Tutorial-

Learning to
Debug with edge

FORTRAN Edition

%. SiliconGraphics

Computer Systems

Document number: 007-0904-020

/
/

Learning to
Debug with edge

FORTRAN Edition

Version 2.0

Document Number 007-0904-020

Technlcal Publicatlons: q

Amy B. W. Smith
Kevin B. Walsh
Beverly White
Diane Wilford

Engineering:
Greg Boyd
Jeff Doughty
Deb Ryan

Jim Terhorst

© Copyright 1988, Silicon Graphics, Inc. - All rights reserved

/
This document contains proprietary and confidential information of {)
Silicon Graphics, Inc., and is protected by Federal copyright law. The
contents of this document may not be disclosed to third parties, copied
or duplicated in any form, in whole or in part, without the express
written permission of Silicon Graphics, Inc.

U.S. Government Limited Rights

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (b) (2) of the Rights in Technical Data and Computer

Software clause at 52.227-7013. Contractor/manufacturer is Silicon
Graphics Inc., 2011 Stierlin Road, Mountain View, CA 94039-7311.

Learning to Debug with edge
FORTRAN Edition

Version 2.0

Document Number 007-0904-020

Silicon Graphics, Inc.
Mountain View, California

UNIX is a trademark of AT&T Bell Laboratories.

Contents

To the Reader

1. What is edge?
Preparing a Program for Use under edge
Using Makefile to Set Up the edge Tutorial
Bug #1 .
Bug #2 . .
Summary of Basic Commands .

2. More Elusive Bugs

Understanding Some Advanced Commands

Using the Advanced Commands
Bug #3
Bug #4

Summary of Advanced Commands

3. OnYourOwn . .
Using edge to Debug Graphlcs Programs
The Debugging Process .
Summary of edge Commands
Textual Commands .
Choices on the Command Menu .
Choices on the Pop-up Menu .
vi Search Commands ..
Where to Find Additional Information .

To the Reader

This tutorial is designed for FORTRAN programmers with little or no
experience using the Silicon Graphics, Inc. graphical debugger, edge. After
only one or two hours with this tutorial you will be able to use edge to
debug your programs more quickly and efficiently. You will learn:

» how to prepare a program for debugging under edge
« how to use the edge interface

e how to use both basic and advanced debugging commands to debug
sample programs

« general rules to help you debug your own programs

To use this tutorial you need to have a very basic understanding of UNIX
and the vi text editor. Read Getting Started with the IRIS-4D Series
Workstation if you need to learn or review this information.

—

1. What is edge?

edge is a window-based, graphical interface to dbx, a standard UNIX
debugger. You can use dbx to find bugs in your executable files, and if
those executable files are compiled using the -g compiler option, dbx can
relate the executable code to the source code. Specifically, dbx lets you:

e stop your program at specified points to check current values
e trace variables as they change throughout your program

« step through functions one line at a time

The edge interface to dbx consists of three independent windows: the
Command Window, the Source Window, and the User Window. You can
use the Command Window to issue dbx commands manually; you can use
the Source Window to view the source code as it executes; and you can use
the User Window to monitor the program input/output (standard in and
standard out) and error messages (standard error).

Because edge runs under the Silicon Graphics, Inc. window manager,
4Sight, it is not always necessary to type in dbx commands. The most
common dbx commands are mapped to menus in the Command Window
and the Source Window. The window manager also allows you to select
command input (e.g., program variables) via the mouse.

Another advantage of running edge under the 4Sight window manager is
that you can use edge to debug graphics programs that also run under the
4Sight window manager. See Chapter 3 for more information about using
edge with graphics programs.

Version 2.0 What is edge?

1

Preparing a Program for Use under edge

You do not need to make any changes to your source code to run the code
under edge. However, to take advantage of all the edge and dbx features,

you should compile the program using the -g compiler option.

The -g compiler option ensures that the final executable file contains an
expanded symbol table. Using this table, edge and dbx can relate lines of
machine code to lines of source code and display that source code as it
executes in the source window.

In addition, when preparing an executable for use under edge, you should

not optimize the code. Optimized code can be submitted to edge, however,
because optimization rearranges the machine code, following the execution
of such a program can be very difficult.

