Graphics Library
Reference Manual,
C Edition

IRIS-40 Series

% SiliconGraphics

Computer Systems

Document number: 007-1203-040

Graphics Library
Reference Manual

C Edition

Document Version 4.0

Document Number 007-1203-040

9/90

Technical Publications: (

Lorrie Williams
Melissa Heinrich
Claudia Lohnes
Kevin Walsh

Engineering:

Kurt Akeley
Herb Kuta

© Copyright 1990, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third
parties, copied or duplicated in any form, in whole or in part, without
the prior written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights (

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013, and/or similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement.
Unpublished rights reserved under Copyright laws of the United States.
Contractor/manufacturer is Silicon Graphics Inc., 2011 N. Shoreline
Blvd., Mountain View, CA 94039-7311.

Graphics Library Reference Manual
C Edition

Document Version 4.0

Document Number 007-1203-040

Silicon Graphics, Inc. (
Mountain View, California

IRIS is a registered trade mark of Silicon Graphics, Inc. IRIX, Power Series,
IRIS-4D, Personal IRIS, Geometry Link, Geometry Partners, Geometry
Engine, and Geometry Accelerator are trademarks of Silicon Graphics, Inc.
IBM® is a trademark of International Business Machines Corporation.

intro Graphics Reference, C Edition intro

NAME

intro — description of routines in the Graphics Library and Distributed
Graphics Library

OVERVIEW

This manual is the reference manual for the routines of the Graphics
Library (GL) and the Distributed Graphics Library (DGL). For a more
tutorial introduction to the GL and DGL, see the Graphics Library
Programmer’s Guide and the ‘‘Using the GL/DGL Interfaces’’ section
of the 4Sight Programmer’s Guide.

In general, all routines in the GL are supported in the DGL. However, in
some routines there are minor differences. In addition, some routines
(dglopen and dglclose) are supported in the DGL but not the GL. Where
there is a difference for a routine, it is noted on its manual page.

The manual pages are available on-line. To view them, use the IRIX
command:

man routine-name <Enter>

HOW A MANUAL PAGE IS ORGANIZED

A manual page provides the specification of a GL or DGL routine.
Because these pages are intended as on-line reference material, they
tend to be terse. A page is divided into a number of sections:

NAME
lists the name of the routine or routines described by the manual
page.

C SPECIFICATION
lists the type declarations for the routine and its parameters.

PARAMETERS
describes the parameters of the routine.

FUNCTION RETURN VALUE
describes what the routine returns if it is a function.

Version 4.0 -1- April 1990

intro Graphics Reference, C Edition intro

DESCRIPTION
describes how to use the routine.

SEE ALSO .
lists related routines or other sources of information.

EXAMPLE
gives an example of how the routine is used.

NOTES
highlights information concerning the limitations of the routine and
differences in its behavior on the various IRIS-4D models.

BUGS
describes deviations from the specified behavior that may be fixed in
a future release.

HEADER FILES

There are three header files in /usr/includel/gl that you should probably
include in code that calls routines from the Graphics Library. The files
are gl.h, get.h, and device.h.

TYPE DECLARATIONS

We have constructed type declarations for C wherever they add to the
readability of the code. Here are the type definitions as found in
<gligl.h>:

#define PATTERN_16 16
#define PATTERN_ 32 32
#define PATTERN_64 64
#define PATTERN_16_SIZE 16
#define PATTERN_ 32_SIZE 64
#define PATTERN_64_SIZE 256

typedef unsigned char Byte;
typedef long Boolean;
typedef char‘*String;
typedef short Angle;
typedef short Screencoord;
typedef short Scoord;
typedef long Icoord;

Version 4.0 -2- April 1990

intro

Patternl6 [PATTERN 16 SIZE];
Pattern32 [PATTERN 32 SIZE];
Pattern64 [PATTERN_64_SIZE];

intro Graphics Reference, C Edition
typedef float Coord;
typedef float Matrix([4][4];
typedef unsigned short Colorindex;
typedef unsigned char RGBvalue;
typedef unsigned short Device;
typedef unsigned short Linestyle;
typedef unsigned short Cursor[16];
typedef unsigned short
typedef unsigned short
typedef unsigned short
typedef struct ({
unsigned short offset;
Byte w,h;
char xoff,yoff;
short width;
} Fontchar;
typedef long Object;
typedef long Tag;
typedef long Offset;
Version 4.0 -3-

April 1990

Routine List Graphics Reference, C Edition Routine List

acbuf — operate on the accumulation buffer

acsize — specify the number of bitplanes per color component in the
accumulation buffer

addtopup — adds items to an existing pop-up menu
afunction — specify alpha test function

arc, arci, arcs — draw a circular arc

arcf, arcfi, arcfs — draw a filled circular arc

attachcursor — attaches the cursor to two valuators
backbuffer — enable and disable drawing to the back buffer
backface — tumns backfacing polygon removal on and off

bbox2, bbox2i, bbox2s — culls and prunes to bounding box and
minimum pixel radius

bgnclosedline — delimit the vertices of a closed line
bgnline — delimit the vertices of a line

bgnpoint — delimit the interpretation of vertex routines as points
bgnpolygon — delimit the vertices of a polygon

bgngstrip — delimit the vertices of a quadrilateral strip
bgnsurface — delimit a NURBS surface definition
bgntmesh — delimit the vertices of a triangle mesh
bgntrim — delimit a NURBS surface trimming loop
blankscreen — controls screen blanking

blanktime — sets the screen blanking timeout
blendfunction — computes a blended color value for a pixel
blink — changes a color map entry at a selectable rate
blkgread — reads multiple entries from the queue

c3f, ¢3i, c3s, c4f, cdi, cd4s — sets the RGB (or RGBA) values for the
current color vector

Version 4.0 -1- April 1990

Routine List Graphics Reference, C Edition Routine List

callfunc — calls a function from within an object

callobj — draws an instance of an object

charstr — draws a string of raster characters on the screen
chunksize — specifies minimum object size in memory

circ, circi, circs — outlines a circle (
ciref, circfi, circfs — draws a filled circle

clear — clears the viewport

clearhitcode — sets the hitcode to zero

clipplane — specify a plane against which all geometry is clipped
clkon, clkoff — control keyboard click |
closeobj — closes an object definition

cmode — sets color map mode as the current mode.

€cmov, cmovi, cmovs, cmov2, cmov2i, cmov2s — updates the current
character position

color, colorf — sets the color index in the current draw mode
compactify — compacts the memory storage of an object (
concave — allows the system to draw concave polygons

cpack — specifies RGBA color with a single packed 32-bit integer
crv —draws a curve

crvn — draws a series of curve segments

curorigin — sets the origin of a cursor

curson, cursoff — control cursor visibility by window

curstype — defines the type and/or size of cursor

curvebasis — selects a basis matrix used to draw curves

curveit — draws a curve segment

curveprecision — sets number of line segments used to draw a curve

segment (

Version 4.0 -2- April 1990

Routine List Graphics Referehce, C Edition Routine List

cyclemap — cycles between color maps at a specified rate
czclear — clears the color bitplanes and the z-buffer simultaneously
dbtext — sets the dial and button box text display

defbasis — defines a basis matrix

defcursor — defines a cursor glyph

deflinestyle — defines a linestyle

defpattern — defines patterns

defpup — defines a menu

defrasterfont — defines a raster font

delobj — deletes an object

deltag — deletes a tag from the current open object
depthcue — turns depth-cue mode on and off

dglclose — closes the DGL server connection

dglopen — opens a DGL connection to a graphics server
dopup — displays the specified pop-up menu

doublebuffer — sets the display mode to double buffer mode
draw, drawi, draws, draw2, draw2i, draw2s — draws a line
drawmode — selects which GL framebuffer is drawable
editobj — opens an object definition for editing
endclosedline — delimit the vertices of a closed line
endfeedback — control feedback mode

endfullscrn — ends full-screen mode

endline — delimit the vertices of a line

endpick — turns off picking mode

endpoint — delimit the interpretation of vertex routines as points
endpolygon — delimit the vertices of a polygon

Version 4.0 -3- April 1990

Routine List Graphics Reference, C Edition Routine List

endpupmode — obsolete routine -

endgstrip — delimit the vertices of a quadrilateral strip

endselect — turns off selecting mode

endsurface — delimit a NURBS surface definition

endtmesh — delimit the vertices of a triangle mesh

endtrim — delimit a NURBS surface trimming loop

feedback — control feedback mode

finish — blocks until the Geometry Pipeline is empty

fogvertex — specify fog density for per-vertex atmospheric effects
font — selects a raster font for drawing text strings

foregrdund — prevents a graphical process from being put into the back-
ground

freepup — deallocates a menu ;

frontbuffer — enable and disable drawing to the front buffer
frontface — turns frontfacing polygon removal on and off
fudge — specifies fudge values that are added to a graphics window
fullscrn — allows a program write to the entire screen
gammaramp — defines a color map ramp for gamma correction
gbegin — create a window that occupies the entire screen
geonfig — reconfigures the system

genobj — returns a unique integer for use as an object identifier
gentag — returns a unique integer for use as a tag

getbackface — returns whether backfacing polygons will appear
getbuffer — indicates which buffers are enabled for writing
getbutton — returns the state of a button

getcmmode — returns the current color map mode

Version 4.0 -4- April 1990

Routine List Graphics Reference, C Edition Routine List

getcolor — returns the current color

getcpos — returns the current character position
getcursor — returns the cursor characteristics
getdem — indicates whether depth-cue mode is on or off
getdepth — obsolete routine '
getdescender — returns the character characteristics
getdev — reads a list of valuators at one time
getdisplaymode — returns the current display mode
getdrawmode — returns the current drawing mode
getfont — returns the current raster font number
getgdesc — gets graphics system description
getgpos — gets the current graphics position

getheight — returns the maximum character height in the current raster
font

gethitcode — returns the current hitcode

getlsbackup — has no function in the current system

getlsrepeat — returns the linestyle repeat count

getlstyle — feturns the current linestyle

getlwidth — returns the current linewidth

getmap — returns the number of the current color map
getmatrix — returns a copy of a transformation matrix
getmcolor — gets a copy of the RGB values for a color map entry
getmmode — returns the current matrix mode

getmonitor — returns the type of the current display monitor

getnurbsproperty — returns the current value of a trimmed NURBS sur-
faces display property

getopenobj — returns the identifier of the currently open object

Version 4.0 -5- April 1990

Routine List Graphics Reference, C Edition Routine List

getorigin — returns the position of a graphics window
getothermonitor — obsolete routine

getpattern — returns the index of the current pattern

getplanes — returns the number of available bitplanes

getport — obsolete routine

getresetls — returns the state of linestyle reset mode

getscrbox — read back the current computed screen bounding box
getscrmask — returns the current screen mask

getshade — obsolete routine

getsize — returns the size of a graphics window

getsm — returns the current shading model

getvaluator — returns the current state of a valuator

getvideo — get video hardware registers

getviewport — gets a copy of the dimensions of the current viewport
getwritemask — returns the current writemask

getwscrn — returns the screen upon which the current window appears
getzbuffer — returns whether z-buffering is on or off

gexit — exits graphics

gflush — flushs the DGL client buffer

ginit — create a window that occupies the entire screen

glcompat — controls compatibility modes

greset — resets graphics state

gRGBcolor — gets the current RGB color values

gRGBcursor — obsolete routine

gRGBmask — returns the current RGB writemask

gselect — puts the system in selecting mode

Version 4.0 -6- April 1990

(

Routine List Graphics Reference, C Edition Routine List

gsync — waits for a vertical retrace period

gversion — rcturns graphics hardware and library version information
iconsize — specifics the icon size of a window

icontitle — assigns the icon title for the current graphics window.
imakebackground — registers the screen background process
initnames — initializes the name stack

ismex — obsolete routine

isobj — returns whether an object exists

isqueued —returns whether the specified device is enabled for queuing
istag — returns whether a tag exists in the current open object
keepaspect — specifies the aspect ratio of a graphics window
lampon, lampoff — control the keyboard display lights

linesmooth — specify antialiasing of lines

linewidth — specifies width of lines

Imbind - selects a new material, light source, or lighting model
Imcolor — change the effect of color commands while lighting is active
Imdef — defines or modifies a material, light source, or lighting model
loadmatrix — loads a transformation matrix

loadname — loads a name onto the name stack

logicop — specifies a logical operation for pixel writes

lookat — defines a viewing transformation

Irectread — reads a rectangular array of pixels into CPU memory
Irectwrite — draws a rectangular array of pixels into the frame buffer
IRGBrange — sets the range of RGB colors used for depth-cueing
Isbackup — controls whether the ends of a line segment are colored
Isetdepth — sets the depth range

Version 4.0 -7- April 1990

Routine List Graphics Reference, C Edition Routine List

Ishaderange — sets range of color indices used for depth-cueing
Isrepeat — sets a repeat factor for the current linestyle
~ makeobj — creates an object
maketag — numbers a routine in the display list
mapcolor — changes a color map entry (
mapw — maps a point on the screen into a line in 3-D world coordinates
mapw2 —maps a point on the screen into 2-D world coordinates
maxsize — specifies the maximum size of a graphics window
minsize — specifies the minimum size of a graphics window
mmode - sets the current matrix mode

move, movei, moves, move2, move2i, move2s — moves the current
graphics position to a specified point

mswapbuffers — swap multiple framebuffers simultaneously

multimap — organizes the color map as a number of smaller maps
multmatrix — premultiplies the current transformation matrix

n3f - specifies a normal | (
newpup — allocates and initializes a str(lcture for a new menu '
newtag — creates a new tag within an object relative to an existing tag

nmode — specify renormalization of normals |

noborder — specifies a window without any borders

noise — filters valuator motion

noport — specifies that a program does not need screen space

normal — obsolete routine |

nurbscurve — controls the shape of a NURBS trimming curve

nurbssurface — controls the shape of a NURBS surface

objdelete — deletes routines from an object

Version 4.0 . -8- April 1990

Routine List Graphics Reference, C Edition Routine List

objinsert — inserts routines in an object at a specified location
objreplace — overwrites existing display list routines with new ones
onemap — organizes the color map as one large map

ortho, ortho2 — define an orthographic projection transformation
overlay — allocates bitplanes for display of overlay colors

pagecolor — sets the color of the textport background

passthrough — passes a single token through the Geometry Pipeline
patch — draws a surface patch

patchbasis — sets current basis matrices

patchcurves — sets the number of curves used to represent a patch
patchprecision — sets the precision at which curves are drawn in a patch
pclos — closes a filled polygon

pdr, pdri, pdrs, pdr2, pdr2i, pdr2s — specifies the next point of a
polygon '

perspective — defines a perspective projection transformation

pick — puts the system in picking mode

picksize — sets the dimensions of the picking region

pixmode — specify pixel transfer mode parameters

pmv, pmvi, pmvs, pmv2, pmv2i, pmv2s — specifies the first point of a
polygon

pnt, pnti, pnts, pnt2, pnt2i, pnt2s — draws a point

pntsmooth — specify antialiasing of points

polarview — defines the viewer’s position in polar coordinates

polf, polfi, polfs, polf2, polf2i, polf2s — draws a filled polygon

poly, polyi, polys, poly2, poly2i, poly2s — outlines a polygon
polymode — control the rendering of polygons

polysmooth — specify antialiasing of polygons

Version 4.0 -9- April 1990

Routine List Graphics Reference, C Edition Routine List

popattributes — pops the attribute stack

popmatrix — pops the transformation matrix stack

popname — pops a name off the name stack

popviewport — pops the viewport stack (

prefposition — specifies the preferred location and size of a graphics
window

prefsize — specifies the preferred size of a graphics window
pupmode — obsolete routine

pushattributes — pushes down the attribute stack
pushmatrix — pushes down the transformation matrix stack
pushname — pushes a new name on the name stack
pushviewport — pushes down the viewport stack

pwlcurve — describes a piecewise linear trimming curve for NURBS
surfaces

geontrol — administers event queue

qdevice — queues a device (
genter — creates an event queue entry '
qgetfd — returns the file descriptor of the event queue

qread — reads the first entry in the event queue

greset — empties the event queue

qtest — checks the contents of the event queue

rerv — draws a rational curve

rcrvn — draws a series of curve segments

rdr, rdri, rdrs, rdr2, rdr2i, rdr2s — relative draw

readpixels — returns values of specific pixels

readRGB — gets values of specific pixels

readsource — sets the source for pixels that various routines read (

Version 4.0 -10 - April 1990

Routine List Graphics Reference, C Edition Routine List

rect, recti, rects — outlines a rectangular region

rectcopy — copies a rectangle of pixels with an optional zoom

rectf, rectfi, rectfs — fills a rectangular area

rectread — reads a rectangular array of pixels into CPU memory
rectwrite — draws a rectangular array of pixels into the frame buffer
rectzoom — specifies the zoom for rectangular pixel copies and writes
resetls — controls the continuity of linestyles

reshapeviewport — sets the viewport to the dimensions of the current
graphics window

