
IRIS-4D Programmer's
Guide

Volume"

• SiliconGraphics
Computer Systems

IRIS-4D Series

Document number: 007-0601-010

IRIS-4D Programmer's
Guide

. Volume II

Version 1.0

Document Number 007-0601-010

Technical Publications:

Marcia Allen
Kathleen Chaix

Special Thanks to the Technical Marketing Group

© Copyright 1987, Silicon Graphics, Inc.
All rights reserved.

This document contains proprietary information of Silicon Graphics,
Inc .• and is protected by Federal copyright law. The information may
not be disclosed to third parties or copied or duplicated in any form, in
whole or in part, without prior written consent of Silicon Graphics, Inc.

The information in this document is subject to change without notice.

IRIS-4D Programmer's Guide, Volume II
Version 1.0
Document Number 007-0601-010

Silicon Graphics, Inc.
Mountain View, California

UNIX is a registered trademark of AT&T.

(

(

c

Contents

Introduction
Purpose ... xiii

Audience and Prerequisite Knowledge xiii
Organization ... xiii
The C Connection .. xiv
Hardware/Software Dependencies xiv
Notation Conventions ... xiv
Command References .. xv
Information in the Examples .. xvi

1. Programming in a UNIX System Environment
The UNIX System Environment... .. 1-1

The UNIX Idea ... 1-1
The UNIX Philosophy .. 1-3

UNIX System Tools ... 1-4
Tools Covered and Not Covered in This Guide 1-4
The Shell as a Prototyping Tool .. 1-5

Three Programming Environments .. 1-6
Single-User Programming ... 1-6
Application Programming .. 1-7
Systems Programming .. 1-7

Summary ... 1-8

2. Programming Basics
Programming in a UNIX Environment 2-1
Choosing a Programming Language ... 2-2

Supported Languages in the UNIX Environment 2-2
C Language .. 2-3
FORTRAN .. 2-4
Assembly Language ... 2-4

Special-Purpose Languages ... 2-4
awk ... 2-4
lex ... 2-5
yacc .. 2-5
M4 ... 2-6
bc and dc .. 2-6

-i-

curses ... 2-6
Compiling and Link Editing .. 2-7

Compiling C Programs .. 2-7
Compiling FORT AN Programs .. 2-7 (
Compiler Diagnostic Messages ... 2-7
Link Editing .. 2-8

The UNIX System/Language Interface 2-9
Using C to Illustrate the Interface .. 2-9
Passing Arguments to a Program 2-9
System Calls and Subroutines .. 2-13

Categories of System Calls and Subroutines 2-13
Where the Manual Pages Can Be Found 2-20
Using System Calls and Subroutines in
C Programs ... 2-20

Header Files and Libraries .. 2-26
Object File Libraries .. 2-27
Input and Output.. .. 2-28

Three Files to Handle Standard I/O Streams 2-28
Named Files .. 2-29
The UNIX System and Low-level 1/0 2-30

System Calls for Environment or Status Information 2-30 (
Processes .. 2-32

system(3S) ... 2-33
exec(2) ... 2-33
fork(2) ... 2-34
Pipes ... 2-36

Error Handling ... 2-37
Signals and Interrupts ... 2-38

Analysis and Debugging .. 2-40
Sample Program ... 2-40
cHow .. 2-45
ctrace ... 2-48
cxref ... 2-52
lint ... 2-58
prof .. 2-59 C·
size ... 2-61
strip ... 2-61

Program-Organizing Utilities .. 2-62
The make Command ... 2-62
The Archive File : 2-63

-ii-

Use of SCCS by Single-User Programmers 2-69

3. Application Programming
Application Programming Objectives ... 3-1
Application Environment Characteristics 3-2

Numbers .. 3-2
Portability ... 3-2
Documentation .. 3-2

Language Selection ... 3-4
Influences .. 3-4
Special-Purpose Languages ... 3-5

The awk Utility .. 3-5
Using awk ... 3-6
The lex and yacc Utilities ... 3-6
Using lex ... 3-7
Using yacc ... 3-8

Advanced Programming Tools .. 3-10
Memory Management ... 3-1 0
File and Record Locking ... 3-11

How File and Record Locking Works 3-12
lockf .. 3-14

Interprocess Communications ... 3-14
I PC get Calls ... 3-15
IPC ctl Calls .. 3-15
IPC op Calls .. 3-16

Programming Terminal Screens 3-16
curses .. 3-17

Programming Support Tools .. 3-18
Link Edit Command Language .. 3-18
Common Object File Format.. ... 3-18
Libraries ... 3-19

The Object File Library ... 3-19
Common Object File Interface Macros (ldfcn.h) 3-22
The Math Library ... 3-23

A Basic Lesson on Debugging .. 3-26
How Does edge Work? .. 3-26
About the edge Environment 3-27

lint as a Portability Tool .. 3-27
Project Control Tools ... 3-29

make .. 3-29

-iii-

SCCS .. 3-30
liber, A Library System .. 3-32

4.awk

(An Overview of awk Programming4-1
Basic awk ... 4-2

Program Structure ... 4-2
Using awk .. 4-3
Fields ... 4-3
Printing .. 4-4
Formatted Printing4-5
Simple Patterns ... 4-6
Simple Actions ... 4-7

Built-in Variables4-7
User-defined Variables .. .4-8
Functions .. 4-8

Useful One-Line awk Programs4-8
Error Messages ... 4-10

Patterns .. 4-11
BEGIN and END ... 4-11
Relational Expressions4-12 (
Regular Expressions ... 4-13
Combinations of Patterns4-16
Pattern Ranges ... 4-17

Actions ... 4-18
Built-in Variables ... 4-18
Arithmetic ... 4-18
Strings and String Functions ... 4-21
Field Variables ... 4-24
Number or String? .. 4-25
Control Flow Statements ... 4-26
Arrays .. 4-28
User-Defined Functions , 4-31
Comments ... 4-31

Output .. 4-32 (~

The print Statement4-32
Output Separators .. .4-32
The printf Statement...4-33
Output into Files .. 4-34
Output into Pipes4-35

-iv-

Input ... 4-37
Files and Pipes .. 4-37
Input Separators .. 4-37
Multi-Line Records .. 4-38
The getline Function .. 4-38
Command-line Arguments .. 4-40

Using awk with other Commands .. 4-42
The system Function .. 4-42
Cooperation with the Shell .. 4-42

Example Applications4-45
Generating Reports .. .4-45
Additional Examples4-4 7

awk Summary .. 4-50
Command Line .. 4-50
Patterns ... 4-50
Control Flow Statements .. .4-50
Input-Output .. 4-51
String Functions4-51
Arithmetic Functions4-52
Operators (increasing precedence)4-52
Regular expressions (increasing precedence)4-53
Built-in Variables .. .4-53
Limits ... 4-54
Initialization, Comparison, and Type Coercion4-54

S.lex
An Overview of lex Programming .. 5-1
Writing lex Programs .. 5-3

The Fundamental lex Rules .. 5-3
Specifications .. 5-3
Actions .. 5-5

Advanced lex Usage .. 5-6
Some Special Features .. 5-7
Definitions ... 5-11
Subroutines ... 5-12

Using lex with yacc .. 5-13
Running lex Under the UNIX System 5-16

6.yacc
An Overview of yacc Programming .. 6-1

-v-

Basic Specifications ... 6-4
Actions .. ' 6-6
Lexical Analysis ... 6-9

Parser Operation ... 6-12 (.
Apmbigduity and Conflicts ... 66-2127 .

rece ence · .. -
Error Handling .. 6-26
The yacc Environment. ... 6-30
Hints for Preparing Specifications .. 6-32

Input Style ... 6-32
Left Recursion ... 6-32
Lexical Tie-Ins ... 6-33
Reserved Words ... 6-35

Advanced yacc Features .. 6-36
Simulating error and accept in Actions 6-36
Accessing Values in Enclosing Rules 6-36
Support for Arbitrary Value Types 6-38
yacc Input Syntax ... 6-39

Examples ... 6-43
1. A Simple Example ... 6-43 (
2. An Advanced Example .. 6-47

7. File and Record Locking
An Overview of File and Record Locking 7-1
Terminology ... 7-2
File Protection .. 7-4

Opening a File for Record Locking 7-4
Setting a File Lock ... 7-5
Setting and Removing Record Locks 7-8
Getting Lock Information ... 7-13
Deadlock Handling .. 7-16

Selecting Advisory or Mandatory Locking 7-17
Mandatory Locking .. 7-18
Record Locking and Future UNIX Releases 7-18

8. Interprocess Communication (
An Overview of Inter-Process Communication 8-1
Messages ... 8-2

Getting Message Queues .. 8-6
Using msgget ... 8-7

-vi-

Example Program ... 8-12
Controlling Message Queues .. 8-16

Using msgctl .. 8-16
Example Program ... 8-18

Operations for Messages .. 8-24
Using msgop .. 8-24
Example Program ... 8-26

Semaphores ... 8-37
Using Semaphores .. 8-39
Getting Semaphores ... 8-42

Using semget ... 8-42
Example Program ... 8-46

Controlling Semaphores .. 8-50
Using semctl .. 8-51
Example Program ... 8-52

Operations on Semaphores .. 8-64
Using semop .. 8-64
Example Program ... 8-66

Shared Memory ... 8-72
Using Shared Memory .. 8-73
Getting Shared Memory Segments 8-77

Using shmget ... 8-77
Example Program ... 8-81

ContrOlling Shared Memory .. 8-85
Using shmctl ... 8-85
Example Program ... 8-87

Operations for Shared Memory ... 8-96
Using shmop ... 8-96
Example Program ... 8-97

9. curses/termlnfo
The Terminal Information Utilities Package 9-1

What is curses? ... 9-2
What is terminfo? ~ .. 9-3
How curses and terminfo Work Together 9-5
Other Components of the Terminal Information Utilities 9-5

Working with curses Routines .. 9-7
What Every curses Program Needs 9-7

The Header File <curses.h> .. 9-7
The Routines initscrO. refreshO. endwinO 9-8

-vii-

Compiling a curses Program .. 9-10
Running a curses Program .. 9-10
More about initscrO and Lines and Colu mns 9-11
More about refreshO and Windows 9-11
Getting Simple Output and Input.. 9-13

Output .. " 9-13
(

Input .. 9-26
Controlling Output and Input ... 9-34

Output Attributes ... 9-34
Bells, Whistles, and Flashing Lights 9-38
Input Options .. 9-39

Building Windows and Pads .. 9-44
Output and Input.. ... 9-44
The Routines wuoutrefreshO and doupdateO 9-45
New Windows ... 9-46

Using Advanced curses Features 9-50
Routines for Drawing Lines and Other Graphics 9-50
Routines for Using Soft Labels 9-52
Working with More than One Terminal 9-53

Working with terminfo Routines .. 9-55
What Every term info Program Needs 9-55 (
Compiling and Running a terminfo Program 9-57
An Example term info Program ... 9-57

Working with the terminfo Database 9-62
Writing Terminal Descriptions ... 9-62

Name the Terminal ... 9-62
Learn About the Capabilities 9-63
Specify Capabilities .. 9-64
Compile the Description ... 9-69
Test the Description .. 9-70

Comparing or Printing term info Descriptions 9-71
Converting a termcap Description to
a term info Description ... 9-72

curses Program Examples ... 9-73
The editor Program ... 9-73
The highlight Program .. 9-81 (
The scatter Program ; 9-83
The show Program .. 9-86
The two Program ... 9-88
The window Program .. 9-91

-viii-

10. make
An Overview of the make Utility ... 10-1
Basic Features ... 10-2
Description Files and Substitutions .. 10-7

Comments ... 10-7
Continuation Lines ... 10-7
Macro Definitions .. 10-7
Ge neral Form .. 1 0-7
Dependency Information ... 10-8
Executable Commands ... 10-8
Extensions of $*. $@. and $< .. 10-9
Output Translations ... 10-9

The Recu rsive Makefile ... 10-11
Suffixes and Transformation Rules 1 0-11
Implicit Rules ... 1 0-11
Arch ive Libraries ... 1 0-13

SCCS Filenames: the Tilde ... 10-16
The Null Suffix ... 1 0-17
include Files ... 1 0-18
SCCS Makefiles .. 10-18
Dynamic Dependency Parameters 10-18

Command Usage ... 10-20
The make Command ... 10-20
Environment Variables .. 1 0-21

Suggestions and Warnings .. 1 0-23
Internal Rules ... 1 0-24

11. Source Code Control System (SCCS)
The Source Code Control System ... 11-1
SCCS for Beginners .. 11-2

Terminology ... 11-2
Creating an SCCS File via admin 11-2
Retrieving a File via get.. ... 11-3
Recording Changes via delta .. 11-4
Additional Information about geL 11-4
The help Command ... 11-5

Delta Numbering .. 11-7
SCCS Command Conventions .. 11-1 0

x.files and z.files .. 11-10
Error Messages ... 11-11

-ix-

SCCS Commands ... 11-12
The get Command ... 11-12

ID Keywords ... 11-13
Retrieval of Different Versions 11-14
Retrieval With Intent to Make a Delta 11-16
The unget Command .. 11-17

(
Additional get Options ... 11-17
Concurrent Edits of Different SID : 11-18
Concurrent Edits of Same SID 11-21
Keyletters That Affect Output.. 11-21

The delta Command .. 11-23
The admin Command .. 11-25
Creation of SCCS Files ... 11-26

Inserting Commentary for the Initial Delta 11-26
Initialization and Modification of
SCCS File Parameters ... 11-27

The prs Command .. 11-28
The sact Command ... 11-30
The help Command ... 11-30
The rmdel Command .. 11-31
The cdc Command -... 11-31 (
The what Command .. 11-32
The sccsdiff Command .. 11-33
The comb Command ... 11-33
The val Command , ... 11-34
The vc Co.mmand .. 11-35

SCCS Files ... 11-36
Protection .. 11-36
Formatting ... 11-37

. Auditing ... 11-38

12. lint
The lint Program .. 12-1
Using lint ... 12-2
lint Message Types ... 12-4 ("

Unused Variables and Functions 12-4
Set/Used Information ... 12-5
Flow of Control .. 12-5
Function Values ... 12-6
Type Checking ... : 12-7

-x-

Type Casts .. 12-8
Nonportable Character Use .. 12-8
Assignments of longs to ints .. 12-9
Strange Constructions ... 12-9
Old Syntax ... 12-10
Pointer Alignment .. 12-11
Multiple Uses and Side Effects 12-11

A. Index to Utilities .. A-1

Glossary ... G-1

-xi-

(

(

(

An Overview of File and Record Locking

Mandatory and advisory file and record locking both are available on current
releases of the UNIX system. The intent of this capability to is provide a synchroni­
zation mechanism for programs accessing the same stores of data simultaneously.
Such processing is characteristic of many multi-user applications, and the need for a
standard method of dealing with the problem has been recognized by standards
advocates like lusrl group, an organization of UNIX system users from businesses
and campuses across the country.

Advisory file and record locking can be used to coordinate self-synchronizing
processes. In mandatory locking, the standard I/O subroutines and I/O system calls
enforce the locking protocol. In this way, at the cost of a little efficiency, manda­
tory locking double checks the programs against accessing the data out of sequence.

The remainder of this chapter describes how file and record locking capabilities
can be used. Examples are given for the correct use of record locking. Misconcep­
tions about the amount of protection that record locking affords are dispelled.
Record locking should be viewed as a synchronization mechanism, not a security
mechanism.

The manual pages for the fcntl(2) system call, the lockf(3) library function, and
fcntl(S) data structures and commands are referred to throughout this section. You
should read them before continuing.

File and Record Locking 7-1

Terminology

Before discussing how record locking should be used, let us first define a few
terms.

Record
A contiguous set of bytes in a file. The UNIX operating system does not
impose any record structure on files. This may be done by the programs
that use the files.

Cooperating Processes
Processes that work together in some well defined fashion to accomplish
the tasks at hand. Processes that share files must request permission to
access the files before using them. File access permissions must be care­
fully set to restrict non-cooperating processes from accessing those files.
The term process will be used interchangeably with cooperating process to
refer to a task obeying such protocols.

Read (Share) Locks
These are used to gain limited access to sections of files. When a read lock
is in place on a record, other processes may also read lock that record, in
whole or in part. No other process, however, may have or obtain a write

(l

lock on an overlapping section of the file. If a process holds a read lock it .(. -
may assume that no other process will be writing or updating that record at
the same time. This access method also permits many processes to read
the given record. This mightbe necessary when searching a file, without
the contention involved if a write or exclusive lock were to be used.

Write (Exclusive) Locks
These are used to gain complete control over sections of files. When a
write lock is in place on a record, no other process may read or write lock
that record, in whole or in part. If a process holds a write lock it may
assume that no other process will be reading or writing that record at the
same time.

Advisory Locking
A form of record locking that does not interact with the I/O subsystem (Le.
creat(2), open(2), read(2), and write(2»). The control over records is
accomplished by requiring an appropriate record lock request before I/O
operations. If appropriate requests are always made by all processes
accessing the file, then the accessibility of the file will be controlled by the (
interaction of these requests. Advisory locking depends on the individual
processes to enforce the record locking protocol; it does not require an
accessibility check at the time of each I/O request.

7-2 IRIS-4D Programmer's Guide

Terminology

Mandatory Locking
A form of record locking that does interact with the I/O subsystem.
Access to locked records is enforced by the creat(2), open(2), read(2),
and write(2) system calls. If a record is locked, then access of that record
by any other process is restricted according to the type of lock on the
record. The control over records should still be performed explicitly by
requesting an appropriate record lock before I/O operations, but an addi­
tional check is made by the system before each I/O operation to ensure the
record locking protocol is being honored. Mandatory locking offers an
extra synchronization check, but at the cost of some additional system
overhead. '

File and Record Locking 7-3

File Protection

There are access permissions for UNIX system files to control who may read,
write, orexecute such a file. These access permissions may only be set by the
owner of the file or by the superuser. The permissions of the directory in which the -
file resides can also affect the ultimate disposition of a file. Note that if the direc- (
tory permissions allow anyone to write init, then files within the directory may be
removed, even if those files do not have read, write or execute permission for that
user. Any information that is worth protecting, is worth protecting properly. If
your application warrants the use of record locking, make sure that the permissions
on your files and directories are set properly. A record lock, even a mandatory
record lock, will only protect the portions of the files that are locked. Other parts of
these files might be corrupted if proper precautions are not taken.

Only a known set of programs and/or administrators should be able to read or
write a database. This can be done easily by setting the set"group-ID bit (see
chmod(l» of the database accessing programs. The files can then be accessed by a
known set of programs that obey the record locking protocol. An example of such
file protection, although record locking is not used, is the mail(l) command. In that
command only the particular user and the mail command can read and write in the
unread mail files.

Opening a File for Record Locking
The first requirement for locking a file or segment of a file is having a valid

open file descriptor. If read locks are to be done, then the file must be opened with
at least read accessibility and likewise for write locks and write accessibility. For
our example we will open our file for both read and write access:

7-4 IRIS-4D Programmer's Guide

(

#include <stdio.h>
#include <errno.h>
#include <fcntl.h>

int fd; /* file descriptor */
char *filename;

main (argc, argv)
int argc;
char *argv[];
{

extern void exit(), perror();

File Protection

/* get database file name from command line and open the
* file for read and write access.
*/
if (argc < 2) {
(void) fprintf (stderr, "usage: %s filename\n", argv[O]);
exit (2);

)

filename = argv[l];
fd = open(filename, O.)'DWR);

if (fd < 0) {
perror(filename);
exit (2);
}

The file is now open for us to perform both locking and I/O functions. We then
proceed with the task of setting a lock.

Setting a File Lock
There are several ways for us to set a lock on a file. In part, these methods

depend upon how the lock interacts with the rest of the program. There are also
questions of performance as well as portability. Two methods will be given here,
one using the fcntl(2) system call, the other using the lusrlgroup standards compati­
ble lockf(3) library function call.

File and Record Locking 7-5

File Protection

Locking an entire file is just a special case of record locking. For both these
methods the concept and the effect of the lock are the same. The file is locked start­
ing at a byte offset of zero (0) until the end of the maximum file size. This point
extends beyond any real end of the file so that no lock can be placed on this file
beyond this point To do this the value of the size of the lock is set to zero. The
code using the fcntl(2) system call is as follows:

#include <fcntl.h>
#define Ml\X TRYIO
int try;
struct flock lck;

try = 0;

1* set up the record locking structure, the address of which
* is passed to the fcntl system call.
*1
lck.l_type = F_WRLCK;I* setting a write lock */
l~.l_whenoe = 0;1* offset l_start from beginning of file *1
lck.l_start = OL;
lck.l_len = OL; 1* until the end of the file address spaoe *1

1* Atterrpt locking MAX_TRY times before giving up.
*1
while (fcntl(fd, F_SETLK, &lck) < 0) {

if (er= = El\GAIN II erma = EACCES)

1* there might be other errors cases in which
* you might try again.
*1
if (++try < ~TRY)
(void) sleep (2) ;

continue;

(void) fprintf(stderr,''Pile busy try again later!\nn);
return;

perror (nfcntln) ;
exit (2);

7·6 IRI5-4D Programmer's Guide

(

(

c

File Protection

This portion of code tries to lock a file. This is attempted several times until
one of the following things happens:

• the file is locked

• an error occurs

• it gives up trying because MAX_TRY has been exceeded

To perform the same task using the lockf(3) function, the code is as follows:

#include <unistd.h>
#define ~ TRYlO
int try;
try = 0;

/* make sure the file pointer
* is at the beginning of the file.
*/

lseek(fd, OL, 0);

/* Attempt locking ~_TRY times before giving up.
*/

while (lockf(fd, F_TlOCK, OL) < 0) {
if (ermo = EAGAIN II ermo = EACCES)
/* there might be other errors cases in which
* you might try again.
*/
if (++try < MAX_TRY)
sleep (2) ;
continue;

(void) fprintf (stderr, "File busy try again later! \n") ;
return;

perror("lockf") ;
exit (2);

File and Record Locking 7·7

File Protection

It should be noted that the lockf(3) example appears to be simpler, but the
fcntl(2) example exhibits additional flexibility. Using the fcntl(2) method, it is pos­
sible to set the type and start of the lock request simply by setting a few structure
variables. lockf(3) merely sets write (exclusive) locks; an additional system call
(lseek(2)) is required to specify the start of the lock.

Setting and Removing Record Locks
Locking a record is done the same way as locking a file except for the differing

starting point and length of the lock. We will now try to solve an interesting and
real problem. There are two records (these records may be in the same or 'different
file) that must be updated simultaneously so that other processes get a consistent
view of this information. (This type of problem comes up, for example, when
updating the interrecord pointers in a doubly linked list.) To do this you must
decide the following questions:

• What do you want to lock?

• For multiple locks, what order do you want to lock and unlock the records?

• What do you do if you succeed in getting all the required locks?

• What do you do if you fail to get all the locks?

In managing record locks, you must plan a failure strategy if one cannot obtain
all the required locks. It is because of contention for these records that we have
decided to use record locking in the first place. Different programs might:

• wait a certain amount of time, and try again

• abort the procedure and warn the user

• let the process sleep until signaled that the lock has been freed

• some combination of the above

Let us now look at our example of inserting an entry into a doubly linked list.
For the example, we will assume that the record after which the new record is to be
inserted has a read lock on it already. The lock on this record must be changed or
promoted to a write lock so that the record may be edited.

7·8 IRIS·4D Programmer's Guide

c

(

File Protection

Promoting a lock (generally from read lock to write lock) is permitted if no
other process is holding a read lock in the same section of the file. If there are
processes with pending write locks that are sleeping on the same section of the file,
the lock promotion succeeds and the other (sleeping) locks wait. Promoting (or
demoting) a write lock to a read lock carries no restrictions. In either case, the lock
is merely reset with the new lock type. Because the /usr/group lockffunction does
not have read locks, lock promotion is not applicable to that call. An example of
record locking with lock promotion follows:

File and Record Locking 7·9

File Protection

7-10

struct record {

./* data portion of record */

long prev:/* index to previous record in the list */
long next;/* index to next record in the list */

};

/* Lock promotion using fcntl(2)
* When this routine is entered it is assumed that there are "read
* locks on "herell ang nnext" ~

* If write locks on "here" and "next" are obtained:
* Set a write lock on "this".
* Return index to "this" record.
* If any write lock is not obtained:
* Restore read locks on "here" and "next".
* Remove all other locks.
* Return a -l.

*/
long
set310ck (this, here, next)
long this, here, next;
(

struct flock lck;

lckol_type = F_WRLCK:/* setting a write lock */
lck.l_whence = 0;/* offset I_start from beginning of file */
lck.l_start = here;
lck.I_len = sizeof(struct record);

/* promote lock on "here" to write lock */
if (fcntl(fd, F_SETLKW, &lck) < 0) {
return (-1);
}

1* lock "this" with write lock */
lckol_start = this;
if (fcntl(fd, F_SETLKW, &lck) < 0)
/* Lock on "this" failed;
* demote lock on "here" to read lock.
*/

lck.l_type = F_RDLCK:
lckol_start = here;
(void) fcntl(fd, F_SETLKW, &lck);
return (-1);
}

/* promote lock on "next" to write lock */

IRIS-4D Programmer's Guide

(

(

(

lck.l_start = next;
if (fc:ntl (fd, F _SETLKW, &lck) < 0) (
1* Lock on "next" failed;
* derrote lock on "here" to read lock,
*1

lck.l_type = FYDLCK;
lck.l_start = here;
(void) fc:ntl(fd, F_SETLK, &lck);
1* and remove lock on "this".
*1

lck.l_type = F_UNLCK;
lck.l_start = this;
(void) fc:ntl(fd, F_SETLK, &lck);
return (-1);1* cannot set lock, try again or quit *1

return (this);

File Protection

The locks on these three records were all set to wait (sleep) if another process
was blocking them from being set. This was done with the F _SETLKW command.
If the F _SETLK command was used instead, the fcnt! system calls would fail if
blocked. The program would then have to be changed to handle the blocked condi­
tion in each of the error return sections.

Let us now look at a similar example using the lockf function. Since there are _
no read locks, all (write) locks will be referenced generically as locks.

File and Record Locking 7·11

File Protection

1* Lock promotion using lockf(3)
* When this routine is entered it is assumed that there are
* no locks on "here" and II next ...

* If locks are obtained:
* Set a lock on "this".
* Return index to "this" record.
* If any lock is not obtained:
* Remove all other locks.
* Return a -l.
*1

#include <unistd.h>

long
set3lock (this, here, next)
long this, here, next;

1* lock "here" *1
(void) lseek (fd, here, 0);
if (lockf (fd, F _ r..cx:::K, sizeof (stroct record)) < 0) (
return (-1);
)

1* lock "this" *1
(void) lseek(fd, this, 0);
if (lockf(fd, F~, sizeof(stroct record)) < 0) (
1* Lock on "this" failed.
* Clear lock on "here".
*1

(void) lseek(fd, here, 0);
(void) lockf (fd, F _ ULOCK, sizeof (stroct record));
return (-1);

1* lock "next" *1
(void) lseek(fd, next, 0);
if (lockf (fd, F~, sizeof (stroct record)) < 0) (

1* Lock on "next" failed.
* Clear lock on "here",
*1

(void) lseek(fd, here, 0);
(void) lockf (fd, F _ ULOCK, sizeof (stroct record));

7-12 IRIS-4D Programmer's Guide

c

(

c

/* and remove lock on "this".
*/

(void) lseek(fd, this, 0);
(void) lockf(fd, F_UlOCK, sizeof(struct record));
return (-1);/* cannot set lock, try again or quit */

return (this);

File Protection

Locks are removed in the same manner as they are set, only the lock type is dif­
ferent (F _UNLCK or F _ULOCK). An unlock cannot be blocked by another pro­
cess and will only affect locks that were placed by this process. The unlock only
affects the section of the file defined in the previous example by Ick. It is possible
to unlock or change the type of lock on a subsection of a previously set lock. This
may cause an additional lock (two locks for one system call) to be used by the
operating system. This occurs if the subsection is from the middle of the previously
set lock.

Getting Lock Information
One can determine which processes, if any, are blocking a lock from being set.

This can be used as a simple test or as a means to find locks on a file. A lock is set
up as in the previous examples and the F _GE1LK command is used in the fentl
call. If the lock passed to fentl would be blocked, the first blocking lock is returned
to the process through the structure passed to fentl. That is, the lock data passed to
fentl is overwritten by blocking lock information. This information includes two
pieces of data that have not been discussed yet, Iyid and I_sysid, that are only used
by F _GE1LK. (For systems that do not support a distributed architecture the value
in tsysid should be ignored.) These fields uniquely identify the process holding
the lock.

If a lock passed to fentl using the F _GE1LK command would not be blocked
by another process' lock, then the I_type field is changed to F _ UNLCK and the
remaining fields in the structure are unaffected. Let us use this capability to print all
the segments locked by other processes. Note that if there are several read locks

File and Record Locking 7-13

File Protection

over the same segment only one of these will be found.

struct flock lck;

/* Find and print "write lock" blocked segments of this file. */
(void) printf ("sysid pid type start length\n");
lck.l_ whence = 0;
lck.l_start = OL;

lck.l_len = OL;

do (
lck.l_type = F_WRLC:K;
(vbid) fcntl(fd, F_GETLK, &lck);
if (lck.l_type != F_UNlCK) {
(void) printf ("%5d %5d %c %8d %8d\n",
lck.l_sysid,
lck.l_pid,
(lck.l_type = F_WRLC:K) ? 'W' 'R',
lck.l_start,
lck.l_len) ;
/* if this lock goes to the end of the address
* space, no need to look further, so break out.

*/
if (lck.l_len = 0)
break;
/* otherwise, look for new lock after the one
* just found.

*/
lck.l_start t= lck.l_len;
}

} while (lck.l_type != F_UNLO<:);

fcotl with the F _ GETLK command will always return correctly (that is, it will
not sleep or fail) if the values passed to it as arguments are valid.

The lockf function with the F _TEST command can also be used to test if there
is a process blocking a lock. This function does not, however, return the informa-

(

(

tion about where the lock actually is and which process owns the lock. A routine (
using lockf to test for a lock on a file follows:

7-14 IRIS-4D Programmer's Guide

/* find a blocked record. */

/* seek to beginning of file */
(void) 1 seek (fd, 0, OL);
/* set the size of the test region to zero (0)
* to test until the end of the file address space.
*/

if (lockf(fd, F_TEST, OL) < 0) {
switch (ermo) {
case EACCES:
case EAGAIN:
(void) printf (nfile is locked by another process\nn);
break;
case EBADF:
/* bad argument passed to lockf */
perror (nlockfn);
break;
default:
(void) printf (nlockf: unknown error <%d>\nn, ermo);

break;
}

File Protection

When a process forks, the child receives a copy of the file descriptors that the
parent has opened. The parent and child also share a common file pointer for each
file. If the parent were to seek to a point in the file, the child's file pointer would
also be at that location. This feature has important implications when using record
locking. The current value of the file pointer is used as the reference for the offset
of the beginning of the lock, as described by I_start, when using a I_whence value
of 1. If both the parent and child process set locks on the same file, there is a possi­
bility that a lock will be set using a file pointer that was reset by the other process.
This problem appears in the lockf(3) function call as well and is a result of the
lusrl group requirements for record locking. If forking is used in a record locking
program, the child process should close and reopen the file if either locking method
is used. This will result in the creation of a new and separate file pointer that can be
manipulated without this problem occurring. Another solution is to use the fent!
system call with a I_whence value of 0 or 2. This makes the locking function
atomic, so that even processes sharing file pointers can be locked without difficulty.

File and Record Locking 7-15

File Protection

Deadlock Handling
There is a certain level of deadlock detection/avoidance built into the record

locking facility. This deadlock handling provides the same level of protection (
granted by the lusrlgroup standard lockf call. This deadlock detection is only valid
for processes that are locking files or records on a single system. Deadlocks can
only potentially occur when the system is about to put a record locking system call
to sleep. A search is made for constraint loops of processes that would cause the
system call to sleep indefinitely. If such a situation is found, the locking system call
will fail and set errno to the deadlock error number. If a process wishes to avoid
the use of the systems deadlock detection it should set its locks using F _GETLK
instead of F _ GETLKW.

(

(

7·16 IRIS·4D Programmer's Guide

Selecting Advisory or Mandatory Locking

The use of mandatory locking is not recommended for reasons that will be
made clear in a subsequent section. Whether or not locks are enforced by the I/O
system calls is determined at the time the calls are made and the state of the permis­
sions on the file (see chmod(2)). For locks to be under mandatory enforcement, the
file must be a regular file with the set-group-ID bit on and the group execute per­
mission off. If either condition fails, all record locks are advisory. Mandatory
enforcement can be assured by the following code:

#include <sys/types.h>
#include <sys/stat.h>

int mcx:le;
struct stat·buf;

if (stat (filename, &buf) < 0) (
perror("program") ;
exit (2);
)

/* get currently set mode */
mode = buf.st_mode;
/* remove group execute permission from mcx:le */
mode &= -(S_IEXEC»3);
/* set 'set group id bit' in mode */
mode 1= S_ISGID;
if (chmod(filename, mode) < 0) (
perror ("program") ;
exit (2) ;
}

File and Record Locking 7-17

Selecting Advisory or Mandatory Locking

Files that are to be record locked should never have any type of execute per­
mission set on them. This is because the operating system does not obey the record
locking protocol when executing a file.

The chmod(l) command can also be easily used to set a file to have mandatory
locking. This can be done with the command:

chmod +Ifilename

The Is(l) command was also changed to show this setting when you ask for the long
listing format:

Is -I filename

causes the following to be printed:

-rw---l--- 1 abc

Mandatory Locking

other 1048576 Dec 3 11:44 filename

• Mandatory locking only protects those portions of a file that are locked.
Other portions of the file that are not locked may be accessed according to
normal UNIX system file permissions.

• If multiple reads or writes are necessary for an atomic transaction, the pro­
cess should explicitly lock all such pieces before any I/O begins. Thus
advisory enforcement is sufficient for all programs that perform in this way.

• As stated earlier, arbitrary programs should not have unrestricted access per­
mission to files that are important enough to record lock.

• Advisory locking is more efficient because a record lock check does not
have to be performed for every I/O request.

Record Locking and Future UNIX Releases
Provisions have been made for file and record locking in a UNIX system (

environment. In such an environment the system on which the locking process .
resides may be remote from the system on which the file and record locks reside. In
this way multiple processes on different systems may put locks upon a single file
that resides on one of these or yet another system. The record locks for a file reside

7·18 IRIS-4D Programmer's Guide

Selecting Advisory or Mandatory Locking

on the system that maintains the file. It is also important to note that deadlock
detection/avoidance is only determined by the record locks being held by and for a
single system. Therefore, it is necessary that a process only hold record locks on a
single system at any given time for the deadlock mechanism to be effective. If a
process needs to maintain locks over several systems, it is suggested that the pro­
cess avoid the sleep-when-blocked features of fcntl or lockf and that the process
maintain its own deadlock detection. If the process uses the sleep-when-blocked
feature, then a timeout mechanism should be provided by the process so that it does
not hang waiting for a lock to be cleared.

File and Record Locking 7-19

(

(

An Overview of Inter-Process Communication

The UNIX system supports three types of Inter-Process Communication elPC):

• messages

• semaphores

• shared memory

This chapter describes the system calls for each type of !PC.

Included in the chapter are several example programs that show the use of the
IPC system calls.

Since there are many ways in the C Programming Language to accomplish the
same task or requirement, keep in mind that the example programs were written for
clarity and not for program efficiency. Usually, system calls are embedded within a
larger user-written program that makes use of a particular function that the calls
provide.

Interprocess Communication 8-1

Messages

The message type ofIPC allows processes (executing programs) to communi­
cate through the exchange of data stored in buffers. This data is transmitted
between processes in discrete portions called messages. Processes using this type (-
of IPC can perform two operations:

• sending

• receiving

Before a message can be sent or received by a process, a process must have the
UNIX operating system generate the necessary software mechanisms to handle
these operations. A process does this by using the msgget(2) system call. While
doing this, the process becomes the owner/creator of the message facility and
specifies the initial operation permissions for all other processes, including itself.
Subsequently, the owner/creator can relinquish ownership or change the operation
permissions using the msgctl(2) system call. However, the creator remains the
creator as long as the facility exists. Other processes with permission can use
msgctlO to perform various other control functions.

Processes which have permission and are attempting to send or receive a mes-
sage can suspend execution if they are unsuccessful at performing their operation. (-
That is, a process which is attempting to send a message can wait until the process
which is to receive the message is ready and vice versa. A process which specifies
that execution is to be suspended is performing a "blocking message operation." A
process which does not allow its execution to be suspended is performing a "non-
blocking message operation."

A process performing a blocking message operation can be suspended until one
of three conditions occurs:

• It is successful.

• It receives a signal.

• The facility is removed.

System calls make these message capabilities available to processes. The cal­
ling process passes arguments to a system call, and the system call either success­
fully or unsuccessfully performs its function. If the system call is successful, it per-
forms its function and returns applicable information. Otherwise, a known error (-
code (-1) is returned to the process, and an external error number variable errno is
set accordingly.

8-2 IRI5-4D Programmer's Guide

Messages

Before a message can be sent or received, a uniquely identified message queue
and data structure must be created. The unique identifier created is callea.' the mes­
sage queue identifier (msqid); it is used to identify or reference the associated mes­
sage queue and data structure.

The message queue is used to store (header) information about each message
that is being sent or received. This information includes the following for each
message:

• pointer to the next message on queue

• message type

• message text size

• message text address

There is one associated data structure for the uniquely identified message
queue. This data structure contains the following information related to the mes­
sage queue:

• operation permissions data (operation permission structure)

• pointer to first message on the queue

• pointer to last message on the queue

• current number of bytes on the queue

• number of messages on the queue

• maximum number of bytes on the queue

• process identification (PID) of last message sender

• PID of last message receiver

• last message send time

• last message receive time

• last change time

All include files discussed in this chapter are located in the lusr/include or
lusr/include/sys directories.

Interprocess Communication 8-3

Messages

The C Programming Language data structure definition for the message infor­
mation contained in the message queue is as follows:

struct msg
{

};

struct msg
long
short
short

*msg_next;
msg_type;
msg_ts;
msg_spot;

/* ptr to next message on q */
/* message type */
/* message text size * /
/* message text nap address */

It is located in the lusr/include/sys/msg.h header file.

Likewise, the structure definition for the associated data structure is as follows:

struct ,msqid_ ds
{

struct ipc_peIJII
struct msg
struct msg
ushort
ushort
ushort
ushort
ushort
time t
time t
time t

I;

msg_perm;
*msg_first;
*msg_last;
msg_ cbytes;
msg_qnum;
msg_qbytes;
msg_lspid;
msg_lrpid;
msg_stime;
msg_rtime;
msg_ctime;

/* operation pe:r:mission struct */
/* ptr to first message on q */
/* ptr to last message on q * /
/* current # bytes on q * /
/* # of messages on q * /
/* max # of bytes on q */
/* pid of last msgsnd */
/* pid of last msgrcv */
/* last msgsnd time */
/* last msgrcv time */
/* last change time */

It is located in the #include <sys/msg.h> header file also. Note that the msgyerm
member of this structure uses ipc yerm as a template. The breakout for the opera­
tion permissions data structure is shown in Figure 8-1.

8-4 IRIS-4D Programmer's Guide

(

(

(

The definition of the ipc yerm data structure is as follows:

struct ipc _perm
{

ushort
ushort
ushort
ushort
ushort
ushort
key_t

};

uid;
gid;
cuid;
cgid;
mode;
seq;
key;

/* owner's user id */
/* owner's group id */
1* creator's user id */
/* creator's group id */
1* access modes */
/* slot usage sequence number * /
/* key */

Figure 8-1: ipc yerm Data Structure

Messages

It is located in the #include <syS/ipc.h> header file; it is common for all !PC facili­
ties.

The msgget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the msgflg argument that it receives:

• to get a new msq id and create an associated message queue and data struc­
ture for it

• to return an existing msqid that already has an associated message queue
and data structure

The task performed is determined by the value of the key argument passed to
the msggetO system call. For the first task, if the key is not already in use for an
existing msqid, a new msqid is returned with an associated message queue and data
structure created for the key. This occurs provided no system tunable parameters
would be exceeded.

There is also a provision for specifying a key of value zero which is known as
the private key (IPC]RIVATE = 0); when specified, a new msqid is always
returned with an associated message queue and data structure created for it unless a
system tunable parameter would be exceeded. When the ipcs command is per­
formed, for security reasons the KEY field for the msqid is all zeros.

Interprocess Communication 8-5

Messages

For the second task, if a msqid exists for the key specified, the value of the
existing msqid is returned. If you do not desire to have an existing msqid returned,
a control command (IPC_EXCL) can be specified (set) in the msgfJg argument
passed to the system call. The details of using this system call are discussed in the
"Using msgget" section of this chapter.

When performing the first task, the process which calls msgget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed but the creating process always remains the
creator; see the "Controlling Message Queues" section in this chapter. The creator
of the message queue also determines the initial operation permissions for it.

Once a uniquely identified message queue and data structure are created, mes­
sage operations [msgopOl and message control [msgctlOl can be used.

Message operations, as mentioned previously, consist of sending and receiving
messages. System calls are provided for each of these operations; they are
msgsndO and msgrcvO. Refer to the "Operations for Messages" section in this
chapter for details of these system calls.

Message control is done by using the msgctI(2) system call. It permits you to
control the message facility in the following ways:

• to determine the associated data structure status for a message queue
identifier (msqid)

• to change operation permissions for a message queue

• to change the size (mslLqbytes) of the message queue for a particular
msqid

• to remove a particular msqid from the UNIX operating system along with
its associated message queue and data structure

Refer to the "Controlling Message Queues" section in this chapter for details of
the msgctlO system call.

Getting Message Queues

This section gives a detailed description of using the msgget(2) system call
along with an example program illustrating its use.

8-6 IRIS-4D Programmer's Guide

(

(

c

Messages

Using msgget

The synopsis found in the msgget(2) entry in the IRIS-4D Programmer's
Reference Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key, msgflg)
key_t key;
int msgflg;

All of these include files are located in the lusr/include/sys directory of the
UNIX operating system.

The following line in the synopsis:

int msgget (key, msgflg)

informs you that msggetO is a function with two formal arguments that returns an
integer type value, upon successful completion (msqid). The next two lines:

Interprocess Communication 8-7

Messages

key_t key;
int msgflg;

declare the types of the formal arguments. key _tis declared by a typedef in the
types.h header file to be an integer.

The integer returned from this function upon successful completion is the mes­
sage queue identifier (msqid) that was discussed earlier.

As declared, the process calling the msggetO system call must supply two
arguments to be passed to the formal key and msgflg arguments.

A new msqid with an associated message queue and data structure is provided
if either

or

• key is equal to IPC]RIVATE,

• key is passed a unique hexadecimal integer, and msgflg ANDed with
IPC_CREAT is TRUE.

The value passed to the msgflg argument must be an integer type octal value
and it will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes and execution modes
determine the user/group/other attributes of the msgflg argument. They are collec­
tively referred to as "operation permissions." Figure 8-2 reflects the numeric values
(expressed in octal notation) for the valid operation permissions codes.

8-8 IRIS-4D Programmer's Guide

(

(

Operation Permissions

Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Figure 8-2: Operation Permissions Codes

Octal Value

00400
00200
00040
00020
00004
00002

Messages

A specific octal value is derived by adding the octal values for the operation permis­
sions desired. That is, if read by user and read/write by others is desired, the code
value would be 00406 (00400 plus (0006). There are constants located in the
msg.h header file which can be used for the user (OWNER).

Control commands are predefined constants (represented by all uppercase
letters). Figure 8-3 contains the names of the constants which apply to the msggetO
system call along with their values. They are also referred to as flags and are
defined in the ipc.h header file.

Control Command

Figure 8-3: Control Commands (Flags)

Value

0001000
0002000

The value for msgflg is therefore a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This is accomplished by
bitwise ORing (I) them with the operation permissions; the bit positions and values
for the control commands in relation to those of the operation permissions make this
possible. It is illustrated as follows:

Interprocess Communication 8-9

Messages

Octal Value Binary Value

IPC_CREAT = 01000 o 000 001 000 000 000
I ORed by User = 00400 o 000 000 100 000 000

msgflg = 01400 0000 001100 000 000

The msgflg value can be easily set by using the names of the flags in conjunc­
tion with the octal operation permissions value:

msqid = msgget (key, (IPC_CREAT I 0400»;

msqid = msgget (key, (IPC_ CREAT I IPC_EXCL I 0400));

As specified by the msgget(2) page in theIRIS-4D Programmer's Reference
Manual, success or failure of this system call depends upon the argument values for
key and msgflg or system tunable parameters. The system call will attempt to
return a new msqid if one of the following conditions is true:

• Key is equal to IPC_PRIV ATE (0)

• Key does not already have a msqid associated with it, and (msgflg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:

8-10 IRIS-4D Programmer's Guide

C-

(

(

Messages

msqid = msgget (IPC_PRIVATE, msgflg);

or

msqid = msgget (0 , msgflg);

This alone will cause the system call to be attempted because it satisfies the first
condition specified. Exceeding the MSGMNI system tunable parameter always
causes a failure. The MSGMNI system tunable parameter determines the maximum
number of unique message queues (msqid's) in the UNIX operating system.

The second condition is satisfied if the value for key is not already associated
with a msqid and the bitwise ANDing of msgfIg and IPC_CREAT is "true" (not
zero). This means that the key is unique (not in use) within the UNIX operating
system for this facility type and that the IPC_CREAT flag is set (msgfIg I
IPC_CREAT). The bitwise ANDing (&), which is the logical way of testing if a
flag is set, is illustrated as follows:

msgfIg
& IPC_CREAT

result

x1xxx
01000

01000

(x = immaterial)

(not zero)

Since the result is not zero, the flag is set or "true."

IPC_EXCL is another control command used in conjunction with IPC_CREAT
to exclusively have the system call fail if, and only if, a msqid exists for the
specified key provided. This is necessary to prevent the process from thinking that
it has received a new (unique) msqid when it has not. In other words, when both
IPC_CREAT and IPC_EXCL are specified, a new msqid is returned if the system
call is successful.

Refer to the msgget(2) page in the IRIS-4D Programmer's Reference Manual
for specific associated data structure initialization for successful completion. The
specific failure conditions with error names are contained there also.

Interprocess Communication 8·11

Messages

Example Program

The example program in this section (Figure 8-4) is a menu driven program
which allows all possible combinations of using the msgget(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 4-8) by including the required header files as
specified by the msgget(2) entry in the IRIS-4D Programmer's Reference Manual.
Note that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self-explanatory. These names
make the program more readable, and it is perfectly legal since they are local to the
program. The variables declared for this program and their purposes are as follows:

• key-used to pass the value for the desired key

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm _flags-used to store the combination from the logical GRing of the
opperm and flags variables; it is then used in the system call to pass the
msgflg argument

• msqid-used for returning the message queue identification number for a
successful system call or the error code (-1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and finally for the control command combinations (flags) which
are selected from a menu (lines 15-32). All possible combinations are allowed even
though they might not be viable. This allows observing the errors for illegal combi­
nations.

Next, the menu selection for the flags is combined with the operation permis­
sions, and the result is stored at the address of the opperm }Iags variable (lines 36-
51).

(

(

The system call is made next, and the result is stored at the address of the (-
msqid variable (line 53).

8·12 IRIS·4D Programmer's Guide

Messages

Since the msqid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 55). If msqid equals -1,
a message indicates that an error resulted, and the external errno variable is
displayed (lines 57, 58).

If no error occurred, the returned message queue identifier is displayed (line
62).

The example program for the msgget(2) system call follows. It is suggested
that the source program file be named msgget.c and that the executable file be
named msgget. When compiling C programs that use floating point operations, the
-f option should be used on the cc command line. If this option is not used, the pro­
gram will compile successfully, but when the program is executed it will fail.

Interprocess Communication 8-13

Messages

1
2
3

4
5
6
7

8

/*This is a program to illustrate
**the message get, msgget(),
**system call capabilities.*/

#include
#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/msg . h>
<errno.h>

9 /*Start of main C language prograrn* /
10 rrain ()
11 {
12 /*declare as long integer*/
13 int opperm, flags;
14 int msqid, opperm_flags;
15 /*Enter the desired key*/
16 printf("Enter the desired key in hex = ");
17 scanf ("%x", &key);

18
19
20

/*Enter the desired octal operation
permissions. * /

printf("\nEnter the operation\n");
21 printf ("permissions in octal = ");
22 scanf ("%0", &opperm);

Figure 8-4: msggetO System Call Example (Sheet 1 of 3)

8·14 IRIS-4D Programmer's Guide

(

(

(

Messages

23 /*Set the desired flags.*/
24 printf (n\nEnter corresponding number to\nn);
25 printf(nset the desired flags:\nn);
26 printf (nNo flags = O\nn);
27 printf (nIPC _GREAT = 1 \nn) ;
28 printf (nIPC _ EXCL = 2\nn);
29 printf (nIPC _GREAT and !PC EXCL = 3\nn);
30 printf (n Flags = n);

31 /*Get the flag(s) to be set.*/
32 scanf (n%dn , &flags);

33 /*Check the values. * /
34 printf (n\nkey =Ox%x, opperm = 0%0, flags = O%o\nn,
35 key, opperm, flags);

36 /*Incorporate the control fields (flags) with
37 the operation permissions*/
38 switch (flags)
39 {
40 case 0: /*No flags are to be set.*/
41. oppeI.m_flags = (opperm I 0);
42 break;
43 case 1: /*Set the !PC_CREAT flag.*/
44 opperm_flags = (opperm I IPC _ mEAT);

45 break;
46 case 2: /*Set the IPC _EXCL flag. * /
47 opperm_flags = (opperm I IPC_EXCL);
48 break;
49 case 3: /*Set the IPC _ CREAT and IPC _ EXCL flags. * /

50 opperm_flags = (opperm I IPC mEAT I IPC_EXCL);
51

Figure 8-4: msggetO System Call Example (Sheet 2 of 3)

Interprocess Communication 8-15

Messages

52
53

/*Call the msgget system call.*/
msqid = msgget (key, opperm_flags);

54 /*Perform the following if the call is unsuccessful. * /
55 if(msqid = -1)
56 {

57 printf ("\nThe msgget system call failed!\n");
58 printf ("The error number = %d\n", ermo);
59

60 /*Return the msqid upon successful completion.*/
61 else
62 printf ("\nThe msqid = %d\n", msqid);
63 exit (0);
64

Figure 8-4: msggetO System Call Example (Sheet 3 of 3)

Controlling Message Queues

This section gives a detailed description of using the msgctl system call along
with an example program which allows all of its capabilities to be exercised.

Using msgctl

The synopsis found in the msgctI(2) entry in theIRIS-4D Programmer's Refer­
ence Manual is as follows:

8·16 IRIS-4D Programmer's Guide

(

(

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (msqid, crrd, buf)
int msqid, crrd;
struct msqid_ ds *buf;

Messages

The msgctlO system call requires three arguments to be passed to it, and it returns
an integer value.

Upon successful completion, a zero value is returned; and when unsuccessful,
it returns a -1.

The msqid variable must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msggetO system call.

The cmd argument can be replaced by one of the following control commands
(flags):

IPC_STAT return the status information contained in the associated data
structure for the specified msqid, and place it in the data structure
pointed to by the *bufpointer in the user memory area.

IPC_SET for the specified msqid, set the effective user and group
identification, operation permissions, and the number of bytes for
the message queue.

IPC_RMID remove the specified msqid along with its associated message
queue and data structure.

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID control command. Read permis­
sion is required to perform the IPC_STATcontrol command.

The details of this system call are discussed in the example program for it If
you have problems understanding the logic manipulations in this program, read the
"Using msgget" section of this chapter; it goes into more detail than what would be
practical to do for every system call.

Interprocess Communication 8-17

Messages

Example Program

The example program in this section (Figure 8-5) is a menu driven program
which allows all possible combinations of using the msgctl(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as
specified by the msgctl(2) entry in the IRIS-4D Programmer's Reference Manual.
Note in this program that errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self-explanatory.
These names make the program more readable, and it is perfectly legal since they
are local to the program. The variables declared for this program and their purpose
are as follows:

nid used to store the IPC_SET value for the effective user
identification

gid used to store the IPC_SET value for the effective group
iden tification

mode used to store the IPC_SET value for the operation permissions

bytes used to store the IPC_SET value for the number of bytes in the
message queue (msg_qbytes)

rtrn used to store the return integer value from the system call

msqid used to store and pass the message queue identifier to the system
call

command used to store the code for the desired control command so that
subsequent processing can be performed on it

choice used to determine which member is to be changed for the
IPC_SET control command

msqid_ds used to receive the specified message queue indentifier's data
structure when an IPC_STAT control command is performed

*buf a pointer passed to the system call which locates the data structure
in the user memory area where the IPC_STAT control command
is to place its return values or where the IPC_SET command gets
the values to set

8·18 IRIS-4D Programmer's Guide

(

(

(

Messages

Note that the msqid_ds data structure in this program (line 16) uses the data
structure located in the msg.h header file of the same name as a template for its
declaration. This is a perfect example of the advantage of local variables.

The next important thing to observe is that although the * buf pointer is
declared to be a pointer to a data structure of the msqid _ ds type, it must also be ini­
tialized to contain the address of the user memory area data structure (line 17).
Now that all of the required declarations have been explained for this program, this
is how it works.

First, the program prompts for a valid message queue identifier which is stored
at the address of the msqid variable (lines 19,20). This is required for every
msgctl system call.

Then the code for the desired control command must be entered (lines 21-27),
and it is stored at the address of the command variable. The code is tested to deter­
mine the control command for subsequent processing.

If the IPC_STAT control command is selected (code 1), the system call is per­
formed (lines 37, 38) and the status information returned is printed out (lines 39-
46); only the members that can be set are printed out in this program. Note that if
the system call is unsuccessful (line 106), the status information of the last success­
ful call is printed out. In addition, an error message is displayed and the errno vari­
able is printed out (lines 108, 109). If the system call is successful, a message indi­
cates this along with the message queue identifier used (lines 111-114).

If the IPC_SET control command is selected (code 2), the first thing done is to
get the current status information for the message queue identifier specified (lines
50-52). This is necessary because this example program provides for changing only
one member at a time, and the system call changes all of them. Also, if an invalid
value happened to be stored in the user memory area for one of these members, it
would cause repetitive failures for this control command until corrected. The next
thing the program does is to prompt for a code corresponding to the member to be
changed (lines 53-59). This code is stored at the address of the choice variable (line
60). Now, depending upon the member picked, the program prompts for the new
value (lines 66-95). The value is placed at the address of the appropriate member in
the user memory area data structure, and the system call is made (lines 96-98).
Depending upon success or failure, the program returns the same messages as for
IPC_STAT above.

If the IPC_RMID control command (code 3) is selected, the system call is per­
formed (lines 100-103), and the msqid along with its associated message queue and
data structure are removed from the UNIX operating system. Note that the *buf
pointer is not required as an argument to perform this control command, and its
value can be zero or NULL. Depending upon the success or failure, the program
returns the same m,essages as for the other control commands.

