Graphics Library
Reference Manual
FORTRAN 77 Edition

IRIS-40 Series

%1% SiliconGraphics
Computer Systems

Documen t number: 007-1206-030

Graphics Library
Reference Manual

FORTRAN 77 Edition

Document Version 3.0

Document Number 007-1206-030

9/90

Technical Publications:
Lorrie Williams

Melissa Heinrich

Claudia Lohnes

Kevin Walsh

Engineering:

Kurt Akeley
Herb Kuta

© Copyright 1990, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third
parties, copied or duplicated in any form, in whole or in part, without
the prior written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013, and/or similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement.
Unpublished rights reserved under Copyright laws of the United States.
Contractor/manufacturer is Silicon Graphics Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94039-7311.

Graphics Library Reference Manual
FORTRAN 77 Edition

Document Version 3.0

Document Number 007-1206-030

Silicon Graphics, Inc.
Mountain View, California

IRIS is a registered trade mark of Silicon Graphics, Inc. IRIX, Power Series,
IRIS-4D, Personal IRIS, Geometry Link, Geometry Partners, Geometry
Engine, and Geometry Accelerator are trademarks of Silicon Graphics, Inc.
IBM® is a trademark of International Business Machines Corporation.

intro Graphics Reference, FORTRAN intro

NAME

intro — description of routines in the Graphics Library and Distributed
Graphics Library

OVERVIEW

This manual is the reference manual for the routines of the Graphics
Library (GL) and the Distributed Graphics Library (DGL). For a more
tutorial introduction to the GL and DGL, see the Graphics Library
Programmer’s Guide and the ‘‘Using the GL/DGL Interfaces’’ section
of the 4Sight Programmer’s Guide.

In general, all routines in the GL are supported in the DGL. However, in
some routines there are minor differences. In addition, some routines
(dglopen and dglclose) are supported in the DGL but not the GL. Where
there is a difference for a routine, it is noted on its manual page.

The manual pages are available on-line. To view them, use the IRIX
command:

man routine-name <Enter>

HOW A MANUAL PAGE IS ORGANIZED

A manual page provides the specification of a GL or DGL routine.
Because these pages are intended as on-line reference material, they
tend to be terse. A page is divided into a number of sections:

NAME :

lists the name of the routine or routines described by the manual
page.

FORTRAN SPECIFICATION
lists the type declarations for the routine and its parameters.

PARAMETERS
describes the parameters of the routine.

FUNCTION RETURN VALUE
describes what the routine returns if it is a function.

Version 3.0 -1- April 1990

intro Graphics Reference, FORTRAN intro

DESCRIPTION
describes how to use the routine.

SEE ALSO
lists related routines or other sources of information.

EXAMPLE
gives an example of how the routine is used.

NOTES
highlights information concering the limitations of the routine and
differences in its behavior on the various IRIS-4D models.

BUGS
describes deviations from the specified behavior that may be fixed in
a future release.

HEADER FILES

There are three header files in /usr/includel/gl that you should probably
include in code that calls routines from the Graphics Library. The files
are fgl.h, fget.h, and fdevice.h.

Version 3.0 -2- April 1990

Routine List Graphics Reference, FORTRAN Routine List

acbuf — operate on the accumulation buffer

acsize — specify the number of bltplanes per color component in the
accumulation buffer

addtop — adds items to an existing pop-up menu
afunct — specify alpha test function

arc, arci, arcs — draw a circular arc

arcf, arcfi, arcfs — draw a filled circular arc

attach — attaches the cursor to two valuators

backbu — enable and disable drawing to the back buffer
backfa — turns backfacing polygon removal on and off

bbox2, bbox2i, bbox2s — culls and prunes to bounding box and
minimum pixel radius

bgnclo — delimit the vertices of a closed line

bgnlin — delimit the vertices of a line

bgnpoi — delimit the interpretation of vertex routines as points
bgnpol — delimit the vertices of a polygon

bgngst — delimit the vertices of a quadrilateral strip
bgnsur — delimit a NURBS surface definition
bgntme — delimit the vertices of a triangle mesh
bgntri — delimit a NURBS surface trimming loop
blanks — controls screen blanking

blankt — sets the screen blanking timeout

blendf — computes a blended color value for a pixel
blink — changes a color map entry at a selectable rate
blkqre — reads multiple entries from the queue

c3f, c3i, ¢3s, c4f, cdi, cds — sets the RGB (or RGBA) values for the
current color vector

Version 3.0 -1- April 1990

Routine List Graphics Reference, FORTRAN Routine List

callob — draws an instance of an object

charst — draws a string of raster characters on the screen
chunks — specifies minimum object size in memory
cirg, circi, circs — outlines a circle

circf, circfi, circfs — draws a filled circle

clear — clears the viewport

clearh — sets the hitcode to zero

clippl — specify a plane against which all geometry is clipped
clkon, clkoff — control keyboard click

closeo — closes an object definition

cmode — sets color map mode as the current mode.

cmov, cmovi, cmovs, cmov2, cmov2i, cmov2s — updates the current
character position

color, colorf — sets the color index in the current draw mode
compac — compacts the memory storage of an object

concav — allows the system to draw concave polygons

cpack — specifies RGBA color with a single packed 32-bit integer
crv — draws a curve

crvn — draws a series of curve segments

curori — sets the origin of a cursor

curson, cursof — control cursor visibility by window

cursty — defines the type and/or size of cursor

curveb — selects a basis matrix used to draw curves

curvei — draws a curve segment

curvep — sets number of line segments used to draw a curve segment

cyclem — cycles between color maps at a specified rate

Version 3.0 -2- April 1990

Routine List Graphics Reference, FORTRAN Routine List

czclea — clears the color bitplanes and the z-buffer simultaneously
dbtext — sets the dial and button box text display

defbas — defines a basis matrix

defcur — defines a cursor glyph

deflin — defines a linestyle

defpat — defines patterns

defras — defines a raster font

delobj — deletes an object

deltag — deletes a tag from the current open object

depthc — turns depth-cue mode on and off

dglclo — closes the DGL server connection

dglope — opens a DGL connection to a graphics server
dopup - displays the specified pop-up menu

double — sets the display mode to double buffer mode

draw, drawi, draws, draw2, draw2i, draw2s — draws a line
drawmo — selects which GL framebuffer is drawable

editob — opens an object definition for editing

endclo — delimit the vertices of a closed line

endfee — control feedback mode

endful — ends full-screen mode

endlin — delimit the vertices of a line |

endpic — turns off picking mode

endpoi — delimit the interpretation of vertex routines as points
endpol — delimit the vertices of a polygon

endpup — obsolete routine

endgqst — delimit the vertices of a quadrilateral strip

Version 3.0 -3- April 1990

Routine List Graphics Reference, FORTRAN Routine List

endsel — turns off selecting mode

endsur — delimit a NURBS surface definition

endtme — delimit the vertices of a triangle mesh

endtri - delimif a NURBS surface trimming loop

feedba — control feedback mode

finish — blocks until the Geometry Pipeline is empty

fogver — specify fog density for per-vertex atmospheric effects
font — selects a raster font for drawing text strings

foregr — prevents a graphical process from being put into the back-
ground

freepu — deallocates a menu

frontb — enable and disable drawing to the front buffer

frontf — turns frontfacing polygon removal on and off

fudge — specifies fudge values that are added to a graphics window
fullsc — allows a program write to the entire screen

gammar — defines a color map ramp for gamma correction
gbegin — create a window that occupies the entire screen
geonfi — reconfigures the system

genobj — returns a unique integer for use as an object identifier
gentag — returns a unique integer for use as a tag

getbac — returns whether backfacing polygons will appear
getbuf — indicates which buffers are enabled for writing
getbut — returns the state of a button

gefcmm — returns the current color map mode

getcol — returns the current color

getcpo — returns the current character position

Version 3.0 -4- April 1990

Routine List Graphics Reference, FORTRAN Routine List

getcur — returns the cursor characteristics

getdem — indicates whether depth-cue mode is on or off
getdep — obsolete routine

getdes — returns the character characteristics

getdev — reads a list of valuators at one time

getdis — returns the current display mode

getdra — returns the current drawing mode

getfon — returns the current raster font number

getgde — gets graphics system description

getgpo — gets the current graphics position

gethei — returns the maximum character height in the current raster font
gethit — returns the current hitcode

getlsb — has no function in the current system

getlsr — returns the linestyle repeat count

getlst — returns the current linestyle

getlwi — returns the current linewidth

getmap — returns the number of the current color map
getmat — returns a copy of a transformation matrix
getmco — gets a copy of the RGB values for a color map entry
getmmo — returns the current matrix mode

getmon — returns the type of the current display monitor

getnur — returns the current value of a trimmed NURBS surfaces
display property

getope — returns the identifier of the currently open object
getori — returns the position of a graphics window

getoth — obsolete routine

Version 3.0 -5- April 1990

Routine List Graphics Reference, FORTRAN Routine List

getpat — retumns the index of the current pattern

getpla — returns the number of available bitplanes

getpor — obsolete routine

getres — returns the state of linestyle reset mode

getsb — read back the current computed screen bounding box
getscr — returns the current screen mask

getsha — obsolete routine

getsiz — returns the size of a graphics window

getsm — returns the current shading model

getval — returns the current state of a valuator

getvid — get video hardware registers

getvie — gets a copy of the dimensions of the current viewport
getwri — returns the current writemask

getwsc — returns the screen upon which the current window appears
getzbu — returns whether z-buffering is on or off

gexit — exits graphics

gflush — flushs the DGL client buffer

ginit — create a window that occupies the entire screen
glcomp — controls compatibility modes

greset — resets graphics state

gRGBco - gets the current RGB color values

gRGBcu — obsolete routine

gRGBma — retumns the current RGB writemask

gselec — puts the system in selecting mode

gsync — waits for a vertical retrace period

gversi — returns graphics hardware and library version information

Version 3.0 ’ -6- April 1990

Routine List Graphics Reference, FORTRAN Routine List

iconsi — specifies the icon size of a window

iconti — assigns the icon title for the current graphics window.
imakeb — registers the screen background process

initna — initializes the name stack

ismex — obsolete routine

isobj — returns whether an object exists

isqueu —returns whether the specified device is enabled for queuing
istag — returns whether a tag exists in the current open object
keepas — specifies the aspect ratio of a graphics window

lampon, lampof — control the keyboard display lights

linesm — specify antialiasing of lines

linewi — specifies width of lines

Imbind — selects a new material, light source, or lighting model
Imcolo — change the effect of color commands while lighting is active
Imdef — defines or modifies a material, light source, or lighting model
loadma —loads a transformation matrix

loadna — loads a name onto the name stack

logico — specifies a logical operation for pixel writes

lookat — defines a viewing transformation

Irectr — reads a rectangular array of pixels into CPU memory
Irectw — draws a rectangular array of pixels into the frame buffer
IRGBra - sets the range of RGB colors used for depth-cueing
Isback — controls whether the ends of a line segment are colored
Isetde — sets the depth range

Ishade — sets range of color indices used for depth-cueing

Isrepe — sets a repeat factor for the current linestyle

Version 3.0 -7- April 1990

Routine List Graphics Reference, FORTRAN Routine List

makeob — creates an object /

maketa — numbers a routine in the display list

mapcol — changes a color map entry

mapw — maps a point on the screen into a line in 3-D world coordinates
mapw2 — maps a point on the screen into 2-D world coordinates
maxsiz — specifies the maximum size of a graphics window

minsiz — specifies the minimum size of a graphics window

mmode - sets the current matrix mode

move, movei, moves, move2, move2i, move2s — moves the current
graphics position to a specified point

mswapb — swap multiple framebuffers simultaneously

multim — organizes the color map as a number of smaller maps
multma — premultiplies the current transformation matrix

n3f — specifies a normal

newpup — allocates and initializes a structure for a new menu
newtag — creates a new tag within an object relative to an existing tag
nmode — specify renormalization of normals

nobord — specifies a window without any borders

noise — filters valuator motion

noport — specifies that a program does not need screen space
normal — obsolete routine

nurbsc — controls the shape of a NURBS trimming curve
nurbss — controls the shape of a NURBS surface

objdel — deletes routines from an object

objins — inserts routines in an object at a specified location

objrep — overwrites existing display list routines with new ones

Version 3.0 ' -8- April 1990

Routine List Graphics Reference, FORTRAN Routine List

onemap — organizes the color map as one large map

ortho, ortho2 — define an orthographic projection transformation
overla — allocates bitplanes for display of overlay colors

pageco — sets the color of the textport background

passth — passes a single token through the Geometry Pipeline
patch — draws a surface patch

patchb — sets current basis matrices

patchc — sets the number of curves used to represent a patch
patchp — sets the precision at which curves are drawn in a patch
pclos — closes a filled polygon

pdr, pdri, pdrs, pdr2, pdr2i, pdr2s — specifies the next point of a
polygon

perspe — defines a perspective projection transformation

pick — puts the system in picking mode

picksi — sets the dimensions of the picking region

pixmod — specify pixel transfer mode parameters

pmv, pmvi, pmvs, pmv2, pmv2i, pmv2s — specifies the first point of a
polygon

pnt, pnti, pnts, pnt2, pnt2i, pnt2s — draws a point

pntsmo — specify antialiasing of points

polarv — defines the viewer’s position in polar coordinates

polf, polfi, polfs, polf2, polf2i, polf2s — draws a filled polygon
poly, polyi, polys, poly2, poly2i, poly2s — outlines a polygon
polymo — control the rendering of polygons

polysm — specify antialiasing of polygons

popatt — pops the attribute stack

popmat — pops the transformation matrix stack

Version 3.0 -9- April 1990

Routine List Graphics Reference, FORTRAN Routine List

popnam — pops a name off the name stack

popvie — pops the viewport stack

prefpo — specifies the preferred location and size of a graphics window
prefsi — specifies the preferred size of a graphics window

pupmod — obsolete routine

pushat — pushes down the attribute stack

pushma — pushes down the transformation matrix stack

pushna — pushes a new name on the name stack

pushvi — pushes down the viewport stack

pwlcur — describes a piecewise linear trimming curve for NURBS sur-
faces

qdevic — queues a device

genter — creates an event queue entry

qgetfd — returns the file descriptor of the event queue
qread — reads the first entry in the event queue

greset — empties the event queue

qtest — checks the contents of the event queue

rcrv — draws a rational curve

rcrvn — draws a series of curve segments

rdr, rdri, rdrs, rdr2, rdr2i, rdr2s — relative draw

readpi — returns values of specific pixels

readRG - gets values of specific pixels

readso — sets the source for pixels that various routines read
rect, recti, rects — outlines a rectangular region

rectco — copies a rectangle of pixels with an optional zoom

rectf, rectfi, rectfs — fills a rectangular area

Version 3.0 -10- April 1990

Routine List Graphics Reference, FORTRAN Routine List

rectre — reads a rectangular array of pixels into CPU memory
rectwr — draws a rectangular array of pixels into the frame buffer
rectzo — specifies the zoom for rectangular pixel copies and writes
resetl — controls the continuity of linestyles

reshap — sets the viewport to the dimensions of the current graphics
window

RGBcol - sets the current color in RGB mode
RGBcur — obsolete routine

RGBmod - sets a rendering and display mode that bypasses the color
map

RGBran — obsolete routine

RGBwri — grants write access to a subset of available bitplanes
ringbe — rings the keyboard bell

rmy, rmvi, rmvs, rmv2, rmv2i, rmv2s — relative move

rotate, rot — rotate graphical primitives

rpatch — draws a rational surface patch

rpdr, rpdri, rpdrs, rpdr2, rpdr2i, rpdr2s — relative polygon draw

rpmv, rpmvi, rpmvs, rpmv2, rpmv2i, rpmv2s — relative polygon
move

sbox, sboxi, sboxs — draw a screen-aligned rectangle

sboxf, sboxfi, sboxfs — draw a filled screen-aligned rectangle
scale — scales and mirrors objects

sclear — clear the stencil planes to a specified value

scrbox — control the screen box

screen — map world space to absolute screen coordinates
scrmas — defines a rectangular screen clipping mask

scrnat — attaches the input focus to a screen

Version 3.0 -11- April 1990

Routine List Graphics Reference, FORTRAN Routine List

scrnse — selects the screen upon which new windows are placed
scrsub — subdivide lines and polygons to a screen-space limit
setbel — sets the duration of the beep of the keyboard bell
setcur — sets the cursor characteristics 4

setdbl — sets the lights on the dial and button box

setdep — obsolete routine

setlin — selects a linestyle pattern

setmap — selects one of the small color maps provided by multimap
mode

setmon — sets the monitor type

setnur — sets a property for the display of trimmed NURBS surfaces
setpat — selects a pattern for filling polygons and rectangles

setpup — sets the display characteristics of a given pop up menu entry
setsha — obsolete routine

setval — assigns an initial value and a range to a valuator

setvid — set video hardware registers

shadem — selects the shading model

shader — obsolete routine

single — writes and displays all bitplanes

smooth — obsolete routine

spclos — obsolete routine

splf, splfi, splfs, splf2, splf2i, splf2s — draws a shaded filled polygon
stenci — alter the operating parameters of the stencil

stensi — specify the number of bitplanes to be used as stencil planes
stepun — specifies that a graphics window change size in discrete steps
strwid — returns the width of the specified text string

Version 3.0 =12- April 1990

Routine List Graphics Reference, FORTRAN Routine List

subpix — controls the placement of point, line, and polygon vertices

swapbu — exchanges the front and back buffers of the normal frame-
buffer

swapin — defines a minimum time between buffer swaps
swaptm — toggles the triangle mesh register pointer
swinop — creates a graphics subwindow

swrite — specify which stencil bits can be written

t2d, t2f, t2i, t2s - specify a texture coordinate

tevbin — selects a texture environment

tevdef — defines a texture mapping environment

texbin — selects a texture function

texdef — convert a 2-dimensional image into a texture
texgen — specify automatic generation of texture coordinates
textco — sets the color of text in the textport

textin — initializes the textport

textpo — positions and sizes the textport

tie — ties two valuators to a button

tpon, tpoff — control the visibility of the textport

transl — translates graphical primitives

underl — allocates bitplanes for display of underlay colors

unqdev — disables the specified device from making entries in the event
queue

v2d, v2f, v2i, v2s, v3d, v3f, v3i, v3s, v4d, v4f, vdi, vds — transfers a 2-
D, 3-D, or 4-D vertex to the graphics pipe

videoc — initiates a command transfer sequence on an optional video
peripheral

viewpo — allocates an area of the window for an image

Version 3.0 -13- April 1990

Routine List Graphics Reference, FORTRAN Routine List

winatt — obsolete routine

winclo — closes the identified graphics window

wincon — binds window constraints to the current window

windep — measures how deep a window is in the window stack

window — defines a perspective projection transformation (\
winget — returns the identifier of the current graphics window

winmov — moves the current graphics window by its lower-left corner

winope — creates a graphics window

winpop — moves the current graphics window in front of all other win-
dows

winpos — changes the size and position of the current graphics window

winpus — places the current graphics window behind all other windows

winset — sets the current graphics window

wintit — adds a title bar to the current graphics window

wmpack — specifies RGBA writemask with a single packed integer i
writem — grants write permission to bitplanes (
writep — paints a row of pixels on the screen -
writeR — paints a row of pixels on the screen

xfpt, xfpti, xfpts, xfpt2, xfpt2i, xfpt2s, xfptd, xfptdi, xfptds — multi-
plies a point by the current matrix in feedback mode

zbuffe — enable or disable z-buffer operation in the current framebuffer
zclear — initializes the z-buffer of the current framebuffer
zdraw — enables or disables drawing to the z-buffer

zfunct — specifies the function used for z-buffer comparison by the
current framebuffer

zsourc — selects the source for z-buffering comparisons

zwrite — specifies a write mask for the z-buffer of the current frame-
buffer (

Version 3.0 -14- April 1990

acbuf

NAME

Graphics Reference, FORTRAN acbuf

acbuf — operate on the accumulation buffer

FORTRAN SPECIFICATION
subroutine acbuf(op, value)
integer*4 op
real value

PARAMETERS

op

Version 3.0

expects one of six symbolic constants:

AC_CLEAR: The red, green, blue, and alpha accumulation
buffer contents are all set to value (rounded to the nearest
integer). value is clamped to the range of a 16-bit signed integer.

AC_ACCUMULATE: Pixels are taken from the current readso
bank (front, back, or zbuffer). Their red, green, blue, and alpha
components are each scaled by value. The resulting 16-
bit/component pixels are added to the pixels already present in
the accumulation buffer. The range of value is -255.996 through
255.996. Arguments outside this range are clamped to it. Accu-
mulated values are NOT clamped to the signed 16-bit range of
the accumulation buffer. Thus overflow is avoided only by limit-
ing the range of accumulation operations.

AC_CLEAR_ACCUMULATE: An efficient combination com-
mand whose effect is to first clear the accumulation buffer con-
tents to zero, then add as per AC_ACCUMULATE. Ranges and
clamping are as per AC_ACCUMULATE.

AC_RETURN: Pixels are taken from the accumulation buffer.
Their red, green, blue, and alpha components are each scaled by
value. The resulting 8-bit/component pixels are then written to
the currently enabled drawing buffers (front, back, or zbuffer).
All special pixel operations (zbuffer, blendfunction, logicop,
stencil, texture mapping, etc.) are ignored during this transfer.
Destination values are simply replaced. The operation is limited
by the current viewport and screenmask, however. The range of
value is 0.0 through 1.0. Arguments outside this range are

-1- April 1990

acbuf Graphics Reference, FORTRAN acbuf

clamped to it. After being scaled by value, color components are
clamped to the range O through 255 before being written to the
enabled drawing buffers.

AC_MULT: The red, green, blue, and alpha components of each
accumulation buffer pixel are scaled by value.

AC_ADD: value is added to each red, green, blue, and alpha
~ component of each pixel in the accumulation buffer.

value expects a float point value. op determines how value is used.

DESCRIPTION

The accumulation buffer is a bank of 64-bit pixels, 16 bits each for red,
green, blue, and alpha, that is mapped 1-to-1 with screen pixels. Pixel
images stored in the normal framebuffer (typically generated from
geometric data) can be added to the accumulation buffer. These pixels
are scaled during the transfer by a floating-point value (of limited range
and resolution). Later, the accumulated image can be returned to the
normal frame buffer, again while being scaled.

Effects such as antialiasing (of points, lines, and polygons), motion-
blur, and depth-of-field can be created by accumulating images gen-
erated with different transformation matrixes. Predictable effects are
possible only when subpixel mode is TRUE (see subpixel).

readso mode is shared with other pixel read operations, including Irectr
and rectco. rectzo however, has no effect on accumulation operation.

All accumulation buffer operations are limited to the area of the current
screenmask, which itself is limited to the current viewport.

The accumulation buffer is a part of the normal framebuffer. acbuf
should be called only while draw mode is NORMAL, and while the
normal framebuffer is in RGB mode.

SEE ALSO

acsize, drawmo, subpix, scrmas

Version 3.0 -2- April 1990

acbuf Graphics Reference, FORTRAN acbuf

NOTES

An error is reported, and no action is taken, if accumulate is called while
acsize is zero.

Version 3.0 -3- April 1990

acsize Graphics Reference, FORTRAN acsize

NAME

acsize — specify the number of bitplanes per color component in the
accumulation buffer

FORTRAN SPECIFICATION (

subroutine acsize(planes)
integer*4 planes

PARAMETERS

planes specifies the number of bitplanes to be reserved for each color
component in the accumulation buffer. Accepted values are 0
(default) and 16.

DESCRIPTION

Rendered images are accumulated (see acbuf) into a framebuffer with
more than 8 bits per color component. acsize specifies the size of the
accumulation buffer. You must call gconfi after acsize to activate the
new size specification. (

By default the accumulation buffer size is zero, meaning that images
cannot be accumulated.

The 16-bit per component accumulation buffer is signed; it therefore
supports accumulated values in the range -32768 through 327 67.

SEE ALSO

acbuf, drawmo, gconfi

NOTE
This routine is available only in immediate mode.

The accumulation buffer is available only in the normal framebuffer..
acsize should be called only while draw mode is NORMAL.

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support (
the accumulation buffer. Use getgde to determine what support is avail-
able for accumulation buffering.

Version 3.0 -1- April 1990

addtop

NAME

Graphics Reference, FORTRAN addtop

addtop — adds items to an existing pop-up menu

FORTRAN 77 SPECIFICATION
subroutine addtop(pup, str, length, arg)

integer*4 pup

character*(*) str

integer*4 length, arg

PARAMETERS

pup expects the menu identifier of the menu to which you want to
add. The menu identifier is the returned function value of the
menu creation call to newpup.

str expects the variable that contains the text that you want to add
as a menu item. In addition, you have the option of pairing an

"item type" flag with each menu item. There are seven menu

item type flags:

9ot marks item text as the menu title string.

%F invokes a routine for every selection from this menu
except those marked with a %n. You must specify the
invoked routine in the arg parameter. The value of the
menu item is used as a parameter of the executed rou-
tine. Thus, if you select the third menu item, the system
passes 3 as a parameter to the function specified by %F.

9ot invokes a routine when this particular menu item is
selected. You must specify the invoked routine in the
arg parameter. The value of the menu item is passed as
a parameter of the routine. Thus, if you select the third
menu item, the system passes 3 as a parameter to the
routine specified by %f. If you have also used the %F
flag within this menu, then the result of the %f routine
is passed as a parameter of the %F routine.

Version 3.0 -1- April 1990

addtop

length

arg

%01

%m

%n

%xn

Graphics Reference, FORTRAN addtop

adds a line under the current entry. You can use this as
a visual cue to group like entries together.

pops up a menu whenever this menu item is selected.
You must provide the menu identifier of the new menu
in the arg parameter.

like %f, this flag invokes a routine when the user selects
this menu item. However, %n differs from %f in that it
ignores the routine (if any) specified by %F. The value
of the menu item is passed as a parameter of the exe-
cuted routine. Thus, if you select the third menu item,
the system passes 3 as a parameter to the function
specified by %f.

assigns a numeric value to this menu item. This values .

overrides the default position-based value assigned to
this menu item (e.g., the third item is 3). You must
enter the numeric value as the n part of the text string.
Do not use the arg parameter to specify the numeric
value.

NOTE: If you use the vertical bar delimiter, "I", you can specify
multiple menu items in a text string. However, because there is
only one arg parameter, the text string can contain no more than
one item type that references the arg parameter.

expects the length of the string pointed to by the str parameter.

expects the command or submenu that you want to assign to the
menu item. You can have only one arg parameter for each call
to addtop. If the arg parameter is not needed, use O as a place

holder.

DESCRIPTION

addtop adds items to the bottom of an existing pop-up menu. You can
build a menu by using a call to newpup to create a menu, followed by a
call to addtop for each menu item that you want to add to the menu. To
activate and display the menu, submit the menu to dopup.

Version 3.0

-2- April 1990

.addtop Graphics Reference, FORTRAN addtop

EXAMPLE
This example creates a menu with a submenu:

submenu = newpup ()

call addtop(submen, ’rotate %f’, 9, dorota)
call addtop(submen, ’translate %f’, 12, dotran)
call addtop(submen, ‘scale %f’, 8, doscal)
menu = newpup ()

call addtop(menu, ‘sample %t’, 9, 0)

call addtop(me&u,l'persp', 5, 0)

call addtop(menu, ’'xform %m’, 8, submenu)

call addtop(menu, ‘greset %f’, 9, greset)

Because neither the "sample" menu title nor the "persp" menu item refer
to the arg parameter, you can group "sample", "persp", and "xform" in a
single call.

call addtop(menu, ’sample %t | persp | xform %m’, 28,
+ submenu)

SEE ALSO
dopup, freepup, newpup

NOTES
This routine is available only in immediate mode.

When using the Distributed Graphics Library (DGL), you can not call
other DGL routines within a function that is called by a popup menu, i.c.
a function given as the argument to a %f or %F item type.

Version 3.0 -3- April 1990

afunct Graphics Reference, FORTRAN afunct

NAME
afunct — specify alpha test function

FORTRAN SPECIFICATION

subroutine afunct(ref, func)
integer*4 ref, func

PARAMETERS

ref expects a reference value with which to compare source alpha at
each pixel. This value should be in the range O through 255.

func expects one of two flags specifying the alpha comparison func-
tion: AFNOTE and AFALWA (the default).

DESCRIPTION

afunct makes the drawing of pixels conditional on the relationship of
the incoming alpha value to a reference constant value. It is typically
used to avoid updating either the color or the z field of a framebuffer
pixel when the incoming pixel is completely transparent. Arguments ref
and func specify the conditions under which the pixel will be drawn.
The incoming (source) alpha value is compared to ref with function
func, and if the comparison passes, the incoming pixel is drawn (condi-
tional on subsequent z-buffer tests). Thus afunct can be called with
arguments 0,AFNOTE

to defeat drawing of completely transparent pixels. This assumes that
incoming alpha is proportional to pixel coverage, as it is when either
points or linesm is being used.

afunct testing follows scan conversion, texture mapping, and stencil
operation, but preceeds all other pixel tests. Thus, if the test fails, nei-
ther the color nor zbuffer contents will be modified. afunct operates on
all pixel writes, including those resulting from the scan conversion of
points, lines, and polygons, and from pixel write and copy operations.
afunct does not affect screen clear operation, however.

Version 3.0 -1- April 1990

(

afunct Graphics Reference, FORTRAN afunct

SEE ALSO
blendf

NOTES

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
afunct. Use getgde to determine what support is available for afunct.

BUGS

On IRIS-4D VGX models afunct cannot be enabled while stenci is
being used. Also, ref must be 0.

Version 3.0 -2- April 1990

arc Graphics Reference, FORTRAN arc

NAME

arc, arci, arcs — draw a circular arc

FORTRAN 77 SPECIFICATION

subroutine arc(x, y, radius, stang, endang)
real x, y, radius
integer*4 stang, endang

subroutine arci(x, y, radius, stang, endang)
integer*4 x, y, radius, stang, endang

subroutine arcs(x, y, radius, stang, endang)
integer*2 x, y, radius
integer*4 stang, endang

All of the routines named above are functionally the same. They differ
only in the type assignments of their parameters.

PARAMETERS
x expects the x coordinate of the center of the arc. The center of
the arc is the center of the circle that would contain the arc.

y expects the y coordinate of the center of the arc. The center of
the arc is the center of the circle that would contain the arc.

radius expects the length of the radius of the arc. The radius of the
arc is the radius of the circle that would contain the arc.

stang expects the measure of the start angle of the arc. The start
angle of the arc is measured from the positive x-axis.

endang expects the measure of the end angle of the arc. The end angle
of the arc is measured from the positive x-axis.

DESCRIPTION

arc draws an unfilled circular arc in the x-y plane (z = 0). To draw an arc
in a plane other than the x-y plane, define the arc in the x-y plane and
then rotate or translate the arc.

Version 3.0 -1 April 1990

arc Graphics Reference, FORTRAN arc

An arc is drawn as a sequence of line segments, and therefore inherits all
properties that affect the drawing of lines. These include the current
color, writemask, line width, stipple pattern, shade model, line antialias-
ing mode, and subpixel mode. The stipple pattern is initialized to bit
zero of the current linestyle before the arc is drawn, then shifted con-
tinuously through the segments of the arc.

An arc is defined in terms of the circle that contains it. All references to
the radius and center of the arc refer to the radius and center of the circle
that contains the arc. The angle swept out by the arc is the angle from
the start angle counter-clockwise to the end angle.

The start and end angles are defined relative to the positive x-axis. (To
speak more precisely, because the arc might not be centered on the ori-
gin, the start and end angles are defined relative to the right horizontal
radius of the circle containing the arc). Positive values for an angle
indicate a counter-clockwise rotation from the horizontal. Negative
values indicate a clockwise rotation from the horizontal.

The basic unit of angle measure is a tenth of a degree. The value 900
indicates an angle of 90 degrees in a counter-clockwise direction from
the horizontal. Thus, an arc that spans from a start angle of 10 degrees
(stang = 100) to an end angle of 5 degrees (endang = 50) is almost a
complete circle.

After arc executes, the graphics position is undefined.

SEE ALSO

arcf, bgnclo, circ, crvn, linewi, linesm, Isrepe, scrsub, setlin, shadem,
subpix

BUGS

When the line width is greater than 1, small notches will appear in arcs,
because of the way wide lines are implemented.

Version 3.0 -2- April 1990

arcf

NAME

Graphics Reference, FORTRAN arcf

arcf, arcfi, arcfs — draw a filled circular arc

FORTRAN 77 SPECIFICATION

subroutine arcf(x, y, radius, stang, endang)
real x, y, radius
integer*4 stang, endang

subroutine arcfi(x, y, radius, stang, endang)
integer*4 x, y, radius, stang, endang

subroutine arcfs(x, y, radius, stang, endang)
integer*2 x, y, radius
integer*4 stang, endang

All of the routines named above are functionally the same. They differ
only in the type assignments of their parameters.

PARAMETERS

X

radius

stang

endang

Version 3.0

expects the x coordinate of the center of the filled arc. The
center of the filled arc is the center of the circle that would
contain the arc.

expects the y coordinate of the center of the filled arc. The
center of the filled arc is the center of the circle that would
contain the arc.

expects the length of the radius of the filled arc. The radius of
the filled arc is the radius of the circle that would contain the
filled arc.

expects the measure (in tenths of a degree) of the start angle of
the filled arc. The start angle of the filled arc is measured rela-
tive to the positive x-axis.

expects the measure (in tenths of a degree) of the end angle of
the filled arc. The end angle of the filled arc is measured rela-
tive to the positive x-axis.

-1- April 1990

arcf Graphics Reference, FORTRAN arcf

DESCRIPTION

arcf draws a filled circular arc in the x-y plane (z = 0). The filled area is
bound by the arc and by the start and end radii. To draw an arc in a
plane other than the x-y plane, define the arc in the x-y plane and then
rotate or translate the arc.

An arc is drawn as a single polygon, and therefore inherits all properties
that affect the drawing of polygons. These include the current color,
writemask, fill pattern, shade model, polygon antialiasing mode,
polygon scan conversion mode, and subpixel mode. Front-face and
back-face elimination work correctly with filled arcs, which are front-
facing when viewed from the positive z half-space.

A filled arc is defined in terms of the circle that contains it. All refer-
ences to the radius and the center of the filled arc refer to the radius and
center of the circle that contains the filled arc. The angle swept out by
the filled arc is the angle from the start angle counter-clockwise to the
end angle.

The start and end angles are defined relative to the positive x-axis. (To
speak more precisely, because the arc might not be centered on the ori-
gin, the start and end angles are defined relative to the right horizontal
radius of the circle containing the arc). Positive values for an angle indi-
cate a counter-clockwise rotation from the horizontal. Negative values
indicate a clockwise rotation from the horizontal.

The basic unit of angle measure is a tenth of a degree. The value 900
indicates an angle of 90 degrees in a counter-clockwise direction from
the horizontal. Thus, a filled arc that spans from a start angle of 10
degrees (stang = 100) to an end angle of 5 degrees (endang = 50) is
almost a complete filled circle.

After arcf executes, the graphics position is undefined.

SEE ALSO

arc, backfa, bgnpol, circf, frontf, polymo, polysm, scrsub, setpat,
shadem, subpix

Version 3.0 -2- April 1990

attach Graphics Reference, FORTRAN attach

NAME

attach — attaches the cursor to two valuators

FORTRAN 77 SPECIFICATION

subroutine attach(vx, vy) (
integer*4 vx, vy N

- PARAMETERS
vx expects the valuator device number for the device that controls the
horizontal location of the cursor. By default, vx is MOUSEX.

vy expects the valuator device number for the device that controls the
vertical location of the cursor. By default, vy is MOUSEY.

