Mail Reference Manual

IRIS-40 Series

%1% SiliconGraphics
Computer Systems

Document number: 007-0880-010

Mail Reference Manual

Version 1.0

Document Number 007-0880-010

Technical Publications:

Gail Kesner
Amy B. W. Smith
Diane Wilford

Engineering:
Vernon Schryver

© Copyright 1987, Silicon Graphics, Inc.
All rights reserved.

This document contains proprietary information of Silicon Graphics,
Inc., and is protected by Federal copyright law. The information may
not be disclosed to third parties or copied or duplicated in any form, in
whole or in part, without prior written consent of Silicon Graphics, Inc.

The information in this document is subject to change without notice.

Mail Reference Manual
Version 1.0
Document Number 007-0880-010

Silicon Graphics, Inc.
Mountain View, California

UNIX is a trademark of AT&T Bell Laboratories.

Introduction

Network mail is supported on the IRIS-4D Series workstation. The Mail
Reference Manual is a collection of reference materials on network mail.
The manuals included here provide in-depth information on the mechanisms
of network mail.

Read this manual if you need information about tailoring your mail
environment. If you need information about sending mail or a brief
discussion about configuring your IRIS-4D Series workstation for mail, see
the chapter on Mail in the IRIS-4D Series Communications Guide.

The following documents are included:

e Mail Systems and Addressing in 4.2bsd

e Sendmail Installation and Operation Guide

o Sendmail — An Internetwork Mail Router

e The Domain Naming Convention for Internet User Applications

The first three documents were written by Eric Allman who has done
research in routing and internetwork mail. The last document is a Request
For Comment (RFC819) written by Zaw-Zing Su and Jon Postel.

Version 1.0 Introduction

Mail Systems

Mail Systems and Addressing in 4.2bsd

1. Definitions
1.1 Userand ldentmcatlon
1.2 Address .
1.3 Route

2. Designh Goals

3. Usage .
3.1 Address Formats .
3.2 Mail to Files and Programs .
3.3 Aliasing, Forwarding, Inclusion
3.3.1 Aliasing .
3.3.2 Forwarding .
3.3.3 Inclusion
3.4 Message Collection

4. The UUCP Problem
4.1 Defining the Namespace . .
4.2 Creating and Propagating the Software .
4.3 Building and Maintaining the Database .
4.4 Logical Structure

5. Comparison with Delivermail .

MS-1

MS-5
MS-5
MS-6
MS-6

MS-7

MS-11
MS-11
MS-12
MS-13
MS-13
MS-13
MS-14
MS-14

MS-15
MS-16
MS-16
MS-17
MS-18

MS-19

Mail Systems and Addressing in
4.2bsd

Eric Allman’

Britton-Lee, Inc.
1919 Addison Street, Suite 105.
Berkeley, California 94704

Abstract

Routing mail through a heterogeneous internet presents many new
problems. Among the worst of these is that of address mapping.
Historically, this has been handled on an ad hoc basis. However, this
approach has become unmanageable as internets grow.

Sendmail acts a unified *‘post office’” to which all mail can be submitted.
Address interpretation is controlled by a production system, which can parse
both old and new format addresses. The new format is ‘‘domain-based™’, a
flexible technique that can handle many common situations. Sendmail is
not intended to perform user interface functions.

Sendmail will replace deliver mail in the Berkeley 4.2 distribution. Several
major hosts are now or will soon be running sendmail. This change will
affect any users that route mail through a sendmail gateway. The changes
that will be user visible are emphasized.

The mail system to appear in 4.2bsd will contain a number of changes.
Most of these changes are based on the replacement of delivermail with a
new module called sendmail. Sendmail implements a general internetwork

+ A considerable part of this work was done while under the employ of the INGRES
Project at the University of California at Berkeley.

Version 1.0 MS-1

mail routing facility, featuring aliasing and forwarding, automatic routing to
network gateways, and flexible configuration. Of key interest to the mail
system user will be the changes in the network addressing structure.

In a simple network, each node has an address, and resources can be

identified with a host-resource pair; in particular, the mail system can refer

to users using a host-username pair. Host names and numbers have to be (
administered by a central authority, but usernames can be assigned locally

to each host.

In an internet, multiple networks with different characteristics and
managements must communicate. In particular, the syntax and semantics of
resource identification change. Certain special cases can be handled
trivially by ad hoc techniques, such as providing network names that appear
local to hosts on other networks, as with the Ethernet at Xerox PARC.
However, the general case is extremely complex. For example, some
networks require that the route the message takes be explicitly specified by
the sender, simplifying the database update problem since only adjacent
hosts must be entered into the system tables, while others use logical
addressing, where the sender specifies the location of the recipient but not
how to get there. Some networks use a left-associative syntax and others
use a right-associative syntax, causing ambiguity in mixed addresses. (

Internet standards seek to eliminate these problems. Initially, these
proposed expanding the address pairs to address triples, consisting of
{network, host, username} triples. Network numbers must be universally
agreed upon, and hosts can be assigned locally on each network. The user-
level presentation was changed to address domains, comprised of a local
resource identification and a hierarchical domain specification with a
common static root. The domain technique separates the issue of physical
versus logical addressing. For example, an address of the form
“‘eric@a.cc.berkeley.arpa’’ describes the logical organization of the address
space (user ‘‘eric’’ on host ‘‘a’’ in the Computer Center at Berkeley) but not
the physical networks used (for example, this could go over different
networks depending on whether ‘‘a’’ were on an ethernet or a store-and-
forward network).

Sendmail is intended to help bridge the gap between the totally ad hoc world

of networks that know nothing of each other and the clean, tightly-coupled (
world of unique network numbers. It can accept old arbitrary address -
syntaxes, resolving ambiguities using heuristics specified by the system
administrator, as well as domain-based addressing. It helps guide the

conversion of message formats between disparate networks. In short,

MS-2 Mail Systems and Addressing in 4.2bsd IRIS-4D Series

sendmail is designed to assist a graceful transition to consistent internetwork
addressing schemes.

Section 1 defines some of the terms frequently left fuzzy when working in
mail systems. Section 2 discusses the design goals for sendmail. In section
3, the new address formats and basic features of sendmail are described.
Section 4 discusses some of the special problems of the UUCP network.
The differences between sendmail and delivermail are presented in section
5.

DISCLAIMER: A number of examples in this paper use
names of actual people and organizations. This is not
intended to imply a commitment or even an intellectual
agreement on the part of these people or organizations. In
particular, Bell Telephone Laboratories (BTL), Digital
Equipment Corporation (DEC), Lawrence Berkeley
Laboratories (LBL), Britton-Lee Incorporated (BLI), and
the University of California at Berkeley are not committed
to any of these proposals at this time. Much of this paper
represents no more than the personal opinions of the author.

Version 1.0 MS-3

1. Definitions

There are four basic concepts that must be clearly distinguished when
dealing with mail systems: the user (or the user’s agent), the user’s
identification, the user’s address, and the route. These are distinguished
primarily by their position independence.

1.1 User and Ildentification

The user is the being (a person or program) that is creating or receiving a
message. An agent is an entity operating on behalf of the user— such as a
secretary who handles my mail. or a program that automatically returns a
message such as ‘‘I am at the UNICOM conference.’’

The identification is the tag that goes along with the particular user. This
tag is completely independent of location. For example, my identification is
the string ‘‘Eric Allman’’, and this identification does not change whether I
am located at U.C. Berkeley, at Britton-Lee, or at a scientific institute in
Austria.

Since the identification is frequently ambiguous (e.g., there are two ‘‘Robert
Henry’’s at Berkeley) it is common to add other disambiguating information
that is not strictly part of the identification (e.g., Robert ‘‘Code Generator’’
Henry versus Robert ‘‘System Administrator’’ Henry).

Version 1.0 MS-5

1.2 Address

The address specifies alocation. As I move around, my address changes.

For example, my address might change from eric@Berkeley.ARPA to
eric@bli.UUCP or allman@IIASA .Austria depending on my current

affiliation. (

However, an address is independent of the location of anyone else. That is,
my address remains the same to everyone who might be sending me mail.
For example, a person at MIT and a person at USC could both send to
eric@Berkeley. ARPA and have it arrive to the same mailbox.

Ideally a ‘‘white pages’’ service would be provided to map user
identifications into addresses (for example, see [Solomon81]). Currently
this is handled by passing around scraps of paper or by calling people on the
telephone to find out their address.

1.3 Route

While an address specifies where to find a mailbox, a route specifies zow to (
find the mailbox. Specifically, it specifies a path from sender to receiver.

As such, the route is potentially different for every pair of people in the

electronic universe.

Normally the route is hidden from the user by the software. However, some
networks put the burden of determining the route onto the sender. Although
this simplifies the software, it also greatly impairs the usability for most
users. The UUCP network is an example of such a network.

MS-6 Mail Systems and Addressing in 4.2bsd IRIS-4D Series

2. Design Goals

Design goals for sendmail® include:

1.

Compatibility with the existing mail programs, including Bell version 6
mail, Bell version 7 mail, Berkeley Mail [Shoens79], BerkNet mail
[Schmidt79], and hopefully UUCP mail [Nowitz78]. ARPANET mail
[Crocker82] was also required.

Reliability, in the sense of guaranteeing that every message is correctly
delivered or at least brought to the attention of a human for correct
disposal; no message should ever be completely lost. This goal was
considered essential because of the emphasis on mail in our
environment. It has turned out to be one of the hardest goals to satisfy,
especially in the face of the many anomalous message formats produced
by various ARPANET sites. For example, certain sites generate
improperly formated addresses, occasionally causing error-message
loops. Some hosts use blanks in names, causing problems with mail
programs that assume that an address is one word. The semantics of
some fields are interpreted slightly differently by different sites. In
summary, the obscure features of the ARPANET mail protocol really
are used and are difficult to support, but must be supported.

Existing software to do actual delivery should be used whenever
possible. This goal derives as much from political and practical
considerations as technical.

1. This section makes no distinction between delivermail and sendmail.

Version 1.0 MS-7

4. Easy expansion to fairly complex environments, including multiple
connections to a single network type (such as with multiple UUCP or
Ethemnets). This goal requires consideration of the contents of an
address as well as its syntax in order to determine which gateway to use.

5. Configuration information should not be compiled into the code. A R
single compiled program should be able to run as is at any site (barring (
such basic changes as the CPU type or the operating system). We have
found this seemingly unimportant goal to be critical in real life. Besides
the simple problems that occur when any program gets recompiled in a
different environment, many sites like to ‘‘fiddle’’ with anything that
they will be recompiling anyway.

6. Sendmail must be able to let various groups maintain their own mailing
lists, and let individuals specify their own forwarding, without
modifying the system alias file.

7. Each user should be able to specify which mailer to execute to process
mail being delivered for him. This feature allows users who are using
specialized mailers that use a different format to build their environment
without changing the system, and facilitates specialized functions (such
as returning an *‘I am on vacation’’ message). (

8. Network traffic should be minimized by batching addresses to a single
host where possible, without assistance from the user.

MS-8 Mall Systems and Addressing in 4.2bsd IRIS-4D Series

These goals motivated the architecture illustrated in Figure 1-1.

e ————— + e ———— + e +
| senderl | | sender?2 | | sender3 |
Fomm——————— + e + I +
| | I
B T I S e +
[
v v v
B kT T —— +
| sendmail |
e +
| [|
Fmm + e +
| I |
A2 v v
e ————— + N + o ——————— +
| mailerl | | mailer2 | | mailer3 |
e + e —— + e +

Figure 2-1. Sendmail System Structure

The user interacts with a mail generating and sending program. When the
mail is created, the generator calls sendmail, which routes the message to
the correct mailer(s). Since some of the senders may be network servers and
some of the mailers may be network clients, sendmail may be used as an
internet mail gateway.

Version 1.0 MS-9

3. Usage

3.1 Address Formats

Arguments may be flags or addresses. Flags set various processing options.
Following flag arguments, address arguments may be given. Addresses
follow the syntax in RFC822 [Crocker82] for ARPANET address formats.
In brief, the format is:

1. Anything in parentheses is thrown away (as a comment).

2. Anything in angle brackets (‘‘<>"") is preferred over anything else.
This rule implements the ARPANET standard that addresses of the form

user name <machine—address>

will send to the electronic ‘‘machine-address’’ rather than the human
‘‘user name.”’

3. Double quotes (") quote phrases; backslashes quote characters.
Backslashes are more powerful in that they will cause otherwise
equivalent phrases to compare differently — for example, user and
“‘user’’ are equivalent, but ‘“\user’’ is different from either of them.
This might be used to avoid normal aliasing or duplicate suppression
algorithms.

Version 1.0 MS-11

Parentheses, angle brackets, and double quotes must be properly balanced
and nested. The rewriting rules control remaining parsing.!

Although old style addresses are still accepted in most cases, the preferred

address format is based on ARPANET-style domain-based addresses

[Su82a]. These addresses are based on a hierarchical, logical decomposition (
of the address space. The addresses are hierarchical in a sense similar to the -
U.S. postal addresses: the messages may first be routed to the correct state,

with no initial consideration of the city or other addressing details. The

addresses are logical in that each step in the hierarchy corresponds to a set

of ‘‘naming authorities’’ rather than a physical network.

For example, the address:
eric@HostA.BigSite.ARPA

would first look up the domain BigSite in the namespace administrated by
ARPA. A query could then be sent to BigSite for interpretation of HostA.
Eventually the mail would arrive at HostA, which would then do final
delivery to user “‘eric’’.

(

3.2 Mail to Files and Programs

Files and programs are legitimate message recipients. Files provide archival
storage of messages, useful for project administration and history. Programs
are useful as recipients in a variety of situations, for example, to maintain a

public repository of systems messages (such as the Berkeley msgs program).

Any address passing through the initial parsing algorithm as a local address
(i.e, not appearing to be a valid address for another mailer) is scanned for
two special cases. If prefixed by a vertical bar (‘1)’ the rest of the address
is processed as a shell command. If the user name begins with a slash mark
(**\”) the name is used as a file name, instead of a login name.

1. Disclaimer: Some special processing is done after rewriting local names; see below. (

MS-12 Mail Systems and Addressing in 4.2bsd IRIS-4D Series

3.3 Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide.
Forwarding allows each user to reroute incoming mail destined for that
account. Inclusion directs sendmail to read a file for a list of addresses, and
is normally used in conjunction with aliasing,

3.3.1 Aliasing

Aliasing maps local addresses to address lists using a system-wide file. This
file is hashed to speed access. Only addresses that parse as local are allowed
as aliases; this guarantees a unique key (since there are no nicknames for the
local host).

3.3.2 Forwarding

After aliasing, if an recipient address specifies a local user sendmail
searches for a ‘“.forward”’ file in the recipient’s home directory. If it exists,
the message is not sent to that user, but rather to the list of addresses in that
file. Often this list will contain only one address, and the feature will be
used for network mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For
example, forwarding to:

"| /usr/local/newmail myname"

will use a different incoming mailer.

Version 1.0 MS-13

3.3.3 Inclusion

Inclusion is specified in RFC 733 [Crocker77] syntax:
:Include: pathname

An address of this form reads the file specified by pathname and sends to all (
users listed in that file.

The intent is not to support direct use of this feature, but rather to use this as
a subset of aliasing. For example, an alias of the form:

project: :include:/usr/project/userlist

is a method of letting a project maintain a mailing list without interaction
with the system administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :include:
list is changed.

3.4 Message Collection (

Once all recipient addresses are parsed and verified, the message is
collected. The message comes in two parts: a message header and a
message body, separated by a blank line. The body is an uninterpreted
sequence of text lines.

The header is formated as a series of lines of the form
field—-name: field-value

Field-value can be split across lines by starting the following lines with a
space or a tab. Some header fields have special internal meaning, and have
appropriate special processing. Other headers are simply passed through.
Some header fields may be added automatically, such as time stamps.

MS-14 Mail Systems and Addressing in 4.2bsd IRIS-4D Series

4. The UUCP Problem

Of particular interest is the UUCP network. The explicit routing used in the
UUCP environment causes a number of serious problems. First, giving out
an address is impossible without knowing the address of your potential
correspondent. This is typically handled by specifying the address relative
to some “‘well-known’’ host (e.g., ucbvax or decvax). Second, it is often
difficult to compute the set of addresses to reply to without some knowledge
of the topology of the network. Although it may be easy for a human being
to do this under many circumstances, a program does not have equally
sophisticated heuristics built in. Third, certain addresses will become
painfully and unnecessarily long, as when a message is routed through many
hosts in the USENET. And finally, certain ‘‘mixed domain’’ addresses are
impossible to parse unambiguously — e.g.,

decvax!ucbvax!1lbl-h!user@LBL-CSAM

might have many possible resolutions, depending on whether the message
was first routed to decvax or to LBL-CSAM.

To solve this problem, the UUCP syntax would have to be changed to use
addresses rather than routes. For example, the address decvax/ucbvax!eric
might be expressed as eric@ucbvax.UUCP (with the hop through decvax
implied). This address would itself be a domain-based address; for
example, an address might be of the form:

mark@d.cbosg.btl.UUCP

Hosts outside of Bell Telephone Laboratories would then only need to know
how to get to a designated BTL relay, and the BTL topology would only be
maintained inside Bell.

Version 1.0 MS-15

There are three major problems associated with turning UUCP addresses
into something reasonable: defining the namespace, creating and
propagating the necessary software, and building and maintaining the
database.

4.1 Defining the Namespace

Putting all UUCP hosts into a flat namespace (e.g., **...@host. UUCP’’) is
not practical for a number of reasons. First, with over 1600 sites already,
and (with the increasing availability of inexpensive microcomputers and
autodialers) several thousand more coming within a few years, the database
update problem is simply intractable if the namespace is flat. Second, there
are almost certainly name conflicts today. Third, as the number of sites
grow the names become ever less mnemonic.

It seems inevitable that there be some sort of naming authority for the set of
top level names in the UUCP domain, as unpleasant a possibility as that
may seem. It will simply not be possible to have one host resolving all
names. It may however be possible to handle this in a fashion similar to that
of assigning names of newsgroups in USENET. However, it will be
essential to encourage everyone to become subdomains of an existing
domain whenever possible — even though this will certainly bruise some
egos. For example, if a new host named blid were to be added to the UUCP
network, it would probably actually be addressed as d.bli. UUCP (i.e., as
host d in the pseudo-domain bli rather than as host blid in the UUCP
domain).

4.2 Creating and Propagating the Software

The software required to implement a consistent namespace is relatively
trivial. Two modules are needed, one to handle incoming mail and one to
handle outgoing mail.

The incoming module must be prepared to handle either old or new style
addresses. New-style addresses can be passed through unchanged. Old
style addresses must be turned into new style addresses where possible.

MS-16 Mall Systems and Addressing in 4.2bsd IRIS-4D Series

(

The outgoing module is slightly trickier. It must do a database lookup on
the recipient addresses (passed on the command line) to determine what
hosts to send the message to. If those hosts do not accept new-style
addresses, it must transform all addresses in the header of the message into
old style using the database lookup.

Both of these modules are straightforward except for the issue of modifying
the header. It seems prudent to choose one format for the message headers.
For a number of reasons, Berkeley has elected to use the ARPANET
protocols for message formats. However, this protocol is somewhat difficult
to parse.

