
dbx Reference Manual

IRIS-4D Series

SiliconGraphics
Computer Systems

Document number" 007-0906-030

dbx Reference Manual

Version 3.0

Document Number 007-0906-030

12/90

Technical Publications:

Wendy Ferguson
Beth Fryer
Claudia Lohnes
Robert Reimann

Eng ineering:

David Anderson
Greg Boyd
Jeff Doughty
Jim Terhorst

© Copyright 1990, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary information of Silicon Graphics,
Inc. The contents of this document may not be disclosed to third
parties, copied or duplicated in any form, in whole or in part, without
the prior written permission of Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013, and/or in similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

dbx Reference Manual
Version 3.0
Document Number 007-0906-030

Silicon Graphics, Inc.
Mountain View, California

IRIX and WorkSpace are trademarks and IRIS is a registered trademark
of Silicon Graphics, Inc.

(

(

Contents

1. Introduction • • • • •
1.1 Using This Manual
1.2 Conventions • •
1.3 Relevant Documentation

2. Getting Started . • • • •
2.1 Debugging a Simple Program
2.2 Source-Level Debuggers
2.3 Activation Levels. • • .
2.4 Locating the Failure Point .
2.5 Debugging Your Programs
2.6 Studying a New Program
2.7 Avoiding Common Pitfalls

3. Running dbx.
3.1 Compiling Your Program .
3.2 Building a .dbxinit Command File
3.3 Invoking dbx • • . . • • .
3.4 Using the corefile and givenfile Commands

3.4.1 The corefi/e Command
3.4.2 The givenfile Command

3.5 On-line Help
3.6 Quitting dbx • • • .

4. Commands and Expressions
4.1 Strings. . • . . •
4.2 Qualifying Variable Names
4.3 Expressions and Precedence
4.4 Data Types and Constants
4.5 Registers
4.6 Keywords • • • • • .

-i-

1-1
1-1
1-3
1-4

2-1
2-1
2-4
2-4
2-4
2-5
2-6
2-7

3-1
3-1
3-2
3-3
3-6
3-6
3-6
3-7
3-7

4-1
4-2
4-2
4-3
4-4
4-6
4-8

4.7 C Type-Casts. • • • • • • •
4.8 Pointers and Structures • • • •
4.9 Case Sensitivity in Variable Names
4.10 C++ (2.0) Function Names

5. The dbx Monitor
5.1 History Commands (history and .?
5.2 The History Editor (hed)
5.3 Multiple Commands.. ••

6. Controlling dbx. . . .
6.1 Predefined dbx Variables •
6.2 Setting dbxVariables (se~
6.3 Removing Variables (unse~
6.4 Creating Command Aliases (alias)
6.5 Removing Command Aliases (unalias)
6.6 Predefined Aliases • • •
6.7 Alias Examples • • • •
6.8 Showing Record State (record)
6.9 Recording Input (record inpu~
6.10 Ending a Record Session (unrecord)
6.11 Recording Output (record outpu~
6.12 Playing Back Input (source or playback

inpu~ • • • • • •• •••
6.13 Playing Back Output (playback outpu~
6.14 Invoking a Shell (sh)
6.15 Checking the Status (status) •
6.16 Deleting Status Items (delete)

7. Examining Source Programs
7.1 Specifying Source Directories (use and di!')
7.2 Moving to a Specified Procedure (func)
7.3 Specifying Source Files (file). •.
7.4 Listing Your Source Code (Iis~ •.
7.5 Searching Through Source Code (! and ?)
7.6 Calling an Editor (edi~ • • •

-ii-

4-9
4-10
4-10
4-10

5-1
5-3
5-3
5-4

6-1
6-4

6-15
6-15
6-15
6-16
6-17
6-23
6-24
6-25
6-25
6-26

6-27
6-28
6-28
6-28
6-29

7-1
7-3
7-4
7-4
7-5
7-5
7-6

(

(

(~

7.7 Printing Symbolic Names (which and
whereis) • • • • • • • • • •

7.8 Printing Type Declarations (whatis) •

8. Controlling Your Program • • • • •
8.1 Running Your Program (run and rerun)
8.2 Executing Single Lines (step and nex~

8.2.1 step [exp] • • • • • •
8.2.2 next [integer]. • • • • •

8.3 Starting at a Specified Line (goto)
8.4 Continuing after a Breakpoint (con~
8.5 Variables and Registers • • • .

9. Setting Breakpoints • • •
9.1 Introduction • • • •

9.1.1 The variable Clause
9.1.2 The if expression Clause
9.1.3 Combining the variable and if expression

Clauses. •
9.2 stop (breakpointinrJ). • . • •
9.3 Tracing (trace) • • • • • • •
9.4 Writing Conditional Code (when)
9.5 Stopping at Signals (catch and ignore)
9.6 Stopping at System Calls (sysca/~

10. Examining Program State • • • •
10.1 DOing Stack Traces (where) • •
10.2 Moving In the Stack (up and down)
10.3 Printing (print and print~
10.4 Printing Register Values (printregs)
10.5 Printing Activation Level Information (dump)
10.6 Interactive Function Calls (cca/~ •

11. Debugging at the Machine Level
11.1 Setting Breakpoints (StOpl)

-iii-

7-6
7-7

8-1
8-4
8-5
8-5
8-7
8-7
8-8
8-8

9-1
9-6
9-7
9-7

9-7
9-8
9-8
9-9
9-9

9-11

10-1
10-3
10-3
10-3
10-4
10-5
10-5

11-1
11-5

11.2 Continuing after Breakpoints (conti) 11-5
11.3 Executing Single Lines (step; and nextl) 11-5

(11.4 Tracing Variables (tracel) · · · 11-6
11.5 Printing the Contents of Memory 11-6

12. Multi-Process Debugging · · · · · · · 12-1
12.1 Processes • . · · · · · · · · 12-3
12.2 Listing Available Processes (showproc) 12-4
12.3 Adding a Process (addproc) · 12-4
12.4 Removing a Process (de/proc) 12-5
12.5 Selecting a Process (active) · 12-5
12.6 Suspending a Process (suspend) 12-6
12.7 Resuming a Suspended Process (resume) 12-6
12.8 Waiting for a Resumed Process (wai~ 12-6
12.9 Freeing a Process (de/proc) 12-7
12.10 Killing a Process (kil~ 12-7
12.11 Forks . . · · · · 12-7

(12.12 Execs . . . · · · · 12-8
12.13 Process Group Debugging 12-9
12.14 Waiting for Any Running Process (wa;ta/~ 12-11
12.15 Multi-Process Debugging Examples 12-11

12.15.1 Window Process Debugging. · · 12-12
12.15.2 Complex Multiple Process Debugging • . 12-12

A. dbx Command Summary · · · · · · · · . · A-1

B. Sample Program · · · · · · · . · B-1

C. Questions and Problems · · · · · · · · . · C-1

Index (

-iv-

List of Tables

Table 3-1.

Table 4-1.

Table 4-2.

Table 4-3.

Table 4-4.

Table 4-5.

Table 4-6.

Table 4-7.

Table 5-1.

Table 6-1.

Table 6-2.

Table 6-3.

Table 7-1.

Table 8-1.

Table 9-1.

Table 10-1.

Table 10-2.

Table 11-1.

Table 11-2.

Table 12-1.

Table A-1.

dbx Options ... 3-4

Debugger Operations ... 4-3

C Language Operators .. 4-3

FORTRAN Operators ... 4-4

Data Types ... 4-4

Input Constants ... 4-5

Hardware Registers .. 4-7

Hardware Registers with Aliases 4-8

History Commands... 5-2

Commands to Control dbx .. 6-2

Predefined Variables .. 6-5

Predefined Aliases .. 6-18

Commands to Examine Source Programs 7-2

Commands to Control a Program 8-2

Commands for Setting Breakpoints 9-2

Commands to Examine a Program's State 10-2

Register Prefixes .. ' 1 0-4

Machine Level Debugging Commands 11-2

Disassemble Commands ~ 11-7

MuHi-process Debugging Commands 12-2

Command Summary .. A-2

-v-

(

(

(

1. Introduction

This manual explains how to use the source level debugger, dbx, and
provides both user and reference information about operating the debugger.
The debugger works for C, FORTRAN 77, Pascal, assembly language, and
machine code.

1.1 Using This Manual

This book is divided into the chapters listed below. If you're new to dbx,
you might want to read the entire book. Chapter 2, "Getting Started,"
contains a section describing the few basic commands necessary for
debugging a simple program.

For more experienced users looking for specific information, there is an
overview of what's discussed at the beginning of each chapter. Also, there is
a list of each command covered in the chapter, its syntax, and a brief
description of what the command does. For more detailed information, just
look in that chapter.

Version 3.0 Introduction 1-1

Overview of This Manual

The following paragraphs briefly describe the contents of each chapter and
appendix in this manual.

Chapter 2, "Getting Started," introduces new users to the debugger. It c- \
contains a general discussion of the debugging process. This chapter also I

offers tips for people who are new to source-level debugging. If you're
experie.nced at using debuggers, you might want to skip this part.

Chapter 3, "Running dbx," explains how to run the debugger. In particular,
it explains how to compile a program for debugging, use the corefile and
given file commands, and how to invoke and quit dbx.

Chapter 4, "Commands and Expressions," describes dbx commands,
expression precedence, data types, constants, and registers.

Chapter 5, "The dbx Monitor," explains how to use history, edit the
command line, and type multiple commands.

Chapter 6, "Controlling dbx," explains how to work with variables, how to
create command aliases, record and playback input and output, invoke a
shell from dbx, and use the dbx status feature.

Chapter 7, "Examining Source Programs," explains how to specify source
. directories, move to a specified procedure or source file, list source code,
search through the source code, call an editor from dbx, print symbolic
names, and print type declarations.

Chapter 8, "Controlling Your Program," explains how to run and rerun a
program, execute single lines of code, return from procedure calls, start at a
specified line, continue after a breakpoint, and assign values to program
variables.

Chapter 9, "Setting Breakpoints," explains how to set and remove
breakpoints and continue executing a program after a breakpoint.

1-2 dbx Reference Maflual IRIS-4D Series

------- -------

c

(

Chapter 10, "Examining Program State," explains how to print stack traces,
move up and down the activation levels of the stack, print register and
variable values, and print infonnation about the activation levels in the
stack.

Chapter 11, "Debugging at the Machine Level," describes the dbx
commands for debugging machine code. It also explains how to examine
memory addresses and disassemble source code.

Chapter 12, "Multi-Process Debugging," describes the dbx commands for
seizing control of and debugging currently active processes.

Appendix A, "dbx Command Summary," lists commands, aliases, syntax,
and gives a brief description of the commands.

Appendix B, "Sample Program," shows an example of a dbx program.

Appendix C, "Questions and Problems," has solutions to some dbx
questions and problems.

1.2 Conventions

This document uses the standard UNIX convention for referring to entries in
the IRIXTM documentation. The entry name is followed by a section number
in parentheses. For example, cc(l) refers to the cc manual entry in Section I
of the IRIX User's Reference Manual.

In command syntax descriptions and examples, words in italics represent
variable parameters, which you replace with the string or value appropriate
for the application. Square brackets ([]) around an argument indicate that the
argument is optional.

In text descriptions, file names and IRIX commands are printed in italics.

Version 3.0 Introduction 1-3

1.3 Relevant Documentation

You may find useful information to help you plan and set up your network
in these documents:

• Learning to Debug With edge, (edge is Silicon Graphics Inc. 's graphical (
interface to dbx)

• IRlX User's Reference Manual, dbx(l) man page

(

1-4 dbx Reference Manual IRIS-4D Series

2. Getting Started

This chapter introduces dbx. It offers a general discussion of basic
debugging commands, as well as some tips about how to approach a
debugging session. The first section explains the basic commands and
procedures for debugging a simple program. Experienced users might want
to skip this chapter.

2.1 Debugging a Simple Program

It's easy to debug a simple program. For example, assume that you want to
debug a simple program such as the one in Appendix B, anthrax.c. To use
anthrax.c as an example, first change the call to printline from:

printline(&linel);

to

printline(linel);

Now the printline call is incorrect, so the program will write to a core file
(called a "coredump") when you run it.

Version 3.0 Getting Started 2-1

Here's how to debug this new, broken, version of anthrax.c:

1. Compile the program:

cc -g anthrax.c

2. Run the program (it will coredump):

a.out anthrax.c

3. Start dbx:

dbx a.out core

4. Look at the stack trace:

t

5. Now you know the problem is in printline. Look at the source where it
coredumped:

w

6. Print the pointer:

print pline

The pline looks like a list of characters -- something's obviously wrong.

7. Move up the stack trace to look at the caller:

up

2-2 dbx Reference Manual IRIS-4D Series

(

(

(

8. Look at the source where it coredumped:

w

9. Print the contents of line 1:

print linel

10. Stop at the start-up point:

stop in print line

11. Run the program:

run

12. It stops in printline. What is the pointer?

print plina

It looks just like when it coredumped. Obviously, it needs a pointer.

13. Now you can quit dbx:

q

Version 3.0 Getting Started 2-3

2.2 Source-Level Debuggers

dbx is a source-level debugger. Source-level debuggers let you trace
problems in your program object at the source code level, rather than at the
machine code level. dbx enables you to control a program's execution,
symbolically monitoring program control flow, variables, and memory (
locations. You can also use dbx to trace the logic and flow of control to .
acquaint yourself with a program written by someone else.

2.3 Activation Levels

Activation levels define the currently active scopes (usually procedures) on
the stack. The activation stack is a list of procedure calls. The most recently
called procedure or block is numbered O. The next procedure called is
numbered 1. The last activation level is always the main program.

Activation levels can also consist of blocks that define local variables within
procedures. You see activation levels when you do stack traces (see the
where command) and when you move around the activation stack (see the
up, down, andfunc commands).

2.4 Locating the Failure Point

Even if your program compiles successfully, it still might crash when you
try to run it. When a program crashes, it generates a terminating signal that
instructs the system to write out to a core file. The core file is the memory
image of the running program.

The first step in figuring out why a program fails is to look at the
terminating signal. In particular, it's often useful to know which line
generates the signal.

2-4 dbx Reference Manual IRIS-4D Series

(

(

To detennine which line generates the tenninating signal, follow these
steps:

1. Copy the core file to the directory containing the failed program.

2. Invoke dbx for the failed program. dbx automatically reads in the local
core file.

3. Do a stack trace using the where command to locate the failure point.

For example, suppose you're debugging a program called madmax. If the
program fails on line 83, the where command returns this message:

o main (argc = 4, argv = Ox7fffc794) ["madmax.c":83, Ox400228]

Note: If you don't strip symbol table infonnation from your program
object, you can do a stack trace on a program that wasn't compiled
using the debug flag, -g.

2.5 Debugging Your Programs

Whether you are debugging a crashed or a nonnally tenninating program,
you need to know the value of program variables at various points
throughout the code. To do this, you should set several breakpoints in your
program. A breakpoint stops program execution and lets you examine the
state of the program at that point. Chapter 9, "Setting Breakpoints,"
discusses this topic in more detail.

Version 3.0 Getting Started 2-5

Set breakpoints throughout your program. Look at your program carefully to
determine where there are likely to be problems, and be sure to set
breakpoints in these problem areas. If the program crashes, first determine
which line caused it to crash, then set a breakpoint just before that line.

There are many dbx commands you can use to trace a variable's value. This
is the simplest method for tracing a program variable: (!

1. Use stop to set breakpoints in the program at locations where you want
to print the value of a variable. See Chapter 9 for more details.

2. Use run or rerun to run the program under dbx. The program pauses at
any breakpoint you set.

3. When the program pauses at a breakpoint, use print to print the value of
the program variables you want to follow.

4. Use cont to continue execution past a breakpoint. However, you cannot
continue execution past a line that crashes the program.

Chapter 4, "Commands and Expressions," explains these commands in more
detail. Appendix A, "dbx Command Summary," lists all the dbx commands.

2.6 Studying a New Program

dbx is a useful tool for examining the flow of control in a program. When
studying the flow of control within a program, use the dbx commands stop,
run/rerun, print, next, step, and cont. This is the procedure:

1. Use stop to set breakpoints in the program. When you execute the
program under dbx, it stops execution at the set breakpoints.

If you want to review every line in the program, set a breakpoint on the
first executable line. If you don't want to look at each line, set
breakpoints just before the sections you intend to review.

2. Use run and rerun to run the program under dbx. The program stops at
each breakpoint.

3. Use print to print the value of a program variable at a breakpoint.

2-6 dbx Reference Manual IRIS-4D Series

(

(

4. Use next, step, or cont to get past a breakpoint and execute the rest of the
program.

• next executes the next line; if it is a procedure, next executes it but
does not step down into it.