Source File Object File

@ symbol table

Executable File

debugging
information
Create your Compile using The compiler Your file is Your executable
source code as the debugging creates an ex- linked with file contains the
usual. flag (-g). panded symbol the debugging information that
table in your flag. the debugger

2

object file.

Learning to Debug with edge, FORTRAN Edition

needs.

IRIS-4D Series

e i

Using Makefile to Set Up the edge Tutorial

You will be working on a sample program called sort.f. During this session
you use six basic edge commands to eliminate two bugs. Your IRIS should
be booted and displaying the IRIS login: prompt. Log in as tutor, and
change directories so that your current working directory is
Jusrltutor/edgelfortran/src. Type:

cd /usr/tutor/edge/fortran/src

To set up the edge tutorial environment, type:

make

When the system prompt appears again, list the contents of this directory.

‘Type:

1ls

You see six file names: Makefile, names.in, scrub, sort.f, sort.h, and sort.m.
The program sort.f reads the input file names.in, sorts it, and puts the results
into an output file. To briefly look over sort.f, type:

more sort.f

Press <spacebar> to look at the next screenful; press <delete> to stop
viewing the program and return to the system prompt.

Note: If you find any bugs, do not try to fix them!

When you feel comfortable with the structure of sort.f, return to the system
prompt.

Version 2.0 What is edge? 3

The Makefile in this directory helps you do the tutorial at your own pace,
| and lets you easily restore the directory so someone else can start fresh with

il the tutorial.

If you need to stop before you complete the tutorial, you can save your work
and pick up where you left off later. To save your bug fixes, type:

make save

When you want to resume the tutorial, return to the
lusr/tutor/edgelfortran/src directory and type:

make restore

Finally, when you complete the tutorial, restore the directory so someone
else can do the tutorial. Type:

make done

Now you are ready to tackle the first bug.

4 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

e

Bug #1

2.

4,

Compile and link sort.fusing the edge flag, and name your executable
file sort.

£f77 -g sort.f -o sort

Run your program using the input file names.in, and put the sorted
results into a new output file called names.out.

sort names.in —-o names.out

You see this message:

sort: cant open input file named

sort couldn’t open names.in, and also couldn’t report its name. You

want to use edge to find the problem, so go into the edge environment.

edge sort

You see the three edge windows. They are described on the next page.

Version 2.0 What is edge?

5

|3 edge: Command Window &t e e i O
STATUS addproc__
rocess bUbb (Csh) =

Pracess 6999 (dbx) delproc

Process 6943 (csh) suspend

Process 6943 (news.ssrver) activate

debug_ =

dbx version 1,21

Copuright 1987 Silicon Graphics Inc.
Copyright 1987 MIPS Conputer Systems Inc.
Type "help' for help.

Reading symbolic infornation of ‘sort’ . . .
shouwproc all

HAIN:BS
(dbx) (dbx) #

outputfile = ' ' whara

trace
interrupt

[edge: Source Window: sort.F Sy

1 c

2 c

3 c sort.f - This progran does a quick sort of 1lts Input

4 c writing the sorted list to the named output

S5 c file. Each sort element comprises an enti =lon ot

6 c in both the input and the output., This prolill -

7 c uses the qsort() package of the C library. stop_in

8 c cont to

S c usage!

10 c sort [-1] -0 ofile ifile

11 c

12 c uhere

13 c ofile is the name of the output file.

14 c ifile is the namne of the input file.

15 c - is used if the case of characters

16 c is to be ignored (e.g. 'R’ == ’'a’

17 c

18 c

19 c //
20 c ﬁ)
21)
22 e
23

[T edge: User Window: sort & oot &)
S

The top window, the Command Window, contains a command menu, a
process list, and a dbx command processor. The top section of the
Command Window, the process list, lists all the processes associated
with your login. The lower section of the Command Window, the dbx
command processor, receives typed commands to edge, and runs all of
the standard dbx commands.

The middle window (the Source Window) lists the source code that you
are currently debugging. You can scroll through the source code by
placing your cursor over the ‘‘up’’ or ‘‘down’’ arrows of the scroll bar @
and clicking the left mouse button. S

6 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

You can also scroll text by placing the cursor on the elevator block of
the scroll bar, pressing and holding the left mouse button, and dragging
the cursor up or down. The Source Window also continues the
command menu started in the Command Window.

The bottom window (the User Window) displays the results you get
when you run the program (standard in, standard out, and standard

error).

