DOCUMENT NO. Y240A301M0810 REV -

# ENGINEERING TECHNICAL REPORT

# SKC3I2O ASSEMBLER LANGUAGE (KAL3I) REFERENCE MANUAL

JULY 1976



DRR NO. 01911(NP)

TOTAL PAGES

83

THE SINGER COMPANY . KEARFOTT DIVISION . 1150 MCBRIDE AVENUE . LITTLE FALLS, N. J. 07424

Y240A301M0810 REV -

### SKC3120

### ASSEMBLER LANGUAGE (KAL31)

### REFERENCE MANUAL

Prepared by:

DEPARTMENT 5760

### ENGINEERING PROGRAMMING AND COMPUTATION

JULY 1976

Y240A301M0810 REV \_\_\_\_

# **REVISION RECORD**

| REV  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                             | APPROVAL<br>AND DATE    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|      | RELEASE                                                                                                                                                                                                                                                                                                                                                 | JULY 1976<br>In Frience |
|      |                                                                                                                                                                                                                                                                                                                                                         | P                       |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      | 에는 것이 가장에 가장 것은 것은 것이 가장에 있다. 이 것은 것은 것은 가장에 가장 가장에 있다. 이 가장에 가장의 것은 것을 통한 것은 것은 것이 가장에 가장에 가장에 가장에 가장해 가장에 있다.<br>그는 것이 같은 것은 것은 것은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 것은 것이 같은 것이 있                                                                                                                     |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      | 에는 것은 것은 것은 것은 것은 것은 것은 것을 알았는 것이 같은 것이 있는 것이 있는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 있는 것이 있는 것이 있는 것이다.<br>같은 것은                                                                                                                                                                                                         |                         |
|      | 에는 특별 사실에 가장 이 것을 가려 있는 것을 가장 있는 것을 하는 것이 있다. 이상 가장                                                                                                                                                                                                                                                                 |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      | 수 수 같은 집에 많은 것 같은 것 같은 것 같은 것 같은 것 같이 있다. 것 같은 것 같                                                                                                                                                                                                                                                                        |                         |
|      | 수 있는 것 같은 것은 것은 것은 것은 것은 것은 것을 가지 않는 것이 있는 것이 있다.<br>[1] 같은 것은                                                                                                                                                                                                            |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      | 가 같은 것이 있는 것을 알려 있는 것이 있는 것<br>같은 것이 있는 것이 같은 것이 있는 것<br>같은 것이 있는 것이 같은 것이 있는 것이 없는 것이 있는 것 |                         |
|      | 가장 가지 않는 것 같은 것은 것은 것이 있는 것은 것은 것이 가지 않는 것이다. 가지 않는 것은 것은 것은 것이다. 또한 것은 것은 것은 것은 것이다.<br>같은 것은                                                                                                                                                                                                                      |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      | 성 이상 이상은 방법을 위해 있다. 이상 전체를 위한 것은                                                                                                                                                                                                                                                                                    |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      | 가 있었다. 이는 것은 가장 가장 가장 있는 것은                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
|      |                                                                                                                                                                                                                                                                                                                                                         |                         |
| REV  |                                                                                                                                                                                                                                                                                                                                                         |                         |
| PAGE | COVER                                                                                                                                                                                                                                                                                                                                                   | OTHER                   |
|      | REVISION SYMBOL OF REVISED PAGES                                                                                                                                                                                                                                                                                                                        | PAGES                   |

### Y240A301M0810 REV \_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

### SKC3120 ASSEMBLER LANGUAGE (KAL31) REFERENCE MANUAL

#### ABSTRACT

This manual describes the syntax and function of KAL31, the SKC3120 Assembly Language. This language is a derivative of the FOCAP Language developed for the SKC2000 computer. An SKC3120 computer program written in this language is automatically converted to machine language by the SKC3120 Portable Assembler Program. The Portable Assembler was carefully designed to permit it to be easily transferred from one host machine to another, hence the term Portable.

This document, in conjunction with the SKC3120 Principles of Operation Manual (Y240A300M0801) and the SKC3120 Assembler/ Linkage Editor/Simulator Users Manual (Y240A301M0811) provides sufficient information for a programmer to prepare an SKC3120 computer program. Details on the use of the Portable Assembler with a particular host computer can be found in the appropriate Host Procedures Manual.

Users are encouraged to make suggestions for improving the information content of this manual by using the form supplied on the last page.

-

### TABLE OF CONTENTS

|    |      |                                     |                                                                                                                                           | PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | INTR | ODUCTION                            |                                                                                                                                           | 1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2. | LANG | UAGE STR                            | RUCTURE                                                                                                                                   | 2 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | 2.1  | SOURCE                              | LANGUAGE STATEMENT                                                                                                                        | 2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |      | 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 | LABEL ENTRY<br>OPERATION ENTRY<br>OPERAND ENTRY<br>COMMENT ENTRY<br>CHARACTER SET<br>STATEMENT FORMAT                                     | 2 - 1  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 2  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 2 - 2  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - 3  2 - |
|    | 2.2  | LANGUAG                             | E ELEMENTS                                                                                                                                | 2-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |      | 2.2.1                               | SYMBOLS                                                                                                                                   | 2-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |      |                                     | 2.2.1.1 SET-SYMBOLS<br>2.2.1.2 EXTERNAL SYMBOLS<br>2.2.1.3 THE ASTERISK SYMBOL<br>2.2.1.4 SYMBOL REFERENCE<br>2.2.1.5 RELATIVE ADDRESSING | 2-6<br>2-6<br>2-6<br>2-7<br>2-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |      | 2.2.2                               | EXPRESSIONS                                                                                                                               | 2-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3. | ADDR | ESSING A                            | ND LOADING                                                                                                                                | 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 3.1  | INTRA-D                             | ECK ADDRESSING                                                                                                                            | 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |      | 3.1.1                               | LOCATION COUNTERS                                                                                                                         | 3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 3.2  | INTER-D                             | ECK ADDRESSING                                                                                                                            | 3-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |      | 3.2.1<br>3.2.2<br>3.2.3             | ENTRY POINTS<br>EXTERNAL SYMBOLS<br>BLOCK DATA                                                                                            | 3-3<br>3-3<br>3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | 3.3  | LINKAGE                             | EDITOR PROGRAM                                                                                                                            | 3-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4. | МАСН | INE LANG                            | UAGE INSTRUCTIONS                                                                                                                         | 4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 4.1  | ARITHME                             | TIC INSTRUCTIONS                                                                                                                          | 4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |      | 4.1.1<br>4.1.2                      | OPERATION FIELD<br>OPERAND FIELD                                                                                                          | 4 - 3<br>4 - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Y240A301 | M0810 THE SINGER COMPANY<br>KEARFOTT DIVISION                                                       |                  |
|----------|-----------------------------------------------------------------------------------------------------|------------------|
| 4.2      | JUMP INSTRUCTIONS                                                                                   | 4 - 7            |
|          | 4.2.1 OPERATION FIELD<br>4.2.2 OPERAND FIELD                                                        | 4 - 7<br>4 - 7   |
| 4.3      | INDEX REGISTER INSTRUCTIONS                                                                         | 4-9              |
|          | 4.3.1 OPERATION FIELD<br>4.3.2 OPERAND FIELD                                                        | 4-9<br>4-9       |
| 4.4      | SHIFT INSTRUCTIONS                                                                                  | 4-11             |
|          | 4.4.1 OPERATION FIELD<br>4.4.2 OPERAND FIELD                                                        | 4 - 11<br>4 - 11 |
| 4.5      | NON-MEMORY REFERENCE INSTRUCTIONS                                                                   | 4-12             |
|          | 4.5.1 OPERATION FIELD<br>4.5.2 OPERAND FIELD                                                        | 4-12<br>4-13     |
| 4.6      | INPUT-OUTPUT INSTRUCTIONS                                                                           | 4-14             |
|          | 4.6.1 OPERATION FIELD<br>4.6.2 OPERAND FIELD                                                        | 4 - 14 + 4 - 14  |
| 4.7      | BLOCK TRANSFER INSTRUCTION                                                                          | 4-15             |
|          | 4.7.1 OPERATION FIELD<br>4.7.2 OPERAND FIELD                                                        | 4-15<br>4-15     |
| 5. ASSE  | MBLER OPERATIONS                                                                                    | 5-1              |
| 5.1      | LOCATION COUNTERS                                                                                   | 5-4              |
|          | 5.1.1 ORG - SPECIFY ABSOLUTE ORIGIN FOR<br>THE PROGRAM<br>5.1.2 USE - START USE OF LOCATION COUNTER | 5-5<br>5-6       |

|     | THE SINGER COMPANY<br>KEARFOTT DIVISION                                                                                                                                                                                                                                                                           | Y240A301M0810                                           | REV                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|
| 5.2 | DATA GENERATION OPERATIONS                                                                                                                                                                                                                                                                                        |                                                         | 5-7                                                       |
|     | 5.2.1 DEC - DECIMAL DATA DEFINITION<br>5.2.2 HEX - HEXADECIMAL DATA DEFINI<br>5.2.3 SCLB - BINARY SCALE OPERATION<br>5.2.4 SCLW - WEIGHTED SCALE OPERATION<br>5.2.5 SCLBD - DOUBLE LENGTH BINARY<br>5.2.6 SCLWD - DOUBLE WEIGHTED LENGT<br>5.2.7 PTR - POINTER TO ADDRESS<br>5.2.8 DECD - DECIMAL DATA DEFINITION | I (FIXED)<br>TION<br>ON<br>SCALE<br>TH<br>ON (FLOATING) | 5-7<br>5-8<br>5-9<br>5-11<br>5-13<br>5-13<br>5-14<br>5-15 |
| 5.3 | STORAGE ALLOCATION OPERATIONS                                                                                                                                                                                                                                                                                     |                                                         | 5-18                                                      |
|     | 5.3.1 BSS - BLOCK STARTED BY SYMBOL<br>5.3.2 BES - BLOCK ENDED BY SYMBOL<br>5.3.3 BLKDTA - BEGIN BLOCK DATA                                                                                                                                                                                                       |                                                         | 5-18<br>5-19<br>5-19                                      |
| 5.4 | SYMBOL DEFINITION OPERATIONS                                                                                                                                                                                                                                                                                      |                                                         | 5-20                                                      |
|     | 5.4.1 EQU - EQUATE SYMBOL TO EXPRES<br>5.4.2 SETD - SET TEMPORARY SYMBOL T<br>NUMBER<br>5.4.3 SETX - SET TEMPORARY SYMBOL T                                                                                                                                                                                       | SION<br>O DECIMAL<br>O HEX VALUE                        | 5-20<br>5-22<br>5-23                                      |
| 5.5 | SUBROUTINE OPERATIONS                                                                                                                                                                                                                                                                                             |                                                         | 5-24                                                      |
|     | 5.5.1 ENTRY - ENTRY POINT DESIGNATI                                                                                                                                                                                                                                                                               | ON                                                      | 5-24                                                      |
| 5.6 | PROGRAM CONTROL PSEUDO-OPS                                                                                                                                                                                                                                                                                        |                                                         | 5-25                                                      |
|     | 5.6.1 END<br>5.6.2 ENDBLK                                                                                                                                                                                                                                                                                         |                                                         | 5-25<br>5-25                                              |
| 5.7 | LIST CONTROL PSEUDO-OPS                                                                                                                                                                                                                                                                                           |                                                         | 5-26                                                      |
|     | 5.7.1 LIST - RESUME LISTING<br>5.7.2 UNLIST - SUSPEND LISTING<br>5.7.3 TTL - DEFINE PAGE TITLE<br>5.7.4 EJECT - START NEW PAGE<br>5.7.5 SPACE - SKIP BLANK LINES                                                                                                                                                  |                                                         | 5-26<br>5-26<br>5-27<br>5-27<br>5-28                      |

| Y240A301M0810 REV THE SINGER COMPANY<br>KEARFOTT DIVISION                                                                                                                 |                  |                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------|
| 6. THE ASSEMBLER OUTPUT LISTING                                                                                                                                           |                  | 6-1                      |
| 6.1 ERROR MESSAGES<br>6.2 CROSS REFERENCE                                                                                                                                 |                  | 6-2<br>6-2               |
| APPENDIX A ASSEMBLER ERROR DIAGNOSTICS<br>APPENDIX B ASSEMBLER CONTROLS AND OPTIONS<br>APPENDIX C SAMPLE PROGRAM LISTING<br>APPENDIX D SKC3120 MACHINE INSTRUCTION FORMAT | <b>G</b> SUMMARY | A-1<br>B-1<br>C-1<br>D-1 |

Y240A301M0810 REV -

#### THE SINGER COMPANY KEARFOTT DIVISION

### 1. INTRODUCTION

SKC3120 Assembler program accepts KAL31 source code and The produces absolute or relocatable object programs which, after processing by the Linkage Editor program, will execute on the SKC3120 computer. The KAL31 Assembler is a "cross assembler" in it executes on a general purpose computer, hereby designated that as a "host" computer, and produces code for the SKC3120, hereby designated as the "target" computer. This Assembler is an element of Kearfott's complement of machine-portable, modular software. The SKC3120 (KAL31) Assembler, in particular, has been designated as both host and target machine portable, since only a relatively few modules require modification when it is desired to change either the host or target computer. Host machine portability allows Kearfott to provide this Assembler for execution on the customer's host computer, without the entailment of expensive Furthermore, since approximately 85 percent of conversion costs. the modules are completely machine independent, the introduction of errors due to conversion from one host to another is minimal. Target-machine portability allows expeditious adaptation of the target computer's configuration is altered. software when the Changes in the instruction set, data word length, etc. are easily implemented in the Assembler since only a very few modules are effected for each of these changes. Additionally, target-machine portability provides a significant step towards the production of error-free codes. Since the majority of the modules are common to Kearfott assemblers for other target computers, errors detected in application, and corrected, do not always have one to be rediscovered in other applications.