• step executes the next line of the program. If the next line is a
procedure, step steps down into the procedure.

• cont resumes execution of the program past a breakpoint and does
not stop until it reaches the next breakpoint or the end of the
program.

For more infonnation about these commands, see Chapter 4,
"Commands and Expressions," or Appendix A, "dbx Command
Summary."

2.7 Avoiding Common Pitfalls

You may encounter some common problems when you debug a program.
These problems and their solutions are listed below.

• If the debugger won't display variables, recompile the program with the
-g compiler flag. If your program is a FORTRAN program and you
started dbx with -F, you must use the readsyms command to make
variables in common visible.

• If the debugger's listing seems confused, try separating the lines of
source code into logical units. The debugger might get confused if
there's more than one source statement on the same line.

• If the debugger's executable version of the code doesn't match the
source, recompile the source code. The code displayed in the debugger
is identical to the executable version of the code.

• If code appears to be missing, it may be contained in an include file or a
macro. The debugger treats include files and macros as single lines. To
debug code from an include file, remove the source from the include file
and compile the source as part of your source program. To debug a
macro, expand the macro in the source code.

Version 3.0 Getting Started 2-7

(

(

(:

3. Running dbx

This chapter explains how to run dbx-specifically how to:

• compile your program for debugging

• create a .dbxinit command file (optional)

• invoke dbx from the shell

• use the core file and given file commands

• get on-line help

• end your debugging session

3.1 Compiling Your Program

Before using dbx, compile the program using the -q option. The -q
compile option inserts symbol table information into your program object so
the local variables are visible to dbx. dbx uses the symbol table information
to list local variables and to find source lines.

If you use dbx to debug code that was not compiled using the -q flag, local
variables are invisible to dbx, and source lines may appear to jump around
oddly as a result of various optimizations. Since it's harder to debug code
without reliable references to lines of source code, always recompile a
program you want to debug using the -q flag, if possible.

Version 3.0 Running dbx 3-1

3.2 Building a .dbxinit Command File

You can use your system's editor to create a .dbxinit command file. This is
a file in which you list various dbx commands, which are then automatically
executed when you invoke dbx. You can put any dbx command in the
.dbxinit file. If any of these commands require input, the system prompts (
you for it.

When you invoke dbx, it looks for a .dbxinit file in the current directory. If
the current directory does not contain a .dbxinit file, dbx looks for one in
your home directory. (This assumes you set the IRIX system HOME
environment variable.)

Here's an example of a .dhxinit file:

set $page = 5
set $lines = 20
set $prompt = "DBX>"
alias du dump

Note: The $page, $lines, and $prompt are all dbx system variables. For
complete description of these and other dbx system variables, see
"Predefined dbx Variables" in Chapter 6. (

(

3-2 dbx Reference Manual IRIS-4D Series

3.3 Invoking dbx

To invoke dbx from the shell command line, type db:x:.

The syntax is:

db:x: [options] [program [corefile]]

Examples

db:x: a.out
db:x: a.out lusr/tmp/core
db:x: -P myprog
db:x: -p 3409

There are several optional parameters listed on the following page. After
invocation, dbx sets the cutrent function to the first procedure of the
program. If you specify corefile,dbx lists the point of program failure. For
core files, you can do stack traces and look at the code; however, you cannot
force the program to execute past the line that caused it to crash.

If you don't specify a core file, dbx looks in the current directory for a file
named core. If it finds core, and if core seems (based on data in the
corefile) to be a coredump of the named programs, dbx acts as if you had
typed "core" as the corefile.

Use the environment variable DBXINIT (see the previous section) to hold
dbx command line options. The debugger inserts the contents of DBXINIT
before the command line options. This is most useful for options not
recognized by edge(l), since it provides a way to pass options to dbx even if
edge does not recognize them. Currently the options -e and -F are
recognized by dbx but not by edge.

Since program is given on the command line, the program file named there
can be referred to as the given file. (See the given file and core file commands
for more information.)

The following table lists specifications for dbx options.

Version 3.0 Running dbx 3-3

Option Select this option to .••

-I dir Tell dbx to look in the
specified directory for
source files. To specify
multiple directories, use a
separate - I for each. If no

(directory is specified when
you invoke dbx, it looks for
source files in the current
directory and in the object
file's directory. From dbx,
change the directories
searched for source files
with the use and dir
commands.

-0 file Select a command file other
than dbxinit.

-i Use interactive mode. This
option does not treat #s as
comments in a file. It also
prompts for source even
when it reads from a file

(and has extra formatting, as
if for a terminal.

-r program [arg] Run the named program
upon entering dbx, using
the specified arguments.
You cannot specify a core
file with - r.

-p PID# Debug the process specified
by the PID number.

-P name Debug the running process
with the specified name
(name as described in
ps(l».

-e num Choose a larger size for the
evaluation stack (as large as
you want). The default (stack size is 20,000 bytes.
num = number of bytes.

Table 3-1. dbx Options

3-4 dbx Reference Manual IRIS-4D Series

Version 3.0

Option

-F

-k

-c

Select this option to •••

Fastpath load the symbol
table of the program to be
debugged. This only helps
programs using FORTRAN
common -- for large
FORTRAN programs,
start-up time can be long.
This option keeps dbx from
loading the internal fields
of common, making dbx
startup much faster. After
startup, the variables in
common are invisible to
dbx. Use the readsyms
command to read in
common symbols when and
where you need them
visible.

Turn on kernel debugging.
When debugging a running
system, specify /dev/kmem
as the core file.

Suppress the automatic
truncation of C++ variable
names. This option causes
the full long names output
by cfront to cc to be visible.
This is useful when you
think dbx has truncated a
name improperly, but it
makes C++ code more
difficult to work with.

Table 3-1. (continued) dbx Options

Running dbx 3-5

3.4 Using the corefile and givenfile Commands

After you invoke dbx, you can debug a core file or another program from
within the debugger by using the corefile or givenfile commands,
respectively. You can use these commands without an argument or with a
specified file. (

3.4.1 The corefile Command

The command:

corefile

displays the name of the core file. If the core file is currently used by dhx,
this command displays program data. If you type:

corefile file

dbx uses the core file, file for program data. This command does the same
thing as if you typed dbx file core file.

3.4.2 The givenfile Command

The command:

given file

displays the name of the program being debugged. If you type:

givenfile file

dbx kills the current running processes and reads infile's symbol table. This
command does the same thing as if you typed dbxfile.

3-6 dbx Reference Manual IRIS-4D Series

(

(

3.5 On-line Help

The dbx command help shows the dbx help file. dbx displays the file using
the command name given by the $pager environment variable. For ease of
use, it is best to put the following command in your .dbxinit file:

set $pagar = "vi"

If you don't like vi, just substitute the name of your favorite editor.

When the above entry is in your .dbxinit file, dbx brings up the help file in
your editor. You can then use the editor's search commands to look through
the help file quickly. Quit the editor to get back to dbx.

Under edge, the help file appears in a separate window, which you can
leave on the screen for easy access. The format and colors of this window
are controlled by the dbx debugger variable $helpwsh/ormat. The wsh(1)
options -8 and -c are automatically added by dbx. See the wsh(l) for
more information on its options. Use the window-menu "quit" entry on the
help window to quit

3.6 Quitting dbx

Use the quit command to end a debugging session, just type:

quit

Version 3.0 Running dbx 3-7

(

(

(

4. Commands and Expressions

This chapter describes dbx commands and expressions and includes:

• strings

• expression and precedence

• data types and constants

• comments

• registers

• keywords

• C type-casts

• pointers and structures

• C++ function and variable names

Version 3.0 Commands and Expressions 4-1

4.1 Strings

In general, dbx recognizes the following escape sequences in quoted strings
(per the standard C language usage):

\£1 \n \r \£ \b \t \' \"

dbx strips the escapes (\) and the surrounding quotes while creating the
internal representation of the string. You can use the double-quote character
(n) to quote strings; dbx also recognizes the single-quote character (').

4.2 Qualifying Variable Names

dbx qualifies variables with the file, the procedure, a block, or a structure.
You can manually specify the full scope of a variable by separating scopes
with periods. For example, look at this expression:

mrx.main.i

Here, mrx is the current file, main is a procedure, and i is a variable.

A leading dot (a period at the beginning of the identifier) tells dbx that the
identifier is a module (file). For example:

.mrx.main.i

Here, the period at the beginning of the line indicates that mrx is a file. In
this example, main is a procedure and i is a variable.

The leading dot is very useful when a file and a procedure have the same
name. For instance, suppose mrx.c contains a function called mrx. Further,
suppose that mrx contains a global variable called mi and a local variable,
also called mi. Then, for example:

.mrx.mi

.mrx.mrx.mi
(refers to the global)
(refers to the local)

4-2 dbx Reference Manual IRIS-4D Series

(

(

4.3 Expressions and Precedence

dbx recognizes expression operators from C and FORTRAN 77. Operators
follow the C language precedence. The tables that follow show debugger
operations, C language and FORTRAN operators, and data types.

Syntax

"file" #exp

proc #exp

#exp

Description

Uses specified line number exp in
the specified file,file, and returns
the address of that line.
Uses the specified line number,
exp, in the specified procedure,
proc, and returns the address of that
line.

Takes the specified line number,
exp, and returns the address of that
line.

Table 4·1. Debugger Operations

Note: The table above describes the interactive case. In a script, use two
pound (##) signs (for example, ##exp).

Type

Unary

Binary

Operators

& + . * sizeofO - (type) (type*)

« » " ! == != <= >= < > &
&& I " + . * % [] .>

Table 4·2. C Language Operators

Note: The sizeoJ operator specifies the number of bytes retrieved to get an
element, not (number_oCbits+ 7)/8.

Version 3.0 Commands and Expressions 4·3

Type

Unary
Binary

Operators

+ - * /I

Table 4-3. FORTRAN Operators

Note: Use / / (instead of !) for divide.

FORTRAN array subscripting must use square brackets, [], instead of
parentl1eses, ().

4.4 Data Types and Constants

dbx commands can use tl1e built-in data types listed in tl1e following table.

Data Types

$address
$unsigned
Schar
$boolean
$real
$integer
$float
$double
$uchar
$short

Description

pointer
unsigned pointer
character
boolean
double precision real
signed integer
single precision real
double precision real
unsigned character
16-bit integer

Table 4-4. Data Types

You can also use tl1e built-in data types fortype coercion. For example, use
tl1em to make a variable a type tl1at isn't supported in tl1e language you're
using.

4-4 dbx Reference Manual IRIS-4D Series

(

(

(

Constant Description

w~ Z~

true nonzero
nil Z~

Oxnumber hexadecimal
Otnumber decimal
number decimal
nwnber.[number] [eIE][+I-] [exp] float

Table 4-5. Input Constants

When using data types and constants, remember:

• Overflow on non-float uses the right-most digits.

• Overflow on float uses the left-most of the mantissa and the highest or
lowest exponent possible.

• Setting the $octin dbx variable changes the default input type to octal.

• Setting the $hexin variable changes the default input type to
hexadecimal. If both variables are set,$hexin takes precedence over
$octin. See "Predefined dbx Variables" in Chapter 6.

• Setting the $octints dbx variable changes the default output type to octal.

• Setting the $hexints variable changes the default output type to
hexadecimal. If both variables are set, $hexints takes precedence over
$octints (see Chapter 6).

A pound sign (#) introduces a comment in a dbx script file. When dbx sees
a pound sign in a script file, it interprets all characters between the pound
sign and the end of the current line as a comment.

In interactive mode, the pound sign is not a comment character (you can't
type a comment interactively). Instead, it identifies an expression as a line
number. In interactive use, when dbx encounters a pound sign, it interprets
the characters between the pound sign and the end of the current line as a
line number, and it calculates the address of that line number.

Version 3.0 Commands and Expressions 4-5

To indicate a line number in a script, use two pound signs (##). For
example. suppose you want to tell dbx to print the address of line 27 of the
current file. In a script, type:

print ti27

In interactive session, type:

print 127

4.5 Registers

Table 4-6 contains a list of dbx hardware registers with brief descriptions.
Table 4-7 shows alternate names (aliases) for some of the registers. These
are useful for debugging machine code.

The $regstyle variable controls which name is shown by dbx (for those
registers that have alternate names).

4-6 dbx Reference Manual IRIS-4D Series

(

(

(

Alias Description

$pc current user pc

Ssp current value of stack
pointer

$m register n

$mmhi most significant
multiply/divide result
register

$mmlo least significant
multiply/divide result
register

$fcsr floating point control and
status register

$feir floating point exception
instruction register

$cause exception cause register

$dO, $d2 .. $d30 double precision floating
point registers

$fO, $f2 .. $f30 single precision floating
point registers

Table 4-6. Hardware Registers

Version 3.0 Commands and Expressions 4-7

Alias Alternate Description

$rO $zero always 0

$rl $at reserved for assembler

$r2 .. $r3 $vO .. vl expression evaluations,
function return values,
static links

$r4 .. $r7 $aO .. $a3 arguments

$r8 .. $r15 $tO .. t7 temporaries

$r16-$r23 $sO .. $s7 saved across procedure
calls

$r24 .. $r25 $t8 .. $t9 temporaries
$r26 .. $r27 $kO .. $kl reserved for kernel

$r28 $gp global pointer

$r29 $sp stack pointer

$r30 $s8 saved across procedure
calls

$r31 $ra return address

Table ~7. Hardware Registers with Aliases

4.6 Keywords

A list of dbx keywords appears below. When naming variables in your
program, it's best not to use these keywords. If one of the variables is
identical to a dbx keyword, there will be some minor problems.

all not
and or
at output
div pgrp
if pi.d
in siz.of
input to
mod xor

4-8 dbx Reference Manual IRI5-4D Series

--~-~~~

(

(

(

Here are some additional keywords that are used as C casts:

signed
unsigned
short
long
int
char

struct
union
anum
double
float

You can tum off these C cast keywords by typing:

set $ctypanames=O

This prevents these keywords from getting in the way of non-C programs.
For more information about C casts, see the following section, tIC Type
Casts."

To print a variable name that is also a dbx keyword, put the variable in
parentheses when you type it. For example, suppose you have a variable
called and, and you type this:

print and

You will get a syntax error message. Instead, you should type:

print (and)

which tells dbx to print the value of the variable and.

4.7 C Type-Casts

Most C casts now work properly. The exceptions are casting values to or
fromjloat or double.

To tum off the C cast keywords see the previous section, "Keywords."

Version 3.0 Commands and Expressions 4-9

4.8 Pointers and Structures

You can use ->, -. and . almost interchangeably for structure data
references and pointer dereferences. In the future, this may be changed to
reflect language usage precisely, so that x - . b and x. b are different
(similarly for C). It is therefore a good idea to write scripts with pointers
and structure references as much like your language as dbx allows. That
way, future changes won't break your scripts.

4.9 Case Sensitivity in Variable Names

When dbx searches its tables for variable names, it matches the name you
type against names in its tables according to the $casesense variable.

If $casesense is 0, case is ignored. If $casesense is 1, case is always
checked.

(

If $casesense is 2, (the default), then the language in which the variable was
defined is taken into account (e.g., C and C++ are case sensitive while
Pascal and FORTRAN are not). (

For example, to make dbx always distinguish between upper and lower case
(e.g., A is not the same as a):

set $casesense=l

4.10 -C++ (2.0) Function Names

To make debugging of C++ 2.0 programs easy, use the following special
syntax for C++ names. This syntax does not work with C++ 1.2.

Refer to C++ functions with their source name. For example, with class A:

A: :func

4-10 dbx Reference Manual IRIS-4D Series

(

For globals:

: :funo

For special functions:

A: :ne"
A: : delete
A: :ol.ss
A: :-ol.ss
A::+

Version 3.0

(constructor)
(destructor)
(example of overloaded operator)

Commands and Expressions 4-11

(

(

(

5. The dbx Monitor

This chapter explains:

• the history feature and the history editor

• how to use dbx command line editing

• how to type multiple commands

Examples:

history

hed 1,9

!-3

! !

hed all

Version 3.0 The dbx Monitor 5-1

Syntax Select this command to:

history Print the items in the
history list.

! [string] Repeat the most recent
command that starts with
the specified string. (I

! [integer] Repeat the command
associated with the
specified integer.

! [-integer] Repeat the command that
occurred integer times
before the most recent
command.

!! Repeat the last command.
[command]; [command] Type mUltiple commands

on the same line.

hed Edit only the last line of
history.

hed numl,num2 Edit the range of line
numbers from numl to
num2. (hed all Edit the entire current
history.

set $repeatmode=l Set dbx so that a carriage
return on an empty line
works like a double
exclamation point (! !).