To use the commands on a command menu, position the cursor over the
menu item and press the left mouse button. If the command requires an
object, you must highlight that object before you select the command.
To highlight an object (e.g., a variable in the source code or a process
listed in the top of the Command Window), position the cursor over the
start of object, press and hold the left mouse button, drag the cursor to
the end of the object, and release the left mouse button.

Move the edge window that
currently contains the cursor.

Gets the dbx pop-up menu
when the cursor is in any
edge window. Gets the
4Sight pop-menu when the
cursor isin any edge

title bar.

Select items from the
command menu, or
scroll text in the window
containing the cursor.

Look for the section of code where the input file is assigned. Scroll to
line 122.

Set a breakpoint at line 122 to make the program stop and display this
line when it reaches it. To set a breakpoint at a line of code, highlight
the line of code, then select ‘stop at’” from the command menu.

Version 2.0 What is edge?

7

7. Now run sortin edge. Type:

run names.in -0 names.out

In the Command Window you see this message:

Process 7995 (sort) started
[2] Process 7995 (sort) stopped at [MAIN:122 ,0x4003bc]

inputfile = curarg

‘Whenever a line of code that causes a program fault contains a variable,
you should check its value.

Check the value of curarg (current argument). Use the print command.

To use print, first highlight the variable that you want to print, then

select ‘print’ from the command menu. Highlight curarg by positioning

your cursor at the beginning of the word, pressing and holding the left

mouse button, then dragging the cursor over the rest of the word. When N
the entire word is highlighted, release the left button. Now use the left 9)
button to select ‘print’ from the command menu.

The value of curarg is ***’, a null string. Although it is possible that
curarg is supposed to be empty, it is also possible that is was never
initialized. Therefore, you should check to see whether it was
initialized.

Scroll back to where curarg should have been initialized, between lines
89 and 92. As you can see, curarg has not been initialized.

8 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

10.

11.

Edit the source file. To edit your file, position your cursor in any edge
window, and press and hold the right mouse button. You see the
following menu: |

....... "

attach

select

Move down the menu so that ‘edit’ is highlighted, then carefully slide
your cursor to the right. You see a sub-menu that contains only one
choice — ‘sort.f”. Make sure it is highlighted (your cursor should be on
top of it), then release the mouse button. |

FremE——

attach

select

You see a red outline, and the shape of your cursor has changed. Move
the cursor down to the lower left-hand corner of your screen, and press
and release the right mouse button. You have just created a new UNIX
shell that is running the vi text editor on your source file, sort,f. (When
your program consists of several source files, the ‘edit” sub-menu
contains all of them so you can access them easily.)

Tell vi to display line numbers. Move the cursor to vi window and type:
:set number

This step is very important for maintaining the integrity of this tutorial.
You must add temporary line numbers to your file so that you can edit it
exactly as this tutorial does. This way, the references to line numbers
throughout the tutorial will remain accurate.

Version 2.0 What is edge? 9

12. Edit the code so that lines 87-95 look like this:

87
88
89
90
91
92
93
94
95

argc = iargc()
do 100 i=1, argc
get the current argument

call getarg(i, curarg)

is it a switch?

13. Save your edits and exit from vi as usual. Type:

wqg

14. When you exit vi, the new shell disappears.

15. Exit from edge by selecting ‘quit’ from the command menu.

You have successfully eliminated the first bug.

10 Learning to Debug with edge, FORTRAN Edition

IRIS-4D Series

Bug #2

1. Recompile your program using the edge flag, then run it.

£f77 -g sort.f -o sort
sort -o names.out names.in

2. You see this message:

sorting .
7 records sorted from input file names.in
onto output file -o

It seems that the file was sorted, but the output file was named -o rather
than names.out. Go into the edge environment.

edge sort

3. It’s likely that there is a problem where the output file is assigned. Look
for this code in the Source Window by scrolling through the text using
the middle mouse button.

4. Set a breakpoint at the line in which the name of the output file is
assigned. Highlight the line of code (line 112) using the left mouse
button, then select ‘stop’ from the command menu.

5. Use the run command to run sort in edge.

run -o names.out names.in

Version 2.0 What is edge? 11

6. You see that line 112 contains the variable curarg. Check curarg’s
value by highlighting it using the left mouse button, then selecting
‘print’ from the command menu.