DESCRIPTION

attach attaches the cursor to the movement of two valuators. Both vx

and vy are valuator device numbers. (See Appendix A, Valuators, for a

list of device numbers.) The values at vx and vy determine the cursor
position in screen coordinates. Every time the values at vx or vy change, (
the system redraws the cursor at the new coordinates. '

SEE ALSO

noise, tie

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

backbu Graphics Reference, FORTRAN backbu

NAME
backbu, frontb — enable and disable drawing to the back or front buffer

FORTRAN 77 SPECIFICATION

subroutine backbu(b)
logical b

subroutine frontb(b)
logical b

PARAMETERS

b expects either .TRUE. or .FALSE..
.TRUE. enables updating in the back/front bitplane buffer.
JFALSE. tumns off updating in the back/front bitplane buffer.

DESCRIPTION

The IRIS framebuffer is divided into four separate GL framebuffers:
pop-up, overlay, underlay, and normal. Three of these framebuffers,
overlay, underlay, and normal, can be configured in double buffer mode.
When so configured, a framebuffer includes two color bitplane buffers:
one visible bitplane buffer, called the front buffer, and one non-visible
bitplane buffer, called the back buffer. The commands swapbu and
mswapb interchange the front and back buffer assignments.

By default, when a framebuffer is configured in double buffer mode,
drawing is enabled in the back buffer, and disabled in the front buffer.
frontb and backbu enable and disable drawing into the front and back
buffers, allowing the default to be overriden. Its is acceptable to enable
neither front nor back, either front or back, or both front and back simul-
taneously. Note, for example, that z-buffer drawing continues to update
the z-buffer with depth values when neither the front buffer nor the back
buffer is enabled for drawing.

frontb and backbu state is maintained separately for each of the over-
lay, underlay, and normal framebuffers. Calls to these routines affect
the framebuffer that is currently active, based on the current drawmode.

Version 3.0 -1- April 1990

backbu Graphics Reference, FORTRAN backbu

backbu is ignored when the currently active framebuffer is in single
buffer mode. frontb is also ignored when the currently active frame-
buffer is in single buffer mode, unless zdraw is enabled for that frame-
buffer (see zdraw).

After each call to geonfi, backbu is enabled and frontb is disabled.

SEE ALSO
drawmo, double, getbuf, gconfi, single, swapbu, zdraw

NOTE

Only VGX graphics support double buffer operation in the overlay and
underlay framebuffers.

Version 3.0 -2- . April 1990

backfa Graphics Reference, FORTRAN backfa

NAME
backfa — turns backfacing polygon removal on and off

FORTRAN 77 SPECIFICATION

subroutine backfa(b)
logical b

PARAMETERS

b expects either .TRUE. or .FALSE..
.TRUE. suppresses the display of backfacing filled polygons.
JFALSE. allows the display of backfacing filled polygons.

DESCRIPTION

backfa allows or suppresses the display of backfacing filled polygons.
If your programs represent solid objects as collections of polygons, you
can use this routine to remove hidden surfaces. This routine works best
for simple convex objects that do not obscure other objects.

A backfacing polygon is defined as a polygon whose vertices are in
clockwise order in screen coordinates. When backfacing polygon remo-
val is on, the system displays only polygons whose vertices are in
counter-clockwise order. For complicated objects, this routine alone
may not remove all hidden surfaces. To remove hidden surfaces for
more complicated objects or groups of objects, your routine needs to
check the relative distances of the object from the viewer (z values).
(See ‘“Hidden Surface Removal’’ in the Graphics Library Programming
Guide.)

SEE ALSO
zbuffe

NOTES

Matrices that negate coordinates, such as scale(-1.0, 1.0, 1.0), reverse
the directional order of a polygon’s points and can cause backfa to do
the opposite of what is intended.

Version 3.0 -1- April 1990

backfa Graphics Reference, FORTRAN backfa

On IRIS4D B and G models backfa does not work well when a
polygon shrinks to the point where its vertices are coincident. Under
these conditions, the routine cannot determine the orientation of the
polygon and so displays the polygon by default.

Version 3.0 -2- April 1990

bbox2 Graphics Reference, FORTRAN bbox2

NAME

bbox2, bbox2i, bbox2s — culls and prunes to bounding box and
minimum pixel radius

FORTRAN 77 SPECIFICATION

subroutine bbox2(xmin, ymin, x1, y1, x2, y2)
integer*4 xmin, ymin
real x1, y1, x2, y2

subroutine bbox2i(xmin, ymin, x1, y1, x2, y2)
integer*4 xmin, ymin, x1, y1, x2, y2

subroutine bbox2s(xmin, ymin, x1, y1, x2, y2)
integer*4 xmin, ymin
integer*2 x1, y1, x2, y2

All of the above routines are functionally the same. They differ only in
the declaration types of their parameters.

PARAMETERS

xmin expects the width, in pixels, of the smallest displayable feature.
ymin expects the height, in pixels, of the smallest displayable feature.
xI expects the x coordinate of a corner of the bounding box.
yl expects the y coordinate of a corner of the bounding box.

x2 expects the x coordinate of a comer of the bounding box. The
comer referenced by this parameter must be diagonally opposite
the corner referenced by the x/ and y/ parameters.

y2 expects the y coordinate of a comer of the bounding box. The
corner referenced by this parameter must be diagonally opposite
the corner referenced by the x/ and yI parameters.

DESCRIPTION

bbox2 performs the graphical functions known as culling and pruning.
Culling prevents the system from drawing objects that are less than the
minimum feature size (xmin and ymin). Pruning prevents the system
from drawing objects that lie completely outside the viewport.

Version 3.0 -1- April 1990

bbox2 Graphics Reference, FORTRAN bbox2

To determine whether or not to cull an object, bbox2 tests whether or
not the display of a rectangle the size of the bounding box is smaller
than the minimum feature size. To determine whether or not to prune an
object, bbox2 tests whether or not the bounding box is competely out-
side the viewport.

Call bbox2 within the definition for an object, just after the call to
makeob. If the object must be pruned or culled, the remainder of the
object definition is ignored.

SEE ALSO
makeob

NOTES ,
This routine does not function in immediate mode.

This routine is not a free test. If you use bbox2 too freely, your perfor-
mance can suffer. Reserve bbox2 for complicated object definitions
only.

Version 3.0 : -2- ~ April 1990

bgnclo Graphics Reference, FORTRAN bgnclo

NAME

bgnclo, endclo — delimit the vertices of a closed line

FORTRAN 77 SPECIFICATION
subroutine bgnclo

subroutine endclo

PARAMETERS

none

DESCRIPTION

bgnclo marks the start of a group of vertex routines that you want inter-
preted as points on a closed line. Use endclo to mark the end of the ver-
tex routines that are part of the closed line.

A closed line draws a line segment from one vertex on the list to the
next vertex on the list. When the system reaches the end of the vertex
list, it draws a line that connects the last vertex to the first vertex. All
segments use the current linestyle, which is reset prior to the first seg-
ment and continues through subsequent segments. To specify a vertex,
use the v routine.

Between bgnclo and endclo, you can issue only the following Graphics
Library routines: c, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol, t,
and v. Within a closed line, you should use Imdef and Imbind only to
respecify materials and their properties. If the color changes between a
pair of vertices, the color of the line segment will be constant if the
current shading model is FLAT and interpolated if the current shading
model is GOURAU. In color map mode, the colors vary through the
color map; to get reasonable results, the color map should contain a
ramp.

There is no limit to the number of vertices that can be specified between
bgnclo and endclo. After endclo, the system draws a line from the final
vertex back to the initial vertex, and the current graphics position is left
undefined.

Version 3.0 -1- April 1990

bgnclo Graphics Reference, FORTRAN bgnclo

By default line vertices are forced to the nearest pixel center prior to
scan conversion. Line accuracy is improved when this coercion is
defeated with the subpix command. Subpixel vertex positioning is
especially important when lines are scan converted with antialiasing
enabled (see linesm).

bgnclo/endclo are the same as bgnlin/endlin, except they connect the
last vertex to the first. '

EXAMPLE

The code fragment below draws the outline of a triangle. Lines use the
current linestyle, which is reset prior to the first vertex and continues
through all subsequent vertices.

call bgnclo
call v3f (vertl)
call v3f (vert2)
call v3f (vert3)
call endclo

SEE ALSO

bgnlin, ¢, linesm, linewi, Isrepe, scrsub, setlin, shadem, subpix, v

BUGS

On the IRIS-4D B and G models, and on the Personal Iris without Turbo
Graphics, if the color changes between a pair of vertices, the color of the
line segment will be constant regardless of the current shading model.

On the IRIS-4D GT and GTX models, if the color changes between a
pair of vertices, the color of the line segment will be interpolated regard-
Iess of the current shading model.

Version 3.0 -2- April 1990

bgnlin Graphics Reference, FORTRAN bgnlin

NAME

bgnlin, endlin — delimit the vertices of a line

FORTRAN 77 SPECIFICATION
subroutine bgnlin

subroutine endlin

PARAMETERS

none

DESCRIPTION

Vertices specified after bgnlin and before endlin are interpreted as end-
points of a series of line segments. Use the v routine to specify a vertex.
The first vertex connects to the second; the second connects to the third;
and so on until the next-to-last vertex connects to the last one. The last
vertex does not connect to the first vertex. Use bgnclo to connect the
first and last points. All segments use the current linestyle, which is reset
prior to the first segment and continues through subsequent segments.

Between bgnlin and endlin, you can issue only the following Graphics
Library routines: ¢, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol,
t, and v. Imdef and Imbind can be used to respecify only materials and
their properties. If the color changes between a pair of vertices, the color
of the line segment will be constant if the current shading model is
FLAT and interpolated if the current shading model is GOURAU. In
color map mode, the colors vary through the color map; to get reason-
able results, the color map should contain a ramp.

There is no limit to the number of vertices that can be specified between
bgnlin and endlin. After endlin, the current graphics position is
undefined.

By default line vertices are forced to the nearest pixel center prior to
scan conversion. Line accuracy is improved when this coercion is
defeated with the subpix command. Subpixel vertex positioning is
especially important when lines are scan converted with antialiasing
enabled (see linesm).

Version 3.0 -1- April 1990

bgnlin Graphics Reference, FORTRAN bgnlin

SEE ALSO

bgnclo, ¢, linesm, linewi, Isrepe, scrsub, setlin, shadem, subpix, v

BUGS
. On the IRIS-4D B and G models, and on the Personal Iris without Turbo

Graphics, if the color changes between a pair of vertices, the color of the
line segment will be constant regardless of the current shading model.

On the IRIS-4D GT and GTX models, if the color changes between a
pair of vertices, the color of the line segment will be interpolated regard-
less of the current shading model.

Version 3.0 -2- . April 1990

bgnpoi Graphics Reference, FORTRAN bgnpoi

NAME

bgnpoi, endpoi — delimit the interpretation of vertex routines as points

FORTRAN 77 SPECIFICATION
subroutine bgnpoi

subroutine endpoi

PARAMETERS

none

DESCRIPTION

bgnpoi marks the beginning of a list of vertex routines that you want
interpreted as points. Use the endpoi routine to mark the end of the list.
For each vertex, the system draws a one-pixel point into the frame
buffer. Use the v routine to specify a vertex.

Between bgnpoi and endpoi, you can issue only the following Graphics
Library routines: ¢, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol, t,
and v. Use Imdef and Imbind to respecify only materials and their pro-
perties. ‘

There is no limit to the number of vertices that can be specified between
bgnpoi and endpoi.

By default points are forced to the nearest pixel center prior to scan
conversion. This coercion is defeated with the subpix command. Sub-
pixel point positioning is important only when points are scan converted
with antialiasing enabled (see pntsmo).

After endpoi, the current graphics position is the most recent vertex.

SEE ALSO

¢, pntsmo, subpix, v

Version 3.0 -1- April 1990

bgnpol Graphics Reference, FORTRAN bgnpol

NAME
bgnpol, endpol — delimit the vertices of a polygon

FORTRAN 77 SPECIFICATION
subroutine bgnpol

subroutine endpol

PARAMETERS

none

DESCRIPTION

Vertices specified after bgnpol and before endpol form a single
polygon. The polygon can have no more than 256 vertices. Use the v
subroutine to specify a vertex. Self-intersecting polygons (other than
four-point bowties) may render incorrectly. Likewise, concave
polygons may not render correctly if you have not called
concav(.TRUE.).

Between bgnpol and endpol, you can issue only the following Graphics
Library subroutines: ¢, color, cpack, Imbind, Imcolo, Imdef, n,
RGBcol, t, and v. Use Imdef and Imbind to respecify only materials
and their properties.

By default polygon vertices are forced to the nearest pixel center prior to
scan conversion. Polygon accuracy is improved when this coercion is
defeated with the subpix command. Subpixel vertex positioning is
especially important when polygons are scan converted with antialiasing
enabled (see polysm).

After endpol, the current graphics position is undefined.

SEE ALSO

backfa, ¢, concav, frontf, polymo, polysm, scrsub, setpat, shadem, sub-
pix, v

Version 3.0 -1- April 1990

bgnpol Graphics Reference, FORTRAN bgnpol

NOTES

If you want to use the backfa or frontf routines, specify the vertices in
counter-clockwise order.

Although calling concav(.TRUE.) will guarantee that all polygons will
be drawn correctly, on the IRIS-4D B and G models, and on the Per-
sonal Iris, doing so cause their performance to be degraded.

Version 3.0 -2- April 1990

bgngst Graphics Reference, FORTRAN bgnqst

NAME
bgngst, endgst — delimit the vertices of a quadrilateral strip

FORTRAN SPECIFICATION
subroutine bgngst

subroutine endqst

DESCRIPTION

Vertices specified between bgngst and endqst are used to define a strip
of quadrilaterals. The graphics pipe maintains three vertex registers.
The first, second, and third vertices are loaded into the registers, but no
quadrilateral is drawn until the system executes the fourth vertex rou-
tine. Upon executing the fourth vertex routine, the system draws a qua-
drilateral through the vertices, then replaces the two oldest vertices with
the third and fourth vertices.

For each new pair of vertex routines, the system draws a quadrilateral
through two new vertices and the two older stored vertices, then replaces
the older stored vertices with the two new vertices.

Between bgngst and endqst you can issue the following Graphics
Library routines: c, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol,
t, and v. Use Imdef and Imbind only to respecify materials and their
properties.

If you want to use backfa, you should specify the vertices of the first
quadrilateral in counter-clockwise order. All quadrilaterals in the strip
have the same rotation as the first quadrilateral in a strip, so that back-
facing works correctly.

There is no limit to the number of vertices that can be specified between
bgngst and endqst. The result is undefined, however, if an odd number
of vertices are specified, or if fewer than four vertices are specified.

By default quadrilateral vertices are forced to the nearest pixel center
prior to scan conversion. Quadrilateral accuracy is improved when this
coercion is defeated with the subpix command. Subpixel vertex posi-
tioning is especially important when quadrilaterals are scan converted
with antialiasing enabled (see polysm).

Version 3.0 -1- April 1990

bgngst

Graphics Reference, FORTRAN bgnqst

After endqst the current graphics position is undefined.

EXAMPLE

For example, the code sequence:

call
call
call
call
call
call
call
call
call
call

bgngst
v3f (zero)
v3f (one)
v3f (two)
v3f (three)
v3f (four)
v3f (five)
v3f (six)
v3f (seven)
endgst

draws three quadrilaterals: (0,1,2,3), (2,3,4,5), and (4,5,6,7). Note that
the vertex order required by quadrilateral strips matches the order
required by the equivalent triangle mesh. The vertices above, when
places between bgntme and endtme calls, draws six triangles: (0,1,2),
1,2,3), 2,3.4), (34.5), (4,5,6), and (5,6,7).

SEE ALSO

backfa, ¢, concav, frontf, polymo, polysm, scrsub, setpat, shadem, sub-

pix, v

NOTE

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
quadrilateral strips. Use getgde to determine whether quadrilateral
strips are supported.

IRIS-4D VGX models use vertex normals to improve the shading qual-
ity of quadrilaterals, regardless of whether lighting is enabled.

Version 3.0

-2- April 1990

bgnsur Graphics Reference, FORTRAN bgnsur

NAME
bgnsur, endsur — delimit a NURBS surface definition

FORTRAN 77 SPECIFICATION
subroutine bgnsur

subroutine endsur

PARAMETERS

none

DESCRIPTION

Use bgnsur to mark the beginning of a NURBS (Non-Uniform Rational
B-Spline) surface definition. After you call bgnsur, call the routines that
define the surface and that provide the trimming information. To mark
the end of a NURBS surface definition, call endsur.

Within a NURBS surface definition (between bgnsur and endsur), you
may use only the following Graphics Library subroutines: nurbss,
bgntri, endtri, nurbsc, and pwlcur. The NURBS surface definition
must consist of exactly one call to nurbss to define the shape of the sur-
face. In addition, this call may be preceeded by calls to nurbss that
specify how texture and color parameters vary across the surface. The
call(s) to nurbss may be followed by a list of one or more trimming
loop definitions (to define the boundaries of the surface). Each trim-
ming loop definition consists of one call to bgntri, one or more calls to
either pwlcur or nurbsc, and one call to endtri.

The system renders a NURBS surface as a polygonal mesh, and calcu-
lates normal vectors at the corners of the polygons within the mesh.
Therefore, your program should specify a lighting model if it uses
NURBS surfaces. If your program uses no lighting model, all the
interesting surface information is lost. When using a lighting model,
use Imdef and Imbind to define or modify materials and their proper-
ties.

Version 3.0 -1- April 1990

bgnsur Graphics Reference, FORTRAN bgnsur

EXAMPLE

The following code fragment draws a NURBS surface trimmed by two
closed loops. The first closed loop is a single piecewise linear curve
(see pwlcur), and the second closed loop consists of two NURBS curves
(see nurbsc), joined end to end.:

call bgnsur
call nurbss(. . .)
call bgntri
call pwlcur(. . .)
call endtri
call bgntri
call nurbsc(. . .)
call nurbsc(. . .)
call endtri
call endsur

SEE ALSO

nurbss, bgntri, nurbsc, pwlcur, setnur, getnur

Version 3.0 . -2- April 1990

bgntme Graphics Reference, FORTRAN bgntme

NAME

bgntme, endtme — delimit the vertices of a triangle mesh

FORTRAN 77 SPECIFICATION
subroutine bgntme

subroutine endtme

PARAMETERS

none

DESCRIPTION

Vertices specified between bgntme and endtme are used to define a
mesh of triangles. The graphics pipe maintains two vertex registers.
The first and second vertices are loaded into the registers, but no triangle
is drawn until the system executes the third vertex routine. Upon execut-
ing the third vertex routine, the system draws a triangle through the ver-
tices, then replaces the older of the register vertices with the third ver-
1ex.

For each new vertex routine, the system draws a triangle through the
new vertex and the stored vertices, then (by default) replaces the older
stored vertex with the new vertex. If you want the system to replace the
more recent of the stored vertices, call swaptm prior to calling v.

Between bgntme and endtme you can issue the following Graphics
Library routines: ¢, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol,
swaptm, t, and v. Use Imdef and Imbind only to respemfy materials
and their properties.

If you want to use backfa, you should specify the vertices of the first tri-
angle in counter-clockwise order. All triangles in the mesh have the
same rotation as the first triangle in a mesh so that backfacing works
correctly.

There is no limit to the number of vertices that can be specified between
bgntme and endtme.

Version 3.0 -1- - April 1990

bgntme

Graphics Reference, FORTRAN bgntme

By default triangle vertices are forced to the nearest pixel center prior to
scan conversion. Triangle accuracy is improved when this coercion is
defeated with the subpix command. Subpixel vertex positioning is
especially important when triangles are scan converted with antialiasing
enabled (see polysm).

After endtme the current graphics position is undefined.

EXAMPLE

For example, the code sequence:

call
call
call
call
call
call

bgntme
v3f (zero)
v3f (one)
v3f (two)
v3f (three)
endtme

draws two triangles, (zero,one,two) and (one,two,three), while the code

sequence:

bgntme

v3f (zero)
v3f (one)
swaptm
v3f (two)
v3f (three)

endtme

draws two triangles, (zero,one,two) and (zero,two,three). There is no
limit to the number of times that swaptmesh can be called.

SEE ALSO
backfa, ¢, concav, frontf, polymo, polysm, scrsub, setpat, shadem, sub-
pix, swaptm, v

Version 3.0 -2- April 1990

bgntri Graphics Reference, FORTRAN bgntri

NAME
bgntri, endtri — delimit a NURBS surface trimming loop

FORTRAN 77 SPECIFICATION
subroutine bgntri (

subroutine endtri

PARAMETERS

none

DESCRIPTION

Use bgntri to mark the beginning of a definition for a trimming loop.
Use endtri to mark the end of a definition for a trimming loop. A trim-
ming loop is a set of oriented curves (forming a closed curve) that
defines boundaries of a NURBS surface. You include these trimming
loop definitions in the definition of a NURBS surface.

The definition for a NURBS surface may contain many trimming loops.

For example, if you wrote a definition for NURBS surface that resem- (
bled a rectangle with a hole punched out, the definition would contain

two trimming loops. One loop would define the outer edge of the rec-

tangle. The other trimming loop would define the hole punched out of

the rectangle. The definitions of each of these trimming loops would be
bracketed by a bgntri/endtri pair.

The definition of a single closed trimming loop may consist of multiple
curve segments, each described as a piecewise linear curve (see pwlcur)
or as a single NURBS curve (see nurbsc), or as a combination of both
in any order. The only Graphics library calls that can appear in a trim-
ming loop definition (between a call to bgntri and a call to endtri) are
pwlcur and nurbsc.

Version 3.0 -1- April 1990

bgntri Graphics Reference, FORTRAN bgntri

In the following code fragment, we define a single trimming loop that
consists of one piecewise linear curve and two NURBS curves:

call bgntri

call pwlcur(. . .)
call nurbsc(. . .)
call nurbsc(. . .)

call endtri

The area of the NURBS surface that the system displays is the region in
the domain to the left of the trimming curve as the curve parameter
increases. Thus, the resultant visible region of the NURBS surface is
inside for a counter-clockwise trimming loop and outside for a clock-
wise trimming loop. So for the rectangle mentioned earlier, the trim-
ming loop for the outer edge of the rectangle should run counter-
clockwise, and the trimming loop for the hole punched out should run
clockwise.

If you use more than one curve to define a single trimming loop, the
curve segements must form a closed loop (i.e, the endpoint of each
curve must be the starting point of the next curve, and the endpoint of
the final curve must be the starting point of the first curve). If the end-
points of the curve are sufficiently close together but not exactly coin-
cident, the system coerces the them to match. If the endpoints are not
sufficiently close, the system generates an error message and ignores the
entire trimming loop.

If a trimming loop definition contains multiple curves, the direction of
the curves must be consistent (i.e., the inside must be to the left of the
curves). Nested trimming loops are legal as long as the curve orienta-
tions alternate correctly. If no trimming information is given for a
NURBS surface, the entire surface is drawn.

SEE ALSO

bgnsur, nurbss, nurbsc, pwlcur, setnur, getnur

Version 3.0 -2- April 1990

blanks Graphics Reference, FORTRAN

NAME
blanks — controls screen blanking

FORTRAN 77 SPECIFICATION

subroutine blanks(b)
logical b

PARAMETERS

b expects .TRUE. or .FALSE..
.TRUE. stops display and turns screen black.
.FALSE. restores the display.

DESCRIPTION

blanks

blanks turns screen refresh on and off. It affects the screen on which

the current window is displayed.

NOTE

This routine is available only in immediate mode.

SEE ALSO
blankt

Version 3.0 -1-

April 1990

blankt Graphics Reference, FORTRAN blankt

NAME
blankt — sets the screen blanking timeout

FORTRAN 77 SPECIFICATION

subroutine blankt(count)
integer*4 count

PARAMETERS

count expects the number of graphics timer events after which to blank
the current screen. The frequency of graphics timer events is
returned by the getgde inquiry GDTIME.

DESCRIPTION

By default, a screen blanks (turns black) after the system receives no
input for 10 minutes. This protects the monitor. Use blankt to change
the amount of time the system waits before it blanks a screen. It affects
the screen on which the current window is displayed.

To calculate the value of count, simply multiply the desired blanking
latency period (in seconds) by getgde(GDTIME).

You can disable screen blanking by calling this routine with a count of
Zer1o0.

NOTE

This routine is available only in immediate mode.

SEE ALSO
blanks, getgde

Version 3.0 -1- / April 1990

blendf Graphics Reference, FORTRAN blendf

NAME

blendf — computes a blended color value for a pixel

FORTRAN 77 SPECIFICATION

subroutine blendf(sfactr, dfactr)
integer*4 sfactr, dfactr

PARAMETERS

sfactr Expects a symbolic constant from the list below that identifies
the blending factor by which to scale contribution from source
pixel RGBA (red, green, blue, alpha) values. Blending factors
use RGBA values converted to fractions of the maximum value
255. To improve performance, conversion calculations are
approximate. However, O converts exactly to 0.0, and 255 con-
verts exactly to 1.0.

BFZERO 0
BFONE 1
BFDC (destination RGBA)/255
BFMDC 1 - (destination RGBA)/255
BFSA (source alpha)/255
BFMSA 1 -—(source alpha)/255
BFDA (destination alpha)/255
BFMDA 1 —(destination alpha)/255

. BFMINS min(BF_SA, BF_MDA)

dfactr Expects a symbolic constant from the list below that identifies
the blending factor by which to scale contribution from destina-

tion pixel RGBA values.
BFZERO O
BFONE 1

BFSC (source RGBA)/255
BFMSC 1 - (source RGBA)/255
BFSA (source alpha)/255
BFMSA 1 —(source alpha)/255

Version 3.0 -1- April 1990

blendf Graphics Reference, FORTRAN blendf

BFDA (destination alpha)/255
BFMDA 1 —(destination alpha)/255

DESCRIPTION

In RGB mode, the system draws pixels using a function that blends the
incoming (source) RGBA values with the RGBA values that are already
in the framebuffer (the destination values). Most often, blending is sim-
ple: the source RGBA values replace the destination RGBA values of
the pixel.

In some cases, however, simple replacement of framebuffer values is not
appropriate. Two such cases are transparency and antialiasing. To be
blended properly, transparent objects must be rendered back-to-front
(i.e. drawn in order from the farthest object to the nearest object) with a
blend function of (BFSA, BFMSA). As can be seen from the equations
below, this function scales the incoming color components by the
incoming alpha value, and scales the framebuffer contents by one minus
the incoming alpha value. Thus incoming (source) alpha is correctly
thought of as a material opacity, ranging from 1.0 (completely opaque)
to 0.0 (completely transparent). Note that this transparency calculation
does not require the presence of alpha bitplanes in the framebuffer.

Suggestions for appropriate blend functions for antialiasing are given on
the pntsmo and linesm manual pages. Other less obvious applications
are also possible. For example, if the red component in the framebuffer
is first cleared to all zeros, and then each primitive is drawn with red set
to 1 and a blend function of (BFONE, BFONE), the red component of
each pixel in the framebuffer will contain the count of the number of
times that pixel was drawn.

To determine the blended RGBA values of a pixel when drawing in
RGB mode, the system uses the following functions:

Rdestination = min (255, ((Rsource X sfactr) + (Rdestjnation X dfactr)))

G gestination = ml:n (255, ((Gygypee X Sfactr) + (Gygination X dfactr)))
B jectination = mz.n (255, (B, e X Sfactr) + (B qination X dfaCIT)))
A jestination = M (255, ((Agyyree X SaCtr) + (A 4o ination X Ffactr)))

Version 3.0 -2- April 1990

blendf Graphics Reference, FORTRAN blendf

When the blend function is set to (BFONE, BFZERO), the default
values, the equations reduce to simple replacement:

Rdestination = Rsource
destination — source
destination — °source
destination — ¢ “source

Fill rate may be increased substantially when blending is disabled in this
manner.

Polygon antialiasing (see polysm) is sometimes optimized when the
blendfunction (BFMINS, BFONE) is used. Source factor BFMINS,
which should be used only with destination factor BFONE, has the side
effect of slightly modifying the blending arithmetic:

Rdestinatioﬁ =min (255’ ((Rsource X Sf actr) + Rdestination))
Gdestination =min (255’ ((Gsouroe X Sf actr) + Gdestination
Bdesu'nation =min (255’ ((Bsource X Sf actr) + Bdestination
Adestination = Sf actr + Adestination

This special blend function accumulates pixel contributions until the
pixel is fully specified, then allows no further changes. Destination
alpha bitplanes, which must be present for this blend function to operate
correctly, store the accumulated coverage.

It is intended that the destination values on the left and the right of the
above equations be the same framebuffer locations. However, when
multiple destination buffers are specified (using frontb, backbu, and
zdraw) only a single location can be read and used on the right side of
the equation. By default, the destination RGBA values are read from
the front buffer in single buffer mode and from the back buffer in double
buffer mode. If the front buffer is not enabled in single buffer mode, the
RGBA values are taken from the z-buffer. If the back buffer is not
enabled in double buffer mode, the RGBA values are taken from the
front buffer (if possible) or from the z-buffer.

Blending is available with or without z-buffer mode. When blendfunc-
tion is set to any value other than (BFONE, BFZEROQ), logico is forced
to LOSRC.

Version 3.0 -3- April 1990

blendf Graphics Reference, FORTRAN blendf

SEE ALSO

cpack, linesm, logico, pntsmo, polysm

NOTES
This subroutine is available only in immediate mode.

Blending factors BFDA, BFMDA, BFMINS are not supported on
machines without alpha bitplanes. Blend factor BFMINS is supported
only on VGX graphics systems.

This subroutine does not function on IRIS-4D B or G models or on the
Personal Iris. Use getgde(GDBLEN) to determine whether blending
hardware is available.

BUGS

Blending works properly only in RGB mode. In color map mode, the
results are unpredictable.

On some IRIS-4D GT and GTX models, while copying rectangles with
blending active, readso also specifies the bank from which destination
color and alpha are read (overriding the blendf setting).

IRIS-4D VGX models do not clamp color values generated by the spe-
cial blending function BFMINS,BFONE to 255. Instead, color values
are allowed to wrap. This will be corrected in the next release.

Version 3.0 -4- April 1990

blink Graphics Reference, FORTRAN . blink

NAME
blink — changes a color map entry at a selectable rate

FORTRAN 77 SPECIFICATION

subroutine blink(rate, i, red, green, blue)
integer*4 rate, i, red, green, blue

PARAMETERS

rate expects the number of vertical retraces per blink. On the stan-
dard monitor, there are 60 vertical retraces per second.

i expects an index into the current color map. The color defined at
that index is the color that is blinked (alternated).

red expects the red value of the alternate color that blinks against the
color selected from the color map by the i parameter.

green expects the green value of the alternate color that blinks against
the color selected from the color map by the i parameter.

blue expects the blue value of the alternate color that blinks against
the color selected from the color map by the i parameter.

DESCRIPTION

blink alternates the color located at index i in the current color map with
the color defined by the parameters red, green, and blue. The rate at
which the two colors are alternated is set by the rate parameter. The
maximum number of color map entries that can be blinking simultane-
ously on a screen is returned by the getgde inquiry GBNBLI.

The length of time between retraces varies according to the monitor
used. On the standard monitor, there are 60 retraces per second, so a
rate of 60 would cause the color to change once every second.

To terminate blinking and restore the original color for a single color
map entry, call blink for that entry with rate set to 0.

To terminate all blinking colors simultaneously, call blink with rate set
to —1. When rate is —1, the other parameters are ignored.

Version 3.0 -1- April 1990

blink Graphics Reference, FORTRAN blink

SEE ALSO
getgde, mapcol

NOTE

This routine is available only in immediate mode.

Version 3.0 -2- April 1990

blkqre Graphics Reference, FORTRAN blkqre

NAME
blkqre — reads multiple entries from the queue

FORTRAN 77 SPECIFICATION

integer*4 function blkqre(data, n)
integer*2 data(*)
integer*4 n

PARAMETERS

data expects the buffer that is to receive the queue information.
n expects the number of elements in the buffer.

FUNCTION RETURN VALUE

The returned value of the function is the number of 16 bit words of data
actually read into the data buffer. Note that this number will be twice
the number of complete queue entries read, because each queue entry
consists of two 16 bit words. '

DESCRIPTION

blkqre reads multiple entries from the input queue and stores them in
the array pointed to by data. This function fills the data buffer with
paired values (a device number and the value of that device).

SEE ALSO
qread

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

c Graphics Reference, FORTRAN [

NAME

c3f, c3i, ¢3s, c4f, cdi, c4s — sets the RGB (or RGBA) values for the
current color vector

FORTRAN 77 SPECIFICATION

subroutine c3s(cv)
integer*2 cv(3)

subroutine c3i(cv)
integer*4 cv(3)

subroutine ¢3f(cv)
real cv(3)

subroutine cds(cv)
integer*2 cv(4)

subroutine cdi(cv)
integer*4 cv(4)

subroutine c4f(cv)
real cv(4)

The subroutines above are functionally the same but declare their
parameters differently.

PARAMETER

c¢v For the c4 routines, this parameter expects a four element array con-
taining RGBA (red, green, blue, and alpha) values. If you use the
¢3 routines, this parameter expects a three element array containing
RGB values.

Array components 1, 2, 3, and 4 are red, green, blue, and alpha,
respectively. Floating point RGBA values range from 0.0 through
1.0. Integer RGBA values range from O through 255. Values that
exceed the upper limit are clamped to it. Values that exceed the
lower limit are not clamped, and therefore result in unpredictable
operation.

Version 3.0 -1- April 1990

c Graphics Reference, FORTRAN c

DESCRIPTION

c4 sets the red, green, blue, and alpha color components of the currently
active GL framebuffer, one of normal, popup, overlay, or underlay (see
drawmo). ¢3 sets red, green, and blue to the specified values, and sets
alpha to the maximum value. The current framebuffer must be in RGB
mode (see RGBmod) for the ¢ command to be applicable. Most draw-
ing commands copy the current RGBA color components into the color
bitplanes of the current framebuffer. Color components are retained in
each draw mode, so when a draw mode is re-entered, red, green, blue,
and alpha are reset to the last values specified in that draw mode.

Integer color component values range from 0, specifying no intensity,
through 255, specifying maximum intensity. Floating point color com-
ponent values range from 0.0, specifying no intensity, through 1.0,
specifying maximum intensity.

It is an error to call ¢ while the current framebuffer is in color map
mode.

The color components of all framebuffers in RGB mode are set to zero
when gconfi is called.

SEE ALSO
cpack, drawmo, Imcolo, gRGBco

NOTE

These routines can also be used to modify the current material while
lighting is active (see Imcolo). Note that clamping to 1.0 is disabled in
this case.

Because only the normal framebuffer currently supports RGB mode, ¢
should be called only while draw mode is NORMAL. Use getgde to
determine whether RGB mode is available in draw mode NORMAL.

Version 3.0 -2- April 1990

callob Graphics Reference, FORTRAN callob

NAME
callob — draws an instance of an object

FORTRAN 77 SPECIFICATION

subroutine callob(obj)
integer*4 obj

PARAMETERS

obj expects the object identifier of the object that you want to draw.

DESCRIPTION

callob draws an instance of a previously defined object. If callob
specifies an undefined object, the system ignores the routine.

Global state attributes are not saved before a call to callob. Thus, if you
change a variable within an object, such as color, the change can affect
the caller as well. Use pushat and popatt to preserve global state attri-
butes across callob calls.

Likewise, the object may execute transformations that change the matrix
stack, so you may want to use pushma and popmat to restore the state
of the matrix stack.

SEE ALSO
makeob, popatt, pushat, pushma, popmat

Version 3.0 -1- April 1990

charst Graphics Reference, FORTRAN charst

NAME

charst — draws a string of raster characters on the screen

FORTRAN 77 SPECIFICATION

subroutine charst(str, length)
character*(*) str
integer*4 length

PARAMETERS

str expects the variable containing the string you want to draw.
length expects the length (number of characters) of the string at str.

DESCRIPTION

charst draws a string of text using a raster font. The current character
position is the position of the first character in the string. After each
character is drawn, the character’s width is added to the current charac-
ter position. The text string is drawn in the current raster font and color,
using the current writemask. The system ignores characters that are not
defined in the current raster font.