The SKC3120 Assembler contains several features usually available only on larger computers. The Assembler is capable of producing relocatable object code, whose absolute locations are assigned by the Linkage Editor Program. This relocatability feature allows the use of location counters: for aiding in the organization of the source program, for eliminating the need for the programmer to choose absolute addresses, and for optimizing memory allocation.

### Y240A301M0810 REV -

### THE SINGER COMPANY KEARFOTT DIVISION

The user has complete control over the assembly process. This control is exercised via control cards and assembler options (see Appendix B, Assembler Controls and Options). Subroutines may be assembled individually or in groups. The Assembler detects syntactic programming errors, illegal opcodes, some types of addressing errors, and checks the source coding in general for conformance. On user option the Assembler will perform a load, and produce a memory load map onto magnetic tape and/or the printer. The map indicates the exact memory loading of the SKC3120. In addition to those features already implemented, Kearfott has developed a general purpose macro processor to be used in conjunction with all its assemblers. The capabilities of this macro processor include complete arithmetic, logical, and character expression handling, the nesting of macros, recursive macro invocation, and a conditional assembly facility.

The Assembler output includes:

- \* A printed listing containing:
  - a. Program source code
  - b. Line numbers
  - c. Hexadecimal representation of the assembled source code
  - d. Relative address of each instruction
  - e. Error mnemonics
  - f. Current location counter
- \* An object deck if requested by the user.
- \* A magnetic tape for use eventually in the simulator or to be converted to punched tape and loaded into the SKC3120 for execution.

Y240A301M0810

REV

#### 2. LANGUAGE STRUCTURE

The SKC3120 Computer Assembler Program was developed to run on an IBM 360/370 computer. The Portable Version of the Assembler was written almost exclusively in ANSI Fortran. Hence, it can be easily converted to run on similar host computers using a similar Fortran compiler. The source language processed by this Assembler is described in this document. Some basic language features are described in this section.

The language provides a mnemonic (literally, memory-aiding) machine instruction operation code for each machine instruction in the SKC3120 airborne computer. The Assembler language also contains mnemonic codes for Assembler directive operations. These are used to provide the direction necessary for the Assembler to perform its wide variety of auxililary functions.

Assembler processing involves the translation of source statements the assignment of memory words to into machine language, all information instructions and data, and the development of required by the Linkage Editor Program for final memory allocation. The output of the Assembler program is a relocatable or absolute object program module, a machine language translation of the input program module. The Assembler generates a printed listing source of the source statements, side by side with their machine language translation, relocatable or absolute addresses, and additional information useful to the programmer in analyzing his program, such as error indications.

2.1 SOURCE LANGUAGE STATEMENT

An SKC3120 Assembly program consists of a sequence of source language statements or symbolic instructions. Each statement consists of one to four entries, which are from left to right: a label entry, an operation entry, an operand entry, and a comments entry. These entries must be separated by one or more blanks and must be written in the order stated. A brief description of each entry follows.

2.1.1 Label Entry

The label entry is a symbol created by the programmer to identify a statement. The label symbol is used to reference the statement in the operand entry of other statements. A label entry is usually optional. Like all symbols, the label entry may consist of up to eight alphanumeric (or alphameric) characters, the first of which must be alphabetic.

### Y240A301M0810 REV -

#### THE SINGER COMPANY KEARFOTT DIVISION

# 2.1.2 Operation Entry

The operation entry is the mnemonic operation code specifying the SKC3120 machine operation, or assembler directive operation desired. An operation entry is mandatory (except for a full comment statement). Valid mnemonic operation codes for each machine operation are listed in an appendix. All assembler directive operation codes are listed in Section 5 (Table 5-1).

2.1.3 Operand Entry

Operand entries identify and describe data to be acted upon by the machine or assembler operation. The operand entry has a variety of formats described in Sections 4 and 5. Depending on the requirements of the operation, one or more or no operands can be specified. Multiple operand entries must be separated by commas, and they cannot include embedded blanks.

2.1.4 Comment Entry

Comments are descriptive items of information about the statement or the program that are included to clarify the program listing. Any printable character may be included in a comment, including blanks. An entire statement field can be used for a comment if an asterisk or period is punched in the first column.

2.1.5 Character Set

The standard FORTRAN character set forms the basis for the KAL31 character set (except that any printable character may be used for comments). The character set for the label field is the alphabetic A-Z and the numbers 0-9. The character set for the operation field is in the alphabetic characters A-Z combined to form a legal Assembler mnemonic operation code. The character set of the operand field is the alphabetic characters A-Z, the numbers 0-9 and the special characters shown below:

\* . , + - blank

For comments, any printable character is acceptable. For the IBM 360/370 version of the Assembler, the EBCDIC character set is used.

Y240A301M0810

REV

### 2.1.6 Statement Format

The primary input medium to the Assembler is the punched card. Source statements are punched one per card in the following format:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |  |
|-------------|-----------------|---------------|--|
|             |                 |               |  |

Must start in col. 1 may be up to 8 char. in length; must be a symbol (see Section 2.2.1) May not start in col. 1 Must be legal mnemonic operation code. One or more blanks must separate the label and the operation fields. Format depends on instr. used. One or more blanks must separate the operation and the operand fields.

Comments may be placed on a card in one of two ways: after at least one blank following the operand field, or after an asterisk(\*) or period (.) in column 1. If column 1 is left blank, the next field is assumed to be the operation field.

The fields are free format, with the exception that a label field or comment statement must start in column 1; however, standard card columns for starting fields are recommended for the sake of legibility. Figure 2-1 shows the standard Assembler coding form, in which the operation field starts in column 10 and the operand field begins in column 16. In general, blanks delimit fields and commas delimit subfields. The operand field varies with the type of the operation (see Sections 4 and 5).

2.2 LANGUAGE ELEMENTS

Before describing the various assembler operations in detail, it is appropriate to discuss the basic language elements of the Assembler. Principal among these are expressions, symbols, and their attributes. Of course, the principal use of symbols and expressions is the mnemonic representation of a memory address or other numeric value. These language elements have their prime utility as constituents of the operand entry in assembly statements. Kearfott Coding Form S NAME PROGRAM DATE: PAGE of LABEL OPERATION OPERAND 181920212 5 76 77 78 7980 1213141516 2 3 324252627282 11

2-4

THE SINGER COMPANY KEARFOTT DIVISION

Y240A301M0810

REV

I

Figure

2 -

щ

KEARFOTT

COD I NG

FORM

Y240A301M0810

REV

### THE SINGER COMPANY KEARFOTT DIVISION

2.2.1 SYMBOLS

A symbol\* is represented by a string of one to eight alphameric characters (A-Z, 0-9), the first of which must be alphabetic. A symbol is defined by its appearance in the label field of a statement. A symbol may be defined only once in an assembly, unless it is a set-symbol. That is, each symbol used as the label of a statement must be unique within that assembly. A numeric value is associated with each symbol. Generally, a symbol in the label field of an instruction is assigned the value of the current location counter. The only exceptions are the SETD, SETX, and EQU operations whose label symbol is assigned the value specified by the operand field. When the Assembler assigns values to symbols in the label field of statements defining instructions, constant data words, or variable data words, it chooses the address of the designated memory word. If the designated item occupies more than one memory word, the address of the first word is assigned to the symbol.

Although the value of a symbol is its principal attribute, several other attributes are worthy of mention. A symbol value may be either absolute or relocatable based on the type of location counter under which it was allocated. The symbol is then said to be either absolute or relocatable, accordingly. The value of a relocatable symbol is its displacement, in words, from the origin of the location counter. A symbol value may be any integer from zero to 65K (i.e. 65,535). This is the maximum addressing range of the SKC3120 computer.

Symbols can also be distinguished by the nature of the information contained in the address they are referencing. Fom example, a symbol value may represent the address of an instruction, a constant data word, a variable data word, or an address pointer. In the latter case, the symbol may be said to have indirect addressing capability.

\*Two popular alternate designations for "symbol" are "tag" and "label".

### Y240A301M0810 REV -

### THE SINGER COMPANY KEARFOTT DIVISION

### 2.2.1.1 Set-Symbols

Symbols normally assume a specific (absolute or relocatable) value which is retained throughout the assembly of the deck. However, the operations SETD and SETX can be used to define temporary symbols or SET symbols whose value can be changed during the assembly of a single deck. Once a symbol value has been specifded by one of the SET operations, a subsequent definition of the same symbol by a SET operation is considered an assembly-time redefinition of the symbol value. A set-symbol may be redefined any number of times. However, regular permanent symbols (defined by an operation other than SETD or SETX) cannot be redefined via the two SET operations. Similarly, a set-symbol cannot be subsequently given a permanent value by appearing in another statement. By virtue of the variable nature of a set-symbol, it must be defined in a SET statement prior to any use of the symbol.

### 2.2.1.2 External Symbols

Symbols which are used in a deck but not defined (assigned a value) within the deck are assumed to be defined as entry points in another deck. Hence, these are referred to as external symbols. A table of external symbols is provided in the cross reference at the end of each assembly listing. If a deck is processed by the Linkage Editor with other decks which provide entry points for each of its external symbols, the Linkage Editor will automatically resolve these interdeck address references. If no entry point is found for an external symbol, the Linkage Editor will print an appropriate error message.

#### 2.2.1.3 The Asterisk Symbol

The asterisk character (\*) is used to specify a special symbol. When used in the operand field of an operation, it represents the current value of the location counter (either absolute or relocatable). Consequently, the asterisk (\*) need not be defined (assigned a value) like other symbols and, therefore, should never appear in the label field of a statement. By its nature, the asterisk assumes a different value each time it is used. In this respect, it is similar to a temporary symbol or set-symbol, although it is not explicitly defined or redefined via the SET operations.

Y240A301M0810

REV

### 2.2.1.4 Symbol Reference

A symbol is said to be defined by its appearance in the label field of a statement. A symbol is said to be referenced by its appearance in the operand field of a statement. There is, in general, no sequence restriction on the definition and reference of a permanent symbol; both forward referencing (reference proceding definition) and backward referencing (definition preceding reference) is permitted, except where otherwise noted (e.g. EQU operation). The following two examples illustrate the definition and use of symbols.

Forward Reference:

|        | LDA<br>•        | SMBL1 |
|--------|-----------------|-------|
| SMBL1  | DEC             | 1235  |
| Back   | ward Reference: |       |
| SMBL 2 | LDA             | SMBL1 |
|        |                 |       |
|        | ĴŪ              | SMBL2 |

### Y240A301M0810 - TH

#### THE SINGER COMPANY KEARFOTT DIVISION

### 2.2.1.5 Relative Addressing

As described above, the Assembler permits one statement to be referenced in another's operand field if the first statement defines a symbol in its label field. However, it also permits more complex forms of symbolic referencing including relative addressing. Once a statement has been named by the presence of a symbol in its label field, it is possible to refer to a statement preceding or following the statement named by indicating its position relative to the named statement. This procedure is called relative addressing, and the operand entry would take the form:

s + n or s - n

where:

s represents the symbol in the label field of the named instruction

n is a positive decimal integer which represents the difference between the current values of the location counter at each statement.

A more specific example would be:

SYMBOL + 6

where the referenced memory address is six greater than the address labeled SYMBOL. Another common form of relative addressing is illustrated below:

loc. ctr. values

| (1000) | JEQ | *+2   |
|--------|-----|-------|
| (1001) | JU  | LOOP  |
| (1002) | STA | ANGLE |

The asterisk (\*) symbol is used to refer to the current value of the location counter. Relative addressing serves to introduce the more general concept of using expressions to represent operand address references which is discussed in Section 3.

Y240A301M0810

REV

2.2.2 Expressions

This section discusses the expressions used in coding operand entries for regular source statements. Two types of expressions, absolute and relocatable, are presented along with the rules for determining the attributes of an expression. The earlier paragraph on relative addressing introduced the simplest type of expression of the form s + n. The more general case is discussed here.

The smallest component of a regular expression is the element. An element is either a single symbol or a single decimal integer less than 2\*\*16. Three types of symbols may be used specifically:

The permanent symbol

The temporary or set-symbol

The asterisk, representing the current location counter value

An expression consists of a single element or is formed as the sum or difference of two elements according to the following restrictions:

The difference of two relocatable elements is a valid expression if and only if both elements are defined under the same location counter.

The sum of two relocatable elements is always invalid.

Since expressions, like symbols, represent memory addresses, they cannot have a negative value and must be less than 2\*\*16.

An external (or virtual) symbol cannot be combined with an asterisk or permanent symbol to form a vaild expression. It can only be combined with a decimal integer or a set-symbol.

A numeric value is associated with each expression.

Y240A301M0810 REV \_\_\_\_

#### THE SINGER COMPANY KEARFOTT DIVISION

An expression is called absolute if its value is unchanged by program relocation. An expression is called relocatble if its value depends upon program relocation.