Table 5-1. History Commands

(

5-2 dbx Reference Manual IRIS-4D Series

5.1 History Commands (history and !)

The dbx history feature is similar to the C shell's history feature. However,
dbx history works only at the beginning of the line. Don't use history in the
middle of the line or with! $.

Set the number oflines of history by using the $lines variable. The default is
20. To reset this variable, use the set command (see "Setting dbx Variables
(set)" in Chapter 6). For example:

set $lines=200

To see a list of the commands in your history list, type:

history

To repeat a previous command, use one of the exclamation point (1)
commands. For example:

!pr

executes the last command that began with the letters pro

5.2 The History Editor (hed)

The history editor, hed is available with dbx (not with edge). The hed editor
lets you use your favorite editor on any or all of the commands in the
current dbx history.

When you use the hed command, dbx puts you in a temporary file, which
you can edit. When you quit the editor, any commands left in this
temporary file are automatically executed.

hed uses the editor named in the $editor variable. The command:

set $pimode=l

causes the commands to be displayed as they are executed.

Version 3.0 The dbxMonitor 5-3

Here are some examples. To edit the last line of history, type:

hed

To edit lines 3 through 9, type:

hed 3,9

To edit the entire current history, type:

hed all

5.3 Multiple Commands

Use the semicolon (;) as a separator to type multiple commands on the same
command line. This can be useful when you use the when command. See
"Writing Conditional Code" in Chapter 9.

Example:

when at "myfile.c":37 {print a where print b}

5·4 dbx Reference Manual IRIS-4D Series

(!

(

(

6. Controlling dbx

This chapter describes dbx predefined variables and aliases and also explains
how to control dbx by:

• creating and changing dbx variables

• creating and removing command aliases

• recording and playing back input and output

• invoking a shell from dbx

• checking and deleting dbx status items

Examples:

set $repaatmoda=l

set $linas=200

alias fv "printf \"%20.3f,\\n\" "

status

delete 3

sh cat small.C

set $rimode=l

record

record output ~~ournal

unrecord all

Version 3.0 Controlling dbx 6·1

Syntax

al.ias

al.ias name

al.ias name" string"

al.ias name name2

al.ias name(argl •... argN) "string"

del.ete iteml ... itemN

del.ete all

pl.ayback input Iftle]

playback output Iftle]

record

Select this command to ...

List all existing aliases.

List the alias string for
name. The alias value is
inserted in quotes with
escape characters to show
how the alias "string" was
typed. See the help file
(/usrllibldbx.help)
EXPRESSIONS section for
additional information.

Define a new alias. See the
help file (lusrllibldbx.help)
EXPRESSIONS section for
additional information.

Define a new alias.

Define a new alias. When
using the alias, the actual
arguments are substituted
for "string".

Deletes the specified items.

Delete all the status items.

Execute the commands
from the specified file,flle.
The default file is the
current temporary file
created for the record input
command.

Print the commands from
the specified file,flle. The
default file is the current
temporary file created for
the record output
command.

Show a list of the current
recording sessions. Each is
assigned a number.

Table 6-1. Commands to Control dbx

6-2 dbx Reference Manual IRI5-4D Series

-----------------~

(

Version 3.0

Syntax Select this command to ...

record input [file] Record everything you type
to dbx in the specified file,
file. The default file is a
temporary dbx* file in the
Itmp directory.

record output [file] Record all dbx output in the
specified file,file. The
default file is a temporary
dbx file in the Itmp
directory.

set Display a list of predefined
and user defined variables.

set var = exp Define (or redefines) the
specified variable, var.

sh [com] Call a shell. Execute the
specified shell command,
com.

status

source [file]

unalias alias

unrecord [N]

unrecord all

unset var

Check the status of
commands.

Execute dbx command
from file.

Remove the specified alias.

Turn off recording session
N and close the file
involved.

Turn off all recording
sessions and close all files
involved.

Unset the value of the
specified variable, var (it
disappears from the list).

Table 6-1. (continued) Commands to Control dbx

Controlling dbx 6-3

6.1 Predefined dbx Variables

Predefined dbx variables are listed in the table that follows. The predefined
variable names begin with "$" so they don't conflict with variable,
command, or alias names.

6-4 dbx Reference Manual IRIS-4D Series

(

(

(

Variable Default Select this variable to ...

$addrfmt "Ox%x" C foonat for address
printing ($pc, $pc of
source line, $pc offset of
instruction in
procedure).

$casesense 1 If 1(0), case
(in)sensitive; if2,
depends on the
language.

$charisunsigned 1 If 1, a (char) cast is
taken as unsigned;if 0, a
(char) cast is taken as
signed.

$ctypenames 1 If 1, words unsigned,
short, long, int, char,
struct, union, enum are
keywords usable only in
type-casts. If 0, struct,
union, enum are
ordinary words with no
predefined meaning (in
C modules, the others
are still known as C
types).

$curevent Current event id for
trace/stop/when.

$curline The current line number
for execution.

$curpc Current program
counter.

$cursrcline Current source listing
line.

Table 6-2. Predefined Variables

Version 3.0 Controlling dbx 6-5

Variable Default Select this variable to •••

$datacache 1 If 0, then cache multiple
data accesses while
stopped. Setting to 0 is a
good idea. No visible
loss in performance.

($defaultin Default record input file
name if none specified
in playback input or
record input.

$defaultout Default record output
file name if none
specified in playback
output or record output.

$editor The name of the editor
to invoke (with edit
command). Default is
EDITOR environment
variable. If EDITOR
missing, defaults to vi.

$ funcentrybylines 0 Only applies to Pascal,
C, and c++. If 0, dbx (uses disassembly of the
code to estimate the
location of the first line
of each function. If 1,
dbx uses the line
numbers in the line
table; this does not work
well if the first line of
code is on the same line
as the function opening
brace "{" as it often is in
short C++ functions.

Table 6-2. (continued) Predefined Variables

(

6-6 dbx Reference Manual IRIS-4D Series

Version 3.0

Variable Default Select this variable to •..

$qroupforktoo ° If 0, only sproc'd procs
are added to grouplist
automatically. If 1, then
fork'd & sproc' d procs
added to grouplist.

$he:xchars ° If 1, output chars in hex,
using C format "%x".

$he:xin ° If 1, input constants are
assumed in hex. This
overrides $octin.

$he:xints ° If 1, output integers in
hex and override
$octints.

$he:xstrinqs ° If 1, output strings and
arrays in hex. For char
arrays, if 1, the null byte
is not taken as a
terminator. Instead, the
whole array (or $maxlen
values, whichever is
less) is printed. If 0, then
a null byte in an array is
taken as the end of the
array (the length of the
array and $maxstrlen
can terminate the array
print before a null byte
is found).

Table 6-2. (continued) Predefined Variables

Controlling dbx 6-7

Variable Default Select this variable to •••

$hide_anonymous 1 Anonymous inner
blocks blocks ({) in C) are not

shown in stack traces or
counted in up/down
commands. If 0, these (blocks are shown,
counted. Set to 0 if you
have a local variable in
an inner block hiding a
variable with the same
name in an outer block
and want to see the
value of the outer
variable. If 0, the up
command will take you
to the outer scope where
a print command will
show the variable visible
in that local scope.

$lastchild The process id of the
last child

(Jorked/sproced. J

$lines 20 Number oflines in
history list

$listwindow List command size.

Table 6-2. (continued) Predefined Variables

(

6-8 dbx Reference Manual IRIS-4D Series

Variable Default Select this variable to ...

$main main At startup, dbx sets
source file and line to
the function named in
this string variable. It
can be any procedure. It
is only usefully set by
dbx when it reads the
process' symbol table,
since it is used only
once by dbx, before any
commands are read.

$ma:x:strlen 128 Maximum length printed
for zero-terminated char
strings and arrays. Char
arrays are printed for
array-length, $maxstrlen
bytes, or up to a null
byte, whichever comes
first (see $hexstrings).

$np-proqram 0 If 0, sproc is treated like
fork. If 1, sproc is
treated specially. The
children are allowed to
run (they will block on
multi-processor
synchronization code
emitted by mp
FORTRAN). Set to 1
only if mp FORTRAN
code. Set to 1, mp
FORTRAN code is
easier to work with.

$naptime Trace (no operands) and
step n, next n will delay
$naptime lOOths of a
second after every
instruction. See
sginap(2).

Table 6-2. (continued) Predefined Variables

Version 3.0 Controlling dbx 6·9

Variable Default Select this variable to •••

$nextbreak 2 If 0, $stepintoall
controls whether next
will behave as if
$nextbreak were 1 or 2.
If 1, next will single- (step through calls and
will get back to the next
statement. (Currently,
stop if, trace, or when
commands testing
variables may fail with
"not active," stopping
execution.) This is slow
but guarantees arrival
back to the right place
even if part of the code
is compiled without
symbols and is
recursive. Also causes
tracing of function
values to be done in
lower level functions ((slow), but handy if a
lower-level function
uses a wild pointer or if
data is passed by
reference or is visible in
upper levels, as in
Pascal. If 2, a next will
quickly execute calls
with tracing and
breakpointing. If the
function calls itself, the
next may stop at a later
return from the function,
not precisely the point
of call (the stack trace
will be deeper than (expected).

Table 6-2. (continued) Predefined Variables

6-10 dbx Reference Manual IRIS-4D Series

Variable Default Select this variable to •••

$octin 0 If 1, input constants are
assumed in octal ($hexin
overrides $octin).

$octints If 1, output integers in
octal ($hexints=l takes
precedence).

$page 1 If 0, then page screen
output.

$pager The name of the
program used to display
help information.

$pagewindow The size (length in lines)
of page for paging. This
controls when the "n1"
or "More" prompt is
displayed.

$pagewidth Width of window in
characters (assumes
fixed-width font). Used
by dbx to calculate how
many screen lines are
output. dbx never inserts
newlines; the window
software wraps the lines.

$pid Set current process for
kernel debugging (-k).

$pidO The process id of the
given process.

$pimode 0 If 0, playback input
prints commands as they
are played back.

Table 6-2. (continued) Predefined Variables

Version 3.0 Controlling dbx 6-11

Variable Default Select this variable to •.•

$printdata 0 If 0, print register
contents when
disassembling.

$print_exception_frame Only available to dbx -k
(not available unless you

(are doing kernel
debugging). If 0, no
special output is done.
If 0, when doing where,
up, or down, exception
frames and struct
sigcontext blocks are
output in hex when the
stack frame encounters
one of these on the
stack. This may be of
some use.

$printwhilestep 0 If 0, acts as if step[i] n
was step[i] n times.
With edge, green line
steps through as

(program executes. If 0,
step n steps n then
displays (notifies edge).

$printwide 0 If 0, print compactly
(wide). If 0, print arrays
one element per line.

$prompt (dbx) Prompt string.

Table 6·2. (continued) Predefined Variables

(,

6·12 dbx Reference Manual IRI5-4D Series

- ------------

Variable Default Select this variable to •••

$proIt\Ptonfork 0 If 1, prompt user to add
child process to pool on
fork. The reply is taken
from the current input
file (which may be the
screen). If 0, child not
added to pool. If 0, the
running process does not
stop on a/ork or sproc.
If 2, child added to pool.
An exec always stops
the running process.

$regstyle 1 If 0, use hardware
names for registers
when disassembling.

$ repea tmode 0 If 1, nuUline repeats last
command.

$showbreakaddrs 0 If 1, show the address of
each breakpoint placed
in the code each time it
is placed. Removal of
the breakpoints is not
shown. If multiple
breakpoints are placed
at one location, only one
of the placements is
shown. Since
breakpoints are
frequently placed and
removed by dbx, the
volume of output can be
annoying when tracing.

Table 6-2. (continued) Predefined Variables

Version 3.0 Controlling dbx 6-13

Variable Default Select this variable to ..•

$stepintoall 0 If 0, step!i] will step
into all procedures
compiled -g or -g2 or
-g3 for which line
numbers are available in

(the symbol table. This)

does not include
standard library routines
since they are not
compiled -g[23]. If I,
step!i] will step into
those plus procedures
for which dbx can find a
source file. If 2, step!i]
will step into all
procedures.

$taqfile "tags" String with name of file
searched for tags.
Defaults to tags. See
ctags(I).

$visiblemanqled 0 Applicable to C++ 2.0
(only. If not 0, mangled

names of functions print
along with demangled
form.

Table 6-2. (continued) Predefined Variables

(

6-14 dbx Reference Manual IRI5-4D Series

6.2 Setting dbxVariables (set)

The set command defines a dbx variable, sets an existing dbx variable to a
different type, or displays a list of existing dbx defined variables. You
cannot define a debugger variable that has the same name as a program
variable. You can see the setting for a single variable by using the print
command. (Recall that predefined variable names begin with "$" so they
don't conflict with variable, command, or alias names.)

For example:

set
set $promptonfork = 2
set $prompt = ":: >"
set set $myvar = (int) $myvar+l

The dbx predefined variables are listed in the table at the beginning of this
chapter.

6.3 Removing Variables (unset)

Use the unset command to remove the specified dbx variable from the list.
To see a full list of dbx variables, use the set command, or see the beginning
of this chapter.

For example:

unset $myvar

6.4 Creating Command Aliases (alias)

Use the alias command to see a list of all current aliases or to define a new
alias.

dbx lets you create an alias for any debugger command. Enclose multi-word
command names within double or single quotation marks.

Version 3.0 Controlling dbx 6-15

dbx has a group of predefined aliases that you can modify or delete. In
addition, you can add your own aliases. To do so, use the following syntax:

alias name(argl, ... argN) "string"

When using the alias, the actual arguments are substituted in "string." For
example:

alias m(a,b) "print alf.a.b"
m (mystruct, i)
*the command is: print alf.mystruct.i

You can include aliases in the .dbxinit file if you want to use them in future
debugging sections.

For a complete list of predefined aliases, see the section titled "Predefined
Aliases" that follows, or type to dbx:

alias

Also see the section" Alias Examples."

6.5 Removing Command Aliases (una/ias)

The unalias command removes the specified alias from the current debugger
session. All predefined aliases are restored the next time you start a
debugging session. For example:

una lias pd

6-16 dbx Reference Manual IRIS-4D Series

(

(

(

6.6 Predefined Aliases

To list current aliases, use the alias command. You can override any
predefined alias by redefining it with the alias command or by removing it
from the list with the unalias command. The following table shows the
debugger predefined aliases. For example:

aliaa

Version 3.0 Controlling dbx 6-17

Alias Command Select this alias to ...

a assign Assign the specified
expression to the
specified program
variable.

b stop at Set a breakpoint at

(the specified line.)

bp stop in Stop in the specified
procedure.

c cont Continue program
execution after a
breakpoint

d delete Delete the specified
item from the status
list.

e file Display the name of
the currently selected
source file. If you
specify a file, this
command makes the
specified file the
currently selected (source file.

f func Move to the
specified procedure
(activation level) on
the stack. If no
procedure or
expression is
specified, dbx prints
the current activation
level.

g goto Go to the specified
source line.

h history List all the items
currently in the
history list. e

Table 6-3. Predefined Aliases

6-18 dbx Reference Manual IRIS-4D Series

Alias Command Select this alias to ...

j status List all the currently
set stop and trace
commands.

Ii $curp/lOi;set$curp=$curp+40 List the next 40
bytes of machine
instructions
(approximately 10
instructions).

n next Execute the next n
lines of source code.
The default value is
one line. This
command does not
step down into
procedures.

ni nexti Execute the next n
lines of machine
code. The default
value is one line.
This command does
not step down into
procedures.

p print Print the value of the
specified variable or
expression.

pd printf "%d\n", Print the value of the
specified variable in
decimal.

pi playback input Replay dbx
commands saved in
the specified file. If
no file is specified,
dbxuses the
temporary file
specified by $default.

Table 6-3. (continued) Predefined Aliases

Version 3.0 Controlling dbx 6-19

Alias Command Select this alias to •••

po printf "0%0\0", Print the value of the
specified variable or
expression in octal.

pc printregs Print values
contained in all (registers.

px printf "Ox%x\o", Print the value of the
specified variable or
expression in
hexadecimal.

q quit Exitdbx.

r rerun Run the program
again using the
values specified in
the last used run
command.

ri record input Record to the
specified file all the
commands you give
to dbx. If you do not

(specify a file, dbx
creates a temporary
file. The name of the
file is specified by
$default.

ro record output Record all the
debugger output to
the specified file. If
no file is specified,
output is recorded to
a temporary file.
The name of the file
is specified by
$default.

Table 6·3. (continued) Predefined Aliases (

6·20 dbx Reference Manual IRI5-4D Series

--- ---------- -- ---- - - ----- --- --- ----

Alias Command Select this alias to •••

s step Execute the next n
number of lines. If a
line contains a
procedure, this
command steps
down into that
procedure. The
default is one line.

