
ENGINEERING
TECHNICAL

REPORT

SINGER
AEROSPACE & MARINE SYSTEMS

DOCUMENT NO. Y240A201M0301 REV A

FOCAP

SKC-2000

ASSEMBLER LANGUAGE

REFERENCE MANUAL

ORR NO. 00807 (NIP)

THE SINGER COMPANY. kEARFOTTDIVISION • 1150 MCBRIDE AVENUE. LITTLE FALLS, N. J. 07424

f42004 2/12

THE SINGER COMPANY
KEARFOTT DIVISION

FOCAP

SKC-2000

ASSEMBL,ER·LAN~UAGE .

REFERENCE M~~J\I·

. Prepared by:

EngineeringProgran1ing and Computation

June 1974

Y240A20lMo301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

FOCAP

SKC 2000

ASSEMBLER LANGUAGE

REFERENCE MANUAL

ABSTRACT

Y240A20lM0301 REV A

This document describes the syntax and function of the SKC 2000 (FOCUS) Assembly Language. An SKC 2000 computer program

written in this language is automatically converted to machine language by Version 3 of the SKC 2000 (FOCUS) Assembly Program,

FOCAP. The use of the 360/370 version of the FOCAP Assembler is described in the FOCAP Users' Manual (Y240A20IM0302).

These documents, with the SKC 2000 Principles of Operation Manual (Y240A200M0201), provide sufficient information for a

programmer to prepare an SKC 2000 computer program.

This document was formerly published as Kearfott Engineering TechnicalReport, Document No. KD-71-60 .. The document number

has been changed to Y240A20lM0301 to be consistent with a new configuration control system. Similarly, the following KD

numbers for the SKC 2000 programming manuals referenced herein have been changed to the indicated Y number.

KD-72-18 becomes

KD-72-21 becomes

KD-71-S0 becomes

Y240A20 I M0302

Y240A200M0201

Y240A204MO I 0 I

Users are invited to suggest improvements in this manual by using the form provided at the end.

, REV

A

REV

PAGE

F4201 2ti2·

RELEASE

THE SINGER,COMPANY
KEARFOTl' DIVISION

REVISION RECORD

DESCRIPTION

Substantial revisions to sections3.2.6, 5.4.2, 3.1.2 and 3.3.

Deleted sections 5.8.3 and S.8Aand,AppendicesC & D.

, Less substantial changes to manyotlu~r~ectiolls. '

A "

COYER I,
"

REVISION SY __ ~L OF REVISED PAGES

ii

Y240A201M0301

"

REV A

APPROVAL
AND DATE

MAY 1973

JUNE 1974

A
OTHER
PAGES

I.

2.

3.

INTRODUCTION

FOCAPLANGUAGESTRUCTURE

2.1 SOURCE LANGUAGE STATEMENT

2.1.1 Label Entry

2.1.2 Operation Entry

2.1.3 Operand Entry

2.1.4 Comment Entry

2.1.5 Character Set

2.1.6 Statianent Format

2.2 LANGUAGE ELEMENTS

2.2.1 Symbols

2.2.2 Expressions

ADDRESSING AND LOADING

3.1 INTRA-DECK ADDRESSING

3.1.1 Short/Long Decision

3.1.2 Location Counte~s
3.1.3 Base Register Addressing

3.1.4 Page Addressing

3.1.5 Skip Addressing

3.2 INTER-DECK ADDRESSING

3.2 . .1 Entry 'Points

3.2.2 External Synibols

3.2.3 Common Areas

3.2.4 TEMP (Stack) Areas

3.2.5 Subroutine Call

THE SINGER COMPANY
KEAR FOTT .DIVISION

TABLE OF CONTENTS

-~

3.2.6 System Variables - COMPaOL

3.3 FOCAP LOADER PROGRAM

3~3.1 Memory Organization

3.3.2 . LoadingProcedure

3.3.3 St<ltU8

. iii

Y240A20lM0301 REV A

PAGE

I-I

2-1

2-2

2-2

2-2

2-2

2-2

2-2

2-2

2-4

2-4

2-6

3-1

3-2

3-2

3-2

3-3

3-4

3-4

3-6

3-6.

3-6

3-6

3-7

3-7

3-8

3-9

3-9

3-9

3-13

4.

5.

THE SINGER COMPANY
KEARFOTTDIVISION

TABLE OF CONTENTS (Continued)

MACHINE LANGUAGE INSTRUCTIONS

4.1 ARITHMETIC INSTRU~TIONS

4.1.1 Operation Field

4.1.2 Operand Field

4.2 JUMP INSTRUCTIONS

4.2.1 Operation Field

4.2.2 Operand Field

4.3 INDEX REGISTER INSTRUCTIONS

4.3.1 Operation Field

4.3.2 Operand Field

4:4 SHIFT INSTRUCTIONS

4:4.1 Operation Field

4:4.2 Operand Field

4.5 NONMEMORY REFERENCE INSTRUCTIONS

4.5.1 Operation Field

4.5.2 Operand Field

4.6 INPUT..QUTPUT INSTRUCTIONS

4.6.1 Operation Field

4.6.2 Operand Field

4.7 BLOCK TRANSFER INSTRUCTIONS

4.7.1 Operation Field

4.7.2 Operand Field

FOCAP ASSEMBLER OPERATIONS

5.1 LOCATION COUNTER OPERATIONS

5.1.1

5.1.2

5.1.3

5.104

5.1.5

USE - Start Use of Location Counter

ORG -- Specify An Absolute ORIGIN for the Program Segment

EVEN .- Make Location Counter Even

COMMON- Allocate COMMON Data Area
TEMP .. Temporary Data Area

jv

Y240A20lM0301 REV A

PAGE

4-1

4-3

4-3

4-5

4-7

4-7

4-7

4-9

4-9

4-9

4-11

4-11

4-11

4-12

4-12

4-12

4-13

4-13

4-13

4-15

4-15

4-15

5-1

5-4

5-4

5-5

5-5

5-5

5-6

5.2

tHE SINGERCOMPANV
KEARFOTT DIVISION

TABtE OF CONTENTS (Continued)

MEMORY ALLOCATION OPERATIONS

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

5.2.6

5.2.7

5:2.8

5.2.9

5.2.10

5.2;11

5.2.12

DEC - Decimal Data Definition

DECI6 - Halfword Decimal Data DefinitiQn - .~

DEC64 - DoublePrecision Data Definition

HEX - Hexadecimal Data Definition'

HEX 16 - Halfword Hexadecimal Data Definition

SCLB - BinaryScale Operation

SCLB 16 - Halfword Binary Scale Operation

SCLW - Weighted Scale Operation

SCLWI6 - HalfwordWeighted Sca1eOperati6n

BSS - Block Started by Symbol'

BES- Block Ended by Symbol

PTR - Pointer to Address

5.3 SYMBOL DEFINITION OPERATIONS ..

5.3.1

5.3.2

5.3.3

5.3.4

EQU - Equate Symbol To Expression

SETD - Set Temporary Symbol to Decimal Number

SETX - Set Temporary Symbol To Hex Value

BIT - Assign a Symbol To a Bit

5.4 BASE REGISTER OPERATIONS

5.5

5.6

5.7

5.4.1

5.4.2

5.4.3

BASE - Base Register Designation

. UBASE ~ Unconditional Base Register Designation

DBASE - Drop a Base Register

SUBROUTINE OPERATIONS

5.5.1

5.5.2

5.5.3

5.5.4

5.5.5

ENTRY- Entry Point Designation

CALL -' Call Subroutine

PROt - Subroutine Prologne

SPROL ~ Short Subroutine Prologne

RETURN - Return From Subroutine

MODE CONTROL OPERATIONS

5.6.1

5.6.2

5.6.3

5.6.4

HALF - Half Word Arithmetic Mode

FULL -Full Word Arithemtic Mode

RTMX- Return to Memory Indexing

PAGE

BIT MANIPULATION OPERATIONS

5.7.1

5.7.2

5.7.3

5.7.4

PUT Put I in Designated13itPosition

ZPUT - Set 0 in the Desigilated Bit Position

IMP - Jump If Bit is Set

ZJMP . Jump If Bit is Zero

v

Y240A20lM0301 REV A

PAGE

5-8

5-8

5-10

5-10

5-11

5-12

5-12

5-13

5-14

5-15

5-16

5-17

5-17

5-18

5-18

5-19

5-19

5-20

5-23

5-24

5-26

5-28

5-28

5-28·

5-29

5-30

5-31

5-32

5-32

5-32

5-32

5-33

5-34

5-34

5-35

5-36

5-37

THE SINGER COMPANY
KEARFOTT DIVISION

TABLE OF CONTENTS (Continued)

5.8 DOUBLE PRECISION FLOATING POINT MACROS

5.8. t ' LtJAB - OOirbtt\ Preelsiblt tmtd Accttmuliftor
5.8.2 STAB - Double Precision Store AceUintiiator

5.9 ARITHMETIC STATEMENT (CMPL)

5.10 PROGRAM CONTROL OPERATIONS

5.10.1 END

5.10.2 INT

5.11 LISt CONTROL OPERATIONS

5.11.1 LIST - Resume Listing

5.11.2 UNLiST - Suspend Listing, '

5.11.3 TTL - Define Page Title

5.11.4 EJECT - Start New Page

5.11.5 SPACE :- Skip Blank Lines

APPENDIX A - SKC 2000 (FOCUS) MACHINE INSTRUCTION SUMMARY

APPENDIX B - ASSEMBLER AND LOADER ERROR DIAGNOSTICS

vi

Y240A20lM0301 REV A

PAGE

5-38

5-38
5-:38

5-39

5-41

5-41
5-41

5-42

5-42

5·42
5-42

5-42

5·43

A-I

B-1

THE SINGER COMPANY
KEARFOTT DIVISION

I. INTRODUCTION

Y240A20lM0301 REV A

The SKC 2000 (FOCUS) airborne computer architecture was chosen particularly to facilitate programming in high level languages

(e.g., PL/I, JOVIAL, CMS2) without loss of hardware efficiency. Toward that end, built-in floating point arithmetic is provided as

well as powerful sct of short (16 bit) instructions. The FOCAP Assembler Language was also developed as the next natural step

toward programming in high level languages. FOCAP was designed to include many high level language features to both facilitate

assembler language programming and to serve as an ideal target language for a compiler. It includes a set of powerful system macros

rot fcefttl'lIllt Stir,toottrit !Ifikaoge, 2S ltltl!tlun C6tlrftE!f'5, l!tIt~lttit selireUoftbetweel1 siWtf 61' 1M!! illsfttfttioffs, nlttofllallc ~ftatillg tif

scratchpad memory, COMMON data areas, system variables (COMPOOL-like) capability, and both relocatablc and absolute

addressing. The assembler program is complemented by a powerful loaderprogram for allocating memory and linking external labels

for a mixture of relocatable and absolute program segments. The assember/loader generates a load module which includes symbolic

information. Hence, the simulator is designed to permit symbolic referencing of program information.

This manual describes the input language processed by the SKC 2000 (FOCUS) assembler program, FOCAP. It should be used in

conjunction with the following manuals in developing an SKC 2000 .computer program:

• SKC 2000 Principles of Operation (Document No. Y240A200M0201)

• SKC 2000 Subroutine Library Reference Manual (Document No. Y240A204MOIOI)

• SKC 2000 FOCAP Assembler Users Manual (Document No. Y240A2QlM0302).

It is presumed here that the reader is familiar with the content of the Principles of Operation manual, especially the sections on

machine instruction format.

Yi40A201M0301 REV A .

THE SlNGERCOMPANV
KEARFOTT DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

1-2

THE SINGER COMPANY
KEARFOTTDIVISION

2. FOCAPLANGUAGESTRUCTURE

Y240A20lM0301 REV A

An SKC 2000 (FOCUS) Computer Assembler Program (FOCAP) was developed to run on an IBM 360 or 370 computer. The
Assembler was written almost exClusively in Fortran. Hence, it can be converted torun on similar host computers using a similar
Fortran compiler. The source language processed by this Assembler is described in this document. Some basic language features are
described in this section.

The FOCAP language provides a mnemonic {literally, m~lt\bry aidiil~rt'liaghine instruction operation code for each machine
instruction in the SKC 2000 airborne computer~ The assembler lan~ilge ~lso contains mnemonic codes for assembler directive
operations. These.are used to. provide the direction necessary for the assembler to perform its wide variety of auxiliary Junctions.

Assembler processing involves the translation of source statements into machine language, the assignment of memory words to

instructions arid data, and the development of an informationtequited by the loader program for final memory allocation. The
output of the assembler program is arelocatable or absolute object program module, a machine language translation of the input
SOUrce program module: The assembler generates a printellJisting of.thisource statements, side by side with their machine language

translation,relocatable or absolute addresses, and additional information usefUl to thet>rogrammer in analyzing his program, such as
error indications.

2-1

Y240A20lM0301 REV A

2.1S0UR(:ELANGUAGESTATEMENT

··THE. SINGER COMPANY
KEARF()TT DIVISION

A FOCi\P program· consists of a sequence of source language statements or symbolic instructions. Each statement consists of one to
four entries,~hich .are from left to right: a label entry, an operation entry, an operand errtry, and a comments entry, These entries
must be separated by one or more blanks and must be written in the order stated. A brief description of each entry follows:

2.1.1 Label Entry

$I .' -'i_:,:: .- ',,',':"'.,
The label cntry is a symbol created by the programmer to identify a statement:·The'l.libel symbol is. used to reference the statement in
the operand entry of other statements. A label entry is usually optional. Like all symbols, the label entty may consist of up to sixteen
alphanumeric (or alphameric) characters, the first of which must be alphabetic.

2.1.2 Operation Entry

The operation entry is the mnemonic operation cod.e specifyjngthe SKC 2000 machine operation, assembler operation or macro
operation desired. An operation·entry is mandatory (exCept for arull comment statement). Valid mnemonic operation codes for each
machine· operation are listed in Appendix A. All basic and macro FOCAP mnemonic operation codes are listed in Section 5 (Table

5-1). One of these valid mnemonic operation codes must appear in each FOCAP statement:

2.1.3 Operand Entry

Operand entries identify and describe data to be acted upon by themachlne or assembler operation. The operand entry has a variety
of formats described in Sections 4 and 5. Depending on the requirements of the operation, one or more or no operands can be
specified. Multiple operand entries must be separated by commas; and they cannot include embedded blanks;

2.1.4 Comment Entry

Comments are descriptive items of information about the statement or the program· that are included to clarify the program listing.
Any printable character may be included in a comment, including blanks. An·entfre statement field can be used for a comment if an

asterisk or period is punched in the first column.

2.1.5 Character Set

The standard Fortran character set forms the basis for the FOCAP character set (except that any printable character may be used for

comments). Th~character set for the label field is the alphabetic A-Z and the numbers 0-9 (hereinafter referred to as . the

alphanumeric or alphameric character set). The character set fotthe operation field is also the alphameric character set (A-Z, 0-9)
combined to form a legal assembler mnemonic operation code. The character set of the operand field is the alphameric characters and

the special characters shownbelow:

/ * . , + -' () blank

For comments, any printable character is acceptable. For the IBM 360/370 ,,;ersion of the assembler, the EBCDIC character set is

lIS,'d.

2.1.6 Statement Format

The primary input. medium to the FOCAP ;Issembleris 80 column card images. Source statements are usually punched one per card

in the following format.

2-2

LABEL FIELD

• Must start in column I; •

• May be up to 16 characters in length; •

• Must be a sumbot (see SecUbn 2.4). •

• Usually optional.
p

THE SINGER COMPANY
KEARFOTT DIVISION

OPERATION FIELD

May not start in column I.

Must be a legal mnemonic
operation code.

One ol'fucire blariks'ffius(,

separate the label field,

and operation field.

Y240A20lM0301 REV A

OPERAND FIELD

•
I

Format depends on instruction used.

• One or more blanks must separate the
operation field and the operand field.

Comments-may be placed on a card in one of two ways: after at least one.blank following the operatld field, or after an asterisk (*)

or period(.)in column I. If column. I is left blank, the next field is ass\lmed to be the operation field.

The fields are.free format, with the exception that a label field or comment statement or operand m~st start in column I; however,
standard card columns for starting FOCAP fields are recommended for ,the sake of legibility. Figure 2-1 shows the standard FOCAP
coding form, in which the operation field starts jn column 8 and. the operand field begins in coluIWl 15. In general, blanks delimit
fields and commas delimit slibfields. The operand freld varies with the type of the operation (see Sections 4 and 5).

2-3

THE SINGER COMPANY
KEARFOTT DIVISION

SINGER
KEARFOTT CODING FORM KEA".OTT DlylSION

.-----------,I'~ .. MO~GR~.~M--~~~~~~~=
" ..

• ~ •. ~ ••• cc ...•.•.. :. L4.E~ OPERATION OPERAND

•• 40 7. 80 t. 20 30

_1 .1 , I I I I • I I It

I '1 I I 'I' I I I t I I

i .'1 i 1 i ,"1
"

I I

I II I I I I,

i I I I,,·, I I I I

I I , " 1'1 1 I I I '

I I I ,I II j. I 1 I I I I I I

1 . I I '1' I 11',1. '1 I .I 1 I' I I

~~ t ' --' J I I '. :"' t I I , I ,", I : " I I I , , I I I : 1-1 ; I I I " I I ! " I I -, I j~(I " I ; ! I 1 I I I I L. .. .LL.1..LL.L

~LL.Ll. _. . I . --L..i I I I I I I I I I I I I 1 I I I I ,. I I ! 1 I I I I " f 1 I ! i t I· I 1 ,1 I I I I I I 1

!-1..-LI....LJ+j...L.1..L.lI...Lj!-+-Ll ' I , I f I I I I I I , I t I I I I I I f I I I I I I If)' I I,' I I I I J I I I I ! J I I I I I ! I·' I I I 1 I I I " I ! LL

f-L.L.LL..L-\--I __ l..Ll.....LL "_L' t I I I I I I I i I I I I "' 'I I I '.' I I I I I I I I I I I (it, I I ! I I I J I I 1 I j) I I I I I I I I t I I , I~

~J.....lJ-. +_L...LJI';;-'-4-fJI-'JI....JIL· LI Lr.LI.LI..I.I-"....JI...JILLI LI.LI.LI..LI..JI....JI....JILLI LI.LI..I.I..I.I..JI....JILILLI .LI..LI..I.I..LI....JI_ILLI LI..L1"o1.·I...J. •JI....JILL..!-.LL.1! I I I , I I "", ! I I I I 1'1.

t I I I I I I I

....JLLLLL I I I • r i I I .L..L..L.l..L.lJI-L I..J....L IL.J.....J....I.....L-'-..I....L-{

..L..L.LL.L -LIt II ill I I I III

I I I It'., , , ,', I I I I I I I I I II I I (I I f:..L'-'-.1.-l.. _._LLLLL _ L.LLJ...,...L..I I I I , I J t I I I " I I I I I J " l I I I I I I I I

.... L.L.LLL lL.L.LL I I '1 i II i II i ILLLi...L...L..

I. i' I I I

. ..L I I

.1

I

I I

III

I I

J I

I . I

I I

II

II I

I

i I

J I

I

I

J I I I

I 1 , I

, i I , I

I

I I I I I

FIGURE 2-L KEARFOTTCODING. FORM

-'-..i.-'-..I..

Y240A20lM0301 REV A

2.2 LANGUAGE ELEMENTS

THE SINGER COMPANY
KEARFOTT DIVISION

Before describing the various assembler operations in detail, let us discuss the basic language elements of FOCAP. Principal among
these are expressions, symbolS*, and their attributes. Of course, the prinCipal use of symbolS and expressions is the mnemonic
representation of a memory address or other numeric value. These language elements have their prime utility as constituents of the
operand entry in FOCAP state'j"ents.

2.2.1 Symbols

A symbol is represented by a string of one. to sixteen a1pharrieric characters (A-Z, 0-9), the first of which must be alphabetic. A
FDCAP symbol is d¢fined by its appearance as the label neld of astatement. A symbol is usually defined only once in an assembly,
unless it iSi! set-symbol. That is, each symbol used as the label of a statement mus! be unique within that.assembly. A numeric value

is associated with each symbol: Generally, a symbol in the label field of an instruction is assigned the value of the current location
counter. The ojdy exceptions are the SETD, SETX, BIT, and EQU operations whose label symbol is assigned the value specified by
the operand field. When the assembler assigns values .00 sYll\b\>lsin thc);label. field of statements defining instructions, constant data
words, or. variable data words, 'it chooses the address of the:designated;tneniory word. If the designated item occupies more than one

(16 bit) memory word, the address of the leftmost or most significant (16 bit) word is assigned to the symbol.

Although the value of a symbol is its principal attribute, several other attributes are Worthy of mendon. A symbol value may be
either absolute or relocatable based on the type of location counter it was allocated under. The symbol is then $aid to be either
absolute or.relocatable, accdrdingIy. The value of a relocatable symbol is its displacement, in 16-bit words, from the origin of the
locatio~ counter. A symbol value may be any integer from zero tQ 218 -1 (i.e., 262,143). This is the maximum addressing range of

the SKC 2000 (FOCUS) computer. Since symbolS.are used to designate addresses, they may.be used to form address fields fol' the
Short (16 bit) instructions. FQr jump instructions, the feasibility of using . a Short instruction is automatically established by the
assembJer based upon the difference between the currerit value of the location counter and the value. of the symbol representing the
destination (or target) address. Fm the short arithmetic instructions, the feasibility of using. a short instruction is based primarily
upon the difference between the current contents of each of the seven first level index (base) registers and the value Qf the symbol
representing the operand address; In addition, if the symbol is· absolute and within a specific range, the contents of Status Register·
Bits 2~5can dictate a short instruction. With these definitions in mind, it is then sensible to talk about the Short addressing attributes
of a symbol in the operand field of a statement.

Symbols ean alSo be distinguished by the nature of the information contained in the address they are referencing. For example, a

symbol value may represent the address of an instruction, a constant data word, a variable data word, or an address pointer. In the
latter case, the symbol may be said to have indirect addressing capability.