The value is -o. This is the argument that appears on the command line
one position before the desired output file, names.out. This means that
the dummy counter i has not been incremented properly. If you scroll
through this loop of code, see that you need to increment i past the -o
switch.

7. Edit sort f by placing the cursor in any edge window, pressing the right
mouse button, and selecting ‘sort.f” from the rollover menu that is
beneath the ‘edit’ choice.

8. Tell vi to display line numbers.

:set number

9. Change your code so that lines 106-112 look like this:

106 elseif (curarg(2:2) .eq. '‘o’) then

107 ¢ the output file name follows

108 /))
109 ¢ increment past the switch N r
110 call bump (i)

111

112 ¢ get the output file name

10. Save your changes and exit from vi:
Twqg

11. Exit from edge by selecting ‘quit’ from the command menu.

12. Recompile sort.f, and run it outside of the edge environment. Move the
cursor to the console window and type:

£f77 -g sort.f -o sort
sort -0 names.out names.in

«

12 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

e s

You have successfully debugged your program. Remember, if you want to
take a break at this point, you can save your work on the code by typing:

make save

Version 2.0 What is edge? 13

-an argument mean the argument is optional; angle brackets (<>)

Summary of Basic Commands

To give commands to edge you can type them at the prompt in the
Command Window, select them from the command menu, or select them
from the edge pop-up menu.

You learned two commands that you type. Square brackets ([]) surrounding

surrounding an argument mean it is mandatory.

o edge <executable filename>: Go into the edge environment.

e run [arguments]: Run the executable file with which you are currently
working.

You leamned three commands that you select from the command menu.

rerun
cont
step
next -
where }
interrupt *
sh

quit Exit from edge.

print Display the value of the highlighted variable.
print *
DX
stop at Set breakpoint at highlighted line.
stop in
cont to
edit
list

14 Learning to Debug with edge, FORTRAN Edition IRIS-4D Serles

You learned one command that you select from the pop-up menu.

attach
select

Version 2.0

Start up a UNIX shell that is
running vi on this file.

You will use these commands extensively in the next chapter, along with
several advanced commands, to help you track down more complex bugs.

What is edge?

15

(M

C
v

2. More Elusive Bugs

As you saw in Chapter 1, the basic commands are very useful and versatile.
However, at times your programs will demand more sophisticated
debugging tools. This chapter describes the advanced commands, and leads
you through a more complex debugging situation.

Understanding Some Advanced Commands

You use 14 new commands in this chapter. As in Chapter 1, most of the
commands are explained during the debugging session when you reach a
point where you need to use them. However, some of the commands require
more detailed explanations, so you will learn what they do now, and how to
use them during the session.

The trace command lets you track the value of a variable as it changes.
When you use trace, you must remember three important rules:

* You can trace only active variables. At any point during the execution of
a program, the program has access to a certain set of variables; these
variables are active at this point. Global variables are always active.
Local variables are active only when their routine either is being
executed, or is calling a routine that also has active variables. Such a
series of routines calling other routines is called a path of activity. When
you set a breakpoint using edge, the program stops at a certain point in its
execution where there is a set path of activity. This path starts at the
routine in which you have stopped, and extends back through the
intermediate routines to the line of the main program from which it all
originated. Any variable along this path is active, and therefore you can
trace it. (See the figure on the following page.)

Version 2.0 More Elusive Bugs 17

Local variables

Path of activity

if you are stopped

in funct_2. Variables
in funct_3 are not
active.

used by func- Main Program
tions called in
lines 1.3 4, 1 call funct_x funct_1 funct_2 funct_3
and 5 are not 2 call funct_1 var_x, var_y var_z var_Q
active when 3 call funct y call funct_2 call funct_3 doit
line 2 or the 4 call funct_z | | _
functions it 5 call funct_Q Path of activity
calls are being if you :re
executed. §toppe

< in funct_3.

e The syntax you use to give the trace command depends on your location
within the path of activity. If you are stopped in the routine rout_3 and
want to trace the variable var_x which is in rout_I, you must type trace
rout_1.var_x. If you are already in rout_I, justtype trace var_x.

o Always set a trace in the first executable line of code after the line that
assigns the new value to the variable. This is necessary because edge
displays the value of the variable before it executes the line at which you
set the trace.

