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1. Communications Overview

This guide is designed to help you learn to use, configure, and manage the
network communication software that runs on your Silicon Graphics, Inc.,
computer, €.g., an IRIS-4D™, Personal IRIS™, or Power Series™. The
information that is supplied is also for programmers who want to design and
write programs to implement the network communication software. This
software is derived from the networking software in the 4.3BSD UNIX
release from the University of California at Berkeley and the Sun
Microsystems RPC system.

Note for network programmers and administrators: the IRIX® operating
system implements the Internet protocol suite and UNIX domain sockets
using the 4.3BSD UNIX socket mechanism. The system also supports
access to the underlying network media using raw sockets. IRIX does not
support the Xerox NS protocol suite.

This guide does not describe how to physically connect your computer to
the network; the Owner’s Guide for your particular system explains this
connection.

1.1 Using This Guide

This guide is written for three types of users:

¢ a person who wants to learn about the communications facilities available
under the IRIX operating system and/or who wants to take advantage of
the network utilities to communicate with remote machines

* a network programmer

® a network administrator
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If you are new to the world of networking, you may want to refer to your
Owner’s Guide, which describes how to use the network via the WorkSpace
Transfer Manager, an easy-to-use visual interface to the networking utilities.
Otherwise, continue with the rest of this chapter, and then read Chapter 2.

If you are learning about network administration and are responsible for
setting up and maintaining the network, you may want to refer to your
Owner’s Guide, which describes how to set up and maintain the network via
the WorkSpace Network Manager, an easy-to-use visual interface to the
network.

There are three main sections in this guide. The following table lists the
section and chapters to see for your particular area of interest.

To find out about: See section and chapters:
Communication overview  Part 1: 1
Network utilities Part1: 1,2
Network programming Part2: 3,4,5,6,7
RPC, XDR, rpcgen Part2: 4,5,6,7
Set up the network and Part3: 8,9
maintain it
Set up mail Part 3: Appendix A

Table 1-1. Sections and Chapters in This Guide

1.2 Getting Started

This document makes some assumptions about you and your computer:

* For Part 1, you know a little bit about the UNIX operating system, can
enter commands from the system prompt, and are familiar with a text
editor such as vi. If not, see the Owner’s Guide for your particular system.

* For Parts 2 and 3, you are a programmer/network administrator, are
familiar with the C programming language, and have a working
knowledge of network theory and the UNIX operating system.
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1.3 Chapter Summary

This guide consolidates all of the material from the former Communications
Guide and TCP/IP User’s Guide, and incorporates parts of the NFS User’s
Guide, the Berkeley 4.3BSD System Manager’s Manual, and various
Internet Request for Comment documents.

The following paragraphs briefly describe the content of each chapter. See
"Documentation Sources" at the end of this chapter for the source of each
chapter.

Part 1, Using the Network

Chapter 1, "Communications Overview." The rest of this chapter explains
why you may want to communicate over a network, and briefly describes
the types of communications facilities available under the IRIX operating
system such as TCP/IP, UUCP, NFS™, electronic mail.

Chapter 2, "Network Utilities," explains how to use network utilities.

Part 2, Network Programming
Chapter 3, "Network Programming," describes how to use interprocess
communication (IPC) facilities.

Chapter 4, "RPC Programming," explains how to use remote procedure calls
in network applications.

Chapter 5, "rpcgen Compiler," describes how to use the rpcgen compiler
and describes the RPC language.

Chapter 6, "XDR Programming," presents the library routines a programmer
can use to describe arbitrary data structures in a machine-independent
fashion.

Chapter 7, "RPC Specification," explains the Remote Procedure Call (RPC)
protocol.
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Part 3, Network Administration

Chapter 8, "Network Administration," explains how to configure the
network communications software.

Chapter 9, "The BIND Name Server," describes how to use the Berkeley
Internet Name Domain (BIND) server.

Appendix A, "The Mail System," describes how to set up network mail.

1.4 What Is a Network?

A network is a way to link together a group of computers and other devices
(such as printers) so they can share and transfer information. A program
running on one computer can interact via the network with its peer on
another computer to share data or to control a device.

You may want to use a network for any number of reasons. For example,
you can send and receive electronic mail, transfer files from one computer to
another (e.g., a report or scientific data generated on a mainframe computer),
and access and use files on another computer as if they were on your
machine’s disks. In addition, you can use the network to access and control
devices such as a printer or laboratory device.

1.5 Types of Network Communication

Your computer, such as an IRIS-4D, is able to communicate with another
computer through either a network such as an Ethernet or a serial line. This
section compares Ethernet and serial-line networks and the software that
runs on each.

To communicate across a physical link, two or more computer systems use a
communication "protocol," which is simply a procedure that has a well-
defined format for transmitting data.
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Once connected to an Ethernet or serial-line network, you can use the
Internet Protocol (IP) suite, of which the Transmission Control
Protocol/Internet Protocol (TCP/IP) is the most important, or the DECnet™
protocol suite with the 4DDN optional product. The optional Network File
System (NFS) is based on the IP suite. If you are connected to a serial
network, you can also use the UNIX-to-UNIX Copy Program (UUCP).

1.5.1 Ethernet and Serial-Line Networks

To connect your computer to an Ethernet network, you must have this
hardware:

¢ an Ethernet board installed

* a drop cable connected to a transceiver

¢ an Ethernet cable

The Ethernet board lets you communicate on Ethernet networks. Each
computer on the Ethernet network is connected to the Ethernet cable by a
drop cable.

Version 1.0 Communications Overview 1-5



Figure 1-1 shows computers that are connected to an Ethernet network.

other
workstation IRIS

IRIS

mmmm Ethernet
e Dropline

Figure 1-1. Computers Connected by an Ethernet

Serial-line networks allow computers to communicate with other computers

that are connected by serial lines and/or modems. A modem is a device that

allows computers to transmit data over telephone lines. You do not need

special hardware installed in your computer to use serial networks. (

Figure 1-2 shows computers that are connected by serial lines.

—— |RIS Wtelephone.&lml— RIS }——

line

Serial Line

Figure 1-2. Computers Connected Through Serial Lines (
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The table that follows shows the communication mechanisms that are
standard and optional under the IRIX operating system.

Standard Optional
Communication Mechanisms = Communication Mechanisms
TCP/IP software SL/IP software
UUCP software NEFS software
Mail software 4DDN software

Table 1-2. Standard and Optional Communication Mechanisms

1.5.2 The Internet Protocol Suite

The Internet Protocol suite is a collection of layered protocols developed by
the U.S. Defense Advanced Research Projects Agency (DARPA). The two
most widely used protocols in the IP suite are the Transmission Control
Protocol (TCP/IP) and User Datagram Protocol (UDP/IP).

TCP/IP provides a reliable means of transferring data with other systems
running TCP/IP on your network. TCP/IP generally provides a higher level
of performance than UUCP. UDP/IP provides a faster, low-overhead but
unreliable method of transferring data.

By using network applications built on top of the IP suite, you can
interactively:

o transfer files between computers
* log in to remote computers and start a shell
e gxecute commands on remote computers

¢ send mail between users
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The IRIX operating system network layers look like this:

Examples of
Network Layering in IRIX
telnet, ftp, rlogin, | rwho, talk, tftp
rcp, sendmail

network library routines
sockets
TCP | UDP
1P
network driver and controller
network hardware

Figure 1-3. IRIX Network Layers

TCP creates a "virtual circuit." A virtual circuit is a data path in which data
blocks are guaranteed to be delivered to the target machine in the correct
order. Messages are sent from the sender to the receiver until the receiver
sends back a message saying that all the data blocks have been received in
the correct order.

For details on using Internet network commands, see Chapter 2. For
information on Internet programming and configuration, see Parts 2 and 3 in
this manual.

1.5.3 UUCP Communication

UNIX-to-UNIX-Copy Program (UUCP) is a UNIX utility that lets your
system communicate with remote systems over a serial network.
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By using UUCP commands, you can:

o transfer files between local and remote systems in batch mode
e execute programs on remote systems in batch mode

» send mail between local and remote systems in batch mode

e access the USENET network news service

An illustration of a UUCP network appears in Figure 1-4.

other
IRIS workstation IRIS Mphom

line

Serial Line

Figure 1-4. UUCP Network

Refer to "Basic Networking" in the IRIX System Administrator’s Guide or
"Communication Tutorial" in the /RIS-4D User’s Guide for information on
network configuration and UUCP commands. See "The Mail System" in
Appendix A for information on sending electronic mail with UUCP. For
information on using UUCP with modems, see the documents listed
previously and the documents that are supplied with your modem.
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1.5.4 Choosing TCP/IP or UUCP

Both UUCP and Internet software are standard on the IRIX operating

system. To use the Internet software, you must be connected to an Ethernet
network or have the Serial-Line IP (SL/IP) optional software and a modem.

To use UUCP, you must be connected to a serial network. This section -
compares UUCP and the Intemet suite (e.g., TCP/IP). (

TCP/IP provides reliable interactive services.

UUCP is a batch-mode service; when you issue a UUCP command, it is
placed in a queue with other commands. The system checks the queue at
regular intervals and executes the commands that it finds. After your
command is carried out, UUCP reports the results of the. command to you.
The time it takes to carry out a command on a remote machine varies on
different systems.

The table that follows compares features of TCP/IP and UUCP.

TCP/IP Features UUCP Features

runs on Ethernet network runs on serial network

or over serial lines ) (
transfers files interactively transfers files in batch mode ~

executes commands interactively  executes commands on remote
on remote systems systems in batch mode

interactively sends mail sends mail in batch mode

starts a shell on a remote system starts a shell on a remote system

Table 1-3. Comparison of Features of TCP/IP and UUCP

1.5.5 The Mail System

You can send messages to and receive messages from other users on your
system or on your network by using electronic mail.

You can send mail through either UUCP or TCP/IP. Use TCP/IP if your (
system is connected to an Ethernet network; use UUCP if you are connected ’
to a serial network. Silicon Graphics, Inc., uses System V /bin/mail and

4.3BSD sendmail and /usr/sbin/Mail for its mail implementation.
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For information on using network mail, see Chapter 2; for information on
setting up mail, turn to Appendix A.

1.5.6 Network File System

NFS is an optional software package that allows the IRIS to transparently
access files on remote computers, including computers from other
manufacturers, as if they were on a local disk. This offers two advantages:

* you can share programs developed or maintained on another system
® you can save space on your system

For example, you can store manual pages on only one system and all other
systems can access them; you can use them as if they resided on your
system.

Figure 1-5 shows a user on a system named camellia who requests the
manual pages from system named peony. NFS makes the manual pages
available to the user on camellia.
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Ethernet network with TCP/IP and NFS

camellia peony
File system on File systemon /
camellia )\ peony )\
lusr /lib lusr
lusr/lib /usr/man /ust/people /usr/man
P

/usr/man mounted on
camellia from peony
using NFS ..

w""‘

mount peony:/usr/man /usr/man

Figure 1-5. Sharing Manual Pages Across the Network Using NFS
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For complete information on installing and using NFS, refer to the current
NFS Release Notes and the NSF User’s Guide.

1.6 Networking with Non-UNIX Hosts

Many non-UNIX based computers now have implementations of the TCP/IP
protocol on their machines. For example, DEC’s VAX™ under VMS™,
IBM mainframes under VM™ or MVS™, PCs under MS-DOS™, and the
Macintosh® implement a subset of the Internet and Berkeley network
utilities.

Silicon Graphics, Inc. also offers a number of non-UNIX derived network
communication options including 4DDN, SNA, 4D-3270 Emulator, and
IRIS-5080 Emulator products. 4DDN is an optional software package that
allows the IRIS to communicate with VAXes and other computers using
DECnet protocols.

For more information, contact your sales organization.

1.7 Product Support

Silicon Graphics, Inc., provides a comprehensive product support and
maintenance program for its products. For further information, contact your
service organization.

1.7.1 CMC Ethernet Controller Upgrades

Certain IRIX systems use the CMC ENP-10 Ethemnet controller. Early
versions of this controller contain firmware that does not support Raw
sockets, IP multicasting, or 4DDN. To use these features, you will have to
upgrade the firmware.
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Use the hinv(1) command to verify the version of the controller’s firmware.
If the hinv output shows:

CMC ENP-10 Ethernet controller 0, firmware version 0 (CMC)

then contact your product support organization and request a firmware
upgrade. The information about the upgrade is in Field Bulletin 87.

1.8 Documentation Conventions

This guide uses the standard UNIX convention for referring to entries in the
IRIX documentation. The entry name is followed by a section number in
parentheses. For example, rcp(1C) refers to the rcp manual entry in Section
1 of the IRIX User’s Reference Manual.

In command syntax descriptions and examples, you will see the following
conventions:

* italics represent a variable parameter, which you replace with a value
appropriate for the application or a string. In text descriptions, file names
and IRIX commands appear in italics.

* typewriter font shows command syntax descriptions and examples

* square brackets ([]) surrounding an argument indicate an optional
argument

1.9 Documentation

This section lists relevant documentation and documentation sources for this
guide.
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1.9.1 Relevant Documentation

You may find useful information to help you plan and set up your network
in these documents:

® [RIS-4D Series Owner’s Guide

o Personal IRIS Owner’s Guide

e Server Owner’s Guide

o IRIX User’s Reference Manual

e [RIX System Administrator’s Reference Manual

® IRIX Programmer’s Reference Manual

e Mail Reference Manual

e NFES User’ s Guide and Administrator’s Guide for Diskless Workstations if
the NFS option is installed

e Internet Request For Comment documents in the Defense Data Network
Protocol Handbook, are available from the DDN Network Information
Center, SRI International, 333 Ravenswood Avenue, Menlo Park,
California 94025, telephone: 1-800-235-3155 or 1-415-859-3695.

1.9.2 Documentation Sources

The documentation sources for each chapter and this guide are given below.

Chapter 1, "Communications Overview," is derived from the IRIS-4D Series
Communications Guide.

Chapter 2, "Network Utilities," is from the TCP/IP User’s Guide for the
IRIS-4D.

Chapter 3, "Network Programming,” is based on chapters 7 and 8 in the
4.3BSD UNIX Programmer’s Supplementary Documents, Volume 1. "An
Introductory 4.3BSD Interprocess Communication Tutorial" by Stuart
Sechrest, and "An Advanced 4.3BSD Interprocess Communication Tutorial"
by Samuel J. Leffler, Robert S. Fabry, William N. Joy, Phil Lapsley, Steve
Miller and Chris Torek.
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Chapter 4, "RPC Programming," is based on Sun Microsystems Remote
Procedure Call Programming Guide for RPC4.0 and was formerly in the
NFS User’s Guide.

Chapter 5, "rpcgen Compiler," is based on Sun Microsystems rpcgen
Programming Guide for RPC4.0 and was formerly in the NFS User’s Guide.

Chapter 6, "XDR Programming," is based on Sun Microsystems External
Data Representation: Sun Technical Notes and External Data
Representation Standard: Protocol Specification for RPC4.0 and was
formerly in the NFS User’s Guide.

Chapter 7, "RPC Specification," is based on Sun Microsystems Remote
Procedure Calls: Protocol Specification for RPC4.0 and was formerly in the
NFS User’s Guide.

Chapter 8, "Network Administration," is based on Chapter 1 in the 4.3BSD
UNIX System Manager’s Manual by Michael J. Karels, Chris Torek, James
M. Bloom, Marshall Kirk McKusick, Samuel J. Leffler, and William N. Joy.

Chapter 9, "The BIND Name Server," is based on Chapter 11 of the 4.3BSD
UNIX System Manager’s Manual by Kevin J. Dunlap.

Appendix A, "The Mail System," is from the Communications Guide.

In addition to the references mentioned above, this guide uses portions of
the following documents:

Deering, S. "Host Extensions for IP Multicasting." Internet Request For
Comment 1112. Network Information Center, SRI International, Menlo
Park, California. August 1989.

Lottor, M., "Domain Administrator’s Guide." Internet Request For
Comment 1033. Network Information Center, SRI International, Menlo
Park, California. November 1987.

Lottor, M. "TCP Port Service Multiplexer (TCPMUX)." Internet Request
For Comment 1078. Network Information Center, SRI International, Menlo
Park, California. November 1988.

Mockapetris, P., "DNS Encoding of Network Names and Other Types."
Internet Request For Comment 1101. Network Information Center, SRI
International, Menlo Park, California. April 1989.
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Mockapetris, P., "Domain Names — Concept and Facilities." Internet
Request For Comment 1034. Network Information Center, SRI
International, Menlo Park, California. November 1987.

Mockapetris, P., "Domain Names — Implementation and Specification."
Internet Request For Comment 1035. Network Information Center, SRI
International, Menlo Park, California. November 1987.

Romano, S., Stahl, M., Recker, M. "Internet Numbers." Internet Request
For Comment 1117. Network Information Center, SRI International, Menlo
Park, California. August 1989.

Stahl, M., "Domain Administrator’s Guide." Internet Request For Comment
1032. Network Information Center, SRI International, Menlo Park,
California. November 1987.
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2. Network Utilities

This chapter describes the most frequently used network utilities. You’ll
want to use these utilities to access another machine on the network.

One set of utilities, the 4.3BSD r (remote) commands, work on any system

based on 4.2BSD or 4.3BSD, such as the IRIX system. These commands

include:

Version 1.0

Command:

Use this command to:

rcp

rsh
rlogin

rwho

ruptime

copy a file from one
computer running UNIX to
another computer running
UNIX

execute a command on a
remote host running UNIX
initiate a login on a remote
host running UNIX

display a list of the current
users on remote UNIX
hosts

display the status of remote
UNIX systems

Table 2-1. The r (remote) Network Commands
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The commands listed below use standard Internet protocols for virtual
terminal support and file and mail transfer. You can use these commands
between any systems, UNIX and non-UNIX (and between all intervening
networks and gateways), that support these protocols.

Command: Use this command to:

mail send electronic mail

telnet initiate a login on a remote
host

fip transfer files between hosts

Table 2-2. Other Network Commands

2.1 Controlling Access with .rhosts

The 4.3BSD r commands use the .rhosts file to permit remote access on
your system without using passwords. You (or the superuser) create the
.rhosts file. It belongs in your home directory and specifies the remote
systems and users that can access the local system under your login ID. If
you are listed in another user’s .rhosts file on a remote machine, you can use
rcp, rsh, and rlogin on that machine with your login ID, and you have the
same privileges as the user who listed you in their .rhosts file.

Each line of a .rhosts file contains the host name of a remote system and a
user on that system who can access the local system. Host and user names
are separated by spaces and/or tabs, for example:

orchid terry
tulip kim

You or the superuser must own your .rhosts file. It must only be writable by
the owner (you or the superuser), otherwise, the file is ignored. Add the
proper protection using:

chmod go-w .rhosts
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The .rhosts file is used to validate a user only when the name of the remote
system does not exist in the /etc/hosts.equiv file. See Chapter 8, "Network
Administration," and the rhosts(4) and hosts.equiv(4) manual pages for
more information.

2.2 Using rcp, the Remote Copy Program

The rcp program copies a file from one system to another.

The following pages explain how to use rcp from the command line. In
addition to entering commands from the command line, you can also use
your WorkSpace to transfer files to and from a remote machine. The
WorkSpace has an easy-to-use visual interface for transfering files: the
Transfer Manager. For information on the WorkSpace and Transfer
Manager, refer to the Owner’s Guide for your particular machine, e.g.,
IRIS-4D Owner’s Guide or Personal IRIS Owner’s Guide.

To use the rcp program, specify the source machine, user, and the pathname
for the file, followed by the destination machine, user, and the destination
pathname for the file. The syntax is:

rcp local pathname  [user@)destination: [remote_pathname)
recp [user@)source:remote_pathname local_pathname
rcp [userl@] source:pathname  [user2@]destination: [pathname)

The square brackets indicate that the information contained within them is
optional. When using the rcp program:

» if you do not specify a name for the source or destination machine, the
system assumes the local machine

* if you do not specify a pathname for the destination machine, the system
places the file in the user’s home directory on that machine

e if you do not specify a user name with the remote machine name, the
System uses your user name

If you want to copy a set of files specified by a wildcarded name (*), you
must enclose the file name in single or double quotes:

rcp '"guest@astor:/usr/src/*.c" my_src dir

Version 1.0 Network Utilities 2-3



The examples on the following pages use rcp. These examples assume that
the user has an account on both hosts. If this isn’t the case, specify the
user’s and host’s name as:

user@host

The user names on each machine must be equivalent (through either
letclhosts.equiv or the user’s .rhosts file) or the accounts on the remote
machines must not have passwords. The specified host must be listed in the
hosts(4) database.

When remotely copying files, you may want to use rcp with the —v flag,
which copies files in verbose mode, i.e., rcp displays a list of the files being
transferred. -

2.2.1 Copying Files from Local to Remote Machines

The following example copies the local file sgiral.c in the current directory
to the file sqiral.c in the directory /oh4/src/install on a destination machine
named mint. The system assumes that the file is on the local machine,
because no machine is specified for the file sgiral.c.

rcp sqiral.c mint:/oh4/src/install/sqgiral.c

If the file exists on the remote host but cannot be written to, rcp will print
the error message "Permission denied.” This means that cp could not
replace the file. This message also occurs when you don’t have the correct
permissions to create the file in the target directory.

2.2.2 Copying Files from Remote to Local Machines

The following example copies the file /usr/includel/stdio.h from the remote
machine violet to the file test.h on the local machine.

rcp violet:/usr/include/stdio.h test.h

C
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2.2.3 Copying Files between Remote Machines

The following example copies the file user ps from your home directory on
the remote machine named rose to your home directory on the machine
named violet.

rcp rose:user.ps violet:

2.2.4 Copying Directory Trees

You can use the —r option to copy an entire directory tree (a directory and
all its subdirectories) between local and remote machines. The following
example copies all files and directories from /usr/src/cmd on the remote
machine violet to the directory named newsrc on the local host.

rcp -r violet:/usr/src/cmd newsrc

2.3 Using rsh, the Remote Shell Program

The rsh program connects your system to a remote host and executes the
commands you specify on the remote host. Like rcp, this network utility
assumes that you have accounts with the same user name on both the remote
and local hosts or are listed in the remote user’s .rhosts file. This is the rsh
syntax:

rsh hostname [-1 username) command

For example, to find who is logged in on another machine, type:
rsh hostname who

If your account name on the remote host is pat, type:

rsh hostname -1 pat who
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The specified remote system must be listed in the hosts(4) database. If you
do not specify a command to execute, rsh initiates an rlogin (remote login)
on the remote machine. (See the section below on using rlogin.) Interactive
commands such as vi(1) do not run correctly when you execute them using
rsh; use rlogin instead.

2.4 Using rlogin, the Remote Login Program

The rlogin program initiates a login on a remote host across the network.
The program takes the remote system name as an argument. This is the
rlogin syntax:

rlogin hostname [-1 username]

For example, to log in remotely to a system named mint, type:
rlogin mint

The specified remote system must be listed in the hosts(4) database.

In this example, the user logs in to the system mint as the user named rick.
The user is listed in rick’s .rhosts file on mint or rick’s account does not
have a password.

rlogin mint -1 rick

2.5 Using rwho

The rwho(1C) command generates a list of users currently logged in on all
UNIX systems on the local network. In addition to the user’s login name,
rwho lists the terminal name, the system name, and the login time for each
user.

Note: You can only use this command if the rwhod daemon is running on
the remote UNIX host.
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The rwhod daecmon should not be run on networks with a large number of
machines. It can consume significant amounts of system resources when
used in large networks. See Chapter 8, "Network Administration," for
information on enabling rwhod.

To display a list of all users logged in to UNIX hosts on the network, type:

rwho

This command generates a list of users similar to the following example:

percy mint:ttyl5 Mar 14 08:17
arnold mint:ttyq4 Mar 14 08:35
root knot :console Mar 12 15:42
helen troy:tty03 Mar 14 09:38

In this display, the first column lists the name of the user; the second column
lists the name of the host and the name of the terminal on that host; the third
column lists the login date and time.

2.6 Using ruptime

The ruptime utility displays the status of all UNIX hosts on the local
network. Along with the name of the host, ruptime displays the current
status, how long the system has been up, and the average number of jobs in
the run queue for each system. Like rwho, ruptime depends on the rwhod
daemon; if the daemon is not running, ruptime is not usable. See Chapter 8,
"Network Administration," for information on enabling rwhod.

To display the status information for all UNIX systems on the network,
type:

ruptime

The status list displayed is similar to this example:

mint up 12+18:54 4 ysers, load 1.10, 0.83, 0.75
lily down 13:25
violet up 5+02:45 10 users, load 2.51, 1.87, 0.51
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In the status list, the first column displays the system name, and the second
column indicates whether the system is up or down and the amount of time
it has been in this condition. The second column uses this format:

days + hours:minutes

The third column lists the number of users logged in to the system and the
average number of jobs in the event queue in the last 5, 10, and 15 minutes.

The ruptime program does not report users who are idle for more than one
hour unless you use the —a flag.

2.7 Using mail

The network software extends the IRIX system mail facility to allow users
to send mail to other users on the network. To send mail to another user on
another machine, first type the user’s login name, followed by an at sign (@)
and the machine name:

mail user_name@machine_name

After you finish typing the message, to send it, type <ctrl-d> or a period (.)
at the beginning of a new line. For information on enabling network mail,
see Chapter 8, "Network Administration." For details on setting up and
maintaining the mail system, see Appendix A.

2.8 Using telnet, a Remote Login Program

The telnet program initiates a virtual terminal session on a remote host
across the network. This program uses the Internet TELNET protocol,
which is implemented on many UNIX and non-UNIX systems.
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To use the telnet program, follow these steps:

1. To start the telnet program, use the name or Internet address of the
remote machine as an argument. For example, to log in remotely to a
machine named rose, type:

telnet rose
The screen shows:
Trying...,

Connected to rose.
Escape character is ~].

login:

2. Execute commands on the remote machine.

3. To disconnect from the remote machine, type:
logout

If you do not get the local machine prompt, exit the telnet program by
pressing <ctrl-]>. This gets the attention of the telnet program. At
the telnet> prompt, type:

quit

The telnet program has many options and internal commands. See
telnet(1C) for details.

2.9 Using fip, the File Transfer Program

The ftp program transfers files using the Internet File Transfer Protocol.
This section describes some of the major ftp commands. For more
information, see fip(1C).

The following sequence explains how to enter and exit fip.
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1. To start the ftp program, type:
ftp hostname

hostname is the name or Internet address of the machine with which you
wish to communicate. For example, to connect to the host named quake,

type:
ftp quake

After you execute the above command, the screen shows a message
similar to:

Connected to quake.
220 quake FTP server (IRIX versiondatetime) ready.

2. Next, the host requests your name and password. For example, a user
named peter would type:

Name (quake:peter): peter
331 Password required for peter.

Note that the remote user account must have a password; fip will not let
you log in if the password is missing. Once you enter the proper
password, the host replies:

230 User peter logged in.

After you have logged in, more messages may appear followed by the
Jftp prompt.

ftp>

To access an anonymous ftp account, when the host requests the name
and password, type anonymous for the name.

Name (quake:peter): anonymous
331 Guest login ok, send ident as password.

It’s customary to enter your name and host as the password, for
example:

peter@quake
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As with regular fip accounts, after you have logged in, more messages
may appear followed by the ftp prompt.

3. Now you are ready to send and receive files. To see a list of the
commands for fip, type:

help

4. To exit from fip after you finish transferring files, type:
quit

The sections that follow describe some of the commands that you can use
with ftp, including both the command syntax and an example of the
command. Other commands are available; see fip(1C) for more information.

2.9.1 Transferring Files from Local to Remote
Machines

To send one file to the remote host, use this syntax:
put localfile  [remotefile]

For example, this command sends the file myfile to the remote machine
using the same file name as the file on the local machine:

put myfile

fip displays messages to indicate that the file has been sent to the remote
machine.

An ftp message generated by the above command looks like this:

local: myfile remote: myfile

200 PORT command okay.

150 Opening BINARY mode data connection for ’'myfile’
(2479 bytes).

226 Transfer complete.

2479 bytes received in 0.06 seconds (40.34 Kbytes/s)
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To append a file to another file on the remote machine, use this syntax:
append localfile [remotefile]

If the remote filename is not given, fip uses the local filename. For example,
to append the file dictionary.a to dictionary.b, type:

append dictionary.a dictionary.b ( '

The current working directory on the remote machine is the assumed
destination for the file. If you do not specify a remote file name, the local
file name is used as the file name on the remote machine.

To transfer multiple files from the local machine to a directory on the
remote machine, type:

cd remote_directory
mput localfilel localfile? ...

For example, to transfer the files thisfile and thatfile to the directory
lusripeoplelhelen/filexfer, type:

~ cd /usr/people/helen/filexfer
mput thisfile thatfile

fip displays messages to indicate that the files have been sent to the remote
machine.

2.9.2 Transferring Files from Remote to Local
Machines

To bring a file from the remote machine to the local machine, type:

get  remotefile localfile
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For example, this command gets the file yourfile from the remote host and
stores it on the local machine in the current directory as myfile:

get yourfile myfile

ftp prints messages to indicate that the file has been received by the local
machine.

To transfer multiple files from the remote machine to the local machine into
the current directory, type:

mget remotefilel remotefile2 ...
For example, to transfer the files localinclude and graph.c, type:

mget localinclude graph.c

2.9.3 Executing Local Commands

To invoke commands on the local machine, precede the command with an
exclamation point (!). For example, to list the files retrieved with the ger or
mget commands, type:

'ls

This command displays a listing of the current directory on the local
machine.

To put a listing of remote files in a local file, type:
mls remotefiles localfile

For example, to make a listing of the files local.h, float.h, and graphics.h in
the file includefiles on the local machine, type:

mls local.h float.h graphics.h includefiles
To change directories on the local machine, type:

lcd directory
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For example, to change your local directory to fish on the local machine,
type:

led fish

2.9.4 Executing Remote Commands

Commands on the remote machine do not need to be preceded by an
exclamation point. The commands explained below fall into this category.
To change your working directory on the remote machine, use the
command:

cd remote_directory

For example, to change your working directory to localinclude, type:
cd loc;alinclude

To print the current working directory on the remote machine, type:
pwd

To print the contents of a remote directory, type:
dir [remote_directory] [localfile]

or
ls [remote_directory] [localfile]

If you specify a local file name, the contents of the directory are placed in
this local file. If you do not specify a local file name, the list is displayed on
the screen. If you do not specify a remote directory, the current working
directory is assumed.
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2.9.5 Transferring Binary or ASCII Files

You can transfer either binary or ASCII files with fip. The default type
depends on the remote system type. To transfer binary files, type:

binary

After issuing this command, any subsequent files are transferred in binary
mode. To return to the default of transferring ASCII files, type:

ascii
The ftp commands have identical syntax for either ASCII or binary file

transfer.

2.9.6 Summary of fip Commands

The table that follows lists and briefly describes the fip commands discussed
in this section.
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To do this: Use the following syntax:

start fip ftp hostname
list ftp commands help

quit fip quit

execute local command lcommand
execute remote command  command
transfer binary file binary
transfer ASCII file ascii

FROM LOCAL TO REMOTE MACHINES

transfer a file put localfile [remotefile]
append a file append localfile remotefile
transfer multiple files cd remote_dir

mput localfilel localfile? ...
execute command lcommand
change directory Ied

FROM REMOTE TO LOCAL MACHINES
transfer file get remotefile localfile
transfer multiple files mget remotefilel remotefile? ...

Table 2-3. fip Commands
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3. Network Programming

This chapter describes the 4.3BSD interprocess communication (IPC)
facilities in IRIX. It is designed to complement the manual pages for the
IPC primitives by providing examples of their use.

This chapter covers the following topics:

e Internet and UNIX domain sockets

o IPC-related system calls and the basic model of communication

e the supporting library routines used to construct distributed applications

e the client/server model used in developing applications and includes
examples of the two major types of servers

» advanced topics sophisticated users are likely to encounter when using the
IPC facilities, such as IP/UDP broadcasting and multicasting.

3.1 Compiling 4.3BSD Programs

Most 4.3BSD programs compile and link under IRIX without change.
Some may require compiler directives, linking with additional libraries or
even source code modification.

If the program assumes the char data type is signed, use the —signed
compiler directive. For example:

cc -signed example.c —o example —lc_s

Most BSD programs assume signed characters. Linking with the shared C
library, —1c_s, saves space and improves portability.
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The BSD library routines formerly in /usr/lib/libbsd.a are now in the
standard C library. Most BSD programs do not need to link with this library
— see the (3B) section in intro(3) for details.

Several network library routines have Yellow Pages equivalents. Link with
—1sun to use the Yellow Pages versions if the NFS optional software is
installed:

cc -signed example.c —o example —lsun -lc_s

IRIX provides System V, 4.3BSD and POSIX signal handling mechanisms.
BSD signals are obtained with the —D BSD_ SIGNALS compiler directive
or by modifying the source code to place

#ifdef sgi
#define _BSD SIGNALS
#endif

before including <signal.h>.

Note: In previous versions of IRIX, BSD header files were located in the
directory /usr/include/bsd. Programs that included headers files with the
statement:

#include <bsd/file.h>

were not portable and should be changed to remove "bsd/".

3.2 Basics

The socket is the basic building block for communication. A socket is an
endpoint of communication to which a name can be bound. Each socket in
use has a zype and one or more associated processes. The processes
communicate through the socket.

Sockets exist within communication domains. A domain dictates various
properties of the socket. One such property is the scheme used to name
sockets. For example, in the UNIX communication domain, sockets are
named with UNIX path names; e.g., a socket may be named "/dev/foo."
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Sockets normally exchange data only with sockets in the same domain (it
may be possible to cross domain boundaries, but only if some translation
process is performed). The IRIX socket facilities support three separate
communication domains:

¢ the UNIX domain, which is used for on-system communication

* the Internet domain, which is used by processes that communicate using
the Internet standard communication protocols IP/TCP/UDP

e the Raw domain, which provides access to the link-level protocols of
network interfaces.

The underlying communication facilities provided by these domains have a
significant influence on the interface to socket facilities available to a user.
An example of the latter is that a socket "operating” in the UNIX domain
sees a subset of the error conditions that are possible when operating in the
Internet domain.

A protocol is a set of rules, data formats and conventions that regulate the
transfer of data between participants in the communication. In general,
there is one protocol for each socket type (stream, datagram, etc.) within
each domain. The code that implements a protocol keeps track of the names
that are bound to sockets, sets up connections, and transfers data between
sockets, perhaps sending the data across a network. It is possible for several
protocols, differing only in low level details, to implement the same style of
communication within a particular domain. Although it is possible to select
which protocol should be used, for nearly all uses it is sufficient to request
the default protocol. '

3.2.1 Socket Types

Sockets are typed according to visible communication properties. Processes
are presumed to communicate only between sockets of the same type,
although nothing prevents communication between sockets of different
types should the underlying communication protocols support this.
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Three types of sockets are available:
® a stream socket
* a datagram socket

® a raw socket

Stream Sockets

A stream socket provides for the bidirectional, reliable, sequenced, and
unduplicated flow of data without record boundaries. Aside from the
bidirectionality of data flow and some additional signaling facilities, a pair
of connected stream sockets provides an interface similar to that of pipes.
(In the UNIX domain, in fact, the semantics are identical.)

Datagram Sockets

A datagram socket supports bidirectional flow of messages that are not
necessarily sequenced, reliable, or unduplicated. That is, a process
receiving messages on a datagram socket can find messages duplicated or in
an order different from the order in which they were sent. The data in any
single message is in the correct order, with no duplications, deletions, or
changes.

An important characteristic of a datagram socket is that record boundaries in
the data are preserved. Datagram sockets closely model facilities found in
many packet-switched networks. However, datagram sockets provide
additional facilities, including routing and fragmentation.

Routing is used to forward messages from one local network to another
nearby or distant network. Dividing one large network into several smaller
ones can improve network performance in each smaller network, improve
security, and facilitate administration and troubleshooting.

Fragmentation divides large messages into pieces small enough to fit on the
local medium. It allows application programs to use a single message size
independent of the packet size limitations of the underlying networks.

3-4 Network Communications Guide IRIX




Raw Sockets

A raw socket gives you access to the underlying communication protocols
that support socket abstractions. Raw sockets are normally datagram-
oriented, though their exact characteristics depend on the interface provided
by the protocol. Raw sockets are not intended for the general user. They
are provided mainly for programmers interested in developing new
communication protocols or gaining access to some of the more esoteric
facilities of an existing protocol.

3.2.2 Creating Sockets

To create a socket, use the socket system call:

#include <sys/types.h>
#include <sys/socket.h>
s = socket (domain, type, protocol);

This call creates a socket in the specified domain and of the specified type.
You can also request a particular protocol. If the protocol is left unspecified
(a value of 0), the system selects an appropriate protocol. It selects from
those protocols that comprise the communication domain and that can be
used to support the requested socket type. The call returns a descriptor (a
small integer) that can be used in later system calls operating on sockets.
The domain is specified as one of the manifest constants defined in the file
<sys/socket.h>. For the UNIX domain the constant is AF_UNIX; for the
Internet domain, the constant is AF_INET. For the Raw link-level domain,
the constant is AF_RAW. (AF indicates the "address format" to use in
interpreting names.) The socket types are also defined in this file as either
SOCK_STREAM, SOCK_DGRAM, or SOCK_RAW. For example, t0
create a stream socket in the Internet domain, the following call might be
used:

s = socket (AF_INET, SOCK STREAM, 0);

This call creates a stream socket with the default protocol, TCP, providing
the underlying communication support. To create a datagram socket for
on-machine use, the call might be:

s = socket (AF_UNIX, SOCK_DGRAM, 0);
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The default protocol (used when the protocol argument to the socket call is
0) should be correct for most situations. However, you can specify a
protocol other than the default. (See Section 3.5 for details.)

ne 7 To create a "drain” socket that receives all packets having a network-
layer type code or encapsulation not implemented by the kemel, the call is:

#include <net/raw.h> (

s = socket (AF_RAW, SOCK_RAW, RAWPROTO_ DRAIN);

Raw domain sockets are discussed in detail in the raw (7P), snoop (7P), and
drain(7P) manual pages.

The socket call can fail for several reasons. Aside from the rare occurrence
of lack of memory (ENOBUFS), a socket request can fail in response to a
request for an unknown protocol (EPROTONOSUPPORT), or a request for
a type of socket for which there is no supporting protocol (EPROTOTYPE).

3.2.3 Binding Local Names

A socket is created without a name. Until a name is bound to a socket,

processes have no way to reference it and, consequently, no messages can be (
received on it. Communicating processes are bound by an association. An
association is a temporary or permanent specification of a pair of

communicating sockets.

In the Internet domain, an association is composed of local and foreign
addresses, and local and foreign ports. The structure of Internet domain
addresses is defined in the file <netinet/in.h>. Internet addresses specify a
host address (a 32-bit number) and a delivery slot, or port, on that machine.
These ports are managed by the system routines that implement a particular
protocol. Unlike UNIX domain names, Internet socket names are not
entered into the file system and, therefore, they do not have to be unlinked
after the socket has been closed. When a message must be sent between
machines it is sent to the protocol routine on the destination machine, which
interprets the address to determine to which socket the message should be
delivered. Several different protocols may be active on the same machine,
but, in general, they will not communicate with one another. As a result, ( ’
different protocols are allowed to use the same port numbers. Thus,
implicitly, an Internet address is a triple address including a protocol as well
as the port and machine address. '
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An association is identified by the tuple <protocol, local address, local port,
remote address, remote port>. Duplicate tuples are not allowed. An
association may be transient when using datagram sockets; the association
actually exists during a send operation.

In the UNIX domain, an association is composed of local and foreign
pathnames (the phrase "foreign pathname" means a pathname created by a
foreign process, not a pathname on a foreign system). UNIX domain sockets
need not always be bound to a name, but when bound there may never be
duplicate <protocol, local pathname, foreign pathname> tuples. The
pathnames may not refer to files already existing on the system. Like
pathnames for normal files, they may be either absolute (e.g.,
/dev/imaginary) or relative (e.g., socket). Because these names are used to
allow processes to rendezvous, relative pathnames can pose difficulties and
should be used with care.

When a name is bound into the name space, a file (inode) is allocated in the
file system. If the inode is not deallocated, the name will continue to exist
even after the bound socket is closed. This can cause subsequent runs of a
program to find that a name is unavailable, and can cause directories to fill
up with these objects. The names are removed by calling unlink(2) or using
the rm (1) command. Names in the UNIX domain are only used for
rendezvous. They are not used for message delivery once a connection is
established. Therefore, in contrast with the Internet domain, unbound
sockets need not be (and are not) automatically given addresses when they
are connected.

The bind system call allows a process to specify half of an association,
<local address, local port> (or <local pathname>), while the connect and
accept primitives are used to complete a socket’s association.

The bind system call is used as follows:
bind (s, name, namelen);

The bound name is a variable length byte string that is interpreted by the
supporting protocol(s). Its interpretation may vary from communication
domain to communication domain (this is one of the properties that
comprise the "domain."

In the UNIX domain, names contain a pathname and a family, which is
always AF_UNIX. The following code fragment binds the name "/tmp/foo"
to a UNIX domain socket.
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#include <sys/un.h>
struct sockaddr_un addr;

strcpy (addr.sun_path, "/tmp/foo");

addr.sun_family = AF_UNIX;

bind(s, (struct sockaddr *) &addr, strlen(addr.sun_path) +
sizeof (addr.sun_family));

Note that in determining the size of a UNIX domain address, null bytes are
not counted, which is why strlen is used. In the current implementation of
UNIX domain IPC under IRIX, the file name referred to in addr.sun_path is
created as a socket in the system’s file space. The caller must, therefore,
have write permission in the directory where addr.sun_path is to reside, and
this file should be deleted by the caller when it is no longer needed using the
unlink(2) system call. Future versions of IRIX may not create this file.

In the Internet domain, binding names to sockets can be fairly complex.
Fortunately, it is usually not necessary to specifically bind an address and
port number to a socket, because the connect and send calls automatically
bind an appropriate address if they are used with an unbound socket.

In binding an Internet address, use the bind system call:

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

The selection of what to place in the address sin requires some discussion.
Section 3.3 describes formulating Intemet addresses and discusses the
library routines used in name resolution.

3.2.4 Establishing Connections

Connection establishment is usually asymmetric, with one process a "client”
and the other a "server." The server, when it offers its advertised services,
binds a socket to a well-known address associated with the service and then
passively "listens” on its socket. It is then possible for an unrelated process
to rendezvous with the server. The client requests services from the server
by initiating a "connection” to the server’s socket. On the client side the
connect call is used to initiate a connection.
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Using the UNIX domain, this might appear as:

struct sockaddr_un server;

connect (s, (struct sockaddr *)é&server,
strlen(server.sun_path) +
sizeof (server.sun_family));

Using the Internet domain, this might appear as:

struct sockaddr_in server;

connect (s, (struct sockaddr *)&server, sizeof (server));

In the example above, server would contain either the UNIX pathname or
the Internet address and port number of the server to contact. If the client
process’s socket is unbound at the time of the connect call, the system will
automatically select and bind a name to the socket if necessary. This is the
usual way that local addresses are bound to a socket.

The connect call returns an error if the connection was unsuccessful (any
name automatically bound by the system, however, remains). Otherwise,
the socket is associated with the server and data transfer can begin. Some of
the more common errors returned when a connection attempt fails are listed
below:

ETIMEDOUT
After failing to establish a connection for a period of time, the system
stopped trying. This usually occurs because the destination host is
down, or because problems in the network resulted in lost transmissions.

ECONNREFUSED
The host refused service. This is usually because a server process is not
present at the requested port on the host.

ENETDOWN or EHOSTDOWN
These operational errors describe status information delivered to the
client host by the underlying communication services.
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ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is
unknown (no route to the network or host is present), or because of
status information returned by intermediate gateways or switching
nodes. Many times the status returned is not sufficient to distinguish a
network being down from a host being down, in which case the system
indicates the entire network is unreachable.

For the server to receive a client’s connection, it must perform two steps
after binding its socket. The first is to indicate that it is ready to listen for
incoming connection requests:

listen(s, 5);

The second parameter of the listen call specifies the maximum number of
outstanding connections that can be queued awaiting acceptance by the
server process; this number can be limited by the system. Should a
connection be requested while the queue is full, the connection will not be
refused, but the individual messages that comprise the request will be
ignored. This gives a busy server time to make room in its pending
connection queue while the client retries the connection request. Had the
connection been returned with the ECONNREFUSED error, the client
would be unable to tell if the server was up or not.

It is still possible to get the ETIMEDOUT error back, though this is
unlikely. The backlog figure supplied with the listen call is currently
limited by the system to a maximum of 5 pending connections on any one
queue. This limit avoids the problem of processes monopolizing system
resources by setting an infinite backlog, then ignoring all connection
requests.

With a socket marked as listening, a server can accept a connection:

struct sockaddr_in from;
int fromlen = sizeof (from);
newsock = accept (s, (struct sockaddr *)&from, &fromlen);

(For the UNIX domain, from would be declared as a struct sockaddr_un, but
nothing different would need to be done as far as fromlen is concerned. The
examples that follow describe only Internet routines.) A new descriptor is
returned on receipt of a connection (along with a new socket). To find out
who its client is, a server can supply a buffer for the client socket’s name.
The server initializes the value-result parameter fromlen to indicate how
much space is associated with from. The parameter is then modified on
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return to reflect the true size of the name. If the client’s name is not of
interest, the second parameter can be a null pointer.

Accept normally blocks. That is, accept will not return until a connection is
available or the system call is interrupted by a signal to the process.
Furthermore, a process cannot indicate it will accept connections from only
a specific individual, or individuals. It is up to the user process to consider
who the connection is from and close down the connection if it does not
wish to speak to the process. If the server process wants to accept
connections on more than one socket, or wants to avoid blocking on the
accept call, there are alternatives; they will be considered in Section 3.4.

3.2.5 Transfering Data

IRIX has several system calls for reading and writing information. The
simplest calls are read(2) and write(2). They take as arguments a
descriptor, a pointer to a buffer containing the data and the size of the data:

char buf [100];

write (s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

The descriptor may indicate either a file or a connected socket. "Connected”
can mean either a connected stream socket or a datagram socket for which a
connect call has provided a default destination (described below). Write
requires a connected socket since no destination is specified in the
parameters of the system call. Read can be used for either a connected or an
unconnected socket. These calls are, therefore, quite flexible and may be
used to write applications that require no assumptions about the source of
their input or the destination of their output. There are variations on read
and write that allow the source and destination of the input and output to use
several separate buffers, while retaining the flexibility to handle both files
and sockets. These are readv(3) and writev(3), for read and write vector.

It is sometimes necessary to send high priority data over a connection that
may have unread low priority data at the other end. For example, a user
interface process may be interpreting commands and sending them on to
another process through a stream connection. The user interface may have
filled the stream with as yet unprocessed requests when the user types a
command to cancel all outstanding requests. Rather than have the high
priority data wait to be processed after the low priority data, it is possible to
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send it as out-of-band (OOB) data, which is discussed in the "Advanced
Topics" section. There are a pair of calls similar to read and write that
allow options, including sending and receiving OOB mfonnatwn these are
send(2) and recv(2).

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

These calls are used only with sockets; specifying a descriptor for a file will
result in the return of an error status. While send and recv are virtually
identical to read and write, the extra flags argument is important.

The flags, defined in <sys/socket.h>, can be a non-zero value if one or more
of the following is required:

MSG_PEEK look at data without reading
MSG_OOB send/receive out-of-band data
MSG_DONTROUTE  send data without routing packets

To preview data, specify MSG_PEEK with a recv call. It allows a process
to read data without removing the data from the stream. That is, the next
read or recv call applied to the socket will return the data previously
previewed. One use of this facility is to read ahead in a stream to determine
the size of the next item to be read. Out-of-band data are specific to stream
sockets, and are discussed in the "Advanced Topics" section of this chapter.
The option to have data sent in outgoing packets without routing is used
only by the routing table management process.