2.2.1.1 Set-Symbols

Symbols normally assUme a specific (absolute or relocatable) value whieh is re(ained throughout the assembly of the deck. However,

the operations SETD and SETX ean .be used to define temporary symbols or. set-symbols whose value can be changed during the
assembly of a single deck. Once a symbol value has been specified by one of the SET operations, a subsequent definition of the same
symbol by a SET operation is considered an assembly-time redefinition of the sym:bo\value. A Set-symbol may be redefined any
number of times. However, regular permanent symbols (defined by any operation other than SET» or SETX) cannot be redefined via
the two SET operations. "~Hini1arly, aset-symbol cannot be subsequently given a permanent value by appearing in another statement.
By virtue oCthe variable nature of a set-symbol,it must be defined in a SET statement prior to any use of the symbol.

2.2.1.2 " External Symbols

Symbols which arc used in the operand field of an instruction in a prr,gram 'but do not appear in the label field df another statement
in the same program arc assumed to be defined as entry points in another program, and, hence, are called external symbols. A table

*Two popular alterilate d"esignatiorls for symbol are "tag" andHlabel".

2-5

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

of external symbols is provided at the end of each assembly listing. When the loader encounters an external symbol, it expects to

find, . in the same loading operation, another program. containing an entry point with the same symbol enabling resolution of the

reference. [f no entry point is found for an external symbol, the loader will print an appropriate error message.

2.2. \.3 Asterisk Symbol

f~ I!!ltel'isk cftat~t!et (*) Is used to specifY It ~e'mt gym1lOt Wtien tt!\ed Iff too tfl'er!!fld field tlt IIfl I1petlltkm, ittllfjltSeftts tlte
currerlt value of the location counter (either absolute or relocatable). Consequently, the asterisk (*) need not be defined (assigned a

value) like other symbols and, therefore, should never appear in the label field of a FOCAP statement. By its nature, the asterisk

assumes a different value each time it is used. In this respect, it is similar to a temporary symbol or set-symbol, although it is not

explicitly defined or redefined via the SET operations.

2.2.1.4 Symbol Reference

A symbol is said to be defined by its appearance in the label field of a statement. A symbol is said to be referenced by its appearance

in the operand field of a statement. There is, in general, no sequence restriction on the definition and reference of a permanent

symbol; both forward referencing (reference preceding definition) and backward referencing (definition preceding reference) is

permitted, except where otherwise noted (e.g., EQU operation). The following two examples illustrate the definition and use of

symbols:

2.2.1.5 Relative Addressing

• Forward Reference:

LDA 5MBLI

5MBLI

o

o

o

DEC

• Backward Reference:

5MBL2 LDA

o

o

o

1.235

0,4

IN 5MBL2

As described above, the FOCAP assembler permits one statement to be referenced in another's operand field if the first statement

defines a symbol in its label field. However, it also permits more complex forms of symbolic referencing including relative addressing.

Once a statement has been named by the presence of a symbol in its label field, it is possible to refer to a second statement preceding

or following the statement named by indicating the second statement's position relative to the named statement. This procedure is

called relative addressing, and the operand entry would take the form:

s + n

where s represents the symbol in the label field of th.e named instruction and n represents a decimal integer (positive or negative)

whkh represents the difference between the current values of the location counter at each statement. A more specific example would

be

SYMBOL+6

2-6

THE SINGER COMPANY
KEARFOTT DIVISION

3. ADDRESSING AND. LOADING

Y240A20lM0301 REV A

The SKC 2000 computer architecture provides a variety of techniques for addressing and intra-program .communication. These
capabilities arc augmented and expanded by the FOCAP assembler. and loader programs. This section is intended to provide the
programmer with sufficient information about these techniqu.es for him to use them effectively.

Y240A20lM0301 REV A

3.1 INTRA-DECK ADDRESSING

THE SINGER COMPANY
KEARFOTT DIVISION

A program deck is a sequence of source program statements terminated by an END statement. As you will see later, a deck may

contain several subroutines. The techniques available to permit one statement to reference another (within a deck) are discussed here.

3.1.1 Short/Long Decisi(m

The FOCAP assembler always attempts to construct short format instrUctions (16 bits long). The minimum criteria which must be

met for the short form are:

a. The programmer has ~ forced the long format in his coding (by appending L at the end of his statement).

b. The instruction type does ~ dictate the long format (due to the amount of information it must contain).

c. The operand or target address can be reached by a short instruction.

d. The programmer has ~ specified an immediate or indirect operand.

e. No conflict exists between the mnemonic and the arithmetic mode (fullword or halfword).

For jump operations, criterion c is satisfied, if the target address is within plus or minus 127 address locations of the address of the

jump instruction. The assembler will perform this test only if both addresses are absolute or if both are relocatable under the same

location. counter. Otherwise, it constructs a long instruction automatically.

For arithmetic operations criterion c is satisfied if anyone of the following conditions obtains:

a. The operand address is absolute and a base register contains an absolute address less than 128 locations prior to the desired

operand address.

b. The operand address is relocatable and a base register contains a relocatable address under the same location counter which

is less than 128 locations prior to the desired operand address.

c. The operand address is absolute and within a specified range, and Status Register Bits 2-5 are set properly as described in

Section 3.1.4.

Otherwise, it assumes a long instruction is required. In cases a and b above, the assembler must be informed (via the BASE or UBASE

operation) that certain index registers have been designated as base· registers and that they will be loaded with a specific address

(usually designated symbolically) during execution of the SKC 2000 program. It is important to realize that the assembler does.!l2i

react to executable statements (e.g., LDX, LXA) in keeping track of base register contents, since this would create ambiguities under

many conditions. The programmer, therefore, must use the BASE or UBASE operation to inform the assembler of changes in base

register contents.

3.1.2 Location Counters

A location counter is used to assign memory addresses to program statements within a deck. The use of several location counters

within a deck permits the user programmer to make several different types of memory allocation in the same deck. Table 3-1 lists the

several types which .should be distinguished by the programmer, as a minimum. Each of these types should be allocated under a

different location counter in the source deck. The Linkage/Eclitor and Loader program is then free to allocate each type to a

different area of memory for system optimization reasons. Since there is provision in FOCAP for up to 25 location counters, the

programmer is free to further segregate the source code for his own purposes. The user activates a location counter via a USE, TEMP

3-2

THE SINGER COMPANY
/<EARFOTT DIVISION

Y240A201 M0301 REV A

Of COMMON statement. Once activated, memory is allocated under that location counter fOf all subsequent source statements until

another location counter is activated. The user may freely switch among location counters at any point in the program deck.

A program segment assembled under a location counter can be absolute or relocatable. Hence the location counter is said to be

correspondingly absolute or relocatable for that assembly. It is absolute if the first statement after the first USE or COMMON

statement for that location counter is an ORG statement. The first address under each relocatable location counter is constrained to

be even. Since all relocatable addresses are assembled relative to the first location under the location counter, the first location has a

relative address of zero with subsequent addresses assigned in ascending order. Since the initial address is constrained to be even, a

relocatable symbol with an even relocatable address is assured of being loaded at an even location in the SKC-2000. Each program has

at least one location counter. If none is specified, location counter 0 is assumed. All location counters are typed according to Table

3-1. The first instruction, data definition, or data reservation operation coded immediately following the first USE or COMMON

statement (paragraph 5.1) for a location counter defines the type for the block of all subsequent statements under that location

counter.

As each machine instruction or data word is assembled, the value of the location counter is first adjusted to an even boundary if

necessary. This adjustment is only necessary if the current location counter value is odd and the item being assembled consists of one

or more 32 bit words. Next the location counter value is incremented by the length of the assembled item. Thus, it always points to

the next available address. If the statement is named by a symbol inits label field, the symbol value is set equal to the current value

of the location counter. Similarly, if an asterisk symbol is used in the operand field of a statement, it is assigned the same value as the

location counter for that statement. An asterisk symbol in the operand field of a machine instruction statement is equivalent to

placing a symbol in the label field and using that symbol in the .operand field. The assembler listing includes the location counter

value for each statement, whether labeled or unlabeled.

Only those statements which generate object code cause the location counter to be incremented. Since the number of 16 bit half

words. needed for each statement coded can vary, the location counter may be incremented by various values. For instance, some

assembler operations such as USE, BASE or SETD, do not cause computer memory allocation and therefore, the location counter is

not incremented. Other operations such as short machine instructions or data half words occupy one location and therefore, the

location counter is increased by one. Long instructions and 32 bit data full words occupy two locations and increase the location

counter by two. Finally, some Assembler Operations such as PROL and BSS generate many locations and the location counter is

correspondingly increased. The FOCAP assembler has 25 location counters numbered 0 through 24 which can be established and

controlled by the user.

3.1.3 Base Register Addressing

When an index register is loaded with the address of the first word in a data block, fOr the purpose of serving as a pointer to the data

block for short instructions, the index register is said to be used as a Base Register. Any of the first level index registers may be used

as a Base Register.

TABLE H. LOCATION COUNTER TYPE TABLE

WORD TYPE

Variables

Constants

COMMON Variables

COMMON Constants

Temporary (Stack) Variables

Instructions

3-3

ALLOCATION CLASS

Absolute & Relocatable

Absolute & Relocatable

Absolute & Relocatable

Absolute & Relocatable

Relocatable Only

Absolute & Relocatable

Y240A20lM0301 REV A

TI:fE SINGER COMPANY
K~ARFOri DIVISION

, ,

Short arithmetic instructions can only access a sman portion,of theSKC-2000 memory without the use of Base Registers. However,

by iJsing all seven of the first level registers as Base Registers; seven different data areas can be accessed with short instructions. Each

of these data areas can be located anywhere in the full (131K word) memory of the SKC~2000 computer since the base register holds

a full 18 bit address. Thus, a Short arithmetic instruction can address seven areas of 128 fullwords each (or 128 halfwords in halfword

mode) via base registers as well as tfre 128 ,words which ate addressable without indexing. The total addressing capability is, therefore,

1024 data, words.
,

ft gIW!t, tJltl Pf~ lilmtmlttfmtt the FUCA' A.~ .mr ~l\\tJty ~ ,tfII!' ~flitt he kegfstet to flentt1t It lIhort
ari~hmetic instruction to be assembled. The user must fltSt speqjfy the'9ont~nisof each active ,Base Register via the BASE operation.

Then if he writes a FOCAP arithmetic instruction with a simple symbofin,·the operand field, the assembler will determine whether

the specified sym hoI is' within the range of one of the Base Registers. If so, a short instruction is geperated and the appropriate Base

Register is automatically invoked.

For example, c,onsiderthe program:

x
Y
Z

DEC

DEC

DEC

LDX

BASE

IDA

321.2

0.0

4096.3

4,X,M

4,X

Z

Load XR4 with ADDR of X

The LDA instruction will be assembled short. Base Register 4 will be invoked and the displacement between X and Z will be placed in

the address field, M7, since the assembler is awarethatXR4 is pointing at X and that Z iswithinits range (128 words). In this case,

we say that the Base Register is invoked implicitly.

The UBASE operation permits any of the 15 index registers XR I, - - - -, XR15 to be desi/lnated as an unconditionai base register.

Where the BASE operation causes invocation of a base register for short instructions, the UBASE operation causes the invocation of a

base register for both long and short instructions. This is particularly' useful when, addressing data in a stack or data whose address is

above 65535, the last data word which is directly addressable using the Ml6address field.

3.1.4 Page Addressing

Just as the BASE operation provides the assembler with the information needed to choose the appropriate Base Register when

forming a short InstruGtion, the PAGE operation provides the information needed to decide that the operand can be reached by a

short instruction without indexing. Since Status Register bits 2 • 4. are used in the definition of the range of the short unindexed

instruction (see Principles of Operation, Kearfoit Document No. Y240A200M0201, for details) the PAGE operation is used to

inform the assembler of the setting .in SR2-SR4.Using this information, the assembler then automatically chooses a shott ilnindexed

instruction wherever the operand is within the region defined by SR2-4.

3.1.5 Skip AddresSing

Certain instructions cause the CPU to skip the next instruction!n sequen~e and instead,execilte the second instruction following the

skip instruction. These instructions are: SAM, lCL.ICN~m:i IMN. Sirlce the instructions"in the SKC-2000 Can be both long (32 bits)

and short (16 bits), and since long instfuctionsmust be located at an even address (i.e., they must occupy one memory word), some

care is required in using the skip instructions.

3-4

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

For a short format skip instruction, the. program counter is incremented by I when the skip is not taken and by 3 when it is taken.

Incrementing the program counter by 3 causes the CPU to fetch the next instruction from the location whose address is 3 more than

that of the skip instruction. To insure that only one instruction is skipped, the programmer should assure himself that each short

format skip instruction is at an odd address. He should always construct a long instruction immediately following the skip

instruction. If the short format skip instruction appeared at an even address, the resultant skip address would land on an odd address.

This can create certain difficulties. For example, if a long instruction is to be skipped, it cannot be located in the two 16 bit words

skipped by the instruction (since they are located at an odd address). Also, if it is desired to skip to a long instruction, it cannot begin

at an odd address. These considerations are best illustrated by some examples.

If the short skip instruction is at an odd address (\ 001 in Example No. I in Figure 2-1), the next instruction will be at an even

location (1002). If the skip is taken, program counter is incremented by 3, causing the CPU to take the next instruction from address

1004. In this case, either a long or short instruction can be placed in either location (1002 or 1004). However, two short instructions

should not be placed in locations 1002 and 1003. Otherwise, they will both be skipped. The programmer, therefore, should force the

instruction following a skip to be long or, if it must be short, to be followed by a NOP.

If the short skip instruction is at an even address (\000 in Example No.2 in Figure 3-1), the next instruction will be at an odd

location (1001). If the skip is taken, the program counter is incremented by 3, causing the CPU to take the next instruction from

address 1003. In this case, a long instruction cannot be used in either of these. odd locations (1001 or 1003). To alleviate this

problem, the programmer should force the Skip instruction to be long if it is located at an even location, as in this example. The

coding then becomes equivalent to Example No.3 in Figure 2-1.

If a long skip instruction is employed, it must be at an even location (1000 in Example No.3 in Figure 2-1). The next instruction

will be at an even location (I 002). If the skip is taken, the program counter is incremented by 4, causing the CPU to take the next

instruction from address 1004. In this case, as in Example No. I, either a long or short instruction can be placed in either location

(1002 or 1004). Here, also, the programmer should force the instruction following a Skip to be long or, if it must be short, to be

followed by a NOP: This asSures that only one instruction will be skipped.

Note that Versions 5 and later of the FOCAP Assembler include provision for forcing these relationships. It will automatically make

the appropriate long/short decisions on both the Skip Instruction and the following instruction (the one intended to be skipped).

ADDRESS EXAMPLE NO. I EXAMPLE NO.2 EXAMPLE NO.3

\000 Skip Instruction Long Skip Instruction
1001 Skip Instruction Next Instruction

1002 Next Instruction Next Instruction

1003 Skip Location

1004 Skip Location Skip Location

1005

FIGURE 3-\. SKIP INSTRUCTION EXAMPLES

3-5

Y240A20lM0301 REV A

3.2 INTER-DECK ADDRESSING

THE SINGER COMPANY
. KI;ARFOTT DivISION

This section is. devoted to a description of the several alternatives available for transmitting information between FOCAP program

decks. As before, a deck is defined as a sequence ohource statements terminated by an END statement.

3.2.1 Entry Points

Symbols may be defined in one deck and referred to by anofher,'thus proviqing symbolic linkages between independently ilssembled
programs. The linkages can be effected only if the assembler program '\$ able:to provide information about the symbol tothe loade.r
program, which resolves these linkage references at load time. In the progrllfu where the linkage symbol is defined, it must ~Iso be
identIDed to the assembler by means of the ENTRY asSembler operation. ltis identified as a symbol that names an entry point,
which means that another program may ·reference that .location by using the same symbol in a jump instruction or a data reference
instruction. The assembler places this .Information in the object deck for transmission to the loader.

:p .. 2 External Symbols

If a symbol is used in a program deck (i.e., appears in an operand field) butis not defined in the same program deck, the assembler
assumes that it represents a .symbol defined as an entry point in another program deck (see previous paragraph). It is identified then

as an ex.ternal or virtual symbol. The assembler places this information in the object code for transmission to the loader, which
resolves these linkage references at load time. The assembler also prints a list of the external symbols at the end of each assembly for
the programmer's reference.

If, at load time, no entry point can be found for an external symbol, an appropriate error message is printed.

3.2.3 Common Areas

The COMMON operation can be employed to define labeled COMMON data blocks in several program decks. This permits each deek
to reference the common data area in a manner precisely anatogous to the use of labeled cOMMON areas in FORTRAN.

Several COMMON areas can be defined which are djstinguiShed by their labels. One unlabeled or blank coMMON can be used as well.
Each subprogram that refers to one of the COMMON areas must include a defmition of the memory allocation for the referenced
COMMON in its source deck at assembly time. The loader program assigns a unique memory location to each labeled COMMON area
despite the fact that it is defined in several program decks. Consequently, at execution time, each program that refers to data in a
labeled COMMON will be referring to the same data. Furthermore, if a base reg.jster is loaded with the address of the fitst word in a
labeled COMMON, the first 256 data words in that COMMON" area can be accessed via short (16 bit) instructions. As a result, the
careful use of COMMON blocks can be a significant factor in realizing ah!gh density of Short instructions in an SKC-2000 program.

The label of the COMMON area is the basis for inter-deck· communication. The symbols associated with data words within a
COMMON block are only forlocalreference (within the deck) and are not used for inter-deck communication. Two programs are
referring to the same data word when it is the same distance from the beginning of each COMMON block definition. This same data

word may be called X in the ftrStprogram and Y in the second program and the COMMON blocks might be defined .as follows:

FIRST PROGRAM DECK SECOND PROGRAM DECK

LABL COMMON 10 LABL COMMON 9

Rl BSS 10 R BSS 14
R2 BSS 4 Y BSS 2
X BSS 2

3-6

THE SINGER COMI'ANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

Note that both X and Yare located 14 locations from the top of the LABL COMMON area and they, therefore, refer to the same

memory location.

The. loader program automatically chooses the largest labeled COMMON block of the same name in allocating memory of that

COMMON block.

Any COMMON block may be initialized to contain certain defined constants at absolute program load time (i.e., execution time).

However, two rules must be observed:

I) At least the first statement ~nder the COMMON declaration itt;q~estiOri (labeled or unlabeled) must be a constant defining
operation (e.g., DEC, HEX).

2) . Two or more program deck~ referring to the same COMMON must not define conflicting constants for the same data

positions.

Prefefllbly, a particular COMMON which is to be inifialized should have its constants declared by only one program deck (though any
number of other decks may refer to these data as variables,or as identical constants, using arbitrary local symbolic locations).

3.2.4 TEMP (Stack) Areas

\. .
The TEMP operation can be employed to derme a variable data area (stack) .to be shared between subroutines in separate decks. This

permits the data area to be efficiently allocated in Ii manner precisely analogous to the use of fhe AUTOMATIC data type in PL/I.
Seethe SKC-2000 Subroutine Library Reference Manual.(Document No. Y240A204MOIOl) for a more detailed. description of its

implementation.

Briefly, the TEMP operation is. used to denote fhe location counter under which all local (temporary) variables are normally

allocated.' For example, if a SUbroutine requires fhat four locations be used for intermediate computations, these shouJd be allocated
to the TEMP area. The .standard FOCAP subroutine calling se9uence (using the CALL, PROL, and RETURN operations) will allocate
sufficient TEMP .data area on entering a subroutine and will release this TEMP data area upon exiting. On release, of course, any data
stored in the TEMP area is usually lost.

This automatic allocation/deallocation of the TEMP area is precisely analogous to fhe operation of a pushdown stack. As a result, a
single memory cell may be used by several subroutines at different times. For many applications; this sharing of scratch data
locations can result in substantial memory savings (see Document No. Y240A204MOIOI for an example). In addition, in the
SKC-2000 computer, some execution speed improvement can also be realized. This results from the fact that the LSI scratch memory
in the SKC-2000 is faster than the main memory. If the TEMP area is assigned to the LSI fast scratch memory, these high speed ceUs
will be shared by sev~raI routines with a resulting increase in speed over the unsllared alia cation of memory.

To accomplish reentrancy .for all subroutines using fhe standard.calling sequence, a different TEMP data area must be assigned to
each major interrupt routine as well as fhe main program. This is accomplished by the FOCAP assembler via the INT operation. Once
this is accomplished; there can be no interference when two interrupt programs call the same subroutine. Consequently, reentnIDcy
has been accompliShed.

3.2.5 Subroutine Call

Information can also be transferred to a subroutine via the argument Jist in a CALL statement. This process is described in pafllgraph

5.5 and .the SKC-2000Subroutine Library Reference Manual; The arguments are transmitted in reentrant fashion via a stack 'of
pointer information in the shared temporary data stack (TEMP) if.thePROLstatement is used in the subroutine for the prologue

function.

3-7

Y240A201M030l REV A

3.2.6 System Variables - COMPOOL

THE SINGER COMPANY
KEARFOTT DIVISION,

The short/long instruction decision is made at Assembly time as discussed in Section 3.1.1. The processing of ENTRY point

references is done later since they are processed by the Loader. Consequently, a reference to an external ENTRY point will always

result in a long instruction since the Assembler does not have the information necessary to decide that a short instruction is adequate.

The use of COMMON solves this problem but at the cost of requiring that the definition of each labeled COMMON be included in

any deck which references the labeled COMMON. This can create a substantial housekeeping problem for large or changeable

COMMON regions. The System Variable capability was designed into the SKC-2000 FOCAP Assembler to alleviate this dilemma. It

provides the Assembler with the ability to reference source code information derived from decks other than the deck being

assembled. Hence, it is similar to the basic COMPOOL feature of the JOVIAL language. The principal value of the feature lies in that

it permits short instructions to be generated without requiring the explicit inclusion of the source code for the referenced 'item.

More specifically, the system variable definition feature allows absolute symbols that are initially defined by the assembly of one or

more program decks to be referenced in other program decks which are subsequently assembled. This is accomplished by saving the

symbol tables from the initial assemblies and then, by means of a control card placed before a subsequently assembled program deck,

causing the Assembler to consult one or more of the saved symbol tables to obtaln the definitions of symbols which are referenced

but undefined in the program deck being assembled. Optionally, the symbols whose definitions are to be sought from the saved

symbol tables may be restricted to a specific list of symbols given at the beginning of a program deck, and then any other undefined

symbols in the program will be treated as external references.