Interprocess Communication 8·19

Messages

The example program for the msgctlO system call follows. It is suggested that
the source program file be named msgctl.c and that the executable file ~ named
msgctl. When compiling C programs that use floating point operations, the -f
option should be used on the cc command line. If this option is not used, the pro-
gram will compile successfully, but when the program is executed it will fail. (

1 /*This is a program to illustrate
2 **the massage control, msgct1 0 ,
3 **system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #inc1ude <sys/ipc.h>
9 #include <sys/msg.h>

10
11
12
13
14
15
16
17

/*Start of rra.in C language program* /
rra.inO
{

extern int ermo;
int uid, gid, rrode, bytes;
int rtm, rnsqid, colTlffi3Jld, choice;
struct rnsqid_ds rnsqid_ds, *buf;
buf = &rnsqid_ ds;

18 /*Get the rnsqid, and command.*/
19 printf ("Enter the msqid = ");
20 scanf ("%d", &rnsqid);
21 printf ("\nEnter the number for\n");
22 printf(Uthe desired colTlffi3Jld:\n");
23 printf("IPC_STAT l\n");
24 printf("IPC_SET 2\n");
25 printf ("IPC..YMID 3\n");
26 printf ("Entry ") ;
27 scanf ("%d", &cc:mnand);

Figure 8-5: msgctlO System Call Example (Sheet I of 4)

8·20 IRIS·4D Programmer's Guide

(

(

28
29
30

31
32

33
34

35

36
37

38
39
40
41
42
43

44
45
46
47
48
49
50

51
52
53

54
55
56
57
58
59

/*Check the values.*/
printf (n\nmsqid =%d, corrmand = %d\nn,

msqid, corrmand);

switch (command)
{

case 1: /*Use msgctl() to duplicate
the data structure for

msqid in the msqid_ ds area pointed

to by buf and then print it out.*/
rtrn = msgctl (msqid, IPC_STAT,

buf) ;

printf (n\nThe USER ID = %d\nn,
buf->msg_perm.uid);

printf (nThe GROUP ID = %d\nn,

buf->msg_perm.gid);
printf (nThe operation permissions = O%o\nn,

buf->msg_perm.mode);
printf (nThe msg_ qbytes = %d\nn,

buf->msg_qbytes);
break;

case 2: /*Select and change the desired
member(s) of the data structure.*/

/*Get the original data for this msqid

data structure first.*/
rtrn = msgctl (msqid, IPC _STAT, buf);
printf (n\nEnter the number for the\nn);

printf(nrrember to be changed:\nn);
printf(nmsg_perm.uid = l\nn);

printf (nmsg_perm.gid = 2\nn);

printf(nmsgJ'E'rm.mode = 3\nn);
printf (nmsg_qbytes = 4\nn);
printf(nEntry = n);

Messages

Figure 8-5: msgctIO System Call Example (Sheet 2 of 4)

Interprocess Communication 8·21

Messages

60
61
62
63
64
65

66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

scanf ("%d", &choice);
I*Only one choice is allowed per

pass as an illegal entry will
cause repetitive failures until

msqid_ds is updated with
IPC_STAT.*I

switch (choice) {
case 1:

printf ("\nEnter USER ID = ");
scanf ("%d", &uid);
buf->msg_perm.uid = uid;
printf("\nUSER ID = %d\n",

buf->msgyerm.uid) ;
break;

case 2:
printf ("\nEnter GROUP 10 = n);

scanf("%d", &gid);
buf->msg_perm.gid = gid;
printf ("\nGROUP 10 = %d\n",

buf->msgyenn.gid) ;
break;

case 3:
printf ("\nEnter M:lDE = ");
scanf ("%0", &mode);
buf->msg_perm.mode = mode;
printf ("\nMJDE = 0%0 \n" ,

buf->msg_penn.mode);
break;

Figure 8-5: msgctlO System Call Example (Sheet 3 of 4)

8-22 IRIS-4D Programmer's Guide

(

c

88
89

90
91
92
93
94
95

96
97
98

99

100
101
102
103
104

case 4:
printf ("\nEnter msqyytes = ");
scanf (" %d", &bytes);
buf->msg_ qbytes = bytes;
printf ("\nmsg_ qbytes = %d\n",

buf->msg_qbytes);
break;

/*Do the change.*/
rtrn = msgctl (msqid, ll'C_SET,

buf);
break;

case 3: /*Remove the msqid along with its
associated message queue
and data structure. * /

rtrn = msgctl (msqid, ll'C_ RMID, NULL);

Messages

105 /*Perform the following if the call is unsuccessful. * /
106 if(rtrn = -1)
107 {
108 printf ("\nThe msgctl system call failed! \n") ;
109 printf ("The error number = %d\n", errno);
110
111 /*Return the msqid upon successful completion.*/
112 else
113 printf ("\nMsgctl was successful for msqid = %d\n",
114 msqid);
115 exit (0);
116

Figure 8-5: msgctIO System Call Example (Sheet 4 of 4)

Interprocess Communication 8-23

Messages

Operations for Messages

This section gives a detailed description of using the msgsnd(2) and msgrcv(2)
system calls, along with an example program which allows all of their capabilities
to be exercised.

Using msgop

The synopsis found in the msgop(2) entry in the IRIS-4D Programmer's Refer­
ence Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd (msqid, msgp, msgsz, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz, msgflg;

int msgrcv (msqid, msgp, msgsz, msgtyp, msgflg)
int msqid;
struct msgbuf *msgp;
int msgsz;
long msgtyp;
int msgflg;

Sending a Message

The msgsnd system call requires four arguments to be passed to it. It returns
an integer value.

Upon successful completion, a zero value is returned; and when unsuccessful,
msgsndO returns a-I.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msggetO system call.

8·24 IRIS·4D Programmer's Guide

c

(

(

Messages

The msgp argument is a pointer to a structure in the user memory area that
contains the type of the message and the message to be sent.

The msgsz argument specifies the length of the character array in the data
structure pointed to by the msgp argument. This is the length of the message. The
maximum size of this array is determined by the MSGMAX system tunable param­
eter.

The msg_qbytes data structure member can be lowered from MSGMNB by
using the msgctlO IPC_SET control command, but only the super-user can raise it
afterwards.

The msg8g argument allows the "blocking message operation" to be performed
if the IPC_NOW AIT flag is not set (msgflg & IPC_NOW AIT = 0); this would
occur if the total number of bytes allowed on the specified message queue are in use
(msg_qbytes or MSGMNB), or the total system-wide number of messages on all
queues is equal to the system imposed limit (MSGTQL). If the IPC_NOW AIT flag
is set, the system call will fail and return a-I.

Further details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this program, read
the "Using msgget" section of this chapter; it goes into more detail than what
would be practical to do for every system call.

Receiving Messages

The msgrcvO system call requires five arguments to be passed to it, and it
returns an integer value.

Upon successful completion, a value equal to the number of bytes received is
returned and when unsuccessful it returns a-I.

The msqid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the msggetO system call.

The msgp argument is a pointer to a structure in the user memory area that will
receive the message type and the message text.

The msgsz argument specifies the length of the message to be received. If its
value is less than the message in the array, an error can be returned if desired; see
the msgflg argument.

The msgtyp argument is used to pick the first message on the message queue of
the particular type specified. If it is equal to zero, the first message on the queue is
received; if it is greater than zero, the first message of the same type is received; if it
is less than zero, the lowest type that is less than or equal to its absolute value is
received.

Interprocess Communication 8-25

Messages

The msgOg argument allows the "blocking message operation" to be performed
if the IPC_NOW AIT flag is not set (msgOg & IPC_NOW AIT == 0); this would
occur if there is not a message on the message queue of the desired type (msgtyp)
to be received. If the !PC_NOW AIT flag is set, the system call will fail immedi­
ately when there is not a message of the desired type on the queue. Msgflg can also
specify that the system call fail if the message is longer than the size to be received;
this is done by not setting the MSG_NOERROR flag in the msgOg argument
(msgOg & MSG_NOERROR = 0). If the MSG_NOERROR flag is set, the message
is truncated to the length specified by the msgsz argument of msgrcvO.

Further details of this system call are discussed in the example program for it.
If you have problems understanding the logic manipulations in this program, read
the "Using msgget" section of this chapter; it goes into more detail than what would
be practical to do for every system call.

Example Program

The example program in this section (Figure 8-6) is a menu driven program
which allows all possible combinations of using the msgsndO and msgrcv(2) sys­
tem calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as
specified by the msgop(2) entry in the IRIS-4D Programmer's Reference Manual.
Note that in this program errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self-explanatory. These names make
the program more readable, and this is perfectly legal since they are local to the pro­
gram. The variables declared for this program and their purposes are as follows:

sndbuf used as a buffer to contain a message to be sent (line 13); it uses
the msgbufl data structure as a template (lines 10-13) The
msgbufl structure (lines 10-13) is almost an exact duplicate of
the msgbuf structure contained in the msg.h header file. The only
difference is that the character array for msgbufl contains the
maximum message size (MSGMAX) for the workstation where in
msgbuf it is set to one (1) to satisfy the compiler. For this reason
msgbuf cannot be used directly as a template for the user-written
program. It is there so you can determine its members.

8-26 IRIS-4D Programmer's Guide

(

c

c

rcvbuf

*msgp

Messages

used as a buffer to receive a message (line 13); it uses the
msgbufl data structure as a template (lines 10-13)

used as a pointer (line 13) to both the sndbuf and rcvbuf buffers

used as a counter for inputting characters from the keyboard, stor­
ing them in the array, and keeping track of the message length for
the msgsndO system call; it is also used as a counter to output the
received message for the msgrcvO system call

c used to receive the input character from the getcharO function
(line 50)

flag used to store the code of IPC_NOW AIT for the msgsndO system
call (line 61)

flags used to store the code of the IPC_NOWAIT or MSG_NOERROR
flags for the msgrcvO system call (line 117)

choice

rtrn

msqid

msgsz

msgOg

msgtyp

used to store the code for sending or receiving (line 30)

used to store the return values from all system calls

used to store and pass the desired message queue identifier for
both system calls

used to store and pass the size of the message to be sent or
received

used to pass the value of flag for sending or the value of flags for
receiving

used for specifying the message type for sending, or used to pick a
message type for receiving.

Note that a msqid_ds data structure is set up in the program (line 21) with a
pointer which is initialized to point to it (line 22); this will allow the data structure
members that are affected by message operations to be observed. They are
observed by using the msgctlO (IPC_STAT) system call to get them for the pro­
gram to print them out (lines 80-92 and lines 161-168).

The first thing the program prompts for is whether to send or receive a mes­
sage. A corresponding code must be entered for the desired operation, and it is
stored at the address of the choice variable (lines 23-30). Depending upon the code,
the program proceeds as in the following msgsnd or msgrcv sections.

Inter process Communication 8-27

Messages

msgsnd
When the code is to send a message, the msgp pointer is initialized (line 33) to

the address of the send data structure, sndbuf. Next, a message type must be
entered for the message; it is stored at the address of the variable msgtyp (line 42),
and then (line 43) it is put into the mtype member of the data structure pointed to by
msgp.

The program now prompts for a message to be entered from the keyboard and
enters a loop of getting and storing into the mtext array of the data structure (lines
48-51). This will continue until an end of file is recognized which for the getcharO
function is a control-d (CTRL-D) immediately following a carriage return «CR».
When this happens, the size of the message is determined by adding one to the i
counter (lines 52, 53) as it stored the message beginning in the zero array element
of mtext. Keep in mind that the message also contains the terminating characters,
and the message will therefore appear to be three characters short of msgsz.

The message is immediately echoed from the mtext array of the sndbuf data
structure to provide feedback (lines 54-56).

The next and final thing that must be decided is whether to set the
IPC_NOW ArT flag. The program does this by requesting that a code of a 1 be
entered for yes or anything else for no (lines 57-65). It is stored at the address of

(

the flag variable. If a 1 is entered, IPC_NOW ArT is logically ORed with msgflg; (
otherwise, msgflg is set to zero.

The msgsndO system call is performed (line 69). If it is unsuccessful, a failure
message is displayed along with the error number (lines 70-72). If it is successful,
the returned value is printed which should be zero (lines 73-76).

Every time a message is successfully sent, there are three members of the asso­
ciated data structure which are updated. They are described as follows:

msg_qnum represents the total number of messages on the message queue; it
is incremented by one.

msg_lspid contains the Process Identification (PID) number of the last pro­
cess sending a message; it is set accordingly.

msg_stime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) of the last message sent; it is set accordingly.

These members are displayed after every successful message send operation C
(lines 79-92).

8-28 IRIS-4D Programmer's Guide

Messages

msgrcv
If the code specifies that a message is to be received, the program continues

execution as in the following paragraphs.

The msgp pointer is initialized to the rcvbuf data structure (line 99).

Next, the message queue identifier of the message queue from which to receive
the message is requested, and it is stored at the address of msqid (lines 100-103).

The message type is requested, and it is stored at the address of msgtyp (lines
104-107).

The code for the desired combination of control flags is requested next, and it is
stored at the address of flags (lines 108-117). Depending upon the selected combi­
nation, msgflg is set accordingly (lines 118-133).

Finally, the number of bytes to be received is requested, and it is stored at the
address of msgsz (lines 134-137).

The msgrcvO system call is performed (line 144). If it is unsuccessful, a mes­
sage and error number is displayed (lines 145-148). If successful, a message indi­
cates so, and the number of bytes returned is displayed followed by the received
message (lines 153-159).

When a message is successfully received, there are three members of the asso­
ciated data structure which are updated; they are described as follows:

msg_ qnum contains the number of messages on the message queue; it is
decremented by one.

msgJrpid contains the process identification (PID) of the last process receiv­
ing a message; it is set accordingly.

msgJtime contains the time in seconds since January 1, 1970, Greenwich
Mean Time (GMT) that the last process received a message; it is
set accordingly.

The example program for the msgopO system calls follows. It is suggested
that the program be put into a source file called msgop.c and then into an execut­
able file called msgop.

When compiling C programs that use floating point operations, the -f option
should be used on the cc command line. If this option is not used, the program will
compile successfully, but when the program is executed it will fail.

Interprocess Communication 8-29

Messages

1
2
3
4

/*This is a program to illustrate
**the message operations, msgop() ,
**system call capabilities.
*/

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8
9

#include
#include

<sys/ipc.h>
<sys/msg.h>

10 struct msgbufl {
11 long mtype;
12 char mtext [8192J;
13 sndbuf, rcvbuf, *msgp;

14 /*Start of main C language program*/
15
16
17

18
19

main ()
{

extern int errno;
int i, c, flag, flags, choice;
int rtrn, msqid, msgsz, msgflg;

20 long mtype, msgtyp;
21 struct msqid_ ds msqid_ ds, *buf;
22 buf = &msqid_ ds;

Figure 8-6: msgopO System Call Example (Sheet 1 of 7)

8·30 IRIS-4D Programmer's Guide

(

(

(

23
24
25
26
27
28
29
3D

31
32
33

34
35
36
37

38
39

40

41
42
43

44
45

46
47

/*Select the desired operation.*/
printf (nEnter the corresponding\nn);
printf (ncode to send or\nn);
printf(nreceive a rressage:\nn);
printf (nSend 1 \nn) ;
printf (nReceive
printf (nEntry
scanf (n%dn, &choice);

2\nn);

") ;

if(choice == 1) /*Send a message.*/
{

msgp ~ &sndbuf; /*Point to user send structure.*/

printf (n\nEnter the msqid of\nn);
printf (nthe rressage queue to\nn);
printf(nhandle the message ~ n);

scanf (n%dn, &msqid);

/~Set the rressage type.*/
printf (n\nEnter a positive integer\nn);
printf (nrressage type (long) for the\nn);
printf(nrressage ~ n);

scanf (n%dn, &msgtyp);
msgp->mtype ~ msgtyp;

/*Enter the rressage to send.*/
printf(n\nEnter a message: \nn);

/*A control-d (Ad) terminates as

EOF.*/

Messages

Figure 8-6: msgopO System Call Example (Sheet 2 of 7)

Interprocess Communication 8-31

Messages

48
49
50
51

52
53

54
55
56

57
58
59
60
61
62
63
64

65

66
67

68
69
70
71
72
73
74
75
76

/*Get each character of the rressage
and put it in the mtext array. * /

for (i = 0; ((c = getchar ()) != EOF); H+)
sndbuf .mtext [iJ = c;

/*Determine the rressage size.*/
msgsz = i + 1;

/*Echo the message to send. * /
for(i = 0; i < msgsz; i++)

put char (sndbuf .mtext [iJ);

/*Set the IPC_NOWAIT flag if
desired.*/

printf("\nEnter a 1 if you want the\n");
printf ("the IPC _NOWAIT flag set: ") ;
scanf("%d", &flag);
if(flag = 1)

msgflg 1= IPC_NOWAIT;
else

msgflg = 0;

/*Check the msgflg.*/
printf ("\nmsgflg = O%o\n", msgflg);

/*Send the message.*/
rtrn = msgsnd(msqid, msgp, msgsz, msgflg);
if(rtrn = -1)
printf ("\nMsgsnd failed. Error = %d\n",

erma);
else {

/*Print the value of test which
should be zero for successful.*/

printf("\nValue returned = %d\n", rtm);

Figure 8-6: msgopO System Call Example (Sheet 3 of 7)

8·32 IRIS·4D Programmer's Guide

(

(

(

77
78
79

80
81

82

83
84
85
86
87
88
89
90
91
92
93
94

/*Print the size of the message
sent. */

printf (n\nMsgsz = %d\nn, msgsz);

/*Check the data structure update.*/
msgctl (msqid, !PC_STAT, buf);

/*Print out the affected members.*/

/*Print the incremented number of
messages on the queue.*/

printf (n\nThe msg_ qnum = %d\nn,
buf->msg_ qnum) ;

/*Print the process id of the last sender. * /
printf(nThe msg_lspid = %d\nn,

buf->msg_lspid);
/*Print the last send time.*/
printf(nTbe msg_stime = %d\nn,

buf->msg_stime);

95 if(choice = 2) /*Receive a message.*/
96 {
97
98
99

100
101
102
103

/*Initia1ize the message pointer
to the receive buffer.*/

msgp = &rcvbuf;

/*Specify the message queue which contains
the desired message.*/

printf(n\nEnter the msqid = n);
scanf(n%dn, &msqid);

Figure 8-6: msgopO System Call Example (Sheet 4 of 7)

Messages

Interprocess Communication 8-33

Messages

104 /*Specify the specific message on the queue

(105 by using its type.*/
106 printf (n\nEnter the msgtyp = n);
107 scanf (n%dn, &msgtyp);

108 /*Configure the control flags for the
109 desired actions.*/
110 printf (n\nEnter the corresponding cade\nn);
111 printf (nto select the desired flags: \nn);
112 printf (nNo flags O\nn) ;
113 printf (''MSG _ NOERROR 1 \nn);
114 printf (nIPC_NcmAIT 2\nn) ;
115 printf (''MSG _ NCERROR and IPC YcmAIT 3\nn) ;
116 printf(n Flags If);

117 scanf(n%dn, &flags);

118 switch (flags) {

119 /*Set msgflg by ~Ring it with the appropriate
120 flags (constants) .*/
121 case 0:
122 msgflg = 0;

C 123 break;
124 case 1:
125 msgflg 1 = MSG _NCERROR;
126 break;
127 case 2:
128 msgflg 1= IPC_NcmAIT;
129 break;
l30 case 3:
l31 msgflg 1= MSG_NOERROR IPC_NOWAIT;
l32 break;
l33

Figure 8-6: msgopO System Call Example (Sheet 5 of 7)

c

8·34 IRIS-4D Programmer's Guide

134
135
136
137

138
139
140
141
142

143
144

145
146
147
148
149
150
151
152

153
154
155
156

/*Specify the number of bytes to receive. * /
printf ("\nEnter the number of bytes\n");
printf ("to receive (msgsz) = ");
scanf ("%d", &msgsz);

/*Check the values for the arguments.*/
printf ("\nrnsqid =%d\n", msqid);
printf ("\nmsgtyp %d\n", msgtyp);
printf ("\nmsgsz = %d\n", msgsz);
printf ("\nmsgflg = 0%0 \n", msgflg);

/*Call msgrcv to receive the message.*/

Messages

rtrn = msgrcv(msqid, msgp, msgsz, msgtyp, msgflg);

if(rtrn = -1)
printf ("\nMsgrcv failed. ");
printf (''Error = %d\n", errno);

else {
printf ("\nMsgctl was successful \n") ;
printf ("for rnsqid = %d\n",

msqid) ;

/*Print the number of bytes received,
it is equal to the return
value.*/

printf (''Bytes received = %d\n", rtrn);

Figure 8-6: msgopO System Call Example (Sheet 6 of 7)

Interprocess Communication 8-35

Messages

157
158
159
160
161
162
163
164
165
166
167
168
169
170

/*Print the received message.*/
for(i = 0; i<=rtrn; i++)

putchar(rcvbuf.mtext[i]);

/*Check the associated data structure.*/
msgctl (msqid, IPC_STAT, buf);
/*Print the decremented number of messages.*/
printf("\nThe msg_qnum = %d\n", buf->msg_qnum);
/*Print the process id of the last receiver.*/
printf(ffThe msg_lrpid = %d\n", buf->msg_lrpid);
/*Print the last message receive time*/
printf("The msg_rtime = %d\n", buf->msg_rtime);

Figure 8-6: msgopO System Call Example (Sheet 7 of 7)

8-36 IRIS-4D Programmer's Guide

(

(

(

Semaphores

The semaphore type of !PC allows processes to communicate through the
exchange of semaphore values. A semaphore is a positive integer (0 through
32,767). Since many applications require the use of more than one semaphore, the
UNIX operating system has the ability to create sets or arrays of semaphores. A
semaphore set can contain one or more semaphores up to a limit set by the system
administrator. The tunable parameter, SEMMSL has a default value of 25. Sema­
phore sets are created by using the semget(2) system call.

The process performing the semget(2) system call becomes the owner/creator,
determines how many semaphores are in the set, and sets the operation permissions
for the set, including itself. This process can subsequently relinquish ownership of
the set or change the operation permissions using the semctlO, semaphore control,
system call. The creating process always remains the creator as long as the facility
exists. Other processes with permission can use semctlO to perform other control
functions.

Provided a process has alter permission, it can manipulate the semaphore(s).
Each semaphore within a set can be manipulated in two ways with the semop(2)
system call (which is documented in the IRIS-4D Programmer's Reference
Manual):

• incremented

• decremented

To increment a semaphore, an integer value of the desired magnitude is passed
to the semop(2) system call. To decrement a semaphore, a minus (-) value of the
desired magnitude is passed.

The UNIX operating system ensures that only one process can manipulate a
semaphore set at any given time. Simultaneous requests are performed sequentially
in an arbitrary manner.

A process can test for a semaphore value to be greater than a certain value by
attempting to decrement the semaphore by one more than that value. If the process
is successful, then the semaphore value is greater than that certain value. Other­
wise, the semaphore value is not. While doing this, the process can have its execu­
tion suspended (IPC_NOW AIT flag not set) until the semaphore value would per­
mit the operation (other processes increment the semaphore), or the semaphore
facility is removed.

The ability to suspend execution is called a "blocking semaphore operation."
This ability is also available for a process which is testing for a semaphore to
become zero or equal to zero; only read permission is required for this test, and it is
accomplished by passing a value of zero to the semop(2) system call.

Interprocess Communication 8-37

Semaphores

On the other hand, if the process is not successful and the process does not
request to have its execution suspended, it is called a "nonblocking semaphore
operation." In this case, the process is returned a known error code (-1), and the
external errno variable is set accordingly.

The blocking semaphore operation allows processes to communicate based on C
the values of semaphores at different points in time. Remember also that !PC facili-
ties remain in the UNIX operating system until removed by a permitted process or
until the system is reinitialized.

Operating on a semaphore set is done by using the semop(2), semaphore opera-
tion, system call. .

When a set of semaphores is created, the first semaphore in the set is sema­
phore number zero. The last semaphore number in the set is one less than the total
in the set.

An array of these "blocking/nonblocking operations" can be performed on a set
containing more than one semaphore. When performing an array of operations, the
"blocking/nonblocking operations" can be applied to any or all of the semaphores in
the set. Also, the operations can be applied in any order of semaphore number.
However, no operations are done until they can all be done successfully. This
requirement means that preceding changes made to semaphore values in the set
must be undone when a "blocking semaphore operation" on a semaphore in the set (
cannot be completed successfully; no changes are made until they can all be made.
For example, if a process has successfully completed three of six operations on a set
of ten semaphores but is "blocked" from performing the fourth operation, no
changes are made to the set until the fourth and remaining operations are success-
fully performed. Additionally, any operation preceding or succeeding the
"blocked" operation, including the blocked operation, can specify that at such time
that all operations can be performed successfully, that the operation be undone.
Otherwise, the operations are performed and the semaphores are changed or one
"nonblocking operation" is unsuccessful and none are changed. All of this is com-
monly referred to as being "atomically performed."

The ability to undo operations requires the UNIX operating system to maintain
an array of "undo structures" corresponding to the array of semaphore operations to
be performed. Each semaphore operation which is to be undone has an associated
adjust variable used for undoing the operation, if necessary.

Remember, any unsuccessful "nonblocking operation" for a single semaphore C
or a set of semaphores causes immediate return with no operations performed at all.
When this occurs, a known error code (-1) is returned to the process, and the exter-
nal variable errno is set accordingly.

8-38 IRI5-4D Programmer's Guide

Semaphores

System calls make these semaphore capabilities available to processes. The cal­
ling process passes arguments to a system call, and the system call either success­
fully or unsuccessfully performs its function. If the system call is successful, it per­
forms its function and returns the appropriate information. Otherwise, a known
error code (-1) is returned to the process, and the external variable errno is set
accordingly.

Using Semaphores
Before semaphores can be used (operated on or controlled) a uniquely

identified data structure and semaphore set (array) must be created. The unique
identifier is called the semaphore identifier (semid); it is used to identify or refer­
ence a particular data structure and semaphore set.

The semaphore set contains a predefined number of structures in an array, one
structure for each semaphore in the set. The number of semaphores (nsems) in a
semaphore set is user selectable. The following members are in each structure
within a semaphore set:

• semaphore text map address

• process identification (PID) performing last operation

• number of processes awaiting the semaphore value to become greater than
its current value

• number of processes awaiting the semaphore value to equal zero

There is one associated data structure for the uniquely identified semaphore set.
This data structure contains information related to the semaphore set as follows:

• operation permissions data (operation permissions structure)

• pointer to first semaphore in the set (array)

• number of semaphores in the set

• last semaphore operation time

• last semaphore change time

The C Programming Language data structure definition for the semaphore set
(array member) is as follows:

Interprocess Communication 8-39

Semaphores

struct sem

ushort semval; /* semaphore text map address * /
short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnti /* # awaiting semval = a */

) ;

It is located in the #include <sys/sem.h> header file.

Likewise, the structure definition for the associated semaphore data structure is
as follows:

struct semid ds

};

struct sem
ushort
time t
time t

/* operation permission struct */
sem_base; / ptr to first semaphore in set */
sem_nsems; /* # of semaphores in set */
sem_otime; /* last semop time */
sem_ctime; /* last change time */

It is also located in the #include <sys/sem.h> header file. Note that the
sem _perm member of this structure uses ipc yerm as a template. The breakout for
the operation permissions data structure is shown in Figure 8-1.

The ipc yerm data structure is the same for all !PC facilities, and it is located
in the #include <sys/ipc.h> header file. It is shown in the "Messages" section.

The semget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the semflg argument that it receives:

8-40 IRIS·4D Programmer's Guide

(

(~

(

Semaphores

• to get a new semid and create an associated data structure and semaphore
set for it

• to return an existing semid that already has an associated data structure and
semaphore set

The task performed is determined by the value of the key argument passed to the
semget(2) system call. For the first task, if the key is not already in use for an exist­
ing semid, a new semid is returned with an associated data structure and semaphore
set created for it provided no system tunable parameter would be exceeded.

There is also a provision for specifying a key of value zero (0) which is known
as the private key (IPC_PRIVATE = 0); when specified, a new semid is always
returned with an associated data structure and semaphore set created for it unless a
system tunable parameter would be exceeded. When the ipcs command is per­
formed, the KEY field for the semid is all zeros.

When performing the first task, the process which calls semgetO becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains the
creator; see the "Controlling Semaphores" section in this chapter. The creator of
the semaphore set also determines the initial operation permissions for the facility.

For the second task, if a semid exists for the key specified, the value of the
existing semid is returned. If it is not desired to have an existing semid returned, a
control command (IPC_EXCL) can be specified (set) in the semflg argument passed
to the system call. The system call will fail if it is passed a value for the number of
semaphores (nsems) that is greater than the number actually in the set; if you do not
know how many semaphores are in the set, use 0 for nsems. The details of using
this system call are discussed in the "Using semget" section of this chapter.

Once a uniquely identified semaphore set and data structure are created, sema­
phore operations [semop(2)] and semaphore control [semctlO] can be used.

Semaphore operations consist of incrementing, decrementing, and testing for
zero. A single system call is used to perform these operations. It is called semopO.
Refer to the "Operations on Semaphores" section in this chapter for details of this
system call.

Semaphore control is done by using the semctl(2) system call. These control
operations permit you to control the semaphore facility in the following ways:

• to return the value of a semaphore

• to set the value of a semaphore

Interprocess Communication 8-41

Semaphores

• to return the process identification (PID) of the last process performing an
operation on a semaphore set

• to return the number of processes waiting for a semaphore value to become
greater than its current value

• to return the number of processes waiting for a semaphore value to equal
zero

• to get all semaphore values in a set and place them in an array in user
memory

• to set all semaphore values in a semaphore set from an array of values in
user memory

• to place all data structure member values, status, of a semaphore set into
user memory area

• to change operation permissions for a semaphore set

• to remove a particular semid from the UNIX operating system along with its
associated data structure and semaphore set

Refer to the "Controlling Semaphores" section in this chapter for details of the
semctl(2) system call.

Getting Semaphores

This section contains a detailed description of using the semget(2) system call
along with an example program illustrating its use.

Using sernget

The synopsis found in the semget(2) entry in the IRIS-4D Programmer's
Reference Manual is as follows:

8-42 IRIS-4D Programmer's Guide

(

(

(

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key, nsems, semg)
key_t key;
int nserns, se:rrtg";

The following line in the synopsis:

Semaphores

int semget (key, nsems, semflg)

informs you that semgetO is a function with three formal arguments that returns an
integer type value, upon successful completion (semid). The next two lines:

key_t key;
int nsems, sem£lg;

declare the types of the formal arguments. key _tis declared by a typedef in the
types.h header file to be an integer.

The integer returned from this system call upon successful completion is the
semaphore set identifier (semid) that was discussed above.

As declared, the process calling the semgetO system call must supply three
actual arguments to be passed to the formal key, nsems, and semflg arguments.

A new semid with an associated semaphore set and data structure is provided if
either

• key is equal to IPC]RIVATE,

or

• key is passed a unique hexadecimal integer, and semflg ANDed with
IPC_CREAT is TRUE.

The value passed to the semflg argument must be an integer type octal value
and will specify the following:

• access permissions

Interprocess Communication 8-43

Semaphores

• execution modes

• control fields (commands)

Access permissions determine the read/alter attributes and execution modes (
determine the user/group/other attributes of the semftg argument. They are collec-
tively referred to as "operation permissions." Figure 8-7 reflects the numeric values
(expressed in octal notation) for the valid operation permissions codes.

Operation Permissions
Read by User
Alter by User
Read by Group
Alter by Group
Read by Others
Alter by Others

Figure 8-7: Operation Permissions Codes

Octal Value
00400
00200
00040
00020
00004
00002

A specific octal value is derived by adding the octal values for the operation (
permissions desired That is, if read by user and read/alter by others is desired, the
code value would be 00406 (00400 plus 00(06). There are constants #define'd in
the sem.h header file which can be used for the user (OWNER). They are as fol-
lows:

SEM A

SEM R

0200
0400

/* alter pe:rmission by owner */
/* Yead pe:rmission by owner */

Control commands are predefined constants (represented by all uppercase
letters). Figure 8-8 contains the names of the constants which apply to the
semget(2) system call along with their values. They are also referred to as flags and
are defined in the ipc.h header file.

Control Command

Figure 8-8: Control Commands (Flags)

8-44 IRIS-4D Programmer's Guide

Value
0001000
0002000 (

Semaphores

The value for semflg is, therefore, a combination of operation permissions and
control commands. After determining the value for the operation permissions as
previously described, the desired flag(s) can be specified. This specification is
accomplished by bitwise ORing (I) them with the operation permissions; the bit
positions and values for the control commands in relation to those of the operation
permissions make this possible. It is illustrated as follows:

IPC_CREAT
CWI ORed by User =

semflg

Octal Value

01000
00400

01400

Binary Value

a 000 00 1 000 000 000
a 000 000 100 000 000

a 000 00 1 100 000 000

The semflg value can be easily set by using the names of the flags in conjunc­
tion with the octal operation permissions value:

semid = semget (key, nsems, (IPC_CREAT 0400));

semid = serrget (key, nsems, (IPC_CREAT IPC EXCL I 0400));

As specified by the semget(2) entry in the IRIS4D Programmer's Reference
Manual, success or failure of this system call depends upon the actual argument
values for key, nsems, semflg or system tunable parameters. The system call will
attempt to return a new semid if one of the following conditions is true:

• Key is equal to IPC]RIV A IE (0)

• Key does not already have a semid associated with it, and (semflg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIV A IE in the following ways:

semid = serrget (IPC_PRIVATE, nsems, semflg);

or

semid = semget (0, nsems, semflg);

This alone will cause the system call to be attempted because it satisfies the first
condition specified.

Interprocess Communication 8-45

Semaphores

Exceeding the SEMMNI, SEMMNS, or SEMMSL system tunable parameters
will always cause a failure. The SEMMNI system tunable parameter determines the
maximum number of unique semaphore sets (semid's) in the UNIX operating sys­
tem. The SEMMNS system tunable parameter determines the maximum number of
semaphores in all semaphore sets system wide. The SEMMSL system tunable (
parameter determines the maximum number of semaphores in each semaphore set.

The second condition is satisfied if the value for key is not already associated
with a semid, and the bitwise ANDing of semflg and IPC_CREAT is "true" (not
zero). This means that the key is unique (not in use) within the UNIX operating
system for this facility type and that the IPC_CREAT flag is set (semflg I
IPC_CREA T). The bitwise ANDing (&), which is the logical way of testing if a
flag is set, is illustrated as follows:

semflg = x 1 x x x (x = immaterial)
& IPC CREAT = 0 1 0 0 0

result = 0 1 0 0 0 (not zero)

Since the result is not zero, the flag is set or "true." SEMMNI, SEMMNS, and
SEMMSL apply here also, just as for condition one.

IPC_EXCL is another control command used in conjunction with IPC_CREAT
to exclusively have the system call fail if, and only if, a semid exists for the (
specified key provided. This is necessary to prevent the process from thinking that
it has received a new (unique) semid when it has not. In other words, when both
IPC_CREAT and IPC_EXCL are specified, a new semid is returned if the system
call is successful. Any value for semflg returns a new semid if the key equals zero
(IPC_PRIVATE) and no system tunable parameters are exceeded.

Refer to the semget(2) manual page for specific associated data structure ini­
tialization for successful completion.

Example Program
The example program in this section (Figure 8-9) is a menu driven program

which allows all possible combinations of using the semget(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This progmm begins (lines 4-8) by including the required header files as
specified by the semget(2) entry in the IRIS-4D Programmer's Reference Manual.
Note that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

8-46 IRIS-4D Programmer's Guide

(

Semaphores

Variable names have been chosen to be as close as possible to those in the
synopsis. Their declarations are self-explanatory. These names make the program
more readable, and this is perfectly legal since they are local to the program. The
variables declared for this program and their purpose are as follows:

• key-used to pass the value for the desired key

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm _flags-used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to pass the
semflg argument

• semid-used for returning the semaphore set identification number for a
successful system call or the error code (-1) for an unsuccessful one.

The program begins by prompting for a hexadecimal key, an octal operation
permissions code, and the control command combinations (flags) which are selected
from a menu (lines 15-32). All possible combinations are allowed even though they
might not be viable. This allows observing the errors for illegal combinations.

Next, the menu selection for the flags is combined with the operation permis­
sions, and the result is stored at the address of the opperm _flags variable (lines 36-
52).

Then, the number of semaphores for the set is requested (lines 53-57), and its
value is stored at the address of nsems.

The system call is made next, and the result is stored at the address of the
semid variable (lines 60, 61).

Since the semid variable now contains a valid semaphore set identifier or the
error code (-1), it is tested to see if an error occurred (line 63). If semid equals -1,
a message indicates that an error resulted and the external errno variable is
displayed (lines 65, 66). Remember that the external errno variable is only set
when a system call fails; it should only be tested immediately following system
calls.

If no error occurred, the returned semaphore set identifier is displayed (line 70).

The example program for the semget(2) system call follows. It is suggested
that the source program file be named semget.c and that the executable file be
named semget.

Interprocess Communication 8-47

Semaphores

1
2
3

4
5
6

7

8

9
10
11
12
13
14

15
16
17

18
19
20

/*This is a program to illustrate
**the semaphore get, serrget () ,
**system call capabi1ities.*/

#include
#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/sem.h>
<errno.h>

/*Start of main C language program* /
rrainO
{

/*declare as long integer*/
int oppenn, flags, nsems;
int semid, oppenn_flags;

/*Enter the desired key*/
printf ("\nEnter the desired key in hex = ");

scanf ("%x", &key);

/*Enter the desired octal operation
permissions. * /

printf("\nEnter the operation\n");
21 printf("permissions in octal = ");

22 scanf ("%0", &oppenn);

Figure 8-9: semget() System Call Example (Sheet 1 of 3)

8-48 IRIS-4D Programmer's Guide

(

(

23 /*Set the desired flags.*/
24 printf (n\nEnter corresponding number to\n");
25 printf(nset the desired flags:\nn);

26
27
28

29
30

31

printf (nNo flags
print f (n IPC _ CREAT

print f (n IPC _ EXCL

printf(nIPC_CREAT and IPC EXCL
printf (n Flags

/*Get the flags to be set.*/
32 scanf(n%dn, &flags);

33 /*Error checking (debugging) * /

= O\nn);
= l\nn);
= 2\nn);

3\nn);
= U);

34 printf (n\nkey =Ox%x, opperm = 0%0, flags = O%o\nn,
35 key, opperm, flags);

36 /*Incorporate the control fields (flags) with

37 the operation permissions.*/
38 switch (flags)

39 {

40 case 0: /*No flags are to be set.*/
41 opperm_flags = (opperm I 0);
42 break;

43 case 1: /*Set the IPC _ CREAT flag. * /
44 opperm_flags = (opperm I IPC_CREAT);
45 break;

46 case 2: /*Set the IPC_EXCL flag.*/
47 opperm_flags = (opperm I IPCYXCL);
48 break;

49 case 3: /*Set the IPC CREAT and IPC EXCL - -
50 flags.*/

Semaphores

51 opperm_flags = (opperm I IPC CREAT IPCYXCL);
52

Figure 8-9: semgetO System Call Example (Sheet 2 of 3)

Interprocess Communication 8-49

Semaphores

53
54
55
56
57

/*Get the number of semaphores for this set.*/
printf("\nEnter the number of\n");
printf("desired semaphores for\n");
printf("this set (25 max) = ");

scanf ("%d", &nsems);

58 /*Check the entry.*/
59 printf ("\nNsems = %d\n", nsems);

60 /*Call the serrget system call. * /
61 semid = semget(key, nsems, opperm_flags);

62 /*Perform the following if the call is unsuccessful. */
63 if(semid = -1)
64 {

65 printf ("The serrget system call failed!\n");
66 printf ("The error number = %d\n", ermo);
67

68 /*Return the semid upon successful completion.*/
69 else
70

71
72

printf ("\nThe semid = %d\n", semid);
exit (0);

Figure 8-9: semgetO System Call Example (Sheet 3 of 3)

Controlling Semaphores
This section contains a detailed description of using the semctl(2) system call

along with an example program which allows all of its capabilities to be exercised.

8-50 IRIS-4D Programmer's Guide

(

c

(

Semaphores

Using semetl
The synopsis found in the semctl(2) entry in the IRIS-4D Programmer's Refer­

ence Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (semid, semnum, cmd, arg)
int semid, cmd;
int semnum;
union semm

} arg;

int val;
struct semid_ds *bu;
ushort array[];

The semctl(2) system call requires four arguments to be passed to it, and it returns
an integer value.

The semid argument must be a valid, non-negative, integer value that has
already been created by using the semget(2) system call.

The semnum argument is used to select a semaphore by its number. This
relates to array (atomically performed) operations on the set. When a set of sema­
phores is created, the first semaphore is number 0, and the last semaphore has the
number of one less than the total in the set.

The cmd argument can be replaced by one of the following control commands
(flags):

• GETV AL-retum the value of a single semaphore within a semaphore set

• SETV AL-set the value of a single semaphore within a semaphore set

• GETPID-retum the Process Identifier (PID) of the process that performed
the last operation on the semaphore within a semaphore set

• GETNCNT -return the number of processes waiting for the value of a par­
ticular semaphore to become greater than its current value

Interprocess CommunIcation 8-51

Semaphores

• GETZCNT -return the number of processes waiting for the value of a par-
ticular semaphore to be equal to zero

• GET ALL-return the values for all semaphores in a semaphore set

• SET ALL-set all semaphore values in a semaphore set

• IPC_STAT-return the status information contained in the associated data
structure for the specified semid, and place it in the data structure pointed to
by the *bufpointer in the user memory area; arg.buf is the union member
that contains the value of buf

• IPC_SET-for the specified semaphore set (semid), set the effective
user/group identification and operation permissions

• IPC_RMID-remove the specified (semid) semaphore set along with its
associated data structure.

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID control command. Read/alter
permission is required as applicable for the other control commands.

The arg argument is used to pass the system call the appropriate union member
for the control command to be performed:

• arg.val

• arg.buf

• arg.array

The details of this system call are discussed in the example program for it. If
you have problems understanding the logic manipulations in this program, read the
"Using semget" section of this chapter; it goes into more detail than what would be
practical to do for every system call.

Example Program

The example program in this section (Figure 8-10) is a menu driven program
which allows all possible combinations of using the semctl(2) system call to be
exercised.

(

(

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed (
out.

8-52 IRI5-4D Programmer's Guide

Semaphores

This program begins (lines 5-9) by including the required header files as
specified by the semctl(2) entry in the IRIS-4D Programmer's Reference Manual
Note that in this program errno is declared as an external variable, and therefore
the errno.h header file does not have to be included.

Variable, structure, and union names have been chosen to be as close as possi­
ble to those in the synopsis. Their declarations are self-explanatory. These names
make the program more readable, and this is perfectly legal since they are local to
the program. Those declared for this program and their purpose are as follows:

• semid_ds-used to receive the specified semaphore set identifier's data
structure when an IPC_STAT control command is performed

• c-used to receive the input values from the scanf(3S) function, (line 117)
when performing a SET ALL control command

• i-used as a counter to increment through the union arg.array when
displaying the semaphore values for a GETALL (lines 97-99) control com­
mand, and when initializing the arg.array when performing a SET ALL
(lines 115-119) control command

• length-used as a variable to test for the number of semaphores in a set
against the i counter variable (lines 97, 115)

• uid-used to store the IPC_SET value for the effective user identification

• gid-used to store the IPC_SET value for the effective group identification

• mode-used to store the IPC_SET value for the operation permissions

• rtrn-used to store the return integer from the system call which depends
upon the control command or a -1 when unsuccessful

• semid-used to store and pass the semaphore set identifier to the system call

• semnum-used to store and pass the semaphore number to the system call

• cmd-used to store the code for the desired control command so that subse­
quent processing can be performed on it

• choice-used to determine which member (uid, gid, mode) for the
IPC_SET control command that is to be changed

• arg.val-used to pass the system call a value to set (SETV AL) or to store
(GETV AL) a value returned from the system call for a single semaphore
(union member)

• arg.buf-a pointer passed to the system call which locates the data structure
in the user memory area where the IPC_ST AT control command is to place
its return values, or where the IPC_SET command gets the values to set
(union member)

Interprocess Communication 8-53

Semaphores

• arg.array-used to store the set of semaphore values when getting
(GETALL) or initializing (SETALL) (union member).

Note that the semid_ds data structure in this program (line 14) uses the data
structure located in the sem.h header file of the same name as a template for its (
declaration. This is a perfect example of the advantage of local variables.

The arg union (lines 18-22) serves three purposes in one. The compiler allo­
cates enough storage to hold its largest member. The program can then use the
union as any member by referencing union members as if they were regular struc­
ture members. Note that the array is declared to have 25 elements (0 through
24).This number corresponds to the maximum number of semaphores allowed per
set (SEMMSL), a system tunable parameter.

The next important program aspect to observe is that although the * bur pointer
member (arg.buf) of the union is declared to be a pointer to a data structure of the
semid _ ds type, it must also be initialized to contain the address of the user memory
area data structure (line 24). Because of the way this program is written, the pointer
does not need to be reinitialized later. If it was used to increment through the array,
it would need to be reinitialized just before calling the system call.

Now that all of the required declarations have been presented for this program,
this is how it works.

First, the program prompts for a valid semaphore set identifier, which is stored (
at the address of the semid variable (lines 25-27). This is required for all semctl(2)
system calls.

Then, the code for the desired control command must be entered (lines 28-42),
and the code is stored at the address of the cmd variable. The code is tested to
determine the control command for subsequent processing.

If the GETV AL control command is selected (code 1), a message prompting
for a semaphore number is displayed (lines 49,50). When it is entered, it is stored
at the address of the semnum variable (line 51). Then, the system call is per­
formed, and the semaphore value is displayed (lines 52-55). If the system call is
successful, a message indicates this along with the semaphore set identifier used
(lines 195, 196); if the system call is unsuccessful, an error message is displayed
along with the value of the external errno variable (lines 191-193).

If the SETV AL control command is selected (code 2), a message prompting for
a semaphore number is displayed (lines 56, 57). When it is entered, it is stored at (
the address of the semnum variable (line 58). Next, a message prompts for the
value to which the semaphore is to be set, and it is stored as the arg.val member of
the union (lines 59, 60). Then, the system call is performed (lines 61, 63). Depend-
ing upon success or failure, the program returns the same messages as for GETV AL
above.

8-54 IRIS-4D Programmer's Guide

Semaphores

If the GETPID control command is selected (code 3), the system call is made
immediately since all required arguments are known (lines 64-67), and the PID of
the process performing the last operation is displayed. Depending upon success or
failure, the program returns the same messages as for GETV AL above.

If the GETNCNT control command is selected (code 4), a message prompting
for a semaphore number is displayed (lines 68-72). When entered, it is stored at the
address of the semnum variable (line 73). Then, the system call is performed, and
the number of processes waiting for the semaphore to become greater than its
current value is displayed (lines 74-77). Depending upon success or failure, the
program returns the same messages as for GETV AL above.

If the GET2CNT control command is selected (code 5), a message prompting
[or a semaphore number is displayed (lines 78-81). When it is entered, it is stored
at the address of the semnum variable (line 82). Then the system call is performed,
and the number of processes waiting for the semaphore value to become equal to
zero is displayed (lines 83,86). Depending upon success or failure, the program
returns the same messages as for GETV AL above.

If the GETALL control command is selected (code 6), the program first per­
forms an IPC_ST AT control command to determine the number of semaphores in
the set (lines 88-93). The length variable is set to the number of semaphores in the
set (line 91). Next, the system call is made and, upon success, the arg.array union
member contains the values of the semaphore set (line 96). Now, a loop is entered
which displays each element of the arg.array from zero to one less than the value
oflength (lines 97-103). The semaphores in the set are displayed on a single line,
separated by a space. Depending upon success or failure, the program returns the
same messages as for GETV AL above.

If the SET ALL control command is selected (code 7), the program first per­
forms an IPC_STAT control command to determine the number of semaphores in
the set (lines 106-108). The length variable is set to the number of semaphores in
the set (line 109). Next, the program prompts for the values to be set and enters a
loop which takes values from the keyboard and initializes the arg.array union
member to contain the desired values of the semaphore set (lines 113-119). The
loop puts the first entry into the array position for semaphore number zero and ends
when the semaphore number that is filled in the array equals one less than the value
oflength. The system call is then made (lines 120-122). Depending upon success
or failure, the program returns the same messages as for GETV AL above.

If the IPC_STAT control command is selected (code 8), the system call is per­
formed (line 127), and the status information returned is printed out (lines 128-139);
only the members that can be set are printed out in this program. Note that if the
system call is unsuccessful, the status information of the last successful one is
printed out. In addition, an error message is displayed, and the errno variable is
printed out (lines 191, 192).

lnterprocess Communication 8-55

Semaphores

If the IPC_SET control command is selected (code 9), the program gets the
current status information for the semaphore set identifier specified (lines 143-146).
This is necessary because this example program provides for changing only one
member at a time, and the semetI(2) system call changes all of them. Also, if an
invalid value happened to be stored in the user memory area for one of these (
members, it would cause repetitive failures for this control command until
corrected. The next thing the program does is to prompt for a code corresponding
to the member to be changed (lines 147-153). This code is stored at the address of
the choice variable (line 154). Now, depending upon the member picked, the pro-
gram prompts for the new value (lines 155-178). The value is placed at the address
of the appropriate member in the user memory area data structure, and the system
call is made (line 181). Depending upon success or failure, the program returns the
same messages as for GETV AL above.

If the IPC_RMID control command (code 10) is selected, the system call is
performed (lines 183-185). The semid along with its associated data structure and
semaphore set is removed from the UNIX operating system. Depending upon suc­
cess or failure, the program returns the same messages as for the other control com­
mands.

The example program for the semetl(2) system call follows. It is suggested
that the source program file be named semetl.e and that the executable file be (
named semetl.

(

8-56 IRIS-4D Programmer's Guide

1 /*This is a program to illustrate
2 **the semaphore control, semctl(),
3 **system call capabilities.
4 */

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 # include <sys/types.h>
8
9

include
#include

<sys/ipc.h>
<sys/sem.h>

10 /*start of main C language program*/
11 main ()
12 {
13 extern int ermo;
14 struct semid_ds semid_ds;
15 int c, i, length;
16 int uid, gid, mode;
17 int retm, semid, semnum, cmd, choice;
18 union semun
19 int val;
20 struct semid_ ds *buf;
21 ushort array [25] ;
22 arg;

23 /*Initialize the data structure pointer.*/
24 arg .buf ~ &semid_ ds;

Figure 8-10: semctlO System Call Example (Sheet 1 of 7)

Semaphores

Interprocess Communication 8-57

Semaphores

25 /*Enter the semaphore 10.*/ (26 printf (nEnter the semid = TI) ;

27 scant (n%dn, &semid);

28 /*Choose the desired command.*/
29 printf (n\nEnter the numter for\nn);
30 printf(nthe desired ard:\nn);
31 printf (nGETVAL l\nn);
32 printf (nSETVAL 2\nn);

33 printf (nGE'I'PID 3\nn);
34 printf (nGETNCNT 4\n");
35 printf (nGETZCNT 5\nn);
36 printf (nGETALL 6\nn) ;
37 printf (nSETALL 7\nn);
38 printf (nIPC _STAT 8\nn);
39 printf(nIPC_SET 9\nn) ;
40 printf(nIPC_RMID 10\n");
41 printf (nEntry n) ;

42 scanf (n%d", &end) ;

43 /*Check entries.*/ C 44 printf (n\nsemid =%d, end = %d\n\nn,
45 semid, ard) ;

46 /*Set the command and do the call.*/
47 switch (ard)
48

Figure 8-10: semctlO System Call Example (Sheet 2 of 7)

(

8-58 IRIS-4D Programmer's Guide

49 case 1: /*Get a specified value.*/
50 printf ("\nEnter the semnum = ");
51 scanf ("%d", &semnum);
52 /*Do the system call.*/
53 retrn = semctl (semid, semnum, GETVAL, 0);
54 printf ("\nThe semval = %d\n", retrn);
55 break;
56 case 2: /*Set a specified value.*/
57 printf ("\nEnter the semnum = ");
58
59

scanf("%d", &semnum);
printf("\nEnter the value = ");

60 scanf ("%d", &arg. val) ;
61 /*Do the system call.*/
62 retrn = semctl (semid, semnum, SETVAL, arg. val) ;
63 break;
64 case 3: /*Get the process ID.*/
65 retrn = semctl (semid, 0, GETPID, 0);
66 printf ("\nThe sempid = %d\n", retrn);
67 break;
68 case 4: /*Get the number of processes
69 waiting for the semaphore to
70 become greater than its current
71 value.*/
72 printf ("\nEnter the semnum = ");

73 scanf ("%d", &semnum);
74 /*Do the system call.*/
75 retrn = semctl (semid, semnum, GETNCNT, 0);
76 printf("\nThe semncnt = %d", retrn);
77 break;

Figure 8-10: semctlO System Call Example (Sheet 3 of 7)

Semaphores

Interprocess Communication 8-59

Semaphores

78
79
80
81
82
83

case 5: /*Get the number of processes
waiting for the semaphore

value to become zero.*/
printf ("\nEnter the semnum = ");

scanf("%d", &semnum);
/*Do the system call.*/

84 retrn = semctl (semid, semnum, GETZCNT, 0);
85 printf ("\nThe semzcnt = %d", retrn);
86 break;

87 case 6: /*Get all of the semaphores.*/
88 /*Get the number of seffi3.phores in
89 the semaphore set. * /
90 retrn = semctl(semid, 0, IPC_STAT, arg.buf);
91 length = arg.buf->sem_nsems;
92 if(retrn = -1)
93 goto ERROR;
94 /*Get and print all seffi3.phores in the
95 specified set.*/
96
97
98
99

100
101
102
103
104

retrn = semct I (semid, 0, GETALL, arg. array) ;
for (i = 0; i < length; i++)
{

printf("%d", arg.array[i]);
/*Seperate each

semaphore.*/
printf ("%c", ' ');

break;

Figure 8-10: semctlO System Call Example (Sheet 4 of 7)

8-60 IRIS-4D Programmer's Guide

(

(

(

Semaphores

105 case 7: /*Set all semaphores in the set.*/
106 /*Get the number of semaphores in
107 the set.*/
108 retrn = semct1(semid, 0, IPC_STAT, arg.buf);
109 length = arg.buf->sem_nsems;
110 printf ("Length = %d\n", length);
111 if(retrn == -1)
112 goto ERROR;
113 /*Set the semaphore set values.*/
114 printf("\nEnter each value:\n");
115 forti = 0; i < length; H+)
116 {
117 scanf ("%d", &c);
118 arg. array [il = c;

119
120 /*Do the system call.*/
121 retrn = semctl(semid, 0, SETALL, arg.array);
122 break;

123 case 8: /*Get the status for the semaphore set.*/
125 /*Get and print the current status values.*/
127 retrn = semctl (semid, 0, IPC_STAT, arg .buf);
128 printf ("\nThe USER ID = %d\n",
129 arg.buf->sernJ'E'rm.uid);
130 printf ("The GROUP ID = %d\n",
131 arg .buf->sern J'E'rm.gid) ;
132 printf ("The operation permissions = O%o\n",
133 arg .buf->sern _perm.mode) ;
134 printf ("The number of semaphores in set = %d\n",
135 arg.buf-,>sern_nsems);

136 printf ("The last serrop tirre = %d\n",
137 arg.buf->sern_otirre);

Figure 8-10: semctlO System Call Example (Sheet 5 of 7)

Interprocess Communication 8-61

Semaphores

138
139
140

141
142
143
144
145
146
147

148
149
150
151
152
153
154
155

156

157
158

159
160
161
162

163
164
165
166
167
168
169

printf ("The last change time = %d\n",
arg .buf-> sem_ct ime) ;

break;

case 9: I*Select and change the desired

rrember of the data structure. *1
I*Get the current status values.*1
retrn = semctl(semid, 0, IPC_STAT, arg.buf);
if(retrn = -1)

goto ERROR;
I*Select the rrember to change.*1
printf("\nEnter the number for the\n");

printf("merriber to be changed:\n");
printf ("sem_perm.uid = 1 \n") ;

printf ("sem_perm.gid = 2\n");

printf ("sem_perm.mode 3\n") ;
printf ("Entry = ");
scanf ("%d", &choice);
switch (choice) {

case 1: I*Change the user 10.*1
print f (" \nEnter USER ID = ");
scanf (Il%d" , &uid)i
arg.buf->sem_perm.uid = uid;

printf ("\nUSER ID = %d\n",
arg.buf->sem_perm.uid);

break;

case 2: I*Change the group 10.*1
printf ("\nEnter GROUP 10 = ");
scanf ("%d", &gid);
arg.buf->sem_perm.gid = gid;

printf("\nGROUP 10 = %d\n",
arg.buf->sem_perm.gid);

break;

Figure 8-10: semctlO System Call Example (Sheet 6 of 7)

8-62 IRIS-4D Programmer's Guide

(

(

(

170
171
172
173
174
175
176
177
178
179
180
181

case 3: I*Change the mode portion of
the operation

permissions. * 1
printf ("\nEnter MJOE = ");

scanf ("%0", &rrode);
arg.buf->sem_perm.mode = rrode;
printf("\nMJOE = O%o\n",

arg .buf->sem _perm.rrode) ;
break;

1*00 the change.*1
retm = semctl(semid, 0, IPC_SET, arg.buf);

182 break;
183 case 10: I*Remove the semid along with its
184
185
186

data structure.*1
retrn = semctl (semid, 0, IPC_ RMIO, 0);

Semaphores

187 I*Perform the following if the call is unsuccessful.*1
188 if(retm = -1)
189 {
190 'ERROR:
191 printf ("\n\nThe semctl system call failed! \n");
192 printf ("The error number = %d\n", ermo);
193 exit (0) ;
194
195 printf ("\n\nThe semctl system call was su=essful \n") ;
196 printf ("for semid = %d\n", semid);
197 exit (0);
198

Figure 8-10: semctlO System Call Example (Sheet 7 of7)

Interprocess Communication 8-63

Semaphores

Operations on Semaphores

This section contains a detailed description of using the semop(2) system call
along with an example program which allows all of its capabilities to be exercised.

Using sernop

The synopsis found in the semop(2) entry in the IRIS-4D Programmer's Refer­
ence Manual is as follows:

*include <sys/types.h>
*include <sys/ipc.h>
*include <sys/sem.h>

int semop (sernid, sops, nsops)
int semid;
stroct semb..lf **sops;
unsigned nsops;

The semop(2) system call requires three arguments to be passed to it, and it
returns an integer value.

Upon successful completion, a zero value is returned and when unsuccessful it
returns a-I.

The semid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the semget(2) system call.

The sops argument is a pointer to an array of structures in the user memory
area that contains the following for each semaphore to be changed:

• the semaphore number

• the operation to be performed

• the control command (flags)

8-64 IRIS-4D Programmer's Guide

(

c

Semaphores

The **sops declaration means that a pointer can be initialized to the address of
the array, or the array name can be used since it is the address of the first element of
the array. Sembuf is the tag name of the data structure used as the template for the
structure members in the array; it is located in the #include <sys/sem.h> header
file.

The nsops argument specifies the length of the array (the number of structures
in the array). The maximum size of this array is determined by the SEMOPM sys­
tem tunable parameter. Therefore, a maximum of SEMOPM operations can be per­
formed for each semop(2) system call.

The semaphore number determines the particular semaphore within the set on
which the operation is to be performed.