To send datagrams, one must be allowed to specify the destination. The call
sendto(2) takes a destination address as an argument and is therefore used
for sending datagrams. The call recvfrom(2) is often used to read
datagrams, since this call returns the address of the sender, if it is available,
along with the data. If the identity of the sender does not matter, one may
use read or recv.

Finally, there are a pair of calls that allow the sending and receiving of
messages from multiple buffers, when the address of the recipient must be
specified. These are sendmsg(2) and recvmsg(2). These calls are actually
quite general and have other uses, including, in the UNIX domain, the
transmission of a file descriptor from one process to another.
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3.2.6 Discarding Sockets

A socket can be discarded by closing the descriptor:
close(s);

If data are associated with a socket that promises reliable delivery (e.g., a
stream socket) when a close takes place, the system will continue trying to
transfer the data. However, after a period of time, undelivered data are
discarded. Should you have no use for any pending data, perform a
shutdown on the socket prior to closing it:

shutdown (s, how);

The value how is 0 if you do not want to read data, 1 if no more data will be
sent, or 2 if no data are to be sent or received.

3.2.7 Connectionless Sockets

The sockets described so far follow a connection-oriented model. However,
connectionless interactions, typical of the datagram facilities found in
contemporary packet-switched networks, are also supported. A datagram
socket provides a symmetric interface to data exchange. While processes
are still likely to be client and server, there is no requirement for connection
establishment. Instead, each message includes the destination address.

Datagram sockets are created as described earlier in this chapter. If a
particular local address is needed, the bind operation must precede the first
data transmission. Otherwise, the system will set the local address and/or
port when data are first sent.

To send data, use the sendto primitive:

sendto (s, buf, buflen, flags,
(struct sockaddr *)&to, sizeof (to));

The s, buf, buflen, and flags parameters are used as described earlier for the
send call. The to value indicates the destination address. On an unreliable
datagram interface, errors probably will not be reported to the sender. When
information is present locally to recognize a message that can not be
delivered (for instance when a network is unreachable), the call will return
—1 and the global value errno will contain an error number.
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To receive messages on an unconnected datagram socket, use the recvfrom
primitive:

recvfrom(s, buf, buflen, flags,
(struct sockaddr *)&from, &fromlen);

Once again, the value-result parameter, fromlen, initially contains the size of
the from buffer and is modified on return to indicate the actual size of the
address from which the datagram was received.

In addition to the two calls mentioned above, datagram sockets can also use
the connect call to associate a socket with a specific destination address. In
this case, any data sent on the socket will automatically be addressed to the
connected peer, and only data received from that peer will be delivered to
the user. Only one connected address is permitted for each socket at one
time: A second connect will change the destination address, and a connect
to a null address (family AF_UNSPEC) will cause a disconnection.
Connect requests on datagram sockets return immediately, as this simply
results in the system recording the peer’s address (as compared to a stream
socket, where a connect request initiates establishment of an end-to-end
connection). The accept and listen calls are not used with datagram sockets.

While a datagram socket is connected, errors from recent send calls can be
returned asynchronously. These errors can be reported on subsequent
operations on the socket, or a special socket option used with getsockopt,
SO_ERROR, can be used to interrogate the error status. A select for reading
or writing will return true when an error indication has been received. The
next operation will return the error, and the error status is cleared. Other
details of datagram sockets are described in Section 3.5.

3.2.8 Input/Output Multiplexing

You can multiplex I/O requests among multiple sockets and/or files by using
the select call:

#include <sys/time.h>
#include <sys/types.h>

fd set readmask, writemask, exceptmask;
struct timeval timeout;

select (nfds, &readmask, &writemask, &exceptmask, &timeout);
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The select call takes as arguments pointers to three sets: one for the set of
file descriptors the caller wants to read data on, one for descriptors data are
to be written on, and one for which exceptional conditions are pending.
Out-of-band data are the only exceptional condition currently implemented
by the socket. If you are not interested in certain conditions (i.e., read,
write, or exceptions), the corresponding argument to the select call should
be a null pointer.

Each set is a structure containing an array of long integer bit masks. The
size of the array is set by the definition FD_SETSIZE. The array must be
long enough to hold one bit for each of FD_SETSIZE file descriptors.

Use the macros FD_SET(fd, &mask) and FD_CLR(fd, &mask) to add and
remove file descriptor fd in the set mask. The set should be zeroed before
use. To clear the set mask, use the macro FD_ZERO(&mask). The
parameter nfds in the select call specifies the range of file descriptors (one
plus the value of the largest descriptor) to be examined in a set.

You can specify a timeout value if the selection is not to last more than a
predetermined period of time. If the fields in timeout are set to O, the
selection takes the form of a poll, returning immediately. If timeout is a null
pointer, the selection will block indefinitely. To be more specific, a return
takes place only when a descriptor is selectable, or when a signal is received
by the caller, interrupting the system call.

The select call normally retumns the number of file descriptors selected. If
the select call returns because the timeout expires, the value 0 is returned. If
the select call terminates because of an error or interruption, a —1 is returned
with the error number in errno, and with the file descriptor masks
unchanged.

For a successful return, the three sets will indicate which file descriptors are
ready to be read from, written to, or have exceptional conditions pending.
The status of a file descriptor in a select mask can be tested with the
FD_ISSET(fd, &mask) macro. This macro retumns a non-zero value if fd is a
member of the set mask, and 0 if it is not.

To check for read readiness on a socket to be used with an accept call, use
select followed by an FD_ISSET(fd, &mask) macro. If FD_ISSET returns a
non-zero value, indicating permission to read, then a connection is pending
on the socket.
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For example, to read data from two sockets, s/ and s2, as the data are
available and with a one-second timeout, the following code might be used:

#include <sys/time.h>
#include <sys/types.h>

fd set read template;
struct timeval wait;

for (;;) {
wait.tv_sec =1

; /* one second */
wait.tv_usec = 0;

FD_ZERO (&read template);

FD_SET(sl, &read_template);
FD_SET (s2, &read_template);

nb = select (FD_SETSIZE, &read_template,
(fd_set *) 0, (fd_set *) 0, &wait);

if (nb <= 0) {
/*
* An error occurred during the select, or
* the select timed out.
x/
}

if (FD_ISSET(sl1, &read_template)) {
/* Socket #1 is ready to be read from. */

}

if (FD_ISSET(s2, &read_template)) {
/* Socket #2 is ready to be read from. */
}

In 4.2BSD, the arguments to select were pointers to integers instead of
pointers to fd_sets. This type of call will still work as long as the largest file
descriptor is itself numerically less than the number of bits in an integer
(i.e., 32). However, the methods illustrated above should be used in all
current programs.

The select call provides a synchronous multiplexing scheme. Asynchronous
notification of output completion, input availability, and exceptional
conditions is possible through use of the SIGIO and SIGURG signals.
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3.3 Network Library Routines

Programs need to locate and construct network addresses when using the
interprocess communication facilities in a distributed environment. This
section discusses the routines provided to manipulate Internet network
addresses.

Locating a service on a remote host requires many levels of mapping before
client and server can communicate. A service is assigned a name, such as
"login server," that people can easily understand. This name, and the name
of the peer host, must then be translated into network addresses. Finally,
the address is used in locating a physical location and route to the service.
The specifics of these three mappings can vary between network
architectures. For instance, it is desirable for a network to not require hosts
to have names indicating their physical location to the client host. Instead,
underlying services in the network can discover the actual location of the
host at the time a client host wishes to communicate. This ability to have
hosts named in a location-independent manner can induce overhead in
connection establishment, as a discovery process must take place, but it
allows a host to be physically mobile. The host does not have to notify its
clients of its current location.

Standard routines are provided for mapping:
e host names to network addresses

e network names to network numbers

* protocol names to protocol numbers

* service names to port numbers

Routines also indicate the appropriate protocol to use in communicating
with the server process. The file <netdb.h> must be included when using
any of these routines.
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3.3.1 Host Names

The hostent data structure provides an Internet host name-to-address
mapping:

struct hostent {

char *h name; /* official name of host */

char **h aliases; /* alias list */

int h_addrtype; /* host address type (e.g., AF_INET) */
int h_length; /* length of address */

char **h addr list; /* list of addresses, null terminated */
};
/* first address, network byte order */
#define h_addr h_addr_ list[0]

The routine gethostbyname(3N) takes an Internet host name and returns a
hostent structure, while the routine gethostbyaddr(3N) maps Internet host
addresses into a hostent structure.

These routines return the official name of the host and its public aliases,
along with the address type (family) and a null-terminated list of variable
length address. This list of addresses is required because it is possible for a
host to have many addresses and the same name. The &_addr definition is
provided for backward compatibility, and is defined to be the first address in
the list of addresses in the hostent structure.

The database for these calls is provided either by the file /etc/hosts (see
hosts (4)), or by use of the Internet domain name server, named (IM). The
database can also come from the Yellow Pages, if you have the NFS option.
Because of the differences in these databases and their access protocols, the
information returned can differ. When using the host table YP versions of
gethostbyname, the call returns only one address but includes all listed
aliases. When using the name server version, the calls can return alternate
addresses, but will not provide any aliases other than one given as argument.
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3.3.2 Network Names

Routines for mapping network host names to numbers, and back, are
provided. These routines return a netent structure:

/*
* Assumption here is that a network number
* fits in 32 bits.
*/
struct netent {
char *n_name; /* official name of net */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
int n_net; /* network number, host byte order */

}:

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are
the network counterparts to the host routines described above. The routines
extract their information from /ezc/networks or from the Yellow Pages, if the
NFS option is installed.

3.3.3 Protocol Names

The protoent structure defines the protocol-name mapping used with the
routines getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N):

struct protoent {

char *p name; /* official protocol name */
char **p _aliases; /* alias list */
int  p_proto; /* protocol number */

};

The routines extract their information from /etc/protocols or from the
Yellow Pages if the NFS option is installed.

3.3.4 Service Names

A service is expected to reside at a specific "port" and employ a particular
communication protocol. This view is consistent with the Internet domain,
but inconsistent with other network architectures. Furthermore, a service
can reside on multiple ports. If it does, the higher-level library routines will
have to be bypassed or extended.

Version 1.0 Network Programming  3-19



Services available are obtained from the file /etc/services or from the
Yellow Pages if the NFS option is installed.

The servent structure describes a service mapping:

struct servent {

char *s name; /* official service name */

char **s_aliases; /* alias list */

int s_port; /* port #, network byte order */
char *s proto; /* protocol to use */

}:

The routine getservbyname(3N) maps service names to a servent structure
by specifying a service name and, optionally, a qualifying protocol. Thus:

sp = getservbyname ("telnet", (char *) 0);
returns the service specification for a telnet server using any protocol, while:
sp = getservbyname ("telnet", "tcp");

returns only the telnet server that uses the TCP protocol. The routines
getservbyport(3N) and getservent(3N) also provide service mappings. The
getservbyport routine has an interface similar to that provided by
getservbyname; specify an optional protocol name to qualify lookups.

3.3.5 Network Dependencies

With the support routines described above, an Internet application program
rarely has to deal directly with addresses. This allows services to operate as
much as possible in a network-independent fashion. However, purging all
network dependencies is difficult. Aslong as the user must supply network
addresses when naming services and sockets, some network dependency is
required in a program. For example, the normal code included in client
programs, e.g., the remote login program, takes the form shown in Figure
3-1.

To make the remote login program independent of the Internet protocols and
addressing scheme, a program would have to have a layer of routines that
masks the network-dependent aspects from the mainstream login code. For
the current facilities available in the system this does not appear worthwhile.
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#include
#include
#include
#include
#include

<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<stdio.h>
<netdb.h>

main(argc, argv)

int argc;
char *argv[]:

struct sockaddr_ in server;
struct servent *sp;

struct hostent *hp;

int s;

sp = getservbyname ("login", "tcp"):;
if (sp == NULL) {
fprintf (stderr,
"rlogin: tcp/login: unknown service\n");
exit (1);
}
hp = gethostbyname (argv(l]);
if (hp == NULL) { ’
fprintf (stderr,
"rlogin: %s: unknown host\n", argv([l]);
exit (2);
}
bzero((char *)&server, sizeof (server));
bcopy (hp->h_addr, (char *)&server.sin_addr,
hp->h_length);
server.sin_family = hp->h_addrtype;
server.sin_port = sp->s_port;
s = socket (AF_INET, SOCK_STREAM, 0);
if (s < 0) {
perror ("rlogin: socket");
exit (3);

/* Connect does the bind() for us */
if (connect (s, (char *)&server,
sizeof (server)) < 0) {
perror ("rlogin: connect");
exit (4);

Figure 3-1. Remote Login Client Code
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3.3.6 Byte Ordering

Aside from the address-related data-base routines, several other routines are
available to simplify manipulation of names and addresses. Table 3-1
summarizes the routines for manipulating variable-length byte strings and
handling byte swapping of network addresses and values.

Call Synopsis

bemp(sl, s2, n) compare byte-strings; 0 if same, not 0 otherwise
beopy(sl, s2,n) | copy nbytes from s1 to s2
bzero(base, n) zero-fill n bytes starting at base

htonl(val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohl(val) convert 32-bit quantity from network to host byte order
ntohs(val) convert 16-bit quantity from network to host byte order

Table 3-1. C Run-Time Routines

The format of the socket address is specified in part by standards within the
Internet domain. The specification includes the order of the bytes in the
address (called the network byte order). Addresses supplied to system calls
must be in network byte order; values returned by the system are also have
this ordering. Because machines differ in the internal representation of
integers, examining an address as returned by getsockname(2) or
getservbyname(3N) may result in a misinterpretation. To use the number, it
is necessary to use the routine ntohs (for network to host: short) to convert
the number from the network representation to the host’s representation, for
example,

printf ("port number %d\n", ntohs (sp->s_port));

On machines that have ‘big-endian’ byte ordering, such as the IRIS-4D, the
ntohs is a null operation. On others with ‘little-endian’ ordering, such as the
VAX, this results in a swapping of bytes. Another routine exists to convert
a short integer from the host format to the network format, called htons; the
ntohl and htonl routines exist for long integers. Any protocol that transfers
integer data between machines with different byte orders should use these
routines. The library routines that return network addresses and ports
provide them in network order so that they can simply be copied into the
structures provided to the system.
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3.4 Client/Server Model

The most commonly-used paradigm in constructing distributed applications
is the client/server model. In this scheme, client applications request
services from a server process. This implies an asymmetry in establishing
communication between the client and server. (See Section 3.2 for details.)
This section examines the interactions between client and server, and
considers some of the problems in developing client and server applications.

The client and server require a well-known set of conventions before service
can be rendered (and accepted). This set of conventions comprises a
protocol that must be implemented at both ends of a connection. The
protocol can be symmetric or asymmetric. In a symmetric protocol, either
side can play the master or slave roles. In an asymmetric protocol, one side
is always the master, with the other as the slave. An example of a
symmetric protocol is the TELNET protocol used in the Internet for remote
terminal emulation. An example of an asymmetric protocol is the Internet
file transfer protocol, FTP. No matter whether the protocol is symmetric or
asymmetric, when it accesses a service there is a "server process” and a
"client process."

A server process normally listens at a well-known address for service
requests. That is, the server process remains dormant until a connection is
requested by a client’s connection to the server’s address. At such a time
the server process "wakes up" and services the client, performing actions the
client requests.

Alternative schemes that use a service server can eliminate a flock of server
processes clogging the system while remaining dormant most of the time.
For Internet servers in 4.3BSD-based systems, this scheme has been
implemented via inetd, the so called "internet super-server." The inetd
daemon listens at a variety of ports, determined at start-up by reading a
configuration file. When a connection is requested to a port on which inetd
is listening, inetd executes the appropriate server program to handle the
client. With this method, clients are unaware that an intermediary such as
inetd has played any part in the connection. The inetd daemon is described
in more detail in Section 3.5.
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3.4.1 Servers

Most servers are accessed at well-known Internet addresses. The remote
login server’s main loop takes the form shown in the following example.

main (argc, argv)
"int argc; |
char *argvl[];

int £;
struct sockaddr_in from;
struct servent *sp;

sp = getservbyname ("login", "tcp"):;
if (sp == NULL) {
fprintf (stderr,
"rlogind: tcp/login: unknown service\n");
exit (1);
}

#ifndef DEBUG
/* Disassociate server from controlling terminal */

.« e

#endif
/* Restricted port —-- see Section 3.5.7 */
sin.sin port = sp->s_port; (f
f = socket (AF_INET, SOCK_STREAM, 0);

if (bind(f, (struct sockaddr *) &sin,
sizeof (sin)) < 0) {
syslog (LOG_ERR, "rlogind: bind: $m");
exit(1l);
}
listen(f, 5);
for (;;) {
int g, len = sizeof (from);
g = accept (f, (struct sockaddr *) &from, &len);
if (g < 0) {
if (errno != EINTR) { :
syslog (LOG_ERR, "rlogind: accept: %m");
}

continue;

3-24 Network Communications Guide IRIX




if (fork() == 0) {
close (f);
doit (g, &from);

}
close(qg);

The first step taken by the server is to look up its service definition:

sp = getservbyname ("login", "tcp");
if (sp == NULL) {
fprintf (stderr,
"rlogind: tcp/login: unknown service\n");
exit (1);
}

The result of the getservbyname call is used in later portions of the code to
define the well-known Internet port where the server listens for service
requests (indicated by a connection).

The second step taken by the server is to disassociate from the controlling
terminal of its invoker:

for (i = getdtablesize(); i >= 0; i--) {
(void) close(i);

}

open("/", O_RDONLY) ;

dup2 (0, 1);

dup2 (0, 2);

i = open("/dev/tty", O_RDWR);
if (i >= 0) {
ioctl (i, TIOCNOTTY, O0);
close(i);

}

This step protects the server from receiving signals delivered to the process
group of the controlling terminal. Note, however, that once a server has
disassociated itself, it can no longer send reports of errors to a terminal, and
must log errors via syslog.

Once a server has established a pristine environment, it creates a socket and
begins accepting service requests. The bind call is required to insure the
server listens at its expected location. Note that the remote login server
listens at a restricted port number, and must therefore be run with a user-id
of root. This concept of a "restricted port number" is specific to 4.3BSD-
based systems, and is covered in Section 3.5.
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The main body of the loop is shown below:

for (;;) {
int g, len = sizeof (from);

g = accept (f, (struct sockaddr *)&from, &len);
if (g < 0) {
if (errno != EINTR) {
syslog (LOG_ERR, "rlogind: accept: 3m");

continue;

}

if (fork() == 0) { /* Child */
close (f);
doit (g, &from);
}
close(qg); /* Parent */
}

An accept call blocks the server until a client requests service. This call
could return a failure status if interrupted by a signal such as SIGCHLD.
Therefore, the return value from accept is checked to insure a connection
has actually been established, and an error report is logged via syslog if an
error has occurred.

With a connection established, the server then forks a child process and
invokes the main body of the remote login protocol processing. Note how
the socket used by the parent for queuing connection requests is closed in
the child, while the socket created as a result of the accept is closed in the
parent. The address of the client is also handed to the doiz routine because
the routine requires it in authenticating clients.

3.4.2 Clients

The client side of the remote login service was shown earlier in Figure 3-1.
The separate, asymmetric roles of the client and server show clearly in the

code. The serveris a passive entity, listening for client connections, while
the client process is an active entity, initiating a connection when invoked.

3-26 Network Communications Guide IRIX




Consider the steps taken by the client remote login process. As in the server
process, the first step is to locate the service definition for a remote login:

sp = getservbyname ("login", "tcp");

if (sp == NULL) {
fprintf (stderr, "rlogin: tcp/login: unknown service\n");
exit (1);

}

Next, the gethostbyname call looks up the destination host.

hp = gethostbyname (argv(1l]):;

if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]);
exit (2);

}

Next, a connection is established to the server at the requested host and the
remote login protocol is started. The address buffer is cleared, then filled in
with the Internet address of the foreign host and the port number of the login
process on the foreign host:

bzero ((char *)&server, sizeof (server)):;

beopy (hp—>h_addr, (char *) &server.sin addr, hp->h_length);
server.sin family = hp->h_addrtype;

server.sin port = sp->s_port;

A socket is created, and a connection initiated. Note that connect implicitly
performs a bind call, since s is unbound.

s = socket (hp->h_addrtype, SOCK_STREAM, 0);
if (s < 0) {

perror ("rlogin: socket");

exit (3);

if (connect (s, (struct sockaddr *) &server,
sizeof (server)) < 0) {
perror ("rlogin: connect");
exit (4);
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3.4.3 Connectionless Servers

While connection-based services are the norm, some services are based on
the use of datagram sockets. The "rwho" service is an example. It provides
users with status information for hosts connected to a local area network.
This service is predicated on the ability to broadcast information to all hosts
connected to a particular network.

A user on any machine running the rwho server can find out the current
status of a machine with the ruptime(1C) program. The output generated is
illustrated in Figure 3-2.

dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65
renoir down 0:24

miro up 3+06:18, 0 users, load 0.03, 0.03, 0.05
monet up 1400:43, 2 users, load 0.22, 0.09, 0.07

Figure 3-2. Ruptime Output

Status information for each host is periodically broadcast by rwho server
processes on each machine. The same server process also receives the status
information and uses it to update a database. This database is then
interpreted to generate the status information for each host. Servers operate
autonomously, coupled only by the local network and its broadcast
capabilities.

The use of broadcast for such a task is inefficient, as all hosts must process
each message, whether or not using an rwho server. Unless such a service is
sufficiently universal and frequently used, the expense of periodic
broadcasts outweighs the simplicity. However, on a very small network,
(for example, dedicated to a computation engine and several display
engines) broadcast works well because all services are universal.

Multicasting is an alternative to broadcasting. Setting up multicast sockets
is described in Section 3.5.

The rwho server, in a simplified form, is shown in the following example.
The server performs two separate tasks. The first task is to receive status
information broadcast by other hosts on the network. This job is carried out
in the main loop of the program. Packets received at the rwho port are
interrogated to make sure they were sent by another rwho server process.
They are then time stamped with their arrival time and used to update a file
indicating the status of the host. When a host has not been heard from for
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an extended period of time, the database interpretation routines assume the
host is down and indicate such on the status reports. This algorithm is prone
to error as a server can be down while a host is actually up.

main ()

{

sp = getservbyname ("who", "udp");
sin.sin_addr.s_addr = htonl (INADDR_ANY);
sin.sin_port = sp->s_port;

s = socket (AF_INET, SOCK_DGRAM, 0);

on = 1;
if (setsockopt (s, SOL_SOCKET, SO_BROADCAST,
&on, sizeof(on)) < 0) {
syslog (LOG_ERR, "setsockopt SO_BROADCAST: %m");
exit (1),
}

bind (s, (struct sockaddr *) &sin, sizeof (sin));

signal (SIGALRM, onalrm);
onalrm() ;
for (;;) {
struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)é&wd,
sizeof (struct whod), O,
(struct sockaddr *)&from, &len);
if (cc <= 0) {
if (cc < 0 && errno != EINTR) ({
syslog (LOG_ERR, "rwhod: recv: 3%m");
}
continue;
}
if (from.sin_port != sp->s_port) {
syslog (LOG_ERR, "rwhod: %d: bad from port",
ntohs (from.sin_port)});
continue;

}

Y

if (!verify(wd.wd hostname)) {
syslog (LOG_ERR,
"rwhod: malformed host name from %x",
ntohl (from.sin_addr.s_addr));
continue;
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(void) sprintf (path, "%$s/whod.%s",
RWHODIR, wd.wd hostname);
whod = open (path, O_WRONLY |O_CREAT|O_TRUNC, 0666);

/* undo header byte swapping before writing to file */
wd.wd_sendtime = ntohl (wd.wd_sendtime) ;

(void) time (4wd.wd _recvtime) ; (
(void) write (whod, (char *)&wd, cc); \
(void) close (whod);

The second task performed by the server is to supply host status
information. This involves periodically acquiring system status
information, packaging it in a message, and broadcasting it on the local
network for other rwho servers to hear. The supply function is triggered by
a timer and runs off a signal. Deciding where to transmit the resultant
packet is somewhat problematical.

Status information must be broadcast on the local network. For networks
that do not support broadcast, another scheme must be used. One possibility
is to enumerate the known neighbors (based on the status messages received
from other rwho servers). This requires some bootstrapping information,
because a server will have no idea what machines are its neighbors until it
receives status messages from them. Therefore, if all machines on a net are
freshly booted, no machine will have any known neighbors and thus never
will receive, or send, any status information. This problem also occurs in
the routing table management process in propagating routing status
information. The standard solution is to inform one or more servers of
known neighbors and request that they always communicate with these
neighbors. If each server has at least one neighbor supplied to it, status
information can then propagate through a neighbor to hosts that are not
directly neighbors.

If the server is able to support networks that provide a broadcast capability,

as well as those that do not, then networks with an arbitrary topology can

share status information. However, "loops" can cause problems. That is, if

a host is connected to multiple networks, it will receive status information -
from itself. This can lead to an endless, wasteful, exchange of information. (

Software operating in a distributed environment should not have any site-
dependent information compiled into it. This requires a separate copy of the
server at each host and makes maintenance difficult. The 4.3BSD model
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attempts to isolate host-specific information from applications by providing
system calls that return the necessary information. An example of such a
call is gethostname(2), which returns the host’s "official” name. Also, an
ioctl call can find the collection of networks to which a host is directly
connected. Furthermore, a local network broadcasting mechanism has been
implemented at the socket level. Combining these features allows a process
to broadcast on any directly connected local network that supports the
notion of broadcasting in a site-independent manner. This allows the
system to decide how to propagate status information in the case of rwho, or
more generally in broadcasting. Such status information is broadcast to
connected networks at the socket level, where the connected networks have
been obtained via the appropriate ioctl calls. The specifics of such
broadcastings are covered in the next section.

3.5 Advanced Topics

For most users of sockets, the mechanisms already described will suffice in
constructing distributed applications. However, you might need to use some
of the more advanced features described in this section.

3.5.1 Out-of-Band Data

Stream sockets can accommodate "out-of-band" data. Out-of-band data are
transmitted on a logically independent transmission channel associated with
each pair of connected stream sockets. Out-of-band data are delivered to the
user independently of normal data. For stream sockets, the out-of-band data
facilities must support the reliable delivery of at least one out-of-band
message at a time. This message can contain at least one byte of data, and
at least one message can be pending delivery to the user at any one time.

For communications protocols that support only in-band signaling (i.e., the
urgent data are delivered in sequence with the normal data), the system
extracts the data from the normal data stream and stores them separately.
This allows you to choose between receiving the urgent data in sequence
and receiving them out of sequence, without having to buffer all the
intervening data.
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It is possible to "peek" (via MSG_PEEK) at out-of-band data. If the socket
has a process group, SIGURG is generated when the protocol is notified of
its existence. A process can set the process group or process ID to be
informed by SIGURG via the appropriate fcntl call, as described below for
SIGIO. If multiple sockets can have out-of-band data awaiting delivery, a
select call for exceptional conditions can be used to determine those sockets
with such data pending. Neither the signal nor the select indicate the actual
arrival of the out-of-band data, but only notification of pending data.

In addition to the information passed, a logical mark is placed in the data
stream to indicate the point at which the out-of-band data were sent. The
remote login and remote shell applications use this facility to propagate
signals between client and server processes. When a signal flushes pending
output from the remote process(es), all data up to the mark in the data
stream are discarded.

To send an out-of-band message, the MSG_OOB flag is supplied to a send
or sendto calls. To receive out-of-band data, MSG_OOB should be
indicated when performing a recvfrom or recv call. To find out if the read
pointer is currently pointing at the mark in the data stream, use the
SIOCATMARK ioctl:

int yes;
ioctl (s, SIOCATMARK, &yes);

If the value yes is a 1 on return, the next read will return data after the mark.
Otherwise (assuming out-of-band data have arrived), the next read will
provide data sent by the client prior to transmission of the out-of-band
signal. Figure 3-3 shows the routine used in the remote login process to
flush output on receipt of an interrupt or quit signal. It reads the normal data
up to the mark (to discard them), then reads the out-of-band byte.

A process can also read at the out-of-band data without first reading up to
the mark. This is more difficult when the underlying protocol delivers the
urgent data in-band with the normal data and only sends notification of their
presence ahead of time (e.g., the TCP protocol used to implement streams in
the Internet domain). With such protocols, the out-of-band byte may not yet
have arrived when a recv is done with the MSG_OOB flag. In that case, the
call will return an error of EWOULDBLOCK. Worse, there may be so
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much in-band data in the input buffer that normal flow control prevents the
peer from sending the urgent data until the buffer is cleared. The process
must then read enough of the queued data for the urgent data to be
delivered.

#include <stdio.h>

#include <termios.h> /* POSIX-style */
#include <sys/ioctl.h>

#include <sys/socket.h>

oob ()
{

int mark;
char waste[BUFSIZ];

/* Flush local terminal output */
tcflush(l, TCOFLUSH) ;
for (;;) |
if (ioctl (rem, SIOCATMARK, &mark) < 0) {
perror ("ioctl");
break;

}
if (mark)
break;
(void) read(rem, waste, sizeof (waste));

}
if (recv(rem, &mark, 1, MSG_OOB) < 0) {
perror ("recv");

Figure 3-3. Flushing Terminal I/O on Receipt of Out-of-Band Data

Certain programs that use multiple bytes of urgent data and must handle
multiple urgent signals (e.g., telnet (1C)) need to retain the position of
urgent data within the stream. This treatment is available as a socket-level
option, SO_OOBINLINE (see setsockopt (2) for usage). With this option,
the position of urgent data (the "mark") is retained, but the urgent data
immediately follow the mark within the normal data stream returned
without the MSG_OOB flag. Reception of multiple urgent indications
causes the mark to move, but no out-of-band data are lost.
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3.5.2 Non-Blocking Sockets

Programs that cannot wait for a socket operation to be completed should use
non-blocking sockets. I/O requests on non-blocking sockets return with an
error if the request cannot be satisfied immediately.

Once a socket has been created via the socket call, it can be marked as non- ( j.
blocking by fcntl as follows:

#include <fcntl.h>
int s;
s = socket (AF_INET, SOCK_STREAM, O0);

if (fentl (s, F_SETFL, FNDELAY) < 0)
perror ("fcntl F_SETFL, FNDELAY");
exit (1);

When performing non-blocking 1/0 on sockets, check for the error
EWOULDBLOCK (stored in the global variable errno). This occurs when

an operation would normally block, but the socket it was performed on is :
non-blocking. In particular, accept, connect, send, recv, read, and write can (
all return EWOULDBLOCK, and processes should be prepared to deal with -
such return codes. If an operation such as a send cannot be completed, but

partial writes are sensible (for example, when using a stream socket), the

data that can be sent immediately are processed, and the return value

indicates the amount actually sent.

3.5.3 Interrupt-Driven Socket I/0

The SIGIO signal allows a process to be notified when a socket (or more
generally, a file descriptor) has data waiting to be read. Use of the SIGIO
facility requires three steps:

1. The process must use the signal call to set up a SIGIO signal handler.

2. The process must set the process ID or process group ID (see the next ( /
subsection) to receive notification of pending input either to its own '
process ID or to the process group ID of its process group (the default
process group of a socket is group zero). To do this, the process uses
fentl,
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3. The process uses another fcntl call to enable asynchronous notification

of pending /O requests. Figure 3-4 shows sample code to allow a

process to receive information on pending 1/0 requests as they occur for
a socket s. With the addition of a handler for SIGURG, this code can

also be used to prepare for receipt of SIGURG signals.

#ifdef sgi
#define BSD SIGNALS
#endif

#include <signal.h>
#include <fentl.h>

int io_handler();
main ()
{
signal (SIGIO, io_handler);

/*
* Set the process receiving SIGIO/SIGURG
* signals to us
*/
if (fcntl(s, F_SETOWN, getpid()) < 0) {
perror ("fcntl F_SETOWN") ;
exit (1),
}

/* Allow receipt of asynchronous I/O signals */
if (fentl(s, F_SETFL, FASYNC) < 0) {
perror ("fcntl F_SETFL, FASYNC");
exit (1)
}

io_handler ()

{
}

Figure 3-4. Use of Asynchronous Notification of /O Requests
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3.5.4 Signals and Process Groups

Due to the existence of the SIGURG and SIGIO signals, each socket has an
associated process number, just as is done for terminals. This value is
initialized to zero, but can be redefined at a later time with the F_SETOWN
Jfentl, as was done in the code above for SIGIO. To set the socket’s process
ID for signals, positive arguments should be given to the fcntl call. To set
the socket’s process group for signals, negative arguments should be passed
to fenil. Note that the process number indicates either the associated process
ID or the associated process group; it is impossible to specify both at the
same time. A similar fcntl, F_ GETOWN, is available for determining the
current process number of a socket.

SIGCHLD is another signal that is useful when constructing server
processes. This signal is delivered to a process when any child processes
have changed state. Normally servers use the signal to "reap" child
processes that have exited, without explicitly awaiting their termination or
periodic polling for exit status. For example, the remote login server loop
shown in Section 3.4.1 can be augmented as shown in Figure 3-5.
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#ifdef sgi

#define _BSD_SIGNALS
#endif

#include <signal.h>

int reaperx():
main ()
{

signal (SIGCHLD, reaper);
listen(f, 5):;
for (;;) |

int g, len = sizeof (from);

g = accept (f, (struct sockaddr *)&from, &len,);
if (g < 0) {
if (errno != EINTR)
syslog (LOG_ERR, "rlogind: accept: %m");
continue;

}
}
#include <sys/wait.h>
reaper ()

{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0) {
; /* no-op */

}

Figure 3-5. Use of the SIGCHLD Signal

If the parent server process fails to reap its children, a large number of
"zombie" processes can be created.

3.5.5 Pseudo-Terminals

Many programs will not function properly without a terminal for standard
input and output. Since sockets do not provide the semantics of terminals, it
is often necessary to have a process communicate over the network through
a pseudo-terminal. A pseudo-terminal is actually a pair of devices, master
and slave, which allow a process to serve as an active agent in
communication between processes and users. Data written on the slave side
of a pseudo-terminal are supplied as input to a process reading from the
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master side, while data written on the master side are processed as terminal
input for the slave. In this way, the process manipulating the master side of
the pseudo-terminal has control over the information read and written on the
slave side as if it were manipulating the keyboard and reading the screen on
areal terminal. The purpose of this abstraction is to preserve terminal
semantics over a network connection. The slave side appears as a normal
terminal to any process reading from or writing to it.

For example, the remote login server uses pseudo-terminals for remote login
sessions. A userlogging in to a machine across the network gets a shell
with a slave pseudo-terminal as standard input, output, and error. The server
process then handles the communication between the programs invoked by
the remote shell and the user’s local client process. When a user sends a
character that causes a remote machine to flush terminal output, the pseudo-
terminal generates a control message for the server process. The server then
sends an out-of-band message to the client process to signal a flush of data
at the real terminal and on the intervening data buffered in the network.

Under IRIX, the name of the slave side of a pseudo-terminal has the syntax:
/dev/ttygx

In this syntax, x is a number in the range O through 99. The master side of a
pseudo-terminal is the generic device /dev/ptc.

Creating a pair of master and slave pseudo-terminals is straightforward. The
master half of a pseudo-terminal is opened first. The slave side of the
pseudo-terminal is then opened and is set to the proper terminal modes if
necessary. The process then forks. The child closes the master side of the
pseudo-terminal and execs the appropriate program. Meanwhile, the parent
closes the slave side of the pseudo-terminal and begins reading and writing
from the master side. Figure 3-6 illustrates sample code making use of
pseudo-terminals. This code assumes that a connection on a socket s exists,
connected to a peer that wants a service of some kind, and that the process
has disassociated itself from any previously controlling terminal.
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#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <fentl.h>
#include <syslog.h>

int master, slave;
struct stat stb;
char line[sizeof ("/dev/ttygxxx")];

master = open ("/dev/ptc", O_RDWR | O_NDELAY);

if (master < 0 || fstat (master, &stb) < 0) {
syslog (LOG_ERR, "All network ports in use");
exit (1) ;

}
sprintf (line, "/dev/ttyqg%d", minor(stb.st_rdev));

/*
* Put in separate process group, disassociate
* controlling terminal.

*/
setpgrp () ; /* SYSV version, not BSD */
slave = open(line, O_RDWR); /* Open slave side */

if (slave < 0) {
syslog (LOG_ERR, "Cannot open slave pty %s", line);
exit (1);

}

pid = fork();

if (pid < 0) {
syslog (LOG_ERR, "fork: %m");
exit (1) ;

}

if (pid > 0) { /* Parent */
close(slave);

} else { /* Child */

close(£f);

close (master);

dup2 (slave, 0);

dup2 (slave, 1);

dup2 (slave, 2);

if (slave > 2)

(void) close(slave);

Figure 3-6. Creation and Use of a Pseudo-Terminal on IRIX
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3.5.6 Selecting Protocols

If the third argument to the socket call is 0, socket will select a default
protocol to use with the returned socket of the type requested. The default
protocol is usually correct, and alternate choices are not usually available.
However, when using raw sockets to communicate directly with lower-level
protocols or hardware interfaces, the protocol argument can be important for
setting up demultiplexing. For example, raw sockets in the Internet family
can be used to implement a new protocol above IP, and the socket will
receive packets only for the protocol specified.

To obtain a particular protocol, determine the protocol number as defined
within the communication domain. For the Internet domain, you can use
one of the library routines discussed in Section 3.3, such as getprotobyname:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

pPp = getprotobyname ("newtcp") ;
s = socket (AF_INET, SOCK_STREAM, pp->p_proto);

This would result in a socket s using a stream-based connection, but with
protocol type of "newtcp” instead of the default "tcp."

3.5.7 Address Binding

Binding addresses to sockets in the Internet domain can be fairly complex.
These associations are composed of local and foreign addresses, and local
and foreign ports. Port numbers are allocated out of separate spaces, one for
each system and one for each domain on that system. Through the bind
system call, a process can specify half of an association, the <local address,
local port> part, while the connect and accept primitives are used to
complete a socket’s association by specifying the <foreign address, foreign
port> part. Since the association is created in two steps, the association
uniqueness requirement could be violated unless care is taken. Furthermore,
user programs will not always know proper values to use for the local
address and local port, since a host can reside on multiple networks and the
set of allocated port numbers is not directly accessible to a user.
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To simplify local address binding in the Internet domain, a "wildcard"
address has been provided. When an address is specified as INADDR_ANY
(a manifest constant defined in <netinet/in.h>), the system interprets the
address as "any valid address."

For example, to bind a specific port number to a socket, but leave the local
address unspecified, the following code might be used:

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = socket (AF_INET, SOCK_STREAM, O0);
sin.sin_family = AF_INET;

sin.sin_addr.s_addr = htonl (INADDR_ANY) ;
sin.sin_port = htons (MYPORT) ;
bind (s, (struct sockaddr *) &sin, sizeof (sin));

Sockets with wildcarded local addresses can receive messages directed to
the specified port number and sent to any of the possible addresses assigned
to a host. For example, if a host has addresses 128.32.0.4 and 10.0.0.78, and
a socket is bound as above, the process will be able to accept connection
requests that are addressed to 128.32.0.4 or 10.0.0.78. For a server process
to allow only hosts on a given network connect to it, it would bind the
address of the host on the appropriate network.

Similarly, a local port can be left unspecified (specified as zero), in which
case the system selects an appropriate port number for it. For example, to
bind a specific local address to a socket, but to leave the local port number
unspecified, use the following code:

hp = gethostbyname (hostname);
if (hp == NULL) {

}

bcopy (hp—>h_addr, (char *) sin.sin_addr, hp->h_length);
sin.sin_port = htons(0);

bind(s, (struct sockaddr *) &sin, sizeof (sin));

The system selects the local port number based on two criteria. The first
criterion is that, on 4.3BSD systems, Internet ports between 512 and 1023
(IPPORT_RESERVED - 1) are reserved for privileged users; Internet ports
above IPPORT_USERRESERVED (5000) are reserved for non-privileged
Servers.

Version 1.0 Network Programming  3-41



The second criterion is that the port number is not currently bound to some
other socket. In order to find a free Internet port number in the privileged
range, the rresvport library routine can be used as follows to return a stream
socket with a privileged port number;

int lport = IPPORT RESERVED - 1;
int s;

s = rresvport (&lport);
if (s < 0) {
if (errno == EAGAIN)
fprintf (stderr, "socket: all ports in use");
else
perror ("rresvport: socket");

}

The restriction on allocating ports allows processes executing in a "secure”
environment to perform authentication based on the originating address and
port number. For example, the rlogin(1C) command allows users to log in
across a network without being asked for a password, if two conditions hold:
First, the name of the system the user is logging in from is in the file
letc/hosts.equiv on the system being logged in to (or the system name and
the user name are in the user’s .rhosts file in the user’s home directory).
Second, the user’s rlogin process is coming from a privileged port on the
machine the user is logging in from. The port number and network address
of the machine the user is logging in from can be determined either by the
from result of the accept call, or from the getpeername call.

The algorithm used by the system to select port numbers can be unsuitable
for an application. This is because the algorithm creates associations in a
two step process. For example, the Internet file transfer protocol, FTP,
specifies that data connections must always originate from the same local
port. However, duplicate associations are avoided by connecting to
different foreign ports. The system disallows binding the same local address
and port number to a socket if a previous data connection’s socket still
existed. To override the default port selection algorithm, the following
option call must be performed before address binding:

int on = 1;

setsockopt (s, SOL SOCKET, SO_REUSEADDR, &on, sizeof (on));
bind(s, (struct sockaddr *) &sin, sizeof (sin));

3-42 Network Communications Guide IRIX




With the above call, local addresses that are already in use can be bound.
This does not violate the uniqueness requirement, as the system still checks
at connect time to be sure any other sockets with the same local address and
port do not have the same foreign address and port. If the association
already exists, the error EADDRINUSE is returned.

3.5.8 Socket Options

You can use the setsockopt and getsockopt system calls to set and get a
number of options on sockets. These options include marking a socket for
broadcasting, not to route, to linger on close, etc.

The general forms of the calls are:
setsockopt (s, level, optname, optval, optlen);
and

getsockopt (s, level, optname, optval, optlen);

The parameters to the calls are as follows:
* s is the socket on which the option is to be applied.

e level specifies the protocol layer on which the option is to be applied; in
most cases this is the "socket level," indicated by the symbolic constant
SOL_SOCKET, defined in <sys/socket.h>.

* optname specifies the actual option, a symbolic constant also defined in
<sys/socket.h>.

e optval points to the value of the option (in most cases, whether the option
is to be tumed on or off).

e optlen points to the length of the value of the option. For getsockopt,
optlen is a value-result parameter, initially set to the size of the storage
area pointed to by optval, and modified upon return to indicate the actual
amount of storage used.

For example, it is sometimes useful to determine the type (e.g., stream,
datagram, etc.) of an existing socket. Programs under inetd (described
below) may need to perform this task. This can be accomplished as follows
via the SO_TYPE socket option and the getsockopt call.
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#include <sys/types.h>
#include <sys/socket.h>

int type, size;
size = sizeof (int);

if (getsockopt (s, SOL_SOCKET, SO_TYPE,
(char *) &type, &size) < 0) {
perror ("getsockopt") ;

}

After the getsockopt call, type will be set to the value of the socket type, as
defined in <sys/socket.h>. For example, if the socket were a datagram
socket, type would have the value corresponding to SOCK_DGRAM.

3.5.9 Inetd

IRIX provides the daemon inetd(1M), the so-called "internet super-server."
Having one daemon listen for requests for many daemons instead of having
each daemon listen for its own requests reduces the number of idle daemons
and simplies their implementation. Inetd handles three types of services:
standard, RPC and TCPMUX. A standard service has a well-known port
assigned to it and is listed in /etc/services or the Yellow Pages services map
(see services(4)); it may be a service that implements an official Internet
standard or is a BSD Unix-specific service. RPC services use the Sun RPC
calls as the transport; such services are listed in /etc/rpc or the Yellow Pages
rpc map (see rpc(4)). TCPMUX services are nonstandard and do not have a
well-known port assigned to them. They are invoked from inetd when a
program connects to the "tcpmux" well-known port and specifies the service
name. This is useful for adding locally developed servers.

The inetd daemon, which is described in more detail in inetd(1M), is
invoked at boot time. It examines the file /usr/etc/inetd.conf to determine
the servers it will listen for. Once this information has been read and a
pristine environment created, inetd proceeds to create one socket for each
service it is to listen for, binding the appropriate port number to each socket.
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The inetd daemon performs a select on these sockets for read availability,
waiting for a process to request a connection to the service corresponding to
that socket. The inetd daemon then performs an accept on the socket in
question, forks, dups the new socket to file descriptors 0 and 1 (stdin and
stdout), closes other open file descriptors, and execs the appropriate server.

Servers making use of inetd are considerably simplified, as inetd takes care
of most of the IPC work required in establishing a connection. The server
invoked by inetd expects the socket connected to its client on file descriptors
0 and 1, and can immediately perform any operations such as read, write,
send, or recv. Indeed, servers can use buffered I/O as provided by the
"stdio" conventions, as long as as they use fflush when appropriate.
However, for server programs that handle multiple services or protocols,
inetd allocates socket descriptors to protocols based on lexicographic order
of service and protocol name. For example, the RPC mount daemon,
rpc.mountd has two entries in inetd.conf for its TCP and UDP ports. When
invoked by inetd, the TCP socket is on descriptor 0, and UDP on 1.

When writing servers under inetd, you can use the getpeername call to
return the address of the peer (process) connected on the other end of the
socket. For example, to log the Internet address in "dot notation” (¢.g.,
"128.32.0.4") of a client, you might use the following code:

struct sockaddr_in name;
int namelen = sizeof (name);

if (getpeername (0, (struct sockaddr *)é&name,
&namelen) < 0) {

syslog (LOG_ERR, '"getpeername: sm") ;
exit (1);
} else {
syslog (LOG_INFO, "Connection from %s",
inet_ntoa(name.sin_addr));

}

While the getpeername call is especially useful when writing programs to
run with inetd, it can be used by stand-alone servers.

Standard TCP services are assigned unique well-known port numbers in the
range of 0 to 255. These ports are of limited number and are typically only
assigned to official Internet protocols. The TCPMUX service, as described
in RFC-1078, allows you to add locally-developed protocols without
needing an official TCP port assignment. The protocol used by TCPMUX is
simple: a TCP client connects to a foreign host on TCP port 1. It sends the
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service name followed by a carriage-return line-feed <CRLF>. The server
replies with a single character indicating positive ("+") or negative ("—")
acknowledgment, immediately followed by an optional message of
explanation, terminated with a <CRLF>. If the reply was positive, the
selected protocol begins; otherwise the connection is closed. In IRIX, the
TCPMUX service is built into inetd, that is, inetd listens on TCP port 1 for
requests for TCPMUX services listed in inetd.conf.

The following is an example TCPMUX server and its inetd.conf entry.
More sophisticated servers may want to do additional processing before
returning the positive or negative acknowledgement.