An absolute expression can be an absolute symbol or any sum or difference of absolute elements. The difference of two relocatble elements (under the same location counter) is an absolute expression. Since each element would be relocated by the same amount, the difference value remains constant and is not effected by the relocation value. Hence the expression's value is absolute. each element were defined under different location counters, lf each element would have its own relocation value and the difference value of the relocated element would not be constant. Consequently, this combination is specifically prohibited.

A relocatable expression is one whose value changes by n if the program in which it appears is relocated n words away from its original storage location. The simplest form of relocatable expression is the single symbol.

The above combinational rules can be summarized by a listing of legal expression constituents, an example of legal expression type, and a classification of the resulting expression as being absolute or relocatable. Such a listing is presented in Table 2-1 using the following notation:

n represents a positive decimal integer

s represents a permanent symbol

st represents a set-symbol

(r) represents a relocatable symbol (ie. defined under a relocatable location counter)

(a) represents an absolute symbol (ie. defined under an absolute location counter)

Note that all relocatable symbols are assumed to be defined under the same location counter. Otherwise the difference would be illegal as described above.

Table 2-1 contains all legal combinations of the following six basic elements:

n \*(r) \*(a) s(r) s(a) st

By implication, all missing sums or diferences of these elements are illegal based upon the above prohibitions and should not be used.

Y240A301M0810

EXAMPLE

# KEARFOTT DIVISION

### TABLE 2 - 1 LEGAL EXPRESSION TYPES

EXPRESSION FORM

### TYPE

| *(r)      | relocatable |               |
|-----------|-------------|---------------|
| *(a)      | absolute    | *             |
| s(r)      | relocatable | SYMREL        |
| s(a)      | absolute    | SYMABS        |
| 'n        | absolute    | 100           |
| st        | absolute    | SETSYM        |
| *(r)-s(r) | absolute    | *-SYMREL      |
| *(r)+s(a) | relocatable | *+SYMABS      |
| *(r)-s(a) | relocatable | *-SYMABS      |
| *(a)+s(r) | relocatable | *+SYMREL      |
| *(a)+s(a) | absolute    | *+SYMABS      |
| *(a)-s(a) | absolute    | *-SYMABS      |
| *(r)+n    | relocatable | *+1 ****      |
| *(r)-n    | relocatable | *-2           |
| *(a)+n    | absolute    | *+3           |
| *(a)-n    | absolute    | *-4           |
| s(r)-s(r) | absolute    | SYMR1-SYMR2   |
| s(r)+s(a) | relocatable | SYMREL+SYMABS |
| s(r)-s(a) | relocatable | SYMREL-SYMABS |
| s(a)+s(r) | relocatable | SYMABS+SYMREL |
| s(a)+s(a) | absolute    | SYMA1+SYMA2   |
| s(a)-s(a) | absolute    | SYMA1-SYMA2   |
| s(r)+n    | relocatable | SYMREL+10     |
| s(r)-n    | relocatable | SYMREL-20     |
| s(a)+n    | absolute    | SYMABS+100    |
| s(a)-n    | absolute    | SYMABS-50     |
| *(r)+st   | relocatable | *+SETSYM      |
| *(r)-st   | relocatable | *-SETSYM      |
| *(a)+st   | absolute    | *+SETSYM      |
| *(a)-st   | absolute    | *-SETSYM      |
| s(r)+st   | relocatable | SYMREL+SETSYM |
| s(r)-st   | relocatable | SYMREL-SETSYM |
| s(a)+st   | absolute    | SYMABS+SETSYM |
| s(a)-st   | absolute    | SYMABS-SETSYM |
| st+n      | absolute    | SETSYM+10     |
| st-n      | absolute    | SETSYM-4      |
| st+st     | absolute    | SETS1+SETS2   |
| st-st     | absolute    | SETS1-SETS2   |
|           |             |               |

REV \_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

### THIS PAGE INTENTIONALLY LEFT BLANK

Y240A301M0810 REV \_\_\_\_

### 3. ADDRESSING AND LOADING

The SKC3120 computer architecture provides a variety of techniques for addressing and intra-program communication. These capabilities are augmented by the Assembler and Linkage Editor programs. This section is intended to provide the programmer with sufficient information about these techniques to use them effectively.

# 3.1 INTRA-DECK ADDRESSING

A program deck is a sequence of source program statements terminated by an END statement. A deck may contain several subroutines. The techniques available to permit one statement to reference another, within a deck, are discussed here.

# 3.1.1 Location Counters

A location counter is used to assign memory addresses to program statements within a deck. It is assigned a starting value at the beginning of a block (typically the address of the first word in the block) and is incremented by the length of each subsequent statement within a deck. Thus, a location counter always points to the next available address. If a statement is named by a symbol in its label field, the symbol value is set equal to the current value of the location counter with the exception of the BES Pseudo-Op Similarly, if an asterisk symbol is used in the (see 5.3.2). operand field of a statement, it is assigned the current value of the location counter. An asterisk symbol in the operand field of a machine instruction statement is equivalent to placing a symbol in the label field and using that symbol in the operand field. The Assembler listing includes the location counter value for each statement, whether labeled or unlabeled.

Only those statements which generate object code or allocate storage cause the location counter to be incremented.

Since the length of each operation can vary, the location counter may be incremented by various values. For instance, some Assembler operations such as USE or SETD, do not cause computer memory allocation and therefore, the location counter is unchanged. Other operations such as machine instructions or single precision data words occupy one location and increase the location counter by one. Long instructions (e.g. JS) and double precision data words occupy two locations and increase the location counter by two. Finally, some Assembler operations such as the BSS generate many locations location counter value is correspondingly increased. and the The Assembler has 25 location counters numbered 0 through 24 which can be established and controlled by the user.

# Y240A301M0810 REV \_\_\_\_

### THE SINGER COMPANY KEARFOTT DIVISION

The use of more than one location counter provides the user with the facility to write instructions in one sequence and have them loaded in another. This enables the user to write subroutines and assign various data areas in-line. The Assembler identifies the necessary origins at assembly time, but repositioning of instructions under the various location counters is a function of the Linkage Editor and occurs at load time. The object deck produced by an assembly will have the same sequence as the corresponding source deck. The Linkage Editor processes the location counters of the same type within a deck in numerical sequence. That is, instructions or data assembled under location counter 0 are loaded first; instructions or data assembled under Location Counter 24 are loaded last.

A program segment assembled under a location counter can be absolute or relocatable. Hence, the location counter is said to be correspondingly absolute or relocatable for that assembly. Since all relocatable addresses are assembled relative to the first location under the location counter, the first location has a relative address of zero with subsequent addresses assigned in ascending order as described earlier.

Each deck has at least one location counter. If none is specified, location counter 0 is assumed. It is recommended that different types of memory words (e.g. instruction, constant data, variable data, etc.) be segregated by use of location counters. In fact, the Linkage Editor program recognizes several distinct types of memory blocks during the load process. These are listed in Table 3-1.

### TABLE 3-1. LOCATION COUNTER TYPE TABLE

TYPE OF MEMORY WORD

#### USAGE

Instructions Instructions Constant Data Constant Data Variable Data Variable Data Absolute Relocatable Absolute Relocatable Absolute Relocatable

Y240A301M0810

REV

### 3.2 INTER-DECK ADDRESSING

\_\_\_\_

This section is devoted to a description of the several alternatives available for transmitting information between program decks. As before, a deck is defined as a sequence of source statements, terminated by an END statement.

3.2.1 Entry Points

Symbols may be defined in one program and referred to in another, thus effecting symbolic linkages between independently assembled programs. The linkages can be effected only if the Assembler program is able to provide information about the symbol to the Linkage Editor program, which resolves these linkage reference at load time. In the program (deck) where the linkage symbol is defined, it must also be identified to the Assembler by means of the ENTRY Assembler operation. It is identified as a symbol that names an entry point, which means that another program may use that symbol in order to effect a jump operation or a data reference. The Assembler places this information in the object deck for transmission to the Linkage Editor.

3.2.2 External Symbols

If a symbol is used in a program deck (i.e. appears in an operand field) but is not defined in the same program deck, the Assembler assumes that it represents a symbol defined as an entry point in another program deck (see previous paragraph). It is identified then as an external or virtual symbol. The Assembler places this information in the object deck for transmission to the Linkage Editor, which resolves these linkage references at load time.

If, at load time, no entry point can be found for an external symbol, an appropriate error message is printed by the Linkage Editor.

3-3

### Y240A301M0810 REV \_-

#### THE SINGER COMPANY KEARFOTT DIVISION

### 3.2.3 Block Data

Symbols may be made global by defining them in a block data deck. A block data deck is defined by placing a BLKDTA Pseudo-Op at the beginning of the deck and ending with the ENDBLK Pseudo-Op. Symbols defined in a block data deck may be referenced in any deck in that assembly provided that the block data deck has been assembled prior to the reference of any of the symbols. To avoid assembling the block data deck each time a block data symbol is referenced the block data symbols may be saved and retrieved in subsequent assemblies by using control card options. A block data deck should not appear in the Assembler input stream if the control card calls for the retrieval of an earlier Block Data deck. Symbols referred to in a non-block data deck, that are defined in block data, are so indicated in the cross reference listing.

The following rules apply to the use of block data symbols:

A symbol defined locally in a subroutine overrides the definition of the symbol in a block data deck.

Symbols defined in a block data deck may not appear in the operand field of an EQU Pseudo-Op in another deck. Symbols in the operand field of an EQU Pseudo-Op which are not locally defined are considered to be external symbols by the Assembler.

Symbols that have to be defined before they are used (e.g. operand of ORG) cannot be block data symbols.

Y240A301M0810

REV

### 3.3 LINKAGE EDITOR PROGRAM

The output of the SKC3120 Assembler Program is an Object Module which contains object code (binary machine language) for each instruction or data word designated in the source deck. However, the relocatable code will not yet be assigned a memory address and any instructions which directly reference relocatable or external operands will have an unresolved operand address field. The Object Module also contains information on the number and type of location counter under which each word was assembled. All the Object Modules comprising a program are processed by the Linkage Editor Program which assigns an absolute memory address to each data and instruction word and resolves all operand address references to relocatable or external operands. The result is a Load Module which contains absolute machine code with its assigned memory address. The Load Module can be directly loaded into the SKC3120 Computer. An outline of the process is shown in figure 3-1.

Further description of the Linkage Editor Program and the Linkage Editor output can be found in the SKC3120 Assembler/Linkage Editor/Simulator Users Manual (Y240A301M0811).



Y240A301M0810 REV -

### 4. MACHINE LANGUAGE INSTRUCTIONS

This section describes the rules for preparing source language statements which, when processed by the Assembler program, produce SKC3120 machine language instructions. The Assembler uses the mnemonic in the operation field of a KAL31 statement to generate the operation code of the corresponding machine instruction. The operand field of a KAL31 statement contains any designator for other fields in the machine instruction.

In describing the syntax of the operand field, some general notation will be used. Lower case characters are employed in a symbol which represents a family of possible source code items. For example, u represents any valid KAL31 expression such as: X, RANGE, Y2, X+Y, R-9, etc. In general, upper case characters are used to indicate source code in a literal sense. Several other notations are employed in describing the source code syntax. The more general of these are defined below:

## NOTATION

u

# DEFINITION

- () designates the contents of the register or instruction subfield which is specified within the parentheses.
  - represents an absolute or relocatable expression (see Section 2.2) which is used to define the address field in a symbolic instruction.
- N designates the address field in object code instructions.
- K designates the count field in object code instructions.
- XR specifies the active index register.
- IXR specifies the inactive index register.
- B1 specifies base register one.
- B2 specifies base register two.

Further notation used in specific statement descriptions is defined in the relevant sections. The descriptions for the SKC3120 instructions are grouped according to source statement syntax and object code format. Each group is discussed separatly below. Y240A301M0810 REV -

### THE SINGER COMPANY KEARFOTT DIVISION

## 4.1 ARITHMETIC INSTRUCTIONS

The majority of SKC3120 machine instructions are in the arithmetic group. The arithmetic group can be divided into sub-classes, in a natural way, which parallels the machine code instruction format.

Y240A301M0810

# 4.1.1 Operation Field

This section lists all the valid mnemonic code entries for the operation field of an arithmetic instruction.

| MNEMONIC |  |
|----------|--|
|          |  |

OPERATION SUMMARY

| ADA   | Add fixed point to A-Register direct                |
|-------|-----------------------------------------------------|
| ADAB  | Add fixed point to AB Register direct               |
| ADAX  | Add fixed point to A-Register indexed               |
| ADF   | Add floating point to AB Register direct            |
| ADFI  | Add floating point to AB Register indirect          |
| ADMEM | Add fixed point to memory direct                    |
| AND   | Logical AND to A-Register direct                    |
| ANDM  | Logical AND to memory based                         |
| CMS   | Compare fixed point and skip if (A) < (memory)      |
| DIV   | Divide fixed point AB Register direct               |
| DSZ   | Decrement memory fixed point and skip if (memory)=0 |
| INCMS | Increment fixed point and skip if result $> 0$      |
| LDA   | Load A-Register direct                              |
| LDAB  | Load AB Register direct                             |
| LDABI | Load AB Register indirect                           |
| LDABX | Load AB Register indexed                            |
| LDAM  | Load A-Register immediate                           |
| LDAX  | Load A-Register indexed                             |
| MLF   | Multiply AB Register floating point direct          |
| MLFI  | Multiply AB Register floating point indirect        |
| MUL   | Multiply A-Register fixed point direct              |
| MULAB | Multiply AB Register fixed point direct             |
| MULX  | Multiply A-Register fixed point indexed             |
| OM    | Logical OR A-Register direct                        |
| O RM  | Logical OR to memory based                          |
| SBA   | Subtract fixed point from A-Register direct         |
| SBAB  | Subtract fixed point from AB Register direct        |
| SBAX  | Subtract fixed point from A-Register indexed        |
| SBF   | Subtract floating point from AB Register direct     |
| SBFI  | Subtract floating point from AB Register indirect   |
| SKPMZ | Skip on (memory) = 0 based                          |
| SKPM1 | Skip on (memory) = 1 based                          |
| STA   | Store A-Register direct                             |
| STAB  | Store AB Register direct                            |
| STABI | Store AB Register indirect                          |
| STABX | Store AB Register indexed                           |
| STAX  | Store A-Register indexed                            |
| STB   | Store B-Register direct                             |

REV

### Y240A301M0810\_ REV \_ -

### THE SINGER COMPANY KEARFOTT DIVISION

# 4.1.2 Operand Field

The operand field of most arithmetic instructions may be an expression, represented by u, or either a decimal integer or set-symbol, represented by z. In some instructions, an operand field is not required. The syntax of an expression, decimal integer, and set-symbol is described in section 2.2.2.