The step and next commands let you execute and view each line
individually, effectively letting you step through your whole program.

step lets you go through your program in its logical order, one line at a time.
When you get to a line that calls a routine, the next line you will see is the
first line of that routine. When the routine ends, you return to the line of
code that called it.

next also lets you go through your program line by line, but it treats each
line, even a line that calls a routine, as a single event. So, when you reach a
line that calls a routine, the program executes it, but you don’t step through
the routine code and watch it happen. Rather, you see the next line of code
in the current routine and you can check the values that the other routine
returns.

Both step and next display the line of code before it is executed. To check
the value of a variable that is in the current line, execute step or next one
more time, and then print the variable.

18 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

£

7N
\

Using the Advanced Commands

If you used the make save command to take a break from the tutorial, you
can now pick up where you left off. You need to restore the files that you
edited earlier, and then recompile sort. Return to the
lusritutor/edgelfortran/src directory and type:

make restore
£f77 -g sort.f -o sort

Bug #3

1. Up to this point you have been working in the src directory. Since sort is
working, make a copy of sort, place this copy in the fortran directory,
and try it out there. Copy sort into fortran, and change directories so
that fortran is your current directory.

cp sort
cd

2. Sort the file names.in, and put the result into the file names.out. This
time try using the -i flag so sort will ignore letter case.

sort -i names.in -o names.out

You see this message:

sort: cant open input file named

Version 2.0 More Elusive Bugs 19

. It seems that using -i caused a problem, so go into the edge environment.

edge sort

You notice that the Source Window did not appear. This is because
edge can’t find your source code. edge assumes that source code and
libraries for your program are in the current working directory unless
you tell it otherwise. sort.fis still in the directory src while you are now
in fortran.

Tell edge which directories contain files that it needs to use.

use src

. Now that you can see your source code, search for the error message that

you saw when you ran sort. edge supports the vi string search
commands slash (/) and question mark (?). / searches forward through
your file; ? searches backwards. Search forward for the first occurrence
of cant open.

/cant open

. The error message receives a variable called inputfile. Use / to find the

line of code in which inputfile is initialized.

/inputfile
/
/

You find that inputfile is initialized in line 128. Set a breakpoint here by
highlighting line 128, then selecting ‘stop at’ from the command menu.

. Run the program in edge using the same flags as before.

run -i names.in -o names.out

20 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

9. Inthe User Window you see this message:

sort: cant open input file named

This shows you that something else is wrong. sort executed completely,
but didn’t stop at line 128. This means that it never looked at 128.
Look for the loop of code that processes the command line arguments by
using the middle mouse button to scroll through your source code.

You find that the variable curarg keeps track of the value of the current
argument (either a flag or a file name). Trace curarg as it changes
values. Be sure to set the trace at the first executable line after curarg is
assigned a new value, since trace displays the value of a line before it
executes the line. Atthe (dbx) prompt, type:

trace curarg at 96

‘ 10. Run the program again. When you have already run a program in edge,
| (™ you can easily run it again with the same arguments by using the rerun
N command. Select ‘rerun’ from the command menu. The cursor changes
:l shape so it now looks like the comer of a window. edge displays the

] tracing information in a special window that you create (Sweep out).

Version 2.0 More Elusive Bugs 21

11. To sweep out the Variable Display Window, position the cursor above
all of the edge windows, press and hold the right mouse button to set the
comer of the new window, drag the cursor diagonally to where you want
the opposite corner to appear, then release the button.

This is the Variable Display Window. You can scroll through this <
window just as you can scroll through the Source Window. In the "ﬁ
Variable Display Window, you see this message:

i

-

[2] curarg changed before [MAIN: line 5]:

new value = "-i
[2] curarg changed before [MAIN: line 96]:

old value "—i

new value "-o

curarg received some values, but didn’t receive the value of the input

file name. Check out the dummy counter { which determines the value

that curarg receives. Before you do this, find out which edge commands N
you have already set by using the status command. >

status

12. You see this list:

[2] stop at "sort.f": 128
[3] { ; trace curarg; } at "sort.f" 96

You should delete the curarg trace so it doesn’t clutter the i trace. When
you use the delete command, refer to the edge breakpoints and traces by
using their status numbers.

o

delete 3

22 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

13. Now trace the dummy counter i.

trace 1 at 96

14. Run the program by selecting ‘rerun’ from the command menu.

f\ 15. In the Variable Display Window, you see this message:

[3] sort.MAIN.i changed before [MAIN: line 96]:
new value = 1;

[3] sort.MAIN.i changed before [MAIN: line 96]:
old value = 1;

3;

new value

Notice that i skipped from 1 to 3. It seems that i is not being
incremented properly. Since sort didn’t work correctly when you used
the -i flag, scroll to the code that passes the dummy counter through the
-i case.