Propagation is somewhat more difficult. There are a large number of hosts
connected to UUCP that will want to run completely standard systems (for
very good reasons). The strategy is not to convert the entire network — only
enough of it it alleviate the problem.

4.3 Building and Maintaining the Database

This is by far the most difficult problem. A prototype for this database
already exists, but it is maintained by hand and does not pretend to be
complete.

This problem will be reduced considerably if people choose to group their
hosts into subdomains. This would require a global update only when a new
top level domain joined the network. A message to a host in a subdomain
could simply be routed to a known domain gateway for further processing.
For example, the address eric@a.bli. UUCP might be routed to the bli
gateway for redistribution; new hosts could be added within BLI without
notifying the rest of the world. Of course, other hosts could be notified as an
efficiency measure.

There may be more than one domain gateway. A domain such as BTL, for
instance, might have a dozen gateways to the outside world; a non-BTL site
could choose the closest gateway. The only restriction would be that all
gateways maintain a consistent view of the domain they represent.

Version 1.0 MS-17

4.4 Logical Structure

Logically, domains are organized into a tree. There need not be a host

actually associated with each level in the tree — for example, there will be no
host associated with the name UUCP. Similarly, an organization might

group names together for administrative reasons; for example, the name (

CAD.research.BigCorp.UUCP

might not actually have a host representing research.

However, it may frequently be convenient to have a host or hosts that
“‘represent’’ a domain. For example, if a single host exists that represents
Berkeley, then mail from outside Berkeley can forward mail to that host for
further resolution without knowing Berkeley’s (rather volatile) topology.
This is not unlike the operation of the telephone network.

This may also be useful inside certain large domains. For example, at

Berkeley it may be presumed that most hosts know about other hosts inside

the Berkeley domain. But if they process an address that is unknown, they

can pass it “‘upstairs’’ for further examination. Thus as new hosts are added

only one host (the domain master) must be updated immediately; other hosts :
can be updated as convenient. (

Ideally this name resolution process would be performed by a name server
(e.g., [Su82b]) to avoid unnecessary copying of the message. However, in a
batch network such as UUCP this could result in unnecessary delays.

MS-18 Mail Systems and Addressing in 4.2bsd IRIS-4D Series

5. Comparison with Delivermail

Sendmail is an outgrowth of delivermail. The primary differences are:

1.

Configuration information is not compiled in. This change simplifies
many of the problems of moving to other machines. It also allows easy
debugging of new mailers.

Address parsing is more flexible. For example, delivermail only
supported one gateway to any network, whereas sendmail can be
sensitive to host names and reroute to different gateways.

Forwarding and :include: features eliminate the requirement that the
system alias file be writable by any user (or that an update program be
written, or that the system administration make all changes).

Sendmail supports message batching across networks when a message is
being sent to multiple recipients.

A mail queue is provided in sendmail. Mail that cannot be delivered
immediately but can potentially be delivered later is stored in this queue
for a later retry. The queue also provides a buffer against system
crashes; after the message has been collected it may be reliably
redelivered even if the system crashes during the initial delivery.

Sendmail uses the networking support provided by 4.2BSD to provide a
direct interface networks such as the ARPANET and/or Ethernet using
SMTP (the Simple Mail Transfer Protocol) over a TCP/IP connection.

Version 1.0 MS-19

REFERENCES

[Crocker77] Crocker, D. H., Vittal, J. J., Pogran, K. T., and Henderson, D.
A.Jr.,

Standard for the Format of ARPA Network Text Messages. RFC 733, NIC
41952. In [Feinler78]. November 1977. [Crocker82] Crocker, D. H.,

Standard for the Format of Arpa Internet Text Messages. RFC 822.
Network Information Center, SRI International, Menlo Park, California.
August 1982. [Feinler78] Feinler, E., and Postel, J. (eds.),

ARPANET Protocol Handbook. NIC 7104, Network Information Center,
SRI International, Menlo Park, California. 1978. [Nowitz78] Nowitz, D.
A.,and Lesk, M. E.,

A Dial-Up Network of UNIX Systems. Bell Laboratories. In UNIX
Programmer’s Manual, Seventh Edition, Volume 2. August, 1978.
[Schmidt79] Schmidt, E.,

An Introduction to the Berkeley Network. University of California,
Berkeley California. 1979. [Shoens79] Shoens, K.,

Mail Reference Manual. University of California, Berkeley. In UNIX
Programmer’s Manual, Seventh Edition, Volume 2C. December 1979.
[Solomon81] Solomon, M., Landweber, L., and Neuhengen, D.,

The Design of the CSNET Name Server. CS-DN-2. University of
Wisconsin, Madison. October 1981. [Su82a] Su, Zaw-Sing, and Postel,
Jon,

The Domain Naming Convention for Internet User Applications. RFC819.
Network Information Center, SRI International, Menlo Park, California.
August 1982. [Su82b] Su, Zaw-Sing,

A Distributed System for Internet Name Service. RFC830. Network
Information Center, SRI International, Menlo Park, California. October
1982.

MS-20 Mail Systems and Addressing in 4.2bsd IRIS-4D Series

Sendmail Guide

Sendmail Installation and Operation Guide SG-1

1. Basic Installation . . . e e e e e e e e SG-3
1.1 Off-The-Shelf Conflguratlons e e e e e e e e e SG-3
1.2 Installation Using the Makefile SG-4
1.3 InstallationbyHand o . . SG-4

1.3.1 libdlibsys.a. . . « « « « « « < o« .+ . SG-4
1.3.2 wsrlib/sendmail« .« .« . . SG-5
1.3.3 wsr/llib/sendmailef« o o o . . SG-5
1.3.4 /usrlucb/newaliases« .« . . SG-5
1.3.5 /usr/spool/mqueue SG-6
1.3.6 usr/lib/aliases+ « <« o . . SG-6
1.3.7 wsr/lib/sendmailfc « « « . . SG-6
1.3.8 Jetcic . . . e e e e e e e e e e SG-7
1.3.9 /usr/lib/sendmail. hf e e e e e e e e e e SG-7
1.3.10 wsr/lib/sendmail.st« < .+ . . SG-7
1.3.11 Jetc/syslog . . « « o o o o 0 o . SG-8
1.3.12 Musr/ucb/newaliases « .« « . . SG-8
1.3.18 wsriucb/mailq o o o o . . SG-8

2. Normal Operations . . . e e e e e e e e e SG-9
2.1 Quick Configuration Startup e e e e e e e e e SG-9
22 TheSystemlog « « « « « « .« . SG-9

221 Format o . o 0. . SG-9
222 levels o SG10
23 TheMailQueue « « « « . . . SG10
2.3.1 Printingthequeue SG10
2.3.2 Formatof queuefiles SG-10
2.3.3 Forcingthequeue SG12
2.4 The Alias Database . . . e v « « « « . SG13
2.4.1 Rebuilding the alias database e v e v« . . SG-14
2.4.2 Potentialproblems SG14

2.4.3 List owners

2.5 Per-User Forwarding (. forward Flles)

2.6 Special Header Lines
2.6.1 Return-Receipt-To: .
2.6.2 Errors-To: .
2.6.3 Apparently-To:

. Arguments .

3.1 Queue Interval .
3.2 Daemon Mode .
3.3 Forcing the Queue
3.4 Debugging

3.5 Trying a Different Conflguratlon Fnle .

3.6 Changing the Values of Options

. Tuning

4.1 Timeouts
411 Queue mterval
4.1.2 Read timeouts
4.1.3 Message timeouts

4.2 Delivery Mode .

4.3 Log Level .

4.4 LoadLimiting . .

4.5 File Modes
451 To suidor not to su1d'7
4.5.2 Temporary file modes .
4.5.3 Should my alias database be

writable? .

. The Whole Scoop on the Configuration File

5.1 The Syntax . .
5.1.1 R and S — rewntmg rules
51.2 — define macro
51.3 C and F — define classes
5.1.4 M — define mailer
5.1.5 H —define header .

SG-15
SG-15
SG-16
SG-16
SG-16
SG-16

SG-17
SG-17
SG-17
5G-18
SG-18
SG-19
SG-19

SG-21
SG-21
SG-21
SG-22
SG-22
SG-22
SG-23
SG-23
SG-24
5G-24
SG-24

SG-24

SG-27
SG-27
SG-27
5G-28
SG-28
SG-29
SG-30

5.1.6
517
5.1.8

O — set option .
T — define trusted users .
P — precedence definitions

5.2 The Semantics .

5.21
5.2.2
5.2.3
5.2.4
5.25
5.2.6
5.2.7

5.3 Building a Configuration File From Scratch

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

5.3.6

Special macros, condmonals
Special classes

The left hand side

The right hand side . .
Semantics of rewriting rule sets .
Mailer flags etc.

The “error” mailer

What you are tryingto do .
Philosophy

Relevant issues .

How to proceed .

Testing the rewriting rules — the -bt

flag . . .
Building mailer descnptlons

: Command Line Flags

: Configuration Options

: Mailer Flags .

: Other Configuration .

: Summary of Support Files .

SG-30
SG-30
SG-31
SG-31
SG-31
SG-34
SG-35
SG-35
SG-37
SG-38
SG-38
SG-38
SG-38
SG-39
SG-41
SG-42

SG-42
SG-43

SG-47

5G-49

SG-53

SG-57

SG-63

Sendmail Installation and Operation
Guide

Eric Allman
Britton-Lee, Inc.

Version 5.1
Abstract

Sendmail implements a general purpose internetwork mail routing facility
under the UNIX operating system. It is not tied to any one transport
protocol its function may be likened to a crossbar switch, relaying messages
from one domain into another. In the process, it can do a limited amount of
message header editing to put the message into a format that is appropriate
for the receiving domain. All of this is done under the control of a
configuration file.

Due to the requirements of flexibility for sendmail, the configuration file can
seem somewhat unapproachable. However, there are only a few basic
configurations for most sites, for which standard configuration files have
been supplied. Most other configurations can be built by adjusting an
existing configuration files incrementally.

Although sendmail is intended to run without the need for monitoring, it has
a number of features that may be used to monitor or adjust the operation
under unusual circumstances. These features are described.

Section one describes how to do a basic sendmail installation. Section two
explains the day-to-day information you should know to maintain your mail
system. If you have a relatively normal site, these two sections should
contain sufficient information for you to install sendmail and keep it happy.
Section three describes some parameters that may be safely tweaked.
Section four has information regarding the command line arguments.
Section five contains the nitty-gritty information about the configuration file.
This section is for masochists and people who must write their own

Version 1.0 SG-1

configuration file. The appendixes give a brief but detailed explanation of a
number of features not described in the rest of the paper.

The references in this paper are actually found in the companion paper
Sendmail — An Internetwork Mail Router. This other paper should be read
before this manual to gain a basic understanding of how the pieces fit

together. (

S$G-2 Sendmalil Installation and Operation Guide IRIS-4D Series

1. Basic Installation

There are two basic steps to installing sendmail. The hard part is to build
the configuration table. This is a file that sendmail reads when it starts up
that describes the mailers it knows about, how to parse addresses, how to
rewrite the message header, and the settings of various options. Although
the configuration table is quite complex, a configuration can usually be built
by adjusting an existing off-the-shelf configuration. The second part is
actually doing the installation, i.e., creating the necessary files, etc.

The remainder of this section will describe the installation of sendmail
assuming you can use one of the existing configurations and that the
standard installation parameters are acceptable. All pathnames and
examples are given from the root of the sendmail subtree.

1.1 Off-The-Shelf Configurations

The configuration files are all in the subdirectory cf of the sendmail
directory. The ones used at Berkeley are in m4 (1) format; files with names
ending .m4 are m4 include files, while files with names ending .mc are the
master files. Files with names ending .cf are the m4 processed versions of
the corresponding .mc file.

Two off the shelf configuration files are supplied to handle the basic cases:
cflarpaproto.cf for Arpanet (TCP) sites and ¢ffuucpproto.cf for UUCP sites.
These are not in m4 format. The file you need should be copied to a file
with the same name as your system, €.g.,

cp uucpproto.cf ucsfcgl.cf

This file is now ready for installation as /usr/lib/sendmail.cf.

Version 1.0 SG-3

1.2 Installation Using the Makefile

A makefile exists in the root of the sendmail directory that will do all of
these steps for a 4.2bsd system. It may have to be slightly tailored for use
on other systems.

Before using this makefile, you should already have created your (
configuration file and left it in the file cfisystem.cf where system is the name

of your system (i.e., what is returned by hostname (1)). If you do not have
hostname you can use the declaration HOST=system on the make (1)

command line. You should also examine the file md/config.m4 and change

the m4 macros there to reflect any libraries and compilation flags you may

need.

The basic installation procedure is to type:

make
make install

in the root directory of the sendmail distribution. This will make all binaries
and install them in the standard places. The second make command must be
executed as the superuser (root).

(

1.3 Installation by Hand

Along with building a configuration file, you will have to install the
sendmail startup into your UNIX system. If you are doing this installation
in conjunction with a regular Berkeley UNIX install, these steps will already
be complete. Many of these steps will have to be executed as the superuser
(root).

1.3.1 lib/libsys.a

The library in lib/libsys.a contains some routines that should in some sense
be part of the system library. These are the system logging routines and the (
new directory access routines (if required). If you are not running the new

SG-4 Sendmail Installation and Operation Guide IRIS-4D Series

4.2bsd directory code and do not have the compatibility routines installed in
your system library, you should execute the commands:

cd 1lib
make ndir

This will compile and install the 4.2 compatibility routines in the library.
You should then type:

cd 1lib # if required
make

This will recompile and fill the library.

1.3.2 /usr/lib/sendmail

The binary for sendmail is located in /usr/lib. There is a version available in
the source directory that is probably inadequate for your system. You
should plan on recompiling and installing the entire system:

cd src
rm —-f *.o
make

cp sendmail /usr/lib

1.3.3 /usr/lib/sendmail.cf

The configuration file that you created earlier should be installed in
lusr/lib/sendmail.cf:

cp cf/system.cf /usr/lib/sendmail.cf

1.3.4 /usr/ucb/newaliases

If you are running delivermail, it is critical that the newaliases command be
replaced. This can just be a link to sendmail:

m —f fusr/ucb/newaliases
In /usr/lib/sendmail fusrfucb/newaliases

Version 1.0 SG-5

1.3.5 /usr/spool/mqueue

The directory /usr/spool/mqueue should be created to hold the mail queue.
This directory should be mode 777 unless sendmail is run setuid, when
mqueue should be owned by the sendmail owner and mode 755.

1.3.6 /usr/lib/aliases

The system aliases are held in three files. The file /usr/lib/aliases is the
master copy. A sample is given in lib/aliases which includes some aliases
which must be defined:

cp lib/aliases /usr/lib/aliases

You should extend this file with any aliases that are apropos to your system.

Normally sendmail 1ooks at a version of these files maintained by the

dbm (3) routines. These are stored in /usr/lib/aliases.dir and
lusr/liblaliases.pag. These can initially be created as empty files, but they
will have to be initialized promptly. These should be mode 666 if you are
running a reasonably relaxed system:

cp /dev/null /usr/lib/aliases.dir
cp /dev/null /usr/lib/aliases.pag
chmod 666 /usr/lib/aliases.*
newaliases

1.3.7 /usr/lib/sendmail.fc

If you intend to install the frozen version of the configuration file (for quick
startup) you should create the file /usr/lib/sendmail fc and initialize it. This
step may be safely skipped.

cp /dev/null /usr/lib/sendmail.fc
/usr/lib/seridmail -bz

SG-6 Sendmail Installation and Operation Guide IRIS-4D Series

(

1.3.8 /etc/rc

It will be necessary to start up the sendmail daemon when your system
reboots. This daemon performs two functions: it listens on the SMTP
socket for connections (to receive mail from a remote system) and it
processes the queue periodically to insure that mail gets delivered when
hosts come up.

Add the following lines to /etc/rc (or /etc/rc.local as appropriate) in the area
where it is starting up the daemons:

if [—f /usr/lib/sendmail]; then
(cd /usr/spool/mqueue; rm -f [lnx]f¥)
/usr/lib/sendmail -bd -gq30m &
echo -n ' sendmail’ >/dev/console

fi

The cd and rm commands insure that all lock files have been removed;
extraneous lock files may be left around if the system goes down in the
middle of processing a message. The line that actually invokes sendmail
has two flags: —bd causes it to listen on the SMTP port, and —g30m causes it
to run the queue every half hour.

If you are not running a version of UNIX that supports Berkeley TCP/IP, do
not include the —bd flag.

1.3.9 /usr/lib/sendmail.hf

This is the help file used by the SMTP HELP command. It should be
copied from lib/sendmail.hf:

cp lib/sendmail.hf /usr/lib

1.3.10 /usr/lib/sendmail.st

If you wish to collect statistics about your mail traffic, you should create the
file /usr/lib/sendmail.st:

cp /dev/null /usr/lib/sendmail.st
chmod 666 /usr/lib/sendmail.st

Version 1.0 SG-7

This file does not grow. It is printed with the program aux/mailstats.

1.3.11 /etc/syslog

You may want to run the syslog program (to collect log information about
sendmail). This program normally resides in /etc/syslog, with support files
letclsyslog.conf and /etc/syslog.pid. The program is located in the aux
subdirectory of the sendmail distribution. The file /etc/syslog.conf describes
the file(s) that sendmail will log in. For a complete description of syslog,
see the manual page for syslog (3) (located in sendmail/doc on the
distribution).

1.3.12 /usr/ucb/newaliases

If sendmail is invoked as newaliases, it will simulate the —bi flag (i.e., will
rebuild the alias database; see below). This should be a link to
lusr/lib/sendmail.

1.3.13 /usr/ucb/mailq

If sendmail is invoked as mailg, it will simulate the —bp flag (i.., sendmail
will print the contents of the mail queue; see below). This should be a link
to /usr/lib/sendmail.

SG-8 Sendmail Installation and Operation Guide IRIS-4D Series

(

(

2. Normal Operations

2.1 Quick Configuration Startup

A fast version of the configuration file may be set up by using the —bz flag:
/usr/lib/sendmail —bz

This creates the file /usr/lib/sendmail fc (frozen configuration). This file is
an image of sendmail’s data space after reading in the configuration file. If
this file exists, it is used instead of /usr/lib/sendmail.cf sendmail fc must be
rebuilt manually every time sendmail.cf is changed.

The frozen configuration file will be ignored if a —C flag is specified or if
sendmail detects that it is out of date. However, the heuristics are not strong
so this should not be trusted.

2.2 The System Log

The system log is supported by the syslog (3) program.

2.2.1 Format

Each line in the system log consists of a timestamp, the name of the
machine that generated it (for logging from several machines over the
ethernet), the word sendmail:, and a message.

Version 1.0 SG-9

2.2.2 Levels

If you have syslog (3) or an equivalent installed, you will be able to do
logging. There is a large amount of information that can be logged. The log
is arranged as a succession of levels. At the lowest level only extremely
strange situations are logged. At the highest level, even the most mundane
and uninteresting events are recorded for posterity. As a convention, log
levels under ten are considered useful; log levels above ten are usually for
debugging purposes.

A complete description of the log levels is given in section 4.3.

2.3 The Mail Queue

The mail queue should be processed transparently. However, you may find
that manual intervention is sometimes necessary. For example, if a major
host is down for a period of time the queue may become clogged. Although
sendmail ought to recover gracefully when the host comes up, you may find
performance unacceptably bad in the meantime.