S next Execute the next n
number of lines. If a
line contains a
procedure, this
command does not
step down into that
procedure. The
default is one line.

si stepi Execute the next n
lines of assembly
code. The default is
one line. If a line
contains a procedure
call, this command
steps down into the
procedure.

Si nexti Execute the next n
lines of assembly
code. The default is
one line. If a line
contains a procedure
call, this command
does not step down
into the procedure.

Table 6-3. (continued) Predefined Aliases

Version 3.0 Controlling dbx 6-21

Alias Command Select this alias to ...

source playback input Replaydbx
commands saved in
the specified file. If
no file is specified,
dbxuses the

(temporary file
specified by $default.

t where Do a stack trace to
show the current
activation levels.

w list $curline-4: 10 List a window of
code around the
current line. This
command shows the
four lines before the
current code line, the
current code line,
and five lines after
the current code line.
This command does
not change the

(current code line.

W list $curline-9:20 List a window of
code around the
current line. This
command shows the
nine lines before the
current code line, the
current code line,
and 10 lines after the
current code line.
This command does
not change the
current code line.

wi $curpc-20/1 Oi List a window of
assembly code
around the program

(counter.

Table 6-3. (continued) Predefined Aliases

6-22 dbx Reference Manual IRI5-4D Series

6.7 Alias Examples

The following examples show various ways that you can use the alias
command with the debugger. You must use escapes when using aliases with
internal quotes.

I printing a float/double with your own choice of size
alias mypflt(v) "printf \"%6.18f\\n\",v"
mypflt(44.551234567) I example using the alias

alias pf2 "printf \"%27.3f\\n\","
pf2 32.3

Some quoted strings (" ") in the following examples are split into two lines
so they can be printed here. However, when you type strings (or any
command), the entire string/command must appear on one line for dbx to
recognize it.

An easy way to follow linked lists is to use aliases and casts. The following
example shows a linked list with next pointers and a pointer to the contents
of the linked list:

struct list { struct list *next; int *elt

set $pimode=l
I set up aliases for following the list:
alias foIl (p) "px «struct list *) p) ->next

px « struct list *) p) ->elt"
alias show (t, p) "print * (t *) (p)"

} *mylist;

I then, an initial list element is pointed to by mylist:
I use the following to print the first element and its
I contents where I assume one knows the contents somehow
foIl (mylist)
I use the "elt" address printed (assume it is Ox123)
I and assume the element is a pointer to "struct something":
show(struct something,Ox123)
I using the "next" address printed (assume it was Ox345)
foll (Ox345)
I which shows the next list structure.
I And so on.

Version 3.0 Controlling dbx 6-23

The following example has a similar scheme. The alias remembers the last
pointer.

t Assume we know the address of an element of
t the list is at Ox1234
set $p = Ox1234
t Aliases, including "folly" below, must be defined on (
t one line; what looks like two lines is just one line
t wrapped around. The cast to int in the "set $p = " is
t essential! If left off,dbx will leave the $p reference
t symbolic and dbx will get into an infinite
t loop (use AC or your interrupt key) to get out of trouble
t if you get into the infinite loop).
t Of course $p is an arbitrary choice-use any name desired.
t The name is not required to start with $, though starting
t with $ is a good idea as the name won't conflict
t with program variable names.
alias folly "print *(struct list *)$p; set $p -

(int) «struct list *) ($p)) ->next"
t
t then each time you type "folly," you see the next
t element printed
folly
folly
set $repeatmode=l
t now after the initial "folly," simply pressing return
t will print the next list entry (
folly

6.8 Showing Record State (record)

Use record to show record input or record output session currently active.
For example:

record

6-24 dbx Reference Manual IRI5-4D Series

(

6.9 Recording Input (record input)

Use the record input command to start an input recording session. Once
you start an input recording session, all commands to dbx are copied to the
specified file. You can start and run as many simultaneous dbx input
recording sessions as you need.

After you end the input recording session, use the command file with the
source or playback input commands to execute again all the commands
saved to the file. See "Playing Back Input" later in this chapter. The syntax
of record input is shown below. dbx saves the recorded input in the
specified file.
For example, to save the recorded input in a file called keving, type:

record input keving

If you do not specify a file to record input, dbx creates a temporary dbx file
in the Itmp directory. The name of the temporary file is in the system
variable $defaultin. You can display the temporary file name using the print
command as follows:

print $de£aultin

Because the Itmpldbx* temporary files are deleted at the end of the dbx
session, use the temporary file to repeat previously executed dbx commands
in the current debugging session only. If you need a command file for use in
subsequent dbx sessions, you must specify the file name when you invoke
record input. If the specified file already exists, the new input is appended
to the file.

6.10 Ending a Record Session (unrecord)

To end a dbx recording session, use the unrecord all or the unrecord
[session #] command. Thus, to stop recording session 3, you would enter
the dbx command:

unrecord 3

Version 3.0 Controlling dbx 6-25

To stop all recording sessions, use:

unrecord all

Note: The dbx status command does not report on recording sessions. To
see whether there are any active recording sessions, use the record (
command. For example:

record

6.11 Recording Output (record output)

Use the record output command to start output recording sessions within
dbx. During an output recording session, dbx copies its screen output to a
file. If the specified file already exists, dbx appends to the existing file. By
default, the commands you enter are not copied to the output file. However,
if you set $rimode to a non-zero value, dbx will also copy the commands
you enter.

Examples:

set $rimoda=l
record output

The record output command is very useful when the screen output is too
large for a single screen (e.g., printing a very large structure). Within dbx,
you can use the playback output command to look at the recorded
information. After quitting dbx, you can review the output file using any
IRIX system text viewing command (such as vi).

For example, to record the dbx output in a file called gajja type:

record output gaffa

To record both the commands and the output, type:

set $rimoda=l
record output gaffa

6-26 dbx Reference Manual IRIS-4D Series

(

(

If you omit the file name, dbx saves the recorded output in a temporary file
in /tmp. The temporary file is deleted at the end of the dbx session. To save
output for after the dbx session, you must specify the file name when giving
the record output command. The name of the temporary file is in the
system variable $defaultout. To display the temporary file name, type:

print $defaultin

To end a record output session, use the unrecord all or specify a session
number. For example, to end recording session 3, you would type:

unrecord 3

Note: The dbx status command does not report on recording sessions. To
see whether there are any active recording sessions, use the record
command without arguments.

6.12 Playing Back Input (source or playback
input)

Use these commands to replay the commands that you recorded with the
record input command. If you don't specify a file name, dbx uses the
current temporary file that it created for the record input command. If you
set the dbx variable $pimode to non-zero, the commands are printed out as
they are played back. By default, $pimode is set to zero.

Examples:

playback input script fila
pi script2 -

Version 3.0 Controlling dbx 6-27

6.13 Playing Back Output (playback output)

The playback output command displays output saved with the record output
command. This command works the same as the IRIX system cat command.
If you don't specify a file name, dbx uses the current temporary file created
for the record output command.

Example:

playback output ascript

6.14 Invoking a Shell (sh)

To invoke a sub-shell, type sh at the dbx prompt, or type sh and a shell
command at the dbx prompt. If you invoke a sub-shell, type exit or press
<ctrl-d> to return to dbx. For example:

sh tail mydata
sh

6.15 Checking the Status (status)

Use the status command to check which, if any, of these commands are
currently set:

• stop or stopi commands for breakpoints

• trace or tracei commands for line-by-line variable tracing

• when command

For example:

status

6-28 dbx Reference Manual IRIS-4D Series

(

(

(

6.16 Deleting Status Items (delete)

Use the delete command to remove items (e.g., breakpoints, conditionals)
from the status list. For example, to remove all items from the status list,
type:

delete all

To remove item number 3 from the status list, type:

delete 3

Version 3.0 Controlling dbx 6-29

(

(

7. Examining Source Programs

This chapter explains how to:

• specify source directories

• move to a procedure

• change source files

• list source code

• search for strings in source code

• call an editor from dbx

• print symbol names

• print type declarations for variables

Examples:

dir x/b

func somefunc

list 1,30

/abcd

adi t "special. c"

whatis x

whereis y

Version 3.0 Examining Source Programs 7-1

Syntax Select this command to ...

/exp Search ahead in the current
source file for the specified
regular expression, exp.

?exp Search back in the current
source file for the specified (regular expression, exp. I

dir List current directory.

dir dirl ... dim Add dirl ... dim to the
current list of directories.

edit [file] [function] Call an editor to edit the
specified source file or
function. Default is the
current file or function.

file [file] Change the current source
file to specified file,file.
The default is the current
file.

func fproc] [exp] Move to the activation level
specified by the procedure
or expression. Default is

(the current activation
leve1(s).

list [exp] [proc] List the specified line(s) for
$listwindow. Default is the
current line.

list exp : integer Lists the specified number
of lines, integer, starting at
the specified line, exp.

use List the current directories.

use dirl ... dirN Specifies different
directories, dirl, dir2,
etc.

Table 7-1. Commands to Examine Source Programs

(

7-2 dbx Reference Manual IRIS-4D Series

Syntax Select this command to ...

whatis variable Print the type declaration
for the specified variable or
procedure in your program.

whereis variable Print all versions of the
specified variable.

which variable Print the currently active
version of the specified
variable.

Table 7-1. (continued) Commands to Examine Source Programs

7.1 Specifying Source Directories (use and dir)

Unless you specify the - I option at invocation, dbx looks for source files in
the current directory or in the object file's directory. The use command lets
you change the directory list and list the directories currently in use. The
command recognizes absolute and relative patbnames (for example, .f);
however, it doesn't recognize the C shell tilde (-) syntax (e.g., - johnlsrc)
or environment variables (e.g., $HOME/src).

For example:

usa dirl

makes dirl the only directory. The example:

dir dirl

adds dir 1 to the list of directories.

To print the current directory list, you can type either:

usa

or

dir

Version 3.0 Examining Source Programs 7-3

7.2 Moving to a Specified Procedure (tunc)

The June command moves you up or down the activation stack. The
function can be a procedure name or an activation level number. To find the
name or activation number for a specific procedure, do a stack trace with the
where command. You can also move through the activation stack by using
the up and down commands. For a definition of activation levels, see
Chapter 2, "Getting Started."

The June command changes the current line, the current file, and the current
procedure if the named function is currently on the activation stack.

This changes the scope of the variables you can access. You can use the
June command when a program isn't executing and the function is not on
the activation stack (when you want only to examine source code).

For example:

func x

changes the source view to function x. If function x is currently on the
activation stack, the command (June x) also changes the scope of the
variables you can access to those variables visible in x.

7.3 Specifying Source Files (tile)

The file command changes the current source file to a file you specify. The
new file becomes the current file, which you can search, list, and perfonn
other operations on. For example:

fil. whizzy.c

7-4 dbx Reference Manual IRIS·4D Series

(

(

(

7.4 Listing Your Source Code (Jist)

The list command displays lines of source code. The dbx variable
$listwindow defines the number of lines dbx lists by default. The list
command uses the current file, procedure, and line unless otherwise
specified. It moves the current line forward.

7.5 Searching Through Source Code (land 1)

The / and ? commands search through the current file for regular
expressions in source code. The slash (/) searches forward; the question
mark (?) searches back from the current line. Both commands search the
entire file. They wrap around to the beginning of the file and end at the
point where you invoked the search command.

To search forward in the code for a specified regular expression, type:

lexp

For example:

la.*xy

To search backward in the code for a specified regular expression, type:

?exp

Version 3.0 Examining Source Programs 7-5

7.6 Calling an Editor (edit)

The edit command lets you make changes to your source code from within
dbx. For example, to edit a file named soar.c from within dbx, type:

edit soar.c

For the changes to become effective, you must recompile and rerun your
program. The edit command loads the editor that you set as an environment
variable editor. If you don't set the environment variable, dbx assumes the
vi editor. When you exit the editor, it returns you to the dbx prompt.

7.7 Printing Symbolic Names (which and
whereis)

The which and whereis commands print program variables. These
commands are useful for programs that have multiple variables with the
same name occurring in different scopes. The commands follow the rules
described in "Qualifying Variable Names" in Chapter 4.

Examples:

wherei.s a
whi.ch b

7-6 dbx Reference Manual IRIS-4D Series

(

(

7.8 Printing Type Declarations (whatis)

The whatis command lists the type declaration for variables and procedures
in your program. For example, to list the type declaration for the variable,
x, type:

what!. :x:

For a procedure called quahog, type:

what !a quahog

Since the same name sometimes applies to source files as well as variable
names, the example:

what!. ca~

may display:

source file "carpet.c"
(int) carpet

Version 3.0 Examining Source Programs 7·7

(

(

(

8. Controlling Your Program

This chapter explains how to control a program by:

• running and rerunning the program

• stepping through the program one line at a time

• returning from a procedure call

• starting at a specified line

• continuing after a breakpoint

• assigning values to program variables

Examples:

run

run -f data2 <.indata >out data

step

return

cont

assign c = 27

Version 3.0 Controlling Your Program 8-1

Syntax Select this command to .••

assign expJ = exp2 Assign a new value to a
program variable.

cont

cont signal

cont to line

Resume execution from the
current line and wait for a
break: or other
event
Send signal signal to the
process, resume execution,
and wait for a break: or
other event.
Set a breakpoint at line,
line, resume execution, and
wait for a break or other
event

cont to proc Set a breakpoint at the first
line of procedure proc,
resume execution, and wait
for a break or other event.

cont signal to line Set a breakpoint at line,
line, send signal signal to
the process, resume
execution, and wait for a
break or other event.

cont signal to proc Set a breakpoint at the first
line of procedure proc,
send signal signal to the
process, resume execution,
and wait for a break or

qoto line

next [integer]

other event.
Start execution at the
specified line, line, when
execution is resumed.

Step over the specified
number of lines (default is
1). This command does not
step into procedures.
Breakpoints in procedures
stepped over are honored.

Table 8-1. Commands to Control a Program

8-2 dbx Reference Manual IRIS-4D Series

(

(

c

Syntax

rerun [argl ... argNJ [<I>I>&ftlel]

return

return [proc]

run [argl ... argNJ [<I>I>&ftlel]

step [integer]

Select this command to ...

Rerun your program with
the arguments you specified
to the run command or with
new arguments. The <>ftle
arguments redirect program
input and output. The
>&ftle argument redirects
stderr and stdout output to
the specified file.

Continue execution until
control returns to the next
procedure up on the
activation stack.

Continue execution until
control returns to the
named procedure.

Run your program with the
specified arguments. The
<>ftle arguments allow you
to redirect program input
and output. The >&ftle
argument redirects stderr
and stdout output to the
specified file.

Execute the specified
number of lines, integer,
source code. integer refers
to the number of lines to be
executed in the current
procedure, as well as any
called procedures. Default
is 1 source code line.

Table 8-1. (continued) Commands to Control a Program

Version 3.0 Controlling Your Program 8-3

8.1 Running Your Program (run and rerun)

The run and rerun commands start program execution. You can specify
arguments to either command. Arguments to these commands override
previous arguments. If you don't specify arguments to the run or rerun
command, it uses the last set of arguments.

Use these commands to redirect program input and output (works like
redirection in the C shell). The optional <FILEl parameter redirects input
to your program from the specified file. <FILE2 redirects output from the
program to the specified file. The optional parameter >&FILE2 redirects
stderr and stdout output to the specified file.

Note: This output differs from the output you save with the record output
command, which saves debugger (not program) output in a file.
See "Recording Output (record output)" in Chapter 6.

The arguments to the run command specify any program arguments that
your program might have. For example, suppose you have a program called
sik.c compiled as:

cc -g sik.c -0 sik

Then, to run the program you would type:

run sik

To run the program with the specified arguments, use the following format:

run [argl ... argN] [>filel] [>file2]

Rerun the program, using the same arguments that were specified to the run
command. If you specify new arguments, rerun uses those arguments:

rerun [arg1...argN] [.qilel] [<;file2]

8-4 dbx Reference Manual IRI5-4D Series

(

(

(

8.2 Executing Single Lines (step and next)

The step and next commands execute a fixed number of source code lines as
specified by expo If you don't specify exp for step and next, dbx executes one
source code line. If you specify exp, dbx executes the source code lines as
follows:

• For step and next, dbx does not take comment lines into consideration in
interpreting expo The program executes exp source code lines, regardless
of the number of comment lines interspersed among them.

• For step, dbx considers exp to apply to both the current procedure and to
called procedures. The program stops after executing exp source lines in
the current procedure and any called procedures.

• For next, dbx considers exp to apply to only the current procedure. The
program stops after executing exp source lines in the current procedure,
regardless of the number of source lines executed in any called
procedures.