SEE ALSO
cmov, defras, font, strwid

Version 3.0 -=1- April 1990

chunks Graphics Reference, FORTRAN chunks

NAME

chunks — specifies minimum object size in memory

FORTRAN 77 SPECIFICATION

subroutine chunks(chunk)
integer*4 chunk

PARAMETERS

chunk Expects the minimum memory size to allocate for an object. As
you add objects to a display list, chunk is the unit size (in bytes)
by which the memory allocated to the display list grows.

DESCRIPTION

chunks specifies the minimum object memory size. You can call it only
once after graphics initialization and before the first makeob.

If you do not use this function, the system assumes a chunk size of 1020
bytes. This is usually more than large enough. Therefore, you generally
need to use chunks only if your application is running up against the
memory limits, and you know that 1020 bytes per object is too much.

But be careful, if chunks is set too small, complex objects (e.g., multi-
sided polygons) will not display. Each object in a display list must fit
entirely into a single chunk. Some experimentation may be necessary to
determine the optimal chunksize for an application.

SEE ALSO

compac, makeob

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

circ Graphics Reference, FORTRAN cire

NAME

cire, circi, cires — outlines a circle

FORTRAN 77 SPECIFICATION

subroutine circ(x, y, radius)
real x, y, radius

subroutine circi(x, y, radius)
integer*4 x, y, radius

subroutine circs(x, y, radius)
integer*2 x, y, radius

The routines above are functionally the same. However, the type
declarations for the coordinates differ.

PARAMETERS
X expects the x coordinate of the center of the circle specified in
world coordinates.
y expects the y coordinate of the center of the circle specified in
world coordinates. '

radius expects the length of the radius of the circle.

DESCRIPTION

circ draws an unfilled circle in the x-y plane with z assumed to be zero.
To create a circle that does not lie in the x-y plane, draw the circle in the
x-y plane, then rotate and/or translate the circle. Note that circles rotated
outside the 2-D x-y plane appear as ellipses.

A circle is drawn as a sequence of line segments, and therefore inherits
all properties that affect the drawing of lines. These include the current
color, writemask, line width, stipple pattern, shade model, line antialias-
ing mode, and subpixel mode. The stipple pattern is initialized to bit
zero of the current linestyle before the circle is drawn, then shifted con-
tinuously through the segments of the circle.

Version 3.0 -1- April 1990

circ Graphics Reference, FORTRAN circ

After circ executes, the graphics position is undefined.

SEE ALSO

arc, bgnclo, circf, crvn, linewi, linesm, Isrepe, scrsub, setlin, shadem,
subpix

BUGS

When the line width is greater than 1, small notches will appear in cir-
cles, because of the way wide lines are implemented.

Version 3.0 -2- April 1990

circf Graphics Reference, FORTRAN circf

NAME

circef, circfi, circfs — draws a filled circle

FORTRAN 77 SPECIFICATION

subroutine circf(x, y, radius)
real x, y, radius

subroutine cirefi(x, y, radius)
integer*4 x, y, radius

subroutine circfs(x, y, radius)
integer*2 x, y, radius

The routines above are functionally the same even though the type
declarations for the coordinates differ.

PARAMETERS

X expects the x coordinate of the center of the filled circle
specified in world coordinates.

y expects the y coordinate of the center of the filled circle
specified in world coordinates.

radius expects the length of the radius of the filled circle.

DESCRIPTION

circf draws a filled circle in the x-y plane (z = 0). To draw a circle in a
plane other than the x-y plane, define the circle in the x-y plane and then
rotate or translate the circle. Note that filled circles rotated outside the
2-D x-y plane appear as filled ellipses.

A circle is drawn as a single polygon, and therefore inherits all proper-
ties that affect the drawing of polygons. These include the current color,
writemask, fill pattern, shade model, polygon antialiasing mode,
polygon scan conversion mode, and subpixel mode. Front-face and
back-face elimination work correctly with filled circles, which are
front-facing when viewed from the positive z half-space.

Version 3.0 -1- April 1990

circf Graphics Reference, FORTRAN circf

After circf executes, the graphics position is undefined.

SEE ALSO

arcf, backfa, bgnpol, circ, frontf, polymo, polysm, scrsub, setpat,
shadem, subpix

Version 3.0 -2- April 1990

clear Graphics Reference, FORTRAN clear

NAME

clear — clears the viewport

FORTRAN 77 SPECIFICATION
subroutine clear (

PARAMETERS

none

DESCRIPTION

clear sets the bitplane area of the viewport to the current color. Multi-
ple bitplane buffers can be cleared simultaneously using the backbu,
frontb, and zdraw commands. Current polygon fill pattern and wri-
temask affect the operation of clear. The screen mask, when it is set to’
a subregion of the viewport, bounds the cleared region. Alpha function,
blend function, logical operation, stenciling, texture mapping, and z
buffering, however, are ignored by clear. Stencil and z buffer contents
are not affected by clear (except in the special case of zdraw). (

Like other drawing commands, clear operates on the currently active
framebuffer, one of normal, popup, overlay, or underlay, based on the
current draw mode (see drawmo).

After clear executes, the graphics position is undefined.

SEE ALSO

afunct, backbu, blendf, czclea, drawmo, frontb, logico, scrmas, setpat,
stenci, texbin, zbuffe, zdraw

NOTE

On the IRIS-4D B, G, GT, GTX, and VGX models, clear runs faster
when the window is completely unobscured.

On the Personal Iris, clear runs faster when the visible window area
consists of four or fewer rectangular regions. (

Version 3.0 -1- April 1990

clearh Graphics Reference, FORTRAN clearh

NAME

clearh — sets the hitcode to zero

FORTRAN 77 SPECIFICATION

subroutine clearh
PARAMETERS
none

DESCRIPTION

clearh clears the global variable hitcode, which records clipping plane
hits in picking and selecting modes.

SEE ALSO
gethitcode, gselect, pick

NOTES
This routine is available only in immediate mode.

This routine only functions on IRIS-4D B and G models, and therefore
we advise against its use in new development.

Version 3.0 -1- April 1990

clippl Graphics Reference, FORTRAN clippl

NAME
clippl — specify a plane against which all geometry is clipped

FORTRAN SPECIFICATION

subroutine clippl(index, mode, params)
integer*4 index, mode
real params()

PARAMETERS

index expects an integer in the range 0 through 5, indicating which of
the 6 clipping planes is being modified.

mode expects one of three tokens:

CPDEFIL: use the plane equation passed in params to define a
clipplane. The clipplane is neither enabled nor disabled.

CPON: enable the (previously defined) clipplane.
CPOFF: disable the clipplane. (default)

params expects an array of 4 floats that specify a plane equation. A
plane equation is usually thought of as a 4-vector [A,B,C,D].
In this case, A is the first component of the params array, and
D is the last. A 4-component vertex array (see v4f) can be
passed as a plane equation, where vertex X becomes A, Y
becomes B, etc.

DESCRIPTION

Geometry is always clipped against the boundaries of a 6-plane frustum
in x, y, and z. clippl allows the specification of additional planes, not
necessarily perpendicular to the x, y, or z axes, against which all
geometry is clipped. Up to 6 additional planes can be specified.
Because the resulting clipping region is always the intersection of the
(up to) 12 half-spaces, it is always convex.

clippl specifies a half-space using a 4-component plane equation. When
it is called with mode CPDEFI, this object-coordinate plane equation is
transformed to eye-coordinates using the inverse of the current Model-
View matrix.

Version 3.0 -1- April 1990

clippl Graphics Reference, FORTRAN clippl

A defined clipplane is then enabled by calling clippl with the CPON
argument, and with arbitrary values passed in params. While drawing
after a clipplane has been defined and enabled, each vertex is
transformed to eye-coordinates, where it is dotted with the transformed
clipping plane equation. Eye-coordinate vertexes whose dot product
with the transformed clipping plane equation is positive or zero are in,
and require no clipping. Those eye-coordinate vertexes whose dot pro-
duct is negative are clipped. Because clippl clipping is done in eye-
coordinates, changes to the projection matrix have no effect on its
operation.

By default all six clipping planes are undefined and disabled. The
behavior of an enabled but undefined clipplane is undefined.

NOTES

IRIS-4D models G, GT, and GTX, and the Personal Iris, do not imple-
ment clippl. Use getgde to determine whether user-defined clipping
planes are supported.

clippl cannot be used while mmode is MSINGL.

A point and a normal are converted to a plane equation in the following
manner:

point = [Px,Py,Pz]

normal = |Nx|
INy|
INz|
plane equation = |A]|
IBI
ICl
ID|
A = Nx
B = Ny
C = Nz
D = -[Px,Py,Pz] dot |Nx|
INy|
INz|

Version 3.0 -2- April 1990

clkon Graphics Reference, FORTRAN

NAME
clkon, clkoff — control keyboard click

FORTRAN 77 SPECIFICATION
subroutine clkon

subroutine clkoff

PARAMETERS

none

DESCRIPTION
clkon and clkoff control the keyboard click.

SEE ALSO
lampon, ringbe, setbel

NOTE

This routine is available only in immediate mode.

Version 3.0 -1-

clkon

April 1990

closeo Graphics Reference, FORTRAN closeo

NAME

closeo — closes an object definition

FORTRAN 77 SPECIFICATION

subroutine closeo

PARAMETERS

none

DESCRIPTION

closeo closes an open object definition. Use makeob to open a
definition for a new object. All display list routines between makeob
and closeo become part of the object definition. Use editob to open an
existing object for editing. Use closeo to terminate the editing session.

If no object is open, closeo is ignored.

SEE ALSO
editob, makeob

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

cmode Graphics Reference, FORTRAN cmode

NAME

cmode — sets color map mode as the current mode.

FORTRAN 77 SPECIFICATION

subroutine cmode

PARAMETERS

none

DESCRIPTION

cmode instructs the system to treat color as a 1-component entity in the
currently active drawmode. The single color component is used as an
index into a table of RGB color values called the color map. Because
color map mode is the default value for all GL framebuffers, it can be
called in any of the framebuffer drawmodes (NORMAL, PUPDRA,
OVERDR, and UNDERD). To return the normal framebuffer to color
map mode, however, you must call cmode while in drawmode NOR-
MAL. You must call gconfi for cmode to take effect.

While in color map mode, a framebuffer is configured to store a single
color index at each pixel location. The framebuffer is displayed by con-
tinually translating color indices into RGB triples using the
framebuffer’s color map, a table of index-t0-RGB mappings. The red,
green, and blue components stored in the color map are used (after
correction for monitor non-linearity) to directly control the color guns of
the monitor. Colors and writemasks must be specified using color map-
compatible commands such as color, colorf, and writem.

Many advanced rendering features, such as texture mapping, polygon
antialiasing, and fog, are available only in RGB mode. Color map mode
lighting, while functional, is substantially less robust than its RGB mode
counterpart.

Since cmode is the default, you do not have to call it unless the normal
framebuffer was previously set to RGB mode.

Version 3.0 -1- April 1990

cmode Graphics Reference, FORTRAN cmode

SEE ALSO

color, drawmo, gconfi, getdis, getgde, multim, onemap, RGBmod, wri-
tem

NOTE

Color map mode is available in all framebuffers of all hardware
configurations. getgde can be used to determine how many bitplanes in
each of the normal, popup, overlay, and underlay framebuffers are avail-
able in both single and double buffered color map mode.

This routine is available only in immediate mode.

Version 3.0 -2- April 1990

cmov Graphics Reference, FORTRAN ~ cmov

NAME

cmov, cmovi, cmovs, cmov2, cmov2i, cmov2s — updates the current
character position

FORTRAN 77 SPECIFICATION (\

subroutine cmov(x, y, z)
real x,y, z

subroutine cmovi(x, y, z)
integer*4 x, y, z
subroutine cmovs(x, y, z)
integer*2 x, y, z
subroutine cmov2(x, y)
real x,y

subroutine cmov2i(x, y)
integer*4 x, y
subroutine cmov2s(x, y)
integer*2 x, y

All of the above functions are functionally the same except for the type (
declarations of the parameters. In addition the cmov2* routines assume :
a 2-D point instead of a 3-D point.

PARAMETERS
x expects the x location of the point (in world coordinates) to which
you want to move the current character position.

y expects the y location of the point (in world coordinates) to which
you want to move the current character position. ’

'z expects the z location of the point (in world coordinates) to which
you want to move the current character position. (This parameter not
used by the 2-D subroutines.)

DESCRIPTION (\(

cmov moves the current character position to a specified point (just as
move sets the current graphics position). cmov transforms the specified

Version 3.0 -1- ~ April 1990

cmov Graphics Reference, FORTRAN cmov

world coordinates into screen coordinates, which become the new char-
acter position. If the transformed point is outside the viewport, the char-
acter position is undefined.

cmov does not affect the current graphics position.

SEE ALSO

charst, move, readpi, readRG, writep, writeR

Version 3.0 -2- April 1990

color Graphics Reference, FORTRAN color

NAME

color, colorf — sets the color index in the current draw mode

FORTRAN 77 SPECIFICATION

subroutine color(c)
integer*4 ¢

subroutine colorf(c)
real ¢

PARAMETERS

¢ expects an index into the current color map.

DESCRIPTION

color sets the color index of the currently active GL framebuffer, one of
normal, popup, overlay, or underlay (see drawmo). The current frame-
buffer must be in color map mode (see cmode) for the color command
to be applicable. Most drawing commands copy the current color index
into the color bitplanes of the current framebuffer. color is retained in
each draw mode, so when a draw mode is re-entered, color is reset to the
last value specified in that draw mode.

color values range from 0 through 2".1, where n is the number of bit-
planes available in the current draw mode. # can be ascertained by cal-
ling getpla while in the desired draw mode, or by calling getgde at any
time. Color indices larger than 2"-1 are clamped to 2"-1; color indices
less than zero yield undefined results.

The color displayed by a given color index is determined by the current
color map (see mapcol.) Each draw mode has its own color map.

colorf is identical to color, except that it expects a floating point color
index. Before the color is written into display memory, it is rounded to
the nearest integer value. When drawing with the GOURAU shading
model, machines that iterate color indices with fractional precision yield
more precise shading results using colorf than with color. The results
of color and colorf are indistinguishable when drawing with FLAT
shading.

Version 3.0 -1- April 1990

color Graphics Reference, FORTRAN color

It is an error to call color or colorf while the current framebuffer is in
RGB mode.

The color indices of all framebuffers in color map mode are set to zero
when geonfi is called.

SEE ALSO

drawmo, getcol, mapcol, writem

NOTE

IRIS-4D B, G, GT, and GTX models do not iterate color with fractional
precision, nor do early serial numbers of the Personal Iris. Use
getgde(GDCIFR) to determine whether fractional color index iteration
is supported.

Version 3.0 -2- April 1990

compac Graphics Reference, FORTRAN compac

NAME

compac — compacts the memory storage of an object

FORTRAN 77 SPECIFICATION

subroutine compac(obj)
integer*4 obj

PARAMETERS

obj expects the object identifier for the object you want to compact.

DESCRIPTION

When you modify an open object definition (using the object editing
routines), the memory storage for the object definition can become frag-
mented. A call to compac can make a fragmented object definition
occupy a continuous section of memory. |

Although you can call compac to explicitly compact an object, it is
rarely necessary because a call to closeo automatically calls compac,
when the object definition becomes too fragmented. (After you edit an
object, you must always call closeo.)

Because compac, requires a significant amount of time, do not call it
unless storage space is critical and you cannot tolerate even the small
amount of fragmentation allowed by closeo.

SEE ALSO
closeo, chunks

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

concav Graphics Reference, FORTRAN concav

NAME
concav — allows the system to draw concave polygons

FORTRAN 77 SPECIFICATION

subroutine concav(b)
logical b

PARAMETERS

b expects either .TRUE. or .FALSE..
.TRUE. tells the system to expect concave polygons.

JFALSE. tells the system to expect no concave polygons. This is the
default.

DESCRIPTION

concav tells the system whether or not to expect concave polygons. If
you try to draw a concave polygon while the system does not expect it,
the results are unpredictable. Although calling concav(.TRUE.)
guarantees that all non-selfintersecting polygons will be drawn correctly,
the performance of non-concave polygons is reduced on some machines.
Polygons whose edges intersect each other are never guaranteed to be
drawn correctly.

In all cases, performance is optimized when concave polygons are
decomposed into convex pieces before being passed to a GL drawing
routine.

SEE ALSO
bgnpol

BUG

IRIS-4D GT and GTX models always expect concave polygons, regard-
less of the value of the concav flag.

Version 3.0 -1- April 1990

' cpack Graphics Reference, FORTRAN cpack

NAME
cpack — specifies RGBA color with a single packed 32-bit integer

FORTRAN 77 SPECIFICATION

subroutine cpack(pack) (
integer*4 pack -

PARAMETERS

pack expects a packed integer containing the RGBA (red, green, blue,
alpha) values you want to assign as the current color. Expressed
in hexadecimal, the format of the packed integer is $aabbggrr,
where:

aa is the alpha value,

bb is the blue value,

g8 is the green value, and
rr is the red value.

RGBA component values range from 0 to $FF (255).

DESCRIPTION (

cpack sets the red, green, blue, and alpha color components of the
currently active GL framebuffer, one of normal, popup, overlay, or
underlay (see drawmo). The current framebuffer must be in RGB mode
(see RGBmod) for the cpack command to be applicable. Most drawing
commands copy the current RGBA color components into the color bit-
planes of the current framebuffer. Color components are retained in
each draw mode, so when a draw mode is re-entered, red, green, blue,
and alpha are reset to the last value specified in that draw mode.

Color component values range from 0, specifying no intensity, through
255, specifying maximum intensity. For example, cpack($FF004080)
sets red to 16#80# (half intensity), green to 16#40# (quarter intensity),
blue to 0 (off), and alpha to 16#FF# (full intensity).

It is an error to call cpack while the current framebuffer is in color map (
mode.

Version3.0 -1- April 1990

cpack Graphics Reference, FORTRAN cpack

The color components of all framebuffers in RGB mode are set to zero
when gconfi is called.

SEE ALSO
¢, drawmo, gRGBco, Imcolo

NOTE

cpack can also be used to modify the current material while lighting is
active (see Imcolo).

Because only the normal framebuffer currently supports RGB mode,
cpack should be called only while draw mode is NORMAL. Use
getgde to determine whether RGB mode is available in draw mode
NORMAL.

Version 3.0 -2- April 1990

crv Graphics Reference, FORTRAN crv

NAME

crv — draws a curve

FORTRAN 77 SPECIFICATION

subroutine crv(points)
real points(3,4)

PARAMETERS

points expects an array containing the four points that define the
curve. The routine expects 3-D points (x, y, and z coordinates
for each point).

DESCRIPTION

crv draws a cubic spline curve segment (defined by the four submitted
points) according to the current curve basis and precision.

The curve segment is approximated by a sequence of straight lines. All
lines use the current linestyle, which is reset prior to the first line and
continues through subsequent lines. Other line modes, including depth-
cueing, line width, and line antialiasing, also apply to the lines gen-
erated by crv. _

After crv executes, the graphics position is undefined.

SEE ALSO

crvn, curveb, curvep, defbas, depthc, linesm, linewd, rcrv, rcrvn, setlin

Version 3.0 ’ -1- . April 1990

crvn Graphics Reference, FORTRAN crvn

NAME

crvn —draws a series of curve segments

FORTRAN 77 SPECIFICATION

subroutine crvn(n, geom)
integer*4 n
real geom(3,n)

PARAMETERS

geom expects a matrix of 3-D points.

n expects the number of points in the matrix referenced by geom.

DESCRIPTION

crvn draws a series of cubic spline segments using the current basis and
precision. The control points determine the shapes of the curve seg-
ments and are used sequentially four at a time.

For example, if there are six control points, there are three possible
sequential selections of four control points. Thus, crvn draws three
curve segments: the first using control points 0,1,2,3; the second using
control points 1,2,3,4; and the third using control points 2,3,4,5.

If the current basis is a B-spline, a Cardinal spline, or a basis with simi-
lar properties, the curve segments are joined end to end and appear as a
single curve.

Each curve segment is approximated by a sequence of straight lines. All
lines use the current linestyle, which is reset prior to the first line and
continues through subsequent lines. Other line modes, including depth-
cueing, line width, and line antialiasing, also apply to the lines gen-
erated by crvn.

After crvn executes, the graphics position is undefined.

SEE ALSO

crv, curveb, curvep, defbas, depthc, linesm, linewd, rcrv, rervn, setlin

Version 3.0 -1- April 1990

curori Graphics Reference, FORTRAN curori

NAME

curori — sets the origin of a cursor

FORTRAN 77 SPECIFICATION

subroutine curori(n, xorign, yorign)
integer*4 n, xorign, yorign

PARAMETERS

n expects an index into the cursor table created by defcur.

xorign expects the x distance of the origin relative to the lower left
corner of the cursor.

yorign expects the y distance of the origin relative to the lower left
comer of the cursor.

DESCRIPTION

curori sets the origin of a cursor. The origin is the point on the cursor
that aligns with the current cursor valuators. The lower left corner of
the cursor has coordinates (0,0). Before calling curori, the cursor must
be defined with defcur. curori does not take effect until you call
setcur.

The default origin for curori is at (0,0) for user-defined glyphs.

SEE ALSO

attach, defcur, setcur

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

curson Graphics Reference, FORTRAN curson

NAME

curson, cursof — control cursor visibility by window

FORTRAN 77 SPECIFICATION
subroutine curson

subroutine cursof

PARAMETERS

none

DESCRIPTION

curson and cursof control the visibility of the cursor in the current win-
dow. The default is curson.

Use getcur to find out if the cursor is visible.

SEE ALSO

getcur

NOTE

This routine is available only in immediate mode.

BUG

On the Personal IRIS, cursor visibility is a global resource. The calls
curson and cursof control cursor visibility regardless of its position on
the screen. If a process turns off the cursor, it will remain off until that
process is killed or the cursor is turned back on by a call to curson.

Version 3.0 -1- April 1990

cursty Graphics Reference, FORTRAN cursty

NAME

cursty — defines the type and/or size of cursor

FORTRAN 77 SPECIFICATION

subroutine cursty(typ)
integer*4 typ

PARAMETERS

type expects one of five values that describe the cursor:

C16X1: the default, a 16x16 bitmap cursor of no more than one
color.

C16X2: a 16x16 bitmap cursor of no more than three colors.
C32X1: a 32x32 bitmap cursor of no more than one color.
C32X2: a 32x32 bitmap cursor of no more than three colors.
CCROSS: a cross-hair cursor.

DESCRIPTION

cursty defines the type and size of a cursor. After you call cursty call
defcur to specify the glyph’s bitmap and to assign a numeric name to it.

The cross-hair cursor is formed with a horizontal line and a vertical line
(each 1 pixel wide) that extend completely across the screen. Its origin
(15,15) is at the intersection of the two lines. It is a single-color cursor
- whose color is mapped by the color index returned by the getgde
inquiry GDXHCI.
SEE ALSO

defcur, curori, getgde

NOTES

This routine is available only in immediate mode.

Version 3.0 1= April 1990

cursty Graphics Reference, FORTRAN cursty

Cursor types C16X2 and C32X2 are not available on systems where the
getgde inquiry GDBCUR returns 1.

Version 3.0 -2- April 1990

curveb Graphics Reference, FORTRAN curveb

NAME

curveb — selects a basis matrix used to draw curves

FORTRAN 77 SPECIFICATION

subroutine curveb(basid)
integer*4 basid

PARAMETERS

basid expects the basis identifier of the basis matrix you want to use
when drawing a curve. (You must have previously called defbas
to assign a basis identifier to a basis matrix.)

DESCRIPTION

curveb selects a basis matrix (by its basis identifier) as the current basis
matrix to draw curve segments. The basis matrix determines how the
system uses the control points when drawing a curve. Depending on the
basis matrix, the system draws bezier curves, cardinal spline curves, b-
spline curves and others. The system does not restrict you to a limited
set of basis matrices. You can define basis matrices to match whatever
constraints you want to place on the curve.

SEE ALSO

crv, crvn, curvep, defbas

Version 3.0 -1- April 1990

curvei Graphics Reference, FORTRAN curvei

NAME

curvei — draws a curve segment

FORTRAN 77 SPECIFICATION

subroutine curvei(count)
integer*4 count

PARAMETERS

DESCRIPTION

curveit iterates the matrix on top of the matrix stack as a forward differ-
ence matrix count times. curveit issues a draw routine with each itera-
tion. curveit accesses low-level hardware capabilities for curve draw-
ing.

SEE ALSO

crv

Version 3.0 -1- April 1990

curvep Graphics Reference, FORTRAN curvep

NAME

curvep — sets number of line segments used to draw a curve segment

FORTRAN 77 SPECIFICATION

subroutine curvep(nsegs)
integer*4 nsegs

PARAMETERS

nsegs expects the number of line segments to use when drawing a
curve segment.

DESCRIPTION

curvep sets the number of line segments used to draw a curve. When-
ever crv, crvn, rcrv, or rcrvn execute, a number of straight line seg-
ments approximate each curve segment. The greater the value of nsegs,
the smoother the curve appears, but the longer the drawing time.

SEE ALSO

crv, crvn, curveb, rcrv, rcrvi

Version 3.0 -1- April 1990

cyclem Graphics Reference, FORTRAN cyclem

NAME

cyclem — cycles between color maps at a specified rate

FORTRAN 77 SPECIFICATION

subroutine cyclem(durati, map, nxtmap)
integer*4 durati, map, nxtmap

PARAMETERS
durati expects the number of vertical traces before switching to the
map named by nxtmap.
map expects the number of the map to use before completing the

number of vertical sweeps specified by durati.

nxtmap expects the number of the map to use after completing the
number of vertical sweeps specified by durati.

DESCRIPTION

When the system is in multimap mode, cyclem allows you to switch
from one color map to another after a specified duration. In multimap
mode there are 16 color maps, numbered 0-15. You can use cyclem
within a loop if you want to cycle through more than one map.

EXAMPLE

The code fragment sets up multimap mode and cycle between two maps,
leaving map 1 on for ten vertical retraces and map 3 on for five retraces.

call multim
call gconfi
call cyclem(10, 1, 3)
call cyclem(5, 3, 1)

SEE ALSO
blink, gconfi, multim

Version 3.0 -1- April 1990

cyclem Graphics Reference, FORTRAN cyclem

NOTE

This routine is available only in immediate mode and cannot be used in
onemap mode.

Version 3.0 -2- April 1990

czclea Graphics Reference, FORTRAN czclea

NAME

czclea — clears the color bitplanes and the z-buffer simultaneously

FORTRAN 77 SPECIFICATION

subroutine czclea(cval, zval)
integer*4 cval, zval

PARAMETERS

cval expects the color to which you want to clear the color bitplanes.

zval expects the depth value to which you want to clear the z-buffer.

DESCRIPTION

czlear sets the color bitplanes in the area of the viewport to cval, and the
z buffer bitplanes in the area of the viewport to zval. Multiple color bit-
plane buffers can be cleared simultaneously using the backbu and
frontb commands. The screen mask, when it is set to a subregion of the
viewport, bounds the cleared region. Most other drawing modes,
including alpha function, blend function, logical operation, polygon fill
pattern, stenciling, texture mapping, writemask, and z buffering, have no
effect on the operation of czclea. The current color does not change.

Because only the normal framebuffer includes a z buffer, czclea should
be called only while draw mode is NORMAL.

In RGB mode, the cval parameter expects a packed integer of the same
format used by cpack, namely $aaggbbrr, where rr is the red value, bb
the blue value, gg the green value, and aa is the alpha value. In color
map mode this parameter expects an index into the current color map, so
only up to 12 of the least-significant bits are significant.

The valid range of the zval parameter depends on the graphics hardware,
where the minimum is the value returned by getgde(GDZMIN) and the
maximum is the value returned by getgde(GDZMAX). It is unaffected
by the state of the GLCZRA compatibility mode (see glcomp).

After czclea executes, the graphics position is undefined.

Version 3.0 -1- April 1990

czclea Graphics Reference, FORTRAN czclea

SEE ALSO

afunct, blendf, clear, cpack, getgde, glcomp, logico, scrmas, setpat,
stenci, texbin, wmpack, writem, zbuffe, zclear, zfunct

NOTES

Whenever you need to clear both the z-buffer and the color bitplanes to
constant values at the same time, use czclea. A simultaneous clear will
take place if circumstances allow it. There is never a penalty in calling
czclea over calling clear and zclear sequentially.

IRIS-4D GT and GTX models can do a simultaneous clear only under
the following circumstances:

e In RGB mode, the 24 least significant bits of cval (red, green, and
blue) must be identical to the 24 least significant bits of zval.

e In color map mode, the 12 least significant bits of cval must be
identical to the 12 least significant bits of zval.

IRIS-4D VGX models always clear color and z bitplanes banks sequen-
tially, regardless of the values of cval and zval.

On the Personal Iris, you can speed up czclea by as much as a factor of
four for common values of zval if you call zfunct in conjunction with it
such that one of the following conditions are met:

zval | zfunct

getgde(GDZMIN) ZF_GREATER or ZF_GEQUAL
getgde(GDZMAX) ZF _LESS or ZF_LEQUAL

BUGS

IRIS-4D G models always clear their z-buffers to GDZMAX, regardless
of the value passed to czclea.

Version 3.0 -2- April 1990

dbtext Graphics Reference, FORTRAN dbtext

NAME
dbtext — sets the dial and button box text display

FORTRAN 77 SPECIFICATION

subroutine dbtext(str)
character*(8) str

PARAMETERS

Str expects a variable containing a text string of no more than eight
characters: digits, spaces, and uppercase letters only.

DESCRIPTION

dbtext places up to eight characters of text into the text display on the
dial and button box.

SEE ALSO
setdbl

NOTES
This routine is available only in immediate mode.

As might be expected, this routine does not function if you use the dial
and button box without a text display.

Version 3.0 -1- April 1990

defbas Graphics Reference, FORTRAN defbas

NAME

defbas — defines a basis matrix

FORTRAN 77 SPECIFICATION

subroutine defbas(id, mat)
integer*4 id ’
real mat(4,4)

PARAMETERS
id expects the basis matrix identifier you want to assign to the matrix
at mat.

mat expects the matrix to which you want to assign the basis matrix
identifier, id.

DESCRIPTION

defbas assigns a basis matrix identifier to a basis matrix. The basis
matrix is used by the routines that generate curves and patches. Use the
basis matrix identifier in subsequent calls to curveb and patchb.

SEE ALSO

crv, crvn, curveb, curvep, patch, patchb, patchp, patche, rcrv, rcrvn

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- * April 1990

defcur Graphics Reference, FORTRAN defcur

NAME
defcur — defines a cursor glyph

FORTRAN 77 SPECIFICATION

subroutine defcur(n, curs)
integer*4 n
integer*2 curs(*)

PARAMETERS

n expects the constant you want to assign as a cursor name. By
default, an arrow is defined as cursor O and cannot be redefined.

curs expects the bitmap for the cursor you want to define. The bitmap
can be 16x16 or 32x32 and either one or two layers deep. This
parameter is ignored for cross-hair cursors.

DESCRIPTION

defcur defines a cursor glyph with the specified name and bitmap. Call
cursty prior to calling defcur to set the type and size of cursor it
defines. The name parameter n is used to identify the cursor glyph to
other cursor routines. A subsequent call to defcur with the same value
of n will replace the current definition of the cursor with the new one.

By default, the cursor origin of a bitmap cursor is at (0,0), its lower-left
corner, and the cursor origin of a cross-hair cursor is at (15,15), the
intersection of its two lines. Use curori to set the cursor origin to some-
where else. The cursor origin is the position controlled by valuators
attached to the cursor, and is also the position pick uses for the picking
region.

SEE ALSO
curori, cursty, getcur, getgde, pick, setcur

NOTES
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

defcur Graphics Reference, FORTRAN defcur

Some models do not support two-layer cursor bitmaps. Use the getgde
inquiry GDBCUR to determine how many layers are supported.

Version 3.0 -2- April 1990

deflin Graphics Reference, FORTRAN deflin

NAME
deflin — defines a linestyle

FORTRAN 77 SPECIFICATION

subroutine deflin(n, Is)
integer*4 n, Is

PARAMETERS

n expects the constant that you want to use as an identifier for the
linestyle described by Is. This constant is used as an index into a
table of linestyles. By default, index O contains the pattern $FFFF,
which draws solid lines and cannot be redefined.

Is expects a 16-bit pattern to use as a linestyle. This pattern is stored in
the linestyle table at index n. You can define up to 2'¢ distinct
linestyles.

DESCRIPTION

deflin defines a linestyle which is a write-enabled pattern that is applied
when lines are drawn. The least-significant bit of the linestyle is applied
first. To replace a linestyle, respecify the previous index.

SEE ALSO
defcur, defpat, defras, getlst, Isrepe, setlin

NOTES
This routine is available only in immediate mode.

On the Personal Iris, there is a performance penalty for drawing non-
solid lines; there is no penalty on the other IRIS-4D models.

Version 3.0 -1- April 1990

defpat Graphics Reference, FORTRAN defpat

NAME
defpat — defines patterns

FORTRAN 77 SPECIFICATION

subroutine defpat(n, size, mask)
integer*4 n, size
integer*2 mask((size*size)/16)

PARAMETERS

n expects the constant that you want to use as an identifier for the
pattern described by mask. This constant is used as an index into
a table of patterns. By default, pattern O is a 16X16 solid pattern
that cannot be changed.

size expects the size of the pattern: 16, 32, or 64 for a 16x16-,
32x%32-, or 64x64-bit pattern, respectively.

mask expects an array of 16-bit integers that form the actual bit pat-
tern. The system stores the pattern in a pattern table at index n.
The pattern is described from left to right and bottom to top, just
as characters are described in a raster font.

DESCRIPTION

defpat allows you to define an arbitrary pattern and assign it an
identifier. You can later reference this pattern in other routines via its
identifier. Patterns are available to all windows when using multiple
windows. ’

Patterns affect the filling of polygons, including rectangles, arcs, and cir-
cles, as well as polygons specified with individual vertices. Patterns
have no effect on the scan conversion of points, lines, or characters, or
on pixel write or copy operations.

When a pattern is active (see setpat) it is effectively replicated across
the entire screen, with the edges of pattern tiles aligned to the left and
bottom edges of the screen. Bit 15 of each 16-bit description word is
leftmost, and words are assembled left to right, then bottom to top, to
form each pattern square. Pixels on the screen that correspond to zeros
in the pattern remain unmodified during scan conversion of polygons.

Version 3.0 -1- April 1990

defpat Graphics Reference, FORTRAN defpat

No changes are made to any bitplane bank of a protected pixel.

SEE ALSO
deflin, defras, getpat, setpat

NOTES
This routine is available only in immediate mode.

Some machines do not support 64x64 patterns. Call getgde(GDPATS)
to determine the availability of 64x64 patterns.

On the Personal Iris there is a performance penalty for non-solid pat-
terns.

Version 3.0 -2- April 1990

defras -

NAME

Graphics Reference, FORTRAN defras

defras — defines a raster font

FORTRAN 77 SPECIFICATION
subroutine defras(n, ht, nc, chars, nr, raster)
integer*4 n, ht, nc, nr
integer*2 chars(4*nc), raster(nr)

PARAMETERS

n

ht
nc

chars

Version 3.0

expects the constant that you want to use as the identifier for this
raster font.' This constant is used as an index into a font table.
The default font, 0, is a fixed-pitch font with a height of 16 and
width of 9. Font 0 cannot be redefined.

expects the maximum height (in pixels) for a character.
expects the number of characters in this font.

expects an array of four by nc 16-bit elements. Because you will
need to write to individual bytes within the second and third ele-
ments of the chars array, you should declare an eight by nc array
of one byte elements.. You can then EQUIVAiENCE the new
array to the the chars array.

First element of each row expects the element number of raster
at which starts the bitmap for this character. The element
numbers start at zero.

Second element, high byte expects the number of columns in
the bitmap that contain set bits (character width). Second ele-
ment, low byte expects the number of rows (character height) in
the bitmap of the character (including ascender and descender).

Third element, high byte expects number of bitmap columns
between the start of the character’s bitmap and the start of the
character. Third element, low byte expects the number rows
between the character’s baseline and the bottom of the bitmap.
For characters with descenders (e.g., g) this value is a negative
number. For characters that rest entirely on the baseline, this
value is zero.