() You see that i is incremented once at the beginning of the loop, and

‘ again at the end of the loop. Usually you increment a dummy counter in
| the do statement at the beginning of the loop. Edit sort.f by placing the
cursor in any edge window, pressing the right mouse button, and
selecting ‘src/sort.f” from the rollover menu that is beneath the ‘edit’
choice.

16. Tell vi to add line numbers.

:set number

Version 2.0 More Elusive Bugs 23

17. Delete only these three lines.

103 ¢ bump the counter
104 call bump (i)
105

Your code should now look like this:

100 ¢ if (curarg(2:2) .eq. 'i’) then

101 ignorecase =1

102

103 elseif (curarg(2:2) .eq. 'o’) then
104 ¢ the output name follows

18. Save your changes and exit from vi.

twg

19. Exit from edge by selecting ‘quit’ from the command menu.

24 Learning to Debug with edge, FORTRAN Edition

IRIS-4D Series

\3‘@

e,
£ ~

Bug #4

Return to the src directory and recompile and run your program.

cd src
£f77 -g sort.f -o sort
sort -i names.in -0 names.out

The program seems to be working. Just to be positive, take a look at the
output file.

more names.out

The comparison doesn’t seem to work properly. sort is not ignoring the
case of the records. Use edge to find the problem.

edge sort

Look over the file names.in to make sure nothing has happened to it. To
view the contents of a file other than the one you are debugging, use the
file command.

file names.in

It seems to be intact, so return your source file to the Source Window.
To use file to view a source file in the Source Window, place the cursor
in any edge window, press the right mouse button, and select the source
file from the rollover menu that is beneath the ‘file’ choice. The ‘file’
choice lists all of the source files that are part of your program. In this
case, select ‘sort.f’.

The routine bsort actually does the sorting, so find this routine.

/bsort
/

Version 2.0 More Elusive Bugs 25

7. You find that bsort uses the results of the routine cmprec. Find this
routine.

/cmprec
/

/
/
/

8. Set a breakpoint in cmprec using the stop in command. When you use
stop in with a routine, it sets a breakpoint at the first executable line of
the routine.

stop in cmprec

9. Run the program in edge.

run -i names.in -o names.out

10. You see this message:

Process 8350 (sort) started
[2]Process 8350 (sort) stopped at [sort.cmprec:231 ,0x40080c]

if (ignorecase .ne. 0) then

Go through cmprec one step at a time. Select ‘step’ from the command
menu.

11. You see this message:

Process 8350 (sort) stopped at [sort.cmprec:235 ,0x400820]

tempbuf0 = lower (rec(index0))

If you take another step, you will enter the subroutine lower. Rather
than stepping through it, use next to skip the explicit tracing of lower.
Select ‘next’ from the command menu.

26 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

s

12.

13.

14.

15.

16.

17.

18.

Check to see if tempbufD contains the right value, that is, the first record
of the file names.in. Highlight tempbuf0 then select ‘print’ from the
command menu.

This doesn’t look correct. Check the first element of the array rec to see
what the record should have been. To do this you must be in the routine
lower, so rerun sort and step through cmprec into lower. Select ‘rerun’
from the command menu, then select ‘step’ twice from the command
menu.

Now check the value of rec(index0). Normally you could highlight this
variable then select ‘print’ from the command menu. However, dbx
doesn’t recognize parentheses, so you need to use square brackets
instead. Type:

print rec[indexO0]

If you compare this to the contents of tempbufD, it looks like lower is
lowercasing only the first letter and putting it into the buffer. You see in
the Source Window that the variable ¢ moves each letter of a record
from the buffer bufinput into the buffer result. islower checks the case
of each letter, and tolower lowercases any upper case letters that islower
finds. Trace c’s progress by checking its value at the end of the loop.

trace c¢ at 279

Now check the contents of the buffer bufinput to see which record is
about to be put into tempbuf. Highlight bufinput in line 266 and select
‘print’ from the command menu.