#include <sys/types.h>
#include <stdio.h>

main ()

{
time_t t;
printf ("+Go\r\n");
fflush (stdout) ;
time (&t);
printf ("%d = %s", t, ctime(&t));
fflush (stdout) ;

}

The inetd.conf entry is:

tcpmux/current_time stream tcp nowait guest /d/curtime curtime

Here’s the portion of the client code that handles the TCPMUX handshake:

char line[BUFSIZ];
FILE *fp;

/* Use stdio for reading data from the server */
fp = fdopen (sock, "r");
if (fp == NULL) {
fprintf (stderr, "Can’t create file pointer0);
exit (1);
}

/* Send service request */
sprintf (line, "%$s\r\n", "current_time");
if (write(sock, line, strlen(line)) < 0) {
perror ("write");
exit (1);
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/* Get ACK/NAK response from the server */
if (fgets(line, sizeof (line), fp) == NULL) ({
if (feof(fp)) {
die();
} else {
fprintf (stderr, "Error reading response0);
exit (1);

}
/* Delete <CR> */ ’)y) != NULL) {
if ((lp = index(line, '
*lp= [
}

switch (line[0]) {

case '+':
printf ("Got ACK: %s0, &line[l]);
break;

case "-':
printf ("Got NAK: %s0, &line[l]);
exit (0);

default:

printf ("Got unknown response: %s0, line);
exit (1) ;
}

/* Get rest of data from the server */

while ((fgets(line, sizeof(line), fp)) != NULL) {
fputs(line, stdout);

}

3.5.10 Broadcasting

By using a datagram socket, you can send broadcast packets on many
networks supported by the system. The network itself must support
broadcast; the system provides no simulation of broadcast in software.
Broadcast messages can place a high load on a network, since they force
every host on the network to service them. Consequently, the ability to send
broadcast packets has been limited to sockets explicitly marked to allow
broadcasting. Broadcast is typically used for one of two reasons: to find a
resource on a local network without prior knowledge of its address, or to
send information to all accessible neighbors.

Multicasting is an alternative to broadcasting. Setting up multicast sockets
is described in the next section.

Version 1.0 Network Programming  3-47



To send a broadcast message, create a datagram socket:

s = socket (AF_INET, SOCK_DGRAM, 0);
Mark the socket to allow broadcasting:

int on = 1;

setsockopt (s, SOL_SOCKET, SO_BROADCAST, &on, sizeof (on));
Bind a port number to the socket:

sin.sin_family = AF INET;

sin.sin_addr .s_addr = htonl (INADDR_ANY) ;
sin.sin_port = htons (MYPORT) ;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

The destination address of the broadcast message depends on the
network(s). The Internet domain supports a shorthand notation for
broadcast on the local network, the address INADDR_BROADCAST
(defined in <netinet/in.h>. Determining the list of addresses for all
reachable neighbors requires knowledge of the networks to which the host is
connected. Since this information should be obtained in a host-independent
fashion and may be impossible to derive, IRIX provides a method of
retrieving this information from the system data structures.

The SIOCGIFCONEF ioctl call returns the interface configuration of a host in
the form of a single ifconf structure. This structure contains a data area that
is made up of an array of of ifreq structures, one for each network interface
to which the host is connected. These structures are defined in <net/if.h> as
shown in the following example.
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struct ifconf {
int ifc_len; /* size of associated buffer */
union {
caddr_t ifcu buf;
struct ifreq *ifcu_req;
} ifc_ifcu;
};
/* Buffer address */
#define ifc_buf ifc_ifcu.ifcu buf

/* Array of structures returned */
#define ifc req ifc_ifcu.ifcu req

#define IFNAMSIZ 16

struct ifreq ({
/* Interface name, e.g. "enpO" */
char ifr name[IFNAMSIZ];

union {
struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;

short ifru flags;

int ifru _metric;

caddr_t ifru data;
#ifdef sgi

struct ifstats ifru_stats;
#endif
} ifr_ifru;

}i

/* Address */
#define ifr addr ifr ifru.ifru_addr

/* Other end of p-to-p link */
#define ifr dstaddr ifr ifru.ifru_dstaddr

/* Broadcast address */
#define ifr broadaddr ifr ifru.ifru broadaddr

/* Flags */
#define ifr_ flags ifr ifru.ifru flags

/* Metri */
#define ifr metric ifr ifru.ifru metric

/* For use by interface */
#define ifr data ifr ifru.ifru data
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The following call obtains the interface configuration:

struct ifconf ifc;
char buf[BUFSIZ];

ifc.ifc_len sizeof (buf);
ifc.ifc_buf buf;
if (ioctl(s, SIOCGIFCONF, (char *) &ifc) < 0) {

}

After this call, buf will contain one ifreq structure for each network to which
the host is connected, and ifc.ifc_len will have been modified to reflect the

number of bytes used by the ifreq structures.

Each structure has an associated set of "interface flags" that tell whether the

network corresponding to that interface is up or down, point-to-point or
broadcast, etc. The SIOCGIFFLAGS ioctl retrieves these flags for an

interface specified by an ifreq structure as follows:

struct ifreq *ifr;
struct sockaddr dst;

ifr = ifc.ifc_req;

for (n = ifc.ifc_len / sizeof (struct ifreq);
--n >= 0;
ifr++) {

/*
* Be careful not to use an interface
* devoted to an address family other than
* the one intended.
*/
if (ifr->ifr addr.sa_family != AF _INET)
continue;

if (ioctl (s, SIOCGIFFLAGS, (char *) ifr) < 0)

}
/*
* Skip boring cases.
*/
if ((ifr->ifr flags & IFF_UP) == |l
(ifr->ifr flags & IFF_LOOPBACK) | |
(ifr->ifr flags &

(IFF_BROADCAST | IFF_POINTTOPOINT))

continue;
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Once you retrieve the flags, retrieve the broadcast address. For broadcast
networks, this is done via the SIOCGIFBRDADDR ioctl. For point-to-point
networks, the address of the destination host is obtained with
SIOCGIFDSTADDR.

if (ifr->ifr flags & IFF_POINTTOPOINT) {
if (ioctl(s, SIOCGIFDSTADDR, (char *) ifr) < 0) {

}
bcopy ( (char *) ifr->ifr dstaddr, (char *) &dst,
sizeof (ifr->ifr_ dstaddr));

} else if (ifr->ifr flags & IFF_BROADCAST) {
if (ioctl (s, SIOCGIFBRDADDR, (char *) ifr) < 0) {

}
bcopy ( (char *) ifr->ifr broadaddr, (char *) &dst,
sizeof (ifr->ifr broadaddr)):

After the appropriate ioctls get the broadcast or destination address (now in
dst), use the sendto call:

sendto (s, buf, buflen, O,
(struct sockaddr *)é&dst, sizeof (dst)):;
}

In the above loop, one sendto occurs for every interface the host is
connected to that supports broadcast or point-to-point addressing. For a
process to send only broadcast messages on a given network, use code
similar to that outlined above, but the loop would need to find the correct
destination address.

Received broadcast messages contain the sender’s address and port, as
datagram sockets are bound before a message is allowed to go out.

3.5.11 Multicasting

IP multicasting is the transmission of an IP datagram to a "host group"”, a set
of zero or more hosts identified by a single IP destination address. A
multicast datagram is delivered to all members of its destination host group
with the same "best-efforts" reliability as regular unicast IP datagrams, i.e.,
the datagram is not guaranteed to arrive intact at all members of the
destination group or in the same order relative to other datagrams.
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The membership of a host group is dynamic; that is, hosts may join and
leave groups at any time. There is no restriction on the location or number
of members in a host group. A host may be a member of more than one
group at a time. A host need not be a member of a group to send datagrams
to it.

A host group may be permanent or transient. A permanent group has a
well-known, administratively assigned IP address. It is the address, not the
membership of the group, that is permanent; at any time a permanent group
may have any number of members, even zero. Those IP multicast addresses
that are not reserved for permanent groups are available for dynamic
assignment to transient groups which exist only as long as they have
members.

In general, a host cannot assume that datagrams sent to any host group
address will reach only the intended hosts, or that datagrams received as a
member of a transient host group are intended for the recipient. Misdelivery
must be detected at a level above IP, using higher-level identifiers or
authentication tokens. Information transmitted to a host group address
should be encrypted or governed by administrative routing controls if the
sender is concerned about unwanted listeners.

Note: This RFC-1112 level-2 implementation of IP multicasting is
experimental and subject to change in order to track future BSD UNIX
releases. In particular, there may be changes in the way a process overrides
the default interface for sending multicast datagrams and for joining
multicast groups. This ability to override the default interface is intended
mainly for routing demons; normal applications should not be concerned
with specific interfaces.

IP multicasting is currently supported only on AF_INET sockets of type
SOCK_DGRAM and SOCK_RAW, and only on subnetworks for which the
interface driver has been modified to support multicasting. The standard
Ethemet and SLIP interfaces on the IRIS-4D support multicasting. (Older
versions of ENP-10 interfaces may require an upgrade — see Chapter 1 for
details.)

The next subsections describe how to send and receive multicast datagrams.
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Sending IP Multicast Datagrams

To send a multicast datagram, specify an IP multicast address in the range
224.0.0.0 to 239.255.255.255 as the destination address in a sendto(2) call.

The definitions required for the multicast-related socket options are found in
<netinet/in.h>. All IP addresses are passed in network byte-order.

By default, IP multicast datagrams are sent with a time-to-live (TTL) of 1,
which prevents them from being forwarded beyond a single subnetwork. A
new socket option allows the TTL for subsequent multicast datagrams to be
set to any value from 0 to 255, in order to control the scope of the
multicasts:

u_char ttl;
setsockopt (sock, IPPROTO_IP, IP_MULTICAST TTL,
&ttl, sizeof (ttl));

Multicast datagrams with a TTL of 0 will not be transmitted on any subnet,
but may be delivered locally if the sending host belongs to the destination
group and if multicast loopback has not been disabled on the sending socket
(see below). Multicast datagrams with TTL greater than one may be
delivered to more than one subnet if there are one or more multicast routers
attached to the first-hop subnet. To provide meaningful scope control, the
multicast routers support the notion of TTL "thresholds", which prevent
datagrams with less than a certain TTL from traversing certain subnets. The
thresholds enforce the following convention:

Scope Initial TTL
restricted to the same host 0
restricted to the same subnet 1
restricted to the same site 32
restricted to the same region 64
restricted to the same continent 128
unrestricted 255

"Sites" and "regions" are not strictly defined, and sites may be further
subdivided into smaller administrative units, as a local matter.

An application may choose an initial TTL other than the ones listed above.
For example, an application might perform an "expanding-ring search" for a
network resource by sending a multicast query, first with a TTL of 0, and
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then with larger and larger TTLs, until a reply is received, perhaps using the
TTL sequence 0, 1, 2, 4, 8, 16, 32.

The multicast router mrouted(1M), refuses to forward any multicast
datagram with a destination address between 224.0.0.0 and 224.0.0.255,
inclusive, regardless of its TTL. This range of addresses is reserved for the
use of routing protocols and other low-level topology discovery or
maintenance protocols, such as gateway discovery and group membership
reporting.

The address 224.0.0.0 is guaranteed not to be assigned to any group, and
224.0.0.1 is assigned to the permanent group of all IP hosts (including
gateways). This is used to address all multicast hosts on the directly
connected network. There is no multicast address (or any other IP address)
for all hosts on the total Internet. The addresses of other well-known,
permanent groups are published in the "Assigned Numbers" RFC, which is
available from the NIC.

Each multicast transmission is sent from a single network interface, even if
the host has more than one multicast-capable interface. (If the host is also
serving as a multicast router, a multicast may be forwarded to interfaces
other than originating interface, provided that the TTL is greater than 1.)
The default interface to be used for multicasting is the primary network
interface on the system. A socket option is available to override the default
for subsequent transmissions from a given socket:

struct in_addr addr;
setsockopt (sock, IPPROTO_IP, IP_MULTICAST_IF,
&addr, sizeof (addr));

where "addr" is the local IP address of the desired outgoing interface. An
address of INADDR_ANY may be used to revert to the default interface.
The local IP address of an interface can be obtained via the SIOCGIFCONF
ioctl. To determine if an interface supports multicasting, fetch the interface
flags via the SIOCGIFFLAGS ioctl and see if the IFF_ MULTICAST flag is
set. (Normal applications should not need to use this option; it is intended
primarily for multicast routers and other system services specifically
concemned with internet topology.) The SIOCGIFCONF and
SIOCGIFFLAGS ioctls are described in the previous section.
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If a multicast datagram is sent to a group to which the sending host itself
belongs (on the outgoing interface), a copy of the datagram is, by default,
looped back by the IP layer for local delivery. Another socket option gives
the sender explicit control over whether or not subsequent datagrams are
looped back:

u_char loop;
setsockopt (sock, IPPROTO_IP, IP_MULTICAST_LOOP,
&loop, sizeof (loop));

where loop is set to 0 to disable loopback, and set to 1 to enable loopback.
This option improves performance for applications that may have no more
than one instance on a single host (such as a router demon), by eliminating
the overhead of receiving their own transmissions. It should generally not
be used by applications for which there may be more than one instance on a
single host (such as a conferencing program) or for which the sender does
not belong to the destination group (such as a time querying program).

A multicast datagram sent with an initial TTL greater than 1 may be
delivered to the sending host on a different interface from that on which it
was sent, if the host belongs to the destination group on that other interface.
The loopback control option has no effect on such delivery.

Receiving IP Multicast Datagrams

Before a host can receive IP multicast datagrams, it must become a member
of one or more IP multicast groups. A process can ask the host to join a
multicast group by using the following socket option:

struct ip mreq mregq;
setsockopt (sock, IPPROTO_IP, IP_ADD_MEMBERSHIP,
&mreq, sizeof (mreq))

where "mreq" is the following structure:

struct ip mreq {
struct in_addr imr_multiaddr; /* multicast group to join */
struct in addr imr interface; /* interfacetojoinon */

}

Every membership is associated with a single interface, and it is possible to
join the same group on more than one interface. "imr_interface" should be
INADDR_ANY to choose the default multicast interface, or one of the
host’s local addresses to choose a particular (multicast-capable) interface.
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Up to IP_MAX_MEMBERSHIPS (currently 20) memberships may be
added on a single socket.

To drop a membership, use:

struct ip_mreq mreq;
setsockopt (sock, IPPROTO_IP, IP_DROP_MEMBERSHIP, -
s¢mreq, sizeof (mreq)); (i J

where "mreq" contains the same values as used to add the membership. The
memberships associated with a socket are also dropped when the socket is
closed or the process holding the socket is killed. However, more than one
socket may claim a membership in a particular group, and the host will
remain a member of that group until the last claim is dropped.

The memberships associated with a socket do not necessarily determine

which datagrams are received on that socket. Incoming multicast packets

are accepted by the kemnel IP layer if any socket has claimed a membership

in the destination group of the datagram; however, delivery of a multicast

datagram to a particular socket is based on the destination port (or protocol

type, for raw sockets), just as with unicast datagrams. To receive multicast
datagrams sent to a particular port, it is necessary to bind to that local port,

leaving the local address unspecified (i.e., INADDR_ANY). (

More than one process may bind to the same SOCK_DGRAM UDP port if
the bind call is preceded by:

int one = 1;
setsockopt (sock, SOL_SOCKET, SO_REUSEADDR, &one, sizeof (one)):

In this case, every incoming multicast or broadcast UDP datagram destined
to the shared port is delivered to all sockets bound to the port. For
backwards compatibility reasons, this does not apply to incoming unicast
datagrams. Unicast datagrams are never delivered to more than one socket,
regardless of how many sockets are bound to the datagram’s destination
port. SOCK_RAW sockets do not require the SO_REUSEADDR option to
share a single IP protocol type.

A final multicast-related extension is independent of IP: two new ioctls,
SIOCADDMULTI and SIOCDELMULTI, are available to add or delete

link-level (e.g., Ethernet) multicast addresses accepted by a particular (
interface. The address to be added or deleted is passed as a sockaddr

structure of family AF_UNSPEC, within the standard ifreq structure.
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These ioctls are for the use of protocols other than IP, and require superuser
privileges. A link-level multicast address added via SIOCADDMULTI is
not automatically deleted when the socket used to add it goes away; it must
be explicitly deleted. It is inadvisable to delete a link-level address that may
be in use by IP.

Sample Multicast Program

The following program sends or receives multicast packets. If invoked with
one argument, it sends a packet containing the current time to an
arbitrarily-chosen multicast group and UDP port. If invoked with no
arguments, it receives and prints these packets. Start it as a sender on just
one host and as a receiver on all the other hosts.

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <time.h>
#include <stdio.h>

#define EXAMPLE_ PORT 6000
#define EXAMPLE_GROUP "224.0.0.250"

main (argc)
int argc;

{
struct sockaddr_ in addr;
int addrlen, fd, cnt;
struct ip mreq mreq;
char message([50];

fd = socket (AF_INET, SOCK_DGRAM, 0);
if (fd < 0) {

perror ("socket") ;

exit (1);
}

bzero (&addr, sizeof (addr));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl (INADDR ANY) ;
addr.sin_port = htons (EXAMPLE PORT) ;
addrlen = sizeof (addr);
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if

} else {

(arge > 1) { /* Send */
addr.sin addr.s_addr = inet_addr (EXAMPLE GROUP) ;
while (1) {

}

time t t = time(0);
sprintf (message, "time is %-24.24s", ctime(&t));
cnt = sendto(fd, message, sizeof (message), O,
&addr, addrlen);
if (cnt < 0) {
perror ("sendto");
exit (1) ;
}
sleep (5);

/* Receive */

if (bind(fd, &addr, sizeof(addr)) < 0) {

}

perror ("bind");
exit (1) ;

mreq.imr_multiaddr.s_addr = inet_addr (EXAMPLE GROUP) ;
mreq.imr_interface.s_addr = htonl (INADDR ANY);
if (setsockopt(fd, IPPROTO_IP, IP_ADD MEMBERSHIP,

}

&mreq, sizeof (mreq)) < 0) {
perror ("setsockopt mreq");
exit (1) ;

while (1) {

cnt = recvfrom(fd, message, sizeof (message), O,
&addr, &addrlen);
if (cnt < 0) {
perror ("recvfrom") ;

exit (1) ;
} else if (cnt == 0) {
break;
}
printf ("%$s: message = \"%s\"\n",

inet_ntoa(addr.sin_addr), message);
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4. RPC Programming

This chapter is written for programmers who want to write network
applications using remote procedure calls, thus avoiding low-level system
primitives based on sockets. This chapter is also for those who want to
understand the RPC mechanisms usually hidden by the rpcgen(1) protocol
compiler. The RPC language and rpcgen are described in Chapter 5. The
RPC protocol is described in Chapter 8.

This chapter describes:

e the high, middle, and low layers of RPC

‘e RPC features such as broadcast, batching, authentication
* the entry points (routines) into the RPC system

To use this chapter, you must be familiar with the C programming language,
and should have a working knowledge of network theory. For most
applications, you can circumvent the need to cope with the details presented
here by using rpcgen. In Chapter 5, "Generating XDR Routines" contains
the complete source for a working RPC service—a remote directory listing
service that uses rpcgen to generate XDR routines as well as client and
server stubs.

What are remote procedure calls? Simply put, they are the high-level
communications paradigm used in the operating system. RPC presumes the
existence of low-level networking mechanisms (such as TCP/IP and
UDP/IP), and upon them implements a logical client-to-server
communications system designed specifically for the support of network
applications. With RPC, the client makes a procedure call to send a data
packet to the server. When the packet arrives, the server calls a dispatch
routine, performs whatever service is requested, sends back the reply, and
the procedure call returns to the client.
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4.1 Layers of RPC

Think of the RPC interface as being divided into three layers.

The Highest Layer: The highest layer is totally transparent to the operating
system, machine and network upon which is is run. It’s probably best to
think of this level as a way of using RPC, rather than as a part of RPC
proper. Programmers who write RPC routines should (almost) always make
this layer available to others by way of a simple C front end that entirely
hides the networking.

To illustrate, at this level a program can simply make a call to rnusers(), a C
routine that returns the number of users on a remote machine. The user is
not explicitly aware of using RPC — they simply call a procedure, just as
they would call: malloc().

The Middle Layer: The middle layer is really ‘‘RPC proper.”’ Here, the
user doesn’t need to consider details about sockets, the UNIX system, or
other low-level implementation mechanisms. They simply make remote
procedure calls to routines on other machines. It’s this layer that allows RPC
to pass the “‘hello world"’ test — simple things should be simple. The
middle-layer routines are used for most applications.

RPC calls are made with the system routines: registerrpc(), callrpc() and
sve_run(). The first two of these are the most fundamental: registerrpc()
obtains a unique system-wide procedure-identification number, and callrpc()
actually executes a remote procedure call. At the middle level, a call to
rnusers() is implemented by way of these two routines.

The middle layer is unfortunately rarely used in serious programming due to
its inflexibility (simplicity). It does not allow timeout specifications or the
choice of transport. It allows no UNIX process control or flexibility in case
of errors. It doesn’t support multiple kinds of call authentication. The
programmer rarely needs all these kinds of control, but one or two of them
is often necessary.

The Lowest Layer: The lowest layer does allow these details to be
controlled by the programmer. Programs written at this level are also most
efficient, but this is rarely an issue — since RPC clients and servers rarely
generate heavy network loads. The lowest layer is used for more
sophisticated applications that may want to alter the defaults of the routines.
At this layer, you can explicitly manipulate sockets used for transmitting
RPC messages. This level should be avoided if possible.
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Although this chapter only discusses the interface to C, you can make
remote procedure calls from any language. And though this chapter
discusses RPC when it is used to communicate between processes on
different machines, it works just as well for communication between
different processes on the same machine.

Programs that communicate over a network need a paradigm for
communication. A low-level mechanism might send a signal on the arrival
of incoming packets, causing a network signal handler to execute. A high-
level mechanism would be the Ada rendezvous. The method described here
is the Remote Procedure Call (RPC) paradigm, in which a client
communicates with a server. In this process, the client first calls a
procedure to send a data packet to the server. When the packet arrives, the
server calls a dispatch routine, performs whatever service is requested, sends
back the reply, and the procedure call returns to the client.

A diagram of the RPC paradigm appears in Figure 4-1.
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Figure 4-1. Network Communication with the Remote Procedure Call
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4.2 Higher Layers of RPC

This section describes the highest and intermediate layers of RPC.

4.2.1 Highest Layer

Suppose you’re writing a program that needs to know how many users are
logged into a remote machine. You can do this by calling the RPC library
routine rnusers() as shown in the following program fragment.

#include <stdio.h>

main (argc, argv)
int argc;
char **argv;

int num;

if (argec != 2) {
fprintf (stderr, "usage: rnusers hostname\n") ;
exit (1),

if ((num = rnusers(argv[l])) < 0) {
fprintf (stderr, "error: rnusers\n");
exit (-1);
}
printf ("%d users on %s\n", num, argv[l]);
exit (0);
}

RPC library routines such as rnusers() are included in the C library
librpcsve.a. Thus, you can compile the program above with cc.

cc prog.c —lrpcsve —-lsun -0 prog

(See the section on compiling BSD programs in Chapter 3 for other
compiling hints.) Another library routine, rstat(), gathers remote
performance statistics.
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4.2.2 Intermediate Layer

The simplest interface, which explicitly makes RPC calls, uses the
functions: calilrpc() and registerrpc(). Another way to get the number of
remote users is:

#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>

#include <rpcsvc/rusers.h>

main (arge, argv)
int arge;
char **argv;

unsigned long nusers;
int stat;

if (arge != 2) {
fprintf (stderr, "usage: nusers hostname\n");
exit (-1);
}
if (stat = callrpc(argv[l], RUSERSPROG, RUSERSVERS,
RUSERSPROC_NUM, xdr_void, 0,
xdr_u_long, &nusers) != 0) ({
clnt_perrno (stat);
exit (1) ;
}
printf ("%d users on %s\n", nusers, argv(l]);
exit (0);
}

Each RPC procedure is uniquely defined by a program number, version
number, and procedure number. The program number specifies a group of
related remote procedures, each of which has a different procedure number.
Each program also has a version number, so when a minor change is made
1o a remote service (adding a new procedure, for example), a new program
number doesn’t have to be assigned. When you want to call a procedure to
find the number of remote users, look up the appropriate program, version
and procedure numbers in a manual, just as you look up the name of a
memory allocator when you want to allocate memory.

The simplest way of making remote procedure calls is with the the RPC
library routine callrpc(). It has eight parameters. The first is the name of
the remote server machine. The next three parameters are the program,
version, and procedure numbers—together they identify the procedure to be
called. The fifth and sixth parameters are an XDR filter and an argument to
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be encoded and passed to the remote procedure. The final two parameters
are a filter for decoding the results returned by the remote procedure and a
pointer to the place where the procedure’s results are to be stored. Multiple
arguments and results are handled by embedding them in structures. If
callrpc() completes successfully, it returns zero; else it returns a nONZero
value. The return codes (of type cast into an integer) are found in
<rpc/cint.h> .

Since data types may be represented differently on different machines,
callrpc() needs both the type of the RPC argument, as well as a pointer to
the argument itself (and similarly for the result). For
RUSERSPROC_NUM, the return value is an unsigned long. So
callrpc() has xdr_u_long as its first return parameter, which says that the
result is of type unsigned long, and &nusers as its second return
parameter, which is a pointer to where the long result will be placed. Since
RUSERSPROC_NUM takes no argument, the argument parameter of
callrpc() is xdr_void.

After trying several times to deliver a message, if callrpc() gets no answer,
it returns with an error code. The delivery mechanism is the User Datagram
Protocol (UDP). Methods for adjusting the number of retries or for using a
different protocol require you to use the lower layer of the RPC library,
discussed later in this chapter. The remote server procedure corresponding
to the above might look like this:

void *
nuser (indata)
char *indata;

{

static int nusers;

/*
* Code here to compute the number of users
* and place result in variable nusers.

*/

return ((void *)&nusers);

It takes one argument, which is a pointer to the input of the remote
procedure call (ignored in our example), and it returns a pointer to the result.

Normally, a server registers all of the RPC calls it plans to handle, and then
goes into an infinite loop waiting to service requests. In this example, there
is only a single procedure to register, so the main body of the server would
look like the following example.
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#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>

#include <rpcsvc/rusers.h>

char *nuser();

main ()
{
registerrpc (RUSERSPROG, RUSERSVERS, RUSERSPROC . _NUM, nuser,
xdr_void, xdr —u_long);

sve_run(); "/* never returns */
fprintf (stderr, "Error: svc_run returned!\n");
exit (1);

The registerrpc() routine establishes what C procedure corresponds to each
RPC procedure number. The first three parameters, RUSERPROG,
RUSERSVERS, and RUSERSPROC_NUM are the program, version, and
procedure numbers of the remote procedure to be registered; nuser is the
name of the C procedure implementing it; and xdr_void and xdr_u_long are
the XDR filters for the remote procedure’s arguments and results,
respectively. (Multiple arguments or multiple results are passed as
structures).

Only the UDP transport mechanism can use registerrpe(); thus, it is always
safe in conjunction with calls generated by callrpc().

Waming: the UDP transport mechanism can only deal with arguments and
results less than 8K bytes in length.

After registering the local procedure, the server program’s main procedure
calls svc_run (), the RPC library’s remote procedure dispatcher. It is this
function that calls the remote procedures in response to RPC call messages.
Note that the dispatcher takes care of decoding remote procedure arguments
and encoding results, using the XDR filters spec1ﬁed when the remote
procedure was registered.

4.2.3 Assigning Program Numbers

Program numbers are assigned in groups of 0x20000000 (536870912)
according to the chart that follows.
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Number Assignrhent

0x0 - Ox 1£ffffef Defined by Sun
0x20000000 - Ox3fffffff  Defined by user
0x40000000 - OxSEffffff  Transient
0x60000000 - Ox7fffffff  Reserved
0x80000000 - OxOfffffff  Reserved
0xa0000000 - Oxbfffffff  Reserved
0xc0000000 - Oxdfffffff  Reserved
0xe0000000 - OxfEffffff  Reserved

Sun Microsystems administers the first group of numbers. The second
group of numbers is reserved for specific customer applications. This range
is intended primarily for debugging new programs. The third group is
reserved for applications that generate program numbers dynamically. The
final groups are reserved for future use, and should not be used.

To register a protocol specification, send a request by network mail to:
rpc@sun.com

or

sun!rpc

or write t0:

RPC Administrator

Sun Microsystems

2550 Garcia Ave.
Mountain View, CA 94043

Please include a compilable rpcgen ‘“.x’ file describing your protocol. You
will be given a unique program number in return.

You can find the RPC program numbers and protocol specifications of
standard Sun RPC services in the include files in /usr/include/rpcsvc. These
services, however, constitute only a small subset of those that have been
registered. Some of the current registered programs are listed in the table
that follows.
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RPC Number  Program Description

100000 PMAPPROG portmapper

100001 RSTATPROG remote stats

100002 RUSERSPROG remote users

100003 NFSPROG nfs

100004 YPPROG Yellow Pages

100005 MOUNTPROG mount demon

100006 DBXPROG remote dbx

100007 YPBINDPROG yp binder

100008 WALLPROG shutdown msg

100009 YPPASSWDPROG yppasswd server
100010 ETHERSTATPROG ether stats

100012 SPRAYPROG spray packets

100017 REXECPROG remote execution
100020 LOCKPROG local lock manager
100021 NETLOCKPROG network lock manager
100023 STATMONI1PROG status monitor 1
100024 STATMON2PROG status monitor 2
100026 BOOTPARAMPROG  boot parameters service
100028 YPUPDATEPROG yp update

100029 KEYSERVEPROG key server

100036 PWDAUTHPROG password authorization

Table 4-1. RPC Registered Programs

4.2.4 Passing Arbitrary Data Types

In the previous example, the RPC call passes a single unsigned long.
RPC can handle arbitrary data structures, regardless of different machines’
byte orders or structure layout conventions, by always converting them to a
network standard called External Data Representation (XDR) before
sending them over the wire. The process of converting from a particular
machine representation to XDR format is called serializing, and the reverse
process is called deserializing. The type field parameters of callrpc() and
registerrpc() can be a built-in procedure like xdr_u_long() in the previous
example, or a user supplied one. XDR has the following built-in type

routines.

4-10 Network Communications Guide

IRIX



xdr_int () xdr_u_int () xdr_enum ()

xdr_long () xdr_u_long() xdr_bool ()
xdr_short () xdr_u_short () xdr_wrapstring ()
xdr_char () xdr_u_char ()

Note that the routine xdr_string() exists, but cannot be used with callrpc()
and registerrpc(), which only pass two parameters to their XDR routines.
xdr_wrapstring() has only two parameters, and is thus OK. It calls
xdr_string().

As an example of a user-defined type routine, if you wanted to send the
structure

struct simple {
int a;
short b;

} simple;

then you would call callrpc as

callrpc (hostname, PROGNUM, VERSNUM, PROCNUM, xdr_simple,
&simple ...);

where xdr_simple() is written as:

#include <rpc/rpc.h>

xdr_simple (xdrsp, simplep)
XDR *xdrsp;
struct simple *simplep;

if (!xdr_int (xdrsp, &simplep->a))
return (0);

if (!xdr_short (xdrsp, &simplep->b))
return (0);

return (1);

An XDR routine returns nonzero (true in the sense of C) if it completes
successfully, and zero otherwise. A complete description of XDR is in
Chapter 7, so this section only gives a few examples of XDR
implementation.

In addition to the built-in primitives, there are also the prefabricated
building blocks.
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xdr_array () xdr_bytes () xdr_reference ()
xdr_vector () xdr_union () xdr_pointer ()
xdr_string() xdr_ opagque ()

To send a variable array of integers, you might package them up as a
structure like this:

struct varintarr ({
int *data;
int arrlnth;

} arr;

and make an RPC call such as:

callrpc (hostname, PROGNUM, VERSNUM, PROCNUM,
xdr_varintarr, &arr...);

with xdr_varintarr() defined as:

xdr_varintarr(xdrsp, arrp)
XDR *xdrsp;
struct varintarr *arrp;

return (xdr_array (xdrsp, &arrp->data, &arrp->arrlnth,
MAXLEN, sizeof (int), xdr_ int));
}

This routine takes as parameters the XDR handle, a pointer to the array, a
pointer to the size of the array, the maximum allowable array size, the size
of each array element, and an XDR routine for handling each array element.

If the size of the array is known in advance, one can use xdr_vector(), which
serializes fixed-length arrays.

int intarr(SIZE];

xdr_intarr(xdrsp, intarr)
XDR *xdrsp;
int intarr[];

int i;
return (xdr vector(xdrsp, intarr, SIZE, sizeof (int),
xdr_int));

XDR always converts quantities to 4-byte multiples when serializing. Thus,
if either of the examples above involved characters instead of integers, each
character would occupy 32 bits. That is the reason for the XDR routine
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xdr_bytes(), which is like xdr_array() except that it packs characters;
xdr_bytes() has four parameters, similar to the first four parameters of
xdr_array(). For null-terminated strings, there is also the xdr_string()
routine, which is the same as xdr_bytes() without the length parameter. On
serializing it gets the string length from strlen(), and on deserializing it
creates a null-terminated string.

Here is a final example that calls the previously written xdr_simple() as well
as the built-in functions xdr_string() and xdr_reference(), which chases
pointers.

struct finalexample {

char *string;

struct simple *simplep;
} finalexample;

xdr_finalexample (xdrsp, finalp)
XDR *xdrsp;
struct finalexample *finalp;

int i;

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
return (0);
if (!xdr_reference(xdrsp, &finalp->simplep,
sizeof (struct simple), xdr simple);
return (0);
return (1);

}

Note that we could as easily call xdr_simple() instead of xdr_reference().

4.3 Lower Layers of RPC

In the examples given so far, RPC automatically takes care of many details
for you. In this section, you’ll see how to change the defaults by using the

lower layers of the RPC library. This section assumes that you are familiar
with sockets and the system calls for dealing with them.

There are several occasions when you may need to use lower layers of RPC.
First, you may need to use TCP, since the higher layer uses UDP, which
restricts RPC calls to 8K bytes of data. Using TCP permits calls to send
long streams of data (see the TCP example later in this chapter).
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Second, you may want to allocate and free memory while serializing or
deserializing with XDR routines. There is no call at the higher level to let
you free memory explicitly. For more explanation, see the "Memory
Allocation with XDR" section below.

Third, you may need to perform authentication on either the client or server
side, by supplying credentials or verifying them. See the explanation in the ,
"Authentication" section that follows. ( !

4.3.1 More Information About the Server

There are a number of assumptions built into registerrpc(). One is that you
are using the UDP datagram protocol. Another is that you don’t want to do
anything unusual while deserializing, since the deserialization process
happens automatically before the user’s server routine is called. The server
for the nusers program shown below is written using a lower layer of the
RPC package, which does not make these assumptions.
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#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>

#include <rpcsvc/rusers.h>

main ()

{
SVCXPRT *transp;
int nuser():;

transp = svcudp_create (RPC_ANYSOCK) ;
if (transp == NULL) {
fprintf (stderr, "can’t create an RPC server\n");
exit(1l);
}
pmap_unset (RUSERSPROG, RUSERSVERS) ;
if (!svc_register (transp, RUSERSPROG, RUSERSVERS,
nuser, IPPROTO_UDP)) {
fprintf (stderr, "can’t register RUSER service\n");
exit (1),
}
svc_run(); /* never returns */
fprintf (stderr, "should never reach this point\n");

}

nuser (rgstp, tranp)
struct svc_req *rgstp;
SVCXPRT *transp;

unsigned long nusers;

switch (rgstp->rq proc) {
case NULLPROC:
if (!svc_sendreply (transp, xdr_void, 0)) {
fprintf (stderr, "can’t reply to RPC call\n");
exit (1),
}
return;
case RUSERSPROC_NUM:
/*
* Code here to compute the number of users
* and assign to the variable nusers
*/
if (!svc_sendreply (transp, xdr_u_long, &nusers) {
fprintf (stderr, "can’t reply to RPC call\n");
exit (1) ;
}
return;
default:
svcerr_noproc (transp) ;
return;
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First, the server gets a transport handle, which is used for sending out RPC
messages. registerrpc() uses svcudp_create() to get a UDP handle. If you
require a reliable protocol, call svczcp_create() instead. If the argument to
sveudp_create() is RPC_ANYSOCK, the RPC library creates a socket on
which to send out RPC calls. Otherwise, svcudp_create() expects its
argument to be a valid socket number. If you specify your own socket, it
can be bound or unbound. If it is bound to a port by the user, the port
numbers of sveudp_create() and clntudp _create() (the low-level client
routine) must match. '

If the user specifies RPC_ANYSOCK for a socket, the RPC library routines
will open sockets. Otherwise they will expect the user to do so. The
routines svcudp_create() and clntudp _create() will cause the RPC library
routines to bind() their socket if it is not bound already.

A service may choose to register its port number with the local portmapper
service. This is done is done by specifying a non-zero protocol number in
sve_register(). Incidentally, a client can discover the server’s port number
by consulting the portmapper on their server’s machine. This can be done
automatically by specifying a zero port number in clntudp create() or
clnttcp_create().

After creating an SVCXPRT, the next step is to call pmap_unset() so that if
the nusers server crashed earlier, any previous trace of it is erased before
restarting. More precisely, pmap_unset() erases the entry for RUSERS from
the port mapper’s tables.

Finally, we associate the program number for nusers with the procedure
nuser(). The final argument to svc_register() is normally the protocol being
used, which, in this case, is PPROTO_UDP. Notice that unlike
registerrpc(), there are no XDR routines involved in the registration process.
Also, registration is done on the program, rather than procedure, level.

The user routine nuser() must call and dispatch the appropriate XDR
routines based on the procedure number. Note that two things are handled
by nuser() that registerrpc() handles automatically. The first is that
procedure NULLPROC (currently zero) returns with no arguments. This
can be used as a simple test for detecting if a remote program is running.
Second, there is a check for invalid procedure numbers. If one is detected,
svcerr_noproc() is called to handle the error.

The user service routine serializes the results and returns them to the RPC
caller via svc_sendreply() . Its first parameter is the SVCXPRT handle, the
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second is the XDR routine, and the third is a pointer to the data to be
returned. Not illustrated previously is how a server handles an RPC
program that passes data. As an example, we can add a procedure
RUSERSPROC_BOOL, which has an argument nusers, and returns TRUE
or FALSE depending on whether there are nusers logged on. It would look
like this:

case RUSERSPROC_BOOL: {
int bool;
unsigned nuserquery;

if (!svc_getargs(transp, xdr_u int, &nuserquery) {
svcerr_decode (transp) ;

return;
}
/*
* Code to set nusers = number of users
*/
if (nuserquery == nusers)
bool = TRUE;
else

bool = FALSE;

if (!svc_sendreply(transp, xdr_bool, &bool) {
fprintf (stderr, "can’t reply to RPC call\n");
exit (1) ;

}

return;

The relevant routine is svc_getargs(), which takes an SVCXPRT handle, the
XDR routine, and a pointer to where the input is to be placed as arguments.

4.3.2 Memory Allocation with XDR

XDR routines not only do input and output, they also do memory allocation.
This is why the second parameter of xdr_array() is a pointer to an array,
rather than the array itself. If it is NULL, then xdr_array() allocates space
for the array and returns a pointer to it, putting the size of the array in the
third argument. As an example, consider the following XDR routine
xdr_chararrl(), which deals with a fixed array of bytes with length SIZE.
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xdr_chararrl (xdrsp, chararr)
XDR *xdrsp;
char chararr[]:;

char *p;
int len;

p = chararr;

len = SIZE;

return (xdr_bytes(xdrsp, &p, &len, SIZE));
}

If space has already been allocated in chararr, it can be called from a server
like this:

char chararr[SIZE];

svc_getargs (transp, xdr_chararrl, chararr);

where chararr has already allocated space. If you want XDR to do the
allocation, you would have to rewrite this routine in the following way:

xdr chararr2 (xdrsp, chararrp)
XDR *xdrsp;
char **chararrp;

int len;

len = SIZE;
return (xdr_bytes (xdrsp, charrarrp, &len, SIZE));
}

Then the RPC call might look like this:

char *arrptr;

arrptr = NULL;
svc_getargs (transp, xdr_chararr2, &arrptr);
/*

* Use the result here

*/

svc_freeargs (transp, xdr_chararr2, &arrptr);

Note that, after being used, the character array can be freed with
svc_freeargs() will not attempt to free any memory if the variable indicating
itis NULL. For example, in the the routine xdr_finalexample(), given
earlier, if finalp->string was NULL, then it would not be freed. The same is
true for finalp->simplep.
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To summarize, each XDR routine is responsible for serializing,
deserializing, and freeing memory. When an XDR routine is called from
callrpc(), the serializing part is used. When called from svc_getargs(), the
deserializer is used. And when called from svc_freeargs(), the memory
deallocator is used. When building simple examples like those in this
section, a user doesn’t have to worry about the three modes. The XDR
chapter in this guide has examples of more sophisticated XDR routines that
determine which of the three modes they are in to function correctly.

4.3.3 The Calling Side

When you use callrpc, you have no control over the RPC delivery
mechanism or the socket used to transport the data. To illustrate the layer of
RPC that lets you adjust these parameters, consider the following code to
call the nusers service:

#include <stdio.h>
#include <rpc/rpc.h>
#include <utmp.h>
#include <rpcsvc/rusers.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netdb.h>

main(argc, argv)
int argc;
char **argv;

struct hostent *hp;

struct timeval pertry timeout, total_ timeout;
struct sockaddr in server addr;

int sock = RPC_ANYSOCK;

register CLIENT *client;

enum clnt_stat clnt_stat;

unsigned long nusers;

if (argec !'= 2) {
fprintf (stderr, "usage: nusers hostname\n");
exit (-1);

}

if ((hp = gethostbyname(argv[1l])) == NULL) {
herror (argv[l]);
exit (-1);

}

pertry timeout.tv_sec = 3;

pertry timeout.tv_usec = 0;

bcopy (hp—>h_addr, (caddr_t)&server addr.sin_addr,
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hp->h_length);
server_addr.sin_family = AF_INET;

server addr.sin_port = 0;
if ((client = clntudp create (&server addr, RUSERSPROG,
RUSERSVERS, pertry timeout, &sock)) == NULL) {
clnt_pcreateerror ("clntudp create");
exit (-1);
1
total timeout.tv_sec = 20; (
total_ timeout.tv_usec = 0;

clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr void, O,
xdr_u_long, &nusers, total_timeout);
if (clnt_stat != RPC_SUCCESS) ({
clnt_perror(client, "rpc");
exit(-1);
}
clnt_destroy(client);
close (sock) ;
exit (0);

The low-level version of callrpc() is clnt_call(), which takes a CLIENT

pointer rather than a host name. The parameters to clnt_call() are a

CLIENT pointer, the procedure number, the XDR routine for serializing the
argument, a pointer to the argument, the XDR routine for deserializing the

return value, a pointer to where the return value will be placed, and the time

in seconds to wait for a reply. (

The CLIENT pointer is encoded with the transport mechanism. callrpc()
uses UDP, thus it calls clntudp_create() to get a CLIENT pointer. To
specify TCP/IP, use cinttcp_create().

The parameters to clntudp_create() are the server address, the program
number, the version number, a timeout value (between tries), and a pointer
to a socket. The final argument to cint_call() is the total time to wait for a
response. Thus, the number of tries is the clnt_call() timeout divided by the
clntudp_create() timeout.

Note that the clnt_destroy() call always deallocates the space associated

with the CLIENT handle. It closes the socket associated with the CLIENT

handle, however, only if the RPC library opened it. It the socket was

opened by the user, it stays open. This makes it possible, in cases where )
there are multiple client handles using the same socket, to destroy one (
handle without closing the socket that other handles are using. -

To make a stream connection, the call to clntudp create() is replaced with a
call to cinttcp_create().
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clnttcp_create (&server_addr, prognum, versnum, &socket,
inputsize, outputsize);

There is no timeout argument; instead, the receive and send buffer sizes
must be specified. When the clnttcp_create() call is made, a TCP connection
is established. All RPC calls using that CLIENT handle would use this
connection. The server side of an RPC call using TCP has svcudp_create()
replaced by svctcp_create().

transp = svctcp create (RPC_ANYSOCK, 0, 0);

The last two arguments to svczcp_create() are send and receive sizes
respectively. If ‘O’ is specified for either of these, the system chooses a
reasonable default.

4.4 Other RPC Features

This section discusses some other aspects of RPC that are occasionally
useful.

4.4.1 Select on the Server Side

Suppose a process is processing RPC requests while performing some other
activity. If the other activity involves periodically updating a data structure,
the process can set an alarm signal before calling svc_run(). But if the other
activity involves waiting on a a file descriptor, the svc_run() call won’t
work. The code for svc_run() is as follows:

void
svc_run ()
{
fd_set readfds;
int dtbsz = getdtablesize();

for (;;) {
readfds = svc_fdset;
switch (select (dtbsz, &readfds, NULL,NULL,NULL)) {
case -1:
if (errno == EINTR)
continue;
perror ("select");
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return;
case O:
break;
default:
svc_getregset (&readfds) ;

You can bypass svc_run() and call sve_getregset() yourself. All you need to
know are the file descriptors of the socket(s) associated with the programs
you are waiting on. Thus you can have your own select() that waits on both
the RPC socket, and your own descriptors. Note that svc_fdset is a bit mask
of all the file descriptors that RPC is using for services. It can change
everytime that any RPC library routine is called, because descriptors are
constantly being opened and closed, for example for TCP connections.

4.4.2 Broadcast RPC

The portmapper is a daemon that converts RPC program numbers into UDP
or TCP port numbers; see the portmap (1M) man page. You can’t do
broadcast RPC without the portmapper. Here are the main differences
between broadcast RPC and normal RPC calls:

1. Normal RPC expects one answer, whereas broadcast RPC expects many
answers (one or more answer from each responding machine).

2. Broadcast RPC can only be supported by packet-oriented
(connectionless) transport protocols like UPD/IP.

3. The implementation of broadcast RPC treats all unsuccessful responses
as garbage by filtering them out. Thus, if there is a version mismatch
between the broadcaster and a remote service, the user of broadcast RPC
never knows.

4. All broadcast messages are sent io the portmap port. Thus, only services
that register themselves with their portmapper are accessible via the
broadcast RPC mechanism.

5. Broadcast requests are limited in size to the MTU (Maximum Transfer
Unit) of the local network. For Ethernet, the MTU is 1500 bytes.
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Broadcast RPC Synopsis

#include <rpc/pmap_clnt.h>

enum clnt_stat clnt_stat;
clnt_stat = clnt_broadcast (prognum, versnum, procnum,
inproc, in, outproc, out, eachresult)

u_long prognum; /* program number */

u_long versnum; /* version number */

u_long procnum; /* procedure number */
xdrproc_t inproc; /* xdr routine for args */
caddr_t in; /* pointer to args */
xdrproc_t outproc; /* xdr routine for results */
caddr_t  out; /* pointer to results */

bool_t (*eachresult) () ; /* call with each result gotten */

clnt_stat = clnt_broadcast_exp(prognum, versnum, procnum,
inproc, in, outproc, out, eachresult, inittime, waittime)
int inittime; /* initial wait period */
int waittime; /* total wait period */

The procedure eachresult() is called each time a valid result is obtained. It
returns a boolean that indicates whether or not the client wants more
responses.

bool_t done;

done = eachresult (resultsp, raddr)
caddr_t resultsp;
struct sockaddr_in *raddr;
/* address of machine that sent response */

If done is TRUE, then broadcasting stops and cint_broadcast() returns
successfully. Otherwise, the routine waits for another response. The request
is rebroadcast after a few seconds of waiting. If no responses come back,
the routine returns with RPC_TIMEDOUT. Use clnt_broadcast_exp() to
control the initial and total waiting intervals. To interpret clnt_stat errors,
feed the error code to clnt_perrno().
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4.4.3 Batching

The RPC architecture is designed so that clients send a call message, and

wait for servers to reply that the call succeeded. This implies that clients do

not compute while servers are processing a call. This is inefficient if the

client does not want or need an acknowledgement for every message sent. It

is possible for clients to continue computing while waiting for a response, ( !
using RPC batch facilities. ”

RPC messages can be placed in a “‘pipeline’”’ of calls to a desired server;
this is called batching. Batching assumes that: 1) each RPC call in the
pipeline requires no response from the server, and the server does not send a
response message; and 2) the pipeline of calls is transported on a reliable
byte stream transport such as TCP/IP. Since the server does not respond to
every call, the client can generate new calls in parallel with the server
executing previous calls. Furthermore, the TCP/IP implementation can
buffer up many call messages, and send them to the server in one write
system call.

