IRIS-40D Programmer's
Guide
Volume |l
IRIS-4D Series
A SiliconGraphics

Computer Systems

Document number: 007-0601-010



IRIS-4D Programmer’s
Guide

‘Volume Il

Version 1.0

Document Number 007-0601-010



Technical Publications: (

Marcia Allen
Kathleen Chaix

Special Thanks to the Technical Marketing Group

© Copyright 1987, Silicon Graphics, Inc.
All rights reserved. . (

This document contains proprietary information of Silicon Graphics,
Inc., and is protected by Federal copyright law. The information may
not be disclosed to third parties or copied or duplicated in any form, in
whole or in part, without prior written consent of Silicon Graphics, Inc.

The information in this document is subject to change without notice.

IRIS-4D Programmer’s Guide, Volume Il
Version 1.0
Document Number 007-0601-010

Silicon Graphics, Inc.
Mountain View, California

UNIX is a registered trademark of AT&T. (



Contents

Introduction
PUIMDOSE. ..ottt e s Xiii
Audience and Prerequisite Knowledge ........cccccceevveveeniennen. xiii
Organization...........oueeeeeeerrernnneeese et Xiii
The C ConNECHION.......cviv e e Xiv
Hardware/Software Dependencies .......c.ccocevrermenenvcnnnnne. Xiv
Notation Conventions............cccveeeeeie e xiv
Command ReferenCes.........coevuerererieenreereen e e XV
Information in the EXamples .........cccovveevieieeieniieiivceeeieee Xvi

1. Programming in a UNIX System Environment

The UNIX System Environment..........ccccoecveviienneencnnnnccnennns 1-1
The UNIX Idea.......covvieieeeieie e e 1-1
The UNIX PhiloSOPhy ......ccooveeiiiiiniiieeie e 1-3

UNIX System TOOIS .......oeeceieiiieiieece st et 1-4
Tools Covered and Not Covered in This Guide .................. 1-4
The Shell as a Prototyping TOOI........coceeveeniiniiiriceen 1-5

Three Programming Environments..........cccecevveneninncencnnennn 1-6
Single-User Programming.........ccccceeeveereveseeneesieruesseeseeens 1-6
Application Programming..........cccceeeveeeeieevieeeceieeee e 1-7
Systems Programming........ccccceeoeeveeeieeeceeeieecveerereesesneesees 1-7

SUMMATY ...ttt ettt e sr e eeae 1-8

2. Programming Basics

Programming in @ UNIX Environment ...........ccccevieerienensneennes 2-1
Choosing a Programming Language..........cccccevveeueerveevreeseeseenes 2-2
Supported Languages in the UNIX Environment ................ 2-2

O3 =10 To [UF: Lo [- RSN 2-3
FORTRAN ...t s 2-4
Assembly Language ........ccccevereenieeninie e 2-4
Special-Purpose Languages .........ccceceeeeveereeereereereseeseesenns 2-4
AWK et s 2-4

JEX .ttt 2-5

YACC «eeeteeeeeieeeeeeeenereeesteeesseeressieee s ssbeess s e ae s e e snaeaneannes 25

MA e e 2-6

DC AN AC ...oviiiiiieee e 2-6

—j—



Compiling and Link Editing .........ccoeveeeveieveiieeeeeceevre -2y 4
Compiling C Programs........cccceveeveviesieerierreesceresee e evenne 2-7
Compiling FORTAN Programs..........cccccecvveevveenimicieeeeeeens 2-7
Compiler Diagnostic Messages.........ccoecueeveeveirveeneeecvvesrennn, 2-7
31 Q0 o 1 (11 o TS 2-8

The UNIX System/Language Interface...........ccccoeeeveecuveeciinnn. 2-9
Using C to lllustrate the Interface........ccccccvveveiivievveeivciinenne 2-9
Passing Arguments to a Program ........c...ccocoveveevnvicnrsnnnnns 2-9
System Calls and SUbroutings...........ccceeeveeceeeeeceveceeennnne 2-13

Categories of System Calls and Subroutines............. 2-13
Where the Manual Pages Can Be Found................... 2-20
Using System Calls and Subroutines in
C Programs.........ccooeeceemenierceeeseeseessesceseeseesssssssseseas 2-20
Header Files and Libraries..........ccccccevveeevininnie et 2-26
Object File LIDraries ......cccoccevveeveevencerecereee e e 2-27
Input @and OULPUL...........corcriiiireeer e e e 2-28
Three Files to Handle Standard I/O Streams ............. 2-28
Named FileS.......cov v 2-29
The UNIX System and Low-level /O...........ccceceeeees 2-30
System Calls for Environment or Status Information........ 2-30
PrOCESSES. ...ciiveeeirtiicre st ceee e et et sae e s 2-32
SYStEMI(3S)....ce i 2-33
EXEC(2) cveeeureueieeretee e ettt st e e e e e 2-33
{070 323 F OSSPSR 2-34
PIPES et 2-36
Error HanAINg ...........cueeeeeeereeeeereressceesessesesesse s sssenaens 2-37
Signals and INterrupts .....cccocvevevieciveccee e e 2-38

Analysis and Debugging........ccccvvvvvieermrieinieee e s e 2-40
Sample Program .........ccccccvecereeenrieneee e 2-40
CHOW ..o e 2-45
CITACE .....oiiiiiiieiieer e cee st e es s sbe e e e ss s e et aeaeaesesesneenaesseneeee 2-48
Lo« S 2-52
11 1 USRI 2-58
1) 4 1) SRR 2-59
) TR 2-61
531 o )+ S SRS PTP PPN 2-61

Program-Organizing ULilities........c.cccvvvervimiceecvecinneeesesreee 2-62
The make ComMmMaNd..........cceevivveriiireree e 2-62
The Archive File .....cooveveevecececec i 2-63



Use of SCCS by Single-User Programmers...........c........ 2-69

3. Application Programming

Application Programming Objectives..........ccccoovrniiiiiniinenceens 3-1
Application Environment Characteristics............ccooeeevervniencncene 3-2
NUMDETS ...ttt et e e 3-2
Portability......cooooveiecinc 3-2
Documentation .........cccocoeerivr i e 3-2
Language Selection............oeueeviriirninie e 3-4
INFIUBNCES ..ot s e e 3-4
Special-Purpose Languages ........ccceoeeeereenreneereeseneneenseenees 3-5
The awk ULIlity ....ooooeeieee e 3-5

USING @WK ..ot 3-6

The lex and yacc Utilities.........ooeeiiieieniiniincces 3-6

USING IeX ..ovrveniiriieice e et e 3-7

USING FACC.....uviiiiiiiiceieice ettt s 3-8
Advanced Programming TOOIS ..........ccoveeeeiinneniencreeeeeee 3-10
Memory Management ........cccooeevevrviinnn e 3-10

File and Record LOCKING ........cccevereeiiniene e 3-11
How File and Record Locking WOrKS .........cccccoeueenne. 3-12

JOCKE .. e s 3-14
Interprocess Communications........c..cccocvevvevvnireccecceeennnen 3-14

IPC get Calls......coccooiiiiiiicn s 3-15

IPC ctl Calls ..ot e 3-15

IPC op CallS ...t 3-16
Programming Terminal SCreens ..........ccccoeeeeeeveineerenaee 3-16
CUISES . veverrrreeeressusueereneaesneeesassansarees smssneesnsrsneserasnnnns 3-17
Programming Support TOOIS........cccceierrinirrre e 3-18
Link Edit Command Language..........ccccceevvenievencennnvenen 3-18
Common Object File Format..........ccoeeeeeeeeeieieeciecene 3-18
LiDraries......ccccvveerreieee et 3-19
The Object File Library ........ccccccevvevvvvvenviinieseeserene 3-19
Common Object File Interface Macros (ldfcn.h)......... 3-22

The Math Library........cccoeeeeeveniie e 3-23

A Basic Lesson on Debugging......ccccceeeeveevnecicee e, 3-26
How Does edge WOrk?.........ccccoovivvmveniecececee v 3-26

About the edge Environment ............ccccoceevvveecvnenne 3-27

lint as a Portability Tool .........ccocovvmieiiecce e, 3-27
Project Control TOOIS ......c.ucocceveieirieeeceece e 3-29
MAKE ...ttt enne e earee e 3-29



liber, A Library SYstem .........ccooeceivinvenne et 3-32
4. awk

An Overview of awk Programming ........cccccceeeveerieennnenensieenn 4-1
BaSIC AWK.....coovriireiiiec it s 4-2
Program StruCture.............cccevveeiiniiniccieerenen 4-2
USING AWK ....cveneeiriiiene et 4-3
1= (o SO 4-3

e 110111 oo [PPSR PRSI 4-4
Formatted Printing..........ccooeevevinmnne e e 4-5
Simple Patterns........cooveiveenciecciennn e 4-6
SIMPIE ACHIONS.......cccceeeiciireer et et srd e e e 4-7
Built-in Variables.........ccoccvveieeiiiciin e e 4-7
User-defined Variables ..........cccocoeeiiinninnrnneecene 4-8
FUNCONS ..o 4-8

Useful One-Line awk Programs ............icocoeeveeeevecnneeennenne 4-8
Error Messages........ccoueueee. eeeeteraeee e e e teae et eaeneeneans 4-10

L 1 (=] 1 ST USSP PSPUP 4-11
BEGIN @GNA END .......ccooiiiiieiiiirreree e e ee e v eenenneen s 4-11
Relational EXpressions........ccccvevveeeereiinneccreesscreeee e 4-12
Regular EXPressions .........ccccciveevenenneeenesneeseenee s 4-13
Combinations of Patterns............cooceevvrveninne it 4-16
Pattern RaNges .......cccovvviiiiiiiieciieceeee e 4-17
ACHONS ..t 4-18
Built-in Variables ..o 4-18
AMRMELIC ..o ... 4-18
Strings and String FUNCLONS .......ccccovviiiviiicci e 4-21
Field Variables........cccovvvveiien s seree e 4-24
NUmMber Or SHNG?......cooiieieceee e 4-25
Control Flow Statements...........coocvvvviinvnnencnnee e, 4-26

F Y £ )£ TSRS 4-28
User-Defined FUNCHIONS .....c.cocvvvivrieceeeniniesee e 4-31
COMMENES ...t e 4-31

L0 0 { o 11 | QSRS 4-32
The print Statement ... 4-32
Output Separators.......c.ccoceevrreenrieie e 4-32
The printf Statement............cccocvvi i 4-33
Output INtO FlES ....ceveveceeeceeceie e e 4-34
Qutput INtO PIPES....eecieeee et 4-35



Files and Pipes......ccoevieieiieniein e e 4-37
INput Separators. ... 4-37
Multi-Line ReCOrds .......coceorviiviinein e 4-38
The getline FUNCHION .........cccvveeniiereneceee e 4-38
Command-line Arguments ........cccocoveverinenenncreneenenns 4-40
Using awk with other Commands...........ccoccvneevinniiecnennnnen. 4-42
The system FUNCHON.........cccooiiiiiiiiiice e 4-42
Cooperation with the Shell ..., 4-42
Example Applications .........cococeeriirciiie e 4-45
Generating REPOMS .........oeceieercieeree e 4-45
Additional EXampIes...........coeeverirreireereiesiee e eeas 4-47
AWK SUMMATY ..o ettt st s s 4-50
Command LiNe .......cooiiiiiieeieiece e e 4-50
Patterns .......oooiiiieee e 4-50
Control Flow Statements........ccccoeoeiveeieeiiicireceeeeen 4-50
INPUL-OULPUL ... e 4-51
String FUNCHONS ..o 4-51
Arithmetic FUNCLIONS.........cooivie e 4-52
Operators (increasing precedence)........cecvvveerrverreeeseenns 4-52
Regular expressions (increasing precedence).................. 4-53
Built-in Variables .........cccv oo 4-53
LIS e 4-54
Initialization, Comparison, and Type Coercion ................. 4-54
5. lex

An Overview of lex Programming ........ccccocceveevmneerenenerenneennenne 5-1
Writing lex Programs...........cocoveviircciiincciccenrceee s 5-3
The Fundamentallex RUIES ...........ccooniiiiiiiiiniiieeee e 5-3
Specifications..........ccooeeeeei e 5-3

ACHIONS ..o 5-5
Advanced lex USage........cccorevieiieiriccnineee e 5-6
Some Special Features .........coeevievirreieeiiieccre e 5-7
DefinitioNS .....cocuie e 5-11
SUDIOULINES. ....cciiie et e 5-12

Using lex With yace ... 5-13
Running lex Under the UNIX System ........ccccoevieviininniicnne 5-16

6. yacc

An Overview of yacc Programming.........cccoccevcveeienneneercnnnce e 6-1



Basic Specifications..........coccereiirieriireeeee e 6-4

ACLIONS ..ottt e e PR 6-6
Lexical ANalySiS......c.ceevveerirrririircieeceeeee e 6-9
Parser OPeration ........ccccceeeievieeiinieie e 6-12
Ambiguity and Conflicts ........ccccevveeeieiineiieece e 6-17
Precedence........ccceevevveveniiccennnennns BRSSP 6-22
Error HaNAING.....ccvveiveeieeeieiies et 6-26
The yacc Environment.............ocovviinnie e, PR 6-30
Hints for Preparing Specifications...........cccccecevveenercneniveneenes 6-32
INPUE SEYIE .o 6-32
Left RECUISION .......coviiiiiceeeeee et 6-32
Lexical Tie-INS ......cevrivriieceie e 6-33
Reserved WOrdS ........occveeriieennienieereeeneessesineee e 6-35
Advanced yacc FEatures........ccvvvvvvevvieeccceieeceie e 6-36
Simulating error and accept in Actions............ccccceeuvennee. 6-36
Accessing Values in Enclosing Rules ...........ccccovveeennneen. 6-36
Support for Arbitrary Value TYpes.......ccccvveeeeveeeveieeseneene 6-38
yace INPUt SYNaX......coveivciiiriee e 6-39
EXAMPIES ..ottt e 6-43
1. ASimple EXample........ccccevvveeevieereeee e 6-43

2. An Advanced Example........ccccoeiiiienninienniecnne e 6-47

7. File and Record Locking
An Overview of File and Record Locking .........cccecevvereenecnniiens 7-1
TermiNOIOQY ......uvvieieciiiieiceie et re e eese e e s s s eane 7-2
File ProteCtion..........coceieriiiiencne e 7-4
Opening a File for Record Locking..........cocceveeeenncen e 7-4
Setting @ File LOCK.......oiivirier et e 7-5
Setting and Removing Record LOcks........c..cccocuevereneinneennn, 7-8
Getting Lock Information............ccoieiiiiiienicreeeee e 7-13
Deadlock Handling .........ccceeeeeiiiieniieier e e 7-16
Selecting Advisory or Mandatory Locking ........c.cccoevviiiiinnns 7-17
Mandatory LOCKiNg........ccoevviiiiiiinniiiinniciece 7-18
Record Locking and Future UNIX Releases...........c..cc.... 7-18
8. Interprocess Communication

An Overview of Inter-Process Communication.............cccceceu.e. 8-1
MESSAQES......coeeeeeeeerreeeireseaeesesesesessre e e s esessasasssaes e 8-2
Getting Message QUEUES..........ovceeeeerieeieneneeereeee e 8-6
USING MSGGEL......eveeeeeeeeieceeeeriee e esn e seeenee 8-7



Example Program.........ccccooiveiiiiinin e 8-12

Controlling Message QUEUES.........cccceveveeneeieceeeecnnicneennes 8-16
USING MSGCLL.......oo i 8-16
Example Program...........cccooiviiiiiiicicneccie 8-18

Operations for MeSSages ......cocoeeeeeeieennreeieeniieeeeeeeeens 8-24
USING MSZOP.....ceimreeeiiiieiiie i 8-24
Example Program.........coocoiiiiiiinieineeniees 8-26

SEMAPNOTIES.....cceevieeeceeie et ee et e eaneee s 8-37

Using SemMaphores.........ccccovveeneriieiniie e 8-39

Getting Semaphores .........c.cceevieeieccenieereeeee e 8-42
USING SEIMEEL........cevurieeieeeeiieeeeeciee et 8-42
Example Program.........cccooeeienieicenieececececeen 8-46

Controlling Semaphores...........ccccceviiiiriencrciece e 8-50
USING SEMCLL..........eeeeeeiieiie e 8-51
Example Program.........ccccoiiiiiniiniiciecic 8-52

Operations on SemMaphores .........ccoveeveririeeirvereenerieens 8-64
USING SEMOP ...c.oeeiimieiieier e eeee e 8-64
Example Program.........cccoeeceeeninineieie e 8-66

Shared MEMOTY ......ccuveiieee et v e 8-72

Using Shared Memory ........cccooeveevnenienenece e 8-73

Getting Shared Memory Segments.........cccccevvevvenerennenne. 8-77
USiNg ShMGeL............ooeeiiiieeeeieeeieee e 8-77
Example Program.........coccceoiiiiiiininiincneeee 8-81

Controlling Shared MemoOry ..........cccceveririieniene e 8-85
USING SAIMCEL ..o s 8-85
Example Program..........ccccoovceeiennieicenieie e 8-87

Operations for Shared Memory........cccccccevveriencrcneniennene 8-96
USING ShIMOP .....ocoiniiiiii e 8-96
Example Program.........cccceevirieinnienienseee e 8-97

9. curses/terminfo
The Terminal Information Utilities Package..........ccccccvevvvevneennne 9-1

What iS CUISeS?........coovveiieieiieieeeeeee e e e 9-2

What is terminfo?...........cceoveieiieeiinrcen e 9-3

How curses and terminfo Work Together............ccccecvnen.n. 9-5

Other Components of the Terminal Information Utilities .....9-5

Working with curses ROUtINES ........cccceevieeniiiinneceeee s 9-7

What Every curses Program Needs...........ccccooevirneicencnn, 9-7
The Header File <curses.h> ..........ccccooveiinviinncccieeennnn, 9-7
The Routines initscr(), refresh(), endwin().................... 9-8

—vii—



Compiling a curses Program...........ccccceveereeenieceiecenennnennns 9-10

 Running a curses Program ..............ccceuceeeveucueneeeneneninna 9-10
More about initscr() and Lines and Columns.................... 9-11
More about refresh() and Windows...........cccccceevvenerecnnenn. 9-11
Getting Simple Output and Input.........cccccovcnninnieirennenn, 9-13

(O T o1V | S 9-13
INPUL. . e 9-26
Controlling Output and INpuUt ..........cceevvvrveervrnircee e 9-34
Output AHMDULES.......eveeciecteeereeee e 9-34
Bells, Whistles, and Flashing Lights...........c.ccccceeenn.e. 9-38
INPUL OPLIONS ..o 9-39
Building Windows and Pads............cccceciveeiveeeccceveeee 9-44
Output and INPut .........cccccevciriereecr e 9-44
The Routines wnoutrefresh() and doupdate() ............. 9-45
NEW WINAOWS ....cocviiiiiriciin ettt 9-46
Using Advanced curses Features........c....coeoveeeeincvnnennnen. 9-50
Routines for Drawing Lines and Other Graphics........ 9-50
Routines for Using Soft Labels ..........ccccccovvvveernnncen. 9-52
Working with More than One Terminal....................... 9-53
Working with terminfo Routines ..........cccoceviivinnininiiniene 9-55
What Every terminfo Program Needs...........c.cccocccvennene 9-55
Compiling and Running a terminfo Program .................... 9-57
An Example terminfo Program ..........ccoccoeviiiiinnniennen. 9-57
Working with the terminfo Database ............ccccoceveieevecnenees 9-62
Writing Terminal Descriptions ...........ccocvvvercciceiine e 9-62
Name the Terminal .........cccocviiine e 9-62
Learn About the Capabilities.........ccoceeevviveenrininne 9-63
Specify Capabilities ........ccccovverie i 9-64
Compile the Description .......ccoeoveevieriver e 9-69
Test the Description.........c.ccoeceevinnie e 9-70
Comparing or Printing terminfo Descriptions.................... 9-71
Converting a termcap Description to
a terminfo DeSCription........ccccveeeericce i 9-72
curses Program Examples ..........cccovvveciniinvenn e cen e 9-73
The editor Program.........ccccoecveeeeeeeieeccene e e 9-73
The highlight Program ...........cccccvevivvrivenin s 9-81
The scatter Program.........c.cccovvvviercivcnnvenesieene e e sveesvenens 9-83
The show Program .........c..cccccvvvveveveeciercern et 9-86
The two Program..........cccecceecveeveesiirevecneee e SO 9-88
The window Program ............ccceecieeneeeieeee e 9-91



10. make

An Overview of the make Utility ..........cccoccevenninneninieeeee 10-1
BasiC FEAtUIES .....cccuvveeieeeeete et 10-2
Description Files and Substitutions...........cccocceevvinienniencrnnnen. 10-7
L070) 1 112011 1 OO 10-7
Continuation LiNES.......c.oeeieiiieeeceeee e 10-7
Macro Definitions ......ccccoviviiieeen e 10-7
General FOIM ......ooi it 10-7
Dependency Information ............cceeeeeevieneecnnee s 10-8
Executable Commands ..........cccevreeeccinnenesen e 10-8
Extensions of $*, $@, and $<..eeeveeeciiiieiiieee e 10-9
Output TransIations...........cevveerrcir et 10-9
The Recursive Makefile ...........ccceeeeivevennreenen e 10-11
Suffixes and Transformation Rules..........ccoovevriinceenne 10-11
IMPIICit RUIES ...eoeeieeec e e 10-11
Archive LIbraries ........cccooeeeeeeinicieieien e 10-13
SCCS Filenames: the Tilde ........cccveeiniirvenreeneeeeeeeeee 10-16
The NUll SUFiIX......oveieeeiieieece e 10-17
include Files.........coooovemeeeie e 10-18
SCCS MaKefileS ......ccoeveuriecieieeese e 10-18
Dynamic Dependency Parameters ..........ccccocvveinennnne 10-18
Command USAgE .......cuveiurerirrrernieeieniee e nnen 10-20
The make COMMAN.......ccoeeeurieeiieeeeer e 10-20
Environment Variables...........cocoovveeninecneeceeen 10-21
Suggestions and Warnings.........c.coccevvvrveernenneesncene e 10-23
Internal RUIES. ......oooiie e 10-24
11. Source Code Control System (SCCS)
The Source Code Control System..........ccccevvivvcrecvieveeereee e 11-1
SCCSfOr BEQINNEIS ....veeveeeeecereee e e e eae e 11-2
Terminology.......cccecervieeiienrieee e e 11-2
Creating an SCCS File via admin .............cccccovecvveennnnnen. 11-2
Retrieving a File via get ........cccoeiivieninirneccceverce e 11-3
Recording Changes viadelta ...........c.ccccoeeveceeecrrcceeennn. 11-4
Additional Information about get.........c.ccccccvvvrcrireereenennn. 11-4
The help Command.........ccooorieiierieiece e 11-5
Delta NUMDBEriNG....c.coovier et e 11-7
SCCS Command Conventions...........cceeeeveeeceveceieie e 11-10
xfiles and zfileS.....oocouviiiicee e 11-10
Error MeSsSages.......ccoeeeeeeieceieecceeeee et 11-11



SCCS COMMANAS ..eevvireiieeeeeeeieeeeeireeerereeescessserressesesessaens 11-12

The get COMMANG.......ccceririiniiiiire e 11-12
ID KEYWOIdS ... e 11-13
Retrieval of Different Versions..........ccccccevvvvvvveennnnnne 11-14
Retrieval With Intent to Make a Delia....................... 11-16
The unget ComMmMaNnd...........cccvvereeeiinnenseeeeee e 11-17
Additional get Options........cccveevviciii e 11-17
Concurrent Edits of Different SID .........ccoeevveuerennnn. 11-18
Concurrent Edits of Same SID .........coovvvveeeeeevnnnien. 11-21
Keyletters That Affect Output..........ccorvviivcrncnienne 11-21
The delta Command..........ccccoveereererieriniieieee e 11-23
The admin CommMand...........cceeeeevireiiieee e 11-25
Creation of SCCS FileS ....cccovmiivvreiircciireecceee e 11-26
Inserting Commentary for the Initial Delta................. 11-26
Initialization and Modification of
SCCS File Parameters ........ccccoeeeeeeeeiieccceiecccceee, 11-27
The prs Command .......c.cccevieiienseeniene e e e 11-28
The sact COMMANG .....oooeviiieeeieieiee e 11-30
The help COMMANd......cociiiiiiieeciinie e 11-30
The rmdel COMMAN ........ccocvvvviriiiereeece e 11-31
The edc COMMANd ........ooveeiiiiiiiiee e 11-31
The what COmMMAaNd.............cceveecveeieirireeicre e e 11-32
The scesdiff CommaNd......c...vvivvceiiriceeeiece e 11-33
The comb COMMANd.........cceveininieiii e, 11-33
The val COMMANG ...t eeee e ee e 11-34
The ve ComMMAaNd .......cccoeiiieiieiecee e 11-35
SCCS FlES ettt s s 11-36
ProteCtion ....c.coceceeeee e 11-36
FOormatting .......cooueeeviiicie e e 11-37
CAUAIING .o e 11-38
12. lint
The lint Program..........coccvvvovmeveceeenereeieeseee e eeseeer e e 12-1
USING LINE...cvueeeeceiieeeie ettt e e 12-2
lint MeSSage TYPES ..ccvveierrierieeceie ettt 12-4
Unused Variables and Functions ...........cccecevveevivenevnnee, 12-4
Set/Used Information..............ccoeveeveeemeeceee e 12-5
FIOW Of CONLIOL ... .ceeeeeieeeceee et e s 12-5
FUNCHON VAIUES......eeveeeiiicteeeiee e e 12-6
Type Checking .......ccoeveeevenvnnienieeieeen, e 12-7

—_X—



TYPE CastS ...cviiriiieireiei e e e 12-8

Nonportable Character Use ..........c.ococevenenicnicnncciinenne 12-8
Assignments of longs 10 intS..........ccovcevriiiiniinccnnnen 129
Strange Constructions...........ccccovrrereeieneie e e 12-9
Old SYNTAX...cciiieeiieeee ettt e 12-10
Pointer Alignment.........c.ooveciiriecien e 12-11
Multiple Uses and Side Effects .......ccccoeveeeerveececccinnnnns 12-11
A. Index to ULIIIES ....ccooeiieeeee e A-1
GIOSSANY ...ttt e e st G-1

—xi—






An Overview of File and Record Locking

Mandatory and advisory file and record locking both are available on current
releases of the UNIX system. The intent of this capability to is provide a synchroni-
zation mechanism for programs accessing the same stores of data simultaneously.
Such processing is characteristic of many multi-user applications, and the need for a
standard method of dealing with the problem has been recognized by standards
advocates like /usr/group, an organization of UNIX system users from businesses
and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system calls
enforce the locking protocol. In this way, at the cost of a little efficiency, manda-
tory locking double checks the programs against accessing the data out of sequence.

The remainder of this chapter describes how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Misconcep-
tions about the amount of protection that record locking affords are dispelled.
Record locking should be viewed as a synchronization mechanism, not a security
mechanism.

The manual pages for the fentl(2) system call, the lockf(3) library function, and
fentl(5) data structures and commands are referred to throughout this section. You
should read them before continuing.

File and Record Locking 7-1



Terminology

Before discussing how record locking should be used, let us first define a few
terms.

Record

A contiguous set of bytes in a file. The UNIX operating system does not
impose any record structure on files. This may be done by the programs
that use the files.

Cooperating Processes

Processes that work together in some well defined fashion to accomplish
the tasks at hand. Processes that share files must request permission to
access the files before using them. File access permissions must be care-
fully set to restrict non-cooperating processes from accessing those files.
The term process will be used interchangeably with cooperating process to
refer to a task obeying such protocols.

Read (Share) Locks

These are used to gain limited access to sections of files. When a read lock
is in place on a record, other processes may also read lock that record, in
whole or in part. No other process, however, may have or obtain a write
lock on an overlapping section of the file. If a process holds a read lock it
may assume that no other process will be writing or updating that record at
the same time. This access method also permits many processes to read
the given record. This might be necessary when searching a file, without
the contention involved if a write or exclusive lock were to be used.

Write (Exclusive) Locks

These are used to gain complete control over sections of files. When a
write lock is in place on a record, no other process may read or write lock
that record, in whole or in part. If a process holds a write lock it may
assume that no other process will be reading or writing that record at the
same time. ‘

Adyvisory Locking

7-2

A form of record locking that does not interact with the I/O subsystem (i.e.
creat(2), open(2), read(2), and write(2)). The control over records is
accomplished by requiring an appropriate record lock request before I/O
operations. If appropriate requests are always made by all processes
accessing the file, then the accessibility of the file will be controlled by the
interaction of these requests. Advisory locking depends on the individual
processes to enforce the record locking protocol; it does not require an
accessibility check at the time of each I/O request.

IRIS-4D Programmer’s Guide



Terminology

Mandatory Locking
A form of record locking that does interact with the I/O subsystem.
Access to locked records is enforced by the creat(2), open(2), read(2),
and write(2) system calls. If a record is locked, then access of that record
by any other process is restricted according to the type of lock on the
record. The control over records should still be performed explicitly by
requesting an appropriate record lock before I/O operations, but an addi-
tional check is made by the system before each I/O operation to ensure the
record locking protocol is being honored. Mandatory locking offers an
extra synchronization check, but at the cost of some additional system
overhead. ’

File and Record Locking 7-3



File Protection

There are access permissions for UNIX system files to control who may read,
write, or execute such a file. These access permissions may only be set by the
owner of the file or by the superuser. The permissions of the directory in which the
file resides can also affect the ultimate disposition of a file. Note that if the direc-
tory permissions allow anyone to write in it, then files within the directory may be
removed, even if those files do not have read, write or execute permission for that
user. Any information that is worth protecting, is worth protecting properly. If
your application warrants the use of record locking, make sure that the permissions
on your files and directories are set properly. A record lock, even a mandatory
record lock, will only protect the portions of the files that are locked. Other parts of
these files might be corrupted if proper precautions are not taken.

Only a known set of programs and/or administrators should be able to read or
write a database. This can be done easily by setting the set-group-ID bit (see
chmod(1)) of the database accessing programs. The files can then be accessed by a
known set of programs that obey the record locking protocol. An example of such
file protection, although record locking is not used, is the mail(1) command. In that
command only the particular user and the mail command can read and write in the
unread mail files.

Opening a File for Record Locking

The first requirement for locking a file or segment of a file is having a valid
open file descriptor. If read locks are to be done, then the file must be opened with
at least read accessibility and likewise for write locks and write accessibility. For
our example we will open our file for both read and write access:

7-4  IRIS-4D Programmer’s Guide



File Protection

#include <stdio.h>
#include <errno.h>
#include <fentl.h>

int fd; /* file descriptor */
char *filename;

main (arge, argv)
int argc;

char *argv[];

{

extern void exit (), perror();

/* get database file name from command line and open the
* file for read and write access.

*/

if (arge < 2) {

(void) fprintf (stderr, "usage: %s filename\n", argv(0]);

exit (2);

}

filename = argv(1];

fd = open(filename, O RDWR);

if (fd < 0) {

perror (filenane) ;

exit (2);

}

The file is now open for us to perform both locking and I/O functions. We then
proceed with the task of setting a lock.

Setting a File Lock

There are several ways for us to set a lock on a file. In part, these methods
depend upon how the lock interacts with the rest of the program. There are also
questions of performance as well as portability. Two methods will be given here,
one using the fentl(2) system call, the other using the /usr/group standards compati-
ble lockf(3) library function call.

File and Record Locking 7-5



File Protection

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked start-
ing at a byte offset of zero (0) until the end of the maximum file size. This point
extends beyond any real end of the file so that no lock can be placed on this file
beyond this point. To do this the value of the size of the lock is set to zero. The
code using the fentl(2) system call is as follows:

#include <fentl.h>
#define MAX TRY10

int try;

struct flock lck;

/* set up the record locking structure, the address of which
* is passed to the fentl system call.

*/

lck.1l type = F WRLCK;/* setting a write lock */

lck.1l whence = 0;/* offset 1 start from beginning of file */
lck.1 start = 0L;

lck.1l len = OL;/* until the end of the file address space */

/* Bttempt locking MAX TRY times before giving up.
*/
while (fentl(fd, F_SETIK, &lck) < 0)
if (errno == EAGAIN || errno == EACCES) ({
/* there might be other errors cases in which
* you might try again.
*/
if (+try < MBX TRY) {
(void) sleep(2);
continue;
}
(void) fprintf(stderr,"File busy try again later!\n");
return;
}
perror ("fentl”) ;
exit (2)

7-6  IRIS-4D Programmer’s Gulde

(



File Protection

This portion of code tries to lock a file. This is attempted several times until
one of the following things happens:

K the file is locked
M an error occurs

M it gives up trying because MAX_TRY has been exceeded

To perform the same task using the lockf(3) function, the code is as follows:

#include <unistd.h>
#define MAX TRY10
int try;

try = 0;

/* make sure the file pointer

* is at the beginning of the file.
*/

lseek (fd, 0L, 0);

/* Bttempt locking MAX TRY times before giving up.
*/
while (lockf(fd, F_TLOCK, OL) < 0) {
if (errno = EAGAIN || errno == EACCES) {
/* there might be other errors cases in which
* you might try again.
*/
if (++try < MBX TRY) {
sleep(2) ;
continue;
}
(void) fprintf(stderr,"File busy try again later!\n");
return;
}
perror ("lockf") ;
exit(2);

File and Record Locking 7-7



File Protection

It should be noted that the lockf(3) example appears to be simpleér, but the
fentl(2) example exhibits additional flexibility. Using the fentl(2) method, it is pos-
sible to set the type and start of the lock request simply by setting a few structure
variables. lockf(3) merely sets write (exclusive) locks; an additional system call
(Iseek(2)) is required to specify the start of the lock. (

Setting and Removing Record Locks

Locking a record is done the same way as locking a file except for the differing
starting point and length of the lock. We will now try to solve an interesting and
real problem. There are two records (these records may be in the same or different
file) that must be updated simultaneously so that other processes get a consistent
view of this information. (This type of problem comes up, for example, when
updating the interrecord pointers in a doubly linked list.) To do this you must
decide the following questions: ‘

B What do you want to lock?

M For multiple locks, what order do you want to lock and unlock the records?
B What do you do if you succeed in getting all the required locks?

M What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if one cannot obtain

all the required locks. It is because of contention for these records that we have
decided to use record locking in the first place. Different programs might:

W wait a certain amount of time, and try again

M abort the procedure and warn the user

M let the process sleep until signaled that the lock has been freed

B some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list.
For the example, we will assume that the record after which the new record is to be

inserted has a read lock on it already. The lock on this record must be changed or
promoted to a write lock so that the record may be edited.

7-8  IRIS-4D Programmer’s Guide



File Protection

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. If there are
processes with pending write locks that are sleeping on the same section of the file,
the lock promotion succeeds and the other (sleeping) locks wait. Promoting (or
demoting) a write lock to a read lock carries no restrictions. In either case, the lock
is merely reset with the new lock type. Because the /usr/group lockf function does
not have read locks, lock promotion is not applicable to that call. An example of
record locking with lock promotion follows:

File and Record Locking 7-9



File Protection

struct record {

./* data portion of record */

long prev;/* index to previous record in the list */
long next;/* index to next record in the list */

—~
~e

/* Lock promotion using fentl(2)

* When this routine is entered it is assumed that there are read
* locks on "here"” and "next”.

* If write locks on "here"” and "next" are obtained:
* Set a write lock on "this".

* Return index to "this" record.

* If any write lock is not obtained:

* Restore read locks on "here” and "next".

* Remove all other locks.

* Return a -1.

*/

long

set3lock (this, here, next)
long this, here, next;
{

struct flock lck;

lck.1l type = F WRICK;/* setting a write lock */

lck.1l whence = 0;/* offset 1 start from beginning of file */
1lck.1l start = here;

lck.1l len = sizeof (struct record);

/* promote lock on "here” to write lock */
if (fontl(fd, F_SETIKW, &lck) < 0) {
return (-1);

}

/* lock "this" with write lock */

lck.1 start = this;

if (fentl(fd, F_SETIKW, &lck) < 0) {

/* Lock on "this"™ failed;

* demote lock on "here" to read lock.

*/

lck.1l type = F_RDICK;

lck.1 start = here;

(void) fentl(fd, F_SETIKW, &lck);

return (-1);

}

/* promote lock on "next" to write lock */

7-10  IRIS-4D Programmer’s Guide



lck.1 start = pext;

if (fontl(fd, F SETLKW, &lck) < 0) {
/* Lock on "next" failed;

* demote lock on "here" to read lock,
*/

lck.1l type = F RDICK;

lck.1 start = here;

(void) fentl(fd, F_SETIK, &lck);

/* and remove lock on "this".

x/

lck.1l type = F_UNLCK;

lck.l start = this;

(void) fentl(fd, F SETIK, &lck);
return (-1);/* cannot set lock, try again or quit */

}

return (this);

File Protection

The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F_SETLKW command.

If the F_SETLK command was used instead, the fcntl system calls would fail if

blocked. The program would then have to be changed to handle the blocked condi-

tion in each of the error return sections.

Let us now look at a similar example using the lockf function. Since there are

no read locks, all (write) locks will be referenced generically as locks.

File and Record Locking

7-11



File Protection

/* Lock promotion using lockf(3)

* When this routine is entered it is assumed that there are
* no locks on "here" and "next".

* If locks are obtained:

* Set a lock on "this".

* Return index to "this" record.

* If any lock is not obtained:

* Remove all other locks.

* Return a -1.

#include <unistd.h>

long
set3lock (this, here, next)
long this, here, next;

{

/* lock "here" */

(void) lseek (fd, here, 0);

if (lockf (fd, F_LOCK, sizeof (struct record)) < 0) {
return (-1);

}

/* lock "this" */

(void) lseek (fd, this, 0);

if (lockf(fd, F_IOCK, sizeof (struct record)) < 0) {
/* Lock on "this" failed.

* Clear lock on "here".

*/

(void) lseek (fd, here, 0);

(void) lockf (fd, F_ULOCK, sizeof (struct record));
returmn (-1);

}

/* lock "next™ */
(void) lseek (fd, next, 0);
if (lockf (fd, F_IOCK, sizeof (struct record)) < 0) {

/* Lock on "next" failed.

* Clear lock on "here",

*/

(void) lseek (fd, here, 0);

(void) lockf(fd, F_ULOCK, sizeof(struct record));

7-12  IRIS-4D Programmer’s Guide



File Protection

/ /* and remove lock on "this".

*/

(void) lseek(fd, this, 0);

(void) lockf(fd, F ULOCK, sizeof (struct record));
return (-1);/* cannot set lock, try again or quit */

}

return (this);

\} J

Locks are removed in the same manner as they are set, only the lock type is dif-
ferent (F_UNLCK or F_ULOCK). An unlock cannot be blocked by another pro-
cess and will only affect locks that were placed by this process. The unlock only
affects the section of the file defined in the previous example by Ick. It is possible
to unlock or change the type of lock on a subsection of a previously set lock. This
may cause an additional lock (two locks for one system call) to be used by the

operating system. This occurs if the subsection is from the middle of the previously
set lock.

Getting Lock Information

One can determine which processes, if any, are blocking a lock from being set.
This can be used as a simple test or as a means to find locks on a file. A lock is set
up as in the previous examples and the F_GETLK command is used in the fentl
call. If the lock passed to fentl would be blocked, the first blocking lock is returned
to the process through the structure passed to fentl. That is, the lock data passed to
fentl is overwritten by blocking lock information. This information includes two
pieces of data that have not been discussed yet, I_pid and 1_sysid, that are only used
by F_GETLK. (For systems that do not support a distributed architecture the value
in 1_sysid should be ignored.) These fields uniquely identify the process holding
the lock.

If a lock passed to fentl using the F_GETLK command would not be blocked
by another process’ lock, then the 1_type field is changed to F_UNLCK and the
remaining fields in the structure are unaffected. Let us use this capability to print all
the segments locked by other processes. Note that if there are several read locks

File and Record Locking 7-13



File Protection

over the same segment only one of these will be found.

struct flock lck;

/* Find and print "write lock” blocked segments of this file. */
(void) printf("sysid pid type start  length\n");
lck.1l whence = 0;
lck.1 start = OL;
lck.1l len = OL;
do {
lck.1 type = F WRLCK;

(void) fentl(fd, F_GETIK, &lck);

if (lck.l type != F UNICK) {

(void) printf("$5d %5d  %c  %8d %8d\n",

lck.1 sysid,

lck.1 pid,

(1ck.l type == F WRICK) 2 ‘W : 'R,

lck.1 start,

lck.1l len);

/* if this lock goes to the end of the address
* space, no need to look further, so break out.
*/

if (lck.l len == Q)

break;

/* otherwise, look for new lock after the one
* just found.

*/

lck.1l start += 1lck.l len;

}

} while (lck.l type !=F UNLCK);

fentl with the F_GETLK command will always return correctly (that is, it will
not sleep or fail) if the values passed to it as arguments are valid.

The lockf function with the F_TEST command can also be used to test if there
is a process blocking a lock. This function does not, however, return the informa-
tion about where the lock actually is and which process owns the lock. A routine
using lockf to test for a lock on a file follows:

7-14  IRIS-4D Programmer’s Guide



File Protection

/* find a blocked record. */

/* seek to beginning of file */
(void) lseek(fd, 0, OL);
/* set the size of the test region to zero (0)
* to test until the end of the file address space.
*/
if (lockf(fd, F_TEST, OL) < 0) {
switch (errno) {
case EACCES:
case EAGAIN:
(void) printf("file is locked by another process\n");
break;
case EBADF:
/* bad argument passed to lockf */
perror ("lockf") ;
break;
default:
(void) printf ("lockf: unknown error <%d>\n", errno);
break;
}

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child also share a common file pointer for each
file. If the parent were to seek to a point in the file, the child’s file pointer would
also be at that location. This feature has important implications when using record
locking. The current value of the file pointer is used as the reference for the offset
of the beginning of the lock, as described by 1_start, when using al_whence value
of 1. If both the parent and child process set locks on the same file, there is a possi-
bility that a lock will be set using a file pointer that was reset by the other process.
This problem appears in the lockf(3) function call as well and is a result of the
{usrigroup requirements for record locking. If forking is used in a record locking
program, the child process should close and reopen the file if either locking method
is used. This will result in the creation of a new and separate file pointer that can be
manipulated without this problem occurring. Another solution is to use the fcntl
system call with a 1_whence value of O or 2. This makes the locking function
atomic, so that even processes sharing file pointers can be locked without difficulty.

File and Record Locking  7-15



File Protection

Deadlock Handling

There is a certain level of deadlock detection/avoidance built into the record
locking facility. This deadlock handling provides the same level of protection (
granted by the /usr/group standard lockf call. This deadlock detection is only valid
for processes that are locking files or records on a single system. Deadlocks can
only potentially occur when the system is about to put a record locking system call
to sleep. A search is made for constraint loops of processes that would cause the
system call to sleep indefinitely. If such a situation is found, the locking system call
will fail and set errno to the deadlock error number. If a process wishes to avoid
the use of the systems deadlock detection it should set its locks using F_GETLK
instead of F_GETLKW.

7-16  IRIS-4D Programmer’s Guide



Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will be
made clear in a subsequent section. Whether or not locks are enforced by the I/O
system calls is determined at the time the calls are made and the state of the permis-
sions on the file (see chmod(2)). For locks to be under mandatory enforcement, the
file must be a regular file with the set-group-ID bit on and the group execute per-
mission off. If either condition fails, all record locks are advisory. Mandatory
enforcement can be assured by the following code:

#include <sys/types.h>
#include <sys/stat.h>

int mode;
struct stat buf;

if (stat(filename, &buf) < 0) {
perror ("program") ;

exit (2);

}

/* get currently set mode */

mode = buf.st mode;

/* remove group execute permission from mode */
mode &= T (S_IEXEC>>3);

/* set ’set group id bit’ in mode */
mode |= S_ISGID;

if (chmod(filename, mode) < 0) {
perror ("program") ;

exit (2);

}

File and Record Locking 7-17



Selecting Advisory or Mandatory Locking

Files that are to be record locked should never have any type of execute per-
mission set on them. This is because the operating system does not obey the record
locking protocol when executing a file.

The chmod(1) command can also be easily used to set a file to have mandatory
locking. This can be done with the command: (

chmod +l filename

The 1s(1) command was also changed to show this setting when you ask for the long
listing format:

Is -1 filename
causes the following to be printed:

-rw-——-1--- 1 abc other 1048576 Dec 3 11:44 filename

Mandatory Locking

B Mandatory locking only protects those portions of a file that are locked. /6/
Other portions of the file that are not locked may be accessed according to
normal UNIX system file permissions.

W If multiple reads or writes are necessary for an atomic transaction, the pro-
cess should explicitly lock all such pieces before any I/O begins. Thus
advisory enforcement is sufficient for all programs that perform in this way.

M As stated earlier, arbitrary programs should not have unrestricted access per-
mission to files that are important enough to record lock.

M Advisory locking is more efficient because a record lock check does not
have to be performed for every I/O request.

Record Locking and Future UNIX Releases

Provisions have been made for file and record locking in a UNIX system (
environment. In such an environment the system on which the locking process

resides may be remote from the system on which the file and record locks reside. In

this way multiple processes on different systems may put locks upon a single file

that resides on one of these or yet another system. The record locks for a file reside

7-18  IRIS-4D Programmer’s Guide



Selecting Advisory or Mandatory Locking

on the system that maintains the file. It is also important to note that deadlock
detection/avoidance is only determined by the record locks being held by and for a
single system. Therefore, it is necessary that a process only hold record locks on a
single system at any given time for the deadlock mechanism to be effective. If a
process needs to maintain locks over several systems, it is suggested that the pro-
cess avoid the sleep-when-blocked features of fentl or lockf and that the process
maintain its own deadlock detection. If the process uses the sleep-when-blocked
feature, then a timeout mechanism should be provided by the process so that it does
not hang waiting for a lock to be cleared.

File and Record Locking 7-19






An Overview of Inter-Process Communication

The UNIX system supports three types of Inter-Process Communication (IPC):
M messages
B semaphores
M shared memory
This chapter describes the system calls for each type of IPC.

Included in the chapter are several example programs that show the use of the
IPC system calls.

Since there are many ways in the C Programming Language to accomplish the
same task or requirement, keep in mind that the example programs were written for
clarity and not for program efficiency. Usually, system calls are embedded within a
larger user-written program that makes use of a particular function that the calls
provide.

Interprocess Communication  8-1



Messages

The message type of IPC allows processes (executing programs) to communi-
cate through the exchange of data stored in buffers. This data is transmitted
between processes in discrete portions called messages. Processes using this type
of IPC can perform two operations:

M sending

W receiving

Before a message can be sent or received by a process, a process must have the
UNIX operating system generate the necessary software mechanisms to handle
these operations. A process does this by using the msgget(2) system call. While
doing this, the process becomes the owner/creator of the message facility and
specifies the initial operation permissions for all other processes, including itself.
Subsequently, the owner/creator can relinquish ownership or change the operation
permissions using the msgctl(2) system call. However, the creator remains the
creator as long as the facility exists. Other processes with permission can use
msgctl() to perform various other control functions.

Processes which have permission and are attempting to send or receive a mes-
sage can suspend execution if they are unsuccessful at performing their operation.
That is, a process which is attempting to send a message can wait until the process
which is to receive the message is ready and vice versa. A process which specifies
that execution is to be suspended is performing a "blocking message operation.”" A
process which does not allow its execution to be suspended is performing a "non-
blocking message operation."

A process performing a blocking message operation can be suspended until one
of three conditions occurs:

M It is successful.

M It receives a signal.

M The facility is removed.

System calls make these message capabilities available to processes. The cal-
ling process passes arguments to a system call, and the system call either success-
fully or unsuccessfully performs its function. If the system call is successful, it per-
forms its function and returns applicable information. Otherwise, a known error

code (-1) is returned to the process, and an external error number variable errno is
set accordingly.

8-2 IRIS-4D Programmer’s Guide

(

(



Messages

Before a message can be sent or received, a uniquely identified message queue
and data structure must be created. The unique identifier created is callea’the mes-
sage queue identifier (msqid); it is used to identify or reference the associated mes-
sage queue and data structure.

The message queue is used to store (header) information about each message
that is being sent or received. This information includes the following for each
message:

M pointer to the next message on queue

M message type

M message text size

B message text address

There is one associated data structure for the uniquely identified message

queue. This data structure contains the following information related to the mes-
sage queue:

M operation permissions data (operation permission structure)
M pointer to first message on the queue

W pointer to last message on the queue

B current number of bytes on the queue

M number of messages on the queue

M maximum number of bytes on the queue

M process identification (PID) of last message sender

M PID of last message receiver

M last message send time

M last message receive time

M last change time

All include files discussed in this chapter are located in the /usr/include or
NOIE fusr/include/sys directories.

Interprocess Communication  8-3



Messages

The C Programming Language data structure definition for the message infor-
mation contained in the message queue is as follows:

struct msg
{
struct msg *msg next; /* ptr to next message on q */
long msg type; /* message type */
short msg_ts; /* message text size */
short msg spot; /* message text map address */

It is located in the /usr/include/sys/msg.h header file.

Likewise, the structure definition for the associated data structure is as follows:

struct msqid ds

{
struct ipc perm msg perm; /* operation permission struct */
struct msg *msg first; /* ptr to first message on q */
struct msg *msg last; /* ptr to last message on q */
ushort msg_cbytes; /* current # bytes on g */
ushort msg_gnum; /* # of messages on q */
ushort msg _doytes; /* max # of bytes on q */
ushort msg lspid; /* pid of last msgsnd */
ushort msg lrpid; /* pid of last msgrev */
time t msg stime; /* last msgsnd time */
time t msg rtime; /* last msgrcv time */
time t msg_ctime; /* last change time */

};

It is located in the #include <sys/msg.h> header file also. Note that the msg_perm
member of this structure uses ipc_perm as a template. The breakout for the opera-
tion permissions data structure is shown in Figure 8-1.

8-4 IRIS-4D Programmer’s Guide




Messages

The definition of the ipc_perm data structure is as follows:

struct ipc perm
{

ushort uid; /* owner’s user id */
ushort gid; /* owner’s group id */
ushort cuid; /* creator’s user id */

ushort  cgid; /* creator’s group id */

ushort mode; /* access modes */

ushort  seg; /* slot usage sequence number */
key t key; /* key */

Figure 8-1: ipc_perm Data Structure

It is located in the #include <sys/ipc.h> header file; it is common for all IPC facili-
ties.

The msgget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the msgflg argument that it receives:

M to get a new msqid and create an associated message queue and data struc-
ture for it

M to return an existing msqid that already has an associated message queue
and data structure

The task performed is determined by the value of the key argument passed to
the msgget() system call. For the first task, if the key is not already in use for an
existing msqid, a new msqid is returned with an associated message queue and data
structure created for the key. This occurs provided no system tunable parameters
would be exceeded.

There is also a provision for specifying a key of value zero which is known as
the private key (IPC_PRIVATE = 0); when specified, a new msqid is always
returned with an associated message queue and data structure created for it unless a
system tunable parameter would be exceeded. When the ipcs command is per-
formed, for security reasons the KEY field for the msqid is all zeros.

Interprocess Communication  8-5




Messages

For the second task, if a msqid exists for the key specified, the value of the
existing msqid is returned. If you do not desire to have an existing msqid returned,
2 control command (IPC_EXCL) can be specified (set) in the msgflg argument
passed to the system call. The details of using this system call are discussed in the
"Using msgget" section of this chapter. (

When performing the first task, the process which calls msgget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always remains the
creator; see the "Controlling Message Queues” section in this chapter. The creator
of the message queue also determines the initial operation permissions for it.

Once a uniquely identified message queue and data structure are created, mes-
sage operations [msgop()] and message control [msgctl()] can be used.

Message operations, as mentioned previously, consist of sending and receiving
messages. System calls are provided for each of these operations; they are
msgsnd() and msgrev(). Refer to the "Operations for Messages" section in this
chapter for details of these system calls.

Message control is done by using the msgetl(2) system call. It permits you to
control the message facility in the following ways:

M to determine the associated data structure status for a message queue
identifier (msqid) (

B to change operation permissions for a message queue

M to change the size (msg_gbytes) of the message queue for a particular
msqid

M to remove a particular msqid from the UNIX operating system along with
its associated message queue and data structure

Refer to the "Controlling Message Queues” section in this chapter for details of
the msgctl() system call.

Getting Message Queues

This section gives a detailed description of using the msgget(2) system call
along with an example program illustrating its use. (

8-6  IRIS-4D Programmer’s Guide



Messages

Using msgget

The synopsis found in the msgget(2) entry in the IRIS-4D Programmer’s
Reference Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key t key;
int msgflg;

All of these include files are located in the /usr/include/sys directory of the
UNIX operating system.

The following line in the synopsis:

int msgget (key, msgflg)

informs you that msgget() is a function with two formal arguments that returns an
integer type value, upon successful completion (msqid). The next two lines:

Interprocess Communication  8-7



Messages

key t key;
int msgflg;

declare the types of the formal arguments. key_t is declared by a typedef in the
types.h header file to be an integer.

The integer returned from this function upon successful completion is the mes-
sage queue identifier (msqid) that was discussed earlier.

As declared, the process calling the msgget() system call must supply two
arguments to be passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is provided
if either

M key is equal to IPC_PRIVATE,
or

W key is passed a unique hexadecimal integer, and msgflg ANDed with

IPC_CREAT is TRUE.

The value passed to the msgflg argument must be an integer type octal value
and it will specify the following:

W access permissions

M execution modes

M control fields (commands)

Access permissions determine the read/write attributes and execution modes
determine the user/group/other attributes of the msgflg argument. They are collec-

tively referred to as "operation permissions.” Figure §8-2 reflects the numeric values
(expressed in octal notation) for the valid operation permissions codes.

8-8 IRIS-4D Programmer’s Guide



Messages

Operation Permissions | Octal Value
Read by User 00400
Write by User 00200
Read by Group 00040
Write by Group 00020
Read by Others 00004
Write by Others 00002

Figure 8-2: Operation Permissions Codes

A specific octal value is derived by adding the octal values for the operation permis-
sions desired. That is, if read by user and read/write by others is desired, the code
value would be 00406 (00400 plus 00006). There are constants located in the
msg.h header file which can be used for the user (OWNER).

Control commands are predefined constants (represented by all uppercase
letters). Figure 8-3 contains the names of the constants which apply to the msgget()
system call along with their values. They are also referred to as flags and are
defined in the ipc.h header file.

Control Command | Value

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 8-3: Control Commands (Flags)

The value for msgflg is therefore a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This is accomplished by
bitwise ORing (| ) them with the operation permissions; the bit positions and values
for the control commands in relation to those of the operation permissions make this
possible. It is illustrated as follows:

Interprocess Communication  8-9



Messages

Octal Value Binary Value
IPC_CREAT 01000 0 000 001 000 000 000
| ORed by User 00400 0 000 000 100 000 000
msgflg 01400 0 000 001 100 000 000

The msgflg value can be easily set by using the names of the flags in conjunc-
tion with the octal operation permissions value:

msqid = msgget (key, (IPC_CREAT | 0400));

msqid = msgget (key, (IPC CREAT | IPC EXCL | 0400));

As specified by the msgget(2) page in the IRIS-4D Programmer’s Reference
Manual, success or failure of this system call depends upon the argument values for
key and msgflg or system tunable parameters. The system call will attempt to

return a new msqid if one of the following conditions is true:

B Key is equal to IPC_PRIVATE (0)

M Key does not already have a msqid associated with it, and (msgflg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to [IPC_PRIVATE in the following ways:

8-10  IRIS-4D Programmer’s Guide

(



Messages

msqid = msgget (IPC PRIVATE, msgflg);
or

msgid = msgget ( 0 , msgflg);

This alone will cause the system call to be attempted because it satisfies the first
condition specified. Exceeding the MSGMNI system tunable parameter always
causes a failure. The MSGMNI system tunable parameter determines the maximum
number of unique message queues (msqid’s) in the UNIX operating system.

The second condition is satisfied if the value for key is not already associated
with a msqid and the bitwise ANDing of msgflg and IPC_CREAT is "true" (not
zero). This means that the key is unique (not in use) within the UNIX operating
system for this facility type and that the IPC_CREAT flag is set (msgflg |
IPC_CREAT). The bitwise ANDing (&), which is the logical way of testing if a
flag is set, is illustrated as follows:

msgflg == x1xxx (x=immaterial)
& IPC_CREAT == 01000
result == 01000 (notzero)

Since the result is not zero, the flag is set or "true ."

IPC_EXCL is another control command used in conjunction with IPC_CREAT
to exclusively have the system call fail if, and only if, a msqid exists for the
specified key provided. This is necessary to prevent the process from thinking that
it has received a new (unique) msqid when it has not. In other words, when both
IPC_CREAT and IPC_EXCL are specified, a new msqid is returned if the system
call is successful.

Refer to the msgget(2) page in the IRIS-4D Programmer’s Reference Manual
for specific associated data structure initialization for successful completion. The
specific failure conditions with error names are contained there also.

Interprocess Communication  8-11



Messages

Example Program

The example program in this section (Figure 8-4) is a menu driven program
which allows all possible combinations of using the msgget(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 4-8) by including the required header files as
specified by the msgget(2) entry in the IRIS-4D Programmer’s Reference Manual.
Note that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self-explanatory. These names
make the program more readable, and it is perfectly legal since they are local to the
program. The variables declared for this program and their purposes are as follows:

B key—used to pass the value for the desired key

B opperm—used to store the desired operation permissions
M flags—used to store the desired control commands (flags)
|

opperm_flags—used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to pass the
msgflg argument

M msqid—used for returning the message queue identification number for a
successful system call or the error code (—1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags) which
are selected from a menu (lines 15-32). All possible combinations are allowed even
though they might not be viable. This allows observing the errors for illegal combi-
nations.

Next, the menu selection for the flags is combined with the operation permis-
sions, and the result is stored at the address of the opperm_flags variable (lines 36-
51).

The system call is made next, and the result is stored at the address of the
msqid variable (line 53).

8-12  IRIS-4D Programmer’s Guide

(



Messages

Since the msqid variable now contains a valid message queue identifier or the
error code (—1), it is tested to see if an error occurred (line 55). If msqid equals —1,
a message indicates that an error resulted, and the external errno variable is
displayed (lines 57, 58).

If no error occurred, the returned message queue identifier is displayed (line
62).

The example program for the msgget(2) system call follows. It is suggested
that the source program file be named msgget.c and that the executable file be
named msgget. When compiling C programs that use floating point operations, the
—f option should be used on the cc command line. If this option is not used, the pro-
gram will compile successfully, but when the program is executed it will fail.

Interprocess Communication  8-13



Messages

1 /*This is a program to illustrate
**the message get, msgget(),

N

3 **system call capabilities.*/
4 #include <stdio.h>

5 #include <sys/types.h>

6 #include <sys/ipc.h>

7 #include <sys/msg.h>

8 #include <errno.h>

9 /*Start of main C language program*/

10 main()

11 {

12 key t key; /*declare as long integer*/
13 int opperm, flags;

14 int msqid, opperm flags;

15 /*Enter the desired key*/

16 printf("Enter the desired key in hex = ");
17 scanf ("%x", &key);

18 /*Enter the desired octal operation

19 permissions.*/

20 printf("\nEnter the operation\n");

21 printf("permissions in octal = ");

22 scanf ("%o", &opperm);

Figure 8-4: msgget() System Call Example (Sheet 1 of 3)

8-14 IRIS-4D Programmer’s Guide



Messages

23 /*Set the desired flags.*/

24 printf ("\nEnter corresponding number to\n");

25 printf ("set the desired flags:\n");

26 printf ("No flags = 0\n");

27 printf (*IPC_CREAT = 1\n");

28 printf ("IPC_EXCL = 2\n");

29 printf ("IPC_CREAT and IPC EXCL = 3\n");

30 printf (" Flags =");

31 /*Get the flag(s) to be set.*/

32 scanf ("%d”, &flags);

33 /*Check the values.*/

34 printf ("\nkey =0x%x, opperm = 0%0, flags = 0%o\n",
35 key, opperm, flags);

36 /*Incorporate the control fields (flags) with

37 the operation permissions*/

38 switch (flags)

39 {

40 case 0: /*No flags are to be set.*/

41 opperm flags = (opperm | 0);

42 break;

43 case 1: /*Set the IPC _CREAT flag.*/

44 opperm flags = (opperm | IPC CREAT);

45 break;

46 case 2: /*Set the IPC EXCL flag.*/

47 opperm flags = (opperm | IPC EXCL);

48 break;

49 case 3: /*Set the IPC CREAT and IPC EXCL flags.*/
50 opperm flags = (opperm | IPC CREAT | IPC EXCL);
51 }

Figure 8-4: msgget() System Call Example (Sheet 2 of 3)

Interprocess Communication  8-15



Messages

52 /*Call the msgoet system call.*/

53 msgid = msgget (key, opperm flags);

54 /*Perform the following if the call is unsuccessful.*/
55 if (msgid = -1)

56 {

57 printf ("\nThe msgget system call failed!\n");
58 printf ("The error number = %d\n", errmo);

59 }

60 /*Return the msqgid upon successful completion.*/
61 else

62 printf ("\nThe msqgid = %d\n", msqgid);

63 exit (0);

64 }

\

Figure 8-4: msgget() System Call Example (Sheet 3 of 3)

Controlling Message Queues

This section gives a detailed description of using the msgctl system call along
with an example program which allows all of its capabilities to be exercised.

Using msgctl

The synopsis found in the msgctl(2) entry in the IRIS-4D Programmer’s Refer-
ence Manual is as follows:

8-16  IRIS-4D Programmer’s Guide



Messages

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgetl (msqid, and, buf)
int msqid, and;
struct msqid ds *buf;

The msgctl() system call requires three arguments to be passed to it, and it returns
an integer value.

Upon successful completion, a zero value is returned; and when unsuccessful,
itreturns a —1.

The msqid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system call.

The ecmd argument can be replaced by one of the following control commands
(flags):

IPC_STAT retum the status information contained in the associated data
structure for the specified msqid, and place it in the data structure
pointed to by the *buf pointer in the user memory area.

IPC_SET  for the specified msqid, set the effective user and group

identification, operation permissions, and the number of bytes for
the message queue.

IPC_RMID remove the specified msqid along with its associated message
queue and data structure.

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID control command. Read permis-
sion is required to perform the IPC_STAT control command.

The details of this system call are discussed in the example program for it. If
you have problems understanding the logic manipulations in this program, read the
"Using msgget" section of this chapter; it goes into more detail than what would be
practical to do for every system call.

Interprocess Communication 8-17



Messages

Example Program

The example program in this section (Figure 8-5) is a menu driven program
which allows all possible combinations of using the msgctl(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as
specified by the msgctl(2) entry in the IRIS-4D Programmer’ s Reference Manual.
Note in this program that errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self-explanatory.
These names make the program more readable, and it is perfectly legal since they
are local to the program. The variables declared for this program and their purpose
are as follows:

uid used to store the IPC_SET value for the effective user
identification

gid used to store the IPC_SET value for the effective group
identification

mode used to store the IPC_SET value for the operation permissions

bytes used to store the IPC_SET value for the number of bytes in the
message queue (msg_qgbytes)

rtrn used to store the return integer value from the system call

msqid used to store and pass the message queue identifier to the system
call

command used to store the code for the desired control command so that
subsequent processing can be performed on it

choice used to determine which member is to be changed for the
IPC_SET control command

msqid_ds  used to receive the specified message queue indentifier’s data
structure when an IPC_STAT control command is performed

*buf a pointer passed to the system call which locates the data structure
in the user memory area where the IPC_STAT control command
is to place its return values or where the IPC_SET command gets
the values to set

8-18 IRIS-4D Programmer’s Guide

(

(




Messages

Note that the msqid_ds data structure in this program (line 16) uses the data
structure located in the msg.h header file of the same name as a template for its
declaration. This is a perfect example of the advantage of local variables.

The next important thing to observe is that although the *buf pointer is
declared to be a pointer to a data structure of the msqid_ds type, it must also be ini-
tialized to contain the address of the user memory area data structure (line 17).
Now that all of the required declarations have been explained for this program, this
is how it works.

First, the program prompts for a valid message queue identifier which is stored
at the address of the msqid variable (lines 19, 20). This is required for every
msgctl system call.

Then the code for the desired control command must be entered (lines 21-27),
and it is stored at the address of the command variable. The code is tested to deter-
mine the control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is per-
formed (lines 37, 38) and the status information returned is printed out (lines 39-
46); only the members that can be set are printed out in this program. Note that if
the system call is unsuccessful (line 106), the status information of the last success-
ful call is printed out. In addition, an error message is displayed and the errno vari-
able is printed out (lines 108, 109). If the system call is successful, a message indi-
cates this along with the message queue identifier used (lines 111-114).

If the IPC_SET control command is selected (code 2), the first thing done is to
get the current status information for the message queue identifier specified (lines
50-52). This is necessary because this example program provides for changing only
one member at a time, and the system call changes all of them. Also, if an invalid
value happened to be stored in the user memory area for one of these members, it
would cause repetitive failures for this control command until corrected. The next
thing the program does is to prompt for a code corresponding to the member to be
changed (lines 53-59). This code is stored at the address of the choice variable (line
60). Now, depending upon the member picked, the program prompts for the new
value (lines 66-95). The value is placed at the address of the appropriate member in
the user memory area data structure, and the system call is made (lines 96-98).
Depending upon success or failure, the program returns the same messages as for
IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is per-
formed (lines 100-103), and the msqid along with its associated message queue and
data structure are removed from the UNIX operating system. Note that the *buf
pointer is not required as an argument to perform this control command, and its
value can be zero or NULL. Depending upon the success or failure, the program
returns the same messages as for the other control commands.

Interprocess Communication  8-19



Messages

The example program for the msgctl() system call follows. It is suggested that

the source program file be named msgctl.c and that the executable file be named
msgcetl. When compiling C programs that use floating point operations, the —f
option should be used on the cc command line. If this option is not used, the pro-
gram will compile successfully, but when the program is executed it will fail.

Sw N

O oo Jdoy

10
11

13
14
15
16
17

18
19
20
21
22
23
24
25
26
27

/*This is a program to illustrate
**the message control, msgetl(),

**system call capabilities.

*/

/*Include necessary header files.*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <gys/msg.h>

/*Start of main C language program*/

main()
{

extern int errno;

int uid, gid, mode, bytes;
int rtrn, msqgid, command, choice;
struct msqid ds msgid ds, *buf;

buf = &msqid ds;

/*Get the msqgid, and command.*/
printf ("Enter the msqid = ");

scanf ("%d”, &msqgid) ;

printf("\nEnter the number for\n");
printf ("the desired command:\n");

printf("IPC_STAT =
printf ("IPC_SET =
printf("IPC_RMID =
printf ("Entry =
scanf ("%d", &command) ;

1\n");
2\n") ;
3\n") ;

")

Figure 8-5: msgetl() System Call Example (Sheet 1 of 4)

8-20 IRIS-4D Programmer’s Guide




28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

/*Check the values.*/
printf ("\nmsqid =%d, command = %d\n”",
msqgid, command);

switch (command)
{
case 1: /*Use msgctl() to duplicate
the data structure for
msqid in the msqid ds area pointed
to by buf and then print it out.*/
rtrn = msgetl (msqid, IPC STAT,
buf) ;
printf ("\nThe USER ID = %d\n",
buf->msg_perm.uid) ;
printf ("The GROUP ID = %d\n",
buf->msg_perm.gid) ;
printf ("The operation permissions = 0%o\n",
buf->msg_perm.mode) ;
printf ("The msg gbytes = %d\n",
buf->msg_gbytes) ;
break;
case 2: /*Select and change the desired
member (s) of the data structure.*/
/*Get the original data for this msgid
data structure first.*/
rtrn = msgetl (msqid, IPC STAT, buf);
printf("\nEnter the number for the\n");
printf ("member to be changed:\n");
printf("msg perm.uid = 1\n");
printf("msg perm.gid = 2\n");

printf("msg perm.mode = 3\n");
printf ("msg goytes = 4\n");
printf ("Entry =");

Figure 8-5: msgctl() System Call Example (Sheet 2 of 4)

Messages

Interprocess Communication

8-21




Messages

60
61
62
63
64

66
67
68
69
70
7L
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

scanf ("%d", &choice);
/*Only one choice is allowed per
pass as an illegal entry will
cause repetitive failures until
msgid ds is updated with
IPC_STAT.*/

switch (choice) {
case 1:
printf ("\nEnter USER ID = ");
scanf ("%d", &uid);
buf->msg_perm.uid = uid;
printf("\nUSER ID = %d\n",
buf->msg perm.uid);
break;
case 2:
printf ("\nEnter GROUP ID = ");
scanf ("%d", &gid);
buf->msg_perm.gid = gid;
printf ("\nGROUP ID = %d\n",
buf->msg perm.gid) ;
break;
case 3:
printf ("\nEnter MODE = ");
scanf ("$o", &mode) ;
buf—>msg | perm.mode = mode;
printf ("\nMODE = 0%o\n",
buf—>msg_perm.mode) ;
break;

Figure 8-5: msgctl() System Call Example (Sheet 3 of 4)

8-22 IRIS-4D Programmer’s Guide




88
89
90
91
92
93
94
95

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

case 4:
printf ("\nEnter msq bytes = ");
scanf ("%d", sbytes);
buf->msg dbytes = bytes;
printf ("\nmsg gbytes = %d\n",
buf->msg_dbytes) ;
break;
}

/*Do the change.*/

rtm = msgctl (msqid, IPC SET,
buf) ;

break;

case 3: /*Remove the msqgid along with its
associated message queue
and data structure.*/
rtm = msgctl (msqid, IPC RMID, NULL);
}
/*Perform the following if the call is unsuccessful.*/
if (rtrn = -1)
{
printf ("\nThe msgctl system call failed!\n");
printf ("The error number = %d\n", errno);
}
/*Return the msqgid upon successful completion.*/
else
printf ("\nMsgctl was successful for msqid = %d\n",
msqid) ;
exit (0);

Figure 8-5: msgctl() System Call Example (Sheet 4 of 4)

Messages

Interprocess Communication

8-23



Messages

Operations for Messages

system calls, along with an example program which allows all of their capabilities

This section gives a detailed description of using the msgsnd(2) and msgrcv(2) (
to be exercised.

Using msgop

The synopsis found in the msgop(2) entry in the IRIS-4D Programmer’ s Refer-
ence Manual is as follows:

/#include <sys/types.h>

#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msgid, msgp, msgsz, msgflg)
int msqgid;

struct msgbuf *msgp; )
int msgsz, msgflg;

int msgrev (msgid, msgp, msgsz, msgtyp, msgflg)
int msqid;

struct msgbuf *msgp;

int msgsz;

long msgtyp;

int msgflg;

Sending a Message

The msgsnd system call requires four arguments to be passed to it. It returns
an integer value.

Upon successful completion, a zero value is returned; and when unsuccessful,
msgsnd() returns a —1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system call.

8-24  IRIS-4D Programmer’s Guide




Messages

The msgp argument is a pointer to a structure in the user memory area that
contains the type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data
structure pointed to by the msgp argument. This is the length of the message. The
maximum size of this array is determined by the MSGMAX system tunable param-
eter.

The msg_qbytes data structure member can be lowered from MSGMNB by
using the msgctl() IPC_SET control command, but only the super-user can raise it
afterwards.

The msgflg argument allows the "blocking message operation” to be performed
if the IPC_NOW AIT flag is not set (msgflg & IPC_NOWAIT = 0); this would
occur if the total number of bytes allowed on the specified message queue are in use
(msg_gbytes or MSGMNB), or the total system-wide number of messages on all
queues is equal to the system imposed limit (MSGTQL). If the IPC_NOWAIT flag
is set, the system call will fail and return a —1.

Further details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this program, read
the "Using msgget" section of this chapter; it goes into more detail than what
would be practical to do for every system call.

Receiving Messages

The msgrev() system call requires five arguments to be passed to it, and it
returns an integer value.

Upon successful completion, a value equal to the number of bytes received is
returned and when unsuccessful it returns a —1.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msgget() system call.

The msgp argument is a pointer to a structure in the user memory area that will
receive the message type and the message text.

The msgsz argument specifies the length of the message to be received. If its
value is less than the message in the array, an error can be returned if desired; see
the msgflg argument.

The msgtyp argument is used to pick the first message on the message queue of
the particular type specified. If it is equal to zero, the first message on the queue is
received; if it is greater than zero, the first message of the same type is received; if it
is less than zero, the lowest type that is less than or equal to its absolute value is
received.

Interprocess Communication  8-25



Messages

The msgflg argument allows the "blocking message operation” to be performed
if the IPC_NOWAIT flag is not set (msgflg & IPC_NOWAIT = 0); this would
occur if there is not a message on the message queue of the desired type (msgtyp)
to be received. If the IPC_NOWAIT flag is set, the system call will fail immedi-
ately when there is not a message of the desired type on the queue. Msgflg can also
specify that the system call fail if the message is longer than the size to be received;
this is done by not setting the MSG_NOERROR flag in the msgflg argument
(msgflg & MSG_NOERROR = 0). If the MSG_NOERROR flag is set, the message
is truncated to the length specified by the msgsz argument of msgrcv().

Further details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this program, read
the "Using msgget" section of this chapter; it goes into more detail than what would
be practical to do for every system call.

Example Program

The example program in this section (Figure 8-6) is a menu driven program
which allows all possible combinations of using the msgsnd() and msgrcv(2) sys-
tem calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as
specified by the msgop(2) entry in the IRIS-4D Programmer’s Reference Manual.
Note that in this program errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self-explanatory. These names make
the program more readable, and this is perfectly legal since they are local to the pro-
gram. The variables declared for this program and their purposes are as follows:

sndbuf used as a buffer to contain a message to be sent (line 13); it uses
the msgbuf1 data structure as a template (lines 10-13) The
msgbufl structure (lines 10-13) is almost an exact duplicate of
the msgbuf structure contained in the msg.h header file. The only
difference is that the character array for msgbuf1 contains the
maximum message size (MSGMAX) for the workstation where in
msgbuf it is set to one (1) to satisfy the compiler. For this reason
msgbuf cannot be used directly as a template for the user-written
program. It is there so you can determine its members.

8-26  IRIS-4D Programmer’s Guide




Messages

rcvbuf

*msgp

flag

flags

choice
rtrn

msqid

msgsz

msgflg

msgtyp

used as a buffer to receive a message (line 13); it uses the
msgbufl data structure as a template (lines 10-13)

used as a pointer (line 13) to both the sndbuf and revbuf buffers

used as a counter for inputting characters from the keyboard, stor-
ing them in the array, and keeping track of the message length for
the msgsnd() system call; it is also used as a counter to output the
received message for the msgrev() system call

used to receive the input character from the getchar() function
(line 50)

used to store the code of [IPC_NOWAIT for the msgsnd() system
call (line 61)

used to store the code of the IPC_NOWAIT or MSG_NOERROR
flags for the msgrev() system call (line 117)

used to store the code for sending or receiving (line 30)
used to store the return values from all system calls

used to store and pass the desired message queue identifier for
both system calls

used to store and pass the size of the message to be sent or
received

used to pass the value of flag for sending or the value of flags for
receiving

used for specifying the message type for sending, or used to pick a
message type for receiving.

Note that a msqid_ds data structure is set up in the program (line 21) with a
pointer which is initialized to point to it (line 22); this will allow the data structure
members that are affected by message operations to be observed. They are
observed by using the msgctl() (IPC_STAT) system call to get them for the pro-
gram to print them out (lines 80-92 and lines 161-168).

The first thing the program prompts for is whether to send or receive a mes-
sage. A corresponding code must be entered for the desired operation, and it is
stored at the address of the choice variable (lines 23-30). Depending upon the code,
the program proceeds as in the following msgsnd or msgrev sections.

Interprocess Communication 8-27



Messages

msgsnd
When the code is to send a message, the msgp pointer is initialized (line 33) to
the address of the send data structure, sndbuf. Next, a message type must be
entered for the message; it is stored at the address of the variable msgtyp (line 42),
and then (line 43) it is put into the mtype member of the data structure pointed to by (
msgp.

The program now prompts for a message to be entered from the keyboard and
enters a loop of getting and storing into the mtext array of the data structure (lines
48-51). This will continue until an end of file is recognized which for the getchar()
function is a control-d (CTRL-D) immediately following a carriage return (<CR>).
When this happens, the size of the message is determined by adding one to the i
counter (lines 52, 53) as it stored the message beginning in the zero array element
of mtext. Keep in mind that the message also contains the terminating characters,
and the message will therefore appear to be three characters short of msgsz.

The message is immediately echoed from the mtext array of the sndbuf data
structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOWAIT flag. The program does this by requesting that a code of a 1 be
entered for yes or anything else for no (lines 57-65). It is stored at the address of
the flag variable. If a 1 is entered, IPC_NOWAIT is logically ORed with msgflg;
otherwise, msgflg is set to zero. (

The msgsnd() system call is performed (line 69). If it is unsuccessful, a failure
message is displayed along with the error number (lines 70-72). If it is successful,
the returned value is printed which should be zero (lines 73-76).

Every time a message is successfully sent, there are three members of the asso-
ciated data structure which are updated. They are described as follows:

msg_qnum represents the total number of messages on the message queue; it
is incremented by one.

msg_Ispid contains the Process Identification (PID) number of the last pro-
cess sending a message; it is set accordingly.

msg_stime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) of the last message sent; it is set accordingly.

These members are displayed after every successful message send operation
(lines 79-92). (

8-28 IRIS-4D Programmer’s Guide



Messages

msgrey

If the code specifies that a message is to be received, the program continues
execution as in the following paragraphs.

The msgp pointer is initialized to the revbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to receive
the message is requested, and it is stored at the address of msqid (lines 100-103).

The message type is requested, and it is stored at the address of msgtyp (lines
104-107).

The code for the desired combination of control flags is requested next, and it is
stored at the address of flags (lines 108-117). Depending upon the selected combi-
nation, msgflg is set accordingly (lines 118-133).

Finally, the number of bytes to be received is requested, and it is stored at the
address of msgsz (lines 134-137).

The msgrev() system call is performed (line 144). If it is unsuccessful, a mes-
sage and error number is displayed (lines 145-148). If successful, a message indi-
cates so, and the number of bytes returned is displayed followed by the received
message (lines 153-159).

‘When a message is successfully received, there are three members of the asso-
ciated data structure which are updated; they are described as follows:

msg_qnum contains the number of messages on the message queue; it is
decremented by one.

msg_Irpid contains the process identification (PID) of the last process receiv-
ing a message; it is set accordingly.

msg_rtime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) that the last process received a message; it is
set accordingly.

The example program for the msgop() system calls follows. It is suggested
that the program be put into a source file called msgop.c and then into an execut-
able file called msgop.

‘When compiling C programs that use floating point operations, the —f option
should be used on the cc command line. If this option is not used, the program will
compile successfully, but when the program is executed it will fail.

Interprocess Communication  8-29



Messages

BSwW N

O W 3oy U

10
11
12
13

14
15
16
17
18
19
20
21
22

/*This is a program to illustrate
**the message operations, msgop(),
**system call capabilities.

*/

/*Include necessary header files.*/
#include <stdio.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

struct msgbufl {

long mtype;

char mtext [8192] ;
} sndbuf, rcvbuf, *msgp;

/*Start of main C language program*/
main()
{
extern int errno;
int i, ¢, flag, flags, choice;
int rtrn, msqid, msgsz, msgflg;
long mtype, msgtyp;
struct msqid ds msqid ds, *buf;
buf = smsqid ds;

Figure 8-6: msgop() System Call Example (Sheet 1 of 7)

8-30 IRIS-4D Programmer’s Guide



Messages

23 /*Select the desired operation.*/

24 printf ("Enter the corresponding\n");

25 printf ("code to send or\n");

26 printf ("receive a message:\n");

27 printf ("Send = 1\n");

28 printf ("Receive = 2\n");

29 printf ("Entry = w,;

30 scanf ("%d", &choice);

31 if (choice = 1) /*Send a message.*/

32 {

33 msgp = &sndbuf; /*Point to user send structure.*/
34 printf ("\nEnter the msqgid of\n");

35 printf ("the message queue to\n");

36 printf("handle the message = ");

37 scanf ("%d", &msqgid) ;

38 /*Set the message type.*/

39 printf ("\nEnter a positive integer\n");
40 printf("message type (long) for the\n");
41 printf ("message = ");

42 scanf ("%d", &msgtyp);

43 msgp—>mtype = msgtyp;

44 /*Enter the message to send.*/

45 printf ("\nEnter a message: \n");

46 /*A control-d ("d) terminates as

a7 ECF.*/

Figure 8-6: msgop() System Call Example (Sheet 2 of 7)

Interprocess Communication  8-31



Messages

48
49
50
51

52
53

54
55
56

57
58
59
60
61
62
63
64
65

66
67

68
69
70
71
72
73
74
75
76

/*Get each character of the message
and put it in the mtext array.*/
for(i = 0; ((c = getchar()) != EOF); it++)
sndbuf.mtext [1] = ¢;

/*Determine the message size.*/
msgsz = 1 + 1;

/*Echo the message to send.*/
for(i = 0; i < msgsz; i++)
putchar (sndbuf .mtext [1]) ;7

/*Set the IPC NOWAIT flag if
desired.*/
printf("\nEnter a 1 if you want the\n");
printf ("the IPC NOWAIT flag set: ");
scanf ("8%d", &flag);
if(flag = 1)
msgflg |= IPC NOWAIT;
else
msgflg = 0;

/*Check the msgflg.*/
printf ("\nnsgflg = 0%0\n", msgflg);

/*Send the message.*/
rtrn = msgsnd (msqid, msgp, msgsz, nmsgflg);
if(rtrn = -1)
printf ("\nMsgsnd failed. Error = %d\n",
errmo) ;
else {
/*Print the value of test which
should be zero for successful.*/
printf ("\nValue returned = %d\n", rtm);

Figure 8-6: msgop() System Call Example (Sheet 3 of 7)

8-32  IRIS-4D Programmer’s Guide




77
8
79

80
81

82

83
84
85
86
87
88
89
90
91
92
93
94

96
97
98
99

100
101
102
103

}

/*Print the size of the message
sent . */
printf ("\nMsgsz = %d\n", msgsz);

/*Check the data structure update.*/
msgctl (msqid, IPC STAT, buf);

/*Print out the affected members.*/

/*Print the incremented number of
messages on the queue.*/

printf ("\nThe msg gnum = %d\n",
buf->msg_gnum) ;

/*Print the process id of the last sender.*/

printf ("The msg lspid = %d\n",
buf->msg_lspid);

/*Print the last send time.*/

printf ("The msg stime = %d\n",
buf->msg_stime) ;

if (choice = 2) /*Receive a message.*/

{

/*Initialize the message pointer
to the receive buffer.*/
msgp = &rcvbuf;

/*Specify the message queue which contains
the desired message.*/

printf("\nEnter the msqid = ");

scanf ("&d", &msqgid);

Figure 8-6: msgop() System Call Example (Sheet 4 of 7)

Messages

Interprocess Communication

8-33




Messages

104
105
106
107

108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

/*Specify the specific message on the queue
by using its type.*/

printf ("\nEnter the msgtyp = ");

scanf ("$d", &msgtyp);

/*Configure the control flags for the
desired actions.*/

printf ("\nEnter the corresponding code\n");

printf ("to select the desired flags: \n");

printf ("No flags = 0\n");
printf ("MSG_NCERROR = 1\n");
printf ("IPC_NOWAIT = 2\n");
printf ("MSG NOERROR and IPC NOWAIT = 3\n");
printf (" Flags = ");

scanf ("&d", &flags);

switch (flags) {
/*Set msgflg by ORing it with the appropriate
flags (constants) .*/
case 0:
msgflg = 0;
break;
case 1:
msgflg |= MSG NOERROR;
break;
case 2:
msgflg |= IPC NOWAIT;
break;
case 3:
nmsgflg |= MSG NOERROR | IPC NOWAIT;
break;

Figure 8-6: msgop() System Call Example (Sheet 5 of 7)

8-34 IRIS-4D Programmer’s Guide




134
135
136
137

138
139
140
141
142

143
144

145
146
147
148
149
150
151
152

153
154
155
156

/*Specify the number of bytes to receive.*/
printf("\nEnter the number of bytes\n");
printf("to receive (msgsz) = ");

scanf ("$d", &msgsz);

/*Check the values for the arguments.*/
printf ("\nmsqid =%d\n", msqid);

printf ("\nmsgtyp = %d\n", msgtyp);
printf ("\nmsgsz = %d\n", msgsz);
printf ("\nmsgflg = 0%\n", msgflg);

/*Call msgrcv to receive the message.*/
rtrn = msgrev (msqid, msgp, msgsz, msgtyp, msgflg);

if (rtrm = -1)  {
printf ("\nMsgrcv failed. ");
printf ("Error = %d\n", errno);
}
else {
printf ("\nMsgctl was successful\n");
printf ("for msqid = %d\n”",
msqid) ;

/*Print the number of bytes received,
it is equal to the retum
value.*/

printf ("Bytes received = %d\n", rtm);

Figure 8-6: msgop() System Call Example (Sheet 6 of 7)

Messages

Interprocess Communication

8-35




Messages

157
158
159
160
lel
162
163
164
165
166
167
168
169

170 }

/*Print the received message.*/
for(i = 0; i<=rtrn; i++)
putchar (revbuf .mtext [1]) ;

}
/*Check the associated data structure.*/
msgetl (msqid, IPC STAT, buf);
/*Print the decremented number of messages.*/
printf (™\nThe msg gnum = %d\n"”, buf->msg_gnum) ;
/*Print the process id of the last receiver.*/
printf ("The msg lrpid = %d\n", buf->msg lrpid);
/*Print the last message receive time*/
printf("The msg rtime = %d\n", buf->msg_rtime);

Figure 8-6: msgop() System Call Example (Sheet 7 of 7)

8-36

IRIS-4D Programmer’s Guide




Semaphores

The semaphore type of IPC allows processes to communicate through the
exchange of semaphore values. A semaphore is a positive integer (0 through
32,767). Since many applications require the use of more than one semaphore, the
UNIX operating system has the ability to create sets or arrays of semaphores. A
semaphore set can contain one or more semaphores up to a limit set by the system
administrator. The tunable parameter, SEMMSL has a default value of 25. Sema-
phore sets are created by using the semget(2) system call.

The process performing the semget(2) system call becomes the owner/creator,
determines how many semaphores are in the set, and sets the operation permissions
for the set, including itself. This process can subsequently relinquish ownership of
the set or change the operation permissions using the semctl(), semaptiore control,
system call. The creating process always remains the creator as long as the facility
exists. Other processes with permission can use semctl() to perform other control
functions.

Provided a process has alter permission, it can manipulate the semaphore(s).
Each semaphore within a set can be manipulated in two ways with the semop(2)
system call (which is documented in the IRIS-4D Programmer’s Reference
Manual):

M incremented

M decremented

To increment a semaphore, an integer value of the desired magnitude is passed
to the semop(2) system call. To decrement a semaphore, a minus (-) value of the
desired magnitude is passed.

The UNIX operating system ensures that only one process can manipulate a
semaphore set at any given time. Simultaneous requests are performed sequentially
in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by
attempting to decrement the semaphore by one more than that value. If the process
is successful, then the semaphore value is greater than that certain value. Other-
wise, the semaphore value is not. While doing this, the process can have its execu-
tion suspended (IPC_NOWAIT flag not set) until the semaphore value would per-
mit the operation (other processes increment the semaphore), or the semaphore
facility is removed.

The ability to suspend execution is called a "blocking semaphore operation."
This ability is also available for a process which is testing for a semaphore to
become zero or equal to zero; only read permission is required for this test, and it is
accomplished by passing a value of zero to the semop(2) system call.

Interprocess Communication  8-37



Semaphores

On the other hand, if the process is not successful and the process does not
request to have its execution suspended, it is called a "nonblocking semaphore
operation.” In this case, the process is returned a known error code (—1), and the
external errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate based on
the values of semaphores at different points in time. Remember also that IPC facili-
ties remain in the UNIX operating system until removed by a permitted process or
until the system is reinitialized.

Operating on a semaphore set is done by using the semop(2), semaphore opera-
tion, system call.

When a set of semaphores is created, the first semaphore in the set is sema-
phore number zero. The last semaphore number in the set is one less than the total
in the set.

An array of these "blocking/nonblocking operations” can be performed on a set
containing more than one semaphore. When performing an array of operations, the
"blocking/nonblocking operations” can be applied to any or all of the semaphores in
the set. Also, the operations can be applied in any order of semaphore number.
However, no operations are done until they can all be done successfully. This
requirement means that preceding changes made to semaphore values in the set
must be undone when a "blocking semaphore operation” on a semaphore in the set
cannot be completed successfully; no changes are made until they can all be made.
For example, if a process has successfully completed three of six operations on a set
of ten semaphores but is "blocked" from performing the fourth operation, no
changes are made to the set until the fourth and remaining operations are success-
fully performed. Additionally, any operation preceding or succeeding the
"blocked" operation, including the blocked operation, can specify that at such time
that all operations can be performed successfully, that the operation be undone.
Otherwise, the operations are performed and the semaphores are changed or one
"nonblocking operation” is unsuccessful and none are changed. All of this is com-
monly referred to as being "atomically performed.”

The ability to undo operations requires the UNIX operating system to maintain
an array of "undo structures” corresponding to the array of semaphore operations to
be performed. Each semaphore operation which is to be undone has an associated
adjust variable used for undoing the operation, if necessary.

Remember, any unsuccessful "nonblocking operation” for a single semaphore
or a set of semaphores causes immediate return with no operations performed at all.
When this occurs, a known error code (-1) is returned to the process, and the exter-
nal variable errno is set accordingly.

8-38  IRIS-4D Programmer’s Guide




Semaphores

System calls make these semaphore capabilities available to processes. The cal-
ling process passes arguments to a system call, and the system call either success-
fully or unsuccessfully performs its function. If the system call is successful, it per-
forms its function and returns the appropriate information. Otherwise, a known
error code (-1) is returned to the process, and the external variable errno is set
accordingly.

Using Semaphores

Before semaphores can be used (operated on or controlled) a uniquely
identified data structure and semaphore set (array) must be created. The unique
identifier is called the semaphore identifier (semid); it is used to identify or refer-
ence a particular data structure and semaphore set.

The semaphore set contains a predefined number of structures in an array, one
structure for each semaphore in the set. The number of semaphores (nsems) in a
semaphore set is user selectable. The following members are in each structure
within a semaphore set:

B semaphore text map address
M process identification (PID) performing last operation

B number of processes awaiting the semaphore value to become greater than
its current value

M number of processes awaiting the semaphore value to equal zero

There is one associated data structure for the uniquely identified semaphore set.
This data structure contains information related to the semaphore set as follows:

B operation permissions data (operation permissions structure)

M pointer to first semaphore in the set (array)

B number of semaphores in the set

M last semaphore operation time

M last semaphore change time

The C Programming Language data structure definition for the semaphore set
(array member) is as follows:

Interprocess Communication  8-39



Semaphores

struct sem

{
ushort semval; /* semaphore text map address */ (
short  sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzent; /* # awaiting semval = 0 */

It is located in the #include <sys/sem.h> header file.

Likewise, the structure definition for the associated semaphore data structure is
as follows:

struct semid ds (
{

struct ipc perm sem perm; /¥ operation permission struct */

struct sem *sem base; /* ptr to first semaphore in set */
ushort sem nsems; /* # of semaphores in set */

time t sem otime; /* last semop time */

time t sem ctime; /* last change time */

It is also located in the #include <sys/sem.h> header file. Note that the
sem_perm member of this structure uses ipc_perm as a template. The breakout for
the operation permissions data structure is shown in Figure 8-1.

The ipc_perm data structure is the same for all IPC facilities, and it is located
in the #include <sys/ipc.h> header file. It is shown in the "Messages" section.

The semget(2) system call is used to perform two tasks when only the (
IPC_CREAT flag is set in the semflg argument that it receives:

8-40  IRIS-4D Programmer’s Guide




Semaphores

M to get a new semid and create an associated data structure and semaphore
set for it

M to return an existing semid that already has an associated data structure and
semaphore set

The task performed is determined by the value of the key argument passed to the
semget(2) system call. For the first task, if the key is not already in use for an exist-
ing semid, a new semid is returned with an associated data structure and semaphore
set created for it provided no system tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0) which is known
as the private key (IPC_PRIVATE = 0); when specified, a new semid is always
returned with an associated data structure and semaphore set created for it unless a
system tunable parameter would be exceeded. When the ipcs command is per-
formed, the KEY field for the semid is all zeros.

When performing the first task, the process which calls semget() becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains the
creator; see the "Controlling Semaphores" section in this chapter. The creator of
the semaphore set also determines the initial operation permissions for the facility.

For the second task, if a semid exists for the key specified, the value of the
existing semid is returned. If it is not desired to have an existing semid returned, a
control command (IPC_EXCL) can be specified (set) in the semflg argument passed
to the system call. The system call will fail if it is passed a value for the number of
semaphores (nsems) that is greater than the number actually in the set; if you do not
know how many semaphores are in the set, use O for nsems. The details of using
this system call are discussed in the "Using semget" section of this chapter.

Once a uniquely identified semaphore set and data structure are created, sema-
phore operations [semop(2)] and semaphore control [semctl()] can be used.

Semaphore operations consist of incrementing, decrementing, and testing for
zero. A single system call is used to perform these operations. It is called semop().
Refer to the "Operations on Semaphores" section in this chapter for details of this
system call.

Semaphore control is done by using the semctl(2) system call. These control
operations permit you to control the semaphore facility in the following ways:

M to return the value of a semaphore

B to set the value of a semaphore

Interprocess Communication  8-41



Semaphores

to return the process identification (PID) of the last process performing an
operation on a semaphore set

to return the number of processes waiting for a semaphore value to become
greater than its current value

to return the number of processes waiting for a semaphore value to equal
Zero

to get all semaphore values in a set and place them in an array in user
memory

to set all semaphore values in a semaphore set from an array of values in
user memory

to place all data structure member values, status, of a semaphore set into
user memory area

to change operation permissions for a semaphore set

to remove a particular semid from the UNIX operating system along with its
associated data structure and semaphore set

Refer to the "Controlling Semaphores" section in this chapter for details of the
semctl(2) system call.

Getting Semaphores

This section contains a detailed description of using the semget(2) system call
along with an example program illustrating its use.

Using semget

8-42

The synopsis found in the semget(2) entry in the IRIS-4D Programmer’s
Reference Manual is as follows:

IRIS-4D Programmer’s Guide




Semaphores

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semg)
key t key;
int nsems, semg;

The following line in the synopsis:
int semget (key, nsems, semflg)

informs you that semget() is a function with three formal arguments that returns an
integer type value, upon successful completion (semid). The next two lines:

key t key;
int nsems, semflg;

declare the types of the formal arguments. key_t is declared by a typedef in the
types.h header file to be an integer.

The integer returned from this system call upon successful completion is the
semaphore set identifier (semid) that was discussed above.

As declared, the process calling the semget() system call must supply three
actual arguments to be passed to the formal key, nsems, and semflg arguments.

A new semid with an associated semaphore set and data structure is provided if
either

W key is equal to IPC_PRIVATE,

or

M key is passed a unique hexadecimal integer, and semflg ANDed with
IPC_CREAT is TRUE.

The value passed to the semflg argument must be an integer type octal value
and will specify the following:

M access permissions

Interprocess Communication  8-43



Semaphores

M execution modes

M control fields (commands)

Access permissions determine the read/alter attributes and execution modes
determine the user/group/other attributes of the semflg argument. They are collec-
tively referred to as "operation permissions.” Figure 8-7 reflects the numeric values
(expressed in octal notation) for the valid operation permissions codes.

Operation Permissions | Octal Value
Read by User 00400
Alter by User 00200
Read by Group 00040
Alter by Group 00020
Read by Others 00004
Alter by Others 00002

Figure 8-7: Operation Permissions Codes

A specific octal value is derived by adding the octal values for the operation
permissions desired. That is, if read by user and read/alter by others is desired, the
code value would be 00406 (00400 plus 00006). There are constants #define’d in
the sem.h header file which can be used for the user (OWNER). They are as fol-
lows:

SEM A 0200 /* alter permission by owner */
SEM R 0400 /* read permission by owner */

Control commands are predefined constants (represented by all uppercase
letters). Figure 8-8 contains the names of the constants which apply to the
semget(2) system call along with their values. They are also referred to as flags and
are defined in the ipc.h header file.

Control Command | Value

IPC_CREAT 0001000
IPC_EXCL 0002000

Figure 8-8: Control Commands (Flags)

8-44  IRIS-4D Programmer’s Guide

(

(




Semaphores

The value for semflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This specification is
accomplished by bitwise ORing (| ) them with the operation permissions; the bit
positions and values for the control commands in relation to those of the operation
permissions make this possible. It is illustrated as follows:

Octal Value Binary Value
IPC_CREAT = 01000 0 000 001 000 000 000
CWI ORed by User = 00400 0 000 000 100 000 000
semflg = 01400 0000 001 100 000 000

The semflg value can be easily set by using the names of the flags in conjunc-
tion with the octal operation permissions value:

semid = semget (key, nsems, (IPC CREAT | 0400));
semid = semget (key, nsems, (IPC CREAT | IPC EXCL | 0400));

As specified by the semget(2) entry in the IRIS-4D Programmer’s Reference
Manual, success or failure of this system call depends upon the actual argument
values for key, nsems, semflg or system tunable parameters. The system call will
attempt to return a new semid if one of the following conditions is true:

B Key is equal to IPC_PRIVATE (0)

B Key does not already have a semid associated with it, and (semflg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:

semid = semget (IPC PRIVATE, nsems, semflg);
or

semid = semget ( 0, nsems, semflg);

This alone will cause the system call to be attempted because it satisfies the first
condition specified.

Interprocess Communication  8-45



Semaphores

Exceeding the SEMMNI, SEMMNS, or SEMMSL system tunable parameters
will always cause a failure. The SEMMNI system tunable parameter determines the
maximum number of unique semaphore sets (semid’s) in the UNIX operating sys-
tem. The SEMMNS system tunable parameter determines the maximum number of
semaphores in all semaphore sets system wide. The SEMMSL system tunable
parameter determines the maximum number of semaphores in each semaphore set.

The second condition is satisfied if the value for key is not already associated
with a semid, and the bitwise ANDing of semflg and IPC_CREAT is "true" (not
zero). This means that the key is unique (not in use) within the UNIX operating
system for this facility type and that the IPC_CREAT flag is set (semflg |
IPC_CREAT). The bitwise ANDing (&), which is the logical way of testing if a
flag is set, is illustrated as follows:

semflg =x 1 x x x (x = immaterial)
& IPC CREAT = 0 1 0 0 0

result = 01000 (not zero)

Since the result is not zero, the flag is set or "true ." SEMMNI, SEMMNS, and
SEMMSL apply here also, just as for condition one.

IPC_EXCL is another control command used in conjunction with IPC_CREAT
to exclusively have the system call fail if, and only if, a semid exists for the
specified key provided. This is necessary to prevent the process from thinking that
it has received a new (unique) semid when it has not. In other words, when both
IPC_CREAT and IPC_EXCL are specified, a new semid is returned if the system
call is successful. Any value for semflg returns a new semid if the key equals zero
(IPC_PRIVATE) and no system tunable parameters are exceeded.

Refer to the semget(2) manual page for specific associated data structure ini-
tialization for successful completion.

Example Program

The example program in this section (Figure 8-9) is a menu driven program
which allows all possible combinations of using the semget(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out. '

This program begins (lines 4-8) by including the required header files as
specified by the semget(2) entry in the IRIS-4D Programmer’s Reference Manual.
Note that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

8-46  IRIS-4D Programmer’s Guide



Semaphores

Variable names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self-explanatory. These names make the program
more readable, and this is perfectly legal since they are local to the program. The
variables declared for this program and their purpose are as follows:

M key—used to pass the value for the desired key
M opperm—used to store the desired operation permissions
W flags—used to store the desired control commands (flags)

M opperm_flags—used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to pass the
semflg argument

M semid—used for returning the semaphore set identification number for a
successful system call or the error code (—1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and the control command combinations (flags) which are selected
from a menu (lines 15-32). All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation permis-
sions, and the result is stored at the address of the opperm_fiags variable (lines 36-
52).

Then, the number of semaphores for the set is requested (lines 53-57), and its
value is stored at the address of nsems.

The system call is made next, and the result is stored at the address of the
semid variable (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or the
error code (~1), it is tested to see if an error occurred (line 63). If semid equals —1,
a message indicates that an error resulted and the external errno variable is
displayed (lines 65, 66). Remember that the external errno variable is only set
when a system call fails; it should only be tested immediately following system
calls.

If no error occurred, the returned semaphore set identifier is displayed (line 70).

The example program for the semget(2) system call follows. Itis suggested
that the source program file be named semget.c and that the executable file be
named semget.

Interprocess Communication  8-47



Semaphores

w N

W ~J o U

10
11
12
13
14

15
16
17

18
19
20
21
22

/*This is a program to illustrate
**the semaphore get, semget(),
**system call capabilities.*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <errno.h>

/*Start of main C language program*/

main()

{
key t key; /*declare as long integer*/
int opperm, flags, nsems;
int semid, opperm flags;

/*Enter the desired key*/
printf ("\nEnter the desired key in hex = ");
scanf ("$x", &key);

/*Enter the desired octal operation

permissions.*/
printf("\nEnter the operation\n");
printf("permissions in octal = ");
scanf ("$o", &opperm) ;

Figure 8-9: semget() System Call Example (Sheet 1 of 3)

8-48 IRIS-4D Programmer’s Guide




Semaphores

23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

/*Set the desired flags.*/
printf ("\nEnter corresponding number to\n");
printf ("set the desired flags:\n");

printf ("No flags = 0\n");
printf ("IPC_CREAT = 1\n");
printf("IPC_EXCL =2\n");
printf ("IPC CREAT and IPC_EXCL = 3\n");
printf (" Flags =";

/*Get the flags to be set.*/
scanf ("%d"”, &flags);

/*Error checking (debugging)*/
printf ("\nkey =0x%x, opperm = 0%0, flags = 0%o\n",
key, opperm, flags);
/*Incorporate the control fields (flags) with
the operation permissions.*/
switch (flags)
{
case 0: /*No flags are to be set.*/
opperm flags = (opperm | 0);
break;
case 1: /*Set the IPC CREAT flag.*/
opperm flags = (opperm | IPC CREAT) ;
break;
case 2: /*Set the IPC EXCL flag.*/
opperm flags = (opperm | IPC EXCL);
break;
case 3: /*Set the IPC CREAT and IPC EXCL
flags.*/
opperm flags = (opperm | IPC CREAT | IPC EXCL);

Figure 8-9: semget() System Call Example (Sheet 2 of 3)

Interprocess Communication 8-49



Semaphores

53 /*Get the number of semaphores for this set.*/
54 printf("\nEnter the number of\n");

55 printf("desired semaphores for\n");

56 printf("this set (25 max) = ");

57 scanf ("$d", &nsems);

58 /*Check the entry.*/

59 printf ("\nNsems = $d\n", nsems);

60 /*Call the semget system call.*/

61 semid = semget (key, nsems, opperm flags);

62 /*Perform the following if the call is unsuccessful.*/
63 if (semid = -1)

64 {

65 printf ("The semget system call failed!\n");
66 printf ("The error number = %d\n", errno);

67 }

68 /*Return the semid upon successful completion.*/
69 else

70 printf ("\nThe semid = %d\n", semid);

71 exit (0) ;

72 }

Figure 8-9: semget() System Call Example (Sheet 3 of 3)

Controlling Semaphores

This section contains a detailed description of using the semctl(2) system call
along with an example program which allows all of its capabilities to be exercised.

8-50 IRIS-4D Programmer’s Guide




Semaphores

Using semctl

The synopsis found in the semctl(2) entry in the IRIS-4D Programmer’s Refer-
ence Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, and;
int semnum;
union semun
{
int val;
struct semid ds *bu;
ushort array(];

} arg;

The semctl(2) system call requires four arguments to be passed to it, and it returns
an integer value.

The semid argument must be a valid, non-negative, integer value that has
already been created by using the semget(2) system call.

The semnum argument is used to select a semaphore by its number. This
relates to array (atomically performed) operations on the set. When a set of sema-
phores is created, the first semaphore is number 0, and the last semaphore has the
number of one less than the total in the set.

The ecmd argument can be replaced by one of the following control commands
(flags):

B GETVAL—return the value of a single semaphore within a semaphore set
B SETVAL—set the value of a single semaphore within a semaphore set

B GETPID—return the Process Identifier (PID) of the process that performed
the last operation on the semaphore within a semaphore set

M GETNCNT—return the number of processes waiting for the value of a par-
ticular semaphore to become greater than its current value

Interprocess Communication  8-51



Semaphores

B GETZCNT—return the number of processes waiting for the value of a par-
ticular semaphore to be equal to zero

B GETALL—return the values for all semaphores in a semaphore set
B SETALL—set all semaphore values in a semaphore set

M IPC_STAT—return the status information contained in the associated data
structure for the specified semid, and place it in the data structure pointed to
by the *buf pointer in the user memory area; arg.buf is the union member
that contains the value of buf

M IPC_SET—for the specified semaphore set (semid), set the effective
user/group identification and operation permissions

B IPC_RMID—remove the specified (semid) semaphore set along with its
associated data structure.

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID control command. Read/alter
permission is required as applicable for the other control commands.

The arg argument is used to pass the system call the appropriate union member
for the control command to be performed:

M arg.val

M arg.buf

M arg.array

The details of this system call are discussed in the example program for it. If
you have problems understanding the logic manipulations in this program, read the

"Using semget" section of this chapter; it goes into more detail than what would be
practical to do for every system call.

Example Program

The example program in this section (Figure 8-10) is a menu driven program
which allows all possible combinations of using the semctl(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

8-52 IRIS-4D Programmer’s Guide



Semaphores

This program begins (lines 5-9) by including the required header files as
specified by the semctl(2) entry in the IRIS-4D Programmer’s Reference Manual
Note that in this program errno is declared as an external variable, and therefore
the errno.h header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as possi-
ble to those in the synopsis. Their declarations are self-explanatory. These names
make the program more readable, and this is perfectly legal since they are local to
the program. Those declared for this program and their purpose are as follows:

semid_ds—used to receive the specified semaphore set identifier’s data
structure when an IPC_STAT control command is performed

c—used to receive the input values from the scanf(3S) function, (line 117)
when performing a SETALL control command

i—used as a counter to increment through the union arg.array when
displaying the semaphore values for a GETALL (lines 97-99) control com-
mand, and when initializing the arg.array when performing a SETALL
(lines 115-119) control command

length—used as a variable to test for the number of semaphores in a set
against the i counter variable (lines 97, 115)

uid—used to store the IPC_SET value for the effective user identification
gid—used to store the IPC_SET value for the effective group identification
mode—used to store the IPC_SET value for the operation permissions

rtrn—used to store the return integer from the system call which depends
upon the control command or a —1 when unsuccessful

semid—used to store and pass the semaphore set identifier to the system cail
semnum—used to store and pass the semaphore number to the system call

cmd—used to store the code for the desired control command so that subse-
quent processing can be performed on it

choice—used to determine which member (uid, gid, mode) for the
IPC_SET control command that is to be changed

arg.val—used to pass the system call a value to set (SETVAL) or to store
(GETVAL) a value returned from the system call for a single semaphore
(union member)

arg.buf—a pointer passed to the system call which locates the data structure
in the user memory area where the IPC_STAT control command is to place
its return values, or where the IPC_SET command gets the values to set
(union member)

Interprocess Communication  8-53



Semaphores

W arg.array—used to store the set of semaphore values when getting
(GETALL) or initializing (SETALL) (union member).

Note that the semid_ds data structure in this program (line 14) uses the data
structure located in the sem.h header file of the same name as a template for its
declaration. This is a perfect example of the advantage of local variables.

The arg union (lines 18-22) serves three purposes in one. The compiler allo-
cates enough storage to hold its largest member. The program can then use the
union as any member by referencing union members as if they were regular struc-
ture members. Note that the array is declared to have 25 elements (0 through
24).This number corresponds to the maximum number of semaphores allowed per
set (SEMMSL), a system tunable parameter.

The next important program aspect to observe is that although the *buf pointer
member (arg.buf) of the union is declared to be a pointer to a data structure of the
semid_ds type, it must also be initialized to contain the address of the user memory
area data structure (line 24). Because of the way this program is written, the pointer
does not need to be reinitialized later. If it was used to increment through the array,
it would need to be reinitialized just before calling the system call.

Now that all of the required declarations have been presented for this program,
this is how it works.

First, the program prompts for a valid semaphore set identifier, which is stored
at the address of the semid variable (lines 25-27). This is required for all semctl(2)
system calls.

Then, the code for the desired control command must be entered (lines 28-42),
and the code is stored at the address of the cmd variable. The code is tested to
determine the control command for subsequent processing.

If the GETVAL control command is selected (code 1), a message prompting
for a semaphore number is displayed (lines 49, 50). When it is entered, it is stored
at the address of the semnum variable (line 51). Then, the system call is per-
formed, and the semaphore value is displayed (lines 52-55). If the system call is
successful, a message indicates this along with the semaphore set identifier used
(lines 195, 196); if the system call is unsuccessful, an error message is displayed
along with the value of the external errno variable (lines 191-193).

If the SETVAL control command is selected (code 2), a message prompting for
a semaphore number is displayed (lines 56, 57). When it is entered, it is stored at
the address of the semnum variable (line 58). Next, a message prompts for the
value to which the semaphore is to be set, and it is stored as the arg.val member of
the union (lines 59, 60). Then, the system call is performed (lines 61, 63). Depend-
ing upon success or failure, the program returns the same messages as for GETVAL
above.

8-54  IRIS-4D Programmer’s Guide




Semaphores

If the GETPID control command is selected (code 3), the system call is made
immediately since all required arguments are known (lines 64-67), and the PID of
the process performing the last operation is displayed. Depending upon success or
failure, the program returns the same messages as for GETVAL above.

If the GETNCNT control command is selected (code 4), a message prompting
for a semaphore number is displayed (lines 68-72). When entered, it is stored at the
address of the semnum variable (line 73). Then, the system call is performed, and
the number of processes waiting for the semaphore to become greater than its
current value is displayed (lines 74-77). Depending upon success or failure, the
program returns the same messages as for GETVAL above.

If the GETZCNT control command is selected (code 5), a message prompting
for a semaphore number is displayed (lines 78-81). When it is entered, it is stored
at the address of the semnum variable (line 82). Then the system call is performed,
and the number of processes waiting for the semaphore value to become equal to
zero is displayed (lines 83, 86). Depending upon success or failure, the program
returns the same messages as for GETVAL above.

If the GETALL control command is selected (code 6), the program first per-
forms an IPC_STAT control command to determine the number of semaphores in
the set (lines 88-93). The length variable is set to the number of semaphores in the
set (line 91). Next, the system call is made and, upon success, the arg.array union
member contains the values of the semaphore set (line 96). Now, a loop is entered
which displays each element of the arg.array from zero to one less than the value
of length (lines 97-103). The semaphores in the set are displayed on a single line,
separated by a space. Depending upon success or failure, the program returns the
same messages as for GETVAL above.

If the SETALL control command is selected (code 7), the program first per-
forms an IPC_STAT control command to determine the number of semaphores in
the set (lines 106-108). The length variable is set to the number of semaphores in
the set (line 109). Next, the program prompts for the values to be set and enters a
loop which takes values from the keyboard and initializes the arg.array union
member to contain the desired values of the semaphore set (lines 113-119). The
loop puts the first entry into the array position for semaphore number zero and ends
when the semaphore number that is filled in the array equals one less than the value
of length. The system call is then made (lines 120-122). Depending upon success
or failure, the program returns the same messages as for GETVAL above.

If the IPC_STAT control command is selected (code 8), the system call is per-
formed (line 127), and the status information returned is printed out (lines 128-139);
only the members that can be set are printed out in this program. Note that if the
system call is unsuccessful, the status information of the last successful one is
printed out. In addition, an error message is displayed, and the errno variable is
printed out (lines 191, 192).

Interprocess Communication  8-55



Semaphores

If the IPC_SET control command is selected (code 9), the program gets the
current status information for the semaphore set identifier specified (lines 143-146).
This is necessary because this example program provides for changing only one
member at a time, and the semctl(2) system call changes all of them. Also, if an
invalid value happened to be stored <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>