Tell edge to continue tracing by selecting ‘cont’ from the command
menu.

Use the right mouse button to sweep out the Variable Display Window.
The new value is an empty string. It seems that one of the subroutines is
returning unprintable characters. Check out the routine tolower. Rather
than search for the string tolower, you can use the list command. When
you use list with a routine name, edge takes you to the beginning of the
routine.

list tolower

Version 2.0 More Elusive Bugs 27

19.

20.

21.

22.

23.

24,

25.

26.

28

If tolower is not defined, then maybe it isn’t a routine after all. Use the
whatis command to get some information about it.

whatis tolower

Once again, it is not defined. Make sure whatis works by using it on
lower.

whatis lower

whatis can give you information about any variable, type, or routine that
is in your program. The only kind of structure it can’t describe is a
preprocessor directive, such as a macro; so, tolower may be a macro.
Find tolower and check it out.

/tolower

/

tolower is indeed a macro, and it looks correct. It expects a capital letter
from islower and lowercases it. Perhaps islower is passing something)
other than only capital letters. ‘Find islower. f w

/islower

/

You see that there is a mistake in the macro islower. The z should be a
capital letter. Edit sort.f by placing the cursor in any edge window,
pressing the right mouse button, and selecting ‘sort.f” from the rollover
menu that is beneath the ‘edit’ choice.

Add line numbers:

:set number

Change line 25 so that it looks like this:

25 #define islower(c) ((ce .ge. 'A’) .and. (c .le. 'Z")) / \N%
«Z

Save your edits and exit from vi.

twg

Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

27. Exit from edge by selecting ‘quit’ from the command menu.

28. Recompile your program, run it, and check the results. Move the cursor

to the console window and type:

£f77 -g sort.f -o sort

sort —-i names.in -o names.out

more names.out

You have completely debugged your program, and you are through using

this directory. Before you go on to the last chapter, restore the
lusr/tutor/edgelfortran/src directory to its original form so that other people

can use it. To do this, type:

make done

Version 2.0

More Elusive Bugs

29

Summary of Advanced Commands

You leamed seven commands that you type in the Command Window.
Square brackets ([]) surrounding an argument mean the argument is
optional; angle brackets (<>) surrounding an argument mean it is
mandatory.

e use <directory> [directory] Use these directories. They contain
source code or the libraries that the program uses.

o file <filename>: Make this file the current file and display it in the Source
Window. Type this command in the Command Window when the file
you want to display is not a source file.

o status: Show a list of all of the edge breakpoints and traces that are
currently set.

o delete <status number> [status number]: Delete this command.

e trace <variable> at <line number>: Print the value that this variable has
when it reaches this line number.

e stop in <function>: Stop the program when it enters this function, and
print the first executable line.

« whatis <object>: Display the definition of this object (function, type, or
variable).

You learned four commands that you select from the command menu.

addproc
delproc
suspend
activate
debug

rerun Rerun the last program using the same arguments.

cont Continue execution of a stopped program.

step Execute next line of code. Step down into functions.

next Execute next line of code. Do not step down into functions.

where
interrupt
sh

quit

30 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

S

You learned one command that you select from the pop-up menu.

attach
select
file§

You also learned these vi search commands:

Display this file in the Source Window
and make it the current file.

e /<string>: Search forward through the file for this string.

e ?<string>: Search backward through the file for this string.

This list and the list of basic commands on pages 13 and 14 cover most of
the edge commands you need to debug your programs. A complete list of
all edge commands that you learned in this tutorial appears in Chapter 3.

Version 2.0 More Elusive Bugs

31

3. On Your Own

At this point you know enough about edge to use it to debug your own non-
graphics programs. The first section of this chapter gives you some
information on debugging graphics programs using edge. The rest of the
chapter provides three useful references: a table that summarizes the
debugging process, a list of all edge commands that you learned in this
tutorial, and a list of sources that contain additional information about edge.

Using edge to Debug Graphics Programs

You can use all of the edge commands that you learned in this tutorial to
debug graphics programs. The one difference is that you must run graphics
programs in the foreground when you run them under edge. This section
describes two ways you can do this.