This overlapped execution greatly decreases the interprocess
communication overhead of the client and server processes, and the total
elapsed time of a series of calls. (

Since the batched calls are buffered, the client should eventually do a
nonbatched call in order to flush the pipeline.

A contrived example of batching follows. Assume a string rendering
service (like a window system) has two similar calls: one renders a string
and returns void results, while the other renders a string and remains silent.
The service (using the TCP/IP transport) may look like the following
example.
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#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/windows.h>

void windowdispatch () ;

main ()

{

}

SVCXPRT *transp;

transp = svctcp_create (RPC_ANYSOCK, 0, 0);

if (transp == NULL) {
fprintf (stderr, "can’t create an RPC server\n"):;
exit (1) ;

}

pmap_unset (WINDOWPROG, WINDOWVERS) ;

if (!svc_register(transp, WINDOWPROG, WINDOWVERS,

windowdispatch, IPPROTO_TCP)) {

fprintf (stderr, "can’t register WINDOW service\n");
exit (1) ;

}

svc_run(); /* never returns */

fprintf (stderr, "should never reach this point\n");

void
windowdispatch (rgstp, transp)

struct svc_req *rgstp;
SVCXPRT *transp;

char *s = NULL;

switch (rgstp->rq proc) {
case NULLPROC:
if (!svc_sendreply (transp, xdr void, 0)) {
fprintf (stderr, "can’t reply to RPC call\n");
exit (1);
}
return;
case RENDERSTRING:
if (!svc_getargs (transp, xdr_wrapstring, &s)) {
fprintf (stderr, "can’t decode arguments\n");
/* tell caller he screwed up */
svcerr decode (transp);
break;
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/*
* Code here to render the string s
*/
if (!svc_sendreply (transp, xdr_void, NULL)) {
fprintf (stderr, "can’'t reply to RPC call\n");
exit (1);
}

break;

case RENDERSTRING BATCHED: (j )
if (!svc_getargs (transp, xdr_wrapstring, &s)) {
fprintf (stderr, "can’t decode arguments\n");

/*
* We are silent in the face of protocol errors
*/
break;
}
/*
* Code here to render string s, but send no reply!
*/
break;
default:
svcerr_noproc (transp) ;
return;
}
/*
* Now free string allocated while decoding arguments (j
*/

svc_freeargs (transp, xdr_wrapstring, &s);

}

Of course the service could have one procedure that takes the string and a
boolean to indicate whether or not the procedure should respond.

In order for a client to take advantage of batching, the client must perform
RPC calls on a TCP-based transport and the actual calls must have the
following attributes: 1) the result’s XDR routine must be zero (NULL), and
2) the RPC call’s timeout must be zero.

The following is an example of a client that uses batching to render a bunch
of strings; the batching is flushed when the client gets a null string.
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#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/windows.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netdb.h>

main(argc, argv)
int argec;
char **argv;

{

}

struct hostent *hp;

struct timeval pertry timeout, total_timeout;
struct sockaddr_in server_addr;

int sock = RPC_ANYSOCK;

register CLIENT *client;

enum clnt_stat clnt_stat;

char buf[1000], *s = buf;

if ((client = clnttcp_create(&server_addr,
WINDOWPROG, WINDOWVERS, &sock, 0, 0)) =
perror("clnttcp_create");
exit (-1);

NULL) {

}
total_timeout.tv_sec = 0;
total timeout.tv_usec = 0;
while (scanf("%s", s) != EOF) {
clnt_stat = clnt_call (client, RENDERSTRING_BATCHED,
xdr_wrapstring, &s, NULL, NULL, total timeout);
if (clnt_stat != RPC_SUCCESS) ({
clnt_perror(client, "batched rpc");
exit (-1);

}
/* Now flush the pipeline */
total_timeout.tv_sec = 20;

clnt_stat = clnt:call(client, NULLPROC, xdr_void, NULL,
xdr void, NULL, total_ timeout);

if (clnt_stat != RPC_SUCCESS) ({
clnt_perror(client, "rpc");
exit (-1);

}

clnt_destroy(client);
exit (0);

Since the server sends no message, the clients cannot be notified of any of
the failures that may occur. Therefore, clients are on their own when it
comes to handling errors.
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4.4.4 Authentication

In the examples presented so far, the caller never identified itself to the
server, and the server never required an ID from the caller. Clearly, some
network services, such as a network filesystem, require stronger security
than what has been presented so far.

In reality, every RPC call is authenticated by the RPC package on the
server, and similarly, the RPC client package generates and sends
authentication parameters. Just as different transports (TCP/IP or UDP/IP)
can be used when creating RPC clients and servers, different forms of
authentication can be associated with RPC clients; the default authentication
type used as a default is type none.

The authentication subsystem of the RPC package is open ended. That is,
numerous types of authentication are easy to support. However, this section
deals only with unix type authentication, which besides none and des, is the
only supported type.

The Client Side

When a caller creates a new RPC client handle as in:
clnt = clntudp create (address, prognum, versnum, wait, sockp)

the appropriate transport instance defaults the associate authentication
handle to be

clnt->cl_auth = authnone_create();

The RPC client can choose to use UNIX-style authentication by setting
clnt->cl_auth after creating the RPC client handle:

clnt->cl_auth = authunix_create_ default () ;

This causes each RPC call associated with clnt to carry with it the following
authentication credentials structure.
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/%
* Unix-style credentials.
*/
struct authunix_parms {
/* credentials creation time */
u_long aup_time;

/* host name of where the client is calling */
char *aup_machname;

/* client’s UNIX effective uid */
int aup uid;

/* client’s current UNIX group id */
int aup_gid;

/* the element length of aup_gids array */
u_int aup_len;

/* array of groups to which user belongs */
int *aup_gids;

}:

These fields are set by authunix_create_default() by invoking the
appropriate system calls.

Since the RPC user created this new style of authentication, he is
responsible for destroying it with:

auth_destroy(clnt—>cl_auth);

This should be done in all cases, to conserve memory.

The Server Side

Service implementors have a harder time dealing with authentication issues
since the RPC package passes the service dispatch routine a request that has
an arbitrary authentication style associated with it. Consider the fields of a
request handle passed to a service dispatch routine.
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/*
* An RPC Service request
*/
struct svc_req {
/* service program number */

u_long rq_prog;

/* service protocol version number*/

u_long rq_vers; (

/* the desired procedure number*/
u_long rq_proc;

/* raw credentials from the "wire" */
struct opaque_auth rq_cred;

/* read only, cooked credentials */
caddr_t rq_clntcred;
}:

The rq_cred is mostly opaque, except for one field of interest: the style or
flavor of authentication credentials:

/*

* Authentication info. Mostly opaque to the programmer.

*/

struct opaque_auth { - -
/* style of credentials */ . (i
enum_t oca_flavor;

/* address of more auth stuff */
caddr_t oca_base;

/* not to exceed MAX_AUTH BYTES */
u_int oa_length;

}:
The RPC package guarantees the following to the service dispatch routine:

1. That the request’s rq_cred is well formed. Thus the service implementor
may inspect the request’s rq_cred.oa_flavor to determine which style of
authentication the caller used. The service implementor may also wish
to inspect the other fields of rq_cred if the style is not one of the styles
supported by the RPC package.

2. That the request’s rq_clntcred field is either NULL or points to a well (
formed structure that corresponds to a supported style of authentication
credentials. Only UNIX style is currently supported, so (currently)
rq_clntcred could be cast to a pointer to an authunix_parms structure. If
rq_clntcred is NULL, the service implementor may wish to inspect the |
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other (opaque) fileds of rq_cred in case the service knows about a new
type of authentication about which the RPC package does not know.

Our remote user’s service example can be extended so that it computes
results for all users except UID 16.

void

nuser (rgstp, tranp)
struct svc_req *rgstp;
SVCXPRT *transp;

struct authunix parms *unix cred;
int uid;
unsigned long nusers;

/*
* we don’t care about authentication for
* the null procedure
*/
if (rgstp->rg_proc == NULLPROC) ({
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf (stderr, "can’t reply to RPC call\n");

exit (1);
}
return;
}
/*
* now get the uid
*/

switch (rgstp->rq_cred.oa_flavor) ({
case AUTH_UNIX:
unix cred =
(struct authunix parms *) rgstp->rq_clntcred;
uid = unix_cred->aup uid;
break;
case AUTH_NULL:
default:
svcerr_weakauth (transp);
return;
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switch (rgstp->rqg_proc) {
case RUSERSPROC_NUM:
/*
* make sure the caller is allow
* to call this procedure.
*/
if (uid == 16) {
svcerr_systemerr (transp);
return;
}
/*
* code here to compute the number of
* users and put in variable nusers
*/
if (!svc_sendreply (transp, xdr_u_long, &nusers) {
fprintf (stderr, "can’t reply to RPC call\n");
exit (1);
}

return;

default:
svcerr_noproc (transp);
return;

}

A few things should be noted here. First, it is customary not to check the
authentication parameters associated with the NULLPROC (procedure
number zero). Second, if the authentication parameter’s type is not suitable
for your service, you should call svcerr weakauth(). And finally, the
service protocol itself should return status for access denied; in the case of
our example, the protocol does not have such a status, so we call the service
primitive svcerr_systemerr() instead.

The last point underscores the relation between the RPC authentication
package and the services; RPC deals only with authentication and not with
individual services’ access control. The services themselves must
implement their own access control policies and reflect these policies as
return statuses in their protocols.
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4.4.5 Using Inetd

An RPC server can be started from inetd. The only difference from the
usual code is that you should call the service creation routine in the
following form: '

transp = svcudp_create(0); /* For UDP */
transp = svectcp_create(0,0,0); /* For listener TCP sockets */
transp = svcfd create(0,0,0); /* For connected TCP sockets */

since inet passes a socket as file descriptor 0. Also, you should call
svc_register() as:

svc_register (transp, PROGNUM, VERSNUM, service, 0);

with the final flag as 0, since the program will already be registered by inetd.
Remember that if you want to exit from the server process and return
control to inetd, you need to explicitly exit, since svc_run() never returns.

The format of entries in /usr/etc/inetd.conf for RPC services is in one of the
following two forms:

p_name/version dgram rpc/udp wait user server args

p_name/version stream rpc/tcp wait user server args

where p_name is the symbolic name of the program as it appears in rpc(4),
server is the program implementing the server, and program and version are
the program and version numbers of the service. For more information, see
the section on inetd in Chapter 3 and inetd(1M).

If the same program handles multiple versions, then the version number can
be a range, as in this example:

rstatd/1-2 dgram rpc/udp wait root /usr/etc/rpc.rstatd

For server programs that handle multiple services or protocols, inetd
allocates socket descriptors to protocols based on lexicographic order of
service and protocol names.
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4.5 More Examples

The following examples show a program version number, TCP, and
callback procedure. ‘

4.5.1 Versions Example (

By convention, the first version number of program PROG is
PROGVERS_ORIG, and the most recent version is PROGVERS. Suppose
there is a new version of the user program that returns an unsigned
short rather than a long. If we name this version
RUSERSVERS_SHORT, then a server that wants to support both versions
would do a double register.

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG,
nuser, IPPROTO_TCP)) {
fprintf (stderr, "can’t register RUSER service\n");

exit (1) ;
}
if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT,
nuser, IPPROTO_TCP)) { (i
fprintf (stderr, "can’t register RUSER service\n");

exit (1);
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Both versions can be handled by the same C procedure:

nuser (rgstp, tranp)
struct svc_req *rgstp;
SVCXPRT *transp;

unsigned long nusers;
unsigned short nusers2

switch (rgstp->rqg _proc) {
case NULLPROC:
if (!svc_sendreply (transp, xdr_void, 0)) {
fprintf (stderr, "can’t reply to RPC call\n");
exit (1);
}

return;

case RUSERSPROC_NUM:
/*
* Code here to compute the number of users
* and assign it to the variable nusers
*/
nusers2 = nusers;
switch (rgstp->rq vers) {
case RUSERSVERS_ORIG:
if (!svc_sendreply(transp, xdr_u_long, &nusers)) {
fprintf (stderr, "can’t reply to RPC call\n");
}
break;
case RUSERSVERS_ SHORT:
if (!svc_sendreply(transp, xdr_u short, &nusers2)) ({
fprintf (stderr,"can’t reply to RPC call\n");
}
break;
}
default:
svcerr_noproc (transp) ;
return;
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4.5.2 TCP Example

Here is an example that is essentially rcp. The initiator of the RPC snd()

call takes its standard input and sends it to the server rcv(), which prints it
on standard output. The RPC call uses TCP. This also illustrates an XDR
procedure that behaves differently on serialization than on deserialization.

/*
*
*
*
*

*/

The xdr routine:

on decode, read from wire, write onto fp
on encode, read from fp, write onto wire

#include <stdio.h>
#include <rpc/rpc.h>

xdr_rcp(xdrs, fp)

XDR *xdrs;
FILE *fp;

unsigned long size;
char buf[MAXCHUNK], *p;

if (xdrs->x op == XDR FREE) /* nothing to free */

return 1;

while (1) {

if (xdrs->x op == XDR_ENCODE) {
if ((size = fread (buf, sizeof (char),

MAXCHUNK, fp)) == 0 && ferror(fp)) {
fprintf (stderr, "can’t fread\n");
exit (1);

}

}

p = buf;

if (!xdr_bytes(xdrs, &p, &size, MAXCHUNK))
return 0;

if (size == 0)
return 1;

if (xdrs—>x op == XDR_DECODE) {

if (fwrite(buf, sizeof (char), size, fp) != size) {
fprintf (stderr, "can’t fwrite\n");
exit (1);
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/*
* The sender routines
*/
#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <sys/time.h>

main (argc, argv)
int argc;
char **argv;
{
int xdr_rcp();
int err;

if (argec < 2) {
fprintf (stderr, "usage: %s server-name\n", argv([0])};
exit (-1);

}

if ((err = callrpctcp(argv([l], RCPPROG, RCPPROC_FP,

RCPVERS, xdr rcp, stdin, xdr void, 0) '= 0})) {

clnt_perrno (err);
fprintf (stderr, " can’t make RPC calll\n");
exit (1) ;

}

exit (0);

callrpctcp (host, prognum, procnum, versnum, inproc, in,
outproc, out)
char *host, *in, *out;
xdrproc_t inproc, outproc;

struct sockaddr_in server_ addr;
int socket = RPC_ANYSOCK;

enum clnt_stat clnt_stat;
struct hostent *hp;

register CLIENT *client;

struct timeval total timeout;

if ((hp = gethostbyname (host)) == NULL) {
herror (host) ;
return (-1);

}

bcopy (hp—>h_addr, (caddr_t)&server_addr.sin_addr,
hp->h_length);

server_addr.sin_family = AF_INET;

server_addr.sin_port = 0;
if ((client = clnttcp create (&server_addr, prognum,
versnum, &socket, BUFSIZ, BUFSIZ)) == NULL) {

perror ("rpctcp_create");
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/

return (-1);
}
total_timeout.tv_sec = 20;
total_timeout.tv_usec = 0;
clnt_stat = clnt_call(client, procnum,

inproc, in, outproc, out, total_timeout);
clnt_destroy (client);
return (int)clnt_stat; .
( a

*
* The receiving routines

*/

#include <stdio.h>
#include <rpc/rpc.h>

main ()

{

register SVCXPRT *transp;
int rcp service(), xdr_rcp();

if ((transp = svctcp create (RPC_ANYSOCK,
1024, 1024)) == NULL) {
fprintf ("svctcp create: error\n");
exit (1) ;
}
pmap_unset (RCPPROG, RCPVERS) ; (
if (!svc_register (transp, RCPPROG, RCPVERS, rcp service,
IPPROTO_TCP)) {
fprintf (stderr, "svc_register: error\n");
exit (1),
}
svc_run(); /* never returns */
fprintf (stderr, "svc_run should never return\n");
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rcp_service (rgstp, transp)
register struct svc_req *rgstp;
register SVCXPRT *transp;

switch (rgstp->rq_proc) {
case NULLPROC:
if (svc_sendreply(transp, xdr_ void, 0) == 0) {
fprintf (stderr, "err: rcp_service\n");
return (1);

}
return;
case RCPPROC_FP:

if (!svc_getargs (transp, xdr_rcp, stdout)) ({
svcerr_decode (transp);
return;

}

if (!svc_sendreply (transp, xdr_void, 0)) {
fprintf (stderr, "can’t reply\n");
return;

}
return (0);
default:
svcerr_noproc (transp) ;
return;

4.5.3 Callback Procedures

Occasionally, it is useful to have a server become a client, and make an RPC
call back to the process that is its client, e.g., in remote debugging. The
client is a window system program, and the server is a debugger running on
a remote machine. Most of the time, the user clicks a mouse button at the
debugging window that converts this to a debugger command, and then
makes an RPC call to the server (where the debugger is actually running),
telling it to execute that command. However, when the debugger hits a
breakpoint, the roles are reversed; the debugger wants to make an RPC call
to the window program to tell the user that a breakpoint has been reached.

To do an RPC callback, you need a program number on which to make the
RPC call. Since this will be a dynamically generated program number, it
should be in the transient range, 0x40000000 — OxSFFFFFFF. The routine
gettransient() retumns a valid program number in the transient range, and
registers it with the portmapper. It only talks to the portmapper running on
the same machine as the gettransient() routine itself. The call to pmap_set()
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is a test and set operation, in that it indivisibly tests whether a program
number has already been registered, and if it has not, then reserves it. On
return, the sockp argument will contain a socket that can be used as the
argument to an svcudp_create() or svctcp_create() call.

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/socket.h>

gettransient (proto, vers, sockp)
int proto, vers, *sockp;
{
static int prognum = 0x40000000;
int s, len, socktype;
struct sockaddr_ in addr;

switch (proto) ({
case IPPROTO_UDP:
socktype = SOCK_DGRAM;
break;
case IPPROTO_TCP:
socktype = SOCK_STREAM;
break;
default:
fprintf (stderr, "unknown protocol type\n"):;
return 0;
}
if (*sockp == RPC_ANYSOCK) ({
if ((s = socket (AF_INET, socktype, 0)) < 0) {
perror ("socket") ;
return (0);
}
*sockp = s;
} else
s = *sockp;
addr.sin_addr.s_addr = 0;
addr.sin_family = AF_INET;
addr.sin_port = 0;
len = sizeof (addr);
/* may be already bound, so don’t check for error*/
bind (s, &addr, len);
if (getsockname (s, &addr, &len)< 0) {
perror ("getsockname") ;
return (0);
}
while (!pmap_set (prognumt++, vers, proto,
ntohs (addr.sin_port)))
continue;
return (prognum-1);

4-40 Network Communications Guide IRIX



Note:

The call to ntohs() is necessary to ensure that the port number in
addr.sin_port, which is in network byte order, is passed in host
byte order (as pmap_set() expects). See the byteorder(3N) man
page for more details on the conversion of network addresses from
network to host byte order.

The following pair of programs illustrate how to use the gettransient()
routine. The client makes an RPC call to the server, passing it a transient
program number. Then the client waits around to receive a callback from
the server at that program number. The server registers the program
EXAMPLEPROG so that it can receive the RPC call informing it of the
callback program number. Then at some random time (on receiving an
ALRM signal in this example), it sends a callback RPC call, using the
program number it received earlier.

/* client */
#include <stdio.h>
#include <rpc/rpc.h>

int callback();
char hostname[256];

main ()

{

int x, ans, s;
SVCXPRT *xprt;

gethostname (hostname, sizeof (hostname));

S

X =

RPC_ANYSOCK;
gettransient (IPPROTO_UDP, 1, &s);

fprintf (stderr, "client gets prognum %d\n", x);
if ((xprt = svcudp_create(s)) == NULL) {

}

fprintf (stderr, "rpc_server: svecudp_create\n");
exit (1) ;

/* protocol is 0 - gettransient does registering */
(void) sve_register (xprt, x, 1, callback, 0};

ans

= callrpc (hostname, EXAMPLEPROG, EXAMPLEVERS,
EXAMPLEPROC_CALLBACK, xdr_int, &x, xdr_void, 0);

if ((enum clnt_stat) ans != RPC_SUCCESS) {

}

fprintf (stderr, "call: ");
clnt_perrno (ans) ;
fprintf (stderr, "\n");

svc_run();
fprintf (stderr,

"Error: svc_run shouldn’t have returned\n") ;
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callback (rgstp, transp)
register struct svc_req *rgstp;
register SVCXPRT *transp;

switch (rgstp->rq_proc) {
case 0:
if (!svc_sendreply (transp, xdr_void, 0)) {
fprintf (stderr, "err: exampleprog\n");
return (1);
}
return (0);
case 1l:
if (!svc_getargs (transp, xdr_void, 0)) {
svcerr_ decode (transp);
return (1);
}
fprintf (stderr, "client got callback\n");
if (!svc_sendreply (transp, xdr_void, 0)) {
fprintf (stderr, "err: exampleprog");
return (1);

}
/*

* server

*/
#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/signal.h>

char *getnewprog();

char hostname[256];

int docallback () ;

int pnum; /*program number for callback routine */

main ()
{
gethostname (hostname, sizeof (hostname));
registerrpc (EXAMPLEPROG, EXAMPLEVERS,
EXAMPLEPROC_CALLBACK, getnewprog, xdr_int, xdr_void);
fprintf (stderr, "server going into svc_run\n");
signal (SIGALRM, docallback);
alarm(10);
sve_run();

fprintf (stderr, "Error: svc_run shouldn’t have returned\n");
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char *

getnewprog (pnump)
char *pnump;

{
pnum = * (int *)pnump;
return NULL;

}

docallback ()
{

int ans;

ans = callrpc(hostname, pnum, 1, 1,
xdr_void, O, xdr_void, 0);
if (ans != 0) {
fprintf (stderr, "server: ");
clnt_perrno (ans) ;
fprintf (stderr, "\n");
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4.6 Synopsis of RPC and XDR Routines

auth_destroy()

void
auth_destroy (auth)
AUTH *auth;

A macro that destroys the authentication information associated with auth.
Destruction usually involves deallocation of private data structures. The use
of auth is undefined after calling auth_destroy().

authnone_create()

AUTH *
authnone_create ()

Creates and returns an RPC authentication handle that passes no usable
authentication information with each remote procedure call.

authunix_create()

AUTH *

authunix create (host, uid, gid, len, aup_gids)
char *host;
int uid, gid, len, *aup_gids;

Creates and returns an RPC authentication handle that contains UNIX
authentication information. The parameter host is the name of the machine
on which the information was created; uid is the user’s user ID; gid is the
user’s current group ID; len and aup_gids refer to a counted array of groups
to which the user belongs. It is easy to impersonate a user.
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authunix_create_default()

AUTH *
authunix create_default ()

Calls authunix_create() with the appropriate parameters.

callrpc()

callrpc (host, prognum, versnum, procnum,
inproc, in, outproc, out)
char *host;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;

Calls the remote procedure associated with prognum, versnum, and procnum
on the machine, host. The parameter in is the address of the procedure’s
argument(s), and out is the address of where to place the resuli(s); inproc is
used to encode the procedure’s parameters, and outproc is used to decode
the procedure’s results. This routine returns zero if it succeeds, or the value
of enum clnt_stat cast to an integer if it fails. The routine clnt_perrno() is
handy for translating failure statuses into messages. Warning: calling
remote procedures with this routine uses UDP/IP as a transport; see
clntudp_create() for restrictions.

cint_broadcast()

enum clnt_stat
clnt_broadcast (prognum, versnum, procnum, inproc, in,
outproc, out, eachresult)
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
resultproc_t eachresult;
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Like callrpc(), except the call message is broadcast to all locally connected
broadcast nets. Each time it receives a response, this routine calls
eachresult, whose form is

eachresult (out, addr)
char *out;
struct sockaddr_in *addr;

where out is the same as out passed to clnt_broadcast(), except that the
remote procedure’s output is decoded there; addr points to the address of the
machine that sent the results. If eachresult() returns zero, clnt_broadcast()
waits for more replies; otherwise it returns with appropriate status. Initially
waits 4 seconds for a response before retrying. The next wait interval is
doubled until it reaches a total wait time of 45 seconds. See also
cint_setbroadcastbackoff().

cint_broadcast_exp()

enum clnt_stat
clnt_broadcast_exp (prognum, versnum, procnum, inproc, in,
outproc, out, eachresult, inittime, waittime)
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
resultproc_t eachresult;
int inittime, waittime;

Like cInt_broadcast(), except you can specify the initial and total wait time.
See also cint_setbroadcastbackoff{).

cint_call()

enum clnt_stat
clnt_call (clnt, procnum, inproc, in, outproc, out, tout)
CLIENT *clnt; long procnum;
xdrproc_t inproc, outproc;
char *in, *out;
struct timeval tout;
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A macro that calls the remote procedure procnum associated with the client
handle, clnt, which is obtained with an RPC client creation routine such as
cintudp _create. The parameter in is the address of the procedure’s
argument(s), and out is the address of where to place the result(s); inproc is
used to encode the procedure’s parameters, and outproc is used to decode
the procedure’s results; fout is the time allowed for results to come back.

cint_destroy()

clnt_destroy(clnt)
CLIENT *clnt;

A macro that destroys the client’s RPC handle. Destruction usually
involves deallocation of private data structures, including clnt itself. Use of
cint is undefined after calling clnt_destroy(). Warning: client destruction
routines do not close sockets associated with clnt; this is the responsibility
of the user.

cint_freeres()

clnt_freeres(clnt, outproc, out)
CLIENT *clnt;
xdrproc_t outproc;
char *out;

A macro that frees any data allocated by the RPC/XDR system when it
decoded the results of an RPC call. The parameter out is the address of the
results, and outproc is the XDR routine describing the results in simple
primitives. This routine returns one if the results were successfully freed,
and zero otherwise.

cint_geterr()

void

clnt_geterr(clnt, errp)
CLIENT *clnt;
struct rpc_err *errp;
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A macro that copies the error structure out of the client handle to the
structure at address errp.

cint_pcreateerror()

void
clnt_pcreateerror(s)
char *s;

Prints a message to standard error indicating why a client RPC handle could
not be created. The message is prepended with string s and a colon.

cint_perrno()

void
clnt_perrno (stat)
enum clnt_stat;

Prints a message to standard error corresponding to the condition indicated
by stat.

cint_perror()

void

clnt_perror (clnt, s)
CLIENT *clnt;
char *s;

Prints a message to standard error indicating why an RPC call failed; clnt is
the handle used to do the call. The message is prepended with string s and
a colon.
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cint_setbroadcastbackoff()

void

clnt_setbroadcastbackoff(first, next)
void (*first) (struct timeval *tv);
int (*next) (struct timeval *tv);

Set the timeout backoff iterator for clnt_broadcast(). The initial timeout is
stored in *tv by first(). Subsequent timeouts are computed in *tv by next(),
which returns 1 until a backoff limit is reached, and thereafter returns 0.

cint_spcreateerror()

char *
clnt_spcreateerror (s)
char *s;

Retumns a string indicating why a client RPC handle could not be created.
The message is prepended with string s and a colon.

cint_sperrno()

char *
clnt_sperrno (stat)
enum clnt_stat;

Returns a string corresponding to the condition indicated by stat.

cint_sperror()

char *
clnt_sperror(clnt, s)
CLIENT *clnt;

char *s;

Retums a string indicating why an RPC call failed; c/nt is the handle used to
do the call. The message is prepended with string s and a colon.
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cint_syslog()

void

clnt_syslog(clnt, s)
CLIENT *clnt;
char *s;

Logs an error to syslog(3) indicating why an RPC call failed; cint is the
handle used to do the call. The message is prepended with string s and a
colon.

cintraw_create()

CLIENT *
clntraw_create (prognum, versnum)
u_long prognum, versnum;

This routine creates a toy RPC client for the remote program prognum,
version versnum. The transport used to pass messages to the service is
actually a buffer within the process’s address space, so the corresponding
RPC server should live in the same address space; see svcraw_create().
This allows simulation of RPC and acquisition of RPC overheads, such as
round trip times, without any kernel interference. This routine returns
NULL if it fails.

cinttcp_create()

CLIENT *
clnttcp_create (addr, prognum, versnum, sockp, sendsz, recvsz)
struct sockaddr_in *addr;
u_long prognum, versnum;
int *sockp;
u_int sendsz, recvsz;

This routine creates an RPC client for the remote program prognum, version
versnum; the client uses TCP/IP as a transport. The remote program is
located at Internet address *addr. If addr->sin_port is zero, then it is set to
the actual port that the remote program is listening on (the remote portmap
service is consulted for this information). The parameter *sockp is a socket;
if it is RPC_ANYSOCK, then this routine opens a new one and sets *sockp .
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Since TCP-based RPC uses buffered I/O, the user may specify the size of
the send and receive buffers with the parameters sendsz and recvsz ; values
of zero choose suitable defaults. This routine returns NULL if it fails.

cintudp_create()

CLIENT *
clntudp_create (addr, prognum, versnum, wait, sockp)
struct sockaddr_ in *addr;
u_long prognum, versnum;
struct timeval wait;
int *sockp;

This routine creates an RPC client for the remote program prognum, version
versnum;, the client uses use UDP/IP as a transport. The remote program is
located at Internet address *addr. If addr->sin_port is zero, then it is set to
actual port that the remote program is listening on (the remote portmap
service is consulted for this information). The parameter *sockp is a socket;
if it is RPC_ANYSOCK, then this routine opens a new one and sets *sockp.
The UDP transport resends the call message in intervals of wait time until a
response is received or until the call times out. Warning: since UDP-based
RPC messages can only hold up to 8 Kbytes of encoded data, this transport
cannot be used for procedures that take large arguments or return huge
results.

get_myaddress()

void
get_myaddress (addr)
struct sockaddr in *addr;

Stuffs the machine’s IP address into *addr, without consulting the library
routines that deal with /etc/hosts. The port number is always set to
htons(PMAPPORT).
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pmap_getmaps()

struct pmaplist *
pmap_getmaps (addr)
struct sockaddr_in *addr;

A user interface to the portmap service, which returns a list of the current
RPC program-to-port mappings on the host located at IP address *addr.
This routine can return NULL. The command rpcinfo —p uses this
routine.

pmap_getport()

u_short

pmap_getport (addr, prognum, versnum, protocol)
struct sockaddr_in *addr;
u_long prognum, versnum, protocol;

A user interface to the portmap service, which returns the port number on
which waits a service that supports program number prognum , version
versnum, and speaks the transport protocol associated with protocol. A
return value of zero means that the mapping does not exist or that the RPC
system failured to contact the remote portmap service. In the latter case, the
global variable rpc_createerr contains the RPC status.

pmap_rmtcall()

enum clnt_stat
pmap_rmtcall (addr, prognum, versnum, procnum,
inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
struct timeval tout;
u_long *portp;

A user interface to the portmap service, which instructs portmap on the host
at IP address *addr to make an RPC call on your behalf to a procedure on
that host. The parameter *porp will be modified to the program’s port
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number if the procedure succeeds. The definitions of other parameters are
discussed in callrpc() and clnt_call(). See also clnt_broadcast(),
pmap_settimeouts(), and pmap_setrmtcalltimeout().

pmap_set()

pmap_set (prognum, versnum, protocol, port)
u_long prognum, versnum, protocol;
u_short port;

A user interface to the portmap service, which establishes a mapping
between the triple [prognum,versnum,protocol] and port on the machine’s
portmap service. The value of protocol is most likely IPPROTO_UDP or
IPPROTO_TCP. This routine returns one if it succeeds, zero otherwise.

pmap_setrmtcalltimeout()

void
pmap_setrmtcalltimeout (intertry)
struct timeval intertry;

Set the retry timeout for pmap _rmtcall(). Note that the total timeout per call
is an argument to pmap_rmtcall().

pmap_settimeouts()

void
pmap_settimeouts (intertry, percall)
struct timeval intertry, percall;

Set the retry and total timeouts for RPCs to the portmapper. These timeouts
are used explicitly by pmap_set() and pmap_getport(), and implicitly by
clnt*_create().
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pmap_unset()

pmap_unset (prognum, versnum)
u_long prognum, versnum;

A user interface to the portmap service, which destroys all mappings
between the triple [prognum,versnum,*] and ports on the machine’s
portmap service. This routine retumns one if it succeeds, zero otherwise.

registerrpc()

registerrpc (prognum, versnum, procnum, procname, inproc, outproc)
u_long prognum, versnum, procnum;
char * (*procname) ();
xdrproc_t inproc, outproc;

Registers procedure procname with the RPC service package. If a request
arrives for program prognum, version versnum, and procedure procnum,
procname is called with a pointer to its parameter(s); progname should
return a pointer to its static result(s); inproc is used to decode the parameters
while outproc is used to encode the results. This routine returns zero if the
registration succeeded, —1 otherwise.

Warning: remote procedures registered in this form are accessed using the
UDP/IP transport; see svcudp_create() for restrictions.

rpc_createerr

struct rpc createerr rpc_createerr;

A global variable whose value is set by any RPC client creation routine that
does not succeed. Use cint_pcreateerror() to print the reason why.
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_rpc_errorhandler()

void

_rpc_errorhandler(priority, format, ...);
int priority;
char *format;

Called by the RPC library routines to print an error message to stderr or to
syslog(3), if openlog (3) was called. priority values are defined in
<syslog.h>. format is printf-like format string. See comments in .
<rpclerrorhandler.h> for details on defining your own version for more
sophisticated error handling.

svc_destroy()

svc_destroy (xprt)
SVCXPRT *xprt;

A macro that destroys the RPC service transport handle, xprt. Destruction
usually involves deallocation of private data structures, including xprz itself.
Use of xprt is undefined after calling this routine.

svc_fdset

fd set svc_fdset;

A global variable reflecting the RPC service side’s read file descriptor bit
mask; it is suitable as a parameter to the select system call. This is only of
interest if a service implementor does not call sve_run(), but rather does his
own asynchronous event processing. This variable is read-only (do not pass
its address to select!), yet it may change after calls to svc_getregset() or any
creation routines.
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svc_freeargs()

svc_freeargs (xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

A macro that frees any data allocated by the RPC/XDR system when it
decoded the arguments to a service procedure using svc_getargs(). This
routine returns one if the results were successfully freed, and zero otherwise.

svc_getargs()

svc_getargs (xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

A macro that decodes the arguments of an RPC request associated with the
RPC service transport handle, xprt. The parameter in is the address where
the arguments will be placed; inproc is the XDR routine used to decode the
arguments. This routine returns one if decoding succeeds, and zero
otherwise.

svc_getcaller()

struct sockaddr_in
svc_getcaller (xprt)
SVCXPRT *xprt;

The approved way of getting the network address of the caller of a
procedure associated with the RPC service transport handle, xprt.
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svc_getreq()

svc_getreq(rdfds)
int rdfds;

This routine is provided for compatibility with old code. Use svc_getreqset
when developing new code.

svc_getreqset()

svc_getregset (rdfds)
fd _set *rdfds;

This routine is only of interest if a service implementor does not call
sve_run(), but instead implements custom asynchronous event processing.
It is called when the select system call has determined that an RPC request
has arrived on some RPC socket(s); rdfds is the resultant read file descriptor
bit mask set. The routine returns when all ready sockets in rdfds have been
serviced.

svc_register()

svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum, versnum;
void (*dispatch) ();
int protocol;

Associates prognum and versnum with the service dispatch procedure,
dispatch. 1f protocol is non-zero, then a mapping of the triple
[prognum,versnum,protocol] to xprt->xp_port is also established with the
local portmap service (generally protocol is zero, IPPROTO_UDP or
[PPROTO_TCP). The procedure dispatch() has the following form.

dispatch (request, xprt)
struct svc_req *request;
SVCXPRT *xprt;

The svc_register routine returns one if it succeeds, and zero otherwise.
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svc_run()

svc_run ()

This routine never returns. It waits for RPC requests to arrive and calls the
appropriate service procedure (using svc_getregset) when one arrives. This
procedure is usually waiting for a select system call to return.

svc_sendreply()

svc_sendreply (xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
caddr_t out;

Called by an RPC service’s dispatch routine to send the results of a remote
procedure call. The parameter xprt is the caller’s associated transport
handle; outproc is the XDR routine which is used to encode the results; and
out is the address of the results. This routine returns one if it succeeds, zero
otherwise.

svc_unregister()

void
svc_unregister (prognum, versnum)
u_long prognum, versnum;

Removes all mapping of the double [prognum,versnum] to dispatch
routines, and of the triple [prognum,versnum,*] to port number.
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svcerr_auth()

void

svcerr_auth (xprt, why)
SVCXPRT *xprt;
enum auth_stat why;

Called by a service dispatch routine that refuses to perform a remote
procedure call due to an authentication error.

svcerr_decode()

void
svcerr_decode (xprt)
SVCXPRT *xprt;

Called by a service dispatch routine that can’t successfully decode its
parameters. See also sve_getargs().

svcerr_noproc()

void
svcerr_noproc (xprt)
SVCXPRT *xprt;

Called by a service dispatch routine that doesn’t implement the desired
procedure number the caller request.

svcerr_noprog()

void
svcerr_noprog (Xprt)
SVCXPRT *xprt;

Called when the desired program is not registered with the RPC package.
Service implementors usually don’t need this routine.
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svecerr_progvers()

void

svcerr progvers (xprt, low_vers, high vers)
SVCXPRT *xprt;
u_long low_vers, high_vers;

Called when the desired version of a program is not registered with the RPC
package. Service implementors usually don’t need this routine.

svcerr_systemerr()

void
svcerr_ systemerr (xprt)
SVCXPRT *xprt;

Called by a service dispatch routine when it detects a system error not
covered by any particular protocol. For example, if a service can no longer
allocate storage, it may call this routine.

svcerr_weakauth()

void
svcerr_ weakauth (xprt)
SVCXPRT *xprt;

Called by a service dispatch routine that refuses to perform a remote
procedure call due to insufficient (but correct) authentication parameters.
The routine calls svcerr_auth(xprt, AUTH TOOWEAK).

svcraw_create()

SVCXPRT *
svcraw_create ()

This routine creates a toy RPC service transport, to which it returns a
pointer. The transport is really a buffer within the process’s address space,
so the corresponding RPC client should live in the same address space; see
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cintraw_create(). This routine allows simulation of RPC and acquisition of
RPC overheads (such as round trip times), without any kernel interference.
This routine returns NULL if it fails.

svctcp_create()

SVCXPRT *

svctcep_create(sock, send buf_size, recv_buf_size)
int sock;
u_int send buf size, recv_buf_size;

This routine creates a TCP/IP-based RPC service transport, to which it
returns a pointer. The transport is associated with the socket sock, which
may be RPC_ANYSOCK, in which case a new socket is created. If the
socket is not bound to a local TCP port, then this routine binds it to an
arbitrary port. Upon completion, xpr¢->xp_sock is the transport’s socket
number, and xprt->xp_port is the transport’s port number. This routine
returns NULL if it fails. Since TCP-based RPC uses buffered I/O, users
may specify the size of the send and receive buffers; values of zero choose
suitable defaults.

svcudp_create()

SVCXPRT *
svcudp_create (sock)
int sock;

This routine creates a UDP/IP-based RPC service transport, to which it
returns a pointer. The transport is associated with the socket sock, which
may be RPC_ANYSOCK, in which case a new socket is created. If the
socket is not bound to a local UDP port, then this routine binds it to an
arbitrary port. Upon completion, xprt->xp_sock is the transport’s socket
number, and xprt->xp_port is the transport’s port number. This routine
returns NULL if it fails. Warning: since UDP-based RPC messages can
only hold up to 8 Kbytes of encoded data, this transport cannot be used for
procedures that take large arguments or return huge results.
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xdr_accepted_reply()

xdr_accepted reply(xdrs, ar)
XDR *xdrs;
struct accepted reply *ar;

Used for describing RPC messages, externally. This routine is useful for
users who wish to generate RPC-style messages without using the RPC
package.

xdr_array()

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc_t elproc;

A filter primitive that translates between arrays and their corresponding
external representations. The parameter arrp is the address of the pointer to
the array, while sizep is the address of the element count of the array; this
element count cannot exceed maxsize. The parameter elsize is the sizeof{)
each of the array’s elements, and elproc is an XDR filter that translates
between the array elements’ C form, and their external representation. This
routine returns one if it succeeds, zero otherwise.

xdr_authunix_parms()

xdr_authunix_parms (xdrs, aupp)
XDR *xdrs;
struct authunix parms *aupp;

Used for describing credentials, externally. This routine is useful for users
who wish to generate these credentials without using the RPC authentication
package.

4-62 Network Communications Guide : IRIX




xdr_bool()

xdr_bool (xdrs, bp)
XDR *xdrs;
bool_t *bp;

A filter primitive that translates between booleans (C integers) and their
external representations. When encoding data, this filter produces values of
either one or zero. This routine returns one if it succeeds, zero otherwise.

xdr_bytes()

xdr_bytes (xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep, maxsize;

A filter primitive that translates between counted byte strings and their
external representations. The parameter sp is the address of the string
pointer. The length of the string is located at address sizep; strings cannot
be longer than maxsize. This routine returns one if it succeeds, zero
otherwise.

xdr_callhdr()

void

xdr_callhdr (xdrs, chdr)
XDR *xdrs;
struct rpc_msg *chdr;

Used for describing RPC messages, externally. This routine is useful for
users who wish to generate RPC-style messages without using the RPC
package.
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xdr_callmsg()

xdr_callmsg (xdrs, cmsg)
XDR *xdrs;
struct rpc_msg *cmsg;

Used for describing RPC messages, externally. This routine is useful for ( ‘
users who wish to generate RPC-style messages without using the RPC
package.

xdr_char()

xdr_char(xdrs, cp)
XDR *xdrs;
char *cp;

A filter primitive that translates between C characters and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_destroy() (

void
xdr_destroy (xdrs)
XDR *xdrs;

A macro that invokes the destroy routine associated with the XDR stream,
xdrs. Destruction usually involves freeing private data structures associated
with the stream. Using xdrs after invoking xdr_destroy() is undefined.

xdr_double()

xdr_double (xdrs, dp)
XDR *xdrs; .
double *dp; (z
A filter primitive that translates between C double precision numbers and

their external representations. This routine returns one if it succeeds, zero
otherwise.
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xdr_enum()

xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

A filter primitive that translates between C enums (actually integers) and
their external representations. This routine returns one if it succeeds, zero
otherwise.

xdr_float()

xdr_ float (xdrs, £fp)
XDR *xdrs;
float *fp;

A filter primitive that translates between C f£loats and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_getpos()

u_int
xdr_getpos (xdrs)
XDR *xdrs;

A macro that invokes the get-position routine associated with the XDR
stream, xdrs. The routine returns an unsigned integer, which indicates the
position of the XDR byte stream. A desirable feature of XDR streams is
that simple arithmetic works with this number, although the XDR stream
instances need not guarantee this.

xdr_inline()

long *

xdr _inline(xdrs, len)
XDR *xdrs;
int len;
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A macro that invokes the in-line routine associated with the XDR stream,
xdrs. The routine returns a pointer to a contiguous piece of the stream’s
buffer; len is the byte length of the desired buffer. Note that pointer is
castto long *. Waming: xdr_inline() may return O (NULL) if it cannot
allocate a contiguous piece of a buffer. Therefore the behavior may vary
among stream instances; it exists for the sake of efficiency.

xdr_int()

xdr_int (xdrs, ip)
XDR *xdrs;
int *ip;

A filter primitive that translates between C integers and their external
representations. Returns one if it succeeds, zero otherwise.

xdr_long()

xdr_long(xdrs, 1lp)
XDR *xdrs;
long *1lp;

A filter primitive that translates between C long integers and their
external representations. This routine returns one if it succeeds, zero
otherwise.

xdr_opaque()

xdr_opaque (xdrs, cp, cnt)
XDR *xdrs;
char *cp;
u_int cnt;

A filter primitive that translates between fixed size opaque data and its
external representation. The parameter cp is the address of the opaque
object, and cnt is its size in bytes. This routine returns one if it succeeds,
zero otherwise.
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xdr_opaque_auth()

xdr_opaque_auth (xdrs, ap)
XDR *xdrs;
struct opaque_auth *ap;

Used for describing RPC messages, externally. This routine is useful for
users who wish to generate RPC-style messages without using the RPC
package.

xdr_pmap()

xdr_pmap (xdrs, regs)
XDR *xdrs;
struct pmap *regs;

Used for describing parameters to various portmap procedures, externally.
This routine is useful for users who wish to generate these parameters
without using the pmap interface.

xdr_pmaplist()

xdr_pmaplist (xdrs, rp)
XDR *xdrs;
struct pmaplist **rp;

Used for describing a list of port mappings, externally. This routine is
useful for generating these parameters without using the pmap interface.

xdr_pointer()

xdr_pointer (xdrs, objpp, objsize, xdrobj)
XDR *xdrs;
char **objpp;
u_int objsize;
xdrproc_t xdrobj;

Like xdr_reference( ) execpt that it serializes NULL pointers, whereas
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xdr_reference( ) does not. Thus, xdr_pointer( ) can represent recursive data
structures, such as binary trees or linked lists.

xdr_reference()

xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter
pp is the address of the pointer; size is the sizeof{) the structure that *pp
points to; and proc is an XDR procedure that filters the structure between its
C form and its external representation. This routine returns one if it
succeeds, zero otherwise.

xdr_rejected_reply()

xdr_rejected reply(xdrs, rr)
XDR *xdrs;
struct rejected reply *rr;

Used for describing RPC messages, externally. This routine is useful for
users who wish to generate RPC-style messages without using the RPC
package.

xdr_replymsg()

xdr_replymsg (xdrs, rmsg)
XDR *xdrs;
struct rpc msg *rmsg;

Used for describing RPC messages, externally. This routine is useful for
users who wish to generate RPC style messages without using the RPC
package.
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xdr_setpos()

xdr_setpos (xdrs, pos)
XDR *xdrs;
u_int pos;

A macro that invokes the set position routine associated with the XDR
stream xdrs. The parameter pos is a position value obtained from
xdr_getpos(). This routine returns one if the XDR stream could be
repositioned, and zero otherwise. Warning: it is difficult to reposition some
types of XDR streams, so this routine may fail with one type of stream and
succeed with another.

xdr_short()

xdr_short (xdrs, sp)
XDR *xdrs;
short *sp;

A filter primitive that translates between C short integers and their
external representations. This routine returns one if it succeeds, zero
otherwise.

xdr_string()

xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char **sp;
u_int maxsize;

A filter primitive that translates between C strings and their corresponding
external representations. Strings cannot cannot be longer than maxsize.
Note that sp is the address of the string’s pointer. This routine retumns one if
it succeeds, zero otherwise.
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xdr_u_char()

xdr_u_char(xdrs, cp)
XDR *xdrs;
unsigned char *cp;

A filter primitive that translates between C unsigned characters and their (
external representations. This routine returns one if it succeeds, zero
otherwise.

xdr_u_int()

xdr_u_int (xdrs, up)
XDR *xdrs;
unsigned *up;

A filter primitive that translates between C unsigned integers and their
external representations. This routine returns one if it succeeds, zero
otherwise.

xdr_u_long() (

xdr_u_long(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

A filter primitive that translates between C unsigned long integers and
their external representations. This routine returns one if it succeeds, zero
otherwise.

xdr_u_short()

“XDR *xdrs;

xdr u short (xdrs, usp) (i
unsigned short *usp;
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A filter primitive that translates between C unsigned short integers
and their external representations. This routine returns one if it succeeds,
zero otherwise.

xdr_union()

xdr_union (xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
int *dscmp;
char *unp;
struct xdr discrim *choices;
xdrproc_t dfault;

A filter primitive that translates between a discriminated C union and its
corresponding external representation. The parameter dscmp is the address
of the union’s discriminant, while unp in the address of the union. This
routine returns one if it succeeds, zero otherwise.

xdr_void()

xdr_void()

This routine always returns one.

xdr_wrapstring()

xdr_wrapstring (xdrs, sp)
XDR *xdrs;
char **sp;

A primitive that calls xdr_string(xdrs,sp, MAXUNSIGNED); where
MAXUNSIGNED is the maximum value of an unsigned integer. This is
handy because the RPC package passes only two parameters XDR routines,
whereas xdr_string(), one of the most frequently used primitives, requires
three parameters. This routine returns one if it succeeds, zero otherwise.
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xdrmem_create()

void
xdrmem_create (xdrs, addr, size, op)
XDR *xdrs;
char *addr;
u_int size;
enum xdr_op op;

This routine initializes the XDR stream object pointed to by xdrs. The
stream’s data is written to, or read from, a chunk of memory at location addr
whose length is no more than size bytes long. The op determines the
direction of the XDR stream (either XDR_ENCODE, XDR_DECODE, or
XDR_FREE).

xdrrec_create()

void
xdrrec_create (xdrs, sendsize, recvsize, handle, readit, writeit)
XDR *xdrs;
u_int sendsize, recvsize;
char *handle;
int (*readit) (), (*writeit) ();

This routine initializes the XDR stream object pointed to by xdrs. The
stream’s data is written to a buffer of size sendsize; a value of zero indicates
the system should use a suitable default. The stream’s data is read from a
buffer of size recvsize; it too can be set to a suitable default by passing a
zero value. When a stream’s output buffer is full, writeit() is called.
Similarly, when a stream’s input buffer is empty, readit() is called. The
behavior of these two routines is similar to the UNIX system calls read and
write, except that handle is passed to the former routines as the first
parameter. Note that the XDR stream’s op field must be set by the caller.
Warning: this XDR stream implements an intermediate record stream.
Therefore there are additional bytes in the stream to provide record
boundary information.
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xdrrec_endofrecord()

xdrrec_endofrecord(xdrs, sendnow)
XDR *xdrs;
int sendnow;

This routine can be invoked only on streams created by xdrrec_create().
The data in the output buffer is marked as a completed record, and the
output buffer is optionally written out if sendnow is non-zero. This routine
returns one if it succeeds, zero otherwise.

xdrrec_eof()

xdrrec_eof (xdrs)
XDR *xdrs;
int empty;

This routine can be invoked only on streams created by xdrrec_create().
After consuming the rest of the current record in the stream, this routine
returns one if the stream has no more input, zero otherwise.

xdrrec_skiprecord()

xdrrec_skiprecord (xdrs)
XDR *xdrs;

This routine can be invoked only on streams created by xdrrec_create(). It
tells the XDR implementation that the rest of the current record in the
stream’s input buffer should be discarded. This routine returns one if it
succeeds, zero otherwise.
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xdrstdio_create()

void

xdrstdio_create(xdrs, file, op)
XDR *xdrs;
FILE *file;

enum xdr_op op;

This routine initializes the XDR stream object pointed to by xdrs. The XDR
stream data is written to, or read from, the Standard I/O stream file. The
parameter op determines the direction of the XDR stream (either
XDR_ENCODE, XDR_DECODE, or XDR_FREE). Waming: the destroy
routine associated with such XDR streams calls fflusk() on the file stream,
but never close().

xprt_register()

void
xprt_register(xprt)
SVCXPRT *xprt;

After RPC service transport handles are created, they should register
themselves with the RPC service package. This routine modifies the global
variable svc_fdset. Service implementors usually don’t need this routine.

xprt_unregister()

void
xprt_unregister (xprt)
SVCXPRT *xprt;

Before an RPC service transport handle is destroyed, it should unregister
itself with the RPC service package. This routine modifies the global
variable svc_fdset. Service implementors usually don’t need this routine.
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5. The rpcgen Compiler

This chapter covers the following topics:

e converting local procedures into remote procedures
¢ generating XDR routines

» the C-preprocessor

e the rpcgen programming guide

¢ the RPC language

The details of programming applications to use Remote Procedure Calls can
be overwhelming. Perhaps most daunting is the writing of the XDR
routines necessary to convert procedure arguments and results into their
network format and vice-versa.