RGBcolor — sets the current color in RGB mode
RGBcursor — obsolete routine

RGBmode — sets a rendering and display mode that bypasses the color
map

RGBrange — obsolete routine

RGBwritemask — grants write access to a subset of available bitplanes
ringbell — rings the keyboard bell

rmv, rmvi, rmvs, rmv2, rmv2i, rmv2s — relative move

rotate, rot — rotate graphical primitives

rpatch — draws a rational surface patch

rpdr, rpdri, rpdrs, rpdr2, rpdr2i, rpdr2s — relative polygon draw

rpmyv, rpmvi, rpmvs, rpmv2, rpmv2i, rpmv2s — relative polygon
move

sbox, sboxi, sboxs — draw a screen-aligned rectangle

sboxf, sboxfi, sboxfs — draw a filled screen-aligned rectangle
scale — scales and mirrors objects '

sclear — clear the stencil planes to a specified value

scrbox — control the screen box

Version 4.0 -11- April 1990

Routine List Graphics Reference, C Edition Routine List

screenspace —map world space to absolute screen coordinates

scrmask — defines a rectangular screen clipping mask

scrnattach — attaches the input focus to a screen

scrnselect — selects the screen upon which new windows are placed -
scrsubdivide — subdivide lines and polygons to a screen-space limit (
setbell — sets the duration of the beep of the keyboard bell

setcursor — sets the cursor characteristics

setdblights — sets the lights on the dial and button box

setdepth — obsolete routine

setlinestyle — selects a linestyle pattern

setmap — selects one of the small color maps provided by multimap
mode

setmonitor — sets the monitor type

setnurbsproperty — sets a property for the display of trimmed NURBS
surfaces ’

setpattern — selects a pattern for filling polygons and rectangles (
setpup — sets the display characteristics of a given pop up menu entry)
setshade — obsolete routine '

setvaluator — assigns an initial value and a range to a valuator

setvideo — set video hardware registers

shademodel — selects the shading model

shaderange — obsolete routine

singlebuffer — writes and displays all bitplanes

smoothline — obsolete routine

spclos — obsolete routine

splf, splfi, splfs, splf2, splf2i, splf2s — draws a shaded filled polygon

stencil — alter the operating parameters of the stencil

Version 4.0 -12- April 1990

Routine List Graphics Reference, C Edition Routine List

stensize — specify the number of bitplanes to be used as stencil planes
stepunit — specifies that a graphics window change size in discrete steps
strwidth — returns the width of the specified text string

subpixel — controls the placement of point, line, and polygon vertices

swapbuffers — exchanges the front and back buffers of the normal
framebuffer

swapinterval — defines a minimum time between buffer swaps
swaptmesh — toggles the triangle mesh register pointer
swinopen — creates a graphics subwindow

swritemask — specify which stencil bits can be written

t2d, t2f, t2i, t2s — specify a texture coordinate

tevbind — selects a texture environment

tevdef — defines a texture mapping environment

texbind — selects a texture function

texdef2d — convert a 2-dimensional image into a texture
texgen — specify automatic generation of texture coordinates
textcolor — sets the color of text in the textport

textinit — initializes the textport |

textport — positions and sizes the textport

tie — ties two valuators to a button

tpon, tpoff — control the visibility of the textport

translate — translates graphical primitives

underlay — allocates bitplanes for display of underlay colors

unqdevice — disables the specified device from making entries in the
event queue

v2d, v2f, v2i, v2s, v3d, v3f, v3i, v3s, v4d, v4f, vdi, vds — transfers a 2-
D, 3-D, or 4-D vertex to the graphics pipe

Version 4.0 -13- April 1990

Routine List Graphics Reference, C Edition Routine List

videocmd — initiates a command transfer sequence on an optional video
peripheral

viewport — allocates an area of the window for an image

winattach — obsolete routine

winclose — closes the identified graphics window

winconstraints — binds window constraints to the current window
windepth — measures how deep a window is in the window stack
window — defines a perspective projection transformation

winget — returns the identifier of the current graphics window
winmove — moves the current graphics window by its lower-left comer
winopen — creates a graphics window

winpop — moves the current graphics window in front of all other win-
dows

winposition — changes the size and position of the current graphics win-
dow

winpush — places the current graphics window behind all other win-
dows

winset — sets the current graphics window

wintitle — adds a title bar to the current graphics window

wmpack — specifies RGBA writemask with a single packed integer
writemask — grants write permission to bitplanes

vwritepixels — paints a row of pixels on the screen

writeRGB — paints a row of pixels on the screen

xfpt, xfpti, xfpts, xfpt2, xfpt2i, xfpt2s, xfptd, xfptdi, xfptds — multi-
plies a point by the current matrix in feedback mode

zbuffer — enable or disable z-buffer operation in the current framebuffer
zclear — initializes the z-buffer of the current framebuffer

Version 4.0 -14- April 1990

(

(

(

Routine List Graphics Reference, C Edition Routine List

zdraw — enables or disables drawing to the z-buffer

zfunction — specifies the function used for z-buffer comparison by the
current framebuffer

zsource — selects the source for z-buffering comparisons

zwritemask — specifies a write mask for the z-buffer of the current
framebuffer

Version 4.0 -15- April 1990

acbuf

NAME

Graphics Reference, C Edition acbuf

acbuf — operate on the accumulation buffer

C SPECIFICATION
void acbuf(op, value)
long op;
float value;

PARAMETERS

op

Version 4.0

expects one of six symbolic constants:

AC_CLEAR: The red, green, blue, and alpha accumulation
buffer contents are all set to value (rounded to the nearest
integer). value is clamped to the range of a 16-bit signed integer.

AC_ACCUMULATE: Pixels are taken from the current
readsource bank (front, back, or zbuffer). Their red, green, blue,
and alpha components are each scaled by value. The resulting
16-bit/component pixels are added to the pixels already present
in the accumulation buffer. The range of value is -255.996
through 255.996. Arguments outside this range are clamped to
it. Accumulated values are NOT clamped to the signed 16-bit
range of the accumulation buffer. Thus overflow is avoided only
by limiting the range of accumulation operations.

AC_CLEAR_ACCUMULATE: An efficient combination com-
mand whose effect is to first clear the accumulation buffer con-
tents to zero, then add as per AC_ACCUMULATE. Ranges and
clamping are as per AC_ACCUMULATE.

AC_RETURN: Pixels are taken from the accumulation buffer.
Their red, green, blue, and alpha components are each scaled by
value. The resulting 8-bit/component pixels are then written to
the currently enabled drawing buffers (front, back, or zbuffer).
All special pixel operations (zbuffer, blendfunction, logicop,
stencil, texture mapping, etc.) are ignored during this transfer.
Destination values are simply replaced. The operation is limited
by the current viewport and screenmask, however. The range of
value is 0.0 through 1.0. Arguments outside this range are

-1- April 1990

acbuf Graphics Reference, C Edition acbuf

clamped to it. After being scaled by value, color components are
clamped to the range O through 255 before being written to the
enabled drawing buffers.

AC_MULT: The red, green, blue, and alpha components of each
accumulation buffer pixel are scaled by value.

AC_ADD: value is added to each red, green, blue, and alpha
component of each pixel in the accumulation buffer.

value expects a float point value. op determines how value is used.

DESCRIPTION

The accumulation buffer is a bank of 64-bit pixels, 16 bits each for red,
green, blue, and alpha, that is mapped 1-to-1 with screen pixels. Pixel
images stored in the normal framebuffer (typically generated from
geometric data) can be added to the accumulation buffer. These pixels
are scaled during the transfer by a floating-point value (of limited range
and resolution). Later, the accumulated image can be returned to the
normal frame buffer, again while being scaled.

Effects such as antialiasing (of points, lines, and polygons), motion-
blur, and depth-of-field can be created by accumulating images gen-
erated with different transformation matrixes. Predictable effects are
possible only when subpixel mode is TRUE (see subpixel).

readsource mode is shared with other pixel read operations, including
Irectread and rectcopy. rectzoom, however, has no effect on accumu-
lation operation.

All accumulation buffer operations are limited to the area of the current
screenmask, which itself is limited to the current viewport.

The accumulation buffer is a part of the normal framebuffer. acbuf
should be called only while draw mode is NORMALDRAW, and while
the normal framebuffer is in RGB mode. '

SEE ALSO

acsize, drawmode, subpixel, scrmask

Version 4.0 -2- : April 1990

acbuf Graphics Reference, C Edition acbuf

NOTES

An error is reported, and no action is taken, if accumulate is called while
acsize is zero.

Version 4.0 -3- April 1990

acsize Graphics Reference, C Edition acsize

NAME

acsize — specify the number of bitplanes per color component in the
accumulation buffer

C SPECIFICATION

void acsize(planes)
long planes;

PARAMETERS

planes specifies the number of bitplanes to be reserved for each color
component in the accumulation buffer. Accepted values are 0
(default) and 16.

DESCRIPTION

Rendered images are accumulated (see acbuf) into a framebuffer with
more than 8 bits per color component. acsize specifies the size of the
accumulation buffer. You must call gconfig after acsize to activate the
new size specification.

By default the accumulation buffer size is zero, meaning that images
cannot be accumulated.

The 16-bit per component accumulation buffer is signed; it therefore
supports accumulated values in the range -32768 through 32767.

SEE ALSO

acbuf, drawmode, gconfig

NOTE
This routine is available only in immediate mode.

The accumulation buffer is available only in the normal framebuffer.
acsize should be called only while draw mode is NORMALDRAW.

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
the accumulation buffer. Use getgdesc to determine what support is
available for accumulation buffering.

Version 4.0 -1- April 1990

addtopup

NAME

Graphics Reference, C Edition addtopup

addtopup — adds items to an existing pop-up menu

C SPECIFICATION

void addtopup(pup, str, arg)

long pup;
String str;
long arg;

PARAMETERS

pup expects the menu identifier of the menu to which you want to
add. The menu identifier is the returned function value of the
menu creation call to either newpup or defpup functions.

str expects a pointer to the text that you want to add as a menu
item. In addition, you have the option of pairing an "item type"
flag with each menu item. There are seven menu item type flags:

Pt

%F

%t

%l

Version 4.0

marks item text as the menu title string.

invokes a routine for every selection from this menu
except those marked with a %n. You must specify the
invoked routine in the arg parameter. The value of the
menu item is used as a parameter of the executed rou-
tine. Thus, if you select the third menu item, the system
passes 3 as a parameter to the function specified by %F.

invokes a routine when this particular menu item is
selected. You must specify the invoked routine in the
arg parameter. The value of the menu item is passed as
a parameter of the routine. Thus, if you select the third
menu item, the system passes 3 as a parameter to the
routine specified by %f. If you have also used the %F
flag within this menu, then the result of the %f routine
is passed as a parameter of the %F routine.

adds a line under the current entry. You can use this as
a visual cue to group like entries together.

-1- April 1990

addtopup

arg

% m

%n

%xn

Graphics Reference, C Edition addtopup

pops up a menu whenever this menu item is selected.
You must provide the menu identifier of the new menu
in the arg parameter.

like %f, this flag invokes a routine when the user selects
this menu item. However, %n differs from %f in that it
ignores the routine (if any) specified by %F. The value
of the menu item is passed as a parameter of the exe-
cuted routine. Thus, if you select the third menu item,
the system passes 3 as a parameter to the function
specified by %f.

assigns a numeric value to this menu item. This values
overrides the default position-based value assigned to
this menu item (e.g., the third item is 3). You must
enter the numeric value as the n part of the text string.
Do not use the arg parameter to specify the numeric
value.

NOTE: If you use the vertical bar delimiter, "|", you can specify
multiple menu items in a text string. However, because there is
only one arg parameter, the text string can contain no more than
one item type that references the arg parameter.

expects the command or submenu that you want to assign to the
menu item. You can have only one arg parameter for each call
to addtopup.

DESCRIPTION

addtopup adds items to the bottom of an existing pop-up menu. You
can build a menu by using a call to newpup to create a menu, followed
by a call to addtopup for each menu item that you want to add to the
menu. To activate and display the menu, submit the menu to dopup.

Version 4.0

-2- April 1990

(

(

addtopup Graphics Reference, C Edition addtopup

EXAMPLE

This example creates a menu with a submenu:

submenu = newpup () ;

addtopup (submenu, "rotate %f", dorota);
addtopup (submenu, "translate %f", dotran);
addtopup (submenu, "scale %f'", doscal);
menu = newpup () ;

addtopup (menu, "sample %t", 0);:

addtopup (menu, "persp", 0);

addtopup (menu, "xform %m", submenu);
addtopup (menu, "greset %f", greset);

Because neither the "sample" menu title nor the "persp" menu item refer

to the arg parameter, you can group "sample", "persp”, and "xform" in a
single call:

addtopup (menu, "sample %t | persp | xform %m", submenu);

SEE ALSO
defpup, dopup, freepup, newpup

NOTES
This routine is available only in immediate mode.

When using the Distributed Graphics Library (DGL), you can not call
other DGL routines within a function that is called by a popup menu, i.e.
a function given as the argument to a %f or %F item type.

Version 4.0 -3- April 1990

afunction ; Graphics Reference, C Edition afunction

NAME

afunction — specify alpha test function

C SPECIFICATION

void afunction(ref, func) (\
long ref, func; '

PARAMETERS

ref expects a reference value with which to compare source alpha at
each pixel. This value should be in the range O through 255.

func expects one of two flags specifying the alpha comparison func-
tion: AF_NOTEQUAL and AF_ALWAYS (the default).

DESCRIPTION

afunction makes the drawing of pixels conditional on the relationship of
the incoming alpha value to a reference constant value. It is typically
used to avoid updating either the color or the z field of a framebuffer
pixel when the incoming pixel is completely transparent. Arguments ref (
and func specify the conditions under which the pixel will be drawn.
The incoming (source) alpha value is compared to ref with function
func, and if the comparison passes, the incoming pixel is drawn (condi-
tional on subsequent z-buffer tests). Thus afunction can be called with
arguments 0,AF NOTEQUAL

to defeat drawing of completely transparent pixels. This assumes that
incoming alpha is proportional to pixel coverage, as it is when either
pointsmooth or linesmooth is being used.

afunction testing follows scan conversion, texture mapping, and stencil
operation, but preceeds all other pixel tests. Thus, if the test fails, nei-
ther the color nor zbuffer contents will be modified. afunction operates
on all pixel writes, including those resulting from the scan conversion of
points, lines, and polygons, and from pixel write and copy operations.
afunction does not affect screen clear operation, however.

(

Version 4.0 -1- April 1990

afunction Graphics Reference, C Edition afunction

SEE ALSO
blendfunction

NOTES

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
afunction. Use getgdesc to determine what support is available for
afunction.

BUGS

On IRIS-4D VGX models afunction cannot be enabled while stencil is
being used. Also, ref must be 0.

Version 4.0 -2- April 1990

arc Graphics Reference, C Edition arc

NAME

arg, arci, arcs — draw a circular arc

C SPECIFICATION

void arc(x, y, radius, startang, endang)
Coord x, y, radius;
Angle startang, endang;

void arci(x, y, radius, startang, endang)
Icoord x, y, radius;
- Angle startang, endang;

void arcs(x, y, radius, startang, endang)
Scoord x, y, radius;
Angle startang, endang;

All of the routines named above are functionally the same. They differ
only in the type assignments of their parameters.

PARAMETERS
x expects the x coordinate of the center of the arc. The center of
the arc is the center of the circle that would contain the arc.

y expects the y coordinate of the center of the arc. The center of
the arc is the center of the circle that would contain the arc.

radius expects the length of the radius of the arc. The radius of the
arc is the radius of the circle that would contain the arc.

startang expects the measure of the start angle of the arc. The start
angle of the arc is measured from the positive x-axis.

endang expects the measure of the end angle of the arc. The end angle
of the arc is measured from the positive x-axis.

DESCRIPTION

arc draws an unfilled circular arc in the x-y plane (z = 0). To draw an arc
in a plane other than the x-y plane, define the arc in the x-y plane and
then rotate or translate the arc.

Version 4.0 -1- April 1990

(

arc Graphics Reference, C Edition arc

An arc is drawn as a sequence of line segments, and therefore inherits all
properties that affect the drawing of lines. These include the current
color, writemask, line width, stipple pattern, shade model, line antialias-
ing mode, and subpixel mode. The stipple pattern is initialized to bit
zero of the current linestyle before the arc is drawn, then shifted con-
tinuously through the segments of the arc.

An arc is defined in terms of the circle that contains it. All references to
the radius and center of the arc refer to the radius and center of the circle
that contains the arc. The angle swept out by the arc.is the angle from
the start angle counter-clockwise to the end angle.

The start and end angles are defined relative to the positive x-axis. (To
speak more precisely, because the arc might not be centered on the ori-
gin, the start and end angles are defined relative to the right horizontal
radius of the circle containing the arc). Positive values for an angle
indicate a counter-clockwise rotation from the horizontal. Negative
values indicate a clockwise rotation from the horizontal.

The basic unit of angle measure is a tenth of a degree. The value 900
indicates an angle of 90 degrees in a counter-clockwise direction from
the horizontal. Thus, an arc that spans from a start angle of 10 degrees
(startang = 100) to an end angle of 5 degrees (endang = 50) is almost a
complete circle.

After arc executes, the graphics position is undefined.

SEE ALSO

arcf, bgnclosedline, circ, crvn, linewidth, linesmooth, Isrepeat, scrsubdi-
vide, setlinestyle, shademodel, subpixel

BUGS

When the line width is greater than 1, small notches will appear in arcs,
because of the way wide lines are implemented.

Version 4.0 -2- April 1990

arcf

NAME

Graphics Reference, C Edition arcf

arcf, arcfi, arcfs — draw a filled circular arc

C SPECIFICATION

void arcf(x, y, radius, startang, endang)
Coord x, y, radius;
Angle startang, endang;

void arcfi(x, y, radius, startang, endang)
Icoord x, y, radius;
Angle startang, endang;

void arcfs(x, y, radius, startang, endang)
Scoord x, y, radius;
Angle startang, endang;

All of the routines named above are functionally the same. They differ
only in the type assignments of their parameters.