-1- April 1990

defras

nr

raster

Graphics Reference, FORTRAN defras

Fourth element expects the bit width of the bitmap for the char-
acter. This value tells the system how many bits there are in each
row of the bitmap for this character.

expects the number of 16-bit integers in raster.

expects a one-dimensional array that contains all the bit maps
(masks) for the characters in the font. Each element of the array
is a 16-bit integer and the elements are ordered left to right, bot-
tom to top. When interpreting each element, the bits are left
Jjustified within the character’s bounding box.

The maximum row width for a single bitmap is not limited to the
capacity of a single 16-bit integer array element. The rows of a
bitmap may span more than one array element. However, each
new row in the character bitmap must start with its own array
element. Likewise, each new character bitmap must start with
its own array element. The system reads the row width and start-
ing location for a character bitmap from the in the chars array.

DESCRIPTION

defras
font is

defines a raster font. The hardest part of creating a new raster
generating a bit map for each character. You may want to write a

graphically oriented tool for creating the bitmaps expected by raster.

To replace a raster font, specify the index of the previous font as the
index for the new font. To delete a raster font, define a font with no
characters. Patterns, cursors, and fonts are available to all windows
when using multiple windows.

SEE ALSO
charst,

NOTE

cmove, font, getcpo, getdes, getfon, gethei, strwid

This routine is available only in immediate mode.

Version 3.0

-2- April 1990

delobj Graphics Reference, FORTRAN delobj

NAME
delobj — deletes an object

FORTRAN 77 SPECIFICATION

subroutine delobj(obj) (
integer*4 obj ‘

PARAMETERS

obj expects the object identifier of the object that you want to delete.

DESCRIPTION

delobj deletes an object. Deleting an object frees most of its display list
storage; the object identifier remains undefined until you create a new
object for that identifier. The system ignores calls to delete objects that
don’t exist.

SEE ALSO _
compac, makeob (

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

deltag Graphics Reference, FORTRAN deltag

NAME
deltag — deletes a tag from the current open object

FORTRAN 77 SPECIFICATION

subroutine deltag(t)
integer*4 t

PARAMETERS

t expects the tag that you want to delete.

DESCRIPTION

deltag deletes the specified tag from the object currently open for edit-
ing. You cannot delete the special tags STARTT and ENDTAG.

SEE ALSO
editob, maketa

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

depthe Graphics Reference, FORTRAN

NAME
depthc — turns depth-cue mode on and off

FORTRAN 77 SPECIFICATION

subroutine depthc(mode)
logical mode

PARAMETERS

mode expects either . TRUE. or .FALSE..
.TRUE. turns depthcue mode on.
JFALSE. turns depthcue mode off.

DESCRIPTION

depthc

depthe turns depth-cue mode on or off. If depth-cue mode is on, all
lines, points, characters, and polygons are drawn depth-cued. This
means the z values and the range of color values specified by Ishade or
IRGBra determine the color of the lines, points, characters, or polygons.
The z values, whose range is set by Isetde, are mapped linearly into the
range of color values. In this mode, lines that vary greatly in z value

span the range of colors specified by Ishade or IRGBra.

In color index mode, the color map entries specified by Ishader should
be loaded with a series of colors that gradually increase or decrease in

intensity.

SEE ALSO ‘
1RGBra, Isetde, 1shade

Version 3.0 -1-

April 1990

dglclo Graphics Reference, FORTRAN dgiclo

NAME

dglclo — closes the DGL server connection

FORTRAN 77 SPECIFICATION

subroutine dglclo(sid)
integer*4 sid

PARAMETERS

sid expects the identifier of the server you want to close. If sid is nega-
tive, then all graphics server connections are closed. Server
identifiers are returned by dglope.

DESCRIPTION

dglclo closes the connection to the graphics server associated with the
server identifier sid, killing the Distributed Graphics Library (DGL)
server process and all its windows. If sid is negative, then all graphics
server connections are closed. Call dglclo after gexit or when the graph-
ics server is no longer needed. Closing the connection frees up
resources on the graphics server.

After a connection is closed, there is no current graphics window and no
current graphics server. Calling any routines other than dglope, dglclo
or routines that take graphics window identifiers as input parameters
will result in an error.

SEE ALSO

dglope
4Sight User’s Guide, ‘‘Using the GL/DGL Interfaces’’.

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

dglope

NAME

dglope —

Graphics Reference, FORTRAN dglope

opens a DGL connection to a graphics server

FORTRAN 77 SPECIFICATION

integer*4 dglope(svname, length, type)
character*(*) svname
integer*4 length, type

PARAMETERS

svname

length
type

Version 3.0

expects a variable containing the name of the graphics server
to which you want to open a connection.

For a successful connection, the username on the server must
be equivalent (in the sense of rlogin(1C)) to the originating
account; no provision is made for specifying a password. The
remote username used is the same as the local username unless
you specify a different remote username. To specify a dif-
ferent remote username, the svname string should use the for-
mat username@servername.

For DECnet connections, if the server account has a password,
this password must be specified wusing the format

‘username password@servername. This password is used only

for opening the DECnet connection; the two accounts must
still be equivalent in the rlogin sense.

expects the length of the string in svname.

expects a symbolic constant that specifies the kind of connec-
tion. There are three defined constants for this parameter:

DGLLOC indicates a direct connection to the local graphics
hardware.

DGLTSO indicates a remote connection via TCP/IP.
DGL4DD indicates a remote connection via DECnet.

-1- April 1990

dglope Graphics Reference, FORTRAN dglope

FUNCTION RETURN VALUE

If the connection succeeds, the returned value of the function is a non-
negative integer, serverid, that identifies the graphics server. If the con-
nection failed, the returned value for the function is a negative integer.
The absolute value of a negative returned value is either a standard error
value (defined in <errno.h>) or one of several error returns associated
specifically with dglope:

ENODEV type is not a valid connection type.

EACCESS login incorrect or permission denied.

EMFILE too many graphics connections are currently open.
EBUSY only one DGLLOCAL connection allowed.

ENOPROTOOPT
DGL service not found in /etc/services.

ERANGE invalid or unrecognizable number representation.

EPROTONOSUPPORT
DGL version mismatch.
ESRCH the window manager is not running on the server.
DESCRIPTION ,

dglope opens a Distributed Graphics Library (DGL) connection to a
graphics server (svname). After a connection is open, all graphics input
and output are directed to that connection. Graphics input and output
continue to be directed to the connection until either the connection is
closed, another connection is opened or a different connection is
selected. A different connection can be selected by calling a subroutine
that takes a graphics window identifier as an input parameter, eg. win-
set. The server connection associated with that graphics window
identifier becomes the current connection. To close a DGL connection,
call dglclo with the server identifier returned by dglope.

Version 3.0 -2- April- 1990

dglope Graphics Reference, FORTRAN dglope

SEE ALSO
dglclo, finish, gflush, winope, winset
rlogin(1C) in the IRIS-4D User’s Reference Manual
4Sight User’ s Guide, ‘Using the GL/DGL Interfaces’’.

NOTES
This routine is available only in immediate mode.

This routine is available in both the DGL and GL library. However,
only a DGLLOC connection type is supported by the GL library.

Version 3.0 -3- April 1990

dopup Graphics Reference, FORTRAN dopup

NAME
dopup — displays the specified pop-up menu

FORTRAN 77 SPECIFICATION

integer*4 function dopup(pup)
integer*4 pup

PARAMETERS

pup expects the identifier of the pop-up menu you want to display.

FUNCTION RETURN VALUE

The returned value of the function is the value of the item selected from
the pop-up menu. If the user makes no menu selection, the retumed
value of the function is —1.

DESCRIPTION

dopup displays the specified pop-up menu until the user makes a selec-
tion. If the calling program has the input focus, the menu is displayed
and dopup returns the value resulting from the item selection. The value
can be returned by a submenu, a function, or a number bound directly to
an item. If no selection is made, dopup returns —1.

When you first define the menu (using addtop) you specify the list of
menu entries and their corresponding actions. See addtop for details.

SEE ALSO
addtop, freepu, newpup

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

double Graphics Reference, FORTRAN double

NAME
double — sets the display mode to double buffer mode

FORTRAN 77 SPECIFICATION
subroutine double

PARAMETERS

none

DESCRIPTION

double sets the display mode to double buffer mode. It does not take
effect until geonfi is called. In double buffer mode, the bitplanes are
partitioned into two groups, the front bitplanes and the back bitplanes.
Double buffer mode displays only the front bitplanes. Drawing routines
normally update only the back bitplanes; frontb and backbu can over-
ride the default.

In double buffer mode, gconfi calls frontb(.FALSE.) and
backbu(.TRUE.). .

SEE ALSO
backbu, frontb, gconfi, getbuf, getdis, RGBmod, single, swapbu

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

draw Graphics Reference, FORTRAN draw

NAME

draw, drawi, draws, draw2, draw2i, draw2s — draws a line

FORTRAN 77 SPECIFICATION

subroutine draw(x, y, z)
real x,y, z

subroutine drawi(x, y, z)
integer*4 x, y, z

subroutine draws(x, y, z)
integer*2 x, y, z

subroutine draw2(x, y)
real x, y

subroutine draw2i(x, y)
integer*4 x, y

subroutine draw2s(x, y)
integer*2 x, y

All of the above functions are functionally the same except for the type
declarations of the parameters. In addition the draw2* routines assume
a 2-D point instead of a 3-D point.

PARAMETERS
x expects the x coordinate of the point to which you want to draw a line
segment.

y expects the y coordinate of the point to which you want to draw a line
segment.

z expects the z coordinate of the point to which you want to draw a line
segment. (Not used by 2-D subroutines.)

DESCRIPTION

draw connects the point x, y, z and the current graphics position with a
line segment. It uses the current linestyle, linewidth, color (if in depth-
cue mode, the depth-cued color is used), and writemask.

Version 3.0 -1- April 1990

draw Graphics Reference, FORTRAN draw

draw updates the current graphics position to the specified point. Do
not place routines that invalidate the current graphics position within
sequences of moves and draws.

SEE ALSO

bgnlin, endlin, move, v

NOTE

draw should not be used in new development. Rather, lines should be
drawn using the high-performance v commands, surrounded by calls to
bgnlin and endlin.

Version 3.0 -2- April 1990

drawmo Graphics Reference, FORTRAN drawmo

NAME
drawmo — selects which GL framebuffer is drawable

FORTRAN 77 SPECIFICATION

subroutine drawmo(mode)
integer*4 mode

PARAMETERS

mode expects the identifier of the framebuffer to which GL drawing
commands are to be directed:

NORMDR, which sets operations for the normal color and z
buffer bitplanes.

OVRDRW, which sets operations for the overlay bitplanes.
UNDRDR, which sets operations for the underlay bitplanes.
PUPDRW, which sets operations for the pop-up bitplanes.
CURSDR, which sets operations for the cursor.

DESCRIPTION

The IRIS physical framebuffer is divided into 4 separate GL frame-
buffers: pop-up, overlay, normal, and underlay. drawmo specifies
which of these four buffers is currently being controlled and modified by
GL drawing and mode commands. Because drawmo cannot be set to
multiple framebuffers, GL drawing commands affect only one of the
four GL framebuffers at a time. :

The way that GL modes interract with drawmo is both complex and
significant to the GL programmer. For example, each framebuffer
maintains its own current color and its own color map. but linewidth is
shared among all framebuffers. In general, modes that determine what
is to be drawn into the framebuffers are shared; modes that control
framebuffer resources are either multiply specified, or specified only for
the normal framebuffer.

Version 3.0 -1- April 1990

drawmo Graphics Reference, FORTRAN drawmo

A separate version of each of the following modes is maintained by each
GL framebuffer. These modes are modified and read back based on the
current draw mode:

backbu

cmode

color or RGBcol

double

frontb

mapcol (a separate color map per framebuffer)
readso

RGBmod

single

writem or RGBwri

The following modes currently affect only the operation of the normal
framebuffer. They must therefore be modified only while draw mode is
NORMAL. As features are added to the GL, these modes may become
available in other draw modes. When this happens, a separate mode
will be maintained for each draw mode. '

acsize
blink
cyclem
multim
onemap
setmap
stenci
stensi
swrite
zbuffe
zdraw
zfunct
zsourc
zwrite

All other modes, including matricies, viewports, graphics and character
positions, lighting, and many primitive rendering options, are shared by
the four GL framebuffers.

Version 3.0 -2- April 1990

drawmo Graphics Reference, FORTRAN drawmo

Draw mode CURSDR differs from the others. True bitplanes for the
cursor do not exist; there is no current color or writemask in this draw-
ing mode. However, the cursor does have its own color map, and when
in this mode, mapcol and getmco access it.

SEE ALSO

¢, color, cpack, geonfi, getcol, getmco, getwri, mapcol, overla, stenci,
underl, wmpack, writem

NOTE
This routine is available only in immediate mode.
PUPDRAW mode is provided for compatibility, its use is discouraged.

Some GL modes that are shared by all draw modes are not implemented
by the popup, overlay, or underlay framebuffers. For example, the Per-
sonal Iris does not do Gouraud shading in these framebuffers. It is
important for the programmer to explicitly disable modes that are
shared, but not desired, when in draw modes other than NORMAL.
Otherwise the code may function differently on different platforms.

Version 3.0 -3- April 1990

editob Graphics Reference, FORTRAN editob

NAME
editob — opens an object definition for editing

FORTRAN 77 SPECIFICATION

subroutine editob(obj)
integer*4 obj

PARAMETERS

obj expects object identifier for object definition you want to edit.

DESCRIPTION

editobj opens an object definition for editing. The system maintains an
editing pointer that initially points to the end of the definition. The sys-
tem appends all new routines at that pointer location until you call
closeob or until you call a routine that repositions the editing pointer,
such as objdel, objins, or objrep.

Usually, you need not be concerned about memory allocation. Objects
grow and shrink automatically as routines are added and deleted. (See
chunks.)

If you call editob for an undefined object identifier, the system displays
an error message.

SEE ALSO
compac, objdel, objins, objrep, chunks

NOTE

This routine is available only in immediate mode.

Version 3.0 -=1- April 1990

endclo Graphics Reference, FORTRAN endclo

NAME
bgnclo, endclo — delimit the vertices of a closed line

FORTRAN 77 SPECIFICATION
subroutine bgnclo

subroutine endclo

PARAMETERS

none

DESCRIPTION

bgnclo marks the start of a group of vertex routines that you want inter-
preted as points on a closed line. Use endclo to mark the end of the ver-
tex routines that are part of the closed line.

A closed line draws a line segment from one vertex on the list to the
next vertex on the list. When the system reaches the end of the vertex
list, it draws a line that connects the last vertex to the first vertex. All
segments use the current linestyle, which is reset prior to the first seg-
ment and continues through subsequent segments. To specify a vertex,
use the v routine.

Between bgnclo and endclo, you can issue only the following Graphics
Library routines: ¢, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol, t,
and v. Within a closed line, you should use Imdef and Imbind only to
respecify materials and their properties. If the color changes between a
pair of vertices, the color of the line segment will be constant if the
current shading model is FLAT and interpolated if the current shading
model is GOURAU. In color map mode, the colors vary through the
color map; to get reasonable results, the color map should contain a
ramp.

There is no limit to the number of vertices that can be specified between
bgnclo and endclo. After endclo, the system draws a line from the final
vertex back to the initial vertex, and the current graphics position is left
undefined.

Version 3.0 -1- April 1990

endclo Graphics Reference, FORTRAN endclo

By default line vertices are forced to the nearest pixel center prior to
scan conversion. Line accuracy is improved when this coercion is
defeated with the subpix command. Subpixel vertex positioning is
especially important when lines are scan converted with antialiasing
enabled (see linesm).

bgnclo/endclo are the same as bgnlin/endlin, except they connect the
last vertex to the first.

EXAMPLE

The code fragment below draws the outline of a triangle. Lines use the
current linestyle, which is reset prior to the first vertex and continues
through all subsequent vertices.

call bgnclo
call v3f (vertl)
call v3f (vert2)
call v3f (vert3)
call endclo

SEE ALSO

bgnlin, c, linesm, linewi, lsrepe, scrsub, setlin, shadem, subpix, v

BUGS

On the IRIS-4D B and G models, and on the Personal Iris without Turbo
Graphics, if the color changes between a pair of vertices, the color of the
line segment will be constant regardless of the current shading model.

On the IRIS-4D GT and GTX models‘, if the color changes between a
pair of vertices, the color of the line segment will be interpolated regard-
less of the current shading model.

Version 3.0 -2- April 1990

endfee Graphics Reference, FORTRAN endfee

NAME
feedba, endfee — control feedback mode

FORTRAN 77 SPECIFICATION

Personal Iris and IRIS-4D VGX:
subroutine feedba(buffer, size)
real buffer(size)
integer*4 size

integer*4 function endfee(buffer)
real buffer(*)

Other models:
subroutine feedba(buffer, size)
integer*2 buffer(size)
integer*4 size

integer*4 function endfee(buffer)
integer*2 buffer(*)

PARAMETERS

buffer expects a buffer into which the system writes the feedback out-
put from the Geometry Pipeline. On the Personal Iris and the
IRIS-4D VGX, the output consists of 32-bit floating point
values; on the other IRIS-4D models, the output consists of 16-
bit integer values. Be sure you declare your buffer appropri-
ately.

size expects the maximum number of buffer elements into which the
system will write feedback output.

FUNCTION RETURN VALUE

The return value of endfee is the actual number of elements of buffer
that were written. The system will not write more than size elements,
even when the amount of feedback exceeds it. You should assume that
overflow has occurred whenever the return value is size.

Version 3.0 -1- April 1990

endfee Graphics Reference, FORTRAN endfee

DESCRIPTION

feedba puts the system in feedback mode. In feedback mode, the sys-
tem retains the output of the Geometry Pipeline rather than sending it to
the rendering subsystem. endfee turns off feedback mode and returns
the feedback output in buffer. This information is typically a descrip-
tion of a vertex, and is machine specific. For information for interpret-
ing the returned buffer, see the ‘‘Feedback’’ chapter of the Graphics
Library Programming Guide.

NOTE
These routines are available only in immediate mode.

-~

Version 3.0 ' -2- ~ April 1990

endful Graphics Reference, FORTRAN endful

NAME

endful — ends full-screen mode

FORTRAN 77 SPECIFICATION

subroutine endful

PARAMETERS

none

DESCRIPTION

endful ends full-screen mode and returns the screenmask and viewport
to the boundaries of the current graphics window. endful leaves the
current transformation unchanged.

SEE ALSO
fullscr

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

endlin Graphics Reference, FORTRAN endlin

NAME
bgnlin, endlin — delimit the vertices of a line

FORTRAN 77 SPECIFICATION
subroutine bgnlin

subroutine endlin

PARAMETERS

none

DESCRIPTION

Vertices specified after bgnlin and before endlin are interpreted as end-
points of a series of line segments. Use the v routine to specify a vertex.
The first vertex connects to the second; the second connects to the third;
and so on until the next-to-last vertex connects to the last one. The last
vertex does not connect to the first vertex. Use bgnclo to connect the
first and last points. All segments use the current linestyle, which is reset
prior to the first segment and continues through subsequent segments.

Between bgnlin and endlin, you can issue only the following Graphics
Library routines: ¢, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol,
t, and v. Imdef and Imbind can be used to respecify only materials and
their properties. If the color changes between a pair of vertices, the color
of the line segment will be constant if the current shading model is
FLAT and interpolated if the current shading model is GOURAU. In
color map mode, the colors vary through the color map; to get reason-
able results, the color map should contain a ramp.

There is no limit to the number of vertices that can be specified between
bgnlin and endlin. After endlin, the current graphics position is
undefined.

By default line vertices are forced to the nearest pixel center prior to
scan conversion. Line accuracy is improved when this coercion is
defeated with the subpix command. Subpixel vertex positioning is
especially important when lines are scan converted with antialiasing
enabled (see linesm).

Version 3.0 -1- April 1990

endlin Graphics Reference, FORTRAN endlin

SEE ALSO
bgnclo, ¢, linesm, linewi, Isrepe, scrsub, setlin, shadem, subpix, v

BUGS

On the IRIS-4D B and G models, and on the Personal Iris without Turbo
Graphics, if the color changes between a pair of vertices, the color of the
line segment will be constant regardless of the current shading model.

On the IRIS-4D GT and GTX models, if the color changes between a
pair of vertices, the color of the line segment will be interpolated regard-
less of the current shading model.

Version 3.0 -2- April 1990

endpic Graphics Reference, FORTRAN endpic

NAME
endpic — turns off picking mode

FORTRAN 77 SPECIFICATION

integer*4 function endpic(buffer)
integer*2 buffer(*)

PARAMETERS

buffer expects a buffer into which to append the contents of the name
stack when a drawing routine draws in the picking region.
Before writing the contents of the name stack, the system
appends the number of entries it is about to append. Thus, if the
name stack contains the values, 5, 9, and 17; then endpic
appends the values, 3, 5,9, and 17, to buffer.

Because more than one drawing routine may have written in the
picking region, it is possible for buffer to contain a number of
readings from the name stack.

FUNCTION RETURN VALUE

The returned value for the function is the number of times endpic wrote
the names stack to buffer.

If the returned function value is negative, then the buffer was too small
to contain all the readings from the name stack.

DESCRIPTION
endpic turns off picking mode and writes the hits to a buffer.

SEE ALSO
initna, loadna, pick pushna, popnam

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

endpoi Graphics Reference, FORTRAN endpoi

NAME
bgnpoi, endpoi — delimit the interpretation of vertex routines as points

FORTRAN 77 SPECIFICATION
subroutine bgnpoi

subroutine endpoi

PARAMETERS

none

DESCRIPTION

bgnpoi marks the beginning of a list of vertex routines that you want
interpreted as points. Use the endpoi routine to mark the end of the list.
For each vertex, the system draws a one-pixel point into the frame
buffer. Use the v routine to specify a vertex.

Between bgnpoi and endpoi, you can issue only the following Graphics
Library routines: ¢, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol, t,
and v. Use Imdef and Imbind to respecify only materials and their pro-
perties.

There is no limit to the number of vertices that can be specified between
bgnpoi and endpoi.

By default points are forced to the nearest pixel center prior to scan
conversion. This coercion is defeated with the subpix command. Sub-
pixel point positioning is important only when points are scan converted
with antialiasing enabled (see pntsmo).

After endpoi, the current graphics position is the most recent vertex.

SEE ALSO

¢, pntsmo, subpix, v

Version 3.0 -1- April 1990

endpol Graphics Reference, FORTRAN endpol

NAME
bgnpol, endpol — delimit the vertices of a polygon

FORTRAN 77 SPECIFICATION
subroutine bgnpol

subroutine endpol

PARAMETERS

none

DESCRIPTION

Vertices specified after bgnpol and before endpol form a single

- polygon. The polygon can have no more than 256 vertices. Use the v
subroutine to ‘specify a vertex. Self-intersecting polygons (other than
four-point bowties) may render incorrectly. Likewise, concave
polygons may not render correctly if you have not called
concav(.TRUE.).

Between bgnpol and endpol, you can issue only the following Graphics
Library subroutines: ¢, color, cpack, Imbind, Imcolo, Imdef, n,
RGBcol, t, and v. Use Imdef and Imbind to respecify only materials
and their properties.

By default polygon vertices are forced to the nearest pixel center prior to
" scan conversion. Polygon accuracy is improved when this coercion is
~defeated with the subpix command. Subpixel vertex positioning is
especially important when polygons are scan converted with antialiasing
enabled (see polysm). ' "

After endpol, the current graphics position is undefined.

SEE ALSO

backfa, ¢, concav, frontf, polymo, polysm, scrsub, setpat, shadem, sub-
pix, v

Version 3.0 =1- April 1990

endpol Graphics Reference, FORTRAN endpol

NOTES

If you want to use the backfa or frontf routines, specify the vertices in
counter-clockwise order.

Although calling concav(.TRUE.) will guarantee that all polygons will
be drawn correctly, on the IRIS-4D B and G models, and on the Per-
sonal Iris, doing so cause their performance to be degraded.

Version 3.0 -2- April 1990

endpup Graphics Reference, FORTRAN endpup

NAME
pupmod, endpup — obsolete routines

FORTRAN 77 SPECIFICATION
subroutine pupmod

subroutine endpup

PARAMETERS

none

DESCRIPTION

These routines are obsolete. Although pupmode/endpupmode con-
tinue to function (to provide backwards compatibility) all new develop-
ment should use drawmo to access the pop-up menu bitplanes.

SEE ALSO

drawmo

Version 3.0 -1- April 1990

endqst Graphics Reference, FORTRAN endqst

bgngst, endqst — delimit the vertices of a quadrilateral strip

FORTRAN SPECIFICATION
subroutine bgngst

subroutine endqst

DESCRIPTION

Vertices specified between bgngst and endqst are used to define a strip
of quadrilaterals. The graphics pipe maintains three vertex registers.
The first, second, and third vertices are loaded into the registers, but no
quadrilateral is drawn until the system executes the fourth vertex rou-
tine. Upon executing the fourth vertex routine, the system draws a qua-
drilateral through the vertices, then replaces the two oldest vertices with
the third and fourth vertices.

For each new pair of vertex routines, the system draws a quadrilateral
through two new vertices and the two older stored vertices, then replaces
the older stored vertices with the two new vertices.

Between bgngst and endgst you can issue the following Graphics
Library routines: c¢, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol,
t, and v. Use Imdef and Imbind only to respecify materials and their
properties.

If you want to use backfa, you should specify the vertices of the first
quadrilateral in counter-clockwise order. All quadrilaterals in the strip
have the same rotation as the first quadrilateral in a strip, so that back-
facing works correctly.

There is no limit to the number of vertices that can be specified between
bgngst and endgst. The result is undefined, however, if an odd number
of vertices are specified, or if fewer than four vertices are specified.

By default quadrilateral vertices are forced to the nearest pixel center
prior to scan conversion. Quadrilateral accuracy is improved when this
coercion is defeated with the subpix command. Subpixel vertex posi-
tioning is especially important when quadrilaterals are scan converted
with antialiasing enabled (see polysm).

Version 3.0 -1- April 1990

endqst

Graphics Reference, FORTRAN endgst

After endgst the current graphics position is undefined.

EXAMPLE

For example, the code sequence:

call
call
call
call
call
call
call
call
call
call

bgngst
v3f (zero)
v3f (one)
v3f (two)
v3f (three)
v3f (four)
v3f (five)
v3f (six)
v3f (seven)

endgst

draws three quadrilaterals: (0,1,2,3), (2,3.4,5), and (4,5,6,7). Note that
the vertex order required by quadrilateral strips matches the order
required by the equivalent triangle mesh. The vertices above, when
places between bgntme and endtme calls, draws six triangles: (0,1,2),
(1,2,3), (2,3,4), (3.4,5), (4,5,6), and (5,6,7).

SEE ALSO

backfa, ¢, concav, frontf, polymo, polysm, scrsub, setpat, shadem, sub-

pix, v

NOTE

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
quadrilateral strips. Use getgde to determine whether quadrilateral
strips are supported.

IRIS-4D VGX models use vertex normals to improve the shading qual-
ity of quadrilaterals, regardless of whether lighting is enabled.

Version 3.0

-2- April 1990

endsel Graphics Reference, FORTRAN endsel

NAME
endsel — turns off selecting mode

FORTRAN 77 SPECIFICATION

integer*4 function endsel(buffer)
integer*2 buffer(*)

PARAMETERS

buffer expects a buffer into which to write hits.

FUNCTION RETURN VALUE

The returned function values is the number of hits made while selection
mode was active. Each time there is a hit, the system writes the name
stack to buffer.

If the value returned is negative, the buffer is not large enough to hold
all the hits that occurred.

DESCRIPTION

endsel turns off selection mode. The buffer stores any hits generated by
drawing routines between gselec and endsel. Every hit that occurs
causes the entire contents of the name stack to be recorded in the buffer,
preceded by the number of names in the stack. Thus, if the name stack
contains 5, 9, 17 when a hit occurs, the numbers 3, 5, 9, 17 are added to
the buffer.

SEE ALSO

gselec, loadna, initna pushna, popnam

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

endsur _ Graphics Reference, FORTRAN endsur

NAME
bgnsur, endsur — delimit a NURBS surface definition

FORTRAN 77 SPECIFICATION
subroutine bgnsur

subroutine endsur

PARAMETERS

none

DESCRIPTION

Use bgnsur to mark the beginning of a NURBS (Non-Uniform Rational
B-Spline) surface definition. After you call bgnsur, call the routines that
define the surface and that provide the trimming information. To mark
the end of a NURBS surface definition, call endsur.

Within a NURBS surface definition (between bgnsur and endsur), you
may use only the following Graphics Library subroutines: nurbss,
bgntri, endtri, nurbsc, and pwlcur. The NURBS surface definition
must consist of exactly one call to nurbss to define the shape of the sur-
face. In addition, this call may be preceeded by calls to nurbss that
specify how texture and color parameters vary across the surface. The
call(s) to nurbss may be followed by a list of one or more trimming
loop definitions (to define the boundaries of the surface). Each trim-
ming loop definition consists of one call to bgntri, one or more calls to
either pwlcur or nurbsc, and one call to endtri.

The system renders a NURBS surface as a polygonal mesh, and calcu-
lates normal vectors at the corners of the polygons within the mesh.
Therefore, your program should specify a lighting model if it uses
NURBS surfaces. If your program uses no lighting model, all the
interesting surface information is lost. When using a lighting model,
use Imdef and Imbind to define or modify materials and their proper-
ties.

Version 3.0 -1- " April 1990

endsur Graphics Reference, FORTRAN endsur

EXAMPLE

The following code fragment draws a NURBS surface trimmed by two
closed loops. The first closed loop is a single piecewise linear curve
(see pwlcur), and the second closed loop consists of two NURBS curves
(see nurbsc), joined end to end:

call bgnsur
call nurbss(. . .)
call bgntri
call pwlcur(. . .)
call endtri
call bgntri
call nurbsc(. . .)
call nurbsc(. . .)
call endtri
call endsur

SEE ALSO

nurbss, bgntri, nurbsc, pwlcur, setnur, getnur

Version 3.0 -2- April 1990

endtme Graphics Reference, FORTRAN endtme

NAME

bgntme, endtme — delimit the vertices of a triangle mesh

FORTRAN 77 SPECIFICATION
subroutine bgntme

subroutine endtme

PARAMETERS

none

DESCRIPTION

Vertices specified between bgntme and endtme are used to define a
mesh of triangles. The graphics pipe maintains two vertex registers.
The first and second vertices are loaded into the registers, but no triangle
is drawn until the system executes the third vertex routine. Upon execut-
ing the third vertex routine, the system draws a triangle through the ver-
tices, then replaces the older of the register vertices with the third ver-
tex.

For each new vertex routine, the system draws a triangle through the
new vertex and the stored vertices, then (by default) replaces the older
stored vertex with the new vertex. If you want the system to replace the
more recent of the stored vertices, call swaptm prior to calling v.

Between bgntme and endtme you can issue the following Graphics
Library routines: c, color, cpack, Imbind, Imcolo, Imdef, n, RGBcol,
swaptm, t, and v. Use Imdef and Imbind only to respecify materials
and their properties.

If you want to use backfa, you should specify the vertices of the first tri-
angle in counter-clockwise order. All triangles in the mesh have the
same rotation as the first triangle in a mesh so that backfacing works
correctly.

There is no limit to the number of vertices that can be specified between
bgntme and endtme.

Version 3.0 -1- April 1990

endtme

Graphics Reference, FORTRAN endtme

By default triangle vertices are forced to the nearest pixel center prior to
scan conversion. Triangle accuracy is improved when this coercion is
defeated with the subpix command. Subpixel vertex positioning is
especially important when triangles are scan converted with antialiasing
enabled (see polysm).

After endtme the current graphics position is undefined.

EXAMPLE

For example, the code sequence:

call
call
call
call
call
call

bgntme
v3f (zero)
v3f (one)
v3f (two)
v3f (three)
endtme

draws two triangles, (zero,one,two) and (one,two,three), while the code

sequence:

bgntme

v3f (zero)

v3f (one)

swaptm
v3f (two)
v3f (three)
endtme

draws two triangles, (zero,one,two) and (zero,two,three). There is no
limit to the number of times that swaptmesh can be called.

SEE ALSO
backfa, ¢, concav, frontf, polymo, polysm, scrsub, setpat, shadem, sub-
pix, swaptm, v

Version 3.0 -2- April 1990

endtri Graphics Reference, FORTRAN endtri

NAME
bgntri, endtri — delimit a NURBS surface trimming loop

FORTRAN 77 SPECIFICATION
subroutine bgntri

subroutine endtri

PARAMETERS

none

DESCRIPTION

Use bgntri to mark the beginning of a definition for a trimming loop.
Use endtri to mark the end of a definition for a trimming loop. A trim-
ming loop is a set of oriented curves (forming a closed curve) that
defines boundaries of a NURBS surface. You include these trimming
loop definitions in the definition of a NURBS surface.

The definition for a NURBS surface may contain many trimming loops.
For example, if you wrote a definition for NURBS surface that resem-
bled a rectangle with a hole punched out, the definition would contain
two trimming loops. One loop would define the outer edge of the rec-
tangle. The other trimming loop would define the hole punched out of
the rectangle. The definitions of each of these trimming loops would be
bracketed by a bgntri/endtri pair.

The definition of a single closed trimming loop may consist of multiple
curve segments, each described as a piecewise linear curve (see pwlcur)
or as a single NURBS curve (see nurbsc), or as a combination of both
in any order. The only Graphics library calls that can appear in a trim-
ming loop definition (between a call to bgntri and a call to endtri) are
pwlcur and nurbsc.

Version 3.0 -1- April 1990

endtri Graphics Reference, FORTRAN - endtri

In the following code fragment, we define a single trimming loop that
consists of one piecewise linear curve and two NURBS curves:

call bgntri

call pwlcur(. . .)
call nurbsc(. . .)
call nurbsc(. . .)

call endtri

The area of the NURBS surface that the system displays is the region in
the domain to the left of the trimming curve as the curve parameter
increases. Thus, the resultant visible region of the NURBS surface is
inside for a counter-clockwise trimming loop and outside for a clock-
wise trimming loop. So for the rectangle mentioned earlier, the trim-
ming loop for the outer edge of the rectangle should run counter-
clockwise, and the trimming loop for the hole punched out should run
clockwise.

If you use more than one curve to define a single trimming loop, the
curve segements must form a closed loop (i.e, the endpoint of each
curve must be the starting point of the next curve, and the endpoint of
the final curve must be the starting point of the first curve). If the end-
points of the curve are sufficiently close together but not exactly coin-
cident, the system coerces the them to match. If the endpoints are not
sufficiently close, the system generates an error message and ignores the
entire trimming loop.

If a trimming loop definition contains multiple curves, the direction of
the curves must be consistent (i.e., the inside must be to the left of the
curves). Nested trimming loops are legal as long as the curve orienta-
tions alternate correctly. If no trimming information is given for a
NURBS surface, the entire surface is drawn.

SEE ALSO
bgnsur, nurbss, nurbsc, pwlcur, setnur, getnur

Version 3.0 -2- April 1990

feedba Graphics Reference, FORTRAN feedba

NAME

feedba, endfee — control feedback mode

FORTRAN 77 SPECIFICATION

Personal Iris and IRIS-4D VGX:
subroutine feedba(buffer, size)
real buffer(size)
integer*4 size

integer*4 function endfee(buffer)
real buffer(*)

Other models:
subroutine feedba(buffer, size)
integer*2 buffer(size)
integer*4 size

integer*4 function endfee(buffer)
integer*2 buffer(*)

PARAMETERS

. buffer expects a buffer into which the system writes the feedback out-
put from the Geometry Pipeline. On the Personal Iris and the
IRIS-4D VGZX, the output consists of 32-bit floating point
values; on the other IRIS-4D models, the output consists of 16-
‘bit integer values. Be sure you declare your buffer appropri-
ately.

size expects the maximum number of buffer elements into which the
system will write feedback output.