Fortunately, rpcgen(1) exists to help you write RPC applications simply and
directly. rpcgen does most of the dirty work; you just debug the main
features of the application instead of spending most of your time debugging
network interface code.

rpcgenis a compiler. It accepts a remote program interface definition
written in a language, called RPC Language, which is similar to C. It
produces a C language output that includes stub versions of the client
routines, a server skeleton, XDR filter routines for both parameters and
results, and a header file that contains common definitions. The client stubs
interface with the RPC library and effectively hide the network from their
callers. The server stub similarly hides the network from the server
procedures that are to be invoked by remote clients.

You can compile and link 7pcgen’s output files in the usual way. The
developer writes server procedures—in any language that observes calling
conventions—and links them with the server skeleton produced by rpcgen
to get an executable server program. To use a remote program, a
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programmer writes an ordinary main program that makes local procedure
calls to the client stubs produced by rpcgen. Linking this program with
rpcgen’s stubs creates an executable program. (At present the main
program must be written in C.)

You can use rpcgen options to suppress stub generation, to specify the
transport to be used by the server stub, and to pass flags to ¢pp or choose a \
different preprocessor. ( ‘

Like all compilers, rpcgen reduces development time that would otherwise
be spent coding and debugging low-level routines. All compilers, including
rpcgen, do this at a small cost in efficiency and flexibility. However, many
compilers allow escape hatches for programmers to mix low-level code
with high-level code. rpcgen is no exception. In speed-critical applications,
hand-written routines can be linked with the rpcgen output without any
difficulty. Also, you may proceed by using rpcgen output as a starting
point, and then rewriting it as necessary. (If you need a discussion of RPC
programming without rpcgen, see the previous chapter.)

5.1 Converting Local Procedures into Remote
Procedures (

Assume an application that runs on a single machine, one that you want to
convert to run over the network. Following is an example of such a
conversion—a program that prints a message to the console.
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/*
* printmsg.c: print a message on the console
*/

#include <stdio.h>

main (argc, argv)
int argc;
char *argv[];

char *message;

if (argc < 2) {
fprintf (stderr, "usage: %s <message>\n", argv[0]);
exit (1),

}

message = argv([l];

if (!printmessage (message)) {
fprintf (stderr, "%s: couldn’t print your message\n",
argv[0]);
exit (1);
}
printf ("Message Delivered!\n");
exit (0);
}
/%
* Print a message to the console. Return a boolean
* indicating whether the message was actually printed.
*/
printmessage (msg)
char *msg;
{
FILE *f;

f = fopen("/dev/console", "w");
if (f == NULL) {
return (0);
}
fprintf (£, "%s\n", msqg);
fclose (f);
return(1l);

And then, of course:

[

% cc printmsg.c -—o printmsg
% printmsg "Hello, there."
Message Delivered!

%
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If printmessage() was tumed into a remote procedure, then it could be called
from anywhere in the network. Ideally, you would like to insert a keyword
such as remote in front of a procedure to turn it into a remote procedure.
Unfortunately, you have to live within the constraints of the C language,
since it existed long before RPC did. But even without language support,
it’s not very difficult to make a procedure remote.

In general, it’s necessary to figure out what the types are for all procedure
inputs and outputs. In this case, there is a procedure, printmessage(), that
takes a string as input, and returns an integer as output. Knowing this, you
can write a protocol specification in RPC language that describes the remote
version of printmessage():

/*
* msg.x: Remote message printing protocol

*/

program MESSAGEPROG {
version MESSAGEVERS ({
int PRINTMESSAGE (string) = 1;
}=1;
} = 99;

Remote procedures are part of remote programs, so an entire remote
program was declared here that contains the single procedure
PRINTMESSAGE. This procedure was declared to be in version 1 of the
remote program. No null procedure (procedure 0) is necessary because
rpcgen generates it automatically.

Notice that everything is declared with all capital letters. This is not
required, but is a good convention to follow.

Notice also that the argument type is string andnot char *. Thisis
because a char *in Cis ambiguous. Programmers usually intend it to
mean a null-terminated string of characters, but it could also represent a
pointer to a single character or a pointer to an array of characters. In RPC
language, a null-terminated string is unambiguously called a string.
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There are just two more things to write. First, there is the remote procedure
itself. The following example defines a remote procedure to implement the
PRINTMESSAGE procedure declared above.

/*
* msg_proc.c: implementation of the remote
* procedure "printmessage"
x/
#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "msg.h" /* need this too: msg.h will be generated by rpcgen */
/*
* Remote version of "printmessage"
*/
int *

printmessage_1 (msg)
char **msg;

{
static int result; /* must be static! */
FILE *f;

f = fopen("/dev/console", "w");
if (f == NULL) {

result = 0;

return (&result);

}

fprintf (£, "%$s\n", *msgqg);
fclose (f);

result = 1;

return (&result);

Notice here that the declaration of the remote procedure printmessage 1()
differs from that of the local procedure printmessage() in three ways:

1. It takes a pointer to a string instead of a string itself. This is true of all
remote procedures: they always take pointers to their arguments rather
than the arguments themselves.

2. It returns a pointer to an integer instead of an integer itself. This is also
generally true of remote procedures: they always return a pointer to their
results.
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3. Ithasan _1 appended to its name. In general, all remote procedures
called by rpcgen are named by the following rule: the name in the
program definition (here PRINTMESSAGE) is converted to all lower-
case letters, an underbar (_) is appended to it, and finally the version
number (here 1) is appended.

Finally, declare the main client program that will call the remote procedure:

/*
* rprintmsg.c: remote version of "printmsg.c"
*/
#include <stdio.h>
#include <rpc/rpc.h> /* always needed */
#include "msg.h" /* need this too: msg.h will be generated by rpcgen */

main(argc, argv)
int argc;
char *argv[];

CLIENT *cl;
int *result;
char *server;
char *message;

if (argc < 3) {
fprintf (stderr, "usage: %s host message\n", argv[0]);
exit (1);
}
/* Save values of command line arguments */
server = argv[l];
message = argv([2];
/*
* Create client "handle" used for calling
* MESSAGEPROG on the server designated on the
* command line. We tell the RPC package to use the
* "tcp" protocol when contacting the server.
x/
cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp"):
if (¢l == NULL) {
/*
* Couldn’t establish connection with server.
* Print error message and die.
*/
clnt_pcreateerror (server);
exit (1) ;
}
/* Call the remote procedure "printmessage" on the server /*
result = printmessage_1 (&message, cl);
if (result == NULL) ({
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/*
* An error occurred while calling the server.
* Print error message and die.

*/

clnt_perror (cl, server);

exit (1)
}
/*
* Okay, the remote procedure was successfully called.
*/
if (*result == 0) {

/*
* Server was unable to print our message.
* Print error message and die.
*/
fprintf(stderr,
"3s: %s couldn’t print your message\n",
argv[0], server);
exit (1)
}

/* The message got printed on the server’s console */
printf ("Message delivered to %$s!\n", server);

}

There are two things to note:

1. A client handle is created using the RPC library routine clnz_create().
This client handle will be passed to the stub routines that call the remote
procedure.

2. The remote procedure printmessage_1() is called exactly the same way
as it is declared in msg_proc.c except for the inserted client handle as the
first argument.

The following example shows how to put all of the pieces together.

% rpcgen msg.X
$ cc rprintmsg.c msg_clnt.c —lsun —o rprintmsg
$ cc msg_proc.c msg_svc.c —lsun —o msg_server

Two programs were compiled: the client program rprintmsg and the server
program msg_server. Before compilation, rpcgen was used to fill in the
missing pieces. The list that follows explains what rpcgen did with the input
file msg.x.

1. It created a header file called msg.h that contained #define’s for
MESSAGEPROG , MESSAGEVERS and PRINTMESSAGE for use in the
other modules.
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2. Tt created client stub routines in the msg_clint.c file. In this case there is
only one, the printmessage_1() that was referred to from the printmsg
client program. The name of the output file for client stub routines is
always formed in this way: if the name of the input file is FOO .x, the
client stubs output file is called FOO cint.c.

3. It created the server program that calls printmessage_1() in msg_proc.c.
This server program is named msg_svc.c. The rule for naming the
server output file is similar to the previous one: for an input file called
FOO .x, the output server file is named FOO _svc.c.

Now you’re ready to have some fun. First, copy the server to a remote
machine and run it. For this example, the machine is called clyde. Server
processes are run in the background, because they never exit.

clyde% msg_server &
Then on your local machine (bonnie), print a message on clyde’s console.
bonnie% printmsg clyde "Hello, clyde."

The message will get printed to clyde’s console. You can print a message
on anybody’s console (including your own) with this program if you are
able to copy the server to their machine and run it.

5.2 Generating XDR Routines

The previous example only demonstrated the automatic generation of client
and server RPC code. rpcgen may also be used to generate XDR routines,
that is, the routines necessary to convert local data structures into network
format and vice-versa. This example presents a complete RPC service—a
remote directory listing service, which uses rpcgen not only to generate stub
routines, but also to generate the XDR routines.

The protocol description file appears in the next example.
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/* dir.x: Remote directory listing protocol */

const MAXNAMELEN = 255; /* maximum length of a directory entry */
typedef string nametype<MAXNAMELEN>; /* adirectory entry */
typedef struct namenode *namelist; /* alink in the listing */

/* A node in the directory listing */

struct namenode {
nametype name; /* name of directory entry */
namelist next; /* nextentry */

};
/* The result of a READDIR operation. */

union readdir res switch (int errno) {
case O:

namelist list; /* noerror: returndirectory listing */
default:

void; /* error occurred: nothing else to return */
i
/*
* The directory program definition
*/

program DIRPROG ({
version DIRVERS ({
readdir res
READDIR (nametype) = 1;
} = 1;

Version 1.0 The rpcgen Compiler  5-9



Note: Define types (like readdir_res in the example above) by using the
struct, unionand enum keywords; those keywords should
not be used in subsequent declarations of variables of those types.
For example;, if you define a union foo, you should declare using
only foo andnot union foo. In fact, rpcgen compiles RPC
unions into C structures; it is an error to declare them using the
union keyword.

Running rpcgen on dir.x creates four output files. Three are the same as
before: header file, client stub routines and server skeleton. The fourth are
the XDR routines necessary for converting the data types you declared into
XDR format and vice-versa. These are output in the file dir_xdr.c.

The READDIR procedure is implemented as shown in the following
example.

/*
* dir_proc.c: remote readdir implementation
*/

#include <rpc/rpc.h>

#include <sys/dir.h>

#include "dir.h"

extern int errno;
extern char *malloc();
extern char *strdup():;

readdir_res *
readdir_l (dirname)
nametype *dirname;
{
DIR *dirp;
struct direct *d;
namelist nl;
namelist *nlp;
static readdir res res; /* must be static! */

/*
* Open directory
*/
dirp = opendir(*dirname);
if (dirp == NULL) {
res.errno = errno;
return (&res);
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}

/*
* Free previous result
*/

xdr_free(xdr_readdir res, &res);

/*
* Collect directory entries.
* Memory allocated here will be freed by xdr free
* next time readdir I is called
*/
nlp = &res.readdir res_u.list;
while (d = readdir(dirp)) {
nl = *nlp = (namenode *) malloc(sizeof (namenode)) ;
nl->name = strdup(d->d_name) ;
nlp = &nl->next;
}
*nlp = NULL;

/*
* Return the result
*/
res.errno = 0;
closedir (dirp) ;
return (&res);

Finally, there is the client side program to call the server:

/*

* rls.c: Remote directory listing client

#include <stdio.h>
#include <rpc/rpc.h> /* always need this */
#include "dir.h" /* will be generated by rpcgen */

extern int errno;

main (argc, argv)

int argc;
char *argvl[];

CLIENT *cl;

char *server;

char *dir;

readdir res *result;
namelist nl;
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5-12

if (argec != 3) {
fprintf (stderr, "usage: %s host directory\n",
argv[0]);
exit (1) ;
}

/%
* Remember what our command line arguments refer to
*/

server = argv[l];

dir = argv[2];

* Create client "handle" used for calling
* MESSAGEPROG on the server designated on the
* command line. We tell the RPC package to use the
* "tcp" protocol when contacting the server.
*/
cl = clnt_create(server, DIRPROG, DIRVERS, "tcp");
if (¢l == NULL) {
/*
* Couldn’t establish connection with server.
* Print error message and die.
*/
clnt_pcreateerror (server);
exit (1) ;
}

/*
©* Call the remote procedure readdir on the server
*/
result = readdir_ 1 (&dir, cl);
if (result == NULL) {
/*
* An error occurred while calling the server.
* Print error message and die.
*/
clnt_perror(cl, server);
exit (1);
}

/*
* Okay, the remote procedure was called successfully.
*/
if (result->errno != 0) {
/*
* A remote system error occurred.
* Print error message and die.
*/
errno = result->errno;
perror(dir) ;
exit (1) ;
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/%
* Successfully got a directory listing.
* Print it out.
*/
for (nl = result—>readdir_res_u.list; nl !'= NULL;
nl = nl->next) {
printf ("$s\n", nl->name);

}
exit (0);
}

Compile everything, and run:

bonnie% rpcgen dir.x
bonnie$% cc rls.c dir clnt.c dir xdr.c —lsun -o rls
bonnie% cc dir_svc.c dir_proc.c dir xdr.c —lsun -o dir_ sve

bonnie% dir_svc &

clyde% rls bonnie /usr/pub

apsegnchar
categnchar
egnchar
pscegnchar
terminals
clyde$%

A final note about rpcgen: You can test the client program and the server
procedure together as a single program by simply linking them with each
other rather than with the client and server stubs. The procedure calls will
be executed as ordinary local procedure calls and the program can be
debugged with a local debugger such as dbx. When the program is working,
the client program can be linked to the client stub produced by rpcgen and
the server procedures can be linked to the server stub produced by rpcgen.

Note that if you do this, you may want to comment out calls to RPC library
routines, and have client-side routines call server routines directly.
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5.3 The C-Preprocessor

The C-preprocessor is run on all input files before they are compiled, so all
the preprocessor directives are legal within a x file. Four symbols may be
defined, depending on which output file is being generated. Symbols are:

Symbol Usage

RPC_HDR for header-file output
RPC_XDR for XDR routine output
RPC_SVC for server-skeleton output
RPC_CLNT  for client stub output

Also, rpcgen does a little preprocessing of its own. Any line that begins with
a percent sign is passed directly into the output file, without any
interpretation of the line. The following example demonstrates the
preprocessing features.

/*
* time.x: Remote time protocol
*/
program TIMEPROG ({
version TIMEVERS {
unsigned int TIMEGET (void) = 1;

} = 1;
} = 44;
#ifdef RPC_SVC
%$int *
Stimeget_1()
% {
% static int thetime;
%
% thetime = time (0);
% return (&thetime);
#endif

The percent (%) feature is not generally recommended, as there is no
guarantee that the compiler will stick the output where you intended.
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5.4 rpcgen Programming Guide

This section describes timeout changes, broadcast on the server side, and
information passed to server procedures.

5.4.1 Timeout Changes

RPC sets a default timeout of 25 seconds for RPC calls when cint_create()
is used. This timeout may be changed using cint_control(). The following
code fragment demonstrates use of clnt_control ():

struct timeval tv;
CLIENT *cl;

cl = clnt_create ("somehost", SOMEPROG, SOMEVERS, "tcp");
if (¢l == NULL) {
exit (1);
}
tv.tv_sec = 60; /* changetimeoutto 1 minute */
tv.tv usec = 0;

clnt _control(cl, CLSET TIMEOUT, &tv);

5.4.2 Handling Broadcast on the Server Side

When a procedure is known to be called via broadcast RPC, it is usually
wise for the server not to reply unless it can provide some useful
information to the client. This prevents the network from getting flooded by
useless replies.

To prevent the server from replying, a remote procedure can return NULL
as its result, and the server code generated by rpcgen will detect this and not
send out a reply.

The next example shows a procedure that replies only if it thinks it is an
NFS server.
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void *
reply if nfsserver()

{

char notnull; /* just here so you can use its address */

if (access("/etc/exports", F_OK) < 0) {
return (NULL); /* prevent RPC fromreplying */
}

/*

* return non-null pointer so RPC will send out a reply ( )
*/

return ((void *)é&notnull);

}

Note that if procedure returns type void *, they must return a non-NULL
pointer if they want RPC to reply for them.

5.4.3 Other Information Passed to Server Procedures

Server procedures will often want to know more about an RPC call than just

its arguments. For example, getting authentication information is important

to procedures that want to implement some level of security. This extra

information is actually supplied to the server procedure as a second

argument. The following example demonstrates its use. The previous -
printmessage_1() procedure has been rewritten to only allow root users to (
print a message to the console.

int *
printmessage_1 (msg, rq)
char **msg;
struct svc_req *rq;

static in result; /* Must be static */
FILE *f;
struct suthunix_parms *aup;

aup = (struct authunix parms *)rq->rq clntcred;
if (aup—>aup uid != 0) {

result = 0;

return (&result);

}
/*

* Same code as before. (
*/
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5.5 RPC Language

RPC language is an extension of XDR language. The sole extension is the
addition of the program type. For a description of the XDR language
syntax, see Chapter 6. For a description of the RPC extensions to the XDR
language, see the Chapter 7.

XDR language is so close to C that if you know C, you know most of it
already. This section describes the syntax of the RPC language, and
explains how the various RPC and XDR type definitions get compiled into
C-type definitions in the output header file.

5.5.1 Definitions

An RPC language file consists of a series of definitions:

definition-list:
definition ";"
definition ";" definition-list

It recognizes five types of definitions:

definition:
enum—-definition
struct—-definition
union-definition
typedef-definition
const-definition
program-definition
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5.5.2 Structures

An XDR struct is declared almost exactly like its C counterpart.

struct-definition:
"struct" struct-ident " {"
declaration-list

"}"

declaration-list:
declaration ";"
declaration ";" declaration-list

As an example, here is an XDR structure to a two-dimensional coordinate,
and the C structure that it gets compiled into in the output header file.

struct coord { struct coord {
int x; - int x;
int y; int y;

}: }s

typedef struct coord coord;

The output is identical to the input, except for the added typedef at the end
of the output. This allows you to use coord instead of struct coord
when declaring items.

5.5.3 Unions

XDR 'unions are discriminated unions, and look different from C unions.
They are more analogous to Pascal variant records than they are to C unions.

union-definition:
"union" union-ident "switch" " (" declaration ")" "{"
case-list
"}"

case-list:

"case" value ":" declaration ";"
"default" ":" declaration ";"
"case" value ":" declaration ";" case-list

The next example shows a type that might be returned as the result of a read
data operation. If no error, retumn a block of data. Otherwise, return
nothing.
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union read result switch (int errno) {
case O:

opaque data[1024];
default:

void;

};
It gets compiled into the following:

struct read result {
int errno;
union {
char data[1024];
} read_result_u;
};
typedef struct read_result read result;

Notice that the union component of the output struct has the name as the

type name, except for the trailing _u.

5.5.4 Enumerations

XDR enumerations have the same syntax as C enumerations.

enum—-definition:
"enum" enum-ident " {"
enum-value-list

n}n

enum-value-list:
enum-value
enum-value "," enum-value-list

enum-value:

enum—-value—ident
enum-value-ident "=" value

The XDR enum and the C enum get compiled into:

enum colortype { enum colortype {
RED = O, RED = O,
GREEN = 1, -=> GREEN = 1,
BLUE = 2 BLUE = 2,

}: bi
typedef enum colortype colortype;
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5.5.5 Typedef

XDR typedefs have the same syntax as C typedefs.

typedef-definition:
"typedef" declaration

The following example defines a fname_type used for declaring file name

strings that have a maximum length of 255 characters.

typedef string fname type<255>; --> typedef char *fname_type;

5.5.6 Constants

XDR constants symbolic constants that may be used wherever a integer

constant is used, for example, in array size specifications.

const-definition:
"const" const-ident "=" integer

For example, the following defines a constant DOZEN equal to 12.

const DOZEN = 12; --> #define DOZEN 12

5.5.7 Programs

RPC programs are declared using the following syntax:

program-definition:
"program" program-ident " {"
version-list
" } " =" yalue

version—-list:
version ";"
version ";" version-list

version:
"version" version-ident " {"
procedure-list
"}ll "=" value
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procedure-list:

procedure ";"
procedure ";" procedure-list
procedure:
type-ident procedure-ident " (" type-ident ")" "=" value

The following example shows the time protocol, revisited.

/*
* time.x: Get or set the time. Time is represented as number of
* seconds since 0:00, January 1, 1970.
*/
program TIMEPROG {
version TIMEVERS {
unsigned int TIMEGET (void) = 1;
void TIMESET (unsigned) = 2;
=1;

}
} o= 44
This file compiles into #defines in the output header file:

#define TIMEPROG 44
#define TIMEVERS 1
#define TIMEGET 1
#define TIMESET 2

5.5.8 Declarations

In XDR, there are only four kinds of declarations:

simple-declaration
fixed-array-declaration
variable-array-declaration
pointer-declaration

« Simple declarations are just like simple C declarations.

simple-declaration:
type-ident variable-ident

Example:

colortype color; --> colortype color;
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» Fixed-length Array Declarations are just like C array declarations:

fixed—-array-declaration:
type-ident variable-ident "[" value "]"

Example:
colortype palette([8]; —--> colortype palette[8];
e Variable-Length Array Declarations have no explicit syntax in C, so
XDR invents its own using angle-brackets.

variable-array-declaration:
type—-ident variable-ident "<" wvalue ">"
type-ident variable-ident "<" ">"

The maximum size is specified between the angle brackets. The size may
be omitted, indicating that the array may be of any size.

int heights<12>; /* at most 12 items */
int widths<>; /* any number of items */

Since variable-length arrays have no explicit syntax in C, these
declarations are actually compiled into structs. For example, the
heights declaration gets compiled into the following struct:

struct {
u_int heights_len; /* #ofitemsinarray */
int *heights_val; /* pointer to array */

} heights;

The number of items in the array is stored in the _len component and the
pointer to the array is stored in the _val component. The first part of each
component’s name is the same as the name of the declared XDR variable.

¢ Pointer Declarations are made in XDR exactly as they are in C. You
can’t really send pointers over the network, but you can use XDR pointers
for sending recursive data types such as lists and trees. The type is
actually called optional-data, not pointer, in XDR language.

pointer-declaration:
type—-ident "*" variable-ident
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Example:

listitem *next; --> listitem *next;

5.5.9 Special Cases

There are a few exceptions to the rules described above.

Booleans: C has no built-in boolean type. However, the RPC library does
have a boolean type called bool_t that is either TRUE or FALSE. Things
declared as type bool in XDR language are compiled into bool_t in the
output header file. For example:

bool married; -—-> bool_t married;

Strings: C has no built-in string type, but instead uses the null-terminated
char * convention. In XDR language, strings are declared using the
string keyword, and compiled into char *s in the output header file.
The maximum size contained in the angle brackets specifies the maximum
number of characters allowed in the strings (not counting the NULL
character). The maximum size may be left off, indicating a string of
arbitrary length. Two examples are:

string name<32>; —--> char *name;
string longname<>; --> char *longname;

Opaque Data: Opaque data is used in RPC and XDR to describe untyped
data, that is, just sequences of arbitrary bytes. It may be declared either as a
fixed or variable length array. Examples are:

opaque diskblock[512]; --> char diskblock[512];

opaque filedata<1024>; --> struct {
u_int filedata len;
char *filedata_val;
} filedata;

Voids: In avoid declaration, the variable is not named. The declaration is
just void and nothing else. Void declarations can only occur in two
places: union definitions and program definitions (as the argument or result
of a remote procedure).
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6. XDR Programming

This chapter contains technical notes on Sun’s implementation of the
External Data Representation (XDR) standard, a set of library routines that
allow a C programmer to describe arbitrary data structures in a machine-
independent fashion. The chapter concludes with the formal specification of
the XDR standard. XDR is the backbone of Sun’s Remote Procedure Call
package, in the sense that data for remote procedure calls is transmitted
using the standard. XDR library routines should be used to transmit data
that is accessed (read or written) by more than one type of machine.

This chapter contains:

» a short tutorial overview of the XDR library routines
* a guide to accessing currently available XDR streams
e information on defining new streams and data types

¢ the XDR protocol specification.

XDR was designed to work across different languages, operating systems,
and machine architectures. Most users (particularly RPC users) will only
need the information in the "Number Filters," "Floating Point Filters," and
"Enumeration Filters" sections.

Note: You can use rpcgen to write XDR routines even in cases where no
RPC calls are being made.
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On IRIX, C programs that want to use XDR routines must include the file
<rpcirpc.h>, which contains all the necessary interfaces to the XDR system.
Since the C library libsun.a contains all the XDR routines, compile using:

cc prog.c -lsun -o prog

See compiling BSD programs in Chapter 3 for other compiling hints.

Justification

Consider two programs, writer and reader. writer looks like this:

#include <stdio.h>

main () /* writerc */
{
long i;
for (i = 0; i < 8; i++) {
if (fwrite((char *)s&i, sizeof (i), 1, stdout) !'= 1) {
fprintf (stderr, "failed!\n");
exit (1);
}
}
exit (0);

}
and reader looks like this:

#include <stdio.h>

main () /* readerc */
{
long i, j;
for (j = 0; j < 8; j++) {
if (fread((char *)&i, sizeof (i), 1, stdin) != 1) {
fprintf (stderr, "failed!\n");
exit (1);

}

printf("sld ", i);
}
printf ("\n");
exit (0);
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The two programs appear to be portable, because they pass lint checking,
and they exhibit the same behavior when executed on different hardware
architectures, an IRIS-4D and a VAX. Piping the output of the writer
program to the reader program produces identical results on both machines.

iris% writer | reader
012345¢67

vax% writer | reader
012345%67

With the advent of local area networks and Berkeley’s 4.2 BSD UNIX came
the concept of "network pipes" — a process produces data on one machine,
and a second process consumes data on another machine. A network pipe
can be constructed with writer and reader. The following results show if
the first produces data on an IRIS, and the second consumes data on a VAX.

iris% writer | rsh vax reader
0 16777216 33554432 50331648 67108864 83886080 100663296 117440512
iris%

Identical results can be obtained by executing writer on the VAX and reader
on the IRIS-4D. These results occur because the byte ordering of long
integers differs between the VAX and the IRIS, even though word size is the
same. Note that 16777216 is 2?4 — when four bytes are reversed, the 1
winds up in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for
portable data. Programs can be made data-portable by replacing the read()
and write() calls with calls to an XDR library routine xdr_long(), a filter that
knows the standard representation of a long integer in its external form. The
following example shows the revised versions of writer.

#include <stdio.h>

#include <rpc/rpc.h> /* xdris a sub-library of rpc */
main () /* writerc */
{

XDR xdrs;

long i;
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xdrstdio_create (¢xdrs, stdout, XDR ENCODE) ;
for (1 = 0; i < 8; i++) {
if (! xdr_long(&xdrs, &i)) {
fprintf (stderr, "failed!\n");
exit (1);
}
exit (0);
}

and reader:

#include <stdio.h>

#include <rpc/rpc.h> /* xdr is a sub-library of rpc */
main () /* reader.c */
{

XDR xdrs;

long i, j;

xdrstdio_create (&xdrs, stdin, XDR_DECODE) ;
for (j = 0; j < 8; j++) {
if (! xdr_long(&xdrs, &i)) {
fprintf (stderr, "failed!\n");
exit (1);
}
printf ("sld ", 1i);
}
printf ("\n") ;
exit (0);
}

The new programs were executed on an IRIS, on a VAX, and from an IRIS
to a VAX; the results are shown below.

iris% writer | reader
012345¢67

vax% writer | reader
012345¢%67

iris% writer | rsh vax reader
012345¢67

6-4 Network Communications Guide IRIX




Dealing with integers is just the tip of the portable-data iceberg. Arbitrary
data structures present portability problems, particularly with respect to
alignment and pointers. Alignment on word boundaries may cause the size
of a structure to vary from machine to machine. Pointers are convenient to
use, but have no meaning outside the machine where they are defined.

6.1 A Canonical Standard

XDR'’s approach to standardizing data representations is canonical. That is,
XDR defines a single byte order ("big-endian"), a single floating-point
representation (IEEE), and so on. Any program running on any machine
can use XDR to create portable data by translating its local representation to
the XDR standard representations; similarly, any program running on any
machine can read portable data by translating the XDR standard
representations to its local equivalents. The single standard completely
decouples programs that create or send portable data from those that use or
receive portable data.

The advent of a new machine or a new language has no effect upon the
community of existing portable data creators and users. A new machine
joins this community by being taught how to convert the standard
representations and its local representations; the local representations of
other machines are irrelevant. Conversely, to existing programs running on
other machines, the local representations of the new machine are also
irrelevant; such programs can immediately read portable data produced by
the new machine because such data conforms to the canonical standard that
they already understand.

There are strong precedents for XDR’s canonical approach. For example,
TCP/IP, UDP/IP, XNS, Ethemnet, and, indeed, all protocols below layer five
of the ISO model, are canonical protocols. The advantage of any canonical
approach is simplicity; in the case of XDR, a single set of conversion
routines is written once and is never touched again. The canonical approach
has a disadvantage, but it is unimportant in real-world data transfer
applications.
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Suppose two little-endian machines are transferring integers according to
the XDR standard. The sending machine converts the integers from little-
endian byte order to XDR (big-endian) byte order; the receiving machine
performs the reverse conversion. Because both machines observe the same
byte order, their conversions are unnecessary. The point, however, is not
necessity, but cost as compared to the alternative.

The time spent converting to and from a canonical representation is
insignificant, especially in networking applications. Most of the time
required to prepare a data structure for transfer is not spent in conversion but
in traversing the elements of the data structure. To transmit a tree, for
example, each leaf must be visited and each element in a leaf record must be
copied to a buffer and aligned there; storage for the leaf may have to be
deallocated as well. Similarly, to receive a tree, storage must be allocated
for each leaf, data must be moved from the buffer to the leaf and properly
aligned, and pointers must be constructed to link the leaves together. Every
machine pays the cost of traversing and copying data structures whether or
not conversion is required.

In networking applications, communications overhead—the time required to
move the data down through the sender’s protocol layers, across the network
and up through the receiver’s protocol layers—dwarfs conversion overhead.

6.2 The XDR Library

The XDR library not only solves data portability problems, it also allows
you to write and read arbitrary C constructs in a consistent, specified, well-
documented manner. Thus, it can make sense to use the library even when
the data is not shared among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of
bytes), structures, unions, and arrays, to name a few. Using more primitive
routines, you can write your own specific XDR routines to describe arbitrary
data structures, including elements of arrays, arms of unions, or objects
pointed at from other structures. The structures themselves may contain
arrays of arbitrary elements, or pointers to other structures.

Examine the two programs more closely. There is a family of XDR stream
creation routines in which each member treats the stream of bits differently.
In the example, data is manipulated using standard /O routines; therefore,
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use xdrstdio_create(). The parameters to XDR stream creation routines vary
according to their function. In our example, xdrstdio_create() takes a
pointer to an XDR structure that it initializes, a pointer to a FILE that the
input or output is performed on, and the operation. The operation may be
XDR_ENCODE for serializing in the writer program, or XDR_DECODE for
deserializing in the reader program.

Note: RPC users never need to create XDR streams; the RPC system
itself creates these streams, which are then passed to the users.

The xdr_long() primitive is characteristic of most XDR library primitives
and all client XDR routines. First, the routine returns FALSE (0) if it fails,
and TRUE (1) if it succeeds. Second, for each data type, xxx, there is an
associated XDR routine of the form shown in the following example.

xdr_xxx (xdrs, xp)
XDR *xdrs;
XXX *Xp;

{

}

In our case, xxx is long, and the corresponding XDR routine is a primitive,
xdr_long(). The client could also define an arbitrary structure xxx in which
case the client would also supply the routine xdr_xxx(), describing each field
by calling XDR routines of the appropriate type. In all cases the first
parameter, xdrs can be treated as an opaque handle, and passed to the
primitive routines.

XDR routines are direction independent; that is, the same routines are called
to serialize or deserialize data. This feature is critical to software
engineering of portable data. The idea is to call the same routine for either
operation — this almost guarantees that serialized data can also be
deserialized. One routine is used by both producer and consumer of
networked data. This is implemented by always passing the address of an
object rather than the object itself — only in the case of deserialization is
the object modified. This feature is not shown in our trivial example, but its
value becomes obvious when nontrivial data structures are passed among
machines. If needed, the user can obtain the direction of the XDR
operation. See the "XDR Operation Directions" section below for details.

Look at a slightly more complicated example. Assume that a person’s gross
assets and liabilities are to be exchanged among processes. Also assume
that these values are important enough to warrant their own data type.
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struct gnumbers {

long g_assets;

long g_liabilities;
b

The corresponding XDR routine describing this structure would be:

bool_t /* TRUE is success, FALSE is failure */
xdr_gnumbers (xdrs, gp)

XDR *xdrs;

struct gnumbers *gp;

if (xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities))
return (TRUE) ;
return (FALSE) ;
}

Note that the parameter xdrs is never inspected or modified; it is only passed
on to the subcomponent routines. It is imperative to inspect the return value
of each XDR routine call, and to give up immediately and return FALSE if
the subroutine fails.

This example also shows that the type bool_t is declared as an integer whose
only values are TRUE (1) and FALSE (0). This document uses the
following definitions:

#define bool t int
#define TRUE 1
#define FALSE 0

Keeping these conventions in mind, xdr_gnumbers() can be rewritten as
follows:

xdr_gnumbers (xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;

return (xdr_long(xdrs, &gp->g_assets) &&
xdr_long (xdrs, &gp->g_liabilities));
}

This document uses both coding styles.
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6.3 XDR Library Primitives

This section gives a synopsis of each XDR primitive. It starts with basic
data types and moves on to constructed data types. Finally, XDR utilities

are discussed. The interface to these primitives and utilities is defined in the
include file <rpc/xdr.h>, automatically included by <rpc/rpc.h>.

6.3.1 Number Filters

The XDR library provides primitives to translate between numbers and their
corresponding external representations. Primitives cover the set of numbers

mn:

[signed, unsigned] * [short, int, long]

Specifically, the eight primitives are:

bool_t

bool_t

bool t

bool t

bool_t

bool_t

xdr_char (xdrs, cp)
XDR *xdrs;
char *cp;

xdr_u_char (xdrs, ucp)
XDR *xdrs;
unsigned char *ucp;

xdr_int (xdrs, ip)
XDR *xdrs;
int *ip;

xdr_u_int (xdrs, up)
XDR *xdrs;
unsigned *up;

xdr_long (xdrs, lip)
XDR *xdrs;
long *lip;

xdr_u_long (xdrs, lup)
XDR *xdrs;
u_long *lup;
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bool_ t xdr_short (xdrs, sip)
XDR *xdrs;
short *sip;

bool_t xdr u short (xdrs, sup)
XDR *xdrs;
u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter
is the address of the number that provides data to the stream or receives data
from it. All routines return TRUE if they complete successfully, and
FALSE otherwise.

6.3.2 Floating Point Filters

The XDR library also provides primitive routines for C’s floating point
types:

bool t xdr float(xdrs, fp)
XDR *xdrs;
float *fp;

bool t xdr double (xdrs, dp)
XDR *xdrs;
double *dp;

The first parameter, xdrs is an XDR stream handle. The second parameter is
the address of the floating point number that provides data to the stream or
receives data from it. Both routines return TRUE if they complete
successfully, and FALSE otherwise.

Note: Since the numbers are represented in IEEE floating point, routines
may fail when decoding a valid IEEE representation into a
machine-specific representation, or vice-versa.

6-10 Network Communications Guide IRIX

(




6.3.3 Enumeration Filters

The XDR library provides a primitive for generic enumerations. The
primitive assumes that a C enum has the same representation inside the
machine as a C integer. The boolean type is an important instance of the
enum. The external representation of a boolean is always one (TRUE) or
zero (FALSE).

#define bool t int
#define FALSE 0
#define TRUE 1

#define enum t int

bool_ t xdr_enum(xdrs, ep)
XDR *xdrs;
enum_t *ep;

bool_ t xdr_bool (xdrs, bp)

XDR *xdrs;
bool_t *bp;

The second parameters ep and bp are addresses of the associated type that
provides data to, or receives data from, the stream xdrs. The routines return
TRUE if they complete successfully, and FALSE otherwise.

6.3.4 No Data

Occasionally, an XDR routine must be supplied to the RPC system, even
when no data is passed or required. The library provides such a routine:

bool t xdr_void(); /* alwaysreturnsTRUE */

6.3.5 Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and
perform more complicated functions then the primitives discussed above.
This section includes primitives for strings, arrays, unions, and pointers to
structures.

Constructed data type primitives may use memory management. In many
cases, memory is allocated when deserializing data with XDR_DECODE.
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Therefore, the XDR package must provide means to deallocate memory.
This is done by an XDR operation, XDR_FREE. To review, the three XDR
directional operations are XDR_ENCODE, XDR_DECODE, and
XDR_FREE.

Strings

In C, a string is defined as a sequence of bytes terminated by a null byte,
which is not considered when calculating string length. However, when a
string is passed or manipulated, a pointer to it is employed. Therefore, the
XDR library defines a string to be a char * and not a sequence of characters.
The external representation of a string is drastically different from its
internal representation. Externally, strings are represented as sequences of
ASCII characters, while internally, they are represented with character
pointers. Conversion between the two representations is accomplished with
the routine xdr_string():

bool_t xdr_string(xdrs, sp, maxlength)
XDR *xdrs;
char **sp;
u_int maxlength;

The first parameter xdrs is the XDR stream handle. The second parameter
sp is a pointer to a string (type char **) . The third parameter maxlength
specifies the maximum number of bytes allowed during encoding or
decoding. its value is usually specified by a protocol. For example, a
protocol specification may say that a file name may be no longer than 255
characters.

The routine returns FALSE if the number of characters excee maxlength, and
TRUE if it doesn’t.

Note: Keep maxlength small. If it is too big you can overrun the heap,
since xdr_string() will call malloc() for space.

The behavior of xdr_string() is similar to the behavior of other routines
discussed in this section. The direction XDR_ENCODE is easiest to
understand. The parameter sp points to a string of a certain length; if the
string does not exceed maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming
string is determined; it must not exceed maxlength. Next sp is dereferenced;
if the the value is NULL, then a string of the appropriate length is allocated
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and *sp is set to this string. If the original value of *sp is non-NULL, then
the XDR package assumes that a target area has been allocated, which can
hold strings no longer than maxlength. In either case, the string is decoded
into the target area. The routine then appends a null character to the string.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If
the string is not NULL, it is freed and *sp is set to NULL. In this operation,
xdr_string() ignores the maxlength parameter.

Byte Arrays

Often variable-length arrays of bytes are preferable to strings. Byte arrays
differ from strings in the following three ways: 1) the length of the array
(the byte count) is explicitly located in an unsigned integer, 2) the byte
sequence is not terminated by a null character, and 3) the external
representation of the bytes is the same as their internal representation. The
primitive xdr_bytes() converts between the internal and external
representations of byte arrays:

bool t xdr_bytes(xdrs, bpp, lp, maxlength)
XDR *xdrs;
char **bpp;
u_int *1p;
u_int maxlength;

The usage of the first, second and fourth parameters are identical to the first,
second and third parameters of xdr_string(), respectively. The length of the
byte area is obtained by dereferencing lp when serializing; *Ip is set to the
byte length when deserializing.

Arrays

The XDR library package provides a primitive for handling arrays of
arbitrary elements. xdr_bytes() treats a subset of generic arrays, in which
the size of array elements is known to be 1, and the external description of
each element is built-in. The generic array primitive, xdr_array(), requires
parameters identical to those of xdr_bytes() plus two more: the size of array
elements, and an XDR routine to handle each of the elements. This routine
is called to encode or decode each element of the array.
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bool _t xdr_array(xdrs, ap, lp, maxlength, elementsize,
xdr_element)
XDR *xdrs;
char **ap;
u_int *1lp;
u_int maxlength;
u_int elementsize;
bool t (*xdr_element) () ;

The parameter ap is the address of the pointer to the array. If *ap is NULL
when the array is being deserialized, XDR allocates an array of the
appropriate size and sets *ap to that array. The element count of the array is
obtained from *Jp when the array is serialized; *Ip is set to the array length
when the array is deserialized. The parameter maxlength is the maximum
number of elements that the array is allowed to have; elementsize is the byte
size of each element of the array (the C function sizeof{) can be used to
obtain this value). The xdr_element() routine is called to serialize,
deserialize, or free each element of the array.

Examples

Before defining more constructed data types, consider the following
examples.

Example A

A user on a networked machine can be identified by (a) the machine name,
such as krypton: see gethostname(2); (b) the user’s UID: see geteuid(2);
and (c) the group numbers to which the user belongs: see getgroups(2). A
structure with this information and its associated XDR routine could be
coded like this:

struct netuser {

char *nu_machinename;
int nu_uid;

u_int nu_glen;

int *nu_gids;

}:
#define NLEN 255 /* machine names must be shorter than 256 chars */
#define NGRPS 20 /* user can’t be a member of more than 20 groups */

bool_t

xdr netuser (xdrs, nup)
XDR *xdrs;
struct netuser *nup;
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return (xdr_string(xdrs, &nup->nu_machinename, NLEN) &&
xdr_int (xdrs, &nup->nu_uid) &&
xdr_array (xdrs, &gnup->nu_gids, &nup->nu_glen, NGRPS,
sizeof (int), xdr_int));

Example B

A party of network users could be implemented as an array of netuser
structure. The declaration and its associated XDR routines are as follows:

struct party {
u_int p len;
struct netuser *p_nusers;
}i
#define PLEN 500 /* max number of usersin aparty */
bool t
xdr_party (xdrs, PpP)
XDR *xdrs;
struct party *pp;

{
return (xdr_array(xdrs, &pp->p_nusers, &pp—>p_len, PLEN,
sizeof (struct netuser), xdr_netuser));

Example C

The well-known parameters to main, argc and argv can be combined into a
structure. An array of these structures can make up a history of commands.
The declarations and XDR routines might look like the following program.
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struct cmd {
u_int c_arge;
char **c_argv;
}:
#define ALEN 1000 /* argscannot be > 1000 chars */
#define NARGC 100 /* command cannot have > 100 args */

struct history {
u_int h_len;
struct cmd *h_cmds;
}i
#define NCM 75 /* history is no more than 75 commands * /

bool t

xdr_wrap string(xdrs, sp)
XDR *xdrs;
char **sp;

{
return (xdr_string(xdrs, sp, ALEN));

}

bool t

xdr_cmd (xdrs, cp)
XDR *xdrs;
‘struct cmd *cp;

return (xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,
sizeof (char *), xdr_wrap_string));

}

bool_t
xdr _history(xdrs, hp)
XDR *xdrs;
struct history *hp;

return (xdr_array (xdrs, &hp->h_cmds, &hp->h_len, NCMDS,
sizeof (struct cmd), xdr_cmd) ) ;

}

The most confusing part of this example is that the routine
xdr_wrap_string() is needed to package the xdr_string() routine, because the
implementation of xdr_array() only passes two parameters to the array
element description routine; xdr_wrap_string() supplies the third parameter
to xdr_string().

