the line length and the number of lines
may be adjusted,

The two characters used for displaying the cursor spot ("bug')
may be changed,

Once the user is satisfied with a new display format, he may cause
the various display parameters that he has set to be stored as
part of his file, At any future time he may then retrieve thenm
with a user command and put them into effect,

One purpose of this system is to permit reformatting of the
display for use in video communication. Thus a user may clear
some area of his screen (e.g. top or bottom half, right or left
half, or one corner) to be used for superimposing a video image of

his own face, another user's face, another user's display, or some
other image,

Experimentation with these techniques is still at an early stage,
but some of the possibilities were explored quite extensively in
the presentation for the 1968 Fall Joint Computer Conference,

where a large screen with the speaker's console display projected

on it was used as a primary means of communication to the
audience,

PRINTER GRAPHICS

NLS files may be output on a Potter line printer, and this is the
normal means of obtaining a quick hardcopy of a file for internal
use, where high physical quality is not an objective.

Changes in the printer portion of the output processing system

permit drawings created in NLS files with the vector package to be
approximated on the printer by plotting lines as series of
periods, vertical-bar characters, etc, The quality of these

IT NEW NLS FEATURES

"drawings" is usually good enough for intelligibility and for
examination of page format.

IIT TYPEWRITER-ORIENTED DOCUMENTATION AID SYSTEM (TODAS)

The first stage of TODAS has been implemented and is in use. This
systen permits a trained typist to enter documents into the systen
via paper tape produced on a Teletype or other typwriter-like device.

Documents entered in this fashion incorporate the NLS
structured-statement format; this nay be as elaborate as desired
by zn author or, in the case of a document not written with NLS in
mind, may sinply use paragraphs as statements in a one-level list,

The paper tape is read in via a simple process and creates a
sequential file resembling files produced with QED, This file may
then be converted to an NLS file by use of the NLS command Insert QLD
Branch,

The typist must create statement numbers if they are not present in
the original copy, and must use a special character to indicate

capitalization, Apart from this, the typist simply transcribes the
material literally.

The typist may correct simple typing errors by typing special
control characters to cause deletion of words just typed or of a
statement being typed, All other corrections are left to be done
under NLS after the file is converted.

Detailed information on the operation of TODAS is given in Appendix
F.

0o

IV GRAPHICS-ORIENTED DOCUMENT OUTPUT SYSTEM (GODOS)

GODOS has been implemented as a first-stage experimental system,

It is now possible to output an NLS file to 35-mm film via a
high-resolution CRT on a CDC 3200 at another SRI computer facility.
In this way drawings in the file can be converted to high-quality
hardcopy, and in general a great deal of format and character-font
flexibility can be gained over mechanical methods of producing hard
copy.

The procedure is to output the NLS file through the output processor
to a "film file" which is copied to magnetic tape. This tape is then
read by the CDC 3200 and processed by a special program which
controls the CRT, Thirty-five-millimeter film is automatically
produced, one page per frame, and can then be used to produce
high-quality Xerox copies, The total turnaround time for this
process is typically on the order of hours if the volume of material
is not excessive, ‘

At present, the operating costs of GODOS are about 50 cents per frame
of film and 1 or 2 cents per page of Xerox copy.

Limitations

Limitations in the accuracy of the CRT make the characters
somewhat irregular, but they are highly legible,

The output display hardware uses variable-width characters. As a
result, it is currently impossible to format tabular data.

The maximum total image area that can be produced on the Xerox
copy is 7-1/2 by 7-1/2 inches, corresponding to about 90
characters per line and 40 lines per page. The line length is
more than is needed for most purposes -- a 65-character line is
standard, However, the 40-line limit is a severe limitation on
the amount of information that can be included on a page.

The output processor that converts the NLS file to a film file
cannot at present cope with graphic material superimposed on the
text of a statement, This is regarded as a severe limitation
because this intimate combination of text and graphics is a
particularly attractive area for exploration as a technique for
information presentation,

Detailed information on the operation of GODOS is given in Appendix
G.

10

At

1

Vo NETWORK INFORMATION CENTER (NIC)

INTRODUCTION

The Network Information Center (NIC) is a set of services to be
offered by the Augmented liuman Intellect Research Center (ALIJRC)
of the Stanford Research Institute (SRI) to the users of the ARPA
Computer Network, These services make use of the AIIRC computer,
an SPs 940, lUser access to the NIC will be primarily through the
network, but alternate means such as phone calls, letters, etc,,

will also be used (at least initially).

Some of the system specifications for the NIC are given in
Appendix I,

A nmajor goal of the NIC is to try to satisfy those information
needs upon which the success of the "network experiment' will be
nost dependent, The NIC, then, is concerned with supplying
information and documentation services -- as contrasted to other
possible services such as project managenent, compiling, etce,

NEEDS
lser needs of concern to the NIC are as follows:
{1) Creation of hocunents
lisers will need to create documents for use Iy other network
users and for their own use. After a document has been
created the user nay wish to inspect and/or modify it,
(2) Inspection of Documents
Users will need to examine {i,e. read) documents to various
depths, Such an exanination may be & prelude to subsequent
modification actions or other retrieval actions.
(3) Modification of Docunents
Users will need to nodify documents of their own creation,
whether to correct errors, add, delete, change, or merge.
They will also desire to modify documents created by others,
(4} Searching for Documents
The user will need to be able to scan collections of
documents to search for items relevant to his work at a

given moment, I a search is successful the user will
desire to inspect and/or retrieve documents that he sclects.

11

V. NETWORK INFORMATION CENTER

(5) Retricval of Documents

When a user has strong interest in a document, set of
documents, or sections of documents, he will need to have a
copy of the material for himself., The retrieval of such
information may result in copies in various forms == €.g.
hardcopy (paper, microfilm) or softcopy {(computer files),

. SERVICES

To satisfy these needs, the NIC 1s expected to provide the
following services:

{1} Access to NIC Services

This will be initially provided via the network and via
"dialup" Dataphone lines for typewriters and low-speed (RT
terninals. Later, access will be provided via the network
for high-performance CRT terninals,

(2; A Repository for a Collection of Documents

This collection will consist of documents contributed by
network users or collected by the staif of the NIC,

Elements of the collection will include research reports,
user's guides, svsten and progran descriptions, actual code,
and papers of general user interest, The collection will be
kept in various versions:

In hardcopy, as microfilm and paper masters held at the
NIC. Replicas would be routinely distributed to each
network site and other selected organizations for the
users,

Special nicrofilm replicas of selected portions of the
nicrofilm masters or the softcopy would be provided in
microfilim form upon request,

A catalog will be one of the elements in the collection., 1t
will list all material in the collection, whether it exists
as softcopy, hardcopy, or any combination.

(3} A Documentation-Aid Systen

The system, oriented initially to typewriters (and later to
CRTs), will incoerporate text-cditing and text-restructuring
facilities similar to those now available in the AHIRC
On-Line System (NLS),

\Y

NETRORK INFORMATION CENTER

This system is called TODAS, for Typewriter-Oriented
Documentation=Aid Svstemn,

The hierarchical structure, basic to the concept of the NLS,
will be available for use in all documents held by the NIC,
(It may, of course,be used simply as a list of paragraphs,
headings, etc,) The documentation-aid system will assist
the user in generating and using documents thuat exploit the
possibiilitics of this structure.

A transcription service will be available at the NIC to
transcribe hardcopy docwients into a softcony version to be
held in the NIC. This service will permit the initital
entry into the NIC held corpus of large numbers of existing
docunients and newly generated documents {(at least during the
initial phase of the network) without unduly burdening the
user, It will provide a transition interval while users
bBecome acouainted with the NLS document structure format,
Ultinately, it is assuned that documents will be originally
written with the use of computer aids -- elther on the
user's computer or with NIC's document-ald system,

{4) A Query and Search Svsten

This system will be applicable to softcopy and hardcopy
versions of the collection, By nmeans of the "content
analyzer" (a feature of the present NLS)} the user will able
to construct content specifications for searching the @IC
collection,

By neans of links between documents and within any one
docwment {another feature of the present NLS) the user will
be able to follow predetermined "trails" through the NIC
coliection,

Plans arc being made to develop a NIU catalog, encompassing
the softcopy and hardeepy (hicrofili) versions of the
collection,

(531 A Retrieval and Output Systern

This svsten will have online, offline, softcopyv, and
P :]] ie P

hardecony {nicrn®ilm) applications,

Pl b request a Meopy™ o thesdueuent

. aosolteopy for use througl NIC
or use al Ll owno corputer,

The user way also make special requests for hardoopy

3

NETWORK INFORMATION CENTER

versions either on microfilm or on paper, both produced at
the NIC, If he obtains a copy or the file at his machine he
can, of course, produce his own hardcopy version,

It is expected that the user will typically desire selected
"views" of the document, rather than the entire document
itself, A view can be specified as to depth in the
hierarchical file structure, truncation (number of lines of
each statement), and section or sections of the file or
files,

The view will be chosen by the user and will depend upon the
depth with which he wishes to examine the document and the
type of terminal at his disposal., A typewriter user will
desire smaller volumes of material than will the CRT user,
because of the slow speed of the terminal; the range of
rossible views will reflect this,

D, INITIAL PLANS

10

USERS TO BE SERVED

The initial plan covers the period from the present to becember
1969, During this interval the network will be in its
developmental stage and will be unavailable for general use,
The parties concerned with this development will be ARPA, BBN
(the network contractor), and the four initial sites
(University of Utah, UCSB, UCLA, and SRI}, These parties are
the primary users to be served during this time with the
emerging NIC services, NIC's specific service features are
being oriented toward the needs of these users, Users at the
other 15 sites are expected to use the NIC to a lesser degree
during this period, but will become increasingly active during
the latter part of 1969 and through 1970,

INITIAL SERVICES

The focus of the NIC will be upon the development of its basic
collection of documents, a Typewriter-Uriented
Documentation-Aid Svstem (TODAS), and an earlyv version of the
on-line search and retrieval process,

Information in the initial collection is beinyg oriented to
documents pertaining to the network development, and to
descriptions of svstems and subvstems to be available at the
initial sites, This information consists of program
documentation, system descriptions, user manuals, protocols and
procedures, and status reports,

14

V’

NETWORK INFORMATION CENTER

A NIC transcription service is already partially operational
and transcribing these documents into the NIC,

A preliminary version of the Typewriter-Oriented Docunient
Aid System (TODAS), 1s now in use by the transcription
service, operating in the off-line mode only.
Quite early, about the 2nd quarter of 1969, the collection will
bhe made available to the users in microfilm form. At that time
a NIC system, called Graphics-Uriented Document Output System

(GODOS) will enable computer-held information at the NIC to be
recorded onto microfilm via a CRT.

huring the third quarter of 1969 an on-line version of TODAS
should be implemented to permit users with Teletype machines on
the dialup telephone network to call into the NIC and execute a
linited search system,

During the last quarter of 1909 the on-line version of TODAS
with text-manipulation capabilities should be available.

PRESENT COLLECTION

The present NIC collection contains (in softcopy form) all or
portions of the following documents:

(1) Half-Tone Perspective Drawings by Computer
(L¥Wﬁe,ﬂ.Rmmmg%h(;!wa,A.ﬁnhhlUWND
14 November 1967, Revised 12 February 1968,

(2) A FORTRAN V Interactive Graphical Systen
A. C. Reed, D, E, Dballin, S, T. Bennion (UTAl)
3 April 1968,

(3) GS - Graphics Systen
L. Copeland and C, S, Carr (UTAI)

15 November 1967,

V. NETWORK INFORMATION CENTER

(4) Illiac IV == Systems Characteristics and Programming
Manual

Burroughs Corporation (UI)
1 March 1968, Change 1, 12 June 14068,

(5) Procedures and Standards For Inter-Cowmputer
Communications

A. K. Bhushan and I, i, Stotz (CHT)

Reprinted from AFIPS Conference Proceedings, Volume 32,
1908, .

(6} Specifications of Interface Message Processors for the
ARPA Conputer Networlk {(Statement of Work Annex "B'™)

Advanced Research Projects Agency (ARPA)
29 July 1963,
{7) U.C.5.B, On-Line Systen Manual
imiversity of California, Santa Barbara {VUCSR)
1 October 1967,
{(8) A Study of Computer Hetwork Design Paraneters
Iy B, Shapiro {SRI)
Necember 1962,
(9) N1C Newsletter
NIC Staff (SRI)
16 Jamuary 1964,
{10) Network Newsletter
RIC Staff (SRI)

6 January 1969,

16

A.

C.

VI SERVICE-SYSTEM DEVELOPMENTS

TIME-SHARING SYSTEM

We have continued to follow closely the time-sharing system (TSS)
as evolved by project GENIE at Berkeley,

We are currently running the TSS 1,96 system, which includes
some improvements in user features over the earlier TSS 1,94,

This version also provides for scratch files on the disc as
well as the earlier KDF disc file systenm.

In the last few months project GENIE has reduced its effort on the
time-sharing system, and we will have to pick up any continued
evolution,

NLS SOFTWARE

A new version of NLS was assembled early in November, This system

includes most of the user features originally specified (see
Section II).

Considerably more study has been done on the problem of serving
NLS through the time-sharing system,

The results of these studies show that we will not be able to
serve more than 6 users at a time with reasonable response
under the present hardware-software system.

