FORTRAN 77 Language
Reference Manual

4 e
A

IRIS-40 Series

%% SiliconGraphics
Computer Systems

Document number: 007-0710-030

FORTRAN 77 Language
Reference Manual

Document Version 3.0

Document Number 007-0710-030

5/90

Technical Publications:

C J Silverio
Claudia Lohnes

Engineering:
Calvin Vu

© Copyright 1990, Silicon Graphics, Inc. - All rights reserved

This document contains proprietary and confidential information of
Silicon Graphics, Inc. The contents of this document may not be
disclosed to third parties, copied or duplicated in any form, in whole or
in part, without the prior written permission of Silicon Graphics, Inc.

Restricted Rights Legend

Use, duplication or disclosure of the technical data contained in this
document by the Government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause at DFARS 52.227-7013, and/or similar or successor
clauses in the FAR, or the DOD or NASA FAR Supplement.
Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N.
Shoreline Blvd., Mountain View, CA 94039-7311.

FORTRAN 77 Language Reference Manual
Document Version 3.0
Document Number 007-0710-030

Silicon Graphics, Inc.
Mountain View, California

IRIX is a trademark of Silicon Graphics, Inc. UNIX is a registered trademark of

AT&T Bell Labs. VMS and VAX are trademarks of the Digital Equipment Corporation.

Contents

1. FORTRAN Elements and Concepts...............cccocoevmnininennnenne 1-1
8 I T © Y=Y V=1 Y S 1-1
1.2 FORTRAN Character Set.........cccoooeevieniiiiniiiinine e 1—1

1.2.1 EsCape SeqUENCES.........cccvriieisiinieceeeee it 1-3
1.3 Collating SeqUeNCe........c.ccccrriiriiiniiis e 1-4
1.4 Symbolic Names........ccoccviiiiniiniiinnenece s 1-4
1.4.1 Scope of Symbolic Namescceceerieririeennnnnnne. 1-5
1.5 Source Program LiNes.........ccccecvrvrrrierininniinsesnee e 1-6
1.5.1 COMMENIS ..ooiiiiecieceee e s 1-6
1.5.2 Debugging LiNeS.......ccocovvvivriirieiciiin e 16
1.5.3 Initial LiN€S...ccoeeieiereeeeeee e 1-7
1.5.4 Fixed FOrmat.......cccooioiiiimniie s 1-7
1.5.5 TAB Character Formatting.............cococceninciinnnnnnn 1-8
1.5.6 Continuation Lines......cccccoervmmrniiiiiniiniicieciees 1-9
1.5.7 Blank LiNEScccvviuveiiiiiieiee i 1-9
1.6 Program Organization.............ccccevvvnmnnninncinessisnn, 1-10
1.6.1 FORTRAN Statements.........cccccerciiiniinniiniiinns 1-10
1.6.2 Program Units.......ccccooveviiiciniiniiniinieieens 1-11
1.6.3 Main Programcccccceriiiriiniininnensieseenns 1-11
1.6.4 SUDProgramsccceeceerrercieciiiii e 1-11
1.6.5 Intrinsic Functions........ccccccoovieiniiiii e, 1-12
1.6.6 Executable Programscccoociiinniiiinnecennn 1-12
1.7 Executable and Nonexecutable Statements...................... 1-13
1.7.1 Executable Statements.......c..ccococviiinniinnnnns 1-13
1.7.2 Nonexecutable Statementsccceeniin 1-14
1.7.3 Order of Statementsc..cccvveivevrieriecincnie 1-15
1.7.4 Execution SEQUENCE........cccceeverereriiriiiniee e 1-17

2. Data Types, Variables, and Arrayscccccoovereeveevrnenen. 2-1

21
2.2
2.3
24

25
2.6

2.7

2.8

OVEIVIBW. ...ttt et 2-1
Data Types of Symbolic Names............cccevvveveeveeeereereeeen. 2-2
Implicit Typing of Data.........ccooeceeerecieiececeee e 2-3
CoNSEANLS ...t 2-3
2.4.1 Integer CONStantscceceeeveeceeieeeesiein e 24
2.4.2 Hexadecimal Integer Constantscc.cccoenneee 2-5
2.4.3 Octal Integer Constantscccceeevvereevevcercesennnne 2-5
2.4.4 Real Constantscccceveeverevieeesreresesee e 2-6
245 Double Precision Constantscccccecovvvevnurrnenen. 2-8
2.4.6 Complex Constantsccccceeeeevrereereeeissseese e 2-9
2.4.7 Logical Constants.........c.ccoevrerueereeenersrereeirecienne 2-10
2.4.8 Character Constantsc..cccceeeveeiverceiseeeereens 2-11
2.4.9 Hollerith Constantscccccooeueeiecicceeece e 2-12
2.4.10 Bit Constantsccccceeevevceeiie s 2-14
Variables........coivevireeree et 2-15
Character SubStrings........ccoceeveeeee i 2-16
2.6.1 Substring Namescccccovevecnveceececrceee e 2-16
2.6.2 Substring Values €1, €2ccceeeveeeececrrcecrcnenne 2-17
RECOTAS ...t 2-18
2.7.1 Overview of Records and Structures.................... 2-18
2.7.2 Record and Field References............c.cceueunee.. 2-19
2.7.3 Aggregate Assignment Statement 2-19
AITAYS ... e s 2-20
2.8.1 Array Names and TYPESccceevevreemrerceccereeenen, 2-20
2.8.2 Array Declarators........ccccocevvrvrienieeeecece e 2-21
2.8.3 Value of Dimension Boundscccoeeenueeereennns 2-22
2.8.4 AITAY SiZ€oooieieeeeee et 2-23
2.8.,5 Storage and Element Ordering...........ccccovrreennne. 2-23
2.8.6 SUDSCIIPIS.....cceeeieer e 2-24

3. EXPreSSIONS..........ccccooiiiiiiiinitiininre et 3-1

I T @ 7Y V1= O 3-1
3.2 Arithmetic EXPressions.........ccccvviiienneeniinninnnsesce 3-2
3.2.1 Arithmetic Operators.........ccccoceriviivnninnesnncieenenne 3-2

3.2.2 Interpretation of Arithmetic Expressions................. 3-3

3.2.3 Arithmetic Operands.........cccocvrvrvmiiinninnineenneenn 34

3.2.4 Arithmetic Constant Expressions...........ccecveeneuennne. 3-6

3.2.5 Integer Constant EXpressionsccccocervviinnienins 3-7

3.2.6 Rules for Evaluating Arithmetic Expressions.......... 3-7

3.2.7 Exponentiation............cccvvenininiinni 3-9

3.2.8 Integer DiViSIONcccoveiinenininese e 3-9

3.3 Character EXpressionscccvvviieiiinninninnennenenc e 3-10
3.3.1 Concatenate Operatorccceevreerinnenieniennnn 3-10

3.3.2 Character Operands..........cccccevvrinnvensensesinnnnnens 3-11

3.3.3 Character Constant Expressions...........ccoceeeeueenne. 3-12

3.4 Relational EXpPressions.........ccoveviiiiinnnnniinseesessinsnnnnenens 3-12
3.4.1 Relational Operators..........cccccereeriniinnensiiieniinens 3-12

3.4.2 Relational Operands..........ccccvriiiiiiinnnnieniensinnnas 3-13

3.4.3 Evaluating Relational Expressions...........cc.ccecven.e. 3-13

3.4.4 Arithmetic Relational Expressions...........cccccceu.... 3-13

3.45 Character Relational EXpressionscccccceeunie. 3-14

3.5 Logical Expressions.........ccecerveeriiniiinnsinne JETUN 3-15
3.5.1 Logical Operatorscccevvrimrieriesesesiiesenanes 3-15

3.5.2 Logical Operandsccocevmnnrinereennas PR 3-16

3.5.3 Interpretation of Logical Expressions.................... 3-19

3.6 General Rules for Evaluating EXpressions............cccoceuenuen. 3-19
3.6.1 Precedence of Operators..........cccceouvenvriinieennnnen, 3-20

3.6.2 Integrity of Parentheses and Interpretation Rules .3—21

4. Specification Statements.................ccoconi 4—1
O T @ 1YY o 1= TP 41
4.2 AUTOMATIC, STATIC....cciietectrcrecerrnes e 4-3
4.3 BLOCK DATA. ..ottt s e 4-5
4.4 COMMON ..ot 4-6
45 DATA .o e e s 4-10
4.6 Data Type Statements.........cccocvverniiniiniinnins 4-14
4.6.1 Numeric Data TYpes.......ccocviiiriiennnenniininiees 4-14

4.6.2 Character Data Types......cccccviveviiiiiieniiieeniieeneas 4-17

4.8 EQUIVALENCEccoooiiieece et 4-21
4.9 EXTERNAL......ooooie e 4-25
410 IMPLICIT oottt 4-27
4101 USE ottt 4-27
4.10.2 SYNtax 1o s 4-27
4.10.3 SYNtax 2.....ccccovceeiiiiriinseee e s 4-29
4.10.4 SYNtaxX 3.....cociiiiiereee s 4-29
4.10.5 Rules for Use — All Syntaxes.......c..cceeeereerrerurenene. 4-30
4.10.6 EXamples......cccoccmiiimriniieece e 4-30
4.11 INTRINSIC......ociiieee e 4-31
4.12 NAMELIST ..ot 4-32
413 PARAMETER ..ottt 4-34
4.14 POINTER.....coieeieee et 4-37
4.15 PROGRAM ..ot 4-39
4.16 RECORD ..ottt s 4-40
4.7 SAVE ... 4-41
4.18 STRUCTURE /UNION.......ccooiriririreececre e 4-43
4.19 VOLATILE.......o oottt s 4-47
Assignment and Data Statementscccocece e 5-1
5.1 OVBIVIEW. ...ttt e 5-1
5.2 Arithmetic Assignment Statements.........c..ccccceeeecernrienenene. 5-1
5.3 Logical Assignment Statementsccccceeceeviiieceneiirccnnee. 5-5
5.4 Character ASSIGNMENt......ccccccevriereeneerie et 5-5
5.5 Aggregate Assignmentccccceveevieeiiiniie e, 5-6
5.8 ASSIGNooiiiiiee e e 5-6
5.7 Data Initializationccooovreiiinnieie e, 5-8
5.8 IMPlied-DOcccooiiiiicie e e 5-8
5.8.1 USE i 5-8
5.8.2 SyntaX......cccoeiiiiiiiniiiieeneen, TR 5-8
5.8.3 Method of Operation..........cccceeevvnininierneeieecrenen. 5-9
5.8.4 RUIES....cooi i 5-9

6. Control Statementscoooooiiiiii e 6—1

L 7 B @ 1Y7=Y V= TS 6-1
B.2 CALL e 6-2
6.3 CONTINUEttt ettt et e e 6-5
B.4 DO e s 6—6
8.5 DO WHILE ...t 6-11
8.6 ELSE ... 6-12
8.7 ELSE IF ettt 6-13
B.8 END ..ot 6-14
8.9 END DO.....eeee et 6-15
B.10 END IF ...ttt e 6-15
6.11 GO TO (Unconditional).........ccceveerrienniemnrsennee s 6-16
6.12 GO TO (Computed)ceceeeeeeeereeesiee et e 6-16
6.13 GO TO (Symbolic Name)........cccccereeverrieneiire e, 6-18
6.14 IF (ArithmEtiC) ...ceoiveeeeie e 6-19
6.15 IF (Branch Logical)ccceevrerrieciiieeeceeeee e 6-20
6.16 IF (Test Conditional)cccooevvieiminieieecceeccis 6-21
B.17 PAUSE........o oo 6-23
6.18 RETURN.....oooiiieeie et e 624
B.19 STOP ...t e e e e e st e e 625
7. Input/Output Processingcccooveviniininineceeseencnnee e 7-1
2 R O) V=1 4 V/ = RO OORRRRO 7-1
A = 1=ToT o (o [OOSR 7-1
7.2.1 Formatted RECOrds.........oecvvvrermreeeeeireeeevveneeee 7-2

7.2.2 Unformatted Recordscccccevvvrveveiiieeeeeineie e, 7-2

7.2.3 Endfile Recordscccceeeeeiiiieiiii e 7-2

7.3 /O StatementS.....cccooveviieiiiee e, 7-3
7.3.1 Unformatted Statements..........ccccccveveeiicccce e 7-3

7.3.2 Formatted Statementsccccceeeieeiiiiiin i 7-4

7.3.3 List-Directed Statementsccccccceeeivveieriiineeennnne 7-4

T FilES ettt e nnnnaane 7-5
741 External FileS.....cveeieiiieeieeieieieeeeeeeteeeeeeeeee e 7-6

7.4.2 Internal Files ..., 7-6

7.5 Methods of File ACCESSccceveeeiiiiiiieeee et 7-7
7.5.1 Sequential ACCESSceerrieriiriiieeree e 7-7

7.5.2 DireCt ACCESS..coevviiiiiiiiieiieeeee s 7-8

7.5.3 Keyed ACCESS.....cccoecmirieieiie et 7-8

7.6 UNIS oo s 7-9
7.6.1 Connection of a Unit............. e 7-9
7.6.2 Disconnection of a Unit..........cccoeriviininininnnins 7-9

Input/Output Statements ... 8-1

8.1 Statement SUMMArY........c.ccceviiiiiriii e 81

8.2 ACCEPT ... s 8-3

8.3 BACKSPACE.........o e 8—4

8.4 CLOSE....... ittt e 8-5

8.5 DECODE ... 8-7

8.6 DEFINE FILEooiiiieee et e 8-8

8.7 DELETE.....co ittt st e e 8-10

8.8 ENCODEccoo ot 8-11

8.9 ENDFILE ... 8-12

8.10 FIND ...t 8-14

8.11 INQUIRE.......cciieei ettt e e s 8-14

8.12 OPEN ...ttt s 8-20

8.13 PRINT OF TYPEoiiiiieiieeeeeee ettt 8-28

8.14 READ (Dir€Ct ACCESS)crverrrererrrreererresrerneeseessersesesseesaeens 8-29

8.15 READ (INdeXed)......eererereireeeee e e s 8-30

8.16 READ (INternal)coeviiieeriereeceeeee e 8-31

8.17 READ (Sequential)cccocooeierieriieieeseeeeeee et 8-32

8.18 REWIND. ..ot e e 8-38

8.19 REWRITE ...t s 8-39

8.20 UNLOGCK.......ocieeeriritirieriee s ee e s 8-40

8.21 WRITE (DireCt ACCESS)...c.ccurerrererrreraererieeesireesreesaseessnnes 841

8.22 WRITE (Indexed).........ccomrmmmiiirrnieeesceee e 842

8.23 WRITE (Internal)......cccccceriiriieree e 8-44

8.24 WRITE (Sequential)........ccecereererreereeeeeeceeee e 845

8.25 Control Information List — cilist.........ccooveriiiieniieeee 8-50
8.25.1 Unit Specifier — unum.........ccoeverieeiirieeeeeeenee 8-51
8.25.2 Format Specifier — FMTcooeviiiirrreeeeceeen, 8-52
8.25.3 Namelist Specifier — NMLccocceiiiiiiiicneens 8-53
8.25.4 Record Specifier — REC..........cccocoeiinveieereeee 8-53
8.25.5 Key-Field-Value Specifier — KEYccccecovnuennee 8-54
8.25.6 Key-of-Reference Specifier — KEYID.................. 8-55
8.25.7 Input/Output Status Specifier — i0s.........ccccueeeen. 8-55
8.25.8 Error Specifier — ERR.........ccoiiiiiiees 8-56
8.25.9 End-of-File Specifier — END..........ccceciiriirinnee 8-56

8.26 Input/Output List — i0list.........covovirciiiiie i 8-57

8.26.1 INPUt LiSt..cccveeeiireciie e 8-57
8.26.2 OULPUL LiStoevereieereeeeee e 8-58
8.26.1 Implied-DO LiStSccoerererirecececeesse s 8-59
8.27 Data Transfer Rulescccoovviiiniiiiiince e 8-60
8.27.1 Unformatted Input/Output..........ocovrvviiiiiininee 8-60
8.27.2 Formatted Input/Outputccecvreeeiiciniiiiien, 8-61
Format Specification.............ccoccooiiriiiiiii, 9-1
9.1 OVEIVIEW..cotieeeeeiee et s 9-1
9.2 Format Stored as a Character Entityccoccoveeininnnnn 9-2
9.3 FORMAT Statement..........cocevvererrenrein i 9-2
9.3.1 Format Specification........ccccecccerrcririinnniiiniiniie 9-2
9.3.2 Repeatable Descriptors............cccvveviniiiiiniiennneens 94
9.3.3 Format Specifier Usage........cccceovverermicninininnnnne 9-5
9.3.4 Variable Format Expressionsccccceverinirnnen. 9-7
9.3.5 General Rules for using FORMATccccccevvvennnne. 9-8
9.3.6 Input Rules Summarycccccovvvreiinccnininnnnae, 9-10
9.3.7 Output Rules Summarycceoviriviniinnnneennn 9-10
9.4 Field and Edit Descriptorsccccvviviiiiiiiiiiinieeies 9-11
9.5 Field Descriptor Reference.........ccooocviiniiiiiiiiiiiniieninns 9-12
9.5.1 Numeric Field Descriptors.........c.cccevrevrenneernennn, 9-12
9.5.2 Default Field Descriptor Parameters..................... 9-12
9.5.3 | Field Descriptor.......c.ccoeevirimerierrcciniinsieenee 9-14
9.5.4 O Field Descriptor.........cccocvverreevcinne e 9-16
9.5.5 ZField Descriptorc.cccrreeercerccrr s 9-18
9.5.6 F Field Descriptorccovvvivinninnincisceeeene, 9-19
9.5.7 E Field DesCriptorccconivniinnnininsinneneneeneenn 9-21
9.5.8 D Field Descriptor........cccoovveieeiriennneniiiniin s 9-24
9.5.9 G Field Descriptor.........cccceeeeeiencinie e 9-25
9.5.10 P Edit DeSCriptor.......cccecovvimrrriiciec e 9-28
9.5.11 L Edit Descriptorccoooeirierreer e 9-31
9.5.12 A Edit Descriptor.........ccccorvirieeeneneeennicies 9-31
9.5.13 Repeat Counts........cccecevvevreeeiinncr e 9-34
9.5.14 H Field Descriptor.........ccccviriiiiiniinnn e 9-34
9.5.15 Character Edit Descriptorc..ccceceieeverniiinnns 9-35
9.5.16 Q Edit DesCriptorcoccerierieeneeneseeeeeienine 9-36

—vii—

9.6 Edit Descriptor Referenceoceceeeeeeveeeeeeeeeeeeeeeeena 9-37

9.6.1 X Edit DesCriptor.........cccocevuriiirevereeeerieeeceee e 9-37

9.6.2 T Edit DeSCriptor........cccceeueeeereceice e 9-37

9.6.3 TL Edit Descriptor........cccovvveinisreece e 9-38

9.6.4 TR Edit Descriptorccccoceeevveeeiiieeee e 9-38

9.6.5 BN Edit Descriptor.........coccveveeeeeieiece e 9-38

9.6.7 BZ Edit DesCriptorccceeueeeceiiiece e, 9-39

9.6.8 SP Edit DeSCriptorccceeeeeeeeeeeiieieie e 9-39

9.6.9 SS Edit Descriptorc.cceueeveeveeieeceieeeeeeeeeeee 9-39
9.6.10 S Edit DesCriptor.........cccccvveriirereceeeeesriceciceee s 9-40
9.6.11 Colon DeSCriptOrccueeeveerereeeeicecee e 9-40
9.6.12 $ Edit DeSCriptorcceeeveueeeeeeeceeeeeeee e 9-40

9.7 Complex Data Editing.........ccccevurrreirieiiccce e 9-41
9.7.1 Carriage Controlccoeuveeereereeeceee e 9-42

9.7.2 Slash Editing......ccccecevumeieeiciccccececee e 9-43

9.8 Interaction Between I/O List and Format...............coco........ 9-44
9.9 List-Directed FOrmattingcccceeveevvercrirecereeee e 945
9.9.1 List-Directed INputccoveeumerieeeeiieicee e 9-45

9.9.2 List-Directed OUtpUL.........cccueereeeeiiicece e 9-48

10. Functions and Subprograms...................cccoeevevineecssieeeeen. 10-1
10,1 OVEIVIEW......eiiieieee et 10-1
10.2 Statement FUNCHONS..........ccccouieeeeeecieeeeeeeee e 10-2
10.2.1 Defining a Statement Functioncccveeeen..... 10-2
10.2.2 Referencing a Statement Function........................ 104
10.2.3 Operational Conventions and Restrictions 104

10.3 Parameter Passingccoeeeeeeeeireieesieeeeeeeeeee e 106
10.3.1 Dummy Arguments........ccceeveeveieeeeeeeee e, 106
10.3.2 Built-In FUNCHIONS......ccooeeiie e 10-7

10.4 Function and Subroutine Subprograms............cccccevveeen.. 10-8
10.4.1 Referencing Functions and Subroutines............... 10-9
10.4.2 Executing Functions and Subroutines................ 10-11

10.5 FUNCTION......ooiiiieeeee et 10-12
10.5.1 USE .o 10-12
10.5.2 SYNtaX. oo 10-12
10.5.3 Rules 0f USEccovveeeueeieticeeece e 10-13
10.5.4 ResStrictions........cooevveeeiieeececceeee e 10-13

- viii —

10.6 SUBROUTINEcoiiiiicccie e 10-14

10.6.1 USE i b 10-14
10.6.2 SYNAX...ccoiiieirie e 10-14
10.6.3 Rules of USEccevuviiirieiiriieeceeeeesieiiiins 10-14
10.6.4 ReStrCtioNS......ccocciiiiiiii 10-15

10.7 ENTRY oo e 10-16
10.7.1 USE oot 10-16
10.7.2 SYNEAX..eioiiieeceeie e e 10-16
10.7.3 Method of Operation............ccoceeviiiiiiciecnneecne 10-16
10.7.4 Rules of USEccocceiiiiiiiiiiiicc s 10-17
10.7.5 ReStCHONScooiiiiecie e 10-18

11. Compiler Options............cooii i 11-1
11.1 OPTIONS Statementccccooveviiiiiiiiicie e, 11-1
11.2 In-Line OPLONS .coviviiiriiie e 11-2
11.3 $COL72 OPtioN....cceeeeierieeiiirree e 11-3
11.4 $COLT120 OPON...c.eiuvierririie e 11-3
11.5 $FB6DO OPON ...ooeeeeeee et 11-3
11.6 $INCLUDE Optionccoovirvriiniiics st 11-3
11.7 SINT2 OptioN ..ooeieiiiier e e 114
11.8 $LOG2 OPLON ...cceeeveeviriiieee e 114
Appendix A: Intrinsic Functionsccoonn A-1
A1 Generic and Specific Names.............cccvvirvnnnninicneniins A-1
A.2 Referencing an Intrinsic Functionccccoeiiiincnenn, A-2
A.3 Operational Conventions and Restrictionsccccceeennen. A-3
A4 List Of FUNGHIONS....cccvieei et A-3

List of Figures

Figure 2-1. Order of Array Elementsccceceeeeeeeveereceececeee, 2-24
Figure 4-1. Logical Representation of EQUIVALENCE Statement. 4—-23
Figure 4-2. Logical Representation of EQUIVALENCE Statement. 4-24
Figure 4-3. Logical Representation of STRUCTURE Statement4—45
Figure 8-1. Namelist Input Data RUIESccccurvecureeeeereecrrereenen. 8-36
List of Tables
Table 1-1. Escape Sequences............ccccouvvueeeeeeeeceesesvcenseeeeese e 1-3
Table 2-1. Notation Forms for Real Constants............................ 2-7
Table 2-2 Invalid Real Constants..........cccccceeeeeerieincececcece, 2-7
Table 2-3. Invalid Double Precision Constantsc........... 2-9
Table 2-4. Valid Forms of Complex Data..........c..cccovevveeeerenennen. 2-10
Table 2-5. Invalid Forms of Complex Datacccueueeneeee.. 2-10
Table 2-6. » Valid Character Constants......... PP 2-11
Table 2-7. Invalid Character Constants...........c..c.cccvieveenevernene. 2-12
Table 2-8. Invalid Hollerith Constantsccccccoevieveeesneee. 2-13
Table 2-9. Bit Constants.........cccceveveeieviecececececee e 2-14
Table 2-10. Valid Substring Examples..........cccccceevvveevecennee. 2-17
Table 2-11. Determining Subscript Variables..............c.ceeen...... 2-25
Table 3—-1. Arithmetic Operators..........cccoecvvveveveeeeeeeeeeeeeeeeeenenns 3-2
Table 3-2. Interpretation of Arithmetic Expressions.................... 3-3
Table 3-3. Arithmetic Precedence............cccoeeveeevevceeececeseceenn, 3-3
Table 3-4. Data Type RanKScceeueeeeeurireecece e 3-8
Table 3-5. Logical Operators............cccveueeerreveeeceseeissseesnseens 3-15

Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table 3—-10.
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 5-1.
Table 6-1.
Table 8-1.
Table 8-2.
Table 8-3.
Table 8—4.
Table 8-5.
Table 8-6.
Table 8-7.
Table 8-8.
Table 8-9.
Table 9-1.
Table 9-2.
Table 9-3.
Table 9-4.
Table 9-5.
Table 9-6.
Table 9-7.
Table 9-8.
Table 9-9.
Table 9-10.

Logical Precedencecccocvveineiiiienniinciciensinne 3-16
Logical EXPressions.........c.cccvvrenieniesiinesinsesnsnennens 3-19
Arithmetic Precedence.........ccocoveverciiieicecnneninnne 3-20
Logical Precedenceccocvciinninriiininnicnennneenne 3-20
Precedence of Operators.........ccccocevieeeeneniniiennens 3-20
Static and Automatic Variables.............ccovveenennenne 4-3
Keywords for TYPE Statementsccocveneeenn. 4-14
Double Complex FUNCLions...........cccocveciiiicnienniennens 4-16
Keywords for TYPE Statementscccoeeeeinenns 4-27
Conversion Rules for Assignment Statements 5-3
Control Statementscccveevevereenenec s 6-1
File ACCESS TYPES ..cveiveruereriereerreesrereeee e ssassienens 8-15
Block Control Specifiers........ccccevvveeriineniiieiieninnnnns 8-16
Form Specifiers........ccovreveiriiniiiiiisicne e 8-17
Keyed Access Status Specifierscocovueinniennnns 8-17
Carriage Control Options........ccccevievvinnninininsiecceeaen 8-22
Disposition Options.........ccccvvuiiiniininnie e, 8-23
Default Formats of List-Directed Output.................. 8-48
Control Information List Specifiers...........ccccceeevninn. 8-51
Forms of the Key Field Value Specifier.................... 8-54
Summary of Field and Edit Descriptors...................... 9-6
Default Field Descriptors.........ccccovrernreenniiiiencienns 9-13
| Field Input Examples.........cocoveviieminnieeiiceiennene, 9-14
| Field Output Examples..........ccoevrmrvniininiinnnenncns 9-15
O Field Input Examples..........cccocvininnninienennienns 9-17
O Field Output Examples...........ccoconininnnineicnnnn, 9-17
Z Field Input Examplesccccccviinnimnniciennennenn 9-19
Z Field Output Examplescccccvvinvennenciennnnn 9-19
F Field Input Examplescoccovviimieiiniciee 9-20
F Field Output EXamplescccoeceviiiiniiennencenens 9-21

Table 9-11.
Table 9—12.
Table 9-13.
~ Table 9-14.
Table 9-15.
Table 9-16.
Table 9-17.
Table 9-18.
Table 9-19.
Table 9-20.
Table 9-21.
Table 9-22.
Table 9-23.
Table 9-24.
Table 9-25.
Table 9-26.
Table 9-27.
Table 9-28.

Table A-1.

E Field Input EXamplesccoverceeiiinieninnneniens 9-22
E Field Output Examples..........ccecceveriinircenceeenn. 9-24
D Field Input Examples..........cccceeeeeeriinnieensensennnes 9-25
D Field Output Examples.........ccccceeviencrinnescnrnncnns 9-25
Effect of Data Magnitude on G Format Conventions 9-26
G Field Output Examples.......ccccceevrrceerinnereieeenneens 9-27
Field Comparison Examples..........ccccccvueueeveereueenennne 9-28
Scale Factor Examples.........ccccovvvvnvceinvecceceenee. 9-29
Scale Format Output Examples...........cccoeevvvenenns 9-30
L Field EXampIesccccueveererneeiirncen e sseeeseesieens 9-31
I/O List Element Sizes.......cccoceveeerenvecnninie e 9-32
A Field Input Examples........cccccvvevveneinrcinevee e 9-33
A Field Output EXamplescccccevceevrercecrneeiencnenn, 9-33
H Edit Description Output Examples.........ccccceeeeenen. 9-34
Character Edit Description Examples..........c....c....... 9-35
Complex Data Editing Input Examples 9-41
Complex Data Editing Output Examples 941
Carriage Control Characters.........cccoccvvereirveeieenncens 9-42
Intrinsic FUNCHONS ...co.cooveiieee e e A5

- Xii -

Preface

About This Manual

This manual describes the FORTRAN 77 language specifications as
implemented on the Silicon Graphics IRIS-4D Series workstation. This
implementation of FORTRAN 77 contains full American National Standard
(ANSI) Programming Language FORTRAN (X3.9-1978). It has extensions that
provide full VMS FORTRAN compatibility to the extent possible without the
VMS operating system or VAX data representation. It also contains extensions
that provide partial compatibility with programs written in SVS FORTRAN and
FORTRAN 66.

FORTRAN 77 is referred to as FORTRAN throughout this manual, except
where distinctions between FORTRAN 77 and FORTRAN 66 are being

discussed specifically.

The compiler has the ability to convert source programs written in VMS
FORTRAN into machine programs executable under IRIX.

Standard FORTRAN 77 rules and syntax appear as normial text throughout the
manual, whereas text that describes extensions is shaded, as is this paragraph.

Intended Audience

This manual is intended as a reference manual rather than a tutorial, and
assumes familiarity with some algebraic language or prior exposure to
FORTRAN.

- xiii -

Corequisite Publications

This manual describes the FORTRAN language specifications. Refer to the
FORTRAN 77 Programmer’s Guide for information on the following topics:

* How to compile and link edit a FORTRAN program.
* Alignments, sizes , and variable ranges for the various data types.

» The coding interface between FORTRAN programs and programs written
in C and Pascal.

« File formats, run-time error handling, and other information related to the
IRIX operating system.

» Operating systems functions and subroutines that are callable by
FORTRAN programs.

e Multiprocessing FORTRAN enhancements.

Refer to the Languages Programmer’s Guide for information on the following
topics:

* Anoverview of the compiler system.

* Information on improving the program performance, showing how to use
the profiling and optimization facilities of the Compiler system.

* The dump utilities, archiver, and other tools for maintaining FORTRAN
programs.

Refer to the dbx Reference Manual for a detailed description of the debugger
(DBX).

For information on the interface to programs written in assembly language, refer

to the Assembly Language Programmer’s Guide.

For information on porting FORTRAN code, refer to Chapter 3 of the
Compatibility Guide.

- Xiv -

Organization of Information
The following topics are covered in this manual:
» FORTRAN language elements

« Data types, constants, variables and arrays
« Expressions

« FORTRAN statements, grouped according to the general class of functions
they perform:

Specification statements

Assignment statements

Control statements

Input/output statements

Format specifications

Appendix A contains tables showing the intrinsic functions supported.

- Xy -

Syntax Conventions

The following conventions and symbols are used in the text to describe the form ()
of FORTRAN statements:

UPPER CASE Upper case letters and words are to be written as shown,
except where noted otherwise.

lower case Lower case abbreviations and words represent characters or
numerical values that you define. You replace the
abbreviation with the defined value.

[Brackets are used to indicate optional items.

{} Braces surrounding two or more items indicate that at least
one of the items must be specified.

| The or symbol separates two or more optional items.

An ellipsis indicates that the preceding optional items may)
appear more than once in succession.

0 A pair of parentheses encloses entities and must be written as
shown.

(blank) Blanks have no significance unless otherwise noted.

Below are two examples illustrating the syntax conventions.
DIMENSION a(d) [,a(d)] ..

indicates that the FORTRAN keyword DIMENSION must be written as
shown, that the entity a(d) is required, and that one or more of a(d) may be
optionally specified. Note that the pair of parentheses () enclosing d are
required.

{STATIC | AUTOMATIC} v [,Vv] .. (
indicates that either the STATIC or AUTOMATIC keyword must be

written as shown, that the entity v is required, and that one or more of v
items may be optionally specified.

- xvi -

1. FORTRAN Elements and Concepts

1.1 Overview

This chapter provides definitions for the various elements that comprise a
FORTRAN program. The FORTRAN language is written using a specific set of
characters that form the words, numbers, names, and expressions that make up
FORTRAN statements. These statements form a FORTRAN program. The
FORTRAN character set, rules for writing FORTRAN statements, the main
structural elements of a program, and the proper order of statements in a
program are discussed in this chapter.

1.2 FORTRAN Character Set

The FORTRAN character set consists of 26 upper-case and 26 lower-case letters
(alphabetic characters), characters 0 through 9 (digits), and special characters.
This manual refers to letters (uppercase and lowercase) together with the
underscore (_) as extended alphabetic characters. The extended alphabetic
characters together with the digits are also referred to as alphanumeric
characters.

The complete character set is as follows:

Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Digits: 0123456789

Version 3.0 FORTRAN Elements and Concepts 1-1

Special Characters:

Blank

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis

Right Parenthesis

Comma

Decimal Point

$ Currency Symbol

Apostrophe

Colon

! Exclamation Point
Underscore

" Quotation Mark

+

ER e e e . L

Digits are interpreted in base 10 when a numeric value is represented.

A special character may serve as an operator, a part of a character constant, a
part of a numeric constant, or some other function.

Blank characters may be used freely to improve the appearance and readability
of FORTRAN statements. They have no significance in FORTRAN statements,
except in the following cases:

+ When used in character constants

* When used in H- and character-editing in format specifications
* When used in Hollerith constants

* To signify an initial line when used in column 6 of source line

* When counting the total number of characters allowed in any one statement

These special considerations are discussed in more detail in the appropriate
sections.

1-2 FORTRAN 77 Language Reference Manual IRIS-4D Series

with the —backsla

the program

o

s written

th routines

1

lity w

bi

compati

FORTRAN Elements and Concepts 1-3

Version 3.0

1.3 Collating Sequence

The collating sequence for letters and digits defines the relationship between
them and is used to compare character strings.

The collating sequence is determined as follows:

* Aisless than Z, and a is less than z. The order of listing the alphabetic
characters above specifies the collating sequence for alphabetic characters.
The relationship between the same letter in lowercase and uppercase is
unspecified.

* Oisless than 9. The order in which digits are listed above defines the
collating sequence for digits.

* Alphabetic characters and digits are not intermixed in the collating
sequence.

* The blank character is less than the letter A (upper- and lowercase), and less
than the digit 0.

* The special characters given as part of the character set are not listed in any
given order. There is no specification as to where special characters occur
in the collating sequence.

1.4 Symbolic Names

A symbolic name is a sequence of characters used to identify the following user-
defined local and global entities:

Local variable
constant
array
statement function
intrinsic function
dummy procedure

1-4 FORTRAN 77 Language Reference Manual IRIS-4D Series

Global common block
external function
subroutine
main program
block data subprogram

A symbolic name can contain any alphanumeric characters; digits and _
(underscore) are allowed in addition to upper- and lowercase alphabetic
characters. However, the first character must be a letter.

1. FORTRAN symbolic names may contain any number of characters, but
only the first 32 of these are significant in distinguishing one s ymboixc
name from another. Symbolic names that are used externally (program
names, subroutine names, function names, cmnmon block names) are

limited to 32 stgmflcant characters

2. The inclusion of the special perwd (.), underscore (_d), and dmlla;r ($)
characters in symbolic names is an enhancement to FORTRAD 77
FORTRAN 77, no special characters are allowed. ‘

Examples of valid symbolic names are:
CASH C3P0 R2D2 LONG NAME THIS
Examples of invalid symbolic names in are:

X*4 (Contains a special character)
3CASH (First character is a digit)

1.4.1 Scope of Symbolic Names

The rules for determining the scope of symbolic names are as follows:

1. A symbolic name that identifies a global entity, such as a common block,
external function, subroutine, main program, or block data subprogram has
the scope of an executable program. It must not identify another global
entity in the same executable program.

2. A symbolic name that identifies a local entity, such as an array, variable,
constant, statement function, intrinsic function, or dummy procedure, has

Version 3.0 FORTRAN Elements and Concepts 1-5

the scope of a single program unit. It must not identify any other local
entity in the same program unit.

3. A symbolic name assigned to a global entity in a program unit must not be (u
used for a local entity in the same unit. However, it may be used for a
common block name, or an external function name, that appears in a
FUNCTION or ENTRY statement.

1.5 Source Program Lines

A source program line can be thought of as a sequence of character positions,
called columns, numbered consecutively starting from Column 1 on the left.
Lines can be classified as comment lines, initial lines, continuation lines, and
debugging lines (an extension to FORTRAN 77).

1.5.1 Comments

A comment line is used solely for documentation purposes and does not affect (
the execution of a program. A comment line may appear anywhere and has one
of the following characteristics:

* An upper-case C (C) or an asterisk (*) in Column 1, and any sequence of
characters from Column 2 through to the end of the line

¢ A blank line

i

L v
1.5.2 Debugging Lines

A upper-case D in Column 1 can be specified for debugging purposes; it permits

the conditional compilation of source lines in conjunction with the d_lines
option described in Chapter 1 of the FORTRAN Programmer's Guide. When (
the option is specified at compilation, all lines with a D in Column 1 are treated

as lines of source code and compiled; when the option is omitted, all lines with a

D in Column 1 are treated as comments.

1-6 FORTRAN 77 Language Reference Manual IRIS-4D Series

1.5.3 Initial Lines

Initial lines contain the FORTRAN language statements that make up the source
program,; these statements are described in detail under Program Organization
later in this chapter. Each FORTRAN line is divided into the following fields:

« Statement label field

» Continuation indicator field

+ Statement field

¢ Comment field

The fields in a FORTRAN line can be entered either on a character-per-column

basis, or by using the TAB character to delineate the fields, as described in the
following sections.

1.5.4 Fixed Format

Consider a FORTRAN line to be divided into columns, with one character per
column as indicated below:

Field Column
Statement Label 1 through 5

Continuation Indicator 6

Statement 7 to the end of the line or to the start of the
comment field
Comment (optional) 73 through end of line

The —col72, —col120, —extend_source, and —noextend_source command line
options are provided to change this format. See Chapter 1 of the FORTRAN
Programmer’s Guide for details. Several of these ﬁptmns can be spwﬁed in-
line as described in Chapter 11.

Version 3.0 FORTRAN Elements and Concepts 1-7

1-8

FORTRAN 77 Language Reference Manual

IRIS-4D Series

1.5.6 Continuation Lines

A continuation line is a continuation of a FORTRAN statement and is identified
as follows:

e Columns 1 through 5 must be blank.

e Column 6 contains any FORTRAN character, other than a blank or the digit
0. Column 6 is frequently used to number the continuation lines.

As with initial lines, Columns 7 through the end of the line contain the
FORTRAN statement or a continuation of the statement.

Alternatively, an ampersand (&) in Column 1 can also identify a continuation
line. When an & is used in Column 1, Columns 2 through the end of the line are
considered part of the statement. In FORTRAN 77, any remaining columns
(73-...) of a continuation line are not interpreted.

Up to 19 continuation lines in a row are allowed.

1.5.7 Blank Lines

A line that is entirely blank is a comment line. It can improve the readability of
a program.

v

Version 3.0 FORTRAN Elements and Concepts 1-9

1.6 Program Organization

Program units are made up of FORTRAN statements. A FORTRAN program
consists of one or more program units.

1.6.1 FORTRAN Statements

FORTRAN statements are used to form program units. Each statement is
written from Column 7 onwards of an initial line and Column 7 onwards of as
many as 99 continuation lines. -

A statement must not begin on a line that contains any portion of a previous
statement, except as part of a logical IF statement.

The END statement signals the physical end of a FORTRAN program unit, and
begins in Column 7 or any later column of an initial line. No other statement
may have an initial line that contains END as its first three nonblank characters.

All FORTRAN statements, except for assignment and statement function
statements, begin with a keyword. A keyword is a sequence of characters that
identifies the type of FORTRAN statement.

A statement label provides a means of referring to individual FORTRAN

statements. A statement label consists of one to five digits—one of which must
be nonzero—placed anywhere in Columns 1 through 5 of an initial line. Blanks
and leading zeros are not significant in distinguishing between statement labels.

The following statement labels are equivalent:
"w 123 " "123 "w "1 2 3" "00123"

Two or more statements in a program unit must not have the same statement
label.

It is not necessary to label a FORTRAN statement. However, only labeled
statements may be referenced by other FORTRAN statements. PROGRAM,
SUBROUTINE, FUNCTION, BLOCK DATA, and INCLUDE statements must
not be labeled.

1-10 FORTRAN 77 Language Reference Manual IRIS-4D Series

1.6.2 Program Units

A program unit consists of a sequence of statements and optional comment
lines. It may be a main program or a subprogram. The program unit defines
the scope for symbolic names and statement labels.

A program unit always has an END statement as its last statement.
1.6.3 Main Program

The main program is the program unit that initially receives control upon
execution.

A main program may have a PROGRAM statement as its first statement. It may
contain any FORTRAN statement, except a FUNCTION, SUBROUTINE,
BLOCK DATA, ENTRY, or RETURN statement. A SAVE statement in a main
program does not affect the status of variables or arrays. A STOP or END
statement in a main program terminates execution of the program.

The main program may be a non-FORTRAN main program. See Chapter 3 of
the FORTRAN 77 Programmer’s Guide for information on writing FORTRAN
programs that interact with programs written in other languages.

A main program may not be referenced from a subprogram or from itself.
1.6.4 Subprograms

A subprogram is a program unit that receives control when referenced or called
by a statement in a main program or another subprogram.

A subprogram may be:

» afunction subprogram identified by a FUNCTION statement

a subroutine subprogram identified by a SUBROUTINE statement
» ablock data subprogram identified by a BLOCK DATA statement

« anon-FORTRAN subprogram

Version 3.0 FORTRAN Elements and Concepts 1-11

Subroutines, external functions, statement functions, and intrinsic functions are
collectively called procedures. A procedure is a program segment that performs
an operational function.

An external procedure is a function or subroutine subprogram that is processed
independently of the calling or referencing program unit. It may be written as a

non-FORTRAN subprogram as described in Chapter 3 of the FORTRAN 77
Programmer’s Guide.

1.6.5 Intrinsic Functions

Intrinsic functions are supplied by the processor and are generated as in-line
functions or library functions. See Appendix A for a description of the
functions, the results given by each, and their operational conventions and
restrictions.

Program units are made up of FORTRAN statements. A FORTRAN program
consists of one or more program units.

1.6.6 Executable Programs

An executable program consists of exactly one main program and zero or more
of each of the following entities:

* Function subprogram

* Subroutine subprogram

* Block data subprogram

* Non-FORTRAN external procedure

The main program must not contain an ENTRY or a RETURN statement. Upon
encountering a RETURN statement, the compiler issues a warning message; at
execution time, a RETURN statement stops the program. Execution of a

program normally ends when a STOP statement is executed in any program unit
or when an END statement is executed in the main program.

1-12 FORTRAN 77 Language Reference Manual IRIS-4D Series

1.7 Executable and Nonexecutable Statements

FORTRAN statements are classified as executable or nonexecutable statements.

1.7.1 Executable Statements

An executable statement specifies an identifiable action and is part of the
execution sequence in an executable program. Executable statements are
organized into three classes.

Assignment statements:

« Arithmetic, logical, statement label (ASSIGN), and character assignment
Control statements:

* Unconditional, assigned, and computed GO TO

» Arithmetic IF and logical IF

» Block IF, ELSE IF, ELSE, and END IF

+ CONTINUE

* STOP and PAUSE

- DO

DO WHILE

e CALL and RETURN

« END

« ENDDO

Version 3.0 FORTRAN Elements and Concepts 1-13

Input/Output statements:
'« READ, WRITE, and PRINT

« REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE, and INQUIRE.

L

1.7.2 Nonexecutable Statements

A nonexecutable statement is not part of the execution sequence. A statement
label is permitted on most types of nonexecutable statements but that label must
not be used for an executable statement in the same program unit.

A nonexecutable statement may perform one of the following functions:

¢ Specify the characteristics, storage arrangement, and initial values of data

» Define statement functions

* Specify entry points within subprograms

¢ Contain editing or formatting information

¢ Classify program units

» Specify inclusion of additional statements from another source

The following data type statements are classified as nonexecutable:

CHARACTER type
COMPLEX
DIMENSION
DOUBLE PRECISION
INTEGER

LOGICAL

REAL

1-14 FORTRAN 77 Language Reference Manual IRIS-4D Series

Other program statements that are also classified as nonexecutable include the

following:

BLOCK DATA
COMMON
DATA

ENTRY
EQUIVALENCE
EXTERNAL
FORMAT
FUNCTION
IMPLICIT

1.7.3 Order of Statements

INCLUDE
INTRINSIC

PARAMETER

PROGRAM

SAVE
SUBROUTINE
Statement function

s

The following rules determine the order of statements in a main program or

subprogram:

1. In the main program, a PROGRAM statement is optional; if used, it must be
the first statement. In other program units, a FUNCTION, SUBROUTINE,
or BLOCK DATA statement must be the first statement.

2. Comment lines can be interspersed with any statement and can precede a
PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA statement.

3. FORMAT and ENTRY statements may be placed anywhere within a
program unit after a PROGRAM, FUNCTION, SUBROUTINE, or BLOCK

DATA statement.

4. ENTRY statements may appear anywhere in a program unit except:

e between a block IF statement and its corresponding END IF statement

« within the range of a DO loop; that is, between a DO statement and the
terminal statement of the DO loop

Version 3.0

FORTRAN Elements and Concepts 1-15

The FORTRAN 77 standard requires that specification statements,
including the IMPLICIT statement, be placed before all DATA statements,
statement function statements, and executable statements.

Specification statements specifying the type of the symbolic name of a
constant must appear before the PARAMETER statement that identifies the
symbolic name with that constant.

The FORTRAN 77 standard allows PARAMETER statements to
intersperse with IMPLICIT statements or any other specification statements,
but a PARAMETER statement must precede a DATA statement.

PARAMETER statements that associate a symbolic name with a constant
must precede all other statements containing that symbolic name.

All statement function statements must precede the first executable
statement.

IMPLICIT statements must precede all other specification statements
except PARAMETER statements.

The last statement of a program unit must be an END statement.

1-16 FORTRAN 77 Language Reference Manual IRIS-4D Series

1.7.4 Execution Sequence

The execution sequence in a FORTRAN program is the order in which
statements are executed. The normal sequence of execution is the order in
which statements appear in a program unit. This is carried out as follows:

» Execution begins with the first executable statement in a main program and
continues from there.

e When an external procedure is referenced in a main program or in an
external procedure, execution of the calling or referencing statement is
suspended. Execution continues with the first executable statement in the
called procedure immediately following the corresponding FUNCTION,
SUBROUTINE, or ENTRY statement.

* Execution is returned to the calling statement via an explicit or implicit
return statement.

e Normal execution proceeds from where it was suspended or from an
alternate point in the calling program.

e The executable program is terminated normally when the processor
executes a STOP statement in any program unit or an END statement in the
main program. Execution is also terminated automatically when an
operational condition prevents further processing of the program.

Version 3.0 FORTRAN Elements and Concepts 1-17

Normal execution sequence may be altered by a FORTRAN statement that
causes the normal sequence to be discontinued or causes execution to resume at
a different position in the program unit. Statements that can cause a transfer of
control are:

« GOTO

o Arithmetic IF

+ RETURN

+ STOP

e An input/output statement containing an error specifier or end-of-file
specifier

e CALL with an alternate return specifier

» Alogical IF containing any of the above forms

e Block IF and ELSE IF

» The last statement, if any, of an IF block or ELSE IF block
« DO

e The terminal statement of a DO loop

« END

1-18 FORTRAN 77 Language Reference Manual IRIS-4D Series

2. Data Types, Variables, and Arrays

2.1 Overview

In general, there are three kinds of entities that have a data type: constants, data
names, and function names. FORTRAN allows these types of data:

INTEGER——positive and negative integral numbers, and zero
REAL—positive and negative numbers with a fractional part, and zero

DOUBLE PRECISION—same as REAL but using twice the storage space
and possibly greater precision

COMPLEX—ordered pair of REAL data: real and imaginary parts, as in
m + ni

DOUBLE COMPLEX—ordered pair of double precision data
LOGICAL—boolean data representing true or false
CHARACTER - character strings

HOLLERITH— an historical data type for character definition

Together, INTEGER, REAL, DOUBLE PRECISION, COMPLEX, and
DOUBLE COMPLEX constitute the class of arithmetic data types.

Version 3.0 Data Types, Variables, and Arrays 2-1

The type of data is established in one of two ways: implicitly, depending on the
first letter of its symbolic name (described in this chapter), or explicitly through
a type statement (described in Chapter 4).

A data value may be a variable or a constant, that is, its value either can or
cannot change during the execution of a program. An array is a sequence of
data items occupying a set of consecutive bytes.

2.2 Data Types of Symbolic Names

A symbolic name has a definite data type in a program unit, and the type may be
any of the following:

INTEGER [*1 | *2 | *4]

REAL [*4 | *8] or DOUBLE PRECISION
COMPLEX [*8 | *16]

LOGICAL [*1 | *2 | *4]

CHARACTER [*n]

The optional length specifier that follows the type name determines the number
of bytes of storage for the data type. If the length specifier is omitted, the
compiler uses the defaults listed in Chapter 2 of the FORTRAN 77
Programmer’s Guide.

In general, wherever the usage of a given data type is allowed, it can have any
internal length. One exception to this is the use of integer variables for assigned
GOTO statements. In this case, the integer variable must be 4 bytes in length.

Data of a given type and different internal lengths may be intermixed in
expressions. The resultant value is represented in the larger of the internal

representations present in the expression.

Note: The lengths of arguments in actual and formal parameter lists and
COMMON blocks must agree to get predictable results.

2-2 FORTRAN 77 Language Reference Manual IRIS-4D Series

2.3 Implicit Typing of Data

If not explicitly specified by a type statement or a FUNCTION statement, the
data type of a data item or a data name or function name is determined implicitly
by the first character of its symbolic name. By default, symbolic names
beginning with I, J, K, L, M, or N (upper case or lower case)are of type
INTEGER; names beginning with all other letters are of type REAL. The
default implicit data type corresponding to each letter of the alphabet may be
changed or confirmed through an IMPLICIT statement.

The data type of external functions and statement functions is implicitly
determined in the same manner as above. The type of an external function may
also be explicitly declared in a FUNCTION statement.

2.4 Constants

A constant is a data value that cannot change during the execution of a program
and can be of the following types:

e arithmetic constants
¢ logical constants

e character constants
+ bitconstants

The form in which a constant is written specifies both its value and its data
type. A symbolic name can be assigned for a constant using the PARAMETER
statement. Blank characters occurring within a constant are ignored by the
processor unless the blanks are part of a character constant.

The compiler supports the following types of arithmetic constants: integer, real,
double precision, complex, and double complex. An arithmetic constant may be
signed or unsigned. A signed constant has a leading plus or minus sign to
denote a positive or negative number, respectively. A constant that may be
either signed or unsigned is an optionally signed constant. Only arithmetic
constants can be optionally signed.

Version 3.0 Data Types, Variables, and Arrays 2-3

Bit constants do not have an implicit data type associated with them; their type
is determined by the context in which they appear.

The sections that follow describe the various types of constants in detail.

Note: The value zero is considered neither positive nor negative: a signed
zero has the same value as an unsigned zero.

2.4.1 Integer Constants

An integer constant is a whole number with no decimal points; it can have a
positive, negative, or zero value.

An integer constant has the following form:

sww
where:
s is the sign of the number: - for negative, + (optional) for
positive.
ww is a whole number.

An integer constant is written with a sign (optional for +) followed by a string of
decimal digits interpreted as a decimal integer. When used in FORTRAN, an
integer constant must comply with the following rules:

¢ It must be a whole number, that is, without a fractional part.

e Ifnegative, the special character minus (-) must be the leading character.
The plus sign (+) in front of positive integers is optional.

« It must not contain embedded commas.

Examples of valid integer constants are:

0 +0 +176 -1352 06310 35

2-4 FORTRAN 77 Language Reference Manual IRIS-4D Series

Examples of invalid integer constants are:

2.03 Decimal point not allowed. This is a real constant (described in a
following section of this chapter).

7,909 Embedded commas not allowed.

2.4.2 Hex

. |
, cluaracter failaw::d by any of tixe d1g1ts €}
through 9 or the letters A through F (either uppercase or lowercase). The
following are valid examples of h cimal integer constants.

$01§3456?8 9
SABCDEEF
$A2132C3D4

You can use hexadﬁmmal integer constants wherever integer constants are
allawed Note that in mixed mode expressions, the compiler converts these
constants from type integer to the dominant type of the expression in which they
appear.

2.4.3 Octal Integer Constants

~ Octal integer constants permit the use of a base 8 radix. The type of an octal
integer constant is INTEGER, in contrast to the octal constant described in the
section of this chapter on bit constants. This constant is supported to provide
compatibﬂity Wiﬂ‘l PDP-11 FORTRAN.

The format of an octal constant is as follows:
o'string"

where string is one or more digits in the range of 0 through 7.

Version 3.0 Data Types, Variables, and Arrays 2-5

2.4.4 Real Constants

A real constant is a number containing a decimal point or exponent, or both; it
can have a positive, negative, or zero value.

A real constant can have the following forms:

sww.ff Basic real constant

sww ffEsee Basic real constant followed by a real exponent

swwEsee Integer constant followed by a real exponent

where:

s is the sign of the number: - for negative, + (optional) for
positive.

ww is a string of digits denoting the whole number part, if
any.

is a decimal point.

yid is a string of digits denoting the fractional part, if any.
Esee denotes a real exponent, where see is an optionally signed
integer.

A basic real constant is written as an optional sign followed by a string of
decimal digits containing an optional decimal point. There must be at least one
digit.

A real exponent denotes a power of ten.
The value of a real constant is either the basic real constant or, for the forms

sww.ffEsee and swwEsee, the product of the basic real constant or integer
constant and the power of ten indicated by the exponent following the letter E.

2-6 FORTRAN 77 Language Reference Manual IRIS-4D Series

()

All three forms can contain more digits than the precision used by the processor
to approximate the value of the real constant. See Chapter 2 of the FORTRAN
Programmer’s Guide for information on the magnitude and precision of a real
number.

The following examples illustrate real constants written in common and
scientific notation with their corresponding E format:

Common Notation Scientific Notation Real Exponent Form
5.0 0.5*%10 .5E1

364.5 3.465%102 .3645E3

49,300 4.93%104 .493E5

-27,100 -2.71*10* -.271E5
-.0018 -1.8*1072 -.18E-2

Table 2-1. Notation Forms for Real Constants
The following real constants are equivalent:
5E4 5.E4 .5E5 5.0E+4 +5E04 50000.

The following table shows some invalid real constants and the reasons they are
invalid.

Invalid Constant Reason Invalid
-18.3E No exponent following the E
E-5 Exponent part alone
6.01E2.5 Exponent part must be an integer
3.5E4E2 Only one exponent part allowed per constant
19,850 Embedded commas not allowed

Table 2-2. Invalid Real Constants

Version 3.0 Data Types, Variables, and Arrays 2-7

2.4.5 Double Precision Constants

A double precision constant is similar to a real constant, except it can retain
more digits of the precision than a real constant. (The size and value ranges of
double precision constants are given in Chapter 2 of the FORTRAN 77
Programmer’s Guide.)

A double precision entity can assume a positive, negative, or zero value and
may be written in one of the following forms:

swwDsee An integer constant followed by a double precision
exponent

sww ffDsee A basic real constant followed by a double precision
exponent

where:

s is an optional sign.

ww is a string of digits denoting the whole number part, if
any.

yid is a string of digits denoting the fractional part, if any.

Dsee denotes a double precision exponent, where see is an

optionally signed exponent.

The value of a double precision constant is the product of the basic real constant
part or integer constant part and the power of ten indicated by the integer
following the letter D in the exponent part. Both forms can contain more digits
than used by the processor to approximate the value of the real constant. See
Chapter 2 of the FORTRAN 77 Programmer’s Guide for information on the
magnitude and precision of a double precision constant.

Valid forms of double-precision constants are:
1.23456D3
8.9743D0

-4.D-10
16.8D-6

2-8 FORTRAN 77 Language Reference Manual IRIS-4D Series

(

The following forms of the numeric value 500 are equivalent:
5D2 +5D02 5.D2 5.D+02 5D0002

The following table shows some invalid double-precision constants and the
reasons they are invalid.

Invalid Constant Reason Invalid
2.395D No exponent following the D
-9.8736 Missing D exponent designator
1,010,203D0 Embedded commas not allowed

Table 2-3. Invalid Double-Precision Constants

2.4.6 Complex Constants

A complex constant is a processor approximation to the value of a complex
number. It is represented as an ordered pair of real data values. The first value
represents the real part of the complex number and the second represents the
imaginary part. Each part has the same precision and range of allowed values as
for real data.

A complex constant has the form:

(m, n)
where m and n each have the form of a real constant, representing the complex
value m + ni, where i is the square root of —1. m denotes the real part; n denotes

the imaginary part. Both m and n can be positive, negative, or zero.

Examples of valid forms of complex data are:

Version 3.0 Data Types, Variables, and Arrays 2-9

Valid Complex Constant Equivalent Mathematical Expression

(3.5, -5) 3.5 - 51

(0, -1) -1

(0.0, 12) 0+ 12ior 121
(2E3, 0) 2000 + 01 or 2000

Table 2-4. Valid Forms of Complex Data

The following table shows some invalid constants and the reasons they are
invalid.

Invalid Constant Reason Invalid
(1,) No imaginary part
(1, 2.2, 3) More than two parts
(10, 52.D5) Double precision constants not allowed for either
part
(1.15, 4E) Imaginary part has invalid form

Table 2-5. Invalid Forms of Complex Data
2.4.7 Logical Constants
A logical constant represents only the values true or false.

A logical constant is specified by one of the following forms and has the
indicated value:

Form Value
.TRUE. true
.FALSE. false

2-10 FORTRAN 77 Language Reference Manual IRIS-4D Series

2.4.8 Character Constants

A character constant is a string of one or more characters capable of being
represented by the processor. Each character in the string is numbered
consecutively from left to right beginning with 1.

Note: The quotation ch:

If the delimiter is ", then a quotation mark within the character string is
represented by two consecutive quotation marks with no intervening blanks.

If the delimiter is ', then an apostrophe within the character string is represented
by two consecutive apostrophes with no intervening blanks.

Blanks within the string of characters are significant.
The length of a character constant is the number of characters, including blanks,
between the delimiters. The delimiters are not counted, and each pair of

apostrophes or quotation marks between the delimiters counts as a single
character.

H@llenth constant.

Néte: Character constants cannot be usrsd as actuai argumeni:ﬁ to numernc typed
| dummy arguments. ,

The following table gives examples of valid character constants and shows how
they are stored.

Constant How Stored
'DON' 'T' DON'T
"I'MHERE!" I'M HERE!
'STRING' STRING
"IMN""OP' ILMN""OP

Table 2-6. Valid Character Constants

Version 3.0 Data Types, Variables, and Arrays 2-11

ter missing
iters

1

m

limi
tched delimiters
in deli

d character constants and the reasons they
de

ing

id Character Constants

i
t

al
ina

inv
sma

Zero length not allowed
Zero length not allowed

Reason Invali
Not enclosed

Term
Mi

Table 2-7. Inval

table shows some

ing

T

li
"ISN

S
CENTS

wu

are mva.

Invalid Constant

The follow

e’

o @// .
. -
. \\\///

-
.

=
.

o

-
/&«\A\\\Mmm
o

L

,
o

o
-

S
e
5 -

=

> a%zf -
- 5 WW/M/
XMWM«? -
- @‘w&w
a8

IRIS-4D Series

FORTRAN 77 Language Reference Manual

2-12

.
.
s

= - s L

= - 5 ana

.

1.

Data Types, Variables, and Arrays 2-13

Version 3.0

AAA,”N,,,,W . - ‘
o i

.

. . : . = /%%\\ =il - i . . .

L . i - @A i
\«W\\\\\%// < .
. :

O

. =

- ‘ 1 e = - s o - - :
- =

.
-

‘ 2 . : \W\\// . .

= = . - - -
5
S

S . . - .
o o i - - o -
e ; s : - g -
o= P \\\\N\mw - = . v%v\\\\ .

\Wﬁ o

o

P ‘ _ \

S

.

2 : . - - . , . E
E . . - - = o

e

| = et) = e - - -
| © > 3 , = . . e . 5

e

.

. .

.
e ,
-
.

. 0 &
o 5 5 -
= - =28

.

o

. = o i \/M\/w . 1 - o
. o= = \ @fy// . s . . - .
oo i = : o w50 | - . e
: S . 1 . L . . = e o .
. ///N/////// . . . = &N\\\ = . - \\\\\\%
o e bt i
L . i . . ///f : e

IRIS-4D Series

FORTRAN 77 Language Reference Manual

2-14

2.5 Variables

A variable is an entity with a name, data type, and value. Its value is either
defined or undefined at any given time during the execution of a program.

The variable name is a symbolic name of the data item and must conform to the
rules given for symbolic names. The type of a variable is explicitly defined in a
type-statement or implicitly by the first character of the name.

A variable may not be used or referred to unless it has been defined through an
assignment statement, input statement, DATA statement, or through association

with a variable or array element that has been defined.

Version 3.0 Data Types, Variables, and Arrays 2-15

2.6 Character Substrings

A character substring is a contiguous sequence of characters hat is part of a
character data item. A character substring must not be empty; i.e., it must
contain at least one byte of storage. Each character is individually defined or
undefined at any given time during the execution of a program.

2.6.1 Substring Names

A substring name allows the corresponding substring to be defined and refer-
enced in a character expression. A substring name has one of the following
forms:

v([el]l:[e2])
a(s[,s]...) ([ell:[e2])

where:
v is a character variable name.

a is a character array name.

el and e2 are integer expressions, called substring expressions.

s is a subscript expression.

The value el specifies the leftmost character position of the substring relative to
the beginning of the variable or array element from which it was abstracted,
while e2 is the rightmost position. Positions are numbered left to right
beginning with 1. For example, EX(3:5) denotes characters in positions three

. through five of the character variable EX. C(2,4)(1:5) specifies characters in
positions one through five of the character array element C(2,4).

A character substring has the length e2 - el + 1.

2-16 FORTRAN 77 Language Reference Manual IRIS-4D Series

2.6.2 Substring Values e1, e2

The value of the numeric expressions e/ and e2 in a substring name must fall
within the range:

1<el<e2<len
where len is the length of the character variable or array element. A value of
one is implied if e/ is omitted. A value of len is taken if e2 is omitted. When

both el and e2 are not specified, the form v(:) is equivalent to v and the form a(s
[,s]...)(:) is equivalent to a(s [,s]...).

The specification for e/ and e2 can be any numeric integer expression, including
array element references and function references. Consider the character
variable

XCHAR = '"QRSTUVWXYZ'.

Examples of valid substrings taken from this variable are:

Expression Substring Value Substring Length
EX1 = XCHAR (3:8) STUVWX 6
EX2 = XCHAR (:8) QRSTUVWX 8
EX3 = XCHAR (5:) UVWXYZ 6

Table 2-10. Valid Substring Examples
Other examples are:
BQ(10) (2:1IX) Specifies characters in positions 2 through integer IX
of character array BQ(10). The value of IX must be

2 2 and < the length of an element of BQ.

BLT (:) Equivalent to the variable BLT.

Version 3.0 Data Types, Variables, and Arrays 2-17

.

T

o - s g
S F 5
, .

\&\wﬂb\%
- .

2 s
[.

S . .

~ -

.

. . .

3 . . o
= 2|

i

i

o

-

g

i

-

e
«%ﬂ%?//«/%/ﬂdx\\\\
oy
N
. 5

e
.
-
e

e

=

-

%\\

.

O

S

i

o

i

e

i Y i

. =
. z@

IRIS-4D Series

FORTRAN 77 Language Reference Manual

2-18

i

asmgnment statement is indicated by an aggregate reference on the left hand sxde:
of an assignment statement, and requires an identical aggregate to appear on the
right hand side of the assisnment. ‘

Version 3.0 Data Types, Variables, and Arrays 2-19

2.8 Arrays

An array is a nonempty sequence of data of the same type occupying consecu-
tive bytes in storage. A member of this sequence of data is referred to as an
array element.

Each array has the following characteristics:
¢ An array name
¢ A datatype
* Array elements
» An array declarator specifying:
— The number of dimensions
— the size and bounds of each dimension

An array can be defined using a DIMENSION, COMMON, or type statement
(described in Chapter 4); it can have a maximum of seven dimensions.

Note: For information on array handling when interacting with programs
written in another language, see Chapter 3 of the FORTRAN 77
Programmer’s Guide.

2.8.1 Array Names and Types

An array name is the symbolic name given to the array and must conform to the
rules given in Chapter 1 given for symbolic names. An array can be specified
by the array name alone when reference is made to the array as a whole. An
array name is local to a program unit.

An array element is specified by the array name and a subscript. The form of an
array element name is:

a (s [,s]...)

2-20 FORTRAN 77 Language Reference Manual iRIS-4D Series

where:
a is an array name.
(s [,s]...) is a subscript.
s is a subscript expression.

The number of subscript expressions must be equal to the number of dimensions
in the array declarator for the array name.

An array element can be any of the types of data allowed in FORTRAN. All

array elements are the same data type. The data type is specified explicitly using
a type statement, or implicitly by the first character of the array name.

2.8.2 Array Declarators

An array declarator specifies a symbolic name for the array, the number of
dimensions in the array, and the size and bounds of each dimension. Only one
array declarator for an array name is allowed in a program unit. The array
declarator may appear in a DIMENSION statement, a type statement, or a
COMMON statement, but not more than one of these.

An array declarator has the form:

a (di[,dl...)

where:
a is a symbolic name of the array.

d is a dimension declarator of the following form:
[di:]d2
where:
dl is a lower dimension bound.

d2 is a upper dimension bound.

Version 3.0 Data Types, Variables, and Arrays 2-21

dI must be a numeric expression. d2 must be a numeric expression or an
asterisk (*). An asterisk is allowed only if d2 is part of the last dimension
declarator (see below).

An array declarator is either an actual array declarator or a dummy array
declarator. In an actual array declarator the array name is not a dummy
argument. Conversely, a dummy array declarator is an array declarator that has
a dummy argument as an array name. An array declarator may be one of three
types: a constant array declarator, an adjustable array declarator, or an assumed-
size array declarator.

Each of the dimension bounds in a constant array declarator is a numeric
constant expression. An adjustable array declarator is a dummy array
declarator that contains one or more dimension bounds that are integer
expressions but not constant integer expressions. An assumed-size array
declarator is a dummy array declarator that has integer expressions for all
dimension bounds, except that the upper dimension bound d2 of the last
dimension is an asterisk (*).

A dimension bound expression must not contain a function or array element
name reference.

2.8.3 Value of Dimension Bounds

The lower dimension bound d/ and the upper dimension bound d2 can have
positive, negative, or zero values. The value of the upper dimension bound d2
must be greater than or equal to that of the lower dimension bound dI.

If a lower dimension bound is not specified, its value is assumed to be one (1).
An upper dimension bound of an asterisk (*) is always greater than or equal to
the lower dimension bound.

The size of a dimension that does not have an asterisk (*) as its upper bound has
the value:

@d2-dh+1
The size of a dimension that has an asterisk (*) as its upper bound is not

2-22 FORTRAN 77 Language Reference Manual IRIS-4D Series

specified.
2.8.4 Array Size

The size of an array is exactly equal to the number of elements contained by the
array. Therefore, the size of an array equals the product of the dimensions of the
array. For constant and adjustable arrays, the size is straightforward. For
assumed-size dummy arrays, however, the size depends on the actual argument
corresponding to the dummy array. There are three cases:

1. If the actual argument is a noncharacter array name, the size of the
assumed-size array equals the size of the actual argument array.

2. If the actual argument is a noncharacter array element name with a subscript
value of j in an array of size x, the size of the assumed-size array equals
x-j+1.

3. If the actual argument is either a character array name, a character array
element name, or a character array element substring name, the array begins
at character storage unit ¢ of an array containing a total of ¢ character
storage units; the size of the assumed-size array equals

INT((c - t + 1)/In)
where [n is the length of an element of the dummy array.
Restriction. Given an assumed-size dummy array with # dimensions, the

product of the sizes of the first n - 1 dimensions must not be greater than the size
of the array (the size of the array determined as described above).

2.8.5 Storage and Element Ordering

Storage for an array is allocated in the program unit in which it is declared,
except in subprograms where the array name is specified as a dummy argument. ’
The former declaration is called an actual array declaration. The declaration of
an array in a subprogram where the array name is a dummy argument is called a
dummy array declaration.

The elements of an array are ordered in sequence and stored in column order.
This means that the leftmost subscript varies first, as compared to row order, in

Version 3.0 Data Types, Variables, and Arrays 2-23

which the rightmost subscript varies first. The first element of the array has a
subscript value of one; the second element has a subscript value of two; and so
on. The last element has a subscript value equal to the size of the array.
Consider the following statement that declares an array with an INTEGER type
statement:

INTEGER t (2, 3)

The elements of this array are ordered as follows:

Figure 2.1. Order of Array Elements

2.8.6 Subscripts

The subscript describes the position of the element in an array and allows that
array element to be defined or referenced. The form of a subscript is:

(s [,s]...)
where:

s is a subscript expression. The term subscript includes the parentheses that
delimit the list of subscript expressions.

A subscript expression must be a numeric expression and may contain array
element references and function references. However, it must not contain any
function references that affect other subscript expressions in the same subscript.

2-24 FORTRAN 77 Language Reference Manual IRIS-4D Series

Because an array is stored as a sequence in memory, the values of the subscript
expressions must be combined into a single value that is used as the offset into
the sequence in memory. That single value is called the subscript value. The
subscript value determines which element of the array is accessed. The
subscript value is calculated from the values of all the subscript expressions and
the declared dimensions of the array (see Table 2.1).

n Dimension Declarator Subscript Subscript Value

1 G,k (s) L+(s,-j)

2 Gk, k) (5,5 8) L+ (s, -3 +(s5,-)™,

3 Gk 3Ky 35ky) (858, 8;) L+ (s3) + (8,75, *d) +
(Ss'js) * dz * d1

n Gk k) (85 -8, L+ (s, -j) +(s,-]j,)*d,

+(8j*d *d, + .. +
(s, -3 * d,,*d, ,*d,

Table 2-11. Determining Subscript Values

The subscript value and the subscript expression value are not necessarily the
same, even for a one-dimensional array. For example:

DIMENSION X (10,10),Y(-1:8)
Y(2) = X(1,2)

Y(2) identifies the fourth element of array Y, the subscript is (2) with a subscript
value of four, and the subscript expression is 2 with a value of two. X(1,2)
identifies the eleventh element of X, the subscript is (1,2) with a subscript value
of eleven, and the subscript expressions are 1 and 2 with the values of one and
two, respectively.

Version 3.0 Data Types, Variables, and Arrays 2-25

3. Expressions

3.1 Overview

An expression performs a specified type of computation. It is composed of a
sequence of operands, operators, and parentheses. The types of expressions
permitted in FORTRAN are:

e Arithmetic

e Character

» Relational

e Logical

This section describes the formation, interpretation, and evaluation rules for

each of the expressions. Mixed-mode expressions are FORTRAN 77
enhancements of FORTRAN 66 and are also discussed in this chapter.

Version 3.0 Expressions 3-1

3.2 Arithmetic Expressions

An arithmetic expression specifies a numeric computation which yields a
numeric value upon evaluation. The simplest form of an arithmetic expression
may be:

* An unsigned arithmetic constant
» The symbolic name of an arithmetic constant
e An arithmetic variable reference

¢ An arithmetic array element reference

* An arithmetic function reference

More complicated arithmetic expressions are constructed from one or more
operands together with arithmetic operators and parentheses.

3.2.1 Arithmetic Operators

The arithmetic operators are shown in the following table:

Operator Function

wok Exponentiation

* Multiplication

/ Division

+ Addition or Identity

Subtraction or Negation

Table 3-1. Arithmetic Operators

3-2 FORTRAN 77 Language Reference Manual IRIS-4D Series

An exponentiation, division, or multiplication operator can be used only with
two operands and written between the two operands. An addition or subtraction
operator can be used with two operands or one operand; in the latter case, it is
written preceding that operand.

Two operators may not be written in succession. (Note that the exponentiation

operator consists of the two characters ** but is a single operator.) Implied
operators, as in implied multiplication, are not allowed.

3.2.2 Interpretation of Arithmetic Expressions

Interpretation of arithmetic expressions using these operators are shown below.

Operator Use Interpretation
ok x1 **x2 Exponentiate x1 to the power of x2
* x1 *x2 Multiply x1 and x2
/ x1/x2 Divide x1 by x2
+ x1+x2 Add x1 and x2
+x X (identity)
- x1-x2 Subtract x1 from x2
-X Negate x

Table 3-2. Interpretation of Arithmetic Expressions

An arithmetic expression containing two or more operators is written and
interpreted based on a precedence relation among the arithmetic operators,
unless the order is overridden by the use of parentheses. This precedence is
shown in the following table:

Operator Precedence
O Highest

sk

*

+ - Lowest

Table 3-3. Arithmetic Precedence

Version 3.0 Expressions 3-3

As an example:

A/B-C**D
The operators are executed in the following sequence:
1. C**D is evaluated first.

2. A/B is evaluated next.

3. The result of C**D is subtracted from the result of A/B to give the final

result.

3.2.3 Arithmetic Operands

Arithmetic operands must specify values with integer, real, double precision,
complex, or double complex data types. Specific operands may be combined in
an arithmetic expression. The arithmetic operands, in increasing complexity,

are:

¢ Primary
¢ Factor

e Term

¢ Arithmetic expression

3-4 FORTRAN 77 Language Reference Manual

IRIS-4D Series

A primary is the basic component in an arithmetic expression. The forms of a
primary are:

e Unsigned arithmetic constant

« Symbolic name of an arithmetic constant

» Arithmetic variable reference

» Arithmetic array element reference

* Arithmetic function reference

« Arithmetic expression enclosed in parentheses

A factor consists of one or more primaries separated by the exponentiation
operator. The forms of a factor are:

s Primary

» Primary ** factor

Factors with more than one exponentiation operator are interpreted from right to
left. For example, I**J**K is interpreted as I**(J**K), and I**J**K**L is

interpreted as I**(J**(K**L)).

The term incorporates the multiplicative operators into arithmetic expressions.
Its forms are:

* Factor
e Term/factor
e Term * factor

The above definition indicates that factors are combined from left to right in a
term containing two or more multiplication or division operators.

Version 3.0 Expressions 3-5

Finally, at the highest level of the hierarchy, are the arithmetic expressions. The
forms of an arithmetic expression are:

e Term
e +term
e -term

* Arithmetic expression + term

* Arithmetic expression - term

An arithmetic expression consists of one or more terms separated by an addition
operator or a subtraction operator. The terms are combined from left to right.
For example, A+B-C has the same interpretation as the expression (A+B)—C.
Expressions such as A*-B and A+-B are not allowed. The correct forms are
A*(—B) and A+(-B).

An arithmetic expression may begin with a leading plus or minus sign.

3.2.4 Arithmetic Constant Expressions

An arithmetic constant expression is an arithmetic expression containing no
variables. Therefore, each primary in an arithmetic constant expression must be
one of the following:

* An arithmetic constant

» The symbolic name of an arithmetic constant

* Anarithmetic constant expression enclosed in parentheses

In an arithmetic constant expression, the exponentiation operator is not allowed

3-6 FORTRAN 77 Language Reference Manual IRIS-4D Series

unless the exponent is of type integer. Variable, array element, and function
references are not allowed. Examples of integer constant expressions are:

7

-7

=7+5

Rk

x+3 (where x is the symbolic name of a constant)

3.2.5 Integer Constant Expressions

An integer constant expression is an arithmetic constant expression containing
only integers. It can contain constants or symbolic names of constants, provided
they are of integer type. As with all constant expressions, no variables, array
elements, or function references are allowed.

3.2.6 Rules for Evaluating Arithmetic Expressions

The data type of an expression is determined by the data types of the operands
and functions that are referenced. Thus, integer expressions, real expressions,
double precision expressions, complex expressions, and double expressions have
values of type integer, real, double precision, complex, and double complex,
respectively.

Single-Mode Expressions

Single-mode expressions are arithmetic expressions in which all operands have
the same data type. The data type of the value of a single-mode expression is
thus the same as the data type of the operands. When the addition operator or
the subtraction operator is used with a single operand, the data type of the
resulting expression is the same as the data type of the operand.

Version 3.0 Expressions 3-7

Mixed-Mode Expressions

Mixed-mode expressions contain operands with two or more data types. The (
data type of the value resulting from evaluation of a mixed-mode expression
depends on the rank assotiated with each data type, as follows:

Data Type Rank

INTEGER*1 1 (lowest)
INTEGER*2 2
INTEGER*4 3
REAL*4 4
REAL*8 (double precision) 5
COMPLEX*8 6

7

COMPLEX*16 (highest)

Table 3-4. Data Type Ranks

Except for exponentiation (discussed below), the data type of the value produced (
by a mixed-mode expression is the data type of the highest-ranked element in

the operation. The value of the lower-ranked operand is converted to the type of

the higher ranked operand and the operation is performed on values with

equivalent data types. For example, the data type of the value resulting from an

operation on an integer operand and a real operand is real.

Operations which combine REAL*8 (DOUBLE PRECISION) and

COMPLEX*8 (COMPLEX) are not allowed. The REAL*8 operand must be
explicitly converted (e.g., by using the SNGL intrinsic function).

3-8 FORTRAN 77 Language Reference Manual IRIS-4D Series

3.2.7 Exponentiation

Exponentiation is an exception to the above rules for mixed-mode expressions.
When raising a value to an integer power, the integer is not converted. The
result is a type of the left operand.

When a complex value is raised to a complex power, the value of the expression
is defined as follows:

x¥ = EXP (y * LOG(x))
3.2.8 Integer Division

One operand of type integer may be divided by another operand of type integer.
The result of an integer division operation is a value of type integer referred to
as an integer quotient. The integer quotient is obtained as follows:

o If the magnitude of the mathematical quotient is less than one, then the
integer quotient is zero. For example, the value of the expression (18/30) is
Zero.

« If the magnitude of the mathematical quotient is greater than or equal to
one, then the integer quotient is the largest integer that does not exceed the
magnitude of the mathematical quotient and whose sign is the same as that
of the mathematical quotient. For example, the value of the expression (-9/
2) is (-4).

Version 3.0 Expressions 3-9

3.3 Character Expressions

A character expression yields a character-string value upon evaluation. The
simplest form of a character expression may be:

¢ A character constant

* A character variable reference

e A character array element reference
e A character substring reference

e A character function reference

More complicated character expressions are constructed from one or more
operands together with the concatenate operator and parentheses.

3.3.1 Concatenate Operator

Only one character operator is defined in FORTRAN: the concatenation (//)
operator. A character expression formed from the concatenation of two
character operands x/ and x2 is specified as:

x1 // x2
The result of this operation is a character-string with a value of xI extended on
the right with the value of x2. The length is the sum of the lengths of the
character operands. For example, the value of

‘HEL' // ‘LO2'

is a string ‘HELI.O2’.

3-10 FORTRAN 77 Language Reference Manual IRIS-4D Series

3.3.2 Character Operands

A character operand must identify a value of type character and must be a
character expression. The basic component in a character expression is the
character primary. The forms of a character primary are as follows:

e Character constant

* Symbolic name of a character constant

¢ Character variable reference

e Character array element reference

e Character substring reference

e Character function reference

» Character expression enclosed in parentheses

A character expression consists of one or more character primaries separated by
the concatenation operator. Its forms are:

* Character primary
o Character expression // character primary
In a character expression containing two or more concatenation operators, the
primaries are combined from left to right. Thus, the interpretation of the
character expression

\AI // \BCDI // \EF’
is a same as:

(A’ // ‘BCD') // “‘EE’

Version 3.0 Expressions 3-11

The value of the above character expression is the same as the constant
‘ABCDEF.

Except in a character assignment statement, concatenation of an operand with an
asterisk (*) as its length specification is not allowed unless the operand is the
symbolic name of a constant.

3.3.3 Character Constant Expressions

A character constant expression is a character expression containing nothing
that can vary. Each primary in a character constant expression must be either a
character constant, the symbolic name of a character constant, or a character
constant expression enclosed in parentheses. Variable, array element, substring,
and function references are not allowed.

3.4 Relational Expressions

A relational expression yields a logical value of either . TRUE. or .FALSE.
upon evaluation and comparison of two arithmetic expressions or two character
expressions. A relational expression may appear only within a logical
expression.

3.4.1 Relational Operators

The relational operators are:

.EQ. Equal to

.NE. Not Equal to

.GT. Greater than

.GE. Greater that or equal to
.LT. Less than

.LE. Less than or equal to

The precedence among FORTRAN operators is such that arithmetic and
character operators are evaluated before relational operators.

3-12 FORTRAN 77 Language Reference Manual IRIS-4D Series

3.4.2 Relational Operands

The operands of a relational operator may be arithmetic or character
expressions. Two operands are required to form a relational of the following
form:

el relop e2
where:

el and e2 are arithmetic or character expressions.
relop is the relational operator.

Note that e/ and e2 must be both arithmetic or both character.

3.4.3 Evaluating Relational Expressions

Evaluation of a relational expression produces a result of type logical, with a
value of .TRUE. or .FALSE.. The manner in which the expression is evaluated
depends upon the data type of the operands.

3.4.4 Arithmetic Relational Expressions

An arithmetic relational expression has the form:

el relop e2
where:
el and e2 are each an integer, real, double precision, complex, or
double complex expression.
relop is a relational operator.

Complex type operands are allowed only when the relational operator .EQ. or
.NE. is used.

Version 3.0 Expressions 3-13

An arithmetic relational expression has the logical value .TRUE. only if the
values of the operands satisfy the relation specified by the operator. Otherwise,
the value is .FALSE.. If the two arithmetic expressions el and e2 differ in type,
the expression is evaluated as follows:

((el) - (e2)) relop O
where the value O (zero) is of the same type as the expression ((e/)- (¢2)) and

the type conversion rules apply to the expression. A double precision value
must not be compared with a complex value.

3.4.5 Character Relational Expressions

A character relational expression has the logical value .TRUE. only if the values
of the operands satisfy the relation specified by the operator. Otherwise, the
value is .FALSE. It has the following form:

el relop e2
where el and e2 are character expressions and relop is a relational operator.

The result of a character relational expression depends on the collating sequence
as follows.

e If el and e2 are single characters, their relationship in the collating
sequence determines the value of the operator. el is less than or greater
than €2 if el is before or after e2 respectively in the collating sequence.

o Ifeither el or e2 are character strings with length greater than 1,
corresponding individual characters are compared from left to right until a
relationship other than .EQ. can be determined.

» If the operands are of unequal length, the shorter operand is extended on the
right with blanks to the length of the longer operand for purpose of the

comparison.

* Ifno other relationship can be determined after the strings are exhausted,
the strings are equal.

3-14 FORTRAN 77 Language Reference Manual IRIS-4D Series

The collating sequence depends partially on the processor; however, equality
tests .EQ. and .NE. don’t depend on the processor collating sequence and can be
used on any processor.

3.5 Logical Expressions

A logical expression specifies a logical computation which yields a logical value
upon evaluation. The simplest form of a logical expression is a:

» Logical constant

* Logical variable reference

e Logical array element reference

e Logical function reference

* Relational expression

More complicated logical expressions are constructed from one or more logical

operands together with logical operators and parentheses. Five logical operators
are permitted in FORTRAN and are discussed in the next section.

3.5.1 Logical Operators

The logical operators defined in FORTRAN are shown in the table below.

Operator Meaning

.NOT. Logical negation
.AND. Logical conjunt
.OR. Logical disjunct
EQV. Logical equivalence
.NEQV. Logical exclusive or
XOR. Same as NEQV.,

Table 3-5. Logical Operators

Version 3.0 Expressions 3-15

Only the logical negation operator .NOT. is used with one operand; all other
logical operators require two operands.

(\
When a logical expression contains two or more logical operators, the order in
which the operands are combined is shown below, unless the order is changed
by the use of parentheses.

Operator Precedence

Highest

Lowest

Table 3-6. Logical Precedence
For example, in the expression
W .NEQV. X .OR. Y .AND. Z
The operators are executed in the following sequence:
Y .AND. Z is evaluated first. Let that result be represented as A.
¢« X.OR. A is evaluated second. Let this result be represented as B.

W .NEQV.B gives the final result.

3.5.2 Logical Operands

Logical operands specify values with a logical data type. The forms of a logical
operand are:

» Logical primary ()

» Logical factor

3-16 FORTRAN 77 Language Reference Manual IRIS-4D Series

* Logical term
* Logical disjunct
e Logical expression

The logical primary is the basic component of a logical expression. The forms
of a logical primary are:

» Logical constant

» Symbolic name of a logical constant

« Integer or logical variable reference

» Logical array element reference

+ Integer or logical function reference

* Relational expression

Integer or logical expression in parentheses

or, the other otaerand is
performed on a bit by
’ producmg an mreger resulta Whenever an arithmetic datum appears in

xpression, the result of that expression will be of type integer due to
the type promotion rules. After the result is computed it may be converted back
o LOGICAL if its usage requires. »

Note that two logical operators may not appear in succession and that implied
logical operators are not allowed.

The logical factor provides for the inclusion of the logical negation operator
.NOT. and has the following forms:

» Logical primary
« .NOT. logical primary

The logical term uses the logical conjunct operator .AND. to combine logical
factors. It takes the forms:

Version 3.0 Expressions 3-17

* Logical factor

* Logical term .AND. logical factor (
In evaluating a logical term with two or more .AND. operators, the logical

factors are combined from left to right. For example, X .AND. Y .AND. Z has

the same interpretation as (X .AND.Y) .AND.Z.

The logical disjunct is a sequence of logical terms separated by the .OR.
operator and has the following two forms:

¢ Logical term

* Logical disjunct .OR. logical term

In an expression containing two or more .OR. operators, the logical terms are

combined from left to right in succession. For example, the expression X .OR.

Y .OR. Z has the same interpretation as (X .OR. Y) .OR. Z.

At the highest level of complexity is the logical expression. A logical (
expression is a sequence of logical disjuncts separated by either the .EQV.,

.NEQV., or .XOR. operators. Its forms are:

* Logical disjunct

» Logical expression .EQV. logical disjunct

The logical disjuncts are combined from left to right when a logical expression
contains two or more .EQV., NEVQ., or .XOR. operators.

A logical constant expression is a logical expression in which each primary is

either a logical constant, the symbolic name of a logical constant, a relational -
expression in which each primary is a constant, or a logical constant expression (
enclosed in parentheses. A logical constant expression may contain arithmetic

and character constant expressions but not variables, array elements, or function
references.

3-18 FORTRAN 77 Language Reference Manual IRIS-4D Series

3.5.3 Interpretation of Logical Expressions

In general, logical expressions containing two or more logical operators are
executed according to the hierarchy of operators described previously, unless the
order has been overridden by the use of parentheses. The form and
interpretation of the logical operators is defined as shown in the following table:

IF THEN

XOR.

X1 X2 = .NOT.X2 | .AND. .OR. .EQV. .NEQV.

.FALSE. .FALSE. | .TRUE. JFALSE. | .FALSE. | .TRUE. .FALSE.
.FALSE. .TRUE. .FALSE. |.FALSE. | .TRUE. .FALSE. | .TRUE
.TRUE. .FALSE. JFALSE. | .TRUE. .FALSE. | .TRUE.
.TRUE. .TRUE. .TRUE. .TRUE. .TRUE. .FALSE.

Table 3-7. Logical Expressions

3.6 General Rules for Evaluating Expressions

Several rules are applied to the general evaluation of expressions. This section
covers the priority of the different FORTRAN operators, the use of parentheses
in specifying the order of evaluation, and the rules for combining operators with
operands.

Note that any variable, array element, function, or character substring in an

expression must be defined with a value of the correct type at the time it is
referenced.

Version 3.0 Expressions 3-19

3.6.1 Precedence of Operators

The precedence among arithmetic operators was given previously as:

Operator Precedence
*k Highest
* / Intermediate
+ - Lowest

The precedence among logical operators was given previously as:

Table 3-8. Arithmetic Precedence

Operator Precedence

Highest

Lowest

Table 3-9. Logical Precedence

No precedence exists among the relational operators, and there is only one
character operator, // (concatenation).

The precedence among expression operators in each type is:

Operator Precedence
Arithmetic Highest
Character .

Relational .

Logical Lowest

3-20

Table 3-10. Precedence of Operators

FORTRAN 77 Language Reference Manual

IRIS-4D Series

3.6.2 Integrity of Parentheses and Interpretation Rules

Parentheses are used to explicitly specify the order of evaluation of operators
within an expression. Expressions within parentheses are treated as an entity.

In an expression containing more than one operation, the processor first
evaluates expressions within parentheses. Subexpressions within parentheses
are evaluated beginning with the innermost subexpression and proceeding
sequentially to the outermost. The processor then scans the expression from left
or right and performs the operations according to the operator precedence
described previously.

Version 3.0 Expressions 3-21

4. Specification Statements

4.1 Overview

Specification statements are nonexecutable FORTRAN statements that provide
the processor information about the nature of specific data and the allocation of
storage space for this data.

The specification statements are summarized below.

Statement Purpose

BLOCK DATA First statement in a block data subprogram used to
assign initial values to variables and array elements in
named common blocks.

COMMON Declares variables and arrays so that they are put in a
storage area that is accessible to multiple program
units, thus allowing program units to share data
without using arguments.

DATA Supplies initial values of variables, array elements,
arrays, or substrings.

Data type Explicitly defines the type of a constant, variable,
array, external function, statement function, or
dummy procedure name. Al so, may specify
dimensions of arrays and the length of the character
data.

Version 3.0) Specification Statements 4-1

DIMENSION

EQUIVALENCE

EXTERNAL

IMPLICIT

INTRINSIC

Specifies the symbolic names and dimension
specifications of arrays.

Specifies the sharing of storage units by two or more
entities in a program unit, thus associating those
entities. -

Identifies external or dummy procedure.

Changes or defines default implicit type of names.

Identifies intrinsic function or system subroutine.

Retains the values of variables and arrays after
execution of a RETURN or END statement in a
subprogram.

Detailed descriptions of the above statements follow in alphabetical order.

4-2 FORTRAN 77 Language Reference Manual IRIS-4D Series

(|

o . e 2
- -

| \w\v V\\WWW\\\ \A/vv/\wv - \//Q//A/M/%%// w\ . w\ e . .
e . . .
- - . B .
e . , \

. =
. . 3 -
.
. - \\\wm .
. . - S T
. . . : \\\\\“% -
. - =

- T
. .
L . & . s
- s

i . .

o e

.

Q\V\\\%\%\k&

- - .

. =
. .
.

, .
. . .
. . . /////ﬂ

/
.
.

.

L
e

. .
. .

o s

-

-

Bt

Specification Statements 4-3

Version 3.0

. .

e . o

B
m -

L . s

o
‘ : . , = L
- 5 5 e h
. . : » B o =
o . . .
e i
5 . .
. ¢ ?ﬁ%ﬁ&%p@% = 7

S o

;

.
- ‘
o

. S o e
s =

=
= .
= : -
i =

\@f§
-

.

i . //,/,
\ . .
-

e

- -

. \.hu\\;//////
- 9 . = =
- -
. . . .
L ,///ﬂ/&/////////f{m o 7 //%/M/»

IRIS-4D Series

FORTRAN 77 Language Reference Manual

4-4

4.3 BLOCK DATA

Use

First statement in a block data subprogram used to assign initial values to
variables and array elements in named common blocks.

Syntax

BLOCK DATA [sub]

where sub is a symbolic name of the block data subprogram in which the
BLOCK DATA statement appears.

Method of Operation

A block data subprogram is a nonexecutable program unit with a BLOCK
DATA statement as its first statement, followed by a body of specification
statements and terminated by an END statement. The specification statements
allowed include: COMMON, DATA, DIMENSION, EQUIVALENCE,
IMPLICIT, PARAMETER, SAVE, STRU CTURE deciai‘{i&onﬂ, and type
statements. Comment lines are permitted.

Only entities in named common blocks or entities associated with an entity in a
common block may be initially defined in a block data subprogram.

Rules of Use

1. The optional name sub is a global name and must be unique. Thus,
BLOCK DATA subprograms may not have the same external name.

2. An executable program may contain more than one block data subprogram
but may not contain more than one unnamed block data subprogram.

3. A single block data subprogram may initialize the entities of more than one
named common block.

Version 3.0 Specification Statements 4-5

4.4 COMMON

Use

Declares variables and arrays so that they are put in a storage area that is
accessible to multiple program units, thus allowing program units to share data
without using arguments.

Syntax

COMMON [/[cbl/] nlist [[,]1/[cb]l/ n list] ..

where cb is a common bloc

and nlist is a list of variable names, array
names, array declarators, o .

Method of Operation

A storage sequence, composed of a series of storage units, that is shared
between program units is referred to as common storage. For each common
block, a common block storage sequence is formed consisting of the storage
sequences of all entities in the list of variables and arrays for that common
block. The order of the storage sequence is the same as their order of
appearance in the list. In each COMMON statement, the entities specified in
the common block list nlist following a block name cb are declared to be in
common block cb .

In an executable program, all common blocks with the same name have the
same first storage unit. This establishes the association of data values between

program units.

The storage sequence formed above is extended to include all storage units of
any storage sequence associated with it by equivalence association.

4-6 FORTRAN 77 Language Reference Manual IRIS-4D Series

FORTRAN has the following types of common storage:

¢ Blank common storage, which can be accessed by all program units in
which it is declared. It has no identifying name and one blank common
area exists for the complete executable program.

e Named common storage, which has an identifying name and is accessible
by all program units in which common storage with the same name is
declared.

Entities in a named common may be initially defined with the DATA
initialization statement in a BLOCK DATA subprogram, but entities in blank
common may not be initialized by the DATA statement.

The number of storage units needed to store a common block is referred to as its
size. This includes any extensions of the sequence resulting from equivalence
association. The size of a named common block must be the same in al/
program units in which it is declared. The size of blank common need rot be
the same size in all program units.

Rules of Use

1. A variable name, array name, array declarator, or I
once in all common block lists within a program unit.

d may appear only

2. A blank common block is specified by omitting the common block name
cb for each list. Thus, if the first common block name is omitted, all
entities appearing in the first nlist are specified to be in a blank common.

3. If the first ¢b is omitted, the first two slashes become optional. Two
slashes with no block name between them declare the entities in the
following list to be in blank common.

4. Any common block name cb or an omitted cb for blank common may
occur more than once in one or more COMMON statements in a program
unit. The list following each appearance of the same common block name
is treated as a continuation of the list for that common block name.

Version 3.0 ‘ Specification Statements 4-7

5. All entities in a common block containing a character variable or character
array must be of type character.

6. As an extension to the standard, a named common block can be declared as
having different sizes in different program units. If the common block is
not initially defined with a DATA statement, its size will be that of the
longest common block declared. However, if it is defined in one of the
program units with DATA statements, then its size is the size of the defined
common block. In other words, to work correctly, the named common
block must be declared with the longest size when it is defined, even though
it can be declared with shorter sizes somewhere else. Incorrect results are
received if a common block is defined multiple times.

Restrictions

1. Names of dummy arguments of an external procedure in a subprogram
must not appear in a common block list.

2. A variable name that is also a function name must not appear in the list.
Examples

COMMON //F,X,B(5)

COMMON F,X,B(5)

COMMON /LABEL/NAME, AGE, DRUG, DOSE//Y (33),
+ 7, /RECORD/,DOC, 4 TIME(5), TYPE(8)

The first two examples are equivalent and define a blank common block (note

that these two COMMON statements must not appear in the same program
unit). The third example makes the following COMMON storage assignments:

4-8 FORTRAN 77 Language Reference Manual IRIS-4D Series

1. NAME, AGE, DRUG, and DOSE are placed in common block LABEL.
2. Y and Z are placed in blank common.

3. DOC, TIME, and TYPE are placed in common block RECORD.

The use of a COMMON statement by a subprogram and its calling program is:

C THIS PROGRAM READS VALUES AND PRINTS THEM
C SUM AND AVERAGE
COMMON TOT, A(20), K, XMEAN
READ (5,10) K, (A(I), I =1, K)
CALL ADD
WRITE (6,20) TOT, XMEAN
10 FORMAT (I5/F(10.0))
20 FORMAT (5X,5HSUM =,2X,F10.4/5%,

+ 12HMEAN VALUE =,2X,F10.4)
STOP
C
C THIS SUBROUTINE CALCULATES THE SUM AND AVERAGE
C
COMMON PLUS, SUM(20), M, AVG
PLUS = SUM (1)
DO5S5I=2, M
5 PLUS = SUM (I) + PLUS
AVG = PLUS / FLOAT (M)
END

Note that there are two COMMON statements: one in the calling program and
one in the subroutine. Both define the same four entities in the COMMON
even though each common statement uses a unique set of names. The calling
program has access to COMMON storage through entities TOT, A, K and
XMEAN. Subroutine ADD has access to the same common storage through the
use of the entities PLUS, SUM, M, and AVG.

Version 3.0 Specification Statements 4-9

4.5 DATA

Use

Supplies initial values of variables, array elements, arrays, or substrings.
Syntax

DATA nlist/clist/ [[, 1 nlist/clist/] ..
where:

nlist is alist of variable names, array names, array element names, substring
names or implied-DO lists (described later in this chapter).

clist is a list of the form:
a [,al ..

where a has either of the forms:

c
r*c
is a constant or the symbolic name of a constant.
r is a nonzero, unsigned integer constant or the symbolic name
of a positive integer constant. The second form implies r suc-
cessive appearances of the constant c.

Method of Operation

In data initialization, the first value in clist is assigned to the first entity in nlist,
the second value in clist to the second entity in nlist, and so on. Thetre is a one-
to-one correspondence between the items specified by nlist and the constants
supplied in clist. Hence, each nlist and its corresponding clist must contain the
same number of items and must agree in data type. If necessary, the clist
constant is converted to the type or length of the nlist entity exactly as for
assignment statements.

4-10.. FORTRAN 77 Language Reference Manual IRIS-4D Series

If the length of the character entity in nlist is greater than the length of its
corresponding character constant in clist, then blank characters are added to the
right of the character constant. But if the length of the character entity in nlist is
less ‘than that of its corresponding constant in clist, the extra rightmost
characters in the constant are ignored; only the leftmost characters are stored.
Each character constant initializes only one variable, array element, or
substring.

1. Bach nlist and its corresponding clist must have the same number of items
and must correspond in type when either is LOGICAL or CHARACTER.
If either is of arithmetic type, then the other must be of arithmetic type.

2. If an unsubscripted array name is specified in nlist, the corresponding clist
must contain one constant for each element of the array.

3. If two entities are associated in common storage, only one can be
initialized in a DATA statement.

4. Names of entities in named common blocks may appear in nlist only within

Version 3.0 Specification Statements 4-11

a BLOCK DATA subprogram.

5. Each subscript expression in nlist must be an integer constant expression,
except for implied-DO variables.

9. A Hollerith constant can be used to initialize a numeric variable or array
element. The rules for Hollerith assignment apply.

Restrictions

1. The list nlist must not contain names of duminy arguments, functions, and
entities in blank common, or those associated with entities in blank
common.

2. A variable, array element, or substring must not be initialized more than
once in an executable program. If it is, the subsequent initializations will

override the previous ones.

3. If a common block is initialized by a DATA statement in a program unit, it

4-12 FORTRAN 77 Language Reference Manual IRIS-4D Series

cannot be initialized in other program units.
Example

REAL A (4), B

LOGICAL T
COMPLEX C
INTEGER P, K(3), R

CHARACTER*5 TEST (4)

PARAMETER (P=3)

DATA A,B/0.,12,5.12E5,0.,6/, T/.TRUE./,
+ c/(7.2, 1.234)/,K/P*0/,

+ TEST/3* 'MAYBE', 'DONE? "'/

The DATA statement above defines the variables declared immediately
preceding it as follows:

A(l) = .0E+00 A(2) = .12E+02
A(3) = .512E+06 A(4) = .0E+00
B=2¢6

T = .TRUE.

C = (.72E+01, .1234+01)

K(l) =0 K(2) =0 K(3) =0
TEST (1) = 'MAYBE' TEST (2) = 'MAYBE'
TEST(3) = 'MAYBE' TEST (4) = 'DONE?'

The following gives examples of implied-DO statements used with a DATA
statements:

DATA LIMIT /1000/, (A(I), I= 1,25)/25%0/

DATA ((A(I,J), J =1,5), I = 1,10)/50*%1.1/

DATA (X(I,I), I = 1,100) /100 * 1.1/

DATA ((A(I,J), J =1,1I), I =1,3)/11,21,22,31,32,33/

Version 3.0 : Specification Statements 4-13

4.6 Data Type Statements

4.6.1 Numeric Data Types

Use

Overrides implicit typing or explicitly defines the type of a constant, variable,
array, external function, statement function, or dummy procedure name. Also,

may specify dimensions of arrays.

Syntax

type is one of the keywords shown in the following table:

Type Keywords
INTEGER COMPLEX
INTEGER* 1 DOUBLE COMPLEX
BYTE COMPLEX*8
INTEGER*2 COMPLEX*16
INTEGER*4
LOGICAL REAL
LOGICAL*1 REAL*4
LOGICAL*2 REAL*8
LOGICAL*4 REAL*16

DOUBLE PRECISION

Table 4-2. Keywords for Type Statements

4-14 FORTRAN 77 Language Reference Manual IRIS-4D Series

v is avariable name, array name, array declarator, symbolic name of a
constant, function name, or dummy procedure name.

len is one of the acceptable leagths for the data type being decla:red len is one
~ of the following: an unsigned, nonzero, integer constant; a positive valued
integer constant expression enclosed in parenthesesﬁ or an asterisk. ‘
enclosed in parentheses (*). If the type being declared is an array, len
follows immediately after the array name.

clist clist is a list of values bounded by slashes:; the value becomes the initial
value of the type being declared.

Note: When a REAL*16 declaration is encountered, the compiler issues a
warning message. REAL*16 items are allocated 16 bytes of storage
per element, but only the first eight bytes of each element are used;
those eight bytes are interpreted according to the format for REAL*8
floating numbers.

Note: The following pairs of keywords are synonymous:

BYTE and INTEGER*1

REAL and REAL*4,

DOUBLE PRECISION and REAL*S,
COMPLEX and COMPLEX*8

DOUBLE COMPLEX and COMPLEX*16
LOGICAL and LOGICAL*4

See Chapter 2 of the FORTRAN Programmer's Guide for information on the
alignment, size, and value ranges of these data types.

Method of Operation

The symbolic name of an entity in a type statement establishes the data type for
that name for all its subsequent appearances in the program unit in which it is
declared.

The type specifies the data type of the corresponding entities. That is, the
INTEGER statement explicitly declares entities of type integer and overrides
implicit typing of the listed names. The REAL statement specifies real entities,
the COMPLEX statement specifies complex entities, and so on.

Version 3.0 Specification Statements 4-15

Rules for Use

1. Type statements are optional, and must be placed in the beginning of a
program unit, but can be preceded by an IMPLICIT statement.

Symbolic names, including those declared in type statements, have the

scope of the program unit in which they are included.

3. More than one type statement beginning with the same keyword may be

included in the program unit.

4. A symbolic name must not have its type explicitly specified more than

once within a program unit.

5. The name of a main program, subroutine, or block data subprogram must

not appear in a type statement.

6. The compiler provides a DOUBLE COMPLEX version of the following

functions:
Name Purpose
demplx Explicit type conversion
dconjg Complex conjugate
dimag Imaginary part of complex argument
zabs Complex absolute value

4-16

Table 4- 3. Double Complex Functions

FORTRAN 77 Language Reference Manual

IRIS-4D Series

Examples
REAL length, anet, TOTAL (50)

INTEGER hour, sum(5:15), first, uvr(4,8,3)
LOGICAL bx(1:15,10), flag, stat
COMPLEX I, B(20), J(2,3,5)

The example above declares that:

1. length and anet are names of type real. The specification of anet confirms
implicit typing using the first letter of the name and could have been
omitted in the REAL statement.

2. total is a real array.

3. hour and first are integer names. uvr and sum are integer arrays, and
illustrate the use of the type statement to specify the dimensions of an
array. Note that when an array is dimensioned in a type statement, a
separate DIMENSION statement to declare the array is not permitted.

4. flag and stat are logical variables; bx is a logical array.

5. Iisacomplex variable; B and J are complex arrays.

4.6.2 Character Data Types

Use

Declares the symbolic name of a constant, variable, array, external function,
statement function, or dummy procedure name and specifies the length of the
character data.

Syntax
CHARACTER [*len [,]] nam [,nam]

where:

Version 3.0 Specification Statements 4-17

len

nam

is a length specification that gives the length, in number of characters, of
a character variable, character array element, character constant, or
character function. len is one of the following:

* Anunsigned, nonzero, integer constant

* A positive valued integer constant expression enclosed in
parentheses

* An asterisk enclosed in parentheses (*)
is one of the following:

v [*len] v is a variable name, symbolic name of a constant, function
name, or dummy procedure name.

a [(d)] [*len] a(d) is an array declarator.

Rules for Use

The length specification len that follows the keyword CHARACTER
denotes the length of each entity in the statement that does not have its own
length specification.

A length specification immediately following an entity applies only to that
entity. When an array is declared, the length specified applies to each array
element.

If no length specification is given, a length of one is assumed.

The length specifier of (*) can be used only for names of external
functions, dummy arguments of an external procedure, and character
constants.

+ For a character constant, the (¥) denotes that the length of the constant
is determined from the length of the character expression given in the
PARAMETER statement.

* For a dummy argument of an external procedure, the (*) denotes that

4-18

FORTRAN 77 Language Reference Manual IRIS-4D Series

the length of the dummy argument is the length of the actual argument
when the procedure is invoked. If the associated actual argument is an
array name, the length of the dummy argument is the length of an
element of the actual array.

« For an external function name, the (*) denotes that the length of the
function result value and the local variable with the same name as the
function entry name is the length that is specified in the program unit
in which it is referenced. Note that the function name must be the
name of an entry to the function subprogram containing this TYPE
statement.

5. If an actual len is declared for an external function in the referencing
program unit and in the function definition, len must agree with the length
specified in the subprogram that specifies the function. If not, then the
function definition must use the asterisk (*) as covered previously, but the
actual len in the referencing unit must not be (*).

6. The length specified for a character statement function or statement

function dummy argument of type character must be an integer constant
expression.

Example

CHARACTER name*40, gender*1l, pay(12)*10
In the above example:
1. name is a character variable of length forty.
2. gender has a length of one.

3. payis a character array with 12 elements, each of which is 10 characters in
length.

Version 3.0 Specification Statements 4-19

4.7 DIMENSION

Use

Specifies the symbolic names and dimension specifications of arrays.
Syntax

DIMENSION a'(d) [,a(d)]
where a(d) is an array declarator.

To be compatible with PDP-11 FORTRAN, the VIRTUAL statement is a
synonym for the DIMENSION statement, and carries the identical meaning.

Method of Operation

A symbolic name x appears in a DIMENSION statement causing an array x to
be declared in that program unit.

Rules for Use

1. The dimension specification of an array can appear only once in a program
unit. '

2. The name of an array declared in DIMENSION statement may appear in a

type statement or a COMMON statement without dimensioning
information.

Examples

DIMENSION z(25), a(6,6), ams(2,5,5)

The DIMENSION statement declares z as an array of 25 elements, ¢ as an array
of 36 elements (6x6), and ams as an array of 50 elements (2x5x5).

4-20 FORTRAN 77 Language Reference Manual IRIS-4D Series

4.8 EQUIVALENCE

Use

Specifies the sharing of storage units by two or more entities in a program unit
thus associating those entities. This allows the same information to be
referenced by different names in the same program unit.

Syntax

EQUIVALENCE (nlist) [, (nlist)]

where nlist is a list of variable names, array element names, array names, and
character substring names.

Method of Operation

An EQUIVALENCE statement specifies that the storage sequences of the
entities in the list have the same first storage unit. This causes association of
the entities in the list or of other elements as well. The EQUIVALENCE
statement only provides association of storage units and does not cause type
conversion or imply mathematical equivalence. Thus, if a variable and an array
are equivalenced, the variable does not assume array properties and vice versa.

Character entities may be associated by equivalence only with other character
entities. The character entities may be specified as character variables,
character array names, character array element names, and character substring
names. Association is made between the first storage units occupied by the
entities appearing in the equivalence list of an EQUIVALENCE statement.
This statement may cause association of other character elements as well. The
lengths of the equivalenced character entities are not required to be equal.

Variables and arrays may be associated with entities in common storage. The
result may be to lengthen the common block. However, association through the
use of the EQUIVALENCE statement must not cause common storage to be
lengthened by adding storage units before the first storage unit in the common
block.

Version 3.0 Specification Statements 4-21

Rules of Use

1. Each subscript expression or substring expression in an equivalence list
must be an integer constant expression.

2. If an array element name is specified in an EQUIVALENCE statement, the
number of subscript expressions must be the same as the number of

dimensions declared for that array.

3. An array name without a subscript is treated as an array element name that
identifies the first element of the array.

or mmsmg '

subsc 'prs (m t'le above cxample 1 t’hrough 3 for array a and 2 thrD

Restrictions

1. Names of dummy arguments of an external procedure in a subprogram
must not appear in an equivalence list.

2. A variable name that is also a function name must not appear in the list.

4-22 FORTRAN 77 Language Reference Manual IRIS-4D Series

3. A storage unit can appear in no more than one EQUIVALENCE storage
sequence.

4. An EQUIVALENCE statement must not specify that consecutive storage
units are to occupy nonconsecutive storage positions.

5. An EQUIVALENCE statement must not specify that a storage unit in one

common block be associated with any storage unit in a different common
block.

Example 1

DIMENSION M(3,2),P (6)
EQUIVALENCE (M(2,1),P (1))

The following figure shows the logical representation in storage caused by the
above two statements:

Version 3.0 Specification Statements 4-23

Example 2

CHARACTER ABT*6, BYT(2)*4, CDT*3
EQUIVALENCE (ABT, BYT(1)), (CDT, BYT(2))

The following figure shows the logical representation in storage caused by the
above two statements:

BYT (2)

Figure 4-2. Logical Representation of EQUIVALENCE Statement

The following examples using EQUIVALENCE statements are invalid:

REAL A(2)
DOUBLE PRECISION S (2)
EQUIVALENCE (A(1), S(1)), (A(2), S(2))

This specifies that consecutive storage units are to occupy nonconsecutive
storage positions. Note that a double precision variable occupies two
consecutive numeric storage units in a storage sequence.

4-24 FORTRAN 77 Language Reference Manual IRIS-4D Series

4.9 EXTERNAL

Purpose

Identify external or dummy procedure.

Use

Specifies that a symbolic name represent an external procedure or a dummy
procedure. This allows that name to be used as an actual argument in a
program unit.

Syntax

EXTERNAL proc [,proc]

where proc is a name of an external procedure or dummy procedure.

Rules for Use

1. An external procedure name or a dummy procedure name must appear in
an EXTERNAL statement in the program unit, if the name is to be used as
an actual argument in that program unit.

2. If an intrinsic function name appears in an EXTERNAL statement,
indicating the existence of an external procedure having that name, the
intrinsic function is not available for use in the same program unit in which
the EXTERNAL statement appears.

3. A symbolic name must appear only once in all of the EXTERNAL
statements of a program unit.

Version 3.0 Specification Statements 4-25

Restrictions

A statement function name must not appear in an EXTERNAL statement.
Example

Consider the following statements:

EXTERNAL G
CALL SUBl (X,Y,G)

and the corresponding subprogram:
SUBROUTINE SUBl (RES, ARG, F)
RES = F (ARG)

END

The dummy argument F in subroutine SUB1 is the name of another subprogram;
in this case, the external function G.

4-26 FORTRAN 77 Language Reference Manual IRIS-4D Series

4.10 IMPLICIT

4.10.1 Use
Changes or defines default implicit type of names.
4.10.2 Syntax 1

IMPLICIT typ (al,al...) [,typ(al,al...)]1...
where:

type is one of the keywords shown in the following table:

Type Keywords

INTEGER COMPLEX CHARACTER
INTEGER*1 DOUBLE COMPLEX
BYTE . COMPLEX*8
INTEGER*2 COMPLEX*16
INTEGER*4
REAL LOGICAL
REAL*4 LOGICAL*1
REAL*8 LOGICAL*2
DOUBLE PRECISION LOGICAL*4

Table 4- 4. Keywords for Type Statements

a is either a single alphabetic character or a range of letters in alphabetical

order. A range of letters is specified as /1 - [2 , where /1 and /2 are the
first and last letters of the range, respectively.

Version 3.0 Specification Statements 4-27

len is alength specification that gives the length, in number of characters, of
a character variable, character array element, character constant, or
character function. len is one of the following:

* An unsigned, nonzero, integer constant

* A positive valued integer constant expression enclosed in paren-
theses

If len is not specified, the value of len is 1.

Method of Operation — Syntax 1

An IMPLICIT statement specifies a type for all variables, arrays, external
functions, and statement functions for which no type is explicitly specified by a
type statement. If a name has not appeared in a type statement, then its type is
implicitly determined by the first character of its name. The IMPLICIT
statement establishes which data type (and length) will be used for the indicated
characters.

By default, names beginning with the alphabetic characters A through H or O
through Z are implicitly typed REAL; names beginning with I, 'J, K, L, M, or N
are implicitly typed INTEGER. The IMPLICIT statement can be used to
change the type associated with any individual letter or range of letters.

An IMPLICIT statement applies only to the program unit that contains it and is

overridden by a type statement or a FUNCTION statement in the same
subprogram.

4-28 FORTRAN 77 Language Reference Manual IRIS-4D Series

also gnven

When a type isn't declared ex
mles cause a defanli: type Of .

typiﬁg‘-

Using Syntax 3 of the IMPLICIT statement within a program ¢ allowg yca to
override the default assignments given to individual characters; the - ~
command line option (see Chapter 1 of the FORTRAN 77 Programmer's Gutde)
overrides the default assignments for all alphabetic characters. .

The following example
IMPLICIT UNDEFINED

turns off the implicit data typmg rules for all variables. The example has the
same effect as specifying the —u command line option. ,

Version 3.0 . Specification Statements 4-29

4.10.5 Rules for Use — All Syntaxes

1. IMPLICIT statements must precede all other specification statements (')
except PARAMETER statements.

2. Multiple IMPLICIT statements are allowed in a program unit.

3. IMPLICIT statements cannot be used to change the type of a letter more
than once inside a program unit. Since letters can be part of a range of
letters as well as single, ranges of letters must not overlap.

4. Lower- and upper-case alphabetic characters are not distinguished. Implicit
type is established for both the lower- and upper-case alphabetic characters
or range of alphabetic characters regardless of the case of /1 and /2.

5. The -u command line option turns off all default data typing and any data
typing explicitly specified by an IMPLICIT statement.

4.10.6 Examples (

IMPLICIT NONE

IMPLICIT INTEGER (F,M-P)
IMPLICIT STATIC (F,M-P)
IMPLICIT REAL (B,D)
INTEGER bin, dale

The example above declares that:

1. All variables with names beginning with the letters F, M, N, O, P, f, m, n, o,
orp are of type INTEGER and are assigned the . §

2. All variables with names beginning with the letter b or d are of type REAL,
except for variables bin and dale only, which are explicitly defined as type
INTEGER.

The following four IMPLICIT statements are equivalent: (

IMPLICIT CHARACTER (g - k)
IMPLICIT CHARACTER (g - K)
IMPLICIT CHARACTER (G - k)
IMPLICIT CHARACTER (G - K)

4-30 FORTRAN 77 Language Reference Manual IRIS-4D Series

4.11 INTRINSIC

Purpose

Identify intrinsic function or system subroutine.

Use

Identifies a symbolic name as being the name of an intrinsic function or a
system subroutine. The name of an intrinsic function can be used as an actual
argument.

Syntax

INTRINSIC func [, func] ...

where func is a name of intrinsic functions.

Rules for Use

1. The name of every intrinsic function or system subroutine used as an actual
argument must appear in an INTRINSIC statement in that program unit.

2. A symbolic name may appear only once in all of the INTRINSIC
statements of a program unit.

Restrictions

1. A name may not appear in both INTRINSIC and EXTERNAL statements
in the same program unit.

2. A name must appear only once in all of the INTRINSIC statements of a
program unit.

Version 3.0 Specification Statements 4-31

3. The names of intrinsic functions which perform type conversion, test
Iexical relationship, or choose smallest/largest value cannot be passed as
actual arguments. These functions include the conversion, maximum
value, and minimum value functions listed in Appendix A.

Examples

Consider the following statements:

INTRINSIC ABS
CALL ORD (ABS, ASQ, BSQ)

and its corresponding subprogram:

SUBROUTINE ORD (FN, A, B)
A = FN (B)

RETURN

END

In the above example, the INTRINSIC statement allows the name of the
intrinsic function ABS (for obtaining the absolute value) to be passed to
subprogram ORD.

4-32 FORTRAN 77 Language Reference Manual IRIS-4D Series

Version 3.0 Specification Statements 4-33

4.13 PARAMETER

Use
Gives a constant a symbolic name.
Syntax

Format 1

PARAMETER (p=e [,p=e] ...)

PARBMETHR p=e [,p=e] ...

where p is a symbolic name and e is a constant, constant expression, or the
symbolic name of a constant.

Method of Operation

The value of the constant expression e is given to the symbolic name p. The
statement defines p as the symbolic name of the constant. The value of the
constant is the value of the expression e after conversion to the type of the name
p. The conversion, if any, follows the rules for assignment statements.

Format 1, which has bounding parentheses, causes the symbolic name to be
typed either of the following ways:

¢ according to a previous explicit type statement or
« if no explicit type statement exists, the name is typed according to its initial
letter and the implicit rules in effect. See the description of the IMPLICIT
statement in this chapter for details.
~ Pormat 2, which has no bounding parentheses, causes the symbolic name to be

typed by the form of the actual constant which it represents. The initial letter of
the name and the implicit rules do not affect the data type.

4-34 FORTRAN 77 Language Reference Manual IRIS-4D Series

A symbolic name in a PARAMETER statement has the scope of the program
unit in which it was declared.

Rules for Use

1. If p is of type integer, real, double precision, or complex, then e must be an
arithmetic constant expression.

2. If p is of type character or logical, then e must be a character constant
expression or a logical constant expression, respectively.

3. If a named constant is used in the constant expression e, it must be
previously defined in the same PARAMETER or a preceding
PARAMETER statement in the same program unit.

4. A symbolic name of a constant must be defined only once in a
PARAMETER statement within a program unit.

5. The data type of a named constant must be specified by a type statement or
IMPLICIT statement prior to its first appearance in a PARAMETER
statement, if a default implied type is not to be assumed for that symbolic
name.

6. Character symbolic named constants must be specified as character type in
a CHARACTER statement, or the first letter of the name must appear in an
IMPLICIT statement with the type CHARACTER. Specification must be
made prior to the definition of the name in the PARAMETER statement.

7. Once a symbolic name is defined, it can be used as a primary in any
subsequent expressions or DATA statements in that program unit.

8. The functions IAND, IOR, NOT, IEOR, ISHFT, LGE, LGT, LLE, and
LLT with constant operands can be specified in 4 logical expression.

9. The function CHAR with a constant operand can be specified in a character
expression. 4

10. The functions MIN, MAX, ABS, MOD, ICHAR, NINT, DIM, DPROD,

CMPLX, CONJG, and IMAG with constant operands can be specified in
arithmetic expressions.

Version 3.0 Specification Statements 4-35

o

-
-

\
-
-

o
.

o
=

| Réstrictioné

A constant and a symbolic name for a constant are generally not

integer constant cannot be

f an
in a CHARACTER type statement w

1C name O

a symbol

tance,

ins
fi

For

interchangeable.

ithout
but

ification

theses

used as a length spec

enclos

t

li

tance, CHARACTER*(]) is va

For ins

t.

ing paren

18 nO

CHARACTER*I

o
-

s

.

‘Examples '(

REAL X

PARAMETER (X = 1)

aking X the name of a

m

’

ed to 1EO

is convert

The example above declares that 1

REAL constant.

INTEGER I

.14)

-3

PARAMETER (I

aking I the name of an INTEGER constant

m

’

3.14 is converted to 3

IRIS-4D Series

FORTRAN 77 Language Reference Manual

4-36

In the following example, interest rate is assigned the constant value of
.087769.

REAL*4 interest rate
PARAMETER (interest rate = .087769)

Version 3.0 Specification Statements 4-37

4-38 FORTRAN 77 Language Reference Manual IRIS-4D Series

4.15 PROGRAM

Use

Defines a symbolic name for the main program.
Syntax

PROGRAM pgm
where pgm is a symbolic name of the main program, which must not be the

name of an external procedure, block data subprogram, or common block, or a
local name in the same program unit.

Rules of Use

1. The PROGRAM statement is optional. However, it must be the first
statement in the main program when used.

2. The symbolic name must be unique for that executable program. It must

not be the name of any entity within the main program or any subprogram,
entry, or common block.

Version 3.0 Specification Statements 4-39

e

IRIS-4D Series

o . . .
e - e
. - .
.
. a2
.

L

L .
Mm&\\ - -

40\

e

E\

e

o

,/,,,
- - e
. . \\\/Nq@\nM\\A/A\

o .

s -2 =
. . B .5
Ww////,/////%%////,

¢

T

o - o S

e \ z/
,ggghvvvvv\ . - 5 &
\ o %

S 5 = : v o
= & . = \w\m\\\\\\\\\\\\/\

- . . = =
. 5= - 5o 2
. O \\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\A ==
... & . o -

FORTRAN 77 Language Reference Manual

Vv/,///w/// =

- - = . e e
?/W%V//////%%//V - :

- - :
= - -

= - - o - o
. T o G g G A

. .

4-40

. B

4.17 SAVE

Use

Retains the values of variables and arrays after execution of a RETURN or
END statement in a subprogram. This allows those entities to remain defined
for subsequent invocations of the subprogram.

Syntax
SAVE [al[,al..]
where a is one of the following:

* A variable or array name

» A common block name, preceded and followed by slashes

Version 3.0 Specification Statements 4-41

Method of Operation

The SAVE statement prevents named variables, arrays, and common blocks
from becoming undefined after the execution of a RETURN or END statement
in a subprogram. Normally, all variables and arrays become undefined upon
exit from a subprogram, except in the following cases:

» Entities specified by a SAVE statement
» Entities in blank common

» Entities in a named common that is declared in the subprogram and in a
calling program unit in SAVE statements

All variables and arrays declared in the main program maintain their definition
status throughout the execution of the program. If alocal variable or array is
not in a common block and is specified in a SAVE statement, it has the same
value when the next reference is made to the subprogram.

All common blocks are treated as if they had been named in a SAVE statement.
All data in any common block is retained on exit from a subprogram.

;,Note. ‘Befau}t SAVE status for common blocks is an emhancemmt o

AN 77. In FORTRAN 77, a common block named without a

sponding SAVE statement causes the variables and arrays in the

‘ ed common block to iose the:r definition status upon exit from the
subpmgram ‘ 4

Rules of Use

1. A SAVE statement without a list is treated as though all allowable entities
from that program unit were specified on the list.

2. A SAVE statement may be placed in the main program but it has no effect.

3. A given symbolic name may appear in only one SAVE statement in a
program unit.

4-42 FORTRAN 77 Language Reference Manual IRIS-4D Series

Restrictions

Procedure names and dummy arguments cannot appear in a SAVE statement.
The names of individual entries in a common block are not permitted in a
SAVE statement.

Examples

SAVE L, V
SAVE /DBASE/

4.18 STRUCTURE / UN-I’QN ‘

Use

Defines a record structure that can be referenced by one or more RECORD .
statement, o . .

Syntax (General)

STRUCTURE |[/structure-name/] |[field-names]
[field-definition]
- [field-definition] ..
END STRUCTURE

where

structure-name is a name used to identify the structure in a subsequent
RECORD statement. Substructures can be established within
a structure by means of either a nested STRUCTURE
declaration or a RECORD statement.

field-names for substructure declarations only. One or more names
having the structure of the substructure being defined.

Version 3.0 Specification Statements 4-43

E

D
e

-

.
.
.
-

e o G
. - vv\/

IRIS-4D Series

FORTRAN‘77 Language Reference Manuél

4-44

Method af”w’i‘:’eration

Typed data deciaranans (vanabfes @i arrays n structure aratmns have

 the fields
any value previously asmgned to fiald d

Exampl% (General)

 SIRUCTURE /WEATHER/
INTECER MONTH, DAY, YEAR
CHARACTER*20 CLOUDS '
o BRAT
END STRUCIURE
RECORD /WEATHER/

In the above example, the STRUCTURE statement prbdﬂcés the bfﬁllawmg
storage mapping for the latest specification in the RECORD statement:
O S ' ‘(
month

_ day

clouds

rainfall

Figure 4-3. Logical Representation of STRUCTURE Statement

Version 3.0 Specification Statements 4-45

4-46

_DATE

FORTRAN 77 Language Reference Manual

IRIS-4D Series

This example causes the following text to be written to the standard input/
output device: .

081089

4.19 VOLATILE
Use

Prevents the compiler from optimizing specified variables, arrays, and common
blocks of data.

Syntax

VOLATILE volatile-items
where volatile-items is one or mote names of variables, common blocks, or
arrays. When two or more names are specified, each of the volatile-items must

be sepatated by a comma.

For more information on optimization, refer to the Languages Programmer’s
Guide and the f77(1) manual page in the User’s Reference Manual.

Version 3.0 Specification Statements 4-47

5. Assignment and Data Statements

5.1 Overview

Assignment statements assign values to variables and array elements. Five
types of assignment statements are included in FORTRAN:

e Arithmetic assignment

* Logical assignment

» Character assignment

e Statement label assignment

DATA statements, implied DO lists in DATA statements, and BLOCK DATA

subprograms are closely related and can be used to initialize variables and array
elements. BLOCK DATA subprograms are described in detail in Chapter 4.

5.2 Arithmetic Assignment Statements

An arithmetic assignment statement assigns the value of an arithmetic
expression to a variable or array element of type INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, or DOUBLE COMPLEX. The form of an arithmetic
statement is:

<
I
o

where:

Version 3.0 Assignment and Data Statements 5-1

v is aname of an integer, real, double precision, complex, or double
complex type variable or array element.

e is an arithmetic expression.

When an arithmetic assignment statement is executed, the expression e is
evaluated and the value obtained replaces the value of the entity to the left of
the equal sign.

Both v and e need not be of the same type; the value of the expression is
converted to the type of the variable or array element specified. The type
conversion rules are:

V Declaration Function Equivalent
INTEGER INT(e)

REAL REAL(e)

DOUBLE PRECISION DBLE(e)
COMPLEX CMPLX(e)

DOUBLE COMPLEX DCMPLX(e)

Table 5-1 gives the detailed conversion rules for arithmetic assignment
statements.

The functions in the second column of the table are intrinsic functions described
in Chapter 10 and Appendix A.

The following are examples of arithmetic assignment statements:

I =24 Assign the value 4 to I
J =7 Assign the value 7 to J
A = I*J+1l Assign the value 29 to A

5-2 FORTRAN 77 Language Reference Manual IRIS-4D Series

Variable or Expression (e)
Array INTEGER or
Element (v) LOGICAL REAL REAL*8
INTEGER |Assignetov Truncate e to Truncate e to
or integer and integer and
LOGICAL assign to v assign to v
Append fraction |Assignetov Assign high order
(.0) to e and portion of e to v;
REAL assign to v low order portion
of e is rounded
Append fraction |Assign e to high |Assignetov
(.0) to e and order portion of
REAL*8 assignto v v; low order
portion of vis 0

COMPLEX

Append fraction
to e and assign to
real part of v;
imaginary part of
vis 0.0

Assign e to

part of v;
imaginary part of
vis 0.0

I Assign high order

portion of e to real
part of v; low
order portion of e
is rounded;
imaginary part of
vis 0.0

Table 5-1. Conversion Rules for Assignment Statements

Version 3.0

Assignment and Data Statements 5-3

Variable or
Array
Element (v)

Expression (e)

COMPLEX

INTEGER
or
LOGICAL

Truncate real part
of e to integer and
assignto v

REAL

Assign real part
ofetov;

imaginary part of
e not used.

REAL*8

COMPLEX

| Assign e to high
order portion of
v; low order

portion of v is 0

Assigne to v

Table 5-1 (continued). Conversion Rules for Assignment Statements

FORTRAN 77 Language Reference Manual

IRIS-4D Series

5.3 Logical Assignment Statements

The logical assignment statement is used to assign the value of a logical
expression to a logical variable or array element. It takes the form:

v=e

where v is a name of a logical variable or logical array element and e is a logical
expression.

When a logical assignment statement is executed, the value of the logical
expression e is evaluated and replaces the value of the logical entity to the left
of the equal sign. The value of the logical expression is either true or false.

5.4 Character Assignment

The character assignment statement is used to assign the value of a character
expression to a character variable, array element, or substring. The form of a
character assignment statement is:

v=e

where v is a name of a character variable, array element, or substring and e is a
character expression.

During the execution of a character string assignment statement, the character
expression is evaluated and the resultant value replaces the value of the
character entity to the left of the equal sign.

The entity v and character expression e may have different lengths. If the
length of v is greater than the length of e, then the value of e is extended on the
right with blank characters to the length of v. If the length of e is greater than
the length of v, then the value of e is truncated on the right to the length of v.

Version 3.0 Assignment and Data Statements 5-5

The following examples show character assignment:

CHARACTER U*5, V*5, Wx7
U = '"HELLO'

V = 'THERE'

W(6:7) = V(4:5)

If assignment is made to a character substring, only the specified character
positions are defined. The definition status of character positions not specified
by the substring remain unchanged.

5.6 ASSIGN

The ASSIGN statement causes a statement label to be assigned to an integer
variable and is used in conjunction with an assigned GOTO statement or an
input/output statement. The form of a statement label assignment statement is:

ASSIGN s TO e

where:

5-6 FORTRAN 77 Language Reference Manual IRIS-4D Series

s is a statement label of an executable statement or a FORMAT
statement that appears in the same program unit as the ASSIGN
statement.

e is an integer variable name.

Statement label assignment by the ASSIGN statement is the only way of
defining a variable with a statement label value. A variable defined with a
statement label value may be used only in an assigned GOTO statement or as a
format identifier in an input/output statement. The variable thus defined must
not be referenced in any other way until it has been reassigned with an
arithmetic value.

An integer variable that has been assigned a statement label value may be
redefined with the same statement label, a different statement label, or as an
arithmetic integer variable.

Examples using the ASSIGN statement are shown below.

Example 1:

ASSIGN 100 TO KBRANCH

GO TO KBRANCH
Example 2:

ASSIGN 999 TO IFMT
999 FORMAT (F10.5)

READ (*, IFMT) X

WRITE (*, FMT = IFMT) Z

Version 3.0 Assighment and Data Statements 5-7

5.7 Data Initialization

Variables, arrays, array elements, and substrings can be initially defined using
the DATA statement or an implied-DO list in a DATA statement. The BLOCK
DATA subprogram is a means of initializing variables and arrays in named

common

blocks and is discussed in Chapter 4.

Entities not initially defined or associated with an initialized entity are
undefined at the beginning of execution of a program. Uninitialized entities
must be defined before they can be referenced in the program.

5.8 Implied-DO

5.8.1 Use

Initializes or assigns initial values to elements of an array.

5.8.2 Syntax

(dlist, i =el, e2 [,e3])

where:

dlist

el

e2

e3

5-8

is a list of array element names and implied-DO lists.

is aname of an integer variable, referred to as the implied-DO
variable. It is used as a control variable for the iteration count.

is an integer constant expression specifying an initial value.
is an integer constant expression specifying a limit value.
is an integer constant expression specifying an increment value.

el, e2, and e3 are as defined in DO statements.

FORTRAN 77 Language Reference Manual IRIS-4D Series

(

5.8.3 Method of Operation

An iteration count and the values of the implied-DO variable are established
from el, e2, and e3 exactly as for a DO-loop, except that the iteration count
must be positive.

When an implied-DO list appears in a DATA statement, the dlist items are
specified once for each iteration of the implied-DO list with the appropriate
substitution of values for any occurrence of the implied-DO variable. The
appearance of an implied-DO variable in an implied-DO has no effect on the
definition status of that variable name elsewhere in the program unit. For an
example of a implied-DO list, see the DATA section in Chapter 4.

The range of an implied-DO list is dlist.
5.8.4 Rules

The integer constant expressions used for e/, e2, and e3 may contain implied-
DO variables of other implied-DO lists.

Any subscript expression in the list dlist must be an integer constant expression.

The integer constant expression may contain implied-DO variables of implied-
DO lists that have the subscript expression within their range.

Version 3.0 Assignment and Data Statements 5-9

6. Control Statements

6.1 Overview

Control statements affect the normal sequence of execution in a program unit.
They are described in alphabetical order in this chapter and summarized below.

Command Purpose

CALL References a subroutine program in a calling program unit

CONTINUE Has no operational function; usually serves as the terminal
statement of a DO loop

DO Specifies a controlled loop, called a DO-loop, and
establishes the control variable, indexing parameters, and
range of the loop.

DO WHILE Specifies a DO-loop based on a test for true of a logical
expression.

ELSE Used in conjunction with the block IF or ELSE IF
statements.

ELSE IF Used optionally with the block IF statement.

END Indicates the end of a program unit.

END DO Defines the end of an indexed DO loop or a DO WHILE
loop.

END IF Has no operational function; serves as a point of reference
like a CONTINUE statement in a DO-loop.

GO TO Transfers program control to the statement identified by the

(Unconditional) statement label.

Table 6-1. Control Statements
Version 3.0 Control Statements 6-1

Command Purpose

GO TO Transfers control to one of several statements specified,
(computed) depending on the value of an integer expression.
GO TO Used in conjunction with an ASSIGN statement to transfer

(Symbolic name) control to the statement whose label was last assigned to a
variable by an assign statement.

IF Allows conditional branching.

(Arithmetic)

IF Allows conditional statement execution.

(Branch logical)

IF Allows conditional execution of blocks of code. The block

(Test Conditional) IF can contain ELSE IF statements for further conditional
execution control. The block IF ends with the END IF.

PAUSE Suspends an executing program.

RETURN Returns control to the referencing program unit. It may
appear only in a function or subroutine program.

STOP Allows termination of an executing program.

Table 6-1. (continued) Control Statements

6.2 CALL

Use

References a subroutine subprogram in a calling program unit.
Syntax
CALL sub[([a[,al...])]

where:

6-2 FORTRAN 77 Language Reference Manual IRIS-4D Series

sub

is the symbolic name of the subroutine

a
\altemate retum\ spe01ﬁer of the\ form *s whereés is a statement label, or
&s, where s is a statement label.

Method of Operation

Execution of a CALL statement causes an evaluation of the actual arguments,
association of the actual arguments with the corresponding dummy arguments,
and execution of the statements in the subroutine. Return of control from the
referenced subroutine completes the execution of the CALL statement.

Rules of Use

The actual arguments a form an argument list and must agree in order,
number, and type with the corresponding dummy arguments in the
referenced subroutine.

A subroutine that has been defined without an argument may be referenced
by a CALL statement of the following forms:

CALL sub
CALL sub()

If a dummy procedure name is specified as a dummy argument in the
referenced subroutine, then the actual argument must be an external
procedure name, a dummy procedure name, or one of the allowed specific
intrinsic names. An intrinsic name or an external procedure name used as
an actual argument must appear in an INTRINSIC or EXTERNAL
statement, respectively.

If an asterisk is specified as a dummy argument, an alternate return
specifier must be supplied in the corresponding position in the argument
list of the CALL statement.

Version 3.0 Control Statements 6-3

Example

In the following example, the main routine calls pageread passing the

parameters Iwordcount, page, and nswitch. After execution of pageread,

control returns to the main program, which stops.

111

6-4

PROGRAM MAKEINDEX
CHARACTER*50 PAGE
DIMENSION PAGE (100)
NSWITCH = 0

LWORDCOUNT = INWORDS1*2

CALL PAGEREAD (LWORDCOUNT,PAGE,NSWITCH)
STOP

SUBROUTINE PAGEREAD (LWORDCOUNT,PAGE,NSWITCH)
CHARACTER*50 PAGE

DIMENSION PAGE (100)

ICOUNT = 100

END

FORTRAN 77 Language Reference Manual IRIS-4D Series

6.3 CONTINUE

Use

Has no operational function; usually serves as the terminal statement of a DO-
loop.

Syntax
CONTINUE
Method of Operation

When a CONTINUE statement that closes a DO-loop is reached, control
transfer depends on the control variable in the DO-loop. In this case, control
will either go back to the start of the DO-loop, or flow through to the statement
following the CONTINUE statement. (See the subhead Loop control
processing under the DO statement for full information about control of DO-
loops.)

Example

In the following example, the DO loop is executed 100 times, and then the
program branches to statement 50 (not shown).

IWORDCOUNT = 100
DO 25, I= 1,LWORDCOUNT
READ (2, 20, END=45) WORD
20 FORMAT (A50)
25 CONTINUE

GOTO 50

Version 3.0 Control Statements 6-5

6.4 DO

Use

Specifies a controlled loop, called a DO-loop, and establishes the control
variable, indexing parameters, and range of the loop.

Syntax

DO [s] [,11i =¢el, e2 [, e3]

where:

s is a statement label of the last executable statement in the range of the
DO-loop. This statement is called the terminal statement of the DO-
loop.

i is a name of an integer, real, or double precision variable, called the DO
variable.

el isaninteger, real, or double precision expression that represents the
initial value given to the DO variable.

e2 isaninteger, real, or double precision expression that represents the limit
value for the DO variable.

e3 is an integer, real, or double precision expression that represents the
increment value for the DO variable.

6-6 FORTRAN 77 Language Reference Manual IRIS-4D Series

Method of Operation

The range of a DO-loop consists of all executable statements following the DO
statement, up to and including the terminal statement of the DO-loop. In a DO-
loop, the executable statements that appear in the DO-loop range are executed a
number of times as determined by the control parameters specified in the DO
statement. The execution of a DO-loop involves the following steps:

1.

Activating the DO-loop. The DO-loop is activated when the DO
statement is executed. The initial parameter m/, the terminal parameter
m2, and the incremental parameter m3 are established by evaluating the
expressions el, 2, and e3, respectively. The expressions are converted to
the type of the DO variable when the data types are not the same. The DO
variable becomes defined with the value of the initial parameter m/ . The
increment m3 cannot have a value of zero and defaults to the value 1 if 3
is omitted.

Computing the iteration count. The iteration count is established from
the following expression:

MAX (INT((m2 - ml + m3)/m3), O0)
The iteration count is zero in the following cases:

ml >m2 and m3 >0
ml <m2andm3 =0

If the initial value (ml) of the DO exceeds the limit value (m2), as in:
DO 10 I = 2,1
The DO loop will not be executed unless the —onetrip compiler option is in

effect. This option causes the body of a loop thus initialized to be executed
once. ' .

Version 3.0 Control Statements 6-7

Loop control processing. This step determines if further execution of the
range of the DO-loop is required. Loop processing begins by testing the
iteration count. If the iteration count is positive, the first statement in the
range of the DO-loop is executed. Normal execution proceeds until the
terminal statement is processed. This constitutes one iteration of the loop.
Incrementing is then required, unless execution of the terminal statement
results in a transfer of control.

If the iteration count is zero, the DO-loop becomes inactive. Execution
continues with the first executable statement following the terminal
statement of the DO-loop. If several DO loops share the same terminal
statement, incremental processing is continued for the immediately
containing DO-loop.

Incremental processing. The value of the DO variable is incremented by
the value of the incremental parameter m3. The iteration count is then
decreased by one and execution continues with loop control processing as
described above.

A DO-loop is either active or inactive. A DO-loop is initially activated

when its DO statement is executed. Once active, a DO-loop becomes
inactive when one of the following occurs:

FORTRAN 77 Language Reference Manual IRIS-4D Series

» The iteration count is zero.
* A RETURN statement within the DO-loop range is executed.

» Control is transferred to a statement outside the range of the DO-loop
but in the same program unit as the DO-loop.

» A STOP statement is executed or the program is abnormally
terminated.

Reference to a subprogram from within the range of the DO-loop does not
make the DO-loop inactive except when control is returned to a statement
outside the range of the DO-loop.

When a DO-loop becomes inactive, the DO-variable of the DO-loop retains
its last defined value.

Rules of Use

1. DO-loops can be nested but must not overlap.

2. If a DO statement appears within an IF-block, ELSE IF-block, or ELSE-
block, the range of the DO-loop must be contained within that block.

3. If a block IF statement appears within the range of a DO-loop, the
corresponding END IF statement must appear within the range of the DO-
loop.

4. The same statement may serve as the terminal statement in two or more
nested DO-loops.

5. The terminal statement for two or more nested DO-loops can only be

branched to by a GOTO statement in the innermost loop. If one of the
outside loops has a GOTO statement with branches to this terminal
statement, the result is unpredictable.

Version 3.0 Control Statements 6-9

Restrictions

1. The following statements must not be used for the statement labeled s in
the DO-loop:

Unconditional GO TO END IF

Assigned GO TO RETURN

Arithmetic IF STOP

Block IF END

ELSE IF Another DO statement
ELSE

2. If the statement labeled s is a logical IF statement, then it can contain any
executable statement in its statement body, except for:

DO statement END IF

Block IF END

ELSE IF Another logical IF statement
ELSE

3. Except by the incremental process covered above, the DO variable must
not be redefined during execution of the range of the DO-loop.

4. A program must not transfer control into the range of a DO-loop from
outside the DO-loop. When this happens, the result is indeterminate.

Example

DO 10, I =1, 10
D
D
D
10 CONTINUE
E

In the above example, the statements (noted with a D) following the DO
statement are executed sequentially 10 times, then execution resumes at the
statement (E) following CONTINUE.

6-10 FORTRAN 77 Language Reference Manual IRIS-4D Series

Version 3.0 Control Statements 6-11

6.6 ELSE

Use (

Used in conjunction with the block IF or ELSE IF statements.
Syntax
ELSE

Method of Operation

Two terms need to be defined to explain the ELSE statement:

ELSE-block (defined below) and IF-level (defined on the block IF state-
ment page).

An ELSE-block is the code that is executed when an an ELSE statement is (
reached. An ELSE-block begins after the ELSE statement and ends before the

END IF statement at the same IF-level as the ELSE statement. As well as

containing simple, executable statements, an ELSE-block may be empty

(contain no statements) or may contain embedded block IF statements. Don't

confuse the ELSE-block and the ELSE statement.

An ELSE statement is executed when the logical expressions in the
corresponding block IF and ELSE IF statements evaluate to false. An ELSE
statement has no logical expression to evaluate; the ELSE-block is always
executed if the ELSE statement is reached. After the last statement in the
ELSE-block is executed (and provided it does not transfer control) control
flows to the END IF statement that closes that whole IF-level.

Rules of Use

(|
1. There cannot be any ELSE IF or ELSE statements inside an ELSE-block at
the same IF-level.

2. The IF-level of the ELSE statement must be greater than zero (there must
be a preceding corresponding block-IF statement).

6-12 FORTRAN 77 Language Reference Manual IRIS-4D Series

Restrictions

1. The ELSE-block can be entered only by executing the ELSE statement.
No transfer of control that jumps from outside the ELSE-block into the
ELSE-block is allowed.

2. If an ELSE statement has a statement label, the label cannot be referenced
by any statement.

Example

IF (R) THEN
A=0

ELSE IF (Q) THEN
A =1

ELSE
A= -1

END IF

6.7 ELSE IF

Use
Used optionally with the block IF statement.
Syntax

ELSE IF (e) THEN

where e is a logical expression.

Version 3.0 Control Statements 6-13

Example

IF (R) THEN
A=0

ELSE IF (Q) THEN
A=1

END IF

6.8 END

Use
Indicates the end of a program unit.
Syntax
END
Method of Operation

An END statement in a main program has the same effect as a STOP statement;
it terminates an executing program.

An END statement in a function or subroutine subprogram has the effect of a
RETURN statement; it returns control to the referencing program unit.

Rules of Use

1. An END statement must be the last statement in every program unit.

2. An END statement must not be continued. No other statements should
have END as the first three non-blank characters.

6-14 FORTRAN 77 Language Reference Manual IRIS-4D Series

6.10 END IF

Use

Has no operational function; serves as a point of reference like a CONTINUE
statement in a DO-loop.

Syntax
END IF

Rules of Use

1. Every block IF statement requires an END IF statement to close that IF-
level. (IF-level is described under the block IF statement.)

2. The IF-level of an END IF statement must be greater than zero (there must
be a preceding corresponding block-IF statement).

Example

See the example given with the description of the ELSE statement.

Version 3.0 Control Statements 6-15

6.11 GO TO (Unconditional)

Use
Transfers program control to the statement identified by the statement label.
Syntax

GO TO s

where s is a statement label of an executable statement appearing in the same
program unit as the unconditional GO TO.

Example

GO TO 358

Program control is transferred to statement 358 and normal sequential execution
continues from there.

6.12 GO TO (Computed)

Use

Transfers control to one of several statements specified, depending on the value
of an integer expression.

Syntax

GO TO (s[,s]...)[,11

where s is a statement number of an executable statement appearing in the same
program unit as the computed GO TO, and i is an integer.

6-16 FORTRAN 77 Language Reference Manual IRIS-4D Series

A non-integer expression may ﬁlsn be used fe

converted to integer (fractional portions are dis
index into the list of statement labels.

Method of Operation

A computed GO TO statement causes evaluation of the integer expression,
followed by transfer of control.

In the computed GO TO statement with the following form:

GO TO (sl, s2, ... ,sn),i
If i<1 or i>n, the program control continues with the next statement following
the computed GO TO statement; otherwise, program control is passed to the
statement labeled si. Thus, if the value of the integer expression is 1, control of
the program is transferred to the statement numbered s/ in the list; if the value

of the expression is 2, control is passed to the statement numbered s2 in the list,
and so on.

Rules of Use

The same statement label may appear more than once in the same computed GO
TO statement.

Example

KVAL = 4
GO TO(100,200,300,300,350,9000)KVAL + 1

Program control is transferred to statement 350 (KVAL + 1).

Version 3.0 Control Statements 6-17

6.13 GO TO (Symbolic Name)

Use (

Used in conjunction with an ASSIGN statement to transfer control to the
statement whose label was last assigned to a variable by an ASSIGN statement.

Syntax

Go TO 1 [[,] (s [,s]...)]

where i is an integer variable name and s is a statement label of an executable
statement appearing in the same program unit as the assigned GO TO statement.

Method of Operation

The variable i is defined with a statement label using the ASSIGN statement in (
the same program unit as the assigned GO TO statement. When an assigned

GO TO is executed, control is passed to the statement identified by that

statement label. Normal execution then proceeds from that point.

Rules of Use

1. The same statement label may appear more than once in the same assigned
GO TO statement.

2. If the list in parentheses is present, the statement label assigned to i must be
one of those in the list.

Example

GO TO KJuMP, (100,500,72530) ()

The value of KIUMP must be one of the statement label values; 100, 500, or
72530.

6-18 FORTRAN 77 Language Reference Manual IRIS-4D Series

6.14 IF (Arithmetic)

Use
Allows conditional branching.
Syntax

IF (e) sl1, s2, 83
where:

e is an arithmetic expression of type integer, real, or double precision,
but not complex.

sl,s2,s3 are statement numbers of executable statements in the same
program unit as the arithmetic IF statement.

Method of Operation

In the execution of an arithmetic IF statement, the value of the arithmetic
expression e is evaluated. Control is then transferred to the statement numbered
s1, s2, or s3 if the value of the expression is less than zero, equal to zero, or
greater than zero, respectively. Normal program execution proceeds from that
point.

Rules of Use

The same statement number may be used more than once in the same arithmetic
IF statement.

Version 3.0 Control Statements 6-19

Example

IF (A + B*(.5))500,1000,1500 (
« If the expression evaluates to be negative, control jumps to statement 500.
» If the expression evaluates to be zero, control jumps to statement 1000.

« If the expression evaluates to positive, control jumps to statement 1500.

6.15 IF (Branch Logical)

Use

Allows conditional statement execution.
Syntax (

IF (e) st

where e is a logical expression and st is any executable statement except DO,
block IF, ELSE IF, ELSE, END IF, END, or another logical IF statement.

Method of Operation

Execution of a logical IF statement causes boolean evaluation of the logical
expression. If the value of the logical expression is true, statement st is
executed. If the value of the expression is false, execution continues with the
next sequential statement following the logical IF statement.

Note that a function reference in the expression is allowed, but may affect)
entities in the statement sz. \

6-20 FORTRAN 77 Language Reference Manual IRIS-4D Series

Example

IF(A .LE. B) A= 0.0
IF (M .LT. TOC) GOTO 1000
IF (J) CALL OUTSIDE (B, Z,F)

6.16 IF (Test Conditional)

Use

Allows conditional execution of blocks of code. The block IF can contain
ELSE and ELSE IF statements for further conditional execution control. The
block IF ends with the END IF statement.

Syntax

IF (e) THEN

where e is a logical expression.
Method of Operation

Two terms need to be defined to explain the block IF statement: IF-block and
IF-level.

An IF-block is the code that is executed when the logical expression of a block
IF statement evaluates to true. An IF-block begins after the block IF statement
and ends before the ELSE IF, ELSE, or END IF statement that corresponds to
the block IF statement. As well as containing simple, executable statements, an
IF-block may be empty (contain no statements) or may contain embedded block
IF statements. Don't confuse IF-block with block IF.

Version 3.0 Control Statements 6-21

Block IF statements and ELSE IF statements may be embedded, which can
make figuring which statements are in which conditional blocks very confusing.
The IF-level of a statement determines which statements belong to which IF-
THEN-ELSE block. Fortunately, the IF-level of a statement can be found
systematically. The IF-level of a statement s is:

(nl - n2)

where (starting count at the beginning of the program unit): in/ is the number of
block IF statements up to and including s, and n2 is the number of END IF
statements up to but not including s.

The IF-level of every block IF, ELSE IF, ELSE, and END IF statement must be
positive because those statements must be part of a block IF statement. The IF-
level of the END statement of the program unit must be zero because all block
IF statements must be properly closed. The IF-level of all other statements
must either be zero (if they are outside all IF-blocks) or positive (if they are
inside an IF-block).

When a block IF statement is reached, the logical expression e is evaluated. If e
evaluates to true, execution continues with the first statement in the IF-block. If
the IF-block is empty, control is passed to the next END IF statement that has
the same IF-level as the block IF statement. If e evaluates to false, program
control is transferred to the next ELSE IF, ELSE, or END IF statement that has
the same IF-level as the block IF statement.

After the last statement of the IF-block is executed (and provided it does not
transfer control), control is automatically transferred to the next END IF
statement at the same IF-level as the block IF statement.

Restrictions
Control cannot be transferred into an IF-block from outside the IF-block.

Example

IF(Q .LE. R) THEN

PRINT ('Q IS LESS THAN OR EQUAL TO R')
ELSE

PRINT ('Q IS GREATER THAN R')
END IF

6-22 FORTRAN 77 Language Reference Manual IRIS-4D Series

6.17 PAUSE

Use
Suspends an executing program.
Syntax

PAUSE [n]

where 7 is a string of not more than five digits or a character constant.
Method of Operation

A PAUSE statement without an n specification suspends execution of a
program and issues the following message:

PAUSE statement executed
To resume execution, type go. Any other input

will terminate Jjob.

A PAUSE statement with an n specification displays the specified character
constant or digits and issues the pause message. For example, the statement

Pause "Console Check"
causes the following message to be displayed:
PAUSE Console Check statement executed
To resume execution, type go. Any other input

will terminate Jjob.

If execution is resumed, the execution proceeds as though a CONTINUE
statement were in effect.

At the time of program suspension, the optional digit string or character

constant becomes accessible to the system as program suspension status
information.

Version 3.0 Control Statements 6-23

6.18 RETURN

Use

Returns control to the reférencing program unit. It may appear only in a
function or subroutine subprogram.

Syntax

In a function subprogram:
RETURN
In a subroutine subprogram:

RETURN [e]

where e is an integer expression specifying an alternate return.

Method of Operation

A RETURN statement terminates the reference of a function or subroutine and
transfers control back to the currently referenced program unit. In a function
subprogram, the value of the function then becomes available to the referencing
unit. In a subroutine, return of control to the referencing program unit
completes execution of the CALL statement.

A RETURN statement terminates the association between the dummy
arguments of the external procedure and the current actual arguments.

6-24 FORTRAN 77 Language Reference Manual IRIS-4D Series

In a subroutine subprogram, if e is not specified in a RETURN statement or if
the value of e is less than or greater than the number of asterisks in the
SUBROUTINE or ENTRY statement specifying the currently referenced name,
then control returns to the CALL statement that initiated the subprogram.
Otherwise, the value of e identifies the eth asterisk in the dummy argument list
of the currently referenced name. Control returns to the statement identified by
the alternate return specifier in the CALL statement that is associated with the
eth asterisk in the dummy argument list.

The execution of a RETURN statement causes all entities in an external
procedure to become undefined except for the following:

« Entities that are specified in a SAVE statement
» Entities that are in blank or named common

o Entities that are initialized in a DATA statement that have neither been
redefined nor become undefined

6.19 STOP

Use
Allows termination of an executing program.
Syntax

STOP [n]
where n is a string of not more than five digits or a character constant.

Method of Operation

The STOP statement terminates an executing program. If nis supplied, the
digit string or character constant becomes accessible to the system as program
termination status information.

Version 3.0 Control Statements 6-25

7. Input/Output Processing

7.1 Overview

Input statements copy data from external media or from an internal file to
internal storage. This is called reading. Output statements copy data from
internal storage to external media or to an internal file. This is called writing.

Input/output facilities in FORTRAN give you control over the input/output
system. This section deals primarily with the programmer-related aspects of
input/output processing rather than with the implementation of the processor-
dependent input/output specifications.

See Chapter 1 of the FORTRAN 77 Programmer’s Guide for information on
extensions to FORTRAN 77 that affect input/output processing.

7.2 Records

A record is simply a sequence of values or characters. FORTRAN has three
kinds of records: formatted, unformatted, and endfile records. A recordisa
logical concept; it does not have to correspond to a particular physical storage
form. However, external media limitations may also limit the allowable length
of records.

Version 3.0 Input/Output Processing 7-1

7.2.1 Formatted Records

A formatted record contains only ASCII characters and is terminated by a (N
carriage-return or line-feed character. Formatted records are required only
when the data must be read from the screen or a printer copy.

A formatted record can be read from or written to only by formatted input/
output statements. Formatted records are measured in characters. The length is
primarily a function of the number of characters that were written into the
record when it was created, but it may be limited by the storage media or the
CPU. A formatted record may have a length of zero.

7.2.2 Unformatted Records

Unformatted records contain sequences of values, both character and non-
character, are not terminated by any special character, and cannot be accurately
comprehended in their printed or displayed format. Generally, unformatted
records use less space than formatted records and thus conserve storage.

An unformatted record can be read from or written to only by unformatted (
input/output statements. Unformatted records are measured in bytes. That

length is primarily a function of the output list used to write the record, but may

be limited by the external storage media or the CPU. An unformatted record

may be empty.

7.2.3 Endfile Records

An endfile record marks the logical end of a data file. Thus, it may occur only
as the last record of a file. An endfile record does not contain data and has no
length. An endfile record is written by an ENDFILE statement.

When a program is compiled with —vms_endfile, an endfile record consists of a

single character, control-D. In this case, several endfile records can exist in the

same file and can be anywhere in the file. Reading an endfile record will result

in an end-of-file condition being returned, but rereading the same file will read (
the next record, if any.

7-2 FORTRAN 77 Language Reference Manual IRIS-4D Series

7.3 1/0 Statements

The input/output statements that FORTRAN uses to transfer data can be
categorized by how the data translated during the transfer, namely as formatted,
list-directed, and unformatted input/output.

7.3.1 Unformatted Statements

An unformatted input/output statement transfers data in the non-character
format during an input/output operation. Unformatted input/output operations
are usually faster than formatted operations, which translate data to character
format.

In processing formatted statements, the system interprets some characters—for
example, the line-feed character—as special controls and eliminates them from
read records. Therefore, unformatted statements must be used when all
characters in a record are required.

The absence of a format specifier (as well as an asterisk in the specifier) denotes
an unformatted data transfer statement, as shown by the write statement in the
following example:

PROGRAM MAKEINDEX
CHARACTER*12 WORD
OPEN (2, FILE='V',FORM='FORMATTED')
OPEN (UNIT=10, STATUS='NEW', FILE='NEWV.OUT",
+ FORM='UNFORMATTED ')
116 READ (2,666, END=45) WORD
WRITE (10) WORD

GO TO 116
45 CLOSE (10)
END

In the above example, formatted records are read into the variable word from
the input file attached to Unit 2, and then written unformatted to the output file
attached to Unit 10.

Version 3.0 Input/Output Processing 7-3

7.3.2 Formatted Statements

A formatted input/output statement translates all data to character format during ()
arecord transfer. The statement contains a format specifier that references a

FORMAT statement; the FORMAT statement contains descriptors that deter-

mine data translation and perform other editing functions. Here is an example

of two formatted WRITE statements:

PROGRAM MAKEINDEX

CHARACTER*18 MESSAGE

MESSAGE = 'HELLO WORID'

WRITE (6,100) MESSAGE

WRITE (6,100) 'HELLO WORLD'
100 FORMAT (A)

END

Note that both statements contain the format specifier /00, which reference a

format statement with an a character descriptor (the descriptors are described in

detail in Chapter 9); both statements perform the same function, namely)
writing the message Hello World to the device associated with Unit 6. (

7.3.3 List-Directed Statements

A list-directed input/output statement performs the same function as a formatted
statement. However, in translating data, a list-directed statement uses the
declared data type rather than format descriptors in determining the format.

The following two list-directed write statements perform the same function as
the formatted write statements in the example for formatted output.

PROGRAM MAKEINDEX
CHARACTER*18 MESSAGE
MESSAGE = "HELLO WORLD'
WRITE (6,*) MESSAGE
WRITE (6,*) 'HELLO WORLD'

END (j

In this example, the variable message in the first write statement determines that
output is in character format; the character constant Hello World in the second
statement make this determination. Note that list-directed statements contain an
asterisk as the format specifier rather than a reference label.

7-4 FORTRAN 77 Language Reference Manual IRIS-4D Series

7.4 Files

A file is a sequence of records. The processor determines the set of files that
exist for each executable program. The set of existing files can vary while the
program executes. Files that are known to the processor do not necessarily
exist for an executable program at a given time. A file may exist and contain
no records (all files are empty when they are created). Input/output statements
can only be applied to files that exist.

Files may have names; if they do, they are called named files. Names are
simply character strings.

Every data file has a position. The position is used by input/output statements
to tell which record to access, and is changed when I/O statements are executed.
The terms used to describe the position of a file are:

initial point. The point immediately before the first record.
terminal point. The point immediately after the last record.

current record. The record containing the point where the file is posi-
tioned. There is no current record if the file is positioned at the initial point
(before all records) or at the terminal point (after all records) or between
two records.

preceding record. The record immediately before the current record. If
the file is positioned between two records (so there is no current record),
the preceding record is the record before the file position. The preceding
record is undefined if the file is positioned in the first record or at the initial
point.

next record. The record immediately after the current record. If the file is
positioned between two records (so there is no current record), the next
record is the record after the file position. The next record is undefined if

the file position is positioned in the last record or at the terminal point.

There are two kinds of files: internal files and external files.

Version 3.0 Input/Output Processing 7-5

7.4.1 External Files

An external file is a set of records on an external storage medium (for example,
a disk or a tape drive). A file can be empty; that is, it can contain no records.

7.4.2 Internal Files

An internal file is a means of transferring data within internal storage between
character variables, character arrays, character array elements, or substrings.

An internal file is always positioned at the beginning of the first record prior to
data transfer. Reading and writing records is only by sequential access format-
ted input/output statements that do not specify list-directed formatting.

The following is a simple example showing the use of internal file transfer to
convert character and integer data.

PROGRAM CONVERSION
CHARACTER*4 CHARREP
INTEGER NUMERICALREP
NUMERICALREP = 10

Q

EXAMPLE 1

WRITE (CHARREP, 900) NUMERICALREP
900 FORMAT (I2)
CHARREP = '222'

Q

EXAMPLE 2

WRITE (NUMERICALREP, 999) CHARREP
999 FORMAT (A3)
END

In the first example, the contents of NumericalRep is converted to character

format and placed in CharRep; in the second example, the contents of CharRep
is converted to integer and placed in NumericalRep.

7-6 FORTRAN 77 Language Reference Manual IRIS-4D Series

(

7.5 Methods of File Access

The following methods of file access are supported:
e Sequential

« Direct

. Keyed

External files can be accessed using any of the above methods. The access
method is determined when the file is opened or defined.

FORTRAN 77 requires that internal file must be accessed sequentially.

* As an extension, the use of internal files in bc)th fozmatted and'unfonnm:ted
input/output operations is penmtted ’ L

7.5.1 Sequential Access

A file connected for sequential access has the following properties:

« For files that allow only sequential access, the order of the records is
simply the order they were written.

« For files that also allow direct access, the order of files depends on the
record number. If a file is written sequentially, the first record written is
record number 1 for direct access, the second written is record number 2,
etc.

o Formatted and unformatted records cannot be mixed in a file.

« The last record of the file may be an endfile record.

+ The records of a pure sequential file must not be read or written by direct
access input/output statements.

Version 3.0 Input/Output Processing 7-7

7.5.2 Direct Access

A file connected for direct access has the following properties:

7-8

A unique record number is associated with each record in a direct access
file. Record numbers are positive integers that are attached when the
record is written. Records are ordered by their record numbers.

Formatted and unformatted records cannot be mixed in a file.

The file must not contain an endfile record if it is direct access only. If the
file also allows sequential access, an endfile record is permitted but will be
ignored while the file is connected for direct access.

All records of the file have the same length. When the record length is 1,
the system treats the files as ordinary system files, that is, as byte strings, in
which each byte is addressable. A READ or WRITE request on such files
consumes/produces bytes until satisfied, rather than restricting itself to a
single record.

Only direct access input/output statements may be used for reading and
writing records. List-directed formatting is not permitted.

The record number cannot be changed once it is specified. A record can be
rewritten but it cannot be deleted.

Records can be read or written in any order.

FORTRAN 77 Language Reference Manual IRIS-4D Series

7.6 Units

Files are accessed through units. A unit is simply the logical means for access-
ing a file. The file-unit relationship is strictly one-to-one: files may not be
connected to more than one unit or vice-versa. Each program has a processor
dependent set of existing units. A unit has two state