By now the recursive nature of the XDR library should be obvious.
Continue with more constructed data types.
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Opaque Data

In some protocols, handles are passed from a server to client. The client
passes the handle back to the server at some later time. Handles are never
inspected by clients; they are obtained and submitted. That is to say,
handles are opaque. The primitive xdr_opaque() is used for describing fixed
sized, opaque bytes.

bool_t xdr_opaque (xdrs, p, len)
XDR *xdrs;
char *p;
u_int len;

The parameter p is the location of the bytes; len is the number of bytes in
the opaque object. By definition, the actual data contained in the opaque
object are not machine portable.

Fixed Size Arrays

The XDR library does not provide a primitive for fixed-length arrays (the
primitive xdr_array() is for varying-length arrays). Example A could be
rewritten to use fixed-sized arrays in the following way.
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#define NLEN 255 /* machine names must be shorter than 256 chars */
t#define NGRPS 20 /* user cannot be a member of more than 20 groups */

struct netuser
char *nu_machinename;
int nu_uid;
int nu_gids[NGRPS];
};

bool_t

xdr netuser (xdrs, nup)
XDR *xdrs;

struct netuser *nup;

{

int i;

if (! xdr_string(xdrs, &nup->nu_machinename, NLEN))
return (FALSE);
if (! xdr_int (xdrs, &nup->nu_uid))
return (FALSE);
if (!xdr_vector (xdrs, nup->nu_gi , NGRPS, sizeof (int),
xdr_int)) {
return (FALSE);

}
return (TRUE);

6.3.6 Discriminated Unions

The XDR library supports discriminated unions. A discriminated union is a
C union and an enum_t value that selects an "arm" of the union.

struct xdr_ discrim {
enum_t value;
bool t (*proc) ();
b

bool_t xdr union(xdrs, dscmp, unp, arms, defaultarm)
XDR *xdrs;
enum_t *dscmp;
char *unp;
struct xdr_discrim *arms;
bool_t (*defaultarm) (); /* mayequal NULL */

First the routine translates the discriminant of the union located at *dscmp.
The discriminant is always an enum_t. Next the union located at *unp is
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translated. The parameter arms is a pointer to an array of xdr_discrim
structures. Each structure contains an ordered pair of [valueproc]. If the
union’s discriminant is equal to the associated value, then the proc is called
to translate the union. The end of the xdr_discrim structure array is denoted
by a routine of value NULL (0). If the discriminant is not found in the arms
array, then the defaultarm procedure is called if it is non-NULL; otherwise
the routine returns FALSE.

Example D

Suppose the type of a union may be integer, character pointer (a string), or a
gnumbers structure. Also, assume the union and its current type are
declared in a structure. The declaration is:

enum utype { INTEGER=1, STRING=2, GNUMBERS=3 };

struct u_tag {
enum utype utype; /* the union's discriminant */
union {
int ival;
char *pval;
struct gnumbers gn;
} uval;

}:

The following constructs and XDR procedure (de)serialize the discriminated
union:

struct xdr_discrim u_tag_arms[4] = {
{ INTEGER, xdr_int },
{ GNUMBERS, xdr_gnumbers }
{ STRING, xdr_wrap_ string },
{ __dontcare__, NULL }
/* always terminate arms with a NULL xdr_proc */

bool t

xdr_u_tag(xdrs, utp)
XDR *xdrs;
struct u_tag *utp;

return (xdr union (xdrs, &utp->utype, &utp->uval, u_tag_arms,

NULL) ) ;
}

The routine xdr_gnumbers() was presented above in "The XDR Library"
section. xdr wrap_string() was presented in Example C. The default arm

Version 1.0 XDR Programming 6-19



parameter to xdr_union() (the last parameter) is NULL in this example.
Therefore the value of the union’s discriminant may legally take on only
values listed in the u_tag_arms array. This example also demonstrates that
the elements of the arm’s array do not need to be sorted.

It is worth pointing out that the values of the discriminant may be sparse,
though in this example they are not. It is always good practice to assign
explicitly integer values to each element of the discriminant’s type. This
practice both documents the external representation of the discriminant and
guarantees that different C compilers emit identical discriminant values.

Exercise: Implement xdr_union() using the other primitives in this section.

Pointers

In Cit is often convenient to put pointers to another structure within a
structure. The xdr_reference() primitive makes it easy to serialize,
deserialize, and free these referenced structures.

bool_t xdr_ reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int ssize;
bool_t (*proc) ():

Parameter pp is the address of the pointer to the structure; parameter ssize is
the size in bytes of the structure (use the C function sizeof{) to obtain this
value); and proc is the XDR routine that describes the structure. When
decoding data, storage is allocated if *pp is NULL.

There is no need for a primitive xdr_struct() to describe structures within
structures, because pointers are always sufficient.

Exercise: Implement xdr_reference() using xdr_array().

Caution: xdr_reference() and xdr_array() are not interchangeable
external representations of data.

Example E

Suppose there is a structure containing a person’s name and a pointer to a
gnumbers structure containing the person’s gross assets and liabilities. The
next example shows this construct.
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struct pgn {
char *name;
struct gnumbers *gnp;

};
The corresponding XDR routine for this structure is:

bool_t

xdr_pgn (xdrs, pp)
XDR *xdrs;
struct pgn *pp;

if (xdr_string(xdrs, &pp->name, NLEN) &&
xdr_reference (xdrs, &pp->gnp,
sizeof (struct gnumbers), xdr_ gnumbers))
return (TRUE) ;
return (FALSE) ;

Pointer Semantics and XDR

In many applications, C programmers attach double meaning to the values
of a pointer. Typically the value NULL (or zero) means data is not needed,
yet some application-specific interpretation applies. In essence, the C
programmer is encoding a discriminated union efficiently by overloading
the interpretation of the value of a pointer. For instance, in example E, a
NULL pointer value for gnp could indicate that the person’s assets and
liabilities are unknown. That is, the pointer value encodes two things:
whether or not the data is known; and if it is known, where it is located in
memory. Linked lists are an extreme example of the use of application-
specific pointer interpretation.

The primitive xdr_reference() cannot and does not attach any special
meaning to a NULL-value pointer during serialization. That is, passing an
address of a pointer whose value is NULL to xdr_reference() when serialing
data will most likely cause a memory fault and, on the UNIX system, a core
dump.

xdr_pointer() correctly handles NULL pointers. For more information
about its use, see the Linked Lists topics below.

Exercise: After reading the section on Linked Lists, return here and extend
example E so that it can correctly deal with NULL pointer values.
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Exercise: Using the xdr_union(), xdr_reference() and xdr_void() primitives,
implement a generic pointer handling primitive that implicitly deals with
NULL pointers. That is, implement xdr_pointer().

6.3.7 Non-filter Primitives

XDR streams can be manipulated with the primitives discussed in this
section.

u_int xdr getpos (xdrs)
XDR *xdrs;

bool_t xdr_ setpos(xdrs, pos)
XDR *xdrs;
u_int pos;

xdr_destroy (xdrs)
XDR *xdrs;

The routine xdr_getpos() returns an unsigned integer that describes the
current position in the data stream.

Caution: Insome XDR streams, the returned value of xdr_getpos() is
meaningless; the routine returns a —1 in this case (though —1
should be a legitimate value).

The routine xdr_setpos() sets a stream position to pos. Warning: In some
XDR streams, setting a position is impossible; in such cases, xdr_setpos()
will return FALSE. This routine will also fail if the requested position is
out-of-bounds. The definition of bounds varies from stream to stream.

The xdr_destroy() primitive destroys the XDR stream. Usage of the stream
after calling this routine is undefined.
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6.4 XDR Operation Directions

At times you may wish to optimize XDR routines by taking advantage of
the direction of the operation (XDR_ENCODE, XDR_DECODE, or
XDR_FREE). The value xdrs->x_op always contains the direction of the
XDR operation. Programmers are not encouraged to take advantage of this
information. Therefore, no example is presented here. However, an
example in the "Linked Lists" section later in this chapter, demonstrates the
usefulness of the xdrs->x_op field.

6.5 XDR Stream Access

An XDR stream is obtained by calling the appropriate creation routine.
These creation routines take arguments that are tailored to the specific
properties of the stream.

Streams currently exist for (de)serialization of data to or from standard I/O
FILE streams, TCP/IP connections and files, and memory. Section 6.6
documents the XDR object and how to make new XDR streams when they
are required.

6.5.1 Standard /O Streams

XDR streams can be interfaced to standard I/O using the xdrstdio_create()
routine as follows:

#include <stdio.h>

#include <rpc/rpc.h> /* xdr streams part of rpc */
void
xdrstdio_create(xdrs, fp, x_op)

XDR *xdrs;

FILE *fp;

enum xdr op X Op;

The routine xdrstdio_create() initializes an XDR stream pointed to by xdrs.
The XDR stream interfaces to the standard I/O library. Parameter fp is an
open file, and x_op is an XDR direction.
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6.5.2 Memory Streams

Memory streams allow the streaming of data into or out of a specified area
of memory.

#include <rpc/rpc.h>

\
i
void ( )

xdrmem_create (xdrs, addr, len, x_op)
XDR *xdrs;
char *addr;
u_int len;
enum xdr_op X_op;

The routine xdrmem_create() initializes an XDR stream in local memory.
The memory is pointed to by parameter addr; parameter len is the length in
bytes of the memory. The parameters xdrs and x_op are identical to the
corresponding parameters of xdrstdio_create(). Currently, the UDP/IP
implementation of RPC uses xdrmem_create(). Complete call or result
messages are built in memory before calling the sendto() system routine.

6.5.3 Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record marking standard (
that is built on top of the UNIX file or 4.2 BSD connection interface.

#include <rpc/rpc.h> /* xdrstreams are apart of the rpc library */

xdrrec_create(xdrs, sendsize, recvsize, iohandle, readproc,
writeproc)
XDR *xdrs;
u_int sendsize, recvsize;
char *iohandle;
int (*readproc) (), (*writeproc) ();

The routine xdrrec_create() provides an XDR stream interface that allows

for a bidirectional, arbitrarily long sequence of records. The contents of the

records are meant to be data in XDR form. The stream’s primary use is for
interfacing RPC to TCP connections. However, it can be used to stream

data into or out of normal UNIX files. (

The parameter xdrs is similar to the corresponding parameter described
above. The stream does its own data buffering similar to that of standard
I/O. The parameters sendsize and recvsize determine the size in bytes of the
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output and input buffers, respectively; if their values are zero (0), then
predetermined defaults are used. When a buffer nee to be filled or flushed,
the routine readproc() or writeproc() is called, respectively. The usage and
behavior of these routines are similar to the UNIX system calls read() and
write(). However, the first parameter to each of these routines is the opaque
parameter iohandle. The other two parameters buf and nbytes) and the
results (byte count) are identical to the system routines. If xxx is readproc()
or writeproc(), then it has the following form:

/*
/* Returns the actual number of bytes transferred.
* —1 is an error
*/
int
xxx (iohandle, buf, len)
char *iohandle;
char *buf;
int nbytes;

The XDR stream provides means for delimiting records in the byte stream.
The implementation details of delimiting records in a stream are discussed
in the Advanced Topics topic below. The primitives that are specific to
record streams are as follows:

bool t
xdrrec_endofrecord (xdrs, flushnow)
XDR *xdrs;
bool_t flushnow;
bool t
xdrrec_skiprecord (xdrs)
XDR *xdrs;
bool_t
xdrrec_eof (xdrs)
XDR *xdrs;

The routine xdrrec_endofrecord() causes the current outgoing data to be
marked as a record. If the parameter flushnow is TRUE, then the stream’s
writeproc() will be called; otherwise, writeproc will be called when the
output buffer has been filled.

The routine xdrrec_skiprecord() causes an input stream’s position to be
moved past the current record boundary and onto the beginning of the next
record in the stream.
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If there is no more data in the stream’s input buffer, the routine xdrrec_eof()
returns TRUE, i.e., no more data in the underlying file descriptor.

6.6 XDR Stream Implementation

This section provides the abstract data types needed to implement new
instances of XDR streams.

6.6.1 The XDR Object

The following structure defines the interface to an XDR stream:

enum xdr_op { XDR_ENCODE = 0, XDR_DECODE = 1, XDR FREE = 2 };

typedef struct ({
enum xdr_op X _op; /* operation, fast added param */

struct xdr_ ops {
bool_t (*x getlong) (}); /* getlong from stream */
bool_t (*x putlong) (); /* putlongto stream */
bool_t (*x getbytes) (); /* get bytes from streamn */
bool t (*x_putbytes) (); /* put bytesto stream */
u_int (*x_getpostn) (); /* return stream offset */
bool_t (*x_setpostn) (); /* reposition offset */
caddr_t (*x_inline) (); /* ptrto buffered data * /

VOID (*x_destroy) (}); /* freeprivatearea */
} *x_ops;
caddr_t x_public; /* users' data */
caddr_t X_private; /* pointer to private data */
caddr_t x_base; /* private for position info */
int x_handy; /* extra private word * /

} XDR;

The x_op field is the current operation being performed on the stream. This
field is important to the XDR primitives, but should not affect a stream’s
implementation. That is, a stream’s implementation should not depend on
this value. The fields x_private, x_base, and x_handy are private to the
particular stream’s implementation. The field x_public is for the XDR client
and should never be used by the XDR stream implementations or the XDR
primitives. x_getpostn(), x_setpostn() and x_destroy() are macros for
accessing operations. The operation x_inline() takes two parameters: an
XDR *, and an unsigned integer, which is a byte count. The routine returns
a pointer to a piece of the stream’s internal buffer. The caller can then use
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the buffer segment for any purpose. From the stream’s point of view, the
bytes in the buffer segment have been consumed or put. The routine may

~ return NULL if it cannot return a buffer segment of the requested size. (The
x_inline() routine is for cycle squeezers. Use of the resulting buffer is not
data-portable. Users are encouraged not to use this feature.)

The operations x_getbytes() and x_putbytes() blindly get and put sequences
of bytes from or to the underlying stream; they return TRUE if they are
successful, and FALSE otherwise. The routines have identical parameters
(replace xxx):

bool_t

xxxbytes (xdrs, buf, bytecount)
XDR *xdrs;
char *buf;
u_int bytecount;

The operations x_getlong() and x_putlong() receive and put long numbers
from and to the data stream. It is the responsibility of these routines to
translate the numbers between the machine representation and the (standard)
external representation. The IRIX primitives htonl() and ntohl() can be
helpful in accomplishing this. Section 6.8 defines the standard
representation of numbers. The higher-level XDR implementation assumes
that signed and unsigned long integers contain the same number of bits, and
that nonnegative integers have the same bit representations as unsigned
integers. The routines return TRUE if they succeed, and FALSE otherwise.
They have identical parameters:

bool_t

xxxlong (xdrs, 1lp)
XDR *xdrs;
long *1lp;

Implementors of new XDR streams must make an XDR structure (with new
operation routines) available to clients, using some kind of create routine.
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6.7 Advanced Topics

This section describes additional techniques for passing data structures, e.g.,
linked lists (of arbitrary lengths). Unlike the simpler examples covered
earlier, the following examples are written using both the XDR C library
routines and the XDR data description language.

6.7.1 Linked Lists

The last example in the Pointers topic earlier in this chapter presented a C
data structure and its associated XDR routines for a individual’s gross assets
and liabilities. The example is duplicated below:

struct gnumbers {

long g_assets;

long g_liabilities;
};

bool_t
xdr_gnumbers (xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;

if (xdr_long(xdrs, &(gp->g_assets)))
return (xdr_long(xdrs, &(gp->g_liabilities)));
return (FALSE);
}

Now assume that you wish to implement a linked list of such information.
A data structure could be constructed as follows:

struct gnumbers_node {
struct gnumbers gn_numbers;
struct gnumbers_node *gn_next;

}:

typedef struct gnumbers node *gnumbers list;

The head of the linked list can be thought of as the data object; that is, the
head is not merely a convenient shorthand for a structure. Similarly the
gn_next field is used to indicate whether or not the object has terminated.
Unfortunately, if the object continues, the gn_next field is also the address of
where it continues. The link addresses carry no useful information when the
object is serialized.
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The XDR data description of this linked list is described by the recursive
type declaration of gnumbers_list:

typedef union switch (boolean) ({
case TRUE: struct {
struct gnumbers current_element;
gnumbers_list rest_of_list;
}:
case FALSE: struct {};
} gnumbers_list;

In this description, the boolean indicates whether there is more data
following it. If the boolean is FALSE, then it is the last data field of the
structure. If it is TRUE, then it is followed by a gnumbers structure and
(recursively) by a gnumbers_list (the rest of the object). Note that the C
declaration has no boolean explicitly declared in it (though the gn_next field
implicitly carries the information), while the XDR data description has no
pointer explicitly declared in it.

Hints for writing the XDR routines for a gnumbers_list follow easily from
the XDR description above. Note how the primitive xdr_pointer() is used to
implement the XDR union above.

bool_t
xdr_gnumbers_node (xdrs, gn)
XDR *xdrs;
gnumbers_node *gn;
{
return (xdr_gnumbers (xdrs, &gn->gn_numbers) &&
xdr_gnumbers_list (xdrs, &gp->gn_next) ) ;
}
bool_t
xdr_gnumbers_list (xdrs, gnp)

XDR *xdrs;
gnumbers_list *gnp;

return (xdr_pointer (xdrs, gnp,
sizeof (struct gnumbers_node),
xdr_gnumbers_node));

The unfortunate side effect of XDRing a list with these routines is that the C
stack grows linearly with respect to the number of node in the list. This is
due to the recursion. The following routine collapses the above two
mutually recursive into a single, non-recursive one.
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bool t
xdr_gnumbers_list (xdrs, gnp)
XDR *xdrs;

gnumbers_list *gnp;

bool_t more_data;
gnumbers_list *nextp;

for (;;) {
more data = (*gnp != NULL);
if (!xdr_bool (xdrs, &more_data)) {
return (FALSE) ;
}
if (! more data) {
break;
}
if (xdrs->x _op == XDR_FREE) {
nextp = &(*gnp)->gn_next;
}
if (!xdr reference(xdrs, gnp,
sizeof (struct gnumbers_node) , xdr_gnumbers)) {
return (FALSE) ;
}
gnp = (xdrs->x_op == XDR_FREE) °?
nextp : &(*gnp)->gn_next;
}
*gnp = NULL;
return (TRUE) ;

The first task is to find out whether there is more data or not, so that this
boolean information can be serialized. Notice that this statement is
unnecessary in the XDR_DECODE case, since the value of more_data is not
known until you deserialize it in the next statement.

The next statement XDR’s the more_data field of the XDR union. If there is
no more data, set this last pointer to NULL to indicate the end of the list,
and return TRUE because you are done. Note that setting the pointer to
NULL is only important in the XDR_DECODE case, since it is already
NULL in the XDR_ENCODE and XDR_FREE cases.

Next, if the direction is XDR_FREE , the value of nextp is set to indicate the
location of the next pointer in the list. You do this now because you need to
dereference gnp to find the location of the next item in the list, and after the
next statement the storage pointed to by gnp will be freed up and no be
longer valid. You can’t do this for all directions though, because in the
XDR_DECODE direction the value of gnp won’t be set until the next
statement.
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Next, XDR the data in the node using the primitive xdr_reference().
xdr_reference() is like xdr_pointer() which you used before, but it does not
send over the boolean indicating whether there is more data. Use it instead
of xdr_pointer() because you have already XDR’d this information
ourselves. Notice that the XDR routine passed is not the same type as an
element in the list. The routine passed is xdr_gnumbers(), for XDR’ing
gnumbers, but each element in the list is actually of type gnumbers_node.
You don’t pass xdr_gnumbers_node() because it is recursive, and instead
use xdr_gnumbers() which XDR’s all of the non-recursive part. Note that
this trick will work only if the gn_numbers field is the first item in each
element, so that their addresses are identical when passed to
xdr_reference().

Finally, update gnp to point to the next item in the list. If the direction is
XDR_FREE , set it to the previously saved value, otherwise you can
dereference gnp to get the proper value. Though harder to understand than
the recursive version, this non-recursive routine is far less likely to blow the
C stack. It will also run more efficiently since a lot of procedure call
overhead has been removed. Most lists are small though (in the hundreds of
items or less) and the recursive version should be sufficient for them.

6.8 XDR Specification

This section defines the External Data Representation (XDR) protocol
specification. XDR is a standard for the description and encoding of data. It
is useful for transferring data between different computer architectures, and
has been used to communicate data between such diverse machines as the
IRIS, Sun, VAX, IBM-PC, and Cray computers. XDR fits into the ISO
presentation layer, and is roughly analogous in purpose to X.409, ISO
Abstract Syntax Notation. The major difference between these two is that
XDR uses implicit typing, while X.409 uses explicit typing.

XDR uses a language to describe data formats. The language can only be
used only to describe data; it is not a programming language. This language
allows one to describe intricate data formats in a concise manner. The
alternative of using graphical representations (itself an informal language)
quickly becemes incomprehensible when faced with complexity. The XDR
language itself is similar to the C language, just as the Xerox Courier
standard is similar to Mesa. Protocols such as Sun RPC (Remote Procedure
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Call) and the NFS (Network File System) use XDR to describe the format of
their data.

The XDR standard makes the following assumption: that bytes (or octets)
are portable, where a byte is defined to be 8 bits of data. It is assumed that
hardware that encodes bytes onto various media will preserve the bytes’
meanings across hardware boundaries. For example, the Ethernet standard
suggests that bytes be encoded in "little-endian" style, or least significant bit
first.

Once XDR data are shared among machines, it should not matter that the
data was produced on an IRIS, but is consumed by a VAX (or vice versa).
Similarly the choice of operating systems should have no influence on how
the data is represented externally. For programming languages, data
produced by a C program should be readable by a FORTRAN or Pascal
program,

6.8.1 Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits)
of data. The bytes are numbered O through n—1. The bytes are read or
written to some byte stream such that byte m always precedes byte m+1. If
the n bytes needed to contain the data are not a multiple of four, then the n
bytes are followed by enough (0 to 3) residual zero bytes, r, to make the
total byte count a multiple of 4.

Include the familiar graphic box notation for illustration and comparison. In
most illustrations, each box (delimited by a plus sign at the 4 corners and
vertical bars and dashes) depicts a byte. Ellipses (...) between boxes show
zero or more additional bytes where required.

Block

oo mm e o I Fomm I +
| byte 0 | byte 1 |...|byte n-1| 0 (| 0 |
Fomm Fom———— - L e I +
| <m—mmmmm n bytes-———-————- >|<====== r bytes—---—- >
| <===mmmm———- n+r (where (n+r) mod 4 = 0)>————————m—o >|
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6.8.2 Integer

An XDR signed integer is a 32-bit datum that encodes an integer in the
range [—2147483648, 2147483647]. The integer is represented in two’s
complement notation. The most and least significant bytes are 0 and 3,
respectively. The data description of integers is integer.

Integer

(MSB) (LSB)
et pom— R R +
lbyte 0 lbyte 1 Ibyte 2 |byte 3 |
————————————————————— Tt
< ———————————— 32 bltS ———————————— >

6.8.3 Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative
integer in the range [0,4294967295]. It is represented by an unsigned
binary number whose most and least significant bytes are 0 and 3,
respectively. The data description of unsigned integers is unsigned.

Unsigned Integer

(MSB) (LSB)

Fo—— e fomm e oo +
|byte 0 |byte 1 |byte 2 |byte 3 |
_______ +___._...__ .______._+_______

< ———————————— 32 bits———————————- >

6.8.4 Enumerations

Enumerations have the same representation as integers. Enumerations are
handy for describing subsets of the integers. The data description of
enumerated data is as follows.

enum { name-identifier = constant, ... } identifier;

The three colors, e.g., red, yellow and blue could be described by an
enumerated type.
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enum { RED = 2, YELLOW = 3, BLUE = 5 } colors;

It is an error to encode as an enum any other integer than those that have
been given assignments in the enum declaration.

6.8.5 Booleans (

Booleans are important enough and occur frequently enough to warrant their
own explicit type in the standard. Booleans are declared as follows:

bool identifier;
This is equivalent to:

enum { FALSE = 0, TRUE = 1 } identifier;

6.8.6 Hyper Integer and Hyper Unsigned

The standard also defines 64-bit (8-byte) numbers called hyper integer and

unsigned hyper integer. Their representations are the obvious extensions of (
integer and unsigned integer defined above. They are represented in two’s
complement notation. The most and least significant bytes are 0 and 7,

respectively.

Hyper Integer

Unsigned Hyper Integer

(MSB) (LSB)

R e Fom———— pom— e Fo— Fo— e pom e Fom +
Ibyte 0 |byte 1 |byte 2 |byte 3 |byte 4 |byte 5 |byte 6 |byte 7 |
e ittt Fommm e Fommm e Fomm e o Fommm o +
e 64 bits————————mmm e >

6.8.7 Floating Point

The standard defines the floating-point data type "float" (32 bits or 4 bytes). (
The encoding used is the IEEE standard for normalized single-precision

floating point numbers. See the ANSI/IEEE 754-1985 floating point

standard for more information.
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The following three fields describe the single-precision floating-point
number:

S The sign of the number. Values 0 and 1 represent positive and
negative, respectively.

E The exponent of the number, base 2. 8 bits are devoted to this field.
The exponent is biased by 127.

F The fractional part of the number’s mantissa, base 2. 23 bits are
devoted to this field.

Therefore, the floating point number is described by:
(_1)5 * 2(13 - Blast % 1.F
It is declared as follows:

Single-Precision Floating-Point

o o pom fo——m +
|byte 0 |byte 1 |byte 2 |byte 3 |
S| E | F |
o et pom o +
l1|<- 8 —>|<——————— 23 bits————-- >|
Lmmm————————— 32 bits—————-———=-—-—- >

Just as the most and least significant bytes of a number are 0 and 3, the most
and least significant bits of a single-precision floating- point number are 0
and 31. The beginning bit (and most significant bit) offsets of S, E, and F
are 0, 1, and 9, respectively. Note that these numbers refer to the
mathematical positions of the bits, and NOT to their actual physical
locations (which vary from medium to medium).

The IEEE specifications should be consulted concerning the encoding for
signed zero, signed infinity (overflow), and denormalized numbers
(underflow). According to IEEE specifications, the "NaN" (not a number) is
system dependent and should not be used externally.
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6.8.8 Double-precision Floating-point

The standard defines the encoding for the double-precision floating- point
data type "double" (64 bits or 8 bytes). The encoding used is the
ANSI/IEEE 754/1985 standard for normalized double-precision floating-
point numbers. The standard encodes the following three fields, which
describe the double-precision floating-point number:

S The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

E The exponent of the number, base 2. 11 bits are devoted to this field.
The exponent is biased by 1023.

F The fractional part of the number’s mantissa, base 2. 52 bits are
devoted to this field.
It is declared as follows:

Double-Precision Floating-Point

e et Fm———— fmm—— fmmm e o B +
|byte O|byte 1l|byte 2|byte 3|byte 4|byte 5|byte 6|byte 7|
S| E I F |
Fmm = — o Fo——— e Fo———— e e +
1|<--11-->|<——==————— 52 bits—=—————————————————— >|
et 64 bits————=———————— >

Just as the most and least significant bytes of a number are 0 and 3, the most
and least significant bits of a double-precision floating- point number are 0
and 63. The beginning bit (and most significant bit) offsets of S, E , and F
are 0, 1, and 12, respectively. Note that these numbers refer to the
mathematical positions of the bits, and NOT to their actual physical
locations (which vary from medium to medium).

The IEEE specifications should be consulted concerning the encoding for
signed zero, signed infinity (overflow), and denormalized numbers
(underflow). According to IEEE specifications, the "NaN" (not a number) is
system dependent and should not be used externally.
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6.8.9 Fixed-Length Opaque Data

At times, fixed-sized uninterpreted data needs to be passed among machines.
This data is called "opaque" and is declared as follows:

opaque identifier([n];

where the constant n is the (static) number of bytes necessary to contain the
opaque data. If nis not a multiple of four, then the n bytes are followed by
enough (0 to 3) residual zero bytes, 1, to make the total byte count of the
opaque object a multiple of four.

Fixed-Length Opaque

0 1

Fomm o I o R +
| byte 0 | byte 1 |...|byte n-1| 0 | ool 0 |
o o +ow it e T +
| <==mmmmm———- n bytes—————=-—-- >|<=—==—= r bytes—-—-——-- >|
| <=—mmmm————= n+r (where (n+r) mod 4 = 0)-————=—————- >|

6.8.10 Variable-length Opaque Data

The standard also provides for variable-length (counted) opaque data,
defined as a sequence of n (numbered 0 through n—1) arbitrary bytes to be
the number n encoded as an unsigned integer (as described below), and
followed by the n bytes of the sequence.

Byte m of the sequence always precedes byte m+1 of the sequence, and byte
0 of the sequence always follows the sequence’s length (count). enough (0
to 3) residual zero bytes, r, to make the total byte count a multiple of four.
Variable-length opaque data is declared in the following way:

opaque identifier<m>;
or
opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the
sequence may contain. If m is not specified, as in the second declaration, it
is assumed to be (2°°) — 1, the maximum length. The constant m would
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normally be found in a protocol specification. For example, a filing protocol
may state that the maximum data transfer size is 8192 bytes, as follows:

opaque filedata<8192>;

It is an error to encode a length greater than the maximum described in the
specification.

Variable-Length Opaque

0 1 2 3 4 5

o o o et o et I o= R +
| length n |byteO|bytel|...| n-1 | 0 |...|] O
o o D et o o T et oo bmm——— +
|<==-——--4 bytes————-—- >|<====== n bytes————-- >|<-—-r bytes--->|
|<----n+r (where (n+r) mod 4 = 0)---->|

6.8.11 String

The standard defines a string of n (numbered 0 through n—1) ASCII bytes to
be the number n encoded as an unsigned integer (as described above), and
followed by the n bytes of the string. Byte m of the string always precedes
byte m+1 of the string, and byte O of the string always follows the string’s
length. If n is not a multiple of four, then the n bytes are followed by
enough (0 to 3) residual zero bytes, r, to make the total byte count a multiple
of four. Counted byte strings are declared as follows:

string object<m>;
or
string object<>;

The constant m denotes an upper bound of the number of bytes that a string
may contain. If m is not specified, as in the second declaration, it is
assumed to be (2 ) — 1, the maximum length. The constant m would

normally be found in a protocol specification. For example, a filing protocol
may state that a file name can be no longer than 255 bytes, as follows:

string filename<255>;
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Itis an error to encode alength greater than the maximum described in
the specification.

A String

0 1 2 3 4 5 e

S o N et it et et P o towot————- +
| length n |byteO|bytel|...| n-1 | O [|...| O |
S it o e Fo———— Hmm——m o= Fout———— o Fouit—————+
| <==—m——= 4 bytes—————-- > | <———=== n bytes——-———- >|<---r bytes———>|
|<-=--n+r (where (n+r) mod 4 = 0)—---->|

6.8.12 Fixed-length Array

Declarations for fixed-length arrays of homogeneous elements are in the
following form:

type-name identifier([n];

Fixed-length arrays of elements numbered O through n—1 are encoded by
individually encoding the elements of the array in their natural order, 0
through n—1. Each element’s size is a multiple of four bytes. Though all
elements are of the same type, the elements may have different sizes. For
example, in a fixed-length array of strings, all elements are of type "string",
yet each element will vary in its length.

Fixed-Length Array

s e T T e e I e
| element O | element 1 |...] element n-1 |
e T S B e S ARt At bt &
| <=——mmmm n elements——-——————=-————-=-— >|

6.8.13 Variable-length Array

Counted arrays provide the ability to encode variable-length arrays of
homogeneous elements. The array is encoded as the element count n (an
unsigned integer) followed by the encoding of each of the array’s elements,
starting with element O and progressing through element n- 1.
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The declaration for variable-length arrays follows this form:
type-name identifier<m>;

or

type-name identifier<>;

The constant m specifies the maximum acceptable element count of an

arr%y; if m is not specified, as in the second declaration, it is assumed to be
37 - .
¢ 1. Itis anerrorto encode a value of nthat is greater than the

maximum described in the specification.

Counted Array
o 1 2 3
e R et B e e Rt ST S A SR
| n | element 0 | element 1 |...|element n-1]
LA e e e T e e s
|<-4 bytes->|<—————mm——e—— n elements——--——--————- >|

6.8.14 Structures

The data description for structures is very similar to that of standard C;

struct {
component-declaration-A;
component-declaration-B;

} identifier;

The components of the structure are encoded in the order of their declaration
in the structure. Each component’s size is a multiple of four bytes, though
the components may be different sizes.

6.8.15 Discriminated Unions

A discriminated union is a type composed of a discriminant followed by a
type selected from a set of prearranged types according to the value of the
discriminant. The type of discriminant is either int, unsigned int, or an
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enumerated type, such as bool. The component types are called "arms" of
the union, and are preceded by the value of the discriminant which implies
their encoding.

Discriminated unions are declared as shown in the next example.

union switch (discriminant-declaration) {
case discriminant-value-A:
arm-declaration-A;
case discriminant-value-B:
arm-declaration-B;

default: default-declaration;
} identifier;

Each "case" keyword is followed by a legal value of the discriminant. The
default arm is optional. Ifit is not specified, then a valid encoding of the
union cannot take on unspecified discriminant values. The size of the
implied arm is always a multiple of four bytes. The discriminated union is
encoded as its discriminant followed by the encoding of the implied arm.

Discriminated Union

0 1 2 3

s T e i
| discriminant | implied arm |
s E T A e L
|<-——4 bytes-——>|

6.8.16 Void

An XDR void is a 0-byte quantity. Voids are useful for describing
operations that take no data as input or no data as output. They are also
useful in unions, where some arms may contain data and others do not. The
declaration is simply as follows:

void;
Void
++

H
++

-—><-- 0 bytes
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6.8.17 Constant

The data declaration for a constant follows this form:
const name-identifier = n;

"const" is used to define a symbolic name for a constant; it does not declare
any data. The symbolic constant may be used anywhere a regular constant
may be used. For example, the following defines a symbolic constant
DOZEN, equal to 12.

const DOZEN = 12;

6.8.18 Typedef

typedef does not declare any data either, but serves to define new identifiers
for declaring data. The syntax is:

typedef declaration;

The new type name is actually the variable name in the declaration part of
the typedef. For example, the following defines a new type called "eggbox"
using an existing type called "egg":

typedef egg eggbox[DOZEN];

Variables declared using the new type name have the same type as the new
type name would have in the typedef, if it was considered a variable. For
example, the following two declarations are equivalent in declaring the
variable "fresheggs":

eggbox fresheggs;
egqg fresheggs [DOZEN] ;

When a typedef involves a struct, enum, or union definition, there is another
(preferred) syntax that may be used to define the same type.
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In general, a typedef of the following form:
typedef <<struct, union, or enum definition>> identifier;

may be converted to the alternative form by removing the typedef part and
placing the identifier after the struct, union, or enum keyword, instead of at
the end. For example, there are two ways to define the type bool.

typedef enum { /* using typedef */

FALSE = O,
TRUE = 1
} bool;
enum bool { /* preferred alternative */
FALSE = O,
TRUE = 1

}:

The reason this syntax is preferred is one does not have to wait until the end
of a declaration to figure out the name of the new type.

6.8.19 Optional-data

Optional-data is one kind of union that occurs so frequently that we give it a
special syntax of its own for declaring it. It is declared as follows:

type—name *identifier;
This is equivalent to the following union:

union switch (bool opted) {
case TRUE:
type—-name element;
case FALSE:
void;
} identifier;

It is also equivalent to the following variable-length array declaration, since
the boolean "opted" can be interpreted as the length of the array:

type-name identifier<l>;

Optional-data is very useful for describing recursive data-structures such as
linked-lists and trees. The following example defines a type "stringlist" that
encodes lists of arbitrary length strings.
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struct *stringlist ({
string item<>;
stringlist next;

};
It could have been equivalently declared as the following union:

union stringlist switch (bool opted) {
case TRUE:
struct {
string item<>;
stringlist next;
} element;
case FALSE:
void;

}:
or as a variable-length array:

struct stringlist<l> {
string item<>;
stringlist next;

}:

Both of these declarations obscure the intention of the stringlist type, so the
optional-data declaration is preferred over both of them. The optional-data
type also has a close correlation to how recursive data structures are
represented in high-level languages such as Pascal or C by use of pointers.
In fact, the syntax is the same as that of the C language for pointers.

6.8.20 Areas for Future Enhancement

The XDR standard lacks representations for bit fields and bitmaps, since the
standard is based on bytes. Also missing are packed (or binary-coded)
decimals.

The intent of the XDR standard was not to describe every kind of data that
people have ever sent or will ever want to send from machine to machine.
Rather, it only describes the most commonly used data-types of high-level
languages such as Pascal or C so that applications written in these languages
will be able to communicate easily over some medium.

One could imagine extensions to XDR that would let it describe almost any
existing protocol, such as TCP. The minimum necessary for this are support
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for different block sizes and byte-orders. The XDR discussed here could
then be considered the 4-byte big-endian member of a larger XDR family.

6.8.21 Discussion

The following subsections may answer some of your XDR questions.

Why Have a Language for Describing Data?

There are many advantages in using a data-description language such as
XDR versus using diagrams. Languages are more formal than diagrams
and lead to less ambiguous descriptions of data. Languages are also
easier to understand and allow one to think of other issues instead of the
low-level details of bit-encoding. Also, there is a close analogy between
the types of XDR and a high-level language such as C or Pascal.
This makes the implementation of XDR encoding and decoding modules
an easier task. Finally, the language specification itself is an ASCII string
that can be passed from machine to machine to perform on-the-fly data
interpretation.

Why Is There Only One Byte-Order for an XDR Unit?

Supporting two byte-orderings requires a higher level protocol for
determining in which byte-order the data is encoded. Since XDR is not a
protocol, this can’t be done. The advantage of this, though, is that data in
XDR format can be written to a magnetic tape, for example, and any
machine will be able to interpret it, since no higher level protocol is
necessary for determining the byte-order.

Why Does XDR Use Big-Endian Byte-Order?

Yes, it is unfair, but having only one byte-order means you have to be unfair
to somebody. Many architectures, such as the MIPS R2000/3000, Motorola
68000 and IBM 370, support the big-endian byte-order.
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Why Is the XDR Unit Four Bytes Wide?

There is a tradeoff in choosing the XDR unit size. Choosing a small size
such as two makes the encoded data small, but causes alignment problems
for machines that aren’t aligned on these boundaries. A large size such as
eight means the data will be aligned on virtually every machine, but causes
the encoded data to grow too big. Select four as a compromise. Four is big
enough to support most architectures efficiently, except for rare machines
such as the eight-byte aligned Cray. Four is also small enough to keep the
encoded data restricted to a reasonable size.

Why Must Variable-Length Data Be Padded with
Zeros? '

It is desirable that the same data encode into the same thing on all machines,
so that encoded data can be meaningfully compared or checksummed.
Forcing the padded bytes to be zero ensures this.

Why Is There No Explicit Data-Typing?

Data-typing has a relatively high cost for what small advantages it may
have. One cost is the expansion of data due to the inserted type fields.
Another is the added cost of interpreting these type fields and acting
accordingly. And most protocols already know what type they expect, so
data-typing supplies only redundant information. However, one can still get
the benefits of data-typing using XDR. One way is to encode two things:
first a string which is the XDR data description of the encoded data, and
then the encoded data itself. Another way is to assign a value to all the
types in XDR, and then define a universal type which takes this value as its
discriminant and for each value, describes the corresponding data type.
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6.9 The XDR Language Specification

This section describes the XDR language specification including:
¢ notational conventions
e Jexical notes

e syntax information and notes

6.9.1 Notational Conventions

This specification uses an extended Backus-Naur Form notation for
describing the XDR language. This notation includes:
1. Special characters:

LC)yrr"*

2. Terminal symbols are strings of any characters surrounded by double
quotes.

Non-terminal symbols are strings of non-special characters.
Alternative items are separated by a vertical bar (I).
Optional items are enclosed in brackets.

Items are grouped together by enclosing them in parentheses.

N o kAW

A * following an item means O or more occurrences of that item.
For example, consider the following pattern:

"a " "Very" (", "nmn very")* [H cold " "arld"] n rainy " ("day" l "night")

An infinite number of strings match this pattern; some are:

"a very rainy day"

"a very, very rainy day"

"a very cold and rainy day"

"a very, very, very cold and rainy night"
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6.9.2 Lexical Notes

1. Comments begin and end with /* comment */, respectively.

2. White space serves to separate items and is otherwise ignored.

3. Anidentifier is a letter followed by an optional sequence of letters, digits
or underbar (’_"). The case of identifiers is not ignored.

4. A constant is a sequence of one or more decimal digits, optionally
preceded by a minus-sign (-’).

6.9.3 Syntax Information

declaration:
type-specifier identifier

type-specifier identifier "[" value "]"
type-specifier identifier "<" [ value ]
"opaque" identifier "[" value "]"

|
|
| "opaque" identifier "<" [ value ] ">"
| "string" identifier "<" [ value ] ">"
| type-specifier "*" identifier
I "yoid"
value:
constant
| identifier

type-specifier:

I
|
|
|
I
I
|
|

enum-type-

[ "unsigned" ] "int"

[ "unsigned" ] "hyper"
"float"

"double"

"bool"

enum—-type-spec
struct-type-spec
union-type-spec
identifier

spec:

"enum" enum-body

enum-body:

"{"

(
(

identifier "=" value )
"," identifier "=" value )*

"}"
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struct-type—spec:
"struct" struct-body

struct-body:
Il{"
( declaration ";" )
( declaration ";" )*

"}"

union-type-spec:
"union" union-body

union-body:

"switch" " (" declaration ")" "{"

( "case" value ":" declaration ";" )
( "case" value ":" declaration ";" )*
[ "default" ":" declaration ";" ]

'l}ll

constant-def:

"const" identifier "=" constant ";"
type-def:

"typedef" declaration ";"

| "enum" identifier enum-body ";"

| "struct" identifier struct-body ";"

| "union" identifier union-body ";"
definition:

type-def

| constant-def
specification:

definition *

6.9.4 Syntax Notes

1. The following are keywords and cannot be used as identifiers: "bool”,

1"noon

"case", "const", "default", "double", "enum", "float", "hyper", "opaque",

"non "non

"string", "struct", "switch", "typedef”, "union", "unsigned" and "void".

2. Only unsigned constants may be used as size specifications for arrays. If
an identifier is used, it must have been declared previously as an
unsigned constant in a "const" definition.

3. Constant and type identifiers within the scope of a specification are in
the same name space and must be declared uniquely within this scope.
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4. Similarly, variable names must be unique within the scope of struct and
union declarations. Nested struct and union declarations create new
scopes.

5. The discriminant of a union must be of a type that evaluates to an
integer. That is, "int", "unsigned int", "bool", an enumerated type or any
typedefed type that evaluates to one of these is legal. Also, the case
values must be one of the legal values of the discriminant. Finally, a
case value may not be specified more than once within the scope of a
union declaration.

6.9.5 XDR Data Description Example

Following is a short XDR data description of "file" that you might use to
transfer files from one machine to another.

const MAXUSERNAME = 32; /* max length of a user name */
const MAXFILELEN = 65535; /* max length of afile */
const MAXNAMELEN = 255; /* max length of a file name * /
/*

* Types of files:

*/

enum filekind {

TEXT = O, /* ascii data * /
DATA = 1, /* raw data */
EXEC = 2 /* executable * /
};
/*
* File information, per kind of file:
*/
union filetype switch (filekind kind) {
case TEXT:
void; /* no extra information * /
case DATA:
string creator<MAXNAMELEN>; /* data creator * /
case EXEC:

string interpretor<MAXNAMELEN>; /* program interpretor */
bi
/*
* A complete file:
*/

struct file {
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string filename<MAXNAMELEN>; /* name offile *x/
filetype type:;

string owner<MAXUSERNAME>;

opaque data<MAXFILELEN>;

}:

Suppose now that there is a user named "john" who wants to store his lisp
program "sillyprog" that contains just the data "(quit)". His file would be
encoded as follows:

/* info about file * /
/* owner of file */
/* filedata  */

Offset Hex Bytes ASCIl  Description

0 00000009 ... Length of filename = 9

4 7369 6¢6¢c  sill Filename characters

8 7970726f  ypro ... and more characters ...

12 67000000 g.. ... and 3 zero-bytes of fill

16 00000002 ... Filekind is EXEC =2

20 00000004 ... Length of interpreter = 4

24 6c 697370 lisp Interpreter characters

28 00000004 ... Length of owner =4

32 6a6f68 6¢  john Owner characters

36 00000006 ... Length of file data = 6

40 28717569  (qui File data bytes ...

44 74290000 t).. ... and 2 zero-bytes of fill
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7. RPC Specification

This chapter assumes that you are familiar with both RPC and XDR as
described in Chapters 4, 5 and 6. It does not attempt to justify RPC or its
uses. Also, the casual user of RPC does not need to be familiar with the
information in this chapter.

7.1 Introduction

This chapter specifies a message protocol used in implementing Sun’s
Remote Procedure Call (RPC) message protocol package. The message
protocol is specified with the External Data Representation (XDR) language.

Topics covered in this chapter include:
e RPC protocol requirements

e authentication

¢ RPC message protocol

e port mapper program protocol

7.1.1 Terminology

The document discusses servers, services, programs, procedures, clients and
versions. A server is a machine where some number of network services are
implemented. A service is a collection of one or more remote programs. A
remote program implements one or more remote procedures; the procedures,
their parameters and results are documented in the specific program’s
protocol specification. Network clients are pieces of software that initiate

Version 1.0 RPC Specification 7-1



remote procedure calls to services. A server may support more than one
version of a remote program in order to be forward compatible with
changing protocols.

For example, a network file service may be composed of two programs.
One program may deal with high-level applications such as file system
access control and locking. The other may deal with low-level file I/O, and
have procedures like "read" and "write." A client machine of the network
file service would call the procedures associated with the two programs of
the service on behalf of some user on the client machine.

7.1.2 The RPC Model

The remote procedure call model is similar to the local procedure call
model. In the local case, the caller places arguments to a procedure in some
well-specified location (such as a result register). It then transfers control to
the procedure, and eventually gains back control. At that point, the results
of the procedure are extracted from the well-specified location, and the
caller continues execution.

The remote procedure call is similar, except that one thread of control winds
through two processes — one is the caller’s process, the other is a server’s
process. That is, the caller process sends a call message to the server
process and waits (blocks) for a reply message. The call message contains
the procedure’s parameters, among other things. The reply message
contains the procedure’s results, among other things. Once the reply
message is received, the results of the procedure are extracted, and caller’s
execution is resumed.

On the server side, a process is dormant awaiting the arrival of a call
message. When one arrives, the server process extracts the procedure’s
parameters, computes the results, sends a reply message, and then awaits the
next call message. Note that in this model, only one of the two processes is
active at any given time. However, this model is only given as an example.
The RPC protocol makes no restrictions on the concurrency model
implemented, and others are possible. For example, an implementation may
choose to have RPC calls be asynchronous, so that the client may do useful
work while waiting for the reply from the server. Another possibility is to
have the server create a task to process an incoming request, so that the
server can be free to receive other requests.
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7.1.3 Transports and Semantics

The RPC protocol is independent of transport protocols. That is, RPC does
not care how a message is passed from one process to another. The protocol
only deals with the specification and interpretation of messages.

It is important to point out that RPC does not try to implement any kind of
reliability and that the application must be aware of the type of transport
protocol undereath RPC. If it knows it is running on top of a reliable
transport such as TCP/IP, then most of the work is already done forit. On
the other hand, if it is running on top of an unreliable transport such as
UDP/IP, it must implement is own retransmission and time-out policy as the
RPC layer does not provide this service.

Because of transport independence, the RPC protocol does not attach
specific semantics to the remote procedures or their execution. Semantics
can be inferred from (but should be explicitly specified by) the underlying
transport protocol. For example, consider RPC running on top of an
unreliable transport such as UDP/IP. If an application retransmits RPC
messages after short time-outs, the only thing it can infer if it receives no
reply is that the procedure was executed zero or more times. If it does
receive a reply, then it can infer that the procedure was executed at least
once.

A server may wish to remember previously granted requests from a client
and not regrant them in order to ensure some degree of execute-at-most-
once semantics. A server can do this by taking advantage of the transaction
ID that is packaged with every RPC request. The main use of this
transaction is by the client RPC layer in matching replies to requests.
However, a client application may choose to reuse its previous transaction
ID when retransmitting a request. The server application, knowing this fact,
may choose to remember this ID after granting a request and not regrant
requests with the same ID in order to achieve some degree of execute-at-
most-once semantics. The server is not allowed to examine this ID in any
other way except as a test for equality.

On the other hand, if using a reliable transport such as TCP/IP, the
application can infer from a reply message that the procedure was executed
exactly once, but if it receives no reply message, it cannot assume the
remote procedure was not executed. Note that even if a connection-oriented
protocol like TCP is used, an application still needs time-outs and
reconnection to handle server crashes.

Version 1.0 RPC Specification 7-3



There are other possibilities for transports besides datagram- or connection-
oriented protocols. On IRIX, RPC is currently implemented on top of both
TCP/IP and UDP/IP transports.

7.1.4 Binding and Rendezvous Independence

The act of binding a client to a service is NOT part of the remote procedure
call specification. This important and necessary function is left up to some
higher-level software. (The software may use RPC itself—see "Port Mapper
Program Protocol," later in this chapter).

Implementors should think of the RPC protocol as the jump-subroutine
instruction (JSR) of a network; the loader (binder) makes JSR useful, and
the loader itself uses JSR to accomplish its task. Likewise, the network
makes RPC useful, using RPC to accomplish this task.

7.1.5 Message Authentication

The RPC protocol provides the fields necessary for a client to identify itself
to a service and vice-versa. Security and access control mechanisms can be
built on top of the message authentication. Several different authentication
protocols can be supported. A field in the RPC header indicates which
protocol is being used. More information on specific authentication
protocols can be found in the "Authentication Protocols," later in this
chapter.

7.2 RPC Protocol Requirements

The RPC protocol must provide for the following:
* unique specification of a procedure to be called
* provisions for matching response messages to request messages

e provisions for authenticating the caller to service and vice versa
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Besides these requirements, features that detect the following are worth
supporting because of protocol roll-over errors, implementation bugs, user
error, and network administration:

¢ RPC protocol mismatches

e remote program protocol version mismatches

» protocol errors (like misspecification of a procedure’s parameters)
e reasons why remote authentication failed

e any other reasons why the desired procedure was not called

7.2.1 Remote Programs and Procedures

The RPC call message has three unsigned fields: remote program number,
remote program version number, and remote procedure number. The three
fields uniquely identify the procedure to be called. Program numbers are
administered by some central authority (like Sun Microsystems) Once an
implementor has a program number, he can implement his remote program;
the first implementation would most likely have the version number of 1.
Because most new protocols evolve into better, stable and mature protocols,
a version field of the call message identifies which version of the protocol
the caller is using. Version numbers make speaking old and new protocols
through the same server process possible.

The procedure number identifies the procedure to be called. These numbers
are documented in the specific program’s protocol specification. For
example, a file service’s protocol specification may state that its procedure
number 5is read and procedure number 12is write.

Just as remote program protocols may change over several versions, the
actual RPC message protocol could also change. Therefore, the call
message also has the RPC version number in it; this field must be two )]
for the version of RPC described here.

The reply message to a request message has enough information to
distinguish the following error conditions:

e The remote implementation of RPC does speak protocol version 2. The
lowest and highest supported RPC version numbers are returned.
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» The remote program is not available on the remote system.

* The remote program does not support the requested version number. The
lowest and highest supported remote program version numbers are
returned.

* The requested procedure number does not exist (this is usually a caller-
side protocol or programming error).

* The parameters to the remote procedure appear to be garbage from the
server’s point of view. (Again, this is caused by a disagreement about the
protocol between client and service.)

7.3 Authentication

Provisions for authentication of caller to service and vice versa are provided
as a wart on the side of the RPC protocol. The call message has two
authentication fields, the credentials and verifier. The reply message has
one authentication field, the response verifier. The RPC protocol
specification defines all three fields to be the following opaque type:

enum auth flavor ({
AUTH_NULL
AUTH_UNIX
AUTH_SHORT
AUTH_DES =3
/* and more to be defined */

0,
1,
2

}:

struct opaque_auth {
auth_flavor flavor;
opaque body<400>;
}i

In simple English, any opaque_auth structure is an auth_flavor enumeration
followed by bytes which are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the
authentication fields is specified by individual, independent authentication
protocol specifications. (See "Authentication Protocols," which follows, for
definitions of the various authentication protocols.)
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If authentication parameters were rejected, the response message contains
information stating why they were rejected.

7.3.1 Program Number Assighment

See Chapter 4 for the RPC program number assignments.

7.4 Other Uses of the RPC Protocol

The intended use of this protocol is for calling remote procedures. That is,
each call message is matched with a response message. However, the
protocol itself is a message passing protocol with which other (non-RPC)
protocols can be implemented. Sun currently uses (abuses) the RPC
message protocol for the following two (non-RPC) protocols: batching (or
pipelining) and broadcast RPC. These two protocols are discussed (but not
defined) below.

Batching

Batching allows a client to send an arbitrarily large sequence of call
messages to a server; batching uses reliable byte stream protocols (like
TCP/IP) for its transport. In the case of batching, the client never waits for a
reply from the server and the server does not send replies to batch requests.
A sequence of batch calls is usually terminated by a legitimate RPC in order
to flush the pipeline (with positive acknowledgement).

Broadcast RPC

In broadcast RPC based protocols, the client sends an a broadcast packet to
the network and waits for numerous replies. Broadcast RPC uses unreliable,
packet-based protocols (like UDP/IP) as its transport. Servers that support
broadcast protocols only respond when the request is successfully processed,
and are silent in the face of errors. Broadcast RPC uses the Port Mapper
RPC service to achieve its semantics. See "Port Mapper Program Protocol”
later in this chapter for more information.
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7.5 The RPC Message Protocol

This section defines the RPC message protocol in the XDR data description

language specified in Chapter 6. The message is defined in a top-down

style. Note that this is an XDR specification, not C code.

enum msg_type {
CALL = O,
REPLY = 1
}:

/*
* A reply to a call message can take on two forms:
* the message was either accepted or rejected.

*/
enum reply_ stat {
MSG_ACCEPTED

=0,
MSG_DENIED = 1

/*

*/

enum accept_stat {

/* remote procedure was successfully executed */

SUCCESS=0,
/* remote machine exports the program number */
PROG_UNAVAIL=1,

/* remote machine can’t support version number */

PROG_MISMATCH=2,

/* remote program doesn’t know about procedure */

PROC_UNAVAIL=3,

/* remote procedure can’t figure out parameters */

GARBAGE_ARGS=4
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/*
*
*

Reasons why a call message was rejected:

/

enum reject_stat {

/*
*
*

/* RPC version number was not two (2) */
RPC_MISMATCH = O,

/* caller not authenticated on remote machine */
AUTH_ERROR = 1

Why authentication failed:
/

enum auth_stat {

* ok % ok % X ¥ * F

*

*
st

Ve

AUTH_BADCRED = 1, /* bogus credentials (seal broken) */

AUTH REJECTEDCRED = 2, /* client should begin new session */

AUTH_BADVERF = 3, /* bogus verifier (seal broken) */

AUTH_REJECTEDVERF = 4, /* verifier expired or was replayed */

AUTH TOOWEAK = 5, /* rejected due to security reasons *x/

The RPC message:
All messages start with a transaction identifier, xid,
followed by a two-armed discriminated union. The
union’s discriminant is a msg_type which switches to
one of the two types of the message. The xid of a
REPLY message always matches that of the initiating
CALL message. NB: The xid field is only used for clients
matching reply messages with call messages or for servers
detecting retransmissions; the service side cannot treat
this id as any type of sequence number.
/
ruct rpc_msg {

unsigned int xid;

union switch (msg_type mtype) ({

case CALL:
call body cbody;
case REPLY:
reply body rbody;

} body;
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~
*

Body of an RPC request call:

In version 2 of the RPC protocol specification, rpcvers must

be equal to 2. The fields prog, vers, and proc specify the

remote program, its version, and the procedure within the

remote program to be called. These fields are followed by

two authentication parameters, cred (authentication

credentials) and verf (authentication verifier). The two
authentication parameters are followed by the parameters to (i
the remote procedure, which are specified by the specific

program protocol.

* ok % % ok ok ¥ F F

%

*/

struct call_body ({
unsigned int rpcvers; /* must be equal totwo (2) */
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque_auth cred;
opaque_auth verf;
/* procedure specific parameters start here * /

}i

/*
* Body of a reply to an RPC request.
* The call message was either accepted or rejected.
%/ )
union reply body switch (reply stat stat) { (j }
case MSG_ACCEPTED:
accepted_reply areply;
case MSG_DENIED:
rejected_reply rreply;
} reply;
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Note: there could be an error even though the request
was accepted. The first field is an authentication

itself to the caller. It is followed by a union whose

the union is protocol specific. The PROG_UNAVAIL,
PROC_UNAVAIL, and GARBAGE_ARGS arms of the union are
void. The PROG_MISMATCH arm specifies the lowest and
highest version numbers of the remote program that are
supported by the server.

* % % ¥ % X * % * O *

*

*/
struct accepted_reply {
opaque_auth verf;
union switch (accept_stat stat) {
case SUCCESS:
opaque results[0];
/* procedure-specific results start here */
case PROG_MISMATCH:
struct {
unsigned int low;
unsigned int high;
} mismatch_info;
default:
/%
* Void. Cases include PROG_UNAVAILL,
* PROC_UNAVAIL, and GARBAGE_ARGS.
*/
void;
} reply data;
b
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Reply to an RPC request that was rejected by the server.
The request can be rejected because of two reasons: either
the server is not running a compatible version of the

RPC protocol (RPC_MISMATCH), or the server refused to
authenticate the caller (AUTH_ERROR). In the case of

an RPC version mismatch, the server returns the lowest and
highest supported RPC version numbers. In the case of
refused authentication, the failure status is returned.

X%k Ok ¥ ¥ ¥ *

*

x/
union rejected_reply switch (reject_stat stat) {
case RPC_MISMATCH:
struct {
unsigned int low;
unsigned int high;
} mismatch_info;
case AUTH_ERROR:
auth_stat stat;
bi

7.6 Authentication Protocols

As previously stated, authentication parameters are opaque, but open-ended
to the rest of the RPC protocol. This section defines some "flavors" of
authentication in this implementation. Other sites are free to invent new
authentication types, with the same rules of flavor number assignment as
there is for program number assignment.

7.6.1 Null Authentication

Often calls must be made where the caller does not know who he is and the
server does not care who the caller is. In this case, the auth_flavor value
(the discriminant of the opaque_auth’s union) of the RPC message’s
credentials, verifier, and response verifier is AUTH_NULL (0). The bytes
of the opaque_auth’s body are undefined. It is recommended that the
opaque length be zero.
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7.6.2 UNIX Authentication

The caller of a remote procedure may wish to identify himself as he is
identified on a UNIX system. The value of the credential’s discriminant of
an RPC call message is AUTH_UNIX (1). The bytes of the credential’s
opaque body encode the the following structure:

struct auth_unix {
unsigned int stamp;
string machinename<255>;
unsigned int uid;
unsigned int gid;
unsigned int gids<10>;
}:

The stamp is an arbitrary id which the caller machine may generate. The
machinename is the name of the caller’s machine (like "krypton"). The uid
is the caller’s effective user id. The gid is the callers effective group id.
The gids is a counted array of groups which contain the caller as a member.
The verifier accompanying the credentials should be of AUTH_NULL
(defined above).

The value of the discriminate of the "response verifier" received in the reply
message from the server may be AUTH_NULL or AUTH_SHORT (2). In
the case of AUTH_SHORT, the bytes of the response verifier’s string
encode an opaque structure. This new opaque structure may now be passed
to the server instead of the original AUTH_UNIX flavor credentials. The
server keeps a cache which maps shorthand opaque structures (passed back
via a AUTH_SHORT style "response verifier") to the original credentials of
the caller. The caller can save network bandwidth and server CPU cycles by
using the new credentials.

The server may flush the shorthand opaque structure at any time. If this
happens, the remote procedure call message will be rejected due to an
authentication error. The reason for the failure will be
AUTH_REJECTEDCRED. At this point, the caller may wish to try the
original AUTH_UNIX style of credentials.
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7.7 Record Marking Standard

When RPC messages are passed on top of a byte stream protocol (like
TCP/IP), it is necessary, or at least desirable, to delimit one message from
another in order to detect and possibly recover from user protocol errors.
This is called record marking (RM). This implementation of RPC uses this
RM/TCP/IP transport for passing RPC messages on TCP streams. One RPC
message fits into one RM record.

A record is composed of one or more record fragments. A record fragment
is a four-byte header followed by 0 to 2l bytes of fragment data. The
bytes encode an unsigned binary number; as with XDR integers, the byte
order is from highest to lowest. The number encodes two values — a
boolean which indicates whether the fragment is the last fragment of the
record (bit value 1 implies the fragment is the last fragment) and a 31-bit
unsigned binary value which is the length in bytes of the fragment’s data.
The boolean value is the highest-order bit of the header; the length is the 31
low-order bits. (Note that this record specification is not in XDR standard
form!)

7.8 Port Mapper Program Protocol

The port mapper program maps RPC program and version numbers
transport-specific port numbers. This program makes dynamic binding of
remote programs possible.

This is desirable because the range of reserved port numbers is very small
and the number of potential remote programs is very large. By running only
the port mapper on a reserved port, the port numbers of other remote
programs can be ascertained by querying the port mapper.

The port mapper also aids in broadcast RPC. A given RPC program will
usually have different port number bindings on different machines, so there
is no way to directly broadcast to all of these programs. The port mapper,
however, does have a fixed port number. So, to broadcast to a given
program, the client actually sends its message to the port mapper located at
the broadcast address. Each port mapper that picks up the broadcast then
calls the local service specified by the client. When the port mapper gets the
reply from the local service, it sends the reply on back to the client.
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7.8.1 Port Mapper Protocol Specification (in RPC

Language)

const PMAP PORT = 111;

/*

* A mapping of (program, version, protocol) to port number

*/

struct mapping {
unsigned int prog;
unsigned int vers;
unsigned int prot;
unsigned int port;

}:

/*

* Supported values for the "prot" field
*/

const IPPROTO_TCP = 6;

const IPPROTO _UDP = 17;

/*

* A list of mappings

*/

struct *pmaplist {
mapping map;
pmaplist next;

}i

/*
* Arguments to callit
*/
struct call_args {
unsigned int prog;
unsigned int vers;
unsigned int proc;
opaque args<>;
};

/*

* Results of callit

*/

struct call result {
unsigned int port;
opaque res<>;

}:

Version 1.0

/* portmapper port number * /
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/* protocol number for UDPI/IP * /
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/*
* Port mapper procedures
*x/
program PMAP PROG {
version PMAP VERS ({
void
PMAPPROC NULL (void)

]
o
~

bool
PMAPPROC_SET (mapping)

I
[ury
~

bool
PMAPPROC_UNSET (mapping)

I
N

unsigned int
PMAPPROC_GETPORT (mapping)

I
w

pmaplist
PMAPPROC_DUMP (void)

1
S
~e

call result
PMAPPROC;CALLIT(call_args)

I
o

7.8.2 Port Mapper Operation

The portmapper program currently supports two protocols (UDP/IP and
TCP/IP). The portmapper is contacted by talking to it on assigned port
number 111 ("sunrpc") on either of these protocols. The following is a
description of each of the portmapper procedures:

PMAPPROC_NULL:
This procedure does no work. By convention, procedure zero of any
protocol takes no parameters and returns no results. When a program
first becomes available on a machine, it registers itself with the port
mapper program on the same machine. The program passes its
program number "prog", version number "vers", transport protocol
number "prot", and the port "port" on which it awaits service request.
The procedure returns a boolean response whose value is TRUE if the
procedure successfully established the mapping and FALSE
otherwise. The procedure refuses to establish a mapping if one
already exists for the tuple "(prog, vers, prot)".
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PMAPPROC_UNSET:
When a program becomes unavailable, it should unregister itself with
the port mapper program on the same machine. The parameters and
results have meanings identical to those of PMAPPROC_SET. The
protocol and port number fields of the argument are ignored.

PMAPPROC_GETPORT:
Given a program number "prog", version number "vers", and transport
protocol number "prot", this procedure returns the port number on
which the program is awaiting call requests. A port value of zero
means the program has not been registered. The "port” field of the
argument is ignored.

PMAPPROC_DUMP:
This procedure enumerates all entries in the port mapper’s database.
The procedure takes no parameters and returns a list of program,
version, protocol, and port values.

PMAPPROC_CALLIT:
This procedure allows a caller to call another remote procedure on the
same machine without knowing the remote procedure’s port number.
It is intended for supporting broadcasts to arbitrary remote programs
via the well-known port mapper’s port. The parameters "prog",
"vers", "proc”, and the bytes of "args" are the program number,
version number, procedure number, and parameters of the remote
procedure.

Note: This procedure only sends a response if the procedure was
successfully executed and is silent (no response) otherwise.

The port mapper communicates with the remote program
using UDP/IP only.

The procedure returns the remote program’s port number,
and the bytes of results are the results of the remote
procedure.
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8. Network Administration

This chapter is addressed to system and network administrators. It describes
the procedures for configuring the network communications software on
IRIS-4D Series workstations. Specifically, this chapter covers:

e configuring a new system

* agsigning names and addresses and host-address resolution
» network initialization and routing

¢ network servers

¢ network databases

» remote access and security

* network troubleshooting

e kernel configuration options

Setting up networked mail is covered in Appendix A.

8.1 Configuring a New IRIS

Here’s a summary of the procedure to attach a new IRIS-4D to an existing
network. It assumes a basic set-up using /etc/hosts and not one using BIND
or Yellow Pages.

» Choose a name for the system. Insert it in /etc/sys_id.

« If you’re connecting to an existing network, obtain an Internet address
from the network administrator. For a new network, choose an address.
Update the /etc/hosts database on the IRIS and on the "master” system for
the network to include the address of the IRIS.
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* Add the master system’s Internet address to the new machine’s /etc/hosts
and copy the updated version from the master:

rcp guest@master: /etc/hosts /etc

Update the /etc/hosts file on all other systems on the network so they can
access the new host.

¢ Enable or disable various network daemons with chkconfig (1M).
* Customize the network interface information, if necessary.

¢ Reboot the IRIS.

8.2 Names and Addresses

The first step in configuring your IRIS-4D is to select a unique host name
and Internet network address. You must add this name and address pair to
the hosts database on your workstation and on all other hosts on your
network. The network address is a number that the software uses to identify
a machine.

The name of an IRIS workstation is stored in the file /etc/sys_id. On a new
workstation, this file contains the name /RIS. The host name can be up to 64
alphanumeric characters long and may include periods and hyphens.

Periods are not part of the name but serve to separate components of a
domain-style name. Case does not matter; the software converts upper-case
letters to lower-case when it translates a host name into an address. Note
that after changing /etc/sys_id, the IRIS’s notion of its name doesn’t change
until the system is rebooted.

Host names are really domain names, where a domain is a hierarchical, dot-
separated list of subdomains. For example, the name for the host monet in
the Berkeley subdomain of the EDU subdomain of the Internet would be
represented as "monet.Berkeley. EDU" (with no trailing dot). The complete
name is called a "fully-qualified domain name." If your IRIS is connected to
the Intemnet, use the fully-qualified name in /etc/sys_id. (It’s possible to
specify a nickname in the hosts database to avoid typing a long hostname.)

If you are connecting a new workstation to an existing network, obtain an
address from the network administrator.
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If you are creating a new network, you must generate a series of addresses
for your workstations, as explained in the following section.

If your organization’s networks might be connected to the Internet in the
future, contact the Network Information Center at the address listed in
Chapter 1 and request a network address assignment. Otherwise, you can
choose any series of address you want, based on the information below.

8.2.1 Choosing an Address

The networking software uses a unique number called the Internet address to
identify each host. The Internet address is a 4-byte number composed of
two logical parts: a network number and a host or local number. The
network number is in the most-significant portion of the address and the host
number is in the least-significant portion. An address is usually written in
"dotted decimal” notation. Each byte is represented as a decimal number
between 0 and 255 and separated by a period (for example, 192.77.150.1).
See inet(3N) for more information on the dot notation.

According to "Internet Numbers" (RFC-1117), there are three different
classes of Internet addresses for hosts: A, B, and C. An address class tells
how to divide the 32-bit address into the network and host numbers. All
hosts on a particular network that want to communicate with each other
must use the same class of Internet addresses. The most significant or
leftmost bits of the address are used to determine the address class.

The first type of address, class A, has a 7-bit network number and a 24-bit
local address. The highest-order bit is set to 0. This allows 128 class-A
networks, though the networks 0 and 127 are reserved. Each network can
have more than 16 million hosts.

1 2 3
01234567890123456789012345678901
e T e T S B B S
10} Network | Local Address |
T s e e T S e e e it
Class A Address

The second type of address, class B, has a 14-bit network number and a 16-
bit local address. The two highest-order bits are set to 1-0. In dot notation,
network numbers range from 128 to 191 in the first byte. A class-B network
can have up to 65534 hosts.
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1 2 3
01234567890123456789012345678901
et T T T e e S s it S S e e B

11 0] Network | Local Address
B I T e s Mt et S S e at t e
Class B Address

The third type of address, class C, has a 21-bit network number and a 8-bit
local address. The three highest-order bits are set to 1-1-0. In dot notation,
network numbers range from 192 to 223 in the first byte. A class-C network
can have up to 254 hosts.

1 2 3
01234567890123456789012345678901
B e e e e e e e e Ll e

|11 1 0} Network | Local Address
tot ettt et b —pmp bt —p—fmf b —f =t —p — =t~ —f = = —+
Class C Address

A fourth type of address, class D, is used as a multicast group address. The
four highest-order bits are set to 1-1-1-0. In dot notation, network numbers
range from 224 to 239 in the first byte.

No addresses are allowed when the four highest-order bits are set to 1-1-1-1.
These addresses, called class E, are reserved.

8.2.2 Special Internet Addresses

Several Internet Protocol (IP) addresses are treated specially by the network
software. The class-A network number of 127 is reserved as the loopback
network and the address 127.0.0.1 is used by IRIX as the loopback address.
Any Internet packet sent to this address is looped back inside the kernel and
never reaches the network cable. The loopback address is useful for testing
basic functionality of the network software and should never be changed.

The network gives special treatment to two other kinds of Internet
addresses: Internet addresses with network numbers that are all zero (0 for
class A, 0.0 for class B, and 0.0.0 for class C) or with host numbers that are
all ones (255.255.255 for class A, 255.255 for class B, and 255 for class C).
An address with a network number of O refers to the local network. An
address with a host number of all ones is called the broadcast address and
refers to all hosts on that network.
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The IRIS workstation is shipped with the special class C test address
192.0.2.1 in /etc/hosts. Change this number to a different one if you plan to
connect the IRIS to a network. The network startup script
letclinit.d/network uses the test address to determine whether or not to go
into "standalone network mode" (see below for details). If you do not plan
to connect your IRIS to a network, do not change the 192.0.2.1 address.

8.2.3 The Hosts Database

The hosts name-address database on IRIX contains mappings between the
Internet addresses and the names for the systems on the network. This
information must exist on each system on a network. When you referto a
host name in an application program, the program accesses this database
with the gethostbyname (3N) routine to find the Internet address of the host.

IRIX has three methods of accessing and maintaining the host name-address
database:

e the hosts file, /etc/hosts,
e the Yellow Pages (YP) service and
¢ the Berkeley Internet Name Domain service ("BIND name server").

Maintaining consistent versions of /etc/hosts on every system in a large
network is troublesome. Yellow Pages and the BIND name server are other
techniques for maintaining a centralized version of the host database. How
to choose which service to run is described in the next section.

/etc/hosts

The /etc/hosts file is an ASCII file that you can modify with any text editor
or with the vadmin(1G) networking tool. It contains lines of text that
specify a host’s address followed by its "official” name and any nicknames.
The "official" name should be the fully-qualified domain name. The address
and name(s) are separated by blanks and/or tabs. Comments begin with a
pound sign (#) and continue to the end of the line.
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Here is an example of an /etc/hosts file:

# This is a comment

127.0.0.1 localhost

119.0.3.20 mint.spices.com mint # mint is a nickname
119.0.3.21 ginger.spices.com ginger

119.0.3.22 sassafras.spices.com sassafras sas

Each IRIS must have a copy of /etc/hosts that contains entries for
"localhost” and all of its network interfaces. As shipped, the /etc/hosts file
contains two entries. The first entry,

127.0.0.1 localhost

is a name you can use to test the network software. When you reference
localhost, the message is looped back internally; it is never transmitted
across the network.

Note: Many important programs, such as the 4Sight window system,
depend on the "localhost" entry—do NOT remove or modify it.

The second entry is the default address and name for your IRIS. To enable
the IRIS to access the network, add a new entry that contains a newly-
assigned IP address and the name in /etc/sys_id. The entry must contain the
sys_id name, either as the official host name or as a nickname. Also, if your
IRIS is a gateway, each network interface must be assigned a network
address and have an entry in /etc/hosts, as described in the "Gateways"
section below.

Using the example hosis file above, the /etc/sys_id file for the host ginger
should contain either "ginger" or "ginger.spices.com".

If you change the IRIS’s name in /etc/sys_id, make sure to update the entry
in /etc/hosts, otherwise the network software will not initialize properly. If
the following message appears during system startup,

*** Can’t find hostname’s Internet address in /etc/hosts

then the /etc/hosts and /etc/sys_id files are inconsistent and must be fixed.

If you are connecting the IRIS to an existing network, use the /etc/hosts file
on the master system. Make sure it conforms to the syntax specifications
summarized above. If you are building a new network, add the name and
address for the new workstation as well as for any other workstations on the
network to /etc/hosts.
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If the master copy of /etc/hosts is maintained on a non-Silicon Graphics
machine, or you are using BIND or YP, make sure that the hosts database
contains the "localhost” entry.

8.2.4 Host-Address Resolution Order

It is important that each machine have a consistent version of the hosts
database. Choosing the proper method to maintain the consistency depends
on the size of your network and whether the network is connected to the
Internet.

For a small network of machines under the same administrative control,
maintaining a consistent /etc/hosts file is straightforward. Designate one
machine as having the master copy and make additions or deletions from its
file, then use rcp (1C) or rdist(1C) to copy the file to the other machines in
the network.

For moderately-sized networks (roughly more than 20 hosts or a small
collection of interconnected networks), the Yellow Pages distributed lookup
service is a good choice. YP is part of the NFS optional software and is
described in the NFS User’s Guide.

For large networks or ones connected directly or indirectly to the Internet,
use BIND for your host name and address mapping. BIND provides access
to a much larger set of hosts than are provided in the hosts file. A drawback
of BIND is its complicated setup. BIND is described in more detail in the
chapter entitled "The BIND Name Server."

When you use BIND or Yellow Pages, the file /etc/hosts is only used for
setting interface addresses and by netstat(1M). The file is also used when
these services are not running. Therefore, it need only contain addresses for
all of your IRIS’s network interfaces and a few important hosts on the
network.

Most IRIX commands try to access the YP database first, then BIND and
finally the hosts file. If YP or BIND are running and don’t have the
requested information in their database, the other services are not queried.
For sites connected to the Internet that want to use YP for everything but the
hosts database, this behavior is a problem. There are two ways to fix this.
The first method is to run Yellow Pages and BIND at the same time, using
YP for the local hosts and BIND for the Internet hosts.
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The Yellow Pages servers for a YP domain can access the name server to
obtain interdomain host information. On each server, create the file
letc/configlypserv.options and add the string "—i" as follows:

echo "-i" > /etc/config/ypserv.options

The YP servers must also be configured as BIND clients, as described in the
chapter about BIND. (

The second method is to bypass YP altogether. The system administrator
can change the default host resolution ordering by adding a "hostresorder"”
line to /usr/etc/resolv.conf (this keyword is described in resolver(4)). For
example, the line

hostresorder bind local

specifies that gethostbyname (3N) and gethostbyaddr (3N) access the BIND
name server first and if no information was found, to access /etc/hosts,
bypassing the YP hosts database. When using BIND, the other lines in the
resolv.conf file must be set up correctly in order to access the name server.
See the "The BIND Name Server" chapter and resolver(4) for more details.

The hostresorder mechanism is useful when accessing an unreliable remote
BIND name server or one over a slow or distant network or one that does (
not have the appropriate host entries for your machine. With the following "

hostresorder local bind

to check /etc/hosts first before accessing the name server, you can increase
reliability of name service at the cost of possibly using out-of-date
information for remote hosts.

8.3 Network Initialization

During system initialization, the shell script /etc/init.d/network is run. This

script configures the network devices and starts the appropriate daemon

processes. During system shutdown, the script kills the daemons and i
disables the network devices. The following subsections describe the (
actions of this script in more detail. '

The script /etc/init.d/network is linked to /etc/rc0.d/K40network, which is
invoked from /etc/rc0 during shutdown, and to /etc/rc2.d/S30network, which
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is invoked from /etc/rc2 during startup. The script understands two
arguments: start and stop. When invoked with start, the script sets the
IRIS’s host name and ID using the /etc/sys_id and /etc/hosts files; the host
ID is also the system’s Internet address in /etc/hosts.

If the host ID is the default test address, 192.0.2.1, then the network
software is initialized for ‘standalone’ operation. Standalone mode is
equivalent to unplugging the network cable from the machine: outgoing
network traffic is not generated and incoming traffic is not received. Only
required daemons are started. Most configurable daemons are not started
because they are needed for remote operations.

During initialization, the network script uses configuration flag files in the
letc/config directory to determine whether to start each daemon. The
chkconfig(1M) command is used to check (and change) the state of each
flag. If the flag file exists and is in "on" state, the daemon is started.

The daemon is not started if the flag file does not exist or is off. Some
daemons take optional or required arguments, which should be placed in
‘options’ files in /etc/config.

Two configuration flags in /etc/config control the initialization process. If
the flag verbose is on, the script will print informative messages on the
console as daemons are started and devices configured. If the flag network
is off, the script will initialize the network software for the standalone mode.
To start and terminate locally-developed network daemons, or to publish
ARP entries and load routes, create the separate shell script
Jetclinit.d/network.local. Make symbolic links in /etc/rc0.d and /etc/rc2.d 10
this file to have it called during system startup and shutdown:

ln -s /etc/init.d/network.local /etc/rc0.d/K39network
1n -s /etc/init.d/network.local /etc/rc2.d/S31lnetwork

See Jetc/init.d/network for the basic format of the script. Also refer to
chkconfig(1IM) and network(1M) for more information.

8.3.1 Gateways

If your IRIS-4D has more than one network interface, it can act as as a
gateway (or packet forwarder) between the networks. If the network startup
script discovers a second ethernet interface, it is automatically configured.
A HyperNET interface is configured if the configuration flag hypernet is
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"on" (see chkconfig (IM) for details). Each interface must have an unique
Internet address and name entered in /etc/hosts. The script derives the
names from the IRIS’ name in /etc/sys_id. The prefix gate- is prepended to
the host name to generate the second interface’s name and for HyperNet, the
suffix -Ay is appended to generate that interface’s name.

For example:
191.50.1.7 yosemite
191.50.2.49 gate-yosemite
191.50.3.8 yosemite-hy

If you have more than 2 ethernet interfaces, edit /etc/init.d/network and
follow the instructions in the script for enabling the additional boards.

Several kernel configuration options affect gateway machines. See the
section titled "Kemel Configuration Options" for details.

8.3.2 Device Configuration

The network interface drivers for ethernet and HyperNET controllers require
that their Internet addresses be defined at system startup. This is done with
the ifconfig (1IM) command. Each interface must have an entry in /etc/hosts .
Note that ifconfig uses the hosts file only, even if BIND or YP are running.

You can also use the ifconfig command to set options for the interface at
boot time. These options include setting the network mask and broadcast
address and disabling the use of the Address Resolution Protocol (ARP).
Options are set independently for each interface, and apply to all packets
sent using that interface. Options for each interface should be put into files
in /etc/config: ifconfig-1.options for the primary interface, ifconfig-2.options
for the second interface, and ifconfig-hy.options for the HyperNET interface,
etc.

For example, to create ifconfig options for the primary interface, type:
echo "netmask OxFFFFFFO00O" > /etc/config/ifconfig-1.options

Frequently used ifconfig options are described in the next sections.
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8.3.3 Local Subnetworks

Subnetworks allow multiple local networks to appear as a single Internet
network to off-site hosts. Subnetworks are useful because they allow a site
to hide its local topology, requiring only a single route in external gateways.
Local network numbers can be locally administered. The standard
describing this change in Internet addressing is RFC-950.

To set up local subnetworks, first decide how to partition the host part of the
32-bit Internet address. To define local subnets, you must steal bits from the
host number sequence for use in extending the network portion of the
Internet address. This reinterpretation of Internet addresses is done only for
local networks. It is not visible to hosts off-site.

Sites with a class-A network number have 24 bits of host numbers with
which to work. Sites with a class-B network number have 16 bits of host
numbers. Sites with a class-C network number have 8 bits of host numbers.
For example, if your site has a class-B network number, hosts on this
network have an Internet address that contains 16 bits for the network
number and 16 bits for the host number. To define 254 local subnets, each
possessing at most 254 hosts, 8 bits may be taken from the host part.

These new network numbers are then constructed by concatenating the
original 16-bit network number with the extra 8 bits containing the local
subnetwork number. At least 2 bits should be used for subnetwork numbers.

Note: The use of subnets 0 and all-1s is discouraged to avoid confusion
with broadcast addresses.

The existence of local subnetworks is communicated to the system when the
network interface is configured with the netmask option to the ifconfig
command. A network mask defines the portion of the Internet address that
is to be considered the network part. This mask normally contains the bits
corresponding to the standard network part as well as the portion of the host
part that has been assigned to subnets. If no mask is specified when the
address is set, it will be set according to the class of the network. For
example, if the primary network interface used a class B network such as
128.32 and used 8 bits of the host part for defining subnetworks, the
letc/configlifconfig-1.options file would contain:

netmask Oxffffff00

This specifies that for that interface, the upper 24 bits of the Internet address
should be used in calculating network numbers (netmask Oxffffff00).
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Host m on sub-network n of this network would have addresses of the form:
128.32.n.m

For example, host 99 on subnetwork 129 would have this address:
128.32.129.99

For hosts with multiple interfaces, the network mask should be set for each
interface in the appropriate ifconfig options files.

8.3.4 Internet Broadcast Addresses

The broadcast address for Internet networks (according to RFC-1117) is
indicated by a host part of all 1°’s. The address used by older, 4.2BSD-
derived systems was the address with a host part of 0. IRIX uses the
standard broadcast address (all 1's) by default, but allows the broadcast
address to be set (with ifconfig) for each interface by including it in the
appropriate ifconfig options files. This allows networks consisting of both
4.2BSD and IRIX hosts to coexist. For example, if the interface’s address is
192.0.2.34, the following argument to ifconfig sets the broadcast address to
the old style:

broadcast 192.0.2.0

In the presence of subnets, the broadcast address uses the subnet field, as do
normal host addresses, with the remaining host part set to 1°’s (or 0’s, on a
network that has not yet been converted). IRIX hosts recognize and accept
packets sent to the logical-network broadcast address, as well as those sent
to the subnet broadcast address. Also, when using an all-1’s broadcast,
IRIX hosts recognize and receive packets sent to host O as a broadcast.

8.3.5 Publishing ARP Entries

To send packets on an ethernet to other hosts, a host must be able to
translate the Internet addresses into ethernet hardware addresses. On IRIX
and 4.3BSD systems, this translation is done dynamically with the Address
Resolution Protocol (ARP). Network software also supports communication
with hosts that do not use ARP. An IRIX host can use the arp(1M)
command to set (or "publish") translations for non-ARP hosts in advance.
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For example, the system named ginger does not support ARP and has the
ethernet address 8:0:20:1:74:89. To add an arp entry to the translation table
for ginger, as root, type:

arp -s ginger 8:0:20:1:74:89 pub

The —s option tells arp to add the entry to the translation table. The pub
option "publishes" the entry; it enables your IRIS to respond to an ARP
broadcast for the other host’s address.

Once you add an entry to the table, it remains there until you reboot. If you
want to make the entry permanent, create /etc/init.d/network.local (see the
beginning of this section to create this file) and add the appropriate arp
commands. Alternately, put multiple ARP entries in a file, and to publish
them, use:

arp -f filename

8.3.6 Routing

To access networks not directly attached to your host, your system must
obtain information to allow packets to be properly routed. Two schemes are
supported. The first (and default) scheme uses the routing table
management daemon routed(1M). This daemon uses a variant of the Xerox
Routing Information Protocol (RIP) to automatically maintain up-to-date
routing tables in a cluster of local area networks. By using /etc/gateways,
the routing daemon can also be used to initialize static routes to distant
networks. When the routing daemon is started during system initialization,
it reads /etc/gateways (if it exists) and installs the routes defined there. It
then broadcasts on each attached local network to find other instances of the
routing daemon. If any responses are received, the routing daemons
cooperate to maintain a globally consistent view of routing in the local
environment. You can extend this view to include remote sites also running
the routing daemon by setting up suitable entries in /etc/gateways; consult
routed(1M) for details.

The gated(1M) routing daemon handles the HELLO and EGP routing
protocols in addition to RIP. Use gated if your IRIS acts as a gateway to an
external network that uses EGP or HELLO. See the gated manual page for
information on setting up the gated configuration file.
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The second approach is to define a default or wildcard route to a smart
gateway and depend on the gateway to provide ICMP routing redirect
information to create dynamically a routing data base. This is done by
adding an entry to /etc/init. d/network after routed is started. The entry has
this syntax:

/usr/etc/route add default smart-gateway 1

See route(1M) for more information. The default route will be used by the
system as a last resort in routing packets to their destination. Assuming the
gateway to which packets are directed is able to generate the proper routing
redirect messages, the system will then add routing table entries based on
the information supplied. This approach is unsuitable in an environment
where there are only bridges (i.e., pseudo gateways that do not generate
routing redirect messages). Furthermore, if the smart gateway goes down,
there is no alternative but to create routes manually with route(1M) to
maintain service.

The system always listens for, and processes, routing redirect information,
so you can combine both of the above facilities. For example, you could use
the routing table management process to maintain up-to-date information
about routes to geographically local networks, while employing the
wildcard routing techniques for distant networks.

You can use the netstat(1M) program to display routing table contents as
well as various routing oriented statistics. For example, this command:

‘/usr/eﬁc/netstat -r
will display the contents of the routing tables, while:
/usr/etc/netstat -r -s

will show the number of routing table entries dynamwally created as aresult
of routlng redlrect messages
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8.3.7 Multicast Routing

The network startup script, /etc/init/network sets the default route for all IP
multicasts to the primary network interface. Selection of the default
multicast interface is controlled via the kernel (unicast) routing table. If
there is no multicast route in the table, all multicasts will, by default, be sent
on the interface associated with the default gateway. If that interface does
not support multicast, attempts to send will receive an ENETUNREACH
erTor.

A route may be added for a particular multicast address or for all multicast
addresses, to direct them to a different default interface. For example, to
specify that multicast datagrams addressed to 224.0.1.3 should, by default,
be sent on the primary interface on host yosemite, use the following:

/usr/etc/route add 224.0.1.3:yosemite 0

To change the default for all multicast addresses, other than those with
individual routes, to be the secondary interface on host yosemite, use:

/usr/etc/route add 224.0.0.0 gate-yosemite 0

If you point a multicast route at an interface that does not support
multicasting, an attempt to multicast via that route will receive an
ENETUNREACH error.

If needed, you can insert multicast routes in /etc/gateways or add the
appropriate commands to the /etc/init.d/network.local file, so they take
effect every time the system is booted. :

8.4 Network Servers

Important network servers (or daemons) such as routed and inetd are
automatically started up at boot time by the network startup script. Other
servers are started by the Internet daemon, inetd(1M). The sendmail
daemon is started from /etc/init.d/mail.

The following daemons are started if their configuration flag is on. If
optional software packages (such as NFS, Yellow Pages, and 4DDN) are not
installed, the script will not try to start them. Several daemons use or

Version 1.0 Network Administration 8-15



require .options files to modify their behavior. Consult the
/etclinit.d/network script and the manual pages for details about their
operation.

Config. Flag  Function .options File?

gated multiprotocol routing daemon  yes :
mrouted IP multicast routing daemon yes (
named BIND name server yes

timed clock synchronizer yes

timeslave clock synchronizer required

rwhod system status daemon yes

nfs NFS remote file systems no

automount NFS automounter daemon yes

rarpd Reverse ARP daemon yes

yp Yellow Pages distr. lookup no

ypserv Become YP server yes

ypmaster Become YP password master  yes

4DDN Enable 4DDN software no

Table 8-1. Network Daemons and Their Function

8.4.1 Inetd (

In IRIX, most of the Interner server programs are started up by a "super
server" daemon called inetd. The daemon acts as a master server for
programs specified in its configuration file, /usr/etc/inetd.conf. It listens for
service requests for these servers, and starts up the appropriate program
whenever a request is received. Lines in the configuration file specify the
following:

¢ the service name. The three types of services are: Internet (as found in
letc/services or in the Yellow Pages services database), rpc (in /etc/rpc or
the YP rpc.bynumber database) and tcpmux.

* the type of socket the server expects (e.g., stream or dgram)

* the protocol to be used with the socket (as found in /etc/protocols or in ,
the Yellow Pages protocols database) ( \

» whether to wait for each server to complete before starting up another

e the user name used by the server when it runs
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e the server program’s name

e up to 11 arguments to pass to the server program. The first argument must
be the program name.

For example, an entry for the file transfer protocol server would appear as:
ftp stream tcp nowait root /usr/etc/ftpd ftpd

Some trivial services are implemented internally in inetd, and their server
p y
program names are listed as "internal."

To have local network servers started from inetd, the appropriate lines
should be added to the configuration file /usr/etc/inetd.conf. Consult
inetd(1M) and the "Network Programming" chapter for more detail on the
format of the configuration file and the operation of the Internet daemon.

8.5 Network Databases

Several data files are used by the network library routines and utilities:

File Manual reference  Use

letclhosts hosts (4) host names

letclhosts.equiv hosts.equiv (4) list of "trusted" hosts
letclhosts.lpd Ipd (1M) hosts allowed to access printers
letclftpusers Sftpd (1IM) list of "unwelcome" ftp users
letc/networks networks (4) network names

letclprotocols protocols (4) protocol names

letcirpc rpc (4) rpc program numbers
letc/services services (4) list of known Internet services
lusrletclinetd.conf  inetd (1M) list of servers started by inetd
lusrletclresolv.conf  resolver (4) host name lookup

Table 8-2. Network Data Files

The distributed files are set up for a minimal configuration. You must be
logged in as root in order to edit these files.

The /etc/hosts.equiv file contains a list of trusted machines and is described
in more detail later in this chapter. /etc/ftpusers contains a list of prohibited
and restricted ftp users and is described in detail later in this chapter.
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The /etc/hosts file, which was described above, is the host name-address
database. The /etc/networks file contains the network name-address
database. Each network in your local-area network should be added to this
file. (netstat(1M) uses this file when printing routes.) The /etc/protocols,
letc/rpc, and /etc/services usually do not need to be changed. They contain
mnemonic names for protocols, RPC protocol numbers and Internet
services.

For small networks, use rdist(1) to maintain consistent versions of theses
files. Larger networks may want to use the Yellow Pages (part of the NFS
optional software) for the following files: hosts, networks, protocols,
services.

8.6 Remote Access and Security

The remote login and shell servers use an authentication scheme based on
"trusted hosts." The /etc/hosts.equiv file contains a list of hosts that are
considered trusted and under the same administrative control. When a user
contacts a remote login or shell server requesting service, the client process
passes the user’s name and the official name of the host on which the client
is located. If the host’s name is located in hosts.equiv and the user has an
account on the server’s machine, then service is rendered (i.e., the user is
allowed to log in, or the command is executed). Users may expand this
"equivalence" of machines by installing a .rhosts file in their login directory.
The root login bypasses the /etc/hosts.equiv file, and uses only root’s
(typically /.rhosts) file.

Create root’s /.rhosts only if all systems and their consoles are physically
secure and all privileged accounts have passwords. Be selective about the
systems you add to the file. Given access to a console on a machine with
/.rhosts privileges, someone can log in as any user, including the superuser,
and become root on any system that has your system’s name and root in its
/.rhosts file.

To create a class of equivalent machines, include the official names for those
machines in the /etc/hosts.equiv file. If you are running the name server,
you may omit the domain part of the host name for machines in your local
domain.
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For example, if the following machines on a network are considered trusted,
the /etc/hosts.equiv file lists them as follows:

lassen
redwood
sequoia
yosemite

The hosts.equiv file can have a line of the form
host user

with white space separating the names. This allows the specified user on the
remote machine to log in as anyone!

The owner of the .rhosts file must be the super-user (i.e., roof) or the user in
whose home directory it resides. The /etc/hosts.equiv file must be owned by
root. The contents of the files will be disregarded if they are owned by
another user or if their permissions allow anyone who is not the owner to
modify the file. Use the chmod command to add the proper protection:

chmod go-w .rhosts

It’s important that all accounts on machines connected to Internet have
passwords. Use passwd(1) to give an account a valid or locked password.

Remote shell accesses and remote logins are disabled if /etc/nologin exists.
For remote logins, the contents of the file are printed before the connection
is closed. This is useful, for example, to notify users of expected system
availability after a disk backup. Some sites require that a notice be printed
before remote logins and ftp sessions. Create and edit the file /ezc/issue to
contain such a message.

8.6.1 Remote Access Logging

Several network daemons have an option to log remote accesses to the
system log file /usr/adm/SYSLOG using syslogd(1M). Sites connected to
the Internet should use this feature. To enable logging for fipd (1M),

tftpd (1M), and rshd(1M), edit /usr/etc/inetd.conf and add -1 after the right-
most instance of ftpd and tftpd, and add —L after the right-most instance of
rshd. Signal inetd to reread its file.

/etc/killall -HUP inetd
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Remote logins via rlogin(1), telnet(1), and the 4DDN sethost(1) programs
can be logged by login(1). Create /etc/config/login.options and add the
keyword "syslog=all" or "syslog=fail" to it. For example,

echo "syslog=all" > /etc/config/login.options

will log successful and failed local and remote login attempts to
syslogd(1M). See the login(1) manual page for details.

8.6.2 Anonymous and Restricted FTP Access

The FTP server included in the system provides support for restricted FTP
access, including an anonymous account. Because of the inherent security
problems with such a facility, read this section carefully if you consider
providing such a service.

Aside from the problems of publicly writable directories, the ftp server may
provide a loophole for interlopers if certain user accounts are allowed. The
file /etc/ftpusers is checked on each connection. If the requested user name
is located in the file, the request for service is denied (excepted as noted
below). Accounts with nonstandard shells should be listed in this file.
Accounts without passwords need not be listed in this file; the ftp server will
not service these users.