This list must be given if set symbol definitions are to be obtained from the saved symbol tables. When the definition of a one-bit

symbol is ex tracted from a saved symbol table; its bit position is also extracted; thus, the initially assembled programs may define

absolute BIT symbols for subsequent reference.

See the Assembler Users' Manual for details on the control cards used for Systems Variables.

3-8

3.3 FOCAP LOADER PROGRAM

THE SINGERCOMPANV
KEARFO'n DIVISION

V240A20lM0301 REV A

The SKC-2000 FOCAP Assembler Program converts a FOCAP source deck into an Object Module whichcontain1; object code (binary
machine language) for each SKC-2000 instruction or data word, designated in the source deck. However, the relocatable _code will not
yet be assigned a memory address and any instructions which directly reference relocatable or external operands will have an
unresolved operand address field. The Object Module also contains information on the number and type of location counter under
which each, w'Ord was assembled. All, the Object Modules comprising an SKC-2000 program are processed by the Loader Program
which assigns an absolute memory address to each data and instruction. word and resolves all 'Operand address references to
relocatable or external operands. The result is a Load Moqule which:contains absolute machine code with its assigned memory

address. The Load Module can be directly loaded into the SKC"2000 Computer. An outline of this process is shown in Figure 3-2 •

3.3.1 Memory Organization

The m<iih, memory of the SKC-2000 computer is divided intotwo~egi'Ons. One is available for variable data and may, therefore,
undergo a Write operation. The o,ther region (called the protected memory'region) cannot be written into ilithottt the aid of te~t
"liluipU!.em,... Hence during n'Ormal operation, inadvertent destructi'On of words in this area by a program is precluded by hardware.
Data constants and instructions should reSide in protected memo~, Variable data'must be allocated to unprotected memory.

T~e SKC-2000 main memory occupies contiguous addresses above 16384 and up to the main memory capacity of the machine.The
maximum address can be as high as 262144 (or 131,074 fullwords). Addresses 0 to 16383 (or 8,192 fullwords) are reserved for fast
LSI mem'Ory, If fast LSI ROM is supplied, it occupiescontigU-ous addresses beginning at address ,0 (the beginning of the LSI region).
Fast writeable LSI memory occupies contiguous addresses ending at 16383 (the end of the}AI regi'On). ROM mem'Ory can also be
used as protected main memory which is accessed via the main bus. But then it will not result in increased execution speed.

Formos! SKC"2000configurations, the unprotected (wrlteable) main inemoryis a contiguous region starting at address 16384 and
ending ,at. an adjustable, boundary. Theprotected(readoruy)-mainmemory is an essentially contiguous region starting at the
boundary address and running to the maximum main memory address.' One exception, to this is a narrow band of unprotected
locations for storing interrupt return addresses at the end of the first,8K iilaii1 memory module (addresses Just prior to 32768).

A minor hardware' change (adding or deleting jumpers) will serve t'O change the bOundary address between the protected and
unprotected main memory regions. Conseqliently, the boundary address will tend to be different SKC-2000 applications. This
boundary" addreSs plays a key role in the Loader's memory ,allocation algorithm, discussed below. Hence, it must be known by the
Loader Program.

3.3.2 Loading Procedure

Object code generated by the Assembler is processed by, the Loader Program to resolve memory references, establish linkages and
assign each instruction ,and dataword tp the appropriate memory location.

The Assembler generates object code in the same sequence Qit tape as the source code it receives as input. The Loader ,also retains this
sequence in its output code (load module). However, this tapesequencedoes not reflect the sequence of the code'iD',mem'Ory, the,

allocation sequence. The, memory allocation sequence is represented by the addressing infonnation that accompanies the code in the
object module and in the load, module. The loader. processes the partial memory allocation informationi:nserted itl the object module
by the Assembler, and generates the final, complete memory a,llocation information which it includes in the load modUle.' This

, section is devoted primarily, to describing the procedure usedb?, the Loader to determine the final memory allocation sequence.

First the Loader scans the object code for absolute segments whose memory location has been specified by the programmer using an
ORG statement. Memory for these absolute segments IS allocated first by the L'Oader.Any attemptto allocate a location twice will
result in ljn error message. Therelocatable segments are then allocated into the unused portion of memory. Allocation conflicts
between absolute and relocatable segments are automatically avoided. To simplify subsequent discussion of allocation for relbcatable
segmellts 'we shall assume either fhat nO absolute allocation~ ha.ve taken place or that their efrect ~n the relocatable allocations is
transparent.

Y240A201M0301 REV A

FOCAP
SOURCE
STATEMENTS

SIMULATOR
CONTROL
CARDS

THE SINGER COMPANY
KEARFOTT DIVISION

OPERATIONAL
J---II"PROGRAM

INTERPRETIVE
SIMULATOR
370 COMPUTER

PRINTOUT
• TRACE
• MEMORY DUMP
.• TIMING

SKC2000 COMPUTE_R

FIGURE 3-2. SUPPORT SOFTWARE DATA FLOW

3-10

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

Rclocatablc data is as:;igned to the low main memory addresses while instructions are assigned the higher locations. This prevents

overflow of the direct operand addressing region (up to address 65536) except in the most unusual circumstances. The program

would have to include over 24,576 fullwords of constant or variable data in main memory for the boundary to. be exceeded., If data is

allocated beyond this boundary, it cannot be directly addressed by the M I 6 field ina basic arithmetic instruction. An index register

would have to be employed to access it.

The Loader distinguiShes .between eight types of relocatable.me,mory allocation and allocates each separately. These eight types and

their order of allocation is given below:

L Blank COMMON (Variables)'

2. Labeled COMMON (Variable)

3. Temporary (Stack) Area

4. Local Variable Data

5. Loc(ll Constant Data

6. Blank COMMON (Constant)

7. Labeled COMMON (COIlstant)

8. Instructions

Different location counters are used to distinguish between the eight types. The fIrst word allocated under a location counter

determines whether the segment contains variable data, constant data, or instructions. Variable data !)lust be specified by eifuer the

BSS orBES operations. Constant data is specifredby anyone of the following operations: DEC, DECI6, DEC64, HEX, HEX16,

SCLB,SCLSI6, SCLW,SCUn6 and PTR. Any machirie instruction mnemonic will start an instruction segment. The operations

COMMON and TEMP are used to invoke a location cOllnter while furthenpecifYingthe segment's allocation type.

All segments o[the same type are allocated together as shown in Figure 3·3. In this figure, solid lines are used to designate physical

boundaries and dotted lines indicate the separation between memory tegiorts 1Il10cated to different types. ArrowS indicate the

direction of allocation for specific, types.

More specifically, the Loader first scans all input decks todctermine whefucr Blank COMMON has been used to allocate variable

data. If so, it determines its length and then reserves the necessary area starting at 10,cation 16384 (tile start of the relocatable

a1location'region). Nel{t, fue Loader scans all input decks to detennine whetller labeled COMMON has been used to allocate variable'

data. If so, it determines the length of each labeled COMMON and then reserveS tile necessary area just beyond the end of blank

(variable) COMMON if it exists. If seVeral labeled COMMON's are used, they are allocated in the order tIley are preSented to the

Loader.

Next the Loader scans all input decks to determine whether one o~ more TEMP (orSTACK) areas ~re specified. A stack can only be

used for variable data If a stack is specified, the Loader analyzes the tree structure of the stack to determine its worst case memory

requirement as described in, the Subroutine Library Reference ManUal., It then reserves the necessary area for each stack just beyond

the end of the labeled (variable) COMMON area.

All remaining variable data is considered lopal to, fue derming routine and is alloc,atedin the Local Variable Data area. Each d~ck is

scanned for location counter segments used for this purpose. Their total memory requirement'isdetermined and the necessary area

allocated just before the boundary of the protected and unprotected main memory regions as shown in Figure 3·3. If this allocation

is sufficiently large as to cause an overlap in allocation with the TEMP (Sfack) Area, an error message indicating a memory allocation

conflict will be issued. This concludes the allocation of variable data to unproteCted memory.

Next the Loader must ,allocate constants and instructions to the protected memory region. As shown in Figure 3-3, this region runs

from the boundary (address 24576 in the example Shown) to the end of main memory, except for the narrow unprotected region. for

interrupts. The interrupt region is treated by the :Loader as an absolute allocation. Hence, it is automatically excluded from the

rclocatable allocation, region. The Loader scans all decks for segments which contain local constant data and allocates them to the

first locations inproteCted.rnemory, where they are certain to be directly addi"essable~

3-11

Y240A20lM0301 REV A

THE SINGER COMPANY
KEARFOTT .DIVISION

HALFWORD ADDRESSES

>< p::

~
z
~

------J--ll----------,..----+-o~ f-...:;.;65;.:5...;.3...;.6 ___ _
LIMIT OF DIRECT
DATA ACCESS (MI6) INSTRUCTIONS CI

ADJUSTABLE
BOUNDARY

~
CI

g
~

INTERRUPTS

INSTRUCTIONS

LABELED COMMON CONSTANTS

BLANK COMMON CONSTANTS

t LOCAL CONSTANT DATA

+ LOCAL VARIABLE DATA

POSSIBLE UNUSED AREA

i6384

[

FIGURE 3·3 TYPICAL MEMORY LOAD

3·12

32768

INTERRUPT
. RETURNS

32736 UNPROTECTED
MEMORY

32704 *
INTERRUPT

32672 TRAPS

FAST LSI
MEMORY

THE SINGER COMPANY
KEARFOTT DIVISION Y240A20lM0301 REV A

The Loader then allocates blank. COMMON, if used for constant data, followed by labeled COMMON for constant data and finally

the instructions arc assigned throughout the remainder of main memory if necessary. Usually, the instJUction region is by far the
largest singlC allocation region.

This completes the memory allocation procedure although..a final note on use of itlUltiple location counters is in order: If several
location counters arc used for a single memory allocation type within II single deck,the lower numbered location counter seg,:"ents
arc allocated first.

3.3.3 Status

Version 3 of the Loader Program performs precisely as described above. Singer-Kearfott has presently under development an
"improved Linkage Editor and Loader Program (Version 5) which is host computer portable and which provides more user controls
oVer the memory allocation process. This new Loader is one component in a complete set of host machine portable support software
for the SKC-2000 Computer. "

, 3-13

Y240A20lM030!. REV A

THE SINGER COMPANY
.. KEARFOTT DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

3-14

THE SINGER COMPANY
KEARFOTTDIVISION

4. MACHINE LANGUAGE INSTRUCTIONS

Y240A20lM0301 REV A

This section describes the rules for preparing source language statements which, when processed by the assembler program, produce

SKC-2000 machine language instructions. The assembler uses the mnemonic in the operation field of a FOCAP stateme'nt to generate
theoperaiion code of the corresponding machine instruction. The operand' field of a FOCAP statement contains any designator for
other fields in the machine instruction.

In dmtft'lf~ tftti IIYtttltx tlf the t;j'Ierlll'lll fItlM, it "m ~ ttS!!~U(J emt'19y .somt jeif@tallmflltitm. Pdf tlltllfri-pfe, lower CIISl.l characters
are employed in a ,symbol which represents a family of possible s~icecode items. For example, u represents any valid FOCAP

expression, such as: X, RANGE, Y2, X+y, R-9, etc. In general, upper case characters are used to indicate source code in a literal
sense.

Where options are available for fields in the source statement, brackets are used to denote a choice of anyone or none of the
enclosed 'language elements. F or example,

[X] X+3
u,xl

is used to indicate a,choice of anyone of the three expressions

1. X
Z. X+3

,3. u,xl

or none of these expressions. Braces are used similarly except that one of the enclosed items must be chosen. For,example,

{:~'X2 }
is used to indicate a cholce of anyone of the expressions

xl
or xl,xZ.

Several, other standard notations are employed iii describing the'source code syntax and the more general of these are defined below:

Notation Definition

u Represents an absolute or relocatabfe expression (see Section 2.4) which is used to define the address field in an
instruction.

x Represents a decimal integer from ()"15 or a set-symbol as defined in Section 5, which is used to designate one of the
index registers (XRO-XR 15).

x 1 Represents a decimal integer from 1-7 or a set symbol which designates one of the seven first-level index registers

(XRl-XR7).The xl notation is commonly used to define the XI field in a machine instruction.

)(2 Represents a decimal integer from 1-.1 5 or a set-symbol which designates one of the fifteen index registers
(XR I-XRI5). The x2 notation is commo.nJ:y used to define the X2 field in a machine instruction.

4-1

Y240A201M0301 REV A

Notation

-THE SING.ER COMPANY
KEARFOTT DIVISION

Definition

Designates the indirect addressing option which cau~s ·bit 13 in the long machine instruction to be set to onc.

M Designates the immediate operand option which causes bit 14 in the long machine instruction to be set at one.

Bl Designates the ith index register XRi being used as a base registet,

() Designates the contents of the register or instruction subfield which is specified within the parentheses.

Some further notation used for specific statement deSCriptions is defined in the appropriate sections. The descriptions for SKC-2000

instructions are grouped according to the SOUTce statement syntax ana each group is discussed separately below.

4-2

4.1 ARITHMETIC INSTRUCTIONS

THE SINGER COMPANY
KEARFOTTOIVISION

Y240A20lM0301 REV A

The m<ijority of SKC-2000 machine instructions are in the Arithmetic Group and share the same basic instruction . format, as

described in the Principles of Operation Manual. Each of them has' both a short (16 bit) format and a long (32 bit) format. The

assembler attempts to generate the short form of an arithmetic instruction whenever possible. If a base register has been specified by

a previous BASE or UBASE statement in the source program deck, and· if the operand (denoted by u) is within its range, the

assembler will generate a short instruction. The operand is within range of the base register if

u -. (Bi) < 128 for halfword data

or

u - (Bi) < 256 for fullword data

When a short instruction is thus generated, the three bit Xl field ·is loaded with the value i which identifies (or specifies) the

controlling base register, Bi The seven bit M7 address field is thb!1 loaded with the appropriate displacement

M7 ,: u - (Bi) for halfword data

or

M77 = (u - (Bi)) for fullword data

Note that the effect is to cause the SKC-2000 (at execution time) to form the effective address E equal to· the value of u,· the desired

operand address. A more detailed explanation of the BASE and UBASE operations is given in Section s.

If u is an absolute ellpression, and if an 'appropriate absolute valued base register is not available, the assembler will attempt to

construct a short instruction in conjunction with the contents of Status Register bits 2-5 as described in Section 3.1.4. Failing this,

the assem bier wilLconstrUct a long instruction.

4.1:1 Operation-Field

This section lists all the valid mnemonic code entries for the operation field of an arithmetic instruction.

MNEMONIC

ADF

ADL

ADU

AFD

AND

DVD

DVF

EXO
LAE

LDA

LDB

LDI
LDS

LOR

MLF

MUL

Add floating poitlt

Add lower fix point

Add upper fix point

Add double precision floating point
Logical AND·'

Divide fix point

Divide floating point

Exclusive OR

,Load A register with effective .address

Load A register

Load B register

Load interrupt mask register

Load status register

LogicalOR .

MuItipiy floating point

Multiply fix point

4-3

Y240A20lM0301 REV A

MNEMONIC

RTA

SAM

SBF

SBL

SBU

SPD
STA

STB

STI

STS

ADFR

ADLH

ADLHR

ADLR

ADUH

ADUHR

ADUR

AFDR

ANDH

ANDHR

ANDR

DVDH

DVDHR

DVDR

DVFR

EXOH

EXOHR

EXOR

LDAH

LDBH

LORH

LORHR

LORR

MLFR

MULH

MULHR

MULR

MFM

MMF

SAMH

SBLH

SBLHR

SBLR

SBUH

SBUHR

SBVR

SBFR

SF DR

STAB

STBIi

STH

THE SINGER COMPANY
KEARFOTT DIVISION

OPERATION SUMMARY

Return Address

Skip on A register masked

Subtract floating point

Subtract lower fix point

Subtract upper fix point

Subtract dOUble llfl1eislOO nQatln~ pOint

Store A register

Store B register

Store interrupt mask register

Store status register

Add floating point, return to memory

Add lower fix point, half word

Add lower fix point, half word and return to memory

Add lower fix point, return to memory

Add upper fix point, half word

Add upper fix point, half word and return to memory

Add upper fix point, return to memory

Add double precision floating point, return to memory

Logical AND, half word

Logical AND, half word and return to memory

Logical AND, return to memory

Divide fix point, half word

Divide fix point, half word and return to memory

Divide fix point, return to memory

Divide floating point, return to memory

Exclusive OR, half word

Exclusive OR, half word and return to memory

Exclusive OR, return to memory

Load A register, half word

Load B register, half word

Logical OR, half word

Logical OR, half word and return to memory

Logical OR, return to memory

Multiply floating point, return to memory

Multiply fix point, half word

Multiply fix point, half word and return to memory

Multiply fix point, return to memory

Move block from fast to main memory

Move block from main to fast memory

Skip on A register masked, half word

Subtract lower fix point, half word

Subtract lower fix point, half word and return to memory

Subtract lower fix point, return to memory

Subtract upper fix point, half word

Subtract upper fix point, half word and return to memory

Subtract upper fix point, return to memory

Su btract floating poin t, return to memory

Subtract double precision floating point, return to memory

Store A register, half word

Store B register ,half word

Store A register, half word

4-4

4.1.2 Operand Field

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

The first operand subfield on an arithmetic instruction statement must be an expression, represented by u. The syntax of an

expression is described in Section 2.4.2. The u subfield is used to generate the address field (also called the dir.placement field)

designated M7 in a short machine instruction or MI6 in a long machine instruction.

All additiol1al operand subfields arc optional. They are IfSed to specify one or tWI:> index regiAtets f()f address modlfitation all well as

the indirect, immediate, al1d long options. the general fot!n of the operand field is

More detail on the various subfields is presented in Table 4-1.

LABEL OPERATION OPERAND

FIGURE 4-1. TYPICAL ARITHMETIC INSTRUCTIONS

4-5

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A201 M0301 REV A

FORM

u

u,xl

u,L

u,xl,L

u,xl,x2

u,I

u,M

u,x2,I

u, x2,M

u,xl,x2,I

u, xl,x2,M

TABLE 4-1. ARITHMETIC INSTRUCTIONS OPERAND FIELD

OPERAND SUMMARY

u forms an explicit displacement or an implicit

displacement and base register explicit:

u -;. M7 orMI6 implicit;

u-Bi -;. M7; i -;. XRl

In either case, u specifies the effective address

of the operand.

u forms explicit displacement; xl forms

XRI field.

u forms explicit displacement; no index

field (XR I or XR2) is specified.

u forms explicit displacement; xl forms

XRI field.

u forms explicit displacement; xl forms

XR I field, x2 forms XR2 field.

u forms explicit displacement; indirect bit

is set.

u forms explicit displacement; immediate

bit is set.

u forms explicit displacement; x2 forms

XR2 field, indirect bit is set.

u forms explicit displacement, x2 forms

XR2 field, immediate bibs set

u forms explicit displacement; x I forms

XR I field; x2 forms XR2 field; indirect

bit is set.

u forms explicit displacement; xl forms

XRl field; x2 forms XR2 field;

immediate bit is set.

4-6

NOTES

I. Assembled instruction may be short or long; decision is

made automatically (short if possible) at assembly time.

Note I (above) applies.

2. Assembled instructions is always long.

3. This form not valid for LDl, LDS, STI, STS.

Notes 2 and 3 (above) apply.

Assembled instruction is always long.

Assembled instruction is always long.

Assembled instruction is always long. This form not valid for:

ADF, SBF, MLF, DVF, STA, STB, AFD, SFD, LAE, STI,

STS, and their derivants.

Assembled instruction is always long.

Assembled instruction is always long. This form not valid for:

ADF, SBF, MLF, DVF, STA, STB, AFD, SFD, LAE, STI,

STS, and their derivants.

Assembled instruction is always long.

Assembled instruction is always long.

4.2 JUMP INSTRUCTIONS

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

All jump instructions specify a destination address in the operand field of the FOCAP state men t. For some of the jUmps (1U, IN, JG, J L)

the expression subfield, u, inay generate either an explicit (or global) address, or an implicit (or relative) address. The assembler
au tomatically chooses the relative address foim where possible, as this may be implemented in the short (16 hit) object form of the
instruction.

A relative add:i'l!ss is generated ir fHe destthatkm (u) ·1" wltl\in 1:~11o~it:fnfbr the jump instruction itseff. In this discussion, the
symbol "Ioe" will be used to refer to the location of the jump instructiOJtits~lr. If the assembler finds that lu-Iochs less than 128, the
magnitude of the difference is placed in the M7 field of the short instru~tion. Bit 8 of the short jump is used to determine the jump
direction (forward or backward). If the difference is 128 or greater, the whole operand (u) explicitly generates the global absoiute

address, M 18.

This assembler choice of the long/short form may always be overridden by using the explicit "long forms~' or "short forms" of the
jump operation mnemonics. The explicit long formsaIways generate a long (32) bit instruction with a global (18 bit) address field,
while the explicit short forms always generate a shorf (16) bit instruction with a. (7 bit) address field. If the target addres~ cannot be

reached by a short instruction, an error message is generated.

4.2.1 Operation Field

. The primary mnemonic code entries for the operation field of a jump lnstruction are listed below:

MNEMONIC

JU

JL

JG

IN
JS
JGS
JGW
JGF

OPERATIoN SUMMARY

Jump unconditional
Jump if (A registeer) < 0

Jump if <A register) ::> 0
Jump if (A register) =1= 0

Jump unconditionally to subroutine
Jump on status
Jump on switch

Jump on program flag

In addition to the primary mnemonic operation codes, the four Jump instructions with short formats also have mnemonic operation
codes which force either the long Qr the short fQrmats. These mnemonic operation codes ate listed below:

. PRIMARY FORM

JU

JL

JG

JN

SHORT FORM

JRU

JRL

JRG

JRN

LONG FORM

JGU

JAL

JAG

JAN

The explicit long or short forms are not recommended unless circumstances dictate their use.