2.3.1 Printing the queue

The contents of the queue can be printed using the mailg command (or by
specifying the —bp flag to sendmail):

mailqg

This will produce a listing of the queue id’s, the size of the message, the
date the message entered the queue, and the sender and recipients.

2.3.2 Format of queue files

All queue files have the form x fAA99999 where AA99999 is the id for this
file and the x is a type. The types are:

d The data file. The message body (excluding the header) is kept in this
file.

SG-10 Sendmail Installation and Operation Guide IRIS-4D Series

(

The lock file. If this file exists, the job is currently being processed,
and a queue run will not process the file. For that reason, an
extraneous If file can cause a job to apparently disappear (it will not
even time out!).

This file is created when an id is being created. It is a separate file to
insure that no mail can ever be destroyed due to a race condition. It
should exist for no more than a few milliseconds at any given time.

The queue control file. This file contains the information necessary to
process the job.

A temporary file. These are an image of the ¢f file when it is being
rebuilt. It should be renamed to a qgf file very quickly.

A transcript file, existing during the life of a session showing
everything that happens during that session.

The qf file is structured as a series of lines each beginning with a code
letter. The lines are as follows:

The name of the data file. There may only be one of these lines.

A header definition. There may be any number of these lines. The
order is important: they represent the order in the final message.
These use the same syntax as header definitions in the configuration
file.

A recipient address. This will normally be completely aliased, but is
actually realiased when the job is processed. There will be one line
for each recipient.

The sender address. There may only be one of these lines.
The job creation time. This is used to compute when to time out the
job.

The current message priority. This is used to order the queue. Higher
numbers mean lower priorities. The priority increases as the message
sits in the queue. The initial priority depends on the message class
and the size of the message.

A message. This line is printed by the mailg command, and is
generally used to store status information. It can contain any text.

Version 1.0 SG-11

As an example, the following is a queue file sent to mckusick@calder and
wnyj.

DAfA13557
Seric
T404261372

P132 ('
Rmckusick@calder

Rwnj

H?D?date: 23-Oct-82 15:49:32-PDT (Sat)

H?F?from: eric (Eric Allman)

H?x?full-name: Eric Allman

Hsubject: this is an example message

Hmessage—id: <8209232249.13557@QUCBARPA.BERKELEY.ARPA>

Hreceived: by UCBARPA.BERKELEY.ARPA (3.227 [10/22/82])
id A13557; 23-Oct-82 15:49:32-PDT (Sat)

Hphone: (415) 548-3211

HTo: mckusick@calder, wnj

This shows the name of the data file, the person who sent the message, the
submission time (in seconds since January 1, 1970), the message pnorlty,
the message class, the recipients, and the headers for the message.

2.3.3 Forcing the queue (

Sendmail should run the queue automatically at intervals. The algorithm is
to read and sort the queue, and then to attempt to process all jobs in order.
When it attempts to run the job, sendmail first checks to see if the job is
locked. If so, it ignores the job.

There is no attempt to insure that only one queue processor exists at any
time, since there is no guarantee that a job cannot take forever to process.
Due to the locking algorithm, it is impossible for one job to freeze the
queue. However, an uncooperative recipient host or a program recipient that
never returns can accumulate many processes in your system.

Unfortunately, there is no way to resolve this without violating the protocol.

In some cases, you may find that a major host going down for a couple of
days may create a prohibitively large queue. This will result in sendmail
spending an inordinate amount of time sorting the queue. This situation can
be fixed by moving the queue to a temporary place and creating a new
queue. The old queue can be run later when the offending host returns to
service.

§G-12 Sendmail Installation and Operation Guide IRIS-4D Series

To do this, it is acceptable to move the entire queue directory:

cd /usr/spool
mv mqueue omqueue; mkdir mqueue; chmod 777 mqueue

You should then kill the existing daemon (since it will still be processing in
the old queue directory) and create a new daemon.

To run the old mail queue, run the following command:
/usr/lib/sendmail —oQ/usr/spool/omqueue —q

The —0Q flag specifies an alternate queue directory and the —q flag says to
just run every job in the queue. If you have a tendency toward voyeurism,
you can use the —v flag to watch what is going on.

When the queue is finally emptied, you can remove the directory:

rmdir /usr/spool/omqueue

2.4 The Alias Database

The alias database exists in two forms. One is a text form, maintained in the
file /usr/lib/aliases. The aliases are of the form

name: namel, name2, ...
Only local names may be aliased; e.g.,
eric@mit-xx: eric@berkeley

will not have the desired effect. Aliases may be continued by starting any
continuation lines with a space or a tab. Blank lines and lines beginning
with a sharp sign (#) are comments.

The second form is processed by the dbm (3X) library. This form is in the
files /usr/liblaliases.dir and /usr/lib/aliases pag. This is the form that
sendmail actually uses to resolve aliases. This technique is used to improve
performance.

Version 1.0 SG-13

2.4.1 Rebuilding the alias database

The DBM version of the database may be rebuilt explicitly by executing the
command

newaliases
This is equivalent to giving sendmail the —bi flag:

/usr/lib/sendmail —bi

If the D option is specified in the configuration, sendmail will rebuild the
alias database automatically if possible when it is out of date. The
conditions under which it will do this are:

1. The DBM version of the database is mode 666. -or-
2. Sendmail is running setuid to root.

Auto-rebuild can be dangerous on heavily loaded machines with large alias
files; if it might take more than five minutes to rebuild the database, there is
a chance that several processes will start the rebuild process simultaneously.

2.4.2 Potential problems

There are a number of problems that can occur with the alias database.
They all result from a sendmail process accessing the DBM version while it
is only partially built. This can happen under two circumstances: One
process accesses the database while another process is rebuilding it, or the
process rebuilding the database dies (due to being killed or a system crash)
before completing the rebuild.

Sendmail has two techniques to try to relieve these problems. First, it
ignores interrupts while rebuilding the database; this avoids the problem of
someone aborting the process leaving a partially rebuilt database. Second,
at the end of the rebuild it adds an alias of the form

@: @

S$G-14 Sendmail Installation and Operation Guide IRIS-4D Series

(

(

(which is not normally legal). Before sendmail will access the database, it
checks to insure that this entry exists. ! Sendmail will wait for this entry to
appear, at which point it will force a rebuild itself. 2

2.4.3 List owners

If an error occurs on sending to a certain address, say x , sendmail will look
for an alias of the form owner-x to receive the errors. This is typically
useful for a mailing list where the submitter of the list has no control over
the maintanence of the list itself; in this case the list maintainer would be
the owner of the list. For example:

unix-wizards: eric@Qucbarpa, wnj@monet, nosuchuser,
sam@matisse
owner-unix-wizards: ericQucbarpa

would cause eric@ucbarpa to get the error that will occur when someone
sends to unix-wizards due to the inclusion of nosuchuser on the list.

2.5 Per-User Forwarding (.forward Files)

As an alternative to the alias database, any user may put a file with the name
Jorward in his or her home directory. If this file exists, sendmail redirects
mail for that user to the list of addresses listed in the .forward file. For
example, if the home directory for user mckusick has a file with contents:

mckusick@Qernie
kirk@calder

then any mail arriving for mckusick will be redirected to the specified
accounts.

1. The a option is required in the configuration for this action to occur. This should
normally be specified unless you are running delivermail in parallel with sendmail.

2. Note: the D option must be specified in the configuration file for this operation to occur.
If the D option is not specified, a warning message is generated and sendmail continues.

Version 1.0 SG-15

2.6 Special Header Lines

Several header lines have special interpretations defined by the

configuration file. Others have interpretations built into sendmail that

cannot be changed without changing the code. These builtins are described :
here. (

2.6.1 Return-Receipt-To:

If this header is sent, a message will be sent to any specified addresses when
the final delivery is complete. if the mailer has the 1 flag (local delivery) set
in the mailer descriptor.

2.6.2 Errors-To:

If errors occur anywhere during processing, this header will cause error
messages to go to the listed addresses rather than to the sender. This is
intended for mailing lists.

2.6.3 Apparently-To:

If a message comes in with no recipients listed in the message (in a To:, Cc:,
or Bcc: line) then sendmail will add an Apparently-To: header line for any
recipients it is aware of. This is not put in as a standard recipient line to
warn any recipients that the list is not complete.

At least one recipient line is required under RFC 822.

SG-16 Sendmail Installation and Operation Guide IRIS-4D Series

3. Arguments

The complete list of arguments to sendmail is described in detail in
Appendix A. Some important arguments are described here.

3.1 Queue Interval

The amount of time between forking a process to run through the queue is
defined by the —q flag. If you run in mode f or a this can be relatively large,
since it will only be relevant when a host that was down comes back up. If
you run in q mode it should be relatively short, since it defines the
maximum amount of time that a message may sit in the queue.

3.2 Daemon Mode

If you allow incoming mail over an IPC connection, you should have a
daemon running. This should be set by your /etc/rc file using the —bd flag.
The —bd flag and the —q flag may be combined in one call:

/usr/lib/sendmail -bd —q30m

Version 1.0 SG-17

3.3 Forcing the Queue

In some cases you may find that the queue has gotten clogged for some
reason. You can force a queue run using the —q flag (with no value). Itis
entertaining to use the —v flag (verbose) when this is done to watch what
happens:

/usr/lib/sendmail —q —v

3.4 Debugging

There are a fairly large number of debug flags built into sendmail. Each
debug flag has a number and a level, where higher levels means to print out
more information. The convention is that levels greater than nine are
absurd, i.e., they print out so much information that you wouldn’t normally
want to see them except for debugging that particular piece of code. Debug
flags are set using the —d option; the syntax is:

debug-flag: —d debug-list

debug-list: debug-option [, debug-option]
debug-option: debug-range [. debug-level]
debug-range: integer | integer — integer
debug-level: integer

where spaces are for reading ease only. For example,

—-d12 Set flag 12 to level 1
—-dl12.3 Set flag 12 to level 3
-d3-17 Set flags 3 through 17 to level 1
—d3-17.4 Set flags 3 through 17 to level 4

For a complete list of the available debug flags you will have to look at the
code (they are too dynamic to keep this documentation up to date).

SG-18 Sendmail Installation and Operation Guide IRIS-4D Series

(

(

3.5 Trying a Different Configuration File

An alternative configuration file can be specified using the —C flag; for
example,

/usr/lib/sendmail —Ctest.cf

uses the configuration file fest.cf instead of the default lusr/lib/sendmail.cf.
If the —C flag has no value it defaults to sendmail.cf in the current directory.

3.6 Changing the Values of Options

Options can be overridden using the —o flag. For example,
/usr/lib/sendmail —oT2m

sets the T (timeout) option to two minutes for this run only.

Version 1.0 SG-19

4. Tuning

There are a number of configuration parameters you may want to change,
depending on the requirements of your site. Most of these are set using an
option in the configuration file. For example, the line OT3d sets option T to
the value 3d (three days).

4.1 Timeouts

All time intervals are set using a scaled syntax. For example, /0m
represents ten minutes, whereas 2430m represents two and a half hours. The
full set of scales is:

S seconds
m minutes
h hours

d days

w weeks

4.1.1 Queue interval

The argument to the —q flag specifies how often a subdaemon will run the
queue. This is typically set to between five minutes and one half hour.

Version 1.0 SG-21

4.1.2 Read timeouts

It is possible to time out when reading the standard input or when reading

from a remote SMTP server. Technically, this is not acceptable within the
published protocols. However, it might be appropriate to set it to something

large in certain environments (such as an hour). This will reduce the chance (
of large numbers of idle daemons piling up on your system. This timeout is

set using the r option in the configuration file.

4.1.3 Message timeouts

After sitting in the queue for a few days, a message will time out. This is to
insure that at least the sender is aware of the inability to send a message.
The timeout is typically set to three days. This timeout is set using the T
option in the configuration file.

The time of submission is set in the queue, rather than the amount of time

left until timeout. As a result, you can flush messages that have been

hanging for a short period by running the queue with a short message

timeout. For example, (

/usr/lib/sendmail —oTld —q -

will run the queue and flush anything that is one day old.

4.2 Delivery Mode

There are a number of delivery modes that sendmail can operate in, set by
the d configuration option. These modes specify how quickly mail will be
delivered. Legal modes are:

i deliver interactively (synchronously)
b deliver in background (asynchronously) (
q queue only (don’t deliver)

S$G-22 Sendmall Installation and Operation Guide IRIS-4D Serles

There are tradeoffs. Mode i passes the maximum amount of information to
the sender, but is hardly ever necessary. Mode ¢ puts the minimum load on
your machine, but means that delivery may be delayed for up to the queue
interval. Mode b is probably a good compromise. However, this mode can
cause large numbers of processes if you have a mailer that takes a long time
to deliver a message.

4.3 Log Level

The level of logging can be set for sendmail. The default using a standard
configuration table is level 9. The levels are as follows:

0] No logging.

1 Major problems only.

2 Message collections and failed deliveries.

3 Successful deliveries.

4 Messages being defered (due to a host being down, etc.).

5 Normal message queueups.

6 Unusual but benign incidents, e.g., trying to process a locked queue
file.

9 Log internal queue id to external message id mappings. This can be

useful for tracing a message as it travels between several hosts.
12 Several messages that are basically only of interest when debugging.

16 Verbose information regarding the queue.

4.4 Load Limiting

Sendmail can be asked to queue (but not deliver) mail if the system load
average gets too high using the x option. When the load average exceeds
the value of the x option, the delivery mode is set to q (queue only) until the
load drops.

Version 1.0 SG-23

For drastic cases, the X option defines a load average at which sendmail will
refuse to connect network connections. Locally generated mail (including
incoming UUCP mail) is still accepted.

4.5 File Modes (

There are a number of files that may have a number of modes. The modes
depend on what functionality you want and the level of security you require.

4.5.1 To suid or not to suid?

Sendmail can safely be made setuid to root. At the point where it is about to
exec (2) a mailer, it checks to see if the userid is zero; if so, it resets the
userid and groupid to a default (set by the u and g options). (This can be
overridden by setting the S flag to the mailer for mailers that are trusted and
must be called as root.) However, this will cause mail processing to be
accounted (using sa (8)) to root rather than to the user sending the mail.

(

4.5.2 Temporary file modes

The mode of all temporary files that sendmail creates is determined by the F
option. Reasonable values for this option are 0600 and 0644. If the more
permissive mode is selected, it will not be necessary to run sendmail as root
at all (even when running the queue).

4.5.3 Should my alias database be writable?

At Berkeley we have the alias database (/usr/lib/aliases*) mode 666. There

are some dangers inherent in this approach: any user can add him-/her-self

to any list, or can steal any other user’s mail. However, we have found

users to be basically trustworthy, and the cost of having a read-only database (
greater than the expense of finding and eradicating the rare nasty person.

The database that sendmail actually used is represented by the two files
aliases.dir and aliases.pag (both in /usr/lib). The mode on these files should

SG-24 Sendmail Installation and Operation Guide IRIS-4D Series

match the mode on /usr/lib/aliases. If aliases is writable and the DBM files
(aliases.dir and aliases.pag) are not, users will be unable to reflect their
desired changes through to the actual database. However, if aliases is read-
only and the DBM files are writable, a slightly sophisticated user can
arrange to steal mail anyway.

If your DBM files are not writable by the world or you do not have auto-
rebuild enabled (with the D option), then you must be careful to reconstruct
the alias database each time you change the text version:

newaliases

If this step is ignored or forgotten any intended changes will also be ignored
or forgotten.

Version 1.0 SG-25

5. The Whole Scoop on the
Configuration File

This section describes the configuration file in detail, including hints on how
to write one of your own if you have to.

There is one point that should be made clear immediately: the syntax of the
configuration file is designed to be reasonably easy to parse, since this is
done every time sendmail starts up, rather than easy for a human to read or
write. On the ‘‘future project’’ list is a configuration-file compiler.

An overview of the configuration file is given first, followed by details of
the semantics.

5.1 The Syntax

The configuration file is organized as a series of lines, each of which begins
with a single character defining the semantics for the rest of the line. Lines
beginning with a space or a tab are continuation lines (although the
semantics are not well defined in many places). Blank lines and lines
beginning with a sharp symbol (‘#’) are comments.

5.1.1 R and S — rewriting rules

The core of address parsing are the rewriting rules. These are an ordered
production system. Sendmail scans through the set of rewriting rules

looking for a match on the left hand side (LHS) of the rule. When a rule
matches, the address is replaced by the right hand side (RHS) of the rule.

Version 1.0 SG-27

There are several sets of rewriting rules. Some of the rewriting sets are used
internally and must have specific semantics. Other rewriting sets do not
have specifically assigned semantics, and may be referenced by the mailer
definitions or by other rewriting sets.

The syntax of these two commands are:
Sn

Sets the current ruleset being collected to #. If you begin a ruleset more
than once it deletes the old definition.

Rihs rhs comments

The fields must be separated by at least one tab character; there may be
embedded spaces in the fields. The lks is a pattern that is applied to the
input. If it matches, the input is rewritten to the rhs. The comments are
ignored.

5.1.2 D — define macro

Macros are named with a single character. These may be selected from the
entire ASCII set, but user-defined macros should be selected from the set of
upper case letters only. Lower case letters and special symbols are used
internally.

The syntax for macro definitions is:

Dxval

where x is the name of the macro and val is the value it should have.
Macros can be interpolated in most places using the escape sequence $x.

5.1.3 C and F — define classes

Classes of words may be defined to match on the left hand side of rewriting
rules. For example a class of all local names for this site might be created
so that attempts to send to oneself can be eliminated. These can either be
defined directly in the configuration file or read in from another file. Classes
may be given names from the set of upper case letters. Lower case letters
and special characters are reserved for system use.

S§G-28 Sendmail Installation and Operation Guide IRIS-4D Series

The syntax is:

C wordl word2...
F file [format]

The first form defines the class ¢ to match any of the named words. Itis
permissible to split them among multiple lines; for example, the two forms:

CHmonet ucbmonet
and

CHmonet
CHucbmonet

are equivalent. The second form reads the elements of the class ¢ from the
named file; the format is a scanf(3) pattern that should produce a single
string.

5.1.4 M — define mailer

Programs and interfaces to mailers are defined in this line. The format is:
Mnrame,{field=value}*

where name is the name of the mailer (used internally only) and the
field=name pairs define attributes of the mailer. Fields are:

Path The pathname of the mailer

Flags Special flags for this mailer

Sender A rewriting set for sender addresses
Recipient A rewriting set for recipient addresses

Argv An argument vector to pass to this mailer
Eol The end-of-line string for this mailer
Maxsize The maximum message length to this mailer

Only the first character of the field name is checked.

Version 1.0 SG-29

5.1.5 H — define header

The format of the header lines that sendmail inserts into the message are
defined by the H line. The syntax of this line is:

H [?mflags?] hname: htemplate

Continuation lines in this spec are reflected directly into the outgoing
message. The htemplate is macro expanded before insertion into the
message. If the mflags (surrounded by question marks) are specified, at least
one of the specified flags must be stated in the mailer definition for this
header to be automatically output. If one of these headers is in the input it is
reflected to the output regardless of these flags.

Some headers have special semantics that will be described below.

5.1.6 O — set option

There are a number of random options that can be set from a configuration
file. Options are represented by single characters. The syntax of this line is:

Qovalue

This sets option o to be value. Depending on the option, value may be a
string, an integer, a boolean (with legal values ¢, T, f, or F; the default is
TRUE), or a time interval.

5.1.7 T — define trusted users

Trusted users are those users who are permitted to override the sender
address using the —f flag. These typically are root, uucp, and network, but
on some users it may be convenient to extend this list to include other users,
perhaps to support a separate UUCP login for each host. The syntax of this
line is:

Tuserl user? ...

There may be more than one of these lines.

SG-30 Sendmail Installation and Operation Guide IRIS-4D Series

(

5.1.8 P — precedence definitions

Values for the ‘‘Precedence:”’ field may be defined using the P control line.
The syntax of this field is:

Pname=num

When the name is found in a ‘‘Precedence:’’ field, the message class is set
to num. Higher numbers mean higher precedence. Numbers less than zero
have the special property that error messages will not be returned. The
default precedence is zero. For example, our list of precedences is:

Pfirst-class=0
Pspecial-delivery=100
Pjunk=-100

5.2 The Semantics

This section describes the semantics of the configuration file.

5.2.1 Special macros, conditionals

Macros are interpolated using the construct $x, where x is the name of the
macro to be interpolated. In particular, lower case letters are reserved to
have special semantics, used to pass information in or out of sendmail, and
some special characters are reserved to provide conditionals, etc.

Version 1.0 SG-31

The following macros must be defined to transmit information into
sendmail.

[The SMTP entry message

i The official domain name for this site

1 The format of the UNIX from line (
n The name of the daemon (for error messages)

o The set of operators in addresses

q Default format of sender address

The $e macro is printed out when SMTP starts up. The first word must be

the $j macro. The $j macro should be in RFC821 format. The $1 and $n

macros can be considered constants except under terribly unusual

circumstances. The $o macro consists of a list of characters which will be
considered tokens and which will separate tokens when doing parsing. For
example, if » were in the $0 macro, then the input address would be scanned

as three tokens: add, r, and ess. Finally, the $q macro specifies how an

address should appear in a message when it is defaulted. For example, on

our system these definitions are: (

De$j Sendmail $v ready at $b
DnMAILER-DAEMON

D1From $g §d

Do.:%Q@! "=/

DgSg$?x ($x)$.

D3S$H. $D

An acceptable altemative for the $q macro is $7x$x $.<$g>. These
correspond to the following two formats:

eric@Berkeley (Eric Allman)
Eric Allman <eric@Berkeley>

$G-32 Sendmall Installation and Operation Guide IRIS-4D Series

Some macros are defined by sendmail for interpolation into argv’s for
mailers or for other contexts. These macros are:

a The origination date in Arpanet format

b The current date in Arpanet format

c The hop count

d The date in UNIX (ctime) format

f The sender (from) address

g The sender address relative to the recipient
h The recipient host

i The queue id

p Sendmail’s pid

r Protocol used

s Sender’s host name

t A numeric representation of the current time
u The recipient user

v The version number of sendmail

w The hostname of this site

X The full name of the sender

z The home directory of the recipient

There are three types of dates that can be used. The $a and $b macros are in
Arpanet format; $a is the time as extracted from the ‘‘Date:’’ line of the
message (if there was one), and $b is the current date and time (used for
postmarks). If no “‘Date:’’ line is found in the incoming message, $a is set
to the current time also. The $d macro is equivalent to the $a macro in
UNIX (ctime) format.

The $f macro is the id of the sender as originally determined; when mailing
to a specific host the $g macro is set to the address of the sender relative to

the recipient. For example, if I send to bollard@matisse from the machine
ucbarpa the $f macro will be eric and the $g macro will be eric ucbarpa.

Version 1.0 SG-33

The $x macro is set to the full name of the sender. This can be determined
in several ways. It can be passed as flag to sendmail. The second choice is
the value of the Full-name: line in the header if it exists, and the third
choice is the comment field of a From: line. If all of these fail, and if the
message is being originated locally, the full name is looked up in the
letc/passwd file.

When sending, the $h, $u, and $z macros get set to the host, user, and home
directory (if local) of the recipient. The first two are set from the $ and $:
part of the rewriting rules, respectively.

The $p and $t macros are used to create unique strings (e.g., for the
Message-1d: field). The $i macro is set to the queue id on this host; if put
into the timestamp line it can be extremely useful for tracking messages.
The $v macro is set to be the version number of sendmail; this is normally
put in timestamps and has been proven extremely useful for debugging. The
$w macro is set to the name of this host if it can be determined. The $c field
is set to the hop count, i.e., the number of times this message has been
processed. This can be determined by the —h flag on the command line or
by counting the timestamps in the message.

The $r and $s fields are set to the protocol used to communicate with
sendmail and the sending hostname; these are not supported in the current (
version.

Conditionals can be specified using the syntax:
$?x textl $| text2 $.

This interpolates text] if the macro $x is set, and text2 otherwise. The else
($]) clause may be omitted.

5.2.2 Special classes

The class $=w is set to be the set of all names this host is known by. This
can be used to delete local hostnames.

SG-34 Sendmail Installation and Operation Guide IRIS-4D Series

5.2.3 The left hand side

The left hand side of rewriting rules contains &. . :rn. Normal words are
simply matched directly. Metasyntax is introduced using a dollar sign. The
metasymbols are:

$* Match zero or more tokens

$+ Match one or more tokens

$- Match exactly one token

$=x Match any token in class x

$x Match any token not in class x

If any of these match, they are assigned to the symbol $z for replacement on
the right hand side, where n is the index in the LHS. For example, if the
LHS:

$—:5+

is applied to the input:

UCBARPA:eric

the rule will match, and the values passed to the RHS will be:

$1 UCBARPA
$2 eric

5.2.4 The right hand side

When the left hand side of a rewriting rule matches, the input is deleted and
replaced by the right hand side. Tokens are copied directly from the RHS
unless they are begin with a dollar sign. Metasymbols are:

$n Substitute indefinite token # from LHS

$[name$] Canonicalize name

$>n Call ruleset n

Version 1.0 SG-35

$#mailer Resolve to mailer
$@host Specify host
$:user Specify user

The $n syntax substitutes the corresponding value from a $+, $—, $%, $=, or
$ match on the LHS. It may be used anywhere.

A host name enclosed between $[and $] is looked up in the /etc/hosts file
and replaced by the canonical name. For example, ‘‘$[csam$]’” would
become ‘‘lbl-csam.arpa’’.

The $>n syntax causes the remainder of the line to be substituted as usual
and then passed as the argument to ruleset n. The final value of ruleset
then becomes the substitution for this rule.

The $# syntax should only be used in ruleset zero. It causes evaluation of
the ruleset to terminate immediately, and signals to sendmail that the
address has completely resolved. The complete syntax is:

$#mailer$@host$:user

This specifies the {mailer, host, user} 3-tuple necessary to direct the mailer.
If the mailer is local the host part may be omitted. The mailer and host
must be a single word, but the user may be multi-part.

A RHS may also be preceeded by a $@ or a $: to control evaluation. A $@
prefix causes the ruleset to return with the remainder of the RHS as the
value. A $: prefix causes the rule to terminate immediately, but the ruleset
to continue; this can be used to avoid continued application of a rule. The
prefix is stripped before continuing.

The $@ and $: prefixes may preceed a $> spec; for example:
RS+ $:$>751

matches anything, passes that to ruleset seven, and continues; the $: is
necessary to avoid an infinite loop.

Substitution occurs in the order described, that is, parameters from the LHS
are substituted, hostnames are canonicalized, subroutines are called, and
finally $#, $, and $: are processed.

SG-36 Sendmail Installation and Operation Guide IRIS-4D Series

(

(

5.2.5 Semantics of rewriting rule sets

There are five rewriting sets that have specific semantics. These are related
as depicted by the figure below.

+———+
-=>| 0 |-->resolved address
/ +———+
/ +———t ==t
/ -==> 1 |->| s |-
t=——t/ ===t / Fem—t ==t \ Fm——t
addr->| 3 |->| D |- -=>| 4 |->msg
F———t ==t \ F=——t ===t / +———t

-==>| 2 |->] R |-
e

Figure 5-1. Rewriting set semantics

D — sender domain addition
S — mailer-specific sender rewriting
R — mailer-specific recipient rewriting

Ruleset three should turn the address into ‘‘canonical form’’. This form
should have the basic syntax:

local-part@host—-domain—-spec

If no @ sign is specified, then the host-domain-spec may be appended from
the sender address (if the C flag is set in the mailer definition corresponding
to the sending mailer). Ruleset three is applied by sendmail before doing
anything with any address.

Ruleset zero is applied after ruleset three to addresses that are going to
actually specify recipients. It must resolve to a {mailer, host, user} triple.
The mailer must be defined in the mailer definitions from the configuration
file. The host is defined into the $h macro for use in the argv expansion of
the specified mailer.

Rulesets one and two are applied to all sender and recipient addresses
respectively. They are applied before any specification in the mailer
definition. They must never resolve.

Ruleset four is applied to all addresses in the message. It is typically used to
translate internal to external form.

Version 1.0 SG-37

5.2.6 Mailer flags etc.

There are a number of flags that may be associated with each mailer, each
identified by a letter of the alphabet. Many of them are assigned semantics
internally. These are detailed in Appendix C. Any other flags may be used

freely to conditionally assign headers to messages destined for particular (
mailers.

5.2.7 The ““error’ mailer

The mailer with the special name error can be used to generate a user error.
The (optional) host field is a numeric exit status to be returned, and the user
field is a message to be printed. For example, the entry:

S#error$:Host unknown in this domain

on the RHS of a rule will cause the specified error to be generated if the
LHS matches. This mailer is only functional in ruleset zero.

5.3 Building a Configuration File From Scratch

Building a configuration table from scratch is an extremely difficult job.
Fortunately, itis almost never necessary to do so; nearly every situation that
may come up may be resolved by changing an existing table. In any case, it
is critical that you understand what it is that you are trying to do and come
up with a philosophy for the configuration table. This section is intended to
explain what the real purpose of a configuration table is and to give you
some ideas for what your philosophy might be.

5.3.1 What you are trying to do

The configuration table has three major purposes. The first and simplest is
to set up the environment for sendmail. This involves setting the options, (
defining a few critical macros, etc. Since these are described in other places,

we will not go into more detail here.

SG-38 Sendmall Instaliation and Operation Guide IRIS-4D Series

The second purpose is to rewrite addresses in the message. This should
typically be done in two phases. The first phase maps addresses in any
format into a canonical form. This should be done in ruleset three. The
second phase maps this canonical form into the syntax appropriate for the
receiving mailer. Sendmail does this in three subphases. Rulesets one and
two are applied to all sender and recipient addresses respectively. After this,
you may specify per-mailer rulesets for both sender and recipient addresses;
this allows mailer-specific customization. Finally, ruleset four is applied to
do any default conversion to external form.

The third purpose is to map addresses into the actual set of instructions
necessary to get the message delivered. Ruleset zero must resolve to the
internal form, which is in turn used as a pointer to a mailer descriptor. The
mailer descriptor describes the interface requirements of the mailer.

5.3.2 Philosophy

The particular philosophy you choose will depend heavily on the size and
structure of your organization. I will present a few possible philosophies
here.

One general point applies to all of these philosophies: it is almost always a
mistake to try to do full name resolution. For example, if you are trying to
get names of the form user@~host to the Arpanet, it does not pay to route
them to xyzvax!decvax!ucbvax!c70 :user@host since you then depend on
several links not under your control. The best approach to this problem is to
simply forward to xyzvax!user@host and let xyzvax worry about it from
there. In summary, just get the message closer to the destination, rather than
determining the full path.

Large site, many hosts — minimum information

Berkeley is an example of a large site, i.e., more than two or three hosts.

We have decided that the only reasonable philosophy in our environment is
to designate one host as the guru for our site. It must be able to resolve any
piece of mail it receives. The other sites should have the minimum amount
of information they can get away with. In addition, any information they do
have should be hints rather than solid information.

Version 1.0 SG-39

For example, a typical site on our local ether network is monet. Monet has a
list of known ethernet hosts; if it receives mail for any of them, it can do
direct delivery. If it receives mail for any unknown host, it just passes it
directly to ucbvax, our master host. Ucbvax may determine that the host
name is illegal and reject the message, or may be able to do delivery.
However, it is important to note that when a new ethernet host is added, the
only host that must have its tables updated is ucbvax; the others may be
updated as convenient, but this is not critical.

This picture is slightly muddied due to network connections that are not
actually located on ucbvax. For example, our TCP connection is currently
on ucbarpa. However, monet does not know about this; the information is
hidden totally between ucbvax and ucbarpa. Mail going from monet to a
TCP host is transfered via the ethernet from monet to ucbvax, then via the
ethernet from ucbvax to ucbarpa, and then is submitted to the Arpanet.
Although this involves some extra hops, we feel this is an acceptable
tradeoff.

An interesting point is that it would be possible to update monet to send
TCP mail directly to ucbarpa if the load got too high; if monet failed to note
a host as a TCP host it would go via ucbvax as before, and if monet
incorrectly sent a message to ucbarpa it would still be sent by ucbarpa to
ucbvax as before. The only problem that can occur is loops, as if ucbarpa
thought that ucbvax had the TCP connection and vice versa. For this
reason, updates should always happen to the master host first.

This philosophy results as much from the need to have a single source for
the configuration files (typically built using m4 (1) or some similar tool) as
any logical need. Maintaining more than three separate tables by hand is
essentially an impossible job.

Small site — complete information

A small site (two or three hosts) may find it more reasonable to have
complete information at each host. This would require that each host know
exactly where each network connection is, possibly including the names of
each host on that network. As long as the site remains small and the the
configuration remains relatively static, the update problem will probably not
be too great.

§G-40 Sendmail Installation and Operation Guide IRIS-4D Series

Single host

This is in some sense the trivial case. The only major issue is trying to
insure that you don’t have to know too much about your environment. For
example, if you have a UUCP connection you might find it useful to know
about the names of hosts connected directly to you, but this is really not
necessary since this may be determined from the syntax.

5.3.3 Relevant issues

The canonical form you use should almost certainly be as specified in the
Arpanet protocols RFC819 and RFC822. Copies of these RFC’s are
included on the sendmail tape as doc/rfc819.lpr and doc/rfc822.1pr.

RFC822 describes the format of the mail message itself. Sendmail follows
this RFC closely, to the extent that many of the standards described in this
document can not be changed without changing the code. In particular, the
following characters have special interpretations:

<> () "\

Any attempt to use these characters for other than their RFC822 purpose in
addresses is probably doomed to disaster.

RFC819 describes the specifics of the domain-based addressing. This is
touched on in RFC822 as well. Essentially each host is given a name which
is a right-to-left dot qualified pseudo-path from a distinguished root. The
elements of the path need not be physical hosts; the domain is logical rather
than physical. For example, at Berkeley one legal host is
a.cc.berkeley.arpa; reading from right to left, arpa is a top level domain
(related to, but not limited to, the physical Arpanet), berkeley is both an
Arpanet host and a logical domain which is actually interpreted by a host
called ucbvax (which is actually just the major host for this domain), cc
represents the Computer Center, (in this case a strictly logical entity), and a
is a host in the Computer Center; this particular host happens to be
connected via berknet, but other hosts might be connected via one of two
ethernets or some other network.

Beware when reading RFC819 that there are a number of errors in it.

Version 1.0 SG-41

5.3.4 How to proceed

Once you have decided on a philosophy, it is worth examining the available
configuration tables to decide if any of them are close enough to steal major
parts of. Even under the worst of conditions, there is a fair amount of boiler
plate that can be collected safely. (

The next step is to build ruleset three. This will be the hardest part of the
job. Beware of doing too much to the address in this ruleset, since anything
you do will reflect through to the message. In particular, stripping of local
domains is best deferred, since this can leave you with addresses with no
domain spec at all. Since sendmail likes to append the sending domain to
addresses with no domain, this can change the semantics of addresses. Also
try to avoid fully qualifying domains in this ruleset. Although technically
legal, this can lead to unpleasantly and unnecessarily long addresses
reflected into messages. The Berkeley configuration files define ruleset nine
to qualify domain names and strip local domains. This is called from ruleset
zero to get all addresses into a cleaner form.

Once you have ruleset three finished, the other rulesets should be relatively
trivial. If you need hints, examine the supplied configuration tables.

5.3.5 Testing the rewriting rules — the -bt flag

When you build a configuration table, you can do a certain amount of
testing using the test mode of sendmail. For example, you could invoke
sendmail as:

sendmail -bt —Ctest.cf

which would read the configuration file test.cf and enter test mode. In this
mode, you enter lines of the form;

rwset address

where rwset is the rewriting set you want to use and address is an address to
apply the set to. Test mode shows you the steps it takes as it proceeds, '
finally showing you the address it ends up with. You may use a comma

$§G-42 Sendmail Installation and Operation Guide IRIS-4D Series

separated list of rwsets for sequential application of rules to an input; ruleset
three is always applied first. For example:

1,21,4 monet:bollard

first applies ruleset three to the input monet:bollard. Ruleset one is then
applied to the output of ruleset three, followed similarly by rulesets twenty-
one and four.

If you need more detail, you can also use the —d21/ flag to turn on more
debugging. For example,

sendmail -bt —-d21.99

turns on an incredible amount of information; a single word address is
probably going to print out several pages worth of information.

5.3.6 Building mailer descriptions

To add an outgoing mailer to your mail system, you will have to define the
characteristics of the mailer.

Each mailer must have an internal name. This can be arbitrary, except that
the names local and prog must be defined.

The pathname of the mailer must be given in the P field. If this mailer
should be accessed via an IPC connection, use the string [/PC] instead.

The F field defines the mailer flags. You should specify an f or r flag to pass
the name of the sender as a —f or —r flag respectively. These flags are only
passed if they were passed to sendmail, so that mailers that give errors under
some circumstances can be placated. If the mailer is not picky you can just
specify —f $g in the argv template. If the mailer must be called as root the S
flag should be given,; this will not reset the userid before calling the mailer.
If this mailer is local ! (i.e., will perform final delivery rather than another
network hop) the [flag should be given. Quote characters (backslashes and
>’ marks) can be stripped from addresses if the s flag is specified; if this is

1. Sendmail must be running setuid to root for this to work.

Version 1.0 SG-43

not given they are passed through. If the mailer is capable of sending to
more than one user on the same host in a single transaction the m flag should
be stated. If this flag is on, then the argv template containing $u will be
repeated for each unique user on a given host. The e flag will mark the
mailer as being expensive, which will cause sendmail to defer connection
until a queue run. 2

An unusual case is the C flag. This flag applies to the mailer that the
message is received from, rather than the mailer being sent to; if set, the
domain spec of the sender (i.e., the @host.domain part) is saved and is
appended to any addresses in the message that do not already contain a
domain spec. For example, a message of the form:

From: eric@ucbarpa
To: wnj@monet, mckusick

will be modified to:

From: eric@ucbarpa
To: wnj@monet, mckusick@ucbarpa

if and only if the C flag is defined in the mailer corresponding to
eric ucbarpa.

Other flags are described in Appendix C.

The S and R fields in the mailer description are per-mailer rewriting sets to
be applied to sender and recipient addresses respectively. These are applied
after the sending domain is appended and the general rewriting sets
(numbers one and two) are applied, but before the output rewrite (ruleset
four) is applied. A typical use is to append the current domain to addresses
that do not already have a domain. For example, a header of the form:

From: eric
might be changed to be:

From: eric@Qucbarpa

2. The c configuration option must be given for this to be effective.

S$G-44 Sendmail Installation and Operation Guide IRIS-4D Series

or
From: ucbvax!eric

depending on the domain it is being shipped into. These sets can also be
used to do special purpose output rewriting in cooperation with ruleset four.

The E field defines the string to use as an end-of-line indication. A string
containing only newline is the default. The usual backslash escapes (\r, \n,
\f, \b) may be used.

Finally, an argv template is given as the E field. It may have embedded
spaces. If there is no argv with a $u macro in it, sendmail will speak SMTP
to the mailer. If the pathname for this mailer is [/PC], the argv should be

IPC $h [port]

where port is the optional port number to connect to.

For example, the specifications:

Mlocal, P=/bin/mail, F=rlsm S=10, R=20, A=mail —-d S$Su
Mether, P=[IPC], F=meC, S=11, R=21, A=IPC $h, M=100000

specifies a mailer to do local delivery and a mailer for ethernet delivery.
The first is called local, is located in the file /bin/mail, takes a picky —r flag,
does local delivery, quotes should be stripped from addresses, and multiple
users can be delivered at once; ruleset ten should be applied to sender
addresses in the message and ruleset twenty should be applied to recipient
addresses; the argv to send to a message will be the word mail, the word —d,
and words containing the name of the receiving user. If a—r flag is inserted
it will be between the words mail and —d. The second mailer is called ether,
it should be connected to via an IPC connection, it can handle multiple users
at once, connections should be deferred, and any domain from the sender
address should be appended to any receiver name without a domain; sender
addresses should be processed by ruleset eleven and recipient addresses by
ruleset twenty-one. There is a 100,000 byte limit on messages passed
through this mailer.

Version 1.0 SG-45

Appendix A: Command Line Flags

Arguments must be presented with flags before addresses. The flags are:

—f addr

—r addr

—hcnt

—Fname

—n

Version 1.0

The sender’s machine address is addr. This flag is ignored
unless the real user is listed as a *‘trusted user’’ or if addr
contains an exclamation point (because of certain restrictions
in UUCP).

An obsolete form of —f,

Sets the ‘‘hop count’” to cnt. This represents the number of
times this message has been processed by sendmail (to the
extent that it is supported by the underlying networks). Cnt
is incremented during processing, and if it reaches MAXHOP
(currently 30) sendmail throws away the message with an
erTor.

Sets the full name of this user to name.
Don’t do aliasing or forwarding.

Read the header for ““To:’’, ““Cc:’’, and “‘Bcc:”’ lines, and
send to everyone listed in those lists. The ‘“Bcc:’’ line will
be deleted before sending. Any addresses in the argument
vector will be deleted from the send list.

Set operation mode to x. Operation modes are:

Deliver mail (default)

Run in arpanet mode (see below)

Speak SMTP on input side

Run as a daemon

Run in test mode

Just verify addresses, don’t collect or deliver
Initialize the alias database

Print the mail queue

Freeze the configuration file

NTD HJd Qo3

SG-47

—qtime

—~Cfile

~dlevel

—oxvalue

The special processing for the ARPANET includes reading
the *‘From:”’ line from the header to find the sender, printing
ARPANET style messages (preceded by three digit reply
codes for compatibility with the FTP protocol [Neigus73,
Postel74, Postel77]), and ending lines of error messages with
<CRLF>.

Try to process the queued up mail. If the time is given, a
sendmail will run through the queue at the specified interval
to deliver queued mail; otherwise, it only runs once.

Use a different configuration file. Sendmail runs as the
invoking user (rather than root) when this flag is specified.

Set debugging level.

Set option x to the specified value. These options are
described in Appendix B.

There are a number of options that may be specified as
primitive flags (provided for compatibility with delivermail).
These are the e, i, m, and v options. Also, the f option may
be specified as the —s flag.

SG-48 Sendmail Installation and Operation Guide IRIS-4D Series

Appendix B: Configuration Options

The following options may be set using the —o flag on the command line or
the O line in the configuration file. Many of them cannot be specified unless
the invoking user is trusted.

Afile

aN

Bc

Version 1.0

Use the named file as the alias file. If no file is specified, use
aliases in the current directory.

If set, wait up to N minutes for an
e:e

entry to exist in the alias database before starting up. Ifit
does not appear in N minutes, rebuild the database (if the D
option is also set) or issue a warning.

Set the blank substitution character to ¢. Unquoted spaces in
addresses are replaced by this character.

If an outgoing mailer is marked as being expensive, don’t
connect immediately. This requires that queueing be
compiled in, since it will depend on a queue run process to
actually send the mail.

Deliver in mode x. Legal modes are:

i Deliver interactively (synchronously)
b Deliver in background (asynchronously)
q Just queue the message (deliver during queue run)

If set, rebuild the alias database if necessary and possible. If
this option is not set, sendmail will never rebuild the alias
database unless explicitly requested using —bi.

SG-49

ex Dispose of errors using mode x. The values for x are:

P Print error messages (default)
q No messages, just give exit status
m Mail back errors
w Write back errors (mail if user not logged in)
e . Mai], back errors and. give zero exit stat always

Fn The temporary file mode, in octal. 644 and 600 are good
choices.

f Save Unix-style From lines at the front of headers. Normally
they are assumed redundant and discarded.

gn Set the default group id for mailers to run in to ».

Hfile Specify the help file for SMTP. o

i Ignore dots in incoming messages.

Ln Set the default log level to a.

Mxvalue Set the macro x to value. This is intended only for use from
the command line.

m Send to me too, even if I am in an alias expansion. (

Nnetname The name of the home network; ARPA by default. The the
argument of an SMTP HELO command is checked against
hostname.netname where hostname is requested from the
kernel for the current connection. If they do not match,
Received: lines are augmented by the name that is
determined in this manner so that messages can be traced
accurately.

o Assume that the headers may be in old format, i.e., spaces
delimit names. This actually tumns on an adaptive algorithm:
if any recipient address contains a comma, parenthesis, or
angle bracket, it will be assumed that commas already exist.
If this flag is not on, only commas delimit names. Headers
are always output with commas between the names. (

Qdir Use the named dir as the queue directory.

SG-50 Sendmail Installation and Operation Guide IRIS-4D Series

Qfactor

rtime

Sfile

Ttime

tS,D

un

Version 1.0

Use factor as the multiplier in the map function to decide
when to just queue up jobs rather than run them. This value
is divided by the difference between the current load average
and the load average limit (x flag) to determine the maximum
message priority that will be sent. Defaults to 10000.

Timeout reads after time interval.
Log statistics in the named file.

Be super-safe when running things, i.e., always instantiate
the queue file, even if you are going to attempt immediate
delivery. Sendmail always instantiates the queue file before
returning control the the client under any circumstances.

Set the queue timeout to time. After this interval, messages
that have not been successfully sent will be returned to the
sender.

Set the local timezone name to S for standard time and D for
daylight time; this is only used under version six.

Set the default userid for mailers to #. Mailers without the S
flag in the mailer definition will run as this user.

Run in verbose mode.

When the system load average exceeds LA, just queue
messages (i.e., don’t try to send them).

When the system load average exceeds LA, refuse incoming
SMTP connections.

If set, deliver each job that is run from the queue in a separate
process. Use this option if you are short of memory, since
the default tends to consume considerable amounts of
memory while the queue is being processed.

SG-51

Appendix C: Mailer Flags

The following flags may be set in the mailer description.

f

* 2 g T

v}

Version 1.0

The mailer wants a —f from flag, but only if this is a network
forward operation (i.e., the mailer will give an error if the
executing user does not have special permissions).

Same as f, but sends a —r flag.

Don’t reset the userid before calling the mailer. This would
be used in a secure environment where sendmail ran as root.
This could be used to avoid forged addresses. This flag is
suppressed if given from an unsafe environment (e.g, a user’s
mail.cf file).

Do not insert a UNIX-style From line on the front of the
message.

This mailer is local (i.e., final delivery will be performed).

Strip quote characters off of the address before calling the
mailer.

This mailer can send to multiple users on the same host in
one transaction. When a $u macro occurs in the argv part of
the mailer definition, that field will be repeated as necessary
for all qualifying users.

This mailer wants a From: header line.

This mailer wants a Date: header line.

This mailer wants a Message-Id: header line.
This mailer wants a Full-Name: header line.

This mailer wants a Return-Path: line.

SG-53

Upper case should be preserved in user names for this mailer.
h Upper case should be preserved in host names for this mailer.

A This is an Arpanet-compatible mailer, and all appropriate
modes should be set.

U This mailer wants Unix-style From lines with the ugly (
UUCP-style remote from <host> on the end.

e This mailer is expensive to connect to, so try to avoid
connecting normally; any necessary connection will occur
during a queue run.

X This mailer want to use the hidden dot algorithm as specified
- in RFC821; basically, any line beginning with a dot will have
an extra dot prepended (to be stripped at the other end). This
insures that lines in the message containing a dot will not
terminate the message prematurely.

Limit the line lengths as specified in RFC821.

P - Use the return-path in the SMTP MAIL FROM: command
rather than just the return address; although this is required in
RFC821, many hosts do not process return paths properly. (

I This mailer will be speaking SMTP to another serndmail
as such it can use special protocol features. This option is
not required (i.e., if this option is omitted the transmission

will still operate successfully, although perhaps not as
efficiently as possible).

S$G-54 Sendmail Installation and Operation Guide IRIS-4D Series

C If mail is received from a mailer with this flag set, any
addresses in the header that do not have an at sign (@) after
being rewritten by ruleset three will have the ‘‘@domain’’
clause from the sender tacked on. This allows mail with
headers of the form:

From: usera@hosta
To: userb@hostb, userc

to be rewritten as:

From: usera@hosta
To: userb@hostb, userc@hosta

automatically.

E Escape lines beginning with From in the message with a >’
sign.

Version 1.0 SG-55

Appendix D: Other Configuration

There are some configuration changes that can be made by recompiling
sendmail. These are located in three places:

md/config.m4 These contain operating-system dependent descriptions.
They are interpolated into the Makefiles in the sr¢ and aux
directories. This includes information about what version of
UNIX you are running, what libraries you have to include,
etc.

srciconf.h Configuration parameters that may be tweaked by the
installer are included in conf.h.

srcl/conf.c Some special routines and a few variables may be defined in
conf.c. For the most part these are selected from the settings
in conf.h.

Parameters in md/config.m4
The following compilation flags may be defined in the m4CONFIG macro in
md/config.m4 to define the environment in which you are operating.

A’ If set, this will compile a version 6 system, with 8-bit user
id’s, single character tty id’s, etc.

VMUNIX If set, you will be assumed to have a Berkeley 4BSD or
4.1BSD, including the vfork (2) system call, special types
defined in <sys/types.h> (e.g, u_char), etc.

If none of these flags are set, a version 7 system is assumed.

You will also have to specify what libraries to link with sendmail in the
m4LIBS macro. Most notably, you will have to include —ljobs if you are
running a 4.1BSD system.

Version 1.0 SG-57

Parameters in src/conf.h

Parameters and compilation options are defined in conf.h. Most of these
need not normally be tweaked; common parameters are all in sendmail.cf.
However, the sizes of certain primitive vectors, etc., are included in this file.
The numbers following the parameters are their default value.

MAXLINE [256]

MAXNAME [128]

MAXFIELD [2500]

MAXPYV [40]

MAXHOP [30]

MAXATOM [100]

MAXMAILERS [25]

MAXRWSETS [30]

The maximum line length of any input line. If
message lines exceed this length they will still be
processed correctly; however, header lines,
configuration file lines, alias lines, etc., must fit
within this limit.

The maximum length of any name, such as a host
Or a user name.

The maximum total length of any header field,
including continuation lines.

The maximum number of parameters to any mailer.
This limits the number of recipients that may be
passed in one transaction.

When a message has been processed more than this (
number of times, sendmail rejects the message on

the assumption that there has been an aliasing loop.

This can be determined from the —h flag or by

counting the number of trace fields (i.e,

‘“Received:’’ lines) in the message header.

The maximum number of atoms (tokens) in a
single address. For example, the address
eric Berkeley is three atoms.

The maximum number of mailers that may be
defined in the configuration file.

The maximum number of rewriting sets that may
be defined.

MAXPRIORITIES [25] The maximum number of values for the

“‘Precedence:’’ field that may be defined (using
the P line in sendmail.cf).

SG-58 Sendmail Installation and Operation Guide IRIS-4D Series

MAXTRUST [30]

The maximum number of trusted users that may be
defined (using the T line in sendmail.cf).

A number of other compilation options exist. These specify whether or not
specific code should be compiled in.

DBM

DEBUG

LOG

QUEUE

SMTP

DAEMON

UGLYUUCP

NOTUNIX

Version 1.0

If set, the ‘““DBM’’ package in UNIX is used (see
DBM(3X) in [UNIX80]). If not set, a much less
efficient algorithm for processing aliases is used.

If set, debugging information is compiled in. To
actually get the debugging output, the —d flag must
be used.

If set, the syslog routine in use at some sites is
used. This makes an informational log record for
each message processed, and makes a higher
priority log record for internal system errors.

This flag should be set to compile in the queueing
code. If this is not set, mailers must accept the
mail immediately or it will be returned to the
sender.

If set, the code to handle user and server SMTP
will be compiled in. This is only necessary if your
machine has some mailer that speaks SMTP.

If set, code to run a daecmon is compiled in. This
code is for 4.2BSD if the NVMUNIX flag is
specified; otherwise, 4.1a BSD code is used.
Beware however that there are bugs in the 4.1a
code that make it impossible for sendmail to work
correctly under heavy load.

If you have a UUCP host adjacent to you which is
not running a reasonable version of rmail, you will
have to set this flag to include the ‘‘remote from
sysname’’ info on the from line. Otherwise, UUCP
gets confused about where the mail came from.

If you are using a non-UNIX mail format, you can
set this flag to turn off special processing of
UNIX-style ‘‘From °’ lines.

SG-59

Configuration in src/conf.c

Not all header semantics are defined in the configuration file. Header lines
that should only be included by certain mailers (as well as other more
obscure semantics) must be specified in the HdrInfo table in conf.c. This
table contains the header name (which should be in all lower case) and a set
of header control flags (described below), The flags are:

H_ACHECK Normally when the check is made to see if a header
line is compatible with a mailer, sendmail will not
delete an existing line. If this flag is set, sendmail
will delete even existing header lines. That is, if
this bit is set and the mailer does not have flag bits
set that intersect with the required mailer flags in
the header definition in sendmail.cf, the header line
is always deleted.

H_EOH If this header field is set, treat it like a blank line,
i.e., it will signal the end of the header and the
beginning of the message text.

H_FORCE Add this header entry even if one existed in the
message before. If a header entry does not have (
this bit set, sendmail will not add another header
line if a header line of this name already existed.
This would normally be used to stamp the message
by everyone who handled it.

H TRACE If set, this is a timestamp (trace) field. If the
number of trace fields in a message exceeds a
preset amount the message is returned on the
assumption that it has an aliasing loop.

H RCPT If set, this field contains recipient addresses. This
is used by the —t flag to determine who to send to
when it is collecting recipients from the message.

H_FROM This flag indicates that this field specifies a sender.
The order of these fields in the HdrlInfo table
specifies sendmail’ s preference for which field to (
return error messages to.

S$G-60 Sendmall Installation and Operation Guide IRIS-4D Series

Let’s look at a sample HdrInfo specification:

struct hdrinfo HdrInfol] =
{

/* originator fields, most to least significant */

"resent-sender", H_FROM,
"resent-from", H_FROM,
"sender", H_FROM,
"from", H_FROM,
"full-name", H_ACHECK,

/* destination fields */
"to", H_RCPT,
"resent-to", H_RCPT,
"cc", H RCPT,

/* message identification and control */
"message", H_EOH,
"text", H_EOH,

/* trace fields */
"received", H TRACE|H_FORCE,
NULL, 0,

}:

This structure indicates that the ‘‘To:”’, ‘‘Resent-To:", and ‘‘Cc:”’ fields all
specify recipient addresses. Any ‘‘Full-Name:”’ field will be deleted unless
the required mailer flag (indicated in the configuration file) is specified. The
‘“Message:’’ and ‘‘Text:”’ fields will terminate the header; these are
specified in new protocols [NBS80] or used by random dissenters around the
network world. The ‘‘Received:”’ field will always be added, and can be
used to trace messages.

There are a number of important points here. First, header fields are not
added automatically just because they are in the HdrInfo structure; they
must be specified in the configuration file in order to be added to the
message. Any header fields mentioned in the configuration file but not
mentioned in the HdrInfo structure have default processing performed; that
is, they are added unless they were in the message already. Second, the
HdrInfo structure only specifies cliched processing; certain headers are
processed specially by ad hoc code regardless of the status specified in
HdrlInfo. For example, the ‘‘Sender:’’ and ‘‘From:’’ fields are always
scanned on ARPANET mail to determine the sender; this is used to perform
the ‘‘return to sender"”’ function. The ‘‘From:’’ and ‘‘Full-Name:’’ fields
are used to determine the full name of the sender if possible; this is stored in
the macro $x and used in a number of ways.

Version 1.0 SG-61

The file conf.c also contains the specification of ARPANET reply codes.
There are four classifications these fall into:

char Arpa Info[] = "050";
/* arbitrary info */
char Arpa TSyserr[] = "455";)
/* some (transient) system error */ (i
char Arpa PSyserr[] = "554";
/* some (transient) system error */
char Arpa Usrerr[] = "554";

/* some (fatal) user error */

The class Arpa_Info is for any information that is not required by the
protocol, such as forwarding information. Arpa_TSyserr and Arpa_PSyserr
is printed by the syserr routine. TSyserr is printed out for transient errors,
whereas PSyserr is printed for permanent errors; the distinction is made
based on the value of errno. Finally, Arpa_Usrerr is the result of a user
error and is generated by the usrerr routine; these are generated when the
user has specified something wrong, and hence the error is permanent, i.e., it
will not work simply by resubmitting the request.

If it is necessary to restrict mail through a relay, the checkcompat routine

can be modified. This routine is called for every recipient address. It can

return TRUE to indicate that the address is acceptable and mail processing (
will continue, or it can return FALSE to reject the recipient. If it returns -
false, it is up to checkcompat to print an error message (using usrerr) saying

why the message is rejected. For example, checkcompat could read:

bool
checkcompat (to)
register ADDRESS *to;
{
if (MsgSize > 50000 && to->q mailer != LocalMailer)
{
usrerr ("Message too large for non-local delivery");
NoReturn = TRUE;
return (FALSE);

}
return (TRUE);

}

This would reject messages greater than 50000 bytes unless they were local.
The NoReturn flag can be sent to supress the return of the actual body of the (
message in the error return. The actual use of this routine is highly

dependent on the implementation, and use should be limited.

$G-62 Sendmail Installation and Operation Guide IRIS-4D Series

Appendix E:

Summary of Support
Files

This is a summary of the support files that sendmail creates or generates.

Jusr/lib/sendmail
Jusr/bin/newaliases

fust/bin/mailq

fusr/lib/sendmail.cf
Jusr/lib/sendmail.fc

/usr/lib/sendmail.hf
/usr/lib/sendmail.st
/usr/lib/aliases
/ust/lib/aliases. { pag,dir}
[etc/syslog
/etc/syslog.conf
fetc/syslog.pid

/ust/spool/mqueue

Version 1.0

The binary of sendmail.

A link to /usr/lib/sendmail; causes the alias
database to be rebuilt. Running this program is
completely equivalent to giving sendmail the —bi
flag.

Prints a listing of the mail queue. This program
is equivalent to using the —bp flag to sendmail.

The configuration file, in textual form.

The configuration file represented as a memory
image.

The SMTP help file.

A statistics file; need not be present.
The textual version of the alias file.
The alias file in dbm (3) format.
The program to do logging.

The configuration file for syslog.

Contains the process id of the currently running
syslog.

The directory in which the mail queue and
temporary files reside.

SG-63

/ust/spool/mqueue/qf*
fusr/spool/mqueue/df*
/usr/spool/mqueue/If*
fust/spool/mqueue/tf*

fust/spool/mqueue/nf*
fust/spool/mqueue/xf*

Control (queue) files for messages.
Data files.
Lock files

Temporary versions of the gf files, used during
queue file rebuild.

A file used when creating a unique id.

A transcript of the current session.

SG-64 Sendmail Installation and Operation Guide IRIS-4D Series

(

Sendmail Router

Sendmail—An Internetwork Mail Router
1. Design Goals

2. Overview . .
2.1 System Organlzatlon .
2.2 Interfaces to the Outside World
2.2.1 Argument vector/exit status
2.2.2 SMTP over pipes .
2.2.3 SMTP over an IPC connectlon
2.3 Operational Description .
2.3.1 Argument processing and address
parsing . .
2.3.2 Message collection
2.3.3 Message delivery .
2.3.4 Queueing for retransmission
2.3.5 Return to sender
2.4 Message Header Editing
2.5 Configuration File .

3. Usage and Implementation .
3.1 Arguments . .
3.2 Mail to Files and Programs .
3.3 Aliasing, Forwarding, Inclusion

3.3.1 Aliasing
3.3.2 Forwarding .
3.3.3 Inclusion
3.4 Message Collection
3.5 Message Delivery .
3.6 Queued Messages
3.7 Configuration

SR-1

SR-3

SR-7
SR-7
SR-7
SR-8
SR-8
SR-8
SR-8

SR-9
SR-9
SR-9
SR-10
SR-10
SR-10
SR-11

SR-13
SR-13
SR-14
SR-14
SR-15
SR-15
SR-15
SR-16
SR-16
SR-17
SR-17

3.7.1 Macros o .
3.7.2 Header declarations .
3.7.3 Mailer declarations
3.7.4 Address rewriting rules
3.7.5 Option setting

4. Comparison with Other Mailers
4.1 Delivermail
42 MMDF . e e e
4.3 Message Processing Module

5. Evaluations and Future Plans .
5.1 Acknowledgements

SR-18
SR-18
SR-18
SR-18
SR-19

SR-21
SR-21
SR-22
SR-22

SR-25
SR-27

Sendmail—An Internetwork Mail
Router

Eric Allman’

Britton-Lee, Inc.
1919 Addison Street, Suite 105.
Berkeley, California 94704

Abstract

Routing mail through a heterogenous internet presents many new problems.
Among the worst of these is that of address mapping. Historically, this has
been handled on an ad hoc basis. However, this approach has become
unmanageable as internets grow.

Sendmail acts a unified "post office” to which all mail can be submitted.
Address interpretation is controlled by a production system, which can parse
both domain-based addressing and old-style ad hoc addresses. The
production system is powerful enough to rewrite addresses in the message
header to conform to the standards of a number of common target networks,
including old (NCP/RFC733) Arpanet, new (TCP/RFC822) Arpanet,
UUCP, and Phonenet. Sendmail also implements an SMTP server, message
queueing, and aliasing.

Sendmail implements a general internetwork mail routing facility, featuring
aliasing and forwarding, automatic routing to network gateways, and
flexible configuration.

+ A considerable part of this work was done while under the employ of the INGRES
Project at the University of California at Berkeley.

Version 1.0 SR-1

In a simple network, each node has an address, and resources can be
identified with a host-resource pair; in particular, the mail system can refer
to users using a host-username pair. Host names and numbers have to be
administered by a central authority, but usernames can be assigned locally
to each host.

In an internet, multiple networks with different characterstics and
managements must communicate. In particular, the syntax and semantics of
resource identification change. Certain special cases can be handled
trivially by ad hoc techniques, such as providing network names that appear
local to hosts on other networks, as with the Ethernet at Xerox PARC.
However, the general case is extremely complex. For example, some
networks require point-to-point routing, which simplifies the database
update problem since only adjacent hosts must be entered into the system
tables, while others use end-to-end addressing. Some networks use a left-
associative syntax and others use a right-associative syntax, causing
ambiguity in mixed addresses.

Internet standards seek to eliminate these problems. Initially, these
proposed expanding the address pairs to address triples, consisting of
{network, host, resource} triples. Network numbers must be universally
agreed upon, and hosts can be assigned locally on each network. The user-
level presentation was quickly expanded to address domains, comprised of a
local resource identification and a hierarchical domain specification with a
common static root. The domain technique separates the issue of physical
versus logical addressing. For example, an address of the form
eric@a.cc.berkeley.arpa describes only the logical organization of the
address space.

Sendmail is intended to help bridge the gap between the totally ad hoc world
of networks that know nothing of each other and the clean, tightly-coupled
world of unique network numbers. It can accept old arbitrary address
syntaxes, resolving ambiguities using heuristics specified by the system
administrator, as well as domain-based addressing. It helps guide the
conversion of message formats between disparate networks. In short,
sendmail is designed to assist a graceful transition to consistent internetwork
addressing schemes.

Section 1 discusses the design goals for sendmail. Section 2 gives an
overview of the basic functions of the system. In section 3, details of usage
are discussed. Section 4 compares sendmail to other internet mail routers,
and an evaluation of sendmail is given in section 5, including future plans.

SR-2 Sendmail — an Internetwork Router IRIS-4D Series

(

1. Design Goals

Design goals for sendmail include:

1.

Compatibility with the existing mail programs, including Bell version 6
mail, Bell version 7 mail [UNIX83], Berkeley Mail [Shoens79],
BerkNet mail [Schmidt79], and hopefully UUCP mail [Nowitz78a,
Nowitz78b]. ARPANET mail [Crocker77a, Postel77] was also required.

Reliability, in the sense of guaranteeing that every message is correctly
delivered or at least brought to the attention of a human for correct
disposal; no message should ever be completely lost. This goal was
considered essential because of the emphasis on mail in our
environment. It has turned out to be one of the hardest goals to satisfy,
especially in the face of the many anomalous message formats produced
by various ARPANET sites. For example, certain sites generate
improperly formated addresses, occasionally causing error-message
loops. Some hosts use blanks in names, causing problems with UNIX
mail programs that assume that an address is one word. The semantics
of some fields are interpreted slightly differently by different sites. In
summary, the obscure features of the ARPANET mail protocol really
are used and are difficult to support, but must be supported.

Existing software to do actual delivery should be used whenever
possible. This goal derives as much from political and practical
considerations as technical.

Easy expansion to fairly complex environments, including multiple
connections to a single network type (such as with multiple UUCP or
Ether nets [Metcalfe76]). This goal requires consideration of the
contents of an address as well as its syntax in order to determine which
gateway to use. For example, the ARPANET is bringing up the TCP
protocol to replace the old NCP protocol. No host at Berkeley runs both
TCP and NCP, so it is necessary to look at the ARPANET host name to
determine whether to route mail to an NCP gateway or a TCP gateway.

Version 1.0 SR-3

5. Configuration should not be compiled into the code. A single compiled
program should be able to run as is at any site (barring such basic
changes as the CPU type or the operating system). We have found this
seemingly unimportant goal to be critical in real life. Besides the simple
problems that occur when any program gets recompiled in a different
environment, many sites like to ‘‘fiddle’’ with anything that they will be ’
recompiling anyway. (

6. Sendmail must be able to let various groups maintain their own mailing
lists, and let individuals specify their own forwarding, without
modifying the system alias file.

7. Each user should be able to specify which mailer to execute to process
mail being delivered for him. This feature allows users who are using
specialized mailers that use a different format to build their environment
without changing the system, and facilitates specialized functions (such
as returning an "I am on vacation" message).

8. Network traffic should be minimized by batching addresses to a single
host where possible, without assistance from the user.

These goals motivated the architecture illustrated in figure 1-1.

| senderl | | sender2 | | sender3 |
o —————— + o -+ o —————— +
| | |
o ———————— + 4 mmm——————— +
| | |
v VvV Vv
o e +
| sendmail |
o —————— e +
| | |
e + 4+ e +
| I I
v v v
Fo e ————— + o ————— + e +
| mailerl | | mailer2 | | mailer3 |

Figure 1-1. Sendmail System Structure

SR-4 Sendmail — an Internetwork Router IRIS-4D Series

The user interacts with a mail generating and sending program. When the
mail is created, the generator calls sendmail, which routes the message to
the correct mailer(s). Since some of the senders may be network servers and
some of the mailers may be network clients, may be used as an internet mail
gateway.

Version 1.0 SR-5

2. Overview

2.1 System Organization

Sendmail neither interfaces with the user nor does actual mail delivery.
Rather, it collects a message generated by a user interface program (UIP)
such as Berkeley Mail, MS [Crocker77b], or MH [Borden79], edits the
message as required by the destination network, and calls appropriate
mailers to do mail delivery or queueing for network transmission. ! This
discipline allows the insertion of new mailers at minimum cost. In this
sense sendmail resembles the Message Processing Module (MPM) of
[Postel79b].

2.2 Interfaces to the Outside World

There are three ways sendmail can communicate with the outside world,
both in receiving and in sending mail. These are using the conventional
UNIX argument vector/return status, speaking SMTP over a pair of UNIX
pipes, and speaking SMTP over an interprocess(or) channel.

1. except when mailing to a file, when sendmail does the delivery directly.

Version 1.0 SR-7

2.2.1 Argument vector/exit status

This technique is the standard UNIX method for communicating with the
process. A list of recipients is sent in the argument vector, and the message
body is sent on the standard input. Anything that the mailer prints is simply
collected and sent back to the sender if there were any problems. The exit
status from the mailer is collected after the message is sent, and a diagnostic
is printed if appropriate.

2.2.2 SMTP over pipes

The SMTP protocol [Postel82] can be used to run an interactive lock-step
interface with the mailer. A subprocess is still created, but no recipient
addresses are passed to the mailer via the argument list. Instead, they are
passed one at a time in commands sent to the processes standard input.
Anything appearing on the standard output must be a reply code in a special
format.

2.2.3 SMTP over an IPC connection (

This technique is similar to the previous technique, except that it uses a
4.2bsd IPC channel [UNIX83]. This method is exceptionally flexible in that
the mailer need not reside on the same machine. It is normally used to
connect to a sendmail process on another machine.

2.3 Operational Description

When a sender wants to send a message, it issues a request to sendmail

using one of the three methods described above. Sendmail operates in two
distinct phases. In the first phase, it collects and stores the message. In the
second phase, message delivery occurs. If there were errors during

processing during the second phase, sendmail creates and returns a new (
message describing the error and/or returns an status code telling what went
wrong.

SR-8 Sendmail — an Internetwork Router IRIS-4D Series

2.3.1 Argument processing and address parsing

If sendmail is called using one of the two subprocess techniques, the
arguments are first scanned and option specifications are processed.
Recipient addresses are then collected, either from the command line or
from the SMTP RCPT command, and a list of recipients is created. Aliases
are expanded at this step, including mailing lists. As much validation as
possible of the addresses is done at this step: syntax is checked, and local
addresses are verified, but detailed checking of host names and addresses is
deferred until delivery. Forwarding is also performed as the local addresses
are verified.

Sendmail appends each address to the recipient list after parsing. When a
name is aliased or forwarded, the old name is retained in the list, and a flag
is set that tells the delivery phase to ignore this recipient. This list is kept
free from duplicates, preventing alias loops and duplicate messages deliverd
to the same recipient, as might occur if a person is in two groups.

2.3.2 Message collection

Sendmail then collects the message. The message should have a header at
the beginning. No formatting requirements are imposed on the message
except that they must be lines of text (i.e., binary data is not allowed). The
header is parsed and stored in memory, and the body of the message is saved
in a temporary file.

To simplify the program interface, the message is collected even if no
addresses were valid. The message will be returned with an error.

2.3.3 Message delivery

For each unique mailer and host in the recipient list, sendmail calls the
appropriate mailer. Each mailer invocation sends to all users receiving the
message on one host. Mailers that only accept one recipient at a time are
handled properly.

The message is sent to the mailer using one of the same three interfaces used
to submit a message to sendmail. Each copy of the message is prepended by
a customized header. The mailer status code is caught and checked, and a

Version 1.0 SR-9

suitable error message given as appropriate. The exit code must conform to
a system standard or a generic message (‘‘Service unavailable’’) is given.

2.3.4 Queueing for retransmission

If the mailer returned an status that indicated that it might be able to handle (
the mail later, sendmail will queue the mail and try again later.

2.3.5 Return to sender

If errors occur during processing, sendmail returns the message to the sender
for retransmission. The letter can be mailed back or written in the file
“‘dead.letter” in the sender’s home directory. 2

2.4 Message Header Editing

Certain editing of the message header occurs automatically. Header lines (
can be inserted under control of the configuration file. Some lines can be
merged; for example, a ‘‘From:’’ line and a ‘‘Full-name:”’ line can be

merged under certain circumstances.

2. Obviously, if the site giving the error is not the originating site, the only reasonable
option is to mail back to the sender. Also, there are many more error disposition options,
but they only effect the error message — the ‘‘return to sender’’ function is always (
handled in one of these two ways.

SR-10 Sendmail — an Internetwork Router IRIS-4D Series

2.5 Configuration File

Almost all configuration information is read at runtime from an ASCII file,
encoding macro definitions (defining the value of macros used internally),
header declarations (telling sendmail the format of header lines that it will
process specially, i.e., lines that it will add or reformat), mailer definitions
(giving information such as the location and characteristics of each mailer),
and address rewriting rules (a limited production system to rewrite addresses
which is used to parse and rewrite the addresses).

To improve performance when reading the configuration file, a memory
image can be provided. This provides a ‘‘compiled’’ form of the
configuration file.

Version 1.0 SR-11

3. Usage and Implementation

3.1 Arguments

Arguments may be flags and addresses. Flags set various processing
options. Following flag arguments, address arguments may be given, unless
we are running in SMTP mode. Addresses follow the syntax in RFC822
[Crocker82] for ARPANET address formats. In brief, the format is:

1. Anything in parentheses is thrown away (as a comment).

2. Anything in angle brackets ("<>") is preferred over anything else. This
rule implements the ARPANET standard that addresses of the form

user name <machine-address>

will send to the electronic ‘‘machine-address’’ rather than the human
‘““user name”’’.

3. Double quotes (") quote phrases; backslashes quote characters.
Backslashes are more powerful in that they will cause otherwise
equivalent phrases to compare differently — for example, user and
“‘user’’ are equivalent, but \user is different from either of them.

Version 1.0 SR-13

Parentheses, angle brackets, and double quotes must be properly balanced
and nested. The rewriting rules control remaining parsing.

3.2 Mail to Files and Programs (

Files and programs are legitimate message recipients. Files provide archival
storage of messages, useful for project administration and history. Programs
are useful as recipients in a variety of situations, for example, to maintain a
public repository of systems messages (such as the Berkeley msgs program,
or the MARS system [Sattley78]).

Any address passing through the initial parsing algorithm as a local address
(i.e, not appearing to be a valid address for another mailer) is scanned for
two special cases. If prefixed by a vertical bar (*‘I’”) the rest of the address
is processed as a shell command. If the user name begins with a slash mark
(*‘/’’) the name is used as a file name, instead of a login name.

Files that have setuid or setgid bits set but no execute bits set have those bits
honored if sendmail is running as root.

3.3 Aliasing, Forwarding, Inclusion

Sendmail reroutes mail three ways. Aliasing applies system wide.
Forwarding allows each user to reroute incoming mail destined for that
account. Inclusion directs sendmail to read a file for a list of addresses, and
is normally used in conjunction with aliasing.

1. Disclaimer: Some special processing is done after rewriting local names; see below. (

SR-14 Sendmail — an Internetwork Router IRIS-4D Series

3.3.1 Aliasing

Aliasing maps names to address lists using a system-wide file. This file is
indexed to speed access. Only names that parse as local are allowed as
aliases; this guarantees a unique key (since there are no nicknames for the
local host).

3.3.2 Forwarding

After aliasing, recipients that are local and valid are checked for the
existence of a forward file in their home directory. If it exists, the message
is not sent to that user, but rather to the list of users in that file. Often this
list will contain only one address, and the feature will be used for network
mail forwarding.

Forwarding also permits a user to specify a private incoming mailer. For
example, forwarding to:

" | /usr/local/newmail myname"

will use a different incoming mailer.

3.3.3 Inclusion

Inclusion is specified in RFC 733 [Crocker77a] syntax:
:Include: pathname

An address of this form reads the file specified by pathname and sends to all
users listed in that file.

The intent is not to support direct use of this feature, but rather to use this as
a subset of aliasing. For example, an alias of the form:

project: :include:/usr/project/userlist

is a method of letting a project maintain a mailing list without interaction
with the system administration, even if the alias file is protected.

It is not necessary to rebuild the index on the alias database when a :include:
list is changed.

Version 1.0 SR-15

3.4 Message Collection

Once all recipient addresses are parsed and verified, the message is
collected. The message comes in two parts: a message header and a
message body, separated by a blank line.

The header is formatted as a series of lines of the form
field—-name: field-value

Field-value can be split across lines by starting the following lines with a
space or a tab. Some header fields have special internal meaning, and have
appropriate special processing. Other headers are simply passed through.
Some header fields may be added automatically, such as time stamps.

The body is a series of text lines. It is completely uninterpreted and
untouched, except that lines beginning with a dot have the dot doubled when
transmitted over an SMTP channel. This extra dot is stripped by the
receiver.

3.5 Message Delivery

The send queue is ordered by receiving host before transmission to
implement message batching. Each address is marked as it is sent so
rescanning the list is safe. An argument list is built as the scan proceeds.
Mail to files is detected during the scan of the send list. The interface to the
mailer is performed using one of the techniques described in section 2.2.

After a connection is established, sendmail makes the per-mailer changes to
the header and sends the result to the mailer. If any mail is rejected by the
mailer, a flag is set to invoke the return-to-sender function after all delivery
completes.

SR-16 Sendmail — an Internetwork Router IRIS-4D Series

3.6 Queued Messages

If the mailer returns a ‘‘temporary failure’’ exit status, the message is
queued. A control file is used to describe the recipients to be sent to and
various other parameters. This control file is formatted as a series of lines,
each describing a sender, a recipient, the time of submission, or some other
salient parameter of the message. The header of the message is stored in the
control file, so that the associated data file in the queue is just the temporary
file that was originally collected.

3.7 Configuration

Configuration is controlled primarily by a configuration file read at startup.
Sendmail should not need to be recomplied except

1. To change operating systems (V6, V7/32V, 4BSD).

2. To remove or insert the DBM (UNIX database) library.

3. To change ARPANET reply codes.

4. To add headers fields requiring special processing.

5

. Adding mailers or changing parsing (i.e., rewriting) or routing
information does not require recompilation.

If the mail is being sent by a local user, and the file .mailcf exists in the
sender’s home directory, that file is read as a configuration file after the
system configuration file. The primary use of this feature is to add header
lines.

The configuration file encodes macro definitions, header definitions, mailer
definitions, rewriting rules, and options.

Version 1.0 , SR-17

3.7.1 Macros

Macros can be used in three ways. Certain macros transmit unstructured
textual information into the mail system, such as the name sendmail will use
to identify itself in error messages. Other macros transmit information from
sendmail to the configuration file for use in creating other fields (such as
argument vectors to mailers); e.g., the name of the sender, and the host and
user of the recipient. Other macros are unused internally, and can be used as
shorthand in the configuration file.

3.7.2 Header declarations

Header declarations inform sendmail of the format of known header lines.
Knowledge of a few header lines is built into sendmail, such as the
“From:”’ and ‘‘Date:’’ lines.

Most configured headers will be automatically inserted in the outgoing
message if they don’t exist in the incoming message. Certain headers are
suppressed by some mailers.

3.7.3 Mailer declarations

Mailer declarations tell sendmail of the various mailers available to it. The
definition specifies the internal name of the mailer, the pathname of the
program to call, some flags associated with the mailer, and an argument
vector to be used on the call; this vector is macro-expanded before use.

3.7.4 Address rewriting rules

The heart of address parsing in sendmail is a set of rewriting rules. These

are an ordered list of pattern-replacement rules, (somewhat like a production
system, except that order is critical), which are applied to each address. The
address is rewritten textually until it is either rewritten into a special

canonical form (i.e., a (mailer, host, user) 3-tuple, such as {arpanet, usc-isif, (
postel} representing the address postel@usc-isif) or it falls off the end.)
When a pattern matches, the rule is reapplied until it fails.

SR-18 Sendmail — an Internetwork Router IRIS-4D Series

The configuration file also supports the editing of addresses into different
formats. For example, an address of the form:

ucsfcgl!itef
might be mapped into:
tef@Qucsfcgl.UUCP

to conform to the domain syntax. Translations can also be done in the other
direction.

3.7.5 Option setting

There are several options that can be set from the configuration file. These
include the pathnames of various support files, timeouts, default modes, etc.

Version 1.0 SR-19

4. Comparison with Other Mailers

4.1 Delivermail

Sendmail is an outgrowth of delivermail. The primary differences are:

1. Configuration information is not compiled in. This change simplifies
many of the problems of moving to other machines. It also allows easy
debugging of new mailers.

2. Address parsing is more flexible. For example, delivermail only
supporied one gateway to any network, whereas sendmail can be
sensitive to host names and reroute to different gateways.

3. Forwarding and :include: features eliminate the requirement that the
system alias file be writable by any user (or that an update program be
written, or that the system administration make all changes).

4. Sendmail supports message batching across networks when a message is
being sent to multiple recipients.

5. A mail queue is provided in sendmail. Mail that cannot be delivered
immediately but can potentially be delivered later is stored in this queue
for a later retry. The queue also provides a buffer against system
crashes; after the message has been collected it may be reliably
redelivered even if the system crashes during the initial delivery.

6. Sendmail uses the networking support provided by 4.2BSD to provide a
direct interface networks such as the ARPANET and/or Ethernet using
SMTP (the Simple Mail Transfer Protocol) over a TCP/IP connection.

Version 1.0 SR-21

4.2 MMDF

MMDF [Crocker79] spans a wider problem set than sendmail. For example,
the domain of MMDF includes a ¢‘phone network’’ mailer, whereas
sendmail calls on preexisting mailers in most cases.

MMDF and sendmail both support aliasing, customized mailers, message (
batching, automatic forwarding to gateways, queueing, and retransmission.
MMDF supports two-stage timeout, which sendmail does not support.

The configuration for MMDF is compiled into the code. !

Since MMDF does not consider backwards compatibility as a design goal,
the address parsing is simpler but much less flexible.

It is somewhat harder to integrate a new channel 2 into MMDF. In
particular, MMDF must know the location and format of host tables for all
channels, and the channel must speak a special protocol. This allows
MMDF to do additional verification (such as verifying host names) at
submission time.

MMDF strictly separates the submission and delivery phases. Although
sendmail has the concept of each of these stages, they are integrated into one (
program, whereas in MMDF they are split into two programs.

4.3 Message Processing Module

The Message Processing Module (MPM) discussed by Postel [Postel79b]
matches sendmail closely in terms of its basic architecture. However, like
MMDF, the MPM includes the network interface software as part of its
domain.

MPM also postulates a duplex channel to the receiver, as does MMDF, thus
allowing simpler handling of errors by the mailer than is possible in

1. Dynamic configuration tables are currently being considered for MMDF; allowing the (
installer to select either compiled or dynamic tables.

2. The MMDF equivalent of a sendmail ** mailer’’.

SR-22 Sendmail — an Internetwork Router IRIS-4D Series

sendmail. When a message queued by sendmail is sent, any errors must be
returned to the sender by the mailer itself. Both MPM and MMDF mailers
can return an immediate error response, and a single error processor can
create an appropriate response.

MPM prefers passing the message as a structured object, with type-length-
value tuples. > Such a convention requires a much higher degree of
cooperation between mailers than is required by sendmail. MPM also
assumes a universally agreed upon internet name space (with each address
in the form of a net-host-user tuple), which sendmail does not.

3. This is similar to the NBS standard.

Version 1.0 SR-23

5. Evaluations and Future Plans

Sendmail is designed to work in a nonhomogeneous environment. Every
attempt is made to avoid imposing unnecessary constraints on the
underlying mailers. This goal has driven much of the design. One of the
major problems has been the lack of a uniform address space, as postulated
in [Postel79a] and [Postel79b].

A nonuniform address space implies that a path will be specified in all
addresses, either explicitly (as part of the address) or implicitly (as with
implied forwarding to gateways). This restriction has the unpleasant effect
of making replying to messages exceedingly difficult, since there is no one
‘‘address’’ for any person, but only a way to get there from wherever you
are.

Interfacing to mail programs that were not initially intended to be applied in
an internet environment has been amazingly successful, and has reduced the
job to a manageable task.

Sendmail has knowledge of a few difficult environments built in. It
generates ARPANET FTP/SMTP compatible error messages (prepended
with three-digit numbers [Neigus73, Postel74, Postel82]) as necessary,
optionally generates UNIX-style ‘‘From’’ lines on the front of messages for
some mailers, and knows how to parse the same lines on input. Also, error
handling has an option customized for BerkNet.

The decision to avoid doing any type of delivery where possible (even, or
perhaps especially, local delivery) has turned out to be a good idea. Even
with local delivery, there are issues of the location of the mailbox, the
format of the mailbox, the locking protocol used, etc., that are best decided
by other programs. One surprisingly major annoyance in many internet
mailers is that the location and format of local mail is built in. The feeling
seems to be that local mail is so common that it should be efficient. This
feeling is not born out by our experience; on the contrary, the location and
format of mailboxes seems to vary widely from system to system.

Version 1.0 : SR-25

The ability to automatically generate a response to incoming mail (by
forwarding mail to a program) seems useful (‘‘I am on vacation until late
August....””) but can create problems such as forwarding loops (two people
on vacation whose programs send notes back and forth, for instance) if these
programs are not well written. A program could be written to do standard
tasks correctly, but this would solve the general case.

It might be desirable to implement some form of load limiting. I am
unaware of any mail system that addresses this problem, nor am I aware of
any reasonable solution at this time.

The configuration file is currently practically inscrutable; considerable
convenience could be realized with a higher-level format.

It seems clear that common protocols will be changing soon to
accommodate changing requirements and environments. These changes
will include modifications to the message header (e.g., [NBS80]) or to the
body of the message itself (such as for multimedia messages [Postel80]).
Experience indicates that these changes should be relatively trivial to
integrate into the existing system.

In tightly coupled environments, it would be nice to have a name server
such as Grapvine [Birrell82] integrated into the mail system. This would
allow a site such as Berkeley to appear as a single host, rather than as a’
collection of hosts, and would allow people to move transparently among
machines without having to change their addresses. Such a facility would
require an automatically updated database and some method of resolving
conflicts. Ideally this would be effective even without all hosts being under
a single management. However, it is not clear whether this feature should
be integrated into the aliasing facility or should be considered a ‘‘value
added’’ feature outside sendmail itself.

As a more interesting case, the CSNET name server [Solomon81] provides
an facility that goes beyond a single tightly-coupled environment. Such a
facility would normally exist outside of sendmail however.

SR-26 Sendmail — an Internetwork Router IRIS-4D Series

(

(

5.1 Acknowledgements

Thanks are due to Kurt Shoens for his continual cheerful assistance and
good advice, Bill Joy for pointing me in the correct direction (over and
over), and Mark Horton for more advice, prodding, and many of the good
ideas. Kurt and Eric Schmidt are to be credited for using delivermail as a
server for their programs (Mail and BerkNet respectively) before any sane
person should have, and making the necessary modifications promptly and
happily. Eric gave me considerable advice about the perils of network
software which saved me an unknown amount of work and grief. Mark did
the original implementation of the DBM version of aliasing, installed the
VFORK code, wrote the current version of rmail, and was the person who
really convinced me to put the work into delivermail to turn it into sendmail.
Kurt deserves accolades for using sendmail when I was myself afraid to take
the risk; how a person can continue to be so enthusiastic in the face of so
much bitter reality is beyond me.

Kurt, Mark, Kirk McKusick, Marvin Solomon, and many others have
reviewed this paper, giving considerable useful advice.

Special thanks are reserved for Mike Stonebraker at Berkeley and Bob
Epstein at Britton-Lee, who both knowingly allowed me to put so much
work into this project when there were so many other things I really should
have been working on.

References

[Birrell82] Birrell, A. D., Levin, R., Needham, R. M., and
Schroeder, M. D., Grapevine: An Exercise in
Distributed Computing. In Comm. A.C.M. 25, 4,
April 82.

[Borden79] Borden, S., Gaines, R. S., and Shapiro, N. Z., The

MH Message Handling System: Users’ Manual.
R-2367-PAF. Rand Corporation. October 1979.

[Crocker77a] Crocker, D. H., Vittal, J. J., Pogran, K. T., and
Henderson, D. A. Ir., Standard for the Format of
ARPA Network Text Messages. RFC 733, NIC
41952. In [Feinler78]. November 1977.

Version 1.0 SR-27

[Crocker77b] Crocker, D. H., Framework and Functions of the
MS Personal Message System. R-2134-ARPA,
Rand Corporation, Santa Monica, California.
1977.

[Crocker79] Crocker, D. H., Szurkowski, E. S., and Farber, D.
1., An Internetwork Memo Distribution Facility —
MMDE. 6th Data Communication Symposium,
Asilomar. November 1979.

[Crocker82] Crocker, D. H., Standard for the Format of Arpa
Internet Text Messages. RFC 822, Network
Information Center, SRI International, Menlo Park,
California. August 1982.

[Metcalfe76] Metcalfe, R., and Boggs, D., Ethernet: Distributed
Packet Switching for Local Computer Networks,
Communications of the ACM 19, 7. July 1976.

[Feinler78] Feinler, E., and Postel, J. (eds.), ARPANET
Protocol Handbook. NIC 7104, Network
Information Center, SRI International, Menlo Park,
California. 1978.

[NBS80] National Bureau of Standards, Specification of a
Draft Message Format Standard. Report No.
ICST/CBOS 80-2. October 1980.

[Neigus73] Neigus, N., File Transfer Protocol for the ARPA
Network. RFC 542, NIC 17759. In [Feinler78].
August, 1973.

[Nowitz78a] Nowitz, D. A., and Lesk, M. E., A Dial-Up

Network of UNIX Systems. Bell Laboratories. In
UNIX Programmer’s Manual, Seventh Edition,
Volume 2. August, 1978.

[Nowitz78b] Nowitz, D. A., Uucp Implementation Description.
Bell Laboratories. In UNIX Programmer’s
Manual, Seventh Edition, Volume 2. October,
1978.

[Postel74] Postel, 1., and Neigus, N., Revised FTP Reply
Codes. RFC 640, NIC 30843. In [Feinler78].
June, 1974.

SR-28 Sendmalil — an Internetwork Router IRIS-4D Series

[Postel77]

[Postel79a]

[Postel79b]

[Postel80]

[Postel82]

[Schmidt79]

[Shoens79]

[Sluizer81]

[Solomon81]

Version 1.0

Postel, J., Mail Protocol. NIC 29588. In
[Feinler78]. November 1977.

Postel, J., Internet Message Protocol. RFC 753,
IEN 85. Network Information Center, SRI
International, Menlo Park, California. March 1979.

Postel, J. B., An Internetwork Message Structure.
In Proceedings of the Sixth Data Communications
Symposium, IEEE. New York. November 1979.

Postel, J. B., Structured Format for Transmission
of Multi-Media Documents. RFC 767. Network
Information Center, SRI International, Menlo Park,
California. August 1980.

Postel, J. B., Simple Mail Transfer Protocol.
RFC821 (obsoleting RFC788). Network
Information Center, SRI International, Menlo Park,
California. August 1982.

Schmidt, E., An Introduction to the Berkeley
Network. University of Califomia, Berkeley
California. 1979.

Shoens, K., Mail Reference Manual. University of
California, Berkeley. In UNIX Programmer’s
Manual, Seventh Edition, Volume 2C. December
1979.

Sluizer, S., and Postel, J. B., Mail Transfer
Protocol. RFC 780. Network Information Center,
SRI International, Menlo Park, California. May
1981.

Solomon, M., Landweber, L., and Neuhengen, D.,
The Design of the CSNET Name Server. CS-DN-2,
University of Wisconsin, Madison. November
1981. Su, Zaw-Sing, and Postel, Jon, The Domain
Naming Convention for Internet User Applications.
RFC819. Network Information Center, SRI
International, Menlo Park, California. August
1982.

SR-29

[UNIX83] The UNIX Programmer’s Manual, Seventh Edition,
Virtual VAX-11 Version, Volume 1. Bell
Laboratories, modified by the University of
California, Berkeley, California. March, 1983.

SR-30 Sendmail — an Internetwork Router IRIS-4D Series

Domain Conventions

W > 5

© © N o a DM

Introduction

The Structural Model
Advantage of Absolute Naming
Interoperability

Name Service .

Naming Authority

Network-Oriented Applications .

Mail Relaying
Implementation
Summary

The BNF Specification .

Names

Servers

Translations

: An Aside on the Assignment of Simple
: Further Discussion of Name Service and Name

: Further Discussion of interoperability and Protocol

DC-1
DC-3
DC-7
DC-9
DC-11
DC-13
DC-15
DC-17
DC-19
DC-21
DC-23

DC-25

DC-27

DC-29

1. Introduction

For many years, the naming convention *‘<user>@<host>"’ has served the
ARPANET user community for its mail system, and the substring "<host>"
has been used for other applications such as file transfer (FTP) and terminal
access (Telnet). With the advent of network interconnection, this naming
convention needs to be generalized to accommodate internetworking. A
decision has recently been reached to replace the simple name field,
‘‘<host>"’, by a composite name field, ‘‘<domain>’’[2]. This note is an
attempt to clarify this generalized naming convention, the Internet Naming
Convention, and to explore the implications of its adoption for Internet
name service and user applications.

The following example illustrates the changes in naming convention:

ARPANET Convention: Fred@ISIF
Internet Convention: Fred@F.ISI.ARPA

The intent is that the Internet names be used to form a tree-structured
administrative dependent, rather than a strictly topology dependent,
hierarchy. The left-to-right string of name components proceeds from the
most specific to the most general, that is, the root of the tree, the
administrative universe, is on the right.

The name service for realizing the Internet naming convention is assumed to
be application independent. It is not a part of any particular application, but
rather an independent name service serves different user applications.

Version 1.0 DC-1

2. The Structural Model

The Internet naming convention is based on the domain concept. The name
of a domain consists of a concatenation of one or more <simple names>. A
domain can be considered as a region of jurisdiction for name assignment
and of responsibility for name-to-address translation. The set of domains
forms a hierarchy.

Using a graph theory representation, this hierarchy may be modeled as a
directed graph. A directed graph consists of a set of nodes and a collection
of arcs, where arcs are identified by ordered pairs of distinct nodes [1]. Each
node of the graph represents a domain. An ordered pair (B, A), an arc from
B to A, indicates that B is a subdomain of domain A, and B is a simple
name unique within A. We will refer to B as a child of A, and A a parent of
B. The directed graph that best describes the naming hierarchy is called an
““‘in-tree’’, which is a rooted tree with all arcs directed towards the root
(Figure 2-1). The root of the tree represents the naming universe, ancestor of
all domains. Endpoints (or leaves) of the tree are the lowest-level domains.

Version 1.0 DC-3

U
/ 1\

/ I \ U -- Naming Universe
~ " ” I —-- Intermediate Domain
| | | E -- Endpoint Domain
I E I

/ \ |
A A A
I | |
E E T
/ 1\

A A A

L

E E E

Figure 2-1. The In-Tree Model for Domain Hierarchy
The simple name of a child in this model is necessarily unique within its
parent domain. Since the simple name of the child’s parent is unique within
the child’s grandparent domain, the child can be uniquely named in its
grandparent domain by the concatenation of its simple name followed by its
parent’s simple name.

For example, if the simple name of a child is ‘‘C1’’ then no other child of
the same parent may be named ‘‘C1”’. Further, if the parent of this child is
named ‘‘P1”’, then ‘‘P1’’ is a unique simple name in the child’s grandparent
domain. Thus, the concatenation C1.P1 is unique in C1’s grandparent
domain.

Similarly, each element of the hierarchy is uniquely named in the universe
by its complete name, the concatenation of its simple name and those for the
domains along the trail leading to the naming universe.

The hierarchical structure of the Internet naming convention supports
decentralization of naming authority and distribution of name service
capability. We assume a naming authority and a name server associated
with each domain. In Sections 5 and 6 respectively the name service and
the naming authority are discussed.

DC-4 The Domain Naming Convention for Internet IRIS-4D Series

(

(f

(

Within an endpoint domain, unique names are assigned to <user>
representing user mailboxes. User mailboxes may be viewed as children of
their respective domains.

In reality, anomalies may exist violating the in-tree model of naming
hierarchy. Overlapping domains imply multiple parentage, i.e., an entity of
the naming hierarchy being a child of more than one domain. Itis
conceivable that ISI can be a member of the ARPA domain as well as a
member of the USC domain (Figure 2-2). Such a relation constitutes an
anomaly to the rule of one-connectivity between any two points of a tree.
The common child and the sub-tree below it become descendants of both
parent domains.

Figure 2-2. Anomaly in the In-Tree Model

Some issues resulting from multiple parentage are addressed in Appendix B.
The general implications of multiple parentage are a subject for further
investigation.

Version 1.0 DC-5

3. Advantage of Absolute Naming

Absolute naming implies that the (complete) names are assigned with
respect to a universal reference point. The advantage of absolute naming is
that a name thus assigned can be universally interpreted with respect to the
universal reference point. The Internet naming convention provides
absolute naming with the naming universe as its universal reference point.