The operation to be performed is determined by the following:

• a positive integer value means to increment the semaphore value by its value

• a negative integer value means to decrement the semaphore value by its
value

• a value of zero means to test if the semaphore is equal to zero

The following operation commands (flags) can be used:

• IPC _NOW AIT -this operation command can be set for any operations in
the array. The system call will return unsuccessfully without changing any
semaphore values at all if any operation for which IPC_NOW AIT is set can­
not be performed successfully. The system call will be unsuccessful when
trying to decrement a semaphore more than its current value, or when testing
for a semaphore to be equal to zero when it is not.

• SEM_UNDO-this operation command allows any operations in the array
to be undone when any operation in the array is unsuccessful and does not
have the IPC_NOW AIT flag set. That is, the blocked operation waits until it
can perform its operation; and when it and all succeeding operations are suc­
cessful, all operations with the SEM_UNDO flag set are undone.
Remember, no operations are performed on any semaphores in a set until all
operations are successful. Undoing is accomplished by using an array of
adjust values for the operations that are to be undone when the blocked
operation and all subsequent operations are successful.

Interprocess Communication 8-65

Semaphores

Example Program

The example program in this section (Figure 8-11) is a menu driven program
which allows all possible combinations of using the semop(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in the IRIS -4D Pro grammer's Reference Manual
Note that in this program errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self-explanatory. These names make
the program more readable, and this is perfectly legal since the declarations are
local to the program. The variables declared for this program and their purpose are
as follows:

• sembuf[lO]-used as an array buffer (line 14) to contain a maximum of ten
sembuf type structures; ten equals SEMOPM, the maximum number of
operations on a semaphore set for each semop(2) system call

• *sops-used as a pointer (line 14) to sembuf[lO] for the system call and for
accessing the structure members within the array

• rtrn-used to store the return values from the system call

• flags-used to store the code of the IPC_NOWAIT or SEM_UNDO flags
for the semop(2) system call (line 60)

• i-used as a counter (line 32) for initializing the structure members in the
array. and used to print out each structure in the array (line 79)

• nsops-used to specify the number of semaphore operations for the system
call-must be less than or equal to SEMOPM

• semid-used to store the desired semaphore set identifier for the system call

First, the program prompts for a semaphore set identifier that the system call is

(

(

to perform operations on (lines 19-22). Semid is stored at the address of the semid (
variable (line 23).

8-66 IRI5-4D Programmer's Guide

Semaphores

A message is displayed requesting the number of operations to be performed on
this set (lines 25-27). The number of operations is stored at the address of the
nsops variable (line 28).

Next, a loop is entered to initialize the array of structures (lines 30-77). The
semaphore number, operation, and operation command (flags) are entered for each
structure in the array. The number of structures equals the number of semaphore
operations (nsops) to be performed for the system call, so nsops is tested against the
i counter for loop control. Note that sops is used as a pointer to each element
(structure) in the array, and sops is incremented just like i. sops is then used to
point to each member in the structure for setting them.

After the array is initialized, all of its elements are printed out for feedback
(lines 78-85).

The sops pointer is set to the address of the array (lines 86, 87). Sembuf could
be used directly, if desired, instead of sops in the system call.

The system call is made (line 89), and depending upon success or failure, a
corresponding message is displayed. The results of the operation(s) can be viewed
by using the semctlO GET ALL control command.

The example program for the semop(2) system call follows. It is suggested
that the source program file be named semop.c and that the executable file be
named semop.

Interprocess Communication 8-67

Semaphores

1
2
3
4

/*This is a program to illustrate
**the semaphore operations, semop(),
**system call capabilities.
*/

5 /*1nclude necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/sem.h>

10 /*Start of main C language program*/
11 rrain ()
12 {
13 extern int errno;
14 struct sembuf sembuf[10], *sops;
15 char string[];
16 int retrn, flags, sem_num, i, semid;
17 unsigned nsops;
18 sops = sembuf; /*Pointer to array sembuf.*/

19
20
21

/*Enter the serraphore 1D.*/
printf ("\nEnter the semid of\n") ;
printf(nthe semaphore set tci\n");

22 printf ("J:e operated on = ");

23 scanf ("%d", &semid);
24 printf ("\nsemid = %d", semid);

Figure 8-11: semop(2) System Call Example (Sheet 1 of 4)

8-68 IRIS-4D Programmer's Guide

(

(

(

Semaphores

25 /*Enter the number of operations.*/
26 printf ("\nEnter the number of serraphore\n");
27 printf ("operations for this set = ");

28 scanf("%d", &nsops);
29 printf("\nnosops = %d", nsops);

30 /*Initialize the array for the
31 number of operations to be perfonned.*/
32 forti = 0; i < nsops; i++, sops++)
33 {

34 /*This determines the serraphore in
35 the semaphore set.*/
36 printf ("\nEnter the semaphore\n");
37 printf ("number (sem_num) = ");

38 scanf("%d", &sem_num);
39 sops->se~num = sem_num;
40 printf("\nThe sem_num = %d", sops-->sem_num);

41 /*Enter a (-) number to decrement,
42 an unsigned number (no +) to increment,
43 or zero to test for zero. These values
44 are entered into a string and converted
45 to integer values.*/
46 printf ("\nEnter the operation for\n");
47 printf("the semaphore (sem_op) = ");
48 scanf ("%s", string);
49 sops->sem_op = atoi(string);
50 printf ("\nsem_op = %d\n", sops-->sem_op);

Figure 8-11: semop(2) System Call Example (Sheet 2 of 4)

Interprocess Communication 8-69

Semaphores

51 /*Specify the desired f1ags.*/

(52 printf ("\nEnter the corresponding\n");
53 printf ("nUlliJer for the desired\nn) ;
54 printf ("flags: \n") ;
55 printf (''No flags = O\n");
56 printf ("IPC_NCWAIT = l\n");
57 printf ("SEM _UNDO = 2\nn);
58 printf("IPC_NCWAIT and SEM_UNDO = 3'inn);
59 printf(" Flags = n);

60 scanf ("%dn , &flags) ;

61 switch (flags)
62 (

63 case 0:
64 sops->sem_flg = 0;
65 break;
66 case 1:
67 sops->semJ1g = IPC_NCWAIT;
68 break;
69 case 2:
70 sops->sem_flg = SEM_UNDO;

(71 break;
72 case 3:
73 sops->sem_flg = IPCYCWAIT SEM_UNDO;
74 break;
75
76 printf(n\nF1ags = O%o\n", sops->sem_ flg) ;
77

Figure 8-11: semop(2) System Call Example (Sheet 3 of 4)

(

8·70 IRI5-4D Programmer's Guide

Semaphores

78 l*Print out each structure in the array. * 1
79 for(i = 0; i < nsops; H+)
80 (
81 printf (II\nsem _num = %d\n", sembuf [il . sem _ num) ;
82 printf(IIsem_op = %d\n", sembuf(il.sem_op);
83 printf(IIsem_flg = %o\n", sembuf[il.sem_flg);
84 printf ("%C", , ');

85

86 sops = serrbuf; I*Reset the pointer to
87 sembuf[Ol.*1

88 I*Do the semop system call. *1
89 retm = semop(semid, sops, nsops);
90 if(retrn = -1) {
91 printf("\nSemop failed. ");
92 printf("Error = %d\n", ermo);
93
94 else {
95 printf (II\nSemop was successful \n") ;
96 printf(IIfor semid = %d\n", semid);

97 printf(IIValue returned = %d\n", retrn);
98
99

Figure 8-11: semop(2) System Call Example (Sheet 4 of 4)

Interprocess Communication 8-71

Shared Memory

The shared memory type ofIPe allows two or more processes (executing pro­
grams) to share memory and consequently the data contained there. This is done by
allowing processes to set up access to a common virtual memory address space.
This sharing occurs on a segment basis, which is memory management hardware
dependent.

This sharing of memory provides the fastest means of exchanging data between
processes.

A process initially creates a shared memory segment facility using the
shmget(2) system call. Upon creation, this process sets the overall operation per­
missions for the shared memory segment facility, sets its size in bytes, and can
specify that the shared memory segment is for reference only (read-only) upon
attachment. If the memory segment is not specified to be for reference only, all
other processes with appropriate operation permissions can read from or write to the
memory segment.

There are two operations that can be performed on a shared memory segment:

• shmat(2) - shared memory attach

• shmdt(2) - shared memory detach

Shared memory attach allows processes to associate themselves with the shared
memory segment if they have permission. They can then read or write as allowed.

Shared memory detach allows processes to disassociate themselves from a
shared memory segment. Therefore, they lose the ability to read from or write to
the shared memory segment.

The original owner/creator of a shared memory segment can relinquish owner­
ship to another process using the shmctl(2) system call. However, the creating pro­
cess remains the creator until the facility is removed or the system is reinitialized.
Other processes with permission can perform other functions on the shared memory
segment using the shmctI(2) system call.

System calls, which are documented in theIRIS-4D Programmer's Reference
Manual, make these shared memory capabilities available to processes. The calling
process passes arguments to a system call, and the system call either successfully or

(

(

unsuccessfully performs its function. If the system call is successful, it performs its (
function and returns the appropriate information. Otherwise, a known error code ~

(-1) is returned to the process, and the external variable errno is set accordingly.

8·72 IRIS-4D Programmer's Guide

Shared Memory

Using Shared Memory
The sharing of memory between processes occurs on a virtual segment basis.

There is one and only one instance of an individual shared memory segment exist­
ing in the UNIX operating system at any point in time.

Before sharing of memory can be realized, a uniquely identified shared
memory segment and data structure must be created. The unique identifier created
is called the shared memory identifier (shmid); it is used to identify or reference the
associated data structure. The data structure includes the following for each shared
memory segment:

• operation permissions

• segment size

• segment descriptor

• process identification performing last operation

• process identification of creator

• current number of processes attached

• in memory number of processes attached

• last attach time

• last detach time

• last change time

The C Programming Language data structure definition for the shared memory
segment data structure is located in the lusr/include/sys/shm.h header file. It is as
follows:

Interprocess Communication 8-73

Shared Memory

1*
**
**

There is a shared mern id data structure for
each segment in the system.

*1

struct shmid ds {

struct ipc_perm shm_perm; 1* operation permission struct
int shm_segsz; 1* segment size *1
struct region *shm_reg; 1* ptr to region structure *1
char pad[4]; 1* for swap compatibility *1
ushort shm_lpid; 1* pid of last shmop *1
ushort shJn...-cpid; 1* pid of creator *1
ushort shm _ nattch; 1* used only for shminfo *1
ushort shm_cnattch; 1* used only for shminfo *1
time t shm_atime; 1* last shmat time *1
time t shm_dtime; 1* last shmdt time *1
time t shJn...-ctime; 1* last change time *1

} ;

*1

Note that the shm yerm member of this structure uses ipc yerm as a tem­
plate. The breakout for the operation permissions data structure is shown in Figure
8-1.

The ipc yerm data structure is the same for all IPC facilities, and it is located
in the #include <sys/ipc.h> header file. It is shown in the introduction section of
"Messages."

Figure 8-12 is a table that shows the shared memory state information.

8-74 IRIS-4D Programmer's Guide

(

(

(

Shared Memory

Shared Memory States

Lock Bit Swap Bit Allocated Bit Implied State

0 0 0 Unallocated Segment

0 0 1 Incore

0 1 0 Unused

0 1 1 On Disk

1 0 1 Locked Incore

1 1 0 Unused

1 0 0 Unused

1 1 1 Unused

Figure 8-12: Shared Memory State Information

The implied states of Figure 8-12 are as follows:

• Unallocated Segment-the segment associated with this segment descriptor
has not been allocated for use.

• Incore-the shared segment associated with this descriptor has been allo­
cated for use. Therefore, the segment does exist and is currently resident in
memory.

• On Disk-the shared segment associated with this segment descriptor is
currently resident on the swap device.

• Locked Incore-the shared segment associated with this segment descriptor
is currently locked in memory and will not be a candidate for swapping until
the segment is unlocked. Only the super-user may lock and unlock a shared
segment.

• Unused-this state is currently unused and should never be encountered by
the normal user in shared memory handling.

Interprocess Communication 8-75

Shared Memory

The shmget(2) system call is used to perform two tasks when only the
IPC_CREAT flag is set in the shmftg argument that it receives:

• to get a new shmicl and create an associated shared memory segment data
structure for it

• to return an existing shmid that already has an associated shared memory
segment data structure

The task performed is determined by the value of the key argument passed to
the shmget(2) system call. For the first task, if the key is not already in use for an
existing shmid, a new shmid is returned with an associated shared memory seg­
ment data structure created for it provided no system tunable parameters would be
exceeded.

There is also a provision for specifying a key of value zero which is known as
the private key (IPC]RIVATE = 0); when specified, a new shmid is always
returned with an associated shared memory segment data structure created for it
unless a system tunable parameter would be exceeded. When the ipcs command is
performed, the KEY field for the shmid is all zeros.

For the second task, if a shmid exists for the key specified, the value of the
existing shmid is returned. If it is not desired to have an existing shmid returned, a
control command (IPC_EXCL) can be specified (set) in the shmftg argument
passed to the system call. The details of using this system call are discussed in the
"Using shmget" section of this chapter.

When performing the first task, the process that calls shmget becomes the
owner/creator, and the associated data structure is initialized accordingly.
Remember, ownership can be changed, but the creating process always remains the
creator; see the "Controlling Shared Memory" section in this chapter. The creator
of the shared memory segment also determines the initial operation permissions for
it.

Once a uniquely identified shared memory segment data structure is created,
shared memory segment operations [shmop()] and control [shmctl(2)] can be used.

Shared memory segment operations consist of attaching and detaching shared
memory segments. System calls are provided for each of these operations; they are
shmat(2) and shmdt(2). Refer to the "Operations for Shared Memory" section in
this chapter for details of these system calls.

(

(

Shared memory segment control is done by using the shmctl(2) system call. It (
permits you to control the shared memory facility in the following ways:

8-76 IRIS-4D Programmer's Guide

Shared Memory

• to determine the associated data structure status for a shared memory seg­
ment (shmid)

• to change operation permissions for a shared memory segment

• to remove a particular shmid from the UNIX operating system along with
its associated shared memory segment data structure

• to lock a shared memory segment in memory

• to unlock a shared memory segment

Refer to the "Controlling Shared Memory" section in this chapter for details of
the shmctl(2) system call.

Getting Shared Memory Segments

This section gives a detailed description of using the shmget(2) system call
along with an example program illustrating its use.

Using shmget

The synopsis found in the shmget(2) entry in the IRIS-4D Programmer's
Reference Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget (key, size, shmflg)
key_t key;
int size, shmflg;

All of these include files are located in the lusr/include/sys directory of the
UNIX operating system. The following line in the synopsis:

int shmget (key, size, shmflg)

informs you that shmget(2) is a function with three formal arguments that returns
an integer type value. upon successful completion (shmid). The next two lines:

Interprocess Communication 8·77

Shared Memory

key_t key;

int size, shmflg;

declare the types of the formal arguments. The variable key _t is declared by a
typedef in the types.h header file to be an integer.

The integer returned from this function upon successful completion is the
shared memory identifier (shmid) that was discussed earlier.

As declared, the process calling the shmget(2) system call must supply three
arguments to be passed to the formal key, size, and shmflg arguments.

A new shmid with an associated shared memory data structure is provided if
either

• key is equal to IPC]RIV ATE,

or

• key is passed a unique hexadecimal integer, and shmflg ANDed with
IPC_CREAT is TRUE.

The value passed to the shmflg argument must be an integer type octal value
and will specify the following:

• access permissions

• execution modes

• control fields (commands)

Access permissions determine the read/write attributes and execution modes
determine the user/group/other attributes of the shmflg argument. They are collec­
ti vely referred to as "operation permissions." Figure 8-13 reflects the numeric
values (expressed in octal notation) for the valid operation permissions codes.

Operation Permissions

Read by User
Write by User
Read by Group
Write by Group
Read by Others
Write by Others

Figure 8-13: Operation Permissions Codes

8-78 IRIS-4D Programmer's Guide

Octal Value

00400
00200
00040
00020
00004
00002

(

(

c

Shared Memory

A specific octal value is derived by adding the octal values for the operation pennis­
sions desired. That is, if read by user and read/write by others is desired, the code
value would be 00406 (00400 plus (0006). There are constants located in the
shm.h header file which can be used for the user (OWNER). They are as follows:

SHM R

SHM W

0400
0200

Control commands are predefined constants (represented by all uppercase
letters). Figure 8-14 contains the names of the constants that apply to the shmgetO
system call along with their values. They are also referred to as flags and are
defined in the ipc.h header file.

Control Command

Figure 8-14: Control Commands (Flags)

Value
0001000
0002000

The value for shmflg is, therefore, a combination of operation pennissions and
control commands. After detennining the value for the operation pennissions as
previously described, the desired flag(s) can be specified. This is accomplished by
bitwise ORing (I) them with the operation pennissions; the bit positions and values
for the control commands in relation to those of the operation permissions make this
possible. It is illustrated as follows:

IPC_CREAT
1 ORed by User

shmflg =

Octal Value

01000
00400

01400

Binary Value

o 000 00 1 000 000 000
o 000 000 100 000 000

o 000 00 1 100 000 000

The shmflg value can be easily set by using the names of the flags in conjunc­
tion with the octal operation permissions value:

shmid = shmget (key, size, (IPC_CREAT 0400));

shmid = shmget (key, size, (IPC_CREAT IPC EXCL 1 0400));

Interprocess Communication 8·79

Shared Memory

As specified by the shmget(2) entry in theIRIS-4D Programmer's Reference
Manual, success or failure of this system call depends upon the argument values for
key, size, and shmftg or system tunable parameters. The system call will attempt to
return a new shmid if one of the following conditions is true:

• Key is equal to IPC]RIV A TE (0).

• Key does not already have a shmid associated with it, and (shmOg &
IPC_CREAT) is "true" (not zero).

The key argument can be set to IPC_PRIVATE in the following ways:

shmid = shrrget (IPC_PRIVA1E, size, shrnflg);

or

shmid = shrrget (0 , size, shrnflg);

This alone will cause the system call to be attempted because it satisfies the first
condition specified. Exceeding the SHMMNI system tunable parameter always
causes a failure. The SHMMNI system tunable parameter determines the maximum
number of unique shared memory segments (shmids) in the UNIX operating sys­
tem.

(

The second condition is satisfied if the value for key is not already associated (
with a shmid and the bitwise ANDing of shmOg and IPC_CREAT is "true" (not
zero). This means that the key is unique (not in use) within the UNIX operating
system for this facility type and that the IPC_CREAT flag is set (shmOg I
IPC_CREAT). The bitwise ANDing (&), which is the logical way of testing if a
flag is set, is illustrated as follows:

shmflg = x 1 x x x (x = irrrnaterial)
& IPC CREAT = 01000

result = 0 1 0 0 0 (not zero)

Because the result is not zero, the flag is set or "true." SHMMNI applies here also,
just as for condition one.

8-80 IRIS-4D Programmer's Guide

(

Shared Memory

IPC_EXCL is another control command used in conjunction with IPC_CREAT
to exclusively have the system call fail if, and only if, a shmid exists for the
specified key provided. This is necessary to prevent the process from thinking that
it has received a new (unique) shmid when it has not. In other words, when both
IPC_CREAT and IPC_EXCL are specified, a unique shmid is returned if the sys­
tem call is successful. Any value for shmflg returns a new shmid if the key equals
zero (IPC_PRIVATE).

The system call will fail if the value for the size argument is less than
SHMMIN or greater than SHMMAX. These tunable parameters specify the
minimum and maximum shared memory segment sizes.

Refer to the shmget(2) manual page for specific associated data structure ini­
tialization for successful completion. The specific failure conditions with error
names are contained there also.

Example Program

The example program in this section (Figure 8-15) is a menu driven program
which allows all possible combinations of using the shmget(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 4-7) by including the required header files as
specified by the shmget(2) entry in theIRIS-4D Programmer's Reference Manual.
Note that the errno.h header file is included as opposed to declaring errno as an
external variable; either method will work.

Variable names have been chosen to be as close as possible to those in the
synopsis for the system call. Their declarations are self-explanatory. These names
make the program more readable, and this is perfectly legal since they are local to
the program. The variables declared for this program and their purposes are as fol­
lows:

• key-used to pass the value for the desired key

• opperm-used to store the desired operation permissions

• flags-used to store the desired control commands (flags)

• opperm _flags-used to store the combination from the logical ORing of the
opperm and flags variables; it is then used in the system call to pass the
shmflg argument

Interprocess Communication 8·81

Shared Memory

• shmid-used for returning the message queue identification number for a
successful system call or the error code (-1) for an unsuccessful one

• size-used to specify the shared memory segment size.

The program begins by prompting for a hexadecimal key, an octal operation (
permissions code, and finally for the control command combinations (flags) which
are selected from a menu (lines 14-31). All possible combinations are allowed even
though they might not be viable. This allows observing the errors for illegal combi­
nations.

Next, the menu selection for the flags is combined with the operation permis­
sions, and the result is stored at the address of the opperm Jlags variable (lines 35-
50).

A display then prompts for the size of the shared memory segment, and it is
stored at the address of the size variable (lines 51-54).

The system call is made next, and the result is stored at the address of the
shmid variable (line 56).

Since the shmid variable now contains a valid message queue identifier or the
error code (-1), it is tested to see if an error occurred (line 58). If shmid equals -1,
a message indicates that an error resulted and the external errno variable is
displayed (lines 60, 61).

If no error occurred, the returned shared memory segment identifier is
displayed (line 65).

The example program for the shmget(2) system call follows. It is suggested
that the source program file be named shmget.c and that the executable file be
named shmget.

When compiling C programs that use floating point operations, the -f option
should be used on the cc command line. If this option is not used, the program will
compile successfully, but when the program is executed it will fail.

8·82 IRIS-4D Programmer's Guide

(

(

1 /*This is a program to illustrate
2 **the shared rrernory get, shrrget (),
3 **system call capabilities.*/

4
5
6
7

#inc1ude
#include
#include
include

<sys/types .h>
<sys/ipc.h>
<sys/shm.h>
<errno.h>

8 /*Start of main C language program*/
9 main ()

10 (

Shared Memory

11
12

key_t key; /*declare as long integer*/
int opperm, flags;

13 int shmid, size, opperm_flags;
14 /*Enter the desired key*/
15 printf ("Enter the desired key in hex = ");

16 scanf("%x", &key);

17 /*Enter the desired octal operation
18 permissions.*/
19 printf ("\nEnter the operation\n");
20 printf ("permissions in octal = ");

21 scanf("%o", &opperm);

Figure 8-15: shmget(2) System Call Example (Sheet 1 of 3)

Interprocess Communication 8-83

Shared Memory

22
23
24
25
26
27
28
29
30

/*Set the desired flags.*/
printf(n\nEnter corresponding number to\nn);
printf(nset the desired flags:\nn);
printf(nNo flags = O\nn);
printf (nIPC _ CREAT

printf(nIPC_EXCL

printf(nIPC_CREAT and IPC_EXCL
print f (n Flags

/*Get the flag(s) to be set.*/

= l\nn);

= 2\nn);
= 3\nn);
= iI);

31 scanf (n%dn, &flags);

32 /*Check the values.*/
33 printf ("\nkey =Ox%x, oppenn = 0%0, flags = O%o\nn,
34 key, opperm, flags);

35
36
37
38
39
40
41
42

43

/*Incorporate the control fields (flags) with
the operation pennissions*/

switch (flags)
{

case 0: /*No flags are to be set. * /

oppenn _flags = (oppenn I 0);

break;
case 1: /*Set the IPC_CREAT flag.*/

oppenn_flags = (oppenn I IPC_CREAT);
44 break;
45 case 2: /*Set the IPC_EXCL flag.*/
46 oppenn_flags = (oppenn I IPC_EXCL);

47 break;
48 case 3:, /*Set the IPC CREAT and IPC EXCL flags. * /
49 oppenn_flags = (oppenn I IPC CREAT IPC_EXCL);

50

Figure 8-15: shmget(2) System Call Example (Sheet 2 of 3)

8·84 IRIS·4D Programmer's Guide

(

(

(

Shared Memory

51 /*Get the size of the segment in bytes. * /
52 printf ("\nEnter the segment");
53 printf ("\nsize in bytes = ");

54 scanf ("%d", &size);

55 /*Call the shmget system call.*/
56 shmid = shmget (key, size, oppe:rm_flags);

57 /*Perfo:rm the following if the call is unsuccessful. * /
58 if(shmid = -1)
59 {
60 printf ("\nThe shmget system call failed!\n");
61 printf ("The error number = %d\n", ermo);
62
63 /*Retum the shmid upon successful completion.*/
64 else
65 printf ("\nThe shmid = %d\n", shmid);
66 exit (0);
67

Figure 8-15: shmget(2) System Call Example (Sheet 3 of 3)

Controlltng Shared Memory
This section gives a detailed description of using the shmctl(2) system call

along with an example program which allows all of its capabilities to be exercised.

Using shmctl

The synopsis found in the shmctl(2) entry in the IRIS-4D Programmer's Refer­
ence Manual is as follows:

Interprocess Communication 8·85

Shared Memory

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (shmid, and, buf)
int shmid, and;
struct shmid_ds *buf;

The shmctl(2) system call requires three arguments to be passed to it, and
shmctl(2) returns an integer value.

Upon successful completion, a zero value is returned; and when unsuccessful,
-shmctlO returns a -l.

The shmid variable must be a valid, non-negative, integer value. In other
words. it must have already been created by using the shmget(2) system call.

(

The cmd argument can be replaced by one of following control commands (
(flags):

• IPC_STAT-return the status information contained in the associated data
structure for the specified shmid and place it in the data structure pointed to
by the * bur pointer in the user memory area

• IPC_SET-for the specified shmid, set the effective user and group
identification, and operation permissions

• IPC_RMID-remove the specified shmid along with its associated shared
memory segment data structure

• SHM_LOCK-Iock the specified shared memory segment in memory, must
be super-user

• SHM_UNLOCK-unlock the shared memory segment from memory, must
be super-user.

A process must have an effective user identification of OWNER/CREATOR or
super-user to perform an IPC_SET or IPC_RMID control command. Only the (
super-user can perform a SHM_LOCK or SHM_ UNLOCK control command. A
process must have read permission to perform the IPC_STAT control command.

8-86 IRIS·4D Programmer's Guide

Shared Memory

The details of this system call are discussed in the example program for it. If
you have problems understanding the logic manipulations in this program, read the
"Using shmget" section of this chapter; it goes into more detail than what would be
practical to do for every system call.

Example Program

The example program in this section (Figure 8-16) is a menu driven program
which allow~ all possible combinations of using the shmctl(2) system call to be
exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as
specified by the shmctJ(2) entry in the IRIS-4D Programmer's Reference Manual.
Note in this program that errno is declared as an external variable, and therefore,
the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis for the system call. Their declarations are self-explanatory.
These names make the program more readable, and it is perfectly legal since they
are local to the program. The variables declared for this program and their purposes
are as follows:

• uid-used to store the IPC_SET value for the effective user identification

• gid-used to store the IPC_SET value for the effective group identification

• mode-used to store the IPC_SET value for the operation permissions

• rtrn-used to store the return integer value from the system call

• shmid-used to store and pass the shared memory segment identifier to the
system call

• command-used to store the code for the desired control command so that
subsequent processing can be performed on it

• choice-used to determine which member for the IPC_SET control com­
mand that is to be changed

• shmid_ds-used to receive the specified shared memory segment
identifier's data structure when an IPC_STAT control command is per­
fornled

Interprocess Communication 8-87

Shared Memory

• *buf-a pointer passed to the system call which locates the data structure in
the user memory area where the !PC_STAT control command is to place its
return values or where the !PC_SET command gets the values to set.

Note that the shmid _ ds data stmcture in this program (line 16) uses the data (
structure located in the shm.h header file of the same name as a template for its .
declaration. This is a perfect example of the advantage of local variables.

The next important thing to observe is that although the *bufpointer is
declared to be a pointer to a data structure of the shmid _ ds type, it must also be ini­
tialized to contain the address of the user memory area data structure (line 17).

Now that all of the required declarations have been explained for this program,
this is how it works.

First, the program prompts for a valid shared memory segment identifier which
is stored at the address of the shmid variable (lines 18-20). This is required for
every shmctl(2) system call.

Then, the code for the desired control command must be entered (lines 21-29),
and it is stored at the address of the command variable. The code is tested to deter­
mine the control command for subsequent processing.

If the !PC_STAT control command is selected (code 1), the system call is per­
formed (lines 39, 40) and the status information returned is printed out (lines 41-
71). Note that if the system call is unsuccessful (line 146), the status information of
the last successful call is printed out. In addition, an error message is displayed and
the errno variable is printed out (lines 148, 149). If the system call is successful, a
message indicates this along with the shared memory segment identifier used (lines
151-154).

If the !PC_SET control command is selected (code 2), the first thing done is to
get the current status information for the message queue identifier specified (lines
90-92). This is necessary because this example program provides for changing only
one member at a time, and the system call changes all of them. Also, if an invalid
value happened to be stored in the user memory area for one of these members, it
would cause repetitive failures for this control command until corrected. The next
thing the program does is to prompt for a code corresponding to the member to be
changed (lines 93-98). This code is stored at the address of the choice variable (line
99). Now, depending upon the member picked, the program prompts for the new
value (lines 105-127). The value is placed at the address of the appropriate member
in the user memory area data structure, and the system call is made (lines 128-130).
Depending upon success or failure, the program returns the same messages as for
!PC_STAT above.

8-88 IRIS-4D Programmer's Guide

(

(

Shared Memory

If the IPC_RMID control command (code 3) is selected, the system call is per­
formed (lines 132-135), and the shmid along with its associated message queue and
data structure are removed from the UNIX operating system. Note that the *buf
pointer is not required as an argument to perform this control command and its
value can be zero or NULL. Depending upon the success or failure, the program
returns the same messages as for the other control commands.

If the SHM_LOCK control command (code 4) is selected, the system call is
performed (lines 137,138). Depending upon the success or failure, the program
returns the same messages as for the other control commands.

If the SHM_UNLOCK control command (code 5) is selected, the system call is
performed (lines 140-142). Depending upon the success or failure, the program
returns the same messages as for the other control commands.

The example program for the shmctI(2) system call follows. It is suggested
that the source program file be named shmctl.c and that the executable file be
named shmctl.

When compiling C programs that use floating point operations, the -f option
should be used on the cc command line. If this option is not used, the program will
compile successfully, but when the program is executed it will fail.

Interprocess Communication 8-89

Shared Memory

1
2
3
4

/*This is a program to illustrate
**the shared memory control, shmctl(),
**system call capabilities.
*/

5 /*Include necessary header files. °k/
6
7

8

9

#include
#include
#include
#include

<stdio.h>
<sys/types.h>
<sys/ipc.h>
<sys/shm.h>

10 /*Start of main C language program* /
11 main ()
12 {
13 extern int erma;
14 int uid, gid, mode;
15 int rtm, shmid, comrrand, choice;
16 struct shmid_ ds shmid_ ds, *buf;
17 buf = &shmi~ ds;

18
19
20
21

/*Get the shmid, and command.*/
printf("Enter the shmid = ");
scanf ("%d", &s~d);
printf ("\nEnter the numJcer for\n");

22 printf("the desired comrrand:\n");

Figure 8-16: shmctl(2) System Call Example (Sheet 1 of 6)

8-90 IRIS-4D Programmer's Guide

c

(

(

23
24
25
26
27
28

printf ("IPC _STAT
printf("IPC_SET
printf ("IPC _ RMID

printf ("SHJ"L LCX:K

printf ("SHM _ tJNLCX::K

printf ("Entry
29 scanf ("%d", &corrmand);

30 /*Check the values. * /

l\n") ;
2\n");
3\n");
4\n");
5\n");
IT);

31 printf ("\nslmlid =%d, corrmand = %d\n",
32 shmid, command);

33 switch (command)
34 {

case 1: /*Use shmctl() to duplicate
the data structure for

Shared Memory

35
36
37
38

39
40

41
42
43
44
45
46
47
48
49
50
51

slmlid in the slmlid_ds area pointed
to by buf and then print it out.*/

rtrn = shmctl (slmlid, IP C_S TAT ,
buf) ;

printf ("\nThe USER ID = %d\n",
buf->shm_perm.uid) ;

printf ("The GROUP ID = %d\n",
buf->shm_perm.gid);

printf ("The creator's ID = %d\n",
buf->shm_perm.cuid);

printf ("The creator's group ID = %d\n",
buf->shm_perm.cgid);

printf ("The operation permissions = O%o\n",
buf->shm_perm.mode);

printf ("The slot usage sequence\n");

Figure 8-16: shmctl(2) System Call Example (Sheet 2 of 6)

Interprocess Communication 8-91

Shared Memory

52 printf ("number = O%x\n", (53 buf->shrn _perm. seq) ;
54 printf ("The key= O%x\n",
55 buf->shrn_perm.key) ;
56 printf ("The segrrent size = %d\n",
57 buf->shrn_segsz);
58 printf ("The pid of last shrnop = %d\n",
59 buf->shrn_lpid) ;
60 printf ("The pid of creator = %d\n",
61 buf->s~ cpid) ;
62 printf ("The current # attached = %d\n",
63 buf->shrn_nattch);
64 printf("The in rremory # attached = %d\n",
65 buf->shrn_cnattach);
66 printf("The last shrre.t tirre = %d\n",
67 buf->shrn_atirre);
68 printf ("The last shndt t irre = %d\n",
69 buf->s~dtirre);

70 printf ("The last change time = %d\n",
71 buf->shrn_ctirre);
72 break; (-

/* Lines 73 - 87 deleted */

Figure 8-16: shmctl(2) System Call Example (Sheet 3 of 6)

(

8-92 IRIS-4D Programmer's Guide

88
89

90
91
92

93
94

95
96

97
98
99

100
101
102
103
104

Shared Memory

case 2: /*Select and change the desired
member(s) of the data structure.*/

/*Get the original data for this shmid
data structure first.*/

rtrn = shmctl (shrnid, IPC_STAT, buf);

printf ("\nEnter the numter for the\n") ;
printf("rrember to be changed:\n");
printf ("shm ..J=€nn. uid = 1 \n");
printf ("shm ..J=€nn.gid = 2\n");
printf("shm_penn.IIDde = 3\n");
printf ("Entry = ");

scanf("%d", &choioe);
/*Only one choice is allowed per

pass as an illegal entry will
cause repetitive failures until

shrnid_ds is updated with
IPC_ STAT. * /

Figure 8-16: shmctl(2) System Call Example (Sheet 4 of 6)

Interprocess Communication 8-93

Shared Memory

105
106
107
108
109
110
111
112

113
114
115
116
117
118
119

120
121
122
123
124
125
126
127
128
129
130
131

switch (choice) {
case 1:

printf ("\nEnter USER ID = ");

scanf ("%d" I' &uid);
buf->shm_perm.uid = uid;
printf ("\nUSER ID = %d\n",

buf->shm_perm.uid) ;
break;

case 2:
printf ("\nEnter GROUP ID = ");

scanf ("%d", &gid);
buf->shm_perm.gid = gid;
printf ("\nGROUP ID = %d\n",

buf->shm_perm.gid) ;
break;

case 3:

}

printf ("\nEnter MJDE = ");

scanf("%o", &mode);
buf->shm_perm.mode = mode;
printf("\nMJDE = O%o\n",

buf->shm J>erm.mode) ;
break;

/*Do the change.*/
rtrn = shmctl (shmid, IPC _SET,

buf);
break;

Figure 8-16: shmctlO System Call Example (Sheet 5 of 6)

8-94 IRIS-4D Programmer's Guide

(

(

(

Shared Memory

132 case 3: /*Rernove the shmid along with its
133 associated
134 data structure.*/
135 rtrn = shmctl (shmid, IPC_RMID, NULL);
136 break;

137 case 4: /*Lock the shared memory segrrent* /
138 rtrn = shmctl (shmid, SHM_ LCCK, NULL);
139 break;
140 case 5: /*Unlock the shared rrerrory
141 segment.*/
142 rtrn = shmctl (shmid, SHM_UNLOCK, NULL);
143 break;
144
145 /*Perform the following if the call is unsuccessful.*/
146 if(rtrn = -1)
147 {
148 printf (n\nThe shmctl system call failed!\nn);
149 printf (nThe error number = %d\nn, errno);
150
151 /*Return the shmid upon successful completion.*/
152 else
153 printf (n\nShmctl was successful for shmid = %d\nn,
154 shmid);
155 exit (0);
156

Figure 8-16: sbmctl(2) System Call Example (Sheet 6 of 6)

Interprocess Communication 8-95

Shared Memory

Operations for Shared Memory
This section gives a detailed description of using the shmat(2) and shmdt(2)

system calls, along with an example program which allows all of their capabilities (-
to be exercised.

Using shmop

The synopsis found in the shmop(2) entry in the IRIS4D Programmer's Refer­
ence Manual is as follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (shmid, shmaddr, shmflg)
int shmid;
char *shmaddr;
int shmflg;

int shmdt (shmaddr)
char *shmaddr;

Attaching a Shared Memory Segment

The shmat(2) system call requires three arguments to be passed to it, and it
returns a character pointer value.

The system call can be cast to return an integer value. Upon successful com­
pletion, this value will be the address in core memory where the process is attached
to the shared memory segment and when unsuccessful it will be a-I.

The shmid argument must be a valid, non-negative, integer value. In other
words, it must have already been created by using the shmget(2) system call.

The shmaddr argument can be zero or user supplied when passed to the
shmat(2) system call. If it is zero, the UNIX operating system picks the address of
where the shared memory segment will be attached. If it is user supplied, the
address must be a valid address that the UNIX operating system would pick. The
following illustrates some typical address ranges:

8-96 IRI5-4D Programmer's Guide

----- ---- -----

(

OxcOOcOOOO
OxcOOeOOOO
OxcOlOOOOO
Oxc0120000

Shared Memory

Note that these addresses are in chunks of 20,000 hexadecimal. It would be
wise to let the operating system pick addresses so as to improve portability.

The shmflg argument is used to pass the SHM_RND and SHM_RDONL Y
flags to the shmatO system call.

Further details are discussed in the example program for shmopO. If you have
problems understanding the logic manipulations in this program, read the "Using
shmget" section of this chapter; it goes into more detail than what would be practi­
cal to do for every system call.

Detaching Shared Memory Segments

The shmdt(2) system call requires one argument to be passed to it, and
shmdt(2) returns an integer value.

Upon successful completion, zero is returned; and when unsuccessful,
shmdt(2) returns a-I.

Further details of this system call are discussed in the example program. If you
have problems understanding the logic manipulations in this program, read the
"Using shmget" section of this chapter; it goes into more detail than what would be
practical to do for every system call.

Example Program
The example program in this section (Figure 8-17) is a menu driven program

which allows all possible combinations of using the shmat(2) and shmdt(2) system
calls to be exercised.

From studying this program, you can observe the method of passing arguments
and receiving return values. The user-written program requirements are pointed
out.

This program begins (lines 5-9) by including the required header files as
specified by the shmop(2) entry in theIRIS-4D Programmer's Reference Manual.
Note that in this program that errno is declared as an external variable, and there­
fore, the errno.h header file does not have to be included.

Variable and structure names have been chosen to be as close as possible to
those in the synopsis. Their declarations are self-explanatory. These names make
the program more readable, and this is perfectly legal since they are local to the pro­
gram. The variables declared for this program and their purposes are as follows:

Interprocess Communication 8·97

Shared Memory

• f1ag~used to store the codes of SHM_RND or SHM_RDONL Y for the
shmat(2) system call

• addr-used to store the address of the shared memory segment for the
shmat(2) and shmdt(2) system calls

• i-used as a loop counter for attaching and detaching

• attach-used to store the desired number of attach operations

• shmid-used to store and pass the desired shared memory segment
identifier

• shmflg-used to pass the value of flags to the shmat(2) system call

• retrn-used to store the return values from both system calls

• detach-used to store the desired number of detach operations

This example program combines both the shmat(2) and shmdt(2) system calls.
The program prompts for the number of attachments and enters a loop until they are
done for the specified shared memory identifiers. Then, the program prompts for
the number of detachments to be performed and enters a loop until they are done for
the specified shared memory segment addresses. .

shmat (-
The program prompts for the number of attachments to be performed, and the

value is stored at the address of the attach variable (lines 17-21).

A loop is entered using the attach variable and the i counter (lines 23-70) to
perform the specified number of attachments.

In this loop, the program prompts for a shared memory segment identifier (lines
24-27) and it is stored at the address of the shmid variable (line 28). Next, the pro­
gram prompts for the address where the segment is to be attached (lines 30-34), and
it is stored at the address of the addr variable (line 35). Then, the program prompts
for .the desired flags to be used for the attachment (lines 37-44), and the code
representing the flags is stored at the address of the flags variable (line 45). The
flags variable is tested to determine the code to be stored for the shmflg variable
used to pass them to the shmat(2) system call (lines 46-57). The system call is
made (line 60). If successful, a message stating so is displayed along with the
attach address (lines 66-68). If unsuccessful, a message stating so is displayed and
the error code is displayed (lines 62, 63). The loop then continues until it finishes.

8·98 IRIS·4D Programmer's Guide

(

Shared Memory

shmdt
After the attach loop completes, the program prompts for the number of detach

operations to be performed (lines 71-75), and the value is stored at the address of
the detach variable (line 76).

A loop is entered using the detach variable and the i counter (lines 78-95) to
perform the specified number of detachments.

In this loop, the program prompts for the address of the shared memory seg­
ment to be detached (lines 79-83), and it is stored at the address of the addr vari­
able (line 84). Then, the shmdt(2) system call is performed (line 87). If successful,
a message stating so is displayed along with the address that the segment was
detached from (lines 92,93). If unsuccessful, the error number is displayed (line
89). The loop continues until it finishes.

The example program for the shmop(2) system calls follows. It is suggested
that the program be put into a source file called shmop.c and then into an execut­
able file called shmop.

When compiling C programs that use floating point operations, the -f option
should be used on the cc command line. If this option is not used, the program will
compile successfully, but when the program is executed it will fail.

Interprocess Communication 8-99

Shared Memory

1
2
3
4

/*This is a program to illustrate
**the shared meJl'Ory operations, shmopO,
**system call capabilities.
*/

5 /*Include necessary header files.*/
6 #include <stdio.h>
7 #include <sys/types.h>
8 #include <sys/ipc.h>
9 #include <sys/shm.h>

10 /*Start of main C language program*/
11 main 0
12 {
13 extem int ermo;
14 int flags, addr, i, attach;
15 int shmid, shmflg, retm, detach;

16
17
18
19
20

/*Loop for attachments by this process.*/
printf("Enter the number of\n");
printf("attachments for this\n");
printf("process (1-4). \n");
printf(1I Attachments = ");

21 scanf ("%d", &attach);
22 printf ("Number of attaches = %d\n", attach);

Figure 8-17: shmopO System Call Example (Sheet 1 of 4)

8-100 IRIS-4D Programmer's Guide

(

(

c

Shared Memory

23 for(i = 1; i <= attach; i++) {
24 /*Enter the shared memory ID.*/
25 printf ("\nEnter the shmid of\n");
26 printf("the shared memory segment to\n");
27
28
29

30
31

32
33
34
35
36

37
38
39

40
41
42
43
44
4S

printf ("lee operated on = ");
scanf ("%d", &shmid);
printf("\nshmid = %d\n", shmid);

/*Enter the value for shmaddr.*/
printf ("\nEnter the value for\n");
printf ("the shared memory address\n");
printf("in hexadecimal:\n");
printf (" shmaddr = ");
scanf ("%x", &addr);
printf ("The desired address = Ox%x\n", addr);

/*Specify the desired flags.*/
printf ("\nEnter the corresponding\n");
printf ("number for the desired\n");
printf ("flags: \n");
printf("SHM_RND = l\n");
printf ("SHM RDONLY = 2\n");
printf("SHM_RND and SHM~ONLY = 3\n");
printf(" Flags = ");
scanf("%d", &flags);

Figure 8-17: shmopO System Call Example (Sheet 2 of 4)

Interprocess Communication 8-101

Shared Memory

46
47
48

49
50
51
52
53
54
55
56
57
58

59
60
61
62
63

64
65
66
67
68
69
70

71
72

73
74
75

switch (flags)
{

case 1:
shmf1g = SHM_RND;
break.;

case 2:
shmflg = SHM_ROONLY;
break.;

case 3:
shmflg = SHM _ RND SHM _ ROONLY;
break.;

printf ("\nFlags = 0%0 \n", shmflg);

/*00 the shmat system call.*/
retrn = (int) shmat (shmid, addr, shmflg);
if(retrn = -1) {

printf ("\nShmat failed. ") ;
printf ("Error = %d\n", ermo);

else {
printf ("\nShmat was sucoessful\n");
printf (" for shmid = %d\n", shmid);
printf ("The address = Ox%x\n", retm);

/*Loop for detachments by this process.*/
printf("Enter the nunber of\n");
printf("detachments for this\n");
printf("process (1-4). \n");
printf(" Detachments = ");

Figure 8-17: shmopO System Call Example (Sheet 3 of 4)

8-102 IRIS-4D Programmer's Guide

(

c

Shared Memory

76 scanf(n%dn, &detach);
77 printf (nNumber of attaches = %d\n", detach);
78 for(i = 1; i <= detach; i++) (

79 l*Enter the value for shmaddr. * 1
80 printf(n\nEnter the value for\nn);
81 printf(nthe shared memory address\nn);
82 printf(nin hexadecimal:\nn);
83
84
85

86
87
88
89
90
91
92
93

94
95
96

printf(n Shmaddr = n);
scanf (n%xn, &addr);
printf (nThe desired address = Ox%x\nn, addr);

1*00 the shmdt system call.*1
retrn = (int)shmdt(addr);
if(retm == -1) {

printf (''Error = %d\nn, ermo);

else {
printf (n\nShmdt was successful \nn) ;
printf (nfor address = O%x\nn, addr);

Figure 8-17: shmopO System Call Example (Sheet 4 of 4)

Interprocess Communication 8-103

(

(

(,

The Terminal Information Utilities Package

Screen management programs are a common component of many commercial
computer applications. These programs handle input and output at a video display
terminal. A screen program might move a cursor, print a menu, divide a terminal
screen into windows, or draw a display on the screen to help users enter and retrieve
information from a database.

This tutorial explains how to use the Terminal Information Utilities package,
commonly called cursesiterminfo, to write screen management programs on a
UNIX system. This package includes a library of C routines, a database, and a set
of UNIX system support tools. To start you writing screen management programs
as soon as possible, the tutorial does not attempt to cover every part of the package.
For instance, it covers only the most frequently used routines and then points you to
curses(3X) and terminfo(4) in the IRIS-4D Programmer's Reference Manual for
more information. Keep the manual close at hand; you'll find it invaluable when
you want to know more about one of these routines or about other routines not dis­
cussed here.

Because the routines are compiled C functions, you should be familiar with the
C programming language before using curses/terminfo. You should also be fami­
liar with the UNIX systemiC language standard I/O package (see "System Calls and
Subroutines" and "Input/Output" in Chapter 2 and stdio(3S». With that knowledge
and an appreciation for the UNIX philosophy of building on the work of others, you
can design screen management programs for many purposes.

This chapter has five sections:

• Overview

This section briefly describes curses, terminfo, and the other components of
the Terminal Information Utilities package.

• Working with curses Routines

This section describes the basic routines making up the curses(3X) library.
It covers the routines for writing to a screen, reading from a screen, and
building windows. It also covers routines for more advanced screen
management programs that draw line graphics, use a terminal's soft labels,
and work with more than one terminal at the same time. Many examples are
included to show the effect of using these routines.

• Working with terminfo Routines

This section describes the routines in the curses library that deal directly
with the terminfo database to handle certain terminal capabilities, such as
programming function keys.

curseS/terminfo 9-1

The Terminal Information Utilities Package

• Working with the terminfo Database

This section describes the terminfo database, related support tools, and their
relationship to the curses library.

• curses Program Examples

This section includes six programs that illustrate uses of curses routines.

What is curses?
curses(3X) is the library of routines that you use to write screen management

programs on the UNIX system. The routines are C functions and macros; many of
them resemble routines in the standard C library. For example, there's a routine
printwO that behaves much like printf(3S) and another routine getchO that
behaves like getc(3S). The automatic teller program at your bank might use
printwO to print its menus and getchO to accept your requests for withdrawals (or,
better yet, deposits). A visual screen editor like the UNIX system screen editor
vi(l) might also use these and other curses routines.

The curses routines are usually located in lusr/lib/libcurses.a. To compile a
program using these routines, you must use the cc(l) command and include (
-lcurses on the command line so that the link editor can locate and load them: .

cc file.c -lcurses -0 file

The name curses comes from the cursor optimization that this library of rou­
tines provides. Cursor optimization minimizes the amount a cursor has to move
around a screen to update it. For example, if you designed a screen editor program
with curses routines and edited the sentence

curses/tenninfo is a great package for creating screens.

to read

curses/tenninfo is the best package for creating screens.

the program would output only the best in place of a great. The other charac­
ters would be preserved. Because the amount of data transmitted-the output-is
minimized, cursor optimization is also referred to as output optimization.

Cursor optimization takes care of updating the screen in a manner appropriate
for the terminal on which a curses program is run. This means that the curses
library can do whatever is required to update many different terminal types. It
searches the terminfo database (described below) to find the correct description for
a terminal.

9-2 IRIS-4D Programmer's Guide

(

The Terminal Information Utilities Package

How does cursor optimization help you and those who use your programs?
First, it saves you time in describing in a program how you want to update screens.
Second, it saves a user's time when the screen is updated. Third, it reduces the load
on your UNIX system's communication lines when the updating takes place.
Fourth, you don't have to worry about the myriad of terminals on which your pro­
gram might be run.

Here's a simple curses program. It uses some of the basic curses routines to
move a cursor to the middle of a terminal screen and print the character string
BullsEye. Each of these routines is described in the following section "Working
with curses Routines" in this chapter. For now, just look at their names and you
will get an idea of what each of them does:

#include <curses.h>

main 0
{

initscr 0;

move(LINES/2 - 1, COLS/2 - 4);
addstr("Bulls") ;
refresh 0;
addstr("Eye") ;
refresh 0;
endwinO;

Figure 9-1: A Simple curses Program

What is terminfo?
terminfo refers to both of the following:

• It is a group of routines within the curses library that handles certain termi­
nal capabilities. You can use these routines to program function keys, if

curseS/terminfo 9·3

The Terminal Information Utilities Package

your terminal has programmable keys, or write filters, for example. Shell
programmers, as well as C programmers, can use the terminfo routines in
their programs.

• It is a database containing the descriptions of many terminals that can be
used with curses programs. These descriptions specify the capabilities of a
terminal and the way it performs various operations-for example, how
many lines and columns it has and how its control characters are interpreted.

Each terminal description in the database is a separate, compiled file; You
use the source code tliat terminfo(4) describes to create these files and the
command tic(1M) to compile them.

The compiled files are normally located in the directories
lusrlIib/terminfo/? These directories have single character names, each of
which is the first character in the name of a terminal.

Here's a simple shell script that uses the terminfo database.

Clear the screen and show the 0,0 position.

tput clear
tput cup a a
echo ,,<- this is a a"

or tput home

Show the 5,10 position.

tput cup 5 10 .
echo ,,<- this is 5 10"

Figure 9-2: A Shell Script Using terminfo Routines

9-4 IRIS-4D Programmer's Guide

(

(

(

The Terminal Information Utilities Package

How curses and terminfo Work Together
A screen management program with curses routines refers to the term info

database at run time to obtain the information it needs about the terminal being
used-what we'll call the current terminal from here on.

For example, suppose you are using an IRIS monitor to run the simple curses
program shown in Figure 9-1. To execute properly, the program needs to know
how many lines and columns the screen has to print the BullsEye in the middle of
it. The description of the IRIS monitor in the terminfo database has this informa­
tion. All the curses program needs to know before it goes looking for the informa­
tion is the name of your terminal. You tell the program the name by putting it in the
environment variable $TERM when you log in or by setting and exporting $TERM
in your .profile file (see profile(4». Knowing $TERM, a curses program run on
the current terminal can search the terminfo database to find the correct terminal
description.

For example, assume that the following example lines are in a .profile:

TF.J<M=5425
export TERM

tput init

The first line names the terminal type, and the second line exports it. (See
profile(4) in the IRIS-4D Programmer's Reference Manual.) The third line of the
example tells the UNIX system to initialize the current terminal. That is, it makes
sure that the terminal is set up according to its description in the terminfo database.
(The order of these lines is important. $TERM must be defined and exported first,
so that when tput is called the proper initialization for the current terminal takes
place.) If you had these lines in your .profile and you ran a curses program, the
program would get the information that it needs about your terminal from the file
lusr/lib/terminfo/aJatt5425, which provides a match for $TERM.

Other Components of the Terminal Information
Utilities

We said earlier that the Terminal Information Utilities is commonly referred to
as curseslterminfo. The package, however, has other components. We've men­
tioned some of them, for instance tic(1M). Here's a complete list of the com­
ponents discussed in this tutorial:

curseS/termlnfo 9-5

The Terminal Information Utilities Package

captoinfo(lM)

curses(3X)

infocmp(lM)

tabs(l)

terminfo(4)

tic(lM)

tput(1)

a tool for converting terminal descriptions developed
on earlier releases of the UNlX system to terminfo
descriptions

a tool for printing and comparing compiled terminal
descriptions

a tool for setting non-standard tab stops

a tool for compiling terminal descriptions for the ter­
minfo database

a tool for initializing the tab stops on a terminal and
for outputting the value of a terminal capability

We also refer to profile(4), scr_dump(4), term(4), and term(5). For more infor­
mation about any of these components, see the IRIS-4D Programmer's Reference
Manual and the IRIS-4D User's Reference Manual.

9-6 IRIS-4D Programmer's Guide

(

(

(

Working with curses Routines

This section describes the basic curses routines for creating interactive screen
management programs. It begins by describing the routines and other program
components that every curses program needs to work properly. Then it tells you
how to compile and run a curses program. Finally, it describes the most frequently
used curses routines that

• write output to and read input from a terminal screen

• control the data output and input - for example, to print output in bold type
or prevent it from echoing (printing back on a screen)

• manipulate multiple screen images (windows)

• draw simple graphics

• manipulate soft labels on a terminal screen

• send output to and accept input from more than one terminal.

To illustrate the effect of using these routines, we include simple example pro­
grams as the routines are introduced. We also refer to a group of larger examples
located in the section "curses Program Examples" in this chapter. These larger
examples are more challenging; they sometimes make use of routines not discussed
here. Keep the curses(3X) manual page handy.

What Every curses Program Needs
All curses programs need to include the header file <curses.h> and call the

routines initscrO, refreshO or similar related routines, and endwinO.

The Header File <curses.h>

The header file <curses.h> defines several global variables and data structures
and defines several curses routines as macros.

To begin, let's consider the variables and data structures defined. <curses.h>
defines all the parameters used by curses routines. It also defines the integer vari­
ables LINES and COLS; when a curses program is run on a particular terminal,
these variables are assigned the vertical and horizontal dimensions of the terminal
screen, respectively, by the routine initscrO described below. The header file
defines the constants OK and ERR, too. Most curses routines have return values;
the OK value is returned if a routine is properly completed, and the ERR value if
some error occurs.

curseS/termlnfo 9·7

Working with curses Routines

LINES and COLS are external (global) variables that represent the size of a termi­
nal screen. Two similar variables, $LINES and $COLUMNS, may be set in a
user's shell environment; a curses program uses the environment variables to deter­
mine the size of a screen. Whenever we refer to the environment variables in this
chapter, we will use the $ to distinguish them from the C declarations in the
<curses.1I> header :file.

For more information about these variables, see the following sections "The Rou­
tines initscrO, refreshO, and endwinO" and "More about initscrO and Lines and
Columns."

Now let's consider the macro definitions. <curses.h> defines many curses
routines as macros that call other macros or curses routines. For instance, the sim­
ple routine refreshO is a macro. The line

fdefine refresh () wrefresh (stdscr)

shows when refresh is called, it is expanded to call the curses routine wrefresh().
The latter routine in turn calls the two curses routines wnoutrefreshO and doup.
dateO. Many other routines also group two or three routines together to achieve a
particular result.

(

V M""" ap~Um m pro",~ m.y ,-proble~ ";ili certain .ophimi-
cated C features, such as the use of automatic incrementing variables. (

One final point about <curses.h>: it automatically includes <stdio.h> and the
dermio.h> tty driver interface file. Including either file again in a program is
harmless but wasteful.

The Routines initscrO, refreshO, endwinO
The routines initscrO, refreshO, and endwin() initialize a terminal screen to an

"in curses state," update the contents of the screen, and restore the terminal to an
"out of curses state," respectively. Use the simple program that we introduced ear­
lier to learn about each of these routines:

9·8 IRI5-4D Programmer's Guide

(

#include <curses.h>

main 0
{

Working with curses Routines

initscrO; /* initialize terminal settings and <curses.h>
data structures and variables * /

move (LIN8S!2 - 1, COLS/2 - 4);
addstr("Bulls") ;
refresh(); /* send output to (update) terminal screen */
addstr("Eye") ;
refresh(); /* send more output to terminal screen */
endwinO; /* restore all terminal settings */

Figure 9-3: The Purposes of initscrO, refreshO, and endwinO in a Program

A curses program usually starts by calling initscrO; the program should call
initscrO only once. Using the environment variable $TERM as the section "How
curses and terminfo Work Together" describes, this routine determines what termi­
nal is being used. It then initializes all the declared data structures and other vari­
ables from <curses.h>. For example, initscrO would initialize LINES and COLS
for the sample program on whatever terminal it was run. If the Teletype 5425 were
used, this routine would initialize LINES to 24 and COLS to 80. Finally, this rou­
tine writes error messages to stderr and exits if errors occur.