The interpretation of the operand field is governed by the mnemonic appearing in the operation field of the arithmetic instruction and is presented in Table 4.1.

# Table 4.1 Arithmetic Instructions

1

REV

1 -

| MNEMONIC TYPE     | INTERPRETATION                                                 | NOTES                                                                                                  |
|-------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Direct            | u specifies the effective<br>address of the operand;<br>u -> N | This form valid for: ADA,ADAB,<br>AND,ADMEM,DIV,DSZ,CMS,STAB,<br>MUL,LDA,LDAB,OR,STA,STB,SBA,<br>SBAB. |
| Immediate         | u specifies the immediate operand; u -> N                      | This form valid for: LDAM.<br>졺붊                                                                       |
| Indexed<br>Type 1 | u forms an explicit displacement;<br>u -> N                    | This form valid for: LDAX,STAX, ARG<br>ADAX,SBAX,MULX.                                                 |
| Indexed<br>Type 2 | u forms an explicit displacement;<br>u -> K                    | This form valid for: LDABX,STABX.                                                                      |
| Indirect          | z forms an explicit displacement;<br>z -> K                    | This form valid for: ADFI,MLFI,<br>LDABI,STABI,SBFI.                                                   |
| Based             | z forms an explicit displacement;<br>z -> K                    | This form valid for: ORM, ANDM,<br>SKPMZ, SKPM1, INCMS.                                                |
| Global<br>Direct  | u specifies the effective<br>address of the operand;<br>u -> N | This form valid for: ADF,SBF,<br>MLF,MULAB.                                                            |
|                   |                                                                |                                                                                                        |

**F-**5

#### Y240A301M0810 REV \_\_\_\_ THE SINGER COMPANY KEARFOTT DIVISION

Some arithmetic instructions are double word machine code instructions. For INCMS, the second word is generated via the specification of a PTR instruction immediately following its occurence in the code stream. (see Section 5.2.7 for PTR syntax). The instructions ANDM, ORM, SKPMZ, and SKPM1 require a data generation Pseudo-Op to define the second word of the machine instruction (see Section 5.2 for data generation Pseudo-Op syntax). The instructions ADF, SBF, MLF, and MULAB are also double word instructions, however, the Assembler automatically generates the second word of the machine instruction using the specified operand. Figure 4.1 presents valid forms for representatives in each of the double word arithmetic instruction classes.

> LABEL OPERATION OPERAND ONE LDA ALPHA+1 TWO STAX 4 THREE MULX SETSYM FOUR ADFI 10 FIVE ADF OPRADR+10 SEVEN ANDM SETsym DEC 16 EIGHT INCMS SETSYM PTR OPRADR+10

Figure 4.1 Typical Arithmetic instructions

4-6

Y240A301M0810 REV -

# 4.2 JUMP INSTRUCTIONS

All jump instructions, except for Jump Indirect (JI), specify a destination address in the operand field of a KAL31 statement. For some of the jumps (JEQ, JGE, JGT, JLE, JLT, JNE, and JU), the expression field (u) generates an implicit (or relative) address. In the discussion of relative jumps, the symbol 'loc' will be used to refer to the location of the instruction following the jump. In the Jump to Subroutine (JS) instruction, one of the sub-field expressions (u), generates an explicit (or global) address, while in the Jump Indirect (JI) instruction, the expression field (u) specifies the address of a pointer word through which the branch is effected.

4.2.1 Operation Field

The valid mnemonic code entries for the operation field of a jump instruction are listed below.

| MNEMONIC | OPERATION SUMMARY |                                  |                           |          |      |   |
|----------|-------------------|----------------------------------|---------------------------|----------|------|---|
|          |                   |                                  | * *** *** *** *** *** *** |          |      |   |
| JEQ      | Jump              | relative                         | if (A)                    | register | .EQ. | 0 |
| JGE      | Jump              | relative                         | if (A)                    | register | .GE. | 0 |
| JGT      | Jump              | relative                         | if (A)                    | register | .GT. | 0 |
| JI       | Jump              | indirect                         |                           |          |      |   |
| JLE      | Jump              | relative                         | if (A)                    | register | .LE. | 0 |
| JLT      | Jump              | relative                         | if (A)                    | register | .LT. | 0 |
| JNE      | Jump              | relative                         | if (A)                    | register | .NE. | 0 |
| JS       | Jump              | Jump global direct to subroutine |                           |          |      |   |
| JU       | Uncon             | Unconditional jump relative      |                           |          |      |   |

### 4.2.2 Operand Field

The operand field of most jump instructions consists of a single expression, represented by u. The Jump to Subroutine instruction operand field consists of two expressions, represented by u,ul. The interpretation of the expression(s) is governed by the mnemonic appearing in the operation field of the jump instruction and is presented in Table 4.2. Y240A301M0810 REV \_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

Table 4.2 Jump Instructions

| MNEMONIC TYPE | INTERPRETATION                                                                                                                                   | NOTES                                                   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| Jump relative | u forms a signed relative<br>address; +(-) u-loc  -> N                                                                                           | This form valid for:<br>JEQ,JGE,JGT,JLE,JLT,<br>JNE,JU. |
| Jump direct   | u specifies the explicit<br>destination address<br>ul specifies the effective<br>address where the return<br>address is to be stored;<br>ul -> N | this form valid for:<br>JS                              |
| Jump indirect | u specifies the effective<br>address of the pointer word<br>through which the branch is<br>effected; u -> N                                      | This form valid for:<br>JI                              |

Figure 4.2 presents valid forms for representatives in each of the sub-classes of the jump instructions.

Figure 4.2 Typical Jump Instructions

| LABEL | OPERATION | OPERAND      |
|-------|-----------|--------------|
|       |           |              |
| ONE   | JU        | *+4          |
| TWO   | JS        | SINE, RETADR |
| THREE | JI        | RETADR       |
| RFOUR | JLT       | LABEL        |
|       |           |              |
Y240A301M0810

REV -

### 4.3 INDEX REGISTER INSTRUCTIONS

The instructions (EXR, LDR, STR, ADX, DXS) in the nonmemory reference group (see Section 4.5 for descriptions of these instructions) operate on the active index register.

The KAL31 statements discussed in this section (LDX, LDXM, STX) along with the previously noted instructions constitute the index register instructions.

4.3.1 OPERATION FIELD

The mnemonic code entries for the index register instructions discussed in this section are listed below.

| MNEMONIC |      | OPERATION SUMMARY |            |               |
|----------|------|-------------------|------------|---------------|
|          |      |                   |            |               |
| LDX      | Load | Active Index      | Register   | from memory   |
| LDXM     | Load | Active Index      | Register   | immediate     |
| STX      | Stor | e Active Inde     | x Register | r into memory |

4.3.2 Operand Field

The operand field of the index register instructions is similar to that of the arithmetic instructions. The operand field consists of an expression, represented by u, or either a decimal integer or set-symbol, represented by z. The interpretation of the operand field is presented in Table 4.3.

Table 4.3 Index Register Instructions

| MNEMONIC TYPE | INTERPRETATION                                                 | NOTES                           |
|---------------|----------------------------------------------------------------|---------------------------------|
| Direct        | u specifies the effective<br>address of the operand;<br>u -> N | This form valid for:<br>LDX,STX |
| Immediate     | z specifies the immediate operand; z -> K                      | This form valid for:<br>LDXM.   |

Y240A301M0810 REV \_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

Figure 4.3 presents valid forms for representatives in each of the sub-classes of the index register instructions.

Figure 4.3 Typical Index Register Instructions

| LABEL | OPERATION | OPERAND |  |
|-------|-----------|---------|--|
| ONE   | LDX       | TABLE+4 |  |
| TWO   | LDXM      | Setsym  |  |

Y240A301M0810

REV

4.4 SHIFT INSTRUCTIONS

4.4.1 Operation Field

This section lists all valid mnemonic entries for the operation field of the shift instructions.

| MNEMONIC | OPERATION SUMMARY                  |  |  |
|----------|------------------------------------|--|--|
|          |                                    |  |  |
| SDX      | Variable shift (indexed)           |  |  |
| SLC      | Shift A-Register left circular     |  |  |
| SLL      | Shift A-Register left logical      |  |  |
| SLLD     | Shift AB Register left logical     |  |  |
| SRA      | Shift A-Register right arithmetic  |  |  |
| SRAD     | Shift AB Register right arithmetic |  |  |
| SRC      | Shift A-Register right circular    |  |  |

4.4.2 Operand Field

--------

The operand field of a shift instruction must be either a decimal integer or set-symbol, represented by z, with one exception; SDX does not require an operand.

Figure 4.4 presents valid forms for the shift instructions.

Figure 4.4 Typical Shift Instructions

| LABEL | OPERATION | OPERAND |
|-------|-----------|---------|
|       |           |         |
| ONE   | SLLD      | 10      |
| тио   | SRC       | SETSYM  |
| THREE | SDX       |         |

### Y240A301M0810\_ REV \_\_\_\_

#### THE SINGER COMPANY KEARFOTT DIVISION

### 4.5 NON-MEMORY REFERENCE INSTRUCTIONS

4.5.1 Operation Field

This section lists all valid mnemonic entries for the operation field of the non-memory reference instructions.

| MNEMONIC           | OPERATION SUMMARY                                                                                      |
|--------------------|--------------------------------------------------------------------------------------------------------|
| ABSF<br>ADC<br>ADX | Floating absolute AB Register<br>Add fixed point carry to A-Register<br>Add A to Active Index Register |
| ATB                | Move A to B-Register                                                                                   |
|                    | Move A to B2 Register                                                                                  |
| ATP                | Move A to PC Register                                                                                  |
| ATX                | Move A to Active Index Register                                                                        |
| ATY                | Move A to Inactive Index Register                                                                      |
| BTA                | Move B to A-Register                                                                                   |
| BITA               | Move B1 to A-Register                                                                                  |
| BZTA               | Move B2 to A-Register                                                                                  |
|                    | Clear A-Register                                                                                       |
| CLB                | Clear B-Register                                                                                       |
| CMA                | One's complement A-Register                                                                            |
| СРА                | Two's complement A-Register                                                                            |
| СРАВ               | Two's complement AB Register                                                                           |
| CXF                | Convert fixed point to floating point                                                                  |
| DPI                | Disable program interrupts                                                                             |
| DXS                | Decrement active Index Register                                                                        |
|                    | Exchange A-Register and B-Register                                                                     |
|                    | Enable program interrupts<br>Exchange Active and Inactive Index Registers                              |
| ENEG               | Floating negate AB Register                                                                            |
| HLT                | Halt                                                                                                   |
| LDR                | Move A to B, PC, B1, B2, IXR, or XR Registers                                                          |
| NOP                | No operation (equivalent to SRC 0)                                                                     |
| ΡΤΑ                | Move PC to A-Register                                                                                  |
| SBC                | Subtract fixed point carry from A-Register                                                             |
|                    | Move B, PC, BI, BZ, IXR, or XR to A-Register                                                           |
|                    | Trap two                                                                                               |
| TRAP3              | Trap three                                                                                             |
| TRAP4              | Trap four                                                                                              |
| ХТА                | Move active Index Register to A-Register                                                               |
| YTA                | Move Inactive Index Register to A-Register                                                             |

Y240A301M0810

REV

4.5.2 Operand Field

Most nonmemory reference instructions do not employ an operand field since they have no matching instruction subfields beyond the secondary (and tertiary) operation code. The exceptions (LDR, STR, TRAP2) require an operand field to define an instruction subfield. The operand field designator is either a decimal integer or set-symbol, represented by z.

Figure 4.5 presents valid forms for representatives in each sub-class of the nonmemory reference instructions.

Figure 4.5 Typical Nonmemory Reference Instructions

| LABEL | OPERATION | OPERAND |
|-------|-----------|---------|
|       |           |         |
| ONE   | ABSF      |         |
| TWO   | LDR       | SETSYM  |
| THREE | TRAP2     | 5       |

Y240A301M0810 REV \_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

4.6 INPUT-OUTPUT INSTRUCTIONS

4.6.1 Operation Field

This section lists all the valid mnemonic entries for the operation field of the input-output instructions.

MNEMONIC

### OPERATION SUMMARY

DIAX DOAX Input data to A-Register indexed Ouptut data from A-Register indexed

4.6.2 Operand Field

The operand field for the DIAX, DOAX instructions must be an expression, represented by u. The expression (u) defines a relative device code in the instruction subfield.