8.2.1 step [expJ

This command steps only into procedures that have line numbers and were
compiled with options -g, -g2, or -g3. The step command honors
breakpoints in any procedures it steps over.

The step command counts source lines in called procedures as well as the
current procedure. The program stops after executing the specified number
of source lines in the current procedure and any called procedures.

You can force step to step into all procedures for which dbx can find a
source file, even if the procedure was not compiled with symbols. To do
this, type:

set $stepintoall=2

When you debug a source file compiled without symbols or compiled with
optimization, the line numbers sometimes jump erratically, which may be
quite confusing.

If the file for a procedure has the same name as a file dbx can find, dbx will
step into the procedure while reporting the source file it finds. The source

Version 3.0 Controlling Your Program 8-5

file found may not be the source file the procedure was compiled from; this
will also be very confusing.

You can also use $stepintoall to control step in other ways as shown below.

• If =0 (the default), step[i] will step into all procedures compiled with
-9, -92, or -93 for which line numbers are available in the symbol (
table. This does not include standard library routines since they are not
compiled -9[23].

• If =1, step[i] will step into the above plus procedures for which dbx can
find a source file.

• If =2, step[i] will step into all procedures.

You can also use the variable printwhilestep to control step.

• If =0, dbx acts as if the command:

.tap[i] n

was step[i] n times. With edge, green line steps through as the program
executes.

• If =0, (the default):

.tapn

steps n then displays (notifies edge):

-trace (no operands) and step, next will delay
$naptime lOOths of a second after every instruction.

For more infonnation, see sginap(2).

8-6 dbx Reference Manual IRI5-4D Series

(

(

8.2.2 next [integer}

The next command steps over the specified number of lines (default is 1).
This command does not step into procedures. Breakpoints in procedures
stepped over are honored. See the previous description of $stepintoall, and
the subsequent description of $nextbreak for infonnation on modifying the
behavior of next.

$nextbreak does the following:

• If =0, $stepintoall controls whether next will behave as if $nextbreak
were 1 or 2. If 0, step[iJ will step into all procedures compiled -g,
-g2, or -g3, for which line numbers are available in the symbol table.
This does not include standard library routines since they are not
compiled -g[23]. If 1, step[iJ will step into those plus procedures for
which dbx can find a source file. If 2, step[iJ will step into all
procedures.

• If =1, a next command will single-step through calls and will get back to
exactly the next statement. (In the current implementation, stop if or
trace or when commands testing variables may fail with the message
"not active," stopping the execution.) This is slow but guarantees arrival
back at the right place even if part of your code is compiled without
symbols and is recursive. It also causes tracing of function values to be
done in lower-level functions, (which may be slow but handy) if a
lower-level function uses a wild pointer or if data is passed by reference
or is visible in upper levels, as in Pascal.

• If =2 (the default), a next command will execute calls at full speed. If
nexting from within a function that recurses, next may stop at a deeper
level of recursion rather than at the next source. To avoid this, set
$nextbreak=l.

8.3 Starting at a Specified Line (goto)

The goto command shifts program execution to a line you specify. This
command is useful in a when statement, e.g., to skip a line that you know
has problems. For example:

goto 136

Version 3.0 Controlling Your Program 8-7

Note: The goto command cannot be used to go to a line outside the
currently active procedure.

8.4 Continuing after a Breakpoint (cont)

The cont command resumes program execution after a breakpoint. These
commands, cont to and cont in, go into effect when you issue them. When
your program again reaches a breakpoint, you can reissue either cont to or
cont in to continue, if desired. If SIGNAL is specified as a parameter, dbx
sends the specified signal to the program and continues.

Note: You can also use the dbx command, resume, to execute past a
breakpoint.

For example:

cont
cont in!
cont sigint

8.5 Variables and Registers

The assign.command changes the value of existing program variables or
registers. For example:

assign x = 27
assign y = 37.5

If the "incompatible types" message appears when you try to assign a value
to a pointer, use casts to make the assignment work. For example:

* c definition might be struct x *Yi
* to set Y to the null pointer;
assign * (int *) (&y) = 0

8-8 dbx Reference Manual IRIS-4D Series

(

(~

(

9. Setting Breakpoints

Topics covered in this chapter include:

• setting breakpoints at lines

• setting breakpoints in procedures

• running your program after a breakpoint

• stopping for signals

• stopping for system calls

Examples:

stop at 37

stop at "colI\Pute.f":29

stop in myfunc

cont

cont sigfpe

syscall catch call exit

catch OSRl

ignore INT

Version 3.0 Setting Breakpoints 9-1

Syntax

catch

catch [signal]

ignore

ignore [signal]

stop [var] at line

Select this command to •••

List all the signals that dbx
catches.
Add a new signal to the
catch list. A signal can be a
name or number.

List of the signals that dbx
does not catch.

Add a signal, signal, to the
ignore list.

Set a breakpoint at the
specified source line. The
breakpoint is conditional if
the variable, var, is
specified.

stop [var] at line if exp Set a conditional breakpoint
at the specified source line.

stop proc

stop [var] in proc

stop at

stop [var] inproc if exp

Set up to stop execution
when the specified
procedure, proc, is entered.

Set a breakpoint in the
specified procedure. The
breakpoint is conditional if
the variable, var, is
specified.

Set a breakpoint at the
current source line.

Set a conditional breakpoint
in the specified procedure.

Table 9-1. Commands for Setting Breakpoints

9-2 dbx Reference Manual IRIS-4D Series

(

(

Syntax

stop if exp

stopvar

syscall

syscall catch call

syscall ignore call

syscall catch return

Select this command to •..

Set up program execution
tracing, test the expression
at each program line, and
stop when it is true.
(Execution will be very
slow.)

Set up to stop execution
when the variable, var,
changes. (Execution will be
very slow.)

Print the list of system calls
in 4 sections.

syscall ignore return These four commands print
individual sections of the
4-section list that syscall
prints.

syscall catch call syscall... Make the named system
calls breakpoint at the entry
of the system call.

syscall ignore call syscall... Make the named system
calls not breakpoint at the
entry of the system call.

syscall catch return syscall... Make the named system
calls breakpoint at the
return from the system call.

syscall ignore return syscall... Make the named system
calls not breakpoint at the
entry from the system call.

Table 9-1. (continued) Commands for Setting Breakpoints

Version 3.0 Setting Breakpoints 9-3

Syntax Select this command to ...

syscall catch call all Make all system calls
breakpoint at the entry to
the system call.

syscall ignore call all Make all system calls not
breakpoint at the entry to () the system call.

syscall catch return all Make all system calls
breakpoint at the return
from the system call.

syscall ignore return all Make all system calls not
breakpoint at the return
from the system call.

trace Step through the program a
line at a time without
stopping.

tracevar When the variable, var,
changes, print its old and
new values. (Execution will
be very slow.)

traceproc When the procedure, proc,

(is entered, print its
" arguments and its caller's

name.

trace var in proc Print the variable, var,
when it changes in
procedure, proc.

trace var at line Print the variable, var's, old
and new values when the
source line is reached.

trace var at line if exp If the expression is true
when the source line is
reached, and the variable,
var, has changed value,
print the old and new
values.

Table 9-1. (continued) Commands for Setting Breakpoints C

9-4 dbx Reference Manual IRI5-4D Series

Syntax

trace var in proc if exp

when if exp (command-list}

when at line [if exp] (command-list}

when var [at line] [if expr] (command-list}

Select this command to ...

Print the variable, var,
when it changes in the
procedure proc, if the
expression, exp, is true.

Execute command-list on
every line executed for
which the expression, exp,
is true. (Execution will be
very slow.)

Execute the specified
command-list when the
conditions are met.

Execute the specified
command-list when the
conditions are met.
(Execution will be very
slow unless at line is
specified.)

when var [in proc] [if expr] (command-list} Execute the specified
command-list when the

when inproc [if exp] (command-list}

conditions are met.
(Execution will be very
slow.)

Execute the specified
command-list when the
conditions are met.

Table 9-1. (continued) Commands for Setting Breakpoints

Version 3.0 Setting Breakpoints 9-5

9.1 Introduction

When a program stops at a breakpoint. the debugger displays an
infonnational message. However, before setting a breakpoint in a program
that has multiple files, be sure that you're setting the breakpoint in the right
file.

To select the right procedure, follow these steps:

1. Use the June command and specify a procedure name. This command
moves you to the file that contains the specified procedure (see Chapter
8, "Controlling Your Program").

2. List the lines of the procedure. Use the list command (see Chapter 8).

3. When you see the procedure or line you want, use a stop command to set
a breakpoint.

You can use the dbx variable $showbreakaddrs to verify exact breakpoint
placement. For example:

set $showbreakaddrs=l

(1

shows the address of each breakpoint placed in the code each time it is (
placed. Removal of the breakpoints is not shown. If multiple breakpoints are
placed at one location only, one of the placements is shown. Since
breakpoints are frequently placed and removed by dbx, the volume of output
can be annoying when tracing.

This chapter describes the stop, trace, and when commands, which set up
breakpoints and tracing, but do not begin or continue program execution.
Each command takes several optional arguments (clauses); two that appear
repeatedly are the variable and if expression clauses. They are explained
in the following paragraphs.

9·6 dbx Reference Manual IRI5-4D Series

(

9.1.1 The variable Clause

The variable clause turns the command into a conditional command. The
condition is "has the variable value changed?". When variable is used, it
may be either a variable or an expression.

If a variable is given, that variable is inspected at "appropriate" points. If an
expression is given, that expression is assumed to be a pointer to a 32-bit
value and the value-pointed-at is inspected at the appropriate points. An
appropriate point is either:

• at specific locations in the program (if at line)

• at every instruction in a given function (if in procedure)

• at every instruction (execution will be very slow).

If variable has changed, then the result of the condition test "has the
variable's value changed?" is true. Otherwise, the result of the test is false.
The old and the new values are printed.

9.1.2 The if expression Clause

The if expression clause turns the command into a conditional command.
The expression is evaluated at the same points as mentioned for variable
and evaluates to true and false.

9.1.3 Combining the variable and if expression
Clauses

If you use both variable and if expression, the overall test evaluates to
true only if both evaluate true.

The stop command, for example, stops execution of the process when the
if clause is true (if present) and the variable has changed (if present).

Version 3.0 Setting Breakpoints 9-7

9.2 stop (breakpointing)

The syntax for the stop command is at the beginning of this chapter.
Examples include:

stop in funcf
stop at "fil.8.c":27
stop at 38
b 38
stop in funcz if X==O

Interactive function calls provide a powerful way to set breakpoints.

For example, function foo has a C string argument s and an integer
argument i. Then to stop when s is "abc" and i is 24, issue the command:

stop in foo if i - 24 " strcmp("abc",.) == 0

This only works if the function strcmp(3C) is linked into the program you
are debugging.

9.3 Tracing (trace)

The trace commands print information about the process when the trace
conditions are satisfied, but program execution continues. The syntax for
tracing is given at the beginning of this chapter.

The trace command steps through the program a line at a time without
stopping. This command is useful with edge(l), as edge shows the source
code with a green bar on the line executing as dbx steps through it.

Examples include:

trac8 funcf
trace z

9-8 dbx Reference Manual IRIS-4D Series

(

(

(

9.4 Writing Conditional Code (when)

The when command is similar to stop except that rather than stopping when
the conditions are met, the command-list (dbx commands separated by
semi -colons) is executed. If one of the commands in the list is stop (with no
operands), then the process will stop when the command-list is executed.

Examples are:

when in funcz (trace z }
when at "fi1 •. 0":27 if z=2 (print y}

9.5 Stopping at Signals (catch and ignore)

The catch command lists the signals that dbx catches or specifies a signal for
dbx to catch. If a child in the program encounters a specified signal, dbx
stops the process and gives you control.

You can use signal names and numbers as listed on the signal(2) man page.
You can abbreviate signal names by omitting the "SIG" portion. dbx ignores
case on the signal names.

Note: dbx ignores SIGSTOP, SIGTSTP, SIGCONT, SIGTTIN, and
SIGTTOU in this version since handling them would lead to
problems in dbx as presently coded (they are used for "Z handling
in csh). Using dbxto debug a program (such as a shell) that
manipulates the above signals will not work well.

The syntax:

catch [signal]

adds a new signal to the catch list. A signal is specified as a name or a
number. For example, the interrupt signal is named INT, SIGINT, or 2. A
process does not see this signal directed at it until 1) the signal comes to dbx
and the process is stopped, and 2) the process is continued. If the process has
not declared a signal handler for a signal, the process does not see the signal
when it is continued.

Version 3.0 Setting Breakpoints 9-9

The syntax:

ignore [signal]

adds a signal, signal, to the ignore list. A signal is specified as a name or a
number. For example, the interrupt signal is named INT, SIGINT, or 2. A
process sees this signal when directed at it by itself or by another process.
The process responds to the signal just as if dbx were not present. A SIGINT
signal at the keyboard is seen by dbx and it interrupts dbx (it is also sent to
the process(s) being debugged). Keyboard-generated signals are seen by the
whole process group (i.e., the IRIX process group, not the dbx process
group).

Debugging a program that attempts to catch signals can be awkward if you
catch the signal in dbx. For example, if program P wants to catch SIGFPEs
and you issue the command:

catch sigfpe

then you must, after dbx sees the signal ignore sigfpe allow program P to
see the signal when you issue the command:

cont sigfpe

Having ignored the signal, you have to get control in dbx again (the best
way would be to set breakpoints before doing the cont) to re-do the catch
sigfpe if you wish to catch floating-point exceptions.

Examples are:

catch 2
ignore INT

9-10 dbx Reference Manual IRI5-4D Series

(

(

(

9.6 Stopping at System Calls (sysca/I)

The syscall command prints the list of system calls. The syntax is listed in
the beginning of this chapter.

The list of system calls is printed in four sections. System calls may be
caught (breakpointed) at the time the call is made, or when it is about to
return. The syscall command prints the system calls in the four sections:

1. caught at call

2. ignored at call

3. caught at return

4. ignored at return

The system calls are all listed in lusrlincludelsys.s. In all syscall commands,
case is ignored when checking system call names. Thus you can use lower
case in these commands.

The sysca1.1. catch ca1.1. syscall ... command makes the named
system calls breakpoint at the entry of the system call. A particularly useful
setting is:

syscall catch call exit

which will breakpoint the entry to exit(). Thus, if the program is about to
terminate, you can do a stacktrace before the termination to see why exit()
was called. Examples include:

syscall
syscall catch call exit
syscall catch return read

Version 3.0 Setting Breakpoints 9-11

(

(

10. Examining Program State

This chapter describes how to examine a program's state by:

• printing stack traces

• moving up and down the activation levels of the stack

• printing variable values

• printing register values

• printing information about the stack trace activation levels

• using interactive function calls

Examples:

where

up 4

down

printf "8.1f %d\n",fv2,ival

print $pc

dwnp .

ccall func(y,3)

Version 3.0 Examining Program State 10-1

Syntax

ccall junc(argI,arg2, ... ,argn)

down [num]

dump

Select this command to ...

Call a function with the
given arguments.

Move down the specified
number of activation levels
in the stack. The default is
one level.

Print variable information
about the current
procedure.

dump [proc] Print variable information
about the procedure. proc,
which must be active.

dump . Print variable information
for all procedures currently
active.

print [expl ... expN] Print the value of the
specified expressions.

print "string", [ex pI , ... , expN] Print the value of the
specified expressions in the
format specified by the
string, string.

print regs

up [num]

where

Print the current values of
all current registers.

Move up the specified
number of activation levels
in the stack. The default is
one
level.

Print a stack trace.

Table 10-1. Commands to Examine a Program's State

10-2 dbx Reference Manual IRIS-4D Series

(

(

(~

10.1 Doing Stack Traces (where)

The where command prints stack traces. Stack traces show the current
activation levels (procedures) of a program. This command doesn't trace
variables. For example:

where
t

The t is an alias for where.

10.2 Moving In the Stack (up and down)

The up and down commands move up and down the activation levels in the
stack. These commands are useful when examining a call from one level to
another. You can also move up and down the activation stack with thejUnc
command. For a definition of activation levels, see "Activation Levels" in
Chapter 2. For example:

up
up 2
down 3
down

10.3 Printing (print and printf)

The print command lists the value of one or more expressions. You can also
use print to display the program counter and the current value of registers
(see the following section, "Printing Register Values," for details).

The printj command lists information in a format you specify and supports
all formats of the IRIXprintjcommand except %s. For a list of formats, see
the printj(3S) man page in the IRIX Programmer's Reference Manual. For
example, you can use printjin dbx when you want to see a variable's value
in a different number base.