PARAMETERS

X

radius

startang

endang

Version 4.0

expects the x coordinate of the center of the filled arc. The
center of the filled arc is the center of the circle that would
contain the arc.

expects the y coordinate of the center of the filled arc. The
center of the filled arc is the center of the circle that would
contain the arc.

expects the length of the radius of the filled arc. The radius of
the filled arc is the radius of the circle that would contain the
filled arc.

expects the measure (in tenths of a degree) of the start angle of
the filled arc. The start angle of the filled arc is measured rela-
tive to the positive x-axis.

expects the measure (in tenths of a degree) of the end angle of
the filled arc. The end angle of the filled arc is measured rela-
tive to the positive x-axis.

-1- April 1990

arcf Graphics Reference, C Edition arcf

DESCRIPTION

arcf draws a filled circular arc in the x-y plane (z = 0). The filled area is
bound by the arc and by the start and end radii. To draw an arc in a
plane other than the x-y plane, define the arc in the x-y plane and then
rotate or translate the arc.

An arc is drawn as a single polygon, and therefore inherits all properties
that affect the drawing of polygons. These include the current color,
writemask, fill pattern, shade model, polygon antialiasing mode,
polygon scan conversion mode, and subpixel mode. Front-face and
back-face elimination work correctly with filled arcs, which are front-
facing when viewed from the positive z half-space.

A filled arc is defined in terms of the circle that contains it. All refer-
ences to the radius and the center of the filled arc refer to the radius and
center of the circle that contains the filled arc. The angle swept out by
the filled arc is the angle from the start angle counter-clockwise to the
end angle.

The start and end angles are defined relative to the positive x-axis. (To
speak more precisely, because the arc might not be centered on the ori-
gin, the start and end angles are defined relative to the right horizontal
radius of the circle containing the arc). Positive values for an angle indi-
cate a counter-clockwise rotation from the horizontal. Negative values
indicate a clockwise rotation from the horizontal.

The basic unit of angle measure is a tenth of a degree. The value 900
indicates an angle of 90 degrees in a counter-clockwise direction from
the horizontal. Thus, a filled arc that spans from a start angle of 10
degrees (startang = 100) to an end angle of 5 degrees (endang = 50) is
almost a complete filled circle.

After arcf executes, the graphics position is undefined.

SEE ALSO

arc, backface, bgnpolygon, circf, frontface, polymode, polysmooth,
scrsubdivide, setpattern, shademodel, subpixel

Version 4.0 -2- April 1990

attachcursor Graphics Reference, C Edition attachcursor

NAME

attachcursor — attaches the cursor to two valuators

C SPECIFICATION

void attachcursor(vx, vy) ’ (
Device vx, vy; ‘ 7

PARAMETERS
vx expects the valuator device number for the device that controls the
horizontal location of the cursor. By default, vx is MOUSEX.

vy expects the valuator device number for the device that controls the
vertical location of the cursor. By default, vy is MOUSEY.

DESCRIPTION

attachcursor attaches the cursor to the movement of two valuators.

Both vx and vy are valuator device numbers. (See Appendix A, Valua-

tors, for a list of device numbers.) The values at vx and vy determine the
cursor position in screen coordinates. Every time the values at vx or vy (
change, the system redraws the cursor at the new coordinates.

SEE ALSO

noise, tie

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

backbuffer Graphics Reference, C Edition backbuffer

NAME

backbuffer, frontbuffer — enable and disable drawing to the back or
front buffer

C SPECIFICATION

void backbuffer(b)
Boolean b;

void frontbuffer(b)
Boolean b;

PARAMETERS

b expects either TRUE or FALSE.
TRUE enables updating in the back/front bitplane buffer.
FALSE turns off updating in the back/front bitplane buffer.

DESCRIPTION

The IRIS framebuffer is divided into four separate GL framebuffers:
pop-up, overlay, underlay, and normal. Three of these framebuffers,
overlay, underlay, and normal, can be configured in double buffer mode.
When so configured, a framebuffer includes two color bitplane buffers:
one visible bitplane buffer, called the front buffer, and one non-visible
bitplane buffer, called the back buffer. The commands swapbuffers and
mswapbuffers interchange the front and back buffer assignments.

By default, when a framebuffer is configured in double buffer mode,
drawing is enabled in the back buffer, and disabled in the front buffer.
frontbuffer and backbuffer enable and disable drawing into the front
and back buffers, allowing the default to be overriden. Its is acceptable
to enable neither front nor back, either front or back, or both front and
back simultaneously. Note, for example, that z-buffer drawing contin-
ues to update the z-buffer with depth values when neither the front
buffer nor the back buffer is enabled for drawing.

frontbuffer and backbuffer state is maintained separately for each of
the overlay, underlay, and normal framebuffers. Calls to these routines
affect the framebuffer that is currently active, based on the current
drawmode.

Version 4.0 -1- April 1990

backbuffer Graphics Reference, C Edition backbuffer

backbuffer is ignored when the currently active framebuffer is in single
buffer mode. frontbuffer is also ignored when the currently active
framebuffer is in single buffer mode, unless zdraw is enabled for that
framebuffer (see zdraw).

After each call to gconfig, backbuffer is enabled and frontbuffer is dis-
abled.

SEE ALSO
drawmode, doublebuffer, getbuffer, gconfig, singlebuffer, swapbuffers,

zdraw

NOTE

Only VGX graphics support double buffer operation in the overlay and
underlay framebuffers.

Version 4.0 -2- April 1990

backface Graphics Reference, C Edition backface

NAME
backface — tumns backfacing polygon removal on and off

C SPECIFICATION

void backface(b)
Boolean b;

PARAMETERS

b expects either TRUE or FALSE.
TRUE suppresses the display of backfacing filled polygons.
FALSE allows the display of backfacing filled polygons.

DESCRIPTION

backface allows or suppresses the display of backfacing filled polygons.
If your programs represent solid objects as collections of polygons, you
can use this routine to remove hidden surfaces. This routine works best
for simple convex objects that do not obscure other objects.

A backfacing polygon is defined as a polygon whose vertices are in
clockwise order in screen coordinates. When backfacing polygon remo-
val is on, the system displays only polygons whose vertices are in
counter-clockwise order. For complicated objects, this routine alone
may not remove all hidden surfaces. To remove hidden surfaces for
more complicated objects or groups of objects, your routine needs to
check the relative distances of the object from the viewer (z values).
(See ‘‘Hidden Surface Removal’’ in the Graphics Library Programming
Guide.)

SEE ALSO
zbuffer

NOTES

Matrices that negate coordinates, such as scale(-1.0, 1.0, 1.0), reverse
the directional order of a polygon’s points and can cause backface to do
the opposite of what is intended.

Version 4.0 -1- April 1990

backface Graphics Reference, C Edition backface

On IRIS-4D B and G models backface does not work well when a
polygon shrinks to the point where its vertices are coincident. Under
these conditions, the routine cannot determine the orientation of the
polygon and so displays the polygon by default.

Version 4.0 -2- April 1990

bbox2 Graphics Reference, C Edition bbox2

NAME

bbox2, bbox2i, bbox2s — culls and prunes to bounding box and
minimum pixel radius

C SPECIFICATION

void bbox2(xmin, ymin, x1, y1, x2, y2)
Screencoord xmin, ymin;
Coord x1, y1, x2, y2;

void bbox2i(xmin, ymin, x1, y1, x2, y2)
Screencoord xmin, ymin;
Icoord x1, y1, x2, y2;

void bbox2s(xmin, ymin, x1, y1, x2, y2)
Screencoord xmin, ymin;
Scoord x1, y1, x2, y2;

All of the above routines are functionally the same. They differ only in
the declaration types of their parameters.

PARAMETERS

xmin expects the width, in pixels, of the smallest displayable feature.
ymin expects the height, in pixels, of the smallest displayable feature.
xl expects the x coordinate of a corner of the bounding box.
yl expects the y coordinate of a corner of the bounding box.

x2 expects the x coordinate of a corer of the bounding box. The
comer referenced by this parameter must be diagonally opposite
the corner referenced by the x/ and y!/ parameters.

y2 expects the y coordinate of a corner of the bounding box. The
comer referenced by this parameter must be diagonally opposite
the corner referenced by the x/ and yl parameters.

DESCRIPTION

bbox2 performs the graphical functions known as culling and pruning.
Culling prevents the system from drawing objects that are less than the
minimum feature size (xmin and ymin). Pruning prevents the system

Version 4.0 -1- April 1990

bbox2 Graphics Reference, C Edition bbox2

from drawing objects that lie completely outside the viewport.

To determine whether or not to cull an object, bbox2 tests whether or
not the display of a rectangle the size of the bounding box is smaller
than the minimum feature size. To determine whether or not to prune an
object, bbox2 tests whether or not the bounding box is competely out- (
side the viewport. AN

Call bbox2 within the definition for an object, just after the call to
makeobj. If the object must be pruned or culled, the remainder of the
object definition is ignored. .

SEE ALSO
makeobj

NOTES
This routine does not function in immediate mode.

This routine is not a free test. If you use bbox2 too freely, your perfor-
mance can suffer. Reserve bbox2 for complicated object definitions

only. (

Version 4.0 -2- April 1990

bgnclosedline Graphics Reference, C Edition bgnclosedline

NAME

bgnclosedline, endclosedline — delimit the vertices of a closed line

C SPECIFICATION
void bgnclosedline()

void endclosedline()

PARAMETERS

none

DESCRIPTION

bgnclosedline marks the start of a group of vertex routines that you
want interpreted as points on a closed line. Use endclosedline to mark
the end of the vertex routines that are part of the closed line.

A closed line draws a line segment from one vertex on the list to the
next vertex on the list. When the system reaches the end of the vertex
list, it draws a line that connects the last vertex to the first vertex. All
segments use the current linestyle, which is reset prior to the first seg-
ment and continues through subsequent segments. To specify a vertex,
use the v routine.

Between bgnclosedline and endclosedline, you can issue only the fol-
lowing Graphics Library routines: ¢, color, cpack, Imbind, Imcolor,
Imdef, n, RGBcolor, t, and v. Within a closed line, you should use
Imdef and Imbind only to respecify materials and their properties. If
the color changes between a pair of vertices, the color of the line seg-
ment will be constant if the current shading model is FLAT and interpo-
lated if the current shading model is GOURAUD. In color map mode,
the colors vary through the color map; to get reasonable results, the
color map should contain a ramp.

There is no limit to the number of vertices that can be specified between
bgnclosedline and endclosedline. After endclosedline, the system
draws a line from the final vertex back to the initial vertex, and the
current graphics position is left undefined.

Version 4.0 -1- April 1990

bgnclosedline Graphics Reference, C Edition bgnclosedline

By default line vertices are forced to the nearest pixel center prior to
scan conversion. Line accuracy is improved when this coercion is
defeated with the subpixel command. Subpixel vertex positioning is
especially important when lines are scan converted with antialiasing
enabled (see linesmooth).

bgnclosedline/endclosedline are the same as bgnline/endline, except
they connect the last vertex to the first.

EXAMPLE

The code fragment below draws the outline of a triangle. Lines use the
current linestyle, which is reset prior to the first vertex and continues
through all subsequent vertices.

bgnclosedline () ;
v3f (vertl);
v3f (vert2);
v3f (vert3);
endclosedline () ;

SEE ALSO

bgnline, ¢, linesmooth, linewidth, lsrepeat, scrsubdivide, setlinestyle,
shademodel, subpixel, v

BUGS

On the IRIS-4D B and G models, and on the Personal Iris without Turbo
Graphics, if the color changes between a pair of vertices, the color of the
line segment will be constant regardless of the current shading model.

On the IRIS-4D GT and GTX models, if the color changes between a
pair of vertices, the color of the line segment will be 1nterpolated regard-
less of the current shading model.

Version 4.0 -2- April 1990

bgnline Graphics Reference, C Edition bgnline

NAME

bgnline, endline — delimit the vertices of a line

C SPECIFICATION
void bgnline()

void endline()

PARAMETERS

none

DESCRIPTION

Vertices specified after bgnline and before endline are interpreted as
endpoints of a series of line segments. Use the v routine to specify a ver-
tex. The first vertex connects to the second; the second connects to the
third; and so on until the next-to-last vertex connects to the last one.
The last vertex does not connect to the first vertex. Use bgnclosedline
to connect the first and last points. All segments use the current lines-
tyle, which is reset prior to the first segment and continues through sub-
sequent segments.

Between bgnline and endline, you can issue only the following Graph-
ics Library routines: ¢, color, cpack, Imbind, Imcolor, Imdef, n,
RGBcolor, t, and v. Imdef and Imbind can be used to respecify only
materials and their properties. If the color changes between a pair of ver-
tices, the color of the line segment will be constant if the current shading
model is FLAT and interpolated if the current shading model is
GOURAUD. In color map mode, the colors vary through the color map;
to get reasonable results, the color map should contain a ramp.

There is no limit to the number of vertices that can be specified between
bgnline and endline. After endline, the current graphics position is
undefined.

By default line vertices are forced to the nearest pixel center prior to
scan conversion. Line accuracy is improved when this coercion is
defeated with the subpixel command. Subpixel vertex positioning is
especially important when lines are scan converted with antialiasing
enabled (see linesmooth).

Version 4.0 . -1- April 1990

bgnline Graphics Reference, C Edition bgnline

SEE ALSO

bgnclosedline, ¢, linesmooth, linewidth, 1srepeat, scrsubdivide, setlines-
tyle, shademodel, subpixel, v

BUGS

On the IRIS-4D B and G models, and on the Personal Iris without Turbo
Graphics, if the color changes between a pair of vertices, the color of the
line segment will be constant regardless of the current shading model.

On the IRIS-4D GT and GTX models, if the color changes between a
pair of vertices, the color of the line segment will be interpolated regard-
less of the current shading model.

Version 4.0 -2- April 1990

bgnpoint Graphics Reference, C Edition bgnpoint

NAME
bgnpoint, endpoint — delimit the interpretation of vertex routines as
points
C SPECIFICATION
void bgnpoint()
void endpoint()

PARAMETERS

none

DESCRIPTION

bgnpoint marks the beginning of a list of vertex routines that you want
interpreted as points. Use the endpoint routine to mark the end of the
list. For each vertex, the system draws a one-pixel point into the frame
buffer. Use the v routine to specify a vertex.

Between bgnpoint and endpoint, you can issue only the following
Graphics Library routines: ¢, color, cpack, Imbind, Imcolor, Imdef, n,
RGBcolor, t, and v. Use Imdef and Imbind to respecify only materials
and their properties.

There is no limit to the number of vertices that can be specified between
bgnpoint and endpoint.

By default points are forced to the nearest pixel center prior to scan
conversion. This coercion is defeated with the subpixel command.
Subpixel point positioning is important only when points are scan con-
verted with antialiasing enabled (see pntsmooth).

After endpoint, the current graphics position is the most recent vertex.

SEE ALSO

¢, pntsmooth, subpixel, v

Version 4.0 -1- April 1990

bgnpolygon Graphics Reference, C Edition bgnpolygon

NAME
bgnpolygon, endpolygon — delimit the vertices of a polygon

C SPECIFICATION
void bgnpolygon()
void endpolygon()

PARAMETERS

none

DESCRIPTION

Vertices specified after bgnpolygon and before endpolygon form a sin-
gle polygon. The polygon can have no more than 256 vertices. Use the
v subroutine to specify a vertex. Self-intersecting polygons (other than
four-point bowties) may render incorrectly. Likewise, concave
polygons may not render correctly if you have not called
concave(TRUE).

Between bgnpolygon and endpolygon, you can issue only the follow-
ing Graphics Library subroutines: c¢, color, cpack, Imbind, Imcolor,
Imdef, n, RGBcolor, t, and v. Use Imdef and Imbind to respecify only
materials and their properties.

By default polygon vertices are forced to the nearest pixel center prior to
scan conversion. Polygon accuracy is improved when this coercion is
defeated with the subpixel command. Subpixel vertex positioning is
especially important when polygons are scan converted with antialiasing
enabled (see polysmooth).

After endpolygon, the current graphics position is undefined.

SEE ALSO

backface, ¢, concave, frontface, polymode, polysmooth, scrsubdivide,
setpattern, shademodel, subpixel, v

Version 4.0 1= April 1990

bgnpolygon Graphics Reference, C Edition bgnpolygon

NOTES

If you want to use the backface or frontface routines, specify the ver-
tices in counter-clockwise order.

Although calling concave(TRUE) will guarantee that all polygons will
be drawn correctly, on the IRIS-4D B and G models, and on the Per-
sonal Iris, doing so cause their performance to be degraded.

Version 4.0 -2- April 1990

bgngqstrip Graphics Reference, C Edition bgngstrip

NAME
bgngstrip, endgstrip — delimit the vertices of a quadrilateral strip

C SPECIFICATION

void bgngstrip() (j
void endgstrip()

DESCRIPTION

Vertices specified between bgngstrip and endqstrip are used to define a
strip of quadrilaterals. The graphics pipe maintains three vertex regis-
ters. The first, second, and third vertices are loaded into the registers,
but no quadrilateral is drawn until the system executes the fourth vertex
routine. Upon executing the fourth vertex routine, the system draws a
quadrilateral through the vertices, then replaces the two oldest vertices
with the third and fourth vertices.