During the execution of the program, output and input is handled by routines
like moveO and addstrO in the sample program. For example,

rrove (LINES/2 - 1, OOLS/2 - 4);

says to move the cursor to the left of the middle of the screen. Then the line

addstr ("Bulls") ;

says to write the character string Bulls. For example, if the Teletype 5425 were
used, these routines would position the cursor and write the character string at
(11,36).

cursesltermlnfo 9-9

Working with curses Routines

All curses routines that move the cursor move it from its home position in the
upper left comer of a screen. The (LINES,COLS) coordinate at this position is
(0,0) not (1,1). Notice that the vertical coordinate is given first and the horizontal
second, which is the opposite of the more common 'x,y' order of screen (or graph)
coordinates. The -1 in the sample program takes the (0,0) position into account to
place the cursor on the center line of the terminal screen.

Routines like moveO and addstrO do not actually change a physical terminal
screen when they are called. The screen is updated only when refreshO is called.
Before this, an internal representation of the screen called a window is updated.
This is a very important concept, which we discuss below under "More about
refreshO and Windows."

Finally, a curses program ends by calling endwinO. This routine restores all
terminal settings and positions the cursor at the lower left comer of the screen.

Compiling a curses Program
You compile programs that include curses routines as C language programs

using the cc(l) command (documented in the IRIS-4D Programmer's Reference
Manuaf), which invokes the C compiler (see Chapter 2 in this guide for details).

The routines are usually stored in the library /usr/liblIibcurses.a. To direct the
link editor to search this library, you must use the -I option with the cc command.

The general command line for compiling a curses program follows:

cc file.c -lcurses -0 file

file.c is the name of the source program; andfile is the executable object module.

Running a curses Program
curses programs count on certain information being in a user's environment to

run properly. Specifically, users of a curses program should usually include the fol­
lowing three lines in their .profile files:

TF.PJ.Fcurrent terminal type
export TERM
tput init

9-10 IRIS-4D Programmer's Guide

(

(

(

Working with curses Routines

For an explanation of these lines, see the section "How curses and term info
Work Together" in this chapter. Users of a curses program could also define the
environment variables $LINES, $COLUMNS, and $TERMINFO in their .profile
files. However, unlike $TERM, these variables do not have to be defined.

If a curses program does not run as expected, you might want to debug it with
edge(l), which is documented in the IRIS-4D Programmer's Reference Manuaf}.
When using edge, you have to keep a few points in mind. First, a curses program is
interactive and always has knowledge of where the cursor is located. An interactive
debugger like edge, however, may cause changes to the contents of the screen of
which the curses program is not aware.

Second, a curses program outputs to a window until refreshO or a similar rou­
tine is called. Because output from the program may be delayed, debugging the
output for consistency may be difficult.

Third, setting break points on curses routines that are macros, such as
refreshO, does not work. You have to use the routines defined for these macros,
instead; for example, you have to use wrefresh() instead ofrefresh(). See the
above section, "The Header File <curses.h>," for more information about macros.

More about initscrO and Lines and Columns
After determining a terminal's screen dimensions, initscrO sets the variables

LINES and COLS. These variables are set from the terminfo variables lines and
columns. These, in tum, are set from the values in the term info database, unless
these values are overridden by the values of the environment $LINES and
$COLUMNS.

More about refreshO and Windows
As mentioned above, curses routines do not update a terminal until refreshO is

called. Instead, they write to an internal representation of the screen called a win­
dow. When refresh() is called, all the accumulated output is sent from the window
to the current terminal screen.

A window acts a lot like a buffer does when you use a UNIX system editor.
When you invoke vi(l), for instance, to edit a file, the changes you make to the con­
tents of the file are reflected in the buffer. The changes become part of the per­
manent file only when you use the w or ZZ command. Similarly, when you invoke
a screen program made up of curses routines, they change the contents of a win­
dow. The changes become part of the current terminal screen only when refreshO
is called.

curses/termlnfo 9-11

Working with curses Routines

<curses.h> supplies a default window named stdscr (standard screen), which
is the size of the current terminal's screen, for all programs using curses routines.
The header file defines stdscr to be of the type WINDOW *, a pointer to a C struc­
ture which you might think of as a two-dimensional array of characters representing
a terminal screen. The program always keeps track of what is on the physical
screen, as well as what is in stdscr. When refreshO is called, it compares the two
screen images and sends a stream of characters to the terminal that make the current
screen look like stdscr. A curses program considers many different ways to do
this, taking into account the various capabilities of the terminal and similarities
between what is on the screen and what is on the window. It optimizes output by
printing as few characters as is possible.

You can create other windows and use them instead of stdscr. Windows are
useful for maintaining several different screen images. For example, many data
entry and retrieval applications use two windows: one to control input and output
and one to print error messages that don't mess up the other window.

It's possible to subdivide a screen into many windows, refreshing each one of
them as desired. When windows overlap, the contents of the current screen show
the most recently refreshed window. It's also possible to create a window within a
window; the smaller window is called a subwindow. Assume that you are design­
ing an application that uses forms, for example, an expense voucher, as a user inter­
face. You could use subwindows to control access to certain fields on the form.

Some curses routines are designed to work with a special type of window
called a pad. A pad is a window whose size is not restricted by the size of a screen
or associated with a particular part ofa screen. You can use a pad when you have a
particularly large window or only need part of the window on the screen at anyone
time. For example, you might use a pad for an application with a spreadsheet.

Figure 9-4 represents what a pad, a subwindow, and some other windows could
look like in comparison to a terminal screen.

9·12 IRI5-4D Programmer's Guide

(

(

c

Working with curses Routines

tenninal screen

window window

- pad

pad
[""~d i --;r-

~WindOW
-

I window I

Figure 9-4: Multiple Windows and Pads Mapped to a Terminal Screen

The section "Building Windows and Pads" in this chapter describes the routines
you use to create and use them. If you'd like to see a curses program with windows
now, you can tum to the window program under the section "curses Program
Examples" in this chapter.

Getting Simple Output and Input

Output
The routines that curses provides for writing to stdscr are similar to those pro­

vided by the stdio(3S) library for writing to a file. They let you

curses/terminfo 9-13

Working with curses Routines

• write a character at a time - addchO

• write a string - addstrO

• format a string from a variety of input arguments - printwO

• move a cursor or move a cursor and print character(s) - moveO,
mvaddchO, mvaddstrO, mvprintwO

• clear a screen or a part of it- clearO, eraseO, clrtoeolO, clrtobotO

Following are descriptions and examples of these routines.

V The curses library provides its own set of output and input fUnctions. You should
not use other I/O routines or system calls, like read(2) and write(2), in a curses
program. They may cause undesirable results when you run the program.

9-14 IRIS-4D Programmer's Guide

(

(

(

addchO

SYNOPSIS

#ioclude <curses.h>

iot addch(ch)
chtype ch;

NOTES

• addchO writes a single character to stdscr.

Working with curses Routines

• The character is of the type chtype, which is defined in <curses.h>. chtype
contains data and attributes (see "Output Attributes" in this chapter for infor­
mation about attributes).

• When working with variables of this type, make sure you declare them as
chtype and not as the basic type (for example, short) that chtype is declared
to be in <curses.h>. This will ensure future compatibility.

• addchO does some translations. For example, it converts

o the <NL> character to a clear to end of line and a move to the next line

o the tab character to an appropriate number of blanks

o other control characters to their 'X notation

• addchO normally returns OK. The only time addchO returns ERR is after
adding a character to the lower right-hand comer of a window that does not
scroll.

• addchO is a macro.

curses/terminfo 9-15

Working with curses Routines

EXAMPLE

#include <curses.h>

rrain ()
{

initscr () ;
addch (' a') ;

refresh();
endwin() ;

The output from this program will appear as follows:

a

$0

Also see the show program under "curses Example Programs" in this chapter.

9-16 IRIS-4D Programmer's Guide

(

(

Working with curses Routines

addstrO

SYNOPSIS

#include <curses.h>

int addstr(str)
char *str;

NOTES

• addstrO writes a string of characters to stdscr.

• addstrO calls addchO to write each character.

• addstrO follows the same translation rules as addchO.

• addstrO returns OK on success and ERR on error.

• addstrO is a macro.

EXAMPLE

Recall the sample program that prints the character string BullsEye. See Fig­
ures 9-1 and 9-2.

curses/terminfo 9-17

Working with curses Routines

printwO

SYNOPSIS

#include <curses.h>

int printw(fmt [,arg .••])
char *fmt

NOTES

• printwO handles formatted printing on stdscr.

• Like printf, printwO takes a format string and a variable number of argu­
ments.

• Like addstrO, printwO calls addchO to write the string.

• printwO returns OK on success and ERR on error.

9-18 IRIS-4D Programmer's Guide

(

(

(

EXAMPLE

#include <curses.h>

main 0
{

char* title = "Not specified";
int no = 0;

/* Missing code. */

initscrO;

/ * Missing code. * /

printw("%s is not in stock. \n", title);

Working with curses Routines

printw(nPlease ask the cashier to order %d for you. \n", no);

refresh 0 ;
endwinO;

The output from this program will appear as follows:

Not specified is not in stock.
Please ask the cashier to order 0 for you.

$0

curses/terminfo 9-19

Working with curses Routines

move()

SYNOPSIS

#include <eurses.h>

int move(y, x);
inty, x;

NOTES

• moveO positions the cursor for stdser at the given row y and the given
columnx.

• Notice that moveO takes the y coordinate before the x coordinate. The
upper left-hand coordinates for stdser are (0,0), the lower right-hand
(LINES - 1, COLS - 1). See the section "The Routines initserO, refreshO,
and endwinO" for more information.

• moveO may be combined with the write functions to form

c mvaddeh(y, x, eh), which moves to a given position and prints a char­
acter

c mvaddstr(y, x, str), which moves to a given position and prints a
string of characters

c mvprintw(y, x, fmt Larg ...]),
which moves to a given position and prints a formatted string.

• moveO returns OK on success and ERR on error. Trying to move to a
screen position of less than (0,0) or more than (LINES - 1, COLS - 1)
causes an error.

• moveO is a macro.

9-20 IRIS-4D Programmer's Guide

(

c

(

EXAMPLE

#include <curses.h>

main 0
{

initscr();

Working with curses Routines

addstr ("Cursor should be here --> if rrove 0 works.");
printw("\n\n\nPress <return> to end test. ");
rrove(O,25) ;
refresh 0 ;
getchO;
endwin();

/* Gets <return>; discussed below. */

Here's the output generated by running this program:

Cursor should be here -->[]if move() works.

Press <return> to end test.

After you press <return>, the screen looks like this:

Cursor should be here -->

Press <return> to end test.
$[]

~----------------------------.---
See the scatter program under "curses Program Examples" in this chapter for
another example of using moveO.

curses/terminfo 9-21

Working with curses Routines

clear(} and eraseO

SYNOPSIS

#include <curses.h>

int clearO
int eraseO

NOmS

• Both routines change stdscr to all blanks.

• clearO also assumes that the screen may have garbage that it doesn't know
about; this routine first calls eraseO and then clearokO which clears the
physical screen completely on the next call to refreshO for stdscr. See the
curses(3X) manual page for more information about clearokO.

• initscrO automatically calls clearO.

• clearO always returns OK; eraseO returns no useful value.

• Both routines are macros.

9-22 IRIS-4D Programmer's Guide

(

(

(

clrtoeol() and clrtobot()

SYNOPSIS

#include <curses.h>

int clrtoeolO
int clrtobotO

NOTES

Working with curses Routines

• clrtoeolO changes the remainder of a line to all blanks.

• clrtobotO changes the remainder of a screen to all blanks.

• Both begin at the current cursor position inclusive.

• Neither returns any useful value.

curses/termlnfo 9-23

Working with curses Routines

EXAMPLE

The following sample program uses cirtobotO.

#include <curses.h>

Rain 0
(

initscrO;

(
addstr("Press <retu:m> to delete frcm here to the end of the line and on.");
addstr (" \nDelete this too. \nAnd this.") ;
IlOve(O,30);
refresh 0 ;
getch() ;

clrtcbot 0 ;
refresh 0 ;
endwinO;

Here's the output generated by running this program:

Press <return> to delete from hereDto the end of the line and on.
Delete this too.
And this.

Notice the two calls to refreshO: one to send the full screen of text to a termi­
nal, the other to clear from the position indicated to the bottom of a screen.

Here's what the screen looks like when you press <return>:

9-24 IRIS-4D Programmer's Guide

(

(

--------- -------

Working with curses Routines

Press <return> to delete from here

$0

See the show and two programs under "curses Example Programs" for exam­
ples of uses for cirtoeolO.

curses/termlnfo 9-25

Working with curses Routines

Input
curses routines for reading from the current terminal are similar to those pro-

vided by the stdio(3S) library for reading from a file. They let you

• read a character at a time - getchO

• read a <:NL>-terminated string - getstrO

• parse input, converting and assigning selected data to an argument list -
scanwO

The primary routine is getchO, which processes a single input character and
then returns that character. This routine is like the C library routine getcharO(3S)
except that it makes several terminal- or system-dependent options available that
are not possible with getcharO. For example, you can use getchO with the curses
routine keypadO, which allows a curses program to interpret extra keys on a user's
terminal, such as arrow keys, function keys, and other special keys that transmit
escape sequences, and treat them as just another key. See the descriptions of
getchO and keypadO on the curses(3X) manual page for more information about
keypadO.

The following pages describe and give examples of the basic routines for get­
ting input in a screen program.

9-26 IRIS-4D Programmer's Guide

(

(

getchO
SYNOPSIS

#include <curses.h>

int getchO

NOTES

Working with curses Routines

• getchO reads a single character from the current terminal.

• getchO returns the value of the character or ERR on 'end of file,' receipt of
signals, or non-blocking read with no input.

• getchO is a macro.

• See the discussions about echoO, noechoO, cbreakO, nocbreakO, rawO,
norawO, halfdelayO, nodelayO, and keypadO below and in curses(3X).

curses/terminfo 9-27

Working with ~urses Routines

EXAMPLE

#inclucle <curses.h>

rcainO
{

int chi (
initscrO;
cbreakO; /* Explained later in the section "Input Options" */
addstr("Press any character: ");
refresh 0 ;
ch = getch 0 ;
printw("\n\n\nThe character entered. was a ' %c' . \n", ch);
refresh() ;
endwinO;

The output from this program follows. The first refreshO sends the addstrO
character string from stdscr to the terminal:

Press any character: 0

Then assume that a w is typed at the keyboard. getchO accepts the character
and assigns it to ch. Finally, the second refresh() is called and the screen appears
as follows:

9-28 IRIS-4D Programmer's Guide

(

(

Working with curses Routines

Press any character: w

The character entered was a ' w' .

$0

For another example of getchO, see the show program under "curses Example
Programs" in this chapter.

curses/terminfo 9·29

Working with curses Routines

getstr()

SYNOPSIS

#include <curses.h>

int getstr(str)
char *str;

NOTES

• getstrO reads characters and stores them in a buffer unti.l a <return>,
<NL>, or <ENTER> is received from stdscr. getstrO does not check for
buffer overflow.

• The characters read and stored are in a character string.

• getstrO is a macro; it calls getchO to read each character.

• getstrO returns ERR if getchO returns ERR to it. Otherwise it returns OK.

• See the discussions about echoO, noechoO, cbreakO, nocbreakO, rawO,
norawO, halfdelayO, nodelayO, and keypadO below and in curses(3X).

9·30 IRIS-4D Programmer's Guide

(

(

(

EXAMPLE

#include <curses.h>

nainO
{

char str [256] i

initscrO i

Working with curses Routines

cbreak 0 i /* -Explained later in the section "Input Options II * /
addstr("Enter a character string tenninated by <return>: \n\n") i
refresh 0
getstr(str) i
printw(lI\n\n\nThe string entered was \n'%s'\n", str) i
refresh 0 ;
endwin() i

Assume you entered the string 'I enjoy learning about the UNIX system.' The
final screen (after entering <return» would appear as follows:

Enter a character string terminated by <return>:

I enjoy learning about the UNIX system.

The string entered was
'I enjoy learning about the UNIX system.'

$0

curses/terminfo 9-31

Working with curses Routines

scanw{)

SYNOPSIS

#include <curses.h>

int scanw(fmt [, arg ...])
char *fmt;

NOTES

• scanwO calls getstrO and parses an input line.

• Like scanf(3S), scanwO uses a format string to convert and assign to a vari­
able number of arguments.

• scanwO returns the same values as scanfO.

• See scanf(3S) for more information.

9-32 IRIS·4D Programmer's Guide

(

(

(

EXAMPLE

#include <curses.h>

rrainO
{

char string[lOO]i
float nurrberi

initscrO i

Working with curses Routines

cbreak 0 i / * Explaine:l later in the * /
echo 0 i /* section "Input Options" */
addstr ("Enter a nurrber and a string separate:l by a corcrra: ");

refresh 0 ;
scanw ("%f, %s", &nurrber, string) ;
clear() ;
printw("The string was \"%s\" and the nurrber was %f.",3tring,number) i
refresh 0 ;
endwinO i

Notice the two calls to refreshO. The first call updates the screen with the
character string passed to addstrO, the second with the string returned from
scanwO. Also notice the call to clearO. Assume you entered the following when
prompted: 2,twin. After running this program, your terminal screen would appear,
as follows:

The string was "twin" and the number was 2.000000.

$0

cursesfterminfo 9-33

Working with curses Routines

Controlling Output and Input

Output Attributes
When we talked about addchO, we said that it writes a single character of the

type chtype to stdscr. chtype has two parts: a part with information about the
character itself and another part with information about a set of attributes associated
with the character. The attributes allow a character to be printed in reverse video,
bold, underlined, and so on.

stdscr always has a set of current attributes that it associates with each charac­
ter as it is written. However, using the routine attrsetO and related curses routines
described below, you can change the current attributes. Below is a list of the attri­
butes and what they mean:

• A_BLINK - blinking

• A_BOLD - extra bright or bold

• A_DIM - half bright

• A_REVERSE - reverse video

• A_STANDOUT - a terminal's best highlighting mode

• A_UNDERLINE - underlining

• A_ALTCHARSET - alternate character set (see the section "Drawing
Lines and Other Graphics" in this chapter)

To use these attributes, you must pass them as arguments to attrsetO and related
routines; they can also be ORed with the bitwise OR (I) to addchO.

Not all terminals are capable of displaying all attributes. If a particular tenninal
cannot display a requested attribute, a curses program attempts to find a substitute
attribute. If none is possible, the attribute is ignored.

Let's consider a use of one of these attributes. To display a word in bold, you
would use the following code:

9-34 IRIS-4D Programmer's Guide

(

(

(

printw(nA word in n);
attrset(A_BOLD);
printw(nboldfacen) ;
attrset (0) ;
printw(n really stands out. \nn);

refresh 0 ;

Working with curses Routines

Attributes can be turned on singly, such as attrset(A_BOLD) in the example,
or in combination. To turn on blinking bold text, for example, you would use
attrset(A_BLINK I A_BOLD). Individual attributes can be turned on and off with
the curses routines attronO and attroffO without affecting other attributes.
attrset(O) turns all attributes off.

Notice the attribute called A_STANDOUT. You might use it to make text
attract the attention of a user. The particular hardware attribute used for standout is
the most visually pleasing attribute a terminal has. Standout is typically imple­
mented as reverse video or bold. Many programs don't really need a specific attri­
bute, such as bold or reverse video, but instead just need to highlight some text. For
such applications, the A_STANDOUT attribute is recommended. Two convenient
functions, standoutO and standendO can be used to tum on and off this attribute.
standendO, in fact, turns of all attributes.

In addition to the attributes listed above, there are two bit masks called
A_CHARTEXT and A_ATTRIBUTES. You can use these bit masks with the
curses function inchO and the C logical AND (&) operator to extract the character
or attributes of a position on a terminal screen. See the discussion of inch() on the
curses(3X) manual page.

Following are descriptions of attrsetO and the other curses routines that you
can use to manipulate attributes.

curses/terminfo 9-35

Working with curses Routines

attronO, attrset(), and attroff()

SYNOPSIS

#include <curses.h>

int attron(attrs)
chtype attrs;

int attrset(attrs)
chtype attrs;

int attrofT(attrs)
chtype attrs;

NOTES

• attronO turns on the requested attribute attrs in addition to any that are
currently on. attrs is of the type chtype and is defined in <curses.h>.

• attrsetO turns on the requested attributes attrs instead of any that are
currently turned on.

• attroffO turns off the requested attributes attrs if they are on.

• The attributes may be combined using the bitwise OR (I).

• All return OK.

EXAMPLE

See the highlight program under "curses Example Programs" in this chapter.

9-36 IRIS-4D Programmer's Guide

(

(

(

standout() and standendO

SYNOPSIS

#include <curses.h>

int standoutO
int standendO

NOTES

Working with curses Routines

• standoutO turns on the preferred highlighting attribute, A_STANDOUT, for
the current terminal. This routine is equivalent to attron(A_STANDOUT).

• standendO turns off all attributes. This routine is equivalent to attrset(O).

• Both always return OK.

EXAMPLE

See the highlight program under "curses Example Programs" in this chapter.

curses/termlnfo 9-37

Working with curses Routines

Bells, Whistles, and Flashing Lights
Occasionally, you may want to get a user's attention. Two curses routines

were designed to help you do this. They let you ring the terminal's chimes and
flash its screen.

flashO flashes the screen if possible, and otherwise rings the bell. Flashing the
screen is intended as a bell replacement, and is particularly useful if the bell bothers
someone within ear shot of the user. The routine beepO can be called when a real
beep is desired. (If for some reason the terminal is unable to beep, but able to flash,
a call to beepO will flash the screen.)

beepO and flashO

SYNOPSIS

#ioclude <curses.h:>

iot flashO
iot beepO

NOTES

a ftashO tries to flash the terminals screen, if possible, and, if not, tries to ring
the terminal bell.

a beepO tries to ring the terminal bell, if possible, and, if not, tries to flash the
terminal screen .

• Neither returns any useful value.

9-38 IRIS-4D Programmer's Guide

(

(

(

Working with curses Routines

Input Options
The UNIX system does a considerable amount of processing on input before an

application ever sees a character. For example, it does the following:

• echoes (prints back) characters to a terminal as they are typed

• interprets an erase character (typically #) and a line kill character (typically
@)

• interprets a ctrl-D (control d) as end of file (BOp)

• interprets interrupt and quit characters

• strips the character's parity bit

• translates <return> to <NL>

Because a curses program maintains total control over the screen, curses turns
off echoing on the UNIX system and does echoing itself. At times, you may not
want the UNIX system to process other characters in the standard way in an interac­
tive screen management program. Some curses routines, noechoO and cbreakO,
for example, have been designed so that you can change the standard character pro­
cessing. Using these routines in an application controls how input is interpreted.
Figure 9-5 shows some of the major routines for controlling input.

Every curses program accepting input should set some input options. This is
because when the program starts running, the terminal on which it runs may be in
cbreakO, rawO, nocbreakO, or norawO mode. Although the curses program
starts up in echoO mode, as Figure 9-5 shows, none of the other modes are
guaranteed.

The combination of noechoO and cbreakO is most common in interactive
screen management programs. Suppose, for instance, that you don't want the char­
acters sent to your application program to be echoed wherever the cursor currently
happens to be; instead, you want them echoed at the bottom of the screen. The
curses routine noechoO is designed for this purpose. However, when noechoO
turns off echoing, normal erase and kill processing is still on. Using the routine
cbreakO causes these characters to be uninterpreted.

curses/termlnfo 9-39

Working with curses Routines

Input Characters
Options Interpreted Uninterpreted

Normal interrupt, quit
'out of curses stripping
state' <return> to <NL>

(
echoing
erase, kill
EOF

Normal echoing All else
curses 'start up (simulated) undefined.
state'

cbreakO interrupt, quit erase, kill
andechoO stripping EOF

echoing

cbreakO interrupt, quit echoing
andnoechoO stripping erase, kill

EOF

nocbreakO break, quit echoing
andnoechoO stripping (

erase, kill
EOF

nocbreakO See caution below.
andechoO

niO <return> to <NL>

noniO <return> to <NL>

rawO break, quit
(instead of stripping
cbreak())

Figure 9-5: Input Option Settings for curses Programs

(

9-40 IRI5-4D Programmer's Guide

Working with curses Routines

V Do not u" >he rombiruui= nocbreokO md ."",hoO. If you u" it m 'pro,,=
and also use getchO, the program will go in and out of chreakO mode to get each
character. Depending on the state of the tty driver when each character is typed,
the program may produce undesirable output.

In addition to the routines noted in Figure 9-5, you can use the curses routines
norawO, halfdelayO, and nodelayO to control input. See the curses(3X) manual
page for discussions of these routines.

The next few pages describe noechoO, cbreakO and the related routines echoO
and nocbreakO in more detail.

curses/termlnfo 9-41

Working with curses Routines

echo(} and noechoO

SYNOPSIS

#include <curses.h>

int echoO
int noechoO

NOlES

• echoO turns on echoing of characters by curses as they are read in. This is
the initial setting.

• noechoO turns off the echoing.

• Neither returns any useful value.

• curses programs may not run properly if you tum on echoing with noc­
breakO. See Figure 9-5 and accompanying caution. After you tum echoing
off, you can still echo characters with addchO.

EXAMPLE

(

See the editor and show programs under "curses Program Examples" in this (.
chapter.

(

9-42 IRIS-4D Programmer's Guide

cbreakO and nocbreakO

SYNOPSIS

#include < curses.h >
int cbreakO
int nocbreakO

NOTES

Working with curses Routines

• cbreakO turns on 'break for each character' processing. A program gets
each character as soon as it is typed, but the erase,line kill, and ctrl-D char­
acters are not interpreted.

• nocbreakO returns to normal 'line at a time' processing. This is typically
the initial setting.

• Neither returns any useful value.

• A curses program may not run properly if cbreakO is turned on and off
within the same program or if the combination nocbreakO and echoO is
used.

• See Figure 9-5 and accompanying caution.

EXAMPLE

See the editor and show programs under "curses Program Examples" in this
chapter.

curses/terminfo 9-43

Working with curses Routines

Building Windows and Pads
An earlier section in this chapter, "More about refreshO and Windows"

explained what windows and pads are and why you might want to use them. This
section describes the curses routines you use to manipulate and create windows and (
pads.

Output and Input
The routines that you use to send output to and get input from windows and

pads are similar to those you use with stdscr. The only difference is that you have
to give the name of the window to receive the action. Generally. these functions
have names formed by putting the letter w at the beginning of the name of a stdscr
routine and adding the window name as the first parameter. For example,
addch('c') would become waddch(mywin, 'c') if you wanted to write the character
c to the window mywin. Here's a list of the window (or w) versions of the output
routines discussed in "Getting Simple Output and Input."

• waddch(win, ch)

• mvwaddch(win, y, x, ch)

• waddstr(win, str)

• mvwaddstr(win, y, x, str)

• wprintw(win,fmt [, arg ... J)

• mvwprintw(win, y, x,fmt [, arg ...])

• wmove(win, y, x)

• wclear(win) and werase(win)

• wclrtoeol(win) and wclrtobot(win)

• wrefreshO

You can see from their declarations that these routines differ from the versions
that manipulate stdscr only in their names and the addition of a win argument.
Notice that the routines whose names begin with mvw take the win argument before
the y, x coordinates, which is contrary to what the names imply. See curses(3X) for
more information about these routines or the versions of the input routines getch,
getstrO, and so on that you should use with windows.

All w routines can be used with pads except for wrefreshO and
wnoutrefreshO (see below). In place of these two routines, you have to use
prefreshO and pnoutrefreshO with pads.

9-44 IRI5-4D Programmer's Guide

(

(

Working with curses Routines

The Routines wnoutrefreshO and doupdate()
If you recall from the earlier discussion about refreshO, we said that it sends

the output from stdscr to the terminal screen. We also said that it was a macro that
expands to wrefrcsh(stdscr) (see "What Every curses Program Needs" and "More
about refl'eshO and Windows").

The wret'reshO routine is used to send the contents of a window (stdscr or one
that you create) to a screen; it calls the routines wnoutrefreshO and doupdateO.
Similarly, prefreshO sends the contents of a pad to a screen by calling
pnoutrefreshO and doupdateO.

Using wnoutrefreshO-Dr pnoutrefreshO (this discussion will be limited to
the former routine for simplicity)-and doupdateO, you can update terminal
screens with more efficiency than using wrefreshO by itself. wrefreshO works by
first calling wnoutrefreshO, which copies the named window to a data structure
referred to as the virtual screen. The virtual screen contains what a program intends
to display at a terminal. After calling wnoutrefreshO, wrefreshO then calls doup­
dateO, which compares the virtual screen to the physical screen and does the actual
update. If you want to output several windows at once, calling wrefreshO will
result in alternating calls to wnoutrefreshO and doupdateO, causing several bursts
of output to a screen. However, by calling wnoutrefreshO for each window and
then doupdateO only once, you can minimize the total number of characters
transmitted and the processor time used. The following sample program uses only
one doupdateO:

curses/terminfo 9-45

Working with curses Routines

#include <curses.h>

main ()
(

WINDOW *wl, *w2;

initscr ();
wI = newwin(2,6,O,3);
w2 = newwin(1,4,5,4);
waddstr(wl, "Bulls");
wnoutrefresh(wl);
waddstr (w2, "Eye");
wnoutrefresh(w2);
doupdate () ;
endwin ();

Notice from the sample that you declare a new window at the beginning of a
curses program. The lines

wl = newwin(2,6,O,3);
w2 = newwin(l,4,5,4);

declare two windows named wl and w2 with the routine newwinO according to
certain specifications. newwinO is discussed in more detail below.

New Windows
Following are descriptions of the routines newwinO and subwinO, which you

use to create new windows. For information about creating new pads with
newpadO and subpadO, see the curses(3X) manual page.

9-46 IRIS-4D Programmer's Gul~e

(

(

(

Working with curses Routines

newwin()

SYNOPSIS

#include <curses.h>

WINDOW *newwin(nlines, ncols, beginJ, begin_x)
int nlines, ncois, beginJ, begin_x;

NOTES

• newwinO returns a pointer to a new window with a new data area.

• The variables nlines and ncols give the size of the new window.

• begin J and begin _x give the screen coordinates from (0,0) of the upper left
comer of the window as it is refreshed to the current screen.

cursesltermlnfo 9-47

Working with curses Routines

subwinO

SYNOPSIS

#include <curses.h>

WINDOW *subwin(orig, nlines, ncols, beginJ, begin_x)
WINDOW *orig;
int nlines, ncols, beginJ, begin_x;

NOTES

• subwinO returns a new window that points to a section of another window,
orig.

• nIines and ncols give the size of the new window.

• begin J and begin _x give the screen coordinates of the upper left comer of
the window as it is refreshed to the current screen.

• Subwindows and original windows can accidentally overwrite one another.

'V SubwDulow, of ,ubwDulow, do =t w~k (u of !be oopyrlght "'"' of thU
IRIS 4D Programmer's Guide).

9-48 IRIS-4D Programmer's Guide

('

(

(

EXAMPLE

#include <curses.h>

main()
{

WINDOW *sub;

initscr();

Working with curses Routines

box(stdscr,'w','w'); /* See the curses(3X) manual page for boxO */
mvwaddstr(stdscr,7,10,"------- this is 10,10");
mvwaddch(stdscr,8,10,' I');
mvwaddch(stdscr,9,10,'v'):
sub = subwin(stdscr,10,20,10,10);
box(sub,'s' ,'s');
wnoutrefresh(stdscr);
wrefresh (sub) ;
endwinO;

This program prints a border of ws around the stdscr (the sides of your terminal
screen) and a border of s's around the subwindow sub when it is run. For another
example, see the window program under "curses Program Examples" in this
chapter.

curses/terminfo 9-49

Working with curses Routines

Using Advanced curses Features
Knowing how to use the basic curses routines to get output and input and to

work with windows, you can design screen management programs that meet the (
needs of many users. The curses library, however, has routines that let you do .
more in a program than handle I/O and multiple windows. The following few pages
briefly describe some of these routines and what they can help you do-namely,
draw simple graphics, use a terminal's soft labels, and work with more than one ter-
minal in a single curses program.

You should be comfortable using the routines previously discussed in this
chapter and the other routines for I/O and window manipulation discussed on the
curses(3X) manual page before you try to use the advanced curses features. y Tho mutin~ do=ibod =de< "Rou""" In, lliawffig L;n~ md 0"= Omphk,"

and "Routines for Using Soft Labels" are features that are new for UNIX System V
Release 3.0. If a program uses any of these routines, it may not run on earlier
releases of the UNIX system. You must use the Release 3.0 version of the curses
library on UNIX System V Release 3.0 to work with these routines.

Routines for Drawing Lines and Other Graphics
Many terminals have an alternate character set for drawing simple graphics (or

glyphs or graphic symbols). You can use this character set in curses programs.
curses use the same names for glyphs as the VT100 line drawing character set.

To use the alternate character set in a curses program, you pass a set of vari­
ables whose names begin with ACS_ to the curses routine waddchO or a related
routine. For example, ACS_ULCORNER is the variable for the upper left comer
glyph. If a terminal has a line drawing character for this glyph,
ACS __ ULCORNER's value is the terminal's character for that glyph OR'd (I) with
the bit-mask A_AL TCHARSET. If no line drawing character is available for that
glyph, a standard ASCII character that approximates the glyph is stored in its place.
For example, the default character for ACS_HLINE, a horizontal line, is a - (minus
sign). When a close approximation is not available, a + (plus sign) is used. All the
standard ACS_ names and their defaults are listed on the curses(3X) manual page.

(

Part of an example program that uses line drawing characters follows. The
example uses the curses routine boxO to draw a box around a menu on a screen. (
boxO uses the line drawing characters by default or when I (the pipe) and - are
chosen. (See curses(3X).) Up and down more indicators are drawn on the box
border (using ACS_UARROW and ACS_DARROW) if the menu contained
within the box continues above or below the screen:

9-50 IRIS-4D Programmer's Guide

/* output the up/down arrows */
wmove (menuwin, maxy, maxx - 5);

/* output up arrow or horizontal line */
if (moreabove)

waddch (menuwin, ACS _DARROW) ;

else
addch (menuwin, ACS _ HLINE) ;

/*output down arrow or horizontal line */
if (morebelow)

waddch (menuwin, ACS _DARROW) ;

else
waddch(menuwin, ACS_HLINE);

Working with curses Routines

Here's another example. Because a default down arrow (like the lowercase
letter v) isn't very discernible on a screen with many lowercase characters on it, you
can change it to an uppercase V.

if (! (ACS _DARROW & A _ ALTCHARSET))

ACS _DARROW = 'V' ;

For more information, see curses(3X) in the IRIS-4D Programmer's Reference
Manual.

curses/terminfo 9-51

Working with curses Routines

Routines for Using Soft Labels
Another feature available on most terminals is a set of soft labels across the

bottom of their screens. A tenninal's soft labels are usually matched with a set of
hard function keys on the keyboard. There are usually eight of these labels, each of (~

which is usually eight characters wide and one or two lines high.

The curses library has routines that provide a unifonn model of eight soft
labels on the screen. If a terminal does not have soft labels, the bottom line of its
screen is converted into a soft label area. It is not necessary for the keyboard to
have hard function keys to match the soft labels for a curses program to make use
of them.

Let's briefly discuss most of the curses routines needed to use soft labels:
slk _ initO, sIk _ setO, slk JefreshO and slk _ noutrefreshO, slk _clear, and
sIk restore.

When you use soft labels in a curses program, you have to call the routine
slk _intO before initscrO. This sets an internal flag for initscrO to look at that says
to use the soft labels. If initscrO discovers that there are fewer than eight soft
labels on the screen, that they are smaller than eight characters in size, or that there
is no way to program them, then it will remove a line from the bottom of stdscr to
use for the soft labels. The size of stdscr and the LINES variable will be reduced
by 1 to reflect this change. A properly written program, one that is written to use
the LINES and COLS variables, will continue to run as if the line had never existed
on the screen.

slk _initO takes a single argument. It determines how the labels are grouped on
the screen should a line get removed from stdscr. The choices are between a 3-2-3
arrangement as appears on AT&T tenninals, or a 4-4 arrangement as appears on
Hewlett-Packard tenninals. The curses routines adjust the width and placement of
the labels to maintain the pattern. The widest label generated is eight characters.

The routine slk_setO takes three arguments, the label number (1-8), the string
to go on the label (up to eight characters), and the justification within the label (0 ==
left justified, 1 = centered, and 2 == right justified).

(

The routine slk_noutrefreshO is comparable to wnoutrefreshO in that it
copies the label information onto the internal screen image, but it does not cause the
screen to be updated. Since a wrefreshO commonly follows, slk _ noutrefreshO is
the function that is most commonly used to output the labels.

Just as wrefreshO is equivalent to a wnoutrefreshO followed by a doupdateO, (
so too the function sIk JefreshO is equivalent to a slk _ noutrefreshO followed by a
doupdateO.

9-52 IRIS-4D Programmer's Guide

Working with curses Routines

To prevent the soft labels from getting in the way of a shell escape, slk _ clearO
may be called before doing the endwinO. This clears the soft labels off the screen
and does a doupdateO. The function slk JestoreO may be used to restore them to
the screen. See the curses(3X) manual page for more information about the rou­
tines for using soft labels.

Working with More than One Terminal
A curses program can produce output on more than one terminal at the same

time. This is useful for single process programs that access a common database,
such as multi-player games.

Writing programs that output to multiple terminals is a difficult business, and
the curses library does not solve all the problems you might encounter. For
instance, the programs-not the library routines-must determine the file name of
each terminal line, and what kind of terminal is on each of those lines. The stan­
dard method, checking $TERM in the environment, does not work, because each
process can only examine its own environment.

Another problem you might face is that of multiple programs reading from one
line. This situation produces a race condition and should be avoided. However, a
program trying to take over another terminal cannot just shut off whatever program
is currently running on that line. (Usually, security reasons would also make this
inappropriate. But, for some applications, such as an inter-terminal communication
program, or a program that takes over unused terminal lines, it would be appropri­
ate.) A typical solution to this problem requires each user logged in on a line to run
a program that notifies a master program that the user is interested in joining the
master program and tells it the notification program's process ID, the name of the
tty line, and the type of terminal being used. Then the program goes to sleep until
the master program finishes. When done, the master program wakes up the
notification program and all programs exit.

A curses program handles multiple terminals by always having a current termi­
nal. All function calls always affect the current terminal. The master program
should set up each terminal, saving a reference to the terminals in its own variables.
When it wishes to affect a terminal, it should set the current terminal as desired, and
then call ordinary curses routines.

References to terminals in a curses program have the type SCREEN*. A new
terminal is initialized by calling newterm(type, outfd, infd). newterm returns a
screen reference to the terminal being set up. type is a character string, naming the
kind of terminal being used. outfd is a stdio(3S) file pointer (FILE*) used for out­
put to the terminal and infd a file pointer for input from the terminal. This call
replaces the normal call to initscrO, which calls newterm(getenv("TERM"),
stdout, stdin).

curses/terminfo 9·53

Working with curses Routines

To change the current terminal, call set_term(sp) where sp is the screen refer­
ence to be made current. set_termO returns a reference to the previous terminal.

It is important to realize that each terminal has its own set of windows and
options. Each terminal must be initialized separately with newtermO. Options (~
such as cbreakO and noechoO must be set separately for each terminal. The func-
tions endwinO and refreshO must be called separately for each terminal. Figure
9-6 shows a typical scenario to output a message to several terminals.

for (i=O; i<nterm; i++)
(

set_term(terms[i]);
mvaddstr(O, 0, "Important message");
refresh () ;

Figure 9-6: Sending a Message to Several Terminals

See the two program under "curses Program Examples" in this chapter for a
more complete example.

9-54 IRIS-4D Programmer's Guide

(

(

Working with term info Routines

Some programs need to use lower level routines (i.e., primitives) than those
offered by the curses routines. For such programs, the term info routines are
offered. They do not manage your terminal screen, but rather give you access to
strings and capabilities which you can use yourself to manipulate the terminal.

There are three circumstances when it is proper to use terminfo routines. The
first is when you need only some screen management capabilities, for example,
making text standout on a screen. The second is when writing a filter. A typical
filter does one transformation on an input stream without clearing the screen or
addressing the cursor. If this transformation is terminal dependent and clearing the
screen is inappropriate, use of the term info routines is worthwhile. The third is
when you are writing a special-purpose tool that sends a special purpose string to
the terminal, such as programming a function key, setting tab stops, sending output
to a printer port, or dealing with the status line. Otherwise, you are discouraged
from using these routines: the higher level curses routines make your program
more portable to other UNIX systems and to a wider class of terminals.

You are discouraged from using term info routines except for the purposes noted,
because curses routines take care of all the glitches present in physical terminals.
When you use the termlnfo routines, you must deal with the glitches yourself.
Also, these routines may change and be incompatible with previous releases.

What Every terminfo Program Needs
A terminfo program typically includes the header files and routines shown in

Figure 9-7.

curses/termlnfo 9-55

Working with terminfo Routines

#inc1ude <curses.h>
#inc1ude <te:rm.h>

setupte:rm((char*)O, 1, (int*)O);

reset_she11_mode();
exit (0);

Figure 9-7: Typical Framework of a term info Program

The header files <curses.h> and derm.h> are required because they contain
the definitions of the strings, numbers, and flags used by the terminfo routines.
setuptermO takes care of initialization. Passing this routine the values (char*)0, 1,
and (int*)O invokes reasonable defaults. If setuptermO can't figure out what kind
of terminal you are on, it prints an error message and exits. reset_shell_modeO
performs functions similar to endwinO and should be called before a terminfo pro­
gram exits.

A global variable like clear _screen is defined by the call to setuptermO. It
can be output using the terminfo routines putpO or tputsO, which gives a user
more control. This string should not be directly output to the terminal using the C
library routine printf(3S), because it contains padding information. A program that
directly outputs strings will fail on terminals that require padding or that use the
xon/xoff flow control protocol.

At the terminfo level, the higher level routines like addchO and getchO are
not available. It is up to you to output whatever is needed. For a list of capabilities
and a description of what they do, see terminfo(4); see curses(3X) for a list of all
the terminfo routines.

9-56 IRIS-4D Programmer's Guide

(

(

(

Working with terminfo Routines

Compiling and Running a terminfo Program

The general command line for compiling and the guidelines for running a pro­
gram with terminfo routines are the same as those for compiling any other curses
program. See the sections "Compiling a curses Program" and "Running a curses
Program" in this chapter for more information.

An Example terminfo Program
The example program termhl shows a simple use of terminfo routines. It is a

version of the highlight program (see "curses Program Examples") that does not
use the higher level curses routines. termhl can be used as a filter. It includes the
strings to enter bold and underline mode and to tum off all attributes.

curses/termlnfo 9·57

Working with terminfo Routines

/*
* A tenninfo level version of the highlight program.
*/

#inelude <curses.h>
#inelude <term.h>

int ulmode = 0;

main (arge, argv)
int arge;
char **argv;

FilE *fd;
int e, c2.;
int outch () ;

/* Currently underlining */

if (arge> 2)

{

fprintf (stderr, "Usage: tennhl [file] \n") ;
exit (1);

if (arge = 2)

(

fd = fopen(argv[l] , "rn);
if (fd = NULL)

9-58 IRIS-4D Programmer's Guide

(

(

(

Working with terminfo Routines

else

perror(argv[l]);
exit (2);

fd = stdin;

setupterm((char*) 0, 1, (int*) 0) ;

for (;;)
{

c = getc (fd) ;
if (c = EOF)

break;
if (c = '\')
(

c2 = getc(fd);
switch (c2)

(

case fB':

tputs(enter_bold_mode, 1, outch);
continue;
case 'U':
tputs(enter_underline_mode, 1, outch);
ulrrode = 1;
continue;
case 'N':
tputs(exit_attribute mode, 1, outch);
ulrrode = 0;
continue;

putch(c) ;
putch{c2) ;

else
putch(c) ;

curses/terminfo 9-59

Working with tenninfo Routines

/*

fclose (fd);
fflush (stdout) ;
reset teI1T\ () ;
exit(O);

* This function is like putchar, but it checks for underlining.

*/
putch(c)

/*

int c;

outch(c) ;
if (ulmode && underline_char)
{

outch(' \b');
tputs(underline_char, 1, outch);

* Outchar is a function version of put char that can be passed to
* tputs as a routine to call.

*/
outch(c)

int c;

put char (c) ;

Let's discuss the use of the function tputs(cap, affcnt, outc) in this program to
gain some insight into the term info routines. tputsO applies padding information.
Some terminals have the capability to delay output. Their terminal descriptions in
the terminfo database probably contain strings like $<20>, which means to pad for
20 milliseconds (see the following section "Specify Capabilities" in this chapter).
tputs generates enough pad characters to delay for the appropriate time.

(

(

tput() has three parameters. The first parameter is the string capability to be (
output. The second is the number of lines affected by the capability. (Some capa- .
bilities may require padding that depends on the number of lines affected. For
example, insert)ine may have to copy all lines below the current line, and may
require time proportional to the number of lines copied. By convention affcnt is 1 if

9·60 IRIS·4D Programmer's Guide

Working with terminfo Routines

no lines are affected. The value 1 is used, rather than 0, for safety, since affcnt is
multiplied by the amount of time per item, and anything multiplied by 0 is 0.) The
third parameter is a routine to be called with each character.

For many simple programs, affcnt is always 1 and outc always calls putchar.
For these programs, the routine putp(cap) is a convenient abbreviation. termhl
could be simplified by using putpO.

Now to understand why you should use the curses level routines instead of ter­
minfo level routines whenever possible, note the special check for the
underline_char capability in this sample program. Some terminals, rather than
having a code to start underlining and a code to stop underlining, have a code to
underline the current character. termhl keeps track of the current mode, and if the
current character is supposed to be underlined, outputs underline_char, ifneces­
sary. Low level details such as this are precisely why the curses level is recom­
mended over the terminfo level. curses takes care of terminals with different
methods of underlining and other terminal functions. Programs at the term info
level must handle such details themselves.

term hi was written to illustrate a typical use of the term info routines. It is
more complex than it need be in order to illustrate some properties of terminfo pro­
grams. The routine vidattr (see curses(3X» could have been used instead of
directly outputting enter_bold_mode, enter._ underline_mode, and
exit_attribute _mode. In fact, the program would be more robust if it did, since
there are several ways to change video attribute modes.

curses/terminfo 9-61

Working with the terminfo Database

The terminfo database describes the many terminals with which curses pro­
grams, as well as some UNIX system tools, like vi(l), can be used. Each terminal
description is a compiled file containing the names that the telminal is known by (-
and a group of comma-separated fields describing the actions and capabilities of the
terminal, This section describes the terminfo database, related support tools, and
their relationship to the curses library.

Writing Terminal Descriptions
Descriptions of many popular terminals are already described in the terminfo

database. However, it is possible that you'll want to run a curses program on a ter­
minal for which there is not currently a description. In that case, you'll have to
build the description.

The general procedure for building a terminal description is as follows:

1. Give the known names of the terminal.

2. Learn about, list, and define the known capabilities.

3. Compile the newly-created description entry.

4. Test the entry for correct operation.

S. Go back to step 2, add more capabilities, and repeat, as necessary.

Building a terminal description is sometimes easier when you build small parts
of the description and test them as you go along. These tests can expose
deficiencies in the ability to describe the terminal. Also, modifying an existing
description of a similar terminal can make the building task easier. (Lest we forget
the UNIX motto: Build on the work of others.)

In the next few pages, we follow each step required to build a terminal descrip­
tion for the fictitious terminal named "my term. "

Name the Terminal

(

The name of a terminal is the first information given in a terminfo terminal
description. This string of names, assuming there is more than one name, is
separated by pipe symbols (I). The first name given should be the most common
abbreviation for the terminal. The last name given should be a long name that fully (.
identifies the terminal. The long name is usually the manufacturer's formal name
for the terminal. All names between the first and last entries should be known
synonyms for the terminal name. All names but the formal name should be typed in
lowercase letters and contain no blanks. Naturally, the formal name is entered as

9·62 IRIS-4D Programmer's Guide

Working with the terminfo Database

closely as possible to the manufacturer's name.

Here is the name string from the description of the IRIS Series 5000 worksta-
tion:

5000liris5000lIRIS Series 5000,

Notice that the first name is the most commonly used abbreviation and the last is the
long name. Also notice the comma at the end of the name string.

Here's the name string for our fictitious terminal, my term:

mytenn I mytm I mine I fancy I terminal I My FANCY Terminal,

Terminal names should follow common naming conventions. These conven­
tions start with a root name, like 5000 or my term, for example. The root name
should not contain odd characters, like hyphens, that may not be recognized as a
synonym for the terminal name. Possible hardware modes or user preferences
should be shown by adding a hyphen and a 'mode indicator' at the end of the name.
For example, the 'wide mode' (which is shown by a -w) version of our fictitious
terminal would be described as myterm-w. term(5) describes mode indicators in
greater detail.

Learn About the Capabilities
After you complete the string of terminal names for your description, you have

to learn about the terminal's capabilities so that you can properly describe them. To
learn about the capabilities your terminal has, you should do the following:

• See the owner's manual for your terminal. It should have information about
the capabilities available and the character strings that make up the sequence
transmitted from the keyboard for each capability.

• Test the keys on your terminal to see what they transmit, if this information
is not available in the manual. You can test the keys in one of the following
ways-type:

or

stty -echo; cat -vu
Type in the keys you want to test;
for example, see what right arrow (~) transmits.
<return>
<ctrl·D>
sttyecho

cat >dev/null
Type in the escape sequences you want to test;

curses/terminfo 9-63

Working with the terminfo Database

for example, see what \E [H transmits.
<ctrl-D>

• The first line in each of these testing methods sets up the terminal to carry . (
out the tests. The <ctrl-D> helps return the terminal to its normal settings .

• See the terminfo(4) manual page. It lists all the capability names you have
to use in a terminal description. The following section, "Specify Capabili­
ties," gives details.

Specify Capabilities
Once you know the capabilities of your terminal, you have to describe them in

your terminal description. You describe them with a string of comma-separated
fields that contain the abbreviated terminfo name and, in some cases, the terminal's
value for each capability. For example, bel is the abbreviated name for the beeping
or ringing capability. On most terminals, a ctrl-G is the instruction that produces a
beeping sound. Therefore, the beeping capability would be shown in the terminal
description as bel='G,.

The list of capabilities may continue onto multiple lines as long as white space
(that is, tabs and spaces) begins every line but the first of the description. Com­
ments can be included in the description by putting a # at the beginning of the line.

The terminfo(4) manual page has a complete list of the capabilities you can
use in a terminal description. This list contains the name of the capability, the
abbreviated name used in the database, the two-letter code that corresponds to the
old termcap database name, and a short description of the capability. The abbrevi­
ated name that you will use in your database descriptions is shown in the column
titled "Capname."

For a curses program to run on any given terminal, its description in the terminfo
database must include, at least, the capabilities to move a cursor in all four direc­
tions and to clear the screen.

A terminal's character sequence (value) for a capability can be a keyed opera­
tion (like ctrl-G), a numeric value, or a parameter string containing the sequence of

c

operations required to achieve the particular capability. In a terminal description, (_
certain characters are used after the capability name to show what type of character
sequence is required. Explanations of these characters follow:

This shows a numeric value is to follow. This character follows a capa­
bility that needs a number as a value. For example, the number of
columns is defined as cols#80,.

9-64 IRIS-4D Programmer's Guide

Working with the terminfo Database

= This shows that the capability value is the character suing that follows.
This string instructs the terminal how to act and may actually be a
sequence of commands. There are certain characters used in the instruc­
tion strings that have special meanings. These special characters follow:

This shows a control character is to be used. For example, the beep­
ing sound is produced by a ctrl-G. This would be shown as AG.

\E or'e These characters followed by another character show an escape
instruction. An entry of\EC would transmit to the terminal as
escape-C.

\n These characters provide a <NL> character sequence.

\l These characters provide a linefeed character sequence.

\r These characters provide a return character sequence.

\t These characters provide a tab character sequence.

\b These characters provide a backspace character sequence.

\f These characters provide a form feed character sequence.

\<; These characters provide a space character sequence.

'vmn This is a character whose three-digit octal is nnn, where nnn can be
one to three digits.

$< > These symbol~ are used to show a delay in milliseconds. The
desired length of delay is enclosed inside the "less than/greater
than" symbols « ». The amount of delay may be a whole number,
a numeric value to one decimal place (tenths), or either form fol­
lowed by an asterisk (*). The * shows that the delay will be propor­
tional to the number of lines affected by the operation. For exam­
ple, a 20-millisecond delay per line would appear as $<20*>. See
the terminfo(4) manual page for more information about delays
and padding.

Sometimes, it may be necessary to comment out a capability so that the termi­
nal ignores this particular field. This is done by placing a period (.) in front of the
abbreviated name for the capability. For example, if you would like to comment
out the beeping capability, the description entry would appear as

.bel=AG,

curses/terminfo 9-65

Working with the terminfo Database

With this background information about specifying capabilities, let's add the
capability string to our description of my term. We'll consider basic, screen­
oriented, keyboard-entered, and parameter string capabilities.

Basic Capabilities

Some capabilities common to most terminals are bells, columns, lines on the
screen, and overstriking of characters, if necessary. Suppose our fictitious terminal
has these and a few other capabilities, as listed below. Note that the list gives the
abbreviated term info name for each capability in the parentheses following the
capability description:

• An automatic wrap around to the beginning of the next line whenever the
cursor reaches the right-hand margin (am).

• The ability to produce a beeping sound. The instruction required to produce
the beeping sound is AG (bel).

• An 80-column wide screen (cols).

• A 30-1ine long screen (lines).

• Use of xon/xoff protocol (xon).

By combining the name string (see the section "Name the Terminal") and the
capability descriptions that we now have, we get the following general terminfo
database entry:

mytennlIt¥tmlmine I fancYltenninallMy FANCY tenninal,
am, bel=AG, cols#80, lines#30, xon,

Screen-Oriented Capabilities
Screen-oriented capabilities manipulate the contents of a screen. Our example

terminal my term has the following screen-oriented capabilities. Again, the abbrevi­
ated command associated with the given capability is shown in parentheses.

• A <return> is a ctrl-M (cr).

• A cursor up one line motion is a ctrl-K (cuul).

• A cursor down one line motion is a ctrl-J (cud!).

• Moving the cursor to the left one space is a ctrl-H (cub!).

• Moving the cursor to the right one space is a ctrl-L (cun).

• Entering reverse video mode is an escape-D (smso).

• Exiting reverse video mode is an escape-Z (rmso).

9·66 IRIS-4D Programmer's Guide

(

(

(

Working with the terminfo Database

• A clear to the end of a line sequence is an escape-K and should have a 3-
millisecond delay (el).

• A terminal scrolls when receiving a <NL> at the bottom of a page (ind).

The revised terminal description for my term including these screen-oriented
capabilities follows:

myterm I mytm I mine I fancy I terminal I My FANCY Terminal,
am, bel='G, cols#80, lines#30, xon,
cr='M, cuul='K, cudl=' J, cubl='H, cuf1='L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=\n,

Keyboard-Entered Capabilities
Keyboard-entered capabilities are sequences generated when a key is typed on

a terminal keyboard. Most terminals have, at least, a few special keys on their key­
board, such as arrow keys and the backspace key. Our example terminal has
several of these keys whose sequences are, as follows:

• The backspace key generates a ctrl-H (kbs).

• The up arrow key generates an escape-[A (keuul).

• The down arrow key generates an escape-[B (keudl).

• The right arrow key generates an escape-[C (keufl).

• The left arrow key generates an escape-[D (keubl).

• The home key generates an escape-[H (khome).

Adding this new information to our database entry for my term produces:

curses/terminfo 9-67

Working with the terminfo Database

myterm I mytm I mine I fancy I terminal I My FANCY Terminal,
am, bel="G, cols#80, lines#30, xon,
cr="M, cuul="K, cudl="J, cubl="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs="H, kcuul=\E[A, kcudl=\E[B, kcufl=\E[C,
kcubl=\E[D, khome=\E[H,

Parameter String Capabilities
Parameter string capabilities are capabilities that can take parameters - for

example, those used to position a cursor on a screen or tum on a combination of
video modes. To address a cursor, the cup capability is used and is passed two
parameters: the row and column to address. String capabilities, such as cup and set
attributes (sgr) capabilities, are passed arguments in a terminfo program by the
tparmO routine.

The arguments to string capabilities are manipulated with special '%'
sequences similar to those found in a printf(3S) statement. In addition, many of the
features found on a simple stack-based RPN calculator are available. cup, as noted
above, takes two arguments: the row and column. sgr, takes nine arguments, one
for each of the nine video attributes. See terminfo(4) for the list and order of the
attributes and further examples of sgr.