4.2.2 Operand Field

. .
The operand field for the standard jump instructions is T\ltJlersimpIe, in that there, are a .maximum of two subflelds. The first
l'ontainsan expression whiCh defines the target location for the jump, and is therefore mandatory. The second fieJd is absent for tile

4-7

Y240A20lM0301 REV A

THE SINGER COMPANY
~EARFOTT DIVISION

,basic jump iristiuc.tions (JUI, JL, JG,JN). It is used to specify indexirigfotthe subroutinejump (1S), alidis used to designate one of

several jumpconditiOI1 bits for the other instructions (JGS, JGW, JGF). Consequently, thegcneral form orthe operand field is

u [;XI]
.,f

,sw

,s

where the followirfgspecial notation is employed:

f Represents an integer (1-15) or a set-symbol which designates one or more of the program flags in the status register

sw Represents an integer (0-7) or a set-symbol whiCh dysjplates one of the eight switch inputs

s Represellts an integer (0-15) or a set-sy!,!bol which de'Signates a status register bit position

Table 4-11 contains further detail on t~e use of these designators:

FIGURE 4-2. TYPICAL JUMP INSTRUCTIONS.

TABLE 4-Il. JUMP INSTRUCTION OPERAND FIELD

FORM OPERAND SUMMARY NOTES

u u forms a glObal or signed relative address. This form is not valid for JGS, JGW, JGF, JS.
global (long); u -+MIB

relative (short): lu -loci -+M7; sign -+ bit B

/'

u,f u forms global.addresS (long); f forms program flg This form is valid for JGF only.

field.

u, sw u formS' global addreS'S (long); sw. forms panel This form is valid for JCW only.

switch field.

u,s u forms globaI'address (long); s forllis status .This form is valid for JGS only.

register bit field.
.

ll. X I u forms global address (long); xl formS XI field. This form is valid for JS only.
I .

4-8

4.3 INDEX REGISTER INSTRUCTIONS

THE SINGER COMPANY
KEARFOTT DIVISION·

Y240A20lM0301 REV A

With the exception of the .LXA instruction, all instructions which can modify Or test the contents or an index register have the same
source statement syntax. and are, therefore, discussed in this section. The format is very similar to the format of the arithmetic
instruction statement. The major exception is· the specification of the affected index register as the first operand subfield, followed

by the u subfield.

4.3.1 Operation Field

This section lists all the valid mnemonic code entries for the operation field of an index registerinstruction.

MNEMONIC OPERATION SUMMARY

ICN Test contents of selected index,register and skip if not equal .to operand

ICL Test contents of seleCted index-register and skip if less than Qperand

IMP Modify index-register by positive increment

IMN Modify index-register by negative increment and skip if the result is less than zero

LDX Load-index register

STX Store index register

:0.2 Operand Field

The operand field of the index register instructions is simHat to thataf the arithmetic instructions. However, for these instructions
the x subfield is first, denoting the index register Which is the target Of the instruction. The u subfield is second, an expression
identifying the intended operand. Both ofthese subfieldsare mandatory. Subsequent subfields are all optional and are the same as the
subfields employed in the arithmetic instruction format, except that oilly one index register can be specifwd as an address modifier

arid the L option is inoperative. The general form Of the operand field thus becomes!

The speci~ic instances are shown in Table 4-II1.

LABEL OPERATION OPERAND

FIGURE 4-3. TYPICAL INDEX REGISTER INSTRUCTIONS

4-9

Y240A201M0301 Rev A

FORM

'x,U

x,u,xl

x,u,I

x,u.,M

x,u,xl,I

x,u,xl,M

, . . ~

THE SINGER COMPANY
KEAR FOTTOWISION

TABLE 4-111. INDEX REGISTER INSTRUCTIONS OPERAND FIELD

OPERAND SUMMARY

u forms explicit displacement; x field

del>ends on instructiQIi: length !

Sf\llft: ~ .. Dy
Long: x -+XR2

u forms explicit displacement;

x forms XR2 field; x 1 forms XRl field

u forms explicit displacement;

x forms XR2 field; indirect bitis set.

u forms explicit displacement;

x forms XR2 field; immediate bit is set.

u forms explicit displacement;

X forms XR2 field, xl forms XRlfield;

indirect biOs set.

u forms explicit displacement;

x forms XR2 field; xl forms XRI field;

immediate bit is set.

4-10

NOTES

Assembled instruction is short if: x is level I register

(I to 7); and iI is an absolute expression Whose vallie

}Sr.thllh t 2~; ekeei't ret Or IMP are always itlng.

Assembled instruction is always long.

Assembled instruction is always long.

Assembled instruction is always long.

This form is not valid for STX.

Assembled instruction is always long.

Assembled instruction is always long.

This form is not valid for STX.

4.4 SHIFT INSTRUCTIONS

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

All SKC 2000 shift instructions employ a short (16 bit) machine instruction format. There is, therefore, no long instruction option.

The shift count can be modified by the contents of any first level index register (XRI-XR7).

4.4.1 Operation Field

This section lists all the valid mnemonic code entries for the operation field of a shift instruction.

4.4.2 Operand Field

MNEMONIC

SRA

SLL

SRAD

SLLD

SRC

SRCD

SLCD

SRLD

OPERATION SUMMARY

Shift A right algebraically

Shift A left logically

Shift A, B right algebraically

Shift A, B left logically

Shift A right circularly

Shift A, B right circularly

Shift A, B left circularly

Shift A, B right logically

The first operand subfield of a shift instruction must be an integer or set-symbol which defines the basic shift count. The following

special notation is used to represent this subfield:

z Represents a decimal integer from 0-31 or a set symbol which is used to fill the shift count field, J, in the shift instruction.

The second operand subfield is optional and, when used, it designates that the effective shift count is the sum of the basic shift count

(z) and the contents of the designated index register. The general fortn of the operand field is thus:

The specific instances are shown below:

FORM

z

Z, xl

OPERAND SUMMARY

z forms the J field (unindexed shift count)

z forms the J field (basic shift count)

x I forms the XI field which designates one of several index registers

where contents are used to modify the shift count.

FIGURE 4-4. TYPICAL SHIFT INSTRUCTIONS

4-11

Y240A20lM0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

4.5 NONMEMORY REFERENCE INSTRUCTIONS

All SKC 2000 non memory reference instructions employ a short (16 bit) machine instruction format. There is, therefore, no long

instruction format. They all also use the same primary operation code. Consequently, the operation mnemonics are used to generate

the appropriate unique secondary code.

This section lists all the valid mnemonic code entries for· the operation field ofa Nonmemory reference instruction.

4.5.2 Operand Field

MNEMONIC

NOP

HLT

SET

RST

EPI

OPI

OMI

EMI

CFX

CXF

EAB

LXA

SHM

RHM

OPERATION SUMMARY

No operation

Halt

Set selected program flags

Reset selected program flags

Enable program interrupts

Disable program interrupts

Disable memory interrupts

Enable memory interrupts

Convert floating point to fixed point

Convert fixed point to floating point

Exchange A and B registers

Load Index Register from A Register

Set Halfword Mode

Reset Halfword Mode

Most nonmemory reference instructions employ no operand field since they have no machine instruction subfields. There are,

however, three exceptions (LXA, SET, RST) which require a decimal integer in the operand field to define an instruction subfield.

This integer is represented by the letter f defined as follows:

fJ Represents a decimal integer (1-15) or a set-symbol which is used to define a four bit subfield.

f2 Represents a decimal integer (0-15) or a set-symbol which is used to define a four bit subfield for the LXA instruction.

For the SET (set program flags) instruction and RST (reset program flags) instruction, f1 specifies one or a combination of the four

program flags in the status register (SR8 - SRI!). For the LXA (load index from A register) instruction, f2 specifies one of the

sixteen index registers (XRO-XRI5) to be loaded.

LABEL OPERATION OPERAND

1 10 20 30 40

I q/'i Il SETI 6 I I I I I I I I ILl
NOPI I I -I I I I I I I I I I I I I I I I I ILL

I I I I I I I I I I I I

I

I I I II I

FIGURE 4-5. TYPICAL NON MEMORY REFERENCE INSTRUCTIONS

4-12

4.6 INPUT-OUTPUT INSTRUCfIONS

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

The standard SKC-2000 CPU recognizes four separate input-output instructions. They are listed in Section 4.6.1 and their variolls

operand field formats are described in Section 4.6.2. However, it should be noted that most SKC-2000 input-outplit subsystems
employ the DOA and DIA instructions exclusively. It is up to the programmer to select useful I/O instructions when he writes his

FOCAP coding.

Many SKC-2000 input-output subsystems use DMA (direct~emory ~ccesi{t~'"transfer data as well as I/O channel commands which

define the individual I/O operations. Smce the format of these commahds:' is not standard, .the basic FOCAP assembler does not

include provision for symbolic definition of the I/O commands. They Can, of course, be set tip as data cards in the SKC·2000

memory using the HEX operation.

4.6.1 Operation Fieid

This section lists all the valid mnemonic code entries for the, operation field of an input-output instruction.

4.6.2 Operand Field

MNEMONIC

DIM

DIA
OOM.
DOA

OPERATION SUMMARY

Data input to memory

Data input to A register
Data output from memory
Data output from A register

To describe the operand field for the input-output instructions, the following special fotation is introduce,d.

dc Represents an integer (1-63) or a set-symb61which designat~sthe device code fOr the I/O operation

C Designates that the command bit in the, instciction be set to one

K Designates that the acknowledge bit in the instruction be set to one

The general form of the operand field is then

Note that the choice of the first subfield format depends upon whetherthe. I/O data word comes from memory (use "u,dc" format)

or from the A register (use "de" format). Of cour$e, the I designator is only meaningful ifthe data transfer'is from/to memory. These

options are shown in detail in Table 4-IV.

4-13

THE SINGER COMPANY
KEARFQTT DIVISION

Y240A201M03(}1R,EV A

FIGURE 4-6. TYPICAL I/O INSTRUCTIONS

TABLE 4-IV. INPUT/OUTPUT INSTRUCTION OPERAND FIELD

FORM OPERAND SUMMARY NOTES

ACCUMULATOR INPUT/OUTPUT (DlA, DOA FORMATS)

dc dc forms DC field Assembled instruction is always short.
dc,C dc forms DC field; command bit is set. Assembled instruction is always short.
dc,K dc forms DC field; acknowledge. bit is set. Assembled instruction is always short.
dc,C,K dc forms DC field;'command bit and acknowledge bits are set. Assembled instruction is always short.

MEMORY INPUT/OUTPUT (DIM, DOM FORMATS)

u,dc u forms M16; deforms DC field; Assembled instruction is always long.
u,dc,1 u forms M16; deforms DC field; indirect· bit is set. Assembled instruction is always long.
u,dc,C u forms M16; deforms DC fieM; command bit is ,set. Assembled instruction is always long.
u,dc,K u fOrIns M 16; dcforms DC field; acknowledge bit is set. Assembled instruction is always long.
u,dc,C,K u forms M16; dc forms DC field; command and acknowledge bits Assembled instruction is always long.

are set.

u,dc,C,1 u forms M16; dc forms DC field; command and.indirect bits are set. Assembled instruction is always long.
u,dc,K,I u forms M16; dc.forms DC field; acknowledge and indirect bits are ASsembled instruction is always long.

set.

u,dc,C,K,1 u formsMl6; de forms DC~ield; cbmmand;acknowledge, and Assembled instruction is always lo~g.
indirect bits are set:

4-14

4.7 BLOCK TRANSFER INSTRUCTIONS

THE SINGER COI\iIPANY
KEARFOTT DIVISION

Y240A201M0301 REV A

The SKC 2000 has two short (16 bit) block transfer instructions which move data or instructions from the main memory to the fast

memory, or vice versa. The main memory is connected to the main bus and is usually magnetic core or plated wire. The fast memory

is internal to the CPU (not connected to the main bus) and is usually LSI rcad-only or scratchpad memory. The addresses for the

transfer must be prcloaded in the A register and XRO.

4.1.' Ot>eratiort Field

This section lists all the valid mnemonic code entries for the operation field of a block transfer instruction.

MNEMONIC

MMF

MFM

OPERATION SUMMARY

Move Main to Fast

Move Fast to Main

4.7.2 Operand Field

All block transfer instructions are assembled short. In defining the form of this operation field of instructions, the following

conven tion is used.

represents a decimal integer (0 - 127) or set symbol which designates the number of words to be transferred.

x I represents a decimal integer (I - 7) orset symbol which designates a fusUevel index register.

The general form of the operand is

LxI]

TABLE 4-V. BLOCK TRANSFER INSTRUCTIONS OPERAND FIELD

FORM OPERAND SUMMARY

j j forms the number of words to be transferred

j,x I The number of words to be transferred is formed by adding j to the contents of the first level index register designated

by XI

LABEL OPERATION OPERAND

FIGURE 4-7. TYPICAL BLOCK TRANSFER INSTRUCTIONS

4-15

Y240A2tl1 MQ301 REV A

THE SINGER COMPANY
I(EA~FO"T DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

4-16

THE SINGER COMPANY
KEAR FOTT DIVISION

S. FOCAP ASSEMBLER OPERATIONS

Y240A20lM0301 REV A

In the F~ssembler some operations generate executable code, some allocate storage, and some initialize location counters or

hase registers. All assembler directives which do not cause the Assembler to generate machine instructions arc called Pseudo-Ops.

e: Asssllleler O(lllratisl13 which me expanded into a sUing or source coding are cruled "'!acre Opelatitms, or silllply-l'i11rcros. Table 5-1

lists and summarizes the ~P Assembler-Operations.

Table 5-1 presents a summary of the basic ~ operations.'In that summary, and in the subsequent more detailed descriptions, the

following notation is employed.

u represents an absolute or relocatable expression as defined in Section 2.4

v represents a single virtual (or external) sYmbol

OR operator - designates a choice of one of the two items separated by the vertical bar

n represents a decimal integer ranging from·O to 24 if a location counter,-erfrnm~ 15 if a bit1lositiSI1, GF.fr'OrilTto

~;-s.tfaH-i~orfrom-t~~~ ..

sub represents a label (usually external) designating subroutine starting address

[1 designates enclosed items as optional

d represents a decimal integer

f represents a floating decimal real number ofttt' to !J digiti

h represents up to eight hexadecimal digits

aa ... a represents a string of alphnumeric characters

op represents an operand address designation in the same format as the operand field of a basic arithmetic instruction

represents a FOCAP symbol or label

st represents a FOCAP set symbol or temporary symbol

",L represen1s1f·symlmt-dclToting.a EQRTRAN variable
... ~

uf represents any FORTRANlU:i.tlHtfetic expression
-'"~-> ...---------

~ePr~~:;;ts a FOCAP one-bit symbol

Glb represents a FOCAP one-bit expression

l~-'''--~'e';:~~sents'~~~~XP;~~~i~~ating the target address of a one-bit jump

As in the description of the machine language instruction formats, lower case characters are used to form symbols which represents a

family of possible sOllrce code items. In general, upper case characters are used to indicate source code in a literal sense.

5-1

THE SINGER COMPANY
KEARFOTT DiviSION

Y240A20lM0301 REV A

TABLE 5-1. SUMMARY OF FOCAP OPERATIONS

LABEL OPERATION

FIELD FIELD OPERAND FIELD SUMMARY

USE nlPREVIOUS Subsequent instructions or data under nth (or previous) location counter

(s) ORG dlst Set current Location Counter to d; (Note I) .

EVEN Forces value qf Cuftent Location Countet to next even number

[sl COMMON n Starts labeled (s) COMMON area under Location Countern

TEMP n Starts shared scratch area allocation under Location Counter n

[5) DEC d If Convert d (or t) to a 32 bit fixed (or floating) binary word (Notes 1,4)
(5) DECI6 d . Convert d to a 16 bit binary word (Notes 1,4)

[sJ DEC64 f Convert f to a 64 bit floating binary word (Notes I, 4)

[5) HEX h Convert h to a 32 bit binary word
[s) HEXI6 h Converth to' a 16 bit binary word (Notes 1,4)
[5] SCLB fldl, d2 Form 32 bit binary word by converting fl dl to binary, shift d2 places (Notes

1,4)
(5) SCLBI6 fl dl, d2 Form 16 bit binary word by converting fl dl to binary, shift d2 places (Notes

1,4)
[s) SCLW fl, [2 Form 32 bit binary word by dividing fl by f2 (the LSB value) Notes 1,4
[s) SCLWI6 fi, [2 Form 16 bit biriary word by dividing fl by f2 (the LSB value) Notes 1,4

Is) BSS dl st Reserve next d locations for scratch data; (Note 2)

Is) BES dlst Reserve next d locations for scratch data; (Note 3)

[51 PrR op Insert pointer to operand address

s EQU ulv Assign the value of u (or v) to the symbol s
st SETD d Assign the value of d as the temporary value of s
st SETX h Assign h as the temporary value of s
sb BIT u, nlst Assign symbol (sb) to a bit n at location u

BASE n, s: Assign value of s to base register designated by n
DBASE n Deactivate base register designated by n
UBASE n,.~ Assign value of s to an uncoditional base register designated by n.
ENTRY 51,52, ... Each listed symbol (sl, ...) is defmed as an ENTRY point

[51 CALL sub(opl/op21 ...) Transfer to subroutine sub; transmit arguments op J, op2 (Note I)

[51 PROL (sl,S2, ... d) Subroutine prologue; transmit arguments, etc.
[sl SPROL (sl,S2, ... sn) Short form of subroutine prologue
[sl RETURN Return from subroutine after restoring XR5 and XR6

HALF blank Halfword arithmetic mode

FULL blank Fullwotd arithmetic mj)de

PAGE o II I. .. 7 Memory page

RTMX {) II Return to memory indexing .-
Is) PUT ub(,xl J (,x.2J Set bit to one

[sl ZPUT ub(,xl lJ,x2) Set bit tl) zero
,

[sJ JMP ut,ub[,xl)(,x2) Jump if bit is set to one
[s] ZJMP ut,ub[,xl)[,x2) Jump if bit is reset to zero
s BIT u,n Assign a symbol to a bit
[sl LDAB op LoadAB register with 64 bit word atop location
{sl STAB op Store 64 bit contents of AB register at op location

'.

NOTES:

r. Label s is set equal to current vaille of location counter.
2. Label s is set equal to first location in.group.

3. Label s is set equal to the last location in group plus I.

4. Allocate resulting word at cutrent location and increment l:ocationcounter.

5-2

LABEL OPERATION

FIELD FIELD

CMPL

END

INT

LIST

UNLIST

TTL

EJECT

SPACE

THE SINGER COMPANY
KEARFOTT DIVISION

TABLE 5-1 (Continued)

OPERAND FIELD SUMMARY

uflsf uf Compile: Compute uf and store in A register (and at sf)
s Terminate assembly, starting address at s

Designates a main interrupt routine

Resume listing after UNLlST

Suspend listing source statements during assembly
aa ... a Place a title aa ... a on each page of assembly

Print next line of assembly at top of page
d Generate d blank lines in assembly listing

5-3

Y240A201M0301 REV A

Y240A20lM0301 REV A

5.1 LOCATION COUNTER OPERATIONS

THE SINGER COMPANY
KEARFOTT DIVISION

·This section describes the operationX. which can activate a location counter during an assembly (USE .. ~) as well

as the operatio~ e\>'~ ORG which affect the value of an active location counter. Th~ Assembler provides 25 location

counters (numbered 0 to 24) which can be activated by the user. All the code generated under a single location counter will be

allocated to a contiguous area of memory. However, the source code under a single location counter need not be consecutive in the

source deck. tlte sequelfl!e of source (Jode is typtt:tlly interrupted by tile Itctivlttion (Jf othetloMtlQ!U~.QQ!!!ets allt1 then snhst1qtletttly
rcadivatcd,,@~ks three activation operi!:fu1ns. It sl1(:jttld be netea that a ~o~ter, which w~~'a~ti~;ted'b).;arEMP or

CQMMCll>l-GpeFation afld--stI~~~S.!i.-'J.p.e.ratioll-wi1:iT11oCfiariie'~-y..allQ~tion

The principal purpose of location counters is to segregate different memory allocation types for separate action by the Loader. For

details on this allocation process, see Section 3.3.2.

prints the final ad

tarting at zelro is prin e

-----.J
5.1.1 USE - Start Use of Location Counter

The USE Pseudo-Op specifies the location counter under which the following sequence of instructions or data is to be assembled. The

format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) USE nlPREVIOUS

field contains a decimal integer, it designates which of the 25 location counters (numbered 0-24) should be

activated. The location counter in control up to the time USE is encountered (location counter 0 is used if none is previously

specified) is suspended and tern oraril reserved as the "previous" counter .Location counter n is activated to control memory

allocatIOn or the following instructions or data, until the next U 0 ration is encountered. If the USE PREVIOUS option is

selected, the previously suspended location counter is reactivated. Note that only one suspended location counter is preserved at one

time. Consequently, nesting of these suspended location counters is not permitted. The following sequence is provided as an

example:

USE I

o

o

USE 2

o

o

USE PREVIOUS

is equivalent to

USE 1

•
•

USE 2

•
•

USE I

The USE PREVIOUS capability is of great value in macro's which include. more than one type of memory allocation. The USE

PREVIOUS operation can be used to restore the original location counter at the end of the macro without knowing which one was

active when the macro was invoked.

The first instruction, data definition, or data reservation operation coded under a location .counter defines the memory allocation

type for the block of all subsequent statements under that location counter (see Section 3.3.2 for details). Similarly, if a USE

operation is followed by an ORG operation, the designated location counter is considered to be an absolute location counter.

5-4

THE SINGER COMPANY
KEARFOTT DIVISION

5.1.2 ORG - Specify an Absolute ORIGIN for the Program Segment

Y240A20lM0301 REV A

ORG Pseudo-Op redefines the value of the current location counter to be the absolute address specified. The format of this

instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

ORG
...... i

Symbol (Optional) ..
dl st ;.< "

The current location counter will be reset to the even absolute address specified .and the next instruction to be assembled under this
10catiol1 counter will be assigned to that absolute address. Location counters are always relocatable unless modified via the 0RG
Pseudo-Op. If there is a symbol in the label field it is defined as this new origin. All symbols defined while ORG is in effe.ct will be
assigned absolute locations. Other location counters odd value for d or and results in an error, . e
a 0 t an even location The ORG should be the first operation cocled following the first USE or COMMON
statement for an absolute location counter.