For each new pair of vertex routines, the system draws a quadrilateral
through two new vertices and the two older stored vertices, then replaces ‘
the older stored vertices with the two new vertices. (

Between bgngstrip and endgstrip you can issue the following Graphics
Library routines: ¢, color, cpack, lmbind, Imcolor, Imdef, n,
RGBcolor, t, and v. Use Imdef and Imbind only to respecify materials
and their properties.

If you want to use backface, you should specify the vertices of the first
quadrilateral in counter-clockwise order. All quadrilaterals in the strip
have the same rotation as the first quadrilateral in a strip, so that back-
facing works correctly.

There is no limit to the number of vertices that can be specified between
bgngstrip and endgstrip. The result is undefined, however, if an odd
number of vertices are specified, or if fewer than four vertices are
specified.

By default quadrilateral vertices are forced to the nearest pixel center

prior to scan conversion. Quadrilateral accuracy is improved when this
coercion is defeated with the subpixel command. Subpixel vertex posi- (
tioning is especially important when quadrilaterals are scan converted

with antialiasing enabled (see polysmooth).

Version 4.0 -1- April 1990

bgngstrip Graphics Reference, C Edition bgngstrip

After endqstrip, the current graphics position is undefined.

EXAMPLE
For example, the code sequence:

bgngstrip () ;
v3f (zero) ;
v3f (one);
v3f (two) ;
v3f (three);
v3f (four) ;
v3f (five);
v3f (six);
v3f (seven) ;
endgstrip();

draws three quadrilaterals: (0,1,2,3), (2,3.4,5), and (4,5,6,7). Note that
the vertex order required by quadrilateral strips matches the order
required by the equivalent triangle mesh. The vertices above, when
places between bgntmesh and endtmesh calls, draws six triangles:
0,1,2), (1,2,3), (2,3,4), (3:4,5), (4,5,6), and (5,6,7).

SEE ALSO

backface, ¢, concave, frontface, polymode, polysmooth, scrsubdivide,
setpattern, shademodel, subpixel, v

NOTE

IRIS-4D G, GT, and GTX models, and the Personal Iris, do not support
quadrilateral strips. Use getgdesc to determine whether quadrilateral
strips are supported.

IRIS-4D VGX models use vertex normals to improve the shading qual-
ity of quadrilaterals, regardless of whether lighting is enabled.

Version 4.0 -2- April 1990

bgnsurface Graphics Reference, C Edition bgnsurface

NAME
bgnsurface, endsurface — delimit a NURBS surface definition

C SPECIFICATION
void bgnsurface()

void endsurface()

PARAMETERS

none

DESCRIPTION

Use bgnsurface to mark the beginning of a NURBS (Non-Uniform
Rational B-Spline) surface definition. After you call bgnsurface, call
the routines that define the surface and that provide the trimming infor-
mation. To mark the end of a NURBS surface definition, call
endsurface.

Within a NURBS surface definition (between bgnsurface and endsur-
face) you may use only the following Graphics Library subroutines:
nurbssurface, bgntrim, endtrim, nurbscurve, and pwlcurve. The
NURBS surface definition must consist of exactly one call to nurbssur-
face to define the shape of the surface. In addition, this call may be pre-
ceeded by calls to nurbssurface that specify how texture and color
parameters vary across the surface. The call(s) to nurbssurface may be
followed by a list of one or more trimming loop definitions (to define
the boundaries of the surface). Each trimming loop definition consists
of one call to bgntrim, one or more calls to either pwlcurve or
nurbscurve, and one call to endtrim. ‘

The system renders a NURBS surface as a polygonal mesh, and calcu-
lates normal vectors at the corners of the polygons within the mesh.
Therefore, your program should specify a lighting model if it uses
NURBS surfaces. If your program uses no lighting model, all the
interesting surface information is lost. When using a lighting model,
use Imdef and lmbind to define or modify materials and their proper-
ties.

Version 4.0 -1- April 1990

bgnsurface Graphics Reference, C Edition bgnsurface

EXAMPLE

The following code fragment draws a NURBS surface trimmed by two
closed loops. The first closed loop is a single piecewise linear curve
(see pwlcurve), and the second closed loop consists of two NURBS
curves (see nurbscurve) joined end to end:

bgnsurface();
nurbssurface(. . .);
bgntrim();
pwlcurve(. . .);
endtrim();
bgntrim();
nurbscurve(. . .);
nurbscurve(. . .);
endtrim();
endsurface();

SEE ALSO

nurbssurface, bgntrim, nurbscurve, pwlcurve, setnurbsproperty,
getnurbsproperty

Version 4.0 -2- April 1990

’ bgntmesh Graphics Reference, C Edition bgntmesh

NAME

bgntmesh, endtmesh — delimit the vertices of a triangle mesh

C SPECIFICATION _
void bgntmesh() (
void endtmesh()

PARAMETERS

none

DESCRIPTION

Vertices specified between bgntmesh and endtmesh are used to define a
mesh of triangles. The graphics pipe maintains two vertex registers.
The first and second vertices are loaded into the registers, but no triangle
is drawn until the system executes the third vertex routine. Upon execut-
ing the third vertex routine, the system draws a triangle through the ver-
tices, then replaces the older of the register vertices with the third ver-

tex

For each new vertex routine, the system draws a triangle through the (
new vertex and the stored vertices, then (by default) replaces the older
stored vertex with the new vertex. If you want the system to replace the

more recent of the stored vertices, call swaptmesh prior to calling v.

Between bgntmesh and endtmesh you can issue the following Graphics
Library routines: ¢, color, cpack, Imbind, Imcolor, Imdef, n,
RGBcolor, swaptmesh, t, and v. Use Imdef and Imbind only to
respecify materials and their properties.

If you want to use backface, you should specify the vertices of the first
triangle in counter-clockwise order. All triangles in the mesh have the
same rotation as the first triangle in a mesh so that backfacing works
correctly. '

There is no limit to the number of vertices that can be specified between
bgntmesh and endtmesh. (

Version 4.0 -1- April 1990

bgntmesh Graphics Reference, C Edition bgntmesh

By default triangle vertices are forced to the nearest pixel center prior to
scan conversion. Triangle accuracy is improved when this coercion is
defeated with the subpixel command. Subpixel vertex positioning is
especially important when triangles are scan converted with antialiasing
enabled (see polysmooth).

After endtmesh, the current graphics position is undefined.

EXAMPLE
For example, the code sequence:

bgntmesh () ;
v3f (zero);
v3f (one) ;
v3f (two);
v3f (three);
endtmesh () ;

draws two triangles, (zero,one,two) and (one,two,three), while the code
sequence:

bgntmesh () ;
v3f (zero);
v3f (one) ;
swaptmesh () ;
v3f (two);
v3f (three);
endtmesh () ;

draws two triangles, (zero,one,two) and (zero,two,three). There is no
limit to the number of times that swaptmesh can be called.

SEE ALSO

backface, ¢, concave, frontface, polymode, polysmooth, scrsubdivide,
setpattern, shademodel, subpixel, swaptmesh, v

Version 4.0 -2- April 1990

bgntrim Graphics Reference, C Edition bgntrim

NAME
bgntrim, endtrim — delimit a NURBS surface trimming loop

C SPECIFICATION
void bgntrim()
void endtrim()

PARAMETERS

none

DESCRIPTION

Use bgntrim to mark the beginning of a definition for a trimming loop.
Use endtrim to mark the end of a definition for a trimming loop. A
trimming loop is a set of oriented curves (forming a closed curve) that
defines boundaries of a NURBS surface. You include these trimming
loop definitions in the definition of a NURBS surface.

The definition for a NURBS surface may contain many trimming 1oops

For example, if you wrote a definition for NURBS surface that resem-
bled a rectangle with a hole punched out, the definition would contain
two trimming loops. One loop would define the outer edge of the rec-
tangle. The other trimming loop would define the hole punched out of
the rectangle. The definitions of each of these trimming loops would be
bracketed by a bgntrim/endtrim pair.

The definition of a single closed trimming loop may consist of multiple
curve segments, each described as a piecewise linear curve (see
pwlcurve) or as a single NURBS curve (see nurbscurve), or as a com-
bination of both in any order. The only Graphics library calls that can
appear in a trimming loop definition (between a call to bgntrim and a
call to endtrim) are pwlcurve and nurbscurve.

In the following code fragment, we define a single trimming loop that
consists of one piecewise linear curve and two NURBS curves:

Version 4.0 -1- April 1990

bgntrim Graphics Reference, C Edition bgntrim

bgntrim();
pwlcurve(. . .);
nurbscurve (. . .);
nurbscurve (. . .);
endtrim() ;

The area of the NURBS surface that the system displays is the region in
the domain to the left of the trimming curve as the curve parameter
increases. Thus, the resultant visible region of the NURBS surface is
inside for a counter-clockwise trimming loop and outside for a clock-
wise trimming loop. So for the rectangle mentioned earlier, the trim-
ming loop for the outer edge of the rectangle should run counter-
clockwise, and the trimming loop for the hole punched out should run
clockwise.

If you use more than one curve to define a single trimming loop, the
curve segements must form a closed loop (i.e, the endpoint of each
curve must be the starting point of the next curve, and the endpoint of
the final curve must be the starting point of the first curve). If the end-
points of the curve are sufficiently close together but not exactly coin-
cident, the system coerces the them to match. If the endpoints are not
sufficiently close, the system generates an error message and ignores the
entire trimming loop.

If a trimming loop definition contains multiple curves, the direction of
the curves must be consistent (i.e., the inside must be to the left of the
curves). Nested trimming loops are legal as long as the curve orienta-
tions alternate correctly. If no trimming information is given for a
NURBS surface, the entire surface is drawn.

SEE ALSO

bgnsurface, nurbssurface, nurbscurve, pwlcurve, setnurbsproperty,
getnurbsproperty

Version 4.0 -2- April 1990

blankscreen Graphics Reference, C Edition blankscreen

NAME

blankscreen — controls screen blanking

C SPECIFICATION

void blankscreen(b)
Boolean b;

PARAMETERS

b expects TRUE or FALSE.
TRUE stops display and turns screen black.
FALSE restores the display.

DESCRIPTION

blankscreen turns screen refresh on and off. It affects the screen on
which the current window is displayed.

NOTE

This routine is available only in immediate mode.

SEE ALSO
blanktime

Version 4.0 -1- April 1990

blanktime Graphics Reference, C Edition blanktime

NAME

blanktime — sets the screen blanking timeout

C SPECIFICATION

void blanktime(count)
long count;

PARAMETERS

count expects the number of graphics timer events after which to blank
the current screen. The frequency of graphics timer events is
returned by the getgdesc inquiry GD_TIMERHZ.

DESCRIPTION

By default, a screen blanks (turns black) after the system receives no
input for 10 minutes. This protects the monitor. Use blanktime to
change the amount of time the system waits before it blanks a screen. It
affects the screen on which the current window is displayed.

To calculate the value of count, simply multiply the desired blanking
latency period (in seconds) by getgdesc(GD_TIMERHZ).

You can disable screen blanking by calling this routine with a count of
Zero.

NOTE

This routine is available only in immediate mode.

SEE ALSO
blankscreen, getgdesc

Version 4.0 -1- April 1990

blendfunction Graphics Reference, C Edition blendfunction

NAME

blendfunction — computes a blended color value for a pixel

C SPECIFICATION

void blendfunction(sfactr, dfactr)
long sfactr, dfactr;

PARAMETERS

sfactr Expects a symbolic constant from the list below that identifies
the blending factor by which to scale contribution from source
pixel RGBA (red, green, blue, alpha) values. Blending factors
use RGBA values converted to fractions of the maximum value
255. To improve performance, conversion calculations are
approximate. However, 0 convens exactly to 0.0, and 255 con-
verts exactly to 1.0.

BF_ZERO 0

BF_ONE 1

BF _DC (destination RGBA)/255
BF_MDC 1 — (destination RGBA)/255
BF_SA (source alpha)/255
BF_MSA 1 — (source alpha)/255

BF DA (destination alpha)/255
BF_MDA 1 — (destination alpha)/255

BF _ _MIN_SA_MDA min(BF_SA, BF_MDA)

dfactr Expects a symbolic constant from the list below that ideritiﬁes
the blending factor by which to scale contribution from destina-

tion pixel RGBA values.

BF_ZERO 0

BF _ONE 1

BF_SC (source RGBA)/255
BF_MSC 1 — (source RGBA)/255
BF_SA (source alpha)/255
BF_MSA 1 — (source alpha)/255

Version 4.0 -1- April 1990

blendfunction Graphics Reference, C Edition blendfunction

BF DA (destination alpha)/255
BF_MDA 1 — (destination alpha)/255
DESCRIPTION

In RGB mode, the system draws pixels using a function that blends the
incoming (source) RGBA values with the RGBA values that are already
in the framebuffer (the destination values). Most often, blending is sim-
ple: the source RGBA values replace the destination RGBA values of
the pixel.

In some cases, however, simple replacement of framebuffer values is not
appropriate. Two such cases are transparency and antialiasing. To be
blended properly, transparent objects must be rendered back-to-front
(i.e. drawn in order from the farthest object to the nearest object) with a
blend function of (BF_SA, BF_MSA). As can be scen from the equa-
tions below, this function scales the incoming color components by the
incoming alpha value, and scales the framebuffer contents by one minus
the incoming alpha value. Thus incoming (source) alpha is correctly
thought of as a material opacity, ranging from 1.0 (completely opaque)
to 0.0 (completely transparent). Note that this transparency calculation
does not require the presence of alpha bitplanes in the framebuffer.

Suggestions for appropriate blend functions for antialiasing are given on
the pntsmooth and linesmooth manual pages. Other less obvious appli-
cations are also possible. For example, if the red component in the
framebuffer is first cleared to all zeros, and then each primitive is drawn
with red set to 1 and a blend function of (BF_ONE, BF_ONE), the red
component of each pixel in the framebuffer will contain the count of the
number of times that pixel was drawn.

To determine the blended RGBA values of a pixel when drawing in
RGB mode, the system uses the following functions:

Rdestination =min (255’ ((Rsourcc x Sf aCtr) + (Rdestination X df aCtr)))
=min (255, (G x sfactr) + (G4 X dfactr)))

Gdestination ; source estination
Bdeslination = ml’n (255, ((Bsource X sf actr) + (Bdestination X df actr)))
Adestination =mn (255’ ((Asouroe X Sf aCtr) + (Adestination X df aCtr)))

Version 4.0 -2- April 1990

blendfunction Graphics Reference, C Edition blendfunction

When the blend function is set to (BF_ONE, BF_ZERO), the default
values, the equations reduce to simple replacement:
R R

destination — “source

destination Gsource:

destination — B source

destination — ¢ *source

Fill rate may be increased substantially when blending is disabled in this
manner.

Polygon antialiasing (see polysmooth) is sometimes optimized when
- the blendfunction (BF_MIN_SA_MDA, BF_ONE) is used. Source
factor BF_MIN_SA_MDA, which should be used only with destination
factor BF_ONE, has the side effect of slightly modifying the blending
arithmetic:
= min (255, ((Ryyypee X Sfactr) + R
= min (255, ((
=min (255, (B
= sfactr + A

destination))
X sfactr) + G

X sfactr) + B

destination

destination source destinau'on)

w QA

destination destination

Adestination .
This special blend function accumulates pixel contributions until the
pixel is fully specified, then allows no further changes. Destination
alpha bitplanes, which must be present for this blend function to operate

correctly, store the accumulated coverage.

source

destination

It is intended that the destination values on the left and the right of the
above equations be the same framebuffer locations. However, when
multiple destination buffers are specified (using frontbuffer, back-
buffer, and zdraw) only a single location can be read and used on the
right side of the equation. By default, the destination RGBA values are
read from the front buffer in single buffer mode and from the back
buffer in double buffer mode. If the front buffer is not enabled in single
buffer mode, the RGBA values are taken from the z-buffer. If the back
buffer is not enabled in double buffer mode, the RGBA values are taken
from the front buffer (if possible) or from the z-buffer.

Blending is available with or without z-buffer mode. When blendfunc-
tion is set to any value other than (BF_ONE, BF_ZERO), logicop is
forced to LO_SRC.

Version 4.0 -3- April 1990

blendfunction Graphics Reference, C Edition blendfunction

SEE ALSO

cpack, linesmooth, logicop, pntsmooth, polysmooth

NOTES
This subroutine is available only in immediate mode.

Blending factors BF_DA, BF_MDA, and BF_MIN_SA_MDA are not
supported on machines without alpha bitplanes. Blend factor
BF_MIN_SA_ MDA is supported only on VGX graphics systems.

This subroutine does not function on IRIS-4D B or G models or on the
Personal Iris. Use getgdesc(GDBLEND) to determine whether blend-
ing hardware is available.

BUGS

Blending works properly only in RGB mode. In color map mode, the
results are unpredictable.

On some IRIS-4D GT and GTX models, while copying rectangles with
blending active, readsource also specifies the bank from which destina-
tion color and alpha are read (overriding the blendfunction setting).

IRIS-4D VGX models do not clamp color values generated by the spe-
cial blending function BF_MIN_SA_MDA,BF_ONE to 255. Instead,
color values are allowed to wrap. This will be corrected in the next
release.

Version 4.0 -4- April 1990

blink Graphics Reference, C Edition blink

NAME
blink — changes a color map entry at a selectable rate

C SPECIFICATION

void blink(rate, i, red, green, blue)
short rate;

Colorindex i;

short red, green, blue;

PARAMETERS

rate expects the number of vertical retraces per blink. On the stan-
dard monitor, there are 60 vertical retraces per second.

i expects an index into the current color map. The color defined at
that index is the color that is blinked (alternated).

red expects the red value of the alternate color that blinks against the
color selected from the color map by the i parameter.

green expects the green value of the alternate color that blinks against
the color selected from the color map by the i parameter.

blue expects the blue value of the alternate color that blinks against
the color selected from the color map by the i parameter.