Our fancy terminal's cursor position sequence requires a row and column to be
output as numbers separated by a semicolon, preceded by escape-[and followed
with H. The coordinate numbers are I-based rather than a-based. Thus, to move to
row 5, column 18, from (0,0), the sequence

Integer arguments are pushed onto the stack with a '%p' sequence followed by
the argument number, such as '%p2' to push the second argument. A shorthand
sequence to increment the first two arguments is '%i'. To output the top number on
the stack as a decimal, a '%d' sequence is used, exactly as in printf. Our terminal's
cup sequence is built up as follows:

9·68 IRIS·4D Programmer's Guide

(

(

or

Working with the terminfo Database

eup= Meaning

\E[output escape-[
%i increment the two arguments

%p1 push the 1st argument (the row) onto the stack
%d output the row as a decimal

output a semi-colon
%p2 push the 2nd argument (the column) onto the stack
%d output the column as a decimal
H output the trailing letter

cup=\E[%i%Pl%d;%p2%dH,

Adding this new information to our database entry for my term produces:

myterm I mytm I mine I fancy I terminal I My FANCY Terminal,
am, J:el="G, cols#BO, lines#30, xon,
cr="M, CllUl="K, cudl=" J, cubl="H, cufl="L,
smso=\ED, rmso=\EZ, el=\EK$<3>, ind=O
kbs="H, kcuul=\E[A, kcudl=\E[B, kcufl=\E[C,
kcubl=\E[D, khome=\E[H,
cup=\E[%i%pl%d;%p2%dH,

See terminfo(4) for more information about parameter string capabilities.

Compile the Description
The term info database entries are compiled using the tic compiler. This com­

piler translates term info database entries from the source format into the compiled
format.

The source file for the description is usually in a file suffixed with .ti. For
example, the descnption of myterm would be in a source :file named myterm.ti.
The compiled description of my term would usually be placed in
/usr/lib/terminfo/m/myterm. since the first letter in the description entry is m.
Links would also be made to synonyms of my term, for example, to /f/faney. If the
environment variable $TERMINFO were set to a directory and exported before the
entry was compiled, the compiled entry would be placed in the $TERMINFO

curses/termlnfo 9·69

WorkIng wIth the terminfo Database

directory. All programs using the entry would then look in the new directory for the
description file if $TERMINFO were set, before looking in the default
/usr/lib/terminfo. The general format for the tic compiler is as follows:

tic [-v] [-c]file

The -v option causes the compiler to trace its actions and output information
about its progress. The -c option causes a check for errors; it may be combined
with the -v option. file shows what file is to be compiled. If you want to compile
more than one file at the same time, you have to first use cat(l) to join them
together. The following command line shows how to compile the terminfo source
file for our fictitious terminal:

tic -v myterm.ti<return>
(The trace information appears as the compilation
proceeds.)

Refer to the tic(lM) manual page in the IRIS-4D System Administrator's Refer­
ence Manual for more information about the compiler.

Test the Description
Let's consider three ways to test a terminal description. First, you can test it by

c

setting the environment variable $TERMINFO to the path name of the directory (
containing the description. If programs run the same on the new terminal as they
did on the older known terminals, then the new description is functional.

Second, you can test for correct insert line padding by commenting out xon in
the description and then editing (using vi(l» a large file (over 100 lines) at 9600
baud (if possible), and deleting about 15 lines from the middle of the screen. Type
u (undo) several times quickly. If the terminal messes up, then more padding is
usually required. A similar test can be used for inserting a character.

Third, you can use the tput(l) command. This command outputs a string or an
integer according to the type of capability being described. If the capability is a
Boolean expression, then tput sets the exit code (0 for TRUE, 1 for FALSE) and
produces no output. The general format for the tput command is as follows:

tput [-Ttype] capname

The type of terminal you are requesting jnformation about is identified with the
-Ttype option. Usually, this option is not necessary because the default terminal (
name is taken from the environment variable $TERM. The capname field is used
to show what capability to output from the term info database.

9·70 IRI8-4D Programmer's GuIde

Working with the terminfo Database

The following command line shows how to output the "clear screen" character
sequence for the terminal being used:

tput clear
(The screen is cleared.)

The following command line shows how to output the number of columns for
the terminal being used:

tput coIs
(The number of columns used by the terminal appears here.)

The tput(l) manual page found in the IRIS-4D User's Reference Manual con­
tains more information on the usage and possible messages associated with this
command.

Comparing or Printing terminfo Descriptions
Sometime you may want to compare two terminal descriptions or quickly look

at a description without going to the terminfo source directory. The infocmp(lM)
command was designed to help you with both of these tasks. Compare two descrip­
tions of the same terminal; for example,

mkdir Itmp/old Itmp/new
TERMINFO=/tmp/old tic old5420.ti
TERMINFO=/tmp/new tic new5420.ti
infocmp -A Itmp/old -B Itmp/new -d 5420 5420

compares the old and new 5420 entries.

To print out the terminfo source for the 5420, type

infocmp -I 5420

curses/termlnfo 9-71

Working with the terminfo Database

Converting a termcap Description to a terminfo
Description V The "'nnln'o d,taba.," d~ign,d to tok, tho pi", .fth, "',m"p d,tab~,.

Because of the many programs and processes that have been written with and for
the term cap database, it is not feasible to do a complete cutover at one time. Any
conversion from termcap to terminfo requires some experience with both data­
bases. All entries into the databases should be handled with extreme caution.
These files are important to the operation of your terminal.

The captoinfo(lM) command converts termcap(4) descriptions to terminfo(4)
descriptions. When a file is passed to captoinfo, it looks for termcap descriptions
and writes the equivalent terminfo descriptions on the standard output. For exam­
ple,

captoinfo /etc/termcap

converts the file /etc/termcap to term info source, preserving comments and other
extraneous information within the file. The command line

captoinfo

looks up the current terminal in the termcap database, as specified by the $TERM
and $TERMCAP environment variables and converts it to terminfo.

If you must have both termcap and term info terminal descriptions, keep the
terminfo description only and use infocmp -C to get the termcap descriptions.

If you have been using cursor optimization programs with the -Itermcap or
-ltermlib option in the cc command line, those programs will still be functional.
However, these options should be replaced with the -Icurses option.

9-72 IRIS-4D Programmer's Guide

(

(

(

curses Program Examples

The following examples demonstrate uses of curses routines.

The editor Program
This program illustrates how to use curses routines to write a screen editor.

For simplicity, editor keeps the buffer in stdscr; obviously, a real screen editor
would have a separate data structure for the buffer. This program has many other
simplifications: no provision is made for files of any length other than the size of
the screen, for lines longer than the width of the screen, or for control characters in
the file.

Several points about this program are worth making. First, it uses the moveO,
mvaddstrO, fiashO, wnoutrefreshO and clrtoeolO routines. These routines are all
discussed in this chapter under "Working with curses Routines."

Second, it also uses some curses routines that we have not discussed. For
example, the function to write out a file uses the mvinchO routine, which returns a
character in a window at a given position. The data structure used to write out a file
does not keep track of the number of characters in a line or the number of lines in
the file, so trailing blanks are eliminated when the file is written. The program also
uses the inschO, delchO, insertlnO, and deletelnO routines. These functions insert
and delete a character or line. See curses(3X) for more information about these
routines.

Third, the editor command interpreter accepts special keys, as well as ASCII
characters. On one hand, new users find an editor that handles special keys easier
to learn about. For example, it's easier for new users to use the arrow keys to move
a cursor than it is to memorize that the letter h means left, j means down, k means
up, and I means right. On the other hand, experienced users usually like having the
ASCII characters to avoid moving their hands from the home row position to use
special keys.

Because not all tenninals have arrow keys, your curses programs will work on
more tenninals if there is an ASCII character associated with each special key.

Fourth, the ctrl-L command illustrates a feature most programs using curses
routines should have. Often some program beyond the control of the routines writes
something to the screen (for instance, a broadcast message) or some line noise
affects the screen so much that the routines cannot keep track of it. A user invoking
editor can type ctrl-L, causing the screen to be cleared and redrawn with a call to
wrefresh(curser).

curses/termlnfo 9·73

curses Program Examples

Finally, another important point is that the input command is terminated by
ctrl-D, not the escape key. It is very tempting to use escape as a command, since
escape is one of the few special keys available on every keyboard. (Return and
break are the only others.) However, using escape as a separate key introduces an
ambiguity. Most terminals use sequences of characters beginning with escape (i.e., (
escape sequences) to control the terminal and have special keys that send escape
sequences to the computer. If a computer receives an escape from a terminal, it
cannot tell whether the user depressed the escape key or whether a special key was
pressed.

editor and other curses programs handle the ambiguity by setting a timer. If
another character is received during this time, and if that character might be the
beginning of a special key, the program reads more input until either a full special
key is read, the time out is reached, or a character is received that could not have
been generated by a special key. While this strategy works most of the time, it is
not foolproof. It is possible for the user to press escape, then to type another key
quickly, which causes the curses program to think a special key has been pressed.
Also, a pause occurs until the escape can be passed to the user program, resulting in
a slower response to the escape key.

Many existing programs use escape as a fundamental command, which cannot
be changed without infuriating a large class of users. These programs cannot make
use of special keys without dealing with this ambiguity, and at best must resort to a
time-out solution. The moral is clear: when designing your curses programs, avoid
the escape key.

9·74 IRIS·4D Programmer's Guide

(

(

/* editor: A screen-oriented editor. The user
* interface is similar to a subset of vi.
* The buffer is kept in stdscr to s:inplify
* the program.
*/

*include <stdio.h>
#include <curses.h>

lldefine ctrl(c) «c) & 037)

main (argc, argv)
int argc;
char **ar:jV;
{

extern void perror (), exit () ;
int i, n, 1;
int c;
int line = 0;

curses Program Examples

curses/terminfo 9·75

curses Program Examples

FilE *fd;

if (argc != 2)

fprintf(stderr, "Usage: %s file\n", argv[OJ);
exit(l);

fd = fopen (argv [1], "r");
if (fd = NULL)

perror(argv[l]);
exit(2);

initscr ();
cbreak() ;
nonl ();
noecho ();
idlok(stds=, TRUE);

keypad (stdscr, TRUE);

/* Read in the file */
while «c = getc (fd» != EOF)

if (c = '\n')
line++;

if (line > LINES - 2)
break;

addch(c) ;

9-76 IRIS-4D Programmer's Guide

(

(

(~

fclose(fd);

move (0, 0);

refresh ();
edit ();

1* Write out the file *1
fd= fopen(argv[lj, "w");
for (1 = 0; 1 < LINES - 1; 1++)

n = len(l);
for (i = 0; i < n; i++)

curses Program Examples

putc(llWinch(l, i) & A_CHARTEXT, fd);
putc('\n', fd);

fclose(fd);

endwinO;
exit (0);

len (lineno)
int lineno;

int line len = OOLS - 1;

while (linelen >= 0 && llWinch(lineno, linelen) ")
linelen--;

return line len + 1;

1* Global value of Olrrent cursor position *1
int row, col;

edit 0
{

int c;

for (;;)

curses/terminfo 9-77

curses Program Examples

move (row, col);
refresh 0;
c = getchO;

/* Editor comrrands */
switch (c)

/* hjkl and arrow keys: move cursor
* in direction indicated */

case 'h':
case KEY LEFT:

case 'j':

if (col> 0)

col--;
else

flash 0;
break;

case KEY DOWN:
if (row < LINES - 1)

row++;
else

flash 0;
break;

case 'k':
case KEY UP:

if (row> 0)

row--;
else

flash 0 ;
break;

case' 1':
case KEY RIGHT:

if (col < COLS - 1)
col++;

else
flash 0 ;

break;

9-78 IRIS-4D Programmer's Guide

(

(

(

curses Program Examples

/* i: enter input mode */
case KEY IC:
case 'i':

input ();
break;

/* x: delete =rent character */
case KEY DC:
case 'x':

delch ();
break;

/* 0: open up a new line and enter input rrode * /
case KEY IL:
case '0':

move (++row, col = 0);
insertln ();
input ();
break;

/* d: delete current line */
case KEY DL:
case 'd':

deleteln () ;

break;

/* "L: redraw screen */
case KEY CLEAR:
case ctrl (' L') :

wrefresh(curscr);
break;

/* w: write and quit */
case 'w':

return;

curses/terminfo 9-79

curses Program Examples

/*

/* q: quit without writing */
case 'q':

default:

endwin ();
exit (2);

flash () ;
break;

* Insert rrode: accept characters and insert them.
* End with 'D or EIC
*/

input ()
{

int Ci

standout () ;
mvaddstr (LINES - 1, COIS - 20, "INPUT MJDE");
st.andend () ;
move (row, col);
refresh ();
for (;;)

c = getch ();

if (c == ct.rl('D') I I c == KEY_EIC)
break;

insch (c);
move (row, +tcol);
refresh () ;

move(LINES - 1, COLS - 20};
clrtoeol () ;
move (row, col);
refresh () ;

9-80 IRIS-4D Programmer's Guide

(

(

c

curses Program Examples

The highlight Program
This program illustrates a use of the routine attrsetO. highlight reads a text

file and uses embedded escape sequences to control attributes. \U turns on under­
lining, \B turns on bold, and \N restores the default output attributes.

Note the first call to scrollokO, a routine that we have not previously discussed
(see curses(3X». This routine allows the terminal to scroll if the file is longer than
one screen. When an attempt is made to draw past the bottom of the screen, scrol·
lokO automatically scrolls the terminal up a line and calls refreshO.

/*
* highlight: a program to tum \U, \B, and
* \N sequences into highlighted
* output, allowing words to be
* displayed underlined or in bold.
*/

#include <stdio.h>
#include <curses.h>

main (argc, argv)
int argc;
char **argv;

FILE *fd;
int c, c2;
void exit(), perror();

if (argc != 2)

{

fprintf(stderr, "Usage: highlight file\n");
exit (1);

fd = fopen(argv[lJ, "r");

if (fd = NULL)

curses/terminfo 9·81

curses Program Examples

perror(argv[l]);
exit(2);

initscr () ;
scrollok(stdscr, TRUE);
nonl () ;
while ((c = getc (fd)) ! = EOF)

if (c = '\\')

else

fclose (fd);
refresh ();
endwin ();
exit (0);

c2 = getc (fd) ;
switch (c2)
(

case fB':

case 'U':

case 'N' :

attrset(A_BOLD);
continue;

attrset(A_UNDERLINE);
continue;

attrset (0) ;
continue;

addch(c) ;
addch(c2);

addch(c) ;

9-82 IRIS-4D Programmer's Guide

(

(

(

curses Program Examples

The scatter Program
This program takes the first LINES - l1ines of characters from the standard

input and displays the characters on a terminal screen in a random order. For this
program to work properly, the input file should not contain tabs or non-printing
characters.

curses/terminfo 9-83

curses Program Examples

1*

*
*1

The scatter program.

#include <curses.h>
#include <sys/types.h>

#define MAXLINES 120
#define MAXCOLS 160
char s [MAXLINES] [MAXCOIS];
int T [MllXLINES] [MAXCOIS 1 ;

main 0
{

1* Screen Array *1
1* Tag Array - Keeps track of *
* the nurrJ::er of characters *
* printed and their positions. *1

register int row = O,col = 0;
register int c;
int char_count = 0;
time_t t;
void exit(), srand();

initscrO;
for (row = O;row < MAXLINES;row++)

for (col = O;col < MAXCOLS;col++)
s[row] [col]=' ';

col = row = 0;
1* Read screen in *1
while ((c=getcharO) != EO!" && row < LINES) {

if(c != '\n')

9-84 IRIS-4D Programmer's Guide

(

(

c

else

curses Program Examples

1* Place char in screen array *1
s[row] [col++] = c;
if(c != , ')

col = 0;
row++;

char_count ++;

tine (&t) ; 1* Seed the random number generator *1
srand ((unsigned) t) ;

while (char_count)

endwinO;
exit (0);

row = randO % LINES;
col = (rand() » 2) % COLS;
if (T[row] [col] != 1 && s[row] [col] !=' ')
{

move (row, col);
addch(s[row] [col]);
T[row] [col] = 1;
char _ count--;
refresh 0;

curses/terminfo 9·85

curses Program Examples

The show Program
show pages through a file, showing one screen of its contents each time you

depress the space bar. The program calls cbreakO so that you can depress the (
space bar without having to hit return; it calls noechoO to prevent the space from .
echoing on the screen. The nonIO routine, which we have not previously discussed,
is called to enable more cursor optimization. The idlokO routine, which we also
have not discussed, is called to allow insert and delete line. (See curses(3X) for
more information about these routines). Also notice that clrtoeoIO and cIrtobotO
are called.

By creating an input file for show made up of screen-sized (about 24 lines)
pages, each varying slightly from the previous page, nearly any exercise for a
curse sO program can be created. This type of input file is called a show script.

include <curses. h>
#include <signal.h>

main (arge, argv)
int arge;
char *argv[];
(

FILE *fd;
char linebuf[BUFSIZ];
int line;
void done(), perror(), exit();

if (arge != 2)

fprintf(stderr, "usage: %s file\n", argv[O]):
exit (1):

if «fd=fopen(argv[l], urn» = NULL)

perror(argv[l]);
exit(2);

9-86 IRIS-4D Programmer's Guide

(

(

signal (SIGINT, done);

initscr 0;
noechoO;
cbreakO;
nonl 0;
idlok(stdscr, TRUE);

while (1)

{

move (0, 0);

curses Program Examples

for (line = 0; line < LINES; line++)

if (! fgets (linebuf, sizeaf linebuf, fd))
{

clrtobot 0 ;
done 0;

move (line, 0);

printw("%s", linebuf);

void doneO
{

refresh 0;
if (getch 0 = , q')

done 0;

move (LINES - 1, 0);

clrtoeol () ;
refresh 0 ;
endwinO;
exit (0);

curses/termlnfo 9-87

curses Program Examples

The two Program /
This program pages through a file, writing one page to the tenninal from which

the program is invoked and the next page to the tenninal named on the command (
line. It then waits for a space to be typed on either terminal and writes the next
page to the tenninal at which the space is typed.

two is just a simple example of a two-terminal curses program. It does not
handle notification; instead, it requires the name and type of the second tenninal on
the command line. As written, the command "sleep 100000" must be typed at the
second terminal to put it to sleep while the program runs, and the user of the first
terminal must have both read and write permission on the second terminal.

#include <curses .h>
#include <signal.h>

SCREEN *Ire, *you;
SCREEN *set_term();

FILE *fd, *fdyou;
char linebuf[512l;

main (argc, argv)
int argc;
char **argv;
(

void done(), exit();
unsigned sleep();
char *getenv () ;
int c;

if (argc != 4)

fprintf(stderr, nUsage: two othertty otherttytYfE' inputfile\nn);
exit (1);

9·88 IRIS-4D Programmer's Guide

(

(

curses Program Examples

fd = fopen (argv[3], HrH);

fdyou = fopen(argv[l], HW+H);

signal (SIGINT, done); /* die gracefully */

rre = newterm(getenv(HTERMH), stdout, stdin); /* initialize ~ tty */
you = newterm(argv[2] , fdyou, fdyou);/* Initialize other terminal */

set_term(rre) ;
noecho 0;
cbreakO;
non10 ;
nodelay (stdscr,

/* Set modes for ~ terminal */
/* turn off tty echo */
/* enter cbreak mode */
/* Allow linefeed */

TRUE); /* No hang on input */

set_term(you) ;
noecho () ;

/* Set modes for other terminal */

cbreakO;
nonlO ;
nodelay(stdscr,TRUE);

/* Dump first screen full on ~ terminal */
durrp _page (rre) ;

/* Dump second screen full on the other terminal */
durrp _page (you) ;

for (;;) /* for each screen full */

set_term(rre) ;
c = getch ();
if (c = 'q')
done ();
if (c =' ')
durrp _page (rre) ;

set_term (you) ;
c = getch ();
if (c = 'q')
done 0;
if (c =' ')
durrp _page (you) ;
sleep (1);

/* wait for user to read it */

/* wait for user to read it */

curses/terminfo 9-89

curses Program Examples

dump yage (term)
SCREEN *term:

1*

int line;

set_term(term) ;
move (0, 0);
for (line = 0; line < LINES - 1; line-t-+) {

if (fgets(linebuf, sizeof linebuf, fd) = NULL) {

clrtobot () ;
done ();
}

mvaddstr(line, 0, linebuf);

standout () ;
mvprintw(LINES - 1, 0, n--More--n);

standend () ;
refresh (); /* sync screen */

* Clean up and exit.

*/
void done ()
{

1* Clean up first terminal */
set_ term (you) ;
move (LINES - 1,0);

clrtoeol () ;
refresh ();
endwin ();

/* to lower left corner */

/* clear bottom line *1
/* flush out everything */
1* curses cleanup */

/* Clean up second terminal */
set_term(me) ;
move (LINES - 1,0); 1* to lower left corner */
clrtoeol(); /* clear bottom line */
refresh(); /* flush out everything */
endwin () ; 1* curses cleanup * /
exit(O);

9-90 IRIS-4D Programmer's Guide

(

(

(

curses Program Examples

The window Program
This example program demonstrates the use of multiple windows. The main

display is kept in stdser. When you want to put something other than what is in
stdser on the physical terminal screen temporarily, a new window is created cover­
ing part of the screen. A call to wrefreshO for that window causes it to be written
over the stdser image on the terminal screen. Calling refreshO on stdser results in
the original window being redrawn on the screen. Note the calls to the touchwinO
routine (which we have not discussed - see eurses(3X)) that occur before writing
out a window over an existing window on the terminal screen. This routine
prevents screen optimization in a curses program. If you have trouble refreshing a
new window that overlaps an old window, it may be necessary to call touehwinO
for the new window to get it completely written out.

#include <curses.h>

WINDOW *cmdwin;

main 0

int i, c;
char wf [120) ;
void exit 0 ;

initscrO;
nonlO;
noechoO;
cbreak() ;

cmdwin = newwin(3, COLS, 0, 0);/* top 3 lines */
for (i = 0; i < LINES; i++)

mvprintw(i, 0, "This is line %d of stdscr", i);

curses/termlnfo 9·91

curses Program Examples

for (;;)

refresh ();

c = getch ();
switch (c)

case f e':

case 'q':

/* Enter command from keyboard */
werase (cmdwin);
wprintw (cmdwin, ''Enter corrmand: n);

wrrove (cmdwin, 2, 0);
for (i = 0; i < COLS; i++)

waddch(cmdwin, '-');
wrrove (cmdwin, 1, 0);
touchwin(cmdwin);
wrefresh(cmdwin);

wgetstr(cmdwin, buf);
touchwin(stdscr);

/*
* The command is now in buf.
* It should be processed here.

*/

endwin ();

exit (0) ;

9·92 IRIS-4D Programmer's Guide

(~

(

(

An Overview of the make Utility

The trend toward increased modularity of programs means that a project may
have to cope with a large assortment of individual files. There may also be a wide
range of generation procedures needed to turn the assortment of individual files into
the final executable product.

make(l) provides a method for maintaining up-to-date versions of programs
that consist of a number of files that may be generated in a variety of ways.

An individual programmer can easily forget

• file-to-file dependencies

• files that were modified and the impact that has on other files

• the exact sequence of operations needed to generate a new version of the
program

In a description file, make keeps track of the commands that create files and
the relationship between files. Whenever a change is made in any of the files that
make up a program, the make command creates the finished program by recompil­
ing only those portions directly or indirectly affected by the change.

The basic operation of make is to

• find the target in the description file

• ensure that all the files on which the target depends, the files needed to gen­
erate the target, exist and are up to date

• create the target file if any of the generators have been modified more
recently than the target

The description file that holds the information on interfile dependencies and
command sequences is conventionally called makefile, Makefile, or s.[mM]akefile.
If this naming convention is followed, the simple command make is usually
sufficient to regenerate the target regardless of the number of files edited since the
last make. In most cases, the description file is not difficult to write and changes
infrequently. Even if only a single file has been edited, rather than typing all the
commands to regenerate the target, typing the make command ensures the regen­
eration is done in the prescribed way.

make 10-1

Basic Features

The basic operation of make is to update a target file by ensuring that all of the
files on which the target file depends exist and are up to date. The target file is
regenerated if it has not been modified since the dependents were modified. The
make program searches the graph of dependencies. The operation of make
depends on its ability to find the date and time that a file was last modified.

The make program operates using three sources of information:

• a user-supplied description file

• filenames and last-modified times from the file system

• built-in rules to bridge some of the gaps

To illustrate, consider a simple example in which a program named prog is
made by compiling and loading three C language files x.c, y.c, and z.c with the
math library. By convention, the output of the C language compilations will be
found in files named x.o, y.o, and z.o. Assume that the files x.c and y.c share some
declarations in a file named defs.h, but that z.c does not. That is, x.c and y.c have
the line

#inclucle "clefs .h"

The following specification describes the relationships and operations:

prog: x.o y.o Z.o
cc x.o y.o z.o -lm -0 prog

x.o y.o: c:lefs.h

If this information were stored in a file named makefile, the command

make

would perform the operations needed to regenerate prog after any changes had
been made to any of the four source files x.c, y.c, z.c, or defs.h. In the example
above, the first line states that prog depends on three .0 files. Once these object
files are current, the second line describes how to load them to create prog. The
third line states that x.o and y.o depend on the file defs.h. From the file system,
make discovers that there are three .c files corresponding to the needed .0 files and
uses built-in rules on how to generate an object from a C source file (i.e., issue a cc
-c command).

10-2 IRIS-4D Programmer's Guide

(

(

Basic Features

If make did not have the ability to determine automatically what needs to be
done, the following longer description file would be necessary:

prcg : x.o y.o z.o
ee x.o y.o z.o -1m -0 prcg

x.o x.e defs.h
ee --c x.e

y.o y.e defs.h
ee --c y.e

z.o z.e
ee --c z.e

If none of the source or object files have changed since the last time prog was
made, and all of the files are current, the command make announces this fact and
stops. If, however, the defs.h file has been edited, x.c and y.c (but not z.c) are
recompiled; and then prog is created from the new x.o and y.o files, and the existing
Z.o file. If only the file y.c had changed, only it is recompiled; but it is still neces­
sary to reload prog. If no target name is given on the make command line, the first
target mentioned in the description is created; otherwise, the specified targets are
made. The command

makex.o

would regenerate x.o if x.c or defs.h had changed.

A method often useful to programmers is to include rules with mnemonic
names and commands that do not actually produce a file with that name. These
entries can take advantage of make's ability to generate files and substitute macros
(for information about macros, see "Description Files and Substitutions" below.)
Thus, an entry "save" might be included to copy a certain set of files, or an entry
"clean" might be used to throwaway unneeded intermediate files.

If a file exists after such commands are executed, the file's time of last
modification is used in further decisions. If the file does not exist after the com­
mands are executed, the current time is used in making further decisions.

You can maintain a zero-length file purely to keep track of the time at which
certain actions were performed. This technique is useful for maintaining remote
archives and listings.

A simple macro mechanism for substitution in dependency lines and command
strings is used by mak~. Macros can either be defined by command-line arguments
or included in the description file. In either case, a macro consists of a name fol­
lowed by an equals sign followed by what the macro stands for. A macro is
invoked by preceding the name by a dollar sign. Macro names longer than one
character must be parenthesized. The following are valid macro invocations:

make 10-3

Basic Features

$ (CFLAGS)

$2
$(xy)

$Z
$ (Z)

The last two are equivalent.

$*, $@, $1, and $< are four special macros that change values during the exe­
cution of the command. (These four macros are described later in this chapter
under "Description Files and Substitutions.") The following fragment shows
assignment and use of some macros:

OBJECTS = x.o y.o z.o
LIBES =-1m
prog: $ (OBJECTS)

cc $ (OBJECTS) $ (LlBES) -0 prog

The command

make LIBES="-1I-1m"

(

loads the three objects with both the lex (-II) and the math (-1m) libraries, because (
macro definitions on the command line override definitions in the description file.
(In UNIX system commands, arguments with embedded blanks must be quoted.)

As an example of the use of make, a description file that might be used to
maintain the make command itself is given. The code for make is spread over a
number of C language source files and has a yacc grammar. The description file
contains the following:

10-4 IRIS-4D Programmer's Guide

(

Description file for the make command

FILES = Makefile defs.h main.c doname.c misc.c
files.c dosys.c gram.y

OBJECTS = main.o doname.o misc.o files.o
dosys.o gram.o

LIBES= -lld
LINT = lint -p
CFlAGS = -0

IE = /usr/bin/lp

make: $ (OBJECTS)

$ (CC) $ (CFLAGS) $ (OBJECTS) $ (LIBES) -0 make
@size make

$ (OBJECTS) : defs.h

cleanup:
-rm *.0 gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make && rm make

lint dosys.c doname.c files.c main.c misc.c gram.c
$ (LINT) dosys.c doname.c files.c main.c misc.c \
gram.c

print: $ (FILES)

print files that are out-of-date
with respect to "print" file.

pr $? I $ (IE)

touch print

The make program prints out each command before issuing it.

Basic Features

make 10-5

Basic Features

The following output results from typing the command make in a directory
containing only the source and description files:

cc -0 -c rrain.c
cc -0 -c doname. c
cc -0 -c misc.c
cc -0 -c files.c
cc -0 -c dosys. c
yacc gram.y
mv y.tab.c gram.c
cc -0 -c gram. c
cc rrain.o doname.o misc.o files.o dosys.o

gram.o -lId -0 make
13188 + 3348 + 3044 = 19580

The string of digits results from the size make command. The printing of the com­
mand line itself was suppressed by an at sign, @, in the description file.

10-6 IRIS-4D Programmer's Guide

(

c

(

Description Files and Substitutions

The following section will explain the customary elements of the description
file.

Comments
The comment convention is a sharp, #, and all characters on the same line after

a sharp are ignored. Blank lines and lines beginning with a sharp are totally
ignored.

Continuation Lines
If a noncomment line is too long, the line can be continued by using a

backslash. If the last character of a line is a backslash, then the backslash, the new
line, and all following blanks and tabs are replaced by a single blank.

Macro Definitions
A macro definition is an identifier followed by an equal sign. The identifier

must not be preceded by a colon or a tab. The name (string of letters and digits) to
the left of the equal sign (trailing blanks and tabs are stripped) is assigned the string
of characters following the equal sign (leading blanks and tabs are stripped). The
following are valid macro definitions:

2 = xyz
abc = -11 -ly -1m
LlBES =

The last definition assigns LIBES the null string. A macro that is never explicitly
defined has the null string as its value. Remember, however, that some macros are
explicitly defined in make's own rules. (See Figure 10-2 at the end of the chapter.)

General Form
The general form of an entry in a description file is

targetl [ta:rget2 ...] : [:] [dependentl ...] [; ccmrancls] [# •.•]

[\t corrmmcls] [# ...]

make 10-7

Description Flies and Substitutions

Items inside brackets may be omitted and targets and dependents are strings of
letters, digits, periods, and slashes. Shell metacharacters such as * and? are
expanded when the line is evaluated. Commands may appear either after a semi­
colon on a dependency line or on lines beginning with a tab immediately following
a dependency line. A command is any string of characters not including a sharp, #,
except when the sharp is in quotes.

Dependency Information
A dependency line may have either a single or a double colon. A target name

may appear on more than one dependency line, but all of those lines must be of the
same (single or double colon) type. For the more common single-colon case, a
command sequence may be associated with at most one dependency line. If the tar­
get is out of date with any of the dependents on any of the lines and a command
sequence is specified (even a null one following a semicolon or tab), it is executed;
otherwise, a default rule may be invoked. In the double-colon case, a command
sequence may be associated with more than one dependency line. If the target is
out of date with any of the files on a particular line, the associated commands are
executed. A built-in rule may also be executed. The double colon form is particu­
larly useful in updating archive-type files, where the target is the archive library
itself. (An example is included in the "Archive Libraries" section later in this
chapter.)

Executable Commands
If a target must be created, the sequence of commands is executed. Normally,

each command line is printed and then passed to a separate invocation of the shell
after substituting for macros. The printing is suppressed in the silent mode (-s
option of the make command) or if the command line in the description file begins
with an @ sign. make normally stops if any command signals an error by returning
a nonzero error code. Errors are ignored if the -i flag has been specified on the
make command line, if the fake target name .IGNORE appears in the description
file, or if the command string in the description file begins with a hyphen. If a pro­
gram is known to return a meaningless status, a hyphen in front of the command
that invokes it is appropriate. Because each command line is passed to a separate
invocation of the shell, care must be taken with certain commands (e.g., cd and
shell control commands) that have meaning only within a single shell process.
These results are forgotten before the next line is executed.

10-8 IRI5-4D Programmer's Guide

(

(

(

Description Files and Substitutions

Before issuing any command, certain internally maintained macros are set.
The $@ macro is set to the full target name of the current target. The $@ macro is
evaluated only for explicitly named dependencies. The $? macro is set to the string
of names that were found to be younger than the target. The $? macro is evaluated
when explicit rules from the makefile are evaluated. If the command was generated
by an implicit rule, the $< macro is the name of the related file that caused the
action; and the $* macro is the prefix shared by the current and the dependent
filenames. If a file must be made but there are no explicit commands or relevant
built-in rules, the commands associated with the name DEFAULT are used. If there
is no such name, make prints a message and stops.

In addition, a description file may also use the following related macros:
$(@D), $(@F), $(*D), $(*F), $«D), and $«F) (see below).

Extensions of $*, $@, and $<
The internally generated macros $*, $@, and $< are useful generic terms for

current targets and out-of-date relatives. To this list has been added the following
related macros: $(@D), $(@F), $(*D), $(*F), $«D), and $«F). The D refers to
the directory part of the single character macro. The F refers to the filename part of
the single character macro. These additions are useful when building hierarchical
makefiles. They allow access to directory names for purposes of using the cd com­
mand of the shell. Thus, a command can be

cd $«D); $(MAKE) $«F)

Output Translations
Macros in shell commands are translated when evaluated. The form is as fol­

lows:

$ (macro:stringl=string2)

The meaning of $(macro) is evaluated. For each appearance of stringl in the
evaluated macro, string2 is substituted. The meaning of finding stringl in
$(macro) is that the evaluated $(macro) is considered as a series of strings each
delimited by white space (blanks or tabs). Thus, the occurrence of stringl in
$(macro) means that a regular expression of the following form has been found:

. *<stringl> [TAB I BLANK]

make 10-9

Description Flies and Substitutions

This particular form was chosen because make usually concerns itself with
suffixes. The usefulness of this type of translation occurs when maintaining archive
libraries. Now, all that is necessary is to accumulate the out-of-date members and
write a shell script, which can handle all the C language programs (i.e., those files
ending in .c). Thus, the following fragment optimizes the executions of make for
maintaining an archive library:

$ (LIB): $ (LIB) (a.o) $ (LIB) (b.o) $ (LIB) (c.o)

$(OC) -c $(CFLAGS) $(?:.o=.c)

$(AR) $ (ARFLAGS) $ (LIB) $?

nn $?

A dependency of the preceding form is necessary for each of the different types
of source files (suffixes) that define the archive library. These translations are
added in an effort to make more general use of the wealth of information that make
generates.

10-10 IRIS-4D Programmer's Guide

(

(

(

The Recursive Makefile

Another feature of make concerns the environment and recursive invocations.
If the sequence $(MAKE) appears anywhere in a shell command line, the line is
executed even if the -n flag is set. Since the -n flag is exported across invocations
of make (through the MAKEFLAGS variable), the only thing that is executed is the
make command itself. This feature is useful when a hierarchy of makefile(s)
describes a set of software subsystems. For testing purposes, make -n ... can be
executed and everything that would have been done will be printed including output
from lower level invocations of make.

Suffixes and Transformation Rules
make uses an internal table of rules to learn how to transform a file with one

suffix into a file with another suffix. If the -r flag is used on the make command
line, the internal table is not used.

The list of suffixes is actually the dependency list for the name .SUFFIXES.
make searches for a file with any of the suffixes on the list. If it finds one, make
transforms it into a file with another suffix. The transformation rule names are the
concatenation of the before and after suffixes. The name of the rule to transform a
.r file to a .0 file is thus .r .0. If the rule is present and no explicit command
sequence has been given in the user's description files, the command sequence for
the rule .r.o is used. If a command is generated by using one of these suffixing
rules, the macro $* is given the value of the stem (everything but the suffix) of the
name of the file to be made; and the macro $< is the full name of the dependent that
caused the action.

The order of the suffix list is significant since the list is scanned from left to
right. The first name formed that has both a file and a rule associated with it is used.
If new names are to be appended, the user can add an entry for .SUFFIXES in the
description file. The dependents are added to the usual list. A .SUFFIXES line
without any dependents deletes the current list. It is necessary to clear the current
list if the order of names is to be changed.

Implicit Rules
make uses a table of suffixes and a set of transformation rules to supply default

dependency information and implied commands. The default suffix list is as fol­
lows:

make 10-11

The Recursive Makefile

.0 Object file

.C e source file

.c- sees e source file

.f FORTRAN source file

.f- sees FORTRAN source file

.S Assembler source file

.s- sees Assembler source file

.y yacc source grammar

.y- sees yacc source grammar

.I lex source grammar

.1- sees ex source grammar

.h Header file

.h- sees header file

.sh Shell file

.sh- sees shell file

Figure 10-1 summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file
exists or is named in the description.

.0

/1C .f .S .y .I

.y .I

Figure 10-1: Summary of Default Transformation Path

10-12 IRIS-4D Programmer's Guide

(

(

(

The Recursive Makefile

If the file x.o is needed and an x.c is found in the description or directory, the
x.o file would be compiled. If there is also an x.1, that source file would be run
through lex before compiling the result. However, if there is no x.c but there is an
x.1, make would discard the intermediate C language file and use the direct link: as
shown in Figure 10-1.

It is possible to change the names of some of the compilers used in the default
or the flag arguments with which they are invoked by knowing the macro names
used. The compiler names are the macros AS, CC, F77, Y ACC, and LEX. The
command

make CC=newcc

will cause the newcc command to be used instead of the usual C language compiler.
The macros ASFLAGS, CFLAGS, F77FLAGS, YFLAGS, and LFLAGS may be set
to cause these r.ommands to be issued with optional flags. Thus

make "CFLAGS=-g"

causes the cc command to include debugging information.

Archive Libraries
The make program has an interface to archive libraries. A user may name a

member of a library in the following manner:

projlib(Object.o)
or

projlib ((ent:r:ypt))

where the second method actually refers to an entry point of an object file within the
library. (make looks through the library, locates the entry point, and translates it to
the correct object filename.)

To use this procedure to maintain an archive library, the following type of
makeIDe is required:

projlib:: projlib(pfilel.o)
$(CC) -c -0 pfilel.c
$(AR) $ (ARFLAGS) projlib pfilel.o
nn pfile1.o

projlib:: projlib(pfile2.0)
$ (CC) -c -0 pfile2.c
$(AR) $ (ARFLAGS) projlib pfile2.0
nn pfile2.0

... and so on for each object ...

make 10·13

The Recursive Makefile

This is tedious and error prone. Obviously, the command sequences for adding
a C language file to a library are the same for each invocation; the filename being
the only difference each time. (This is true in most cases.)

The make command also gives the user access to a rule for building libraries.
The handle for the rule is the .a suffix. Thus, a .c.a rule is the rule for compiling a (
C language source file, adding it to the library, and removing the.o cadaver. Simi- .
larly, the .y.a, the .s.a, and the .l.a rules rebuild yacc, assembler, and lex files,
respectively. The archive rules defined internally are .c.a, .c-.a, .f.a, .f-.a, and
.s-.a. (The tilde, -, syntax will be described shortly.) The user may define other
needed rules in the description file.

The above two-member library is then maintained with the following shorter
makefile:

projlib: projlib(pfilel.o) projlib(pfile2.0)
@echo projlib up-to-date.

The internal rules are already defined to complete the preceding library mainte­
nance. The actual.c.a rule is as follows:

.c.a:
$ (CC) -c $ (CFLAGS) $<
$(AR) $ (ARFLAGS) $@ $*.0
rm -f $*.0

Thus, the $@ macro is the.a target (projIib); the $< and $* macros are set to the
out-of-date C language file; and the filename minus the suffix, respectively (pfilel.c
and pfilel). The $< macro (in the preceding rule) could have been changed to $*.c.

It might be useful to go into some detail about exactly what make does when it
sees the construction

projlib: projlib(pfile1.o)
@echo projlib up-to-date

Assume the object in the library is out of date with respect to pfilel.c. Also, there is
no pfilel.o file.

1. make projIib.

2. Before makeing projlib, check each dependent of projIib.

3. projIib(pfile1.o) is a dependent of projUb and needs to be generated.

4. Before generating projIib(pfilel.o), check each dependent of
projIib(pfilel.o). (There are none.)

10-14 IRIS-4D Programmer's Guide

(

(

The Recursive Makefile

5. Use internal rules to try to create projIib(pfile1.o). (There is no explicit
rule.) Note that projIib(pfile1.o) has a parenthesis in the name to identify
the target suffix as .a. This is the key. There is no explicit .a at the end of
the projJib library name. The parenthesis implies the .a suffix. In this
sense, the .a is hard-wired into make.

6. Break the name projIib(pfile1.o) up into projIib and pfile1.o. Define two
macros, $@ (=projIib) and $* (=pfilel).

7. Look for a rule .x.a and a file $*.x. The first.x (in the .SUFFIXES list)
which fulfills these conditions is .c so the rule is .c.a, and the file is
pfile1.c. Set $< to be pfile1.c and execute the rule. In fact, make must
then compile pfile1.c.

8. The library has been updated. Execute the command associated with the
projIib: dependency; namely

@echo projlib up-to-date

It should be noted that to let pfilel.o have dependencies, the following syntax is
required:

projlib(pfilel.o) : $(INCDIR)/stdio.h pfilel.c

There is also a macro for referencing the archive member name when this form is
used. The $% macro is evaluated each time $@ is evaluated. If there is no current
archive member, $% is null. If an archive member exists, then $% evaluates to the
expression between the parenthesis.

make 10-15

sees Filenames: the Tilde

The syntax of make does not directly pennit referencing of prefixes. For most
types of files on UNIX operating system machines, this is acceptable since nearly
everyone uses a suffix to distinguish different types of files. The sees files are the (-
exception. Here, s. precedes the filename part of the complete pathname. ~

To allow make easy access to the prefix s. the tilde, -, is used as an identifier
of sees files. Hence, .C-.O refers to the rule which transforms an sees e
language source file into an object file. Specifically, the internal rille is

.C .0:

$ (GET) $ (GFIAGS) $<
$ (CC) $ (CFLAGS) -c $*.c
-rm -f $*.c

Thus, the tilde appended to any suffix transforms the file search into an sees
filename search with the actual suffix named by the dot and all characters up to (but
not including) the tilde.

The following sees suffixes are internally defined:

.C-

.f­

.y­

.1-

.s-

.sh­

.h-

The following rilles involving sees transformations are internally defined:

10-16 IRIS-4D Programmer's Guide

(

c

c-·
f-·
.sh-:
.c-.a:
.C-.C:
.c-.o:
.f-.a:
.f-.f:
.f-.o:
.s-.a:
.S-.S:

.s-.o:

.y-.c:

.y-.o:

.1-.I:

.1-.0:

.h-.h:

sees Filenames

Obviously, the user can define other rules and suffixes, which may prove useful.
The tilde provides a handle on the sees filename format so that this is possible.

The Nu II Suffix
There are many programs that consist of a single source file. make handles this

case by the null suffix rule. Thus, to maintain the UNIX system program cat, a rule
in the makefile of the following form is needed:

.c:
$ (CC) $ (CFLAGS) $< -0 $@

In fact, this .c: rule is internally defined so no make file is necessary at all. The
user only needs to type

make cat dd echo date

(these are all UNIX system single-file programs) and all four e language source
files are passed through the above shell command line associated with the .c: rule.
The internally defined single suffix rules are:

make 10-17

sees Filenames

.c:
c-'
.f:
f-·
.sh:
.sh-:

Others may be added in the make file by the user.

include Files
The make program has a capability similar to the #include directive of the e

preprocessor. If the string include appears as the first seven letters of a line in a
makefile and is followed by a blank or a tab, the rest of the line is assumed to be a
filename, which the current invocation of make will read. Macros may be used in
filenames. The file descriptors are stacked for reading include files so that no more
than 16 levels of nested includes are supported.

sees Makefiles
Makefiles under sees control are accessible to make. That is, if make is

typed and only a file named s.makefile or s.Makefile exists, make will do a get on
the file, then read and remove the file.

Dynamic Dependency Parameters
The parameter has meaning only on the dependency line in a makefile. The

$$@ refers to the current "thing" to the left of the colon (which is $@). Also the
form $$(@F) exists, which allows access to the file part of$@. Thus, in the fol­
lowing:

cat: $$@.c

the dependency is translated at execution time to the string cat.c. This is useful for
building a large number of executable files, each of which has only one source file.
For instance, the UNIX software command directory could have a makefile like:

CMOS = cat dd echo date cap corrm chown

$ (CMOS) : $$@.c
$ (CC) -0 $? -0 $@

10-18 IAIS-4D Programmer's Guide

(

(

(

sees Filenames

Obviously, this is a subset of all the single file programs. For multiple file pro­
grams, a directory is usually allocated and a separate make file is made. For any
particular file that has a peculiar compilation procedure, a specific entry must be
made in the makefile.

The second useful form of the dependency parameter is $$(@F). It represents
the filename part of $$@. Again, it is evaluated at execution time. Its usefulness
becomes evident when trying to maintain the lusr/include directory from a makefile
in the lusrlsrdhead directory. Thus, the lusrlsrc/headlmakefile would look like

INCDIR = /usr/include

INCLUDES = \

$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCDIR)/dir.h \
$(INCDIR)/a.out.h

$ (INCLUDES) : $$(@F)
cp $? $@
chmod 0444 $@

This would completely maintain the lusr/include directory whenever one of the
above files in lusrlsrdhead was updated.

make 10-19

Command Usage

The make command description is found under make(l) in the IRIS-4D
Programmer's Reference Manual.

The make Command
The make command takes macro definitions, options, description filenames,

and target filenames as arguments in the form:

make [options] [macro definitions] [targets]

The following summary of command operations explains how these arguments
are interpreted.

First, all macro definition arguments (arguments with embedded equal signs)
are analyzed and the assignments made. Command-line macros override
corresponding definitions found in the description files. Next, the option arguments
are examined. The permissible options are as follows:

-i Ignore error codes returned by invoked commands. This mode is entered if
the fake target name .IGNORE appears in the description file.

-s Silent mode. Do not print command lines before executing. This mode is
also entered if the fake target name .SILENT appears in the description
file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even lines
beginning with an @ sign are printed.

-t Touch the target files (causing them to be iIp to date) rather than issue the
usual commands.

-q Question. The make command returns a zero or nonzero status code
depending on whether the target file is or is not up to date.

-p Print out the complete set of macro definitions and target descriptions.

-k Abandon work on the current entry if something goes wrong, but continue
on other branches that do not depend on the current entry.

10·20 IRIS-4D Programmer's Guide

(

(

(

Command Usage

-e Environment variables override assignments within makefiles.

-f Description filename. The next argument is assumed to be the name of a
description file. A filename of - denotes the standard input. If there are no
-f arguments, the file named makefile or Makefile or s.[mM]akefile in the
current directory is read. The contents of the description files override the
built-in rules if they are present.

The following two arguments are evaluated in the same manner as flags:

.DEFAULT

.PRECIOUS

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAUL T are used if it exists.

Dependents on this target are not removed when quit or inter­
rupt is pressed.

Finally, the remaining arguments are assumed to be the names of targets to be
made and the arguments are done in left-to-right order. If there are no such argu­
ments, the first name in the description file that does not begin with a period is
made.

Environment Variables
Environment variables are read and added to the macro definitions each time

make executes. Precedence is a prime consideration in doing this properly. The
following describes make's interaction with the environment. A macro,
MAKEFLAGS, is maintained by make. The macro is defined as the collection of
all input flag arguments into a string (without minus signs). The macro is exported
and thus accessible to further invocations of make. Command line flags and assign­
ments in the makefile update MAKEFLAGS. Thus, to describe how the environ­
ment interacts with make, the MAKEFLAGS macro (environment variable) must
be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or null,
the internal make variable MAKEFLAGS is set to the null string. Other­
wise, each letter in MAKEFLAGS is assumed to be an input flag argument
and is processed as such. (The only exceptions are the -f, -p, and-r
flags.)

2. Read the internal list of macro definitions.

make 10-21

Command Usage

3. Read the environment. The environment variables are treated as macro
definitions and marked as exported (in the shell sense).

4. Read the makefiIe(s). The assignments in the makefiIe(s) overrides the
environment. This order is chosen so that when a makefile is read and
executed, you know what to expect. That is, you get what is seen unless
the -e flag is used. The -e is the line flag, which tells make to have the
environment override the makefile assignments. Thus, if make -e... is
typed, the variables in the environment override the definitions in the
makefile. Also MAKEFLAGS override the environment if assigned. This
is useful for further invocations of make from the current makefile.

It may be clearer to list the precedence of assignments. Thus, in order from
least binding to most binding, the precedence of assignments is as follows:

1. internal definitions

2. environment

3. makefiIe(s)

4. command line

The -e flag has the effect of rearranging the order to:

1. internal definitions

2. makefile(s)

3 . environment

4. command line

This order is general enough to allow a programmer to define a makefile or set of
makefiles whose parameters are dynamically definable.

10-22 IRIS-4D Programmer's Guide

(

(

(

Suggestions and Warnings

The most common difficulties arise from mal{e's specific meaning of depen­
dency. If file x.c has a

#inclucle "clefs .h"

line, then the object file x.o depends on defs.h; the source file x.c does not. If
defs.h is changed, nothing is done to the file x.c while file x.o must be recreated.

To discover what make would do, the -n option is very useful. The command

make-n

orders make to print out the commands that make would issue without actually tak­
ing the time to execute them. If a change to a file is absolutely certain to be mild in
character (e.g., adding a comment to an include file), the -t (touch) option can save
a lot of time. Instead of issuing a large number of superfluous recompilations,
make updates the modification times on the affected file. Thus, the command

make -ts

(touch silently) causes the relevant files to appear up to date. Obvious care is neces­
sary because this mode of operation subverts the intention of make and destroys all
memory of the previous relationships.

make 10-23

Internal Ru les
The standard set of internal rules used by make are reproduced below.

SUFFIXES RECCGNIZED BY MAKE

.SUFFIXES: .0 .c .c - .y.y .1.1 .s.s .h.h - .sh .sh - .f .f

PREDEFINED MACROS

MAKE=make

AR=ar
ARFLAGS=-rv

AS=as
ASFLAGS=

CC=cc

CFlAGS=-<J

F77=f77
F77FlAGS=
GET=get
GFLAGS=

LEX=lex
LFLAGS=

LD=ld
LDFLAGS=

YN:.C=yacc

YFlAGS=

Figure 10-2: make Internal Rules (Sheet 1 of 5)

10-24 IRIS-4D Programmer's Guide

(

(

(

SINGLE SUFFIX RULES

.c:

.c :

.f:

.sh:

$ (CC) $ (CFLN;S) $ (LDFLAGS) $< -0 $@

$ (GET) $ (GFIAGS) $<
$ (CC) $ (CFLN;S) $ (LDFLAGS) $*.c -0 $*
-I11\ -f $*. c

$ (F77) $ (F77FLN;S) $ (LDFLAGS) $< -0 $@

$ (GET) $ (GFLAGS) $<
$ (F77) $ (F77FLN;S) $ (LDFLAGS) $< -0 $*
-I11\ -f $*. f

cp $< $@; chmod 0777 $@

$ (GET) $ (GFIAGS) $<
cp $*.sh $*; chmod 0777 $@
-I11\ -f $*.sh

Figure 10-2: make Internal Rules (Sheet 2 of 5)

Internal Rules

make 10-25

Internal Rules

DOUBIE SUFFIX RULES

.c .c .f-.f .s-.s .sh-.sh .y.y .1-.1 .h-.h:

$ (GET) $ (GFLAGS) $<

.c.a:

.c .a:

.c.o:

.c .0:

.f.a:

$ (CC) -c $ (CFLAGS) $<
$(AR) $ (ARFLAGS) $@ $*.0
nn -f $*.0

$ (GET) $ (GFLAGS) $<
$ (CC) -c $ (CFLAGS) $*.c
$(AR) $ (ARFLAGS) $@ $*.0
nn -f $*. [co]

$ (CC) $ (CFLAGS) -c $<

$ (GET) $ (GFLAGS) $<
$ (CC) $ (CFLAGS) -c $*.c
-nn -f $*.c

$ (F77) $ (F77FLAGS) $ (LDFLAGS) -c $*.f
$ (AR) $ (ARFLAGS) $@ $*.0
-nn -f $*.0

$ (GET) $ (GFLAGS) $<
$ (F77) $ (F77FLAGS) $ (LDFLAGS) -c $*.f
$ (AR) $ (ARFLAGS) $@ $*.0
-nn -f $*. [fo]

Figure 10-2: make Internal Rules (Sheet 3 of 5)

10·26 IRIS-4D Programmer's Guide

(

(

(

Internal Rules

.f.o:
$ (F77) $ (F77FlJI[;S) $ (LDFIAGS) -e $*.f

-.f .0:
$ (GET) $ (GFlAGS) $<
$ (F77) $ (F77FlJI[;S) $ (LDFIAGS) -e $*.f
-rm -f $*.f

-.5 .a:
$ (GET) $ (GFlAGS) $<
$ (AS) $ (ASFlAGS) -0 $*.0 $*.5
$ (AR) $ (ARFlAGS) $@ $*.0
-rm -f $*. [sol

.5.0:
$ (AS) $ (ASFlAGS) -0 $@ $<

-.5 .0:
$ (GET) $ (GFlAGS) $<
$ (AS) $ (ASFlAGS) -0 $*.0 $*.5
-rm -f $*.s

.l.e
$ (LEX) $ (LFlAGS) $<
mv lex.yy.e $@

-.1 .e:
$ (GET) $ (GFlAGS) $<
$ (LEX) $ (LFlAGS) $*.1
mv lex.yy.e $@

Figure 10-2: make Internal Rules (Sheet 4 of 5)

make 10-27

Internal Rules

.1.0:
$ (LEX) $ (LFLAGS) $<

($ (CC) $ (CFlAGS) -c lex.yy.c
un lex.yy.c
mv lex.yy.o $@
-un -f $*.1

-.1 .0:
$ (GET) $ (GE'LAGS) $<
$ (LEX) $(LFLAGS) $*.1
$ (CC) $ (CFlAGS) -c lex.yy.c
un -f lex.yy.c $*.1
mv lex.yy.o $*.0

.y.c
$ (YACC) $ (YFlAGS) $<
mv y.tab.c $@

-.y .c
$ (GET) $ (GE'LAGS) $<
$ (YACC) $ (YFlAGS) $*.y
mv y.tab.c $*.c
-un -f $*.y

.y.o: ($ (YACC) $ (YFlAGS) $<
$ (CC) $ (CFlAGS) -c y.tab.c
un y.tab.c
mv y.tab.o $@

-.y .0:
$ (GET) $ (GE'LAGS) $<
$ (YACC) $ (YFlAGS) $*.y
$ (CC) $ (CFlAGS) -c y.tab.c

un -f y.tab.c $*.y
mv y.tab.o $*.0

Figure 10-2: make Internal Rules (Sheet 5 of 5)

(

10-28 IRIS-4D Programmer's Guide

The Source Code Control System

The Source Code Control System (SCCS) is a maintenance and enhancement
tracking tool that runs under the UNIX system. SCCS takes custody of a file and,
when changes are made, identifies and stores them in the file with the original
source code and/or documentation. As other changes are made, they too are
identified and retained in the file.

Retrieval of the original or any set of changes is possible. Any version of the
file as it develops can be reconstructed for inspection or additional modification.
History data can be stored with each version: why the changes were made, who
made them, when they were made.

This guide covers the following:

• SCCS for Beginners: how to make, retrieve, and update an SCCS file

• Delta Numbering: how versions of an SCCS file are named

• SCCS Command Conventions: what rules apply to SCCS commands

• SCCS Commands: the fourteen SCCS commands and their more useful
arguments

• SCCS Files: protection, format, and auditing of SCCS files

Neither the implementation of SCCS nor the installation procedure for SCCS is
described in this guide.

Source Code Control System (SCCS) 11-1

sees for Beginners

Several terminal session fragments are presented in this section. Try them all.
The best way to learn sees is to use it.

Terminology
A delta is a set of changes made to a file under sees custody. To identify and

keep track of a delta, it is assigned an SID (SeeS Identification) number. The SID
for any original file turned over to sees is composed of release number 1 and level
number 1, stated as 1.1. The SID for the first set of changes made to that file, that
is, its first delta is release 1 version 2, or 1.2. The next delta would be 1.3, the next
1.4, and so on. More on delta numbering later. At this point, it is enough to know
that by default sees assigns SIDs automatically.

Creating an SCCS File via admin
Suppose, for example, you have a file called lang that is simply a list of five

programming language names. Use a text editor to create file lang containing the
following list.

e
PL/l
FORTRAN
COBOL
ALGOL

Custody of your lang file can be given to sees using the admin command
(i.e., administer sees file). The following creates an sees file from the lang file:

admin -Hang s.lang

All sees files must have names that begin with s., hence s.lang. The -i key letter,
together with its value lang, means admin is to create an sees file and initialize it
with the contents of the file lang.

The admin command replies

No id keywords (cm7)

This is a warning message that may also be issued by other sees commands.
Ignore it for now. Its significance is described later with the get command under
"sees Commands." In the following examples, this warning message is not shown
although it may be issued.

11·2 IRIS-4D Programmer's Guide

(

(

(!

SCCS for Beginners

Remove the lang file. It is no longer needed because it exists now under sees
as s.Iang.

rm lang

Retrieving a File via get
Use the get command as follows:

get s.Iang

This retrieves s.lang and prints

1.1
5 lines

This tells you that get retrieved version 1.1 of the file, which is made up of five
lines of text.