5.1.3 EVEN - M e ounter

The EVEN Pseudo-Op is used. to ensure an even load· address for the subsequent instruction or data word. If forcing is necessary to
achieve evenness, a NOP instruction or 16 bit data word is generatecl by the assembler. The format of this Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) EVEN (Blank)

It should b~ noted that if EVEN is not specified, the Assembler wiII automatically assign long instructions and data words to even

locations. Therefore, the EVEN operation is only required when it is. d~sired to override the memory allocation resulting ftom the
automatic allocation. Specifically, it may be desired to force the allocation of some short (16 bit) instruction or data word to an even

location.

5.1.4 COMMON - Allocate COMMON Data Area

The COMMON Pseudo-Op is used to assign a IQcation counter to control the allocation of a (labeled) COMMON blockin memory. A
COMMON block isadata storage area that can be referred to by more than one program. The names of variables and arrays to be
placed in this area are defmed by using FOCAP symbol definition statements under the designated location counter. In this fashion,
variables or arrays that appear in one program can be made to share the same ~torage locations with variables or arrays in other
program~. Thus, a' COMMON area can be used to transfer arguments between a calling program and a ~ubprogram. Thi~ data
allocation technique parallels the capability of the COMMON~tatement in FORTRAN. By specifying a symbol in the label field, a
name is assigned to that common area. The COMMON area becomes a "labeled COMMON" and may thereafter be referred to by that

name. The fDrmat of this instructioh is:

LABEL FIELD. OPERATION FIELD OPERAND FIELD

Symbol (Optional) COMMON n

where:

Symbol represents a standard FocAp sYmbol restricted to 6 Or fewer characters in length.

11 represents an integer from 0 to 24 designating a 10catiClll counter.

5-5

Y240A20lM0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

The designated location counter is also installed as the current location counter. Once a label has been assigned to a .location counter,

no other label may be given to that location counter. A blank in the label field assigns blank COMMON to the location counter

specified which mayor may not be blank (Location Counter 0). The following examples demonstrate this:

Example I ALPHA COMMON 6

The first word aHocated under a relocatable COMMON area (follOWing the initial COMMON pseudo-op) determines whether all

subsequent words allocated render the same location counter are loaded into protected memory or into the variable (unprotected)

memory area. It is loaded into unprotected memory if the operation mnemonic is BSS or BES; otherwise it is loaded into protected

memory.

Example 2 BETA COMMON

Assigns the label BETA to location counter 0, and the data immediately following will be assembled under that location counter.

Example 3 COMMON 11

Assigns location counter II as blank COMMON and the data immediately following will be assembled under location counter II.

Two programs may declare the same COMMON area to be absolute provided they both declare the same absolute value as the origin

of the COMMON area. If one program declares the common to be absolute and another declares it to be relocatable, the shared

common area will be allocated according to the absolute declaration.

The careful use of COMMON blocks can be a major factor in achieving a high density of short instructions in an SKC-2000 program.

I f a base register is loaded with the address of the first word in a COMMON block, short instructions can be used to reference the

data words at the front of the COMMON block. In the fullword arithmetic mode, the first 256 locations (128 fullwords) can be

directly accessed with a short (16 bit) instruction. In the halfword arithmetic mode, the first 128 locations (128 halfwords) can be

directly addressed.

~: The common label is not an ordinary FOCAP symbol since its length is restricted to 6 characters or less and since it does not

represent an address, hence it cannot be used in the operand field of instructions to represent an address. COMMON label can only be

lIsed in the label field of COMMON statements.

5.1.5 TEMP - Temporary Data Area

The TEMP Pseudo-Op designates one of the location counters to control the automatically shared variable data area or stack. The

uesignatcd location counter is also installed as the current location counter. Consequently, data allocated immediately following the

TEMP operation is included in the shared data area. The format of this Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) TEMP n

whne:

n represcnts a decimal integer designating one of the location counters 0-24

The data arcas defi'll'd following the TEMP Pseudo-Op will be assembled as a shared storage area under control of the location

CllUI1tl'r speciried in the Operand field. All other data allocated under location counter n will also be included in the shared data area.

Onl'" Of iOL'ation eountn has been specified within a TEMP operation, it can be used for no other purpose throughout the deck.

5-6

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

The automatically shared variable data area (usually designated as the TEMP area) is allocated in the same manner as the

AUTOMA TIC data type in PL/1. That is, it is allocated on entering a subroutine and released upon exiting. The allocation and release

operation is accomplished within the prologue operation (PROL) and the. RETURN operation respectively. Registers XR5 and XR6

are dedicated to this function and are, therefore, not available for other purposes if the TEMP operation is employed. Similarly, XRI5

is reserved for storage of the return address painter and will be destroyed (not saved) by the subroutine. Since this data area is

released when leaving a subroutine, it should not be used to store data for use in subsequent executions of the subroutine.

See the SKC 2000 Subroutine Library Reference Manual for a detaileddescrip(ion of the Loader's algorithm for determining the

length of the pushdown stack area required to hold the total TEMP data allocation.

5-7

THE SINGEn COMPANY
KI:ARFOTT DIVISION

Y240A20lM0301 REV A

5.2 MEMORY ALLocATION OPERATIONS

Memory Allocation Pseudo..ops are used to reserve data storage areas for constant data (usually in protected memory) and variable

• data words: The current location counter controlling< the respective stora~e area is incremented by the number .of words generated by

the Pseudo-Ops. !lBS .and BES allocate blocks of storage for variable data. Constant data is allocated by DEC, DI'!'€ 16, BE€64, HEX,

Iw~stLB, SCL"B..@, SCLW, SCLW~ and PTR. . . • .. ,Y. t C~ ttP}fv
Because of the storage protection feature of the SKC :;Oo~olJ)~uter .and the resulting assembler/ft.g~tgr\, anyone

location counter should control only constants or variables but not botlt1;he.first instruction or data allocation, following a USE

• operation which designates a given location counter for the first time, determines whether the words allocated will be placed

in protected memory or not. Protected memory should contain only instructions and constant data. Unprotected memory can be

written into as well as read out of and, therefore, should contain only variables. If the user violates this separation rule, he may find

out, at execution time, that his "protected" variables· cannot be stored into or his "unprotected" constants were inadvertently

destroyed during execution.

5.2.1 DEC - Decimal Data Definition

The DEC Pseudo-Op is used to enter a 32 bit binary data word into an SKC 2000 program; The data word is expressed in decimal in

the source coding. This instruction can be used to generate fixed or floating point constants. If an integer is specified, a fixed point

constant is generated. If a real number is specified, a floating point constant is generated. A real number may be written with or

without an exponent. If there is a symbol in the label field, it is assigned to the address of the most significant portion of the data

work generated.

LABEL FIELD • OPERATION FIELD OPERAND FIELD
..

Symbol (Optional) DEC dlf

where:

d: Decimal Integer: A decimal integer is.a string of digits, from 0 through 9 which may optionally be preceded by a plus (+)

or ~inus (-) sign. The maximum absolute value of a decimal integer is 231 _1. A decimal integer must not be terminated by

a decimal point. Integers are internally represented by a right justified binary equivalent. Negative numbers are represented

in their 2's complement form. Ror example:

INTGRI

INTGR2

INTGR3

DEC

DEC

DEC

52
-52

19

REPRESENTATION IN HEXADECIMAL

o
F

o

o
F

o

o
F
o

o
F

o

o
F

o

o
F

o

3
C

t

f: Real Numbers: A real (floating) number has two components, a Prill~ipal part and an Exponent part.

4

C

3

a. The Principal part is a signed or unsigned decimal number of up to 9 digits. It normally contains a decimal point

which may appear at the beginning, at the end, or within the decimal number .. If the exponent part of a real number is

present, the decimal point may be omitted. in which case it is assumed to be located at the right-hand end of the

decimal number.

b. The Exponent part consists of the letter E followed by a signed or unsigned decimal integer. The exponent part may

be omitted if the principal part contalns a decimal point .. If used, it must immediately follow the principal part. The

exponent part, if present, .specifies a power of ten by which the· principal part will be multiplied during conversion.

The maximum size of a real number is limited to approxirqate!y2127 by the size of the exponent field in an SKC

2000 floating point binary data word.

5-8

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

Reall1umbers are internally represented in the form of a signed binary fraction (the mantissa) and a biased exponent (the

characteristic). The exponent is the power(o which the base (2) must be raised so that when multi pled by the fraction, the

result is a binary representation of the real value being expressed. A bias of 128 is added to the exponent to form the

characteristic which indicates either a positive or negative exponent; the greatest value of the exponent (+ 127) will be

expressed as 255 and the smallest value of the exponent (-127) will be expressed as O. Negative numbers have their

fractional parts represented in 2's complement form. A representation of the floating point format is given in Figure 5-1.

r. ----MANTISSA (FRACTIONAL PART)~
~ I A'-____________ ~\

CHARACTERISTIC

o (8 BITS) 8 9 (23 BITS) 31

FIGURE 5-1. FLOATING POINT FORMAT

The exponent bias can be represented as hexadecimal 80 (binary 10000000), where the most significant (MSB) is bit I. Note the

following examples:

DESIRED POWER OF 2 CHARACTERISTIC IN BINARY BITS I - 8

10000011

10000010

10000001

10000000

01111111

01111110

01111101

For a complete illustration, four examples are given below including all combinations of signs. The decimal is given on the left and

the hexadecimal equivalent is given on the right.

Example I 0.75 x 23 4!E00000

Example 2 -0.75 x 23 CIAOOOOO

NOTE: The mantissa is a 2's complement form because the number is negative. The sign bit is I indicating that this is so.

Example 3 0.75 x 22-3 3EEOOOOO

NOTE: The mantissa is not in 2's complement form since the number is positive. The characteristic is less than the bias value of 80

(hcx). indicating a ncgative exponent.

5-9

Y240A,201M030l' REV A

THE SINGER COMPANY
KEARFOTT DIVISION

Example 4 -0.75 x 2c3 BEAOOOOO .

. .

NOTE: Both the mantissa is in 2's complement form and the characteristic is less than the biasvalue of 80 (hex), indicating a

negative number and a negative exponent.

5.2.,2 OECl6 - HalfwoW P!icilnalJ)!lta Definilipb

The DEC 16 Pseudo-Op is used to enter a 16 bit fixed point i>ltiJ\l'Y consh'iitr~o a SKC-2000program. The data word is expressed as

a decimal integer in the source listing. If there is a symbol in the label fielil',"it'iS assigned to the address of the half word generated.

LABEL FIELD OPERATION FIELD OPERAND FIELD

.
Symbol (Optional) DECI6

"""..".-.
d

where

d: Decimal Integer - A decimal integer is a string of digits from 0 through 9 which may optionally be preceded by a plus(+)

or minus (-) sign. The maximum absolute value of a halfword decimal constant is 21 S~ I. Integers are internally represented

by a right justified binary equivalent. Negative numbers are represented in their 2's complement form. For eXample,

HALFINTI

HALFINT2

HALFINTJ

DECI6

DECI6

DECI6

14

-14

29

o
F

o

HEXADECIMAL

REPRESENTATION

o
F
o

o
F

E
2

o

If a value of d greater than 32,767 (2 15_1) is used with the DEC16 operation, the least significant 16 bits of the number

are loaded in the designated halfwords.

S.2.3 DEC64- Double Precision Data Defmition

The· DEC64 Pseudo-Op is used to enter a 64 bit floating point binary constant into an SKC-2000 program. The operand is expressed

as a decimal real number in the source listing. A real number may be written with or without an: exponent. If there is a symbol in the

label field, it is assigned to the most significant portion of the first data word generated. The constant generated will occupy two

consecutive 32 bit SKC-2000 words.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) DEC64 f

where

f: Real.Number: The DEC64 real number format is the same as that for the DEC operation, except that the principal part

may.contain up to 18 decimaldigif~,

The 64 bit quantity is composed of two full words. One word has the format of a single precision floating point number, the other is

the extension of the. mantissa. The two words are stored in the reverse of '~natuflil" order, as shown in Figure 5-2.

5-10

THE SINGER COMPANY
KEARFOTT DIVISION Y240A201 M0301 REV A

Double precision floating numbers <lre, internally represented in the fGrm .of a signed binary fractiGn (the mantissa) and a biased

expGnent (the characteristic). The ~aximum size .of a double precision real number is limited to approximately 2127 by the size .of

the expGnent field. A representatiGn .of the dGuble precision flGating point fGrmat is given belGw.

o 31

:~~I ~ ________ ~ __ ~ ____ M_A_N~T_IS_S_A_(_L_EA_S_T_'S_I_G_N_IF_~~A~~N*T~~)~ ____________________________ ~
LOCATION m

SECOND

WORD

(m+2)

o

EXPONENT

'------ EXPONENT SIGN

~------MANTISSA SIGN

MANTISSA (MOST SIGNIFICANT)

FIGURE 5-2. DOUBLE PRECISION FLOATING POINT DATA

5.2.4 ,HEX - Hexadecimal Data Definition

31

The ,HEX Pseudo-Op is used to enter a 32 bit binary data word into an SKC-2000 program. The data word is expressed in

hexadecimal digits on the source coding. The digits are 0-9 and A-F, where 0-9 have the same meaning as decimal digits 0-9, and A~F

have the decimal values 10-15 respectively. If there is a symbGI in the label field, it is assigned tG the address of the data wGrd

generated. The fGrmat .of this Pseudo-Op is:

LABEL FIELD OPERATION FIELD

" Symbol (OptiGnal) HEX

where:

h represents a hexadecimal character or'from I tG 8 characters.

Examples .of the HEX Pseudo-Op:

ALPHA

GAMMA'
HEX

HEX
A.BC
12AFB359£

OPERAND FIELD

h

CONTENTS IN HEXADECIMAL

OOOOOABC

2ABF359E

NOTE: The hexadecimal characters in the .operand field are right justified with truncatiGn .on the left if more than 8 characters arc

spcdtkd (as in'secGnd example).

5-11

Y240A20IMOJOI REV A

THE SINGER COMPANY
KEARFOTT DIVISION

5.2.5 HEX16 ~ Haleword Hexadecimal Data Definition

The HEXI6 Pseudo-Op is used to enter a 16 bit binary data quantity (halfword)into an SKC-2000 program. The data word is

expressed in hexadecimal digits in the source coding. The digits are 0-9 and A-F where 0-9 have the same meaning as decimal digits

0-9. and A-F have the decimal values 10-15 respectively. If there is a symbol in the label field, it is assigned to the address of the data

generated. The format of this Pseudo-Op is:

LABEL FIELD OPERANI),FIELD OPERAND FIELD
"' .. :".

Symbol (Optional) HEXI6 h

where

h represents a hexadecimal string of from I t04 characters.

Examples of the HEX 16 Pseudo-Op:

ALPHA

BETA

HEXI6

HEXI6

12A

ABCDE

HEXADECIMAL REPRESENTATION

o
B

I

C
2

D

A

E

NOTE: The hexadecimal characters in the operand field are right justified with truncation on the left if more than 4 characters are

specified (as in second example).

5.2.6 SeLB - Binary Scale Operation

The SCLB Pseudo-Op is the user's convenien'ce when generating scaled fixed point constants. The user specifies a decimal number a

the scaling factor and the assembler performs the appropriate shift to create the scaled number and assigned storage for the data If

tl Ie ,I ata word generated. The format isf1lllfn1I1m~--r

LABEL FIELD OPERATION FIELD OPERAND ELD

Symbol seLB {f Idl}, d2

for dl: Number to be Generated: A signed or unsigned real number (f):or a decimal integer dl:

d2:

"'~".'-~.
S-c-a1-i-n-g-F-a-ct-o-r-: -A-d-ec-i""m-a-I-in-t-eg-e-r-in-th-e---ra-n-g-e--6-4 to +64. The scaling factor may be interpreted either of two ways. It is

either the number of non-sign bit positions to the left (or to the right, if scale factor is negative) of the specified binary

point, or it is the number of bits the generated word is right shifted (or left Shifted, if negative) out of normal. See the

examples below ..

The number generated by 'the assembler will be in fixed-point format. If .the first subfield is a negative number then the

number generated will be. the 2's complement of the corresponding positive number with the same scaling factor. That is.

SClB -N.B = -(SCLB N, B)

5-12

THE SINGER. COMPANY
KEARFOTT DIVISION

Por further cI~rification of the use of the SCALEB (Binary Scale) operation, consider the following examples:

Ex~mple I

SCLB 1.5,4

S 0

o~ 2 3 :1 5
6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Y240A20lM0301 REV A

0 0 0 0

28 29 30 31

Sc~ling factor of 4 causes number to be positioned 4 bit places to the right of its normalized position. Bit position 4 has value of 20

and bit position 5 is T I. The binary point is between bit positions 4 and 5.

--------~-----~---------==-------
Ex~mple 2

BETA SeLB 6.546875,26

NOTE: 6.546875 = 22+ 21 + TI +T5+ T6

S 0

°l~
2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2~27 28 29 30 31

\ Scaling factor of 26 causes number to be positioned 26 bit places to the right ofits normalized position. Binary point is between bit

\

position 26 an 27. Note that since 26 binary integer bit positions were specified (to the left of the binary point) only 5 bit positions

remain to the right of the binary point for the binary fraction. A sixth position, however, is required for the T6 value, and, since the

. position is not available (it would have been bit 32), truncation occurs to the right resulting in loss of precision. The final value

~ntediS6.53125~ .. ____________________________ --------------~----------------------------____ ---

5.2.7 SCLBI6- Halfword Binary Scale Operation

The SeLB 16 Pseudo-Op is for the user's convenience when generating scaled, halfword fixed point constants. It is the halfword form

of SCLB, and all algebraic rules and relationships described for SCLB apply equally to SCLB 16. The user specifies a decimal number

and the scaling factor and the assembler generates the halfword constant and performs the appropriate shift to create the scaled

number. If therc is a symbol in the label field, it is assigned to the location of the halfword generated.

LABEL FIELD OPERA nON FIELD OPERAND FIELD

Symbol (Optional) SCLB16 {f Id I } ,d 2

where

for d I: Number to be Generatcd: A signed or unsigned real number (I), or a decimal integer (d I)'

d ,: Scaling Factor: A decimal integer in the range -64 to +64 integer. The scaling factor may be interpreted as either the

nunll1l'r of non-sign bit positions to the left (or to the right, if the scale factor is negative) of the specified binary point, or

5-13

THE81NGER COMPANY
KEARFOTT DIVISION

it is the number of bits the generated word is right shifted (or left shifted, if negative) out of normal. See the example
below.

The number generated by the assembler will be in fixed point format. If the first subfield is a negative number, then the
number generated will be the 2'8 complement positive numbenvith the <same scaling factor.

Example:

SCLBI6 4.25,3

S 0 0 0 0 0 0 0 0 0 0 0 0 0

0 I 2 3 4 5 6 7 8 9 IO II 12 13 14 15 ,-- ~I

Scale factor of 3 causes number to be positioned 3 bit places to the right of its normalized position. Bit position 2 has value of 22
and bit position 6 has value of 2-2.

5.<2.8 . SCLW - Weighted Scale Operation

The SCLW Pseudo..Op is for the user's convenience when generating fixed point constants. It is an alternate to SCLB. The user

specifies a decimal number, and the value, or weight Qf the least significant bit (LSH) (i.e., bit 31). If there is a symbol in the label
field, it is assigned to the location of the data Word generated. The format is as follows:

LABEL FIELD OPERA nON FIELP OPERAND FIELD

Symbol (Optional) SCLW fl, f2

where:

f1 represents a signed or unsigned real (floating) number which designates the number to be generated.

f2 represents a signed or unsigned teal (floating) number which~esignates the weighting factor. The weighting factor can be

interpreted as the value assumed by the least significant bit (LSB= bit 3i): See the examples below.

The <number generated by the assembler will be inf'Ixed-point format. If thes/gns of two subfields of the operand differ, the
assembler will generate a negative number in 2's complement fotm. The follo)",ing relationships hold true.

SCLW-N,-W

SCLW-N,W
SCLWN,<-W

SCLWN, W
-(SCLWN, W)

-(SCLWN, W)

[nail cases, the number generated is equalto the value of the frrst subfield, adjusted according to the weighting factor. The principal
part of n and f2 should contairt no more than 9 deci1nal digits.

5-14

Example I

ALPHA SCLW

0 0 0 0 0 0 0 0 0 0 0

I : :J 4 S (1 1 8 It to tI

Example 2

BETA SCLW

0 0 0 0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 II

Example 3

GAMMA SCLW

0 0 0 0 0 0 0 0 0 0 0

I 2 3 4 5 6 7 8 9 10 11

THE SINGER COMPANY
KEARFOTT DIVISION

1.5,5

0 0 0 0 0 0 0 0 0 0

12 13 '4 IS H1 t1 18 19. 211 2t

= 10
bit value is .5 x 21 .

bit value is .5 x 20
= 0.5

1.5,.0625

0 0 0 0 0 0 0 0 0 0

12 13 14 15 16 17 18 19 20 21

bit value is .0625 x 24 =
1.0

bit value is .0625 x 23
= 0.5

bit value is .0625 x 22
= 0.25

bit value is .0625 x 2
I = 0.125

bit value is .0625 x 20 = 0.0625

24.0,1.2

0 0 0 0 0 0 0 0 0 0

12 13 14 15 16 17 18 19 20 21

bit value is 1.2 x 24 =
19.2

bit value is 1.2 x 22 = 4.8.

bit value is 1.2 x 20 =
1.2

5.2.9 SCLW16 - Halfword Weighted Scale Operation

Y240A20lM0301 REV A

0 0 0 0 0 0 0 0 I I

22 23 24 25" 26 21 28 29 30 31

t "

0 0 0 0 0 I 1 0 0 0

22 23 24 25 26 27 28 29 30 31

•

0 0 0 0 0 I 0 I 0 0

22 23 24 25 26 27 28 29 30 31

~ A ~

The SCLWI6 Pseudo-Op is for the user's convenience when genetating fixed point 16 bit constants. It is the halfword form of SCLW,

and all algebraic rules and relationships described for SCLW apply equally to SCLWI6. The user specifies a decimal number, and the

value, or weight, of the LSB (i.e., bit 15). If there is a symbol in the label field,.it is assigned to the location oUhe data word

generated.

5-15

Y240A201M0301 REV A

LABEL FIELD

Symbol (Optional)

where

THE SINGER COMPANY
KEARFOTT DIVISION

OPERATION FIELD

SCLW16

t1 . represents a Signed or unsigned tioatil1g pomtnunit;erto be gelferattid.
~. ,-<'

OPERAND FIELD

fl, f2

f2 represents a signed or unsigned floating number which designates the weighting factor. The weighting factor can be

interpreted as.the value assumed by the least significant bit (bit 15).

Example:

SCLWI6 6.3, .3

S 0 0 000 0 0 0 0 0 o o

o 2 3 4 5 6 7 8 9 10 11 12 13 14 IS

bit value is .3 x 24 = 4.8 __________J+

bit value is .3 x 22 = 1.2 ______ ~ ___ ~ ___ .J!

bit value is .3 x 20 = 0.3--------------------'

6.3

5.2:10 BSS -Block Started by Symbol

The BSS Pseudo-Op (Block Started by Symbol) is used to reserve an area of memory for use by the program as variable data storage

or work area. The start location of the block is determined by the value of the current location counter at the time the BSS

Pseudo-Op is encountered.

The format of this Pseudo-Op is:

LABEL FIELD OPERA nON FIELD OPERAND FIELD

Symbol (Optional) BSS , dl st .

I f there is a symbol in the label field, it is assigned to' the first location of storage reserved by the BSS Pseudo-Op. BSS reserves a
block of consecutive storage locations,th~ length of which is determined by the valu.e in the operand field. For example:

ALPHA llSS 20

A block of 20 storage locations (16 bit words) is reserved and the symbol ALPHA is assigned to the first of these. These storage

locations are not initially cleared (it may ~ be assumed that they contain zeros).

5-16

5.2.11 BES - Block Ended by Symbol

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM030l REV A

The BES Pseudo-Op (Block Ended by Symbol) is used to reserve an area of memory for use by the program as variable data storage

or work areas. The start location of the block is determined by the value of the current location counter at the time the BES

Pseudo-Op is assembled. The format of this Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) BES d 1st

If there is a symbol in the label field, it is assigned to the next location following the last location of the block. The BES Pseudo-Op

reserves a block of consecutive storage locations the length of which is determined by the value in the operand field. For example:

ALPHA BES 20

A block of 20 storage locations (16 bit words) is reserved and the symbol ALPHA is assigned to the location after the last of the block,

in other words, the 21st location from the beginning. These storage locations are.!!2! initially cleared (it may not be assumed that

they contain zeros).

5.2.12 PTR - Pointer to Address

LABEL FIELD OPERATION FIELD

Symbol (Optional) PTR

Samples of appropriate source coding are shown below:

LABEL PTR
PTR
PTR
PTR

OPERAND FIELD

op

0,6

ALPHA

BETA,I,21

GAMMA,I,!

The pointer (PTR) pseudo-op is commonly used in the CALL macro to designate the arguments to be transmitted to the subroutine.

It is ideally suited to this purpose, since it permits a direct reference to any data word which can be accessed by one of the basic

arithmetic instructions. This reference is accomplished without the use of arithmetic instructions to generate the reference address.

Thus. the subroutine call process is substantially simplified.

NOTE: When the PTR operation is used in conjunction with the JS instruction to designate where to store the return address. the

operand field should only designate a single index/base register and the I and M bits must be zero.

5-17

Y240A2{)!M0301 REV A

5.3 SYMBOL DEFINITION OPERATIONS

THE SlNGER COMPANY
KEARFOTT PIVISION

Most FOCAP operations may be used to define a symbol simply by placing the system to be defined in the label field of operation.
The symbol is defined to be the value of the location counter in control at the time the symbol is encountered during assembly.
However, the symbol definition Pseudo-Ops EQU, SETD, SETX, and BIT exist solely for the purpose of extending this symbol

definition capability.

5.3.1 EQU - Equate Symbol to Expression

The EQU Pseudo-Op is used to assign a value to a symbol which is equal to the value of the expression in the operand field. The

format of the EQU instruction is:,

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol EQU ul v
,

Note that unlike most other FOCAP operations, EQU defines a symbol in the. label field to have a value other than the current value
of the location counter. (The other three such exceptional operations are SETD, SETX, and BIT). It is also exceptional in that the
symbol(s) used in the expression in the operand field must have been defmed in preceding source statements, i.e., forward symbol
reference is forbidden.

If a virtual symbol or a synonym for a virtual symbol is used in the operand field, then it must be the entire operand field; it may not
be combined with another expression element to form a twpterm expression. In this case, the symbol· in the label.field can not be
listed in an ENTRY Pseudo-Op, and it is not available for reference in other decks; it is merely a synonym, within this deck only, for
the virtual.symbol in the operand field.

The EQU defines an ordinary symbol, and ordinary symbols have (are. associated with) location counters. If the expression u is
relocatable,. the symbol· defined by the EQU Pseudo-Op is assigned the location counter of the relocatable element of u. If u is

absolute, the symbol acts as if it had an absolute location counter.

Observe the fdllowingexamples:

Example ·1

ALPHA EQU BETA

The. value of ALPHA is set equal to the value of BETA.
BETA may be a virtual (external) symbol; but if it is, ALPHA may not be listed in an ENTRY Pseudo-Op.

Example 2

GAMMA
LDA
EQU

8TA

BETA

*
DELTA

If the instruc!ionLDA BETA is assigned to location 0173, then GAMMA has the value 0174 and the instruction STA DELTA is
assigned tc;> location 0174.

NOTE: If all. asterisk(*) is used in the operand field, the value of the symbol is the present value of the current location

counter.

5-18

Example 3

DELTA

THE SINGER COMPANY
KEARFOTT DIVISION

EQU

Y240A20lM0301 REV A

ALPHA+BETA

DELTA is set equal to the value of the expression ALPHA+BETA as evaluated at assembly time. Either ALPHA or BETA or

both may be previously defined symbols or set symbols; however, only one can be relocatable. Neither ALPHA nor BETA may

be externally defined symbols since the operand field may contain only a single virtual symbol, if it is to contain a virtual
symbol at all.

Example 4

DATA

VEL

ACC

RI

BSS

EQU
EQU
EQU

100

DATA+3

DATA+6

DATA+50

VEL, ACe, and RI are assigned to the specified locations within the DATA block.

5.3.2 SETD.- Set Temporary Symbol to Decimal Number

The SETD Pseudo-Op is used to define or redefine atcmporary symbol for use in instructions as an element in the operand field. The
format of the SETD Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol SETD uld

The use of the SETD Pseudo-Op assigns the numeric value of the expression or decimal integer in the operand field to the symbol in

the label field regardless of any prior "temporary" value of the symbol. The new value becomes the value maintained by the symbol

until it is redefined (by another SETD or SETX). In this manner, a set symbol or temporary symbol may assume several values during

assembly of the FOCAP program. If a symbol is thus defined to be a set symbol, it cannot be used elsewhere in the program as a

conventional symbol referring to an absolute or relocatable memory address. A set symbol must be defined prior to its use in the
program.

lfi:e-~alue of the symbol is the current value of the expression, u. All symbols employed in the expression must be previously defined q
't'Ji~t ,symbGlsr-NeitheJ:...ext:em'll!x defined sym]J()ls_..cYlrIJ!aL~mb.ols).=-coruzentionaLsy.mbols may be used in the expression.

NOTE: The resulting value of th~~;t-;y~-b~l-is limited to 32 bits, i.e., less than or equal to 23Ti:-----·-.---- ___ ,,,_ ..

5.3.3 SETX - Set Temporary Symbol to Hex Value

SETX Pseudo-Op is used to define or redefine a temporary symbol for use in instructions as an element in the operand field. The

format of the SETX instruction is:

LABEL FIELD OPERATION . FIELD OPERAND FIELD

Symbol SETX h

where:

h is an unsigned Hexadecimal character string of 4 or less digits in length.

Y240A20lM0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

The use of the SETX Pseudo-Op assigns the 16-bit binary integer specified by h as the value of the symbol in the label field regardless

of any prior "temporary" valu.c of the symbol. The new value becomes the value maintained by the symbol until it is redefined (by

another SETD or SETX). In this manner, a set symbol or temporary symbol may assume several values during assembly of the

[,OCAP program. [f a symbol is thus defined to be a set symbol, it cannot be used elsewhere in the program as a conventional (or

permanent) symbol referring to an. absolute or relocatable memory address. A set-symbol must be defined prior to its use in the

program.

Unlike the SETD Pseudo-Op, the SETX Pseudo-Op may not have expressions in its operand field.

NOTE: The value of the set symbol is limited to a 32 bit number, less than or equal to 231.1.

S.3.4 BIT - Assign a Symbol to a Bit

The BIT Pseudo-Op is used to assign a symbol to one-bit data so that it may be referred to in the bit manipulation macros (PUT,

ZPUT, JMP, ZJMP). A one-bit symbol may also be listed on an ENTRY Pseudo-Op and thereby made available for use in bit

manipulation macros in other routines. The format of the BIT Pseudo-Op is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (sb) BIT {u 11 ,n

The symbol in the label field is assigned to bit n in the halfword at the location given by the value of the FOCAP expression u, or in

thehalfword designated by the external (virtual) symbol v. The bit position, n, must be a decimal integer or set symbol with a value

in the range 0 to 15.

Symbols used in the expression u must have been defined in preceding source statements. If a virtual symbol is used to specify the

halfword location, it may not be combined with another expression element to form a two term expression. However, a one-bit

symbol may be combined with an integer or set symbol to form an expression in a bit manipulation macro.

If a one-bit data symbol is used other than in the first operand sub field of a bit manipulation macro, it acts as a symbol whose value

is the"location of the halfword containing the one-bit data, i.e., the value assigned by the first operand subfield of the BIT Pseudo-Op.

If the expression u is relocatable, the symbol defined by the BIT Pseudo-Op is given the location counter of the relocatable element

of u. If u is absolute, the symbol acts as if it had an absolute location counter.

Note that all the above rules concerning the first operand subfield are the same as the rules concerning the operand field of an EQU.

[n fact, the BIT Pseudo-Op may be regarded as merely a generalization of EQU which permits a bit position attribute to be associated

with an ordinary symbol. This is consistent with the fact that the bit position of a symbol defined in any other way is taken to be

zero, when used in a bit manipulation macro. Further note that a one bit symbol has two values associated with it, the address value

(address of the designated data halfword) and the bit value (bit position within the halfword).

Example I

ALPHA BIT BETA,O

The symbol ALPHA designates the sign bit of the halfword at location BETA. BETA may be a virtual symbol; but if it is,

ALPHA may not be listed on an ENTRY Pseudo-Op.

5-20

The macro

PUT

THE SINGER COMPANY
KEARFOTT DIVISION

ALPHA

would set the sign bit of the halfword at BETA, and the macro

PUT ALPHA+1

would set the sign bit of the halfword at BETA+ I. This form is legal if BETA is or is not a virtual symbol.

Example 2

GAMMA

DELTA

MU

BSS

BIT

BIT

ENTRY

2
GAMMA+I,15

GAMMA+I,14

DELTA

Y240A20lM0301 REV A

The symbols DELTA and MU designate the least significant and next to the least significant bits in the halfword following

GAMMA; and DELTA is available for reference in bit manipulation macros in. other routines.

Example 3

SWITCH BIT TABLE+ROW,COL

The symbol SWITCH designates the bit given by the value of the set symbol COL within the halfword at the location given by

the value of the expression TABLE+ROW. Neither TABLE nor ROW may be virtual symbols or synonyms for virtual symbols.

5-21

Y240A201M0301 REVA

S.4 BASERECISTER OPERATIONS

THE SINGER COMPANY
KEARFOTT DIVISION

'the base register Pseudo-Ops are used to facilitate the use of the index registers by the programmer. It is used to inform the

assembler of decisions made on register contents.

Base Register Pseudo-Ops find their greatest value in facilitating the use of short arithmetic instructions fot accessing data. Long

arithmetic instructions can directly access65K data addresseS,since theaddre~sfield is 16 bits long. Short instructions, however,.can

only directly access groups of 128 locations since the address fi~Idof th~'Short Inshuction is only 7. bits long.
"ic)<.c':' .. '

By properly loading the seven first level base/index registers, short instructions can be used to access the seven most frequently used

groups of 128 data wotds. Thus, the effective address range of the short arithmetic instructions is 1024 data words, including the 128

words accessible without indexing.

Use of Base register Pseudo..Qps in conjunction withTust level base/index registers aids the optimization process by providing pointer

references automatically. Using base information, the assembler automatically selects the short instruction form whenever possible by

computing the displacement from the appropriate base register and thus forming the short operand. The user invokes the above

sequence by coding a symbolic operand without register or flag modif1er subfields (see paragraph 5.4.1).

The UBASE operation causes address modification unconditionally, that is for both long and short instruction formats. UBASE is

intended to be used to reference data whose absolute address is only known at execution time. The most obvious example of this

situation:is a reference to a data word in the TEMP stack. In that case, all operand references, even in long instructions, must use the

stack pointer register (XR6). The UBASE operation also facilitates references to data whose address is greater than 65,535 and hence

is not directly reachable by the M 16 field in a long arithmetic instruction. Such data must be referenced by base/index modification

in both the short and long arithmetic instructions.

Generally, the base register operations are dealing with data word addresses rather than instruction word addresses. In this section we

shall say that a data word address (Z) is within the short range of a base/index register if it can be reached by a short arithmetic

instruction which designates the base/index register. More precisely, if the base/index register contains a dataword address denoted

by Y, Z is within the short range of Y and hence within the short range of the base/index register if,

y';;; z < y + 128 for halfword mode

ot,

y .;;; z < y + 256 for fullword mode

In addition, Z and Y must be either both absolute 6r both relocatable and define,j under the same location counter for the Assembler

to be able to determine that Zis within the short range of Y. If all of the above criteria are satisfied but,

y + 128";; z <y + 65,536 for halfword mode,

or,

y + 256 .;;; z < y + 65,536 for fullword mode

thM Z is said to be within the'longrange of Y. Finally, if Z is either within'the shorf tange of Y or within the long range of Y, then it

is said to be simply within the range of Y.

5-22

5.4.1 BASE - Base Register Designation

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

The BAsE operation should be used prior to any short arithmetic instructions,which wiD symbolically· reference data. It indicates to

the assembler which index register has been designated as a base register and what absolute or relocatable address has been placed in

the register. The BASE Operation has the following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

. ~.~ ' .. .'.,
(Blank) BASE n,u

where:

n represents a ,decimal number or set symbol from 1 to 6, which designates an index register as a base register.

u represents an expression which defines the absohite or relocatable address in the designated register.

Until another,BASE,UBASE or DBASE operation is encountered, which designates'the same index register, the assembler assumes

that XRn contains u. As a result, whenever an address Z Within the range of u is subsequently desigiiated as an operand address, the

assembler automatically generates a short instruction (if possible) by computing the displacement (M7) as Z-u and sets the index

designator to n. Symbols used in the expression u should be defined prior to their Ol;currence in the BASE statement. Note that the

BASE operation has no effect on long instructions.

If the programmer expliCitly designates a bare/index register, the BASE operation is overridden and does not affect the generated

code. To ,illustrate this operation, consider the folloWing example:

SOURCE DOCUMENTS

ALPHA

BETA

DELTA

GAMMA

DEC

DEC

DEC

BSS

BASE

LDX

BASE

LDX

BASE

LDX

LDA

ADU

STA

27.3

463.91

0.003

100

I ,ALPHA

I,ALPHA,M

2,BETA

2,BETA,M

3,GAMMA

3,GAMMA,M

ALPHA

DELTA

GAMMA+6

INSTRUCTION
GENERATED

(Shown
Symbolically)

LDA 0,1

ADU 2,2

STA 6;3"

5-23

REMARKS

displacement{M7) of 0 from (XR I)

displacement (M7) of 2 from (XR2)

displacement (M7) of 6 from (XR3)

Y240A20}M0301REV A

THE SINGER COMPANY
KEARFOTT DIVISION

In this example, the BASE Psetido-Ops indicate that index registers 1,2, and 3hayebeen chosen as base registers, and .that the
Assembler is to assume that register I contains the. address yalue of ALPHA, Register 2 contains the address yalue of BETA, and
Register 3 contains the address value of GAMMA. The. explicit displacement field (M7) of the LDA ALPHA instmction wit! be 0
since location ALPHA is displaced 0 words from the contents of the base register XRI. Since location DELTA is displaced by I word
from location BETA, whose address yalue is in XR2, the displacement field of the ADU DELTA instwction is 2. Similarly, location
GAMMA+6 is displaced from (XR3) by 6.

Caution: The BASE operation conyeys information on base register cont¢l1tsto the assembler. The assembler program then presumes
the base register condition to exist, and composes other (short)iristructi6ttsacco~dingly. Howeyer, the responsibility for insuring that

the condition exists in the base register at execution time, is up to the programmer, not the assembler. The designated BASE register
should be loaded' with the desired address by executing an LDX or LXA instruction.

5.4.2 UBASE - Unconditional Base Register De~gnation

The. UBASE operation designates an XR as an unconditlQ11al base register and assigns it a yalue .. UBASE may be used prior to

m~mory reference instmctions with a free (unspecified) index register field (XI or X2) to cause the assembler to assemble such
instructions as either long or short based instructions. Generation of such based instructions is useful to:

I. Simplify address references to data in the TEMP (Stack) data area or in other stacks defined by the programmer.

2. Simplify address references to data stored in memory locations greater than or equal to 216 (Le. addresses greater than
65535).

3. Permit XR 7 to be used as a base register in long or short return-to-memory instructions when address modification by XR 7
is not inhibited.

Specifying a UBASE operation indicates to the assembler that an index register has been designated as an unconditional base register
and specifies the absolute or relocatable' address, which should be· assumed to be in the register. The UBASE operation has the
following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) UBASE n,u

where:

n represents a decimal integer or a set symbol with a wlue from I to 15, which designates an index register (XRn) as an

unconditional base register.

u represents an expression which defines the base yalue, the absolute or relocatable address declared to be in the designated

register. Symbols used in u should be defmedprior to their occurrence iti theUBASE statement.

Until another BASE, UBASE or DBASE operation is encountered, which designates the same index register, the assembler assumes

that XRn contains u.

If n designates one of the first-Ieyel registers XRI,---- ,XR6, then short instmctions will be generated in the same way as if a BASE

had been used instead of a UBASE. That is, wheneyer an address (sayZ)withirt the Short range of u is subsequently designated as an

operand address, the assembler automatically generates a short instruction (if possible) haVing an address field (M7) of Z-u and a

first-Iey':l index of 11 designated in the Xl field. the address field Z-urepresertts ~he displacement of Z from 1I.

5-24

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

When the instruction cannot be made short, the assembler will attempt to construct a long instruction based with XRn if II covers Z

and Z is rclocatable. The resulting long based instruction will contain Z-u in the MI6 field. The base register designator, n, will be

placed in the XI field if I';;; n ~ and the XI field is free (has not been specified by the programmer); otherwise n will be placed in

the X2 field if the X2 field is free. If neither the XI nor the X2 field is free, an error message is generated and a based instruction will

not be generated.

The assembler also attempts to generate a long based instruction if Z is absolute and greater than or equal to 65536. However, if Z is

absolute and less than 65536, then the assembler generates a long non-based instruction with MI6 equal to Z.

If a return-to-memory operation is assembled and the assembler has been informed (by default or by a prior RTMX 0) that status

register bit 6 (SR6) is set to zero and if XR7 has been declared a UBASE register, the assembler will assume that XR7 is to be used as

a base register. If Z is not within the range of u an error message will be generated. If Z is within the short range of u a short

instruction will be generated (if possible). Otherwise, a long based instruction will be generated with Z-u in the M 16 address field.

When address modification by XR7 is inhibited, the assembler will attempt to generate a based instruction with the base register

designated by the X2 field, as described above.

Caution: The UBASE operation conveys information on base register contents to the assembler. The assembler program then

presumes the base register condition to exist, and composes other (short) instructions accordingly. However, the responsibility for

insuring that the condition exists in the base register at execution time, is up to the programmer, not the assembler. The designated

UBASE register should be loaded with the desired address by executing onLDX orLXA instruction. To illustrate this operation,

consider the following example:

ALPHA

BETA

NBLONG

GAMMA

EPSIL

LSIA

SOURCE STATEMENTS

USE I

ORG 65536

BSS 1000

BSS 1000

USE 4

ORG 32768

DEC 15.54

TEMP 24

BSS

BSS

USE

ORG

BSS

300

200

2

15872

256

INSTRUCTIONS

GENERATED

5-25

REMARKS

Y240A20lM0301 REV A

SOURCE STATEMENTS

Lsm BSS 256

USE 3

UBASE I, ALPHA

LOX I, LALPHA

JU MU

LALPHA JGU ALPHA

UBASE II, GAMMA

MU LOX II, GAMMA, M

UBASE 7, LSIA

LOX 7, LSIA, M

LOA ALPHA

ADU GAMMA

STA BETA

RTMX 0

LOA LSIA

AOUR LSIA+4

ADUR LSIB

LOA ALPHA+2,3

STA EPSIL,3

LOA NBLONG

5.4.3 DBASE - Drop a Base Register Designator

THE SINGER COMPANY
KEARFOTT DIVISION

INSTRUCTIONS

GENERATED

LOA 0,1

ADU 0,0,11

STA 1000,1

LOA 15872

ADU 4,7

AOU 256,7

LOA 2,3,1

STA 300,3,11

LOA 32768

REMARKS

ALPHA into XR 1

Location of ALPHA

GAMMA into XRII

LSIA into XR7

Short, Displacement 0 from (XR 1)

Long, Displacement 0 from (XR 11)

Long, Displacement 1000 from (XRI)

XR7 not inhibited.

Short, Displacement 4 from (XR 7)

Long, Displacement 256 from (XR7)

Long, Displacement 2 from (XR I)

Long, Displa~ement 300 from (XR II)

Non-based long instruction with M 16 = 32768

The DBASE operation should be used to cancel the effect of a prior BASE or UBASE operation. The DBASE operation has the

following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) DBASE n

where:

n - represents a decimal integer or set symbol from I to IS, which designates an index register, XRn.

5-26

THE SINGER COMPANY
KEARFOTT DIVISION

To illustrate this operation, consider the following example:

ALPHA

BETA

SOURCE STATEMENTS

ORG

DEC

ORG

DEC

UBASE

BASE

LOX

LOX

LOA

LDA

DBASE
. LDA

DBASE

LI}A

19000

'10.2

17000

1554

4; BETA

3, ALPHA

4,BETA,M

3,ALPHA,M.

ALPHA

BETA

3

ALPHA

BETA

INSTRUCTION

GENERATED

(Shown Symbolically)

LOA 0,3

LOA 0

LDAJ9000

LOA 17000

5-27

REMARKS

Short Instruction M7 = 0

Instruction M16 = 0

Y240A20lM0301 REV A

Long Instruction M 16 = 19000

Long Instruction M 16 = 17000 .

Y240A201M0301 REV A

. 5.5 SUBROUTINE OPERAtIONS

THE SINGER COMPANY
KEARFOTT DIVISION

Subroutine directives and macros are used to provide communication between a calling program and its subroutines.

5.5.1 ENTRY - Entry Point Designation

The ENTRY Pseudo-Op identifies a symbol as having the ability to be referenced by a routine other than the one in which it has been

defined. The format of the ENTRY Pseudo-Op is:
"',

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) ENTRY !ii, s2,. ;' ..

where:

sl ,s2 .. .is any number of symbols separated.2!.~omm!§...-,.-_;...---~~"'-"'-"-<-'._'_"'<~_'
~"",_..,,,, ••• r:, •• ,,!,,,,,,, __ ,,u"~«fI~

T~ese symbols can be any ordinary symbol defined in the program deck by having appeared in the label field of an inst

Pseudo-Op or macro. Data symbols as well.as instruction labels may appear in ENTRY Pseudo-Ops to indicate that they will be

available to othel". subroutines as external symbols or references. However, it is more typically used to designate the starting location

for a subroutine. The data symbols may represent data fulIwords, data halfwords, or single bits (one-bit symbols). Set-symbols are

not permitted.

5.5.2 CALL - Call Subroutine

The CALL operation is a system macro used to transfer control to a subroutine. TJ1e "format of the CALL macro is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) CALL sub (opl/op2/ ...)

where:

sub - represents the name of the subroutine being called.

opl/op2 ... are argUments as needed; each argument may be as complex as permitted by arithmetic statement operand syntax

(e.g., indirect mode I maybe specified). If no arguments are to be transmitted, the parentheses may be omitted.

An argument isa variable that must be transferred to (or from) a subroutine in order to perform some computation (or as the result

of one). Each argument representation (op) may be in the form of the operand subfield for arithmetic instructions. Hence, it may

contain up to four subfields separated by commas. The CALL macro expands to a subroutine jump instruction followed by a return

location and a string of pointer locations, one for each argument. See the SKC 2000 Subroutine Library Reference Manual

(Document No. Y240A204M0201) for further details.

Arguments may also be "transmitted" to subroutines as external variables or as COMMON variables. An external variable must be

designated in an ENTRY statement in the callin/! program and will be fixed by the Loader program. Consequently, it cannot he

changed for each subwutine call A COMMON variable must be defined at the.same relative location in a (labeled) COMMON block . , , . .
in both the calling program and the called subroutine. Its location, therefore, is also fixed by the Loader. Note that if a subroutine is

to be rcentr;lI1t, only constant data can be. transmitted as external or COMMON variables.

Source Language Examples:

ALPHA

DELTA

Sample Expansion of Macro:

ALPHA

Expands To

ALPHA

5.5.3 PROL - Subroutine Prologue

THE SINGER COMPANY
KEARFOTT DIVISION

CALL

CALL

CALL

CALL

CALL

JS

JU
PTR
PTR

Y240A20lM0301 REV A

SUB(ARG,I/VARI)

ATAN(BET A/GAMMA)

SUB2(X,3,1)

CPUTST

ATAN(A,3/B,i)

ATAN

*+6

A,3

B,I

thtd'ROL (prologue) Operation is a system macro which should be used at the entry point of a subroutine to provide the input

housekeeping for argument transmission. It assumes that the calling program has employed a CALL macro to reference the

subroutine. The format of a PROL statement is:
'.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol PROL v
.'

(sl,s2, ... ,d) ,

where:

s I ,s2~ ... represents a sequence of symbols Separated by commas. One symbol corresponds to each argument to be transmitted.

d - represents a decimal integer designating the number of locations to be' allocated under TEMP for this subroutine.

The PROL expands into a sequence of FOCAP statements which set up the return address, reserve the necessary temporary storage

locations from the shared scratch area, and transmit the specified arguments into the subroutine. It defines each of the symbols

s I ,s2... to refer to a pointer to the corresponding argument in the calling' program. Consequently, within the subroutine, each

argument may be indirectly referenced. by the corresponding symbol in the PROL's operand field. For sample expansions and

argument references, see the SKC 2000 Subroutine Library Reference Manual (Document N6. Y240A204MO 10 I).

The last entry in the PROL operand field is a deCimal integer, d, which'refers to the number of (16 bit) locations to be reserved in the

shared scratch area. This entry must be constructed by one of the followh;tg two approaches:

1. Computing the number of temporary data locations required via the formula:

d = 4 + 2x (no. of arguments) + temp ceIlsIorbody of subroutine

2. Extracting the length of the assembled TEMP area from an assembly listing of the same subroutine.

The symbol in the label field is used to refer tothe entry point of the subroutine. This symbol is used as the name of the suhroutine

when It is referenced by 3 subroutine jump (JS) instruction or by a CALL macro operation.

5-29

Y240A201M0301 REV A

THIE SINGER COMPANY
KEARFOTT DIVISION

his important to note that the prologue (PROL) qperatlonwas designed to implement reentrant subrou,tine 'communication by

appropriate use of the shared (stacked) temporary data area. The allocation technique is identical to that used for AUTOMATIC type

data in PL/I.

5.5.4 SPROL - Short Subroutine Prologue

the 8'PRot bl'!etation is ii system JIladtl whid! can teli'S~d irlsieatt6f'tFiePitOL mllctb tor subroutihes which call no other

subroutines. Its principal advantages are decreased memory requirements: ahd increased execution speed,It also assumes that the

caliing program has employed a CALL macro to reference the subroutine. The format of a SPROL statement is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol
"

SPROL
'«

(sl,s2, ...)

where:

81,s2, ... represent a sequence of symbols separated by commas. One symbol corresponds to each argument to be transmitted

The SPROL expands into a sequence of FOCAP statements which set up the return address, reseIVe the necessary temporary storage

locations from the shared scratch area, and transmit the specified arguments into the subroutine. It defines each of the symbols

sl,s2, ... to ,refer, to a pointer to the corresponding argument in the calling program. Consequently, within the subroutine, each

arglfmentmay be indirectly referenced by the corresponding symbol in the SPROI/s operand field.

The symbol iP the, label' field is used to refer to the entry' point of the subroutine. This symbol is used as the name of the subroutine

when it is referenced by a subroutine jump, (IS) instruction or by a CALL macro operation.

As with the PROL operation, the SPROL macro also assures reentrant subroutine communication by appropriate use of the shared

(stacked) temporary data area. Again, the technique is equivalent to that used for AUTOMATIC type data in PLf I.

Although the SPROt operation also requires that XR5 and XR6 be reseIVed to seIVe as pointers to the shared temporary data area,

the RETURN macro must not be used for exiting when SPROL is used. Instead Ii single RTA instruction (referencing the subroutine

name) should be used. As with PROL; theSPROL operation destroys the contents of XRI5~

For illustration, consider the following example:

ATAN SPROL (X,Y)

where:

ATAN is the entry point (name) of the subroutine

X and Y are dummy symbols representing the two arguments to betranstliitted ..

As a result of the SPROL operation, the two arguments may be easily accessed within the body of the subroutine as follows:

LDA

DVF

X,J
Y,l

Although this source coding is the same as that used in the body· of a subroutine opened by a PROL operation, the object coding is

somewhat different.

5·3()

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM030l REV A

In order to properly use the PROL operation, the index registers XR5 and XR6 must be reserved to serve as pointers to the shared

temporary. data area. and should be used for no other purpose. Whenever PROL is used, the RETURN macro should be USed to assure

proper restoration of the XR5 and XR6 registers. The PROL macro also uses XRI5 to temporarily hold the return address for

transmission of argument pointers. The initial contents of XR 15 are destroyed during this operation. Outside the PROL macro,

XR 15 can be used for other functions only if care is taken to avoid a subroutine call, which always destroys the contents of XR 15.

For illustration, consider the following example:

ATAN PROL (X,Y,8)

where:

ATANis the entry point (name) of the subroutine

X and Y are dummy symbols representing the two argumentstob(}transmitted

The number 8 specifies the amount of temporary storage (eight 16 bit words) required from the shared temporary data area.

Asa result of the PROL operation, the two arguments may be easily accessed within the body of the subroutine as follows:

LOA
DVF

5.5.5. RETURN - Return From Subr(mtine

X;I

Y,I

The RETURN operation is a system macro used to return conttol from a subroutine to the calling program. It is used in conjunction

with the prologue (PROL) macro operation; The RETURN macro restores the contents of XR5 and XR6 to the values they

contained when the Subroutine was entered. Then,.control is transferred to the return address. The fortJlat for this operation is:

,
LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) RETURN Blank

Note that the RETURN operation should only be used in conjunction witli the PROL macro and its reentrant indexing conventions.

It should .~ .. be used with SPROLor with other subroutine commurucation techniques. For further detail on .subroutine calling

conventions, see the Subroutine Library Reference Manual (Documl;1nt No. Y240A204MOIOI).

Sample Expansion of Macro:

EXIT

Expands to

5·31

RETURN

LDX5,O,6,M

LDX6, 2,5

RTAO,5

Y240A20lM0301 REV A

5.6 MODE CONTROL OPERATIONS

THE SINGERCOMPANY
KEARFOTT DIVISION

These pseudo-operations serve to inform the Assembler of the presumed setting of Status Register bits which affect addressing

decisions. These settings may be made within the deck being assembled but more typically are made in a caliing routine dissembled

at a different time.

5.6.1 HALF - Half Word Arithmetic Mode

The Pseudo-Op HALF is used to facilitate the use of halfword arithmetic .mode for short arithmetic and logical instructions. It tells

the assembler to assume that SR5 will be set at execution time (SR5 = I) until a FULL pseudo-op is encountered. As a result, the

assembler computes displacement values for short arithmetic instructions on halfword basis, thus giving them a range of 128

locations.

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) HALF (Blank)

Note that this pseudo-op does not directly affect SR5 at execution time since it creates no executable code. The SR5 bit in the status

register must be set or reset by an executable instruction. The pseudo-oponly instructs the assembler to assume that SR5 = \. If no

FULL or HALF operation precedes a FOCAP statement in the program deck, the assembler assumes that the machine is in fullword

mode when assembling the statement.

5.6.2 FULL - Full Word Arithmetic Mode

The Pseudo-Op FULL is used to denote that the range of short arithmetic instructions can be extended since the machine is in full

word arithmetic mode. The assembler is to assume that at execution time SRS will be reset (SRS = 0). As a result, the assembler

computes displacement values for short arithmetic instructions on a fullword basis, thus increasing their range to 256 locations.

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) FULL (Blank)

Note that this pseudo-op does not directly affect SRS at execution time since it creates no executable code. The SRS bit in the status

register must be set or reset by an executable instruction. The pseudo-op only instructs the assembler to assume that SR5 = O. If no

FULL or HALF operation precedes a FOCAP statement in the program deck, the assembler assumes that the machine is in fullword

mode when assembling the statement.

5.6.3 RTMX - Return to Memory Indexing

The Return To Memory Indexing Pseudo-Op is used to facilitate the use of indexing with the return to memory feature of the SKC

2000. It is used to inform the assembler of decisions made on.the setting of SR6. The RTMX Operation has the following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) RTMX o I I

Untilanother RTMX operation is encountered, the assembler assumes that SR6 has been set to the value in the operand field.

5-32

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

This pseudo-oIl' informs the Assembler what to assume Status Register Bit 6 (SR6) will be at execution time. SR6 controls whether

the contents of in4ex register are used for effective address computation during Return to Memowmode:

o Use XR7 for EA

Note that the programmer is responsible for the actual condition of SR6 atexecution time. This pseudo-op does not directly affect

SR6 at execution time since it generates no executable code. The SR6 bit in the status register must be set or reset by an executable

instruction. The pseudo-op only instructs the assembler to assume that SR6 has been set as indicated when it computes the address

field (M7 or M 16) . of an' arithmetic instruction. If no RTMX .~~e1'lltion precedes a· FOCAP statement in the program deck, the

assembler assumes that XR7should be used in computing~e M7 and MI6 address fields.

5.6.4 PAGE

The Memory Page Pseud()-()p PAGE is used in conjunction with Short instruction addressing using Status Register bits SR4, 3 and 2.
It is used to inform the assembler of: decisions made on status register settings of bits SR4, SR3', and SR2 in that order. The PAGE

Operation has the following format:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) PAGE n

Until another PAGE operation is encountered the assembler aSSUmes that SR4, SR3, SR2 in that order contain n.

Forexample, for n = 4, SR4 is assumed to be 1 ,and SR3 and 2 are assumed tolleO .. For n = 3 SR4 is :issumed to be 0, and both SR3

and 2 are aSsumed to be I.

Note that, unlike instruction and data word formats; the rightmost bit position 'm; the Status Register is taken as bit position 0 and

the leftmost Bit position 15.

5-33

Y240A20 I M030l REV A

THE SINGER COMPANY
KEARFOTT OIVISION

5.7 BIT MANIPULATION OPERATIONS

The bit manipulatio_n system macros are iused to facilitate operations on single bits within SKC-2000 data words. They permit setting,
resetting, and testing single bits within halfword data. The operations include: PUT, ZPUT, JMP, and ZJMP, They are used in

conjunction with tlie BIT pseudo-op,eration which isusOO to designate ahalfword to be used for these logical bit operations and to

define the symbol used to designate a particular bit within the halfword (see paragraph 5.3.4).

sb represents a one-bit symbol, defined in a BIT. declaration.

ub represents a one-bit expression of the form

sb±d or sb±st or sb, or

vb±d or vb± t or vb

vb represents a virtual one-bit symbol, an entry pol.nt in '1l1other SF AP deck, defined by a BIT operation in that other deck.

ut represents a regular FOCAP expression dellignating the target address of the one-bit jump operations.

The following standard notations are also .employed:

u represents a regular FOCAP expression

d represents a decimal integer

st represents a set-sYlI1bol

Note that a one-bit symbol or expression has two values associated with· it. The fITst is the address of the data halfword involved in
the operation (a number from 0 to 262K). The second is the bit position within the data h!ilfword (a number from 0 to 15).

Furthermore, when these system macros are expanded on the source listing, the following additional notations are employed:

a. An uumodified one-bit symbol in the operand field of a machine operation refers to the address value of the one-bit

symbol. A one-bit symbol can be used in this fashion ou.tside a system macro as well.

b. A one bit symbol is also used in the operand field of a machine operation to cause the generation oCa (16 bit) mask word

to be used as the operand via the immediate addressing option. In this caSe, the one-bit symbol must be .modified by a two

character prefIX) + Of) -.

When modified by) +, a mask· of itll zeroes is generated with the exception of -a single binary one in the bit position

designated by the bit value of the one-bit symbol. When modified by) -, a mask of all one's is generated with the exception

. of a single binary zero in the bit position designated by the bit-value of the one-bit symbol. A one-bit symbol cannot be

used in this fashion outside a system macro.

* c. A one-bit synibolis used in the operand field of a shift instruction to cause a shift by the bit position value associated with
the : one-bit symbol; In thiS case, the one-bit.symbolll1Ust be modified 1;Iy the two character prefix ». A one-bit symbol

cannot'hi: used iii this fashion outside a system macro.

5.7.1 PUT- Put 1 in Designated Bit Position

The PUT operation is a system' macro which setstbe bit designated bythe.operand.Ti~ld.atexecution tinle.

5-34

LABEL FIELD

Label (Optional)

THE SINGER COMPANY
KEARFOTT DIVISION

OPERATION FIELD

PUT

OPERAND FIELD

{U IUb}[,XI] [,x2]

The PUT macro sets the value of a designated bit position in a designated memory halfword to one.

Y240A20lM0301 REV A

The address of the data halfword is given by the address value of the one-bit expression ub or the address value of the expression u.

In each case, the address value may be modified by the contents of one or two index registers designated by x I and x2. The resulting

address value designates the object halfword.

The particular bit position in the object halfword is designated by the bit position associated with the one-bit symbol used i 11 the

one-bit expression ub. If a regular FOCAP expression, u, is used bit position zero is assumed. In this case, the sign bit of the object

halfword will be set to one by the PUT operation.

Sample Expansion: SWPOS SETD

MEMLOC BSS

SWITCH BIT

PUT

LDAH

LORH

STH

5

MEMLOC,SWPOS

SWITCH,2

)+SWITCH,M }
SWITCH,2

SWITCH,2

Expansion

In the above example, the one-bit symbol SWITCH has an address value equal to the address of the regular symbol

MEMLOC.SWITCH also has a bit position value of 5 based on the value of the set-symbol SWPOS. When SWITCH is used in the

operand field of the LORH and STH operations, it represents its address value, MEMLOC. Consequently, each operand field

"SWITCH,2" can be considered equivalent to "MEMLOC,2" where, the digit 2 designates address modification by XR2. When

)+SWITCH is used in the operand field of the LDAH operation, it causes the generation of a 16 bit mask 0400 (hex) in the address

field (M 16) of the instruction. The mask has a single binary ~ in bit position 5 based on the bit value of SWITCH.

5.1.2 ZPUT - Set 0 in the Designated Bit Position

The ZPUT operation is a system macro which resets or zeroes the bit designated by the operand field at execution time.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Label (Optional) ZPUT {u IUb}[,XI] [,x2]

The ZPUT macro sets the value of a designated hit position in a designated memory halfword to zero.

The address of the data halfword is given by the address value of the one-bit expression ub or the address value of the expression u.

In each case, the address value may be modified by the contents of one or two index registers designated by x I and x2. The resulting

address value designates the object halfword.

The particular bit position in the object halfword is designated by the bit position associated with the one-bit symbol used in the

one-bit expression ub. If a regular FOCAP expression, u, is used bit position zero is assumed. In this case, the sign bit of the object

halfword will be set to zero by the ZPUT operation.

5-35

Y240A20lM0301 REV A

Sample Expansion: CELL

FLAG

BSS

BIT

ZPUT

LDAH

ANDH

STH

THE SINGER COMPANY
KEARFOTT DIVISION

CE~L,14

FLAG

) FlAGM}
FLAG Expansion

FLAG

In the above example, the one-bit symbol FLAG has an address value equal to the address of the regular symbol CELL. FLAG also

has a bit position value of 14 as stipulated in the BIT operation. When FLAG is used in the operand field of the ANDH and STH

operations, it represents its address value, CELL. Consequently, each use of the symbol FLAG in the operand field can be considered

equivalent to the use of the symbol CELL. When)-FLAG is used in the operand field of the LDAH operation, it causes the

generation of a 16 bit mask FFFD (hex) in the address. field (MI6) of the instruction. The mask has a single binary zero in bit

position 14 based on the bit value of FLAG.

5.7.3 JMP - Jump if Bit is Set

The JMP operation is a system macro which causes the program to execute ajump if the bit designated DY the operand field is set to

1.

LABEL FIELD OPERA nON FIELD OPERAND FIELD

Label (Optional) JMP ut, u iub [,xl] [,x2]

The IMP operation will cause a jump to the instruction location designated by the value of the FOCAP address expression ut if and

only if the bit designated by the rest of the operand field has the value orie.

The address of the data halfword to be tested is given by the address value of the one-bit expression ub or the address value of the

expression u. In each case, the address value may be modified by the contents of one Or two index registers designated byx I and x2.

The resulting address value designates the object halfword.

The particular bit position to be tested in the object halfword is designated by the· bit position associated with the one-bit symbol

used in the one-bit expression ub. If a regular FOCAP expression u is used, bit position zero is tested.

Example: This example illustrates the use of one-bit symbols as entry points as well as giving a sample expansion of IMP.

$FAP

BIT2
MOM
IND

$FAP

PROGl

SETD
BSS
BIT
ENTRY

PROG2

JMP
LDAH
SLL
JL

2
10
MOM,BIT2
IND

THERE,IND+ I ,3, 13
IND+I,3,13 }
)IND+ I Expansion
THERE

5-36

THE SINGER COMPANY
KEARFOTT DIVISION Y240A20lM0301 REV A

In the above example, the one-bit symbol INO has an address value equal to the address of the regular symbol MOM. INO also has a

bit position value of 2 based on the value of the set-symbol BIT2. Since INO is listed in an ENTRY operation, these two associated

values are transmitted from $FAP deck PROG I to $FAP deck PROG2 via the FOCAP Loader Program. When INO is used in the

operand field of the LDAH operation, it represents its address value MOM. Consequently, the indicated operand field is equivalent to

MOM+I,3,13

as if MOM were an entry-point to the PROG I deck. When »IND+ lis .used in the operand field of the shift instruction, SLL, it

denotes a shift count equal to the bit value of the embedded one-bit symbol. III the example, IND denotes a shift of 2.

5.7.4 ZJMP- Jump if Bit is Zero

The ZJMP operation is a system macro which causes the program to execute a jump if the bit designated in the operand field is set to

zero.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Label (Optional) ZJMP ut,{u IUb} [,xll [,x21

The ZJMP operation will cause a jump to the instruction location designated by the value of the FOCAP address expression, ut, if

and only if the bit designated by the rest of the operand field has the value zero.

The address of the data halfword to be tested is given by the address value of the one-bit expression ub or the address value of the

expression u. In each case, the address value maybe modified by the contents of one or two index registers designated by x 1 and x2.

The resulting address value designates the object halfword.

The particular bit position to be tested in the object halfword is designated by the bit position associated with the one-bit symbol

used in the one-bit expression ub. If a regular FOCAP expression, u, is used, bit position zero is tested.

Sample Expansion: MOM

SON

BSS

BIT

ZJMP

LOAH

SLL

JG

MOM,IO

THERE,SON

SON }
»SON

THERE

Expansion

In the above example, the one-bit symbol SON has an address value equal to the address of the regular symbol MOM. SON also has a

bit position value of I 0 as stipulated in the BIT operation. When SON is used in the operand field of the LOAH operation, it

represents its address value MOM. When »SON is used in the operand field of the shift instruction, SLL, it denotes a shift count

equal to the bit value of the em bedded one-bit symbol. In the example, SON denotes a shift of 10.