To use the first method, you must call the foreground routine in your
source code. At the beginning of the main routine, add this line:

CALL FOREGROUND ()

To use the second method, you must add a conditional statement to your
code so that when you use the -D flag when you compile, the compiler adds
the foreground call to your code. This way the call happens only when you
need it. At the beginning of your main routine, add this code:

ifdef DEBUG
CALL FOREGROUND ()
endif

If your program were called graphic f and you wanted to debug it, you
would compile it by typing:

£77 -g -DDEBUG graphic.f -o graphic -Zg

Version 2.0 On Your Own 33

The Debugging Process

This table illustrates a good, general purpose procedure for systematically

debugging your own programs. Commands that you
printed here in typewriter font.

type at a prompt are

Procedure edge Commands

1. Compile your program using the £77 -g
debugging flag.

2. Run your newly compiled program edge <filename>
in the edge environment. Tell use <dir> [dir]
edge which directories to use. run [arguments]

3. If the program does not fault, go select ‘where’

to step #4. If it does fault,
find where the fault occurred.

4. Look over the code and set break- highlight the code and select ‘stop’

points at various lines and stop in <routine>
routines to check values.

5. Rerun your program with the select ‘rerun’
same arguments.

6. When the program stops at each highlight a variable and select “print’
breakpoint, look at values, step select ‘step’
through code if necessary, and select ‘next’
continue running the program. select ‘cont’

7. If the value of a variable is not trace [mod].[rout].<var>
correct, trace it at the line after at <line number>
it is assigned its value. Remember
to specify its module and routine
if necessary.

8. Keep track of breakpoints and status
traces and delete those that you delete <status #> [status #]
no longer need.

9. When you find a bug, edit the code. select a file from the ‘edit’” sub-menu

10. Exit from edge and go back to select ‘quit’
step #1.

34 Learning to Debug with edge, FORTRAN Edition

IRIS-4D Series

Summary of edge Commands

This section contains all of the edge commands that you can issue by typing
in the Command Window, selecting from the command menu, or selecting
from the pop-up menu.

Textual Commands

delete <status number> [status number]. Delete the commands that have
these status numbers.

edge <executable filename>: Go into the edge environment.

file <filename>: Make this file the current file.

list [function]: Display the code for this function.

run [arguments]. Run the executable file with which you are working.

status: Show a list of all the edge breakpoints and traces that are
currently set.

stop in <function>: Stop the program when it enters this function, and
print the first executable line.

trace <variable> at <line number>:. Print the value that this variable has
when it reaches this line number.

use <directory> [directory] ...: Use these directories. They contain
source code or libraries that the program uses.

whatis <object>: Display the definition of this object (function, type, or
variable).

Version 2.0 On Your Own 35

Choices on the Command Menu

addproc

delproc

suspend

activate

debug

rerun

cont

step

next

where

interrupt

sh

quit

print

print *

pX

stop at

stop in

cont to

edit

list

36

Add highlighted process to pool of processes controlled by edge.

Delete highlighted process from pool of edge-controlled processes.

Suspend execution of highlighted process.
Select process from pool of processes controlled by debugger.
Add selected process to process pool and stop process.

Rerun the last program using the same arguments.
Continue execution of a stopped program.

Execute next line of code. Step down into functions.
Execute next line of code. Do not step down into functions.
Display details of the program fault.

Stop edge from completing the current command.

Start a new UNIX shell.

Exit from edge.

Display the value of the highlighted variable.

Display the value pointed to by the highlighted variable.
Display the hexedecimal value of the highlighted variable.
Set breakpoint at highlighted line.

Set break point at start of function containing highlight.
Continue execution of program until the highlighted line.
Edit source for highlighted function.

List source for highlighted function.

Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

i

|

O

~

—

Choices on the Pop-up Menu

attach

Start up a UNIX shell that is

select running vi on this file.

Display this file in the Source Window
and make it the current file.

attach
select §
file-§p

Version 2.0 On Your Own

vi Search Commands

e / <string>: Search forward through the file for this string.

e ? <string>: Search backward through the file for this string.

Where to Find Additional Information

The IRIS-4D Programmer’ s Reference Manual, section 1, contains two
relevant manual pages: edge(1) describes all of the edge commands and
command line options; dbx(1) describes all of the dbx commands and
command line options. The same manual pages are on-line. To view them,
type:

man edge
or

man dbx

38 Learning to Debug with edge, FORTRAN Edition IRIS-4D Series