The target device code of an input-output instruction is computed at execution time, using:

dc = u + (XR)

Figure 4.6 presents valid forms for the input-output instructions.

Figure 4.6 Typical Input-Output Instructions

| LABEL | OPERATION | OPERAND   |
|-------|-----------|-----------|
|       |           |           |
| ONE   | DIAX      | VIRTUAL+7 |
| TWO   | DOAX      | SETSYM    |

Y240A301M0810

REV

### 4.7 BLOCK TRANSFER INSTRUCTION

------

The block transfer (MOV) instruction moves a block of data or instructions from one region of memory to another. The source and destination addresses and the number of words to be transferred must be preloaded into the B, A, and XR registers, respectively.

4.7.1 Operation Field

## MNEMONIC

OPERATION SUMMARY

MOV

Block transfer

4.7.2 Operand Field

Specification of an operand in the operand field is not required. Figure 4.7 presents the valid form of a block transfer instruction.

Figure 4.7 Typical Block Transfer Instruction

| LABEL | OPERATION | OPERAND |
|-------|-----------|---------|
|       |           |         |

ONE MOV

# Y240A301M0810 REV

THE SINGER COMPANY KEARFOTT DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

REV

#### 5. ASSEMBLER OPERATIONS

In the Assembler some operations generate executable code, some allocate storage, and some initialize location counters. All Assembler directives which do not cause the Assembler to generate instructions are termed Pseudo-Operations. Table 5-1 lists and summarizes the Assembler-Operations. In the summary and subsequent subsections, the following notation is employed.

- u represents an absolute or relocatable expression as defined in Section 2.2.2
- v represents a single virtual (or external) symbol
- | OR operator designates a choice of one of the two items separated by the vertical bar
- n represents a decimal integer ranging from 0 to 24 if designating a location counter
- [] designates enclosed items as optional
- d represents a FORTRAN decimal integer. A FORTRAN decimal integer is a string of digits, 0 through 9 which may optionally be preceded by a plus(+) orminus(-) sign. A decimal integer must not be terminated by a decimal point.
- f represents a floating real number in FORTRAN "REAL" format or a decimal integer
- h represents up to four hexadecimal digits
- aa...a represents a string of alphanumeric characters
  - op represents an operand address designation in the same format as the operand field of a basic arithmetic instruction
  - s represents a KAL31 symbol or label
  - st represents a set symbol or temporary symbol

As in the description of the machine language instruction formats, lower case characters are used to form symbols which represent a family of possible source code items. In general, upper case characters are used to indicate source code in the literal sense. Y240A301M0810 REV -

### THE SINGER COMPANY KEARFOTT DIVISION

### TABLE 5-1. SUMMARY OF ASSEMBLER PSEUDO-OPS

| LABEL<br>FIELD | OPERATION<br>FIELD | OPERAND<br>FIELD | SUMMARY                                                                                                                  |
|----------------|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|
| [s]            | BES                | d st             | Reserve next d locations for scratch data (see note 3)                                                                   |
|                | BLKDTA             |                  | Start a Block Data Deck                                                                                                  |
| [s]            | BSS                | d st             | Reserve next d locations for scratch data (see note 2)                                                                   |
| [s]            | DEC                | d                | Convert d to binary and insert at current location                                                                       |
| [s]            | DECD               | d f              | Convert d f to floating; insert<br>double word binary result<br>in reverse order into current<br>and following locations |
|                | EJECT              |                  | Print next line of assembly at top of page                                                                               |
|                | END                | [s]              | End of deck. Terminate assembly, starting address at s                                                                   |
|                | ENDBLK             |                  | Terminate a Block Data Deck                                                                                              |
|                | ENTRY              | s1, s2           | Each listed symbol (s1) is defined as an ENTRY point                                                                     |
| S              | EQU                | uļv              | Assign the value of u (om v)<br>to the symbol s                                                                          |
| [s]            | HEX                | h                | Convert h to binary and insert at current location                                                                       |
|                | LIST               |                  | Resume listing after UNLIST                                                                                              |
| [s]            | ORG                | d st             | Set current Location Counter to d                                                                                        |
| [s]            | PTR                | ор               | Insert Pointer to operand address                                                                                        |
| [s]            | SCLB               | f,d              | Convert f to binary, shift d places, insert in current location                                                          |

Y240A301M0810

REV

|                | TABLE 5-1.         | SUMMARY OF ASS   | EMBLER PSEUDO-OPS, CON'T.                                                                                                |
|----------------|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------|
| LABEL<br>FIELD | OPERATION<br>FIELD | OPERAND<br>FIELD | SUMMARY                                                                                                                  |
| [s]            | SCLBD              | f,d              | Convert f to binary, shift d<br>places; insert double womd in<br>reverse order into current and<br>following locations   |
| [s]            | SCLW               | f1,f2            | Divide f1 by the LSB, f2; insert binary result in current location                                                       |
| [s]            | SCLWD              | f1,f2            | Divide f1 by the LSB,f2; insert<br>double word binary result<br>in reverse order into current<br>and following locations |
| st             | SETD               | uld              | Assign the value of u d as the temporary value of st                                                                     |
| st             | SETX               | h                | Assign h as the temporary value of st                                                                                    |
|                | SPACE              | d                | Generate d blank lines in assembly listing                                                                               |
|                | TTL                | aaa              | Place a title aaa on each page of assembly                                                                               |
|                | UNLIST             |                  | Suspend listing source statements during assembly                                                                        |
|                | USE                | n PREVIOUS       | Subsequent instructions or data<br>under nth (or previous)<br>location counter                                           |

Notes:

- 1. Symbol s in label field is set equal to current value of location counter unless otherwise noted.
- 2. Symbol s in label field is set equal to first location in group.
- 3. Symbol s in label field is set equal to the last location in group plus 1.

## Y240A301M0810 REV \_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

## 5.1 LOCATION COUNTERS

This section describes the operation which can activate a location counter during an assembly (USE) as well as the operation (ORG) which can effect the value of an active location counter. The Assembler provides 25 location counters (numbered 0 to 24) which can be activated by the user. All the code generated under a single location counter will be allocated to a contiguous area of memory. However, the source code under a single location counter need not be consecutive in the source deck. The sequence of source code is typically interrupted by the activation of other location counters and then subsequently reactivated.

The principal purpose of location counters is to segregate different memory allocation types for separate action by the Linkage Editor.

Because of the read-only-memory feature of the SKC3120 Computer and the resulting Assembler/Linkage Editor design, any one location counter should control only constants or variables but not both. The first instruction or data allocation following a USE operation which designates a given location counter for the first time, determines whether the words allocated will be placed in protected (read-only) memory or not. Protected memory should contain only instructions and constant data. Unprotected memory can be written into as well as read out of and, therefore, should only contain variables. If the user violates this separation rule, he may find out, at execution time, that his "protected" variables cannot be stored into or his "unprotected" constants were inadvertently destroyed during execution.

For more details on the location counter allocation process, see Section 3.1.

Y240A301M0810 REV -

### 5.1.1 ORG - Specify an Absolute Origin for the Program Segment

The ORG Pseudo-Op redefines the value of the current location counter to be the absolute address specified. The format of this instruction is:

| LABEL FIELD      | OPERATION FIELD | I OPERAND FIELD |
|------------------|-----------------|-----------------|
| Symbol(Optional) | ORG             | d st            |

where:

d represents a FORTRAN decimal integer

st represents a set symbol or temporary symbol

The current location counter will be reset to the absolute address specified and the next instruction to be assembled under this location counter will be assigned to that absolute address. Location counters are always relocatable unless modified via the ORG Pseudo-Op. If there is a symbol in the label field it is defined as this new origin. All symbols defined while ORG is in effect will be assigned absolute locations. Other location counters remain unaffected. The ORG should be the first operation coded following the first USE statement for an absolute location counter. Y240A301M0810 REV \_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

5.1.2 USE - Start Use of Location Counter

The USE Pseudo-Op specifies the location counter under which the following sequence of instructions or data is to be assembled. The format of the instruction is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |  |  |
|-------------|-----------------|---------------|--|--|
| (blank)     | USE             | n PREVIOUS    |  |  |

where:

n represents a decimal integer ranging from 0 to 24

When the operand field contains a decimal integer, it designates which of the 25 location counters (numbered 0-24) should be activated. The location counter in control up to the time the USE is encountered (location counter 0 is used if none is previously specified) is suspended and temporarily preserved as the "previous" counter. Location counter n is activated to control memory allocation for the following instructions or data, until the next USE operation is encountered. If the USE PREVIOUS option is selected, the previously suspended location counter is reactivated. Note that only one suspended location counter is preserved at one time. Consequently, nesting of these suspended location counters is not permitted. The following sequence is provided as an example:

| This series of instructions | is equivalent to<br>this series of<br>instructions |  |  |
|-----------------------------|----------------------------------------------------|--|--|
| USE 1                       | USE 1                                              |  |  |
|                             | • • • • • • • • • • • • • • • • • • •              |  |  |
| USE 2                       | USE 2                                              |  |  |
|                             |                                                    |  |  |
| USE PREVIOUS                | USE 1                                              |  |  |

REV

### 5.2 DATA GENERATION OPERATIONS

------

Memory allocation Pseudo-Ops are used to reserve data storage for constant data (usually in protected memory) and variable data words. The current location counter controlling the respective storage areas is incremented by the number of words generated by the Pseudo-Ops. BSS and BES allocate blocks of storage for variable data. Constant data is allocated by DEC, DECD, HEX, SCLB, SCLBD, SCLW, SCLWD, and PTR.

5.2.1 DEC - Decimal Data Definition

The DEC Pseudo-Op is used to enter a fixed point binary data word into a program. The data word is expressed as a decimal integer in the source coding. If there is a symbol in the label field, it is assigned to the address of the data word generated.

| LABEL FIELD      | OPERATION FIELD | OPERAND FIELD |  |  |
|------------------|-----------------|---------------|--|--|
| Symbol(Optional) | DEC             | d             |  |  |

where:

d represents a FORTRAN decimal integer

The maximum absolute value of a decimal integer permitted by the DEC pseudo operation is (2\*\*(n-1))-1, where n is the width in bits of a data word. Integers are internally represented by a right justified binary equivalent. Negative numbers are represented in their two's complement form.

Examples of the DEC Pseudo-Op are:

| LABEL  | OPERATION | OPERAND | RESULTING<br>(HEX) MEMORY WOR |  |  |  |
|--------|-----------|---------|-------------------------------|--|--|--|
| INTGR1 | DEC       | 52      | 0034                          |  |  |  |
| INTGR2 | DEC       | -52     | FFCC                          |  |  |  |
| INTGR3 | DEC       | 19      | 0013                          |  |  |  |

## Y240A301M0810 \_ \_ THE SINGER COMPANY KEARFOTT DIVISION

## 5.2.2 HEX - Hexidecimal Data Definition

The Hex Pseudo-Op is used to enter binary data expressed in hexadecimal digits. The digits are: 0-9 and A-F, where 0-9 have the same meaning as decimal digits 0-9, and A-F have the decimal values 10-15 respectively. This directive is used to generate 1 word of constant value. If there is a symbol in the label field, it is assigned to the address of the data word generated. The format of this Pseudo-Op is:

| LABEL FIELD      | OPERATION FIELD | OPERAND FIELD |
|------------------|-----------------|---------------|
| Symbol(Optional) | HEX             | h             |

where:

h represents up to four hexadecimal digits

Examples of the HEX Pseudo-Op:

|       | 1         |         | RESULTING         |  |  |  |
|-------|-----------|---------|-------------------|--|--|--|
| LABEL | OPERATION | OPERAND | (HEX) MEMORY WORD |  |  |  |
| ALPHA | HEX       | ABC     | OABC              |  |  |  |
| BETA  | HEX       | 0       | 0000              |  |  |  |
| GAMMA | HEX       | BA359E  | 359E              |  |  |  |

NOTE: The hexadecimal characters in the operand field are right justified with truncation on the left if more than one memory word is specified (see the third example above).

REV

## 5.2.3 SCLB - Binary Scale Operation

The SCLB Pseudo-Op is for the user's convenience when generating fixed point constants. The user specifies a decimal number and the scaling factor, and the Assembler performs the appropriate shift to create the scaled number and assigns storage for the data. If there is a symbol in the label field, it is assigned to the location of the data word generated. The format is as follows:

| LABEL FIELD      | OPERATION FIELD | OPERAND FIELD |
|------------------|-----------------|---------------|
| Symbol(Optional) | SCLB            | f,d           |

where:

f represents a FORTRAN real number which designates the number to be generated

d represents a FORTRAN integer constant (in the range -64 to +64) which designates the scaling factor

The scaling factor may be interpreted either of two ways. It is either the number of non-sign positions to the left (or to the right, if scale factor is negative) of the specified binary point, or it is the number of bits the generated word is right shifted (or left shifted, if negative) out of normal position. See examples below.

The number generated by the Assembler will be in fixed-point format. If the first subfield is a negative number, the number generated will be the two's complement of the corresponding positive number with the same scaling factor. That is,

SCLB - N, B = -(SCLB N, B)

For futher clarification of the use of the SCLB (Binary Scale) operation, consider the following example:

Y240A301M0810 REV \_\_\_\_

Example 1

ALPHA SCLB 1.5,4

A scaling factor of 4 causes the number to be positioned 4 bit places to the right of its normalized position. Bit position 4 has value 2\*\*0 and bit position 5 is 2\*\*(-1). The binary point is between bit positions 4 and 5.