FUNCTION RETURN VALUE

The return value of endfee is the actual number of elements of buffer
that were written. The system will not write more than size elements,
even when the amount of feedback exceeds it. You should assume that
overflow has occurred whenever the return value is size.

Version 3.0 -1- April 1990

feedba Graphics Reference, FORTRAN feedba

DESCRIPTION

feedba puts the system in feedback mode. In feedback mode, the sys-
tem retains the output of the Geometry Pipeline rather than sending it to
the rendering subsystem. endfee turns off feedback mode and returns
the feedback output in buffer. This information is typically a descrip-
tion of a vertex, and is machine specific. For information for interpret-
ing the returned buffer, see the ‘‘Feedback’’ chapter of the Graphics
Library Programming Guide.

NOTE

These routines are available only in immediate mode.

Version 3.0 -2- April 1990

finish Graphics Reference, FORTRAN finish

NAME
finish — blocks until the Geometry Pipeline is empty

FORTRAN 77 SPECIFICATION

subroutine finish

PARAMETERS

none

DESCRIPTION

finish forces all unsent commands down the Geometry Pipeline to the
rendering subsystem followed by a final token. It blocks the calling pro-
cess until an acknowledgement is returned from the rendering subsystem
that the final token has been received.

SEE ALSO
gflush

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

fogver

NAME

Graphics Reference, FORTRAN fogver

fogver — specify fog density for per-vertex atmospheric effects

FORTRAN SPECIFICATION

subroutine fogver(mode, params)
integer*4 mode
real params()

PARAMETERS

mode

params

Version 3.0

expects one of three valid symbolic constants:

FGDEFI.: interpret params as a specification for fog density
and color.

FGON: enable the previously defined fog calculation
FGOFF: disable fog calculations (default)

Expects an array of floats containing value settings. For
FGDEFI four floats are expected. They are density, red,
green, and blue. density specifies the (thickness) of the fog (or
haze). A value of 0.0 results in no fog. Increasing positive
values result in fog of increasing density. Values are normal-
ized such that a density of 1.0 results in the fog becoming com-
pletely opaque at a distance of 1.0 in eye-coordinates. red,
green, and blue specify the fog color in the range 0.0 through
1.0. of shadem).

-1- April 1990

fogver Graphics Reference, FORTRAN fogver

Calculation of the blend factor at each vertex uses the following equa-
tion:

Vfog = e ** (5.5*density*Zeye)
Where: (j
Vfog is the computed fog blending factor, ranging from O to 1.

density is the fog density as specified when you call
fogver (FGDEFI,params). :

Zeye is the Z coordinate in eye space (always negative).

Vertex colors are first either Gouraud or flat shaded, then textured,
before being blended with fog color. The pixel color/fog color blend is
done with the following equation:

C = Cp*Vfog + Cf*(1.0-Vfog)

Where:

Vfog is the computed fog blending factor, ranging from O to 1.

C is the resulting color component (red, green, or blue).

Cp is the incoming pixel color, already either Gouraud or flat (

shaded, and textured.

Ct is the fog color component as specified when
fogver (FGDEFI, params) is called.

Eye-coordinates exist between ModelView transformation and Projec-
tion transformation (see mmode). This space is right-handed, so visible
vertices always have negative Z coordinates. Thus the Vfog equation
always raises e to a negative power.

The projection matrix must either be specified with a GL call (perspe,
window, or ortho), or have as its final column the values:

O B O O

| I
I I
-1 1
I I

In all cases (including ortho) the viewer is considered to be at location

0,0,0, looking down the negative z axis.

Version 3.0 -2- ' April 1990

fogver Graphics Reference, FORTRAN fogver

SEE ALSO
gRGBco, mmode

NOTES

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
fog. Use getgde to determine whether fog support is available.

The results of fog calculations are defined only while in RGB mode.

Version 3.0 -3- April 1990

font Graphics Reference, FORTRAN font

NAME

font — selects a raster font for drawing text strings

FORTRAN 77 SPECIFICATION

subroutine font(fntnum)
integer*4 fntnum

PARAMETERS

fntnum expects the font identifier, an index into the font table built by
defras. If you specify a font number that is not defined, the
system selects font 0.

DESCRIPTION

font selects the raster font that charst uses when it draws a text string.
This font remains in effect until you call font again. Font O is the
default. '

SEE ALSO
charst, defras, getdes, getfon, gethei, strwid

Version 3.0 -1- April 1990

foregr Graphics Reference, FORTRAN foregr

NAME

foregr — prevents a graphical process from being put into the back-
ground

FORTRAN 77 SPECIFICATION

subroutine foregr

PARAMETERS

none

DESCRIPTION

winope normally runs a process in the background. Call foregr before
calling winope. It keeps the process in the foreground, so that you can
interact with it from the keyboard. When the process is in the fore-
ground, it interacts in the usual way with the IRIX input/output routines.

SEE ALSO

winope

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

freepu Graphics Reference, FORTRAN freepu

NAME

freepu — deallocates a menu

FORTRAN 77 SPECIFICATION

subroutine freepu(pup)
integer*4 pup

PARAMETERS

pup expects the menu identifier of the pop-up menu that you want 1o '
deallocate.

DESCRIPTION

freepu deallocates a pop-up menu, freeing the memory reserved for its
data structures. ’

SEE ALSO
addtop, dopup, newpup

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

frontb Graphics Reference, FORTRAN frontb

NAME
backbu, frontb — enable and disable drawing to the back or front buffer

FORTRAN 77 SPECIFICATION

subroutine backbu(b)
logical b

subroutine frontb(b)
logical b

PARAMETERS

b expects either . TRUE. or .FALSE..
.TRUE. enables updating in the back/front bitplane buffer.
JFALSE. tumns off updating in the back/front bitplane buffer.

DESCRIPTION

The IRIS framebuffer is divided into four separate GL framebuffers:
pop-up, overlay, underlay, and normal. Three of these framebuffers,
overlay, underlay, and normal, can be configured in double buffer mode.
When so configured, a framebuffer includes two color bitplane buffers:
one visible bitplane buffer, called the front buffer, and one non-visible
bitplane buffer, called the back buffer. The commands swapbu and
mswapb interchange the front and back buffer assignments.

By default, when a framebuffer is configured in double buffer mode,
drawing is enabled in the back buffer, and disabled in the front buffer.
frontb and backbu enable and disable drawing into the front and back
buffers, allowing the default to be overriden. Its is acceptable to enable
neither front nor back, either front or back, or both front and back simul-
taneously. Note, for example, that z-buffer drawing continues to update
the z-buffer with depth values when neither the front buffer nor the back
buffer is enabled for drawing.

frontb and backbu state is maintained separately for each of the over-
lay, underlay, and normal framebuffers. Calls to these routines affect
the framebuffer that is currently active, based on the current drawmode.

Version 3.0 -1- April 1990

frontb Graphics Reference, FORTRAN frontb

backbu is ignored when the currently active framebuffer is in single
buffer mode. frontb is also ignored when the currently active frame-
buffer is in single buffer mode, unless zdraw is enabled for that frame-
buffer (see zdraw).

After each call to gconfi, backbu is enabled and frontb is disabled.

SEE ALSO
drawmo, double, getbuf, gconfi, single, swapbu, zdraw

NOTE

Only VGX graphics support double buffer operation in the overlay and
underlay framebuffers.

Version 3.0 -2- . April 1990

()

frontf Graphics Reference, FORTRAN frontf

NAME
frontf — turns frontfacing polygon removal on and off

FORTRAN 77 SPECIFICATION

subroutine frontf(b)
logical b

PARAMETERS

b expects either .TRUE. or .FALSE..
-TRUE. suppresses the display of frontfacing filled polygons.
JFALSE. allows the display of frontfacing filled polygons.

DESCRIPTION

frontf allows or suppresses the display of frontfacing filled polygons. If
your programs represent solid objects as collections of polygons, you
can use this routine to expose hidden surfaces. This routine works best
for simple convex objects that do not obscure other objects.

A frontfacing polygon is defined as a polygon whose vertices are in
counter-clockwise order in screen coordinates. When frontfacing
polygon removal is on, the system displays only polygons whose ver-
tices are in clockwise order. For complicated objects, this routine alone
may not expose all hidden surfaces. To expose hidden surfaces for more
complicated objects or groups of objects, your routine needs to check
the relative distances of the object from the viewer (z values). (See
‘“Hidden Surface Removal’’ in the Graphics Library Programming
Guide.)

If frontf and backfa are asserted simultaneously, no filled polygons will
be displayed.

SEE ALSO
backfa, zbuffe

Version 3.0 -1- April 1990

frontf Graphics Reference, FORTRAN frontf

NOTE

On IRIS-4D G and B models frontf does not work well when a polygon
shrinks to the point where its vertices are coincident. Under these con-
ditions, the routine cannot determine the orientation of the polygon and
so displays the polygon by default.

On all IRIS-4D models matrices that negate coordinates, such as scale
(-1.0, 1.0, 1.0), reverse the directional order of a polygon’s points and
can cause frontf to do the opposite of what is intended.

Version 3.0 -2- April 1990

fudge Graphics Reference, FORTRAN fudge

NAME
fudge — specifies fudge values that are added to a graphics window

FORTRAN 77 SPECIFICATION

subroutine fudge(xfudge, yfudge)
integer*4 xfudge, yfudge

PARAMETERS

xfudge expects the number of pixels added in the x direction.
yfudge expects the number of pixels added in the y direction.

DESCRIPTION

fudge specifies fudge values that are added to the dimensions of a
graphics window when it is sized. Typically, you use it to create inte-
rior window borders. Call fudge prior to calling winope.

fudge is useful in conjunction with stepun and keepas. With stepunit
the window size for integers m and » is:

width = xunit X m + xfudge
height = yunit X n + yfudge

With keepas the window size is (width, height), where:
(width — xfudge) X yaspect = (height — yfudge) X xaspect

SEE ALSO

keepas, stepun, winope

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

fullsc Graphics Reference, FORTRAN fullsc

NAME

fullsc — allows a program write to the entire screen

FORTRAN 77 SPECIFICATION

subroutine fullsc

PARAMETERS

none

DESCRIPTION

fullscr allows a program write to the entire screen. It does this by elim-
inating the protections that normally prevent a graphics process from
drawing outside of its current window. fullser calls
viewpo(0, getgde(GDXPMA)-1, 0, getgde(GDYPMA)-1) and ortho2
to set up an orthographic projection that maps world coordinates to
screen coordinates. The current viewport and matrix state are not saved;
it is the caller’s responsibility to do this.

fullsc only affects graphics output; input focus management is
unchanged.

SEE ALSO
endful, winope

NOTES ,
This routine is available only in immediate mode.

Use fullse with caution or a sense of humor.

Version 3.0 -1- April 1990

gammar Graphics Reference, FORTRAN gammar

NAME

gammar — defines a color map ramp for gamma correction

FORTRAN 77 SPECIFICATION

subroutine gammar(r, g, b)
integer*2 r(256), g(256), b(256)

PARAMETERS

r expects an array of 256 elements. Each element contains a setting
for the red electron gun.

g expects an array of 256 elements. Each element contains a setting
for the green electron gun.

b expects an array of 256 elements. Each element contains a setting
for the blue electron gun.

DESCRIPTION

gammar supplies a level of indirection for all color map and RGB
values. For example, before the system would turn on the red gun to
setting 238, the system looks in a table at location 238 and uses the
value it finds there instead of 238.

Thus, you can use this table to provide gamma correction, to equalize
monitors with different color characteristics, or to modify the color
warmth of the monitor. The default setting has r(¥) = g(i) = b(@) = i. (So
at location 238 of the red, green, and blue tables, you find the value
238.)

When the system is in RGB mode and draws an object, the system
writes the actual red, green, and blue values to the bitplanes not the
indirect values. However, the values that you see when the system
draws the bitmap to the screen are the indirect values: r(red), g(green),
b(blue) (where r,g,b are the arrays last specified by gammar).

Similarly, when the system is in color map mode and draws an object,
the system knows that the true color of the object may be color i, but to
determine the displayed color, the system finds the red, green, and blue
values of color i and displays color i as r(red), g(green), b(blue).

Version 3.0 -1- April 1990

gammar Graphics Reference, FORTRAN gammar

SEE ALSO

color, cmode, mapcol, RGBcol

NOTES
\
This routine is available only in immediate mode. (

On the IRIS-4D G, gamma correction in RGB mode uses the top 256
entries of the colormap.

Version 3.0 -2- April 1990

ghegin Graphics Reference, FORTRAN gbegin

NAME
ginit, gbegin — create a window that occupies the entire screen

FORTRAN 77 SPECIFICATION
subroutine ginit

subroutine gbegin

PARAMETERS

none

DESCRIPTION

ginit creates a window that covers the entire screen, and initializes its
graphics state to the the same values as would a winope followed by a
greset. It also sets the MOUSEX valuator to getgdesc(GDXPMA)/2
with range O to getgdesc(GDXPMA), and sets the MOUSEY valuator
to with range 0 to (etgdesc(GDYPMA)/2. gbegm does the same,
except it does not alter the color map.

These routines are a carry-over from the days before there was a window
manager. Although they continue function, we recommend that all new
development be designed to work with the window manager and to use
winope. -

SEE ALSO

greset, winope

NOTE
These routines are available only in immediate mode.

Version 3.0 -1- April 1990

geonfi Graphics Reference, FORTRAN gconfi

NAME

geonfi — reconfigures the system

FORTRAN 77 SPECIFICATION
subroutine gconfi x ()

PARAMETERS

none

DESCRIPTION
geonfi sets the modes that you request.

You must call geonfi for acsize, cmode, double, multim, onemap,
overla, RGBmod, single, stensi, and underl to take effect. After a
geonfi call, color for each draw mode is set to. zero, and writemask for
- each draw mode is set to the number of bitplanes available in that draw
mode.

geonfi resolves mode requests for all draw modes, regardless of the
current draw mode. . (

SEE ALSO

acsize, cmode, double, multim, onemap, overla, RGBmod, single,
stensi, underl

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

genobj Graphics Reference, FORTRAN genobj

NAME
genobj — returns a unique integer for use as an object identifier

FORTRAN 77 SPECIFICATION

integer*4 function genobj()

PARAMETERS

none

FUNCTION RETURN VALUE
The returned value for this function is an object identifier.

DESCRIPTION

genobj generates unique 31-bit integer numbers for use as object
identifiers. Object identifiers can be up to 31 bits and must be unique
within a program. Be careful if you use a combination of user-defined
and genobj-defined numbers to generate object numbers. genobj will
not generate an object name that is currently in use. If there is any ques-
tion, use isobj before using your own numbers.

SEE ALSO
callob, gentag, isobj, makeob

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gentag Graphics Reference, FORTRAN gentag

NAME
gentag — returns a unique integer for use as a tag

FORTRAN 77 SPECIFICATION
integer*4 function gentag()
PARAMETERS
none

FUNCTION RETURN VALUE
The returned value for this function is a tag number.

DESCRIPTION

gentag generates a unique integer to use as a tag. Tags must be unique
within an object. Although gentag generates unique tags, if you later
define a tag with the same value, the first tag is lost.

SEE ALSO
genobj, istag

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getbac Graphics Reference, FORTRAN getbac

NAME
getbac — returns whether backfacing polygons will appear

FORTRAN 77 SPECIFICATION
integer*4 function getbac()

PARAMETERS

none

FUNCTION RETURN VALUE
The returned value for this function is either O or 1.
0 indicates that backfacing polygon removal is turned off.
1 indicates that backfacing polygon removal is enabled.

DESCRIPTION

getbac retumns the state of backfacing filled polygon removal mode. If
backface removal is enabled, the system draws only those polygons that
face the viewer.

SEE ALSO
backfa

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getbuf

NAME

getbuf — indicates which buffers are enabled for writing

Graphics Reference, FORTRAN

FORTRAN 77 SPECIFICATION
integer*4 function getbuf()

PARAMETERS

none

FUNCTION RETURN VALUE

Individual bits in the returned value indicate which buffers are enabled.
The bits are named:

DESCRIPTION

Symbolic Name | Buffer Enabled

BCKBUF back buffer
FRNTBU front buffer
DRAWZB zbuffer drawing

5

getbuf

getbuf indicates which buffers are enabled for writing in double buffer

mode.

SEE ALSO

backbu, double, frontb, zdraw

NOTE

This routine is available only in immediate mode.

The symbolic return values mentioned above are defined in <gl/fget.h>.

Version 3.0

April 1990

getbut Graphics Reference, FORTRAN getbut

NAME
getbut — returns the state of a button

FORTRAN 77 SPECIFICATION

logical function getbut(num)
integer*4 num

PARAMETERS

num is the device number of the button you want to test.

FUNCTION RETURN VALUE
There are two possible return values for this function:
JFALSE. indicates that button num is up.
JTRUE. indicates that button num is down.

The return value is undefined if there was an error, e.g. num is not a
button device.

DESCRIPTION
getbut returns the state of button num.

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getcmm Graphics Reference, FORTRAN

NAME

getcmm — returns the current color map mode

FORTRAN 77 SPECIFICATION
logical function getcmm()

PARAMETERS

none
FUNCTION RETURN VALUE
There are two possible returned values for this function:

.TRUE. indicates that onemap mode is active.
JFALSE. indicates that multimap mode is active.

DESCRIPTION

getcmm returns the current color map mode.

SEE ALSO

multim, onemap

NOTE
This routine is available only in immediate mode.

Version 3.0 -1-

getcmm

April 1990

getcol Graphics Reference, FORTRAN getcol

NAME

getcol — returns the current color

FORTRAN 77 SPECIFICATION
integer*4 function getcol()

PARAMETERS

none

FUNCTION RETURN VALUE

Returns an index into the color map.

DESCRIPTION

getcol returns the current color for the current drawing mode. In
NORMDR, it is an index into the color map, and is meaningful in both
single and double buffer modes. getcol is ignored in RGB mode. In
OVRDRW mode, getcol returns the color that is drawn into the overlay
bitplanes, etc.

SEE ALSO
color, double, drawmo, getmco, single

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getcpo Graphics Reference, FORTRAN getcpo

NAME

getcpo — returns the current character position

FORTRAN 77 SPECIFICATION

subroutine getcpo(ix, iy)
integer*2 ix, iy

PARAMETERS

ix expects the variable into which to write the x coordinate of the
current character position.

iy expects the variable into which to write the y coordinate of the
current character position.

DESCRIPTION

getcpos gets the current character position and writes it into the parame-
ters. For purely historical reasons, the returned values are offset by the
window origin; i.e. they are absolute screen coordinates.

SEE ALSO

charst, cmov, getgpo

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getcur Graphics Reference, FORTRAN getcur

NAME

getcur — returns the cursor characteristics

FORTRAN 77 SPECIFICATION

subroutine getcur(index, color, wtm, b)
integer*2 index, color, wtm
logical b

PARAMETERS

index expects the variable into which the system writes the index of the
current cursor. The cursor index is an index into a table of cursor
bitmaps.

color is an obsolete parameter. It is retained for compatibility with
previous releases.

wtm is an obsolete parameter. It is retained for compatibility with
previous releases.

b expects the variable into which the system returns a boolean indi-
cating if the cursor in visible in the current window.

DESCRIPTION

getcur returns the index of the current cursor and a boolean value indi-
cating if the cursor is visible in the current window. (The cursor will not
be visible if cursof has been called.)

SEE ALSO

curson, defcur, setcur

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getdcm Graphics Reference, FORTRAN getdem

NAME
getdem — indicates whether depth-cue mode is on or off

FORTRAN 77 SPECIFICATION
logical function getdem()
PARAMETERS
none
FUNCTION RETURN VALUE
This function can return either of two possible values:

JFALSE.,, indicating that the system is not in depth-cue mode.
.TRUE.,, indicating that the system is in depth-cue mode.

DESCRIPTION

getdem tells you whether or not the system is in depth-cue mode.

SEE ALSO
depthe

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getdep Graphics Reference, FORTRAN getdep

NAME
getdep — obsolete routine

FORTRAN 77 SPECIFICATION

subroutine getdep(near, far)
integer*2 near, far

PARAMETERS

near expects a variable into which the system should write the distance
of the near clipping plane.

far expects a variable into which the system should write the distance
of the far clipping plane.

DESCRIPTION

This routine is obsolete. It continues to function to provide backwards
compatibility, but only for depth values set with the obsolete routine
setdep. It is not guaranteed to correctly return the depth values passed
to Isetde, even when they do not exceed 16 bits.

SEE ALSO
Isetde, setdep

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getdes Graphics Reference, FORTRAN getdes

NAME
getdes — returns the character characteristics

FORTRAN 77 SPECIFICATION
integer*4 function getdes()

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the length (in pixels) of the longest
descender in the current font.

DESCRIPTION

getdes returns the maximum distance (in pixels) between the baseline of
a character and the bottom of the bitmap for that character.

Each character in a font is defined using a bitmap that is displayed rela-
tive to the current character position. Vertical placement of each char-
acter is done using the current character position as the baseline or the
line on the page. The portion of a character that extends below the base-
line is called a descender. The lowercase characters g and p typically
have descenders.

SEE ALSO
getfon, gethei, strwid

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getdev Graphics Reference, FORTRAN getdev

NAME

getdev — reads a list of valuators at one time

FORTRAN 77 SPECIFICATION

subroutine getdev(n, devs, vals)
integer*4 n
integer*2 devs(n), vals(n)

PARAMETERS
n expects the number of devices named in the devs array (no more
than 128).

devs expects an array containing the device identifiers (device number
constants, such as MOUSEX, BPADX, LEFTMO etc.) of the dev-
ices you want to read. This array can contain up to 128 devices.

vals expects the array into which you want the system to write the
values read from the devices listed in the devs array. Each
member in the vals array corresponds to a member of the devs
array. Thus, the value at vals(3) was read from the device named
in devs(3).

DESCRIPTION

getdev allows you to read as many 128 valuators and buttons (input
devices) at one time.

SEE ALSO
getval

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getdis Graphics Reference, FORTRAN

NAME

getdis — returns the current display mode

FORTRAN 77 SPECIFICATION
integer*4 function getdis()

PARAMETERS

none

FUNCTION RETURN VALUE

getdis

The returned value for this function tells you which display mode is

currently active.

Symbolic Name | Display Mode

DMSING color map single buffer mode

DMDOUB color map double buffer mode

DMRGB RGB single buffer mode

DMRGBD RGB double buffer mode
DESCRIPTION

getdis returns the current display mode.

SEE ALSO

cmode, double, RGBmod, single

NOTE

This routine is available only in immediate mode.

The symbolic return values mentioned above are defined in <gl/fget.h>.

Version 3.0

April 1990

getdra Graphics Reference, FORTRAN

NAME

getdra — returns the current drawing mode

FORTRAN 77 SPECIFICATION
integer*4 function getdra()

PARAMETERS

none

FUNCTION RETURN VALUE

Symbolic Name | Drawing Mode

color planes
overlay planes
underlay planes

pop-up planes
cursor

getdra

getdra returns the current drawing mode. Use drawmo to set the draw-

NORMDR
OVRDRW
UNDRDR
PUPDRW
CURSDR
DESCRIPTION
ing mode.
SEE ALSO
drawmo
NOTE

This routine is available only in immediate mode.

Version 3.0

April 1990

getfon Graphics Reference, FORTRAN getfon

NAME

getfon — returns the current raster font number

FORTRAN 77 SPECIFICATION

integer*4 function getfon()

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value for this function is the index into the font table for
the current raster font.

DESCRIPTION
getfont retumns the index of the current raster font.

SEE ALSO
defras, font

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- - April 1990

getgde Graphics Reference, FORTRAN getgde

NAME
getgde — gets graphics system description

FORTRAN 77 SPECIFICATION

integer*4 function getgde(inquir)
integer*4 inquir

PARAMETERS

inquiry expects the characteristic about which you want to inquire.

FUNCTION RETURN VALUE

The function returns the value of the requested characteristic, or —1, if
the request is invalid or its value cannot be determined.

DESCRIPTION

getgde allows you to inquire about characteristics of the currently
selected screen. You can call getgde prior to graphics initialization.
Therefore, its return values are unaltered by any commands issued after
initialization.

The symbolic names of the inquiries and their meanings are specified
below:

Screen Boundary Inquiries
GDXMMA
GDYMMA
Vertical and horizontal size of the screen in millimeters.

GDXPMA
GDYPMA
Vertical and horizontal size of the screen in pixels.

GDZMAX

GDZMIN
Maximum and minimum depth values that can be stored in the
z-buffer of the normal framebuffer.

Version 3.0 -1- April 1990

getgde Graphics Reference, FORTRAN getgde

Framebuffer Depth Inquiries
GDBIAC
Number of bitplanes per color component in the hardware accu-
mulation buffer, if one exists. Otherwise the number of bit-
planes per color component in the software version of the accu-
mulation buffer, if it is implemented. Otherwise 0.

GDBIAH
Number of bitplanes per color component in the hardware accu-
mulation buffer, if one exists. Otherwise 0.

GDBCUR
Number of bitplanes available in the cursor.

GDBNDA
Maximum number of bitplanes available in the normal frame-
buffer to store alpha in double buffered RGB mode.

GDBNDC
Number of bitplanes available in the normal framebuffer to
store the color index in double buffered color map mode.

GDBNDM
Number of bitplanes available in the normal framebuffer to
store the color index in double buffered multimap mode.

GDBNDR

GDBNDG

GDBNDB
Number of bitplanes available in the normal framebuffer to
store red, green, and blue in double buffered RGB mode. If any
of these are 0, then double buffered RGB mode is not available.

GDBNSA
Maximum number of bitplanes available in the normal frame-
buffer to store alpha in single buffered RGB mode.

GDBNSC
Maximum number of bitplanes available in the normal frame-
buffer to store the color index in single buffered color map
mode.

Version 3.0 -2- April 1990

getgpo Graphics Reference, FORTRAN getgpo

NAME
getgpo — gets the current graphics position

FORTRAN 77 SPECIFICATION

subroutine getgpo(fx, fy, fz, fw)
real fx, fy, fz, fw

PARAMETERS
fx expects the variable into which you want the system to write the x
coordinate of the current graphics position.

Jfy expects the variable into which you want the system to write the y
coordinate of the current graphics position.

Jz expects the variable into which you want the system to write the z
coordinate of the current graphics position.

fw expects the variable into which you want the system to write the w
coordinate of the current graphics position. The w value is used
when defining a three dimensional point in homogeneous coordi-
nates.

DESCRIPTION

getgpo returns the current graphics position after transformation by the
current matrix.

SEE ALSO
getcpo

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gethei Graphics Reference, FORTRAN gethei

NAME
gethei — returns the maximum character height in the current raster font

FORTRAN 77 SPECIFICATION
integer*4 function gethei()

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the maximum height (in pixels) of
a character in the current font.

DESCRIPTION

gethei returns the maximum height of the characters, in the current ras-
ter font. The height is defined as the number of pixels between the top
of the tallest ascender (in characters such as f and /) and the bottom of
the lowest descender (in characters such as y and p).

SEE ALSO
getdes, getfon, strwid

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gethit Graphics Reference, FORTRAN gethit

NAME

gethit — returns the current hitcode

FORTRAN 77 SPECIFICATION
integer*4 function gethit()

PARAMETERS

none

DESCRIPTION

gethit returns the global variable hitcode, which keeps a cumulative
record of clipping plane hits. It does not change the hitcode value.

The hitcode is a 6-bit number, with one bit for each clipping plane:

5 4 3 2 1 0
| far | near | top | bottom | right | left |

SEE ALSO
clearhitcode, gselect, pick

NOTES
This routine is available only in immediate mode.

The symbolic values for the hitcode bits shown above are defined in
<glifget.h>.

This routine only functions on IRIS-4D B and G models, and therefore
we advise against its use in new development.

Version 3.0 -1- April 1990

getlsb Graphics Reference, FORTRAN getlsb

NAME
getlsb — has no function in the current system

FORTRAN 77 SPECIFICATION
logical function getlsb()

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the current state of linestyle
backup mode.

DESCRIPTION

getlsb retumns the current state of linestyle backup mode. .TRUE., indi-
cates that the final two pixels of a line segment are always colored.
.FALSE.,, the default, indicates that the linestyle determines whether the
last two pixels are colored.

Use Isback to change the state of this mode.

SEE ALSO
Isback

NOTES
This routine is available only in immediate mode.

This routine only functions on IRIS-4D B and G models, and therefore
we advise against its use in new development.

Version 3.0 -1- April 1990

getlsr Graphics Reference, FORTRAN getlsr

NAME
getlsr — returns the linestyle repeat count

FORTRAN 77 SPECIFICATION
integer*4 function getlsr()

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the repeat factor for the current
linestyle.

DESCRIPTION

getlsr returns the current linestyle repeat factor. To set (or reset) the
current linestyle repeat factor, call Isrepe.

SEE ALSO
Isrepe

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getlst Graphics Reference, FORTRAN

NAME

getlst — returns the current linestyle

FORTRAN 77 SPECIFICATION
integer*4 function getlst()

PARAMETERS

none

FUNCTION RETURN VALUE

getlst

The returned value of this function is the index into the linestyle table

for the current linestyle.

DESCRIPTION
getlstyle returns the current linestyle.

SEE ALSO

deflin, setlin

NOTE

\
This routine is available only in immediate mode.

Version 3.0 -1-

April 1990

getlwi Graphics Reference, FORTRAN getlwi

NAME
getlwi — returns the current linewidth

FORTRAN 77 SPECIFICATION
integer*4 function getlwi()

PARAMETERS

none

FUNCTION RETURN VALUE
The returned value of this function is the current linewidth in pixels.

DESCRIPTION

getlwi returns the current linewidth in pixels.

SEE ALSO

linewi

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getmap Graphics Reference, FORTRAN getmap

NAME

getmap — returns the number of the current color map

FORTRAN 77 SPECIFICATION
integer*4 function getmap()
PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the number of the current color
map.

DESCRIPTION

getmap returns the number of the current color map as set by setmap in
multimap mode. In onemap mode, getmap returns zero. '

SEE ALSO

multim, onemap

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getmat Graphics Reference, FORTRAN getmat

NAME
getmat — returns a copy of a transformation matrix

FORTRAN 77 SPECIFICATION

subroutine getmat(m)
real m(4,4)

PARAMETERS

m expects an array into which to copy a matrix.

DESCRIPTION

getmat copies a transformation matrix into a user-specified array. When
mmode is MSINGL, the matrix from the top of the single matrix stack
is returned. When mmode is MVIEWI, the matrix from the top of the
ModelView matrix stack is returned. When mmode is MPROJE, the
projection matrix is returned. And when mmode is MTEXTU, the tex-
ture matrix is returned.

getmat does not alter the state of the graphics system.

SEE ALSO
loadma, mmode, multma, popmat, pushma

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getmco Graphics Reference, FORTRAN getmco

NAME

getmco — gets a copy of the RGB values for a color map entry

FORTRAN 77 SPECIFICATION

subroutine getmco(i, red, green, blue)
integer*4 i
integer*2 red, green, blue

PARAMETERS

i expects an index into the color map

r expects the variable into which you want to copy the red value of the
color at the color map index specified by i.

g expects the variable into which you want to copy the green value of
the color at the color map index specified by i.

b expects the variable into which you want to copy the blue value of
the color at the color map index specified by i.

DESCRIPTION

getmcolor gets the red, green, and blue components of a color map
entry and copies them to the specified variables.

SEE ALSO

drawmo, mapcol, gRGBco

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getmmo Graphics Reference, FORTRAN getmmo

NAME

getmmo — returns the current matrix mode

FORTRAN 77 SPECIFICATION

integer*4 function getmmo()

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the current matrix mode. There
are four possible values for this function.

MSINGL indicates single matrix mode mode.
MPROVJE indicates projection matrix mode.
MVIEWI indicates viewing matrix mode.
MTEXTU indicates texture matrix mode.

DESCRIPTION

getmmo returns the current matrix mode.

SEE ALSO

mmode

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getmon Graphics Reference, FORTRAN getmon

NAME

getmon — returns the type of the current display monitor

FORTRAN 77 SPECIFICATION)
integer*4 function getmon() (

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the type of the current display
monitor.

DESCRIPTION

getmonitor returns the type of the current display monitor. The possible
return values are:

HZ30 30Hz interlaced monitor ('
HZ30 30HZ noninterlaced with sync on green monitor -
HZ60 60Hz noninterlaced monitor
NTSC NTSC monitor
PAL PAL or SECAM monitor
STR_RECT
monitor in stereo mode
SEE ALSO

getoth, setmon, setvid

NOTES
This routine is available only in immediate mode. o (

Version 3.0 -1- April 1990

getmon Graphics Reference, FORTRAN getmon

The symbolic return values mentioned above are defined in <gl/fget.h>.

This function returns the value set previously by setmon. It does not
actually test the hardware.

Version 3.0 -2- April 1990

getnur Graphics Reference, FORTRAN getnur

NAME

getnur — retumns the current value of a trimmed NURBS surfaces
display property

FORTRAN 77 SPECIFICATION

subroutine getnur
integer*4 property
real value

PARAMETERS

property expects the name of the property to be queried.

value expects variable into which the system should write the value
of the named property.

DESCRIPTION

The display of NURBS surfaces can be controlled in different ways.
The following is a list of the display properties that can be affected.

NERRO: If value is 1.0, some error checking is enabled. If error
checking is disabled, the system runs slightly faster. The
default value is 0.0.

NPIXEL: The value is the maximum length, in pixels, of egdes of
polygons on the screen used to render trimmed NURBS sur-
faces. The default value is 50.0 pixels.

SEE ALSO
bgnsur, nurbss, bgntri, nurbsc, pwlcur, setnur

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getope Graphics Reference, FORTRAN getope

NAME
getope — returns the identifier of the currently open object

FORTRAN 77 SPECIFICATION
integer*4 function getope()
PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the object identifier of the
currently open object. If no object is now open, the returned value is -1.

DESCRIPTION

getope returns the number of the object that is currently open for edit-
ing.

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getori Graphics Reference, FORTRAN . getori

NAME
getori — returns the position of a graphics window

FORTRAN 77 SPECIFICATION

subroutine getori(x, y)
integer*4 x, y

PARAMETERS

x expects a variable into which the system should copy the x position
(in pixels) of the lower left corner of the graphics window.

y expects a variable into which the system should copy the y position
(in pixels) of the lower left corner of the graphics window.

DESCRIPTION

getori retumns the position (in pixels) of the lower-left comner of a graph-
ics window. Call getori after graphics initialization.

SEE ALSO

winope

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getoth Graphics Reference, FORTRAN getoth

NAME

getoth — obsolete routine

FORTRAN 77 SPECIFICATION
integer*4 function getoth()

PARAMETERS

none

FUNCTION RETURN VALUE

The return value of this function indicates if the optional Composite
Video and Genlock Board is installed in the system.

DESCRIPTION

This routine is obsolete. Although it continues to function to provide
backwards compatibility, all new development should use
getvid(CGMODE) to determine if the optional Composite Video and
Genlock Board is installed in the system.

SEE ALSO
getvid

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getpat Graphics Reference, FORTRAN getpat

NAME
getpat — returns the index of the current pattern

FORTRAN 77 SPECIFICATION

integer*4 function getpat
PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is an index into the table of available
patterns.

DESCRIPTION

getpat returns the index of the current pattern from the table of available
pattemns.

SEE ALSO
defpat, setpat

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getpla Graphics Reference, FORTRAN getpla

NAME
getpla — returns the number of available bitplanes

FORTRAN 77 SPECIFICATION
integer*4 function getpla()

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the number of bitplanes available
for drawing under the current drawmode.

DESCRIPTION

getpla returns the number of bitplanes that are available for drawing
under the current drawmode. When the drawmode is NORMDR, the
result also depends on the current buffer mode and whether or not mul-
timap mode is active. When the drawmode is CURSDR, getpla always
returns 0, since no direct drawing can be done into the cursor planes.