The study also develops a proposed solution to this situation,
In particular, we plan to do some rather extensive rewriting of
the NLS software and compilers, and to provide external storage
for display buffers,

Extensive plans have been made for improvement and rewriting of
the basic software tools for our systenm,

We plan to integrate the MOL, Tree Meta, and the SPLs with NLS
so that source code files can be entirely in the system and
compilation/assembly can be done directly from the NLS file.
In addition, the compilers should run faster and compile
tighter code (See Appendix I),

HARDWARE

Both display systems have been delivered by Tasker, but neither is
accepted as yet,

Both systems are operating reasonably well and are almost up to

the expected performance as discussed in the last quarterly
report,

17

VI SERVICE~-SYSTEM DEVELOPMENTS

We have reached an agreement with Tasker on an acceptance test
procedure, including test patterns, that will be carricd out on
the systems, These tests will exercise the systems at the
modificd performance levels and we expect that both svstems
will be accepted under thesc terms by the end of February,

The Friden Keyvboards have been overhauled by Friden, but thev ave
still marginal in performance. The maintenance required to keep
thiem in operation is much too high,

We have ordered two Levboards from IKor for evaluation, These
should be delivered in the next few weeks,

Significant improvements have been nade in the video svsten,

We have improved the monitoring and distribution system by the
addition of amplifiers, and we have added equipment for split
screen and video mixing, This equipment was eXxtremely valuable
for our presentation at the FJCC, and ve are now using it in a
pernancnt setup for making movies,

We are currently making movies entirely over the video
svstem, A film service in 5an Francisco will make sound
films directly from a TV monitor, With the mixing and
special-effects equipment, combinations or
couputer-generated views and live views of people and
facilities are combined to produce the film,

e COMPUTLR-GENERATED SOUND

Work is progressing at a low level of effort on the implementation
of a system for carrving sound signals from the computer to the
individual consoles,

These signals will initially be used to carry feedback
information on the state of user operations being carried out,
Other uses for this information channel may be expected to
arise as soon as it is available,

18

VII FUTURE PLANS

A, PROPOSALS FOR EXPANSION

During this last period we issued three proposals to ARPA for
expansion of various aspects of our program,

We have developed specific plans for the next few months, based
upon the assumption that Proposal T will be accepted. If the
others are accepted, we will modify our plans accordinglyv,

Proponsal T: Expanded NIC activity, added hardware and software
to increase the capacity of our syvstem te 12 simultaneous NLS
users,

Proposal II: Interactive Disrlay Subsvstem -~ for ingreasing the
console-support capacity «f our current SPS 940 system from its
curvent o CRY corcoles to 530, anmd Jor adding 12 nore URT consoles
For local use, This wvould leave reserve capacity for about 5 MLS
users from the network at large, or the equivalent in gencral
Network service, ‘

By next vear we will need the capacity to handle about 24
interactive graphics terminals (for Al and NIC staff), plus
the equivalent of 5 or 6 such users as remote network service,

The modifications to our system discussed here would be an
alternative to Proposal 1,

The general basis for this expansion design stems from a
dichotomy of service responses,

The current saturation of our 940 at about 6 to 7 users of
NLS {the Un=-Line System) is due to excessive demands on the
swapper to handle the many simple feedback responses; the
processor itself is definitely not compute-bound,

Upon analysis of the response services provided by the
system, there emerges a clear dichotomy that leads to some
important new system-organization possibilities:

(Class 1 service responses, requiring access to the file
data or otherwise requiring the full time-sharing
capability of the 940

(lass Il service responses, not requiring file access,

but rather operating upon a relatively small amount of
data (i,e., upon the "context" record for the user's

19

VII FUTURE PLANS

current control state and upon his display-buffer
information).

This dichotomy is probably rather typical of interactive
systens,

The Class II responses account for the largest number ol
service transactions, and their high peak rates of
occurrence produce the current high, disabling ratio of
swapping time to compute time,

These responses entail known, short computations, and can
be serviced by simple queuing and executing to
completion, Iit other vords, they do not require the
whole tine-sharing machinery,

We propose to develop a special subsystem, interposed between
the 940 and the disnlay stations, that can handle wurk-station
I/0 mnad the Class IT responses, leaving the 940 to service only
the Class I responses,

It has been previously recomnended that this division of
ing should sbradn vhen v oorbaedate rernote network

Wit NS e s Pl hooe

: Letay Lowoipute s or the renote naser
should keep the control-state tables, the literal buflers,
o

ete,, and should provide the Uloss 11 respousces,

Much of the lass 11 service is affected by the
particular display devices, ete,, and would neced to be
special to that host in any case,

At least there will have to Le a conversion process in
that hest in order te map input devices to a standard
input for us, and nap a standard output description
into their output-device drivers,

This plan has been put forwvard in a memorandun by 7, F,
Rulifson (SRI/AHT) and S, Carr (Utah).

Thus, this new design would offer an appealing uniformity
with respect to the network, in that the 940 would service
remote users via the network in exactly the sane way as it
would service local users via the interface subsysten,

The Class II response programs would be written in our
machine~independent Special-Purpose Languages (SPLs), for
which (in the Rulifson/Carr proposal) translators would
be developed to compile the control programs for either
our interactive-display subsyvsten or the remote host

20

VII

FUTURE PLANS

< ompute r.

Inportant to ocur approach arée the interval-distribution
characteristics observed with our NLS users, For (Class-1
responses, the mean is about 3 seconds,

With this distribution, it is estimuated that tie 940 could
service at least 30 users with response equivalent to what
it now provides when it is servicing 4 or 5 users,

In that this same tvpe of interface subsystem could be used
with less responsive time-sharing syvstems to allow them to
accommodate some highly interactive users, the need for
developing principles of design is rather general,

Also, for future such applications (both ours and others) it
Seems quite important that the inplenentation of such an
"intervace" subsystem be very flexible {and expandable) in
terns of how many terminals it could handle,

This would mean that such a special-purpose system, fitting
between a general-purpose time-sharing svstem and a set of
interactive display terninals, could be implemented
econonically to serve a trial set of teminals, and could
then be expanded casily, as needed {with mininum cost
penalty for not beginning with the final capacityj,

Proposal ITI: Film Output System -- for setting up a fiexible,
high-quality facility allowing automatic output from our ¥40 files
onto film, in such a way that nicrofilm, microfiche, or print copy
can be produced with a full range of inteprated text and graphic
content,

We are not seeking nublishing-house quality in font,
resolution, or stability, Such quality would be desirable in
principle, but its incremental value for our purposes does not
seem to justify the associated incremental costs for
acquisition and operation,

We do seek a quality suitable for technical reports and
documentation, but the most important added feature we seek 1s
the capability to produce (under program contrel) arbitrary
characters and figures at arbitrary locations on a page and to
produce all the pages of a document in automatic succession,

We want to be able to handle all of the content of the
documents {except photographs) within the computerized system,

including the processes of composition, study, modification,
and output,

£

Vil

FUTURE PLANS

We also want to use this graphical freedom of page composition
to explore new techniques of hardropv prcsentation for the
types of material we will handle in the NIC and in our other
AHI work,

We feel that it will be very valuable to the experimental scope
and progress of the network if critical documentation can be
flexibly and rapidly updated and then rapidly and cheaply
distributed, We intend to handle text, graphs, line figures,
tables and equations,

Without the proposed equipnent, we would plan on using a lower
quality svstem that is available on a closed-shop basis within
SRI, Ve have already begun developing the programaing and
conventions for using this type of graphic output,

SOFTWARE FOR THE 940

The following software tasks are currently in the coding process,

The Tree Meta and MOL compilers are being completely rewritten,
This i1s part of a larger program to rewrite ail ti: svstenm

1
conpilers, discussed in Appendix 1.

Modifications to the TSS file-handling software are being made
to permit pormanent storage of Filv on the disc without the
restrictions imposed by the current KDF swystem.

The following software tasks are currently in the desipgn process,

The hardcopy output process and the process of viewing a file
on line are both helnp totally reorganized and to some extent
integrated with cach other,

The new output and dlspldv-credtlon processes will involve
greatly increased user control via embedded text directives
(w1th "macrodirective" capabilityv), simultaneous display of

material from more than one file, far more sophisticated
control of outyut formatting, dnd other new user features as

well as improved functioning in the service-system aspects,

The current vector package in NLS (see Appendix B) will be
rewritten to provide a number of new and improved features,

NETWORK

The Network Decode-tncode Language (DEL) is in the design stages.
This is a special-purpose language for writing programs for user
interaction with remote svsteus,

22

VII FUTURE PLANS

These programs, called Remote Encode Programs (RiPs), have
three functions: local sinulation of feedback, construction of
nessages to go across the Network, and translation of messages
received from across the Network,

For a user operating a svstem at a renote site, the local
REP will simulate the interactive feedback of the remote
svstem, without any commmication over the Network,

The local REP will then construct hardware-independent
messages from the user's control actions, and transmit them
to the renote site,

The remote REP will receive these messapes, translate them
to the appropriate form for the system being operated, and
transmit them to the system, It will then accept response
nessages from the system, translate them to
hardwarc-independent form, and transmit them to the local
site, where they are processed by the local REP and
transmitted to the user interface,

Some details on the design of this language and jts svsten
environment are egiven in Appendix .J,

D, NETWORK INFORMATION CENTER (NIC)

Detailed plans are now being made for implementation of the NIC;
Appendix K is a planning document for this task,

1.

Appendix A
AHI PARTICIPATION IN THE FJCC

INTRODUCTION

On 9 Decenmber 1963, br, b, €, Engelbart made a presentation to
the 1968 Fall Joint Computer Conference in San Francisco. This
constituted an entire Session, of which Dr, Engelbart was
Chairman.

The presentation was a Jdemonstration of the special techniques
and capabilities developed by the Conter; interactive computer
manipulation of text, with real-time CRT display, was used as
the mediunm for describing, demonstrating, and discussing the
Center's work in developing the capabilities which were being
demonstrated,

The user console, the prujection equipment, and the video
control equipment were located in the lecture hall; all
other equipment -~ the computer itself, the URT display
equipment, etc, -- remained at Stanford Research Institute
in Menle Park. Video, audio, and control information were
transuitted via appropriate links leased from the telephone
conpany.

This "computer mediwn was closely coordinated with the use of
speech and of advanced video techniques, and the resulting
combination was communicated to the audience by means of
projection television.

The television image was used to carry pictures of the
computer CRT display, the faces of speakers, and equipnent
in the AIIIRC computer room at Stanford Research Institute.

During the remaining two days of the conference, the Alil Research
Center held open house in a specially prepared room at the
conference,

The reaction of conference participants was highly enthusiastic,
and greatly increased public and professional interest in the
Center's activities 1s expected as a consequence,

The Center's participation in the FJICC was also a testing program
for a number of new and projected developments in the Center's
work, The Conference program was the culmination of several

months of intensive preparatory work,

PREPARATION

The preparatory work fell into three major categories: new
hardware and nodification of existing hardware, new software, and
the materials, techniques, and scenario for the actual

24

Appendix A
AHI PARTICIPATION IN THE FJCC

pPresentation,
1. HARDWARL PREPARATION
WORK ON VISUAL=-IMAGE EOQUIPHENT

The principal effort in the hardware area was concerned with
the generation, processing, mixing, transmission, and
projection of visual images,

Much work was done on the primary displays and
display=-generation equipment by both SRI and Tasker
personnel, to have them in peak operating condition,

Considerable work was also Jdone on television systenms,
for usc in mixing various images in various ways.

Transmission of all remote information from Menlo Park to
San Francisco was handled by microwave link, which
entailed detailed coordination with the telephone
company .

For projection of display and video images at the
conference, an Eidophor television projector was obtained
on loan from NASA-Aues Research Center, and considerable
effort went into familiarization with this device and
adjustment of its interface with the SRI equipment,

WORK ON COHSOLE EQUIPMERT

The console used for the presentation was of a new design by
lierman Miller Research, v

The old-style consoles used by AHIRC consist of a table,
with the display monitor partially recessed in the top
and the three control devices {(keyhoard, keyset, and
mouse) at the front edge,

The new console has the monitor mounted by itself on a

movable stand (wall-mounted or free-standing) and the

contrels mounted on a tray attached to the user's chalr,
b, SOPTHARE PREPAPATION

H

The software preparation included programming of several new
features,

Provision was nade to link two separate time-sharcd consoles

e
(92

Appendix A
AT PARTICIPATION I THD WICC

fur eollaborative work, by displaying the cursor spots for

both consoles on each display screen, The same information
is displayed on each console (by video switching, under
nanual control), with one user in control of the system and
the other communicating with him via an audio link, The
second user uses his cursor as a pointer when making
reference to information on the display.

New commands were implemented to glve the user direct
control over the formatting of the display. This control
permits detailed restructuring of the space allocations on
the screen, with the primary purpose of permitting special
formatting for use with video linking., Thus the user nmay
format his screen so that all computer-generated display
appears only on the left half of the screen, leaving the
right half free for video of another user's face, or another
user's display, etc.

The software for the first stage of a computer-generated
sound system was implemented., This system will provide each
console with a sound signal modulated in various ways to
carry real-time information on the internal processes of the
systen, as relevant to the individual user.

As implemented for the FJCC, this system provided sound
to only one console, and carried only limited
information,

Besides these new software features, the software preparation
involved accelerated development and debugging of a number of
other features, including capabilities for embedding
machine-executable cross-reference links in file material and
an interactive keyword information-retrieval system,

c. PRESENTATION PREPARATION

In the initial stages, prparation for the session presentation
consisted of extensive and detailed planning and llalson with
conference officials, hardware suppliers, the telephone
company, etc,

The basic plan for the presentation was to use information held

in computer files as the foundation for the development of the
entire presentation,

Accordlnyly, a complex structure of relevant files, both new
and existing, was established; cross-references were
inserted and a scenario was deve10ped in terns of topics and

26

Appendix A
AHT PARTICIPATION IN THE FJCC

the files which would be used for developing each topic,

The development of the file structure and scenario made
heavy use of the interactive aids for information
manipulation developed in the Center's work, and this very
fact was a key item in the presentation,

While this development was still taking place, a number of
rehearsals were held, some of them with live audiences, both
professional and lay, sophisticated and naive, Much useful
feedback was obtained from these rehearsals and incorporated in
changes to the scenario.

The last three rehearsals were filmed. Kinescope
photography, with a special motion-picture camera ainmed
directly at the television screen, was found to give
excellent results, These films were helpful in reviewing the
performances, and also provided emergency backup for the
actual presentation, where a movie projector was kept ready
and a projectionist standing by in case of system failure,

3. MAIN PRESENTATION

No attempt is made here to give details on the content of the
presentation. Interested persons are referred to the paper
published in the Proceedings of the 1968 Fall Joint Computer
Conference., A kinescope film was made of the presentation; a
limited number of copies of this film will be available.

a. GENERAL DESCRIPTION

The main presentation took place in the Arena of the San
Francisco Civic Auditorium. Instead of using a podium, the
speaker sat at one side of the stage, with a console, A
40-foot screen was hung at the center of the stage, and the

video picture was projected on this screen by the Eidophor
projector. A control center was set up at the back of the

Arena, along with the projector.

The wpeaker wore a headset and a lapel microphone; sound picked
up by the microphone was amplified into the Arena, and the
headset carried communications from the control crew.

The computer-generated sound was also amplified into the
Arena during portions of the presentation

Two sections of the presentation were made from remote consoles
in Menlo Park.

27

Appendix A
AHT PARTICIPATION IN THE FJCC

The first of these was given by J. F, Rulifson and was
concerned with special software methods used in AIIIRC,

Special techniques used for this section included
superimposing the speaker's face upon a view of his
display for general discussion purposes, and blanking out
the face for detailed discussion of the displayed
material,

The second remote section was by W, H, Paxton and covered
information-retrieval techniques.,

The beginning of this section included a demonstration of
the linking capability; the projection screen carried
Paxton's display with both his own tracking spot and
Engelbart's, with Paxton's face shown in one corner of
the screen (from which the computer display had been
cleared by reformatting the display under user control),

b. AUDIENCE REACTION

An audience of perhaps 800 persons attended the main
presentation, At the end of the presentation there was a
sustained standing ovation.

OPEN HOUSE

The two-day open-house program, held in two rooms at the Civic
Auditorium, consisted of informal demonstrations of AHIRC's
On-Line System, informal discussions between attendees and AIIRC
personnel, and display of the new lierman Miller Research
equipment, set up as a complete office.

It was originally planned to hold several semiformal
"minisessions' at the open house, to demonstrate and discuss
individual details of the On-Line System and related systems. In
practice this turned out to be impossible, because of the heavy
attendance and the eagerness of attendees simply to see the total
system in operation, to discuss various aspects of it, and to try
it out.

Approximately 1500 persons signed a register; the estimated total
attendance at the open house was 2000,

RESULTS

At present it is only possible to estimate some of the results of
the FJCC program., The benefits fall into two categories: improved

28

Appendix A
AHI PARTICIPATION IN THE FJCC

communication and relationship with the professional computer
comnunity (''external' benefits), and benefits directly affecting
the internal workings and research of the AHI Research Center
("internal" benefits).

de

b,

EXTERNAL BENEFITS

The number of professional people who are acquainted with AHI
research has been vastly increased, The professional press has
shown considerable interest in AHI research as a result of the

presentation, Considerable local newspaper coverage also
resulted.

At a luncheon for conference participants, special official
recognition was given to the session presentation,

INTERNAL BENEFITS

The most immediate internal benefit has been the opportunity
for a general shakedown of working procedures and a
considerable stimulation of new ideas for future development.
Very valuable experience was also gained in several categories.

Experience in Hardware Techniques

A great deal of valuable experience was gained in the
coordination and use of television equipment, not only for
presentation purposes but as a technique for use in the All
program itself, Use of such techniques as aids to
interpersonal collaboration in the use of interactive
display consoles is expected to become an important area of
AHI research,

Experience in File Usage

The first heavy and extensive use of linked-file structures
occurred in connection with the conference, and much useful
information was gained,

Experience in Collaborative Techniques

Some collaborative-working techniques were tried for the
first time in connection with the conference, and the
experience will he of very great value since this area is

one of the most important areas of planned AHI work for the
future.

29 i

Appendix A
AHI PARTICIPATION IN THE FJCC

Experience in Presentation Techniques

The session presentation was by far the largest and most
elaborate presentation ever mounted by AIIRC, The

experience of using interactive computer techniques as a
mediun for compunication will be of the greatest value,

30

Appendix B
THE NLS VECTOR PACKAGL

The vector package allows the user to create sinple line drawings,
with labels, as a part of Lis file. See the cornend descriptions in
the NLS User's Guide or file (nlist,v:g) for how to enter the vector
package in association with a particular statenent,

Drawings may be output via the printer or via film; on output to
other devices they disappear,

The following commands are valid within the vector package:
INSERT COMMANDS
(iv) INSERT VECTOR
Syntax: I V (CA / B / CD) CA
The bug mark is used to determine the endpoints of lines,
Each CA after the first determines a line.
Thus four CA's produce three lines, with line 1 meeting line
2 at the position of the second bug mark, and line 2 meeting

line 3 at the third bug mark,

To "1ift your pencil" and break the continuity of the lines
type a "B" or a (D,

(il) INSERT LABEL
Syntax: T L SPACE LIT CA CA

Semantics: After typing the label, hit a CA to attach the
label to the bug. The next CA fixes the label in its current
position on the screen (rounded off to the nearest position
that can be output on the printer).

HMOVE COMMANDS
(mv) HMOVE VLCTOR

Syntax: M V (bug selection of vector) §(left mouse button)
(bug selection of point)

Semantics: When the vector is selected, its ends are marked
0 and X. The end marked X will move to the point selected
and the end marked 0 will remain fixed.

Hitting the left-hand button on the mouse wll cause the O
and X to be interchanged,

31

Appendix B
NLS VECTOR PACKAGE

The bug is then moved to the desired point and a CA hit to
select the point., The "X" end of the vector will move to
this point.

(ml) MOVE LABEL
Syntax: M L [1] CA CA
Semantics: When the first CA is hit, the label [1] is
attached to the bug and moves with it. The next CA fixes
the label in the new position,

(md) MOVE DRAWING
Syntax: M D 2§2(bug selection of point)
Semantics: The two selected points define a translation
vector, and each component of the drawing is moved by this
amount,

DELETE COMMANDS

(dv) DELLETE VECTOR
Syntax: D V (bug selection of vector) CA
Semantics: Select the vector to be deleted and hit a CA.

(d1) DELETE LABEL
Syntax: D L [1] CA
Semantics: The label [1] is deleted.

(dd) DELETE DRAWING
Syntax: D D CA
Semantics: All vectors and all labels in the drawing are
deleted., The command is used for starting over from
scratch,

(t) TRANSLATE VECTOR

Syntax: T (bug selection of vector) $(left mouse button) (bug
selection of point)

Semantics: This command is identical to mv in terms of actions

32

Appendix B
NLS VECTOR PACKAGE

by the user to specify which vector and which end.

The end marked X moves to the specified new position and the
end marked O moves in such a way as to preserve the length and
direction of the vector,

(vv) VERTICAL

Syntax: V (bug selection of vector) §(left mouse button) CA

Semantics: When the CA is hit, the end marked X is moved
horizontally so that the vector is vertical,

(h) HORIZONTAL

Syntax: Il (bug selection of vector) $(left mouse button) CA

Semantics: When the CA is hit, the end marked X is moved
vertically so that the vector is horizontal,.

(g) GRID

Syntax: G CA

Semantics: The grid provides the user a means to draw ‘"pretty
pictures.,"

All positions are rounded off to the points on the grid,

The grid also places lines going through grid points such that

they can be output on the printer and still look like straight
lines,

The grid is either on or off; after typing "g" to get "grid" in
the command feedback line, a CA causes the grid to change
state,

SPACING
(sf) SPACING OFF

Syntax: S F CA

Semantics: This will set a flag that goes along with the
picture telling the display creation routines not to space
the statements to leave room for this picture.

33

Appendix B
NLS VECTOR PACKAGE

(sn) SPACING ON
Syntax: S N CA
Semantics: This is the complementary command to spacing off.
Since the flag is set for spacing on as the default option,
this command is necessary only to change the flag back.
(a) ABORT
Syntax: A CA
Semantics: Everything that has been done in the current
instance of the vector package is thrown away, the command
"Vector Package" is aborted, and it is as if the command had
not been given,
(£f) FINISHED
Syntax: F CA

Semantics: This command returns control from the vector package
to NLS proper.

34

1.

Appendix C
THE INFORMATION-RETRIEVAL SYSTEM

INTRODUCTION

The information-retrieval system permits a user to construct a
specially formatted '"catalog" file, containing references to other
files and capable of being reordered automatically according to
some chosen set of weighted keywords. When reordered, the file

lists references in order of relevance according to the choice and
weighting of keywords.

Any set of statements in a file may be reordered with this system,
assuming that each statement has a 'mame" (parenthesized first
word). The specifics given in this appendix refer to the most
basic way of using the system,

THE CATALOG FILE

The catalog file has two functioning sections: a list of file
references pointing to other files, and a list of relevant
keywords to be used in retrieving file references,

Other material may also be included in the file without any
effect on the functioning of the retrieval system. For
example, since the keyword section is to be studied directly by
the user, it may be desirable to group the keyword entries into
categories and separate them with headings and subheadings.

a, FILE-REFERENCE SECTION

Each file reference is a separate statement beginning with a
serial number in parentheses, followed by a link pointing to
the referenced file. This is followed by a list of keywords
relating to the file, followed by comments on the file.

Only the first item is actually essential to the working of
the system, and it need not actually be a serial number; any
string of letters and/or digits enclosed in parentheses

(i.e., a "statement name" as recognized by NLS) will
suffice, as long as it is unique to the particular
reference,

The use of serial numbers as ''mames" in file-reference
statements, and the inclusion of the other items, are
matters of convenience to the user,

b. KEYWORD SECTION
Each keyword must be a single word -- i.e., it must contain no

nonprinting characters. Apart from this, it may be any
arbitrary string of characters, It is convenient to use short

35

Appendix C ,
INFORMATION-RETRIEVAL SYSTEM

strings of three or four letters standing for longer words or
phrases,

Each entry in the keyword section is a separate statement with
the following format: first the keyword itself, in parentheses,
serving as the name of the statement; then the word or phrase
for which it stands, plus any comments or other information
that may be desired; and finally a special code string (such as
an asterisk or a dollar sign followed by a space) followed by a
list of serial numbers which are the names of statements in the
file-reference section, Each of these serial nmumbers must be
enclosed in parentheses,

Examples of a short catalog file and of how it might be reordered
are given at the end of this appendix,

KEYWORD COMMANDS

This section explains the effects of the keyword commands. Full

details on the syntax and control-dialog procedures may be found
in the NLS User's Guide.

The keyword commands operate upon the keywords themselves, i.e.,
the names of statements in the keyword section of the catalog.
The commands permit the user to select keywords as relevant;
assign integer weights to them; change weights; display a list of
keywords that have been selected, with their weights; and produce
an ordered display of the relevant file references.

a. KEYWORD SELECT COMMAND

This command is used to select a given keyword as relevant, It
is automatically assigned a weight of 1,

b. KEYWORD WEIGHT COMMAND
When a keyword is selected under this command, its current
weight is displayed (if it has not been previously selected,
its weight is zero). The user may then type in an integer
which becomes the new weight.

c. KEYWORD LIST COMMAND

This command causes display of a list of keywords with nonzero
weights,

36

Appendix C
INFORMATION-RETRIEVAL SYSTEM

KEYWORD LIST WEIGHT COMMAND

This is the same as the "List" command except that the weights
are shown.

KEYWORD FORGET COMMAND

When a Keyword is selected under this command, its weight is
reset to zero, just as if it had never been selected.

KEYWORD FORGET ALL COMMAND
This command causes all keyword weights to be reset to zero,
KEYWORD EXLECUTE COMMAND

This commiand executes a program which is the heart of the
systeri: it produces an ordered display of statements from the
file-reference section of the catalog.

Each entry for a selected keyword is scanned, and the serial
numbers which it contains are noted,

Each of thesc serial numbers is the name of a statement in
the file-reference section: each of these statements is
assigned a "'score'" equal to the weight of the keyword, and

this score is accumulated with .further references from other
keywords,

When all of the selected keywords have been used to score
the file references, the file-reference statements with
nonzero scores are displayed in order of decreasing score.

37

Appendix C
INFORMATION-RETRIEVAL SYSTEM

4, EXAMPLE OF CATALOG FILE

a, KEYWORD SECTION

(nls) on-line system * (ul) (u2) (u3) (u4)
(ug) user guides * (ul) (u2) (ud)
(kse) keyset ¥ (ul)

(cdp) control-dialog proc. * (ul)

(anz) content analyzer * (u2)

(£fij) file jumping * (u3)

(inf) info. retrieval * o (ud)

(vs) view control * (ul) (u3)

. b. FILE-REFERENCE SECTION
(ul) (nlist,1l:xnhj) nls,ug,vs,kse,cdp; nls user guide
(u2) (conan,l:behj) anz,ug,nls; content analyzer user guide
(u3) (rlink,1:x2bhj) fij,vs,nls; link jumping and returns
(u4) (infor,1l:x2bhj) inf,ug,nls; information retrieval systen
5. EXAMPLE OF REORDERING |

Suppose that the system is used on the catalog shown above. The
user has considerable interest in file jumps, so he gives the
keyword "fij" a weight of 5, He is also interested in
control-dialog procedures, so he gives the keyword 'cdp" a weight
of 3. Finally, he is also interested in user guides, so he gives
"ug'" a weight of 1,

When the command Keyword Execute is given, the following scoring
is done:

The keyword "fij", with a weight of 5, applies to serial number
u3; therefore the statement whose name is '"u3" is given a score
of 5.

Appendix C
INFORMATION-RETRIEVAL SYSTEM

The keyword "cdp', with a weight of 3, applies to serial number

"ul; therefore the statement whose name is "ul" is given a score
of 3,

The keyword "ug", with a weight of 1, applies to serial numbers
ul, u2, and u4; therefore the statements whose names are "ul",
"u2", and '"u4" are given scores of 1 each., In the case of
"ul", this is added to the previous score of 3.

The final scores are 4 for '"ul", 1 for "u2", 5 for "u3", and 1 for
"u4", They are then displayed as follows:

(u3) (rlink,1l:x2bhj) fij,vs,nls; link jumping and returns
(ul) (nlist,1:xnhj) nls,ug,vs,kse,cdp; nls user guide

(u2) (conan,1:x2bhj) anz,ug,nls; content analyzer user guide
(u4) (infor,1:x2bhj) inf,ug,nls; information retrieval system

The user may then access the referenced files by using the Jump
to Link command with the links given in the references,

39

Appendix D
THE NLS CONTENT ANALYZER

1, INTRODUCTION

The content analyzer feature of NLS permits the user to specify
(in a special language) a pattern of content., The analyzer is .
compiled in real time from the user's specification, and when it
is turned on (by a VIEWSPEC parameter) only statements which meet
the content specification will appear on the display.