REV

### THE SINGER COMPANY KEARFOTT DIVISION

### 5.2.4 SCLW - Weighted Scale Operation

The SCLW Pseudo-Op is for the user's convenience when generating fixed point constants. It is an alternate to SCLB. The user specifies a decimal number and the value, or weight, of the least significant bit (LSB). If there is a symbol in the label field, it is assigned to the location of the data word generated. The format is as follows:

| I LABEL FIELD    | OPERATION FIELD | <br>  OPERAND FIELD<br> |  |  |
|------------------|-----------------|-------------------------|--|--|
| Symbol(Optional) | SCLW            | f1,f2                   |  |  |

where:

f1 represents a FORTRAN real number which designates the number to be generated, and

f2 represents a FORTRAN real number which designates the weighting factor. The weighting factor can be interpreted as the value associated with the least significant bit. See examples below.

The number generated by the Assembler will be in fixed-point format. If the signs of the two subfields of the operand differ, the Assembler will generate a negative number in two's complement form. The following relationships hold true.

| SCLW | -N, -W |   | SCLW   | N,W  |  |
|------|--------|---|--------|------|--|
| SCLW | -N, W  |   | -(SLCW | N,W) |  |
| SCLW | N, -W  | = | -(SCLW | N,W) |  |

In all cases, the number generated is equal to the value of the first subfield, adjusted according to the weighting factor. For further clarification, consider the following examples:

Y240A301M0810 REV \_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

Example 1

ALPHA SCLW 1.5,.5

bit value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 bit pos. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 BIT POSITION 14 HAS THE VALUE 0.5 x 2\*\*1 = 1.0 BIT POSITION 15 HAS THE VALUE 0.5 x 2\*\*0 = .5 ------1.5

Example 2

BETA SCLW 1.5,.0625

Example 3

GAMMA SCLW 24.0,1.2

5-12

Y240A301M0810 REV -

## 5.2.5 SCLBD - Double Length Binary Scale

The SCLBD Pseudo-Op is similar to the SCLB Pseudo-Op. The format, inputs and operation are the same as the SCLB except for the size of the data word and therefore, the range of the operand value that is input.

The SCLBD Pseudo-Op will generate a double length data word. The double length word is stored in memory in reversed order, i.e., the least significant word in the first memory location, and the most significant word stored in the next memory location.

## 5.2.6 SCLWD - Double Length Weighted Scale

The SCLWD Pseudo-Op is similar to the SCLW Pseudo-Op. The format, inputs and operation are the same as the SCLW except for the size of the data word and therefore, the range of the operand value that is input.

The SCLWD Pseudo-Op will generate a double length data word. The double length word is stored in memory in reversed order, i.e., the least significant word in the first memory location, and the most significant word stored in the next memory location.

#### Y240A301M0810 \_ THE SINGER COMPANY KEARFOTT DIVISION

## 5.2.7 PTR - Pointer to Address

The word generated by the PTR operation is not executed but is used as a pointer to another location. It is commonly accessed via indirect addressing which causes it to be interpreted as the operand address field of the original instruction. The PTR address field has the same syntax as the address field of a basic arithmetic instruction.

| LABEL FIELD      | OPERATION FIELD | <br>  OPERAND FIELD<br> |  |  |
|------------------|-----------------|-------------------------|--|--|
| Symbol(Optional) | PTR             | u   v                   |  |  |

where:

u represents an absolute or relocatable expression

v represents a single virtual (or external) symbol

Note: The evaluated operand address should not exceed the addressing capacity of the machine.

REV

### THE SINGER COMPANY KEARFOTT DIVISION

## 5.2.8 DECD - Decimal Data Definition

The DECD Pseudo-Op is used to enter a double length binary data word into a program. The data word is expressed in decimal in the source coding. If an integer or real number is specified, a floating point constant is generated. The resultant double word constant is stored in reverse order in memory, i.e., the least significant part of the mantissa is assigned to location n, and the most significant part to location n+1. If there is a symbol in the label field, it is assigned to the address of the least significant portion (exponent part) of the double word constant generated. (see examples below)

| LABEL FIELD      | OPERATION FIELD | OPERAND FIELD |
|------------------|-----------------|---------------|
| Symbol(Optional) | DECD            | d f           |

where:

d represents a FORTRAN decimal integer

f represents a FORTRAN real number

There are two components to f, a principal part and an exponent part. The principal part is a signed or unsigned decimal number of up to 18 decimal digits. It normally contains a decimal point which may appear at the beginning, at the end, or within the decimal number. If the exponent part of a real number is present, the decimal point may be omitted, in which case it is assumed to be located at the right-hand end of the decimal number.

The exponent part consists of the letter E followed by a signed or unsigned decimal integer. The exponent part may be omitted if the principal part contains a decimal point. If used, it must immediately follow the principal part. The exponent part, if present, specifies a power of ten by which the principal part will be multiplied during conversion. The maximum range of a real number is limited to approximately 2\*\*127 by the size of the exponent field in an SKC3120 floating point binary data word.

### Y240A301M0810 - THE SINGER COMPANY KEARFOTT DIVISION

Real numbers are internally represented in the form of a signed binary fraction(the mantissa) and a biased exponent(the characteristic). The exponent is the power to which the base (2) must be raised so that when multiplied by the fraction, the result is a binary representation of the real value being expressed. A bias of 128 is added to the exponent to form the characteristic which indicates either a positive or negative exponent; the greatest value of the exponent (+127) will be expressed as 255 and the smallest value of the exponent (-128) will be expressed as 0. Negative numbers have their fractional parts represented in Two's complement form. Representation of the floating point format is given in Figure 5-1.

### Figure 5-1. FLOATING POINT FORMATS

|--- MANTISSA (FRACTIONAL PART) ------|

| IS<br>IG<br>IN | <br>  15<br>  B | MOST<br>TS OF | SIGNIFI<br>THE MAN | CANT<br>TISSA |    | <br>  8 LEAS<br>  BITS OI | ST SIGNIF<br>F THE MAN | I CANT<br>T I SSA | E)<br>(8 | (PONENT<br>3 bits) |          |
|----------------|-----------------|---------------|--------------------|---------------|----|---------------------------|------------------------|-------------------|----------|--------------------|----------|
| 0              | 1               |               | •                  |               | 15 | 0                         | *                      | 7                 | 8        |                    | <u> </u> |

16 BIT DATA WORD

Y240A301M0810

REV

### THE SINGER COMPANY KEARFOTT DIVISION

The exponent bias can be represented as hexadecimal 80 (binary 10000000) the most significant bit (MSB) is the high order bit of the exponent. Note the following examples:

| DESIRED POWER OF 2 | CHARACTERISTIC IN BINARY |
|--------------------|--------------------------|
| 2**(+127)          | 1111111                  |
| 2**(3)             | 10000011                 |
| 2**(2)             | 10000010                 |
| 2**(1)             | 1000001                  |
| 2**(0)             | 1000000                  |
| 2**(-1)            | 01111111                 |
| 2**(-2)            | 01111110                 |
| 2**(-3)            | 01111101                 |
| 2**(-128)          | 0000000                  |

For a complete illustration, four examples are given below including all combinations of signs. The decimal is given on the left and the hexadecimal (32 bit) equivalent is given on the right.

| EXAMPLE 1 $0.75 \times 2 \times (3)$ | 60000083 |
|--------------------------------------|----------|
|                                      |          |
| EXAMPLE 2 -0.75 x 2**(3)             | A000083  |

NOTE: The mantissa is in two's complement form because the number is negative.

EXAMPLE 3 0.75 x 2\*\*(-3) 6000007D

NOTE: The mantissa is not in two's complement form since the number is positive. The characteristic is less than the bias value of 80 (hex), indicating a negative exponent.

EXAMPLE 4 -0.75 x 2\*\*(-3) A000007D

NOTE: The mantissa is in two's complement form and the characteristic is less than the bias value of 80 (hex), indicating a negative number and a negative exponent.

Y240A301M0810 \_ THE SINGER COMPANY KEARFOTT DIVISION

### 5.3 STORAGE ALLOCATION OPERATIONS

Storage Allocation Operations are used to reserve data storage areas for constant data and variable data words. The current location counter controlling the respective storage area is incremented by the number of words generated by the Pseudo-Ops.

5.3.1 BSS - Block Started by Symbol

The BSS Pesudo-Op is used to reserve an area of memory for use by the program as data storage or work area. The start location of the block is determined by the value of the current location counter at the time the BSS Pseudo-Op is encountered.

The format of this Pseudo-Op is:

| LABEL FIELD            | OPERATION FIELD | OPERAND FIELD |
|------------------------|-----------------|---------------|
| <br>  Symbol(Optional) | BSS             | d st          |

where:

d represents a FORTRAN decimal integer

st represents a set symbol or temporary symbol

If there is a symbol in the label field, it is assigned to the first location of storage reserved by the BSS Pseudo-Op. BSS reserves a block of consecutive storage locations, the length of which is determined by the value in the operand field. For example:

ALPHA BSS 20

A block of 20 storage locations is reserved and the symbol ALPHA is assigned to the first of these. These storage locations are not initially cleared (it may not be assumed that they contain zeros).

Y240A301M0810

REV

## 5.3.2 BES - Block Ended by Symbol

The BES Pseudo-Op is used to reserve an area of memory for use by the program as variable data storage or work area. The start location of the block is determined by the value of the current lcoation counter at the time the BES Pseudo-Op is assembled. The format of this Pseudo-Op is:

| LABEL FIELD      | OPERATION FIELD | OPERAND FIELD |
|------------------|-----------------|---------------|
| Symbol(Optional) | BES             | d st          |

where:

d represents a FORTRAN decimal integer

st represents a set symbol or temporary symbol

If there is a symbol in the label field, it is assigned to the next location following the last location of the block. The BES Pseudo-Op reserves a block of consecutive storage locations the length of which is determined by the value in the operand field. For example in:

### ALPHA BES 20

a block of 20 storage locations is reserved and the symbol ALPHA is assigned to the location after the last of the block, i.e. the 21st location from the beginning. These storage locations are not initially cleared (it may not be assumed that they contain zeros).

5.3.3 BLKDTA - Begin Block Data

The BLKDTA Pseudo-Op is used an as initiator for the block of data that will follow. All symbols defined within the block data will be globally defined. Only one BLKDTA Pseudo-Op may appear in a program and its format is as follows:

| LABEL FIELD | <br>  OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------------|---------------|
|             | BLKDTA                |               |

#### Y240A301M0810 REV \_\_\_\_ THE SINGER COMPANY KEARFOTT DIVISION

### 5.4 SYMBOL DEFINITION OPERATIONS

Most operations may be used to define a symbol simply by placing the symbol to be defined in the label field of an operation. The symbol is defined to be the value of the location counter in control at the time the symbol is encountered during assembly. However, the symbol definition Pseudo-Ops EQU, SETD, and SETX exist solely for the purpose of extending this symbol definition capability.

5.4.1 EQU - Equate Symbol to Expression

The EQU Pseudo-Op is used to assign a value to a symbol which is equal to the value of the expression in the operand field. The format of the EQU instruction is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------|---------------|
| Symbol      | EQU             | ulv           |

where:

u represents an absolute or relocatable expression

v represents a single virtual (or external) symbol

Note that unlike most other operations, EQU defines a symbol in the label field to have a value other than the current value of the location counter. (The other two such exceptional operations are SETD and SETX). EQU is also special in that the symbol(s) used in the expression in the operand field must have been defined in preceding source statements; that is, forward symbol reference is forbidden.

Observe the following examples:

Example 1

ALPHA EQU BETA

The value of ALPHA is set equal to the value of BETA. BETA may be a virtual (external) symbol.

Y240A301M0810

REV

Example 2

|       | LDA | BETA  |
|-------|-----|-------|
| GAMMA | EQU | *     |
|       | STA | DELTA |

If the instruction LDA BETA is assigned to location 0172 then GAMMA has the value 0173 and the instruction STA DELTA is assigned to location 0173.

NOTE: If an asterisk (\*) is used in the operand field, the value of the symbol is the present value of the current location counter.

Example 3

DELTA EQU ALPHA+BETA

DELTA is set equal to the value of the expression ALPHA+BETA as evaluated at assembly time. Either ALPHA or BETA or both may be previously defined symbols or set-symbols; however, only one can be relocatable. Neither ALPHA nor BETA may be externally defined symbols. Y240A301M0810 REV

#### THE SINGER COMPANY KEARFOTT DIVISION

### 5.4.2 SETD - Set Temporary Symbol to Decimal Number

The SETD Pseudo-Op is used to define or redefine a temporary symbol for use in instructions as an element in the operand field. The format of the SETD Pseudo-Op is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------|---------------|
| Symbol      | SETD            | uld           |

where:

u represents an absolute or relocatable expression

d represents a FORTRAN decimal integer

The use of the SETD Pseudo-Op assigns the numeric value of the operand field to the symbol in the label field regardless of any prior "temporary" value of the symbol. The new value becomes the value maintained by the symbol until it is redefined (by another SETD or SETX). In this manner, a set symbol or temporary symbol may assume several values during assembly of the program. If a symbol is thus defined to be a set symbol, it cannot be used elsewhere in the program as a conventional (or permanent) symbol referring to an absolute or relocatable memory address.

The value of the symbol is the current value of the expression, u. All symbols employed in the expression must be previously defined set symbols. Neither externally defined symbols (virtual symbols) nor conventional symbols may be used in the expression.