DESCRIPTION

blink alternates the color located at index i in the current color map with
the color defined by the parameters red, green, and blue. The rate at
which the two colors are alternated is set by the rate parameter. The
maximum number of color map entries that can be blinking simultane-
ously on a screen is returned by the getgdesc inquiry GD_NBLINKS.

The length of time between retraces varies according to the monitor
used. On the standard monitor, there are 60 retraces per second, so a
rate of 60 would cause the color to change once every second.

To terminate blinking and restore the original color for a single color
map entry, call blink for that entry with rate set to 0.

Version 4.0 -1- April 1990

(,v

blink Graphics Reference, C Edition blink

To terminate all blinking colors simultaneously, call blink with rate set
to —1. When rate is —1, the other parameters are ignored.

SEE ALSO

getgdesc, mapcolor

NOTE

This routine is available only in immediate mode.

Version 4.0 -2- April 1990

blkqread Graphics Reference, C Edition blkqread

NAME

blkgread — reads multiple entries from the queue

C SPECIFICATION

long blkqread(data, n)
short *data
short n;

PARAMETERS
data expects a pointer to the buffer that is to receive the quetie informa-
tion.

n expects the number of elements in the buffer.

FUNCTION RETURN VALUE

The returned value of the function is the number of 16 bit words of data
actually read into the data buffer. Note that this number will be twice
the number of complete queue entries read, because each queue entry
consists of two 16 bit words.

DESCRIPTION

blkqread reads multiple entries from the input queue and stores them in
the array pointed to by data. This function fills the data buffer with
paired values (a device number and the value of that device).

SEE ALSO
gread

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

c Graphics Reference, C Edition [

NAME

c3f, c3i, ¢3s, c4f, cdi, cds — sets the RGB (or RGBA) values for the
current color vector

C SPECIFICATION

void ¢3s(cv)
short cv[3];

void c3i(cv)
long cv[3];

void c3f(cv)
float cv[3];

void c4s(cv)
short cv[4];

void cdi(cv)
long cv[4];

void c4f(cv)
float cv[4];

The subroutines above are functionally the same but declare their
parameters differently.

PARAMETER

cv For the c4 routines, this parameter expects a four element array con-
taining RGBA (red, green, blue, and alpha) values. If you use the
¢3 routines, this parameter expects a three element array containing
RGB values.

Array components 0, 1, 2, and 3 are red, green, blue, and alpha,
respectively. Floating point RGBA values range from 0.0 through
1.0. Integer RGBA values range from O through 255. Values that
exceed the upper limit are clamped to it. Values that exceed the
lower limit are not clamped, and therefore result in unpredictable
operation.

Version 4.0 -1- April 1990

c Graphics Reference, C Edition [

DESCRIPTION

c4 sets the red, green, blue, and alpha color components of the currently
active GL framebuffer, one of normal, popup, overlay, or underlay (see

- drawmode). ¢3 sets red, green, and blue to the specified values, and
sets alpha to the maximum value. The current framebuffer must be in (”
RGB mode (see RGBmode) for the ¢ command to be applicable. Most
drawing commands copy the current RGBA color components into the
color bitplanes of the current framebuffer. Color components are
retained in each draw mode, so when a draw mode is re-entered, red,
green, blue, and alpha are reset to the last values specified in that draw
mode.

Integer color component values range from 0, specifying no intensity,
through 255, specifying maximum intensity, Floating point color com-
ponent values range from 0.0, specifying no intensity, through 1.0,
specifying maximum intensity.

It is an error to call ¢ while the current framebuffer is in color map
mode.

The color components of all framebuffers in RGB mode are set to zero
when gconﬁg is called. (

SEE ALSO
cpack, drawmode, Imcolor, gRGBcolor

NOTE

These routines can also be used to modify the current material while
lighting is active (see Imcolor). Note that clamping to 1.0 is disabled in
this case.

- Because only the normal framebuffer currently supports RGB mode, ¢
should be called only while draw mode is NORMALDRAW. Use
getgdesc to determine whether RGB mode is available in draw mode
NORMALDRAW.,

Version 4.0 -2- ‘ _ April 1990

callfunc Graphics Reference, C Edition callfunc

NAME

callfunc — calls a function from within an object

C SPECIFICATION

void callfunc(fctn, nargs, argl, arg2, ..., argn)
void (*fctn)();
long nargs, argl, arg2, ..., argn;

PARAMETERS

fetn expects a pointer to a function.

nargs expects the number of arguments, excluding itself, that the
/ function pointed to by fctn is to be called with.

argl,arg2, ..., argn
expect the arguments to the function pointed to by fctn.

DESCRIPTION
callfunc is used to call an arbitrary function from within an object.
When callfunc executes in the object, the function call
(*fctn)(nargs, argl, arg2, ..., argn) is made.

NOTE

This routine does not function in the Distributed Graphics Library
(DGL), and we advise against its use in new development.

Version 4.0 -1- April 1990

callobj Graphics Reference, C Edition ' callobj

NAME

callobj — draws an instance of an object

C SPECIFICATION

void callobj(obj)
Object obj;

PARAMETERS

obj expects the object identifier of the object that you want to draw.

DESCRIPTION

callobj draws an instance of a previously defined object. If callobj
specifies an undefined object, the system ignores the routine.

Global state attributes are not saved before a call to callobj. Thus, if you
change a variable within an object, such as color, the change can affect
the caller as well. Use pushattributes and popattributes to preserve
global state attributes across callobj calls.

Likewise, the object may execute transformations that change the matrix
stack, SO you may want to use pushmatrix and popmatrix to restore the
state of the matrix stack.

SEE ALSO
makeobj, popattributes, pushattributes, pushmatrix, popmatrix

Version 4.0 -1- April 1990

charstr Graphics Reference, C Edition charstr

NAME
charstr — draws a string of raster characters on the screen

C SPECIFICATION

void charstr(str)
String str;

PARAMETERS

str expects a pointer to the string you want to draw.

DESCRIPTION

charstr draws a string of text using a raster font. The current character
position is the position of the first character in the string. After each
character is drawn, the character’s width is added to the current charac-
ter position. The text string is drawn in the current raster font and color,
using the current writemask. The system ignores characters that are not
defined in the current raster font.

SEE ALSO

cmov, defrasterfont, font, strwidth

Version 4.0 -1- April 1990

chunksize Graphics Reference, C Edition chunksize

NAME

chunksize — specifies minimum object size in memory

C SPECIFICATION

void chunksize(chunk) (
long chunk;

PARAMETERS

chunk Expects the minimum memory size to allocate for an object. As
you add objects to a display list, chunk is the unit size (in bytes)
by which the memory allocated to the display list grows.

DESCRIPTION

chunksize specifies the minimum object memory size. You can call it
only once after graphics initialization and before the first makeobj.

If you do not use this function, the system assumes a chunk size of 1020
bytes. This is usually more than large enough. Therefore, you generally
need to use chunksize only if your application is running up against the (‘
memory limits, and you know that 1020 bytes per object is too much.

But be careful, if chunksize is set too small, complex objects (e.g.,
multi-sided polygons) will not display. Each object in a display list
must fit entirely into a single chunk. Some experimentation may be
necessary to determine the optimal chunksize for an application.

SEE ALSO
compactify, makeobj

NOTE

This routine is available only in immediate mode.

Version 4.0 =1- April 1990

circ Graphics Reference, C Edition cire

NAME

cire, circi, circs — outlines a circle

C SPECIFICATION

void circ(x, y, radius)
Coord x, y, radius;

void circi(x, y, radius)
Icoord x, y, radius;

void circs(x, y, radius)
Scoord x, y, radius;

The routines above are functionally the same. However, the type
declarations for the coordinates differ.

PARAMETERS

x expects the x coordinate of the center of the circle specified in
world coordinates.

y expects the y coordinate of the center of the circle specified in
world coordinates.

radius expects the length of the radius of the circle.

DESCRIPTION

circ draws an unfilled circle in the x-y plane with z assumed to be zero.
To create a circle that does not lie in the x-y plane, draw the circle in the
x-y plane, then rotate and/or translate the circle. Note that circles rotated
outside the 2-D x-y plane appear as ellipses.

A circle is drawn as a sequence of line segments, and therefore inherits
all properties that affect the drawing of lines. These include the current
color, writemask, line width, stipple pattern, shade model, line antialias-
ing mode, and subpixel mode. The stipple pattern is initialized to bit
zero of the current linestyle before the circle is drawn, then shifted con-
tinuously through the segments of the circle.

Version 4.0 -1- April 1990

circ Graphics Reference, C Edition circ

After circ executes, the graphics position is undéfined.

SEE ALSO

arc, bgnclosedline, circf, crvn, linewidth, linesmooth, 1srepeat, scrsubdi-
vide, setlinestyle, shademodel, subpixel

BUGS

When the line width is greater than 1, small notches will appear in cir-
cles, because of the way wide lines are implemented.

Version 4.0 -2- April 1990

circf Graphics Reference, C Edition circf

NAME

circf, circfi, circfs — draws a filled circle

C SPECIFICATION

void circf(x, y, radius)
Coord x, y, radius;

void circfi(x, y, radius)
Icoord x, y, radius;

void circfs(x, y, radius)
Scoord x, y, radius;

The routines above are functionally the same even though the type
declarations for the coordinates differ.

PARAMETERS

x expects the x coordinate of the center of the filled circle
specified in world coordinates.

y expects the y coordinate of the center of the filled circle
specified in world coordinates.

radius expects the length of the radius of the filled circle.

DESCRIPTION

circf draws a filled circle in the x-y plane (z = 0). To draw a circle in a
plane other than the x-y plane, define the circle in the x-y plane and then
rotate or translate the circle. Note that filled circles rotated outside the
2-D x-y plane appear as filled ellipses.

A circle is drawn as a single polygon, and therefore inherits all proper-
ties that affect the drawing of polygons. These include the current color,
writemask, fill pattern, shade model, polygon antialiasing mode,
polygon scan conversion mode, and subpixel mode. Front-face and
back-face elimination work correctly with filled circles, which are
front-facing when viewed from the positive z half-space.

Version 4.0 -1- April 1990

circf Graphics Reference, C Edition circf

After circf executes, the graphics position is undefined.

SEE ALSO

arcf, backface, bgnpolygon, circ, frontface, polymode, polysmooth, .
scrsubdivide, setpattern, shademodel, subpixel .(

Version 4.0 -2- April 1990

clear Graphics Reference, C Edition clear

NAME

clear — clears the viewport

C SPECIFICATION

void clear()

PARAMETERS

none

DESCRIPTION

clear sets the bitplane area of the viewport to the current color. Multi-
ple bitplane buffers can be cleared simultaneously using the back-
buffer, frontbuffer, and zdraw commands. Current polygon fill pattern
and writemask affect the operation of clear. The screen mask, when it
is set to a subregion of the viewport, bounds the cleared region. Alpha
function, blend function, logical operation, stenciling, texture mapping,
and z buffering, however, are ignored by clear. Stencil and z buffer
contents are not affected by clear (except in the special case of zdraw).

Like other drawing commands, clear operates on the currently active
framebuffer, one of normal, popup, overlay, or underlay, based on the
current draw mode (see drawmode).

After clear executes, the graphics position is undefined.

SEE ALSO

afunction, backbuffer, blendfunction, czclear, drawmode, frontbuffer,
logicop, scrmask, setpattern, stencil, texbind, zbuffer, zdraw

NOTE

On the IRIS-4D B, G, GT, GTX, and VGX models, clear runs faster
when the window is completely unobscured.

On the Personal Iris, clear runs faster when the visible window area
consists of four or fewer rectangular regions.

Version 4.0 -1- April 1990

clearhitcode Graphics Reference, C Edition

NAME

clearhitcode — sets the hitcode to zero

C SPECIFICATION
void clearhitcode()

PARAMETERS

none

DESCRIPTION

clearhitcode

clearhitcode clears the global variable hitcode, which records clipping

plane hits in picking and selecting modes.

SEE ALSO
gethitcode, gselect, pick

NOTES

This routine is available only in immediate mode.

This routine only functions on IRIS-4D B and G models, and therefore

we advise against its use in new development.

Version 4.0 -1-

April 1990

(

clipplane Graphics Reference, C Edition clipplane

NAME
clipplane — specify a plane against which all geometry is clipped

C SPECIFICATION

void clipplane(index, mode, params)
long index, mode;
float params[];

PARAMETERS

index expects an integer in the range 0 through 5, indicating which of
the 6 clipping planes is being modified.

mode expects one of three tokens:

CP_DEFINE: use the plane equation passed in params to
define a clipplane. The clipplane is neither enabled nor dis-
abled.

CP_ON: enable the (previously defined) clipplane.
CP_OFF: disable the clipplane. (default)

params expects an array of 4 floats that specify a plane equation. A
plane equation is usually thought of as a 4-vector [A,B,C,D].
In this case, A is the first component of the params array, and
D is the last. A 4-component vertex array (see v4f) can be
passed as a plane equation, where vertex X becomes A, Y
becomes B, etc.

DESCRIPTION

Geometry is always clipped against the boundaries of a 6-plane frustum
in x, y, and z. clipplane allows the specification of additional planes, not
necessarily perpendicular to the x, y, or z axes, against which all
geometry is clipped. Up to 6 additional planes can be specified.
Because the resulting clipping region is always the intersection of the
(up to) 12 half-spaces, it is always convex.

Version 4.0 -1- April 1990

clipplane Graphics Reference, C Edition clipplane

clipplane specifies a half-space using a 4-component plane equation.
When it is called with mode CP_DEFINE, this object-coordinate plane
equation is transformed to eye-coordinates using the inverse of the
current Model View matrix.

A defined clipplane is then enabled by calling clipplane with the
CP_ON argument, and with arbitrary values passed in params. While
drawing after a clipplane has been defined and enabled, each vertex is
transformed to eye-coordinates, where it is dotted with the transformed
clipping plane equation. Eye-coordinate vertexes whose dot product
with the transformed clipping plane equation is positive or zero are in,
and require no clipping. Those eye-coordinate vertexes whose dot pro-
duct is negative are clipped. Because clipplane clipping is done in
eye-coordinates, changes to the projection matrix have no effect on its
operation.

By default all six clipping planes are undefined and disabled. The
behavior of an enabled but undefined clipplane is undefined.

NOTES

IRIS-4D models G, GT, and GTX, and the Personal Iris, do not imple-
ment clipplane. Use getgdesc to determine whether user-defined clip-
ping planes are supported.

clipplane cannot be used while mmode is MSINGLE.

A point and a normal are converted to a plane equation in the following
manner:

Version 4.0 -2- April 1990

clipplane Graphics Reference, C Edition

point = [Px,Py,Pz]
normal = [Nx|
Nyl

INz|

plane equation = 3|

[Bl
Icl
DI
A = Nx
B = Ny
C = Nz
D = -[Px,Py,Pz] dot |Nx|
Nyl
Nz|
Version 4.0 -3-

clipplane

April 1990

clkon Graphics Reference, C Edition

NAME
clkon, clkoff — control keyboard click

C SPECIFICATION
void clkon()
void clkoff()

PARAMETERS

none

DESCRIPTION
clkon and clkoff control the keyboard click.

SEE ALSO
lampon, ringbell, setbell

NOTE

This routine is available only in immediate mode.

Version 4.0 -1-

clkon

April 1990

closeobj Graphics Reference, C Edition closeobj

NAME

closeobj — closes an object definition

C SPECIFICATION
void closeobj()

PARAMETERS

none

DESCRIPTION

closeobj closes an open object definition. Use makeobj to open a
definition for a new object. All display list routines between makeobj
and closeobj become part of the object definition. Use editobj to open
an existing object for editing. Use closeobj to terminate the editing ses-
sion.

If no object is open, closeobj is ignored.

SEE ALSO
editobj, makeobj

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

cmode Graphics Reference, C Edition cmode

NAME

cmode — sets color map mode as the current mode.

C SPECIFICATION
void cmode()

PARAMETERS

nhone

DESCRIPTION

cmode instructs the system to treat color as a 1-component entity in the
currently active drawmode. The single color component is used as an
index into a table of RGB color values called the color map. Because
color map mode is the default value for all GL framebuffers, it can be
called in any of the framebuffer drawmodes (NORMALDRAW, PUP-
DRAW, OVERDRAW, and UNDERDRAW). To return the normal
framebuffer to color map mode, however, you must call cmode while in
drawmode NORMALDRAW. You must call gconfig for cmode to
take effect.

While in color map mode, a framebuffer is configured to store a single
color index at each pixel location. The framebuffer is displayed by con-
tinually translating color indices into RGB triples using the
framebuffer’s color map, a table of index-to-RGB mappings. The red,
green, and blue components stored in the color map are used (after
correction for monitor non-linearity) to directly control the color guns of
the monitor. Colors and writemasks must be specified using color map-
compatible commands such as color, colorf, and writemask.

Many advanced rendering features, such as texture mapping, polygon
antialiasing, and fog, are available only in RGB mode. Color map mode
lighting, while functional, is substantially less robust than its RGB mode
counterpart.

Since cmode is the default, you do not have to call it unless the normal
framebuffer was previously set to RGB mode.

Version 4.0 -1- April 1990

cmode Graphics Reference, C Edition cmode

SEE ALSO

color, drawmode, gconfig, getdisplaymode, getgdesc, multimap,
onemap, RGBmode, writemask

NOTE

Color map mode is available in all framebuffers of all hardware
configurations. getgdesc can be used to determine how many bitplanes
in each of the normal, popup, overlay, and underlay framebuffers are
available in both single and double buffered color map mode.

This routine is available only in immediate mode.

Version 4.0 -2- April 1990

cmov Graphics Reference, C Edition cmov

NAME

€mov, cmovi, cmovs, cmov2, cmov2i, cmov2s — updates the current
character position

C SPECIFICATION (

void cmov(x, y, z)
Coord x, y, z;

void cmovi(x, y, z)
Icoord x,y, z;

void cmovs(x, y, z)
Scoord x, y, z;

void cmov2(x, y)
Coord x, y;

void cmov2i(x, y)
Icoord x, y;

void cmov2s(x, y)
Scoord x, y;

All of the above functions are functionally the same except for the type (
declarations of the parameters. In addition the cmov2* routines assume
a 2-D point instead of a 3-D point.

PARAMETERS
x expects the x location of the point (in world coordinates) to which
you want to move the current character position.

y expects the y location of the point (in world coordinates) to which
you want to move the current character position.

z expects the z location of the point (in world coordinates) to which
you want to move the current character position. (This parameter not
used by the 2-D subroutines.)

DESCRIPTION (

cmov moves the current character position to a specified point (just as
move sets the current graphics position). cmov transforms the specified

Version 4.0 -1- April 1990

Cmov Graphics Reference, C Edition cmov

world coordinates into screen coordinates, which become the new char-

acter position. If the transformed point is outside the viewport, the char-
acter position is undefined.

cmov does not affect the current graphics position.

SEE ALSO

charstr, move, readpixels, readRGB, writepixels, writeRGB

Version 4.0 -2- April 1990

color Graphics Reference, C Edition color

NAME

color, colorf — sets the color index in the current draw mode

C SPECIFICATION

void color(c)
Colorindex c;

void colorf(c)
float c;

PARAMETERS

¢ expects an index into the current color map.

DESCRIPTION

color sets the color index of the currently active GL framebuffer, one of
normal, popup, overlay, or underlay (sce drawmode). The current
framebuffer must be in color map mode (see cmode) for the color com-
mand to be applicable. Most drawing commands copy the current color
index into the color bitplanes of the current framebuffer. color is
retained in each draw mode, so when a draw mode is re-entered, color is
reset to the last value specified in that draw mode.

color values range from O through 2"-1, where # is the number of bit-
planes available in the current draw mode. n can be ascertained by cal-
ling getplanes while in the desired draw mode, or by calling getgdesc at
any time. Color indices larger than 2°-1 are clamped to 2"-1; color
indices less than zero yield undefined results.

The color displayed by a given color index is determined by the current
color map (see mapcolor.) Each draw mode has its own color map.

colorf is identical to color, except that it expects a floating point color
index. Before the color is written into display memory, it is rounded to
the nearest integer value. When drawing with the GOURAUD shading
model, machines that iterate color indices with fractional precision yield
more precise shading results using colorf than with color. The results
of color and colorf are indistinguishable when drawing with FLAT
shading.

Version 4.0 -1- April 1990

color Graphics Reference, C Edition color

It is an error to call color or colorf while the current framebuffer is in
RGB mode.

The color indices of all framebuffers in color map mode are set to zero
when gconfig is called.

SEE ALSO
drawmode, getcolor, mapcolor, writemask

NOTE

IRIS-4D B, G, GT, and GTX models do not iterate color with fractional
precision, nor do early serial numbers of the Personal Iris. Use
getgdesc(GD_CIFRACT) to determine whether fractional color index
iteration is supported.

Version 4.0 -2- April 1990

compactify Graphics Reference, C Edition compactify

NAME

compactify — compacts the memory storage of an object

C SPECIFICATION

void compactify(obj)
Object obj;

PARAMETERS

obj expects the object identifier for the object you want to compact.

DESCRIPTION

When you modify an open object definition (using the object editing
routines), the memory storage for the object definition can become frag-
mented. A call to compactify can make a fragmented object definition
occupy a continuous section of memory.

Although you can call compactify to explicitly compact an object, it is
rarely necessary because a call to closeobj automatically calls
compactify, when the object definition becomes too fragmented. (After
you edit an object, you must always call closeobj.)

Because compactify, requires a significant amount of time, do not call it
unless storage space is critical and you cannot tolerate even the small
amount of fragmentation allowed by closeobj.

SEE ALSO
closeobj, chunksize

NOTE

This routine is available only in immediate mode.

Version 4.0 ’ -1- April 1990

(

~——

concave Graphics Reference, C Edition concave

NAME

concave — allows the system to draw concave polygons

C SPECIFICATION

void concave(b)
Boolean b;

PARAMETERS

b expects either TRUE or FALSE.
TRUE tells the system to expect concave polygons.

FALSE tells the system to expect no concave polygons. This is the
default.

DESCRIPTION

concave tells the system whether or not to expect concave polygons. If
you try to draw a concave polygon while the system does not expect it,
the results are unpredictable. Although calling concave(TRUE) guaran-
tees that all non-selfintersecting polygons will be drawn correctly, the
performance of non-concave polygons is reduced on some machines.
Polygons whose edges intersect each other are never guaranteed to be
drawn correctly.

In all cases, performance is optimized when concave polygons are
decomposed into convex pieces before being passed to a GL drawing
routine.

SEE ALSO
bgnpolygon

BUG

IRIS-4D GT and GTX models always expect concave polygons, regard-
less of the value of the concave flag.

Version 4.0 -1- April 1990

cpack Graphics Reference, C Edition cpack

NAME
cpack — specifies RGBA color with a single packed 32-bit integer

C SPECIFICATION

void cpack(pack)
unsigned long pack;

PARAMETERS

pack expects a packed integer containing the RGBA (red, green, blue,
alpha) values you want to assign as the current color. Expressed
in hexadecimal, the format of the packed integer is Oxaabbggrr,
where:

aa is the alpha value,

bb is the blue value,

g8 is the green value, and
rr is the red value.

RGBA component values range from 0 to OxFF (255).

DESCRIPTION

cpack sets the red, green, blue, and alpha color components of the
currently active GL framebuffer, one of normal, popup, overlay, or
underlay (see drawmode). The current framebuffer must be in RGB
mode (see RGBmode) for the cpack command to be applicable. Most
drawing commands copy the current RGBA color components into the
color bitplanes of the current framebuffer. Color components are
retained in each draw mode, so when a draw mode is re-entered, red,
green, blue, and alpha are reset to the last value specified in that draw
mode. ‘

Color component values range from 0, specifying no intensity, through
255, specifying maximum intensity. For example, cpack(0xFF004080)
sets red to 0x80 (half intensity), green to 0x40 (quarter intensity), blue
to O (off), and alpha to OxFF (full intensity).

Version 4.0 -1- April 1990

cpack Graphics Reference, C Edition cpack

It is an error to call cpack while the current framebuffer is in color map
mode.

The color components of all framebuffers in RGB mode are set to zero
when gconfig is called.

SEE ALSO

¢, drawmode, gRGBcolor, Imcolor

NOTE

cpack can also be used to modify the current material while lighting is
active (see Imcolor).

Because only the normal framebuffer currently supports RGB mode,
cpack should be called only while draw mode is NORMALDRAW.
Use getgdesc to determine whether RGB mode is available in draw
mode NORMALDRAW.

Version 4.0 -2- April 1990

crv Graphics Reference, C Edition crv

NAME

crv — draws a curve

C SPECIFICATION

void crv(points)
Coord points[4][3];

PARAMETERS

points expects an array containing the four points that define the
curve. The routine expects 3-D points (x, y, and z coordinates
for each point).

DESCRIPTION

crv draws a cubic spline curve segment (defined by the four submitted
points) according to the current curve basis and precision.

The curve segment is approximated by a sequence of straight lines. All
lines use the current linestyle, which is reset prior to the first line and
continues through subsequent lines. Other line modes, including depth-
cueing, line width, and line antialiasing, also apply to the lines gen-
erated by crv.

After crv executes, the graphics position is undefined.

SEE ALSO

crvn, curvebasis, curveprecision, defbasis, depthcue, linesmooth,
linewidth, rcrv, rcrvn, setlinestyle

1

Version 4.0 -1- April 1990

(

crvn Graphics Reference, C Edition crvn

NAME

crvn — draws a series of curve segments

C SPECIFICATION
void crvn(n, geom)
long n;

Coord geom([][3];

PARAMETERS

geom expects a matrix of 3-D points.
n expects the number of points in the matrix referenced by geom.

DESCRIPTION

crvn draws a series of cubic spline segments using the current basis and
precision. The control points determine the shapes of the curve seg-
ments and are used sequentially four at a time.

For example, if there are six control points, there are three possible
sequential selections of four control points. Thus, ervn draws three
curve segments: the first using control points 0,1,2,3; the second using
control points 1,2,3,4; and the third using control points 2,3,4,5.

If the current basis is a B-spline, a Cardinal spline, or a basis with simi-
lar properties, the curve segments are joined end to end and appear as a
single curve.

Each curve segment is approximated by a sequence of straight lines. All
lines use the current linestyle, which is reset prior to the first line and
continues through subsequent lines. Other line modes, including depth-
cueing, line width, and line antialiasing, also apply to the lines gen-
erated by crvn.

After crvn executes, the graphics position is undefined.

SEE ALSO

crv, curvebasis, curveprecision, defbasis, depthcue, linesmooth,
linewidth, rcrv, rcrvn, setlinestyle

Version 4.0 -1- April 1990

curorigin Graphics Reference, C Edition curorigin

NAME

curorigin — sets the origin of a cursor

C SPECIFICATION

void curorigin(n, xorign, yorign)
short n, xorign, yorign;

PARAMETERS

n expects an index into the cursor table created by defcursor.

xorign expects the x distance of the ongm relative to the lower left
corner of the cursor.

yorign expects the y distance of the origin relative to the lower left
comer of the cursor.

DESCRIPTION

curorigin sets the origin of a cursor. The origin is the point on the cur-
sor that aligns with the current cursor valuators. The lower left corner of
the cursor has coordinates (0,0). Before calling curorigin, the cursor
must be defined with defcursor. curorigin does not take effect until
you call setcursor.

The default origin for curorigin is at (0,0) for user-defined glyphs.

SEE ALSO

attachcursor, defcursor, setcursor

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

(

curson Graphics Reference, C Edition curson

NAME

curson, cursoff — control cursor visibility by window

C SPECIFICATION
void curson()

void cursoff()

PARAMETERS

none

DESCRIPTION

curson and cursoff control the visibility of the cursor in the current
window. The default is curson.

Use getcursor to find out if the cursor is visible.

SEE ALSO

getcursor

NOTE
This routine is available only in immediate mode.

BUG

On the Personal IRIS, cursor visibility is a global resource. The calls
curson and cursoff control cursor visibility regardless of its position on
the screen. If a process turns off the cursor, it will remain off until that
process is killed or the cursor is turned back on by a call to curson.

Version 4.0 -1- April 1990

curstype Graphics Reference, C Edition curstype

NAME

curstype — defines the type and/or size of cursor

C SPECIFICATION

void curstype(typ)
long typ;
PARAMETERS

type expects one of five values that describe the cursor:

C16X1: the default, a 16x16 bitmap cursor of no more than one
color.

C16X2: a 16x16 bitmap cursor of no more than three colors.
C32X1: a 32x32 bitmap cursor of no more than one color.
(C32X2: a 32x32 bitmap cursor of no more than three colors.
CCROSS: a cross-hair cursor.

DESCRIPTION

curstype defines the type and size of a cursor. After you call curstype
call defcursor to specify the glyph’s bitmap and to assign a numeric
name to it.

The cross-hair cursor is formed with a horizontal line and a vertical line
(each 1 pixel wide) that extend completely across the screen. Its origin
(15,15) is at the intersection of the two lines. It is a single-color cursor
whose color is mapped by the color index returned by the getgdesc
inquiry GD_CROSSHAIR_CINDEX.

SEE ALSO

defcursor, curorigin, getgdesc

NOTES
This routine is available only in immediate mode.

Version 4.0 -1- April 1990

curstype Graphics Reference, C Edition curstype

Cursor types C16X2 and C32X2 are not available on systems where the
getgdesc inquiry GD_BITS_CURSOR returns 1.

Version 4.0 -2- April 1990

curvebasis Graphics Reference, C Edition curvebasis

NAME

curvebasis — selects a basis matrix used to draw curves

C SPECIFICATION

void curvebasis(basid)
short basid;

PARAMETERS

basid expects the basis identifier of the basis matrix you want to use
when drawing a curve. (You must have previously called
defbasis to assign a basis identifier to a basis matrix.)

DESCRIPTION

curvebasis selects a basis matrix (by its basis identifier) as the current
basis matrix to draw curve segments. The basis matrix determines how
the system uses the control points when drawing a curve. Depending on
the basis matrix, the system draws bezier curves, cardinal spline curves,
b-spline curves and others. The system does not restrict you to a limited
set of basis matrices. You can define basis matrices to match whatever
constraints you want to place on the curve.

SEE ALSO

crv, crvn, curveprecision, defbasis

Version 4.0 -1- April 1990

curveit Graphics Reference, C Edition curveit

NAME

curveit — draws a curve segment

C SPECIFICATION

void curveit(iterationcount)
short iterationcount;

PARAMETERS

iterationcount expects the number of times you want to iterate

DESCRIPTION

curveit iterates the matrix on top of the matrix stack as a forward differ-
ence matrix iterationcount times. curveit issues a draw routine with
each iteration. curveit accesses low-level hardware capabilities for
curve drawing.

SEE ALSO

crv

Version 4.0 -1- April 1990

curveprecision Graphics Reference, C Edition curveprecision

NAME
curveprecision — sets number of line segments used to draw a curve
segment

C SPECIFICATION

void curveprecision(nsegments)
short nsegments;

PARAMETERS

nsegments expects the number of line segments to use when drawing a
curve segment.

DESCRIPTION

curveprecision sets the number of line segments used to draw a curve.
Whenever crv, crvn, rcrv, or rcrvn execute, a number of straight line
segments approximate each curve segment. The greater the value of
nsegments, the smoother the curve appears, but the longer the drawing
time.

SEE ALSO

crv, crvn, curvebasis, rcrv, rcrvn

Version 4.0 -1- April 1990

cyclemap Graphics Reference, C Edition cyclemap

NAME

cyclemap — cycles between color maps at a specified rate

C SPECIFICATION

void cyclemap(duration, map, nxtmap)
short duration, map, nxtmap;

PARAMETERS
duration expects the number of vertical traces before switching to the
map named by nxtmap.

map expects the number of the map to use before completing the
number of vertical sweeps specified by duration.

nxtmap expects the number of the map to use after completing the
number of vertical sweeps specified by duration.

DESCRIPTION

When the system is in multimap mode, cyclemap allows you to switch
from one color map to another after a specified duration. In multimap
mode there are 16 color maps, numbered 0-15. You can use cyclemap
within a loop if you want to cycle through more than one map.

EXAMPLE

The code fragment sets up multimap mode and cycle between two maps,
leaving map 1 on for ten vertical retraces and map 3 on for five retraces.

multimap();
gconfig();
cyclemap (10, 1, 3);
cyclemap (5, 3, 1);

SEE ALSO
blink, gconfig, multimap

Version 4.0 -1- April 1990

cyclemap Graphics Reference, C Edition cyclemap

NOTE

This routine is available only in immediate mode and cannot be used in
onemap mode.

Version 4.0 -2- April 1990

czclear Graphics Reference, C Edition czclear

NAME

czclear — clears the color bitplanes and the z-buffer simultaneously

C SPECIFICATION

void czclear(cval, zval)
unsigned long cval;
long zval;

PARAMETERS

cval expects the color to which you want to clear the color bitplanes.
zval expects the depth value to which you want to clear the z-buffer.

DESCRIPTION

czlear sets the color bitplanes in the area of the viewport to cval, and the
z buffer bitplanes in the area of the viewport to zval. Multiple color bit-
plane buffers can be cleared simultaneously using the backbuffer and
frontbuffer commands. The screen mask, when it is set to a subregion
of the viewport, bounds the cleared region. Most other drawing modes,
including alpha function, blend function, logical operation, polygon fill
pattern, stenciling, texture mapping, writemask, and z buffering, have no
effect on the operation of czclear. The current color does not change.

Because only the normal framebuffer includes a z buffer, czclear should
be called only while draw mode is NORMALDRAW.

In RGB mode, the cval parameter expects a packed integer of the same
format used by cpack, namely Oxaaggbbrr, where rr is the red value, bb
the blue value, gg the green value, and aa is the alpha value. In color
map mode this parameter expects an index into the current color map, so
only up to 12 of the least-significant bits are significant.

The valid range of the zval parameter depends on the graphics hardware,
where the minimum is the value returned by getgdesc(GD_ZMIN) and
the maximum is the value returned by getgdesc(GD_ZMAX). It is
unaffected by the state of the GLC_ZRANGEMAP compatibility mode
(see glcompat).

Version 4.0 -1- April 1990

czclear Graphics Reference, C Edition czclear

After czclear executes, the graphics position is undefined.

SEE ALSO

afunction, blendfunction, clear, cpack, getgdesc, glcompat, logicop,
scrmask, setpattern, stencil, texbind, wmpack, writemask, zbuffer,
zclear, zfunction

NOTES

Whenever you need to clear both the z-buffer and the color bitplanes to
constant values at the same time, use czclear. A simultaneous clear will
take place if circumstances allow it. There is never a penalty in calling
czclear over calling clear and zclear sequentially.