The retrieved text has been placed in a new file known as a "g.file." sees
forms the g.file name by deleting the prefix s. from the name of the sees file.
Thus, the original lang file has been recreated.

If you list, 18(1), the contents of your directory, you will see both lang and
s.Iang. sees retains s.lang for use by other users.

The get s.lang command creates lang as read-only and keeps no information
regarding its creation. Because you are going to make changes to it, get must be
informed of your intention to do so. This is done as follows:

get -e s.lang

get -e causes sees to create lang for both reading and writing (editing). It
also places certain information about lang in another new file, called the "p.file"
(p.lang in this case), which is needed later by the delta command.

get -e prints the same messages as get, except that now the SID for the first
delta you will create is issued:

1.1
new delta 1.2
5 lines

ehange lang by adding two more programming languages:

SNOBOL
ADA

Source Code Control System (SCCS) 11-3

sees for Beginners

Recording Changes via delta
Next, use the delta command as follows:

delta s.lang

delta then prompts with

ccmrents?

Your response should be an explanation of why the changes were made. For exam­
ple,

added more languages

delta now reads the p.file, p.lang, and determines what changes you made to
lang. It does this by doing its own get to retrieve the original version and applying
the diff(1) command to the original version and the edited version. Next, delta
stores the changes in s.lang and destroys the no longer needed p.lang and lang files.

When this process is complete, delta outputs

1.2
2 inserted
a deleted
5 unchanged.

The number 1.2 is the SID of the delta you just created, and the next three lines
summarize what was done to s.lang.

Additional Information about get
The command,

get s.lang

retrieves the latest version of the file s.lang, now 1.2. sees does this by starting
with the original version of the file and applying the delta you made. If you use the
get command now, any of the following will retrieve version 1.2.

get s.lang
get -rl s.lang
get -rl.2 s.lang

11-4 IRIS-4D Programmer's Guide

(I

(

(

SCCS for Beginners

The numbers following -r are SIDs. When you omit the level number of the
SID (as in get -rl s.lang), the default is the highest level number that exists within
the specified release. Thus, the second command requests the retrieval of the latest
version in release 1, namely 1.2. The third command specifically requests the
retrieval of a particular version, in this case also 1.2.

Whenever a major change is made to a file, you may want to signify it by
changing the release number, the first number of the SID. This, too, is done with
the get command.

get -e -r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release
2. get also interprets this as a request to change the release number of the new delta
to 2, thereby naming it 2.1 rather than 1.3. The output is

1.2
new delta 2.1
7 lines

which means version 1.2 has been retrieved, and 2.1 is the version delta will create.
If the file is now edited, for example, by deleting COBOL from the list of
languages, and delta is executed

delta s.lang
carments? deleted cobol from list of languages

you will see by delta's output that version 2.1 is indeed created.

2.1
a inserted
1 deleted
6 unchanged

Deltas can now be created in release 2 (deltas 2.2, 2.3, etc.), or another new
release can be created in a similar manner.

The help Command
If the command

get lang

is now executed, the following message will be output:

ERROR [lang]: not an sees file (col)

The code col can be used with help to print a fuller explanation of the message.

Source Code Control System (SCCS) 11·5

sees for Beginners

help col

This gives the following explanation of why get lang produced an error message:

col:
"not an sees file"
A file that you think is an sees file
does not begin with the characters "s.".

help is useful whenever there is doubt about the meaning of almost any sees
message.

11·6 IRIS·4D Programmer's Guide

(

(

(

Delta Numbering

Think of deltas as the nodes of a tree in which the root node is the original ver­
sion of the file. The root is normally named 1.1 and deltas (nodes) are named 1.2,
1.3, etc. The components of these SIDs are called release and level numbers,
respectively. Thus, normal naming of new deltas proceeds by incrementing the
level number. This is done automatically by sees whenever a delta is made.

Because the user may change the release number to indicate a major change,
the release number then applies to all new deltas unless specifically changed again.
Thus, the evolution of a particular file could be represented by Figure 11-1.

Figure 11-1: Evolution of an sees File

This is the normal sequential development of an sees file, with each delta depen­
dent on the preceding deltas. Such a structure is called the trunk of an sees tree.

There are situations that require branching an sees tree. That is, changes are
planned to a given delta that will not be dependent on all previous deltas. For
example, consider a program in production use at version 1.3 and for which
development work on release 2 is already in progress. Release 2 may already have
a delta in progress as shown in Figure 11-1. Assume that a production user reports
a problem in version 1.3 that cannot wait to be repaired in release 2. The changes
necessary to repair the trouble will be applied as a delta to version 1.3 (the version
in production use). This creates a new version that will then be released to the user
but will not affect the changes being applied for release 2 (i.e., deltas 104,2.1,2.2,
etc.). This new delta is the first node of a new branch of the tree.

Branch delta names always have four SID components: the same release
number and level number as the trunk delta, plus a branch number and sequence
number. The format is as follows:

release.level.branch.sequence

The branch number of the first delta branching off any trunk delta is always 1,
and its sequence number is also 1. For example, the full SID for a delta branching
off trunk delta 1.3 will be 1.3.1.1. As other deltas on that same branch are created,
only the sequence number changes: 1.3.1.2,1.3.1.3, etc. This is shown in Figure
11-2.

Source Code Control System (SCCS) 11-7

Delta Numbering

Figure 11-2: Tree Structure with Branch Deltas

The branch number is incremented only when a delta is created that starts a
new branch off an existing branch, as shown in Figure 11-3. As this secondary
branch develops, the sequence numbers of its deltas are incremented (1.3.2.1,
1.3.2.2, etc.), but the secondary branch number remains the same.

Figure 11-3: Extended Branching Concept

11-8 IRIS-4D Programmer's Guide

(

(

(

Delta Numbering

The concept of branching may be extended to any delta in the tree, and the
numbering of the resulting deltas proceeds as shown above. SCCS allows the gen­
eration of complex tree structures. Although this capability has been provided for
certain specialized uses, the SCCS tree should be kept as simple as possible.
Comprehension of its structure becomes difficult as the tree becomes complex.

Source Code Control System (SCCS) 11·9

sees Command Conventions

sees commands accept two types of arguments:

• key letters

• filenames

Keyletters are options that begin with a minus sign, -, followed by a lowercase
letter and, in some cases, a value.

File and/or directory names specify the file(s) the command is to process.
Naming a directory is equivalent to naming all the sees files within the directory.
Non-SeeS files and unreadable files (because of permission modes via chmod(l»
in the named directories are silently ignored.

In general, filename arguments may not begin with a minus sign. If a filename
of - (a lone minus sign) is specified, the command will read the standard input (usu­
ally your terminal) for lines and take each line as the name of an sees file to be
processed. The standard input is read until end-of-file. This feature is often used in
pipelines with, for example, the commands find(l) or Is(1).

Keyletters are processed before filenames. Therefore, the placement of

(

key letters is arbitrary-that is, they may be interspersed with filenames. Filenames,
however, are processed left to right. Somewhat different conventions apply to (
help(1), what(1), sccsdiff(l), and val(l), detailed later under "sees Commands."

Certain actions of various sees commands are controlled by flags appearing in
sees files. Some of these flags will be discussed, but for a complete description
see admin(l) in theIRIS-4D Programmer's Reference Manual.

The distinction between real user (see passwd(l» and effective user will be of
concern in discussing various actions of sees commands. For now, assume that
the real and effective users are the same--the person logged into the UNIX system.

x.files and z.files
All sees commands that modify an sees file do so by writing a copy called

the "x.file." This is done to ensure that the sees file is not damaged if processing
terminates abnormally. sees names the x.file by replacing the s. of the sees
filename with x .. The x.file is created in the same directory as the sees file, given
the same mode (see chmod(l», and is owned by the effective user. When process- (
ing is complete, the old sees file is destroyed and the modified x.file is renamed (x.
is relaced by s.) and becomes the new sees file.

11·10 IRI5-4D Programmer's Guide

SCCS Command Conventions

To prevent simultaneous updates to an sees file, the same modifying com­
mands also create a lock-file called the "z.file." sees forms its name by replacing
the s. of the sees filename with a z. prefix. The z.file contains the process number
of the command that creates it, and its existence prevents other commands from
processing the sees file. The z.file is created with access permission mode 444
(read only) in the same directory as the sees file and is owned by the effective
user. It exists only for the duration of the execution of the command that creates it.

In general, users can ignore x.files and z.files. They are useful only in the event
of system crashes or similar situations.

Error Messages
sees commands produce error messages on the diagnostic output in this for-

mat:

ERROR [narre-of-file-being-processed]: rressage text (code)

The code in parentheses can be used as an argument to the help command to obtain
a further explanation of the message. Detection of a fatal error during the process­
ing of a file causes the sees command to stop processing that file and proceed with
the next file specified.

Source Code Control System (SCCS) 11·11

SCCS Commands

This section describes the major features of the fourteen sees commands and
their most common arguments. Full descriptions with details of all arguments are in
the IRIS-4D Programmer's Reference Manual.

Here is a quick-reference overview of the commands:

get

unget

delta

admin

prs

sact

help

rmdel

cdc

what

sccsdiff

comb

val

vc

retrieves versions of sees files

undoes the effect of a get -e prior to the file being deltaed

applies deltas (changes) to sees files and creates new versions

initializes sees files, manipulates their descriptive text, and con­
trols delta creation rights

prints portions of an sees file in user specified format

prints information about files that are currently out for edit

gives explanations of error messages

removes a delta from an sees file allows removal of deltas
created by mistake

changes the commentary associated with a delta

searches any UNIX system file(s) for all occurrences of a special
pattern and prints out what follows it useful in finding identifying
information inserted by the get command

shows differences between any two versions of an sees file

combines consecutive deltas into one to reduce the size of an
sees file

validates an sees file

a filter that may be used for version control

The get Command
The get(l) command creates a file that contains a specified version of an sees

file. The version is retrieved by beginning with the initial version and then applying
deltas, in order, until the desired version is obtained. The resulting file is called the
"g.file." It is created in the current directory and is owned by the real user. The
mode assigned to the g.fi1e depends on how the get command is used.

11-12 IRIS-4D Programmer's Guide

(

(

c

The most common use of get is

get s.abc

SCCS Commands

which normally retrieves the latest version of file abc from the sees file tree trunk
and produces (for example) on the standard output

1.3
67 lines
No id keywords (an7)

meaning version 1.3 of file s.abc was retrieved (assuming 1.3 is the latest trunk
delta), it has 67 lines of text, and no ID keywords were substituted in the file.

The generated g.file (file abc) is given access permission mode 444 (read only).
This particular way of using get is intended to produce g.files only for inspection,
compilation, etc. It is not intended for editing (making deltas).

When several files are specified, the same information is output for each one.
For example,

produces

get s.abc s.xyz

s.abc:
1.3
67 lines
No id keywords (an7)

s.xyz:
1.7
85 lines
No id keywords (an7)

10 Keywords
In generating a g.file for compilation, it is useful to record the date and time of

creation, the version retrieved, the module's name, etc. within the g.file. This infor­
mation appears in a load module when one is eventually created. sees provides a
convenient mechanism for doing this automatically. Identification (ID) keywords
appearing anywhere in the generated file are replaced by appropriate values accord­
ing to the definitions of those ID keywords. The format of an ID keyword is an
uppercase letter enclosed by percent signs, %. For example,

%1%

is the ID keyword replaced by the SID of the retrieved version of a file. Similarly,
%H% and %M% are the names of the g.file. Thus, executing get on an sees file

Source Code Control System (SCCS) 11-13

SCCS Commands

that contains the PL/I declaration,

DeL ID CHAR(I00) V AR INIT('%M% %1% %H%');

gives (for example) the following:

DCL ID CHAR(lOO) V AR INIT('MODNAME 2.3 07/18/85');

When no ID keywords are substituted by get, the following message is issued:

No id keywords (em7)

This message is normally treated as a warning by get although the presence of
the i flag in the SCCS file causes it to be treated as an error. For a complete list of
the approximately twenty ID keywords provided, see get(1) in theIRIS-4D
Programmer's Reference Manual.

Retrieval of Different Versions
The version of an SCCS file get retrieves is the most recently created delta of

the highest numbered trunk release. However, any other version can be retrieved
with get -r by specifying the version's SID. Thus,

get -r1.3 s.abc

retrieves version 1.3 of file s.abc and produces (for example) on the standard output

1.3
64 lines

A branch delta may be retrieved similarly,

get -r1.S.2.3 s.abc

which produces (for example) on the standard output

1.5.2.3
234 lines

When a SID is specified and the particular version does not exist in the SCCS file,
an error message results.

Omitting the level number, as in

get -r3 s.abc

(

(

causes retrieval of the trunk delta with the highest level number within the given C
release. Thus, the above command might output,

3.7
213 lines

11-14 IRIS-4D Programmer's Guide

SCCS Commands

If the given release does not exist, get retrieves the trunk delta with the highest
level number within the highest-numbered existing release that is lower than the
given release. For example, assume release 9 does not exist in file s.abc and release
7 is the highest-numbered release below 9. Executing

get -r9 s.abc

might produce

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file s.abc below release 9.
Similarly, omitting the sequence number, as in

get --r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the
given branch. (If the given branch does not exist, an error message results.) This
might result in the following output:

4.3.2.8
89 lines

get -t will retrieve the latest (top) version of a particular release when no -r is
used or when its value is simply a release number. The latest version is the delta
produced most recently, independent of its location on the sees file tree. Thus, if
the most recent delta in release 3 is 3.5,

get -r3 -t s.abc

might produce

3.5
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5),
the same command might produce

3.2.1.5
46 lines

Source Code Control System (SCCS) 11-15

SCCS Commands

Retrieval With Intent to Make a Delta
get -e indicates an intent to make a delta. First, get checks the following.

1. The user list to determine if the login name or group ID of the person exe- C.
cuting get is present. The login name or group ID must be present for the
user to be allowed to make deltas. (See "The admin Command" for a dis­
cussion of making user lists.)

2. The release number (R) of the version being retrieved satisfies the relation

floor is less than or equal to R, which is
less than or equal to ceiling

to determine if the release being accessed is a protected release. The floor
and ceiling are flags in the sees file representing start and end of range.

3. The R is not locked against editing. The lock is a flag in the sees file.

4. Whether multiple concurrent edits are allowed for the sees file by the j
flag in the sees file.

A failure of any of the first three conditions causes the processing of the
corresponding sees file to terminate.

If the above checks succeed, get -e causes the creation of a g.file in the current (
directory with mode 644 (readable by everyone, writable only by the owner) owned
by the real user. If a writable g.file already exists, get terminates with an error.
This is to prevent inadvertent destruction of a g.file being edited for the purpose of
making a delta.

Any ID keywords appearing in the g.file are not substituted by get -e because
the generated g.file is subsequently used to create another delta. Replacement of ID
keywords causes them to be permanently changed in the sees file. Because of
this, get does not need to check for their presence in the g.file. Thus, the message

No id keywords (an7)

is never output when get -e is used.

In addition, get -e causes the creation (or updating) of a p.file that is used to
pass information to the delta command.

The following

get -e s.abc

produces (for example) on the standard output

11-16 IRIS-4D Programmer's Guide

c

1.3
new delta 1.4
67 lines

The unget Command

SCCS Commands

There may be times when a file is retrieved for editing in error; there is really
no editing that needs to be done at this time. In such cases, the uoget command can
be used to cancel the delta reservation that was set up.

Additional get Options
If get -r and/or -t are used together with -e, the version retrieved for editing is

the one specified with -r and/or -t.

get -i and -x are used to specify a list (see get(l) in the IRIS-4D
Programmer's Reference Manual for the syntax of such a list) of deltas to be
included and excluded, respectively. Including a delta means forcing its changes to
be included in the retrieved version. This is useful in applying the same changes to
more than one version of the sees file. Excluding a delta means forcing it not to
be applied. This may be used to undo the effects of a previous delta in the version
to be created.

Whenever deltas are included or excluded, get checks for possible interference
with other deltas. Two deltas can interfere, for example, when each one changes
the same line of the retrieved g.file. A warning shows the range of lines within the
retrieved g.file where the problem may exist. The user should examine the g.file to
determine what the problem is and take appropriate corrective steps (e.g., edit the
file). V g.t -, ond ""t -x Mould'" mod wi", ,,<rem. <=.

get -k is used either to regenerate a g.file that may have been accidentally
removed or ruined after get -e, or simply to generate a g.file in which the replace­
ment of ID keywords has been suppressed. A g.file generated by get -k is identical
to one produced by get -e, but no processing related to the p.file takes place.

Source Code Control System (SCCS) 11-17

SCCS Commands

Concurrent Edits of Different SID
The ability to retrieve different versions of an sees file allows several deltas

to be in progress at any given time. This means that several get -e commands may
be executed on the same file as long as no two executions retrieve the same version
(unless multiple concurrent edits are allowed).

The p.file created by get -e is named by automatic replacement of the sees
filename's prefix s. with p .. It is created in the same directory as the sees file,
given mode 644 (readable by everyone, writable only by the owner), and owned by
the effective user. The p.file contains the following information for each delta that
is still in progress:

• the SID of the retrieved version

• the SID given to the new delta when it is created

• the login name of the real user executing get

(

The first execution of get -e causes the creation of a p.file for the correspond­
ing sees file. Subsequent executions only update the p.file with a line containing
the above information. Before updating, however, get checks to assure that no
entry already in the p.file specifies that the SID of the version to be retrieved is
already retrieved (unless multiple concurrent edits are allowed). If the check (
succeeds, the user is informed that other deltas are in progress and processing con-
tinues. If the check fails, an error message results.

It should be noted that concurrent executions of get must be carried out from
different directories. Subsequent executions from the same directory will attempt to
overwrite the g.file, which is an sees error condition. In practice, this probiem
does not arise since each user normally has a different working directory. See "Pro­
tection" under" sees Files" for a discussion of how different users are permitted to
use sees commands on the same files.

Figure 11-4 shows the possible SID components a user can specify with get
(left-most column), the version that will then be retrieved by get, and the resulting
SID for the delta, which delta will create (right-most column).

11-18 IRIS·4D Programmer's Guide

(

SCCS Commands

SID -b Key- SID SID of Delta

Specified Letter Other Retrieved To be Created

in get* Usedt Conditions by get by delta

nonet no R defaults to mR mRmL mR(mL+l)

nonet yes R defaults to mR mR.mL mRmL.(mB+l)

R no R>mR mRmL Rl§

R no R=mR mR.mL mR(mL+l)

R yes R>mR mRmL mR.mL.(mB+l).1

R yes R=mR mRmL mR.mL.(mB+ 1).1

R R<mRandR hRmL** hRmL.(mB+ 1).1

does not exist

R Trunk successor RmL R.mL.(mB+l).1

number in

release> R

and R exists

RL. no No trunk RL R.(L+l)

successor

R.L. yes No trunk RL RL.(mB+ 1).1

successor

Figure 11-4: Determination of New SID (sheet 1 of 2)

Source Code Control System (SCCS) 11-19

SCCS Commands

SID -bKey- SID SID of Delta

Specified Letter Other Retrieved to be Created

in get. usedt Condition by get by delta

R.L Trunk successor R.L R.L.(mS+ 1).1

in release ~ R

R.L.B no No branch RL.B.mS R.L.B.(mS+ 1)

successor

R.L.B yes No branch RL.B.mS RL.(mB+l).1

successor

R.L.B.S no No branch R.L.B.S R.L.B.(S+I)

successor

R.L.B.S yes No branch R.L.B.S RL.(mB+l).1

successor

R.L.B.S Branch successor RL.B.S RL.(mB+l).1

Figure 11-4: Determination of New SID (sheet 2 of 2)

Footnotes to Figure 11-4:

* R, L, B, and S mean release, level, branch, and sequence numbers in the
SID, and m means maximum. Thus, for example, RmL means the max­
imum level number within release R RL.(mB+l).1 means the first
sequence number on the new branch (i.e., maximum branch number plus
1) of level L within release R Note that if the SID specified is RL, RL.B,
or RL.B.S, each of these specified SID numbers must exist.

t The -b keyletter is effective only if the b flag (see admin(l» is present in
the file. An entry of - means irrelevant.

(

(

:j: This case applies if the d (default SID) flag is not present. If the d flag is C
present in the file, the SID is interpreted as if specified on the command
line. Thus, one of the other cases in this figure applies.

11-20 IRIS-4D Programmer's Guide

SCCS Commands

§ This is used to force the creation of the first delta in a new release.

** hR is the highest existing release that is lower than the specified, nonex­
istent release R.

Concurrent Edits of Same SID
Under normal conditions, more than one get -e for the same SID is not permit­

ted. That is, delta must be executed before a subsequent get -e is executed on the
same SID.

Multiple concurrent edits are allowed if the j flag is set in the sees file. Thus:

get -e s.abc
1.1
new delta 1.2
5 lines

may be immediately followed by

get -e s.abc
1.1
new delta 1.1.1.1
5 lines

without an intervening delta. In this case, a delta after the first get will produce
delta l.2 (assuming l.1 is the most recent trunk delta), and a delta after the second
get will produce delta l.l.1.l.

Keyletters That Affect Output
get -p causes the retrieved text to be written to the standard output rather than

to a g.file. In addition, all output normally directed to the standard output (such as
the SID of the version retrieved and the number of lines retrieved) is directed
instead to the diagnostic output. get -p is used, for example, to create a g.file with
an arbitrary name, as in

get -p s.abc > arbitrary-file-name

get -s suppresses output normally directed to the standard output, such as the
SID of the retrieved version and the number of lines retrieved, but it does not affect
messages normally directed to the diagnostic output. get -s is used to prevent non­
diagnostic messages from appearing on the user's terminal and is often used with
-p to pipe the output, as in

get -p -s s.abc I pg

Source Code Control System (SCCS) 11-21

SCCS Commands

get -g suppresses the retrieval of the text of an sees file. This is useful in
several ways. For example, to verify a particular SID in an sees file

get -g -r4.3 s.abc

outputs the SID 4.3 if it exists in the sees file s.abc or an error message if it does C
not. Another use of get -g is in regenerating a p.file that may have been acciden-
tally destroyed, as in

get -e -g s.abc

get -I causes sees to create an "l.file." It is named by replacing the s. of the
sees filename with I., created in the current directory with mode 444 (read only)
and owned by the real user. The l.file contains a table (whose format is described
under get(l) in the IRIS-4D Programmer's Reference Manual) showing the deltas
used in constructing a particular version of the sees file. For example

get -r2.3 -I s.abc

generates an l.file showing the deltas applied to retrieve version 2.3 of file s.abc.
Specifying p with -I, as in

get -Ip -r2.3 s.abc

causes the output to be written to the standard O\)tput rather than to the l.file. get -g (
can be used with -I to suppress the retrieval of the text.

get -m identifies the changes applied to an sees file. Each line of the g.file is
preceded by the SID of the delta that caused the line to be inserted. The SID is
separated from the text of the line by a tab character.

get -0 causes each line of a g.file to be preceded by the value of the ID key­
word and a tab character. This is most often used in a pipeline with grep(l). For
example, to find all lines that match a given pattem-in the latest version of each
sees file in a directory, the following may be executed:

get -p -0 -s directory I grep pattern

If both -m and -0 are specified, each line of the generated g.file is preceded by
the value of the chap3.13 ID keyword and a tab (this is the effect of -0) and is fol­
lowed by the line in the format produced by -m. Because use of -m and/or -0

causes the contents of the g.file to be modified, such a g.file must not be used for
creating a delta. Therefore, neither -m nor -0 may be specified together with get
-e.

11-22 IRIS-4D Programmer's Guide

(

SCCS Commands

See get(l) in the IRIS 4D Programmer's Reference Manual for a full description of
additional key letters.

The delta Command
The deJta(l) command is used to incorporate changes made to a g.file into the

corresponding sees file-that is, to create a delta and, therefore, a new version of
the file.

The delta command requires the existence of a p.file (created via get -e). It
examines the p.file to verify the presence of an entry containing the user's login
name. If none is found, an error message results.

get -e performs. If all checks are successful, delta determines what has been
changed in the g.file by comparing it via diff(1) with its own temporary copy of the
g.file as it was before editing. This temporary copy of the g.file is called the d.file
and is obtained by performing an internal get on the SID specified in the p.file
entry.

The required p.file entry is the one containing the login name of the user exe­
cuting delta, because the user who retrieved the g.file must be the one who creates
the delta. However, if the login name of the user appears in more than one entry,
the same user has executed get -e more than once on the same sees file. Then,
delta -r must be used to specify the SID that uniquely identifies the p.file entry.
This entry is then the one used to obtain the SID of the delta to be created.

In practice, the most common use of delta is

delta s.abc

which prompts

carments?

to which the user replies with a description of why the delta is being made, ending
the reply with a newline character. The user's response may be up to 512 charac­
ters long with newlines (not intended to terminate the response) escaped by
backslashes, \

If the sees file has a v flag, delta first prompts with

MRs?

(Modification Requests), on the standard output. The standard input is then read for
MR numbers, separated by blanks and/or tabs, ende1 with a newline character. A

Source Code Control System (SCCS) 11-23

SCCS Commands

Modification Request is a formal way of asking for a correction or enhancement to
the file. In some controlled environments where changes to source files are tracked,
deltas are permitted only when initiated by a trouble report, change request, trouble
ticket, etc., collectively called MRs. Recording MR numbers within deltas is a way
of enforcing the rules of the change management process.

delta -y and/or -m can be used to enter comments and MR numbers on the
command line rather than through the standard input, as in

delta -y"descriptive comment" -m"mrnuml mrnum2" s.abc

In this case, the prompts for comments and MRs are not printed, and the stan­
dard input is not read. These two key letters are useful when delta is executed from
within a shell procedure (see she!) in the IRIS-4D Programmer's Reference
Manual).

delta -m is allowed only if the sees file has a v flag.

No matter how comments and MR numbers are entered with delta, they are
recorded as part of the entry for the delta being created. Also, they apply to all
sees files specified with the delta.

(

If delta is used with more than one file argument and the first file named has a (
v flag, all files named must have this flag. Similarly, if the first file named does not .
have the flag, none of the files named may have it.

When delta processing is complete, the standard output displays the SID of the
new delta (from the p.file) and the number of lines inserted, deleted, and left
unchanged. For example:

1.4
14 inserted
7 deleted
345 unchanged

If line counts do not agree with the user's perception of the changes made to a
g.file, it may be because there are various ways to describe a set of changes, espe­
cially if lines are moved around in the g.file. However, the total number of lines of
the new delta (the number inserted plus the number left unchanged) should always
agree with the number of lines in the edited g.file.

If you are in the process of making a delta, the delta command finds no ID key­
words in the edited g.file, the message

No id keywords (em7)

11-24 IRIS-4D Programmer's Guide

(

SCCS Commands

is issued after the prompts for commentary but before any other output. This means
that any ID keywords that may have existed in the sees file have been replaced by
their values or deleted during the editing process. This could be caused by making
a delta from a g.file that was created by a get without -e (ID keywords are replaced
by get in such a case). It could also be caused by accidentally deleting or changing
ID keywords while editing the g.file. Or, it is possible that the file had no ID key­
words. In any case, the delta will be created unless there is an i flag in the sees
file (meaning the error should be treated as fatal), in which case the delta will not be
created.

After the processing of an sees file is complete, the corresponding p.file entry
is removed from the p.file. All updates to the p.file are made to a temporary copy,
the "q.file," whose use is similar to the use of the x.file described earlier under
"sees Command Conventions." If there is only one entry in the p.file, then the
p.file itself is removed.

In addition, delta removes the edited g.file unless -0 is specified. For example

delta -0 s.abc

will keep the g.file after processing.

delta -s suppresses all output normally directed to the standard output, other
than ccmrents? and MRs? Thus, use of -s with -y (and/or -m) causes delta to
neither read the standard input nor write the standard output

The differences between the g.file and the d.file constitute the delta and may be
printed on the standard output by using delta -po The format of this output is simi­
lar to that produced by diff(l).

The admin Command
The admio(1) command is used to administer sees files-that is, to create

new sees files and change the parameters of existing ones. When an sees file is
created, its parameters are initialized by use of key letters with admin or are
assigned default values if no key letters are supplied. The same key letters are used
to change the parameters of existing sees files.

Two key letters are used in detecting and correcting corrupted sees files (see
"Auditing" under "sees Files").

Newly created sees files are given access permission mode 444 (read only)
and are owned by the effective user. Only a user with write permission in the direc­
tory containing the sees file may use the admin command on that file.

Source Code Control System (SCCS) 11-25

SCCS Commands

Creation of SCCS Files
An sees file can be created by executing the command

admin -mrst s.abc

in which the value first with -i is the name of a file from which the text of the initial
delta of the sees file s.abc is to be taken. Omission of a value with -i means
admin is to read the standard input for the text of the initial delta.

The command

admin -i s.abc < first

is equivalent to the previous example.

If the text of the initial delta does not contain ID keywords, the message

No id keywords (em7)

is issued by admin as a warning. However, if the command also sets the i flag (not
to be confused with the -i keyletter), the message is treated as an error and the
sees file is not created. Only one sees file may be created at a time using admin
-i.

admin -r is used to specify a release number for the first delta. Thus:

admin -ifirst -r3 s.abc

means the first delta should be named 3.1 rather than the normal 1.1. Because-r
has meaning only when creating the first delta, its use is permitted only with -i.

Inserting Commentary for the Initial Delta
When an sees file is created, the user may want to record why this was done.

Comments (admin -y) and/or MR numbers (-m) can be entered in exactly the
same way as a delta.

If -y is omitted, a comment line of the form

date and time created YY/MMIDD HH:MM:SS by logname

is automatically generated.

(

(

If it is desired to supply MR numbers (admin -m), the v flag must be set via C
-f. The v flag simply determines whether MR numbers must be supplied when
using any sees command that modifies a delta commentary (see sccsfile(4) in the
IRIS-4D Programmer's Reference Manual) in the sees file. Thus:

admin -ifirst -mmrnuml -fv s.abc

11-26 IRIS-4D Programmer's Guide

SCCS Commands

Note that -y and -m are effective only if a new sees file is being created.

Initialization and Modification of sees File Parameters
Part of an sees file is reserved for descriptive text, usually a summary of the

file's contents and purpose. It can be initialized or changed by using admin-t.

When an sees file is first being created and -t is used, it must be followed by
the name of a file from which the descriptive text is to be taken. For example, the
command

admin -ifirst -tdesc s.abc

specifies that the descriptive text is to be taken from file desc.

When processing an existing sees file, -t specifies that the descriptive text (if
any) currently in the file is to be replaced with the text in the named file. Thus:

admin -tdesc s.abc

specifies that the descriptive text of the sees file is to be replaced by the contents
of desc. Omission of the filename after the -t keyletter as in

admin -t s.abc

causes the removal of the descriptive text from the sees file.

The flags of an sees file may be initialized or changed by admin -f, or
deleted via -d.

sees file flags are used to direct certain actions of the various commands.
(See admin(l) in the IRIS-4D Programmer's Reference Manual for a description of
all the flags.) For example, the i flag specifies that a warning message (stating that
there are no ID keywords contained in the sees file) should be treated as an error.
The d (default SID) flag specifies the default version of the sees file to be
retrieved by the get command.

admin -f is used to set flags and, if desired, their values. For example

admin -ifirst -6 -fmmodname s.abc

sets the i and m (module name) flags. The value modname specified for the m flag
is the value that the get command will use to replace the % M % ID keyword. (In
the absence of the m flag, the name of the g.file is used as the replacement for the
%M% ID keyword.) Several-fkeyletters may be supplied on a single admin, and
they may be used whether the command is creating a new sees file or processing
an existing one.

Source Code Control System (SCCS) 11-27

SCCS Commands

admin -d is used to delete a flag from an existing sees file. As an example,
the command

admin -dm s.abc

removes the m flag from the sees file. Several-d key letters may be used with one (
admin and may be intermixed with -f.

sees files contain a list of login names and/or group IDs of users who are
allowed to create deltas. This list is empty by default, allowing anyone to create
deltas. To create a user list (or add to an existing one), admin -a is used. For
example,

admin -axyz -awql -a1234 s.abc

adds the login names xyz and wqI and the group ID 1234 to the list. admin -a may
be used whether creating a new sees file or processing an existing one.

admin -e (erase) is used to remove login names or group IDs from the list.

The prs Command
The prs(l) command is used to print all or part of an sees file on the standard

output. If prs -d is used, the output will be in a format called data specification. (
Data specification is a string of sees file data keywords (not to be confused with
get ID keywords) interspersed with optional user text.

Data keywords are replaced by appropriate values according to their
definitions. For example,

:1:

is defined as the data keyword replaced by the SID of a specified delta. Similarly,
:F: is the data keyword for the sees filename currently being processed, and :C: is
the comment line associated with a specified delta. All parts of an sees file have
an associated data keyword. For a complete list, see prs(l) in the IRIS-4D
Programmer's Reference Manual.

There is no limit to the number of times a data keyword may appear in a data
specification. Thus, for example,

prs -d":I: this is the top delta for :F: :1:" s.abc

may produce on the standard output

2.1 this is the top delta for s.abc 2.1

11·28 IRIS-4D Programmer's Guide

(

SCCS Commands

Information may be obtained from a single delta by specifying its SID using
prs -r. For example,

prs -d": F:: : I: comment line is: : e:" -rI,4 s.abc

may produce the following output:

s . abc: 1.4 comment line is: THIS IS A COMMENT

If -r is not specified, the value of the SID defaults to the most recently created
delta.

In addition, information from a range of deltas may be obtained with -lor -e.
The use of prs -e substitutes data keywords for the SID designated via -r and all
deltas created earlier, while prs -I substitutes data keywords for the SID designated
via -r and all deltas created later. Thus, the command

prs -d: I: -rl.4 -e s.abc

may output

l.4
l.3
l.2.l.1
l.2
l.1

and the command

prs -d: I: -rl,4 -I s.abc

may produce

3.3
3.2
3.1
2.2.l.1
2.2
2.1
l.4

Substitution of data keywords for all deltas of the sees file may be obtained
by specifying both -e and -1.

Source Code Control System (SCCS) 11-29

SCCS Commands

The sact Command
sact(1) is like a special form of the prs command that produces a report about

files that are out for edit. The command takes only one type of argument: a list of (
file or directory names. The report shows the SID of any file in the list that is out
for edit, the SID of the impending delta, the login of the user who executed the get
-e command, and the date and time the get -e was executed. It is a useful com-
mand for an administrator.

The help Command
The help(1) command prints the syntax of sees commands and of messages

that may appear on the user's terminal. Arguments to help are simply sees com­
mands or the code numbers that appear in parentheses after sees messages. (If no
argument is given, help prompts for one.) Explanatory information is printed on the
standard output. If no information is found, an error message is printed. When
more than one argument is used, each is processed independently, and an error
resulting from one will not stop the processing of the others.

Explanatory information related to a command is a synopsis of the command. (
For example,

help geS rmdel

produces

geS:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typos.

rrcdel:
rrcdel -rSID name ...

11-30 IRI5-4D Programmer's Guide

(

-----~---~ -~--~-----~-~----

SCCS Commands

The rmdel Command
The rmdel(1) command allows removal of a delta from an sees file. Its use

should be reserved for deltas in which incorrect global changes were made. The
delta to be removed must be a leaf delta. That is, it must be the most recently
created delta on its branch or on the trunk of the sees file tree. In Figure 11-3,
only deltas 1.3.1.2, 1.3.2.2, and 2.2 can be removed. Only after they are removed
can deltas 1.3.2.1 and 2.1 be removed.

To be allowed to remove a delta, the effective user must have write permission
in the directory containing the sees file. In addition, the real user must be either
the one who created the delta being removed or the owner of the sees file and its
directory.

The -r key letter is mandatory with rmdel. It is used to specify the complete
SID of the delta to be removed. Thus,

rmdel -r2.3 s.abc

specifies the removal of trunk delta 2.3.

Before removing the delta, rmdel checks that the release number (R) of the
given SID satisfies the relation:

floor less than or equal to R less than or equal to ceiling

The rmdel command also checks the SID to make sure it is not for a version on
which a get for editing has been executed and whose associated delta has not yet
been made. In addition, the login name or group ill of the user must appear in the
file's user list (or the user list must be empty). Also, the release specified cannot be
locked against editing. That is, if the I flag is set (see admin(1) in the IRIS-4D
Programmer's Reference Manual), the release must not be contained in the list. If
these conditions are not satisfied, processing is terminated, and the delta is not
removed.

Once a specified delta has been removed, its type indicator in the delta table of
the sees file is changed from D (delta) to R (removed).

The cdc Command
The cdc(1) command is used to change the commentary made when the delta

was created. It is similar to the rmdel command (e.g., -r and full SID are neces­
sary), although the delta need not be a leaf delta. For example,

cdc -r3.4 s.abc

Source Code Control System (SCCS) 11-31

SCCS Commands

specifies that the commentary of delta 3.4 is to be changed. New commentary is
then prompted for as with delta.

The old commentary is kept, but it is preceded by a comment line indicating
that it has been superseded, and the new commentary is entered ahead of the com-
ment line. The inserted comment line records the login name of the user executing C-
cdc and the time of its execution. -.

The cdc command also allows for the insertion of new and deletion of old ("!"
prefix) MR numbers. Thus,

cdc -rl.4 s.abc
MRs? mrnum3 !mrnuml (The MRs? prompt appears only

if the v flag has been set.)
caments? deleted wrong MR number and inserted correct MR number

inserts mrnum3 and deletes mrnuml for delta 1.4.

An MR (Modification Request) is described above under the delta command.

The what Command
The what(l) command is used to find identifying information within any UNIX

file whose name is given as an argument. No key letters are accepted. The what
command searches the given file(s) for all occurrences of the string @(#), which is
the replacement for the %Z% ill keyword (see get(l». It prints on the standard
output whatever follows the string until the first double quote, " , greater than, >,
backslash, \, newline, or nonprinting NUL character.

For example, if an sees file called s.prog.c (a e language program) contains
the following line:

char id[]= n%W%,.;

and the command

get -r3.4 s.prog.c

is used, the resulting g.file is compiled to produce prog.o and a.out. Then, the com­
mand

what prog.c prog.o a.out

produces

11-32 IRIS-4D Programmer's Guide

(

(

SCCS Commands

prog.c:
prog.c: 3.4

prog.o:
prog.c: 3.4

a.out:
prog.c: 3.4

The string searched for by what need not be inserted via an ID keyword of get; it
may be inserted in any convenient manner.

The sccsdiff Command
The sccsdiff(l) command determines (and prints on the standard output) the

differences between any two versions of an sees file. The versions to be com­
pared are specified with sccsdiff -r in the same way as with get -r. SID numbers
must be specified as the first two arguments. Any following key letters are inter­
preted as arguments to the pr(l) command (which prints the differences) and must
appear before any filenames. The sees file(s) to be processed are named last.
Directory names and a name of - (a lone minus sign) are not acceptable to sccsdiff.

The following is an example of the format of sccsdiff:

sccsdiff -r3.4 -rS.6 s.abc

The differences are printed the same way as by diff(l).

The comb Command
The comb(l) command lets the user try to reduce the size of an sees file. It

generates a shell procedure (see sh(l) in the IRIS-4D Programmer's Reference
Manual) on the standard output, which reconstructs the file by discarding unwanted
deltas and combining other specified deltas. (It is not recommended that comb be
used as a matter of routine.)

In the absence of any keyletters, comb preserves only leaf deltas and the
minimum number of ancestor deltas necessary to preserve the shape of an sees
tree. The effect of this is to eliminate middle deltas on the trunk and on all branches
of the tree. Thus, in Figure 11-3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would be elim­
inated.

Some of the keyletters used with this command are:

Source Code Control System (SCCS) 11-33

SCCS Commands

comb -s This option generates a shell procedure that produces a report of
the percentage space (if any) the user will save. This is often use­
ful as an advance step.

comb -p This option is used to specify the oldest delta the user wants (
preserved.

comb -c This option is used to specify a list (see get(1) in theIRIS-4D
Programmer's Reference Manual for its syntax) of deltas the user
wants preserved. All other deltas will be discarded.

The shell procedure generated by comb is not guaranteed to save space. A recon­
structed file may even be larger than the original. Note, too, that the shape of an
SCCS file tree may be altered by the reconstruction process.

The val Command
The val(l) command is used to determine whether a file is an SCCS file meet­

ing the characteristics specified by certain keyletters. It checks for the existence of
a particular delta when the SID for that delta is specified with -r.

The string following -y or -m is used to check the value set by the t or m flag,
respectively. See admin(l) in the IRIS-4D Programmer's Reference Manual for
descriptions of these flags.

The val command treats the special argument - differently from other SCCS
commands. It allows val to read the argument list from the standard input instead
of from the command line, and the standard input is read until an end-of-file
(CTRL-D) is entered. This permits one val command with different values for
key letters and file arguments. For example,

val - -yc -mabc s.abc -mxyz -ypU s.xyz

first checks if file s.abc has a value c for its type flag and value abc for the module
name flag. Once this is done, val processes the remaining file, in this case s.xyz.

The val command returns an 8-bit code. Each bit set shows a specific error
(see val(l) for a description of errors and codes). In addition, an appropriate diag­
nostic is printed unless suppressed by -so A return code of 0 means all files met the
characteristics specified.

11-34 IRIS-4D Programmer's Guide

(

(

SCCS Commands

The vc Command
The ve(1) command is an awk-like tool used for version control of sets of files.

While it is distributed as part of the sees package, it does not require the files it
operates on to be under sees control. A complete description of ve may be found
in the IRIS-4D Programmer's Reference Manual.

Source Code Control System (SCCS) 11-35

sees Files

This section covers protection mechanisms used by sees, the format of sees
files, and the recommended procedures for auditing sees files.

Protection
sees relies on the capabilities of the UNIX system for most of the protection

mechanisms required to prevent unauthorized changes to sees files-that is,
changes by non-SeeS commands. Protection features provided directly by sees
are the release lock flag, the release floor and ceiling flags, and the user list.

Files created by the admin command are given access permission mode 444
(read only). This mode should remain unchanged because it prevents modification
of sees files by non-Sees commands. Directories containing sees files should
be given mode 755, which allows only the owner of the directory to modify it.

sees files should be kept in directories that contain only sees files and any
temporary files created by sees commands. This simplifies their protection and
auditing. The contents of directories should be logical groupings-subsystems of
the same large project, for example.

(

sees files should have only one link (name) because commands that modify (
them do so by creating a copy of the file (the x.file; see "sees Command Conven-
tions"). When processing is done, the old file is automatically removed and the
x.file renamed (s. prefix). If the old file had additional links, this breaks them.
Then, rather than process such files, sees commands will produce an error mes-
sage.

When only one person uses sees, the real and effective user IDs are the same;
and the user ID owns the directories containing sees files. Therefore, sees may
be used directly without any preliminary preparation.

When several users with unique user IDs are assigned sees responsibilities
(e.g., on large development projects), one user-that is, one user ID-must be
chosen as the owner of the sees files. This person will administer the files (e.g.
use the admin command) and will be sees administrator for the project. Because
other users do not have the same privileges and permissions as the sees adminis­
trator, they are not able to execute directly those commands that require write per­
mission in the directory containing the sees files. Therefore, a project-dependent
program is required to provide an interface to the get, delta, and, if desired, rmdel C.
and cdc commands.

11-36 IRIS-4D Programmer's Guide

SCCS Files

The interface program must be owned by the sees administrator and must
have the set user ID on execution bit on (see chmod(l) in theIRIS-4D User's
Reference Manual). This assures that the effective user ID is the user ID of the
sees administrator. With the privileges of the interface program during command
execution, the owner of an sees file can modify it at will. Other users whose login
names or group IDs are in the user list for that file (but are not the owner) are given
the necessary permissions only for the duration of the execution of the interface
program. Thus, they may modify sees only with delta and, possibly, rmdel and
cdc.

A project-dependent interface program, as its name implies, can be custom
built for each project. Its creation is discussed later under "An sees Interface Pro­
gram."

Formatting
sees files are composed of lines of ASCII text arranged in six parts as fol­

lows:

Checksum a line containing the logical sum of all the characters of the
file (not including the checksum itself)

Delta Table information about each delta, such as type, SID, date and
time of creation, and commentary

User Names list of login names and/or group IDs of users who are
allowed to modify the file by adding or removing deltas

Flags indicators that control certain actions of sees commands

Descriptive Text usually a summary of the contents and purpose of the file

Body the text administered by sees, intermixed with internal
sees control lines

Details on these file sections may be found in sccsfile(4). The checksum is dis­
cussed below under "Auditing."

Since sees files are ASCII files they can be processed by non-SeeS com­
mands like ed(1), grep(l), and cat(1). This is convenient when an sees file must
be modified manually (e.g., a delta's time and date were recorded incorrectly
because the system clock was set incorrectly), or when a user wants simply to look
at the file.

Source Code Control System (SCCS) 11-37

sees Files

V Ex""",, c= ",ouW be ex~ru'" wh= modifyffig sees fil~ Mob co""","", ob"
are not sees.

Auditing
When a system or hardware malfunction destroys an sees file, any command

will issue an error message. Commands also use the checksum stored in an sees
file to determine whether the file has been corrupted since it was last accessed (pos­
sibly by having lost one or more blocks or by having been modified with ed(l». No
sees command will process a corrupted sees file except the admin command
with -h or -z, as described below.

sees files should be audited for possible corruptions on a regular basis. The
simplest and fastest way to do an audit is to use admin -h and specify all sees
files:

admin -h s.file1 s.file2 ...
or

admin -h directory} directory2

If the new checksum of any file is not equal to the checksum in the first line of
that file, the message

corrupted file (co6)

is produced for that file. The process continues until all specified files have been
examined. When examining directories (as in the second example above), the
checksum process will not detect missing files. A simple way to learn whether files
are missing from a directory is to execute the Is(l) command periodically, and com­
pare the outputs. Any file whose name appeared in a previous output but not in the
current one no longer exists.

When a file has been corrupted, the way to restore it depends on the extent of
the corruption. If damage is extensive, the best solution is to contact the local
UNlX system operations group and request that the file be restored from a backup
copy. If the damage is minor, repair through editing may be possible. After such a
repair, the admin command must be executed:

admin -z s.file

11-38 IRIS-4D Programmer's Guide

c'

(

(

SCCS Files

The purpose of this is to recompute the checksum and bring it into agreement
with the contents of the file. After this command is executed, any corruption that
existed in the file will no longer be detectable.

Source Code Control System (SCCS) 11-39

c

(

(

The lint Program

The lint program examines C language source programs detecting a number of
bugs and obscurities. It enforces the type rules of C language more strictly than the
C compiler. It may also be used to enforce a number of portability restrictions
involved in moving programs between different machines and/or operating systems.
Another option detects a number of wasteful or error prone constructions, which
nevertheless are legal. lint accepts multiple input files and library specifications
and checks them for consistency.

lint 12·1

Using lint

The lint command has the form:

lint [options] files .,. library-descriptors .. ,

where options are optional flags to control lint checking and messages; files are the (
files to be checked which end with .c or .In; and library-descriptors are the names
of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-c Only check for intra-file bugs; leave external information in files
suffixed with .In.

-h Do not apply heuristics (which attempt to detect bugs, improve
style, and reduce waste).

-n Do not check for compatibility with either the standard or the port­
able lint library.

-0 name Create a lint library from input files named 1Iib-lname.In.

-p Attempt to check portability.

-u

-x

Suppress messages about function and external variables used and
not defined or defined and not used.

Do not report variables referred to by external declarations but
never used.

When more than one option is used, they should be combined into a single argu­
ment, such as -ab or -xha.

The names of files that contain C language programs should end with the suffix
.c, which is mandatory for lint and the C compiler.

lint accepts certain arguments, such as:

-1m

These arguments specify libraries that contain functions used in the C language pro­
gram. The source code is tested for compatibility with these libraries. This is done
by accessing library description files whose names are constructed from the library
arguments. These files all begin with the comment:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of
these definitions are the declaration of the function return type, whether the dummy
function returns a value, and the number and types of arguments to the function.
The V ARARGS and ARGSUSED comments can be used to specify features of the

12-2 IRIS-4D Programmer's Guide

(

(

Using lint

library functions. The next section, "lint Message Types," describes how it is done.

lint library files are processed almost exactly like ordinary source files. The
only difference is that functions which are defined in a library file but are not used
in a source file do not result in messages. lint does not simulate a full library search
algorithm and will print messages if the source files contain a redefinition of a
library routine.

By default, lint checks the programs it is given against a standard library file
that contains descriptions of the programs that are normally loaded when a C
language program is run. When the -p option is used, another file is checked con­
taining descriptions of the standard library routines which are expected to be port­
able across various machines. The -n option can be used to suppress all library
checking.

lint 12-3

lint Message Types

The following paragraphs describe the major categories of messages printed by
lint.

Unused Variables and Functions
As sets of programs evolve and develop, previously used variables and argu­

ments to functions may become unused. It is not uncommon for external variables
or even entire functions to become unnecessary and yet not be removed from the
source. These types of errors rarely cause working programs to fail, but are a
source of inefficiency and make programs harder to understand and change. Also,
information about such unused variables and functions can occasionally serve to
discover bugs.

lint prints messages about variables and functions which are defined but not
otherwise mentioned, unless the message is suppressed by means of the -u or -x
option.

(

Certain styles of programming may permit a function to be written with an
interface where some of the function's arguments are optional. Such a function can
be designed to accomplish a variety of tasks depending on which arguments are
used. Normally lint prints messages about unused arguments; however, the -v (
option is available to suppress the printing of these messages. When -v is in effect,
no messages are produced about unused arguments except for those arguments
which are unused and also declared as register arguments. This can be considered
an active (and preventable) waste of the register resources of the machine.

The comment:

/ * VARARGS * /
can be used to suppress messages about variable number of arguments in calls to a
function. The comment should be added before the function definition. In some
cases, it is desirable to check the first several arguments and leave the later argu­
ments unchecked. This can be done with a digit giving the number of arguments
which should be checked. For example:

/ * VARARGS2 * /
will cause only the first two arguments to be checked.

When lint is applied to some but not all files out of a collection that are to be (
loaded together, it issues complaints about unused or undefined variables. This
information is, of course, more distracting than helpful. Functions and variables
that are defined may not be used; conversely, functions and variables defined else-
where may be used. The -u option suppresses the spurious messages.

12-4 IRIS-4D Programmer's Guide

lint Message Types

Set/Used Information
lint attempts to detect cases where a variable is used before it is set. lint

detects local variables (automatic and register storage classes) whose first use
appears physically earlier in the input file than the first assignment to the variable.
It assumes that taking the address of a variable constitutes a "use" since the actual
use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the
algorithm very simple and quick to implement since the true flow of control need
not be discovered. It does mean that lint can print error messages about program
fragments that are legal, but these programs would probably be considered bad on
stylistic grounds. Because static and external variables are initialized to zero, no
meaningful information can be discovered about their uses. The lint program does
deal with initialized automatic variables.

The set/used information also permits recognition of those local variables that
are set and never used. These form a frequent source of inefficiencies and may also
be symptomatic of bugs.

Flow of Control
lint attempts to detect unreachable portions of a program. It will print mes­

sages about unlabeled statements immediately following goto, break, continue, or
return statements. It attempts to detect loops that cannot be left at the bottom and
to recognize the special cases while(l) and for(;;) as infinite loops. lint also prints
messages about loops that cannot be entered at the top. Valid programs may have
such loops, but they are considered to be bad style.

lint has no way of detecting functions that are called and never return. Thus, a
call to exit may cause unreachable code which lint does not detect. The most seri­
ous effects of this are in the determination of returned function values (see "Func­
tion Values"). If a particular place in the program is thought to be unreachable in a
way that is not apparent to lint, the comment

/ * NOTREACHED * /
can be added to the source code at the appropriate place. This comment will inform
lint that a portion of the program cannot be reached, and lint will not print a mes­
sage about the unreachable portion.

lint 12·5

lint Message Types

Programs generated by yacc and especially lex may have hundreds of unreach­
able break statements, but messages about them are of little importance. There is
typically nothing the user can do about them, and the resulting messages would
clutter up the lint output. The recommendation is to invoke lint with the -b option
when dealing with such input. C
Function Values

Sometimes functions return values that are never used. Sometimes programs
incorrectly use function values that have never been returned. lint addresses this
problem in a number of ways.

and

Locally, within a function definition, the appearance of both

retu:m (expr);

retu:m ;

statements is cause for alarm; lint will give the message

function nama has retu:m (e) and retu:m

The most serious difficulty with this is detecting when a function return is implied (
by flow of control reaching the end of the function. This can be seen with a simple
example:

f (a) {
if (a) retu:m (3);
gO;
}

Notice that, if a tests false, f will call g and then return with no defined return value;
this will trigger a message from lint. If g, like exit, never returns, the message will
still be produced when in fact nothing is wrong. A comment

I *NO'I'RE1\CHED* I

in the source code will cause the message to be suppressed. In practice, some
potentially serious bugs have been discovered by this feature.

On a global scale, lint detects cases where a function returns a value that is (
sometimes or never used.

12-6 IRI5-4D Programmer's Guide

---------- -- -- ----- -------- - ---~ -~--

lint Message Types

When the value is never used, it may constitute an inefficiency in the function
definition that can be overcome by specifying the function as being of type (void).
For example:

(void) fprintf (stderr, "File busy. Try again later! \n") ;

When the value is sometimes unused, it may represent bad style (e.g., not testing for
error conditions).

The opposite problem, using a function value when the function does not return
one, is also detected. This is a serious problem.

Type Checking
lint enforces the type checking rules of C language more strictly than the com-

pilers do. The additional checking is in four major areas:

• across certain binary operators and implied assignments

• at the structure selection operators

• between the definition and uses of functions

• in the use of enumerations

There are a number of operators which have an implied balancing between
types of the operands. The assignment, conditional (?:), and relational operators
have this property. The argument of a return statement and expressions used in ini­
tialization suffer similar conversions. In these operations, char, short, int, long,
unsigned, float, and double types may be freely intermixed. The types of pointers
must agree exactly except that arrays of xs can, of course, be intermixed with
pointers to xs.

The type checking rules also require that, in structure references, the left
operand of the -> be a pointer to structure, the left operand of the. be a structure,
and the right operand of these operators be a member of the structure implied by the
left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types
float and double may be freely matched, as may the types char, short, int, and
unsigned. Also, pointers can be matched with the associated arrays. Aside from
this, all actual arguments must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members
are not mixed with other types or other enumerations and that the only operations
applied are =, initialization, ==, !=, and function arguments and return values.

lint 12-7

lint Message Types

Type Casts
The type cast feature in C language was introduced largely as an aid to produc- C­

ing more portable programs. Consider the assignment

p = 1 ;

where p is a character pointer. lint will print a message as a result of detecting this.
Consider the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. The pro­
grammer obviously had a strong motivation for doing this and has clearly signaled
his intentions. Nevertheless, lint will not print messages about this.

Nonportable Character Use
On some systems, characters are signed quantities with a range from -128 to

127. On other C language implementations, characters take on only positive
values. Thus, lint will print messages about certain comparisons and assignments
as being illegal or nonportable. For example, the fragment

signed char c;

if ((c = getchar ()) < a) ...
will work on one machine but will fail on machines where characters always take
on positive values. The real solution is to declare c as an integer since getchar is
actually returning integer values. In any case, lint will print the message

nonportable character comparison

A similar issue arises with bit fields. When assignments of constant values are
made to bit fields, the field may be too small to hold the value. This is especially
true because on some machines bit fields are considered as signed quantities. While
it may seem logical to consider that a two-bit field declared of type int cannot hold
the value 3, the problem disappears if the bit field is declared to have type unsigned

12-8 IRIS-4D Programmer's Guide

(

c

lint Message Types

Assignments of longs to ints
Bugs may arise from the assignment of long to an int, which will truncate the

contents. This may happen in programs which have been incompletely converted to
use typedefs. When a typedef variable is changed from int to long, the program
can stop working because some intermediate results may be assigned to ints, which
are truncated. Please note, lint does not catch these potential errors.

Strange Constructions
Several perfectly legal, but somewhat strange, constructions are detected by

lint. The messages hopefully encourage better code quality, clearer style, and may
even point out bugs. The -b option is used to suppress these checks. For example,
in the statement

*p++ ;

the * does nothing. This provokes the message

null effect

from lint. The following program fragment:

unsigned x ;
if(x < 0) •••

results in a test that will never succeed. Similarly, the test

if(x > 0) ...

is equivalent to

if (x != 0)

which may not be the intended action. lint will print the message

degenerate unsigned comparison

in these cases. If a program contains something similar to

if (1 != 0) ...

lint will print the message

constant in conditional context

since the comparison of 1 with 0 gives a constant result.

lint 12-9

lint Message Types

Another construction detected by lint involves operator precedence. Bugs
which arise from misunderstandings about the precedence of operators can be
accentuated by spacing and formatting, making such bugs extremely hard to find.
For example, the statements

if(x&077 = 0) .••

and

x«2 + 40

probably do not do what was intended. The best solution is to parenthesize such
expressions, and lint encourages this by an appropriate message.

Old Syntax
Several forms of older syntax are now illegal. These fall into two classes:

assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ...) could cause ambigu­
ous expressions, such as:

a ~1 ;

which could be taken as either

or

a = -1 ;

The situation is especially perplexing if this kind of ambiguity arises as the result of
a macro substitution. The newer and preferred operators (e.g., +=, -=, ...) have no
such ambiguities. To encourage the abandonment of the older forms, lint prints
messages about these old-fashioned operators.