SEE ALSO

cmode, drawmo, double, getgde, multim, onemap, overla, RGBmod,
single, underl

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getpor Graphics Reference, FORTRAN getpor

NAME

getpor — obsolete routine

FORTRAN 77 SPECIFICATION

subroutine getpor(name, length)
character*(*) name
integer*4 length

PARAMETERS

name expects the window title that is displayed on the left hand side
of the title bar for the window.

length expects the length of the string in name.

DESCRIPTION

This routine is obsolete. Although it continues to function to provide
backwards compatibility, all new development should use its replace-
. ment, winope.

SEE ALSO

winope

Version 3.0 -1- April 1990

getres Graphics Reference, FORTRAN getres

NAME
getres — returns the state of linestyle reset mode

FORTRAN 77 SPECIFICATION
logical function getres()

PARAMETERS -

none

FUNCTION RETURN VALUE

The returned value of this function is the current state of linestyle reset
mode.

DESCRIPTION

getres returns the current state of linestyle reset mode. .TRUE., indi-
cates that the stippling of each segment of a line starts at the beginning
of the linestyle pattern. .FALSE., indicates that the linestyle is not reset
between segments, and the stippling of one segment continues from
where it left off at the end of the previous segment.

Use resetl to change the state of this mode.

SEE ALSO

resetl

NOTES
This routine is available only in immediate mode.

This routine only functions on IRIS-4D B and G models, and therefore
we advise against its use in new development.

Version 3.0 -1- April 1990

getsb Graphics Reference, FORTRAN getsb

NAME
getsb — read back the current computed screen bounding box

FORTRAN SPECIFICATION

subroutine getsb(left, right, bottom, top)
integer*4 left, right, bottom, top

PARAMETERS
left returns the window coordinate of the left-most pixel drawn
while scrbox has been tracking.

right returns the window coordinate of the right-most pixel drawn
while scrbox has been tracking.

bottom returns the window coordinate of the lowest pixel drawn while

scrbox has been tracking.
top returns the window coordinate of the highest pixel drawn while
scrbox has been tracking.
DESCRIPTION

getsb returns the current screen bounding box. serbox is the computed
bounding box of all geometry (points, lines, polygons) in screen-space.
The hardware updates the four values each time geometry is drawn
(while scrbox is tracking).

If left is greater than right, or bottom is greater than top, nothing has
been drawn since scrbox was reset.

SEE ALSO
scrbox

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getsb Graphics Reference, FORTRAN getsb

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
scrbox, and therefore do not support getsb. Use getgde to determine
whether scrbox is supported.

Version 3.0 -2- April 1990

getscr

NAME

getscr —

Graphics Reference, FORTRAN getscr

returns the current screen mask

»

FORTRAN 77 SPECIFICATION

subroutine getscr(left, right, bottom, tdp)
integer*2 left, right, bottom, top

PARAMETERS
left expects the variable into which the system should copy the x
coordinate (in pixels) of the left side of the current screen
mask. '
right expects the variable into which the system should copy the x
coordinate (in pixels) of the right side of the current screen
mask.
bottom expects the variable into which the system should copy the y
coordinate (in pixels) of the bottom side of the current screen
mask. '
top expects the variable into which the system should copy the y
coordinate (in pixels) of the top side of the current screen mask.
DESCRIPTION

getscr returns the screen coordinates of the current screen mask.

SEE ALSO

~ scrmas, popvie, pushvi

NOTE

This routine is available only in immediate mode.

Version 3.0

-1- April 1990

getsha Graphics Reference, FORTRAN getsha

NAME
getsha — obsolete routine

FORTRAN 77 SPECIFICATION

integer*4 function getsha()

PARAMETERS

none

DESCRIPTION

This routine is obsolete. Although it continues to function to provide
backwards compatibility, all new development should use its identical
replacement, getcolor.

SEE ALSO
getcolor

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getsiz Graphics Reference, FORTRAN getsiz

NAME

getsiz — returns the size of a graphics window

FORTRAN 77 SPECIFICATION

subroutine getsiz(x, y) (
integer*4 x, y

PARAMETERS

x expects a variable into which the system should copy the width (in -
pixels) of a graphics window.

y expects a variable into which the system should copy the height (in
pixels) of a graphics window.

DESCRIPTION

getsiz gets the dimensions (in pixels) of the graphics window used by a
graphics program. Call getsiz after winope.

SEE ALSO (
winope

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getsm Graphics Reference, FORTRAN getsm

NAME

getsm — returns the current shading model

FORTRAN 77 SPECIFICATION

integer*4 function getsm()

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function indicates which shading model is
now active. There are two possible return values:

FLAT the system renders lines and filled polygons in a constant
color.

GOURAU the system renders lines and filled polygons with Gouraud
shading.

DESCRIPTION

getsm returns the shading model that the system uses to render lines and
filled polygons.

SEE ALSO
shadem

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getval Graphics Reference, FORTRAN getval

NAME

getval — returns the current state of a valuator

FORTRAN 77 SPECIFICATION

integer*4 function getval(dev)
integer*4 dev

PARAMETERS

dev expects the identifier of the device (e.g., MOUSEX, BPADX, etc.)
from which you want to read.

FUNCTION RETURN VALUE

The returned value of this function is the value stored at the device
named by the dev parameter.

DESCRIPTION
getval returns the current value (an integer) of the valuator dev.

SEE ALSO
getbut, gdevic, tie

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getvid Graphics Reference, FORTRAN getvid

NAME
- setvid, getvid — set and get video hardware registers

FORTRAN 77 SPECIFICATION

subroutine setvid(reg, value)
integer*4 reg, value

integer*4 function getvid(reg)
integer*4 reg

PARAMETERS

reg expects the name of the register to access.

value expects the value which is to be placed into reg.

FUNCTION RETURN VALUE

The returned value of getvid is the value read from register reg, or —1.
—1 indicates that reg is not a valid register or that you queried a video
register on a system without that particular board installed.

DESCRIPTION

setvid sets the specified video hardware register to the specified value.
getvid returns the value of the specified video hardware register.
Several different video boards are supported; the board names and regis-
ter identifiers are listed below.

Display Engine Board
DE_R1

CG2 Composite Video and Genlock Board
CG_CONTROL
CG_CPHASE
CG_HPHASE
CG_MODE

Version 3.0 -1- April 1990

getvid Graphics Reference, FORTRAN getvid

VP1 Live Video Digitizer Board
VP_ALPHA
VP_BRITE
VP_CMD
VP_CONT ‘ :
VP_DIGVAL (
VP_FBXORG
VP_FBYORG
VP_FGMODE
VP_GBXORG
VP_GBYORG
VP_HBLANK
VP_HEIGHT
VP_HUE
VP_MAPADD
VP_MAPBLUE
VP_MAPGREEN
VP_MAPRED
VP_MAPSRC
VP_MAPSTROBE)
VP_PIXCNT (
VP_SAT
VP_STATUSO
VP_STATUS1
VP_VBLANK .
VP_WIDTH

SEE ALSO
getmon, getoth, setmon, videoc

NOTES
These routines are available only in immediate mode.

The DE_R1 register is actually present only on the video board used in
the IRIS4D B, G, GT, and GTX models. It is emulated on all other :
models. (

Version 3.0 -2- April 1990

getvid Graphics Reference, FORTRAN getvid

The Live Video Digitizer is available as an option for IRIS-4D GTX
models only.

For C, the symbolic constants named above are defined in the files
<gllcg2vme.h> and <gl/vpl.h>. You will need to create your own ver-
sions of them for FORTRAN 77.

Version 3.0 -3- April 1990

getvie Graphiés Reference, FORTRAN getvie

NAME

getvie — gets a copy of the dimensions of the current viewport

FORTRAN 77 SPECIFICATION

subroutine getvie(left, right, bottom, top)
integer*2 left, right, bottom, top

PARAMETERS
left expects the variable into which the system should copy the x
coordinate (in pixels) of the left side of the current view port.

right expects the variable into which the system should copy the x
coordinate (in pixels) of the right side of the current view port.

bottom expects the variable into which the system should copy the y
coordinate (in pixels) of the bottom side of the current view

port.

top expects the variable into Which the system should copy the y
coordinate (in pixels) of the top side of the current view port.

DESCRIPTION

getvie gets the dimensions of the current viewport and copies them to
the variables specified as parameters. The current viewport is defined as
the viewport at the top of the viewport stack.

SEE ALSO

popvie, pushvi, viewpo

NOTE

This routine is available only in immediate mode.

Version 3.0 -1~ April 1990

getwri Graphics Reference, FORTRAN getwri

NAME

getwri — returns the current writemask

FORTRAN 77 SPECIFICATION

integer*4 function getwri()

PARAMETERS

none

FUNCTION RETURN VALUE

The returned value of this function is the current writemask for the
current drawing mode.

DESCRIPTION

getwri returns the current writemask of the current drawing mode. Each
bit in the writemask corresponds to an available bitplane. Thus, bit 2
describes bitplane 2 and so on. When a bit is set to zero in the wri-
temask, the corresponding bitplane is read only. This routine is
undefined in RGB mode.

SEE ALSO

RGBwri, writem, drawmo

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getwsc Graphics Reference, FORTRAN getwsc

NAME

getwsc — returns the screen upon which the current window appears

FORTRAN 77 SPECIFICATION

integer*4 function getwsc

PARAMETERS

none

FUNCTION RETURN VALUE

The returned function value is the screen number upon which the current
window appears.

DESCRIPTION

getwsc gets the screen number of the current window.

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

getzbu Graphics Reference, FORTRAN getzbu

NAME

getzbu — returns whether z-buffering is on or off

FORTRAN 77 SPECIFICATION
logical function getzbu()

PARAMETERS

none

FUNCTION RETURN VALUE
The returned value of this function is either . TRUE. or .FALSE..
.TRUE. indicates that z-buffering is on.

JFALSE. indicates that z-buffering is off. (FALSE. is the default.) For
systems without the zbuffer option, this function always returns
.FALSE.

DESCRIPTION
getzbu returns the current value of the z-buffer flag.

SEE ALSO

1setde zbuffe, zclear,

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gexit Graphics Reference, FORTRAN gexit

NAME
gexit — exits graphics

FORTRAN 77 SPECIFICATION)
subroutine gexit ‘ (

PARAMETERS

nhone

DESCRIPTION

gexit closes all the windows of a process and then frees all Graphics
Library data structures. Thereafter, the process can no longer call any
routines that require the graphics to be initialized.

gexit does not alter the image on screens for which the getgde inquiry
GDSTYP returns GDSTNW.

SEE ALSO
getgde, winclo ‘ (
NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gflush Graphics Reference, FORTRAN gflush

NAME
gflush — flushs the DGL client buffer

FORTRAN 77 SPECIFICATION
subroutine gflush

PARAMETERS

none

DESCRIPTION
gflush has no function in the Graphics Library, but is included to pro-
~ vide compatibility with Distributed Graphics Library (DGL).
SEE ALSO
finish
4Sight User’s Guide, ‘‘Using the GL/DGL Interfaces’’.

NOTE

The DGL on the client buffers the output from most graphics routines
for efficient block transfer to the server. The DGL version of gflush
sends all buffered but untransmitted graphics data to the server. Certain
graphics routines, notably those that return values, also flush the client
buffer when they execute.

Version 3.0 -1- April 1990

ginit Graphics Reference, FORTRAN ginit

NAME

ginit, gbegin — create a window that occupies the entire screen

FORTRAN 77 SPECIFICATION
subroutine ginit

subroutine gbegin

PARAMETERS

none

DESCRIPTION

ginit creates a window that covers the entire screen, and initializes its
graphics state to the the same values as would a winope followed by a
greset. It also sets the MOUSEX valuator to getgdesc(GDXPMA)/2
with range 0 to getgdesc(GDXPMA), and sets the MOUSEY valuator
to with range 0 to (etgdesc(GDYPMA)/2. gbegin does the same,
except it does not alter the color map.

These routines are a carry-over from the days before there was a window
manager. Although they continue function, we recommend that all new
development be designed to work with the window manager and to use
winope.

SEE ALSO

greset, winope

NOTE

These routines are available only in immediate mode.

Version 3.0 -1- April 1990

glcomp Graphics Reference, FORTRAN glcomp

NAME
glcomp — controls compatibility modes

FORTRAN 77 SPECIFICATION

subroutine glcomp(mode, value)
integer*4 mode
integer*4 value

PARAMETERS

mode the name of the compatibility mode you want to change. The
available modes are:

GLCOLD controls the state of old-style polygon mode.
GLCZRA controls the state of z-range mapping mode.

value the value you want to set for the specified compatibility mode.

DESCRIPTION

glcomp gives control over details of the graphics compatibility between
IRIS-4D models.

Ol1d-Style Polygon Mode (GLCOLD)
By default, old-style polygon mode is 1. Setting it to O speeds up old-
style drawing commands but the output is subtly different. See the
‘‘High-Performance Drawing”’ and ‘‘Old-Style Drawing’’ sections of
the Graphics Library Programming Guide for further explanation of the
two modes and their effects on various machines.

WARNING: some features added recently to the Graphics Library are
not supported by old-style polygons. These features include texture
mapping, fog, and polygon antialiasing. Use new-style polygon com-
mands, or set GLCOLD to 1, to insure correct operation of new render-
ing features.

This is a per-window mode.

Version 3.0 -1- April 1990

glcomp Graphics Reference, FORTRAN glcomp

Z-Range Mapping Mode (GLCZRA)
When z-range mapping mode is 0, the domain of the z-range arguments
to Isetde, IRGBra, and Ishade depends on the graphics hardware. The
minimum is the value returned by getgde(GDZMIN) and the maximum
is the value returned by getgde(GDZMAX). When this mode is 1, these
routines accept the range $0 to $7FFFFF; it is mapped to whatever range
the graphics hardware supports.

In order to maintain backwards compatibility, the default GLCZRA is 1
on IRIS-4D B and G models, and 0 on all others.

This is a per-process mode.

SEE ALSO
getgde, IRGBra, Isetde, Ishade

NOTES
This routine is available only in immediate mode.

The state of old-style polygon mode is ignored on IRIS-4D B and G
models.

BUG
GLCZRA should be a per-window mode.

Version 3.0 -2- April 1990

greset Graphics Reference, FORTRAN greset

NAME
greset — resets graphics state

FORTRAN 77 SPECIFICATION

subroutine greset

PARAMETERS

none

DESCRIPTION

greset resets a portion of the graphics state of a window to its default.

See the following table for a listing of the state affected.

Version 3.0 -1- April 1990

greset

Notes

Graphics Reference, FORTRAN

State | Value
backface mode off
blinking off
buffer mode single
color undefined
colormapmode one map
concave off
cursor 0 (arrow)
depth range Zmin,Zmax
depthcue mode off
display mode color map
drawmode NORMDR
font 0
linestyle 0 (solid)
linewidth 1 pixel
Isrepeat 1
pattern 0 (solid)
picking size 10x10 pixels
RGB color undefined
RGB shaderange undefined
RGB writemask undefined
shademodel GOURAU
shaderange 0,7,Zmin,Zmax
viewport entire screen
writemask all planes enabled
zbuffer mode off

® Font O is a Helvetica-like font.

greset

® Zmin and Zmax are the minimum and maximum values that you
These depend on the graphics
hardware and are returned by getgde(GDZMIN) and
getgde(GDZMAX). '

can store in the z-buffer.

® On IRIS4D B and G models,

Isbackup(FALSE) and resetls(TRUE).

Version 3.0

greset

also sets

April 1990

greset

greset loads a 2-D orthographic projection transformation on the matrix
stack with left, right, bottom, and top set to the boundaries of the screen

Graphics Reference, FORTRAN

(not the current window). It also turns on the cursor.

greset loads certain entries in the color map, as follows:

RGB Value
Index Name Red | Green | Blue
0 BLACK 0 0 0
1 RED 255 0 0
2 GREEN 0 255 0
3 YELLOW 255 255 0
4 BLUE 0 0 255
5 MAGENT 255 0 255
6 CYAN 0 255 255
7 WHITE 255 255 255
all others unnamed unchanged
It loads the PUPDRW color map with the following entries:
RGB Value
Index Name Red | Green | Blue
1 PUPCOL 255 0 0
2 PUPBLK 0 0 0
3 PUPWHT 255 255 255

It loads the CURSDR color map with the following entries:

Index RGB Value
Red | Green | Blue
1 255 0 0
2 255 255 255
3 255 0 0

On systems that do not have a 2-plane cursor, only index 1 is loaded.

SEE ALSO
getgde

Version 3.0

greset Graphics Reference, FORTRAN greset

NOTES
This routine is available only in immediate mode.

greset sets the viewport and the projection transformation to values

which assume that the current window occupies the entire screen, i.e. it

was created via ginit or gbegin. If this is not the case, you will probably (
want to call reshape and load a different projection transformation after

calling greset.

This routine remains a part of the Graphics Library for reasons of back-
wards compatibility only. We do not recommend the use of this routine
in new development.

Version 3.0 -4- April 1990

gRGBco Graphics Reference, FORTRAN gRGBco

NAME
gRGBco — gets the current RGB color values

FORTRAN 77 SPECIFICATION

subroutine gRGBco(red, green, blue)
integer*2 red, green, blue

PARAMETERS
red expects the variable into which you want the system to copy the
current red value.
green expects the variable into which you want the system to copy the
current green value.
blue expects the variable into which you want the system to copy the
current blue value.
DESCRIPTION

gRGBco gets the current RGB color values and copies them into the
parameters. The system must be in RGB mode when you call gRGBco.

SEE ALSO
RGBcol, RGBmod, getmco

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gRGBcu Graphics Reference, FORTRAN gRGBcu

NAME
gRGBcu — obsolete routine

FORTRAN SPECIFICATION

subroutine gRGBcu(index, red, green, blue, redm, greenm, bluem, b)
integer*2 index, red, green, blue, redm, greenm, bluem
logical b

DESCRIPTION

This routine is obsolete. It continues to function only on IRIS-4D B and
G models to provide backwards compatibility. All new development
should use its replacement, getcur.

SEE ALSO

getcur

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gRGBma Graphics Reference, FORTRAN gRGBma

NAME
gRGBma — returns the current RGB writemask

FORTRAN 77 SPECIFICATION

subroutine gRGBma(redm, greenm, bluem)
integer*2 redm, greenm, bluem

PARAMETERS
redm expects the variable into which you want the system to copy
the current red writemask value.

greenm expects the variable into which you want the system to copy
the current green writemask value.

bluem expects the variable into which you want the system to copy
the current blue writemask value.

DESCRIPTION

gRGBma gets the current RGB writemask as three 8-bit masks and
copies them into the parameters. gRGBma places masks in the low
order 8-bits of the variables. The system must be in RGB mode when
this routine executes.

SEE ALSO
getwri, RGBwri

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gselec - Graphics Reference, FORTRAN gselec

NAME

gselec — puts the system in selecting mode

FORTRAN 77 SPECIFICATION

subroutine gselec(buffer, numnam)
integer*2 buffer(*)
integer*4 numnam

PARAMETERS

buffer expects the buffer into which you want the system to save the
contents of the names stack. A name is a 16-bit number, that
you load on the name stack just before you called a drawing
routine.

numnam expects the maximum number of names that you want the
system to save.

DESCRIPTION

gselec turns on the selecting mode. When in selecting mode, the system
notes when a drawing routine intersects the selecting region and writes
the contents of the names stack to the specified buffer. If you push a
name onto the names stack just before you call each drawing routine,
you can record which drawing routines intersected the selecting region.

Use the current viewing matrix to define the selecting region.

gselec and pick are identical except gselec allows you to create a view-
ing matrix in selecting mode. To end select mode, call endsel.

SEE ALSO
endpic, endsel, pick, picksi, initna pushna, popnam, loadna

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gsync Graphics Reference, FORTRAN gsync

NAME
gsync — waits for a vertical retrace period

FORTRAN 77 SPECIFICATION

subroutine gsync

PARAMETERS

none

DESCRIPTION

In single buffer mode, rapidly changing scenes should be synchronized
with the refresh rate. gsync waits for the next vertical retrace period.

SEE ALSO

single

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

gversi Graphics Reference, FORTRAN gversi

NAME
gversi — returns graphics hardware and library version information

FORTRAN SPECIFICATION

integer*4 function gversi(v)
character*(¥) v

PARAMETERS

v expects a variable into which to copy a string. Reserve at least a
12 character buffer.

FUNCTION RETURN VALUE

There is no longer any use for the returned value of this function; it will
always be zero.

DESCRIPTION

gversi fills the buffer, v, with a null-terminated string that specifies the
graphics hardware type of the currently selected screen and the version
number of Graphics Library.

Graphics Type String Returned
BorG GL4AD-m.n

GT GLADGT-m.n
GTX GL4ADGTX~-m.n
VGX GLADVGX-m.n
Personal Iris GLADPI2-m.n

Personal Iris with Turbo Graphics = GLADPIT-m.n
Personal Iris (early serial numbers) GLADPI-m.n

m and n are the major and minor release numbers of the release to which
the Graphics Library belongs.

gversi can be called prior to the first winope.

Version 3.0 -1- April 1990

gversi Graphics Reference, FORTRAN gversi

SEE ALSO
scrnse, winope

uname(2) in the Programmer’s Reference Manual.

NOTES
This subroutine is available only in immediate mode.

Early serial numbers of the Personal Iris do not support the complete
Personal Iris graphics functionality.

Version 3.0 -2- April 1990

iconsi Graphics Reference, FORTRAN iconsi

NAME

iconsi — specifies the icon size of a window

FORTRAN 77 SPECIFICATION

subroutine iconsi(x,y)
integer*4 x, y

PARAMETERS

x expects the width (in pixels) for the icon.
y expects the height (in pixels) for the icon.

DESCRIPTION

iconsi specifies the size (in pixels) of the window used to replace a
stowed window. If a window has an icon size, the window manager will
re-shape the window to be that size and send a REDRWI token to the
graphics queue when the user stows that window. Your code can use an
event loop to test for this token and can call graphics library subroutines
to draw the icon for the stowed window. Windows without an icon size
are handled by the window manager with the locally appropriate default
behavior.

To assign a new window an icon size, call iconsi before you open the
window. To give an existing window an icon size, use iconsi with win-
con. _

SEE ALSO

gdevic, wincon, winope

NOTES

This routine is available only in immediate mode.

Any application using iconsi should also call qdevic to queue the tokens
WINFRE and WINTHA after opening the window.

Version 3.0 -1- April 1990

iconti Graphics Reference, FORTRAN iconti

NAME

iconti — assigns the icon title for the current graphics window.

FORTRAN 77 SPECIFICATION

subroutine iconti(name,length)
character*(*) name
integer*4 length

PARAMETERS

name expects a pointer to the string containing the icon title.
length expects the length of the icon title string.

DESCRIPTION

iconti specifies the string displayed on an icon if the window manager
draws that window’s icon.

SEE ALSO

iconsi

Version 3.0 -1- April 1990

imakeb Graphics Reference, FORTRAN imakeb

NAME

imakeb — registers the screen background process

FORTRAN 77 SPECIFICATION
subroutine imakeb

PARAMETERS

none

DESCRIPTION

imakeb registers a process that maintains the screen background. Call it
before winope. The process should redraw the screen background each
time it receives a REDRAW event.

SEE ALSO

winope

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

initna Graphics Reference, FORTRAN initna

NAME

initna — initializes the name stack

FORTRAN 77 SPECIFICATION

subroutine initna

PARAMETERS

none

DESCRIPTION
initna clears the name stack for picking and selecting.

SEE ALSO
gselec, pick

Version 3.0 -1- April 1990

ismex Graphics Reference, FORTRAN ismex

NAME

ismex — obsolete routine

FORTRAN 77 SPECIFICATION

logical function ismex()

PARAMETERS

none

FUNCTION RETURN VALUE
This routine returns .TRUE. if the 4Sight Window System is currently
running.

DESCRIPTION

This routine is obsolete. Although it continues to function to provide
‘backwards compatibility, all new development should test the return
value of getgde(GDWSYS) to determine what window system is run-
ning.

SEE ALSO
getgde

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

isobj Graphics Reference, FORTRAN isobj.

NAME

isobj — returns whether an object exists

FORTRAN 77 SPECIFICATION

logical function isobj(obj)
integer*4 obj

PARAMETERS

obj expects the object identifier that you want to test.

FUNCTION RETURN VALUE
There are two possible return values for this function:
.TRUE. indicates that object obj exists.
FALSE. indicates that object obj does not exist.

DESCRIPTION

isobj returns whether or not an object exists. If makeob has been called
to create an object, and delobj has not been called to delete it, isobj
returns .TRUE. for it.

SEE ALSO
delobj, genobyj, istag, makeob

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

isqueu Graphics Reference, FORTRAN isqueu

NAME
isqueu —returns whether the specified device is enabled for queuing

FORTRAN 77 SPECIFICATION

logical function isqueu(dev)
integer*4 dev

PARAMETERS

dev expects the identifier for the device you want to test (e.g.,
MOUSEX or BPADX).

FUNCTION RETURN VALUE
The returned value for this function is a boolean value:
.TRUE. indicates that dev is enabled for queueing.
JFALSE. indicates that dev is not enabled for queueing.

DESCRIPTION

isqueu returns whether or not the specified device is enabled for queue-
ing.

SEE ALSO
gdevic, unqdev, qread

NOTE

This routine is available only in immediate mode.

Version 3.0 =1- April 1990

istag Graphics Reference, FORTRAN istag

NAME

istag — returns whether a tag exists in the current open object

FORTRAN 77 SPECIFICATION

logical function istag(t)
integer*4 t

PARAMETERS

t expects the tag identifier that you want to test.

FUNCTION RETURN VALUE
There are two possible return values for this function:
.TRUE. indicates that tag ¢ exists in the current open object.
JALSE. indicates that tag ¢ does not exist in the current open object.

The return value is undefined if no object is currently open for editing.

DESCRIPTION

istag returns whether or not a tag is exists in the object currently open
for editing. If maketa has been called to create a tag, and deltag has not
been called to delete it, istag returns .TRUE. for it.

SEE ALSO
deltag, gentag, isobj, maketa

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

keepas Graphics Reference, FORTRAN keepas

NAME
keepas — specifies the aspect ratio of a graphics window

FORTRAN SPECIFICATION

subroutine keepas(x, y)
integer*4 x, y

PARAMETERS

x expects the horizontal proportion of the aspect ratio.
y expects the vertical proportion of the aspect ratio.

DESCRIPTION

keepas specifies the aspect ratio of a graphics window. Call it at the
beginning of a graphics program. It takes effect when you call winope.
The resulting graphics window maintains the aspect ratio specified in
keepas, even if it changes size.

For example, keepas(l, 1) always results in a square graphics window.
You can also call keepas in conjunction with wincon to modify the
enforced aspect ratio after the window has been created.

SEE ALSO

fudge, wincon, winope

NOTE

This routine is available only in immediate mode.

Version 3.0 ' -1- ' April 1990

lampon Graphics Reference, FORTRAN lampon

NAME
lampon, lampof — control the keyboard display lights

FORTRAN 77 SPECIFICATION

subroutine lampon(lamps)
integer*4 lamps

subroutine lampof(lamps)
integer*4 lamps

PARAMETERS

lamps expects a mask that specifies which lamps to manipulate. The
four low-order bits control the lamps labeled L1 through L4. If a
bit is set, then the corresponding keyboard lamp is turned on or
off.

DESCRIPTION

lampon turns on any combination of the four user-controlled lamps on
the keyboard and lampof tumns them off.

SEE ALSO

clkon, ringbe, setbel

NOTES
This routine is available only in immediate mode.

Future systems may not have these keyboard lights; therefore, we advise
against the use of these routines for new development.

Version 3.0 -1- April 1990

linesm Graphics Reference, FORTRAN linesm

NAME

linesm — specify antialiasing of lines

FORTRAN 77 SPECIFICATION

subroutine linesm(mode)
integer*4 mode

PARAMETERS

mode expects one of two values:
SMLOFF, defeats antialiasing of lines (default).

SMLON enables antialiasing of lines. SMLON can be modified
by either or both of two additional symbolic constants:

SMLSMO indicates that a higher quality filter should be used
during line drawing. This filter typically requires that more pix-
els be modified, and thercfore potentially reduces the rate at
which antialiased lines are rendered.

SMLEND indicates that the endpoints of antialiased lines should
be trimmed to the exact length specified by the subpixel position
of each line.

The constants SMLSMO and SMLEND are specified with SMLON by
bitwise ORing them, or by adding them. For example,

linesm(SMLON + SMLSMO + SMLEND)

enables antialiased line drawing with the highest quality, and potentially
lowest performance, algorithm. These modifiers are hints, not direc-
tives, and are therefore ignored by systems that do not support the
requested feature. ‘

Version 3.0 -1- April 1990

linesm Graphics Reference, FORTRAN linesm

DESCRIPTION

Antialiased lines can be drawn in both color map and RGB modes.
linesm controls this capability. In both modes, for antialiased lines to
draw properly:

® linewidth must be 1,
® linestyle must be OxFFFF,
® Isrepeat must be 1.

For color map antialiased lines to draw correctly, a 16-entry colormap
block (whose lowest entry location is a multiple of 16) must be initial-
ized to a ramp between the background color (lowest index) and the line
color (highest index). Before drawing lines, clear the area to the back-
ground color.

The linesmooth hardware replaces the least significant 4 bits of the
current color index with bits that represent pixel coverage. Therefore,
by changing the current color index (only the upper 8 bits are
significant) you can select among many 16-entry color ramps, represent-
ing different colors and intensities. You can draw depthcued,
antialiased lines in this manner.

The z-buffer hardware can be used to improve the quality of color map
antialiased line images. Enabled in the standard depth-comparison
mode, it ensures that lines nearer the viewer obscure more distant lines.
Altemately, the z-buffer hardware can be used to compare color values
by issuing:

zbuffe (. TRUE.)
zsourc (ZSRCCO)
zfunct (ZFGREA)

Pixels are then replaced only by ’brighter’ values, resulting in better
intersections between lines drawn using the same ramp.

RGB antialiased lines can be drawn only on machines that support
blending. For these lines to draw correctly, the blendfunction must be
set to merge new pixel color components into the framebuffer using the
incoming (source) alpha values. Incoming color components should
always be multiplied by the source alpha (BFSA). Current (destination)
color components can be multiplied either by one minus the source
alpha (BFMSA), resulting in a weighted average blend, or by one
(BFONE), resulting in color accumulation to saturation; issue:

Version 3.0 -2- April 1990

linesm Graphics Reference, FORTRAN linesm

c weighted average
blendf (BFSA, BFMSA)

or

c saturation
blendf (BFSA, BFONE)

The linesmooth hardware scales incoming alpha components by an 8-bit
computed coverage value. Therefore reducing the incoming source
alpha results in transparent, antialiased lines.

RGB antialiased lines draw correctly over any background image. It is
not necessary to clear the area in which they are to be drawn.

Both color map and RGB mode antialiased lines can be drawn with
subpixel-positioned vertexes (see subpix). In general, subpixel posi-
tioning of line vertexes results in higher quality but lower performance.

The modifier SMLSMO can be ORed or ADDed to the symbolic con-
stant SML.ON when antialiased lines are enabled. When this is done, a
higher quality and potentially lower performance filter is used to scan
convert antialiased lines. SMLSMO is a hint, not a directive. Thus a
higher quality filter is used only if it is available.

The modifier SMLEND can ba ORed or ADDed to the symbolic con-
stant SMILON when antialiased lines are enabled. When this is done,
the endpoints of antialiased lines are scaled to the exact length specified
by their subpixel-positioned endpoints, rather than drawn to the nearest
integer length. SMLEND is a hint, not a directive. Thus antialiased
lines are drawn with corrected endpoints only if support is available in
the hardware.

SEE ALSO

bgnlin, blendf, deflin, linewi, 1srepe, pntsmo, v, subpix, zbuffe, zfunct,
Zsourc

NOTES
This subroutine does not function on IRIS-4D B or G models.

Version 3.0 -3- April 1990

linesm Graphics Reference, FORTRAN linesm

IRIS-4D GT and GTX models, and the Personal Iris, do not support
SMLSMO and SMLEND. Both hints are ignored on these systems.

IRIS-4D VGX models adjust the antialiasing filter for each line based on
its slope when SMLSMO is requested. They support SMLEND only in
RGB mode.

BUGS

On the IRIS-4D GT and GTX models ZSRCCO z-buffering is supported
only for non-subpixel positioned color map mode lines.

Before ZSRCCO z-buffering is used on IRIS-4D GT and GTX models,
bitplanes 12 through 23 must be explicitly cleared to zero. This must be
done in RGB mode, with a code sequence such as:

RGBmod ()

double ()

gconfi ()

frontb (.TRUE.)
cpack (0)

clear()

cmode ()

frontb (.FALSE.)
gconfi ()

body of program

The clear operation must be repeated only after bitplanes 12 through 23
are modified, which can result only from interaction with another win-
dow running in RGB mode.

Version 3.0 -4- April 1990

linewi Graphics Reference, FORTRAN linewi

NAME

linewi — specifies width of lines

FORTRAN 77 SPECIFICATION
subroutine linewi(n)
integer*4 n

PARAMETERS

n expects the width of the line. The width is measured in pixels.

DESCRIPTION

linewi specifies the displayed width of a line. Mathematical lines have
no width, but to display a line, you need to assign the line a width. As
far as possible, the displayed line centers on the mathematical line.
Because the pixels are arranged in a rectangular grid, only vertical and
horizontal lines can have exactly the pixel width required.

SEE ALSO
setlin

NOTE

On IRIS-4D models that support resetl, it must be set to .TRUE. to
obtain reasonable results with line widths greater than one.

Version 3.0 -1- April 1990

Imbind Graphics Reference, FORTRAN Imbind

NAME
Imbind — selects a new material, light source, or lighting model

FORTRAN 77 SPECIFICATION

subroutine Imbind(target, index)
integer*4 target, index

PARAMETERS

target expects one of these symbolic constants: MATERI, BACKMA,
LIGHTO, LIGHT1, LIGHT2, LIGHT3, LIGHT4, LIGHTS,
LIGHT6, LIGHT7, or LMODEL.

index expects the name of a material (if target is MATERI or
BACKMA), a light source (if target is one of LIGHTO through
LIGHT?7), or a lighting model (if target is LMODEL). Name
is the index passed to lmdef when the material, light source, or
lighting model was defined.

DESCRIPTION

Lighting operation is controlled by eleven lighting resources, each of
which has a symbolic constant as a name. Imbind binds a material,
light source, or lighting model definition to one of these eleven lighting
resources. Its first argument, target, takes the symbolic name of a light-
ing resource. Its second argument, index, takes the name of a lighting
definition to be bound to that resource. index specifies a material
definition if target is MATERI or BACKMA, a light source definition
if target is LIGHTO0 through LIGHT7, or a lighting model definition if
target is LMODEL.

Two of these resources, MATERI and LMODEL, are special, in that
they together determine whether lighting calculations are made or not.
Lighting calculations are enabled when a material definition other than
material O is bound to MATERI, and a lighting model definition other
than model 0 is bound to LMODEL. When either MATERI is bound
to material definition 0, or LMODEL is bound to lighting model
definition 0, all lighting calculations are disabled.

Version 3.0 -1- April 1990

Imbind Graphics Reference, FORTRAN Imbind

Thus, for example, lighting is defined and enabled in the most primitive
way by the following code sequence:

lmdef (DEFMATL, 1, O, nullarray)

1lmdef (DEFLMOL, 1, O, nullarray)

lmbind (MATERI, 1)

1mbind (LMODEL, 1)
This primitive lighting model is disabled efficiently by simple binding
material 0 to MATERL

lmbind (MATERI, 0)

A lighting definition is unbound from a lighting resource only when
another definition is bound to that resource. Changes made to a lighting
definition while it is bound are effective immediately. By default all
eleven lighting resources are bound to definition 0. If Imbind is passed
a name that is not defined, definition 0 is bound to the specified lighting
resource.

The eight light sources, named LIGHT(through LIGHT?7, are enabled
when bound to a light source definition other than 0. Light source posi-
tions are transformed by the current Model View matrix when the source
is bound. The object-coordinate position of the light source is main-
tained in the definition so that subsequent bindings are transformed from
it, rather than from the previously transformed position. A light source
definition cannot be bound to more than one lighting resource in a single
window.