Version 3.0 Examining Program State 10-3

The command alias list has some useful aliases for printing the value of
variables in different bases: octal (po), decimal (Pd), and hexadecimal (px).
The default number base is decimal. See "Creating Command Aliases" in
Chapter 6 for more information. Examples are:

print Zp->X[a] .bval
printf "%S.lf\n",fval
printf "S.lf %d\n",fv2,ival

regs command"

1 0.4 Printing Register Values (printregs)

The printregs command prints register values, both the real machine register
names and the software (from the include file regdeJs.h) names. A prefix
before the register number specifies the type of register. The prefixes used
and their meanings are shown in the following table.

Prefix Register Type

$r
$f
$d
$pc

machine register
floating point
double precision floating point
program counter value

Table 10-2. Register Prefixes

You can also specify prefixed registers in the print command to display
a register value or the program counter. For example, typing:

print $r3
print $pc

prints the values of machine register 3 and the program counter,
respectively. Set the dbx variables $hexints and $hexouts to 1 to specify that
the listing uses hexadecimal.

10-4 dbx Reference Manual IRIS-4D Series

(

(

(

-----------~--.~~~-~----- ---

10.5 Printing Activation Level Information
(dump)

The dump command prints infonnation about activation levels. For
example, this command prints values for all variables local to a specified
activation level. To see what activation levels you have in your program,
use the where command to do a stack trace. Examples include:

dwnp
dwnp funcf
dump .

10.6 Interactive Function Calls (ccall)

The interactive function call, eeall, calls a function (with arguments, if
given). Regardless of the language the function was written in, the call is
interpreted as if it were written in C, and nonnal C calling conventions are
used. The eeall command is particularly suited to procedures or functions
that do not return a value. For example:

coall ~func(x,2)

You can call functions that do return a value as nonnal expressions. For
example, to call the function/. which returns an integer (taking integer,
double, and string arguments), and shift the results by two bits, type:

print f(1,3.0,"a value") « 2

If there is a breakpoint in a function called interactively, the value returned
by the function is lost and any computation (for example, in an expression)
following the function call is ignored. You can debug a function by setting
breakpoints and calling it interactively.

You can use string arguments with eeall; for example:

print atrcmp("abcd", atrp)

Version 3.0 Examining Program State 10-5

In addition, you can also have breakpoints in a function called interactively.
It is up to you to eventually return. Any stack trace (where command) done
while stopped in a routine executed interactively shows functions up to the
interactive call with a line:

<stopped in interactive call>

as the end marker of the local interactive call stack.

Interactive calls nest properly. This means that if you have one or more
breakpoints in a function, and you call that function repeatedly, each
interactive call is "stacked" on top of the previous call. Use the where
command to report on the depth of nesting, if applicable.

To unstack the calls, complete the call (cont, return, next, or step) as many
times as necessary, or rerun the program being debugged. Unfortunately,
there are no other ways to unstack the interactive call(s).

Your breakpoints in functions called interactively do not respect the nesting.
This can cause confusion if you attempt to have various breakpoints at
different nesting levels. Breakpoints are all effectively at one level, and are
always active.

(

Only one level of activation stack is visible at a time; in an interactive call (
the stack trace of the hidden levels is invisible to you and to dbx. This can
provoke:

<variable> is not visible

messages if you are actively tracing. For example, suppose you are in fooO
and a "stop in foo if z==5" command is in effect. You do an interactive call.
Delete such a "stop" to stop the messages, and re-enter the "stop" once out
of the interactive call.

Note: Structure and union arguments to, and structure and union returns
from a function are not supported.

1 0-6 dbx Reference Manual IRIS-4D Series

(

11. Debugging at the Machine Level

This chapter explains how to debug at machine level by:

• setting breakpoints

• executing single lines of code

• tracing variables

• printing the contents of memory addresses

• disassembling the source code

Additional information is in Chapter 4, "Expressions and Precedence."

Examples:

$pc-40/10i

&z/8x

$sp/20X

stopi at Ox400abc

nexti

stepi

Version 3.0 Debugging at the Machine Level 11-1

Syntax Select this command to ...

addr / <countXmode> Print the contents of the
specified address, addr, for
the specified count, count.
The modes are listed at the
end of this chapter. (addr / count L val mask Print those words at addr
that match val after
ANDing with mask.
Examine count words for a
match.

conti sig Send the specified signal,
sig, and tell dbx to
continue.

conti in proc Tell dbx to continue until
the beginning of the
specified procedure, proc.

conti to addr Tell dbx to continue until
reaching the specified
address, raddr.

conti sig to addr Tell dbx to continue until

(reaching the specified
address, addr, then send the
specified signal, sig.

conti sig in proc Tell dbx to continue until
reaching the beginning of
the specified procedure,
proc, then send the signal,
sig.

nexti[integer] Step over the specified
number of machine
instructions. The default is
one. This command does
not step into procedures.

Table 11-1. Machine Level Debugging Commands

(

11-2 dbx Reference Manual IRIS-4D Series

Syntax

stepi [integer]

stopi at

stopi at addr

stopi at addrif exp

stopi varat

stopi[varj at addr

stopi [var] at addrif exp

stopi if exp

Select this command to ••.

Step the specified number
of machine instructions.
This command steps into
procedures even if no
source, symbols, or line
numbers are present. The
default is one.
Stop dbx at the current line.

Stop dbx at the specified
address, addr.

Stop dbx at the specified
address only if the
expression, exp, is true.

Stop dbx at the current line
and check to see if the
specified variable, var, has
changed. If so, dbx prints
the old and new values of
the variables.
Stop dbx at the specified
address, addr, and check to
see if the specified variable,
var, has changed. If so, dbx
prints the old and new
values of the variables.

Stop dbx at the specified
address only if the
expression, exp, is true. If
stopped, dbx checks to see
if the specified variable,
var, has changed. If so,
dbx prints the old and new
values of the variables.
Stop dbx if the specified
expression, exp, is true.

Table 11·1. (continued) Machine Level Debugging Commands

Version 3.0 Debugging at the Machine Level 11·3

Syntax

stopi var if exp

stopi in proc

stopi var in proc

stopi in proc if exp

stopi var in proc if exp

tracei var

Select this command to •••

Stop dbx if the specified
variable, var, changes and
the specified expression,
exp, is true.

Stop dbx at the beginning
of the specified procedure,
proc.

Stop dbx in the specified
procedure, proc, when the
specified variable, var,
changes.

Stop dbx in the specified
procedure, proc, if the
specified expression, exp, is
true. dbx checks exp before
var.

Stop dbx in the specified
procedure, proc, when the
variable, var, changes and
the expression, exp, is true.
dbx checks exp before var.

Trace the variable at each
machine instruction.
Execution will be very
slow.

tracei [var] at addr [if exp] Trace the variable in

tracei [var] in proc [if exp]
machine instructions.

Trace the specified variable
in machine instructions.
Execution of proc will be
very slow.

Table 11-1. (continued) Machine Level Debugging Commands

11-4 dbx Reference Manual IRIS-4D Series

(

(

(

11.1 Setting Breakpoints (stOpl)

The stopi commands set breakpoints in machine code. These commands
work in the same way as the stop at, stop i, and stop if commands described
in Chapter 9, "Setting Breakpoints." There are two exceptions. The stopi
command steps in units of machine instructions instead of in lines of code.
Also, the stop at command requires an address rather than a line number.
See the earlier discussion of stop for details on these complex statements.
For example:

stopi at Ox434500
stopi in funcx

The second example stops at the first machine instruction in functionJuncx.
A where command at the point of stop may yield an incorrect stack trace
since the stack for the function is not completely set up until several
machine instructions have been executed. This version of dbx does not know
how to correctly report in complete stack frames.

11.2 Continuing after Breakpoints (contI)

The conti commands continue executing assembly code after a breakpoint.
Tum to the beginning of this chapter for the syntax of this command.

11.3 Executing Single Lines (stepi and nextl)

The stepi and nexti commands execute a fixed number of machine
instructions, as specified by expo If you don't specify exp for stepi and nexti,
dbx executes one machine instruction. If you do specify exp, dbx executes
the machine instructions according to the following rules.

• With stepi and nexti the program executes exp machine instructions,
ignoring any comment lines interspersed among them.

• With stepi, exp applies to the current procedure as well as procedure
calls (jal andjalr). The program stops after executing exp instructions.

Version 3.0 Debugging at the Machine Level 11-5

• With nexti, exp applies only to the current procedure. The program
stops after executing exp instructions in the current procedure, ignoring
any instructions executed in procedure calls.

• Use stepi and nexti to execute source lines after a breakpoint.

You can use all dbx variables for $nextbreak and $stepinto with the stepi (
and nexti commands exactly as with the step and next commands.

11.4 Tracing Variables (tracei)

The tracei commands track changes to variables, one instruction at a time.
The tracei commands work for machine instruction as the trace commands
do for lines of source code. The tracei command traces in units of machine
instructions instead of in lines of code. (See the discussion of trace in
Chapter 9 for details.) For example:

tracei x

11.5 Printing the Contents of Memory

Entering values in the syntax shown below prints the contents of memory
according to the specifications that follow.

address I count format
Prints the contents of the specified address or disassembles the code
for the instruction at the specified address. Repeat for a total of count
addresses in increasing address. This might be tenned the "examine
forward" command.

address ? count format
Prints the contents of the specified address or disassembles the code

(

for the instruction at the specified address. Repeat for a total of count C
addresses in decreasing address (the "examine backward" command).

11-6 dbx Reference Manual IRIS-4D Series

~ -~-~------~--~ ------ ~------------~-------

address!count L val mask
Examines count 32-bit words in increasing address. Print those 32-bit
words which, when ORed with mask, equals val. This command
therefore searches memory for specific patterns.

Repeats the previous examine command with increasing address .

. ? Repeats the previous examine command with decreasing
address.

Command Examine command formats:

i print machine instructions (disassemble)
d print a 16-bit word in decimal
D print a 32-bit word in decimal
o print a 16-bit word in octal
o print a 32-bit word in octal
:x: print a 16-bit word in hexadecimal
x print a 32-bit word in hexadecimal
L like X but use with val mask
b print a byte in octal
c print a byte as character
s print a string of characters that ends

in a null byte
f print a single-precision real number
g print a double-precision real number

Table 11-2. Disassemble Commands

For example, to print 20 disassembled machine instructions starting at
the current pc-20, type:

$cuz:pc-20/20i

To print 32-bit words starting at address Ox400200 whose least significant
byte is hexadecimal ee (100 words are inspected), type:

Ox400200/100L Oxee Oxff

Version 3.0 Debugging at the Machine Level 11-7

(

(

(

12. Multi-Process Debugging

This chapter explains multi-process debugging procedures, including:

• listing available running processes

• adding a process to the available pool

• listing the available processes

• selecting processes

• suspending the active running process

• resuming suspended processes

• freeing processes from the dbx pool

• returning freed processes to the operating system

• terminating active processes

• using forks and execs

• debugging process groups

Examples:

addproc 1234

kill 1234

resume pid 3456

showproc

stop pgrp

suspend pid 4365

waitall

Version 3.0 Multi-Process Debugging 12-1

Syntax Select this command to •••

active fpid] Tell dbx which is the active
process in the pool of dbx
controlled processes. pid is
the process identification
number (PID#) of the (process you want to select
as active. If pid is not
specified, dbx prints the
currently active process id

addprocpid Add the specified process
to the pool of dbx
controlled processes.

delprocpid Delete the specified process
from the pool of dbx
controlled processes.

kill Kill the active process.

kill pid ... Kill the active process{es)
whose PIDs are specified.

resume Resume execution of the
program, and return

(immediately to the dbx I

command interpreter.

resume signal Resume execution of the
process, sending it signal,
signal, and return
immediately to the dbx
command interpreter.

showproc fpid I all] Show processes currently
available for debugging
under dbx. If you use no
arguments, dbx lists the
processes it already
controls.

wait Wait for the active process
to stop for an event

Table 12·1. Multi-process Debugging Commands
(

12·2 dbx Reference Manual IRI5-4D Series

Syntax

waitall

Select this command to ..•

Wait for any process
currently running to
breakpoint or stop for any
reason.

suspend Suspend the active process
if it is running. If it is not
running, do nothing.

suspend pid pid Suspend the process pid if
it is running. If it is not
running, do nothing.

Table 12·1. (continued) Multi-process Debugging Commands

12.1 Processes

dbx provides commands specifically for seizing, stopping, and debugging
currently running processes. When dbx seizes a process, it adds it to a pool
of processes available for debugging. Once you select a process from the
pool of available processes, you can use all the dbx commands normally
available.

Once you are done with the process, you can terminate it, return it to the
pool, or return it to the operating system.

Many commands now take a clause, pid pid (where pid is a numeric
process id or a debugger variable holding a process id) at the end to make
them apply to process pid. Commands that do this include:

active edit readsyma use
addproc file resume wait
assign func return whatis
catch goto showproc when
cont[i] ignore status where
delete kill step [i] whereis
delproc next stop [i] which
directory print suspend
down printf trace[i]
dump print regs up

Version 3.0 Multi-Process Debugging 12·3

Using the pid pid clause means you can apply a command to any process
in the process pool even though it is not the active process.

Debugger variables help write multiple-process scripts independent of
process id:

• $lastchild is always set to the process id of the last child forked or C
sproced.

• $pidlJ is always set to the process id of the given process.

12.2 Listing Available Processes (showproc)

Use the showproc command to list the available processes. The showproc
command can take either of two optional arguments: a pid (process
identification number, PID#), or the word all. If you specify a PIO number
with showproc, dbx lists the status of the specified process.

If you use showproc with the command argument all, dbx lists all the
processes it controls as well as all those processes it could control but that
are not yet added to the process pool.

If you use showproc without command arguments, dbx lists the processes it
already controls (currently in the process pool).

For example:

ahowproc 2355
ahowproc all

12.3 Adding a Process (addproc)

To add a process to the process pool, use the addproc command. The
argument for the addproc command is the PID # of the process that you
want to add. Adding the process to the dbx process pool automatically stops
the process.

12-4 dbx Reference Manual IRIS-4D Series

(

(

For example:

addproc 345

12.4 Removing a Process (delproc)

To remove a process from the process pool, use the delproc command. The
argument for the delproc command is the PID # of the process that you want
to delete. Removing the process from the dbx process pool automatically
stops the process.

For example:

delproc 134 385
delproc pid 37
delproc

12.5 Selecting a Process (active)

dbx allows you to seize control of a number of processes. By default, dbx
commands apply only to the active process. To select a process from the
process pool to be the active process, use the active command. The
argument to the active command is the PID# of the process in question. If
you do not specify an argument, dbx lists the currently active process.

For example:

active 2355

Version 3.0 Multi-Process Debugging 12-5

12.6 Suspending a Process (suspend)

Adding a process to the dbx pool of controlled processes does not
automatically stop the process. You can stop a dbx controlled process only
if it is the currently active process (use the active command). Use the
suspend command to stop the currently active process.

For example:

suspend pid 2355
suspend

12.7 Resuming a Suspended Process
(resume)

To resume execution of a suspended dbx controlled process, use either the
cont command or the resume command. resume returns immediately to the
dbx command processor. If you use cont, you do not get the dbx command
interpreter back until the program encounters an event (e.g., a breakpoint). (

The resume command can be very useful if you are debugging more than
one process. With resume, you are free to select and debug a process while
another process is running. The argument for the resume command is
signal.

For example:

resume pid 28
resume

12.8 Waiting for a Resumed Process (wait)

To wait for a process to stop for an event (such as a breakpoint), use the wait
command. This is useful after a resume command. Also see waitall, later in
this chapter.

12-6 dbx Reference Manual IRIS-4D Series

(

For example:

wait
wait pid 347

12.9 Freeing a Process (delproc)

To free a process from the control of dbx, use the delproc command. The
argument for this command is the PID # of the process. For example:

dal.proc 2355

12.10 Killing a Process (kill)

To kill a process in the process pool while in dbx, you can use the kill
command. For example:

kil.l. 2355

12.11 Forks

When a program forks and starts another process, dbx allows you to add that
process to the process pool. You can set the variable $prompton!ork to a 1
or2.

If $prompton!ork=1, when a program forks, dbx asks if you want to add the
new process to the process pool. If you leave $prompton!ork set to zero (the
default), dbx ignores the process created by the fork.

If $prompton!ork=2, new forked processes are automatically added to the
process pool.

Version 3.0 Multi-Process Debugging 12-7

Consider a program namedfork, that contains these lines:

main (argc, argv)
int argc;
char *argv;
{

If you set:

int pid;
if «pid = fork(» == -1)

perror ("fork");
else if (pid == 0) (

printf("childO);
else {

printf ("parentO) ;

$promptonfork=l

and runfork under dbx, the system prompts you to add the new process to
the process pool.

If you set:

$promptonfork=2

and runfork under dbx, the new process is automatically added to the pool,
and both the parent and child processes stop executing at the fork.

When $promptonfork is zero, dbx doesn't stop at forks.

12.12 Execs

An exec is a call from within a program that executes another program.
During an exec, the first program gives up its process number to the program
it executes. You can use dbx to follow an exec.

12-8 dbx Reference Manual IRIS-4D Series

(I

(

(

Consider the programs exec1.c and exec2.c:

main ()
{

main ()
{

printf("in execl\n"); /*
* Invoke the "exec2" program
*/

execl("exec2", "exec2", 0); /*
* We'll only get here if execl() fails
*/

perror ("execl") ;

printf ("in exec2\n");

If you run exec1 under dbx, the system pauses to reread the symbolic
information. Enter the dbx command, cont, to continue executing, now
executing exec2.

12.13 Process Group Debugging

The process group facility allows a group of processes to be operated on
simultaneously by a single dbx command. This is far more convenient to use
when dealing with sproced processes than issuing individual resume,
suspend, or breakpoint setting commands.

This facility was created to deal more conveniently with parallel programs
created, for example, by the Power FORTRAN Accellerator (PFA). When
debugging such code and before running the program, be sure to:

.et $mp-proqramFl

For $mp yrogram:

• if 0 (the default), sproc is treated like fork.

• if 1, sproc is treated specially. The children are allowed to run; they will
block on multi-processor synchronization code emitted by mp
FORTRAN code (if $mp yrogram=l, mp FORTRAN code is easier to
work with).

Version 3.0 Multi-Process Debugging 12-9

Whenever a process sprocs, if the child is added to the process pool, the
parent and child· are added to the group list as well. The group list is simply
a list of processes.

If the P9'rp clause is added to the end of an applicable command (delete,
next[i], readsyms, resume, stop[i], status, suspend, trace[i], or when), the
command is applied to all the processes in the group. (I
If $groupjorktoo is 1, thenjorked processes are added to the group
automatically just as sproced processes are.

The commands:

stop (operands) pqrp

trace (operands) pgrp

when (operands) pqrp

each add to the group history. With these commands, you can add
breakpoints to multiple processes with a single command. This group
history is a numbered list that showpgrp shows.

The command:

delete in! pqrp

deletes the history for group number into Thus you can delete breakpoints
from multiple processes with a single command.

Breakpoints set on the process group are recorded both in the group and in
each process. Deleting breakpoints individually (even if set via a group
command) is allowed.

The following commands are usable only on the processes in the group list.

addp9'rp pid ...
Adds the process ids specified to the group list. Only processes in the
process pool can be added to the group list.

delp9'rp pid ...
Deletes the process ids specified from the group list.

showp9'rp
Shows the group process list and the group breakpoint list.

12-10 dbx Reference Manual IRIS-4D Series

(

(

12.14 Waiting for Any Running Process
(waita/I)

To wait for any process currently running to breakpoint or stop for any
reason, use the waitall command. It waits for all running processes in the
process list, not just those in the group list. It does not make the process that
stops first the active process.

Normally, you would use this command after resume pgrp or resume.

For example:

waita11

12.15 Multi-Process Debugging Examples

The following pages contain examples for:

• window process debugging

• complex multi-process debugging

Version 3.0 Multi-Process Debugging 12-11

12.15.1 Window Process Debugging

A process that calls winopen() forks unless foreground() is called. To debug
such a process, try the following script.

set $pimode = 1 * ensure the child is added to the pool
set $promptonfork=2
* run up thru fork()
run
* assume we have stopped at the winopen() fork()
set $wpid = $lastchild * set the interesting process as the one commands apply to
active $wpid * now can "cont" the process, or set breakpoints, or ?

* * A script is a good place to set breakpoints, as breakpoints * set in the child are forgotten when you re-run the given * process. Remember that control-c (and the edge INTERRUPT * menu item) affect only dbx, not the child process we are
* continuing. Use "suspend" to halt the window process.

12.15.2 Compiex iviuitiple Process Debugging

To debug a multiple process, try the following script. This script assumes
you know ahead of time the sequence of operations of interest. You might
try using the record and unrecord commands to save an interactive session
which "got to the right point" as the basis for a script such as the one that
follows.

You can "continue" only one process. You can "resume" several processes
at a time with:

resume pgrp

Or, you can resume several processes to run simultaneously with the
commands in sequence. For example:

resume pid 100
resume pid 101

You can see you are stopped at a breakpoint only when you "wait" for a
process.

12-12 dbx Reference Manual IRI5-4D Series

(

(

(

Assume that you want to control all children:

set $pimode = 1
ensure that the child is added to the pool
set $promptonfork=2
run up thru fork()
run
assume we have stopped at the fork()
set $chldl = $lastchild
run to exec(), then assume fork is next
cont pid $chldl
cont pid $chldl
on fork note process id
set $chld2 = $lastchild
Set breakpoints in the program and so on.
Now can "cont" the process, or set breakpoints, or ?
Remember that control-c (and the edge INTERRUPT menu item)
affect only dbx, not the child process we are continuing.
Use "suspend pid <pid>" to halt process <pid>.
The script ends here. Begin interactive debugging.

Now assume that you want to control only some children:

set $pimode = 1
ensure that the child can be added to the pool
set $promptonfork=l
run up thru fork()
run
n
n answered "Add child to process pool (n if no)?"
For example, if this process is really a popen and
not interesting, continue executing the active process: * up through "interesting" fork.
cont
y
remember the pid
set $childl = $lastchild
run up to another fork()
cont pid $pidO
remember another child
set $child2 = $lastchild
Set breakpoints in various procs. Func names, variables,
etc. are evaluated in context of the process named.
stop at func7 pid $childl
stop at funcS pid $child2
and so on.
and so on. Now can "cont" a process, or set breakpoints,
or ? Remember that control-c (and the edge INTERRUPT menu
item) affect only dbx, not the child process we are
continuing. Use "suspend pid <pid>" to halt process <pid>.
The script ends here. Begin interactive debugging.

Version 3.0 Multi-Process Debugging 12-13

(

(

(

Appendix A: dbx Command
Summary

Table A-llists all commands (except for command line editing commands)
and gives each command's alias, syntax, and brief description. For more
information about a command, refer to the description of the command in
the main part of this manual.

Version 3.0 dbx Command SummaryA-1

Command Alias Syntax Select this command to:

I fregex Search ahead in the code for
the specified string.

? ?regex Search back in the code for
the specified string.

!string Specify a command from (lint history list.
!-int

active active fpid] List the active process; pid
is the process id number. If
no pid, list the currently
active process.

addpgrp addpgrp pid ... Add the process ids
specified to the group list.
Only processes in the
process pool can be added to
the group list.

addproc addprocpid Add specified process to the
pool of dbx controlled
processes.

alias alias [name List all existing aliases, or,
(argl, ... argn) if arg, define a new alias. ---"string"] (

assign a assign expl = Assign the specified
exp2 expression to a specified

program variable.

catch catch [signal] List all signals that dbx
catches, or, if arg, add a
new signal to the catch list.

ccall ccallfunc Call a function with given
(argl, ... argn) arguments.

cont c cont Continue executing a
cont toproc program after a breakpoint.
cont to line
contsignal

to line
contsignal
inproc

Table A·1. Command Summary
(

A-2 dbx Reference Manual IRI5-4D Series

Command Alias Syntax Select this command to:

conti conti signal Continue executing
conti to addr assembly code after a
conti inproc breakpoint
conti signal

to addr
conti signal
inproc

corefile corefile Display the name of the core
corefile core file; if the corefile is

currently used by dbx,
display program data. If
core, identify corefile name,
as in that core file for
program data.

delete d delete exp1, ... Delete the specified item
expn from the status list.

delete all

delpgrp delpgrp pid ... Delete the process ids
specified from the group list.

down down [up] Move down the specified
numberofactivationleve~

in the stack (default, one
level).

dump dumpproc Print variable information
dump. aboutproc. Print global

variable information for all
procedures (.).

edit edit [file] Call an editor from dbx.

examine addr addr/<cnt><mode> Print the contents of the
specified address or
disassemble the code for the
instruction at the specified
address.

file e file [file] Print the name of the current
file or specified file.

func f func Move to the specified
funcexp procedure (activation level)
funcproc or print the current

activation level.

Table A-1. (continued) Command Summary

Version 3.0 dbx Command Summary A-3

Command Alias Syntax Select this command to:

givenfile givenfile Set program to debug, as in
givenfile name nmning processes and read

in name's symbol table.

goto g goto line Go to the specified line.

help ? help Print a list of dbx (commands.

history h history Print a list of the previous
commands issued (default is
20).

ignore ignore signo.l List all signals that dbx does
not catch. or add specified
signol to ignore list.

kill kill [Pid...l Kill the active process(es).

list Ii list List the specified lines
list [exp:int] (default is 10).
list [exp]

next n next [int] Step over the specified
number of lines (default is
1). Does not step into
procedures.

nexti ni nexti [im] Step over the specified (number of machine
instructions (default is 1).
Does not step into
procedures.

playback pi playback input Replay commands saved
input file with the record input

command in a text file.

playback po playback output Replay dbx output saved
output file with the record output

command in a text file.

print P print expl, ... Print the value of the
expn specified expression.

printf pd printf "string" Print the value of the
expl expn specified expression. using

C string formatting.

printregs pr printregs Print all register values. (,
Table A-1. (continued) Command Summary

A-4 dbx Reference Manual IRIS-4D Series

Command Alias Syntax Select this command to:

quit q quit Exitdbx.

record ri record input Record all commands typed
input file to dbx.

record ro record output Record all dbx commands.
output file

resume resume Resume execution of the
resume signal program (send it signal),

and return immediately to
dbx.

return return [proc] Continue executing until the
procedure returns. If no
procedure specified, dbx
assumes the next procedure.

run run [argl...argn] Run your program.
[<;filel] [>file2]

rerun r rerun Run program again, using
[argl ... argn] the same arguments

[<;filel] [>file2] specified to the run
command.

set set For the existing dbx
setvar= exp variables and their values,

assign a value to a variable,
or define a new variable and
assign a value to it.

sh sh [shcmd] Call a shell from dbx or
execute a shell command.

showpgrp showpgrp Show the group process list
and the group breakpoint
list.

showproc showproc [pidlall] Show processes currently
available for debugging.
With no arguments, list the
processes under control.

Table A-1. (continued) Command Summary

Version 3.0 dbx Command Summary A-5

Command Alias Syntax Select this command to:

source source [file] Execute dbx commands
from the specifiedjile. IT no
file specified, dbx assumes
that you want the file
created with the record
input command. (

status status Print a list of currently set
breakpoints, record
commands and traces.

step s step lint] Step the specified number of
lines (default is 1). This
command steps into
procedures.

stepi si stepi lint] Step the specified number of
machine instructions
(default is 1). This
command steps into
procedures.

stop b stop [var] at Set a breakpoint at the
bp stop [var] at line specified point.

stop [var] inproc
stop [var] if exp ~

stop [var 1 at line t ifexp
stop [var] inproc
ifexp

stopi stopi [v~r] at addr Set a breakpoint in machine
stopi [var] inproc code at the specified point.
stopi [var] if exp
stopi [var] at addr
if exp

stopi [var] inproc
if exp

suspend suspend Suspend the active process
suspendpid or process pid if running. IT

it is not running, do nothing.

Table A-1. (continued) Command Summary

(

A-6 dbx Reference Manual IRIS-4D Series

Command Alias Syntax Select this command to:

syscall syscall Print list of system calls.

trace tr trace var Trace the specified variable.
trace var at line
trace var in proc
trace var at line
ifexp
trace var in proc
ifexp

tracei tracei var Trace the specified variable
tracei var at addr in the machine instruction.
tracei var in proc
tracei var at addr
ifexp

tracei var in proc
ifexp

unalias unalias aliasname Remove the specified alias.

unset unset var Unset a dbx variable.

up up [exp] Move the specified number
of activation levels up the
stack (default is 1).

use use [dirl dir2 ... Print a list of the source
dim] directories, or if directory

name given, use new
directories for the previous
list.

wait wait Wait for the process (any
waitall current process) to stop for

an event.

Table A-1. (continued) Command Summary

Version 3.0 dbxCommand Summary A-7

Command Alias Syntax Select this command to:

whatis whatisvar Print the type declaration for
the specified name.

when when [var] Execute the specified dbx
[if ap] commands during
{command-list} execution. e when [var] at line \

[ifap]
(command-list)

when [var] in
proc

[if exp]
{command-list}

where where Do a stack trace to show
current activation levels.

whereis whereis var Print all qualifications of the
specified variable name.

which which var Print the qualification of the
variable name currently in
use.

Table A-1. (continued) Command Summary ~~

(-

(

A-8 dbx Reference Manual IRI5-4D Series

Appendix 8: Sample Program

This program, anthrax.c, counts non-blank lines in a program .

• C Program: anthrax
#include <stdio.h>

struct line {

char string[256];

int length;

int linenumber;

};typedef struct line LINETYPE;

void printline();

main (argc, argYl

int argc;

char **argv;{

LINETYPE line1;

FILE *fd;

extern FILE *fopen () ;

extern char *fgets();

if (argc « 2)

fprintf (stderr, "Usage sam filenameO);

exit (1);

} /* if */

fd fopen (argv[1], "r");

if (fd == NULL) {

fprintf (stderr, "cannot open %sO, argv[1]);

exit (1) ;

Version 3.0 Sample Program B·1

} /* if */

/*loop through lines in a file and

/*call a routine to print*/

/*blank lines along with line numbers, line lengths*/

while (fgets (linel. string, sizeof (linel. string), fd) c-
! = NULL)

int i;

static curlinenumber = 0;

i = strlen(linel.string);

if (i == 1 && linel.string[O] == '0)

continue; /* don't count blank lines */

linel.length = i;

linel.linenumber = curlinenumber++;

printline(&linel);

/* while */

) /* main */

void print line (pline)

LINETYPE *pline;

int i; /*dummy var entered to demo whereis cmd*/

i = 0;

fprintf (stdout, "%3d. (%3d) %s",

pline->linenumber, pline->length, pline->string);

fflush (stdout);

} /* print line */

8-2 dbx Reference Manual IRIS-4D Series

(

(

Appendix C: Questions and
Problems

Here are some of the most commonly asked dbx questions (and the
answers):

Q: How do I pass arguments to my program when using dbx?

A: Use:

run <argl> <argN>
rerun <argl> <argN>

For example, if you are using the debugger, type:

run a 2.0 <data.in >res.out

To execute the same program in csh or the Bourne shell, type:

myprog 2 2.0 <data.in >ras.out

dbx does not understand redirection other than the simple fonn presented in
the example. It does not understand csh (>&) or Bourne shell (2) file)
redirection.

Version 3.0 Questions and Problems C-1

Q: What use is it to look at the registers? Is thisjor the user or jor hackers?

A: The registers are not usually of interest. Those interested in learning the
machine instruction architecture might want to examine the registers.

However, you might be interested in the machine instructions at the point of
a program fault. For this, you can do dissassembly. For example:

$pc-40/20i

prints 20 instructions disassembled, starting 10 instructions before the
current program counter.

Q: How do I add a child process to the process pool?

A: Use $promptonjork.

It is most useful to control a child process at the point of ajork or sproc. Do
this with:

$ prompt on fo rk=2

if the program does very few forks and you wish to control them all. Or set:

$promptonfork=l

if you only wish to control some of the process forks. Then rerun the given
process.

Since it is somewhat tedious to rerun and respecify the necessary data to get
to the "point of interest," try puting the needed commands in a script fine
and executing that via a playback input (Pi) command.

Note that in most cases, once a child process begins running on its own
(assuming $promptonjork=O, for example), it is not very useful to intercept
it. Nevertheless, you can intercept it and add it to the process pool by using
addproc. For example:

addproc 12345

C-2 dbx Reference Manual IRIS-4D Series

(!

(

()

Q: How do I look at the source of another Junction not in the current
source file?

A: Type:

fila filename

For example:

fila myfile.f

Then list, etc., will reference that file.

Caution: Many commands reset the current source file as a side effect. For
example, after doing "up" or "down," the current file will change.

You can also use June funcname, for example:

func myfunc

If myfunc is active on the current activation stack, myfunc will become the
current focus for the local variable and the current pc marker. Whether or
not myfunc is active, the file containing myfunc source is the current source
file for list commands, etc.

As explained previously, various commands change the source focus. The
command:

file

will print the current source focus.

Q: How do I display a value in hex, octal, binary?

A: For hex, use px. For octal, use po (currently, there is no method to print
binary).

For example:

px a
po b
printf "%00' ,b
printf \ '%xO' ,a

Version 3.0 Questions and Problems C-3

Q: I got the message segmentation violation core dumped,what
should I do with core?