5-37

Y240A20lM0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISION

5.8 DOUBLE PRECISION FWATING POINT MACROS

Double precision floating point macros are provided as a convenience to the programmer who wishes to use the identical symbolic

notation for both the single precision value (leading 32 lJeits) and the full value (all 64 bits) of a double precision floating point data

word. The reversed·from·natural memory storage order of these data words is made transparent to the programmer by the usc of

these macros; in addition, they obviate some of the housekeeping code necessary for loading and storing registers.

Mote thilt tlte atftfress field of these maci'oll h!l\1e tlie same synt~x as tlt~ addtesdleld or tlte machine iflsttuctions APb, SPO, excel1t
that the indirect mode is excluded.

5.8.1 LDAB - Double Precision Load Accumulator

The LDAB system macro is used to load the combined A·B registers with the 64 bit word at the operand location. The least

significant 32 bits, located at the ,?perand effective address, are loaded in the B register; the most significant 32 bits, at that address

+2, are loaded in the A register.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) LDAB u [,X II [,x21

5.8.2 STAB -Double Precision Store Accumulator

The STAB system macro is used to store the combined A·B registers into the 64 bit word at the operand location. The B register is

stored in the 32 bits beginning at the operand effective address; the A register is stored at that address +2.

LABEL FIELD OPERATION FIELD OPERAND FIELD

Symbol (Optional) STAB u [,X II [,x21

5·38

5.9 ARITHMETIC STATEMENT (CMPL)

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

The arithmetic compile statement pseudo-op CMPL, which is processed in the first pass of an assembly, allows the uscr to implemcnt

a series of arithmetic operations without writing the necessary assembly language instructions. The user may write a FORTRAN

arithmetic assignment statement or a FORTRAN expression in the operand field which is decoded into a series of FOCAP assembly

language instructions. The form of the CMPL Pseudo-op is:

LABEL FIELD OPERATION FIELD. OPERAND FIELD ,

Symbol (Optional) CMPL uf I sf = uf

where:

uf represents A FORTRAN arithmetic expression

sf represents a symbol denoting a FORTRAN variable.

If the operand field contains an assignment statement (sf = ut) the value of the expression is computed and stored into the A register

and also stored into the location of the receiving variable represented by the symbol on the left hand side of the assignment

statement, If the operand field contains only an expression its computed value is stored in the A register only. The B register may be

used during the evaluation of an expression and its original contents will usually be destroyed.

FORTRAN VARIABLES, hereinafter referred to as variables, are represented by a FOCAP symbol defined in the usual way. All

variables are treated as real (or floating point) data. No double precision or integer variable type is provided. Halfword data is also not

permitted. The standard FORTRAN convention for. defining the integer variable type is not obeyed. A variable symbol whose initial

character is either I, J, K, L, M, or Nis typed as real, as are all other symbols. A single fixed subscript may be associated with any

variable. The subscript must be an unsigned integer constant enclosed in parentheses and immediately following the symbol to be

subscripted. For example:

SYM(l) refers to the same location as SYM

SYM(6) refers to the sixth fullword in the vector whose first element is SYM.

More precisely, the SKC 2000 (FOCAP) address of a subscripted variable is computed as follows:

FORTRAN

X(6)

VEC(20)

M(7)

FOCAP

X+2(6-1)

VEC+ 38

M+ 12

Note that the above description of subscripting is limited when compared to full FORTRAN subscripting. Specifically, variable

su bscripts are not permitted nor is it possible to employ more complex arrays than simple vectors.

FORTRAN ARITHMETIC EXPRESSIONS (hereinafter referred to as FORTRAN expressions), consist of real variablcs, integcr or

real (floating point) constants, parentheses, (), .and the operators:

+

*

**

Addition

Su btrac tion

Multiplication

Division

Exponentiation by a real Integer Power

5-39

Y240A201 M0301 REV A

THE SINGER COMPANY
KEARFOIT DIVISION

Integer constants may only be used as a subscript. Integers must be limit~d to values representable in a 16 bit dataword.

A minus sign (-) immediately preceding an expression or immediately following a left parentheses is a unary minus.

Examples of expressions employing the unary minus are:

-A

A**-B

A*(-B)

Parentheses may be used to indicate the order of computation in expressions. There is no theoretical limit to the number of

parentheses that may be used but as a practical system limit five to ten are suggested. In the absence of parentheses to indicate the

order of computation in an expression, the following order prevails:

OPERATOR

Unary Minus

**
*, /

+, -

HIERARCHY

4

3

2

The computation indicated by the operator with the greatest hierarchy is performed first. If the operators are of equal weight

computations are performed from left to right.

Thus,

A-B*C

-A**B

A/B*C

is computed as

is compu ted as

is computed as

A-(B*C)

(-A)**B

(A/B)*C

Expressions need not necessarily contain computational operators. Both single variables and constants are valid expressions.

Expressions may not contain adjacent operators with the exception that a unary minus may immediately follow a *, / or "*. Neither

expressions nor assignment statements may contain imbedded blanks. Expressions may !lot end with an operator nor will division by

zero be allowed, if this can be detected as assembly time.

Examples:

SYMI CMPL Y = (A *B-C)*C/(A *B-D/E)

CMPL 0(3) = B(2)"*2.0-4.0*A(2)*C(2)

SYM5 CMPL (A *B-C)*C/(A "B-D/E)

CMPL 1= X/2.0

CMPL N =X+J

CMPL Z= I + J

CMPL A = 3.14158*R**2.0

Note that the CMPL operator will !!2! allocate memory to variables. It assumes that the programmer has used FOCAP statements to

allocate memory for each variable. If a variable symbol has not been allocated within the deck, it is presumed to be an external or

virtual symbol,· defined in another deck. The CMPL operation will allocate memory for literal constant data used in an expression as

well as for intermediate values.

5-40

5.10 PROGRAM CONTROL OPERATIONS

THE SINGER COMPANY
KEARFOTT DIVISION

Program Control Pseudo-Ops are. used to control the assembler's processing of the program.

S.IO.l END

Y240A20lM0301 REV A

The END Pseudo-Op indicates to the Assembler that it should. terminate the assembly of a program. The format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

'.

(Blank) END Symbol (Optional)

When the Assembler reaches an END card, it terminates theasse~bly and if there is a symbol in the opemnd field, it will be used by

the Loader as the ,pointer to the starting location of the program. Only one deck in anyone computer load may have a symbol in the

operand field of the END Pseudo Op, that. is the main: program of ,the load. All other decks are considered. to contain only

subroutines of the main program and must have blanks Iri the 'opemnd field. Each deck must have an END Pseudo-Op, and it must be

physically the last card of the deck ..

Note that an END card with a blank operand t1eldcannot have a comment field~

5.10.2 E!!'

The INT Pseudo-OpsPecifies that the assembled code is an interrupt routine, and that storage assembly. by the TEMP Pseudo-Op is to

be allocated separately from the main program temporary storage area. There may be up to sixteen interrupt routines designated. No

more than one interrupt routine may be specified in a single deck.The forniat for this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) ·INT (Blank)

5-41

Y240A201M0301 REV A

5.11 LIST CONTROL OPERA nONS

THE SINGER COMPANY
KEARFOTT DIVISION

The List Control Pseudo-Ops allow the user control over the format'of the program listin~ output by the Assembler. They control

what is to be listed, spacing, page ejection and the printing of titles on the pages.

5.11.1 LIST - Resume Listing.
. . ;

The LIST Pseudo.op is used to resume the listing of the assembly ·~~tp~~.'r0110Wing an UNLIST Pseudo.op. The format of the

instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) LIST (Blank)

The LIST instruction itself does not print out in the assembly listing but always generates one blank line.

5.11. 2 UNLIST - Susllend Usting

The UNLIST Pseudo-Op is used to suspend the listing of the assembly output. The format .of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) UNLlST· (Blank)

The UNLiST instruction itself is printed but no lines are listed thereafter until a LIST instruction is encountered. All instructions are

generated even if they are not printed when an UNLIST Pseudo-Op is in control, although only one page ejection will occur

regardless of the number of TTL or EJECT Pseudo.Qps encountered.

5.11.3 TIL - Define Page Title

The TIL Pseudo-Op is used to phice a subheading or title on each page of the . listing of the Assembler's output. The format of this

instruction is:

LABEL FIELD OPERATION FlELD OPERAND FIELD

(Blank) TIL. A string of characters

The string of characters of the operand field may contain any EBCDIC charact~r, including embedded blanks. Each TTL Pseudo.op

causes page ejection and generates a subheading on each succeeding page until another TIL instruction is encountered. To terminate

the printing of a subheading the user writes a second TTL Pseudo-Op withbhinks in the operand field. The operand field may not

exceed column 72 and can have a maximum length of 67 characters.

5.11.4 EJECT - Start New Page

The EJECT Pseudo.opis used to cause the next line in the assembly listing to be printed at 'the top of a new page. The EJECT

Pseudo-Op is not printed in the listing. The format of this instruction is:
.

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) EJECT (Blank)

5-42

5.11.5 SPACE - Skip Blank Lines

THE SINGER COMPANY
KEARFOTT DIVISION

Y240A20lM0301 REV A

The SPACE Pseudo-Op is used to generate any number of blank lines in the assembly listing, limited by the end of a page. That is,

regardless of the number of spaces requested, the maximum effect is a page change. The format of this instruction is:

LABEL FIELD OPERATION FIELD OPERAND FIELD

(Blank) SPACE n
..

The number n indicates how many blank lines are to appear in the assembly listing.

5-43

Y240A201~0301 REV A

THE SINGER COMPANY
KEARFOTT DIVISioN

THIS PAGE INTENTIONALLy LEFT BLANK

5-44

THE SINGER COMPANY
KEARFOTT DIVISION

APPENDIX A

SKC2000 (FOCUS) MACHINE INSTRUrnONSUMMARY

Y240A20IM030IREV A

The following pages list all the SKC2000 operations in mnemonic and machine langUage form, including a short summary of each
instruction's effect.

The pages following the summary depicts all the different machine formats corresponding to the seven SKC2000 instruction groups.

A-I

Y240A201MOJOI REV A

THE SINGER COMPANY
KEARFOTT DIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

A-2

PAGE MNEMONIC

ADF

ADFR

ADL

ADLH

ADLHR

ADLR

ADU

ADUH

ADUHR

ADUR

AFD

AFDR

AND

ANDH

ANDHR

ANDR

CFX

CXF

DIA
DIM
DMI

DOA

DOM

DPI

DVD

DVDH

DVDHR

DVDR

DVF

DVFR

EAB

EMI

EPI

EXO

EXOH

EXOHR

EXOR

HLT

ICL

ICN

IMN

IMP

JAN

JAG

JAL

JG

JGF

JGS

IGU

JGW

THE SINGER COMPANY
KEARFOTT DIVISION

OPERATION DESCRIPTION

Add-Floating Point

Add Floating Point and Return

Add-Lower Fixed Point

Add-Lower Halfword Fixed Point

Add-Lower Halfword Fixed Point and Return

Add-Lower Fixed Point .and Return

Add-Upper FixeliPoint

Add-Upper Halfword Fixed Point

Add-Upper Halfword Fixed Point and Return

Add-Upper Fixed Point and Return

Add Floating Double Precision

Add Floating Double Precision and Return

Logical AND

Logical AND Halfword

Logical AND Halfword and Return

Logical AND and Return

Convert Floating to Fixed

Convert Fixed to Floating

Data Input to A'Register

Data Input to Memory

Disable Memory Interrupts

Data Output From A-Register

Data Output From Memory

Disable Program Interrupts

Divide Fixed Point

Divide Fixed Point Halfword

Divide Fixed Point Halfword and Return

Divide Fixed Point and Return

Divide Floating Point

Divide Floating Point and Return

Exchange A and B

Enable Memory Interrupts

Enable Program Interrupts

Exclusive OR

Exclusive OR Halfword

Exclusive OR Halfword and Return

Exclusive OR and Return

Halt

Test Index Register and Skip On Less Than

Test Index Register and Skip On Not Equal

Y240A20lM0301 REV A

Modify Index Register Negative and Skip On (XR) > (EA)

Modify Index Register Positive

Long Jump If (A) -=1= 0

Long Jump If (A) ;;. 0

Long Jump If(A) < 0

Jump If (A) ;;. 0

Jump On Program Flag

Jump On Status Bit

Long Jump Unconditional

Jump On Switch

A-3

Y240A20lM030l REV A

PAGE MNEMONIC

JL
JN

JRG

JRL

JRN

JIHl
JS

JU

LAE

LDA

LDAH

LDB

LDBH

LDI

LDS

LDX

LOR

LORH

LORHR

LORK

LXA

MFM

MLF

MLFR

MMF

MUL

MULH

MULHR

MULR

NOP

RHM

RST

RTA

SAM

SAMH

SBF

SBFR

SBL

SBLH

SBLHR

SBLR

SBU

SBUH

SBUHR

SBUR

SET

SFD

SFDR

SHM

SLCD

THE SINGER COMPANY
KEARFOTT DIVISION

OPERA nON DESCRIPTION

Jump If (A) < 0

Jump If (A) -4= 0

Short Jump If (A) ;;;. 0

Short Jump If (A) < 0

Short Jump If (A) -4= 0

Sltt:lrt lump UneOflaffiClftill
Jump to Subroutine

Jump Unconditional

Load A With EA

Load A-Register

Load A-Register Halfword

Load B Register

Load B-Reg.Halfword

Load Interrupt Mask Register

Load Status Register

Load Index Register

Logical OR

Logical OR H~fword

Logical OR Halfword and Return

Logical OR and Return

Load Index Register From A Register

Move Block From Fast To Main Memory

Multiply Floating Point

Multiply Floating and Return

Move Block From Main to Fast Memory

Multiply Fixed Point

Multiply Fixed Point Halfword

Multiply Fixed Point Halfword and Return

Multiply Fixed Point and Return

No-Operation

Reset Halfword Mode

Reset Program Flags

Return Address Jump

Skip On A-Register Masked

Skip On A-Register Masked Halfword

Subtract Floating Point

Subtract Floating Point and Return

Subtract Lower Fixed Point

Subtract Lower Fixed Point Halfword

Subtract Lower Fixed Point Halfword and Return

Subtract Lower Fixed Point and Return

Subtract Upper Fixed Point

Subtract Upper Fixed Point Halfword

Subtract Upper Fixed Point Halfword Return

Subtract~Upper Fixed Point Return

Set Program Flags

Subtract Floating Double Precision

Subtract Floating Double Precision and Return

Set Halfword Mode

Shift AB Left Circularly

A-4

PAGE MNEMONIC

SLL

SLLD

SRA

SRAD

SRC

SRCD

SRLD

STA

STAH

STB

STBH

STH

STI

STS

STX

THE SINGER COMPANY
KEARFOTT DIVISION

OPERATION DESCRIPTION

Shift A Left Logically

Shift AB Left Logically

Shift A Right Algebraically

Shift AB Right Algebraically

Shift A Right Circularly

Shift AB Right Circularly

Shift AB Right Logically

Store A-Register

Store A Register Halfword

Store B Register

Store B Register Halfword

Store A Register Halfword

Store Interrupt Mask Register

Store Status Register

Store Index Register

A-5

Y240A20lM0301 REV A

ARITHMETIC (SHORT)

ARITHMETIC (LONG)

IMMEDIATE ARITHMETIC

JUMP (SHORT)

JUMP (LONG)

SUBROUTINE JUMP

SHIFT

INPUT/OUTPUT (SHORT)

INPUT/OUTPUT (LONG)

BLOCK MOVE

LOAD INDEX

SET/RESET PROGRAM FLAGS

OTHER NONMEMORY REFERENCE

01 1 1 2 13 14

OPERATION

OPERATION

OPERATION

o I 100

o I I 0 0

o 1 1 0 0

0 0 0 0 I

0 I 0 0 I

o I 001

o 0 I 0 I

o 0 o 0 0

o 0 000

o 0 0 O· 0

0111 2 1 3 14

S 61718 91U)fl iTI2 13 14 IS 1611711811912oI2iT2ili3f24f2Si26i27128129/3O/31

0 XI OPERAND DISP.

I XI X2 I 0 H OPERAND ADDRESS MI6

I XI X2 0 I H OPERAND

0 1+/- INSTRUCTION DISP.

I INSTRUCTION ADDRESS Mig

1 XI o 0 001 INSTRUCTION ADDRESS MI8

XI 1 COUNT

0 I DEVICE ~ K

I 1 DEVICE 0 K OPERAND ADDRESS MI6

Xl

I 1 0 1

O· I 1 1

S 61718

WORD COUNT

X2 000

NOT USE~l FLAG

~NOTUSE~~
9 JIOJIII12]J 14 IS 16\17\18\1912oI2iT2if23124(2sI26r27128129j30131

BLANK
XI
X2
I
H
K

SECONDARY OPERATION CODE
BASE/1ST INDEX DESIGNATOR
2ND INDEX DESIGNATOR
INDIRECT ADDRESSING DESIGNATOR
HALFWORD DATA DESIGNATOR
ACKNOWLEDGE DESIGNATOR

THE SINGER COMPANY
KEAAFOTT DIVISION

APPENDIXB

ASSEMBLER AND LOADER ERROR DIAGNOSTICS

Y240A20lM0301 REV A

Y240A201Mo301REV A

THE SINGERCQMPANY
KEAR FOTTDIVISION

THIS PAGE INTENTIONALLY LEFT BLANK

B-2

THE SINGER COMPANY
KEARFOTT OIVISION

Y240A20lM0301 REV A

APPENDIX B - ASSEMBLER AND LOADER ERROR DIAGNOSTICS

The following tabulations list the Assembler/Loader Error Diagnostics

NOTE: In most cases where an error occurs, the effect of the instruction is null or zero data is generated for the error.

ASSEMBLER ERROR DIAGNOSTICS

CHARACTER

ABBREVIATION

OP

M

OR

R

D

LJ
L

S

*

ES

T

E

XS

XI

A

NM

SS

X

X2

NX

LC

B

P

F

NI

FS

CH

N*

EP

LO

EO

US

PD

IS

BP

AB

FM

RE

TI

NUMBER

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

FULL DIAGNOSTIC

Illegal Op-code mnemonic

Multiply defined symbol

Operand in error

lIIegal attempt to redefine location counter

This instruction must have an I flag, flag added.

Symbols in operand must be defined

The range of this jump makes it a long instruction

Improper label

lIIega) symbol, more than 16 characters

This instruction requires an *, * added.

Entry symbol is also a Set Symbol

Truncation Error, too many digits

Illegal ~xpression in operand

Too many indexes specified

Level I index error

Symbols have differing location counters

This instruction may not have an M flag, deleted.

Set Symbol in operand isn't defined or isn't absolute

Index required

Level 2 index is outside legal range

This instru"tion should not have a Level 2 Index

Illegal location counter nunber

Base Register number is outside legal range

becirnal point missing, assumed at end

Flag value outside of range

This instruction may not have an I flag, deleted.

First flag should terminate operand field

Illegal character begins symbol

Short non-jump instruction may have an *

Entry table symbol not defined

Location Counter out of range

Too many Entry points specified

Too many undefined (external) symbols

Operand symbol not previously defined, or EQU External

A field must be (but isn't) either Integer or a Set Symbol

Bit position not in range 0 - 15, 0 assumed

Expression must be (but isn't) absolute

An operand field is missing

Relocation error in expression

Too large an integer (or integer part)

B-3

Y240A201M030l REV A

THE SINGER COMPANY
KEARFOTT DIVISION

ASSEMBLER ERROR DIAGNOSTICS (Continued)

CHARActER

ABBREVIATION

TF

WC

SC

SW

SB

DC

TO

NL

KC

AU

Ui
U2

TA

U7

NUMBER

41

42

43

44

45

46
47

48

49

50

51

52

53

54

FULL DIAGNOSTIC

Floating number (or exponent) out of range

Word cOllnt outside legal range

Shift count outside legal range

SWitchdeS,ignation outside legal range

Status bit outside legai range

Device code outside legal range

Too many operand fields

This instruction may riot have an L flag, deleted.

Duplicate KMC flag

Address.unreachable with short instruction

UBASE covers address, but XI specified

UBASE covers address, but X2 specified

Too large an address for MI6 field

UBASE for XR 7 doesn't cover address

LOADER ERROR DIAGNOSTICS

NUMBER

I

2
3

4
5

6

7
8

9
10

11
12

13

14

15

16

FULL DIAGNOSTIC

Missing $DCK, subsequent cards ignored

Extra DCK ignored

Entry table overflow

Overlay in deck XXXXXX Location Counter XXXXXX and Location Counter XXXXX

Boundary error I. (attempt to allocate variable storage has resulted in

overlay of the Common area)

Boundary error 2 (common area allocation has exceeded available storage)

Boundary error 3 (allocation has exceeded the highest location of memory)

No main deck given XXXXXX assumed

Boundary error 6 (not enough scratch pad left to allocate temporary storage)

Sequence error XXXXYYYY (columils 72-80 printed here)

Checksum error in DECKXXXX Card NNNN

Boundary error 4 (allocation of constants has exceeded 65535 halfwords addressing)

Boundary error 5 (The Sum over all decks of the number of distinct Common

Names equals 100)

Boundary error 8 (The Sum over all decks of the number of Location Counters

equals 800)

Absolute COMMbN XXXXXX has multiple origins

Absolute COMMON XXXXXX overlays a previously reserved area

8-4

THE SINGER COMPANY
KEARFOTT DIVISION

COMMENTS AND EVALUATIONS

Your evalua.tion of this document is welcomed by The Singer Company.

Y240A20lM0301 REV A

Any errors, suggested additions or general comments may be made and continued on the reverse side. Please include page number and

reference paragraph and forward to:

The Singer Company

Aerospace and Marine Systems

Kearfott Division

150 Totowa Road

Wayne, New Jersey 07470

Attention: Department 5760

Name ___________________ ~ __________________________________ _

Company Affiliation ___ __

Address _______ ----___ ~ ___________ _

Comments:

B-5

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05