The pattern specified may be a simple one -- e.g., it may
specify a string of characters that must appear somewhere in
each statement to be displayed; or it may be complex -- e.g.,
it may specify a string, to be followed within a given number
of words by another specified string, in statements which were
created after a certain date by a certain author, and not
containing some third specified string.

The language for specifying content patterns is simple and easy
to use for simple cases, but more exacting for complex cases.

2. PATTERN-SPECIFICATION LANGUAGE

a.

THE PROCESS OF SEARCHING A STATEMENT

When the content analyzer is turned on, each statement in the
file is searched, character by character, for the content
specified in the pattern., Normally, the search begins with the
first character, but it is possible to cause the search to
proceed backwards,

The analyzer uses a pointer to keep track of the search. The
pointer always indicates which character is to be examined

next, unless something in the pattern causes the pointer to be
moved first,

At any given moment in the search process, the analyzer is
searching for one of four types of content entity:

A literal string of characters, such as "abcd" or '"13-x" or
"ed Mat" or '"memory."

- A string of character-class variables; these are explained
in detail further on., A string of character-class variables
might specify "'three digits, one after another,'" or '"two

letters, followed by any number of spaces, followed by three
to five letters or digits,"

The date associated with the statement, (This is not
normally displayed, but every statement bears the date on
which it was created or most recently modified,)

40

Appendix D
NLS CONTENT ANALYZER

. b.

The initials associated with the statement. (This is not
normally displayed, but every statement bears the initials
of the user by whom it was created or most recently
modified.)

All of the more complex analysis is achieved by moving the
pointer according to the logic of the pattern specification,

For example, if the analyzer is to start at a given point
and find either String A or String B, it first looks for
string A; if String A is not found, the pointer is returned
to the starting point, and a search is made for String B,

BASIC ELEMENTS
Every pattern ends with a semicolon.

Every pattern is made up of one or more of the basic entities
listed above, combined by operators.

If the pattern (or some part of it) is to be found anywhere
after the point in the statement where the search begins, it is
enclosed in square brackets; otherwise it must be the first
thing found.

A string of characters specified as content is enclosed in
quotation marks, For convenience, if the string consists of
only one character, it may be preceded by an apostrophe and the
quotation marks omitted.

Examples

["memory"]; This pattern will cause display of only
those statements containing the word 'memory'" at any
point,

"inside'"; This pattern will cause only statements
beginning with the word "inside'" to be displayed.

['3]; This pattern will cause display of only those
statements containing the character "3" at any point.

Patterns like those shown in the examples above may be strung

together; the significance of this is that one item is to be
found after the one specified ahead of it.

41

Appendix D |

NLS CONTENT ANALYZER

Ce.

Examples

[''abc''def"]; This pattern specifies that the string abc
immediately followed by the string def must appear
somewhere in each statement to be displayed. The pattern
["abcdef]; is exactly equivalent,

["abc"] ["def"]; This pattern specifies that the string
abc is to be found anywhere in the statement, and
anywhere after the "c¢'" the string def is to be found,

CHARACTER~CLASS VARIABLES

The character-class variables are as follows:

L means any letter
D means any digit
LD means any letter or digit

PT means any printing character (any character except space,
tab, and carriage return)

SP means a space
TAB means a tab
CR means a carriage return

NP means any nonprinting character (space, tab, or carriage
return)

CH means any character at all,

Examples

['.LLL'=D';]; This pattern will cause display of only those
statements containing (anywhere) the following content: a
period immediately followed by three letters, immediately
followed by an equals sign, immediately followed by a digit,
immediately followed by a semicolon.

"abcd"SPL D; This will cause display of only those
statements beginning with the following content: the string

abcd immediately followed by a space, immediately followed
by any letter, immediately followed ﬁy any digit,

42

Appendix D
NLS CONTENT ANALYZER

Note that a space is necessary between the L and the D
because of a possible ambiguity: The pattern "abcd"SPLD;
would mean '"the string abcd immediately followed by a
space, immediately followed by any letter or digit,"
because LD means any letter or digit.

d, THE DOLLAR SIGN (ARBITRARY-NUMBER CONSTRUCT)

The arbitrary-number construct, in its most general form, is

m$n, The meaning is "any number from m to n of occurrences of
the following entity."

When the analyzer has found n occurrences of the specified
entity, it also looks ahead to see if there is another
occurrence, If there is, the test is considered to have
failed. 1In other words, the linits i and n are absolute,

Exanple

The pattern 5511LD; specifies that each staement to be

displayed must begin with five to eleven letters and/or
digits.

A statement beginning with twelve or more letters
and/or digits would be rejected by this pattern.

The m or the n, or both, may be omitted; their assumed values
in this case are m=0, n=1000, For all practical purposes,
then, the default value of n is "any arbitrary number," since
it is very unlikely that any entity will occur 1000 times
consecutively.

Examples

The pattern [7SD1512L$SNP]; specifies that each statement

to be displayed must contain the following: seven or
more digits immediately followed by one to twelve

letters, immediately followed by zero to five nonprinting
characters,

The pattern 2§"abc'"; specifies that each statement to be
displayed must begin with two or more occurrences of the
string abc, one after another.,

43

Appendix D
NLS CONTENT ANALYZER

e. GROUPING BY PARENTHESES
N
Parentheses may be used as they are in algebra to group
elements, The specifications found within the parentheses are
then treated as a single entity for logical purposes,

Example

{354 (DSPL)1$2NP]; This pattern specifies that each
statement to be displayed must contain the following:
three or four occurrences of the string (digit space
letter), immediately followed by one or two nonprinting
characters.

If the parentheses were not used, the 3$4 construct
would apply only to the D.

The square brackets have the same grouping effect as
parentheses; however, they are not interchangeable with
parentheses because they also mean that the enclosed pattern
may be found anywhere after the starting point.

f. OPERATORS

The operators used for combining entities are as follows, in
order of decreasing precedence (see note on precedence, below):

- (minus sign): This indicates negation, Thus -LD means a
character which is not a letter or a digit.

Example: ["abc'"-SP]; This pattern specifies that each
statement to be displayed must contain the string abc
immediately followed by some character which is not a
space. '

(space): This indicates concatenation, Thus "abc' "xyz';
specifies that the string abc must occur and must be
immediately followed by the string xyz.

The space may be omitted unless it is necessary to
prevent ambiguity. Thus 'abc" "xyz'; could also be
written "abc'"''xyz";

/ (slash): This indicates alternation. Thus SP/TAB means a
character that may be either a space or a tab.

Example: 1$SP/2$3PT; This pattern specifies that each
statement to be displayed must begin with either one or

44

Appendix D
NLS CONTENT ANALYZER

more spaces, or two or three printing characters.

NOT: This indicates negation, and is the same as the minus
sign except for lower precedence.

AND: This 1is logical intersection.,

The action of the AND is to return the pointer to the
beginning of the search that has just been completed,

Example: The pattern ["abc"]JAND["xyz'']; causes each
statement to be searched first (from the beginning)
for the string abc; then, if it is found, the
statement is searched again from the beginning for the
string xyz. Each statement displayed will contain
both strings, but the order in which they occur will
be irrelevant,

Note that this is different from the pattern
["abc"] ["'xyz"]; because if the AND is not used, the
second search is not made from the beginning but
from the point just after the end of the first
search. Each statement displayed will then contain
both strings, but the string Xyz must be somewhere
after the string abc, When the AND is used, this
restriction will not apply.

Note also that the pattern ["abc"AND'"xyz'"]; is
meaningless: it specifies a string that is both
"abc'" and "xyz'".

OR: This is the same as the slash sign except for the lower
precedence.

Note on Precedence of Operators: As used here, "high

recedence' reans that when the pattern is parsed, the
igher-precedence operators are used first in grouping the

elements of the pattern. Thus a high-precedence operator has
low "binding power,"

Example: Consider the pattern a AND b OR c¢/-d AND NOT e f;
where a, b, ¢, d, e, and f are pattern elements such as
quoted strings or character-class variables.

This is grouped as follows:

The minus sign has the highest precedence, so that we
have a AND b OR ¢/(-d) AND NOT e f;

45

Appendix D
NLS CONTENT ANALYZER

Next is concatenation, so we have a AND b OR c¢/(-d} AND
NOT (e f); |

Next is the slash, so we have a AND b OR (c¢/(-d)) AND NOT
(e £);

Next the NOT, giving a AND b OR (c/(-d)) AND (NOT (e f));

Finally, the AND gives (a AND b) OR ((¢/(~d)) AND (NOT (e
£));.

g. DATES AND INITIALS

The dates and initials associated with each statement may be
tested with the constructs .SINCE, .BEFORE, .INITIALS=, and
LINITIALS#, (The symbol # is used to mean "not equal.")

The INITIALS construct requires the following format:

+INITIALS=ABC where the string ABC is a user's initials
(three initials must be given).

The .SINCE and .BIFORE constructs require the following format:
.SINCE (68/10/12 13:14) where 68 is the year, 10 is the
month, 12 is the day, 13 is the hour, and 14 is the minute,

The time may be eliminated by using 0:0.

Examples

«.BEFORE (67/3/22 15:15) AND ,SINCE (67/1/12 12:00); This
pattern will cause display of only those statements

bearing dates between noon of 12 January 1967 and 3:15 PM
of 22 March 1967,

LSINCE (68/10/10 0:0) AND ,INITIALS#DGC; This pattern
will cause display of only those statements bearing dates

later than 10 October 1968 and not bearing the initials
DGC.

h, THE WITHIN CONSTRUCT v

The WITHIN construct has the following format:

WITHIN n FIND expl SKIP exp2

where expl and exp2 are patterns and n is an integer. The
search starts at the current position, and the content

46

Appendix D
NLS CONTENT ANALYZER

specified by exp2 is skipped up to n times in a search for the
content specified by expl, If any content other than what is
specified by exp2 or expl is found, the search fails.

Example

["write"] WITHIN 3 FIND " file" SKIP 1$NP1$PT; This
pattern specifies the word "write'" followed by the word
"file," with up to three words intervening,

The search works as follows: after the word "write"
is found, the search pointer indicates the space
following the word. The exp2 pattern calls for one or
more nonprinting characters followed by one or more
printing characters; thus the space and the next word
are skipped and the pointer again indicates a space.
This skipping process is repeated up to three times,
until the word '"file'" is found,

i. SPECIAL CONTROL OF SEARCH

The position of the search pointer can be stored and set, and
the direction of search can be controlled, in order to achieve
complex effects. These effects also involve the use of the IF
construct (described further on), and the possibilities have
been explored only superficially at present, It should be
possible to create pattern expressions of great complexity
which would resemble sophisticated data-processing or
information-retrieval programs, but at present the techniques
have not been worked out,

The position of the pointer may be stored in any one of nine
buffers, Pl .., P9. This is done by writing 1Pn, where n is
some digit from 1 to 9,

The stored value in the buffer can then be decremented by
writing «<Pn, The reason for doing this is that when the
analyzer has found some entity, the pointer is moved to
the next character position; in order to store the value
of the last character actually searched, then, it is
necessary to write tPn«Pn.

The search pointer can then be set to the value in a buffer
by writing Pn,

The search pointer can also be set to the beginning or end
of a statement by writing SF(Pn) for the beglnnlng and
SE(Pn) for the end,

47

Appendix D

NLS CONTENT ANALYZER

Note that SF and SE are functions which require a buffer
value as argument; buffer values are not reinitialized
after a statenent has been scanned but continue to
indicate the same character in the statement they were
originally set to. Thus it is possible for a search to
cover more than one statement,

The normal direction of scanning may be reversed by writing

a less-than sign (<) and returned to the forward direction
by writing a greater-than sign (0).

The left-arrow (+«) used for decrementing a buffer value
will increment it instead if the current scan direction
is backward, Thus the effect will alwayvs be the sane --

the buffer value will indicate the character just -
scanned,

Example

tP1 SE(P1) < §NP -',; This pattern causes
stateiients to be searclhed backwards from the end.
Only statements whose last printing character is
not a period will be displayed,

The construct "1P1" at the beginning of the
pattern causes the current pointer position
(which indicates the beginning of the statement)
to be stored., This is sinply for the purpose of
having an argument for the '"SE(P1)" construct,
which causes the pointer to be positioned to the
end of the statement. The less-than sign then
causes the scan to proceed backwards; any number
of nonprinting characters will be permitted, and

then a character which is not a period is
specified,

j. THE IF CONSTRUCT

The IF construct has the following format:

(IF relat THEN expl ELSE exp2)

where "'relat" is a relationship between two buffer values and
expl and exp2 are pattern expressions.

The possible relationships are as follows:

.EQ (equals)

48

Appendix D
NLS CONTENT ANALYZER

k.

.NE (not equal to)

LT (less than)

+LE (léss than or equal to)

.GT (greater than)

.GE (greater than or equal to).

If the specified relationship is true, expl is used for a test;
if it is not true, exp2 is used,

Example

tP1 SE(P1) < (['e] tP2«P2 AND ['t] tP3«P3) (IF P2 .LT P3
THEN SF(P1) > $SP "The'" ELSE SF(P1) > ['" if "]); This
pattern imposes the following condition on statements to
be displayed: If the last "e" precedes the last '"t",
then the first word in the statement must be "The".
Otherwise, the statement must contain the word "if",
enclosed by spaces, The proof is left to the reader.

THE EMPTY CONSTRUCT
Whenever the analyzer makes a test, a flag is set true or

false, After a statement has been tested by the complete
pattern, it is displayed if the flag is true and omitted if the

flag is false.

The construct EMPTY simply sets the flag true. Conversely,
the construct NOT EMPTY (or -.EMPTY) sets the flag false.

This is useful in the IF construct, where one may simply wish
to test the relationship without imposing further tests.,

 Example

tP1 SE(P1) < (['e] tP2«P2 AND ['t] tP3«P3) (IF P2 .LT P3
THEN NOT .EMPTY ELSE .EMPTY); This pattern is similar to
the previous example, but slightly simpler. The
condition is that if the last "e" in the statement does
not precede the last '"t", the statement will be
displayed; otherwise it will not,

The "1P1" stores the pointer value, which inicates the

beginning of the statement, The "SE(P1)" sets the
pointer to the end of the statement, and the '"("

49

Appendix D
NLS CONTENT ANALYZER

3.

causes a backward scan, An "e'" is found and its
position stored in P2; then a "t" is found and its
position stored in P3, The IF construct compares the
values of P2 and P3: if P2 is less than P3 (i.e, if
the "e" precedes the "t" in the statement), the '"NOT
.EMPTY" takes effect and the flag is set false, so the
statement will not be displayed; if P2 is not less
than P3, the ",EMPTY" takes effect, the flag is set
true, and the statement is displayed.

PROCEDURE FOR USING CONTENT ANALYZER

A pattern may be written as text anywhere in a file, A file may
thus contain any number of patterns; however, only one pattern may
be compiled at a time -- i.e., when a new pattern is compiled the
code created by the previous one is lost.,

To compile a pattern, the command Execute Content Analyzer is
used. The syntax is

ec [cl] CA

where [cl] means that a character is selected either with the
mouse or by means of a pointer call, and CA means that a Command
Accept key is struck.

The character selected must be either the first character of
the pattern or a nonprinting character preceding the pattern,
with no printing characters intervening.

Note that the last part of a pattern may thus be used as a
separate pattern, if it is meaningful.

The screen will go momentarily blank with a message. If the
pattern has been compiled, the message is "successful
compilation'; if the pattern has an error in it which prevents it
from compiling, the message is ''syntax error.,"

Syntax errors are frequently caused by inadvertent omission of
some character such as a quotation mark. Another common cause
for a syntax error or a compiled pattern that does not work as
expected is an error in the way that parts of the pattern are

grouped. In the latter case, the problem may often be solved
by insertion of parentheses.

When the pattern has been compiled, it will not go into effect
until the view-control parameter "i'" is placed in effect. When
this has been done, the system will display only statements which

Appendix D
NLS CONTENT ANALYZER

fit the pattern,

Testing of statements begins with the statement currently
designated as the display start; other statements are then tested
in the order in which they would appear '"mormally," i.e. with the
analyzer off, Any other view specifications which are in effect
continue to work; thus if only first- and second-level statements
are being displayed, only first- and second-level statements will
be tested by the analyzer,

Statements are tested until the display screen has been filled,
If no statements are found that fit the pattern, the screen goes
blank with the message "empty'" and remains so until the analyzer
is turned off or until changed view-control parameters make it
possible to find a statement that fits the pattern.

Whenever the display is re-created, the testing process is
repeated, Thus if a statement is edited, and the editing changes
it so that it no longer fits the pattern, it will disappear from
the screen,

51

Appendix E
THE NLS LINKING FEATURE

The command Jump to Identity is the most basic means of "moving
about" within a file, A statement is selected, view=-control
parameters are set (if desired), and upon execution the display is
re-created with the selected statement at the top and the new view
parameters (if any) in effect.

Variations of this command give alternate ways of specifying the

top statement, In each variation, the basic action is still the
same, :

This procedure has two principal limitations: the first is that only
statements within the file may be selected, and the second is that

the most appropriate view parameters are sometimes a matter of
guesswork for the user, ‘

To overcome these limitations, the concept of '"links" has been
developed.

A link is a string of text, in a special format, that specifies a
point to be jumped to and a set of VIEWSPECs to be used., The
specified point may be in the current file or in any other file

that is accessible; the file may belong to the current user or to
another user,

. The basic format of a link is as follows:
(USERNAME , FILENAME , STATEMENTSPEC : VIEWSPECS)

"Username" is simply the name of a user, as recognized by the
system, This is the user who "owns" the file,

If this element is omitted in the link, the owner of the
file currently displayed is assumed.

"Filename" is the name of the file, as recognized by the
system,

If this element is omitted in the link, it is assumed that
the link refers to a place in the file currently displayed..

"Statementspec' is either a statement name or a statement
number,

If this element is omitted in the link, the origin (first
statement) of the file currently displayed is assumed,

"VIEWSPECs" is a string of codes for setting view-control
parameters,

52

Appendix E
NLS LINKING FEATURE

If this element is omitted in the link, the parameters
currently in effect are assumed.

THE "“JUMP TO LINK" COMMAND

The command Jump to Link is used by selecting a valid link in the
file currently displayed, When the selection has been made, the
username and filename (if any) are displayed as feedback at the
left of the command feedback line on the display; the user

executes the command by hitting Command Accept, and the display is
re-created as specified by the link,

EXAMPLES

A file might contain the following text: ",.. see
(Smith,workplan,sched:gnB) for further details."

The Jump to Link command, used on this link, would cause
Smith's file '"workplan" to be opened and displayed, with the
statement named "sched" at the top of the display., The
VIEWSPECs '"'gnB" would work as follows: the "g" would cause
only the branch defined by the statement at the top to be
displayed; the '"n" would cause statement numbers to be
suppressed from the display; and the '"B" would cause

indentation of statements according to level to be
suppressed,

The user would then be working with Smith's '"workplan" just as
he had previously been working with his own file, He could
change the VIEWSPECs, move around in the file, etc.

Now suppose that Smith's '"workplan" file contains the following
text: "... this is explained further in (costest,2b)." The
user decides to follow this reference.

Since no username is given, the name Smith is assumed -- not
the name of the actual user, but the name of the displayed
file's owner, No VIEWSPECs are given, so the current values
are assumed, Smith's file "costest" is loaded and
displayed, with Statement 2b at the top.

This process may be continued indefinitely, as long as there
are links to follow.

RETURN FROM LINK JUMPS

The system keeps track of all jumps, both within a given file
(intrafile) and from one file to another (interfile)., It is

53

Appendix E
NLS LINKING FEATURE

possible to return to a previous view by means of special Jump
commands.,

RETURN FROM INTRAFILE JUMPS

The user can retrace his steps within a file by using the Jump
to Return and Jump to Ahead commands.

Only five steps can be retraced in this fashion.

Whenever an intrafile jump is made, the complete specifications
of the new view are added to a sequential list, This list is a
history of intrafile jumps made by the user,

Exceptions: Jumps made by means of Jump to Return and Jump
to Ahead are not recorded. \

The Jump to Return command simply looks backward one item in
the list, and re-creates that view; the Jump to Ahead command
looks forward. The ends of the list are joined to each other,
so that if Jump to Ahead or Jump to Return is used repeatedly,
the starting point is eventually reached again,

RETURN FROM INTERFILE JUMPS

The user can retrace his steps from one file to another by
using the Jump to File Return, Jump to File Ahead, Jump to File
Current, and Jump to File Working Copy commands.,

Again, only a limited number of steps can be retraced in
this fashion, The actual number depends on the length of
the links; three or four would be typical,

Whenever an interfile jump is made or a file is loaded with the
Load File command, the complete specifications of the new view
are added to a sequential list, This list is a history of
interfile jumps seen by the user,

Exceptions: Jumps made by means of Jump to File Return, -
Jump to File Current, Jump to File Ahead, and Jump to File
Working Copy are not recorded,

The Jump to File Return command simply looks backward one item
in the list and re-creates that view; the Jump to File Ahead
command looks forward., The ends of this list are not joined;

thus if the user runs off either end of the list, an error is
detected and the message ILLEGAL ENTITY appears.

54

Appendix E
NLS LINKING FEATURE

To understand the Jump to File Working Copy command, an
explanation of the '"WORKING COPY" file is needed,

When a file is either loaded (with the Load File command) or
jumped to, the system opens it and displays it,

The system maintains a certain amount of scratch space
for recording changes made by the user; these changes are
not made to the file itself,

When this scratch space is exhausted, the system creates
a new file called WORKING COPY, opens it, copies the
altered text to it, displays it instead of the original
file, and closes the original file, Thus the original

file is not altered unless the command Output File is
used,

When the WORKING COPY file is created, a message to that
effect is displayed on the screen., If another WORKING
COPY is created from another file, the old WORKING COPY
is overwritten; the user, in other words, is allowed only
one WORKING COPY file.

The Jump to File Working Copy command opens and displays
this file, The jump is not recorded on the list,

The file WORKING COPY does not appear on the list;
therefore, when the user has executed Jump to Working
Copy, he cannot use Jump to Return to return to the
previous view -- the result would be to return to the
file displayed one step previous to the one actually
desired.

In software terms, there is a pointer associated with
the list, which points to the current file; the Jump
to File Return and Jump to File Ahead commands simply
move this pointer, However, since the WORKING COPY
file is not on the list, the pointer is not moved by
the Jump to File Working Copy command but remains
fixed,

The return from the WORKING COPY file is made with the Jump
to File Current command.

Jump to File Current cannot be used for any other purpose,

since unless the WORKING COPY is being displayed it simply
indicates the file currently open and displayed.

55

1 Appendix F
TODAS USER'S GUIDE

la INTRODUCTION

1b

1c

lal This appendix is the User's Guide for the first-stage
Typewriter-Oriented Documentation Aid System (TODAS). Certain
file-manipulation operations are not explained; however, the
process and procedures for creating a paper tape for input to
TODAS are fully covered, It is assumed that a Teletype is used
for creating the paper tape,

STARTING UP THE MACHINERY

1bl Make sure you have enough paper in the Teletype and enough
paper tape in the tape punch. Turn the power switch on the

Teletype to the LOCAL position, and turn the punch on with the
button,

ENTERING MATERIAL FROM THE TELETYPE
l1cl First produce a leader by hitting HERE IS a few times,

lcla On some Teletypes, this will not work, In this case, the
leader can be produced by hitting CONTROL SHIFT P 30 or 40
times,

lc2 You are now ready to start entering statements, Each
statement must start with a statement number,

lc2a STATEMENT NUMBERS

1c2al A statement number consists of alternating sequences
of numbers and letters., Each sequence is called a '"field."

lc2ala A number field is simply a number, from 1 on up.
It may have any number of digits.

1c2alb A letter field may be any single letter from a to
z, or it may be made up by using the @ sign as if it were
a "zero"; i.e., after z comes a@, then aa, then ab, and
so forth. For most purposes, of course, single letters
will be sufficient,

1c2a2 The number of fields in the statement number is
called the "level'" of the statement, If the statement
number has only one field (which must be a number field),
then it is a first-level statement, This statement is a
fifth-level statement,

1c2a3 If you examine this appendix, you will see how
statement numbers are used: they form a hierarchical

56

Appendix F
TODAS USER'S GUIDE

structure like an "outline" format, Notice that the
statements are indented according to level; however, this is
not always done, and it is never done when entering
statements at the Teletype.

1lc3 To type a statement, first type a statement number, It does
not matter if mistakes are made in typing the number, as long as
the level (the number of fields) is correct. Even if the level is
wrong, it can be corrected at a later stage.

1c3a Only two things are absolutely essential: the statement
number must'begin with a digit, and it must be followed by at
least one space,

le3b If you accidentally start with a letter instead of a
digit, you must abort the statement., This is explained below.

lc4 Now type the text of the statement. To end each line, use a
RETURN followed by a LINE FEED, NOTE: it does not matter if, at
the end of a line, you type too far and end up typing characters
on top of each other, They are punched on the paper tape just the
same,

lc4a To capitalize letters and to correct mlstakes as you go,
use the '"control flags," explained below,

lc5 To end the statement, type a RETURN followed by at least two
LINE FEEDs. You are then ready to start the next statement with a

new statement number,
1lc6 FLAG CHARACTERS

lc6a There are four characters that have special meanings,
These are the backslash (-- shift L on the Teletype), the
less-than sign (), the apostrophe ('), and the dollar sign
($). These are called "'flag characters,"

1c6al The backslash is used to indicate capital letters.
When it is typed immediately in front of a letter, that
letter will come out as a capital in the final typing, and
the backslash will disappear,

lc6ala For example, "A QUICK BROWN FOX" will come
out "A Quick Brown FOX',

lc6a2 The less-than sign is used to delete a word that has

just been typed, as you are entering a statement., It '"backs
you up'" over the last word you have typed, and also over any

57

Appendix F
TODAS USER'S GUIDE

spaces, LINE FEEDs, or RETURNs in front of the word. In the
final typing, the word will not appear, nor will the
less -than sign itself,

lc6a2a For example, "A LAZY DOGS CAT'" will come out as
"a lazy cat'.

1c6a3 DO NOT try to use the less-than sign to correct a
statement number. The system will not be able to process
this correctly and the whole tape may become useless and
have to be done over,

1c6a4 If you type a less-than sign after a space or a
carriage-return or a tab, or any string of these characters,
the system will "back up" to the end of the last word.,

lc6a4a For example, '"A QUICK <{BROWN FOX" will come
out as "A quickbrown fox",

lc6a4b Definition: A gap character (called a "GCHAR")
is any space, carriage return, or tab, A GAP is any
string of gap characters,

1lc6a4bl Rule:The less-than sign always causes the
system to back up all the way through one GAP.

lc6a5 You can type a string of two or more less-than signs.
The system will back up over that many GAPs,

lc6a5a For example, "A QUICK BROWN PIG CAT ELEPHANT{<K
FOX" will come out as "A quick brown fox".

lc6a6 The apostrophe lets you use the backslash or the
less-than as ordinary characters., If a backslash or a
less-than sign has an apostrophe immediately in front of it,

the apostrophe will disappear, the backslash or less-than
sign will be typed in final typing, and the backslash or
less-than sign will have no effect,

lc6a6a For example, "A *'{ B" will come out "a < b",
1lc6a7 The apostrophe also works on itself, Two apostrophes
in a row will come out as a single apostrophe, because the
first one causes the second one to be taken as a normal
character. The first one disappears,

lc6a7a For example, "DON''T" will come out "don't",

58

Appendix F
TODAS USER'S GUIDE

1d

1c6a8 The dollar sign has special meaning only when it is
the last character in a statement -- i,e., when it is
immediately followed by a RETURN and at least two LINE
FEEDs,
1c6a9 The effect of the dollar sign when it is the last
character in a statement is to delete the statement
entirely,

1c6a%a For example,

3A SOME PEOPLE ARE FICKLE

3A1 BUT GARBAGE IS §

3A1 BUT CATS ARE NOT.

will come out as follows:

3A Some people are fickle

3A1 But cats are not.

lc7 After typing the last statement, end it with a RETURN and at
least two LINE FEEDs; then end the tape by punching a foot or two
of leader in it, in the same way that you started the tape, Label
the front end of the tape with a white pencil,

READING THE PAPER TAPE INTO A QED FILE

1d1 NOTE: Some of the operations in this section are not fully
explained, They will be covered in a later version.

1d2 Enter at a terminal, under your own name or whatever username
the file is to belong to,

1d3 Get a copy of the file /GO-TODA,

1d4 Load the front leader of the paper tape into the paper-tape
reader in the control room,

1d5 Give the command GO TO FILE /GO-TODA. The system will
respond with "INPUT:'', Give the answer "8-LEVEL," The system will
type "OUTPUT:". Give the name of the QED file you wish to store
the text on., The system will type "BEGIN TRANSLATION"; then when
it is done with the job it will type "END TRANSLATION",

1d6 Copy the new QED file to a disc file.

59

Appendix G
GODOS USER'S GUIDE

1. PURPOSE

The purpose of GODOS (Graphic Oriented Documentation Output
System) is to allow NLS files with vectors embedded in the text to
be output to hardcopy.

2. GENERAL DESCRIPTION
a. PASS4 PROCESS

The GODOS process is initiated using either the PASS4 Subsystem
or the PASS4 output capability within NLS, (PASS4 is the
general output processor that serves NLS.)

If using the PASS4 subsystem, one operates it as described
in the PASS4 User's Guide. With this Subsystem QED files
are used and vector information is lost in the output,

If using the PASS4 output capability within NLS, then one
may obtain GODOS output in the same manner as using any
other output device. For GODOS output one types "F" (for
FILM) when specifying an output device.

Film files differ from those for other devices, especially
with respect to variable character widths and vector and
vector label information. Major differences are:

Characters produced for film are of variable width,

This creates numerous problems when attempting to have
film output duplicate the page layout of the other
output devices.

Tabular data are extremely difficult to produce in a
readable manner, for two reasons:

First, tabs are presently set for every nth
character, Since the characters vary in width,

tabs will appear at different places on succeeding
lines.

Second, if tab positions on the page were specified
in some other manner, then one would still face the
problem of lining up columnar data, Because digits
are also of variable width, numbers with decimal
points and commas would not necessarily appear with
these characters lined up under each other on
successive lines.,

© 60

Appendix G

GODOS USER'S GUIDE

Vectors and vector labels are produced meaningfully only
for fllm.

There are situations where statements with
superimposed vectors will not be output properly,

Because of a line-width restriction (described below)
it is advisable to produce vectors which do not appear
"close to" the right-hand margin. The resulting
hardcopy output from film will be magnified, and the
vectors would appear too close to the right margin in
the final version,

There is a maximum of only 40 lines of output per page
(or film frame) for the present GODOS,

This maximum is determined by the fact that a software
character set is needed for the present GODOS. This

character set is defined so that the effective maximum
is 40 lines if one desires readable interline spacing.

The number of characters per line is also restricted if
one wishes to produce a report which approximates the
present text area requirements (NASA standards for
reports).

Normal hardcopy output (Xerox) using standard lens
settings would produce a page with the text in an area
only 7-1/2 inches in height.

It is possible to use other lens settings for the
Xerox Copyflo in order to magnify thls to 8-7/8
inches,

As a result, if the line width were not restricted
the width of each page would also be 8-7/8 inches,
Therefore, PASS4 directive default values have been

adjusted so that with magnification the line width
will be approximately 6-5/8 inches.

PASS4 output is to a file designated by the user. The
resulting file is a normal SDS 940 file, except that
"end-of-file' characters may be included because of the manner
in which vector coordinates are output,

Because of the high cost of producing film it is desirable
for the user to attempt to check the film file before
copying it on magnetic tape. He can use two possible

61

Appendix G

GODOS USER'S GUIDE

methods:

First, he can use PASS4 to produce an analogous file for
the printer., For this file, if he has used the standard
default directives for film output, he should use the
following directives for printer output: MCH=65, NTP=0,
PGP=1, MLN=38, NLN=39, PLN=40,

The resulting file will only approximate the film
file. An exact copy cannot be obtained at present
because of the problem of varlable-w1dth characters
produced for film output.

The "MCH" directive default value for film is actually
54, This value (which is converted to raster units
within PASS4) is set so that a relative sized page is
Eroduced. When producing hardcoEy output via the

erox Copyflo one may then use the 35-mm lens with a
setting of 15 in order to obtain an 8-1/2 by 11 inch
page, with textual data appearing in an area of 6-5/8
by 8-7/8 inches, The "MCH" value of 65 for the
printer is an approximation of the number of
characters per line which will appear in the film
file.

Second, the user can attempt to read his film output file
into QED. Unfortunately, the user must become a code
converter to be able to see what the file looks like, but
with a few guide lines this should not be too difficult,

When the film file is read using QED, it may be
impossible to obtain the entire file because vectors
may have created end-of-file marks. Assuming that the
file has no vectors or that the vectors have not
produced these offending marks (if they have the user
can at least verify his information up to the point at
which the vector did terminate the file input into
QED), one can proceed,

When the film file is printed using QED, the following

short list of conversions should be sufficient to
enable the user to ''see'" his file in a limited sense:

1=a’ 2=b’ 3=c’ LR N 9=i, T=1’ "=2’ #=3’ ooy @=0,
P=space, K=shift-up, L=shift-down, «+=end-of-page
mark, §=control character follows (in some cases),

Vector information is totally unrecognizable in

62

Appendix G
GODOS USER'S GUIDE

QED. The user should skip lines until he sees one
which can be recognized as a possible statement.

Statement numbers and end-of-page marks can be easily
identified:

Statements are normally seperated by a blank line,
The heirarchical structure can be easily
recognized, with lower level statements (which are
indented) having leading spaces (P's) at the front
of each line, Usually K's and L's will be included
(for shift up and shift down -- these shifts are
not designed to be analogous to standard keyboard
shifts), For example: PPPK«L3P would be the
beginning of statement number 1C.

Page numbers are recognized by approximately 30
spaces (P's), followed by a page number (one or
more of the characters which are upper case for the
digits on the typewriter keyboards), followed by a
carriage return, followed by an end-of-page mark,
«, For example, [PPPPPPPPPP'(] used as a line
search in QED should point to line 28 of the film
document,

The PASS4 output file must then be copied to a magnetic tape

(use tape 8, reel 46) using a special copy routine which will
not terminate the copy process until the "actual" end-of-file
mark, i.e., at least ten end-of-file marks (137b) in a row,

This routine is located in Tomlin's disc file area and is
named GODGO (occasionally it is also to be found as
(SYSTEM) /GO-GODOS) :

When this program is available (having been retrieved
from disc) then the user may operate it as he would any
“go file,"

At the beginning of execution the system will type
"INPUT:"., The user should type the name of the film file
he wishes to use.

Next the system will type "OUTPUT:". The user should
type a tape file name (either old or new).

If an old tape file is too short to hold the input

file, a message will be typed, "OUTPUT:" will be
retyped, and the user should designate a different

63

Appendix G
GODOS USER'S GUIDE

be

Ce

file,

If input and output have been properly specified, then
1% **BEGIN EXECUTION*****" js typed, At the successful
conclusion of the program "*****END OF PROCESS**#***" jg
typed.

In order to place another file on tape, the user must
reinitiate the above process.

The number of the resulting tape file must be noted and a data
card punched for each file which is to be processed with the
CDC 3200 FORTRAN program for conversion to film. The file
number(s) should be punched right-justified in the first four
columns of the card(s).

The data card(s) should then be placed at the end of the
FORTRAN deck in numerically ascending order., Then the deck and
the magnetic tape (8) should be taken to the CDC 3200,

FORTRAN PROGRAM TO CREATE FILM

A FORTRAN program has been developed to be run on the CDC 3200
and is the second major step in the process to produce 35-mm
film and hardcopy output.

This program is designed to use as input the magnetic tape
produced on the SDS 940 and data cards which are used to
indicate which files on the tape are to be processed.

Output from this program is 35-mm film,
FILM-TO-HARDCOPY CAPABILITY

The third (and last) major step in the process is the
film-to-hardcopy procedure.

The 35-mm film which is produced by the FORTRAN program via the
CDC 3200 must be developed, This step can be rather rapid,
depending on when the program is run and what the film
developing schedule is. Essentially the film is developed
using an automatic Fulton Film Processor which is now located
in Building 320, This processor is operated by the service
personnel connected with the CDC 3200 and under the direction
of the Communication Laboratory.

The developed film is then ready to be transferred to hardcopy.
There are two ways in which this can be done:

64

Appendix G
GODOS USER'S GUIDE

First, and probably the most useful, is to have the film
automatically Xeroxed, This process produces 9-inch by
l1-inch sheets of Xerox hardcopy.

Second, one can use the processed film to produce selected
pages (frames) of Thermofax hardcopy.

65

1.

Appendix H
NIC SYSTEM SPECIFICATIONS (PART I)

INTRODUCTION

This appendix proposes a set of specifications for the handling of
the HCC (hardcopy collection), the FRC (film readable collection),
and the MRFD (machine readable file directory). These
specifications form but a part of the total set for the NIC. By
far the bulk of the specifications will concern the processes

associated with the transcription service, and are not considered
here.

Part II of the specifications (not given here) is concerned
with TODAS (Typewriter-Oriented Documentation Aid System) and
OP (Output Processor).

The HCC represents a set of documents that are physically present
at the NIC in hardcopy. The FRC is a microfilm version of a
portion of the MNC (master NIC collection), where the MNC consists
of the HCC and the MRC (machine readable collection). This
section directs attention to the FRC as it will exist in the early
days of the NIC. During this time the MRC is essentially

nonexistent, so the FRC contains only documents from part of the
HCC. ‘

The MRFD is the master catalog of the MNC., From the MNC one can
extract information elements that can be used to construct a file
directory for the FRC, the MRC, the query facility, and the
retrieval facility. In part, the MRFD may contain information
useful only in the administration of the NIC.

The assumed environments in which these specifications apply are
two in number. The first environment is one in which the only NIC
output is derived from the HCC, Here the primary concern is with
the management of the documents, their selection and arrangement
for filming, and the maintenance of the NIC catalog together with
the construction of the index for each issue of the FRC., The
second environnment is one in which the NIC output is derived from
both the HCC and the MRC, The latter, through the use of the
transcription service, has been derived in part from the HCC,

In the second environment the MRFD is truly the catalog for the
MNC, The directory for each version of the FRC must account for
this,

Though this section is addressed to the first environment, the
specifications thus derived will hold for the second environment,

THE CATALOG -~ GENERAL FEATURES

The catalog might be characterized as one of the more dynamic

66

Appendix H
NIC SYSTEM SPECIFICATIONS

elements of the NIC, It will grow and change as the MNC grows and
changes. In fact, every attempt will be made to localize the
effects of growth and change to the catalog, rather than extending
them to the MNC,

As envisioned here, the catalog will contain entries for all
documents in the HCC, whether they have been filmed or not, and
all documents cited by those documents of the HCC that have been
microfilmed, Included in the HCC are those entries in XDOC and
the various versions of the FRC.,

Entries in the catalog may vary in nature as follows:

(1) Exists by name only within the NIC; i.e., the MNC has no
copy of the document

(2) Exists as a physical document
(3) Exists as a microfilmed entry in the FRC

(4) Exists in the MRC, Clearly a document can change its
status with time; indeed, it can be in several states
simultaneously, Thus a document may be available as hardcopy,
and as microfilmed, and as transcribed to the MRC, and as
transcribed from the MRC to microfilm,

It would appear less confusing to treat each form of the document
as a different version, with all versions sharing a common name.,
This approach can give rise to a few small conflicts, For
instance, the MRC version may differ in content and format from
the HCC version; likewise the microfilm from the MRC can differ
from the microfilm from the HCC.

A strong feature being planned for the NIC is the ability for a
user to fetch a cited reference, where that reference may well be
another document. To facilitate such retrieval activity, it is
desirable to associate with each cited reference a unique file
name, This one name should always be associated with the subject
document wherever it appears, regardless of version or form of
citation, Within the NIC the file name should be the key to
effecting rapid retrieval of the subject document.

THE HARDCOPY COLLECTION

Hardcopy will be defined as encompassing printing on paper or a
photograph on film, Many hardcopy documents will be in the

vicinity of the NIC, but not all of the documents will be within
the purview of the NIC. The documents considered within the NIC's

67

Appendix H
NIC SYSTEM SPECIFICATIONS

4.

domain are those listed in the catalog as being retrlevable upon
a request of the NIC,

When a document enters the NIC's domain, several processes should
be effected.

(1) A file name should be assigned to it., First, the catalog
needs to be searched to determine whether the document has
already been assigned a name., If it has, then the catalog
entry should be appropriately updated; if not then an entry

should be established,

(2) The document should be reviewed to identify citations to
other documents. Once again the catalog should be searched to
obtain the file names of citations already entered and to
insert the previously missing ones,

(3) An appendage should be made to the document listing the
file names associated with each of the citationms,

(4) The document should be filed in the physical form
necessary for microfilming and reference.

(5) Keywords or other retrieval elements should be obtained
from the document and also entered into the catalog.

THE CATALOG -- MAINTENANCE
Catalog maintenance refers to the updating of the entries throggh
the insertion of new data, revision of existing data, and purging
of old data. The possible information elements associated with
each file name are as follows:

(1) File name

(2) Author's name and affiliation

(3) Title, subtitles, and other identifiers

(4) Date of publication

(5) Keywords

(6) Citations from other files

(7) Version, creation description, physical parameters (e.g.,
number of pages).

68

Appendix H
NIC SYSTEM SPECIFICATIONS

Se

The completeness and size of a catalog entry will vary with the
document, As a minimum an entry could consist of one element in
each of items 1,2,3,4 and 7, for a '"name only" document,

THE INDEX

The index for each version of the FRC should be derived from the
catalog, The catalog is already in the system as the MRFD, so the
system should be able to construct the index directly and print it
out., In particular, several indices could be constructed, for
example, as a permuted KWIC, It should only be necessary to
specify to the system (1) the file names of the documents to be
included in that version of the FRC, and (2) the order in which
the documents are to appear,

The MRFD has, for each document, the number of physical pages it
represents, Once the film format is established, say roll or
microfiche, the system can directly enter into the index the
location of each document. In the case of roll film, this
location might be cassette and frame number; in the case of
microfiche, this location might be card, row, and column number,

In the use of the FRC containing only HCC documents, the user is
afforded only indirect links among the documents. For instance,
when a document is cited, the file name having been appended, the
user must enter the index by file name to obtain the document's
location and then fetch that document. When a table of contents:
is encountered within a document, it will still refer to the
physical content of the document. The user will need to search
within the document on that basis, where there need not always be
a simple correlation between page or section number and frame
number,

69

1.

Appendix I
PLAN FOR REWRITING COMPILERS

INTRODUCTION

The Tree Meta, MOL, and SPL compilers are in need of many changes,
This appendix discusses the problems of the compilers in their
current state and offers a unified solution,

We feel that a total planned rewrite of all three compilers offers
the most economical long-term solution, Eventually all the things
listed below must be done, If they can be accomplished with some
simultaneity, all changes can be accommodated on the first pass,
less time will be wasted, and the benefits of the rewrite will be
available sooner,

CURRENT PROBLEMS AND PROPOSED SOLUTIONS

a., MOL BUGS

The most straightforward problems are the bugs in the MOL,

None of these is too serious for the current MOL usage. We all
just avoid using the syntactic phrases that cause the problems,
This does mean, however, that the code we write does not always
reflect the original, natural conception.

This is rare enough that it certainly does not warrant a
complete rewrite of the MOL; most of the bugs could be fixed
by a couple of weeks' work on the current version.

A more serious problem with the MOL is the 80-character line
orientation of the input routines. These programs rely on the
format of QED lines; thus code that exists in NLS format must
be made to look like QED format before compilation, This
limits the length of NLS statements containing MOL code, and
just makes everything kludgey.

b. SYMBOL PROBLEM

NLS has grown to such proportions that it nearly overflows the
symbol tables of the TSS subsystems used to assemble, load, and

debug it, Already it is too large to use NARP and DDT; we must
use ARPAS and ODDT,

If an additive assembler were added to Tree Meta, and MOL were
rewritten using the built-in assembler, this problem would
completely disappear., The additive assembler would avoid the
symbolic definition of the many thousand generated symbols that
MOL currently produces., The only symbols defined at load time
would be those specifically defined in the MOL code. This
would reduce the total number from about 3000 to a few hundred.

70

Appendix I
REWRITING COMPILERS

C.

We would design the additive assembler so that the files it
produces would be NARP-DDT compatible. This would mean that we
could use the new DDT and its improved debugging features.

SYSTEM LOAD

The load that assembling NLS currently puts on the time-sharing
system (TSS) is detrimental in two ways. It kills the response
of the system, eats up a lot of RAD space, and makes NLS nearly
unusable while it is being done, This, in turn, makes the
system programmers a little afraid to do assemblies and thus
slows system design and debugging., This last problem is felt
in a slow creeping way every time we put off doing an assembly
for a few days because it would put such a load on the system.

The present way of assembling the system is first to compile
all the files, then assemble them, and finally load them, It
takes longer to assemble a file than it does to compile it;

thus, getting rid of the assembly phase would cut the process
in half,

Moreover, since the compilers currently spend more than half
their time in the symbolic output phases, eliminating this
would again cut the time in half,

Finally, the symbol-table routine wastes coniderable time in
long compilations, We partially implemented a hash table in
the MOL, and compilation time dropped by 1/4 for large
compilations, All this means that total assembly time would
drop by a factor of 5 and maybe even 10,

The major effort for the conversion to additive assemblers
would be done once, in Tree Meta, The syntax for additive
assembly output would closely resemble the current syntax for
symbolic output,

COHERENT PACKAGE WITH NLS

A minor but annoying feature of the compilers as they currently
stand is their kludgey interface with NLS, This is especially
true when it comes to error recovery, While everything else is
being rewritten, we could devise a general scheme for file
processing and feedback to the user about the results of the
process.,

If the MOL and the SPLs were both written in Tree Meta, the

code files for the system could be better organized. Each
overlay could be a single file; the binary would be the result

71

Appendix I
REWRITING COMPILERS

€.

ge

of a single compilation,

This would simplify system assembly as well as speeding it
up, Less RAD space would be needed because fewer
intermediate files would be generated, Fewer symbolic and
binary files would have to be saved on the disc.

Also, by having the files more closely related to program
function, better use could be made of the NLS linkage
commands,

POWERFUL SYNTAX IN MOL

A number of new features will be added to the MOL syntax,

These are discussed in more detail below under MOL. The main
benefit of the features is that they will make the syntax of
the language closer to the intentions of the coder., This does
not change anything in drastic ways; it just makes life a
little better when someone is trying to figure out what a piece
of code is "supposed" to do.

MORE DENSE SPL CODE

By rewriting the SPLs and using the features of Tree Meta, we
feel that about a 20-percent reduction could be made in the
nymber of instructions compiled, This does not affect NLS in a
big way, but it would give us a little more room for expansion

in some of the overlay pages that are currently over 90 percent
full,

CONSISTENCY OF METHODOLOGY

To convert the code files to NLS and retain the current
compiler systems is to do only half a job. The listings would
not disappear, and the "larger NLS experiment" would not be
done, To replace the listings, the code files must be
coherently organized and easily accessible, For files written
in MOL, this may mean experimenting with syntactic changes, and
this is only practical if they are written in Tree Meta.

Eventually, we would like to work out a method of compilation

that substitutes the tree structure of NLS files for the phrase
structure of the MOL and SPLs, This is virtually impossible
unless the MOL is in Tree Meta and the changes can be done in

one central place, namely the Tree Meta library, for all the
experimental compilers.

There is the vague, elusive notion of staying on top of the

72

Appendix I
REWRITING COMPILERS

dgsign problem, The code files are becoming cumbersome to work
with in their current form. Just moving them to NLS would not
help much.

If, however, the syntax of the languages were more suited to
NLS linkage conventions, and the files themselves were
better structured, we might again reach a point of feeling
that the structure is well understood, and the effect of
changes in code can be properly predicted,

We have finally figured out a way of writing the parse and
unparse rules for the MOL compiler in Tree Meta and not
overflowing the push-down stacks during compilation., Now that
we have a solution, it would be satisfying to have all of our
compilers written in the same metalanguage,

3. PROPOSED CHANGES
a. TREE META
Additive Assembler

This is one of the major projects in terms of radical
changes to the existing Tree Meta system. Tree Meta would
be enlarged to permit either symbolic or binary output from
a compilation, The binary output would be formed by making
up words for a sort of backhalf processor that puts the
words in the precise form necessary for DDT. Linkage for
undefined labels and packing of undefined Polish expressions
would be automatically handled by the backhalf,

Symbol Table

The new symbol table will use hash entry instead of the
current search technique, In conjunction with the additive
assembler, it will be expanded to include declaration flags,
array-size parameters, and definition bits,

The new table would also reserve bits for compile-time
attribute flags. This would permit a Tree Meta compiler to
check declarations and give appropriate diagnostics,

Basic Recognizers
The basic recognizers will be changed to delete blanks after
recognition instead of before. This will reduce the initial

recognizer test, and thus the time for a failure, from the
current 25 instructions to less than 5 instructions. These

73

Appendix I

REWRITING COMPILERS

failures represent about 20 percent of the runtime for a
compilation,

The "TST" (literal string test) recognizer will be further
improved so that a failure will average only slightly more
than 3 instructions. This recognizer represents about 80
percent of the total recognizers executed, Moreover, its
failure-to-success ratio is about 20 to 1,

Use of Skip Return

A new convention will be established for all the recognizers
and recursive rules. The return will skip if the subroutine
has been successful and not skip if it has failed., This
means that the current BRANCH FALSE instruction can be
eliminated, It is the shortest and yet most frequently
executed POP in the Tree Meta system. It accounts for about
35 percent of the POPs executed,

Interface to NLS

Once Tree Meta has been interfaced to NLS, all the other
compilers should interface automatically, It is hard to
guess how long it will take to do the job, since we do not
yet know what we want to do.

One suggestion is to add to NLS the ability to store a list
of T-pointers, which are the result of a compilation, This
list could be kept by NLS with the file until another
process is performed on the file., The statements on the
list would be displayed under a new VIEWSPEC parameter.

b. MOL

Rewrite in Tree Meta

The entire MOL will be written in the new Tree Meta language
using the additive assembler, This project is mostly done,
We have a version of the MOL written in an extended Tree
Meta language using symbolic output., The code is almost
complete, and we do not anticipate any new problems, Of
course, the compiler cannot be checked out without a new
Tree Meta because it needs features in the metalanguage
which are not currently in Tree Meta.

New Features

The new MOL will have many additional features, None of

74

Appendix I

REWRITING COMPILERS

them is expensive in terms of effort or compile time, They
are mostly free benefits of the use of Tree Meta for
compiling.,

The new compiler will allow an expression to be a statement.
This will help by clearing up the meaning of many lines of
current code, when an expression is forced into an ASSIGN
statement even though that is not the intention of the
writer,

The STORE operator, currently available only through the
ASSIGN statement, will be put in as the lowest-level binding
operator in an expression, This will mean that STOREs can
be done during expression evaluation., This also helps
conciseness and clarity.

Possible addresses will be expanded from the currently
restricted set to any expression, This was always wanted,
even in the original MOL specification, but was too
difficult to add to the original version., The power of Tree
Meta to do its top-down tree search means that the more
versatile syntax can be added and tight code can still be
produced for the simple cases, just as it is now,

The double branch currently compiled at the end of logical
expressions will disappear, This can be done simply with
the unparse rules in Tree Meta; it would have been difficult
with the current MOL.

We plan to introduce a new CASE statement, It will do a
single CASE based on a logical expression at the start of
the CASE, rather than on a predetermined number.

Syntax will be added to simplify the use of the BRX, SKR,
XMA, and register-exchange instructions, This will make all
the 940 instructions available directly in the MOL (except
those concerned with floating-point exponents).

Use of Additive Assembler

When the MOL is written using the additive assembler, all of
the many generated labels will simply not appear in the
binary file. This will mean that the number of symbols for
NLS will be reduced to a manageable size, Moreover, our
current kludgey way of using the "frozen' feature of ARPAS
can be given up completely.

75

Appendix I

REWRITING COMPILERS

Complete Integration into MOLR

The already existing version of MOL in Tree Meta is in the
MOL report file, which is in NLS format on the disc. This
file represents the first attempt to integrate the actual
code for a compiler into the formal and informal
descriptions. This integration is only possible because the
Tree Meta code for MOL is brief enough to fit in a file with
the report, It may well be that this file (MOLR) could be
the first realistic attempt at a single, monolithic
programming and documentation structure for a large program,

Transfer of Current Code to NLS

We already have a program, PASS0O, which reads an MOL program
from a QED file and produces another QED file in
structured-statement form. The structure is determined by a

set of rules for indenting, resembhli set used b

%ﬁﬁgemgg %n his UgCRUNcg.gfogpgﬁ géAE§L§E§a ﬁ:dﬁ?ve Ksegﬁn

Brancg wgtﬂmcégp et ugﬁcéggsvland €el ‘that the in¥%§£§

Eransfer should be a straightforward task of only a few
ays.

¢c. SPLs

Use of Additive Assembler

When the SPL compiler and the MOL compiler are in Tree Meta,
they can be rigged to output to a continuous file. This
will mean that a single NLS file can contain code in both
languages and still be compiled in one simple operation,

Clarity of Code in SPLs

If the SPL compiler is in Tree Meta, the parse rules will
contain only parse information and node-building directions.
This should make them much more readable, a feature always

wanted by those who try to figure out commands of NLS by
reading the code in the SPLs,

A report on the SPL is about 3/4 done (currently about 50
pages). When the SPL compiler is rewritten, the new version
would be integrated into the report. This would be another
large-scale attempt to do away with listing by organizing the
documentation and code into an easily accessible, monolithic,
structured NLS file.

76

Appendix I
REWRITING COMPILERS

4,

MANPOWER ESTIMATES

To reap the full benefits from these changes, all the projects
must be done as a whole, MOL and. SPL cannot be rewritten without
rewriting Tree Meta, and it does little good to rewrite Tree Meta
only, Thus, although the estimates are broken down, the entire
project must be completed to be worth the effort,

The estimate to rewrite Tree Meta and bring the report up to
publishable standards is 2 man-months, The report is on the disc
as a single NLS file, The new Tree Meta library and compiler will
be part of the file, and the report will be synchronized with the
new compiler. Most of the 2 man-months will be devoted to the new
library and the additive assembler,

After the new Tree Meta is done, the MOL should only take about
1,5 more man-months. This is again for finishing the new Tree
Meta version of the compiler and bringing the report file up to
date and into publishable form,

Rewriting the SPLs is the simplest of the tasks. We estimate one
man-month to both rewrite the compiler and finish the SPL report.
About 1/3 of the time will be spent on the compiler and about 2/3
on the report,

These estimates are made in terms of time spent doing the work.
Normally, the programmers within the AHI Center spend a good deal
of their time debugging NLS, working on specifications and ideas
for new features, and generally doing small detailed tasks not
related to a specific project, With this in mind, it becomes very
difficult to estimate the real time these projects will require.