IRIS-4D GT and GTX models can do a simultaneous clear only under
the following circumstances:

¢ In RGB mode, the 24 least significant bits of cval (red, green, and
blue) must be identical to the 24 least significant bits of zval.

e In color map mode, the 12 least significant bits of cval must be
identical to the 12 least significant bits of zval.

IRIS-4D VGX models always clear color and z bitplanes banks sequen-
tially, regardless of the values of cval and zval.

On the Personal Iris, you can speed up czclear by as much as a factor of
four for common values of zval if you call zfunction in conjunction
with it such that one of the following conditions are met:

zval | zfunction

getgdesc(GD_ZMIN) ZF_GREATER or ZF_GEQUAL
getgdesc(GD_ZMAX) ZF_LESS or ZF_LEQUAL

BUGS

IRIS-4D G models always clear their z-buffers to GD_ZMAX, regard-
less of the value passed to czclear.

Version 4.0 -2- April 1990

dbtext Graphics Reference, C Edition dbtext

NAME
dbtext — sets the dial and button box text display

C SPECIFICATION
void dbtext(str)
String str;

PARAMETERS

str expects a pointer to a text string of no more than eight characters:
digits, spaces, and uppercase letters only.

DESCRIPTION

dbtext places up to eight characters of text into the text display on the
dial and button box.

SEE ALSO
setdblights

NOTES
This routine is available only in immediate mode.

As might be expected, this routine does not function if you use the dial
and button box without a text display.

Version 4.0 -1- April 1990

defbasis Graphics Reference, C Edition defbasis

NAME

defbasis — defines a basis matrix

C SPECIFICATION

void defbasis(id, mat) (
short id;
Matrix mat;

PARAMETERS
id expects the basis matrix identifier you want to assign to the matrix
at mat.

mat expects the matrix to which you want to assign the basis matrix
identifier, id.

DESCRIPTION

defbasis assigns a basis matrix identifier to a basis matrix. The basis
matrix is used by the routines that generate curves and patches. Use the
basis matrix identifier in subsequent calls to curvebasis and patchbasis. (

SEE ALSO

crv, crvn, curvebasis, curveprecision, patch, patchbasis, patchprecision,
patchcurves, rcrv, rcrvn

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

defcursor Graphics Reference, C Edition defcursor

NAME
defcursor — defines a cursor glyph

C SPECIFICATION

void defcursor(n, curs)
short n;
unsigned short *curs;

PARAMETERS

n expects the constant you want to assign as a cursor name. By
default, an arrow is defined as cursor 0 and cannot be redefined.

curs expects the bitmap for the cursor you want to define. The bitmap
can be 16x16 or 32x32 and either one or two layers deep. This
parameter is ignored for cross-hair cursors.

DESCRIPTION

defcursor defines a cursor glyph with the specified name and bitmap.
Call curstype prior to calling defcursor to set the type and size of cur-
sor it defines. The name parameter » is used to identify the cursor glyph
to other cursor routines. A subsequent call to defcursor with the same
value of n will replace the current definition of the cursor with the new
one.

By default, the cursor origin of a bitmap cursor is at (0,0), its lower-left
corner, and the cursor origin of a cross-hair cursor is at (15,15), the
intersection of its two lines. Use curorigin to set the cursor origin to
somewhere else. The cursor origin is the position controlled by valua-
tors attached to the cursor, and is also the position pick uses for the
picking region.

SEE ALSO

curorigin, curstype, getcursor, getgdesc, pick, setcursor

NOTES

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

defcursor Graphics Reference, C Edition defcursor

Some models do not support two-layer cursor bitmaps. Use the
getgdesc inquiry GD_BITS_CURSOR to determine how many layers
are supported.

Version 4.0 -2- April 1990

deflinestyle Graphics Reference, C Edition . deflinestyle

NAME

deflinestyle — defines a linestyle

C SPECIFICATION

void deflinestyle(n, Is)
short n;
Linestyle Is;

PARAMETERS
n expects the constant that you want to use as an identifier for the
linestyle described by Is. This constant is used as an index into a

table of linestyles. By default, index O contains the pattern OXFFFF,
which draws solid lines and cannot be redefined.

Is expects a 16-bit pattern to use as a linestyle. This pattern is stored in
the linestyle table at index n. You can define up to 2'® distinct
linestyles.

DESCRIPTION

deflinestyle defines a linestyle which is a write-enabled pattern that is
applied when lines are drawn. The least-significant bit of the linestyle is
applied first. To replace a linestyle, respecify the previous index.

SEE ALSO
defcursor, defpattern, defrasterfont, getlstyle, Isrepeat, setlinestyle

NOTES
This routine is available only in immediate mode.

On the Personal Iris, there is a performance penalty for drawing non-
solid lines; there is no penalty on the other IRIS-4D models.

Version 4.0 -1- April 1990

defpattern Graphics Reference, C Edition defpattern

NAME

defpattern — defines patterns

C SPECIFICATION

void defpattern(n, size, mask)
short n, size;
unsigned short mask[];

PARAMETERS

n expects the constant that you want to use as an identifier for the
pattern described by mask. This constant is used as an index into
a table of patterns. By default, pattern 0 is a 16X16 solid pattern
that cannot be changed.

size expects the size of the pattern: 16, 32, or 64 for a 16x16-,
32x32-, or 64x64-bit pattern, respectively.

mask expects an array of 16-bit integers that form the actual bit pat-
tern. The system stores the pattern in a pattern table at index x.
The pattern is described from left to right and bottom to top, just
as characters are described in a raster font.

DESCRIPTION

defpattern allows you to define an arbitrary pattern and assign it an
identifier. You can later reference this pattern in other routines via its
identifier. Patterns are available to all windows when using multiple
windows. :

Patterns affect the filling of polygons, including rectangles, arcs, and cir-
cles, as well as polygons specified with individual vertices. Patterns
have no effect on the scan conversion of points, lines, or characters, or
on pixel write or copy operations.

When a pattern is active (see setpattern) it is effectively replicated
across the entire screen, with the edges of pattern tiles aligned to the left
and bottom edges of the screen. Bit 15 of each 16-bit description word
is leftmost, and words are assembled left to right, then bottom to top, to
form each pattern square. Pixels on the screen that correspond to zeros
in the pattern remain unmodified during scan conversion of polygons.
No changes are made to any bitplane bank of a protected pixel.

Version 4.0 -1- April 1990

defpattern Graphics Reference, C Edition defpattern

SEE ALSO

deflinestyle, defrasterfont, getpattern, setpattern

NOTES
This routine is available only in immediate mode.

Some machines do not support 64x64 patterns. Call
getgdesc(GD_PATSIZE 64) to determine the availability of 64x64
patterns.

On the Personal Iris there is a performance penalty for non-solid pat-
terns.

Version 4.0 ' -2- April 1990

defpup

NAME

Graphics Reference, C Edition defpup

defpup — defines a menu

C SPECIFICATION
long defpup(str [, args ... 1)

String str;

long args;

PARAMETERS

str expects a pointer to the text that you want to add as a menu item.
In addition, you have the option of pairing an ‘‘item type’’ flag
with each menu item. There are seven menu item type flags:

ot
% F

%t

%1

% m

Version 4.0

marks item text as the menu title string.

invokes a routine for every selection from this menu
except those marked with a %n. You must specify the
invoked routine in the arg parameter. The value of the
menu item is used as a parameter of the executed routine.
Thus, if you select the third menu item, the system passes
3 as a parameter to the function specified by %F.

invokes a routine when this particular menu item is
selected. You must specify the invoked routine in the arg
parameter. The value of the menu item is passed as a
parameter of the routine. Thus, if you select the third
menu item, the system passes 3 as a parameter to the rou-
tine specified by %f. If you have also used the %F flag
within this menu, then the result of the %f routine is
passed as a parameter of the %F routine.

adds a line under the current entry. This is useful in pro-
viding visual clues to group like entries together.

pops up a menu whenever this menu item is selected. You
must provide the menu identifier of the new menu in the
arg parameter.

-1- April 1990

defpup Graphics Reference, C Edition defpup

%%n like %f, this flag invokes a routine when the user selects
this menu item. However, %n differs from %f in that it
ignores the routine (if any) specified by %F. The value of
the menu item is passed as a parameter of the executed
routine. Thus, if you select the third menu item, the sys-
tem passes 3 as a parameter to the function specified by
%f.

%xn assigns a numeric value to this menu item. This values
overrides the default position-based value assigned to this
menu item (e.g., the third item is 3). You must enter the
numeric value as the n part of the text string. Do not use
the arg parameter to specify the numeric value.

args an optional set of arguments. Each argument expects the com-
mand or submenu that you want to assign to this menu item. You
can use-as many args parameters as you need.

FUNCTION RETURN VALUE

The returned value for the function is the menu identifier of the menu
just defined.

DESCRIPTION

defpup defines a pop-up menu under the window manager and returns a
positive menu identifier as the function value.

EXAMPLES
Examples best illustrate the use of the item types.

menu = defpup ("menu %tl|item 1llitem 2|item 3|item 4");

defines a pop-up menu with title menu and four items. You can use a
menu of this type as follows:

Version 4.0 -2- April 1990

defpup Graphics Reference, C Edition defpup

switch (dopup (menu)) {

case 1l: /* item 1 */
handling code
break;

case 2: /* item 2 */
handling code
break;

case 3: /* item 3 */
handling code
break;

case 4: /* item 4 */
handling code
break; -

}

A more complex example is:
String str = "menu2 %t %F|1 %n%1|2 %m|3 %f|4 $x234";
menu2 = defpup(str, menufunc, submenu, func);

defines a menu with title menu2 and four items with a line under the
first one. Invoked by:

menuval = dopup (menu2) ;

Selecting menu item 1 causes dopup to return menufunc(l). Rolling
off menu item 2 displays submenu, which provides additional selections.
dopup returns menufunc(dopup(submenu)) when another selection is
made; otherwise submenu disappears and selections are made from
menu. Buttoning item 3 executes func with 3 as its argument. dopup
returns menufunc(func(3)). Buttoning item 4 causes dopup to return
menufunc(234). If no item is selected, then dopup returns —1.

SEE ALSO
addtopup, dopup, freepup, newpup

NOTES

This routine is available only in immediate mode.

Version 4.0 -3- April 1990

defpup Graphics Reference, C Edition defpup

When using the Distributed Graphics Library (DGL), you can not call
other DGL routines within a function that is called by a popup menu, i.e.
a function given as the argument to a %f or %F item type.

Version 4.0 -4- April 1990

defrasterfont Graphics Reference, C Edition defrasterfont

NAME

defrasterfont — defines a raster font

C SPECIFICATION

void defrasterfont(n, ht, nc, chars, nr, raster) (!
short n, ht, nc, nr; '
Fontchar chars[];

unsigned short raster[];

PARAMETERS

n

ht
nc

chars

Version 4.0

expects the constant that you want to use as the identifier for this
raster font. This constant is used as an index into a font table.
The default font, 0, is a fixed-pitch font with a height of 16 and
width of 9. Font 0 cannot be redefined.

expects the maximum height (in pixels) for a character.
expects the number of characters in this font.

expects an array of character description structures of type
Fontchar. The Fontchar structure is defined in <gl/gl.h> as: (

typedef struct {
unsigned short offset;
Byte w, h;
signed char xoff, yoff;
short width;

} Fontchar;

offset expects the element number of raster at which the bitmap
for this character starts. The element numbers start at zero.

w expects the number of columns in the bitmap that contain set
bits (character width).

h expects the number of rows in the bitmap of the character
(including ascender and descender).

xoff expects bitmap columns between the start of the character’s (
bitmap and the start of the character.

-1- April 1990

defrasterfont Graphics Reference, C Edition defrasterfont

nr

raster

yoff expects the number rows between the character’s baseline
and the bottom of the bitmap. For characters with descenders
(e.g., &) this value is a negative number. For characters that rest
entirely on the baseline, this value is zero.

width expects the pixel width for the character. This value tells
the system how far to space after drawing the character. (This
value is added to the character position.)

expects the number of 16-bit integers in raster.

expects a one-dimensional array that contains all the bit maps
(masks) for the characters in the font. Each element of the array
is a 16-bit integer and the elements are ordered left to right, bot-
tom to top. When interpreting each element, the bits are left
justified within the character’s bounding box.

The maximum row width for a single bitmap is not limited to the
capacity of a single 16-bit integer array element. The rows of a
bitmap may span more than one array element. However, each
new row in the character bitmap must start with its own array
element. Likewise, each new character bitmap must start with
its own array element. The system reads the row width and start-
ing location for a character bitmap from the structures in the
chars array.

DESCRIPTION

defrasterfont defines a raster font. The hardest part of creating a new
raster font is generating a bit map for each character. You may want to
write a graphically oriented tool for creating the bitmaps expected by

raster.

To replace a raster font, specify the index of the previous font as the
index for the new font. To delete a raster font, define a font with no
characters. Patterns, cursors, and fonts are available to all windows
when using multiple windows.

SEE ALSO

charstr, cmove, font, getcpos, getdescender, getfont, getheight, strwidth

Version 4.0

-2- April 1990

defrasterfont Graphics Reference, C Edition defrasterfont

NOTE

This routine is available only in immediate mode.

Version 4.0 «3. April 1990

delobj Graphics Reference, C Edition delobj

NAME

delobj — deletes an object

C SPECIFICATION

void delobj(obj)
Object obj;

PARAMETERS

obj expects the object identifier of the object that you want to delete.

DESCRIPTION

delobj deletes an object. Deleting an object frees most of its display list
storage; the object identifier remains undefined until you create a new
object for that identifier. The system ignores calls to delete objects that
don’t exist.

SEE ALSO
compactify, makeobj

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

deltag Graphics Reference, C Edition deltag

NAME
deltag — deletes a tag from the current open object

C SPECIFICATION

void deltag(t)
Tag t;

PARAMETERS

¢t expects the tag that you want to delete.

DESCRIPTION

deltag deletes the specified tag from the object currently open for edit-
ing. You cannot delete the special tags STARTTAG and ENDTAG.

SEE ALSO
editobj, maketag

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

depthcue Graphics Reference, C Edition

NAME
depthcue — turns depth-cue mode on and off

C SPECIFICATION

void depthcue(mode)
Boolean mode;

PARAMETERS

mode expects either TRUE or FALSE.
TRUE turns depthcue mode on.
FALSE tums depthcue mode off.

DESCRIPTION

depthcue

depthcue turns depth-cue mode on or off. If depth-cue mode is on, all
lines, points, characters, and polygons are drawn depth-cued. This
means the z values and the range of color values specified by
Ishaderange or IRGBrange determine the color of the lines, points,
characters, or polygons. The z values, whose range is set by Isetdepth,
are mapped linearly into the range of color values. In this mode, lines
that vary greatly in z value span the range of colors specified by

Ishaderange or IRGBrange.

In color index mode, the color map entries specified by Ishaderange
should be loaded with a series of colors that gradually increase or

decrease in intensity.

SEE ALSO
IRGBrange, Isetdepth, 1shaderange

Version 4.0 -1-

April 1990

dglclose Graphics Reference, C Edition dglclose

NAME

dglclose — closes the DGL server connection

C SPECIFICATION

void dglclose(sid)
long sid;

PARAMETERS

sid expects the identifier of the server you want to close. If sid is nega-
tive, then all graphics server connections are closed. Server
identifiers are returned by dglopen.

DESCRIPTION

dgiclose closes the connection to the graphics server associated with the
server identifier sid, killing the Distributed Graphics Library (DGL)
server process and all its windows. If sid is negative, then all graphics
server connections are closed. Call dglclose after gexit or when the
graphics server is no longer needed. Closing the connection frees up
resources on the graphics server.

After a connection is closed, there is no current graphics window and no
current graphics server. Calling any routines other than dglopen,
dglclose or routines that take graphics window identifiers as input
parameters will result in an error.

SEE ALSO
dglopen
4Sight User’ s Guide, ‘‘Using the GL/DGL Interfaces’’.

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

dglopen

NAME

Graphics Reference, C Edition dglopen

dglopen — opens a DGL connection to a graphics server

C SPECIFICATION

long dglopen(svname, type)
String svname;
long type;

PARAMETERS

svname expects a pointer to the name of the graphics server to which

type

you want to open a connection.

For a successful connection, the username on the server must
be equivalent (in the sense of rlogin(1C)) to the originating
account; no provision is made for specifying a password. The
remote username used is the same as the local username unless
you specify a different remote username. To specify a dif-
ferent remote username, the svaame string should use the for-
mat username@servername.

For DECnet connections, if the server account has a password,
this password must be specified using the format
username password@servername. This password is used only
for opening the DECnet connection; the two accounts must
still be equivalent in the rlogin sense.

expects a symbolic constant that specifies the kind of connec-
tion. There are three defined constants for this parameter:

DGLLOCAL indicates a direct connection to the local graph-
ics hardware.

DGLTSOCKET indicates a remote connection via TCP/IP.
DGLA4DDN indicates a remote connection via DECnet.

FUNCTION RETURN VALUE

If the connection succeeds, the returned value of the function is a non-
negative integer, serverid, that identifies the graphics server. If the con-
nection failed, the returned value for the function is a negative integer.

Version 4.0

-1- April 1990

dglopen Graphics Reference, C Edition dglopen

The absolute value of a negative returned value is either a standard error
value (defined in <errno.h>) or one of several error returns associated
specifically with dglopen:

ENODEV type is not a valid connection type.

EACCESS login incorrect or permission denied. (
EMFILE too many graphics connections are currently open. '
EBUSY only one DGLLOCAL connection allowed.

ENOPROTOOPT
DGL service not found in /etc/services.

ERANGE invalid or unrecognizable number representation.

EPROTONOSUPPORT
DGL version mismatch.
ESRCH the window manager is not running on the server.
DESCRIPTION

dglopen opens a Distributed Graphics Library (DGL) connection to a
graphics server (svname). After a connection is open, all graphics input (’
and output are directed to that connection. Graphics input and output
continue to be directed to the connection until either the connection is
closed, another connection is opened or a different connection is
selected. A different connection can be selected. by calling a subroutine

that takes a graphics window identifier as an input parameter, eg. win-

set. The server connection associated with that graphics window
identifier becomes the current connection. To close a DGL connection,

call dglclose with the server identifier returned by dglopen.

SEE ALSO
dglclose, finish, gflush, winopen, winset
rlogin(1C) in the IRIS-4D User’s Reference Manual
4Sight User’s Guide, ‘‘Using the GL/DGL Interfaces’’.

Version 4.0 -2- April 1990

dglopen Graphics Reference, C Edition dglopen

NOTES
This routine is available only in immediate mode.

This routine is available in both the DGL and GL library. However,
only a DGLLOCAL connection type is supported by the GL library.

Version 4.0 -3- April 1990

dopup Graphics Reference, C Edition dopup

NAME
dopup — displays the specified pop-up menu

C SPECIFICATION

long dopup(pup)
long pup;
PARAMETERS

pup expects the identifier of the pop-up menu you want to display.

FUNCTION RETURN VALUE

The returned value of the function is the value of the item selected from
the pop-up menu. If the user makes no menu selection, the returned
value of the function is —1.

DESCRIPTION

dopup displays the specified pop-up menu until the user makes a selec-
tion. If the calling program has the input focus, the menu is displayed
and dopup returns the value resulting from the item selection. The value
can be returned by a submenu, a function, or a number bound directly to
an item. If no selection is made, dopup retums —1.

When you first define the menu (using defpup or addtopup) you
specify the list of menu entries and their corresponding actions. See
addtopup for details.

SEE ALSO
addtopup, defpup, freepup, newpup

NOTE
This routine is available only in immediate mode.

Version 4.0 -1- April 1990

(

doublebuffer Graphics Reference, C Edition doublebuffer

NAME
doublebuffer — sets the display mode to double buffer mode

C SPECIFICATION
void doublebuffer()

PARAMETERS

none

DESCRIPTION

doublebuffer sets the display mode to double buffer mode. It does not
take effect until gconfig is called. In double buffer mode, the bitplanes
are partitioned into two groups, the front bitplanes and the back bit-
planes. Double buffer mode displays only the front bitplanes. Drawing
routines normally update only the back bitplanes; frontbuffer and
backbuffer can override the default.

In double buffer mode, gconfig calls frontbuffer(OFF) and
backbuffer(ON).

SEE ALSO

backbuffer, frontbuffer, gconfig, getbuffer, getdisplaymode, RGBmode,
singlebuffer, swapbuffers

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

draw Graphics Reference, C Edition draw

NAME

draw, drawi, draws, draw2, draw2i, draw2s — draws a line

C SPECIFICATION

void draw(x, y, z) (

Coord x, y, z;

void drawi(x, y, z)
Icoord x, y, z;

void draws(x, y, z)
Scoord x, y, z;

void draw2(x, y)
Coord x, y;

void draw2i(x, y)
Icoord x, y;

void draw2s(x, y)
Scoord x, y;

declarations of the parameters. In addition the draw2* routines assume
a 2-D point instead of a 3-D point.

All of the above functions are functionally the same except for the type (

PARAMETERS
x expects the x coordinate of the point to which you want to draw a line
segment.

y expects the y coordinate of the point to which you want to draw a line
segment.

z expects the z coordinate of the point to which you want to draw a line
segment. (Not used by 2-D subroutines.)

DESCRIPTION

draw connects the point x, y, z and the current graphics position with a (

line segment. It uses the current linestyle, linewidth, color (if in depth-
cue mode, the depth-cued color is used), and writemask.

Version 4.0 -1- April 1990

draw Graphics Reference, C Edition draw

draw updates the current graphics position to the specified point. Do
not place routines that invalidate the current graphics position within
sequences of moves and draws.

SEE ALSO

bgnline, endline, move, v

NOTE

draw should not be used in new development. Rather, lines should be
drawn using the high-performance v commands, surrounded by calls to
bgnline and endline.

Version 4.0 -2- April 1990

drawmode Graphics Reference, C Edition drawmode

NAME

drawmode — selects which GL framebuffer is drawable

C SPECIFICATION

void drawmode(mode)
long mode;

PARAMETERS

mode expects the identifier of the framebuffer to which GL drawing
commands are to be directed:

NORMALDRAW, which sets operations for the normal color
and z buffer bitplanes.

OVERDRAW, which sets operations for the overlay bitplanes.

UNDERDRAW, which sets operations for the underlay bit-
planes.

PUPDRAW, which sets operations for the pop-up bitplanes.
CURSORDRAW, which sets operations for the cursor.

DESCRIPTION

The IRIS physical framebuffer is divided into 4 separate GL frame-
buffers: pop-up, overlay, normal, and underlay. drawmode specifies
which of these four buffers is currently being controlled and modified by
GL drawing and mode commands. Because drawmode cannot be set to
multiple framebuffers, GL drawing commands affect only one of the
four GL framebuffers at a time.

The way that GL modes interract with drawmode is both complex and
significant to the GL programmer. For example, each framebuffer
maintains its own current color and its own color map. but linewidth is
shared among all framebuffers. In general, modes that determine what
is to be drawn into the framebuffers are shared; modes that control
framebuffer resources are either multiply specified, or specified only for
the normal framebuffer.

Version 4.0 -1- April 1990

drawmode Graphics Reference, C Edition drawmode

A separate version of each of the following modes is maintained by each
GL framebuffer. These modes are modified and read back based on the
current draw mode:

backbuffer

cmode

color or RGBcolor

doublebuffer

frontbuffer

mapcolor (a separate color map per framebuffer)
readsource

RGBmode

singlebuffer

writemask or RGBwritemask

The following modes currently affect only the operation of the normal
framebuffer. They must therefore be modified only while draw mode is
NORMALDRAW. As features are added to the GL, these modes may
become available in other draw modes. When this happens, a separate
mode will be maintained for each draw mode.

acsize
blink
cyclemap
multimap
onemap
setmap
stencil
stensize
swritemask
zbuffer
zdraw
zfunction
zsource
zwritemask

All other modes, including matricies, viewports, graphics and character
positions, lighting, and many primitive rendering options, are shared by
the four GL framebuffers.

Version 4.0 -2- April 1990

drawmode Graphics Reference, C Edition drawmode

Draw mode CURSORDRAW (iffers from the others. True bitplanes
for the cursor do not exist; there is no current color or writemask in this
drawing mode. However, the cursor does have its own color map, and
when in this mode, mapcolor and getmcolor access it.

SEE ALSO

acsize, cmode, ¢, color, cpack, gconfig, getcolor, getmcolor, getwri-
temask, mapcolor, overlay, stencil, underlay, wmpack, writemask

NOTE
This routine is available only in immediate mode.
PUPDRAW mode is provided for compatibility, its use is discouraged.

Some GL modes that are shared by all draw modes are not implemented
by the popup, overlay, or underlay framebuffers. For example, the Per-
sonal Iris does not do Gouraud shading in these framebuffers. It is
important for the programmer to explicitly disable modes that are
shared, but not desired, when in draw modes other than NORMAL-
DRAW. Otherwise the code may function differently on different plat-
forms.

Version 4.0 -3- April 1990

editobj Graphics Reference, C Edition editobj

NAME
editobj — opens an object definition for editing

C SPECIFICATION

void editobj(obj)
Object obj;

PARAMETERS

obj expects object identifier for object definition you want to edit.

DESCRIPTION

editobj opens an object definition for editing. The system maintains an
editing pointer that initially points to the end of the definition. The sys-
tem appends all new routines at that pointer location until you call
closeobj or until you call a routine that repositions the editing pointer,
such as objdelete, objinsert, or objreplace.

Usually, you need not be concerned about memory allocation. Objects
grow and shrink automatically as routines are added and deleted. (See
chunksize.)

If you call editobj for an undefined object identifier, the system displays
an error message.

SEE ALSO

compactify, objdelete, objinsert, objreplace, chunksize

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

endclosedline Graphics Reference, C Edition endclosedline

NAME

bgnclosedline, endclosedline — delimit the vertices of a closed line

C SPECIFICATION
void bgnclosedline()

void endclosedline()

PARAMETERS

none

DESCRIPTION

bgnclosedline marks the start of a group of vertex routines that you
want interpreted as points on a closed line. Use endclosedline to mark
the end of the vertex routines that are part of the closed line.

A closed line draws a line segment from one vertex on the list to the
next vertex on the list. When the system reaches the end of the vertex
list, it draws a line that connects the last vertex to the first vertex. All
segments use the current linestyle, which is reset prior to the first seg-
ment and continues through subsequent segments. To specify a vertex,
use the v routine. '

Between bgnclosedline and endclosedline, you can issue only the fol-
lowing Graphics Library routines: ¢, color, cpack, Imbind, Imcolor,
Imdef, n, RGBcolor, t, and v. Within a closed line, you should use
Imdef and Imbind only to respecify materials and their properties. If
the color changes between a pair of vertices, the color of the line seg-
ment will be constant if the current shading model is FLAT and interpo-
lated if the current shading model is GOURAUD. In color map mode,
the colors vary through the color map; to get reasonable results, the
color map should contain a ramp.

There is no limit to the number of vertices that can be specified between
bgnclosedline and endclosedline. After endclosedline, the system
draws a line from the final vertex back to the initial vertex, and the
current graphics position is left undefined.

Version 4.0 -1- April 1990

—

endclosedline Graphics Reference, C Edition endclosedline

By default line vertices are forced to the nearest pixel center prior to
scan conversion. Line accuracy is improved when this coercion is
defeated with the subpixel command. Subpixel vertex positioning is
especially important when lines are scan converted with antialiasing
enabled (see linesmooth).

bgnclosedline/endclosedline are the same as bgnline/endline, except
they connect the last vertex to the first.

EXAMPLE

The code fragment below draws the outline of a triangle. Lines use the
current linestyle, which is reset prior to the first vertex and continues
through all subsequent vertices.

bgnclosedline () ;
v3f (vertl);
v3f (vert2);
v3f (vert3);
endclosedline () ;

SEE ALSO

bgnline, ¢, linesmooth, linewidth, Isrepeat, scrsubdivide, setlinestyle,
shademodel, subpixel, v

BUGS

On the IRIS-4D B and G models, and on the Personal Iris without Turbo
Graphics, if the color changes between a pair of vertices, the color of the
line segment will be constant regardless of the current shading model.
On the IRIS-4D GT and GTX models, if the color changes between a
pair of vertices, the color of the line segment will be interpolated regard-
less of the current shading model.

Version 4.0 -2- April 1990

endfeedback Graphics Reference, C Edition endfeedback

NAME
feedback, endfeedback — control feedback mode

C SPECIFICATION

Personal Iris and IRIS-4D VGX:
void feedback(buffer, size)
float buffer[];
long size;

long endfeedback(buffer)
float buffer[];

Other models:
void feedback(buffer, size)
short buffer([];
long size;

long endfeedback(buffer)
short buffer[];

PARAMETERS

buffer expects a buffer into which the system writes the feedback out-
put from the Geometry Pipeline. On the Personal Iris and the
IRIS-4D VGX, the output consists of 32-bit floating point
values; on the other IRIS-4D models, the output consists of 16-
bit integer values. Be sure you declare your buffer appropri-
ately.

size expects the maximum number of buffer elements into which the
system will write feedback output.

FUNCTION RETURN VALUE

The return value of endfeedback is the actual number of elements of
buffer that were written. The system will not write more than size ele-
ments, even when the amount of feedback exceeds it. You should
assume that overflow has occurred whenever the return value is size.

Version 4.0 -1- April 1990

endfeedback Graphics Reference, C Edition endfeedback

DESCRIPTION

feedback puts the system in feedback mode. In feedback mode, the Sys-
tem retains the output of the Geometry Pipeline rather than sending it to
the rendering subsystem. endfeedback turns off feedback mode and
returns the feedback output in buffer. This information is typically a
description of a vertex, and is machine specific. For information for
interpreting the returned buffer, see the ‘‘Feedback’ chapter of the
Graphics Library Programming Guide.

NOTE

These routines are available only in immediate mode.

Version 4.0 -2- April 1990

endfullscrn Graphics Reference, C Edition

NAME

endfullscrn — ends full-screen mode

C SPECIFICATION
void endfullscrn()

PARAMETERS

none

DESCRIPTION

endfullscrn

endfullscrn ends full-screen mode and returns the screenmask and
viewport to the boundaries of the current graphics window. endfullscrn

leaves the current transformation unchanged.

SEE ALSO
fullscrn

NOTE

This routine is available only in immediate mode.

Version 4.0 -1-

April 1990

endline Graphics Reference, C Edition endline

NAME

bgnline, endline — delimit the vertices of a line

C SPECIFICATION
void bgnline()

void endline()

PARAMETERS

none

DESCRIPTION

Vertices specified after bgnline and before endline are interpreted as
endpoints of a series of line segments. Use the v routine to specify a ver-
tex. The first vertex connects to the second; the second connects to the
third; and so on until the next-to-last vertex connects to the last one.
The last vertex does not connect to the first vertex. Use bgnclosedline
to connect the first and last points. All segments use the current lines-
tyle, which is reset prior to the first segment and continues through sub-
sequent segments.

Between bgnline and endline, you can issue only the following Graph-
ics Library routines: ¢, color, cpack, Imbind, Imcolor, Imdef, n,
RGBcolor, t, and v. Imdef and Imbind can be used to respecify only
materials and their properties. If the color changes between a pair of ver-
tices, the color of the line segment will be constant if the current shading
model is FLAT and interpolated if the current shading model is
GOURAUD. In color map mode, the colors vary through the color map;
to get reasonable results, the color map should contain a ramp.

There is no limit to the number of vertices that can be specified between
bgnline and endline. After endline, the current graphics position is
undefined.

By default line vertices are forced to the nearest pixel center prior to
scan conversion. Line accuracy is improved when this coercion is
defeated with the subpixel command. Subpixel vertex positioning is
especially important when lines are scan converted with antialiasing
enabled (see linesmooth).

Version 4.0 -1- April 1990

endline Graphics Reference, C Edition endline

SEE ALSO

bgnclosedline, ¢, linesmooth, linewidth, Isrepeat, scrsubdivide, setlines-
tyle, shademodel, subpixel, v

BUGS

On the IRIS-4D B and G models, and on the Personal Iris without Turbo
Graphics, if the color changes between a pair of vertices, the color of the
line segment will be constant regardless of the current shading model.

On the IRIS-4D GT and GTX models, if the color changes between a
pair of vertices, the color of the line segment will be interpolated regard-
less of the current shading model.

Version 4.0 -2- April 1990

endpick Graphics Reference, C Edition endpick

NAME
endpick — turns off picking mode

C SPECIFICATION

long endpick(buffer)
short buffer[];

PARAMETERS

buffer expects a buffer into which to append the contents of the name
stack when a drawing routine draws in the picking region.
Before writing the contents of the name stack, the system
appends the number of entries it is about to append. Thus, if the
name stack contains the values, 5, 9, and 17; then endpick
appends the values, 3, 5,9, and 17, to buffer.

Because more than one drawing routine may have written in the
picking region, it is possible for buffer to contain a number of
readings from the name stack.

FUNCTION RETURN VALUE

The returned value for the function is the number of times endpick
wrote the names stack to buffer.

If the returned function value is negative, then the buffer was too small
to contain all the readings from the name stack.

DESCRIPTION
endpick turns off picking mode and writes the hits to a buffer.

SEE ALSO

initnames, loadname, pick pushname, popname

NOTE

This routine is available only in immediate mode.

Version 4.0 -1- April 1990

endpoint Graphics Reference, C Edition endpoint

NAME

bgnpoint, endpoint — delimit the interpretation of vertex routines as
points

C SPECIFICATION (j
void bgnpoint())
void endpoint()

PARAMETERS

none

DESCRIPTION

bgnpoint marks the beginning of a list of vertex routines that you want
interpreted as points. Use the endpoint routine to mark the end of the
list. For each vertex, the system draws a one-pixel point into the frame
buffer. Use the v routine to specify a vertex.

Between bgnpoint and endpoint, you can issue only the following i
Graphics Library routines: ¢, color, cpack, Imbind, Imcolor, Imdef, n, (
RGBcolor, t, and v. Use Imdef and Imbind to respecify only materials

and their properties.

There is no limit to the number of vertices that can be specified between
bgnpoint and endpoint.

By default points are forced to the nearest pixel center prior to scan
conversion. This coercion is defeated with the subpixel command.
Subpixel point positioning is important only when points are scan con-
verted with antialiasing enabled (see pntsmooth).

After endpoint, the current graphics position is the most recent vertex.

SEE ALSO
¢, pntsmooth, subpixel, v

Version 4.0 -1- April 1990

endpolygon Graphics Reference, C Edition endpolygon

NAME
bgnpol<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>