A similar issue arises with initialization. The older language allowed

int xl;

to initialize x to 1. This also caused syntactic difficulties. For example, the initiali­
zation

int x (-1) ;

looks somewhat like the beginning of a function definition:

intx (y) { ...

and the compiler must read past x in order to determine the correct meaning.
Again, the problem is even more perplexing when the initializer involves a macro.
The current syntax places an equals sign between the variable and the initializer:

12-10 IRIS-4D Programmer's Guide

----~ ~ -----~-

(

(

(

lint Message Types

int x = -1 ;

This is free of any possible syntactic ambiguity.

Pointer Alignment
Certain pointer assignments may be reasonable on some machines and illegal

on others due entirely to alignment restrictions. lint tries to detect cases where
pointers are assigned to other pointers and such alignment problems might arise.
The message

possible pointer alignrrent problem

results from this situation.

Multiple Uses and Side Effects
In complicated expressions, the best order in which to evaluate subexpressions

may be highly machine dependent. For example, on machines in which the stack
runs backwards, function arguments will probably be best evaluated from right to
left. On machines with a stack running forward, left to right seems most attractive.
Function calls embedded as arguments of other functions mayor may not be treated
similarly to ordinary arguments. Similar issues arise with other operators that have
side effects, such as the assignment operators and the increment and decrement
operators.

In order that the efficiency of C language on a particular machine not be unduly
compromised, the C language leaves the order of evaluation of complicated expres­
sions up to the local compiler. In fact, the various C compilers have considerable
differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect and also used elsewhere in the
same expression, the result is explicitly undefined.

lint checks for the important special case where a simple scalar variable is
affected. For example, the statement

ali] = b[i++];

will cause lint to print the message

waming: i evaluation order lIDdefined

in order to call attention to this condition.

lint 12-11

(

(

(,

Introduction

With the UNIX system running on smaller machines, such as the IRIS-4D com­
puter, efficient use of disk storage space, memory, and computing power is becom­
ing increasingly important. A shared library can offer savings in all three areas.
For example, if constructed properly, a shared library can make a.out files (execut­
able object files) smaller on disk storage and processes (a.out files that are execut­
ing) smaller in memory.

The first part of this chapter, "Using a Shared Library," is designed to help you
use UNIX System V shared libraries. It describes what a shared library is and how
to use one to build a.out files. It also offers advice about when to use and when not
to use a shared library and how to determine whether an a.out uses a shared library.

The second part in this chapter, "Building a Shared Library," describes how to
build a shared library. You do not need to read this part to use shared libraries. It
addresses library developers, advanced programmers who are expected to build
their own shared libraries. Specifically, this part describes how to use the UNIX
system tool mkshlib(l) (documented in theIRIX Programmer's Reference Manual)
and how to write C code for shared libraries on a UNIX system. An example is
included. This part also describes a simple method of checking the compatibility of
two versions of a shared library. Read this part of the chapter only if you have to
build a shared library.

Shared libraries are a feature introduced with IRIXTM Release 3.0. An executable
object file that needs shared libraries will not run on previous releases of IRIX.

Shared Libraries 13-1

Using a Shared Library

If you are accustomed to using libraries to build your applications programs,
shared libraries should blend into your work easily. This part of the chapter
explains shared libraries and tells how and when to use them on the IRIX system,

What Is a Shared Library?
A shared library is a file containing object code that several a.out files may use

simultaneously while executing. When a program is compiled or link edited with a
shared library, the library code that defines the program's external references is not
copied into the program's object file. Instead, a special section called .lib that
identifies the library code is created in the object file. When the UNIX systeffi.exe­
cutes the resulting a.out file, it uses the information in this section to bring the
required shared library code into the address space of the process.

The implementation behind these concepts is a shared library with two pieces.
The first, called the host shared library, is an archive that the link editor searches to
resolve user references and to create the .lib section in a.out files. The structure
and operation of this archive is the same as any archive without shared library
members. For simplicity, however, in this chapter references to archives mean
archive libraries without shared library members.

The second part of a shared library is the target shared library. This is the file
that the UNIX system uses when running a.out files built with the host shared
library. It contains the actual code for the routines in the library. Naturally, it must
be present on the the system where the a.out files will be run.

can
A shared library offers several benefits by not copying code into a.out files. It

• save disk storage space

Because shared library code is not copied into all the a.out files that use the
code, these files are smaller and use less disk space.

• save memory

By sharing library code at run time, the dynamic memory needs of processes
are reduced.

• make executable files using library code easier to maintain

As mentioned above, shared library code is brought into a process' address
space at run time. Updating a shared library effectively updates all execut­
able files that use the library, because the operating system brings the
updated version into new processes. If an error in shared library code is

13-2 IRIS-4D Programmer's Guide

(

(

(

Using a Shared Library

fixed, all processes automatically use the corrected code.

Archive libraries cannot, of course, offer this benefit: changes to archive
libraries do not affect executable files, because code from the libraries is
copied to the files during link editing, not during execution.

"Deciding Whether to Use a Shared Library" in this chapter describes shared
libraries in more detail.

The UNIX System Shared Libraries
Shared versions of the IRIX C library and IRIX graphics library are provided

with IRIX Release 3.1 and later.

Shared Host Library Target Library
Library Command Line Option Pathname

CLibrary -Ie s llib/libc s

Graphics Library -Igl s lusr/libllibgl s

Font Manager Library -Ifm s lusr/libllibfm -s

Notice the _s suffix on the library names; we use it to identify both host and tar­
get shared libraries. For example, it distinguishes the standard relocatable C library
Iibc from the shared C library libc_s. The _s also indicates that the libraries are
statically linked.

The relocatable C library is still available on IRIX releases; this library is
searched by default during the compilation or link editing of C programs. All other
archive libraries from previous releases of the system are also available. Just as you
use the archive libraries' names, you must use a shared library's name when you
want to use it to build your a.out files. You tell the link editor its name with the -I
option, as shown below.

Building an a.out File
You direct the link editor to search a shared library the same way you direct a

search of an archive library on the UNIX system:

cc file.c -0 file ... -Ilibrary Jtle ...

Shared Libraries 13-3

Using a Shared Library

To direct a search of the graphics library, for example, use the following com­
mand line.

ec ftle.e -oftle ... -Igl_s ...

And to link all the files in your current directory together with the shared C (-
library you'd use the following command line:

ec *.e -Ie s

Normally, you should include the -Ic_s argument after all other-I arguments
on a command line. The shared C library will then be treated like the relocatable C
library, which is searched by default after all other libraries specified on a command
line are searched.

Coding an Application
Application source code in C or assembly language is compatible with both

archive libraries and shared libraries. As a result, you should not have to change the
code in any applications you already have when you use a shared library with them.
When coding a new application for use with a shared library, you should just (-
observe your standard coding conventions.

However, do keep the following two points in mind, which apply when using
either an archive or a shared library:

• Don't define symbols in your application with the same names as those in a
library.

Although there are exceptions, you should avoid redefining standard library
routines, such as printf(3S) and strcmp(3C). Replacements that are incom­
patibly defined can cause any library, shared or unshared, to behave
incorrectly .

• Don't use undocumented archive routines.

Use only the functions and data mentioned on the manual pages describing
the routines in Section 3 of the IRIX Programmer's Reference Manual. For
example, don't try to outsmart the etype design by manipulating the under­
lying implementation.

13-4 IRIS-4D Programmer's Guide

(

Using a Shared Library

Deciding Whether to Use a Shared Library
You should base your decision 1:0 use a shared library on whether it saves space

in disk storage and memory for your program. A well-designed shared library
almost always saves space. So, as a general rule, use a shared library when it is
available.

To determine what savings are gained from using a shared library, you might
build the same application with both an archive and a shared library, assuming both
kinds are available. Remember, that you may do this because source code is com­
patible between shared libraries and archive libraries. (See the above section "Cod­
ing an Application.") Then compare the two versions of the application for size and
performance. For example,

$ cat hello.c
main 0
(

printf("Hello\n") ;

$ cc -0 unshared hello.c
$ cc -0 shared hello.c -lc_s
$ size unshared shared
text data bss dec hex
1000 1000 3daO 23968 SdaO
4000 1000 44fO 38128 94fO

shared
unshared

If the application calls only a few library members, it is possible that using a
shared library could take more disk storage or memory. The following section
gives a more detailed discussion about when a shared library does and does not save
space.

Shared Libraries 13-5

Using a Shared Library

More About Saving Space
This section is designed to help you better understand why your programs will

usually benefit from using a shared library. It explains

• how shared libraries save space that archive libraries cannot

• how shared libraries are implemented on the UNIX system

• how shared libraries might increase space usage

How Shared Libraries Save Space
To better understand how a shared library saves space, we need to compare it

to an archive library.

A host shared library resembles an archive library in three ways. First, as noted
earlier, both are archive files. Second, the object code in the library typically
defines commonly used text symbols and data symbols. The symbols defined inside
and made visible outside the library are external symbols. Note that the library may
also have imported symbols, symbols that it uses but usually does not define. Third,
the link editor searches the library for these symbols when linking a program to

(

resolve its external references. By resolving the references, the link editor produces C·
an executable version of the program, the a.out file.

Note that the link editor on the UNIX system is a static linking tool; static linking
requires that all symbolic references in a program be resolved before the program
may be executed. The link editor uses static linking with both an archive library
and a shared library.

Although these similarities exist, a shared library differs significantly from an
archive library. The major differences relate to how the libraries are handled to
resolve symbolic references, a topic already discussed briefly.

Consider how the UNIX system handles both types of libraries during link edit­
ing. To produce an a.out file using an archive library, the link editor copies the
library code that defines a program's unresolved external reference from the library
into appropriate .text and .data sections in the program's object file. In contrast, to
produce an a.out file using a shared library, the link editor copies Trom the shared
library into the program's object file only a small amount of code for initialization (-
of imported symbols. (See the section "Importing Symbols" later in the chapter for
more details on imported symbols.) For the bulk of the library code, it creates a
special section called .lib in the file that identifies the library code needed at run
time and resolves the external references to shared library symbols with their

13-6 IRIS-4D Programmer's Guide

Using a Shared Library

correct values.

When the UNIX system executes the resulting a.out file, it uses the information
in the .lib section to bring the required shared library code into the address space of
the process.

Figure 13-1 depicts the a.out files produced using a regular archive version and
a shared version of the standard C library to compile the following program:

main 0
{

printf ("How do you like this manual ?\n");

result = strcmp("r do. ", answer);

Notice that the shared version is smaller. Figure 13-2 depicts the process images in
memory of these two files when they are executed.

Shared Libraries 13-7

Using a Shared Library

a.outUsing
Archive Library

FILE HEADER

program .text

library .text

for printf(3S) and

strcmp(3Q

program .data

library .data

for printf(3S) and
strcmp(3Q

SYMBOL TABLE

S1RING TABLE

Created by the link editor.
Refers to library code for

print and strcmp(3C)

~

Copied to file by
the link editor

a.out Using
Shared Library

FILE HEADER

program .text

program .data

.lib

SYMBOL TABLE

STRING TABLE

Figure 13-1: a.out Files Created Using an Archive Library and a Shared Library

Now consider what happens when several a.out files need the same code from
a library. When using an archive library, each file gets its own copy of the code.
This results in duplication of the same code on the disk and in memory when the
a.out files are run as processes. In contrast, when a shared library is used, the
library code remains separate from the code in the a.out files, as indicated in Figure
13-2. This separation enables all processes using the same shared library to refer­
ence a single copy of the code.

13-8 IRIS-4D Programmer's Guide

(

(

(

Address

Space

Archive

Version

Shared

Version

* ••••• j ••••••

I
I

library code referred

to by .lib

Using a Shared Library

May be brought
to other processes

simultaneously

1· .. -?
...

:.-

Brought into process'

address space

Figure 13-2: Processes Using an Archive and a Shared Library

How Shared Libraries Are Implemented
Now that you have a better understanding of how shared libraries save space,

you need to consider their implementation on the UNIX system to understand how
they might increase space usage (this happens seldomly). The following paragraphs
describe host and target shared libraries, the branch table, and then how shared
libraries might increase space usage.

The Host Library and Target Library
As previously mentioned, every shared library has two parts: the host library

used for linking that resides on the host machine and the target library used for exe­
cution that resides on the target machine. The host machine is the machine on
which you build an a.out file; the target machine is the machine on which you run
the file. Of course, the host and target may be the same machine, but they don't
have to be.

The host library is just like an archive library. Each of its members (typically a
complete object file) defines some text and data symbols in its symbol table. The
link editor searches this file when a shared library is used during the compilation or
link editing of a program.

The search is for definitions of symbols referenced in the program but not
defined there. However, as mentioned earlier, the link editor does not copy the
library code defining the symbols into the program's object file. Instead, it uses the
library members to locate the definitions and then places symbols in the file that tell

Shared Libraries 13-9

Using a Shared Library

where the library code is. The result is the special section in the a.out file men­
tioned earlier (see the section "What is a Shared Library?") and shown in Figure
13-1 as .lib.

The target library used for execution resembles an a.out file. The UNIX
operating system reads this file during execution if a process needs a shared library. (
The special .lib section in the a.out file tells which shared libraries are needed.
When the UNIX system executes the a.out file, it uses this section to bring the
appropriate library code into the address space of the process. In this way, before
the process starts to run, all required library code has been made available.

Shared libraries enable the sharing of .text sections in the target library, which
is where text symbols are defined Although processes that use the shared library
have their own virtual address spaces, they share a single physical copy of the
library's text among them. That is, the UNIX system uses the same physical code
for each process that attaches a shared library's text

The target library cannot share its .data sections. Each process using data from
the library has its own private data region (contiguous area of virtual address space
that mirrors the .data section of the target library). Processes that share text do not
share data and stack area so that they do not interfere with one another.

As suggested above, the target library is a lot like an a.out file, which can also
share its text, but not its data. Also, a process must have execute permission for a (
target library to execute an a.out file that uses the library.

The Branch Table
When the link editor resolves an external reference in a program, it gets the

address of the referenced symbol from the host library. This is because a static
linking loader like Id binds symbols to addresses during link editing. In this way,
the a.out file for the program has an address for each referenced symbol.

What happens if library code is updated and the address of a symbol changes?
Nothing happens to an a.out file built with an archive library, because that file
already has a copy of the code defining the symbol. (Even though it isn't the
updated copy, the a.out file will still run.) However, the change can adversely
affect an a.out file built with a shared library. This file has only a symbol telling
where the required library code is. If the library code were updated, the location of
that code might change. Therefore, if the a.out file ran after the change took place,
the operating system could bring in the wrong code. To keep the a.out file current,
you might have to recompile a program that uses a shared library after each library
update.

To prevent the need to recompile, a shared library is implemented with a
branch table on the UNIX system. A branch table associates text symbols with
absolute addresses that do not change even when library code is changed. Each
address labels a jump instruction to the address of the code that defines a symbol.

13-10 IRIS-4D Programmer's Guide

(

Using a Shared Library

Instead of being directly associated with the addresses of code, text symbols have
addresses in the branch table.

Figure 13-3 shows two a.out files executing that make a call to printf(3S). The
process on the left was built using an archive library. It already has a copy of the
library code defining the printf(3S) symbol. The process on the right was built
using a shared library. This file references an absolute address (10) in the branch
table of the shared library at run time; at this address, a jump instruction references
the needed code.

A shared library uses

a branch table.

An archive library does

not use a branch table.

call printf(3S)

ClTID> printf

call printf(3)

Figure 13-3: A Branch Table in a Shared Library

;' .. ,'"
:. "

Branch

Table 300

Shared
Library

jump to
printf

Data symbols do not have a mechanism to prevent a change of address between
shared libraries. Therefore, you must take great care when designing your shared
library to ensure that the addresses of global data symbols can be kept constant in
future versions of the shared library.

Shared Libraries 13-11

Using a Shared Library

How Shared Libraries Might Increase Space Usage
A target library might add space to a process. Recall from "How Shared

Libraries are Implemented" in this chapter that a shared library's target file may
have both text and data regions connected to a process. While the text region is (
shared by all processes that use the library, the data region is not. Every process
that uses the library gets its own private copy of the entire library data region.
Naturally, this region adds to the process' memory requirements. As a result, if an
application uses only a small part of a shared library's text and data, executing the
application might require more memory with a shared library than without one. For
example, it would be unwise to use the shared C library to access only strcmp(3C).
Although sharing strcmp(3C) saves disk storage and memory, the memory cost for
sharing all the shared C library's private data region outweighs the savings. The
archive version of the library would be more appropriate.

A host library might add space to an a.out file. Recall that UNIX System V
Release 3.0 uses static linking, which requires that all external references in a pro­
gram be resolved before it is executed. Also recall that a shared library may have
imported symbols, which are used but not defined by the library. To resolve these
references, the link editor has to add to the a.out initialization code defining the
referenced imported symbols file. This code increases the size of the a.out file.

Identifying a.out Files that Use Shared Libraries
Suppose you have an executable file and you want to know whether it uses a

shared library. You can use the odump(l) command (documented in theIRIX
Programmer's Reference Manual) to look at the section headers for the file:

odump -bv a.out

If the file has a .lib section, a shared library is needed. If the a.out does not
have a .lib section, it does not use shared libraries.

With a little more work, you can even tell what libraries a file uses by looking
at the .lib section contents.

odump -L a.out

13-12 IRIS-4D Programmer's Guide

c

(

Building a Shared Library

This part of the chapter explains how to build a shared library. It covers the
major steps in the building process, the use of the UNIX system tool mkshlib(l)
that builds the host and target libraries, and some guidelines for writing shared
library code. There is an example at the end of this part which demonstrates the
major features of mkshlib and the steps in the building process.

This part assumes that you are an advanced C programmer faced with the task
of building a shared library. It also assumes you are familiar with the archive
library building process. You do not need to read this part of the chapter if you only
plan to use the UNIX system shared libraries or other shared libraries that have
already been built.

The Building Process
To build a shared library on the UNIX system, you have to complete six major

tasks:

• Choose region addresses.

• Choose the pathname for the shared library target file.

• Select the library contents.

• Rewrite existing library code to be included in the shared library.

• Write the library specification file.

• Use the mkshlib tool to build the host and target libraries.

Each of these tasks is discussed below.

Step 1: Choosing Region Addresses
The first step in building a shared library is to choose its region addresses.

Your shared library will need two regions - one for its text and one for its
data. Regions on IRIS-4D are necessarily the same size as the size of first-level
TLB entries. Currently, this size is 2Mb, but it is possible that it will be increased to
4Mb at some future date. Thus, a region begins on each 4Mb boundary. In addi­
tion, the architecture of the MIPS processor forces the text region to be in the lower
256Mb, and the data segment of the shared library to be at a lower address than
other data. This forces the sharing of the lowest 256Mb area between all program
and library text, all system shared libraries, and all user shared libraries.

Shared LIbrarIes 13-13

Building a Shared Library

To avoid conflicts, use the following rules when choosing the region addresses
of your shared library:

• Each region address should be on a 4Mb boundary.

• The two regions should be adjacent, with the address of the text region (~
lower than the address of the data region.

• The regions should be at the highest address possible below OxOcOOOOOO.

Any number of libraries can use the same virtual addresses, even on the same
machine. Conflicts occur only within a single process, not among separate
processes. Thus two shared libraries can have the same region addresses without
causing problems, as long as a single a.out file doesn't need to use both libraries.

If you are building a large system with many a.out files and processes, shared
libraries might improve its performance. As long as you don't intend to release the
shared libraries as separate products, you may choose any region addresses below
OxOcOOOOOO that are not in use on your system. If you plan to release the library,
you must consult with the concerned parties to agree on region addresses. Don't
risk address conflicts.

If you plan to build a commercial shared library, you are strongly encouraged to
provide a compatible, relocatable archive as well. Some of your customers might
not find the shared library appropriate for their applications. Others might want
their applications to run on versions of the UNIX system without shared library
support.

Step 2: Choosing the Target Library Path name
After you choose the region addresses for your shared library, you should

choose the pathname for the target library. We chose IIibllibc s for the shared C
library, lusr/liblIibgl_s for the graphics library, and lusr/lib/Jibfm_s for the font
manager library. (As mentioned earlier, we use the _s suffix in the pathnames of all
statically linked shared libraries.) To choose a pathname for your shared library,
consult the established list of names for your computer or see your system adminis­
trator. Also keep in mind that shared libraries needed to boot a UNIX system
should normally be located in Ilib; other application libraries normally reside in
lusr/lib or in private application directories. Of course, if your shared library is for
personal use, you can choose any convenient pathname for the target library.

13-14 IRIS-4D Programmer's Guide

(

(

Building a Shared Library

Step 3: Selecting Library Contents
Selecting the contents for your shared library is the most important task in the

building process. Some routines are prime candidates for sharing; others are not.
For example, it's a good idea to include large, frequently used routines in a shared
library but to exclude smaller routines that aren't used as much. What you include
will depend on the individual needs of the programmers and other users for whom
you are building the library. There are some general guidelines you should follow,
however. They are discussed in the section "Choosing Library Members" in this
chapter. Also see the guidelines in the following sections: "Importing Symbols"
and "Tuning the Shared Library Code."

Step 4: Rewriting Existing Library Code
If you choose to include some existing code from an archive library in a shared

library, changing some of the code will make the shared code easier to maintain.
See the section "Changing Existing Code for the Shared Library" in this chapter.

Step 5: Writing the Library Specification File
Mter you select and edit all the code for your shared library, you have to build

the shared library specification file. The library specification file contains all the
information that mkshlib needs to build both the host and target libraries. An
example specification file is given in the section towards the end of the chapter, "An
Example." Also, see the section "Using the Specification File for Compatibility" in
this chapter. The contents and format of the specification file are given by the fol~
lowing directives (see also the mkshlib(l) manual page).

All directives that are followed by multi-line specifications are valid until the
next directive or the end of file.

#address sectname address
Specifies the start address, address, of section sectname for
the target file. This directive is typically used to specify the
start addresses of the .text and .data sections.

#target pathname
Specifies the pathname, pathname, of the target shared library
on the target machine. This is the location where the operat­
ing system looks for the shared library during execution.
Normally, pathname will be an absolute pathname, but it
does not have to be.

This directive must be specified exactly once per
specification file.

Shared Libraries 13·15

Building a Shared Library

#branch Starts the branch table specifications. The lines following this
directive are taken to be branch table specification lines.

Branch table specification lines have the following format:

Juncname <white space> position

funcname is the name of the symbol given a branch table
entry and position specifies the position ofJuncname's branch
table entry. position may be a single integer or a range of
integers of the form positionl-position2. Each position must
be greater than or equal to one. The same position cannot be
specified more than once, and every position from one to the
highest given position must be accounted for.

If a symbol is given more than one branch table entry by
associating a range of positions with the symbol or by speci­
fying the same symbol on more than one branch table
specification line, then the symbol is defined to have the
address of the highest associated branch table entry. All
other branch table entries for the symbol can be thought of as

(

empty slots and can be replaced by new entries in future ver- (
sions of the shared library.

#objects

#init object

Finally, only functions should be given branch table entries,
and those functions must be external.

This directive must be specified exactly once per shared
library specification file.

Specifies the names of the object files constituting the target
shared library. The lines following this directive are taken to
be the list of input object files in the order they are to be
loaded into the target. The list simply consists of each
filename followed by a newline character. This list of objects
will be used to build the shared library.

These modules must be compiled with the -G 0 option; do
not compile using gp-region.

This directive must be specified exactly once per shared
library specification file.

Specifies that the object file, object, requires initialization
code. The lines following this directive are taken to be ini-

13-16 IRIS-4D Programmer's Guide

c

#ident string

Building a Shared Library

tialization specification lines.

Initialization specification lines have the following for­
mat:

ptr <white space> import

ptr is a pointer to the associated imported symbol, import,
and must be defined in the current specified object file,
object. The initialization code generated for each such line is
of the form:

ptr = &importi

All initializations for a particular object file must be given
once and multiple specifications of the same object file are
not allowed.

Specifies a string, string, to be included in the .comment sec­
tion of the target shared library and the .comment sections of
every member of the host shared library.

Specifies a comment. The rest of the line is ignored.

Step 6: Using mkshlib to Build the Host and Target
The UNIX system command mkshlib(l) builds both the host and target

libraries. mkshlib invokes other tools such as the assembler, as(l), and link editor,
ld(l). Tools are invoked through the use of execvp (see exec(2», which searches
directories in a user's $PATH environment variable. These commands all are docu­
mented in the IRIX Programmer's Reference Manual.

The user input to mkshlib consists of the library specification file and com­
mand line options. We just discussed the specification file; let's take a look at the
options now. The shared library build tool has the following syntax:

mkshlib -s specfil -t target [-h host] [-n] [-q]

-s specfil Specifies the shared library specification file, specfil. This file
contains all the information necessary to build a shared library.

-t target Specifies the name, target, of the target shared library produced on
the host machine. When target is moved to the target machine, it
should be installed at the location given in tJ.1e specification file
(see the #target directive in the section "Writing the Library
Specification File"). If the -0 option is given, then a new target
shared library will not be generated.

Shared Libraries 13-17

Building a Shared Library

-b host

-0

Specifies the name of the host shared library, host. If this option is
not given, then the host shared library will not be produced.

Prevents a new target shared library from being generated. This
option is useful when producing only a new host shared library.
The -t option must still be supplied since a version of the target
shared library is needed to build the host shared library.

-q Suppresses the printing of certain warning messages.

Guidelines for Writing Shared Library Code
Because the main advantage of a shared library over an archive library is shar­

ing and the space it saves, these guidelines stress ways to increase sharing while
avoiding the disadvantages of a shared library. The guidelines also stress upward
compatibility.

It's best to read these guidelines once from beginning to end to get a perspec­
tive of the things you need to consider when building a shared library. Then use the
guidelines as a checklist during planning and decision-making.

(

There are restrictions to building a shared library, which involve static linking. (
Here's a summary of the restrictions; some of them are discussed in more detail
later. Keep these restrictions in mind when reading the guidelines in this section.

• External symbols have fixed addresses.

If an external symbol moves, you have to relink all a.out files that use the
library. This restriction applies both to text and data symbols.

• If the library's text changes for one process at run time, it changes for all
processes.

• If the library uses a symbol directly, that symbol's run time value (address)
must be known when the library is built.

• Imported symbols cannot be referenced directly.

Their addresses are not known when you build the library, and they can be
different for different processes. You can use imported symbols by adding
an indirection through a pointer in the library's data.

• Modules comprising the library must be compiled as -G O.

13-18 IRIS-4D Programmer's Guide

(

Building a Shared Library

Choosing Library Members

Include Large, Frequently Used Routines
These routines are prime candidates for sharing. Placing them in a shared

library saves code space for individual a.out files and saves memory, too, when
several concurrent processes need the same code. printf(3S) and related C library
routines (which are documented in the IRIX Programmer's Reference Manual) are
good examples.

The printf(3S) family of routines is used frequently. Therefore, printf(3S) and
related routines have been included in the shared C library.

Exclude Infrequently Used Routines
Putting these routines in a shared library can degrade performance, particularly

on paging systems. Traditional a.out files contain all code they need at run time.
By definition, the code in an a.out file is (at least distantly) related to the process.
Therefore, if a process calls a function, it may already be in memory because of its
proximity to other text in the process.

If the function is in the shared library, a page fault may be more likely to occur,
because the surrounding library code may be unrelated to the calling process. Only
rarely will any single a.out file use everything in the shared C library. If a shared
library has unrelated functions, and unrelated processes make random calls to those
functions, the locality of reference may be decreased. The decreased locality may
cause more paging activity and, thereby, decrease performance. See also "Organize
to Improve Locality."

Exclude Routines that Use Much Static Data
These modules increase the size of processes. As "How Shared Libraries Are

Implemented" and "Deciding Whether to Use a Shared Library" explain, every pro­
cess that uses a shared library gets its own private copy of the library's data, regard­
less of how much of the data is needed. Library data is static: it is not shared and
cannot be loaded selectively with the provision that unreferenced pages may be
removed from the working set.

For example, getgrent(3C), which is documented in the IRIX Programmer's
Reference Manual, is not used by many standard UNIX commands. Some versions
of the module define over 1400 bytes of unshared, static data. It probably should
not be included in a shared library. You can import global data, if necessary, but
not local, static data.

Shared Libraries 13-19

Building a Shared Library

Exclude Routines that Complicate Maintenance
All external symbols must remain at constant addresses. The branch table

makes this easy for text symbols, but data symbols don't have an equivalent
mechanism. The more data a library has, the more likely some of them will have to
chand bgreake size. Any.chb'l~ge in the size of external data may affect symbol addresses C'
an compati 1 Ity.

Include Routines the Library Itself Needs
It usually pays to make the library self-contained. For example, printf(3S)

requires much of the standard I/O library. A shared library containing printf(3S)
should contain the rest of the standard I/O routines, too.

This guideline should not take priority over the others in this section. H you
exclude some routine that the library itself needs based on a previous guideline,
consider leaving the symbol out of the library and importing it

Changing Existing Code for the Shared Library
All C code that works in a shared library will also work in an archive library.

However, the reverse is not true because a shared library must explicitly handle
imported symbols. The following guidelines are meant to help you produce shared
library code that is still valid for archive libraries (although it may be slightly bigger (
and slower). The guidelines explain how to structure data for ease of maintenance,
since most compatibility problems involve restructuring data.

Minimize Global Data
All external data symbols are, of course, visible to applications. This can

make maintenance difficult. You should try to reduce global data, as described
below.

First, try to use automatic (stack) variables. Don't use permanent storage if
automatic variables work. Using automatic variables saves static data space and
reduces the number of symbols visible to application processes.

Second, see whether variables really must be external. Static symbols are not
visible outside the library, so they may change addresses between library versions.
Only external variables must remain constant.

Third, allocate buffers at run time instead of defining them at compile time.
This does two important things. It reduces the size of the library's data region for (
all processes and, therefore, saves memory; only the processes that actually need
the buffers get them. It also allows the size of the buffer to change from one release
to the next without affecting compatibility. Statically allocated buffers cannot
change size without affecting the addresses of other symbols and, perhaps, breaking
compatibility .

13-20 IRIS-4D Programmer's Guide

Building a Shared Library

Define Text and Global Data in Separate Source Files
Separating text from global data makes it easier to prevent data symbols from

moving. If new external variables are needed, they can be added at the end of the
old definitions to preserve the old symbols' addresses.

Archive libraries let the link editor extract individual members. This some­
times encourages programmers to define related variables and text in the same
source file. This works fine for relocatable files, but shared libraries have a dif­
ferent set ofrestrictions. Suppose external variables were scattered throughout the
library modules. Then external and static data would be intermixed. Changing
static data, such as a string, like hello in the following example, moves subsequent
data symbols, even the external symbols:

Before

int head = 0;
func ()
{

p = "hello";

int tail = 0;

Broken Successor

int head = 0;
func()

{

p = "hello, world";

int tail = 0;

Assume the relative virtual address of head is 0 for both examples. The string
literals will have the same address too, but they have different lengths. The old and
new addresses of tail thus might be 12 and 20, respectively. If tail is supposed to
be visible outside the library, the two versions will not be compatible.

The compilation system sometimes defines and uses static data invisibly to the user
(e.g., tables for switch statements). Therefore, it is a mistake to assume that
because you declare no static data in your shared library that you can ignore the
guideline in this section.

Adding new external variables to a shared library may change the addresses of
static symbols, but this doesn't affect compatibility. An a.out file has no way to
reference static library symbols directly, so it cannot depend on their values. Thus
it pays to group all external data symbols and place them at lower addresses than
the static (hidden) data. You can write the specification file to control this. In the
list of object files, make the global data files first.

Shared Libraries 13-21

Building a Shared Library

#objects
datal. 0

lastdata.o
textl.o
text2.o

If the data modules are not first, a seemingly harmless change (such as a new
string literal) can break existing a.out files.

Shared library users get all library data at run time, regardless of the source file
organization. Consequently, you can put all external variables' definitions in a sin­
gle source file without a space penalty.

Initialize Global Data
Initialize external variables, including the pointers for imported symbols.

Although this uses more disk space in the target shared library, the expansion is
limited to a single file. mkshlib will give a fatal error if it finds an uninitialized
external symbol.

(

Preserve Branch Table Order (
You should add new functions only at the end of the branch table. After you .

have a specification file for the library, try to maintain compatibility with previous
versions. You may add new functions without breaking old a.out files as long as
previous assignments are not changed. This lets you distribute a new library
without having to relink all of the a.out files that used a previous version of the
library.

Importing Symbols
Normally, shared library code cannot directly use symbols defined outside a

library, but an escape hatch exists. You can define pointers in the data area and
arrange for those pointers to be initialized to the addresses of imported symbols.
Library code then accesses imported symbols indirectly, delaying symbol binding
until run time. Libraries can import both text and data symbols. Moreover,
imported symbols can come from the user's code, another library, or even the
library itself. In Figure 13-4, the symbols Jibc.ptrl and _libc.ptr2 are imported
from user's code and the symbol Jibc_malloc from the library itself.

13-22 IRIS-4D Programmer's Guide

(

Building a Shared Library

Shared Library a.outFi1e

Addresses

ll\3.11oc()

ptrl

libc.ptrl
-~ ptr2

libc 1l\3.l1o

@)
libc ptr2

- <@Q)

Figure 13-4: Imported Symbols in a Shared Library

The following guidelines describe when and how to use imported symbols.

Imported Symbols That the Library Does Not Define
Archive libraries typically contain relocatable files, which allow undefined

references. Although the host shared library is an archive, too, that archive is con­
structed to mirror the target library, which more closely resembles an a.out file.
Neither target shared libraries nor a.out files can have unresolved references to
symbols.

Consequently, shared libraries must import any symbols they use but do not
define. Some shared libraries will derive from existing archive libraries. For the
reasons stated above, it may not be appropriate to include all the archive's modules
in the target shared library. Remember though that if you exclude a symbol from
the target shared library that is referenced from the target shared library, you will
have to import the excluded symbol.

Imported Symbols That Users Must Be Able to Redefine
Optionally, shared libraries can import their own symbols. At first this might

appear to be an unnecessary complication, but consider the following. Two stan­
dard libraries, libe and libmalloc, provide a malloc family. Even .though most
UNIX commands use the malloc from the C library, they can choose either library
or define their own.

Shared Libraries 13·23

Building a Shared Library

Three possible strategies existed for the building of the shared C library. First,
the malloc(3C) family could have been excluded. Other library members would
have needed it, and so it would have been an imported symbol. This would have
worked, but it would have meant less savings.

Second, themalloc family could have been included but not imported. This C
would have provided more savings for typical commands, but it had a price. Other
library routines call malloc directly, and those calls could not have been overridden.
If an application tried to redefine malloc, the library calls would not have used the
alternate version. Furthermore, the link editor would have found multiple
definitions of malloc while building the application. To resolve this the library
developer would have to change source code to remove the custom malloc, or the
developer would have to refrain from using the shared library.

Finally, malloc could have been included in the shared library, but treated as an
imported symbol. This is what was done. Even though malloc is in the library,
nothing else there refers to it directly; all references are through an imported symbol
pointer. If the application does not redefine malloc, both application and library
calls are routed to the library version. All calls are mapped to the alternate, if
present.

You might want to permit redefinition of all library symbols in some libraries.
You can do this by importing all symbols the library defines, in addition to those it
uses but does not define. Although this adds a little space and time overhead to the
library, the technique allows a shared library to be one hundred percent compatible
with an existing archive at link time and run time.

Mechanics of Importing Symbols
Assume that a shared library wants to import the symbol malloc. The original

archive code and the shared library code appear below.

Archive Code Shared Library Code

/* See pointers. c on next page * /

extern char *rralloc () ;

export ()
{

p = rralloc (n) ;

13-24 IRIS-4D Programmer's Guide

export()
{

(

Building a Shared Library

Making this transformation is straightforward, but two sets of source code
would be necessary to support both an archive and a shared library. Some simple
macro definitions can hide the transformations and allow source code compatibility.
A header file defines the macros, and a different version of this header file would
exist for each type of library. The -I flag to cc(1) would direct the C preprocessor
to look in the appropriate directory to find the desired file.

Archive import.h

/* errpty */

Shared import.h

/*
* Macros for importing
* syrrbols. One :/tdefine
* per syrrbol.
*/

extern char *malloc () ;

These header files allow one source both to serve the original archive source
and to serve a shared library, too, because they supply the indirections for imported
symbols. The declaration of malloc in import.h actually declares the pointer
_libc _ malloc.

Common Source

:/tinclude "irrport.h"

extern char *rralloc () ;

export ()
{

p = rralloc (n) ;

Shared Libraries 13-25

Building a Shared Library

Alternatively, one can hide the #include with #ifdef:

Common Source

#ifdef SHLIB

include "inport.h"
#en.dif

extern char *rralloc () ;

export ()
{

p = rralloc (n) ;

Of course the transformation is not complete. You must define the pointer
libc malloc.

File pointers.c

char * (*_libc_rralloc) () = 0;

bol.
Note that _libc_ malloe is initialized to zero, because it is an external data sym- (

Special initialization code sets the pointers. Shared library code should not use
the pointer before it contains the correct value. In the example the address of mal­
loe must be assigned to _libc _ malloc. Tools that build the shared library generate
the initialization code according to the library specification file.

Pointer Initialization Fragments
A host shared library archive member can define one or many imported symbol

pointers. Regardless of the number, every imported symbol pointer should have ini­
tialization code.

This code goes into the a.out file and does two things. First, it creates an
unresolved reference to make sure the symbol being imported gets resolved.
Second, initialization fragments set the imported symbol pointers to their values
before the process reaches main. If the imported symbol pointer can be used at run
time, the imported symbol will be present, and the imported symbol pointer will be
set properly.

13-26 IRIS-4D Programmer's Guide

Building a Shared Library

Initialization fragments reside in the host, not the target, shared library. The link
editor copies initialization code into a.out files to set imported pointers to their
correct values.

Library specification files describe how to initialize the imported symbol
pointers. For example, the following specification line would set Jibe _ malloc to
the address of maIloe:

Unit pralloc.o
libc malloc malloc

When mkshlib builds the host library, it modifies the file pmalloc.o, adding
relocatable code to perform the following assignment statement:

_libc_malloc = &malloc;

When the link editor extracts pmaIloe.o from the host library, the relocatable
code goes into the a.out file. As the link editor builds the final a.out file, it resolves
the unresolved references and collects all initialization fragments. When the a.out
file is executed, the run time startup routines execute the initialization fragments to
set the library' pointers.

Selectively Loading Imported Symbols
Defining fewer pointers in each archive member increases the granularity of

symbol selection and can prevent unnecessary objects and initialization code from,
being linked into the a.out file. For example, if an archive member defines three
pointers to imported symbols, the link editor will require definitions for all three
symbols, even though only one might be needed.

You can reduce unnecessary loading by writing C source files that define
imported symbol pointers singly or in related groups. If an imported symbol must
be individually selectable, put its pointer in its own source file (and archive
member). This will give the link editor a finer granularity to use when it resolves
the reference to the symbol.

Consider the following example. In the coarse method, a single source file
might define all pointers to imported symbols:

Old pointers.c

int (*_libcytrl) 0 = 0;
char * (*_libc_malloc) 0 = 0;
int (*_libcytr2) 0 = 0;

Shared Libraries 13-27

Building a Shared Library

Allowing the loader to resolve only those references that are needed requires
multiple source files and archive members. Each of the new files defines a single
pointer:

File Contents

ptrl.c int (*_libcytrl) 0 = 0;

pmalloc.c char * (*_libc_IMlloc) () = 0;

ptr2.c int (*_libcytr2) 0 = 0;

Using the three files ensures that the link editor will only look for definitions for
imported symbols and load in the corresponding initialization code in cases where
the symbols are actually used.

Providing Archive Library Compatibility
Having compatible libraries makes it easy to substitute one for the other. In

almost all cases, this can be done without makefile or source file changes. Perhaps
the best way to explain this guideline is by example:

c

The developers of the shared C library had an existing archive library to use as (-
the base. This supplied code for individual routines, and a model to use for the '
shared library itself.

The developers wanted the host library archive file to be compatible with the
relocatable archive C library. However, they did not want the shared library target
file to include all routines from the archive: including them all would have hurt per­
formance.

These goals were reached by building the host library in two steps. First, they
used the available shared library tools to create the host library to match exactly the
target. The resulting archive file was not compatible with the archive C library at
this point. Second, they added to the host library the set of relocatable objects
residing in the archive C library that were missing from the host library. Although
this set is not in the shared library target, its inclusion in the host library makes the
relocatable and shared C libraries compatible.

13-28 IRIS-4D Programmer's Guide

(

Building a Shared Library

Tuning the Shared Library Code
Some suggestions for how to organize shared library code to improve perfor­

mance are presented here. They apply to paging systems, such as UNIX System V
Release 3.0. The suggestions come from the experience of building the shared C
library.

The archive C library contains several diverse groups of functions. Many
processes use different combinations of these groups, making the paging behavior
of any shared C library difficult to predict A shared library should offer greater
benefits for more homogeneous collections of code. For example, a data base
library probably could be organized to reduce system paging substantially, if its
static and dynamic calling dependencies were more predictable.

Profile the Code
To begin, profile the code that might go into the shared library.

Choose Library Contents
Based on profiling information, make some decisions about what to include in

the shared library. a.out file size is a static property, and paging is a dynamic pro­
perty. These static and dynamic characteristics may conflict, so you have to decide
whether the performance lost is worth the disk space gained. See "Choosing
Library Members" in this chapter for more information.

Organize to Improve Locality
When a function is in a.out files, it probably resides in a page with other code

that is used more often (see "Exclude Infrequently Used Routines"). Try to improve
locality of reference by grouping dynamically related functions. If every call of
funcA generates calls to funcB and funcC, try to put them in the same page.
c8ow(1) (documented in the IRIX Programmer's Reference Manual) generates this
static dependency information. Combine it with profiling to see what things actu­
ally are called, as opposed to what things might be called.

Align for Paging
The key is to arrange the shared library target's object files so that frequently

used functions do not unnecessarily cross page boundaries. When arranging object
files within the target library, be sure to keep the text and data files separate. You
can reorder text object files without breaking compatibility; the same is not true for
object files that define global data. Once again, an example might best explain this
guideline:

The architecture of the IRIS-4D computer currently uses 4Kb pages. Using
name lists and dis assemblies of the shared library target file, the library developers
determined where the page boundaries fell.

Shared Libraries 13-29

Building a Shared library

Mter grouping related functions, they broke them into page-sized chunks.
Although some object files and functions are larger than a single page, most of them
are smaller. Then the developers used the infrequently called functions as glue
between the chunks. Because the glue between pages is referenced less frequently
than the page contents, the probability of a page fault decreased.

Mter determining the branch table, they rearranged the library's object files
without breaking compatibility. The developers put frequently used, unrelated
functions together, because they would be called randomly enough to keep the
pages in memory. System calls went into another page as a group, and so on.

The following example shows how to change the order of the library's object
files:

Before

#objects

printf.o
fopen.o
malloc.o
strcrrp.o

After

#objects

strcrrp.o
malloc.o
printf.o
fopen.o

Checking for Compatibility
The following guidelines explain how to check for upward-compatible shared

libraries. Note, however, that upward compatibility may not always be an issue.
Consider a shared library that is one piece of a larger system and is not delivered as
a separate product. In this restricted case, you can identify all a.out files that use a
particular library. As long as you rebuild all the a.out files every time the library
changes, the a.out files will run successfully, even though versions of the library are
not compatible. This may complicate development, but it is possible.

Checking Versions of Shared Libraries
As discussed previously, maintaining the order of the branch table and using

space reserved at the end of the table to add new entries ensures compatibility of
new versions of your shared library with existing code that uses it. This is not true

(

(

with global data symbols. Location constancy of these symbols must be checked by (
hand between two versions of a shared library. This involves the generation of a
symbol list for each version of the shared library using nm(l), and then comparing

13-30 IRIS-4D Programmer's Guide

Building a Shared Library

the results using dif.f(l).

The following example generates the appropriate symbol list for two versions
of the shared C library and compares them:

nm -Bgn libc_s.new I egrep -v' T' > ItmplIibc_s.new
nm -Bgn libc_s.old I egrep -v' T' > ItmplIibc_s.old
diff -b Itmp/libc_s.old Itmp/libc_s.new

Incompatibilities in the location of global data symbols may be caused by an
increase in the size of one of them. To avoid this, pad any non-scalar global data
for future expansion.

Dealing with Incompatible Libraries
When you determine that a newer version of a library can't replace the older

version, you have to deal with the incompatibility. You can deal with it in one of
two ways. First, you can rebuild all the a.out files that use your library. If feasible,
this is probably the best choice. Unfortunately, you might not be able to find those
a.out files, let alone force their owners to rebuild them with your new library.

So your second choice is to give a different target pathname to the new version
ofthe library. The host and target pathnames are independent; so you don't have to
change the host library pathname. New a.out files will use your new target library,
but old a.out files will continue to access the old library.

As the library developer, it is your responsibility to check for compatibility and,
probably, to provide a new target library pathname for a new version of a library
that is incompatible with older versions. If you fail to resolve compatibility prob­
lems, a.out files that use your library will not work properly.

You should try to avoid multiple library versions. If too many copies of the same
shared library exist, they might actually use more disk space and more memory
than the equivalent relocatable version would have.

An Example
This section contains an example of a small specialized shared library and the

process by which it is created from original source and built.

Shared Libraries 13-31

Building a Shared Library

The Original Source
The name of the library to be built is libmaux (for math auxiliary library). The

interface consists of three functions:

logd

polyd

floating-point logarithm to a given base; defined in the file log.c

evaluate a polynomial; defined in the file poly.c

maux stat return usage counts for the other two routines in a structure; defined in
stats.c,

an external variable:

mauxerr set to non-zero if there is an error in the processing of any of the func­
tions in the library and set to zero if there is no error (unlike errno in
the C library),

and a header file:

maux.h declares the return types of the function and the structure returned by
maux stat.

The source files before any modifications for inclusion in a shared library are
given below.

13-32 IRIS-4D Programmer's Guide

c

(

(

/* log.c */
#include "maux.h"
#include <math.h>

/*
* Return the log of "x" relative to the base "a".

*
* logd(base, x) := log(x) / log(base);
* where "log" is "log to the base E".
*/

double logd(base, x)
double base, x;
{

extern int stats_logd;
extern int total_calls;

double logbase;
double logx;

total_calls++;
stats _logd++;

logbase = log ((double) base) ;
logx = log ((double) x) ;
if (logbase = -HUGE II logx = -HUGE)

mauxerr = 1;
return(O);

else
mauxerr = 0;

return(logx/logbase);

Figure 13-5: File Iog.c

Building a Shared Library

Shared Libraries 13-33

Building a Shared Library

/* poly.c */

#include "lffiux.h"
#include <math.h>

/* Evaluate the polynomial
* f(x) := a[O] * (x " n) + a[l] * (x " (n-1» + •.. + a[n];
* Note that there are N+1 coefficients!
* This uses Horner's Method, which is:
* f(x) := (((((a[O]*x) + a[l])*x) + a[2]) + ...) + a[n];
* It's equivalent, but uses many less operations and is more precise. */

double polyd(a, n, x)
double a[];
int n;
double x;
{

extern int stats_polyd;
extern int total_calls;
double result;
int i;

tota1_calls++;
stats_polyd++;
if (n < 0) {

mauxerr = 1;
return (0) ;

result = a[O];
for (i = 1; i <= n; i++)

result *= (double) x;

result t= (double)a[i];

mauxerr = 0;
return (result);

Figure 13-6: File poly.c

13-34 IRIS-4D Programmer's Guide

(

(

(

Building a Shared Library

/* stats.c */
#include "ll\3.ux.h"

int total_calls;
int stats_logd;
int stats _polyd;

int mauxerr;

/* Return structure with usage stats for functions in library
* or 0 if space cannot be allocated for the structure * /

struct mstats *
maux_statO
{

extern char * ll\3.lloc();
struct mstats * st;

if «st = (struct mstats *) malloc(sizeof (struct mstats))) = 0)
return(O);

st->st_polyd = stats~lyd;

st->st_logd = stats_logd;
st->st_total = total_calls;
return (st);

Figure 13-7: File stats.c

Shared Libraries 13-35

Building a Shared Library

1* maux.h *1

struct mstats {

};

int stJlOlyd;
int st_logd;
int st_total;

exteITI double polyd () ;
exteITI double logd () ;
exteITI struct mstats * maux _stat () ;

exteITI int mauxerr;

Figure 13-8: Header File maux.h

Choosing Region Addresses and the Target Pathname
To begin, choose the region addresses for the library's .text and .data sections

from the segments reserved for private use on the IRIS-4D computer; note that the
region addresses must be on a segment boundary (4Mb):

. text
. data

OxOb800000
OxObcOOOOO

Also, choose the pathname for the target library:

/my/directory/libmaux_s

Selecting Library Contents
This example is for illustration purposes and so will include everything in the

(

c

shared library. In a real case, it is unlikely that you would make a shared library (
with these three small routines unless you had many programmers using them fre-
quently.

13-36 IRIS-4D Programmer's Guide

Building a Shared Library

Rewriting Existing Code
According to the guidelines given earlier in the chapter, you need to define text

and global data in separate source files. You cannot make totat calls, stats _logd,
and statsyolyd static, as they must be visible to multiple files within the library.
Hence, you must remove them from stats.c and place them in a separate file. In
addition, the variable manxerr must be removed from the same file. You also must
initialize these variables to zero since shared libraries cannot have any uninitialized
variables.

Next, notice that there are some references to symbols that you do not define in
our shared library (i.e. log and malloc). You can import these symbols. To do so,
create a new header file, import.h, which will be included in each of log.c, poly.c,
and stats.c. The header file defines C preprocessor macros for these symbols to
make transparent the use of indirection in the actual C source files. Use the Jib­
manx_prefixes on the pointers to the symbols because those pointers are made
external, and the use of the library name as a prefix helps prevent name conflicts.

1* New header file import.h *1
#define malloe (*_libmaux_malloe)
#define log (*_libmaux_Iog)

extern char * malloe();
extern double log () ;

Now, define the imported symbol pointers somewhere. You have already
created a file for global data manx _ defs.c, so we will add the definitions to it.

Shared Libraries 13-37

Building a Shared Library

/* Data file rnaux_defs.e */

int rnauxerr = 0;
double (*_librnaux_log) () = 0;
ebar * (*_librnaux_malloe) () = 0;
int total_calls = 0;
int stats_logd = 0;
int stats _polyd = 0;

Writing the Specification File
This is the specification file for libmaux:

13-38 IRIS-4D Programmer's Guide

(

(

(

1 ##
2 ## libmaux.sl - libmaux specification lfile
3 #address .text OxOb800000
4 #address .data OxObcOOOOO
5 #target /my/directory/libmaux_s
6 #branch
7 polyd
8 logd
9 maux stat

10 #objects
11 maux defs.o
12 poly. 0
13 log.o
14 stats.o
15 #init maux defs.o
16 libmaux ma110c - -
17 _libmaux_log

Figure 13-9: Specification File

1
2
3

malloe
log

Building a Shared Library

Briefly, here is what the specification file does. Lines 1 and 2 are comment
lines. Lines 3 and 4 give the virtual addresses for the shared library text and data
regions, respectively. Line 5 gives the pathname of the shared library on the target
machine. The target shared library must be installed there for a.out files that use it
to work correctly. Line 6 contains the #branch directive. Line 7 through 9 specify
the branch table. They assign the functions polydO, logdO, and maux _statO to
branch table entries 1,2, and 3. Only external text symbols, such as C functions,
should be placed in the branch table.

Line 10 contains the #objects directive. Lines 11 through 14 give the list of
object files that will be used to construct the host and target shared libraries. When
building the host shared library archive, each file listed here will reside in its own
archive member. When building the target library, the order of object files will be
preserved. The data files must be first. Otherwise, an addition of static data to
poly.o, for example, would move external data symbols and break compatibility.

Shared Libraries 13-39

Building a Shared Library

Line 15 contains the #init directive. Lines 16 and 17 give imported symbol
information for the object file maux _ defs.o. You can imagine assignments of the
symbol values on the right to the symbols on the left. Thus _libmaux _ malloc will
hold a pointer to malloe, and so on.

Building the Shared Library
Now, you have to compile the .0 files as you would for any other library:

ee -e maux_defs.e poly.e log.e stats.e -G 0

Next, you need to invoke mkshlib to build our host and target libraries:

mkshlib -s libmaux.sl -t libmaux s -h libmaux s.a - -
Presuming all of the source files have been compiled appropriately, the mkshlib
command line shown above will create both the host library, libmaux_s.a, and the
target library, Iibmaux_s. Before any a.out files built with libmaux_s.a can be
executed, the target shared library libmaux_ s will have to be moved to
Imy/direetoryllibmaux _ s as specified in the specification file.

Using the Shared Library
To use the shared library with a file x.e that contains a reference to one or more

of the routines in libmaux, you would issue the following command line:

ee x.e Iibmaux s.a -1m -Ie s - -
This command line causes:

• the imported symbol pointer reference to log to be resolved from libm and

• the imported symbol pointer reference to malloe to be resolved with the
shared version from libe s.

Summary
This chapter describes the UNIX system shared libraries and explains how to

use them. It also explains how to build your own shared libraries. Using any
shared library almost always saves disk storage space, memory, and computer
power; and running the UNIX system on smaller machines makes the efficient use

(

(

of these resources increasingly important. Therefore, you should normally use a (
shared library whenever it's available.

13-40 IRIS-4D Programmer's Guide

Introduction

The IRIXTM operating system supports a powerful set of real-time program­
ming features. You can use these features in combination to accurately time events,
use signals as true interrupt routines, control allocation of real memory to the pro­
cess, and provide for priority scheduling.

In addition, you can use the fully configurable kernel to install custom drivers
when wanted. This provides for a range of response time and latency from very fast
handling at device interrupt time to high priority dispatch of user processes to han­
dle the event.

Advanced programming features (such as lightweight processes and mapped
files) provide an environment in which you can construct tightly-coupled and server
applications, assuring better response for real-time work.

A real-time system provides immediate response to specific external events.
Thus, a programmer can schedule particular processes to run within a specified time
limit after the occurrence of an event.

Optimal real-time response requires at least two processors: one to handle
interrupts and other jobs, and one to service high-priority real-time jobs. A mul­
tiprocessor system can have deterministic real-time response if the unpredictable
loads (such as interrupts) are handled on processors other than the processor run­
ning the real-time application.

The system scheduler has to do a fair amount of work to switch contexts from
one process to another. The scheduling algorithm spends its time among three
phases: saving the context of the current process, searching for the highest priority
process it can run, and restoring the context of the select process. Real-time
response can be greatly improved if context switches are eliminated. This can be
accomplished with the shared resource group system call (sproc(2» by putting mul­
tiple tasks into one process. One of these tasks is dedicated to handle real-time
events. You can designate a particular CPU to run only the real-time task; thus the
context of the process is always available in the real-time CPU maps and registers.

The rest of this chapter describes the real-time environment of IRIX multipro-
cessor systems including:

• real-time features

• optimal real-time env,ironment

• real-time latency figures

Using Real-Time Programming 14-1

Real-Time Features

This set of features refers to the programmer-visible features of the system. An
example program (provided later in this chapter) shows how to incorporate these
features into your program for optimal real-time response. Real-time features
include:

• interval timers

• virtual memory control

• non-degrading priorities

• shared resource groups

• process blocking

• user synchronization primitives

• preemptable kernel

Interval Timers
In BSD4.2, Berkeley introduced a new facility called interval timers, often

shortened to just "itimers." This facility provides microsecond-resolution for both
timers and the time of day clock. An interval timer allows the user to specify both
an offset from the current time (the delay), and the recurrence time (the interval).
The timer will not fire until the delay has passed, and then will continue to fire at the
end of each interval. See getitimer(2) for more information.

Three timers are provided, each of which delivers a separate signal to the pro­
cess. The first is the real-time timer, which delivers the standard SIGALRM. The
second is a process virtual time timer, which runs only when the process is running
in user mode, delivering the signal SIGVT ALRM. The third timer is the system
virtual time timer, which runs when the process is in either user mode or the kernel
is operating on behalf of the user. This timer delivers the signal SIGPROF.

1~2 IRIS-4D Programmer's Guide

(

(

Real-Time Features

Using the combination of itimers and reliable signals, it is possible to implement
accurate handling of tasks at regular intervals. The resolution of the itimer is typi­
cally the same as that of the system clock, which is lOms. A higher resolution itimer
is possible at the cost of about 6-8% performance penalty on the system. However,
this feature can be dynamically controlled at run time through theftimer(l) facility,
so that only systems needing such accuracy are penalized. A higher resolution iti­
mer can deliver the signal SIGALARM to user program at the interval of about
833us.

The resolution of the high resolution itimer depends on the resolution of the
system fast clock. This resolution can be adjusted by editing the FASTHZ parame­
ter in the lusrlsysgenlmater.dlkernel file. To automatically enable the system fast
clock at boot time, set the variable, fastclock, in the kernel file, then run lboot(l) for
the change to take effect When the system fast clock is enabled, the resolution of
the gettimeofday(2) system call is the same as that of the system fast clock.

Virtual Memory Control
In a paging system, it is always possible that the next reference a program

makes, be it to text or data, may cause a page fault. Fixing up a page fault can take
a long time, destroying any semblance of real-time behavior that a program may
have. To address this problem, ranges of pages can be locked into real memory,
thus avoiding page fault penalties.