5-22

Y240A301M0810 REV -

### 5.4.3 SETX - Set Temporary Symbol to Hex Value

The SETX Pseudo-Op is used to define a temporary symbol for use in instructions as an element in the operand field. The format of the SETX instruction is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------|---------------|
| Symbol      | SETX            | h             |

where:

h represents up to four hexadecimal digits

The SETX Pseudo-Op assigns the binary integer specified by h as the value of the symbol in the label field regardless of any prior "temporary" value of the symbol. The new value becomes the value maintained by the symbol until it is redefined (by another SETD or SETX). In this manner, a set symbol or temporary symbol may assume several values during assembly of the program. If a symbol is thus defined to be a set symbol, it cannot be used elsewhere in the program as a conventional (or permanent) symbol referring to an absolute or relocatable memory address.

Unlike the SETD Pseudo-Op, the SETX Pseudo-Op may not have expressions in its operand field.

Y240A301M0810\_\_\_\_REV\_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

5.5 SUBROUTINE OPERATIONS

Subroutine directives are used to provide communication between a calling program and its subroutines.

5.5.1 ENTRY - Entry Point Designation

The ENTRY Pseudo-Op identifies a symbol as having the ability to be referenced by a routine other than the one in which it has been defined. The format of the ENTRY Pseudo-Op is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------|---------------|
| (blank)     | ENTRY           | s1,s2         |

where:

### s1,s2... are the symbols separated by commas

These symbols can be any ordinary symbol defined in the program deck by having appeared in the label field of an instruction, Pseudo-Op, or macro. Data symbols as well as instruction labels may appear in ENTRY Pseudo-OPs to indicate that they will be available to other subroutines as external symbols or references. However, it is more typically used to designate the starting location for a subroutine. Set-symbols are not permitted.

Y240A301M0810

REV

## 5.6 PROGRAM CONTROL PSEUDO-OPS

Program Control Pseudo-Ops are used to control the Assembler's processing of the program.

5.6.1 END - Program Terminator

The END Pseudo-Op indicates to the Assembler that it should terminate the assembly of a program. The format of this instruction is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD    |
|-------------|-----------------|------------------|
| (blank)     | END             | Symbol(Optional) |

When the Assembler reaches an END card, it terminates the assembly and if there is a symbol in the operand field, it will be used by the Linkage Editor as the pointer to the starting location of the program. Only one program in any one computer load may have a symbol in the operand field of the END Pseudo-Op, and that is the name of the main program of the load. All other subprograms are considered to contain only subroutines of the main program and must have blanks in the operand field. Each program or subprogram must have an END Pseudo-Op, which must appear as the last source statement.

The comment field should not be used in an END statement.

5.6.2 ENDBLK - Block Data Terminator

The ENDBLK Pseudo-Op is required as the terminator of the block data definition. All symbols defined within the block data will be globally defined. Only one ENDBLK Pseudo-Op may appear in a program and its format is as follows:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------|---------------|
| (blank)     | ENDBLK          | (blank)       |

Y240A301M0810 REV -

THE SINGER COMPANY KEARFOTT DIVISION

## 5.7 LIST CONTROL PSEUDO-OPS

The List Control Pseudo-Ops allow the user to control the format of the program listing that is output by the Assembler. These directives specify the contents of the list, the spacing of printed lines, page ejection and the printing of page titles.

5.7.1 LIST - Resume Listing

The LIST Pseudo-Op is used to resume the listing of the assembly output following an UNLIST Pseudo-Op. The format of the instruction is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------|---------------|
| (blank)     | LIST            | (blank)       |

5.7.2 UNLIST - Suspend Listing

The UNLIST Pseudo-Op is used to suspend the listing of the assembly output. The format of this instruction is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------|---------------|
| (blank)     | UNLIST          | (blank)       |

The UNLIST instruction does not appear in the listing, and source statements that follow are not listed until a LIST instruction is encountered in the assembly process. Instructions that follow the UNLIST are assembled even if they are not listed.

Y240A301M0810

REV

### 5.7.3 TTL - Define Page Title

The TTL Pseudo-Op is used to place a subheading or title on each page of the listing of the Assembler's output. The format of this instruction is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD    |
|-------------|-----------------|------------------|
| (blank)     | TTL             | Character String |

The string of characters of the operand field may contain any EBCDIC character, including embedded blanks. Each TTL Pseudo-Op causes page ejection and generates a subheading on each succeeding page until another TTL instruction is encountered. Termination of the printing of a subheading is performed by a second TTL Pseudo-Op with an operand field containing blanks or a new title.

The comment field cannot be used.

5.7.4 EJECT - Start New Page

The EJECT Pseudo-Op is used to cause the next line in the assembly listing to be printed at the top of a new page. The EJECT Pseudo-Op is not printed in the listing. The format of this instruction is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------|---------------|
| (blank)     | EJECT           | (blank)       |

5-27

| Y240A301M0810 | en e | THE SINGER COMPANY |
|---------------|------------------------------------------|--------------------|
|               | REV                                      | KEARFOTT DIVISION  |

5.7.5 SPACE - Skip Blank Lines

The SPACE Pseudo-Op is used to generate any number of blank lines in the assembly listing. limited by the end of a page. That is, regardless of the number of spaces requested, the maximum effect is a page change. The format of this instruction is:

| LABEL FIELD | OPERATION FIELD | OPERAND FIELD |
|-------------|-----------------|---------------|
| (blank)     | SPACE           | n             |

The number n indicates the number of blank lines that are to appear in the assembly listing.
Y240A301M0810

REV \_\_\_\_

#### 6. THE ASSEMBLER OUTPUT LISTING

Each page of the Assembler listing will consist of a heading and the side-by-side listing. The heading contains the Assembler version, the deck name, title, and page number. The heading also labels the various sections of the side-by-side listing as follows:

- a. DIAGNOSTICS a sequence of zero to four one or two letter mnemonics for error messages
- b. LINE line number
- c. ADRES absolute or relocatable address in hexadecimal
- d. DADRES absolute or relocatable address in decimal
- e. LC location counter

LC = 0 to 24 current location counter
 LC = -1 symbol defined is absolute (EQU

- only)
- 3. LC = -2 symbol defined is a set-symbol
- 4. LC = \*\* symbol defined is synonym for an external reference
- f. PROGRAM machine instructions or data

g. SOURCE symbolic instructions

See the Appendices for a sample program listing and a list of Assembler Error Diagnostics.

## Y240A301M0810 REV \_\_\_\_

6.1 ERROR MESSAGES

After each Side-By-Side Object/Listing an expanded error message printout is provided if any errors occurred at assembly time. The error message printout consists of a heading, containing the deckname, followed by an ordered error message listing which contains the full error diagnostic and the line on which the error occurred. In addition, the Assembler provides an error message summary of the form

\*\*\*\*\*\*\*\*THERE ARE xxxx ERROR(S) IN THIS ASSEMBLY\*\*\*\*\*\*\*\*\*\*

at the end of all assemblies. xxxx is the sum of the errors that occurred in all the assemblies.

6.2 CROSS REFERENCE

Each page of the cross reference listing will consist of a heading and a sorted list of all symbols in the assembly. The heading contains the deckname and page number. The heading also labels the various columns of the cross reference as follows:

a. RELATIVE ADDRESS OR SET VALUE

a1. HEX - value of symbol in hexadecimal.
a2. DEC - value of symbol in decimal.
If the symbol is undefined \*\*\*\*\*UNDEFINED\*\*\*\*\* is printed.

- b. LC Location counter of the symbol
- c. VARIABLE NAME One to eight character symbol names
- d. LINE NUMBERS OF OCCURRENCES
  - d1. DEFINED the line number at which the symbol is defined. If the symbol is a Block Data Symbol, BLKDTA appears in this entry.
  - d2. REFERENCES the line numbers of all references to the symbol.

Y240A301M0810 REV

## APPENDIX A

## ASSEMBLER ERROR DIAGNOSTICS

F4202-1 2/75

Y240A301M0810 REV \_\_\_\_

THE SINGER COMPANY KEARFOTT DIVISION

The assembly errors which may be generated by a program are listed below. For a more detailed explanation see SKC3120 Assembler/Linkage Editor/Simulator Users Manual Y240A301M0811.

| Error | Description                              |
|-------|------------------------------------------|
| Α     | Symbols have differing location counters |
| AR    | Address out of Range                     |
| BD    | More than one block data                 |
| D     | Symbols in operand must be defined       |
| DC    | Invalid device code                      |
| E     | Illegal Expression in Operand            |
| ĒS    | Entry Symbol is also a Set Symbol        |
| L     | Improper Label                           |
| Ĩ.C.  | Illegal location counter number          |
| M     | Multiply Defined Symbol                  |
| NE    | No end card                              |
| 0P    | lllegal OP Code                          |
| OR    | Operand in Error                         |
| R     | Attempt to mix Data/Instructions         |
|       | and Variables                            |
| RE    | Origin out of range                      |
| SH    | Shift count too large                    |
| T     | Truncation Error                         |
| UE    | Undefined Entry Point                    |

Y240A301M0810

REV

### APPENDIX B

## ASSEMBLER CONTROLS AND OPTIONS

F4202-1 2/75

### \$ASM

\_\_\_\_

The \$ASM control card must precede each source deck to be This card causes the Assembler to process assembled. the source immediately following the \$ASM control deck card in the input An END Pseudo-Op card must be added to the end of the stream. This Pseudo-Op causes the Assembler to terminate source program. the assembly process and return control to the control routine.

the format of the \$ASM control card is:

column:

| 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
|----|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|
| \$ | Α | S | М |   | n | n | n | n | n. | n  |    |    |    |    | 0  | Ρ  | Т  | 1  | 0  | N  | S  |

where:

| \$ASM = | Rec | uest | for | the | Assembl | er | function |
|---------|-----|------|-----|-----|---------|----|----------|
|---------|-----|------|-----|-----|---------|----|----------|

- nnnnnn = Source deck name (up to 6 alphabetic or numeric characters). Must begin in column 6 with a alphabetic character.
- OPTIONS = One letter Assembler option codes. Option codes must begin in column 16 and are written one code per column with no embedded blanks. Option codes are:
  - D No Object Deck (Object Deck-Default)
  - L Suppress Assembly listing (Listing-default)
  - P 16 Bit Data Option (19 Bit Data Option-Default)
  - R Retrieve Saved Block Data Symbols (Use instream Block Data Symbols or no Block Data Symbols-Default)
  - S Save Block Data Symbols (Do not save Block Data Symbols or no Block Data Symbols-Default)
  - X Suppress Assembly Cross Reference listing (Cross Reference listing-Default)

Y240A301M0810

REV

APPENDIX C SAMPLE PROGRAM LISTINGS Y240A301M0810

VERSION 8,10

THE SINGER COMPANY KEARFOTT DIVISION

SKC3000 ASSEMBLER VERSION 8.10 DECK NAMEBAUTILIT\*

DIAGNOSTICS LINE ADRES DADRES LC PROGRAM

REV

SOURCE

|      |       |          |           | SASM   | UTILIT     |           |
|------|-------|----------|-----------|--------|------------|-----------|
| 1    |       | 1        |           |        | USE        | 1         |
| 2    |       | 1        |           |        | ORG        | 402       |
| 3    |       |          |           |        | ENTRY      | ATAN      |
| 4    | 00574 | 1402 -1  |           | ATAN   | EQU        | * .       |
| 5    | 0057A | 1402 1   | 01910     |        | STA        | RTEM3     |
| 6    | 0057B | 1403 1   | 02A40     |        | CLB        |           |
| 7    | 0057C | 1404 1   | 02802     |        | SLLD       | 2         |
| 8    | 00570 | 1405 1   | 0AA04     |        | AND        | H3FFFF    |
| 9    | 0057E | 1406 1   | 0391A     | × · ·  | STA        | RTEM1     |
| 10   | 0057F | 1407 1   | 0111A     |        | MUL        | RTEM1     |
| 11   | 00580 | 1408 1   | 0791B     |        | STA        | RTEM2     |
| 12   | 00581 | 1409 1   | 01212     |        | MUL        | UCTII     |
| 13   | 00582 | 1410 1   | 05A10     |        | ADAB       | UCT9      |
| 14   | 00583 | 1411 1   | 01118     |        | MUL        | RTEM2     |
| 15   | 00584 | 1412 1   | 30520E    |        | SBAB       | UCT7      |
| 16   | 00585 | 1413 1   | 01118     |        | MUL        | RTEM2     |
| 17   | 00586 | 1414 1   | 05AOC     |        | ADAB       | UCTS      |
| 18   | 00587 | 1415 1   | 01118     |        | MUL        | RTEM2     |
| 19   | 00588 | 1416 1   | 40520     |        | SBAB       | UCTI      |
| 20   | 00589 | 1417 1   | 01118     |        | MUL        | RTEM2     |
| 21   | 0058A | 1418 1   | 05A08     |        | ADAB       | UCT1      |
| 22   | 0058B | 1419 1   | 01114     |        | MUL        | RTEMI     |
| 23   | 00580 | 1420 1   | 0-914     |        | STA        | RTEMI     |
| 24   | 00580 | 1421 1   | 04110     |        | Í DA       | RTEMT     |
| 25   | 0058F | 1422 1   | 0 4 4 0 7 |        | AND        | H70000    |
| 26   | 0058F | 1423 1   | 01910     | •      | STA        | RIFME     |
| 27   | 00590 | 1424 1   | 04403     |        | AND        | H10000    |
| 28   | 00591 | 1425 1   | 08002     |        | JEQ        | ADD       |
| 29   | 00592 | 1426 1   | 0091A     |        | SBA        | RTEMI     |
| 30   | 00593 | 1427 1   | 08801     |        | 311        | ADD1      |
| 31   | 00594 | 1428 1   | 00114     | ADD    | ĂĎA        | RTEHI     |
| 32   | 00595 | 1429 1   | 00110     | ADD1   | ADA        | RTEMT     |
| 33   | 00596 | 1430 1   | 00807     |        | JT         | UTLRET    |
| 34   |       | •••••    | •••••     |        | ENTRY      | PATAN     |
| 35   | 00597 | 1431 -1  |           | PATAN  | EQU        | *         |
| 36   | 00597 | 1431 1   | 01118     | •      | STAB       | RTEMP     |
| 37   | 00598 | 1432 1   | 02440     |        | CIB        |           |
| 38   | 00599 | 1433 1   | 02114     |        | <b>STB</b> | RTEM      |
| 19   | 00594 | 1434 1   | 0 7801    |        | .11. 7     | NEGN      |
| 40   | 00598 | 1435 1   | 0.8807    |        |            | POSN      |
| 41   | 00590 | 1436 -1  |           | NEGN   | FQU        | +         |
| 42   | 00590 | 1.176 1  | 0.3960    |        | CPA        | <b>•</b>  |
| 12   | 00590 | 1430 1   | 0780      |        |            | NEGNA     |
| 44   | 00595 | 1437 1   | 0.8801    |        | .111       | NEGNOK    |
| 45   | 0059F | 1439 1   | 0,200     | NEGNE  | I DA       | HIEFEF    |
| 46   | 00540 | 1400     | 01910     | NEGNI  | K STA      | RTENSA    |
| 40   | 00544 | 1440 1   | 0/207     | ne one |            | HTOAAA    |
| U.A. | 00543 | 1442 +   | 01914     |        | Q T A      | DTFMI     |
| 40   | 00541 | 1447 -1  | V 3 / 1 7 | PrieN  | FOI        | *<br>*    |
| = 0  | 00541 | 1.443.41 | 0.110     | 1030   |            | DTENO     |
| 30   | AADA3 | 1445 1   | 04110     |        |            | n i chine |