77

Appendix J
NETWORK DECODE-ENCODE LANGUAGE

1, INTRODUCTION

This appendix is a portion of a working document for the evolution
of the Decode-Encode Language (DEL). The Decode-Encode Language is
a machine independent language tailored to two specific computer
network tasks:

Accepting input codes from interactive consoles, giving
immediate feedback, and packing the resulting information into
message packets for network transmission

Accepting message packets from another computer, unpacking
them, building trees of display information, and sending other
information to the user at his interactive station,

2. NET STANDARD TRANSLATORS

ao

INTRODUCTION

The NST library is the set of programs necessary to mesh
efficiently with the code compiled at the user sites from the
DEL programs it receives, The NST-DEL approach to NET
interactive system communication is intended to operate over a
broad spectrum,

The lowest level of NST-DEL use is direct transmission to
the server-<host of information in the same format that user
programs would receive at the user-host,

In this mode, the NST defaults to inaction. The DEL
program does not receive Universal Hardware
Representation input, but input in the normal fashion for
the user-host., The DEL program becomes merely a message
builder and sender,

An intermediate use of NST-DEL is to have echo tables for a
TTY at the user-host,

In this mode, the DEL program would run a full duplex TTY
for the user,

It would echo characters, translate them to the character
set of the server-host, pack the translated characters in

messages, and on appropriate break characters send the
messages,

When messages come from the server-host, the DEL progam
would translate them to the user-host character set and
print them on his TTY,

78

Appendix J
NETWORK DECODE~ENCODE LANGUAGE

b.

A more ambitious tesk for DEL is the operation of large,
display-oriented systems from remote consoles over the NET,

Large interactive systems usually offer a lot of feedback
to the user, The unusual nature of the feedback makes it
impossible to model with an echo taile, and thus a user
program must be activated in a TSS each time a button
state is changed. '

This puts an unnecessarily large load on a TSS, and if
the system is being run through the NET it could
easily load two systems,

To avoid this double overloading of TSS, a DEL program
will run on the user-host, It will handle all the
immediate feedback, much like a complicated echo
table, At appropriate button pushes, messages will be
sent to the server-host and display updates received
in return,

One of the more difficult, and often neglected, problems
is the effective simulation of one nonstandard console on
another nonstandard console,

We attempt to offer a means of solving this problem
through the co-routine structure of DEL programs. For
the complicated interactive systems, part of the DEL
programs will be constructed by the server-host
programmers, Interfaces between this program and the
input stream may easily be inserted by programmers at
the user-host site.

UNIVERSAL HARDWARE REPRESENTATION

To minimize the number of translators needed to map any
facility's user codes to any other facility, there is a
Universal Hardware Representation,

This is simply a way of talking, in general terms, about all
the hardware devices at all the interactive display stations in
the initial newtork.

For example, a display is thought of as being a square. The
midpoint has coordinates (0,0), and the range is -1 to 1 on
both axes., A point may now be specified to any accuracy,
regardless of the particular number or density of raster points
on a display.

Appendix J
NETWORK DECODE-ENCODE LANGUAGE

Co

INTRODUCTION TO THE NETWORK STANDARD TRANSLATOR (NST)

Suppose that a user at a remote site, say litah, is entered in
the AHI system and wants to run NLS.

The first step is to enter NLS in the normal way. At that time
the Utah system will request a symbolic program from NLS,.

This program is written in DEL, It is called the NLS Remote
Encode Program (REP).

The program accepts input in the Universal Hardware
Representation and translates it to a form usable by NLS,

It may pack characters in a buffer and may also do some
local feedback.

When the program is first received at Utah, it is compiled and
loaded to be run .n conjunction with a standard library.

All input from the Utah console first goes to the NLS REP, It
is processed, parsed, blocked, translated, etc, When the REP
receives a character appropriate to its state it may finally
initiate transfers to the 940, The bits transferred are in a
form acceptable to the 940, and perhaps in a standard form so

that the NLS need not differentiate between Utah and othexr NET
users.,

ADVANTAGES OF NST

After each node has implemented the library part of the NST, it
need only write one program for each subsysten, namely the
symbolic file it sends to each user to map the NET hardware
representation into its own special bit formats.

This is the minimum programming that can be expected if each
console is used to its fullest extent,

Since the NST which runs the encode translation is coded at
the user site, it can take advantage of hardware at its
consoles to the fullest extent., It can also add or remove
hardware features without requiring new or different
translation tablies from the host.

Local users are also kept up to date on any changes in the
system offered at the host site. As new features are added,
the host programmers change the symbolic encode program.
When this new program is compiled and used at the user site,

80

Appendix J
NETWORK DECODE-ENCODE LANGUAGE

the new features are automatically included,

The advantages of having the encode translation programs
transferred symbolically should be obvious.

Each site can translate any way it sees fit, Thus machine
code for each site can be produced to fit that site; faster
run times and greater code density will be the result,

Moreover, extra symbolic programs, coded at the user site,
may be easily interfaced between the user's monitor system
and the DEL program from the host machine. This should ease
the problem of console extension (e.g., accommodating
unusual keys and buttons) without loss of the flexibility
needed for man-machine interaction,

It is expected that when there is matching hardware, the
symbolic programs will take this into account and avoid any
unnecessary computing. This is immediately possible through
the code translation constructs of DEL, It may someday be
possible to do this through program composition,

81

Appendix K
IMPLEMENTATION PLAN FOR THE NIC

1, INTRODUCTION

This appendix describes an implementation plan for the NIC,
covering only a portion of the services that might be provided,

In particular, it addresses itself to the production of a
microfilm version of the MRC (Master Reference Collection) and the
GODOS (Graphic-Oriented Documentation Output System).

The detailed structure of these three services is more
developed than that of the other NIC services, such as TODAS

(Typewriter-Oriented Documentation Aid System), query and
retrieval, and NLS,

This is not to say that the gross outlines of these latter
services are not known,

It is believed that the three initial services can and should
continue their concurrent development,

2. MICROFILM OF THE MRC

a.

THE MAJOR GOAL

A first service of the NIC should be the distribution, in

microfilm form, of up-to-date versions of the hardcopy portion
of the MRC.,

At the present time the MRC contains user's guides of various
network nodes, and network planning documents.

The microfilm material should be indexed, cross-referenced, and
linked to a filing system so that material can be quickly
returned,

TASKS TO BE PURSUED
Choice of Microfilm Format

Two formats for the microfilm should be considered -- fiche
and roll.

The fiche provides about 60 frames per 4-by-6-inch card
of film,

A roll provides about 3000 frames on a 100-foot 16-mm
film, Long-term planning for the NIC should consider a
20-node network with each node contributing an average of
1000 pages to the MRC; thus we are considering a
20,000-page collection. '

82

Appendix K

IMPLEMENTATION PLAN FOR THE NIC

At one page per frame, in fiche form, this represents
about 330 cards, while in roll-film form this is about 7
rolls,

The smaller quantum of the fiche may minimize production
problems arising from routine changes in the MRC

However, there is some question regarding the ease with
which a fiche collection can be used to retrieve a
specific entry in the MRC,

With fiche, the present technology for low-cost systems
requires a manual search for the desired card and a
manual replacement into the proper location,

With roll film, the search may be eased by the use of

motorized drives and automatic frame counters, tkough
}pw-cost iystems require the operator to be in the
eedback loop,

A first task is to evaluate these two approaches.

It is recommended that a fiche viewer and a roll-film
viewer (with frame counter) be obtained on a trial basis,
together with some sample material,

If no clear-cut choice can be made on such a trial basis,
then the hardcopy of the MRC should be experimented with,

First, the available material should be split into two
parts, say 1/3 and 2/3 of the collection,

For the first 2/3, a simple index should be constructed
and fiche and roll versions created and tried.

Next, to assess the effects of updating, the remaining
1/3 should be added to the microfilm version, and the
index updated.

The mechanism for effecting the total update should also
be studied and evaluated,

Cataloging

It is critical that a powerful catalog be established and
operational when the NIC offers its initial service,

The catalog should encompass all documents within the

83

Appendix K
IMPLEMENTATION

In
an

PLAN FOR THE NIC

sphere of the MRC. As such it might contain several
thousand entries, each entry being set off from all
others by virtue of its identifier,

The actual form of a given document may vary with time;
indeed, it may be in several forms simultaneously,

It is expected that the forms will be the following:
Machine readable
Microfilm
Hardcopy
Citation,

its life a document might initially enter the catalog as
item cited by some other document actually in the system,

At this stage the subject document is a name only,

The document may later physically enter the system as a
hardcopy item,

As interest in it rises, it could be placed on microfilm,
and sometime later into the computer's files,

The structure of the catalog should be such as to
accommodate a document as it assumes any and all of its
forms.

Changes in a document's form should not affect the links
between that document and the other documents in the MRC.

These links will point to the subject document from other
documents, and should point to these other citing
documents from the subject document,

These two-way links permit one to travel forward as well
as backward in time,

The inclusion of entries in the catalog for cited documents
that are not actually present permits all the links to be
established for a document at the time it physically enters
the system,

The identifier associated with a given document should be

84

Appendix K

IMPLEMENTATION PLAN FOR THE NIC

invariant with time, even from its inception as a
citation.

An identifier composed of the initial letters of the
first author's surname, the year of publication, and
perhaps a few auxiliary characters might suffice,

Indices and Links

The microfilmed material should contain its own index that
will permit the user to use the material intelligently
without any computer assistance.

There should be a master index and perhaps some
subindices.

Each index could show, for each document, such familiar
items as author, tltie, and date; it should also show

the document's identifier (from the catalog) and the
document's physical location on the microfilm, i.e, the
roll number and frame number for roll film and the card
number, row, and column for fiche.

It is highly desirable that the identifier and physical
location be associated with each appearance of a citation
to a document, Thus, a user of the microfilm might
follow a trail of references within the filmed
collection, or call for the document by identifier and
use a computer terminal,

These auxiliary data might need to be appended to the

hardcopy version, rather than inserted in the body of the
document.,

Such insertion might be difficult or undesirable to do,

The appended material might also list all documents
referring to the subject document,

It is not clear that such reverse citations should be
made an integral part of a document,

Such citations are likely to grow with time and result in
changes to the appended portions of documents that
otherwise are unchanging.

Consideration should be given to incorporation of the
reverse citations in the more dynamic portions of the

85

Appendix K
IMPLEMENTATION PLAN FOR THE NIC

file, such as the indices themselves,

Genealogies

In time there will develop films of films of hardcopy --

films of computer CRT output of system files from hardcopy,
etc,

It is highly desirable that we know at all times the
processes used to get to a given result,

For instance, one should be able to pick up a piece of

film, find a document on it, and know all intermediate

films, transformations, etc, involved in handling that
document,

There is no necessity to incorporate such genealogies in
the files or documents themselves,

Instruction Manual

An instruction manual should be developed for the use of the
microfilm,

This manual should be a document on film and should also be
available on paper.

Examples need to be constructed and a self-teaching element
included,

Inventory Control

The inventory-control task is interpreted broadly to include
the following:

Requesting documents for inclusion in the system

Monitoring the document inventory so that requests can be
formulated

Distributing viewers and film

Collecting returnable items (cartridges, reels, etc)

Advertising the NIC's services.

86

Appendix K
IMPLEMENTATION PLAN FOR THE NIC

3. GODOS
a. MAJOR GOALS
The major goals for GODOS are the following:

The production of film frames representing information held
in system files

The production of films, observing the quantum restrictions
(cards, rolls, etc.) upon user specification of the desired
list of files and their ordering upon the film

The automatic generation of indices, including those
documents and other films to be used in a set, where
these other films may be photographs of hardcopy

The generation of title pages.

b. TASKS TO BE PURSUED

Selection and Organization of Material

Typically only a selected number of files in the MRC will be
processed in a given run through GODOS,

For this to be possible it is necessary that GODOS
accept, as an input, an ordered list of files,

In accordance with this list the named files should be
processed in the established order.

In conjunction with that process various indices and links
should be constructed.

An important element of these indices and links is
information on the physical location, in the film
collection, of the subject material,

Thus, an index should list the frame number (if roll

film), or card-row-column number (if fiche) where each
document begins,

Within a document, similar coordinate numbers should be
associated with each reference to other documents or to
sections within the subject document,

It is anticipated that clever processes may need to be

87

Appendix K

IMPLEMENTATION PLAN FOR THE NIC

developed if multiple passes through the files are to be
avoided,

For example, a first pass may be used to paginate the
entire volume of material to be filmed, where a more than
adequate number of pages are reserved beforehand for the
index.

During that pass the index might be constructed.

Internal links might well require a second pass before
all "targets" are specified,

It is possible that an auxiliary index could be
associated with each document, especially for internal
links, '

This could all be based upon prepagination of each
document (preestablishing a page count and relative
locations of links) presupposing that a standard output
format is to apply.

Format and Style Control

Various levels of format control should be effected by
GODOS .,

The highest level of format control would be the '"volume"
of text.

In the case of roll film, the '"volume' could be a
roll; in the case of fiche, it could be a deck of
cards.,

The next level of control is the document.

The concern here might be as simple as starting each
document on a new frame and/or card,

It follows that each document would then terminate on
a frame and/or card used only by that document,

Similar constraints might apply to chapters, sections, or
other subdivisions,

Increasingly complex format rules might apply to
pagination, paragraphing, and line formation,

88

Appendix K
IMPLEMENTATION PLAN FOR THE NIC

The GODOS should provide for an open-ended set of fonts.

One or two fonts might be considered "standard," as the
only ones used by a large fraction of the MRC,

For the remainder of the MRC an extensive and probably
ever-growing set of fonts might be desirable.

Let it be assumed that a flexible character/vector/dot
generator is used in conjunction with GODOS.

Under these conditions, essentially arbitrary fonts could
be constructed.

It would then be possible to associate with each document
a set of coded descriptions of any special font that it
requires, and for GODOS to execute the font,

Coding embedded in the document file could indicate when
GODOS should shift into and out of the special font.

89

Submitted by:

r~ . oy
- (’ 65;%7@;é52£;,~aﬁ~

D. C. Engelbart, Principal Investigator

Approved by:

Qi £ Born

David R. Brown, Director
Information Science Laboratory

90