IRIX provides pin and unpin capabilities for the programmer. When a range of
addresses is pinned by the program, the kernel allocates memory to all pages in the
range and locks them into core before returning to the user program. Conversely,
unpinning pages undoes any previous locking. (See mpin(2) for more information.)
This makes it possible for an application to manage its memory effectively, and
insure that critical text and data (such as signal handlers) are always available. Note
that it may not always be necessary to lock the entire segment; in fact it may not be
possible on a system with limited memory.

To determine the entire size of text or data, refer to end(3C). Declared data
may be moved around by the linker. If you want to selectively pin data, put all of it
in a structure, and then pin the structure.

Note that dynamic growable space (stack and data) is not automatically locked.
Use sbrk(O) to determine the end of your heap.

Using Real-Time Programming 14-3

Real-Time Features

Non-Degrading Priorities
UNIX implements priority aging for processes. Thus, a process that is CPU

bound has its priority lowered gradually as it runs. This insures that lower priority
processes can eventually run and not be shut out of the CPU. This behavior is good
in the original environments for which UNIX was designed: interactive users
pounding on ASCII terminals. In real-time programming, the programmer often
wishes to insure that a process will run immediately when an event occurs (the
delivery of a timer signal, for instance). Specifying a high priority with the nice(2)
system call is only a partial solution; even "niced" jobs age, which can mean a
significant delay before a process gets to run.

To alleviate this problem, non-degrading (sometimes called fixed) priorities
have been added to the IRIX kernel. With this facility, the program can specify a
priority for a process which does not decrease over time, thus insuring that it main­
tains its priority order in the system. This makes it possible to guarantee that certain
processes run in a timely manner, and that they can control the CPU as long as
necessary to accomplish their tasks.

Non-degrading priorities are available in three bands:

• high priority band - above normal priority

• middle priority band - normal priority range (normal processes are in this
band)

• low priority band - below normal priority

This gives the ability to support time-critical applications, server applications
and batch processing, for example. See schedctl(2) for more information on how to
schedule non-degrading priorities.

Non-degrading priorities above the normal band can be dangerous if misused.
For instance, consider a process with the highest non-degrading priority in the sys­
tem. If this process enters an infinite loop, then all other processes will be blocked
from running, and it will be necessary to reset the machine to regain control. On a
multiprocessor system, however. it is possible to dedicate a CPU to a particular task
using non-degrading priorities.

14-4 IRIS-4D Programmer's Guide

(

(

(

Real-Time Features

Shared Resource Groups
At the lowest level, share groups implement a lightweight process facility. This

means that a set of processes may share the same virtual address space, and thus
have free access to shared data without copying overhead or expensive protocols.
The processes in a share group are scheduled independently, and may run at either
user or kernel level in parallel. These lightweight processes are supported in all
configurations, be they single processor or multiprocessor.

IRIX also adds an innovation to this basic scheme: other resources may be
selectively shared as well. For instance, file descriptors may be shared, meaning
that if one process opens the descriptor, all other processes in the share group may
access it as well. Other resources may be shared, such as the current directory or
ulimit values.

Using this facility, it is possible to construct very tightly coupled multiproces­
sor applications with fast response times. For instance, if two processes share file
descriptors, one can open a file and suffer the overhead of disk access and resource
allocation while the other can maintain real-time response for display update. Once
the descriptor is opened, the kernel will automatically propagate it across all
processes in the share group, which is much cheaper than multiple opens. The
real-time process will then have immediate access to data through the previously
opened descriptor. Mapped files can be used in this instance for an even lower­
overhead method for passing data.

Using Real-Time Programming 14-5

Real-Time Features

Process Blocking
IRIX provides several new system calls for managing the run state of a process.

A process may block another (after appropriate security checks) or itself, and may
unblock any process. This blocking operation is implemented via a counter in the (
kernel, and thus is free of race conditions. The blocking operations have been tuned
for high performance.

Such primitives find their use in many areas, such as user-level semaphore sup­
port. Real-time modeling and simulation programs can use such calls to implement
preemptive schedulers at the user level. For instance, an operating system environ­
ment can be simulated using a shared process (sharing the virtual memory image)
and blocking calls for process control. See blockproc(2) for more information.

User Synchronization Primitives
IRIX provides several extremely powerful shared memory models for program­

mers to use. To effectively use shared memory in real-time applications, the syn­
chronization primitives used for access to that memory must be very fast. Invoking
kernel primitives, such as System V messages or semaphores, is only acceptable in (
applications where latency isn't an issue.

Conveniently, there is a set of user-level primitives which allow very low
latency synchronization between processes. If the program is running on a POWER
Series™ system, then spinlocking automatically takes advantage of the built-in
hardware synchronization bus. On other 4D systems, a fast software spinlock
mechanism is used instead. Semaphores, which can block or unblock processes,
use spinlocks for the fundamental control mechanism, and only interact with the
kernel when putting a process to sleep or unblocking a waiting process.

These synchronization facilities also provide extensive tracing and metering
support, which makes it much easier to debug and tune an application. See
uspsema(3) and usvsema(3) for more information.

Preemptable Kernel
In standard UNIX, a process operating in system space (i.e., executing a system

call) is not preemptable. A system call, even one from a low-priority user process,
continues executing until it either blocks or runs to completion. This means that
some additional latency may be introduced into the dispatch time for a process,
depending on the activity on the system.

14-6 IRIS-4D Programmer's Guide

(

Real-Time Features

In the IRIX real-time environment, a kernel preemption checkpoint occurs when­
ever a high priority band, non-degrading type process becomes ready to run. Thus,
the preemptive kernel reduces the delay so that system calls do not have to block or
run to completion. This increases system response and further reduces latency.

At the present time, network processing under the IRIX real-time environment
has no kernel preemption checkpoints embedded in it. Fortunately, on the multipro­
cessor POWER Series system, networking activities can be restricted to anyone
processor in the system. To lock networking activities to a processor, edit the
lusrlsysgen/system file and run lboot(1) for the changes to take effect. The format is:

NETWORKPROC: cpu# where cpu# is the number of the CPU on which you want
all the networking activities to occur. For example:

NETWORKPROC: 1 designates the second processor to handle all networking
activities. For real-time application, the real-time processor should be different
from the networking processor.

Using Real-Time Programming 14-7

Optimal Real-Time Environment

This section explains how to use the IRIX real-time features to set up optimal
real-time response.

Establishing Multiprocessor Control
Multiprocessing eliminates unwanted interrupts and lower priority processes

from competing with the real-time process for CPU cycles.

IRIX supports the sysmp(2) subcommands MP _RESTRICT and
MP _MUSTRUN (see sysmp(2) for details on these subcommands). These system
calls let you dedicate a processor on which to run the real-time program. These calls
also let you restrict a particular processor to run only certain designated processes.
You must be the superuser to use these commands. The MP _MUSTRUN command
assigns the calling process to run only on the processor specified, except as required
for communications with hardware devices. The MP _RESTRICT command res­
tricts the processor specified from running any process except those assigned to it
via a MP _MUSTRUN command, the runon(l) command, or because of hardware
necessity.

Under IRIX, each processor in the system handles its own clock interrupt. The
overhead of handling the clock interrupt is quite low for all the processors except
for one special processor, the clock processor. It is selected by the MP _CLOCK (to
specify a processor to handle the system clock) sysmp command. The real-time pro­
cessor should not be the clock processor. Note that the program sample that follows
uses various sysmp commands.

Locking Interrupts
On a single processor system, the time required for all interrupts to be serviced

until no more interrupts are pending and process scheduling can proceed constitutes
an unpredictable latency. Fortunately, on the multiprocessor POWER Series system,
VME interrupt levels can be individually locked on to any processor in the system.
For real-time application, you would move all the unwanted VME interrupt levels
away from the real-time processor. To lock a particular VME interrupt level to a

c

c

processor, edit the lusrlsysgenlsystem file and run lboot(l) for the changes to take (
effect. .

14-8 IRIS-4D Programmer's Guide

Optimal Real-Time Environment

The format is:

IPL: level cpu# where level is the priority level (0 - 7, with 7 being the highest), and
cpu# is the number of the CPU on which you want the VME interrupts of that level
to occur. For example:

IPL: 4 1 designates VME interrupt priority level 4 on CPU number 1.

After editing the system file, you must run lboot(l) to reconfigure the system
for the changes to take effect. See lboot(l) and system(4) for details.

A Real-Time Example
The following example shows how to set up a user program for real-time appli­

cation and acquire system resources for optimal real-time processing. This program
includes examples of the use of fine-grained memory locking, process blocking,
shared process group, and reliable signals.

In this program, the user process is broken up into two threads executing on
different processors. The real-time thread runs on a dedicated real- time processor,
while the slave thread runs on a different processor.

The real-time thread execution:

• sets up the itimer to simulate a real-time device that keeps interrupting the
real-time thread by periodically sending it a SIGALARM.

• does some cpu intensive calculation, trying not to sleep to avoid any context
switching when it gets the itimer signal.

• on receipt of the itimer signal, wakes up the slave thread for additional I/O
related processing.

Using Real-Time Programming 14-9

Optimal Real-Time Environment

include
include
include
include
include
include
include
include
include

int
int

externint

<sys/types.h>
<sys/tirre.h>
<sys/schedctl.h>
<sys/sysrrp.h>
<sys/p:la.h>
<signal.h>
<set jrrp. h>
<stdio.h>
<sys/prctl.h>

realtirre_cpu = -1;

master_cpu = 0; /*default to cpu 0 to
* handle system clock* /

errno;

struct tirrevallasttirre;

int npri;

struct /* structure we comrunicate through * /
int ppid; /* parent process ID * /
int cpid; /* child process ID * /
unsigned count; /* counter, burrped by parent */
unsigned nintr; /* counter of itirrer signals * /

corrarea;

main (argc, argv)
int
char

extern int
extern char
int
int

argc;
*argv[];

optind;
*optarg;
c;
err;

int i;
int nprocs;
int catcher () ;
register struct pda_stat *pstatus, *p;
struct itirrerval itv;
int asyncslave{);

/*

14-10 IRIS-4D Programmer's Guide

(

(

(

Optimal Real-Time Environment

* Parse arguments.
*/

while ((c = getopt(argc, argv, "r:f:")) != EOF) {
switch (c) {
case 'f':

/*
* Set a non-degrading or fixed priority
* at the given value.
*/

if ((npri = strtol(optarg, (char **) 0, 0)) <= 0) {
err++;
break;

/*
* Figure out which band it is in.
* Smaller values mean higher priorities.
* These codes are here for illustration.
*/

if (npri >= NDPHIMAX && npri <= NDPHIMIN)
/*
* High priority (higher than all other
* processes.)
*/

else if (npri >= NDPNORMMAX && npri <= NDPNORMMIN)
/*
* Non-degrading in the normal UNIX priority
* bands. This should give "constant response."
*/

else if (npri >= NDP:u:MAX && npri <= NDPLCMIN)
/*
* Lower than all other processes. Sui table
* for batch work, etc.
*/

else
err++;

break;
case' r':

if ((realtime_cpu = strtol(optarg,
(char **) 0, 0)) < 0)

Using Real-Time Programming 14-11

Optimal Real-Time Environment

err++;
break;

case '?':
err++;

break;

if (err)

/*

fprintf(stderr, "usage: %s [-rcpu] [-fpri]0,
argv[O]) ;

exit (1);

* Start the slave thread first.
*/

camarea.ppid = getpid();
camarea. cpid = sproc (asyncslave, PR _ SALL, 0);

/*
* Pin the signal handlers down to irrprove signal
* handling performmce. We pass in a stack address
* so we know which part of the stack to lock.
*/

pinrrem((char *) &itv);

/*
* Set the priority if requested. If in the high
* priority band, then you should always get control.
* If in the mid:lle band, depends on who else is
* running. If in the lower band, you only
* get cycles if nothing else is running. Note
* that setting anon-degrading priority requires
* super-user priviledges.
*/
if (npri != 0)

schedctl (NDPRI, 0, npri);

/*
* To dedicate a processor to handle interrupts
* from a real-time device, use lboot to reconfig
* the kernel and reboot the system (see system(4) ,
* lboot(~)). To run your process only on the

14-12 IRIS-4D Programmer's Guide

c

c

(

Optimal Real-Time Environment

* dedicated real-time processor,
* then use the following system call.
*/

if (realtime_cpu >= 0)

/*

if (sysmp(MP_MUSTRUN, realtime_cpu) < 0) {
perror ("Failed MP _ MJSTRUN.

Fesource not available!");

* To obtain ~ real-time processing power
* out of the selectedprocessor, use the following
* system call to kick all other processes
* from the real-time processor.
*/

if (realtime_cpu >= 0 && sysmp(MP_RESTRICT,
realtime_cpu) < 0) {

perror ("Failed MP _RESTRICT.
Resource not available!");

/*
* rrove the handling of the system clock
* to another cpu, if it is currently
* handled by the real-time cpu. This will
* increase the band-width of the real-time cpu.
*/

nprocs = sysmp (MP _ NPRCCS) ;
if (nprocs < 0) {

perror ("Failed MP _ NPROCS. Fatal system error!") ;
quit (-1);

pstatus = (struct pda_stat *)

calloc(nprocs, sizeof(struct pda_stat));
if (sysmp(MP_STAT, pstatus) < 0) {

/*

perror ("Failed MP _STAT. Fatal system error! It) ;
quit (-1);

* Figure out which processor is currently
* handling the system clock. If that processor
* happens to be the real-time cpu then nove
* that functionality to another processor
* (the rraster processor in this exarrple) .

Using Real-Time Programming 14-13

Optimal Real-Time Environment

*/
for (i = 0, p = pstatus; i < nprocs; i++)

if «p->p _flags & PDAF _ CIOCK) &&
(i = realU.ne_ cpu» {

if (sysrrp(MP_CIOCK, master_cpu) < 0)
perror ("Failed MP _ CIOCK.

Fatal system error! ");
quit (-1);

break;
}

pH;

/*
* Set up signal handling. Initialize the alann
* signal to be "held", which rreans that
* tiner pops will be ignored until we
* "release" the signal.
*/

sigset(SIGALRM, catcher);
sighold(SIGALRM) ;

/*
* Set up tiner. The inteIVal is the tine between
* each successive timer pop. The value is the
* initial value of the tirrer, which can be anything.
* We will set the tirrer to start lOms from now, and.

* keep interrupting every lOms thereafter.
*/

itv.it_inteIVal.tv_sec = 0;
itv.it_inteIVal.tv_usec = 10000;
itv.it_value = itv.it_inteIVal;
setitiner(ITIMER_REAL, &itv, (struct itineIVal *) 0);

/*
* Get the starting tine, and release
* the interrupt signal.
*/

gettineofday(&lasttirre, 0);
sigrelse(SIGAlRM);

while (1) {
/* simulate CPU intensive processing */

14-14 IRIS-4D Programmer's Guide

(

(

(

Optimal Real-Time Environment

camarea.count++i

/ *NOI'REACHED* /

/*
* Slave thread
* block waiting for parent to wake child up upon
* receipt of the it:irrer signal.
*/

asyncslave ()
{

static struct t:irreval last;
static int lastintri
struct tirreval newt:irrei
double rti
int cdone () i

/*
* Put us at the highest possible real-t:irre
* priority so we respond to events very quickly.
*/

schedctl (NDPRI, 0, npri);

last = lastt:irre;

/* initialize semaphore count */
setblockproccnt(comarea.cpid,O);

/* catch INT signal to let parent know */
sigset(SIGINT, cdone)i

for (i;) {

/*
* parent will wake us up
*/

blockproc (comarea. cpid) ;
/*
* Get the t:irre that we finished.
*/

gett:irreofday (&newt:irre, 0);

/*
* Turn the net t:irre difference into a

Using Real-Time Programming 14-15

Optimal Real-Time Environment

/*

* floating point number so we can
* reasonably deal with it.
*/

rt = newtine. tv_see - last. tv_see;
rt += (newtine. tv_usee - last. tv_usee) / 1000000;

/*
* Tell the user what the result was.
*/

printf ("Current rate of interrupts/see = %. 2fO,
(camarea.nintr - lastintr)/rt);

last = newtine;
lastintr = camarea.nintr;

/*N0I'REACHED* /

** parent signal handler
*/
catcher()
{

/*

camarea.nintr++;
/* wake up slave thread to output the results
* every 100 signals
*/
if «camarea.nintr % 100) = 0)

unblockproc(camarea.cpid);

** code to lock critical memory in core lock
** stack, signal handler and the communication area
*/
pinrrem (sbot)

char *sbot;

/*
* Pin down various pieces of critical
* memory. Start with the stack.
* Allow about 2K for the stack (signal
* handlers run on the same stack).
*/

14-16 IRIS-4D Programmer's Guide

c

c

(

/* stack grows downward */
mpin{sbot - (2*1024), 2*1024);

/* pin data areas */
mpin{&camarea, sizeof(camarea));

/* pin text areas */

Optimal Real-Time Environment

mpin {(char *) catcher, (int) pinrrem - (int) catcher);

quit (code)

{

kill (camarea. cpid, SIGINT);
exit (code) ;

cdone{)
{

kill (camarea.ppid, SIGINT);
exit (O);

Using Real-Time Programming 14-17

Optimal Real-Time Environment

Real-Time Latency
The following sections describe all the components that make up the process

dispatch latency under IRIX. Process dispatch latency is the amount of time it takes
after the occurrence of an interrupt before execution of the associated process
begins. This latency is the sum of the interrupt latency, the interrupt service time,
the kernel dispatch latency, and the context switch time, plus the unpredictable
latencies introduced by any other pending interrupts at the time.

The Components of Process Dispatch Latency
The following components constitute the process dispatch latency for a real­

time process under IRIX. Note that the figures are subject to change.

1. Interrupt latency. This is the maximum amount of time it takes after the
occurrence of an interrupt before execution of the appropriate interrupt
handler. Certain critical sections of the kernel have to be executed without
allowing any interrupts to be handled. If a real-time event interrupts the
processor when the kernel is executing one of these critical sections, it will
have to wait. This wait (called the interrupt latency) is measured to be
always less than 650 us.

2. Interrupt service time. The real-time interrupt handler performs a number
of tasks, it wakes up sleeping processes waiting for the transfer to com­
plete, then clears the interrupt and returns. The time required to do all of
this is called the interrupt service time. This number depends on the
number of tasks that the real-time interrupt handler has to perform (thus no
number is supplied).

3. Time to service other pending interrupts. Once the system finishes ser­
vicing the real-time event, there are other factors that may prevent the sys­
tem from dispatching the real-time process immediately to respond to the
real-time event. One of these factors is other unrelated pending interrupts.
The time required for all interrupts to be serviced until no more interrupts
are pending and process scheduling can proceed constitutes an additional
and unpredictable latency. On a single processor system, this latency
depends on how much load there is on the system. On the multi-processor
POWER Series system, all unwanted VME interrupt levels can be rerouted
away from the real-time processor (including local SCSI and networking).
In this case, the latency due to other pending interrupts is no longer a fac­
tor on the real-time processor.

14-18 IRIS-4D Programmer's Guide

(

(

(

Optimal Real-Time Environment

4. Time to service the clock interrupt. The clock interrupt also constitutes
an additional latency. The maximum clock interrupt service time is
recorded to be less than Urns for the clock processor and less than 120us
for the other processors. Therefore, by not configuring the real-time pro­
cessor as the clock processor, this latency is less than 120us.

5. Kernel dispatch latency. This is the delay between when a real-time pro­
cess is ready to run again and when it is actually dispatched. In standard
UNIX, a process operating in the kernel is not preemptable. A system call
continues executing until it either blocks or runs to completion. This can
add significant delay before the real-time process can be dispatched.
Measurements show that if a real-time processor does not handle any inter­
rupts other than the real-time event and the clock interrupt, critical sections
of the user program are locked in core and execution in the kernel on
behalf of the user is limited to be of non graphics nature, then this latency
never exceeds 775us. This latency also includes the clock handling time.

6. Context switch time. Once the real-time process becomes ready to run
again, and the executing lower-priority process is not executing a system
call, the kernel will switch out the lower-priority process and switch in the
real-time process. The time required to switch processes is termed the con­
text switch time.

This time is derived by having two processes running on the same proces­
sor, communicating to each other using a pipe. The context switch time is
the delay between writing to a pipe and picking up the data (by the receiv­
ing process) on the other end of the pipe. This delay is measured to be less
than 87 microseconds.

Maximum Process Dispatch Latency
On the multiprocessor POWER Series system, by following the guidelines in

configuring the system for real-time application the maximum process dispatch
latency is just the sum of the interrupt latency, kernel dispatch latency, the context
switch time plus the interrupt service time. Excluding the interrupt service time, this
maximum latency is always less than 1.5ms. The interrupt service time varies
depending on the tasks involved in handling the real-time event.

Using Real-Time Programming 14-19

Summary

This chapter described the IRIX operating system real-time and multiprocessor
programming tools, which provide the ability to tune a multiprocessor system to the
application. Real-time programming provides ways to reduce or avoid kernel over-
head, which is the usual weakness of most implementations. The real-time and C·
multiprocessor programming tools provide a satisfying base for real-time and quick .
response systems.

(

14-20 IRIS-4D Programmer's Guide

Index to Utilities

Throughout the text of this guide, commands are discussed without identifying
the package to which the command belongs. The assumption has been that all com­
mand packages are present on the machine on which you are working.

If some commands seem to produce only a not found message on your com­
puter, it may be that the package to which the command belongs has not been
installed. If that happens, check with the administrator of your system.

• Basic Networking Utilities
ct .. ct(lC)
cu .. cu(lC)
uutry .. uutry(lM)
uucheck .. uucheck(lM)
uucico ... uucico(lM)
uucleanup .. uucleanup(lM)
uucp .. uucp(lC)
uugetty ... uugetty(lM)
uulog ... uucp(lC)
uuname ... uucp(lC)
uupick ... uuto(lC)
uusched .. uusched(lM)
uustat ,. .. uustat(lC)
uuto ... uuto(lC)
uux ... uux(lC)
uuxqt .. uuxqt(lM)

• C Programming Language Utilities
cc ... cc(l)
cpp ... cpp(l)
list .. list(l)

• Advanced C Utilities
cb ... cb(l)
cftow .. cftow(l)
ctrace ... ctrace(l)
cxref .. cxref(l)
lint .. lintel)
regcmp .. regcmp(l)

Index to Utilities A·1

Index to Utilities

• Directory and File Management Utilities
ar ... ar(l)
awk ... awk(I)
bdiff ... bdiff (1)
bfs .. bfs(l)
col .. col (1) C
comm .. comm(l)
csplit ... csplit(l)
cut .. cut(I)
diff3 ... diff3 (1)
dircmp ... dircmp(I)
egrep .. egrep(I)
fgrep ... fgrep(I)
find .. find(l)
join .. join(I)
newform ... newform(l)
nl .. nl(I)
ad .. od(I)
pack ... pack(I)
paste .. paste(l)
peat .. pack(l)
pg .. pg(l)
sdiff ... sdiff (1) (
split .. split(l) .
sum ... sum (1)
tail .. tail(l)
touch .. touch(I)
tr ... tr(l)
uniq .. uniq(I)
unpack ... pack (1)

• Editing Utilities
edit .. edit(l)
ex ... ex(l)
vi .. vi(l)

• Essential Utilities
brc .. brc(lM)
cat ... cat(I) (
cd ... cd(l)
checkall .. fsck(lM)
chgrp .. chown (1)
chmod .. chmad(I)
chown ... chown (1)

A-2 IRIS-4D Programmer's Guide

Index to Utilities

ckbupscd .. ckbupscd(lM)
clri .. clri(lM)
cmp .. cmp(l)
cp ... cp(l)
cpio .. cpio(J)
cron .. cron(lM)
date ... date(l)
dd ... dd(lM)
devinfo .. devinfo(lM)
devnm ... devnm(lM)
df .. df(lM)
diff ... diff(l)
du ... dU(lM)
echo ... echo(l)
ed ... ed(l)
expr .. expr(l)
false .. true(l)
file .. file(l)
fsck ... fsck(lM)
fsstat .. fsstat(lM)
fstyp ... fstyp(lM)
getopt .. getopt(l)
getoptcvt .. getoptcvt(l)
getopts ... getopts(l)
getty ... getty(lM)
grep .. grep(l)
id .. id(lM)
init .. init(lM)
kill .. kill(l)
killall .. killall(lM)
labelit ... labelit(lM)
In ... cp(l)
login .. login(l)
Is ... ls(l)
machid ... machid(l)
mail .. mail(l)
mesg ... mesg(l)
mkdir ... mkdir(l)
makehdfsys .. makehdfsys(JM)
mkfs ... mkfs(JM)
mkmenus ... mkmenus(l)
mknod .. mknod(lM)
mkunix .. mkunix (1M)
mount .. mount(lM)

Index to Utilities A·3

Index to Utilities

mountall .. mountall(lM)
mv ... cp(l)
newgrp .. newgrp(lM)
news .. news(l)
passwd ... passwd(l)
pdpll .. machid(l) (
powerdown ... powerdown(lM)
pr ... pr(l)
prtvtoc .. prtvtoc(lM)
ps ... ps(l)
pwd .. pwd(l)
rcO .. rcO(IM)
rc2 .. rc2(1M)
red ... ed(l)
rm ... rm(l)
rmail ... mail (I)
rmdir ... rm(l)
rsh .. sh(l)
sed ... sed(l)
setmnt ... setmnt(lM)
setup ... setup(l)
sh ... sh(l) C
shutdown ... shutdown(lM)
sleep .. sleep(l)
sort .. sort(l)
stty ... stty(l)
su ... sU(lM)
sync .. sync(lM)
sysadm .. sysadm(l)
tee ... tee(l)
test ... test(l)
touch .. touch(l)
true .. true(l)
u3b2 ... machid(l)
umask ... umask(l)
umount .. mount(lM)
umountall .. mountall(lM)
uname ... uname(l)
wait .. wait(l) C
wall .. wall(l)
wc ... wc(l)
who .. who(l)
write .. write (I)

A·4 IRIS·4D Programmer's Guide

Index to Utilities

• FORTRAN Programming Language Utilities
asa .. asa(l)
f77 ... f77(1)
fsplit .. fsplit(l)
ratfor .. ratfor(l)

• Inter-process Communications Utilities
ipcrm ... ipcrm(l)
ipcs ... ipcs(l)

• Line Printer Spooling Utilities
accept .. accept(IM)
cancel ... lp(l)
disable .. enable(I)
enable ... enable(I)
lp .. lp(I)
Ipadmin .. lpadrnin(lM)
lpsched .. Ipsched(lM)
Ips tat ... lpstat(l)
reject ... accept(IM)

• Performance Measurement Utilities
profiler ... profiler(IM)
sadp .. sadp(IM)
sar ... sar(I)
sar ... sar(lM)
timex .. timex(I)

• Security Administration Utilities
crypt .. crypt(I)
makekey ... makekey(I)

• Software Generation Utilities
ar .. ar(I)
as ... asCI)
dis ... disCI)
dump .. dump(I)
Id .. ld(I)
lorder ... lorder(I)
m4 .. m4(1)
mkshlib .. mkshlib(I)
nm .. nm(I)
size .. size(l)
strip .. strip(l)

Index to Utilities A·S

Index to Utilities

tsort .. tsort(l)

• Extended Software Generation Utilities
lex .. lex(l)
install ... install(lM) (
make ... make(l)
prof ... prof(l)
yacc ... yacc(l)

• Source Code Control System Utilities
admin .. admin(l)
cdc ... cdc(l)
comb .. comb(l)
delta ... delta(l)
get .. get(l)
help .. help(l)
prs .. prs(l)
rmdel ... rmdel(l)
sact .. sact(l)
sccsdiff ... sccsdiff(l)
unget .. unget(l)
val ... : .. val(l) (

vch .. · .. ·· · ···· .. · .. · .. · · · · · · · .. ·· · .. · ········ .. ·· · .. ··············· .. h
VC «11» .

w at ... w at

• Spell Utilities
deroff .. deroff(l)
hashcheck .. spell(l)
hashmake ... spell(l)
spell ... spell(l)
spellin .. spel1(l)

• System Administration Utilities
chroot .. chroot(lM)
fuser .. fuser(lM)
link .. link(lM)
mvdir ... mvdir(lM)
ncheck .. ncheck(lM)
pwck ... pwck(lM) C
swap .. swap(lM)
uadmin ... uadmin(lM)
whodo ... whodo(lM)

A·6 IRIS-4D Programmer's Guide

Index to Utilities

• Terminal Information Utilities
captoinfo .. captoinfo(lM)
infocmp .. infocmp(lM)
tic ... tic(lM)
tput .. tput(l)

• User Environment Utilities
at .. at(l)
banner .. banner(l)
basename .. basename(l)
batch ... at(l)
bc ... be(l)
cal ... cal(l)
calendar ... calendar(l)
crontab .. crontab(l)
dc ... dc(l)
dirname ... basename(l)
env ... env(l)
factor ... factor(l)
line .. line(l)
logname ... logname(l)
nice ... nice(l)
nohup .. nohup(l)
tabs ... tabs (I)
time .. time(l)
tty .. tty(l)
u3b .. machid(l)
u3b5 .. machid(l)
units ... units(l)
vax ... machid(l)
xargs ... xargs (I)

Index to Utilities A-7

(

(

(

Glossary
Ada

ANSI standard

a.out file

application program

archive

argument

Named after the Countess of Lovelace, the nineteenth
century mathematician and computer pioneer, Ada is a
high-level general-purpose programming language
developed under the sponsorship of the U.S. Department
of Defense. Ada was developed to provide consistency
among programs originating in different branches of the
military. Ada features include packages that make data
objects visible only to the modules that need them, task
objects that facilitate parallel processing, and an excep­
tion handling mechanism that encourages well-structured
error processing.

ANSI is the acronym for the American National Stan­
dards Institute. ANSI establishes guidelines in the com­
puting industry, from the definition of ASCII to the
determination of overall datacom system performance.
ANSI standards have been established for both the Ada
and FORTRAN programming languages, and a standard
for C has been proposed.

a.out is the default file name used by the link editor when
it outputs a successfully compiled, executable file. a.out
contains object files that are combined to create a com­
plete working program. Object file format is described
in Chapter 11, "The Common Object File Format," and
in a.out(4) in the IRIS-4D Programmer's Reference
Manual.

An application program is a working program in a sys­
tem. Such programs are usually unique to one type of
users' work, although some application programs can be
used in a variety of business situations. An accounting
application, for example, may well be applicable to
many different businesses.

An archive file or archive library is a collection of data
gathered from several files. Each of the files within an
archive is called a member. The command ar(l) collects
data for use as a library.

An argument is additional information that is passed to a
command or a function. On a command line, an argu­
ment is a character string or number that follows the
command name and is separated from it by a space.
There are two types of command-line arguments:

Glossary G·1

Glossary

ASCII

assembler

assembly language

branch table

options and operands. Options are immediately pre­
ceded by a minus sign (-) and change the execution or
output of the command. Some options can themselves
take arguments. Operands are preceded by a space and
specify files or directories that will be operated on by the
command. For example, in the command

pr -t -b Heading file

all of the elements after the pr are arguments. -t and -b
are options, Heading is an argument to the -b option,
and file is an operand.

For a function, arguments are enclosed within a pair of
parentheses immediately following the function name.
The number of arguments can be zero or more; if more
than two are present they are separated by commas and
the whole list enclosed by the parentheses. The formal
definition of a function, such as might be found on a
page in Section 3 of the IRIS-4D Programmer's Refer­
ence Manual, describes the number and data type of
argument(s) expected by the function.

ASCII is an acronym for American Standard Code for
Information Interchange, a standard for data representa­
tion that is followed in the UNIX system. ASCII code
represents alphanumeric characters as binary numbers.
The code includes 128 upper- and lower-case letters,
numerals, and special characters. Each alphanumeric
and special character has an ASCII code (binary)
equivalent that is one byte long.

The assembler is a translating program that accepts
instructions written in the assembly language of the com­
puter and translates them into the binary representation
of machine instructions. In many cases, the assembly
language instructions map 1 to 1 with the binary machine
instructions.

A programming language that uses the instruction set that
applies to a particular computer.

(

(

A branch table is an implementation technique for fixing (
the addresses of text symbols, without forfeiting the abil-
ity to update code. Instead of being directly associated
with function code, text symbols label jump instructions
that transfer control to the real code. Branch table

G-2 IRIS-4D Programmer's Guide

buffer

byte

byte order

c

C compiler

C preprocessor

Glossary

addresses do not change, even when one changes the
code of a routine. Jump table is another name for branch
table.

A buffer is a storage space in computer memory where
data are stored temporarily into convenient units for sys­
tem operations. Buffers are often used by programs,
such as editors, that access and alter text or data fre­
quently. When you edit a file, a copy of its contents are
read into a buffer where you make changes to the text.
For the changes to become part of the permanent file,
you must write the buffer contents back into the per­
manent file. This replaces the contents of the file with
the contents of the buffer. When you quit the editor, the
contents of the buffer are flushed.

A byte is a unit of storage in the computer. On many
UNIX systems, a byte is eight bits (binary digits), the
equivalent of one character of text.

Byte order refers to the order in which data are stored in
computer memory.

The C programming language is a general-purpose pro­
gramming language that features economy of expression,
control flow, data structures, and a variety of operators.
It can be used to perform both high-level and low-level
tasks. Although it has been called a system program­
ming language, because it is useful for writing operating
systems, it has been used equally effectively to write
major numerical, text-processing, and database pro­
grams. The C programming language was designed for
and implemented on the UNIX system; however, the
language is not limited to anyone operating system or
machine.

The C compiler converts C programs into assembly
language programs that are eventually translated into
object files by the assembler.

The C preprocessor is a component of the C Compilation
System. In C source code, statements preceded with a
pound sign (#) are directives to the preprocessor. Com­
mand line options of the ee(l) command may also be
used to control the actions of the preprocessor. The main
work of the preprocessor is to perform file inclusions and
macro substitution.

Glossary G-3

Glossary

CCS

COFF

command

CCS is an acronym for C Compilation System, which is a
set of programming language utilities used to produce
object code from C source code. The major components
of a C Compilation System are a C preprocessor, C com-
piler, assembler, and link editor. The C preprocessor (
accepts C source code as input, performs any preprocess-
ing required, then passes the processed code to the C
compiler, which produces assembly language code that it
passes to the assembler. The assembler in tum produces
object code that can be linked to other object files by the
link editor. The object files produced are in the Common
Object File Format (COPP). Other components of CCS
include a symbolic debugger, an optimizer that makes
the code produced as efficient as possible, productivity
tools, tools used to read and manipulate object files, and
libraries that provide runtime support, access to system
calls, input/output, string manipulation, mathematical
functions, and other code processing functions.

COFF is an acronym for Common Object File Format.
COFF refers to the format of the output file produced on
some UNIX systems by the assembler and the link edi- (
tor. This format is also used by other operating systems.
The following are some of its key features:

D Applications may add system-dependent informa­
tion to the object file without causing access utili­
ties to become obsolete.

D Space is provided for symbolic information used by
debuggers and other applications.

D Users may make some modifications in the object
file construction at compile time.

A command is the term commonly used to refer to an
instruction that a user types at a computer terminal key­
board. It can be the name of a file that contains an exe-
cutable program or a shell script that can be processed or (.
executed by the computer on request. A command is
composed of a word or string of letters and/or special
characters that can continue for several (terminal) lines,
up to 256 characters. A command name is sometimes
used interchangeably with a program name.

G-4 IRIS-4D Programmer's Guide

command line

compiler

core

core file

core image

curses'

data symbol

database

Glossary

A command line is composed of the command name fol­
lowed by any argument(s) required by the command or
optionally included by the user. The manual page for a
command includes a command line synopsis in a nota­
tion designed to show the correct way to type in a com­
mand, with or without options and arguments.

A compiler transforms the high-level language instruc­
tions in a program (the source code) into object code or
assembly language. Assembly language code may then
be passed to the assembler for further translation into
machine instructions.

Core is a (mostly archaic) synonym for primary memory.

A core file is an image of a terminated process saved for
debugging. A core file is created under the name "core"
in the current directory of the process when an abnormal
event occurs resulting in the process' termination. A list
of these events is found in the signal(2) manual page in
section 2 of the IRIS-4D Programmer's Reference
Manual.

Core image is a copy of all the segments of a running or
terminated program. The copy may exist in main
storage, in the swap area. or in a core file.

curses(3X) is a library of C routines that are designed to
handle input, output, and other operations in screen
management programs. The name curses comes from
the cursor optimization that the routines provide. When a
screen management program is run, cursor optimization
minimizes the amount of time a cursor has to move about
a screen to update its contents. The program refers to the
terminfo(4) database at run time to obtain the informa­
tion that it needs about the screen (terminal) being used.
See terminfo(4) in theIRIS-4D Programmer's Refer­
ence Manual.

A data symbol names a variable that mayor may not be
initialized. Normally, these variables reside in read/write
memory during execution. See text symbol.

A database is a bank: of information on a particular sub­
ject or subjects. On-line databases are designed so that
by using subject headings, key words, or key phrases you
can search for, analyze, update, and print out data.

Glossary G-5

Glossary

debug

default

delimiter

directory

dynamic linking

environment

Debugging is the process of locating and correcting
errors in computer programs.

A default is the way a computer will perform a task in the
absence of other instructions.

A delimiter is an initial character that identifies the next
character or character string as a particular kind of argu­
ment. Delimiters are typically used for option names on
a command line; they identify the associated word as an
option (or as a string of several options if the options are
bundled). In the UNIX system command syntax, a
minus sign (-) is most often the delimiter for option
names, for example, -s or -D, although some commands
also use a plus sign (+).

A directory is a type of file used to group and organize
other files or directories. A directory consists of entries
that specify further files (including directories) and con­
stitutes a node of the file system. A subdirectory is a
directory that is pointed to by a directory one level above
it in the file system organization.

(

The Is(l) command is used to list the contents of a direc- (
tory. When you first log onto the system, you are in your
home directory ($HOME). You can move to another
directory by using the cd(l) command and you can print
the name of the current directory by using the pwd(1)
command. You can also create new directories with the
mkdir(l) command and remove empty directories with
rmdir(1).

A directory name is a string of characters that identifies a
directory. It can be a simple directory name, the relative
path name or the full pathname of a directory.

Dynamic linking refers to the ability to resolve symbolic
references at run time. Systems that use dynamic linking
can execute processes without resolving unused refer­
ences. See static linking.

An environment is a collection of resources used to sup­
port a function. In the UNIX system, the shell environ­
ment is composed of variables whose values define the
way you interact with the system. For example, your
environment includes your shell prompt string, specifics

(

G-6 IRIS-4D Programmer's Guide

executable file

exit

exit statu_s: return code

expression

file

Glossary

for backspace and emse characters, and commands for
sending output from your terminal to the computer.

An environment variable is a shell variable such as
$HOME (which stands for your login directory) or
$PATH (which is a list of directories the shell will search
through for executable commands) that is part of your
environment. When you log in, the system executes pro­
grams that create most of the environmental variables
that you need for the commands to work. These vari­
ables come from /etc/profile, a file that defines a general
working environment for all users when they log onto a
system. In addition, you can define and set variables in
your personal .profile file, which you create in your
login directory to tailor your own working environment.
You can also temporarily set variables at the shell level.

An executable file is a file that can be processed or exe­
cuted by the computer without any further translation.
That is, when you type in the file name, the commands in
the file are executed. An object file that is ready to run
(ready to be copied into the address space of a process to
run as the code of that process) is an executable file.
Files containing shell commands are also executable. A
file may be given execute permission by using the
chmod(l) command. In addition to being ready to run, a
file in the UNIX system needs to have execute permis­
sion.

A specific system call that causes the termination of a
process. The exit(2) call will close any open files and
clean up most other information and memory which was
used by the process.

An exit status or return code is a code number returned
to the shell when a command is terminated that indicates
the cause of termination.

An expression is a mathematical or logical symbol or
meaningful combination of symbols. See regular expres­
sion.

A file is an identifiable collection of information that, in
the UNIX system, is a member of a file system. A file is
known to the UNIX system as an inode plus the

Glossary G-7

Glossary

file and record locking

file descriptor

file system

filter

information the inode contains that tells whether the file
is a plain file, a special file, or a directory. A plain file
may contain text, data, programs or other information
that forms a coherent unit. A special file is a hardware
device or portion thereof, such as a disk partition. A
directory is a type of file that contains the names and (
inode addresses of other plain, special or directory files.

The phrase "file and record locking" refers to software
that protects records in a data file against the possibility
of being changed by two users at the same time.
Records (or the entire file) may be locked by one author­
ized user while changes are made. Other users are thus
prevented from working with the same record until the
changes are completed.

A file descriptor is a number assigned by the operating
system to a file when the file is opened by a process. File
descriptors 0, 1, and 2 are reserved; file descriptor 0 is
reserved for standard input (stdin), 1 is reserved for stan­
dard output (stdout), and 2 is reserved for standard error
output (stderr).

A UNlX file system is a hierarchical collection of direc­
tories and other files that are organized in a tree struc­
ture. The base of the structure is the root (/) directory;
other directories, all subordinate to the root, are
branches. The collection of files can be mounted on a
block special file. Each file of a file system appears
exactly once in the inode list of the file system and is
accessible via a single, unique path from the root direc­
tory of the file system.

A filter is a program that reads information from standard
input, acts on it in some way, and sends its results to
standard output. It is called a filter because it can be
used as a data transformer in a pipeline. Filters are dif­
ferent from editors and other commands because filters
do not change the contents of a file. Examples of filters
are grep(l) and tail(l), which select and output part of
the input; sort(l), which sorts the input; and wen),
which counts the number of words, characters, and lines
in the input. sed(l) and awk(l) are also filters but they
are called programmable filters or data transformers
because a program must be supplied as input in addition

(

(

G-8 IRIS-4D Programmer's Guide

flag

fork

FORTRAN

function

header file

high-level language

Glossary

to the data to be transformed.

A flag or option is used on a command line to signal a
specific condition to a command or to request particular
processing. UNIX system flags are usually indicated by
a leading hyphen (-). The word option is sometimes
used interchangeably with flag. Flag is also used as a
verb to mean to point out or to draw attention to. See
option.

fork(2) is a system call that divides a new process into
two, the parent and child processes, with separate, but
initially identical, text, data, and stack segments. After
the duplication, the child (created) process is given a
return code of 0 and the parent is given the process id of
the newly created child as the return code.

FORTRAN is an acronym for FORmula TRANslator.
FORTRAN is a high-level programming language origi­
nally designed for scientific and engineering calculations
but now also widely adapted for many business uses.

A function is a task done by a computer. In most modem
programming languages, programs are made up of func­
tions and procedures which perform small parts of the
total job to be done.

A header file is used in programming and in document
formatting. In a programming context, a header file is a
file that usually contains shared data declarations that are
to be copied into source programs as they are compiled.
A header file includes symbolic names for constants,
macro definitions, external variable references and inclu­
sion of other header files. The name of a header file cus­
tomarily ends with' .h' (dot-h). Similarly, in a document
formatting context, header files contain general format­
ting macros that describe a common document type and
can be used with many different document bodies.

A high-level language is a computer programming
language such as C or FORTRAN that uses symbols and
command statements representing actions the computer
is to perform, the exact steps for a machine to follow. A
high-level language must be translated into machine
language by a compilation system before a computer can
execute it. A characteristic of a high-level language is
that each statement usually translates into a series of

Glossary G·g

Glossary

host machine

interpreted language

machine language instructions. The low-level details of
the computer's internal organization are left to the com­
pilation system.

A host machine is the machine on which an a.out file is
built.

An interpreted language is a high-level language that is
not translated by a compilation system and stored in an
executable object file. The statements of a program in an
interpreted language are translated each time the pro­
gram is executed.

(

Interprocess Communication

interrupt

I/O (Input/Output)

kernel

lexical analysis

Interprocess Communication describes software that
enables independent processes running at the same time,
to exchange information through messages, semaphores,
or shared memory.

An interrupt is a break in the normal flow of a system or
program. Interrupts are initiated by signals that are gen­
erated by a hardware condition or a peripheral device
indicating that a certain event has happened. When the
interrupt is recognized by the hardware, an interrupt han- (
dling routine is executed. An interrupt character is a
character (normally ASCII) that, when typed on a termi-
nal, causes an interrupt. You can usually interrupt UNIX
programs by pressing the delete or break keys, by typing
Control-d, or by using the kil1(l) command.

I/O is the process by which information enters (input)
and leaves (output) the computer system.

The kernel (comprising 5 to 10 percent of the operating
system software) is the basic resident software on which
the UNIX system relies. It is responsible for most
operating system functions. It schedules and manages
the work done by the computer and maintains the file
system. The kernel has its own text, data, and stack
areas.

Lexical analysis is the process by which a stream of char- (...
acters (often comprising a source program) is subdivided
into its elementary words and symbols (called tokens).
The tokens include the reserved words of the language,
its identifiers and constants, and special symbols such as
=, :=, and;. Lexical analysis enables you to recognize,

G-10 IRIS-4D Programmer's Guide

library

link editor

magic number

makefile

manual page

null pointer

object code

Glossary

for example, that the stream of characters 'print("hello,
universe")' is to be analyzed into a series of tokens
beginning with the word 'print' and not with, say, the
string 'print("h.· In compilers, a lexical analyzer is often
called by the compiler's syntactic analyzer or parser,
which determines the statements of the program (that is,
the proper arrangements of its tokens).

A library is an archive file that contains object code
and/or files for programs that perform common tasks.
The library provides a common source for object code,
thus saving space by providing one copy of the code
instead of requiring every program that wants to incor­
porate the functions in the code to have its own copy.
The link editor may select functions and data as needed.

A link editor, or loader, collects and merges separately
compiled object files by linking together object files and
the libraries that are referenced into executable load
modules. The result is an a.out file. Link editing may be
done automatically when you use the compilation system
to process your programs on the UNIX system, but you
can also link edit previously compiled files by using the
Id(l) command.

The magic number is contained in the header of an a.out
file. It indicates what the type of the file is, whether
shared or non-shared text, and on which processor the
file is executable.

A makefile is a file that lists dependencies among the
source code files of a software product and methods for
updating them, usually by recompilation. The make(l)
command uses the makefile to maintain self-consistent
software.

A manual page, or "man page" in UNIX system jargon, is
the repository for the detailed description of a command,
a system call, subroutine or other UNIX system com­
ponent.

A null pointer is a C pointer with a value of O.

Object code is executable machine-language code pro­
duced from source code or from other object files by an
assembler or a compilation system. An object file is a
file of object code and associated data. An object file

Glossary G-11

Glossary

optimizer

option

parent process

parse

pathname

that is ready to run is an executable file.

An optimizer, an optional step in the compilation process,
improves the efficiency of the assembly language code.
The optimizer reduces the space used by and speeds the
execution time of the code.

An option is an argument used in a command line to
modify program output by modifying the execution of a
command. An option is usually one character preceded
by a hyphen (-). When you do not specify any options,
the command will execute according to its default
options. For example, in the command line

Is -a -I directory

-a and -I are the options that modify the Is(l) command
to list all directory entries, including entries whose
names begin with a period (.), in the long format (includ­
ing permissions, size, and date).

A parent process occurs when a process is split into two,
a parent process and a child process, with separate, but
initially identical text, data, and stack segments.

To parse is to analyze a sentence in order identify its
components and to determine their grammatical relation­
ship. In computer terminology the word has a similar
meaning, but instead of sentences, program statements or
commands are analyzed.

A pathname is a way of designating the exact location of
a file in a file system. It is made up of a series of direc­
tory names that proceed down the hierarchical path of
the file system. The directory names are separated by a
slash character (j). The last name in the path is either a
file or another directory. If the pathname begins with a
slash, it is called a full pathname ; the initial slash means
that the path begins at the root directory.

(

c

A pathname that does not begin with a slash is known as
a relative pathname, meaning relative to the present (
working directory. A relative pathname may begin
either with a directory name or with two dots followed
by a slash (•• /). One that begins with a directory name
indicates that the ultimate file or directory is below the

G-12 IRIS·4D Programmer's Guide

permissions

pipe

portable

Glossary

present working directory in the hierarchy. One that
begins with .. / indicates that the path first proceeds up
the hierarchy; . .1 is the parent of the present working
directory.

Permissions are a means of defining a right to access a
file or directory in the UNIX file system. Permissions
are granted separately to you, the owner of the file or
directory, your group, and all others. There are three
basic permissions:

D Read permission (r) includes permission to cat, pg,
lp, and ep a file.

D Write permission (w) is the permission to change a
file.

D Execute permission (x) is the permission to run an
executable file.

Permissions can be changed with the UNIX system
ehmod(l) command.

A pipe causes the output of one command to be used as
the input for the next command so that the two run in
sequence. You can do this by preceding each command
after the first command with the pipe symbol (I), which
indicates that the output from the process on the left
should be routed to the process on the right. For exam­
ple, in the command

who Iwe-I,

the output from the who(l) command, which lists the
users who are logged on to the system, is used as input
for the word-count command, we(l), with the I option.
The result of this pipeline (succession of commands con­
nected by pipes) is the number of people who are
currently logged on to the system.

Portability describes the degree of ease with which a pro­
gram or a library can be moved or ported from one sys­
tem to another. Portability is desirable because once a
program is developed it is used on many systems. If the
program writer must change the program in many dif­
ferent ways before it can be distributed to the other

Glossary G-13

Glossary

systems, time is wasted, and each modification increases
the chances for an error.

preprocessor Preprocessor is a generic name for a program that
prepares an input file for another program. For example,
neqn(1) and tbl(1) are preprocessors for nroff(l). (grap(l) is a preprocessor for pic(l). cpp(l) is a prepro-
cessor for the C compiler.

process A process is a program that is at some stage of execution.
In the UNIX system, it also refers to the execution of a
computer environment, including contents of memory,
register values, name of the current working directory,
status of files, information recorded at login time, etc.
Every time you type the name of a file that contains an
executable program, you initiate a new process. Shell
programs can cause the initiation of many processes
because they can contain many command lines.

The process id is a unique system-wide identification
number that identifies an active process. The process
status command, ps(l), prints the process ids of the
processes that belong to you. (program A program is a sequence of instructions or commands
that cause the computer to perform a specific task, for
example, changing text, making a calculation, or report-
ing on the status of the system. A subprogram is part of
a larger program and can be compiled independently.

regular expression A regular expression is a string of alphanumeric charac-
ters and special characters that describe a character
string. It is a shorthand way of describing a pattern to be
searched for in a file. The pattern-matching functions of
ed(l) and grep(l), for example, use regular expressions.

routine A routine is a discrete section of a program to accomplish
a set of related tasks

semaphore In the UNIX system, a semaphore is a sharable short
unsigned integer maintained through a family of system
calls which include calls for increasing the value of the (semaphore, setting its value, and for blocking waiting for
its value to reach some value. Semaphores are part of
the UNIX system IPC facility.

G-14 IRIS-4D Programmer's Guide

shared memory

shell

signal: signal number

source code

standard error

standard input

standard output

Glossary

Shared memory is an IPC (interprocess communication)
facility in which two or more processes can share the
same data space.

The shell is the UNIX system program-sh(1)­
responsible for handling all interaction between you and
the system. It is a command language interpreter that
understands your commands and causes the computer to
act on them. The shell also establishes the environment
at your terminal. A shell normally is started for you as
part of the login process. Three shells, the Bourne shell,
the Korn shell and the C shell, are popular. The shell
can also be used as a programming language to write
procedures for a variety of tasks.

A signal is a message that you send to processes or
processes send to one another. The most common sig­
nals you might send to a process are ones that would
cause the process to stop: for example, interrupt, quit, or
kill. A signal sent by a running process is usually a sign
of an an exceptional occurrence that has caused the pro­
cess to terminate or divert from the normal flow of con­
trol.

Source code is the programming-language version of a
program. Before the computer can execute the program,
the source code must be translated to machine language
by a compilation system or an interpreter.

Standard error is an output stream from a program. It is
normally used to convey error messages. In the UNIX
system, the default case is to associate standard error
with the user's terminal.

Standard input is an input stream to a program. In the
UNIX system, the default case is to associate standard
input with the user's terminal.

Standard output is an output stream from a program. In
the UNIX system, the default case is to associate stan­
dard output with the user's terminal.

stdio: standard input-output
stdio(3S) is a collection of functions for formatted and
character-by-character input-output at a higher level than
the basic read, write, and open operations.

Glossary G-15

Glossary

static linking

stream

string

strip

subroutine

symbol table

symbol value

syntax

Static linking refers to the requirement that symbolic
references be resolved before run time. See dynamic
linking.

A stream is an open file with buffering provided by the
stdio package.

A string is a contiguous sequence of characters treated as
a unit. Strings are normally bounded by white space(s),
tab(s), or a character designated as a separator. A string
value is a specified group of characters symbolized to the
shell by a variable.

strip(1) is a command that removes the symbol table and
relocation bits from an executable file.

(

A subroutine is a program that defines desired operations
and may be used in another program to produce the
desired operations. A subroutine can be arranged so that
control may be transferred to it from a master routine
and so that, at the conclusion of the subroutine, control
reverts to the master routine. Such a subroutine is usu-
ally called a closed subroutine. A single routine may be (
simultaneously a subroutine with respect to another rou-
tine and a master routine with respect to a third.

A symbol table describes information in an object file
about the names and functions in that file. The symbol
table and relocation bits are used by the link editor and
by the debuggers.

The value of a symbol, typically its virtual address, used
to resolve references.

o Command syntax is the order in which command
names, options, option arguments. and operands are
put together to form a command on the command
line. The command name is first, followed by
options and operands. The order of the options and

the operands Vari~sthfrom com
f

mlandthto cdomm~bend. (
o Language syntax IS e set 0 ru es at escn

how the elements of a programming language may
legally be used.

G-16 IRIS-4D Programmer's Guide

system call

target machine

Glossary

A system call is a request by an active process for a ser­
vice performed by the UNIX system kernel, such as I/O,
process creation, etc. Ail system operations are allo­
cated, initiated, monitored, manipulated, and terminated
through system calls. System calls allow you to request
the operating system to do some work that the program
would not normally be able to do. For example, the
getuid(2) system call allows you to inspect information
that is not normally available since it resides in the
operating system's address space.

A target machine is the machine on which an a.out file is
run. While it may be the same machine on which the
a.out file was produced, the term implies that it may be a
different machine.

TCP/IP (Transmission Control Protocol/lnternetwork Protocol)

terminal definition

terminfo

TCP/IP is a connection-oriented, end-to-end reliable pro­
tocol designed to fit into a layered hierarchy of protocols
that support multi-network applications. It is the Depart­
ment of Defense standard in packet networks.

A terminal definition is an entry in the terminfo(4) data­
base that describes the characteristics of a terminal. See
terminfo(4) and curses(3X) in theIRIS-4D
Programmer's Reference Manual.

o a group of routines within the curses library that
handle certain terminal capabilities. For example,
if your terminal has programmable function keys,
you can use these routines to program the keys.

o a database containing the compiled descriptions of
many terminals that can be used with curses(3X)
screen management programs. These descriptions
specify the capabilities of a terminal and how it
performs various operations - for example, how
many lines and columns it has and how its control
characters are interpreted. A curses(3X) program
refers to the database at run time to obtain the infor­
mation that it needs about the terminal being used.

Glossary G-17

Glossary

text symbol

tool

trap

UNIX operating system

See curses(3X) in the IRIS4D Programmer's Reference
Manual. terminfo(4) routines can be used in shell pro­
grams, as well as C programs.

A text symbol is a symbol, usually a function name, that
is defined in the .text portion of an a.out file.

A tool is a program, or package of programs, that per­
forms a given task.

A trap is a condition caused by an error where a process
state transition occurs and a signal is sent to the currently
running process.

The UNIX operating system is a general-purpose, mul­
tiuser, interactive, time-sharing operating system
developed by AT&T. An operating system is the
software on the computer under which all other software
runs. The UNIX operating system has two basic parts:

o The kernel is the program that is responsible for

(,

most operating system functions. It schedules and (
manages all the work done by the computer and
maintains the file system. It is always running and

userid

is invisible to users.

o The shell is the program responsible for handling all
interaction between users and the computer. It
includes a powerful command language called shell
language.

The utility programs or UNIX system commands are exe­
cuted using the shell, and allow users to communicate
with each other, edit and manipulate files, and write and
execute programs in several programming languages.

A userid is an integer value, usually associated with a
login name, used by the system to identify owners of
files and directories. The userid of a process becomes
the owner of files created by the process and descendent
(forked) processes.

utility A utility is a standard, permanently available program
used to perform routine functions or to assist a program­
mer in the diagnosis of hardware and software errors, for

G-1B IRIS-4D Programmer's Guide

(

variable

white space

word

Glossary

example, a loader, editor, debugging, or diagnostics
package.

D A variable in a computer program is an object
whose value may change during the execution of
the program, or from one execution to the next.

D A variable in the shell is a name representing a
string of characters (a string value).

D A variable normally set only on a command line is
called a parameter (positional parameter and key­
word parameter).

D A variable may be simply a name to which the user
(user-defined variable) or the shell itself may assign
string values.

White space is one or more spaces, tabs, or newline char­
acters. White space is normally used to separate strings
of characters, and is required to separate the command
from its arguments on a command line.

A word is a unit of storage in a computer that is com­
posed of bytes of information.

Glossary G-19

(

(

c