A: dbx can tell you where you bombed out For example, suppose you have
a program named a.out that died in the library function strcmp.

Assuming the current directory contains a.out, core, and the source code of (
your program, type the IRIX command:

dbx a.out cora

The dbx command:

t

will show the stack traceback. And the dbx command:

w

will say" source is not available." This is true, since you don't have the
source to the library function strcmp available. The dbx command:

up

will move up one level in the activation stack. If you called strcmp directly (-
with an invalid argument, the dbx command:

w

will then show your source code with the call to strcmp marked with ">".

If strcmp was called by some other library routine, you may need to repeat
up until w prints source code from your source file.

C-4 dbx Reference Manual IRIS-4D Series

(

0: How do I find the address of a variable, array, procedure, or function?

A: You can use print or px to print the address. For example, suppose you
have a variable named x1.Type:

print 'xl

or

px 'xl

which will print the address of xI.

0: How do I remove a breakpoint once it is set?

A: Follow these steps:

1. Type status to get a list of stop (breakpoint), trace, and when
commands.

2. Type delete <N>, where N is the entry number in the status list. For
example:

delete 7
d 2

Version 3.0 Questions and Problems C-S

(

(

(

Index

/ command, 7-5
! command, 1-2, 5-3
$addrlmt, 6-5
$casesense , 4-10, 6-5
$charisunsigned, 6-5
$ctypenames, 6-5
$curevent, 6-5
$curline, 6-5
$curpc, 6-5
$datacache, 6-6
$defaultin, 6-6
$defaultout, 6-6
$editor, 6-6
$funcentrybylines, 6-6
$groupforktoo, 6-7
$hexchars, 6-7
$hexin, 6-7
$hexints, 6-7
$hexstrings, 6-7
$hide_anonymous_blocks, 6-8
$Iastchild, 12-3, 12-4, 6-8
$Iines variable, 5-3
$lines, 6-8
$Iistwindow, 6-8
$main, 6-9
$maxstrlen, 6-9
$mpyrogram, 6-9
$naptime, 6-9
$nextbreak command, 11-6
$nextbreak, 6-10
$octin, 6-11
$octints, 6-11
$page, 6-11
$pager, 6-11
$pagewidth, 6-11
$pagewindow, 6-11
$pid, 12-3, 6-11
$pidO, 12-4, 6-11
$pimode, 5-3, 6-11
$printdata, 6-12
$printwhilestep, 6-12

dbx Reference Manual

$printwide, 6-12
$print_exception_frame, 6-12
$prompt, 6-12
$promptonfork command, 3-2
$promptonfork, 12-7, 6-13
$regstyle, 6-13
$repeatmode , 6-13
$showbreakaddrs, 6-13
$stepinto command, 11-6
$stepintoali, 6-14
$tagfile, 6-14
$visiblemangled, 6-14
-g option, 3-1, 8-5
16-bit word, 11-7
32-bit word, 11-6
; separator, 5-4
? command, 1-2, 7-5

A
a (assign) command, 6-18
activation level, 10-5, 2-4
activation level,

down, 1-3
go up, 1-7

active command, 1-2,' 1-2, 12-5
active pid, 12-2
add a process, 12-4
add alias, 1-2
add child process, 3-2
add signal to ignore list, 1-4
addpgrp command, 1-2
addpgrp, 12-10
addproc command, 1-2, 12-4
addproc, 12-2
address of array, 3-5
address of variable, 3-5
alias command, 1-2, 6-15, 6-2
alias examples, 6-24

Index-1

alias, remove, 1-7
aliases,

create, 6-15
-predefined, 6-18

argument, pass, 3-1
array address, 3-5
assembly code breakpoint, 11-5
assign a value, 1-5
assign command, 1-2, 8-8
avoid common pitfalls, 2-7

B
b (stop at) command, 6-18
begin at specified line, 8-7
binary operators, 4-3
binary value, display, 3-3
bombed out, 3-4
Bourne shell redirection, 3-2
bp (stop in) command, 6-18
breakpoint, 9-8
breakpoint,

continue after, 8-8
remove, 3-5, 6-30
set, 1-6, 11-5

breakpoints, list, 1-6
built-in aliases, 6-15
built-in data types, 4-4

c
c (cont) command, 6-18
C language operators, 4-3
C string format, 1-4
C type-casts, 4-9
call a function, 1-2
call a shell, 1-5
call an editor, 1-3, 7-6
call from a program, 12-8
call,

interactive, 10-5, 9-8

Index-2

case sensitivity, 4-10
casts, 6-24
catch command, 1-2, 9-9
caught,

at call, 9-11
at return, 9-11

ccall command, 1-2, 10-5
change,

source view, 7-4
value of register, 8-8
value of variable, 8-8

chapter summary, 1-2
check status, 6-29
child process, 3-2
code and source don't match, 2-7
code missing, 2-7
code, disassemble, 3-2
command aliases, 6-15
command file, 3-2
command, execute, 1-8
command-list, 1-8
commands, record all, 1-5
comments, 4-5
compile a program, 3-1
conditional code, write, 9-9
confused listing, 2-7
constants, 4-4
constructor, 4-10
cont command, 1-2, 8-8
conti command, 1-3, 11-5
continue after breakpoint, 11-5, 8-8
continue execution, 1-2, 1-5
conventions, 1-3
core dump, 3-4
corefile command, 1-3, 3-6
count non-blank lines, 2-1
csh redirection, 3-2
current source file, 3-3
cursrcline, 6-5

Version 3.0

D
d (delete) command, 6-18
data types, 4-4
dbxinit file, 3-2
debug a new program, 2-6
debug,

a process group, 12-9
a program, 2-5
a simple program, 2-1
FORTRAN, 12-9
multi-processes, 12-11, 12-3

debugger operations, 4-3
decimal, 10-3
declarations, type, 7-7
define alias, 1-2
define new variable, 1-5
delete alias, 1-7
delete breakpoint, 3-5
delete command, 1-3, 6-2, 6-30
delete from status list, 1-3
delete,

a process, 12-5
alias, 6-16
status items. 6-30
variables, 6-15

delpgrp command, 1-3
delpgrp.12-10
delproc command, 12-5, 12-7
delproc, 12-2
destructor, 4-1 0
dir command, 7-3
directory, specify, 7-3
disassemble code, 11-6
disassembly, 3-2
display binary value, 3-3
display hex value, 3-3
display octal value, 3-3
do a stack trace, 1-8
documentation, 1-4
down command, 1-3, 10-3
dump command, 1-3, 10-5

dbx Reference Manual

E
e (file) command, 6-18
edit command, 1-3
editor, 7-6
end record session, 6-26
end dbx, 3-7
error, program, 3-2
escapes, 4-2
examine backward command, 11-6
examine command. 1-3
examine flow control, 2-6
examine forward command. 11-6
examine registers, 3-2
example of a program, 2-1
examples, alias, 6-24
exec a process, 12-8
execute another program, 12-8
execute assembly code, 1-3
execute command, 1-8
execute from a file, 1-6
execute program, 1-5
execute shell command, 1-5
execute single line, 11-5, 8-4
execution,

continue, 1-2, 1-5
exit dbx, 1-5
exit dbx, 3-7
expression, print value, 1-4
expressions, 4-3

F
f (func) command, 6-18
failure point location, 2-4
fault, program, 3-2
file command, 3-3, 7-4
find address, 3-5
fork, 12-3, 12-7
FORTRAN debugging, 12-9
FORTRAN operators, 4-3
free a process, 12-7
func command, 1-3, 3-3, 7-4

Index-3

function cali, interactive, 10-5
function, cali, 1-2

G
g (goto) command, 6-18
givenfile command, 1-4, 3-6
go to procedure, 7-4
goto command, 1-4, 8-7
group debugging, process, 12-9

H
h (history) command, 6-18
hardware registers, 4-6
hed,5-3
help command, 1-4
help function, 3-7
hex value, display, 3-3
hexadecimal, 10-3
history command, 5-3
history editor, 5-3
history list, 1-2, 1-4

if expression clause, 9-7
ignore command, 1-4, 9-9
ignore list, add signal, 1-4
ignored,

at call, 9-11
at return, 9-11

include file, 2-7
input constants, 4-4
input,

play back, 6-28
playback, 1-4
record, 1-5, 6-26

instructions, step, 1-6
interactive function call, 10-5, 9-8

Index-4

invoke editor, 1-3
invoke,

J

a shell, 6-29
an editor, 7-6
dbx,3-3

j (status) command, 6-19

K
keywords, 4-8
kill a process, 12-7
kill command, 1-4, 12-7
kill,12-2

L
leave dbx, 1-5
levels,

activation, 10-5, 2-4
Ii command, 6-19
line, step over, 1-4
lines,

count, 2-1
step, 1-6

linked list, 6-24
list active process, 1-2, 1-2
list breakpoints, 1-6
list command, 1-4,.7-5
list processes, 1-5
list signals caught, 1-2
list signals not caught, 1-4
list source directories, 1-7
list,

available processes, 12-4
source code, 7-4, 7-5

listing is confused, 2-7
locate the failure point, 2-4

Version 3.0

(

(

(

lower-case names, 4-10

M
machine code breakpoint, 1-6, 11-5
machine code, trace, 1-7
machine-level commands, 11-2
manual conventions, 1-3
memory, print contents, 11-6
missing code, 2-7
move down, 1-3
move in the stack, 10-3
move to a procedure, 7-4
move to procedure, 1-3
move up activation level, 1-7
mp FORTRAN, 12-9
mUlti-process debug commands, 12-2
mUlti-process debugging, 12-11, 12-3
multiple commands, 5-4

N
n (next) command, 6-19
next command, 1-4, 8-4
nextbreak command, 8-7
nexti command, 1-4; 11-5
ni (nexti) command, 6-19
no display of variables, 2-7
non-blank lines, count, 2-1

o
octal value, display, 3-3
octal, 10-3
on-line help, 3-7
options to dbx, 3-3
output,

play back, 6-29
playback, 1-4
record, 1-5, 6-27

dbx Reference Manual

overflow, 4-5
overloaded operator, 4-10

p
p (print) command, 6-19
pass argument, 3-1
pd (printf) command, 6-19
pgrp, clause, 12-10
pi (playback input) command, 6-19
pid clause, 12-3
pid, commands, 12-3
play back input, 6-28
play back output, 6-29
playback input command, 6-2
playback input, 1-4
playback output command, 6-2
playback output, 1-4
po (print var) command, 6-21
pointer, 4-10. 9-7
pool of processes, 12-3
pool, add to, 3-2
precedence, 4-3
predefined alias, 6-17
predefined variables, 6-5
print about proc, 1-3
print activation level, 1-3
print breakpoints, 1-6
print command, 1-4, 10-3, 3-5
print file name, 1-3
print global information, 1-3
print history, 1-4
print qualifications, 1-8
print source directories, 1-7
print type declaration, 1-8
print,

activation level, 10-5
byte in octal, 11-7
contents of memory, 11-6
register values, 10-4
symbolic names, 7-6
type declarations, 7-7

Index-5

word in decimal, 11-7 R
word in hexadecimal, 11-7 r (rerun) command, 6-21 (word in octal, 11-7 record command, 6-2, 6-25

printf command, 1-4, 10-3 record input, 1-5, 6-26
printing, 10-3 record output command, 6-27
printregs command, 1-4 record output, 1-5, 6-27
printwhilestep command, 8-5 redirection, 3-2
problems to avoid, 2-7 register values, 10-4
procedure, move to, 7-4 registers, 4-6, 8-8
process exec, 12-8 registers,
process pool, 12-7 examine, 3-2
process, print values. 1-4

add, 1-2, 12-4 relevant documentation, 1-4
child,3-2 remove alias, 1-7
delete, 12-5 remove breakpoint, 3-5
fork,12-7 remove,
free, 12-7 a process, 12-5
group debugging, 12-9 alias, 6-16
identification number, 12-3 breakpoint, 6-30

~ kill, 1~4, 12 .. 7 status items, 6-30 t list, 1-5, 12-4 variables, 6-15
pool,12-4 replay com mands, 1-4
resume suspended, 12-6 rerun command, 1-5, 3-1
select, 12-5 resume command, 1-5,12-6
suspend, 12-6 resume, 12-2
wait for resumed, 12-6 resume,
wait for, 12-10 after breakpoint, 11-5

program fault, 3-2 pgrp, 12-11
program, run, 1-5 suspended process, 12-6

resumed process, wait, 12-6
return command, 1-5
return to command processor, 12-6

Q ri (record input) command, 6-21
q (quit) command, 6-21 ro (record output) command, 6-21
qualify variable, 4-2 run command, 1-5, 3-1
quit command, 1-5 run shell, 6-29
quit dbx, 1-5 running process, wait for, 12-10

(quit dbx, 3-7
quotations, 4-2

Index-6 Version 3.0

s
S (next) command, 6-22
s (step) command, 6-22
sample program, 2-1
search ahead, 1-2
search back, 1-2
search, code, 7-5
segmentation violation, 3-4
select a process, 12-5
select right procedure, 9-6
set a breakpoint, 1-6
set breakpoint, 11-5
set command, 1-5, 6-15, 6-3
setting variables, 6-15
sh command, 6-3
shell,

execute command, 1-5
invoke, 6-29

showbreakaddrs command, 9-6
showpgrp command, 1-5
showpgrp, 12-10
showproc command, 1-5, 12-4
showproc, 12-2
Si (nexti) command, 6-22
si (stepi) command, 6-22
SIGNAL,8-8
signals, ignore, 1-4
single line execution, 11-5, 8-4
source (playback input) command,
6-23
source and code don't match, 2-7
source code,

list, 7-~ 7-5
source command, 1-6, 6-28, 6-3
source directories, print, 1-7
source directory, 7-3
source file, specify, 7-4
source not available, 3-4
source, look at, 3-3
source-level debugger, 2-4
specify,

line to start, 8-7
source directory, 7-3

dbx Reference Manual

source file, 7-4
sproc, 12-9
stack trace, 1-8, 10-3
stack traceback, 3-4
stack, move, 1 0-3
start another process, 12-7
start at specified line, 8-7
status com mand, 1-6, 6-29, 6-3
status,

check,6-29
delete, 6-30

step command, 1-6, 8-4
step over line(s). 1-4
step over machine instruction, 1-4
stepi command, 1-6, 11-5
stepintoall command, 8-5
stop command, 1-6, 9-8
stop process, 1-4
stop,

at signals, 9-9
at system calls, 9-11
currently running process, 12-3

stopi command, 1-6, 11-5
strcmp, 3-4
strings, 4-2
structures, 4-10
suspend a process, 12-6
suspend command, 1-6, 12-6
suspend, 12-3
suspended process, resume, 12-6
symbol table information, 3-1
symbolic names, 7-6
syscall command, 1-7,9-11
system call, stop at, 9-11

T
t (where) command. 6-23
terminate process, 12-7
trace command, 1-7, 9-8
trace variable, 11-6
trace,

Index-7

stack, 1-8, 10-3
traceback, stack, 3-4
tracei command, 1-7, 11-6
troubleshoot, 2-7
type declaration, print, 1-8
type declarations, print, 7-7
type-casts, 4-9

U
unalias command, 1-7, 6-16, 6-3
unary operators, 4-3
unrecord command, 6-26, 6-3
unset command, 1-7, 6-15, 6-3
up command, 1-7, 10-3
upper-case names, 4-10
use command, 1-7, 7-3
using this manual, 1-1

v
value, change. 8-8
values, print register, 10-4
variable address. 3-5
variable clause, 9-7
variable nam es , 4-10, 4-2
variable qualifications, 1-8
variable,

trace, 1-7, 11-6
unset, 1-7

variables won't display, 2-7
variables, 6-15, 8-8
variables, predefined, 6-5
view function's source. 3-3

Index-8

w
W (list lines of code), 6-23
wait command, 1-7, 12-6
wait for resumed process, 12-6
wait for running process, 12-10
wait, 12-2
waitall command. 12-10
waitall, 12-3
whatis command, 1-8, 7-7
when command, 1-8, 9-9
where command, 1-8, 10-3
whereis command, 1-8, 7-6
which command, 1-8, 7-6
wi (list assembly code), 6-23
window process debugging, 12-12
write conditional code, 9-9

Version 3.0

(

(

(

•
Date

Your name

Title

Department

Company

Address

Phone

Silicon Graphics, Inc.

COMMENTS

Manual title and version _____________________ _

Please list any errors, inaccuracies, or omissions you have found in this manual

Please list any suggestions you may have for improving this manual

~

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 45 MOUNTAIN VIEW, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Silicon Graphics, Inc.
Attention: Technical Publications
2011 Stierlin Road
Mountain View, CA 94043-1321

~ ~

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