For relative naming, an entity is named depending upon the position of the
naming entity relative to that of the named entity. A set of hosts running the
“ynix’’ operating system exchange mail using a method called *‘uucp”’.
The naming convention employed by uucp is an example of relative
naming. The mail recipient is typically named by a source route identifying
a chain of locally known hosts linking the sender’s host to the recipient’s. A
destination name can be, for example,

‘‘alpha!beta!gamma! john’’

where ‘“alpha’’ is presumably known to the originating host, ‘‘beta’’ is
known to ‘‘alpha’’, and so on.

The uucp mail system has demonstrated many of the problems inherent to
relative naming. When the host names are only locally interpretable,
routing optimization becomes impossible. A reply message may have to
traverse the reverse route to the original sender in order to be forwarded to
other parties.

Furthermore, if a message is forwarded by one of the original recipients or
passed on as the text of another message, the frame of reference of the
relative source route can be completely lost. Such relative naming schemes
have severe problems for many of the uses that we depend upon in the
ARPA Internet community.

Version 1.0 DC-7

4. Interoperability

To allow interoperation with a different naming convention, the names
assigned by a foreign naming convention need to be accommodated. Given
the autonomous nature of domains, a foreign naming environment may be
incorporated as a domain anywhere in the hierarchy. Within the naming
universe, the name service for a domain is provided within that domain.
Thus, a foreign naming convention can be independent of the Internet
naming convention. What is implied here is that no standard convention for
naming needs to be imposed to allow interoperations among heterogeneous
naming environments.

For example:

There might be a naming convention, say, in the FOO world, something like
‘‘<user>%<host>%<area>’’. Communications with an entity in that
environment can be achieved from the Internet community by simply
appending ‘‘.FOO’’ on the end of the name in that foreign convention.

John%$ISI-Tops20-7%California.FO0O

Another example:

One way of accommodating the ‘‘uucp world’’ described in the last section
is to declare it as a foreign system. Thus, a uucp name

‘‘alpha!beta!gamma! john’’
might be known in the Internet community as
‘‘alpha!beta!gamma! john.UUCP’ '

Communicating with a complex subdomain is another case which can be
treated as interoperation. A complex subdomain is a domain with complex
internal naming structure presumably unknown to the outside world (or the

Version 1.0 DC-9

outside world does not care to be concerned with its complexity).

For the mail system application, the names embedded in the message text
are often used by the destination for such purpose as to reply to the original
message. Thus, the embedded names may need to be converted for the
benefit of the name server in the destination environment.

Conversion of names on the boundary between heterogeneous naming
environments is a complex subject. The following example illustrates some
of the involved issues.

For example:

A message is sent from the Internet community to the FOO environment. It
may bear the ‘‘From’’ and ‘“To’’ fields as:

From: Fred@F.ISI.ARPA
To: John%ISI-Tops20-7%California.FO0

where *‘FOO’’ is a domain independent of the Internet naming environment.

The interface on the boundary of the two environments may be represented
by a software module. We may assume this interface to be an entity of the

" Internet community as well as an entity of the FOO community. For the
benefit of the FOO environment, the ‘‘From *’and ‘“To’’ fields need to be
modified upon the message’s arrival at the boundary. One may view naming
as a separate layer of protocol, and treat conversion as a protocol translation.
The matter is complicated when the message is sent to more than one
destination within different naming environments; or the message is
destined within an environment not sharing boundary with the originating
naming environment.

While the general subject concerning conversion is beyond the scope of this
note, a few questions are raised in Appendix D.

DC-10 The Domain Naming Convention for Internet IRIS-4D Series

(

5. Name Service

Name service is a network service providing name-to-address translation.
Such service may be achieved in a number of ways. For a simple
networking environment, it can be accomplished with a single central
database containing name-to-address correspondence for all the pertinent
network entities, such as hosts.

In the case of the old ARPANET host names, a central database is
duplicated in each individual host. The originating module of an application
process would query the local name service (e.g., make a system call) to
obtain network address for the destination host. With the proliferation of
networks and an accelerating increase in the number of hosts participating in
networking, the ever growing size, update frequency, and the dissemination
of the central database makes this approach unmanageable.

The hierarchical structure of the Internet naming convention supports
decentralization of naming authority and distribution of name service
capability. It readily accommodates growth of the naming universe. It
allows an arbitrary number of hierarchical layers. The addition of a new
domain adds little complexity to an existing Internet system.

The name service at each domain is assumed to be provided by one or more
name servers. There are two models for how a name server completes its
work, these might be called ‘‘iterative’’ and ‘‘recursive’’.

For an iterative name server there may be two kinds of responses. The first
kind of response is a destination address. The second kind of response is the
address of another name server. If the response is a destination address,
then the query is satisfied. If the response is the address of another name
server, then the query must be repeated using that name server, and so on
until a destination address is obtained.

Version 1.0 DC-11

For a recursive name server there is only one kind of response — a
destination address. This puts an obligation on the name server to actually
make the call on another name server if it can’t answer the query itself.

It is noted that looping can be avoided since the names presented for
translation can only be of finite concatenation. Howeyver, care should be
taken in employing mechanisms such as a pointer to the next simple name
for resolution.

We believe that some name servers will be recursive, but we don’t believe
that all will be. This means that the caller must be prepared for either type
of server. Further discussion and examples of name service is given in
Appendix C.

The basic name service at each domain is the translation of simple names to
addresses for all of its children. However, if only this basic name service is
provided, the use of complete (or fully qualified) names would be required.
Such requirement can be unreasonable in practice. Thus, we propose the
use of partial names in the context in which their uniqueness is preserved.
By construction, naming uniqueness is preserved within the domain of a
common ancestry. Thus, a partially qualified name is constructed by
omitting from the complete name ancestors common to the communicating
parties. When a partially qualified name leaves its context of uniqueness it
must be additionally qualified.

The use of partially qualified names places a requirement on the Internet
name service. To satisfy this requirement, the name service at each domain
must be capable of, in addition to the basic service, resolving simple names
for all of its ancestors (including itself) and their children. In Appendix B,
the required distinction among simple names for such resolution is
addressed.

DC-12 The Domain Naming Convention for Internet IRIS-4D Series

6. Naming Authority

Associated with each domain there must be a naming authority to assign
simple names and ensure proper distinction among simple names.

Note that if the use of partially qualified names is allowed in a sub-domain,
the uniqueness of simple names inside that sub-domain is insufficient to
avoid ambiguity with names outside the subdomain. Appendix B discusses
simple name assignment in a sub-domain that would allow the use of
partially qualified names without ambiguity.

Administratively, associated with each domain there is a single person (or
office) called the registrar. The registrar of the naming universe specifies
the top-level set of domains and designates a registrar for each of these
domains. The registrar for any given domain maintains the naming
authority for that domain.

Version 1.0 DC-13

7. Network-Oriented Applications

For user applications such as file transfer and terminal access, the remote
host needs to be named. To be compatible with ARPANET naming
convention, a host can be treated as an endpoint domain.

Many operating systems or programming language run-time environments
provide functions or calls (JSYSs, SVCs, UUOs, SYSs, etc.) for standard
services (e.g., time-of-day, account-of-logged-in-user, convert-number-to-
string). It is likely to be very helpful if such a function or call is developed

for translating a host name to an address. Indeed, several systems on the
ARPANET already have such facilities for translating an ARPANET host -
name into an ARPANET address based on internal tables. -

We recommend that this provision of a standard function or call for
translating names to addresses be extended to accept names of Internet
convention. This will promote a consistent interface to the users of
programs involving internetwork activities. The standard facility for
translating Internet names to Internet addresses should include all the
mechanisms available on the host, such as checking a local table or cache of
recently checked names, or consulting a name server via the Internet.

Version 1.0 DC-15

8. Mail Relaying

Relaying is a feature adopted by more and more mail systems. Relaying
facilitates, among other things, interoperations between heterogeneous mail
systems. The term ‘‘relay’’ is used to describe the situation where a
message is routed via one or more intermediate points between the sender
and the recipient. The mail relays are normally specified explicitly as relay
points in the instructions for message delivery. Usually, each of the
intermediate relays assume responsibility for the relayed message [3].

A point should be made on the basic difference between mail relaying and
the uucp naming system. The difference is that although mail relaying with
absolute naming can also be considered as a form of source routing, the
names of each intermediate points and that of the destination are universally
interpretable, while the host names along a source route of the uucp
convention is relative and thus only locally interpretable.

The Internet naming convention explicitly allows interoperations among
heterogeneous systems. This implies that the originator of a communication
may name a destination which resides in a foreign system. The probability
is that the destination network address may not be comprehensible to the
transport system of the originator. Thus, an implicit relaying mechanism is
called for at the boundary between the domains. The function of this
implicit relay is the same as the explicit relay.

Version 1.0 DC-17

9. Implementation

The Actual Domains

The initial set of top-level names include:

ARPA This represents the set of organizations involved in the Internet
system through the authority of the U.S. Defense Advanced
Research Projects Agency. This includes all the research and
development hosts on the ARPANET and hosts on many other
nets as well. But note very carefully that the top-level domain
““ARPA’’ does not map one-to-one with the ARPANET —
domains are administrative, not topological.

Transition

In the transition from the ARPANET naming convention to the Internet
naming convention, a host name may be used as a simple name for an
endpoint domain. Thus, if "USC-ISIF" is an ARPANET host name, then
““USC-ISIF.ARPA’’ is the name of an Internet domain.

Version 1.0 DC-19

10. Summary

A hierarchical naming convention based on the domain concept has been
adopted by the Internet community. It is an absolute naming convention
defined along administrative rather than topological boundaries. This
naming convention is adaptive for interoperations with other naming
conventions. Thus, no standard convention needs to be imposed for
interoperations among heterogeneous naming environments.

This Internet naming convention allows distributed name service and
naming authority functions at each domain. We have specified these
functions required at each domain. Also discussed are implications on
network-oriented applications, mail systems, and administrative aspects of
this convention.

Version 1.0 DC-21

Appendix A: The BNF Specification

We present here a rather detailed ‘‘BNF’’ definition of the allowed form for
a computer mail ‘‘mailbox’’ composed of a ‘‘local-part’’ and a ‘‘domain’’
(separated by an at sign). Clearly, the domain can be used separately in
other network-oriented applications.

<mailbox> ::= <local-part> "@" <domain>

<local-part> ::= <string> | <quoted-string>

<string> ::= <char> | <char> <string>

nun mnan

<quoted-string> ::= <qtext>
<gtext> ::= "\" <x> | "\" <x> <qtext> | <q> | <q> <qtext>

<char> ::= <c> | "\" <x>

<domain> ::= <naming-domain> | <naming-domain> "." <domain>
<naming-domain> ::= <simple-name> | <address>
<simple-name> ::= <a> <ldh-str> <let-dig>

<ldh-str> ::= <let-dig-hyp> | <let-dig-hyp> <ldh-str>

<let-dig> 1= <a> | <d>

<let-dig-hyp> ::= <a> | <d> 1 "-"

<address> :: = "#" <number> | "[" <dotnum> "]"

<number> ::= <d> | <d> <number>

Version 1.0 DC-23

"o " "

<dotnum> ::= <snum> "." <snum> "." <snum> "." <snum>
<snum> ::= one, two, or three digits representing a decimal integer

value in the range 0 through 255

<a> ::= any one of the 52 alphabetic characters A through Z in upper (
case and a through z in lower case

<c> ::= any one of the 128 ASCII characters except <s> or <SP>
<d> ::= any one of the ten digits 0 through 9

<@> ::= any one of the 128 ASCII characters except CR, LF, quote (),
or backslash (V)

<x> ::= any one of the 128 ASCII characters (no exceptions)

<S> o— "<Il ll>|l’ " l', ")", "[ll, 'l]" "\" ll‘"’ H’", ",H’ ll.", 1"
"y and the control characters (ASCII codes O through 31 1nclu81ve
and 127)

Note that the backslash, "\", is a quote character, which is used to indicate (
that the next character is to be used literally (instead of its normal

interpretation). For example, "Joe\,Smith" could be used to indicate a single
nine character user field with comma being the fourth character of the field.

The simple names that make up a domain may contain both upper and lower
case letters (as well as digits and hyphen), but these names are not case
sensitive.

Hosts are generally known by names. Sometimes a host is not known to the
translation function and communication is blocked. To bypass this barrier
two forms of addresses are also allowed for host ‘‘names’’. One form is a
decimal integer prefixed by a pound sign, (#). Another form, called "dotted
decimal", is four small decimal integers separated by dots and enclosed by
brackets, e.g., "[123.255.37.2]", which indicates a 32-bit ARPA Internet
Address in four 8-bit fields. (Of course, these numeric address forms are
specific to the Internet, other forms may have to be provided if this problem
arises in other transport systems.)

DC-24 The Domain Naming Convention for Internet IRIS-4D Series

Appendix B: An Aside on the
Assignment of Simple
Names

In the following example, there are two naming hierarchies joining at the
naming universe "U’. One consists of domains (S, R, N, J, P, Q, B, A); and
the other (L, E, F, G, H, D, C, K, B, A). Domain B is assumed to have
multiple parentage as shown.

U
/ \
/ \
J L
/ \
N E
/ \ / \
R P D F
/ \ I\ \
S Q C (X) G
\ / \ \
B K H
/
A

Figure B-1. lllustration of Requirements for the Distinction of Simple Names
Suppose someone at A tries to initiate communication with destination H.
The fully qualified destination name would be

H.G.F.E.L.U

Version 1.0 DC-25

Omitting common ancestors, the partially qualified name for the destination
would be

H.G.F

To permit the case of partially qualified names, name server at A needs to
resolve the simple name F, i.e., F needs to be distinct from all the other (
simple names in its database.

To enable the name server of a domain to resolve simple names, a simple
name for a child needs to be assigned distinct from those of all of its
ancestors and their immediate children. However, such distinction would
not be sufficient to allow simple name resolution at lower-level domains
because lower-level domains could have multiple parentage below the level
of this domain.

In the example above, let us assume that a name is to be assigned to a new
domain X by D. To allow name server at D to resolve simple names, the
name for X must be distinct from L, E, D, C, F, and J. However, allowing A
to resolve simple names, X needs to be also distinct from A, B, K, as well as
from Q, P, N, and R.

The following observations can be made. (

« Simple names along parallel trails (distinct trails leading from one
domain to the naming universe) must be distinct, e.g., N must be distinct
from E for B or A to properly resolve simple names.

e No universal uniqueness of simple names is called for, e.g., the simple
name S does not have to be distinct from that of E, F, G, H, D, C, K, Q,
B,orA.

« The lower the level at which a domain occurs, the more immune it is to
the requirement of naming uniqueness.

To satisfy the required distinction of simple names for proper resolution at

all levels, a naming authority needs to ensure the simple name to be

assigned distinct from those in the name server databases at the endpoint

naming domains within its domain. As an example, for D to assign a simple
name for X, it would need to consult databases at A and K. It is, however,
acceptable to have simple names under domain A identical with those under (
K. Failure of such distinct assignment of simple names by naming authority

of one domain would jeopardize the capability of simple name resolution for
entities within the subtree under that domain.

DC-26 The Domain Naming Convention for Internet IRIS-4D Series

Appendix C: Further Discussion of
Name Service and
Name Servers

The name service on a system should appear to the programmer of an
application program simply as a system call or library subroutine. Within
that call or subroutine there may be several types of methods for resolving
the name string into an address.

« First, a local table may be consulted. This table may be a complete table
and may be updated frequently, or it may simply be a cache of the few
latest namie to address mappings recently determined.

s Second, a call may be made to a name server to resolve the string into a
destination address.

¢ Third, a call may be made to a name server to resolve the string into a
relay address.

Whenever a name server is called it may be a recursive server or an
interactive server.

o If the server is recursive, the caller won’t be able to tell if the server itself
had the information to resolve the query or called another server
recursively (except perhaps for the time it takes).

o If the server is iterative, the caller must be prepared for either the answer
to its query, or a response indicating that it should call on a different
server.

It should be noted that the main name service discussed in this memo is
simply a name string to address service. For some applications there may be
other services needed.

Version 1.0 DC-27

 For example, even within the Internet there are several procedures or
protocols for actually transferring mail. One need is to determine which
mail procedures a destination host can use. Another need is to determine
the name of a relay host if the source and destination hosts do not have a
common mail procedure. These more specialized services must be
specific to each application since the answers may be application
dependent, but the basic name to address translation is application
independent.

DC-28 The Domain Naming Convention for Internet IRIS-4D Series

Appendix D: Further Discussion of
Interoperability and
Protocol Translations

The translation of protocols from one system to another is often quite
difficult. Following are some questions that stem from considering the
translations of addresses between mail systems:

¢ What is the impact of different addressing environments (i.e.,
environments of different address formats)?

e It is noted that the boundary of naming environment may or may not
coincide with the boundary of different mail systems. Should the
conversion of naming be independent of the application system?

» The boundary between different addressing environments may or may not
coincide with that of different naming environments or application
systems. Some generic approach appears to be necessary.

« If the conversion of naming is to be independent of the application
system, some form of interaction appears necessary between the interface
module of naming conversion with some application level functions, such
as the parsing and modification of message text.

¢ To accommodate encryption, conversion may not be desirable at all.
What then can be an alternative to conversion?

Version 1.0 T DC-29

Glossary

address An address is a numerical identifier for
the topological location of the named
entity.

name A name is an alphanumeric identifier

associated with the named entity. For
unique identification, a name needs to
be unique in the context in which the
name is used. A name can be mapped
to an address.

complete (fully qualified) name A complete name is a concatenation of
simple names representing the
hierarchical-relation of the named with
respect to the naming universe, that is it
is the concatenation of the simple names
of the domain structure tree nodes
starting with its own name and ending
with the top level node name. Itisa
unique name in the naming universe.

partially qualified name A partially qualified name is an
abbreviation of the complete name
omitting simple names of the common
ancestors of the communicating parties.

simple name A simple name is an alphanumeric
' identifier unique only within its parent
domain.
domain A domain defines a region of

jurisdiction for name assignment and of
responsibility for name-to-address

translation.

naming universe Naming universe is the ancestor of all
network entities.

naming environment A networking environment employing a

specific naming convention.

DC-30 The Domain Naming Convention for Internet IRIS-4D Series

-

(

(

(

name service

name server

naming authority

parallel relations

multiple parentage

REFERENCES

Name service is a network service for
name-to-address mapping.

A name server is a network mechanism
(e.g., a process) realizing the function of
name service.

Naming authority is an administrative
entity having the authority for assigning
simple names and responsibility for
resolving naming conflict.

A network entity may have one or more
hierarchical relations with respect to the
naming universe. Such multiple
relations are parallel relations to each
other.

A network entity has multiple parentage
when it is assigned a simple name by
more than one naming domain.

1. F. Harary, ‘‘Graph Theory’’, Addison-Wesley, Reading, Massachusetts,

1969.

2. 1. Postel, *‘Computer Mail Meeting Notes’’, RFC-805, USC/Information
Sciences Institute, 8 February 1982.

3. J. Postel, ‘‘Simple Mail Transfer Protocol’’, RFC-821, USC/Information

Sciences Institute, August 1982.

D. Crocker, ‘‘Standard for the Format of ARPA Internet Text

Messages’’, RFC-822, Department of Electrical Engineering, University

of Delaware, August 1982,

Version 1.0

DC-31