A restricted account has limited access to files on the system. When a client
uses the restricted account, the server performs a chroot (2) system call to
restrict the client from moving outside that part of the file system where the
account’s home directory is located. Because the server uses a chroot call,
certain programs and files used by the server process must be placed in the
account’s home directory. Furthermore, be sure that all directories and
executable images are unwritable.

A restricted account must be listed in /etc/ftpusers with a line containing the
account name followed by the word "restricted”. For example,

support restricted

specifies the "support” account allows restricted ftp access. A client must
specify a password to access a restricted account. When the account logs in,
the file called README in the account’s home directory is printed, if it
exists, before the client can execute commands. The README file is a
good place for system notices and account usage policy.

8-20 Network Communications Guide IRIX




An "anonymous" account is special type of restricted account that does not
require a password and does not need to be listed in the ftpusers file. You
can enable an anonymous account by creating an entry in /etc/passwd for the

user fip:

ftp:*:997:999:FTP anonymous account:/usr/people/ftp:/dev/null

The "*" for the password prevents anyone from logging into the account by
any other means. Restricted accounts also need an entry in /etc/passwd. The
system manager should set the account’s password using the passwd(1)
command.

Here is a recommended directory setup for any restricted account — the
anonymous account, ftp, is used as an example.

cd “ftp

chmod 555 .

chown ftp .

chgrp ftp .

mkdir bin etc pub

chown root bin etc

chmod 555 bin etc

chown ftp pub

chmod 777 pub # allows anyone to add/delete files
cd bin

cp /bin/ls .

chmod 111 1s

cd ../etc

cp /etc/passwd /etc/group .
chmod 444 passwd group

To place files in the restricted/anonymous area, local users must place the
files in a subdirectory. In the configuration described above, they are placed
in the pub subdirectory.

An important issue to consider is the passwd file in the restricted account’s
directory. This file can be copied by users who use the account. They may
then try to break the passwords of users on your machine for further access;
therefore, remove any unnecessary users and change all passwords in this
file to an invalid password such as "*". A good choice of users to include in
this copy of the /etc/passwd file might be root, bin, sys, and the restricted
account.
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8.7 Network Troubleshooting

If you experience difficulty with network connections, first check the
physical network connections to the problem machine. Check the cable,
transceiver, and tap. A loose or detached cable is a common cause of the
difficulty. Make sure the cable is securely connected to the machine.

If the cable is attached properly, use the ping (1M) command to determine if
your machine can communicate with other machines on the network. For
example, if network access to the host ginger fails, try to determine if ginger
is still running with

ping ginger

If ginger doesn’t respond to ping, make sure you can ping other hosts on
your local network. (You can use a host’s IP address instead of its name.)

If the ping to ginger reponds but the rsk(1), rlogin(1), or telnet(1)
commands to access ginger do not respond, make sure the inetd server
running is running on ginger.

If the remote host is on a different network, make sure there is a route to it.
Communication to the host will be impossible if the gateway(s) between
your network and the other host’s is down. Use the —r option to the
netstat(1M) command to diagnose routing problems in networks with
gateways.

The netstat program can also help track down hardware malfunctions and
network load. In particular, the —i option shows the number of packets
received and transmitted for each configured interface. This information is
useful to determine if the network is saturated. If the ratio of collisions to
total traffic is significant, say more than 20%, the network should be divided
into subnets. The —s option shows statistics for the IP, ICMP, IGMP, TCP,
and UDP protocols.. The —m option shows memory usage. -

See the ethernet(7) manual page for information about error messages from
the IRIS-4D ethernet controllers. '

Additional network management and troubleshooting programs are
available with the NetVisualyzer™ optional software.
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8.8 Kernel Configuration Options

You can change several parameters to customize network behavior for local
configurations. The parameters listed in this section are in the
lusr/sysgen/master.d/bsd configuration file. To learn how to configure the
kernel after changing this file, see the System Tuning and Configuration
Guide for details.

ipgateway
The machine is to be used as a gateway. Machines that have only a
single hardware network interface will not forward IP packets; when
this option is off, they will also refrain from sending any error
indication to the source of unforwardable packets. Gateways with
only a single interface are assumed to have missing or broken
interfaces, and will return ICMP unreachable errors to hosts sending
them packets to be forwarded. (Default value = 0 "off")

ipforwarding
Normally, IRIX machines with multiple network interfaces will
forward IP packets that should be resent to another host. If
ipforwarding is set to 0, IP packet forwarding will be disabled.
(Default=1 "on")

ipsendredirects
If ipforwarding is turned on and if a packet is forwarded back through
the same interface on which it arrived, IRIX will send an ICMP
redirect to the source host; this works only if the source host is on the
same network. This ability to redirect packets improves the
interaction of IRIX gateways with hosts that configure their routes via
default gateways and redirects. If the packet was forwarded using a
route to a host or to a subnet, a host redirect is sent, otherwise a
network redirect is sent. You can disable the generation of redirects
by changing the value of ipsendredirects to 0 in environments where it
may cause difficulties. (Default=1 "on")

subnetsarelocal
allnetsarelocal

TCP calculates a maximum segment size to use for each connection,
and sends no datagrams larger than that size. This size will be no
larger than that supported on the outgoing interface. If the destination
is not on the local network, the size will be no larger than 576 bytes.
It takes far longer to send data using 576-byte packets than it does

Version 1.0 Network Administration 8-23



using 1500-byte packets. If the subnetsarelocal parameter is set to 1,
other subnets of a directly-connected network are considered to be
local. If the allnetsarelocal parameter is set to 1, other networks are
considered to be local. This is useful for sites with a connected set of
class C networks not connected to an external network such as
Internet. (subnetsarelocal default = 1 "on", allnetsarelocal default =0
"off")

ipcksum

tcpcksum

udpcksum
These parameters affect whether IP headers, TCP headers and data,
and UDP headers and data are checksummed. By default, the
checksums are calculated. It is strongly recommended that you do not
disable them. However, if you must use UDP with 4.2BSD hosts, set
the udpcksum flag to 0.

tcp_sendspace

tcp_recvspace

udp_sendspace

udp_recvgrams
These parameters determine the default amount of buffer space used
by a TCP (SOCK_STREAM) and UDP (SOCK_DGRAM) sockets.
The tcp_sendspace and tcp_recvspace parameters define the initial
buffer space allocated to a socket. The udp_sendspace parameter
defines the default maximum size of UDP datagrams that can be sent.
The udp_recvgrams parameter determines the number of maximally-
sized UDP datagrams that can be buffered in a UDP socket. The total
receive buffer size in bytes for each UDP socket is the product of
udp_sendspace and udp_recvgrams. A program can increase or
decrease the send and receive buffer sizes for a socket with the
SO_SNDBUF and SO_RCVBUF options to the setsockopt(2) system
call.

For 4.2BSD compatibility, the IRIX system limits its initial TCP sequence
numbers to positive numbers.
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9. The BIND Name Server

The Berkeley Internet Name Domain (BIND) server implements the Internet
Domain Name System (DNS) for the IRIX operating system. A name
server is a network service that enables clients to name resources or objects
and share this information with other objects in the network. This in effect
is a distributed database system for objects in a computer network. BIND is
fully intergrated into IRIX network programs for use in storing and
retrieving host names and addresses. You can configure the system to use
BIND to replace the original host table lookup of information in the network
hosts file /etc/hosts.

BIND has two parts: the name server program, named, and a set of C
library "resolver” routines to access the server. named is a daemon that runs
in the background and responds to UDP and TCP queries on a well-known
network port. The library routines reside in the standard C library, libc.a.
The host-address lookup routines gethostbyname (3N), gethostbyaddr (3N),
and sethostent (3N) calls use the resolver routines to query the name servers.
The resolver library routines described in resolver(3N) include routines that
build query packets and exchange them with the name server.

This chapter describes how to configure your system to use the BIND name
server, and includes an explanation of:

e BIND servers and clients
* how to set up your domain
¢ standard resource record format

¢ domain management
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9.1 The Domain Name Service

The basic function of the name server is to provide information about
network objects by answering queries. The specifications for this name
server are defined in RFCs 974, 1034, and 1035. You can obtain these
documents from the Network Information Center (NIC) at the address listed
in Chapter 1 or you can fzp them from the RFC: directory on NIC.DDN.MIL
using the "anonymous" account. Aslo refer to the related manual pages,
named (1M), resolver (3N), and resolver (4) for additional details.

The advantage of the name server over host table look-up is that it avoids
the need for a single centralized clearinghouse for all names. The authority
for this information can be delegated to the different organizations on the
network responsible for it.

On the other hand, the host table look-up routines require that the master file
for the entire network be maintained at a central location by a few people.
This works well for small networks where there are only a few machines
and there is cooperation among the different organizations responsible for
them. However, this does not work well for large networks where machines
cross organizational boundaries.

With the name server, the network can be broken into a hierarchy of
domains. The name space is organized as a tree according to organizational
or administrative boundaries. Each node in the tree, called a domain, is
given alabel. The name of the domain is the concatenation of all the labels
of the domains from the root to the current domain. The labels are listed
from right to left and are separated by dots. A label need only be unique
within its domain. The whole space is partitioned into several
nonoverlapping areas of authority called zones. Information in each zone is
handled by the zone’s "authoritative" or "master" name server(s). Each zone
starts at a domain and extends down to the leaf domains, or to domains
where other zones start. Zones usually represent administrative boundaries.

The current top-level domains registered with the Network Information
Center are:

arpa  atemporary domain for hosts, also used as the top-level domain for
address to name mapping

com  companies and businesses
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edu
gov
mil

net

org

universities and other educational institutions
government agencies
military organizations

various network-type organizations, network management-related
organizations, such as information centers and operations centers

technical-support groups, professional societies, or similar
organizations

plus a number of top-level country domains.

An example of a domain name for a host at the University of California,
Berkeley is:

monet .Berkeley.EDU

The top-level domain for educational organizations is EDU. Berkeley is a
subdomain of EDU, and monet is the name of the host.

The following figure shows a part of the current domain name space. Note
that the tree is a very small subset of the actual name space.
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In this example, the root domain has five immediate subdomains: MIL,
GOV, EDU, COM, and ARPA. The LCS.MIT.EDU domain has one .
immediate subdomain named XX.LCS.MIT.EDU. All of the leaves are also
domains.

9.2 BIND Servers and Clients

You can configure the name server in several ways, depending on the degree
of authority and network connectivity.

9.2.1 Master Servers

A master server for a domain is the authority for that domain. This server
maintains all the data corresponding to its domain. Each domain should
have at least two master servers: a primary master and a secondary master to
provide backup service if the primary is unavailable or overloaded. A server
can be a master for multiple domains, being primary for some domains and
secondary for others.

A primary master server is a server that loads its data from a file on disk.
This server can also delegate authority to other servers in its domain. A
secondary master server is a server that is delegated authority and receives
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its data for a domain from a primary master server. At boot time, the
secondary server requests all the data for the given zone from the primary
master server. This server then periodically checks with the primary server
to see if it needs to update its data.

Root servers are the master servers for the root and top-level Internet
domains. They are listed in the root.cache file described below.

9.2.2 Caching-Only Server

A caching-only server is not authoritative for any domain. It services
queries and asks other servers, who have the authority, for needed
information.

Note that all servers cache data until the data expire, based on a time-to-live
field attached to the data received from another server.

9.2.3 Slave and Forwarding Servers

A slave server always forwards queries it cannot satisfy locally to a fixed list
of forwarding servers, instead of interacting with the master name server for
the root and other domains. There may be one or more forwarding servers,
and they are tried in turn until the list is exhausted. The queries to the
forwarding servers are recursive.

Use a slave-and-forwarder configuration when you do not want all the
servers at a given site to interact with the rest of the Internet servers. A
typical scenario would involve a number of workstations and a departmental
gateway machine with Internet access. The workstations might be
administratively prohibited from having Internet access. To give the
workstations the appearance of access to the Internet domain system, the
workstations could be slave servers to the forwarding server on the gateway
machine. The gateway server would forward the queries and interact with
other name servers on on the Internet to resolve the query before returning
the answer. A benefit of using the forwarding feature is that the central
machine develops a more complete cache of information that all the
workstations can take advantage of. Using slave mode and forwarding is
discussed further in the "Boot File" section of this chapter.
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9.2.4 Clients

A BIND client accesses the name servers that run on other machines in the
network. The named server doesn’t run on the local machine.

9.3 Setting Up Your Domain

To set up a domain on a public network, contact the organization in charge
of the network and request the appropriate domain registration form. An
organization that belongs to multiple networks (such as CSNET and the
Internet) should register with only one network.

9.3.1 Internet

Sites that are already on the Internet and need information on setting up a
domain should contact the Network Information Center You can reach NIC
by electronic mail at HOSTMASTER@NIC.DDN MIL or by telephone (the
number is listed in Chapter 1). Obtain a domain questionnaire from the NIC
hostmaster, or fip the files NETINFO:DOMAIN-TEMPLATE.TXT and
NETINFO:IN-ADDR-TEMPLATE.TXT from the host NIC.DDN.MIL.
When registering a domain for a connected network, be sure to register the
reverse address domain (IN-ADDR.ARPA) for your networks.

The BIND mailing list is a mail group for people on the Internet running
BIND. The group discusses future design decisions, operational problems,
and related topics. Send requests to be placed on this mailing list to:

bind-request @ ucbarpa.Berkeley.EDU.

9.3.2 CREN/CSNET

A CREN/CSNET member organization that has not registered its domain
name should contact the CSNET Coordination and Information Center (CIC)
for an application and information about domain setup. You can reach the
CIC by electronic mail at cic @ sk . cs . net, or by phone at (617) 873-2777.
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9.4 Files

This section describes how to set up named’s database files.

In IRIX, the named database files are stored in the /usr/etc/named.d
directory. A README file contains a short summary of the set-up
procedure and a list of official names for IRIS-4D machines. The
Jusrletc/named.d/Examples subdirectory contains sample named database
files. Based on the following explanation, copy the appropriate example
files into /usr/etc/named.d and edit them to correspond to your system’s
setup.

You need to set up the following files:

1. named.hosts: the host-address database file for your domain;
mandatory for primary servers.

2. named.rev: the address-host database file for your domain;
mandatory for primary servers.

3. named.boot: the startup file;
mandatory for any type of server.

4. localhosts.rev: the "localhost" address-name database file;
required on any type of server.

5. root.cache: the "cache" of the Internet root servers;
required on any type of server.

6. resolv.conf. resolver defaults;
mandatory for clients, optional for servers.

9.4.1 /usr/etc/resolv.conf and /etc/hosts

The file /usr/etc/resolv.conf is read the first time gethostbyname(3N) or
gethostbyaddr(3N) is called. It has several functions:
e defines the default domain or the default domain search list

o specifies the ordering of host resolution services used by
gethostbyname (3N) and gethostbyaddr (3N)

e lists Internet addresses of name servers
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The first two items apply to both client and server hosts. The last item is
required only by client hosts. The file’s format is described in detail in
resolver(4).

To set up a host as a client of remote servers, add "nameserver" entries for
the Internet addresses of the name servers to /usr/etc/resolv.conf. For
example:

nameserver 128.32.130.12

Up to 3 nameserver entries can be specified. It is usually not necessary to
create this file if you have a local server running. An entry for the local
server should use an Internet address of 0.

On client and server hosts, the hostname in /ezc/sys_id should be set to the
fully-qualified domain name. For example:

monet .Berkeley.EDU

However, if you choose not to do so, add a line with the keyword "domain"
and the host’s domain to the resolv.conf file. For example:

domain berkeley.edu

The gethostbyname(3N) and gethostbyaddr(3N) library routines are
normally configured to access the Yellow Pages (YP) hosts map if YP is
running, else named if it is running, or /etc/hosts to resolve an address. This
can be changed with the hostresorder keyword in /usr/etc/resolv.conf. See
Chapter 8 and resolver(4) for details.

To enable the system manager to rcp files from another machine when the
system is in single-user mode, the /etc/hosts file should contain entries for
important hosts in addition to the entries for the local machine’s network
interface(s). See hosts(4) for more information about the format.

9.4.2 Boot File

The boot file is first read when named starts up. This tells the server what
type of server it is, which zones it has authority over, and where to get its
initial data. The name of this file is /usr/etc/named.d/named.boot, the
default.
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To use a different file, create /etc/configinamed.options:
echo "-b other-bootfile-name" > /etc/config/named.options

The recognized bootfile commands are described in the next sections.

Directory

The directory line specifies the directory in which the name server should
run, allowing the other file names in the boot file to use relative path names.

directory /usr/etc/named.d

This command makes sure named is in the proper directory when you try to
include files by relative path names with $INCLUDE. It also allows named
to run in a location that is reasonable to dump core if necessary.

Primary Master

The line in the boot file that designates a primary server for a zone looks
like this: -

primary Berkeley.EDU named.hosts

The first field specifies that the server is a primary one for the zone stated in
the second field. The third field is the name of the file from which the data
are read.

Secondary Master

The line for a secondary server is similar to the primary except that it lists
addresses. of other servers (usually primary servers) from which the zone
data will be obtained. For example:

secondary Berkeley.EDU 128.32.0.10 128.32.0.4 ucbhosts.bak

Version 1.0 . The BIND Name Server 9-9



The first field specifies that the server is a secondary master server for the
zone stated in the second field. The two network addresses specify the name
servers that are primary for the zone. The secondary server gets its data
across the network from the listed servers. It tries each server in the order
listed until it successfully receives the data from a listed server.

If a file name is present after the list of primary servers, data for the zone
will be saved in that file. When the server first starts, it loads the data from
the backup file if possible, and then consults a primary server to check that
the zone information is still up-to-date.

Caching-Only Server

All servers should have a line as follows in the boot file to prime the name
server’s cache:

cache . root.cache

All cache files listed will be read in at named start-up time. Any values still
valid will be reinstated in the cache, and the root name server information in
the cache files will always be used to handle initial queries.

The name server needs to know the servers that are the authoritative name
servers for the root domain of the network. The root.cache file primes the
server’s cache with the addresses of these higher authorities. This file uses
the Standard Resource Record format (or Master File format) described later
in this chapter.

You do not need a special line to designate that a server is a caching server.
What denotes a caching-only server is the absence of authority lines, such as
secondary or primary in the boot file.

Forwarders

Any server can make use of forwarders, i.e., another server capable of
processing recursive queries to try resolving queries on behalf of other
systems. The forwarders command specifies forwarders by Internet address
as:

forwarders 128.32.0.10 128.32.0.4
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There are two main reasons to use forwarders: First, your system may not
have full network access and cannot send IP packets to the rest of the
network. Therefore, it must rely on a forwarder with access to the full net.
Second, the forwarder sees a union of all queries as they pass through the
server and therefore builds up a fuller cache of data than the cache in a
typical workstation name server. In effect, the forwarder becomes a meta-
cache that all hosts can benefit from, thereby reducing the total number of
queries from that site to the rest of the net.

Slave Mode

You can use slave mode if forwarders are the only possible way to resolve
queries due to lack of full net access. You can also use slave mode if you
wish to prevent the name server from using other than the listed forwarders.
Slave mode is activated by the following command in the boot file:

slave

If you use slave, you must specify forwarders. In slave mode, the server
forwards each query to each of the the forwarders until an answer is found
or the list of forwarders is exhausted.

9.4.3 Domain Data Files

A typical named setup has three standard files to specify the data for a
domain. Inthe examples, below they are called named.hosts, named. rev,
and localhost.rev. If you have more than one domain, incorporate the
domain name as part of the file name when you create your versions of these
files. The files in the Examples directory must be changed to reflect your
setup. These files use the Standard Resource Record Format described in
the next subsections. The location of the files is specified in the boot file.

named.hosts

This file contains all the data about the machines in this zone.
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nhamed.rev

This file specifies the IN-ADDR . ARPA domain, which is used to translated
IP addresses into host names. As Internet host addresses do not fall within
domain boundaries, this special domain was formed to allow inverse
mapping. The IN-ADDR . ARPA domain for a host has four labels
preceding it. These labels correspond to the 4 octets of an Internet address.
All four octets must be specified, even if an octet is zero. For example, the
Internet address 128.32.130.12 is located in the domain 12.130.32.128.IN-
ADDR.ARPA. This reversal of the address allows the natural grouping of
hosts in a network. An IN-ADDR. ARPA domain can also represent a
network. For example, the ARPANET was net 10. That means there was a
domain called 10.IN-ADDR.ARPA.

localhost.rev

This file specifies the IN-ADDR.ARPA domain of the local loopback
interface’s network address, 127.0.0.1. The address is better known as
"localhost" address. Many important network programs depend on the
information in this domain.

9.5 Standard Resource Record Format

The records in the name server data files are called resource records. The
Standard Resource Record (RR) Format is specified in REC-1035. The
standard format of resource records is:

{name} {ttl} addr-class Record Type Record Specific data

The first field is the name of the domain record. It must always start in
column 1. For some RRs the name may be left blank, in which case it takes
on the name of the previous RR. The second field is an optional time-to-live
field, which specifies how long this data will be stored in the database.
When this field is blank, the default time-to-live is specified in the Start of
Authority (SOA) resource record (described latter in this chapter). The third
field is the address class. Currently only the IN class (for Internet hosts and
addresses) is recognized. The fourth field states the type of the resource
record. The fields after that depend on the type of RR.
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Case is preserved in names and data fields when loaded into the name
server. All comparisons and look-ups in the name server database are case
insensitive.

If you specify TTLs for resource records, it is important that they are set to
appropriate values. The TTL is the time (in seconds) that a resolver will use
the data it got from your server before it asks your server again. If you set
the value too low, your server will get loaded down with lots of repeat
requests. If you set it too high, then information you change will not get
distributed in a reasonable amount of time.

Most host information does not change much over long time periods. A
good way to set up your TTLs would be to set them at a high value, and then
lower the value if you know a change will be coming soon. You might set
most TTLs to anywhere between a day (86400) and a week (604800). Then,
if you know some data will be changing in the near future, set the TTL for
that RR down to a lower value (an hour to a day) until the change takes
place, and then put it back up to its previous value. Also, all resource
records with the same name, class, and type should have the same TTL
value.

The following characters have special meanings:
A free-standing dot in the name field refers to the current domain.
@ A free-standing @ in the name field denotes the current origin.

Two free-standing dots represent the null domain name of the root
when used in the name field.

\x The backslash designates that the special meaning of the character x
does not apply. The x represents any character other than a digit
(0-9). For example, use \. to place a dot character in a label.

\DDD Where each D is a digit, is the octet corresponding to the decimal
number described by DDD. The resulting octet is assumed to be
text and is not checked for special meaning.

O Parentheses are used to group data that cross a line. In effect,
newlines are not recognized within parentheses. Useful with SOA
and WKS records.

; Semicolon starts a comment; the remainder of the line is ignored.

* An asterisk is a wildcard character.
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Most resource records will have the current origin appended to names if
they are not terminated by a "." (period character). This is useful for
appending the current domain name to the data, such as machine names, but
can cause problems if you do not want this to happen. If the name is not in
the domain for which you are creating the data file, end the name with a ".".

However, do not append the period to Internet addresses.

$INCLUDE

An include line begins with $INCLUDE, starting in column 1, and is
followed by a file name. This feature helps you use multiple files for
different types of data. For example:

SINCLUDE /usr/etc/named.d/mailboxes

This line is a request to load the file /usr/etc/named.d/mailboxes. The
$INCLUDE command does not cause data to be loaded into a different zone
or tree. It allows data for a given zone to be organized in separate files. For
example, mailbox data might be kept separately from host data using this
mechanism.

$ORIGIN (

The origin is a way of changing the origin in a data file. The line starts in
column 1, and is followed by a domain origin. This is useful for putting
more then one domain in a data file.

SORIGIN Berkeley.EDU.
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SOA - Start Of Authority

name {tl} addr-class SOA Source Person-in-charge

@ IN SOA ucbvax.Berkeley. EDU.  kjd.ucbvax.Berkeley.EDU. (
1.1 ; Serial
10800 ; Refresh
3600 ; Retry

3600000 ; Expire
86400 ;s Minimum
)

The Start of Authority, SOA, record designates the start of a zone. There
should only be one SOA record per zone. The name is the name of the zone.
It can be a complete domain name like "Berkeley. EDU." or a name relative
to the the current $ORIGIN. The "@" indicates the current zone name, taken
from the "primary" line in the named.boot file or from a previous $ORIGIN
line. Source is the name of the host on which the master data file resides,
typically the primary master server. Person-in-charge is the mailing
address for the person responsible for the name server. The serial number is
the version number of this data file. This number should be incremented
whenever a change is made to the data. The name server cannot handle
numbers over 9999 after the decimal point. A useful convention is to
encode the current date in the serial number. For example, 25 April 1990
edit #1 is encoded as:

90042501

Increment the edit number if you modify the file more than once that day.
The refresh indicates how often, in seconds, a secondary name server is to
check with the primary name server to see if an update is needed. The retry
indicates how long, in seconds, a secondary server is to retry after a failure
to check for a refresh. Expire is the maximum number of seconds that a
secondary name server has to use the data before they expire for lack of
getting a refresh. Minimum is the default number of seconds to be used for
the time-to-live field on resource records with no explicit time-to-live value.
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NS — Name Server

{name} {ttl} addr-class NS Name servers name
IN NS ucbarpa.Berkeley . EDU.

The Name Server record, NS, lists the name of a machine that provides
domain service for a particular domain. The name associated with the RR is
the domain name and the data portion is the name of a host that provides the
service. Note that the machines providing name service do not have to live
in the named domain. There should be one NS record for each master server
(primary or secondary) for the domain. Note that more than approximately
10-15 NS records for a zone might exceed DNS datagram size limits.

NS records for a domain must exist in both the zone that delegates the
domain, and in the domain itself. If the name server host for a particular
domain is itself inside the domain, then a "glue" record will be needed. A
glue record is an A (address) RR that specifies the address of the server.
Glue records are only needed in the server delegating the domain, not in the
domain itself. If for example the name server for domain SRI.COM was
KL.SRI.COM, then the NS and glue A records on the delegating server
would look like this:

SRI.COM. IN NS KL.SRI.COM.
KL.SRI.COM. 1IN A 10.1.0.2

The administrators of the delegating and delegated domains should insure
that the NS and glue RRs are consistent and remain so.

A — Address

{name} {tl} addr-class A address
ucbvax IN A 128.32.133.1
IN A 128.32.130.12

The Address record, A, lists the address for a given machine. The name

field is the machine name, and the address is the network address. There
should be one A record for each address of the machine.
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HINFO — Host Information

{name} {tt]} addr-class HINFO Hardware oS
IN HINFO  SGI-IRIS4D/380VGX IRIX

The Host Information resource record, HINFO, is for host-specific data.
This record lists the hardware and operating system running at the listed
host. Only a single space separates the hardware information and the
operating system information. To include a space in the machine name, you
must place quotes around the name. There should be one HINFO record for
each host. See the file /usr/etc/named.d/README for the current list of
names for IRIS-4D Series workstations and servers. The "Assigned
Numbers" RFC contains names for other types of hardware and operating
systems.

WKS - Well-Known Services

{name} {1t} addr-class WKS address protocol  list of services
IN WKS 192.12.63.16 UDP who route timed domain
IN WKS 192.12.63.16 TCP (echo telnet
chargen ftp
smtp time domain
bootp finger
sunrpc )

The Well-Known Services record, WKS, describes well-known services
supported by a particular protocol at a specified address. The list of services
and port numbers comes from the list of services specified in /etc/services.
There should be only one WKS record per protocol per address.

CNAME - Canonical Name

aliases {tt]} addr-class CNAME Canonical name
ucbmonet IN CNAME monet

The Canonical Name resource record, CNAME, specifies an alias or
nickname for the official, or canonical, host name. This record should be
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the only one associated with the alias name. All other resource records
should be associated with the canonical name, not with the nickname. Any
resource records that include a domain name as their value (e.g., NS or MX)
should list the canonical name, not the nickname.

Nicknames are also useful when a host changes its name. In that case, it is
usually a good idea to have a CNAME record so that people still using the
old name will get to the right place.

PTR - Domain Name Pointer

name {ttl} addr-class PTR real name A
6.130 IN PTR  monet.Berkeley.EDU.

A Domain Name Pointer record, PTR, allows special names to point to some
other location in the domain. The above example of a PTR record is used to
set up reverse pointers for the special IN-ADDR .ARPA domain. This line is
from the example named.rev file. PTR names should be unique to the zone.
Note the trailing period (.) on the real name to prevent named from
appending the current domain name.

MB - Mailbox

name {ttl} addr-class MB Machine

ben IN MB franklin.Berkeley.EDU.

The Mailbox record, MB, lists the machine where a user receives mail. The
name field is the user’s login. The machine field lists the machine to which
mail is to be delivered. Mail box names should be unique to the zone.

MR - Mail Rename Name

name {tl} addr-class MR corresponding MB
Postmaster IN MR ben

The Mail Rename record, MR, lists aliases for a user. The name field lists

the alias for the name listed in the fourth field, which should have a
corresponding MB record.
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MINFO — Mailbox Information

name {tl} addr-class MINFO requests maintainer
BIND IN MINFO BIND-REQUEST kjd.Berkeley.EDU.

The Mail Information record, MINFO, creates a mail group for a mailing
list. This resource record is usually associated with a Mail Group (MG), but
can be used with a Mail Box (MB) record. The name is the name of the
mailbox. The requests field is where mail such as requests to be added to a
mail group should be sent. The maintainer is a mailbox that should receive
error messages. This is appropriate for mailing lists when errors in
members’ names should be reported to someone other than the sender.

MG - Mail Group Member
{mail group name} {ul} addr-class MG member name
IN MG Bloom

The Mail Group record, MG, lists members of a mail group. An example
for setting up a mailing list follows:

Bind IN MINFO Bind-Request kjd.Berkeley.EDU.
IN MG Ralph.Berkeley.EDU.
IN MG Zhou.Berkeley.EDU.

MX' — Mail Exchanger

name {tl} addr-class MX preference value mailer exchanger
Munnari.0OZ.AU. IN MX 10 Seismo.CSS.GOV.
* IL. IN MX 10 CUNYVM.CUNY.EDU.

The Mail Exchanger record, MX, specifies a machine that can deliver mail to
a machine that is not directly connected to the network. In the first example
above, Seismo.CSS.GOV. is a mail gateway that can deliver mail to
Munnari.OZ.AU. Other machines on the network cannot deliver mail
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directly to Munnari. The two machines, Seismo and Munnari, can have a
private connection or use a different transport medium. The preference
value is the order that a mailer should follow when there is more then one
way to deliver mail to a single machine. See RFC-974 for more detailed
information.

Wildcard names containing the character "*" can be used for mail routing
with MX records. Servers on the network can state that any mail to a
domain is to be routed through a relay. In the second example above, all

* mail to hosts in the domain IL is routed through CUNYVM.CUNY.EDU.
This is done by creating a wildcard resource record, which states that *.IL
has an MX of CUNYVM.CUNY.EDU.

Also see Partridge, C., "Mail Routing and The Domain System." Internet
Request For Comment 974, Network Information Center, SRI International,
Menlo Park, California. February 1986.

9.6 Management

This section contains information about the steps to maintain the databases,
and enabling, disabling and controlling named.

To add a new host to your zone files:

1.

2
3.
4

Edit the appropriate zone file for the domain the host is in.
Add an entry for each address of the host.
Optionally add CNAME, HINFO, WKS, and MX records.

Add the reverse IN-ADDR entry for each host address in the
appropriate zone files for each network the host in on.

To delete a host from the zone files:

1.

Remove all the host’s resource records from the zone file of the
domain the host is in.

Remove all the host’s PTR records from the IN-ADDR zohe ﬁles

“for each network the host was on.
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To add a new subdomain to your domain:
1. Setup the other domain server and/or the new zone file.

2. Add an NS record for each server of the new domain to the zone
file of the parent domain.

3. Add any necessary glue RRs, as described in the NS section.

9.6.1 /etc/config/named

Named is started automatically during system startup if the configuration
flag /etc/config/named is "on." Use the command:

/etc/chkconfig named on
to enable the name server, and
/etc/chkconfig named off

to disable it at the next system startup. To terminate the program
immediately, use:

/etc/killall -KILL named

9.6.2 /etc/config/named.options

This file is optional. It is used during system startup and by named.restart.
Specify command line arguments for named in this file. See named(1M) for
details on the options.

9.6.3 /usr/etc/named.reload

This shell script sends the HUP 31gna1 to named, which causes it to read
named.boot and reload the database. All previously cached data are lost. .
This is useful when you have made a change to a data ﬁle and you want
named’s internal database to reflect the change ‘
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9.6.4 /usr/etc/named.restart

This shell script terminates the running named and starts a new one.

9.7 Debugging

When named is running incorrectly, check first in /usr/adm/SYSLOG for any
messages. For additional information, send it one of the following signals
using killall(1M):

/etc/killall -SIG named

where SIG is INT, ABRT, USR1 or USR2.

INT Dumps the current database and cache to
lusr/tmp/named_dump.db. This should indicate whether the
database was loaded correctly.

ABRT Dumps statistics data into /usr/tmp/named.stats. Statistics data
are appended to the file.

USR1 Turns on debugging. Each following USR1 increments the
debug level. There are 10 debug levels, and each prints more
detailed information. A debug level of 5 is useful for
debugging lookup requests. The output goes to
lusr/tmp/named.run.

USR2 Turns off debugging completely.

9.7.1 nslookup

The nslookup(1) command is a useful debugging tool to query local and
remote name servers. nslookup has two modes: interactive and non-
interactive. Interactive mode allows the user to query the name server for
information about various hosts and domains or print a list of hosts in the
domain. Non-interactive mode is used to print just the name and requested
information for a host or domain. The following example gets the address
record for the host monet.berkeley.edu.
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% nslookup

Default Server: ucbvax.berkeley.edu

Address: 128.32.133.1

> monet

Server: ucbvax.berkeley.edu
Address: 128.32.133.1

Name: monet .berkeley.edu
Address: 128.32.130.6

To exit, type <Ctrl-D> or "exit." The "help" command summarizes the
available commands. The complete set of commands are described in the
nslookup (1) manual page.

9.8 Sample Files

The following section contains sample files for the name server, including
sample boot files for the different types of servers and sample domain
database files.

9.8.1 Primary Master Server Boot File

; type domain source file or host
directory  /usr/etc/named.d

primary Berkeley.EDU named.hosts
primary 32.128.in-addr.arpa named.rev
primary 0.0.127.in-addr.arpa  localhost.rev
cache root.cache
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9.8.2 Secondary Master Server Boot File

; type domain source file or host

directory lusr/etc/named.d

secondary  Berkeley.EDU 128.32.130.11 128.32.130.12 ucbhosts.bak
secondary  32.128.in-addr.arpa  128.32.130.11 128.32.130.12 ucbhosts.rev.bak

primary 0.0.127.in-addr.arpa  localhost.rev

cache root.cache

- 9.8.3 Caching-Only Server Boot File

; type domain source file or host

directory  /ust/etc/named.d
cache . - root.cache
primary 0.0.127.in-addr.arpa  localhost.rev

9.8.4 Client resolv.conf

domain Berkeley. EDU
nameserver 128.32.130.11
nameserver 128.32.130.12
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9.8.5 root.cache

; Initial cache data for root domain servers.

22222282

NS.NICNS.DDN.MIL.

; Prep the cache. Order does not matter

NS.NIC.DDN.MIL.
AISLEDU.

AOS.BRL.MIL.
C.NYSER.NET.
GUNTER-ADAM.AF.MIL.

NS.NASA.GOV.

TERP.UMD.EDU.

9.8.6 localhost.rev

@ IN SOA

22222222282

NS

NS  AISLEDU.

NS  AOS.BRL.MIL.
NS  C.NYSER.NET.
NS = GUNTER-ADAM.AF.MIL.
NS  NS.NASA.GOV.
NS  TERP.UMD.EDU.
A 192.67.67.53

A 26.3.0.103

A 128.9.0.107

A 128.20.1.2

A 192.5.25.82

A 192.33.4.12

A 26.1.0.13

A 128.102.16.10

A 192.52.195.10

A 128.8.10.90

300 ; Retry
3600000 ; Expire

553
335

Version 1.0

ucbvax.Berkeley.EDU. kjd.ucbvax.Berkeley.EIjU. (
1.2 ; Serial '
3600 ; Refresh

14400 ; Minimum
) y v
ucbvax.Berkeley.EDU.
loopback.ucbvax.Berkeley. EDU.
localhost.
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9.8.7 named.hosts

@

localhost

ucbarpa

arpa
monet

ucbvax

ucb-vax
toybox

toybox
miriam
postmistress
Bind

Z Z2Z22Z22%2ZZ%Z

2222272227

SOA

NS
NS

HINFO
CNAME

HINFO
WKS

WKS

CNAME

HINFO
MX
MB

MINFO
MG
MG

ucbvax.Berkeley.EDU. kjd.monet.Berkeley.EDU. (
1.1 ; Serial

10800 ; Refresh

3600 ; Retry

3600000 ; Expire

86400 ; Minimum

)

ucbarpa.Berkeley. EDU.
ucbvax.Berkeley. EDU.
127.1

128.32.130.11
VAX-11/780 UNIX
ucbarpa

128.32.130.6

128.32.133.1
128.32.130.12
VAX-11/750 UNIX
128.32.130.12 UDP (
syslog route timed domain )
128.32.130.12 TCP (
telnet sunrpc ftp finger
smtp domain nameserver )
ucbvax

128.32.131.119

Pro350 RT11

10 monet.Berkeley. EDU
vineyd. DEC.COM.
Miriam

Bind-Request kjd . Berkeley . EDU.
Ralph.Berkeley .EDU.
Zhou . Berkeley .EDU.
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9.8.8 named.rev

@ - N

0.0

0.130
11.130
12.130
6.130

Z222Z2Z2ZZ%Z

Version 1.0

SOA

ucbvax.Berkeley.EDU. kjd.monet.Berkeley.EDU. (

1.1 ; Serial

10800 ; Refresh

3600 ; Retry

3600000 ; Expire
86400 ; Minimum

)
ucbarpa.Berkeley EDU.
ucbvax.Berkeley . EDU.

Berkeley-net.Berkeley. EDU.

255.255.255.0
csdiv-net.Berkeley. EDU.
ucbarpa.Berkeley EDU.
ucbvax.Berkeley . EDU.
monet.Berkeley. EDU.
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Appendix A: The Mail System

The mail system is a group of programs that you can use to send messages
and receive messages from other users on the network. You can send mail
through either UUCP or TCP/IP. The IRIX operating system uses System V
/bin/mail, 4.3BSD /usr/sbin/Mail, and sendmail for its mail implementation.

This appendix is for a system administrator for who sets up and maintains
the mail system on the host or network.

A.1 Mail System Hierarchy

The mail system programs can be divided into four functional categories:

User Interfaces
These programs provide the user interface for the creation of new
messages and the reading, removal, and/or archival of received
messages. Examples of this level of the mail system are the
mail_att(1) and mail_bsd(1) programs.

Mail Routing
These programs route the messages through the network to the
appropriate systems. An example is the sendmail(1M) program which
routes messages between various user interface, transmission and
delivery programs.

Mail delivery
These programs deposit mail into a data file for later perusal by a user
or another program. An example of this type of program is /bin/mail
—d which is used by sendmail(1M) to deliver local mail.
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Mail Transmission
These programs are responsible for transmitting messages from one
host to another. Mail transmission is used when the mail destination
resides on a remote host. Examples of this level of the mail system
are UUCP, which uses its own protocols and runs over serial lines,
and the section of the sendmail program, which implements the
Simple Mail Transmission Protocol (SMTP) over TCP/IP. (Note that
for TCP/IP mail, the sendmail program acts as an integrated routing
and transmission program.) In all cases, the mail transmission process
has a counterpart — the mail reception process. In most cases, both
processes reside in the same program.

After you compose a message using an available user interface program, the
message is sent to a mail routing program. The routing program is
responsible for determining the destination of the message and calling the
appropriate delivery program (for mail to a user on the local host) or
transmission program (for mail to a user on a remote host). Likewise, when
amail reception process part of a transmission program receives a message
from another host, it sends it to the local mail routing program which will
eventually call the appropriate delivery or transmission program. (Note that
the latter would be called in the event that the local host was acting as a
relay between two other hosts which wished to communicate.)

When you send a mail message on a network that uses TCP/IP, several
layers of network software are involved. The layers of TCP/IP mail network
software look like this:

SMTP/sendmail
TCP
IP
Network

The Transmission Control Protocol (TCP) layer supports the SMTP protocol
which the sendmail program uses to transmit mail to other TCP/IP hosts.
The sendmail program is responsible for calling local delivery programs,
mail routing and TCP/IP mail transmission. Note that sendmail uses a
separate UUCP transmission program to handle messages to UUCP hosts.
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A.2 Examples Using Mail

To mail a message to a user on another system, you first must determine the
user’s network address. The next two sections illustrate sample mail
messages. The first shows a message sent without routing. The second
message shows a message routed through UUCP. Routing is a means of
sending a message to the desired host. You can configure your sendmail.cf
file to automatically route your mail (more on this later).

A.2.1 Mail without Routing

The following is an example of a common host interconnection. Hosts
aspen, elm, and willow are on an Ethernet connection and use SMTP (the
Simple Mail Transmission Protocol). Host oak is connected to host willow
by a serial line, and can communicate only through UUCP. The following
figure shows four users: mike on host aspen, alice on host elm, joe on host
willow, and barbara on host oak.

SMTP SMTP SMTP

. uucP
aspen elm willow oak

user:joe  user:alice  user: mike user: barbara

mmmn Ethernet
= Dropline
—— Serial Line

Figure A-1. Map of Users and Hosts
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If user mike wants to send mail to alice at host elm, mike types:

% Mail alice@elm
Subject: Quarterly report

Please send me the figures for production last month.
Thanks,

Mike

<ctrl-d>

)

When Mail is finished composing the message, it calls sendmail. The
sendmail program, via its configuration file (sendmail.cf) figures out how to
send the mail to alice at host elm, and which of its resources can perform the
transmission. In this simple case, because hosts aspen and elm are on the
same network, and because they both use SMTP, sendmail tries to deliver
the mail directly.

The sendmail on host aspen assumes that a daemon which understands
SMTP exists on host elm and attempts to open a connection with it. If the
connection is successful, the mail is transmitted to host elm.

The sendmail program on host elm feceives the SMTP message and runs
through its algorithm (as described in sendmail.cf) to resolve the destination
address. For this example, sendmail on host elm will recognize that the host
part of the address is the local host, and that alice is a user on this host and
resolves the address to just alice. The local mail delivery program,
/bin/mail —d, is then called to deposit the mail into alice’s mailbox.
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A.2.2 Mail with Routing

Suppose alice on host elm wants to send mail to barbara on host oak:

[}

% Mail barbara@oak
Subject: Can I use your printer?

Is it OK if I use your printer all day tomorrow?

Thanks,
alice
<ctrl-d>

[)
°

Mail composes the message and hands it to sendmail to route. The sendmail
program on host elm, via its configuration file (sendmail.cf) determines that
it cannot send the mail directly to host oak. Instead, the mail must be routed
through host willow, because host willow has the only direct connection to
host oak. The sendmail program rewrites the mail address to
@willow:barbara@oak, (read as "send to host willow for barbara at host
oak") then sends the message to the SMTP server on host willow. Host
willow strips off its own address, resulting in the address barbara@oak.

Note at this point that not all mailers use the same address format. UUCP
does not use the same format as TCP/IP. To cope with this, mailer-specific
configurations within sendmail.cf direct sendmail to rewrite addresses into
the correct form for each mailer.

Once the barbara@oak address is received at host willow, the sendmail.cf
file for host willow directs sendmail to use UUCP to send mail to host oak.
Note that this process is transparent to alice, the originator of the message.
Once sendmail decides that UUCP must be used to transmit the mail, it
rewrites the address to oak!barbara and calls the UUCP mail transmission
program as instructed by the data in the sendmail.cf file. UUCP then takes
the message and mails it to barbara via rmail (rmail is responsible only for
delivering UUCP mail). On host oak, UUCP uses rmail to receive the
message, and rmail uses sendmail to deliver it. Once sendmail has the
message, it determines that no more forwarding is needed and uses the local
mailer to deliver the mail; barbara receives the message.

Note that alice could also have routed the mail explicitly by typing:

Mail willow\!oak\!barbara
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A.3 The sendmail.cf File

The /usr/lib/sendmail.cf file contains rules for parsing destination addresses
and for rewriting addresses for different mail delivery programs. It also
contains information about network configuration, and rules for routing
messages to other hosts. The sendmail.cf file is a control file for the
sendmail program. IRIX provides a sendmail.cf file suitable for most uses.
For more information on sendmail and the sendmail.cf file, see the Mail
Reference Guide. For specifics about configuring your sendmail.cf file, see
the comments at the top of the /usr/lib/sendmail.cf file itself.

A.4 Address Aliasing

You use address aliasing to equate one address with another. It is a form of
shorthand: you can enter a short address that takes the place of an entire
routing address.

Some mail user interface programs provide an aliasing feature for
destination addresses. Unfortunately, not all do. To provide a common
aliasing facility, sendmail supports aliasing directly. sendmail’s aliasing is
invoked after the user interface programs’ aliasing, so some aliases may
have conflicting meanings. Make sure the meanings are resolved before
using the aliasing. The file /usr/lib/aliases contains a text form of a
database used for mail aliasing; (if you use the Yellow Pages (YP), then you
use the "aliases" YP database).

This example shows an entry in /usr/lib/aliases:

alice: elm!alice

When you type alice as an address, sendmail routes the message to
elm!alice. The message travels through system elm to user alice.

The next example shows a mail message that uses the alias.

Q

% Mail alice
Can we meet -at nine tomorrow?

Barbara

<ctrl-d>
%
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Aliasing takes place only on the host machine from which you originally
send the mail message. If you want to redirect incoming mail, use a
Jorward file. When a message is received, sendmail 1ooks for a forward
file in the recipient’s home directory. If sendmail finds that file, it forwards
the message to the address that the file contains. If mail is forwarded,
sendmail applies the same rules that it applied to the original recipient
address, and restarts the routing process.

A.5 UUCP and sendmail

The sendmail program uses UUCP to deliver mail to any system that can be
reached through UUCP.

UUCP has its own routing system. The standard sendmail.cf configuration
file uses the contents of /usr/lib/uucp/Systems 1o create a class of recognized
hosts to which mail may be sent directly via UUCP. The sendmail program
also supports access the local UUCP path alias database via the $P macro
and the $// pathalias lookup operator in the sendmail.cf configuration file.
Please see the rules pertaining to UUCP routing in the /usr/lib/sendmail.cf
file for more details.

In order for UUCP to function in the mail program, all systems that have
only UUCP on the local network must be listed in the UNIX system file
lusr/lib/luucp/Systems. You must become the superuser to edit this file.
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Search the /usr/lib/uucp/Systems file for this line:

dagwood Any dagwood Any unused ogin:-BREAK-ogin:
uucp ssword: secret

Modify this line to make it the same as the corresponding line in your
/etc/passwd file. Change uucp in the line above to your user name, and
change ssword to your UUCP password, if you have one.

A.6 Relevant Documentation

You can find useful information to help you plan and set up your electronic
mail system in these documents:

¢ "Communication Tutorial" in the IRIS-4D User’s Guide

¢ "Basic Networking" in the IRIX System Administrator’s Guide.

® Mail Reference Manual

* mail_att(1) for mail description, and mail_bsd(1) for Mail description in
the IRIX User’s Reference Manual.
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