The default lighting model uses only a single material, namely the
material definition that is bound to MATERI. Likewise, when a light-
ing model with TWOSID specified is bound, MATERI is used for both
front and back facing polygons if BACKMA is bound to material
definition 0. However, if a material definition other than 0 is bound to
BACKMA, two-sided lighting uses MATERI for frontfacing polygons
and BACKMA for backfacing polygons. In all cases points, lines, and
characters are lighted using MATERI.

Lighting models use only material and light properties that are appropri-
ate to them. Other properties, such as color map mode properties while
the current framebuffer is in RGB mode, are ignored.

Version 3.0 -2- April 1990

Imbind Graphics Reference, FORTRAN Imbind

SEE ALSO

Imcolo, Imdef, mmode, n, nmode

NOTES

Lighting requires that the matrix mode be multi-matrix. It does not
operate correctly while mmode is MSINGL.

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
two-sided lighting, and therefore do not support light resource
BACKMA.

It is a common error to bind a light source when an inappropriate
ModelView matrix is on the stack. Be careful!

Version 3.0 -3- April 1990

Imcolo

NAME

Graphics Reference, FORTRAN Imcolo

Imcolo — change the effect of color commands while lighting is active

FORTRAN 77 SPECIFICATION

subroutine Imcolor(mode)
integer*4 mode

PARAMETERS

mode the name of the mode to be used. Possible modes are:

LMCCOL, RGB color commands will set the current color. If a
color is the last thing sent before a vertex the vertex will be
colored. If a normal is the last thing sent before a vertex the ver-
tex will be lighted. LMCCOL is the default mode.

LMCEMI, RGB color commands will set the EMISSI color
property of the current material.

LMCAMB, RGB color commands will set the AMBIEN color
property of the current material.

LMCDIF, RGB color commands will set the DIFFUS color
property of the current material. Alpha, the fourth color com-
ponent specified by RGB color commands will set the ALPHA
property of the current material.

LMCSPE, RGB color commands will set the SPECUL color
property of the current material.

LMCAD, RGB color commands will set the DIFFUS and
AMBIEN color property of the current material. Alpha, the
fourth color component specified by RGB color commands will
set the ALPHA property of the current material.

LMCNUL, RGB color commands will be ignored.

DESCRIPTION

Properties of the currently bound material can be changed by calls to
Imdef. Because the data structure of the material must be modified by
this operation, however, it is relatively slow to execute. Imcolo is pro-
vided to support fast and efficient changes to the current material as

Version 3.0

-1- April 1990

Imcolo Graphics Reference, FORTRAN Imcolo

maintained in the graphics hardware, without changing the definition of
the currently bound material. Thus Imcolo changes are lost whenever a
new material is bound.

The standard RGB color commands (RGBcol, ¢, and cpack) are used to
change material properties efficiently. Imcolo specifies which material
property is to be affected by these commands. While lighting is not
active color commands change the current color. lmcolo mode is
significant only while lighting is on.

SEE ALSO
Imdef, Imbind, RGBcol, ¢, cpack

NOTE
This routine is available only in immediate mode.

Imcolo allows changes only to the properties of MATERI, not to the
properties of BACKMA.

While Imcolo is other than LMCNUL or LMCCOL, and lighting is
active, the results of lighting are undefined between the time that a
material is bound and an RGB color command is issued.

While Imcolo is other than LMCNUL or LMCCOL, and lighting is
active, the results of lighting are undefined if an RGB color command is
specified between an n command and the subsequent v command.

Version 3.0 -2- April 1990

Imdef

NAME

Graphics Reference, FORTRAN Imdef

Imdef — defines or modifies a material, light source, or lighting model

FORTRAN 77 SPECIFICATION
subroutine Imdef(deftype, index, np, props)
integer*4 deftype, index, np
real props(np)

PARAMETERS

deftype

index

np

props

Version 3.0

expects the category in which to create a new definition, or the
category of the definition to be modified. There are three
categories, each with its own symbolic constants:

DEFMAT indicates that a material is being defined or
modified.

DEFLIG indicates that a light source is being defined or
modified.

DEFLMO indicates that a lighting model is being defined or
modified.

expects the index into the table of stored definitions. There is a
unique definitions table for each category of definition created
by this routine (materials, light sources, or lighting models).
Indexes within each of these categories are independent. In
each category, index 0 is reserved as a null definition, and can-
not be redefined.

expects the number of symbols and floating point values in
props, including the termination symbol LMNULL. If np is
zero, it is ignored. Operation over network connections is
more efficient when np is correctly specified, however.

expects the array of floating point symbols and values that
define, or modify the definition of, the material, light source, or
lighting model named index. props must contain a sequence of
lighting symbols, each followed by the appropriate number of
floating point values. The last symbol must be LMNULL,
which is itself not followed by any values.

-1- April 1990

Imdef Graphics Reference, FORTRAN Imdef

Different symbols are used to define materials, light sources, and light-
ing models. The symbols used when deftype is DEFMAT are:

ALPHA specifies the transparency of the material. It is followed by
a single floating point value in the range 0.0 through 1.0. This alpha
value is assigned to all RGB triples generated by the lighting model.
Alpha is ignored by systems that do not support blending, and is
always valid in systems that do, regardless of whether alpha bit-
planes are installed in the system. The default alpha value is 1.0.

AMBIEN specifies the ambient reflectance of the material. It is fol-
lowed by three floating point values, typically in the range 0.0
through 1.0, specifying red, green, and blue reflectances. The
default ambient reflectances are 0.2, 0.2, and 0.2.

COLORI specifies the material properties used when lighting in
color map mode. This property is ignored while the current frame-
buffer is in RGB mode, as are most other material properties when
the current framebuffer is in color map mode. (Material property
SHININ is used in color map mode.) Itis followed by three floating
point values, assigning the ambient, diffuse, and specular material
color indices. The default color indices are 0.0, 127.5, and 255.0.

DIFFUS specifies the diffuse reflectance of the material. It is fol-
lowed by three floating point values, typically in the range 0.0
through 1.0, specifying red, green, and blue diffuse reflectances.
The default diffuse reflectances are 0.8, 0.8, and 0.8.

EMISSI specifies the color of light emitted by the material. It is
followed by three floating point values, typically in the range 0.0
through 1.0, specifying red, green, and blue emitted light levels.
The default emission levels are 0.0, 0.0, and 0.0.

SHININ specifies the specular scattering exponent, or the shininess,
of the material. It is followed by a single floating point value in the
range 0.0 through 128.0. Higher values result in smaller, hence
more shiny, specular highlights. The default shininess is 0.0, which
effectively disables specular reflection.

SPECUL specifies the specular reflectance of the material. It is fol-
lowed by three floating point values, typically in the range 0.0
through 1.0, specifying red, green, and blue specular reflectances.
The default specular reflectances are 0.0, 0.0, and 0.0.

Version 3.0 -2- April 1990

loadma Graphics Reference, FORTRAN loadma

NAME

loadma - loads a transformation matrix

FORTRAN 77 SPECIFICATION

subroutine loadma(m)
real m(4,4)

PARAMETERS
m expects the matrix which is to be loaded onto the matrix stack.

DESCRIPTION

loadma loads a 4x4 floating point matrix onto the transformation stack,
replacing the current top matrix.

SEE ALSO
getmat, multma, popmat, pushma

Version 3.0 -1- April 1990

loadna Graphics Reference, FORTRAN loadna

NAME
loadna — loads a name onto the name stack

FORTRAN 77 SPECIFICATION

subroutine loadna(name)
integer*4 name

PARAMETERS

name expects the name which is to be loaded onto the name stack.

DESCRIPTION

loadna replaces the top name in the name stack with a new 16-bit
integer name. Each time a routine causes a hit in picking or selecting
mode, the system stores the contents of the name stack in a buffer. This
enables the user to quickly identify the part of an image that appears
near the cursor.

SEE ALSO
gselect, pick

Version 3.0 -1- April 1990

‘logico Graphics Reference, FORTRAN logico

NAME

logico — specifies a logical operation for pixel writes

FORTRAN 77 SPECIFICATION
subroutine logico(opcode)

integer*4 opcode

PARAMETERS

opcode expects one of the 16 possible logical operations.

Symbol

LOZERO
LOAND
LOANDR
LOSRC
LOANDI
LODST
LOXOR
LOOR
LONOR
LOXNOR
LONDST
LOORR
LONSRC
LOORI
LONAND
LOONE

Operation

0

src AND dst

src AND (NOT dst)
src

(NOT src) AND dst
dst

src XOR dst

src OR dst

NOT (src OR dst)
NOT (src XOR dst)
NOT dst

src OR (NOT dst)
NOT src

(NOT src) OR dst
NOT (src AND dst)
1

Only the lower 4 bits of opcode are used.

The values of LOSRC and LODST have been chosen so that
expressing an operation as the equivalent combination of them
and the FORTRAN bit manipulation intrinsics generates an
acceptable opcode value; e.g., LONAND can be written as
NOT (IAND (LOSRC, LODST)) .

Version 3.0

-1- April 1990

logico Graphics Reference, FORTRAN logico

DESCRIPTION

logico specifies the bit-wise logical operation for pixel writes. The logi-
cal operation is applied between the source pixel value (incoming value)
and existing destination value (previous value) to generate the final pixel
value. In colorindex mode all of the (up to 12) writemask enabled index
bits are changed. In RGB mode all of the (up to 32) enabled component
bits are changed.

logico defaults to LOSRC, meaning that the incoming source value sim-
ply replaces the current (destination) value.

It is not possible to do logical operations and blend simultaneously.
When opcode is set to any value other than LOSRC, the blendfunction
Sfactr and dfactr values are forced to BFONE and BFZERO repectively
(their default values). Likewise, calling blendf with arguments other
than BFONE and BFZERO forces the logical opcode to LOSRC.

Unlike the blendfunction, logicop is valid in all drawing modes
(NORMDR, UNDRDR, OVRDRW, PUPDRW, CURSDR) and in both
colorindex and RGB modes. Like the blendfunction, it affects all draw-
ing operations, including points, lines, polygons, and pixel area
transfers.

SEE ALSO
blendf, gversi

NOTES

The numeric assignments of the 16 operation names were chosen to be
identical to those defined by the X Window System. They will not be
changed in future software releases.

This routine does not function on IRIS-4D B, G, GT, and GTX models,
nor does it function on early serial numbers of the Personal Iris. Use
gversi to determine which type you have.

Version 3.0 -2- April 1990

lookat

NAME

Graphics Reference, FORTRAN lookat

lookat — defines a viewing transformation

FORTRAN 77 SPECIFICATION

subroutine lookat(vx, vy, vz, px, py; pz, twist)
real vx, vy, vz, px, py, pz
integer*4 twist

PARAMETERS
vx expects the x coordinate of the viewing point.
vy expects the y coordinate of the viewing point.
vz expects the z coordinate of the viewing point.
px expects the x coordinate of the reference point.
py expects the y coordinate of the reference point.
pz .

expects the z coordinate of the reference point.

twist expects the angle of rotation.

DESCRIPTION

lookat defines the viewpoint and a reference point on the line of sight in
world coordinates. The viewpoint is at (vx, vy, vz), and is the position
from which you are looking. The reference point is at (px, py, pz), and is
the location on which the viewpoint is centered. The viewpoint and
reference point define the line of sight. twist measures right-hand rota-
tion about the line of sight.

The matrix computed by lookat premultiplies the current matrix, which
is chosen based on the current matrix mode.

SEE ALSO
mmode, polarv

Version 3.0 -1- April 1990

Irectr Graphics Reference, FORTRAN Irectr

NAME
rectre, Irectr — reads a rectangular array of pixels into CPU memory

FORTRAN 77 SPECIFICATION

integer*4 rectre(x1, y1, x2, y2, parray)
integer*4 x1, y1, x2, y2
integer*2 parray(*)

integer*4 Irectr(x1, y1, x2, y2, parray)
integer*4 x1, y1, x2, y2
integer*4 parray(*)

PARAMETERS
xl expects the x coordinate of the lower-left corner of the rectangle
that you want to read.

yl expects the y coordinate of the lower-left comer of the rectangle
that you want to read.

x2 expects the x coordinate of the upper-right comer of the rectan-
gle that you want to read.

y2 expects the y coordinate of the upper-right corner of the rectan-
gle that you want to read.

parray expects the array to receive the pixels that you want to read.

FUNCTION RETURN VALUE

The returned value of this function is the number of pixels specified in
the rectangular region, regardless of whether the pixels were actually
readable (i.e. on-screen) or not.

Version 3.0 -1- April 1990

Irectr Graphics Reference, FORTRAN Irectr

DESCRIPTION

rectre and Irectr read the pixel values of a rectangular region of the
screen and write them to the array, parray. The system fills the elements
of parray from left-to-right, then bottom-to-top. All coordinates are
relative to the lower-left corner of the window, not the screen or
viewport.

rectre fills an array of 16-bit words, and therefore should be used only
to read color index values. lIrectr fills an array of 32-bit words. Based
on the current pixmod, in can return pixels of 1, 2, 4, 8, 12, 16, 24, or 32
bits each. Use it to read packed RGB or RGBA values, color index
values, or z values. Use readso to specify the pixel source from which
both rectre and Irectr read pixels.

pixmod greatly affects the operation of Irectr, and has no effect on the
operation of rectre. By default, Irectr returns 32-bit pixels in the for-
mat used by cpack. Different pixel sizes, framebuffer shifts, scan pat-
terns through the framebuffer, and strides through memory, can all be
specified using pixmod

rectre and Irectr leave the current character position unpredictable.

SEE ALSO

Irectw, pixmod, readso

NOTES
These routines are available only in immediate mode.

On IRIS-4D GT and GTX models, returned bits that do not correspond
to valid bitplanes are undefined. Other models return zero in these bits.

On IRIS-4D GT, GTX, and VGX models, rectre performance will
suffer if x2 — x/ + 1 is odd, or if parray is not 32-bit word aligned.

Version 3.0 ' -2- April 1990

Irectw

NAME

Graphics Reference, FORTRAN Irectw

rectwr, Irectw — draws a rectangular array of pixels into the frame

buffer

FORTRAN 77 SPECIFICATION
subroutine rectwr(x1, y1, x2, y2, parray)
integer*4 x1, y1, x2, y2
integer*2 parray(¥)

subroutine Irectw(x1, y1, x2, y2, parray)
integer*4 x1, y1, x2, y2
integer*4 parray(*)

PARAMETERS
xI expects the lower-left x coordinate of the rectangular region.
yl expects the lower-left y coordinate of the rectangular region.
x2 expects the upper-right x coordinate of the rectangular region.
y2 expects the upper-right y coordinate of the rectangular region.
parray expects the array which contains the values of the pixels to be
drawn. For RGBA values, pack the bits thusly: $SAABBGGRR,
where:
AA contains the alpha value,
BB contains the blue value,
GG contains the green value, and
RR contains the red value.
RGBA component values range from 0 to $FF (255). The alpha
value will be ignored if blending is not active and the machine
has no alpha bitplanes.
DESCRIPTION

rectwr and Irectw draw pixels taken from the array parray into the
specified rectangular frame buffer region. The system draws pixels left-
to-right, then bottom-to-top. All coordinates are relative to the lower-left
corner of the window, not the screen or viewport. All normal drawing
modes apply.

Version 3.0

-1- April 1990

Irectw Graphics Reference, FORTRAN Irectw

The size of parray is always (x2—x1+1) X (y2—y1+1). If the zoom fac-
tors set by rectzo are both 1.0, the screen region x/ through x2, y!
through y2, are filled. Other zoom factors result in filling past x2 and/or
past y2 (x1,yl is always the lower-left corner of the filled region).

rectwr draws an array of 16-bit words, and therefore should be used
only to write color index values. Irectw draws an array of 32-bit words.
Based on the current pixmod, in can draw pixels of 1, 2, 4, 8, 12, 16, 24,
or 32 bits each. Use it to write packed RGB or RGBA values, color
index values, or z values.

pixmod greatly affects the operation of Irectw, and has no effect on the
operation of rectwr. By default, Irectw draws 32-bit pixels in the for-
mat used by cpack. Different pixel sizes, framebuffer shifts, scan pat-
terns through the framebuffer, and strides through memory, can all be
specified using pixmod.

rectwr and Irectw leave the current character position unpredictable.

SEE ALSO
blendf, Irectr, pixmod, rectco, rectzo

NOTES

These routines are available only in immediate mode.

Version 3.0 -2- April 1990

IRGBra Graphics Reference, FORTRAN IRGBra

NAME
IRGBra — sets the range of RGB colors used for depth-cueing

FORTRAN 77 SPECIFICATION

subroutine IRGBra(rmin, gmin, bmin, rmax, gmax, bmax, znear, zfar)
integer*2 rmin, gmin, bmin, rmax, gmax, bmax
integer*4 znear, zfar

PARAMETERS

rmin expects the minimum value to be stored in the red bitplanes.
gmin expects the minimum value to be stored in the green bitplanes.
bmin expects the minimum value to be stored in the blue bitplanes.
rmax expects the maximum value to be stored in the red bitplanes.
gmax expects the maximum value to be stored in the green bitplanes.
bmax expects the maximum value to be stored in the blue bitplanes.

znear expects the nearer screen z, to which the maximum colors are

mapped.
zfar expects the farther screen z, to which the minimum colors are
mapped.
DESCRIPTION

IRGBra sets the range of RGB colors used for depth-cueing in RGB
mode. The screen z range [znear, zfar] is mapped linearly into the RGB
color range [(rmax,gmax.bmax), (rmin,gmin,bmin)). Screen z values
nearer than znear are mapped to (rmax,gmax,bmax); screen z values
farther than zfar are mapped to (rmin,gmin,bmin).

The valid range for znear and zfar depends on the state of the GLCZRA
compatibility mode (see glcomp). If it is O, the valid range depends on
the graphics hardware, where the minimum is the value returned by
getgde(GDZMIN) and the maximum is the value returned by
getgde(GDZMAX). If it is 1, the minimum is $0 and the maximum is
$7FFFFF. Znear and zfar should be chosen to be consistent with the
near and far parameters passed to Isetde. If near < far, then znear

Version 3.0 -1- April 1990

IRGBra Graphics Reference, FORTRAN IRGBra

should be less than zfar. If near > far, then znear should be greater
than zfar. In either case, the range [near, far] should bound the range
[znear, zfar].

SEE ALSO
depthc, getgde, glcomp, Isetde

Version 3.0 : -2- April 1990

Isback Graphics Reference, FORTRAN Isback

NAME

Isback — controls whether the ends of a line segment are colored

FORTRAN 77 SPECIFICATION

subroutine Isback(b)
logical b

PARAMETERS

b expects either .TRUE. or .FALSE..
.TRUE. forces the last pixel of a line segment to be colored.

JALSE. allows the linestyle to depend whether the last pixel of a
line segment to be colored.

DESCRIPTION

Isback enables or disables linestyle backup mode. This mode controls
how the final pixel of a line segment are rendered. If it is enabled, it
causes the current linestyle to be overridden and forces the final pixel of
a line segment to be colored. If it is disabled (the default), this does not
happen, and line segments can have invisible endpoints.

SEE ALSO
deflin, getlsb, resetl

NOTE

This routine only functions on IRIS-4D B and G models and therefore
we advise against its use in new development.

Version 3.0 -1- April 1990

Isetde Graphics Reference, FORTRAN Isetde

NAME
Isetde — sets the depth range

FORTRAN SPECIFICATION

subroutine Isetde(near, far)
integer*4 near, far

PARAMETERS

near expects the screen coordinate of the near clipping plane.

far expects the screen coordinate of the far clipping plane.

DESCRIPTION

viewpo specifies the mapping of the left, right, bottom, and top clipping
planes into screen coordinates. lsetde completes this mapping for
homogeneous world coordinates; it specifies the mapping of the near
and far clipping planes into values stored in the z-buffer.

Isetde is used in z-buffering, depth-cueing, and certain feedback appli-
cations.

The valid range of the parameters depends on the state of the GLCZRA
compatibility mode (see glcomp). If it is O, the valid range depends on
the graphics hardware, where the minimum is the value returned by
getgde(GDZMIN) and the maximum is the value returned by
getgde(GDZMAX). Ifit is 1, the minimum is $0 and the maximum is
$7FFFFF. The depth range defaults to the full range supported by the
graphics hardware.

Acceptable mappings include all those where both near and far are
within the supported range, including mappings where near > far. In
particular, it is sometimes desirable to call Isetde($7FFFFF, $0) on
IRIS-4D GT and GTX models.

SEE ALSO
depthc, feedba, getgde, glcomp, zbuffe

Version 3.0 -1- April 1990

Isetde Graphics Reference, FORTRAN Isetde

NOTE

Error accumulation in the iteration of z can cause wrapping when the
full depth range supported by the graphics hardware is used. (An itera-
tion wraps when it accidentally converts an large positive value into a
negative value, or vice versa.) While the effects of wrapping are typi-
cally not observed, if they are, they can be eliminated by reducing the
depth range by a small percentage.

Version 3.0 -2- April 1990

ishade Graphics Reference, FORTRAN Ishade

NAME

Ishade — sets range of color indices used for depth-cueing

FORTRAN SPECIFICATION

subroutine Ishade(lowin, highin, znear, zfar)
integer*2 lowin, highin
integer*4 znear, zfar

PARAMETERS

lowin expects the low-intensity color map index.
highin expects the high-intensity color map index.
znear expects the nearer screen z, to which highin is mapped.

zfar expects the farther screen z, to which lowin is mapped.

DESCRIPTION

Ishade sets the range of color indices used for depth-cueing. The screen
z range [znear, zfar] is mapped linearly into the color index range
[highin, lowin]. Screen z values nearer than znear map to highin;
screen z values farther than zfar map to lowin.

The valid range for znear and zfar depends on the state of the GLCZRA
compatibility mode (see glcomp). If it is O, the valid range depends on
the graphics hardware, where the minimum is the value returned by
getgde(GDZMIN) and the maximum is the value returned by
getgde(GDZMAX). If it is 1, the minimum is $0 and the maximum is
$7FFFFF. The default is Ishade(0, 7, Zmin, Zmax), where Zmin and
Zmax are the values such that the full range supported by the graphics
hardware is used.

Znear and zfar should be chosen to be consistent with the near and far
parameters passed to Isetde. If near < far, then znear should be less
than zfar. If near > far, then znear should be greater than zfar. In
either case, the range [near, far] should bound the range [znear, zfar].

Version 3.0 -1- April 1990

Ishade Graphics Reference, FORTRAN Ishade

SEE ALSO
depthc, getgde, glcomp, Isetde

Version 3.0 -2- . April 1990

Isrepe Graphics Reference, FORTRAN Isrepe

NAME

Isrepe — sets a repeat factor for the current linestyle |

FORTRAN 77 SPECIFICATION

subroutine Isrepe(factor)
integer*4 factor

PARAMETERS

factor expects the repeat factor of the linestyle pattern. The valid range
of factor is 1 through 255.

DESCRIPTION

Isrepe is used to create linestyles that are longer than 16 bits by multi-
plying each bit in the pattern by factor. When a line is drawn, pixels are
written if there is a 1 in the corresponding position of the linestyle mask
and not written if there is a 0 in the corresponding position. When
Isrepe is used each bit in the pattern is multiplied successively by fac-
tor. If the line pattern is 0000000111111111 and factor = 3, the result-
ing linestyle would be 27 bits on followed by 21 bits off. Line patterns
start from the least significant bit.

SEE ALSO
deflin, getlsr

Version 3.0 -1- April 1990

makeob Graphics Reference, FORTRAN makeob

NAME

makeob — creates an object

FORTRAN 77 SPECIFICATION

subroutine makeob(obj)
integer*4 obj

PARAMETERS

obj expects the numeric identifier for the object being defined.

DESCRIPTION

makeob creates and names a new object by entering the identifier,
specified by obj, into a symbol table and allocating memory for its list
of drawing routines. If obj is the number of an existing object, the con-
tents of that object are deleted. Drawing routines are then added into the
display list instead of executing, until closeo is called.

SEE ALSO
callob, closeob, genobj, isobj, chunks

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

maketa Graphics Reference, FORTRAN maketa

NAME

maketa — numbers a routine in the display list

FORTRAN 77 SPECIFICATION

subroutine maketa(t)
~ integer*4 t

PARAMETERS

t expects a numeric identifier, or tag, which the system places between
two list items. A tag locates display list items for editing.

DESCRIPTION

maketa places markers that identify specific locations of drawing rou-
tines within an object definition. To do this, specify a 31-bit number (¢)
with maketa. The system assigns this number to the next routine in the
display list. A tag is specific only to the object in which you use it. Con-
sequently, you can use the same 31-bit number in different objects
without confusion.

SEE ALSO
gentag, istag

Version 3.0 -1- April 1990

mapcol Graphics Reference, FORTRAN mapcol

NAME

mapcol — changes a color map entry

FORTRAN 77 SPECIFICATION

subroutine mapcol(i, red, green, blue)
integer*4 i, red, green, blue

PARAMETERS

i expects the index into the color map.

red expects an intensity value in the range 0 to 255 for red to be
associated with the index.

green expects an intensity value in the range 0 to 255 for green to be
associated with the index.

blue expects an intensity value in the range O to 255 for blue to be
associated with the index.

DESCRIPTION

mapcol loads entry i of the color map for the current drawing mode with
(red, green, blue). Pixels written with color index i are displayed with
the specified RGB intensities. The valid range for i depends on the
number of bitplanes available in the current drawing and buffer modes,
i.e. the value returned by getpla. Using Ni to represent 2 raised to the
return value of getpla in drawing mode i, the valid ranges are:

NORMDR 0to Nn—1.
OVRDRW 1to No—1.
UNDRDR 0to Nu-—1.
PUPDRW 1 to Np—1.
CURSDR 1 to getgde(GDBCUR).

If Ni is 1, then no indices are valid. Invalid indices are ignored by
mapcol.

In multimap mode, mapcol updates only the small color map currently
selected by setmap.

Version 3.0 -1- April 1990

mapcol Graphics Reference, FORTRAN mapcol

The color map entry that controls the color of the cross-hair cursor (cur-
sor type CCROSS) is returned by the getgde inquiry GDXHCIL

SEE ALSO
color, cursty, drawmo, gammar, getgde, getmco, getpla, setmap (

NOTES
This subroutine is available only in immediate mode.

On the IRIS-4D G, you should not alter the top 256 colors (color indices
3840 to 4095). The system uses these colors for the cursor, overlay bit-
planes, and RGB mode. If you alter the colors to which these features
are mapped, some screen features will appear in strange colors.

Version 3.0 -2- April 1990

mapw

NAME

Graphics Reference, FORTRAN mapw

mapw — maps a point on the screen into a line in 3-D world coordinates

FORTRAN 77 SPECIFICATION

subroutine mapw(vobj, sx, sy, wx1,

+

wyl, wzl, wx2, wy2, wz2)

integer*4 vobj, sx, sy
real wx1, wyl, wzl, wx2, wy2, wz2

PARAMETERS

vobj

SX

wxl

wzl
wx2
wy2
wz2

expects a viewing object containing the transformations that map
the current displayed objects to the screen.

expects the x coordinate of the screen point to be mapped.
expects the y coordinate of the screen point to be mapped.

returns the x world coordinate of one endpoint of a line.

returns the y world coordinate of one endpoint of a line.

returns the z world coordinate of one endpoint of a line.

returns the x world coordinate of the remaining endpoint of a line.
returns the y world coordinate of the remaining endpoint of a line.

returns the z world coordinate of the remaining endpoint of a line.

DESCRIPTION

mapw takes a pair of 2-D screen coordinates and maps them into 3-D
world coordinates. Since the z coordinate is missing from the screen
coordinate system, the point becomes a line in world space. mapw
computes the inverse mapping from the viewing object, vobj.

A viewing object is a graphical object that contains only viewport, pro-
jection, viewing transformation, and modeling routines. A correct map-
ping from screen coordinate to world coordinates requires that the view-
ing object contain the projection and viewing transformations that
mapped the displayed object from world to screen coordinates.

Version 3.0 -1- April 1990

mapw Graphics Reference, FORTRAN mapw

The system returns a world space line, which is computed from (sx, sy)
and vobj, as two points and stores them in the locations addressed by
wxl, wyl, wzl and wx2, wy2, wz2.

SEE ALSO

mapw?2

NOTE

This routine is available only in immediate mode.

Version 3.0 -2- April 1990

(

mapw2 Graphics Reference, FORTRAN mapw2

NAME

mapw2 — maps a point on the screen into 2-D world coordinates

FORTRAN 77 SPECIFICATION

subroutine mapw2(vobj, sx, sy, wx, wy)
integer*4 vobj, sx, sy
real wx, wy

PARAMETERS
vobj expects the transformations that map the displayed objects to
world coordinates.
sx expects the x coordinate of the screen point to be mapped.
sy expects the y coordinate of the screen point to be mapped.
wx retumns the corresponding x world coordinate.

wy returns the corresponding y world coordinate.

DESCRIPTION

mapw2 is the 2-D version of mapw. vobj is a viewing object contain-
ing the viewport, projection, viewing, and modeling transformations that
define world space. sx and sy define a point in screen coordinates. wx
and wy return the corresponding world coordinates. If the transforma-
tion is not 2-D, the result is undefined.

SEE ALSO

mapw

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

maxsiz Graphics Reference, FORTRAN maxsiz

NAME

maxsiz — specifies the maximum size of a graphics window

~ FORTRAN 77 SPECIFICATION

subroutine maxsiz(x, y)
integer*4 x, y

PARAMETERS
x expects the maximum width of a graphics window. The width is
measured in pixels.

y expects the maximum height of a graphics window. The height is
measured in pixels.

DESCRIPTION

maxsiz specifies the maximum size (in pixels) of a graphics window.
Call it at the beginning of a graphics program before winope. maxsiz
takes effect when winope is called.

You can also call maxsiz in conjunction with wincon to modify the
enforced maximum size after the window has been created. The default
maximum size is getgde(GDXPMA) pixels wide and
getgde(GDYPMA) pixels high. The user can reshape the graphics win-
dow, but the window manager does not allow it to become larger than
the specified maximum size.

SEE ALSO

getgde, minsiz, winope

NOTE

This routine is available only in immediate mode.

Version 3.0 / -1- April 1990

minsiz Graphics Reference, FORTRAN minsiz

NAME

minsiz — specifies the minimum size of a graphics window

FORTRAN 77 SPECIFICATION

subroutine minsiz(x, y)
integer*4 x, y

PARAMETERS
x expects the minimum width of a graphics window. The width is
measured in pixels. The lowest legal value for this parameter is 1.

y expects the minimum height of a graphics window. The height is
measured in pixels. The lowest legal value for this parameter is 1.

DESCRIPTION

minsiz specifies the minimum size (in pixels) of a graphics window.
Call it at the beginning of a graphics program. It takes effect when
winope is called. You can also call minsiz with wincon to modify the
enforced minimum size after the window has been created. The default
minimum size is 40 pixels wide and 30 pixels high. You can reshape
the window, but the window manager does not allow it to become
smaller than the specified minimum size.

SEE ALSO

maxsiz, winope

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

mmode Graphics Reference, FORTRAN mmode

NAME

mmode - sets the current matrix mode

FORTRAN 77 SPECIFICATION

subroutine mmode(m) ()
integer*4 m

PARAMETERS

m expects a symbolic constant, one of;

MSINGL puts the system into single-matrix mode. In single-matrix
mode, all modeling, viewing, and projection transformations are
done using a single matrix that combines- all these transformations.
This is the default matrix mode.

MVIEWI puts the system into multi-matrix mode. In this mode,
separate ModelView, Projection, and Texture matrices are main-
tained. The ModelView matrix is modified by all matrix operations.

MPROJE puts the system into multi-matrix mode. In this mode, :
separate ModelView, Projection, and Texture matrices are main- (!
tained. The Projection matrix is modified by all matrix operations. -

MTEXTU puts the system into multi-matrix mode. In this mode,
separate ModelView, Projection, and Texture matrices are main-
tained. The Texture matrix is modified by all matrix operations.

DESCRIPTION

mmode specifies which matrix is the current matrix, and also deter-
mines whether the system is in single-matrix mode, or in multi-matrix
mode. The matrix mode and current matrix are determined as follows:

Version 3.0 -1- April 1990

mmode Graphics Reference, FORTRAN mmode

mmode matrix mode current matrix
MSINGL single only matrix
MVIEWI multi ModelView
MPROIJE multi Projection
MTEXTU multi Texture

In single-matrix mode, vertices are transformed directly from object-
coordinates to clip-coordinates by a single matrix. All matrix com-
mands operate on this, the only matrix. Single-matrix mode is the
default mode, but its use is discouraged, because many of the newer GL
rendering features cannot be used while the system is in single-matrix
mode.

In multi-matrix mode, vertices are transformed from object-coordinates
to eye-coordinates by the Model View matrix, then from eye-coordinates
to clip-coordinates by the Projection matrix. A third matrix, the Texture
matrix, is maintained to transform texture coordinates. While in multi-
matrix mode, mmodes MVIEWI, MPROJE, and MTEXTU specify
which of the three matrices is operated on by matrix modification com-
mands. Many GL rendering operations, including lighting, texture map-
ping, and user-defined clipping planes, require that the matrix mode be
multi-matrix.

Both the single matrix that is maintained while mmode is MSINGL
mode, and the ModelView matrix that is maintained while not in
MSINGL mode, have a stack depth of 32. The Projection and Texture
matrices are not stacked. Thus matrix commands pushma and popmat
should not be called while the matrix mode is MPROJE or MTEXTU.

Changes between matrix modes MVIEWI, MPROJE and MTEXTU
have no effect on the matrix values themselves. However, when matrix
mode MSINGL is entered or left, all matrix stacks are forced to be
empty, and all matrices are initialized to the identity matrix.

SEE ALSO

clippl, getmmo, Imbind, lookat, ortho, perspe, polarv, rot, rotate, scale,
texbin, transl, window

Version 3.0 -2- April 1990

mmode Graphics Reference, FORTRAN mmode

BUGS

On IRIS-4D G, GT, GTX systems, and on the Personal IRIS, multi-
matrix operation is incorrect while mmode is MPROJE. Specifically,
vertices are transformed only by the Projection matrix, not by the
ModelView matrix.

Version 3.0 -3- 'Ap'ril 1990

move Graphics Reference, FORTRAN move

NAME

move, movei, moves, move2, move2i, move2s — moves the current
graphics position to a specified point

FORTRAN 77 SPECIFICATION

subroutine move(x, y, z)
realx,y, z

subroutine movei(x, y, z)
integer*4 x,y, z

subroutine moves(x, y, z)
integer*2 x, y, z

subroutine move2(x, y)
real x, y

subroutine move2i(x, y)
integer*4 x, y

subroutine move2s(x, y)
integer*2 x, y

All of the above routines are functionally the same. They differ only in
the type declarations of their parameters and in whether they assume a
three- or two-dimensional space.

PARAMETERS

x expects the new x coordinate for the current graphics position.
y expects the new y coordinate for the current graphics position.

expects the new z coordinate for the current graphics position (when
applicable).

DESCRIPTION

move changes (without drawing) the current graphics position to the
point specified by x, y, and z. The graphics position is the point from
which the next drawing routine will start drawing.

Version 3.0 -1- April 1990

move Graphics Reference, FORTRAN move

move2(x, y) is equivalent to move(x, y, 0.0).

SEE ALSO
bgnlin, draw, endlin, v

(

NOTE

move should not be used in new development. Rather, lines should be
drawn using the high-performance v commands, surrounded by calls to
bgnlin and endlin.

Version 3.0 -2- April 1990

mswapb Graphics Reference, FORTRAN mswapb

NAME

mswapb — swap multiple framebuffers simultaneously

FORTRAN SPECIFICATION

subroutine mswapb(fbuf)
integer*4 fbuf
PARAMETERS
Jbuf Expects a bitfield comprised of the logical OR of one or more of
the following symbols:
NORMAL indicates that the normal framebuffer is to be
swapped.
OVERDR indicates that the overlay framebuffer is to be
swapped.
UNDERD indicates that the underlay framebuffer is to be
swapped.
DESCRIPTION

mswapb exchanges the front and back buffers of multiple framebuffers
simultaneously. Which framebuffers are to have their buffers
exchanged is specified by the bitfield fbuf, the only argument. The nor-
mal, overlay, and underlay framebuffers are specified with bitmasks
NORMAL, OVERDR, and UNDERD. These masks must be ORed
together to generate the fbuf argument. For example, both the normal
and overlay framebuffers are swapped by the command:
mswapb (NORMAL .OR. OVERDR).

mswapb is executed during a vertical retrace period that closely follows
the time of the request (usually the next vertical retrace).

mswapb is ignored by framebuffers that are not in doublebuffer mode.

SEE ALSO

double, drawmo, swapbu, swapin

Version 3.0 -1- April 1990

mswapb

NOTES

Graphics Reference, FORTRAN

mswapb

IRIS-4D models G, GT, and GTX, and the Personal Iris, do not imple-

ment mswapb.

Version 3.0

April 1990

multim Graphics Reference, FORTRAN multim

NAME

multim — organizes the color map as a number of smaller maps

FORTRAN 77 SPECIFICATION

subroutine multim

PARAMETERS

none

DESCRIPTION

multim organizes the color map of the currently active framebuffer as a
number of smaller maps. Because only the normal framebuffer supports
multiple color maps, multim should be called only while drawmode is
NORMAL.

There are getgde(GDNMMA) maps, each of which will have up to 256
entries, depending on the number of bitplanes available. Call getpla
after setting the drawing mode to the desired framebuffer to determine
the color map size. getgde can also be called at any time to determine
the size of the color map of any framebuffer.

multim does not take effect until geonfi is called. When called, gconfi
executes multim requests pending for all drawing modes, regardless of
the current drawing mode.

A framebuffer’s color map is used to display pixels only if the frame-
buffer is in color map mode.

SEE ALSO

cmode, drawmo, gconfi, getgde, getcmm, getmap, onemap, setmap

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

multma Graphics Reference, FORTRAN multma

NAME
multma — premultiplies the current transformation matrix

FORTRAN 77 SPECIFICATION

subroutine multma(m)
real m(4,4)

PARAMETERS

m expects the matrix that is to multiply the current top matrix of the
transformation stack.

'DESCRIPTION

multma premultiplies the current top of the transformation stack by the
given matrix. If T is the current matrix, multma(M) replaces T with
MXT.

SEE ALSO
getmat, loadma, popmat, pushma

Version 3.0 -1- April 1990

n Graphics Reference, FORTRAN n

NAME
n3f — specifies a normal

FORTRAN SPECIFICATION

subroutine n3f(vector)
real vector(3)

PARAMETERS

vector expects an array containing three floating point numbers. These
numbers are used to set the value for the current vertex normal.

DESCRIPTION

n3f specifies a floating point normal for lighting calculations. The nor-
mal becomes the current normal for subsequent vertices; it is not neces-
sary to respecify a normal if it is unchanged (e.g., a single call to n3f
specifies normals for all vertices of a flat- shaded polygon).

Vector components are Nx, Ny, and Nz for indices 1, 2, and 3.

Lighting calculations assume that the specified normal is of unit length.
If non-unit length normals are to be specified, use nmode to inform the
system that normals must be normalized. Lighting performance may be
reduced in this event.

When called with unequal arguments, scale causes the ModelView
matrix to become nonorthonormal. In this case, or in any other case that
results in a nonorthonormal ModelView matrix, normals are also renor-
malized automatically. Performance reduction, if any, matches that of
nmode user-specified normalization.

SEE ALSO
Imbind, Imdef, nmode

Version 3.0 -1- April 1990

newpup Graphics Reference, FORTRAN newpup

NAME

newpup — allocates and initializes a structure for a new menu

FORTRAN 77 SPECIFICATION
integer*4 function newpup()

PARAMETERS

none

FUNCTION RETURN VALUE
The returned value of this function is a menu identifier.

DESCRIPTION

newpup allocates and initializes a structure for a new menu; it returns a
positive menu identifier. Use to create pop-up menus.

SEE ALSO

newpup with addtop to create pop-up menus.

SEE ALSO
addtop, dopup, freepu

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- ‘ April 1990

newtag Graphics Reference, FORTRAN newtag

NAME

newtag — creates a new tag within an object relative to an existing tag

FORTRAN 77 SPECIFICATION

subroutine newtag(newtg, oldtg, offst)
integer*4 newtg, oldtg, offst

PARAMETERS

newtg expects an identifier for the tag that will be created.

oldtg expects an existihg tag. It will be used as a reference point for
inserting newtg.

offst expects the number of positions beyond oldtg where newtg. will
be placed. :

DESCRIPTION

newtag creates a new tag and places it at the specified number of posi-
tions beyond oldtg. The number of positions is indicated by offst.

newtag is used within an object after at least one tag has been created
by calling maketa.

SEE ALSO
maketa

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

nmode Graphics Reference, FORTRAN nmode

NAME

nmode — specify renormalization of normals

FORTRAN SPECIFICATION

subroutine nmode(mode)
integer*4 mode

PARAMETERS

mode expects a symbolic constant. There are two defined constants for
this parameter: '

NAUTO causes normals to be renormalized only if the current
Model View matrix is not orthonormal. (default)

NNORMALIZE causes normals to always be renormalized,
regardless of the current ModelView matrix.

DESCRIPTION

IRIS systems transform vertex normals from object-coordinates to eye-
coordinates before doing lighting calculations. While the matrix mode
is MVIEWIN, a separate Normal matrix is maintained to support this
transformation. The Normal matrix is the inverse transpose of the
upper-left 3 X 3 portion of the ModelView matrix.

Transformed normals must be unit length if the lighting calculations are
to be meaningful. Transformed normals will be unit length if 1) they
were unit length in object-coordinates, and 2) the current Normal matrix
is orthonormal (see notes). If one or both of these conditions are not
met, the normal must be normalized (corrected to have unit length) after
it is transformed. nmode helps the system determine when normaliza-
tion is required.

Each time the ModelView matrix is changed, the IRIS determines
whether the resulting (inverse-transpose) Normal matrix is orthonormal
or not, and saves the result of the test as a flag. After each normal is
“transformed, both this flag and the nmode flag are tested. If nmode is
NAUTO, the normal is normalized if and only if the flag is set (i.e. the
ModelView matrix is not orthonormal). NAUTO mode is appropriate
when the model normals are known to be unit length. If nmode is

Version 3.0 -1- April 1990

A

nmode Graphics Reference, FORTRAN nmode

NNORMA, the normal is normalized unconditionally. NNORMA
mode is appropriate when the model normals may not be unit length.

NAUTO is the default nmode.

Because normalization involves division by a computed square root, it
can adversely affect system performance.

SEE ALSO

mmode, loadma, multma, rot, scale, transl, Imbind

NOTES

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
nmode.

nmode cannot be used while draw mode is MSINGL.

For our purposes a matrix is orthogonal if it transforms normals to the
same length regardless of their direction, and it is orthonormal if this
length is the same as the untransformed length. Rotation matrixes are
always orthonormal. Scale matrixes are orthogonal but not orthonormal
if the three scale values are identical, neither orthogonal nor orthonor-
mal otherwise. Uniform scale ModelView matrices can be normalized
to the identity matrix, and are therefore ignored by the Normal matrix.
Translations do not affect the upper-left 3x3 ModelView matrix, and are
therefore also ignored by the Normal matrix.

The length of a normal is the square root of its dot product with itself.

Version 3.0 -2- April 1990

nobord Graphics Reference, FORTRAN nobord

NAME

nobord — specifies a window without any borders

FORTRAN 77 SPECIFICATION

subroutine nobord

PARAMETERS

none

DESCRIPTION

nobord specifies a window that has no borders around its drawable area.
Call nobord before you open the window.

SEE ALSO

wincon

Version 3.0 -1- April 1990

noise Graphics Reference, FORTRAN noise

NAME

noise — filters valuator motion

FORTRAN 77 SPECIFICATION

subroutine noise(v, delta)
integer*4 v, delta

PARAMETERS

v expects a valuator. A valuator is a single-value input device.

delta expects the number of units of change required before the valua-
tor v can make a new queue entry.

DESCRIPTION

noise determines how often queued valuators make entries in the event
queue. Some valuators are noisy. For example, a device that is not mov-
ing can still report small fluctuations in value. noise is used to set a
lower limit on what constitutes a move. That is, the value of a noisy
valuator v must change by at least delta before the motion is considered
significant. For example, noise(v,5) means that valuator v must move at
least 5 units before it makes a new queue entry.

The default noise value for all valuators is 1, except for the timer dev-
ices (TIMER®), for which it is 10000. The frequency of timer events is
returned by the getgde inquiry GDTIME.

SEE ALSO
getgde, gdevic, setval

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

noport Graphics Reference, FORTRAN noport

NAME

noport — specifies that a program does not need screen space

FORTRAN 77 SPECIFICATION

subroutine noport

PARAMETERS

none

DESCRIPTION

noport specifies that a graphics program does not need screen space,
and therefore does not need a graphics window. This is useful for pro-
grams that only read or write the color map. Call noport at the begin-
ning of a graphics program; then call winope to do a graphics initializa-
tion.

The system ignores noport if winope is not called.
SEE ALSO
winbpe

NOTE
This routine is available only in immediate mode.

Version 3.0 -1- April 1990

normal Graphics Reference, FORTRAN normal

NAME

normal — obsolete routine

FORTRAN 77 SPECIFICATION

subroutine normal(narray)
real narray(3)

PARAMETERS

narray expects an array containing three floating point numbers. These
numbers are used to set the value for the current vertex normal.
Although the declaration specifies a coordinate (real variable), a
function is called by normal which translates the parameter
accordingly.

DESCRIPTION

This routine is obsolete. Although it continues to function to provide
backwards compatibility, all new development should use its identical
replacement, n3f.

SEE ALSO
n

Version 3.0 -1- April 1990

nurbsc

NAME

Graphics Reference, FORTRAN nurbsc

nurbsc — controls the shape of a NURBS trimming curve

FORTRAN 77 SPECIFICATION

subroutine nurbsc(knotcount, knotlist, offset, ctlarray,

+

order, type)

integer*4 knotcount, offset
double precision knotlist(knotcount), ctlarray(*)
integer*4 order, type

PARAMETERS

knotcount

knotlist

offset

ctlarray

order

type

DESCRIPTION

expects the number of knots.
expects an array of knotcount non-decreasing knot values.

expects the offset (in bytes) between successive curve con-
trol points

expects an array containing control points for the NURBS
curve. The coordinates must appear as either (x, y) pairs or
as (wx, wy, w) triples. The offset between successive con-
trol points is given by offset.

expects the order of the NURBS curve. The order is one
more than the degree, hence, a cubic curve has an order
of 4.

expects a value indicating the control point type. Current
options are NP2D and NP2DR, denoting double-precision
parametric coordinates in the two-dimensional parameter
space of a trimmed surface. NP2D denotes non-rational (2)
coordinates, while NP2DR denotes rational (3) coordinates.

Use nurbsc to describe a NURBS curve. Use NURBS curves within
trimming loop definitions. A trimming loop definition is a set of
oriented curve commands that describe a closed loop. To mark the
beginning of a trimming loop definition, use the bgntri command. To
mark the end of a trimming loop definition, use an endtri command.

Version 3.0

-1- April 1990

nurbsc Graphics Reference, FORTRAN nurbsc

You use trimming loop definitions within NURBS surface definitions
(see bgnsur). The trimming loops are closed curves that the system uses
to set the boundaries of a NURBS surface. You can describe a trimming
loop by using a series of NURBS curves, piecewise linear curves (see
pwlcur), or both.

When the system needs to decide which part of a NURBS surface you
want it to display, it displays the region of the NURBS surface that is to
the left of the trimming curves as the parameter increases. Thus, for a
counter-clockwise oriented trimming curve, the displayed region of the
NURBS surface is the region inside the curve. For a clockwise oriented
trimming curve, the displayed region of the NURBS surface is the
region outside the curve.

The offset parameter is used in case the control points are part of an
array of larger structure elements. The nurbscurve routine searches for
the n-th control point pair or triple beginning at byte address
ctlarray + n X offset.

See the Graphics Library Programming Guide for a mathematical
description of a NURBS curve.

SEE ALSO
bgnsur, nurbss, bgntri, pwlcur, setnur, getnur

Version 3.0 -2- April 1990

nurbss

NAME

Graphics Reference, FORTRAN nurbss

nurbss — controls the shape of a NURBS surface

FORTRAN 77 SPECIFICATION
subroutine nurbss(sknotcount, s_knot, tknotcount, t_knot,

+

soffset, toffset, ctlarray, sorder, torder, type)

integer*4 sknotcount, tknotcount

double precision sknot(sknotcount), tknot(tknotcount)
~ integer®4 soffset, toffset

double precision ctlarray(¥*)

integer*4 sorder, torder, type

PARAMETERS

sknotcount
sknot

tknotcount
tknot

soffset

toffset

ctlarray

sorder

Version 3.0

expects the number of knots in the parametric s direc-
tion.

expects an array of sknotcount non-decreasing knot
values in the parametric s direction.

expects the number of knots in the parametric t direction.

expects an array of tknotcount non-decreasing knot
values in the parametric t direction.

expects the offset (in bytes) between successive control
points in the parametric s direction in ctlarray.

expects the offset (in bytes) between successive control
points in the parametric t direction in ctlarray.

expects an array containing control points for the
NURBS surface. The coordinates must appear as either
(x,y,z) triples or as (wx, wy, wz, w) quadruples. The
offsets between successive control points in the
parametric s and t directions are given by soffset and
toffset.

expects the order of the NURBS surface in the
parametric s direction. The order is one more than the
degree, hence, a cubic surface has an order of 4.

-1- April 1990

(

nurbss Graphics Reference, FORTRAN nurbss

torder expects the order of the NURBS surface in the
parametric t direction. The order is one more than the
degree, hence, a cubic surface has an order of 4.

type expects a value indicating the control point type.
Current options are NV3D, NV3DR, NC4D, NC4DR,
and NT2D, NT2DR. Types NV3D and NV3DR denote
double-precision positional coordinates in a three-
dimensional model space. NV3D denotes non-rational
(3) coordinates and NV3DR denotes rational (4) coordi-
nates. Types NC4D and NC4DR denote double-
precision color coordinates in a four-dimensional RGBA
color space. NC4D denotes non-rational coordinates and
NC4DR denotes rational coordinates. Types NT2D and
NT2DR denote double-precision texture coordinates in a
two-dimensional texture space. NT2D denotes non-
rational coordinates and NT2DR denotes rational coordi-
nates.

DESCRIPTION

Use the nurbss command within a NURBS (Non-Uniform Rational B-
Spline) surface definition to describe the shape of a NURBS surface
before any trimming takes place. To mark the beginning of a NURBS
surface definition, use the bgnsur command. To mark the end of a
NURBS surface definition, use the endsur command. Call nurbss
within a NURBS surface definition only.

Positional, texture, and color coordinates are associated by presenting
each as a separate nurbss between a bgnsur/endsurf pair. No more
than one call to nurbss for each of color and texture data may be made
within a single bgnsur/endsurf pair. Exactly one call must be made to
describe position data and it must be the last call to nurbss between the
bracketing bgnsur/endsurf.

EXAMPLE

Version 3.0 -2- April 1990

nurbss Graphics Reference, FORTRAN nurbss

call‘bgnsur

call nurbss(..., N_C4D)
call nurbss(..., N_T2D)
call nurbss(..., N_V3D)

call endsur

You can trim a NURBS surface by using the commands nurbsc and
pwlcur between calls to bgntri and endtri.

Observe that a nurbss with sknotcount knots in the s direction and
tknotcount knots in the t direction with orders sorder and torder must
have (sknotcount — sorder) X (tknotcount — torder) control points.

The system renders a NURBS surface as a polygonal mesh and analyti-
cally calculates normal vectors at the corners of the polygons within the
mesh. Therefore, your code should specify a lighting model when it
uses NURBS surfaces. Otherwise, you loose all the interesting surface
information. Use Imdef and Imbind to define or modify materials and
their properties. -

See the Graphics Library Programming Guide for a mathematical
description of a NURBS surface.

SEE ALSO

bgnsur, nurbsc, bgntri, pwlcur, setnur, getnur, texbin

NOTE

nurbss commands specifying color or texture coordinates currently -
have no effect on IRIS-4D G, GT, GTX, and Personal IRIS.

Version 3.0 : -3- April 1990

objdel Graphics Reference, FORTRAN objdel

NAME

objdel — deletes routines from an object

FORTRAN 77 SPECIFICATION
subroutine objdel(tagl, tag2)
integer*4 tagl, tag2

PARAMETERS

tagl expects the tag indicating where the deletion is to be started from.
tag2 expects the tag indicating where the deletion should stop.

DESCRIPTION

objdel is an object editing routine. It deletes the routines as well as any
tags starting immediately after tag! and ending just prior to tag2. tagl
and tag2 remain in the text.

If no object is open for editing (see editob) when objdel is called, it is
ignored.

objdel leaves the pointer at the end of the object after it executes.

SEE ALSO
editob, objins, objrep

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

objins Graphics Reference, FORTRAN objins

NAME

objins — inserts routines in an object at a specified location

FORTRAN 77 SPECIFICATION

subroutine objins(t)
integer*4 t

PARAMETERS

¢t expects a tag within the object definition that is to be edited.

DESCRIPTION

objins positions an editing pointer on the routine specified by ¢. The
additional graphics routines should now be inserted after the tag.

Use closeo (objdel, objins, or objrep) to terminate the insertion.

SEE ALSO
closeo, editob, maketa, objdel, objrep

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

objrep Graphics Reference, FORTRAN objrep

NAME

objrep — overwrites existing display list routines with new ones

FORTRAN 77 SPECIFICATION
subroutine objrep(t)
integer*4 t

PARAMETERS

t expects a tag within the object definition that is to be edited.

DESCRIPTION

objrep combines the functions of objins and objdel. Graphics routines
that follow objrep overwrite existing ones until closeo, objins, objdel,
or objrep terminates the replacement. This replacement begins with the
line immediately following the tag specified by ¢.

objrep requires that the new routine be the same length as the one it
replaces; this makes replacement operations fast. Use objdel and objins
for more general replacement.

Use objrep as a quick method to create a new version of a routine.

SEE ALSO

closeo, editob, objdel, objins

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

onemap Graphics Reference, FORTRAN onemap

NAME

onemap — organizes the color map as one large map

FORTRAN 77 SPECIFICATION

subroutine onemap

PARAMETERS

none

DESCRIPTION

onemap organizes the color map of the currently active framebuffer as a
single map. Because single map mode is the default value for all GL
framebuffers, it can be called in any of the framebuffer drawmodes
(NORMAL, PUPDRA, OVERDR, and UNDERD). To return the nor-
mal framebuffer to single map mode, however, you must call onemap
while in drawmode NORMAL.

The single color map allocated to a framebuffer in onemap mode has as
many entries as are supported by the bitplanes in that framebuffer. The
normal framebuffer has up to 12 bitplanes, and therefore up to 4096
color map entries. Call getpla after setting draw mode to the desired
framebuffer to determine the color map size. getgde can also be called
at any time to determine the size of the color map of any framebuffer.

onemap does not take effect until gconfi is called. When called, gconfi
executes onemap requests pending for all draw modes, regardless of the
current draw mode.

A framebuffer’s color map is used to display: pixels only if the frame-
buffer is in color map mode (see cmode).

SEE ALSO
cmode, drawmo, gconfi, getcmm, getmap, multim, setmap

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

ortho Graphics Reference, FORTRAN ortho

NAME

ortho, ortho2 — define an orthographic projection transformation

FORTRAN 77 SPECIFICATION

subroutine ortho(left, right, bottom, top, near, far)
real left, right, bottom, top, near, far

subroutine ortho2(left, right, bottom, top)
real left, right, bottom, top

The above routines are functionally the same. They differ only in that
ortho is used for 3-D applications and ortho2 is used for 2-D applica-
tions.

PARAMETERS

left expects the coordinate for the left vertical clipping plane.

right expects the coordinate for the right vertical clipping plane.
bottom expects the coordinate for the bottom horizontal clipping plane.
top expects the coordinate for the top horizontal clipping plane.
near expects the distance to the nearer depth clipping plane.

far expects the distance to the farther depth clipping plane.

DESCRIPTION

ortho specifies a box-shaped enclosure in the eye coordinate system that
is mapped to the viewport. left, right, bottom, top, near, and far specify
the location of the x, y, and z clipping planes. near and far are distances
along the line of sight from the eye space origin; the z clipping planes
are at —near and —far.

ortho2 is the 2-D version of ortho, and specifies a rectangle that is the
mapped to the viewport. When you use ortho2 with 3-D world coordi-
nates, the z coordinates are not transformed and will be clipped if they
lie outside the range -1 <z < 1.

Version 3.0 -1- April 1990

ortho Graphics Reference, FORTRAN ortho

When the system is in single matrix mode, both ortho and ortho2 load a
matrix onto the matrix stack, thus replacing the current top matrix.
When the system is in viewing, projection, or texture matrix mode, the
system replace the current Projection matrix without changing the
ModelView matrix stack or the Texture matrix.

GL window coordinates have integer values at the centers of pixels.
Thus to correctly specify a one-to-one orthographic mapping from eye-
coordinates to window-coordinates, the edges of the viewable volume
should be set to 1/2-pixel values. For example, the 1280 x 1024 full
screen is correctly mapped one-to-one from eye-coordinates to
window-coordinates by the commands:

ortho2(-0.5,1279.5,-0.5,1023.5)
viewpo (0,1279,0,1023)

Note that ortho, unlike perspe and window, allows the viewpoint to be
moved from the origin of the coordinate system. Thus ortho combines
a trivial viewing transformation (translation from the origin) with its
projection operation. Be sure not to duplicate the orthographic transla-
tion in your viewing transformation.

SEE ALSO

mmode, perspe, viewpo, window

Version 3.0 -2- April 1990

overla Graphics Reference, FORTRAN overla

NAME

overla — allocates bitplanes for display of overlay colors

FORTRAN 77 SPECIFICATION

subroutine overla(planes)
integer#*4 planes

PARAMETERS

planes expects the number of bitplanes to be allocated for overlay
colors. Valid values are 0, 2 (the default), 4, and 8.

DESCRIPTION

The IRIS physical framebuffer is divided into four separate GL frame-
buffers: normal, popup, overlay, underlay. Because a single physical
framebuffer is used to implement the four GL framebuffers, bitplanes
must be allocated among the GL framebuffers. overla specifies the
number of bitplanes to be allocated to the overlay framebuffer. overla
does not take effect immediately. Rather, it is considered only when
geonfi is called, at which time all requests for bitplane resources are
resolved.

While only one of the four GL framebuffers can be drawn to at a time
(see drawmao), all four are displayed simultaneously. The decision of
which to display at each pixel is made based on the contents of the four
framebuffers at that pixel location, using the following hierarchical rule:

if the popup pixel contents are non-zero
then display the popup bitplanes

else if overlay bitplanes are allocated AND
the overlay pixel contents are non-zero

then display the overlay bitplanes

else if the normal pixel contents are non-zero OR
no underlay bitplanes are allocated

Version 3.0 -1- April 1990

pageco Graphics Reference, FORTRAN pageco

NAME
pageco — sets the color of the textport background .

FORTRAN 77 SPECIFICATION

subroutine pageco(pcolor)
integer*4 pcolor

PARAMETERS

pcolor expects an index into the current color map.

DESCRIPTION

pageco sets the background color of the textport of the calling process.
If the calling process was invoked from a wsh window, this window is
used for its textport; otherwise, the process does not have a textport and
this routine does nothing.

SEE ALSO
textco

wsh(1) in the User’ s Reference Manual.

NOTES
This routine is available only in immediate mode.

A process launched from 4Sight or The IRIS WorkSpacem will not have
a textport. Therefore, we do not recommend the use of this routine in
new development.

Version 3.0 -1- April 1990

passth Graphics Reference, FORTRAN passth

NAME
passth — passes a single token through the Geometry Pipeline

FORTRAN 77 SPECIFICATION

subroutine passth(token)
integer*4 token

PARAMETERS

token expects an integer which is used to mark specific sections in
input data so that when it is returned from the feedback buffer
the data is easier to decipher.

DESCRIPTION

passth passes a single 16-bit integer through the Geometry Pipeline.
Use it in feedback mode to parse the returned information.

For example, you can use passth between every pair of points that is
being transformed and clipped by the Geometry Engines. If a point is
clipped out, two passth tokens appear in a row in the output buffer.

NOTE

This routine is available only in feedback mode; otherwise it is ignored.

Version 3.0 -1- April 1990

patch Graphics Reference, FORTRAN patch

NAME
patch — draws a surface patch

FORTRAN 77 SPECIFICATION

subroutine patch(geomx, geomy, geomz)
real geomx(4,4), geomy(4,4), geomz(4,4)

PARAMETERS

geomx expects the 4x4 matrix which contains the x coordinates of the
16 control points of the patch.

geomy expects the 4x4 matrix which contains the y coordinates of the
16 control points of the patch.

geomz expects the 4x4 matrix which contains the z coordinates of the
16 control points of the patch.

DESCRIPTION

patch draws a surface patch using the current patchb, patchp, and
patchc which are defined earlier. The control points geomx, geomy,
geomz determine the shape of the patch.

The patch is drawn as a web of curve segments. Each curve segment is
approximated by a sequence of straight lines. All lines use the current
linestyle, which is reset prior to the first line of each curve segment, and
continues through subsequent lines in each curve segment. Other line
modes, including depthcueing, line width, and line antialiasing, also
apply to the lines generated by patch.

SEE ALSO
defbas, patchb, patche, patchp, rpatch

Version 3.0 -1- April 1990

patchb Graphics Reference, FORTRAN patchb

NAME

patchb — sets current basis matrices

FORTRAN 77 SPECIFICATION
subroutine patchb(uid, vid)
integer*4 uid, vid

PARAMETERS
uid expects the basis that defines how the control points determine the
shape of the patch in the "u" direction.

vid expects the basis that defines how the control points determine the
shape of the patch in the "v" direction.

DESCRIPTION

patchb sets the current basis matrices (defined by defbas) for the u and
v parametric directions of a surface patch. patch uses the current u and
v bases when it executes.

SEE ALSO
defbas, patch, patchp, patchc, rpatch

Version 3.0 -1- April 1990

patche Graphics Reference, FORTRAN patchc

NAME

patchc — sets the number of curves used to represent a patch

FORTRAN 77 SPECIFICATION

subroutine patchc(ucurves, vcurves)
integer*4 ucurves, vcurves

PARAMETERS

ucurves expects the number of curve segments that will be drawn in
the "u" direction.

vcurves expects the number of curve segments that will be drawn in
the "v" direction.

DESCRIPTION

patche sets the number of u and v curves in the wire frame that
represents a patch.

SEE ALSO
patch, patchb, patchp, rpatch

Version 3.0 -1- April 1990

patchp Graphics Reference, FORTRAN patchp

NAME

patchp — sets the precision at which curves are drawn in a patch

FORTRAN 77 SPECIFICATION
subroutine patchp(usegs, vsegs)
integer*4 usegs, vsegs

PARAMETERS

usegs expects the number of line segments used to draw a curve in the
"u" direction.

vsegs expects the number of line segments used to draw a curve in the
"v" direction.

DESCRIPTION

patchp sets the precision with which the system draws the curves that
make up a wireframe patch. Patch precisions are similar to curve preci-
sions.

SEE ALSO
curvep, patchb, patchc, patch, rpatch

Version 3.0 -1- April 1990

pclos Graphics Reference, FORTRAN pclos

NAME
pclos — closes a filled polygon

FORTRAN 77 SPECIFICATION
subroutine pclos

PARAMETERS

none

DESCRIPTION

pclos closes a filled polygon that has been created by using pmv and a
sequence of pdr calls (or rpmv and rpdr calls). It is not needed when
using poly or polf because these procedures close the polygon within
their own routines. pclos closes the polygon by connecting the last
point with the first. The polygon so defined is filled using the current
pattern, color, and writemask. For example, the following sequence
draws a filled square:

call pmv (0.0, 0.0, 0.0)
call pdr(1.0, 0.0, 0.0)
call pdr (1.0, 1.0, 0.0)
call pdr(0.0, 1.0, 0.0)
call pclos

SEE ALSO

bgnpol, endpol, pdr, pmv, v

NOTES

pclos should not be used in new development. Rather, polygons should
be drawn using the high-performance v commands, surrounded by calls
to bgnpol and endpol.

There can be no more than 256 vertices in a polygon. Therefore, there
can be no more than 255 pdr calls between pmv and pclos.

Version 3.0 -1- April 1990

pclos Graphics Reference, FORTRAN pclos

Be careful not to confuse pclos with the IRIX system call pclose, which
closes an IRIX pipe.

Version 3.0 -2- April 1990

pdr Graphics Reference, FORTRAN pdr

NAME

pdr, pdri, pdrs, pdr2, pdr2i, pdr2s — specifies the next point of a
polygon

FORTRAN 77 SPECIFICATION

subroutine pdr(x, y, z)
real x,y, z

subroutine pdri(x, y, z)
integer*4 x, y, z

subroutine pdrs(x, y, z)
integer*2 x, y, z

subroutine pdr2(x, y)
real x, y

subroutine pdr2i(x, y)
integer*4 x, y

subroutine pdr2s(x, y)
integer*2 x, y

All of the above routines are functionally the same. They differ only in
the type declarations of their parameters and in whether they expect a
two- or three-dimensional space.

PARAMETERS

x expects the x coordinate of the next defining point for the polygon.
y expects the y coordinate of the next defining point for the polygon.
z expects the z coordinate of the next defining point for the polygon.

DESCRIPTION

pdr specifies the next point of a polygon. When pdr is executed, it
draws a line to the specified point (x,y,z) which then becomes the current
graphics position. The next pdr call will start drawing from that point.
To draw a typical polygon start with pmv, follow it with a sequence of
calls to pdr and end it with pclos.

Version 3.0 -1- April 1990

pdr Graphics Reference, FORTRAN pdr

EXAMPLE
The following sequence draws a square:

call pmv (0.0, 0.0, 0.0)

call pdr(1.0, 0.0, 0.0)
call pdr(1.0, 1.0, 0.0)
call pdr(0.0, 1.0, 0.0)
call pclos

SEE ALSO

bgnpol, endpol, pclos, pmv, v

NOTES

pdr should not be used in new development. Rather, polygons should
be drawn using the high-performance v commands, surrounded by calls
to bgnpol and endpol.

There can be no more than 256 vertices in a polygon. Therefore, there
can be no more than 255 pdr calls between pmv and pclos.

Version 3.0 -2- April 1990

perspe Graphics Reference, FORTRAN perspe

NAME
perspe — defines a perspective projection transformation

FORTRAN SPECIFICATION

subroutine perspe(fovy, aspect, near, far)
integer*4 fovy
real aspect, near, far

PARAMETERS

fovy expects the field-of-view angle in the y direction. The field of
view is the range of the area that is being viewed. fovy must be
= 2 or an error results.

aspect expects the aspect ratio which determines the field of view in
the x direction. The aspect ratio is the ratio of x (width) to y

(height).
near expects the distance from the viewer to the closest clipping
plane (always positive).

far expects the distance from the viewer to the farthest clipping
plane (always positive).

DESCRIPTION

perspe specifies a viewing pyramid into the world coordinate system.
In general, the aspect ratio in perspe should match the aspect ratio of
the associated viewport. For example, aspect=2.0 means the viewer’s
angle of view is twice as wide in x as it is in y. If the viewport is twice
as wide as it is tall, it displays the image without distortion.

When the system is in single matrix mode, perspe loads a matrix onto
the transformation stack, replacing the current top matrix. When the
system is in viewing, projection, or texture matrix mode, perspe
replaces the current Projection matrix and leaves the Model View matrix
stack and the Texture matrix unchanged.

Version 3.0 -1- April 1990

perspe Graphics Reference, FORTRAN perspe

SEE ALSO

mmode, ortho, viewpo, window

Version 3.0 -2- April 1990

pick Graphics Reference, FORTRAN pick

NAME
pick — puts the system in picking mode

FORTRAN 77 SPECIFICATION

subroutine pick(buffer, numnam)
integer*2 buffer(*)
integer*4 numnam

PARAMETERS

buffer expects the array to use for storing names.

numnam expects the maximum number of names to store.

DESCRIPTION

. pick facilitates the cursor as a pointing object. When you draw an
image in picking mode, nothing is drawn. It places a special viewing
matrix on the stack, which discards everything in the image that does
not intersect a small region around the cursor origin.

The graphical items that intersect the picking region are hits and store
the contents of the name stack in buffer. Picking does not work if you
issue a new viewport in picking mode.

SEE ALSO
endpic, endsel, gselec, picksi, pushna, popnam, loadna

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

picksi Graphics Reference, FORTRAN picksi

NAME
picksi — sets the dimensions of the picking region

FORTRAN 77 SPECIFICATION

subroutine picksi(deltax, deltay)
integer*4 deltax, deltay

PARAMETERS

deltax expects the new width of the picking region.
deltay expects the new height of the picking region.

DESCRIPTION

picksi changes the dimensions of the picking region. The default setting
is 10 pixels. The picking region is rectangular and is centered at the
current cursor position, the origin of the cursor glyph. In picking mode,
any objects that intersect the picking region are reported in the picking
buffer.

SEE ALSO
pick

NOTE

This routine is available only in immediate mode.

Version 3.0 -1- April 1990

pixmod Graphics Reference, FORTRAN pixmod

NAME

pixmod — specify pixel transfer mode parameters

FORTRAN SPECIFICATION

subroutine pixmod(mode, value)
integer*4 mode, value

PARAMETERS

mode One of the symbolic constants:
(parameters that affect read, write, and copy transfers)

PMSHIF, default value: 0. Number of bit positions that pixel
data are to be shifted. Positive shifts are left for write and copy,
right for read. Valid values: 0, +-1, +-4, +-8, +-12, +-16, +-24

PMEXPA, default value: 0. Enable (1) or disable (0) expansion

of single-bit pixel data to one of two 32-bit pixel values. Valid
values: 0, 1

PMC0), default value: 0. Expansion value (32-bit packed color)
chosen when the single-bit pixel being expanded is zero. Valid
values: any 32-bit value

PMC1, default value: 0. Expansion value (32-bit packed color)

chosen when the single-bit pixel being expanded is one. Valid
values: any 32-bit value

PMADD?2, default value: 0. Amount to be added to the least-
significant 24 bits of the pixel (signed value). Valid values: a
32-bit signed value in the range -0x800000 through Ox7fffff

Although this value is specified as a 32-bit integer, the sign bit
MUST be smeared across all 32 bits. Thus -0x800000 specifies
the minimum value; and 0x800000 is out of range at the positive
end.

PMTTOB, default value: 0. Specifies that fill (for write and
copy transfers) and read (for read transfers) must be top-to-
bottom (1) or bottom-to-top (0). Valid values: 0, 1

Version 3.0 -1- April 1990

pixmod

Graphics Reference, FORTRAN pixmod

PMRTOL, default value: 0. Specifies that fill (for write and
copy transfers) and read (for read transfers) is to be right-to-left
(1) or left-to-right (0). Valid values: 0, 1

PMSIZE, default value: 32. Number of bits per pixel. Used for
packing during reads and writes. Used to optimize internal
transfers during copies. Valid values: 1,4, 8, 12, 16, 24, 32

Although size specification is for the entire pixel, there is no
mechanism for specifying reduced RGBA component sizes (such
as 12-bit RGB with 4 bits per component).

(parameters that affect read and write transfers only)

PMOFFS, default value: 0. Number of bits of the first CPU
word of each scanline that are to be ignored. Valid values: 0
through 31

PMSTRI, default value: 0. Number of 32-bit CPU words per
scanline in the original image (not just the portion that is being
transferred by this command). Valid values: any non-negative
integer

(parameters that affect