Y240A301M0810

### THE SINGER COMPANY KEARFOTT DIVISION

| VERSION   | 8,10     | ·     | DECK NA | ME= | +UTILIT* | 1                                       |      |          |
|-----------|----------|-------|---------|-----|----------|-----------------------------------------|------|----------|
| DIAGNOST  | TCS LINE | ADRES | DADRES  | LC  | PROGRAM  |                                         |      |          |
|           | 51       | 00544 | 1444    | 1   | 07803    |                                         | JLT  | NEGD     |
|           | 52       | 005A5 | 1445    | 1   | AUSAO    |                                         | JU   | POSD     |
|           | 53       | 005A6 | 1446    | -1  |          | DEQN                                    | EQU  | *        |
|           | 54       | 005A6 | 1446    | 1   | 04202    |                                         | LDA  | HOFFFF   |
|           | 55       | 005A7 | 1447    | 1   | 08818    |                                         | JU   | RESULT   |
|           | 56       | 00548 | 1448    | -1  |          | NEGD                                    | EQU  | *        |
|           | 57       | 005A8 | 1448    | 1   | 02950    |                                         | CPA  |          |
|           | 58       | 005A9 | 1449    | 1   | 07801    |                                         | JLT  | NEGDB    |
|           | 59       | 00544 | 1450    | 1   | 0A801    |                                         | JU   | NEGDOK   |
| · · ·     | 60       | 005AB | 1451    | 1   | 04204    | NEGDB                                   | LDA  | H3FFFF   |
|           | 61       | 005AC | 1452    | 1   | 0391B    | NEGDOK                                  | STA  | RTEM2    |
|           | 65       | 005AD | 1453    | 1   | 04205    |                                         | LDA  | H30000   |
|           | 63       | 005AE | 1454    | 1   | 0091A    |                                         | SBA  | RTEMI    |
|           | 64       | 005AF | 1455    | 1   | 01914    |                                         | STA  | RTEM1    |
|           | 65       | 00580 | 1456    | •1  |          | POSD                                    | EQU  | <b>*</b> |
|           | 66       | 00580 | 1456    | 1   | 04110    |                                         | LDA  | RTEM2+1  |
|           | 67       | 00581 | 1457    | . 1 | 0n918    |                                         | SBA  | RTEH2    |
|           | 68       | 00582 | 1458    | 1   | 07809    |                                         | JLT  | DGTN     |
|           | 69       | 00583 | 1459    | 1   | 0#7F2    |                                         | JEQ  | DEQN     |
| an shirin | 70       | 00584 | 1460    | - 1 | 04918    |                                         | LDAB | RTEM2    |
|           | 71       | 00585 | 1461    | 1   | 05880    |                                         | EAB  |          |
|           | 72       | 00586 | 1462    | 1   | 03118    |                                         | STAB | RTEM2    |
|           | 73       | 00587 | 1463    | 1   | 0411A    |                                         | LDA  | RTEM1    |
|           | 74       | 00588 | 1464    | 1   | 2885     |                                         | SLC  | 2        |
|           | 75       | 00589 | 1465    | 1   | 00206    |                                         | ADA  | H40000   |
|           | 76       | 0058A | 1466    | 1   | 02802    |                                         | SRC  | 2 .      |
|           | 77       | 00588 | 1467    | - 1 | 0,1914   |                                         | STA  | RTEM1    |
|           | 78       | 0058C | 1468    | -1  |          | DGTN                                    | EQU  |          |
|           | 79       | 0058C | 1468    | 1   | 0411C    |                                         | LDA  | RTEM2+1  |
|           | 80       | 005BD | 1469    | 1   | 02A40    |                                         | CLB  |          |
|           | 81       | 0058E | 1470    | 1   | 01918    |                                         | DIV  | RTEM2    |
|           | 82       | 005BF | 1471    | - 1 | 02842    | $(a_1,b_2,\ldots,b_n) \in \mathbb{R}^n$ | SRAD | 2        |
|           | 83       | 00500 | 1472    | 1   | OPIIA    | RESULT                                  | DR   | RTEM1    |
|           | 84       | 00501 | 1473    | 1   | 00807    |                                         | JI   | UTLRET   |
|           | 85       |       |         |     |          |                                         | END  |          |

SOURCE

REV

iles.

| XREF 1 DECK NAME=+UTILIT* SKC 3000 CROSS REFERENCE DICTIONARY                            |              |              | A301M                                 |
|------------------------------------------------------------------------------------------|--------------|--------------|---------------------------------------|
| RELATIVE ADDRESS                                                                         |              |              | 15                                    |
| (OR SET VALUE) VARIABLE NAME LINE NUMBERS OF D URRENCES<br>HEX DEC LC DEFINED REFERENCES |              |              | 80                                    |
| 00594 1428 1 ADD 31 28                                                                   |              | i star o sta | 10                                    |
| 00595 1429 1 ADD1 32 30                                                                  |              |              |                                       |
| 0057A 1402 1 ATAN 4 3                                                                    |              |              |                                       |
| 00546 1446 1 DERN 53 69                                                                  |              |              | 201                                   |
| 005 <sup>8</sup> C 1468 1 DGTN 78 68                                                     |              |              | ~ ~                                   |
| 00202 514 HOFFFF BLKDTA 54                                                               | •            |              |                                       |
| 00203 515 H10000 BLKDTA 27                                                               |              |              |                                       |
| 00204 516 H3FFFF BLKDTA 8 45 60                                                          |              |              |                                       |
| 00295 517 H30000 BLKDTA 62                                                               | 1 <b>.</b> . |              |                                       |
| 00206 518 H40000 BLKDTA 75                                                               |              |              |                                       |
| 00207 519 H70000 BLKDTA 25 47                                                            |              |              |                                       |
| 005AB 1451 1 NEGDB 60 58                                                                 |              |              |                                       |
| 005AC 1452 1 NEGDOK 61 59                                                                |              |              | <b>ب</b>                              |
| 00548 1448 1 NEGD 56 51                                                                  |              |              | ᆽᇁ                                    |
| 0059F 1439 1 NEGNB 45 43                                                                 |              |              | m m                                   |
| 00540 1440 1 NEGNOK 46 44                                                                |              |              | AR SI                                 |
| 0059C 1436 1 NEGN 41 39                                                                  |              |              | T Z                                   |
| 00597 1431 1 PATAN 35 34                                                                 |              |              | L L L L L L L L L L L L L L L L L L L |
| 00590 1456 1 POSD 65 52                                                                  |              |              |                                       |
| 00543 1443 1 POSN 49 40                                                                  |              |              | DO                                    |
| 005C0 1472 1 RESULT 83 55                                                                |              |              | _ ≤ ♀                                 |
| 0011A 282 RTEM1 HLKDTA 9 10 22 23 29 31 38 48                                            | 61 64        | 73           | 77 2 7                                |
| 83                                                                                       | •••          | , -          | '' <u>Q ≥</u>                         |
| 00118 283 RTEM2 BLKDTA 11 14 16 18 20 36 46 50                                           | 61 66        | 67           | 70 - 2                                |
| 72 79 81                                                                                 |              | _            |                                       |
| 0011C 284 RTEM3 BLKDTA 5 24 26 32                                                        |              |              |                                       |
| 00212 530 UCT11 BLKDTA 12                                                                |              |              |                                       |
| 00208 520 UCT1 BLKDTA 21                                                                 |              |              |                                       |
| 0020A 522 UCT3 BLKDTA 19                                                                 |              |              |                                       |
| 0020C 524 UC15 BLKDTA 17                                                                 |              |              |                                       |
|                                                                                          |              |              |                                       |
| 00210 528 UC19 BLKDTA 13                                                                 | · •          | . i          |                                       |
| 00007 7 UTLRET BLKDTA 33 84                                                              |              |              |                                       |

+THERE ARE \*\*\*\*\*

O ERROR (S) IN THIS ASSEMBLY\*\*\*\*\*\*\*\*

2/75

C-4

F4202-1

Y240A301M0810

REV

## APPENDIX D

# SKC3120 MACHINE INSTRUCTION FORMAT SUMMARY

Y240A301M0810

### THE SINGER COMPANY KEARFOTT DIVISION

TABLE D - 1 SKC3120 INSTRUCTION SET

| MNEM. | OPERATION NAME                 |
|-------|--------------------------------|
| ABSF  | ABSOLUTE OF A                  |
| ADA   | FIXED ADD MEMORY TO A          |
| ADAB  | FIXED ADD MEMORY TO AB         |
| ADAX  | FIXED ADD MEMORY TO A INDEXED  |
| ADC   | FIXED ADD CARRY TO A           |
| ADE   | FLOAT ADD MEMORY TO AB         |
| ADEL  | FLOAT ADD MEMORY TO AB. INDIR  |
| ADMEM | FIXED ADD A TO MEMORY          |
| ADX   | FIXED ADD A TO ACTIVE INDEX    |
| AND   | LOGICAL AND                    |
| ANDM  | LOGICAL AND TO MEMORY, BASED   |
| CFX   | CONVERT FLOAT TO FIXED IN AB   |
| CLB   | CLEAR B                        |
| CMA   | ONE'S COMPLEMENT A             |
| CMS   | SKIP ON A .LT. MEMORY          |
| CPA   | TWO'S COMPLEMENT A             |
| CPAB  | TWO'S COMPLEMENT AB            |
| CXF   | CONVERT FIXED TO FLOAT IN AB   |
| DIAX  | INPUT DATA INTO A INDEXED      |
| DIV   | FIXED DIVIDE A BY MEMORY       |
| DOAX  | OUTPUT DATA OUT OF A INDEXED   |
| DPT   | DISABLE PROGRAM INTERRUPTS     |
| DSZ   | DECREMENT MEMORY, SKIP IF U    |
|       | EXCLANCE A AND P               |
|       | ENADLE DOCCAM INTEDDUDT        |
|       | EVEN ACTIVE AND INACTIVE INDEX |
| ENEC  | ELAAT NECATE AR                |
| HIT   | HAIT                           |
| INCMS | FIXED INCREMENT MEMORY         |
|       | AND SKIP IF 0                  |
| JEQ   | JUMP IF (A) .EQ. 0             |
| JGE   | JUMP IF (A) .GE. 0             |
| JGT   | JUMP IF (A) .GT. 0             |
| JI    | JUMP INDIRECT                  |
| JLE   | JUMP IF (A) .LE. 0             |
| JLT   | JUMP IF (A) .LT. 0             |
| JNE   | JUMP IF (A) .NE. 0             |
| JS    | JUMP TO SUBROUTINE             |
| JU    | JUMP UNCONDITIONAL             |
| LDA   | LOAD A FROM MEMORY             |
| LDAB  | LUAD AB FROM MEMORY            |

D-2

ĺ

Y240A301M0810 REV -

### COMMENTS AND EVALUATIONS

Your evaluation of this document is welcomed by the Singer Company.

Any errors, suggested corrections or general comments may be made and continued on the reverse side. Please include page number and reference paragraph and forward to:

> The Singer Company Aerospace and Marine Systems Kearfott Division 150 Totowa Road Wayne, New Jersey 07470 Attention: Department 5760

Name

Company Affiliation

Address

Comments: