
Gould FORTRAN n+

Release 4.1 vJ /:
(

\
Reference Manual

</'"'

\

\-.

July 1984

Publication Order Number 323-004010-000

-) GOULD
Electronics

(~

~ ITEM • ACTICN ITEM • ACTICN ITEM • ACTICN ITEM • ACTICN ITEM • ACTICN ITEM

Gould FORTRAN 77+
Release 4.2

Reference Manual
July 1985

Please remove/insert the appropriate pages as listed below to update Publication Order
Number 323-004010-000.

Remove

Title page - Release 4.1

v
vii
ix and x
2-1
2-8 through 2-10
3-11
7-9
7-14
9-5 through 9-10
9-13 through 9-15
11-9 and 11-10
11-14 and 11-15
11-21 through 11-23

Insert

Title page - Release 4.2
History page Change 1 in front of ii i
v Change 1
vii Change 1
ix Change 1 and x Change 1
2-1 Change 1
2-8 Change 1 through 2-10 Change 1
3-11 Change 1
7-9 Change 1
7 -14 Change 1
9-5 Change 1 through 9-10 Change 1
9-13 Change 1 through 9-15 Change 1
11-9 Change 1 and 11-10 Change 1
11-14 Change 1 and 11-15 Change 1
11-21 Change 1 through 11-23 Change 1

Continued

~ PACKAGE 1 for 323-004010-000

Otange Package Publication Order Number: 323-004010-001

11-30
11-35
11-45
11-54

.12-6
12-20

Remove

13-1 and 13-2
13-5/13-6
14-7/14-8
15-3
A-2 through A-4
0-4 through 0-8

O-ll
0-15 and 0-16

IN-3 through IN-9

Insert

11-30 Change 1
11-35 Change 1
11-45 Change 1
11-54 Change 1
12-6 Change 1
12-20 Change 1
13-1 Change 1 and 13-2 Change 1
13-5/13-6 Change 1
14-7/14-8 Change 1
15-3 Change 1
A-2 Change 1 through A-4 Change 1
0-4 Change 1, 0-4A/0-4B Change 1

and 0-5 Change 1 through
0-8 Change 1

0-11 Change 1
0-15 Change 1 and 0-16 Change 1
E-1 Change 1 through E-6 Change 1
IN-3 Change 1 through IN-9 Change 1

(

Gould FORTRAN 77+

Release 4.2

Reference Manual

July 1985

Publication Order Number: 323-004010-000

-> GOULD
Electronics

This manual is supplied without representation or warranty of any kind. Gould Inc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material contained
herein.

UMITED RIGHTS LEGEND

for

PROPRIETARY INFORMA nON

The information contained herein is proprietary to Gould CSD and/or its vendors, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06(1/82) or the appropriate third-party sublicense
agreement. The information is provided to government customers with limited rights as
described in OAR 7-104.9A.

MPX-32 and CONCEPT /32 are Trademarks of Gould, Inc.

Copyright 1984
Gould Inc., Computer Systems Division

All Rights Reserved
Printed in U.S.A.

Gould FORTRAN TI+

Release 4.1

Reference Manual

July 1984

~j.

Publication Order Number 323-004010-000

-} GOULD
Electronics

This manual is supplied without representation or warranty of any kind. Gould Inc.,
Computer Systems Division therefore assumes no responsibility and shall have no liability
of any kind arising from the supply or use of this publication or any material contained
herein.

UMITEO RIGHTS LEGEND

for

PROPRIET ARY lNFORMA nON

The information contained herein is proprietary to Gould CSD and/ or its venders, and its
use, disclosure or duplication is subject to the restrictions stated in the Gould CSD
license agreement Form No. 620-06(1/82) or the appropriate third-party sublicense
agreement. The information is provided to government customers with limited rights as
described in DAR 7-104.9A.

MPX-32 and CONCEPT/32 are Trademar!(s of Gould Inc.

(C) Copyright 1984
Gould Inc., Computer Systems Division

All Rights Reserved
Printed in the U.S.A.

-_/--

HISTORY

The FORTRAN 77+ Release 4.1 Reference Manual, Publication Order Number
323-004010-000, was printed in July 1984.

This manual contains the following pages:

Title page
Copyright page
iii through xi/xii
1-1 through 1-6
2-1 through 2-12
3-1 through 3-18
4-1 through 4-18
5-1 through 5-12
6-1 through 6-29/6-30
7-1 through 7-27/7-28
8-1 through 8-6
9-1 through 9-32
10-1 through 10-2
11-1 through 11-62
12-1 through 12-27/12-28
13-1 through 13-5/13-6
14-1 through 14-7/14-8
15-1 through 15-20
A-I through A-4
8-1 through 8-23/8-24
C-l through C-7/C-8
0-1 through 0-18
IN-I through IN-I0

(

I-«STORY

The FORTRAN 77+ Release 4.1 Reference Manual, Publication Order Number
323-004010-000 , was printed July 1984.

Publication Order Number 323-004010-001 (Change 1, Release 4.2) was printed July
1985.

The updated manual contains the following pages:

* Change
Number

Ti tle Page •••••.••••.••••••••• 1
Copyright Page •••••.•.•.•••••• a
History Page •••••••••••.•••••• 1
iii through iv .•••••••••.••••••• a
v • • • • • • • • • .. a .. • •• It ,.. e •• -e •••••• 1
vi .•..••••••...•••••.••••.•• a
vii 1
viii III ••••• 0
ix and x 1
xi/xii 0
1-1 through 1-6 ••••••..•••••••• a
2 -1 1
2-2 through 2-7 •••••••••••••••• a
2-8 through 2-10 .••••••••••••••• 1
2-11 arid 2-12 •••••••••••••••••• 0
3-1 through 3-10 ••••..•••.•••••. a
3-11 1
3-12 through 3-18 .•••••••••••••• 0
4-1 through 4-18 ••.••••.•••••••• 0
5-1 through 5-12 ..•••••••.•••••• 0
6-1 through 6-29/6-30 •••••••••.•• 0
7 -1 through 7 -8 •••••••••••••.•• 0
7 -9 1
7 -10 through 7 -13 ••••••••••••••• 0
7 -14 1
7-15 through 7-27/7-28 ••..••••••• 0
8-1 through 8-6 ••.•.•..•.•••.•• 0
9-1 through 9-4 .••.•.•.•..••••• 0
9-5 through 9-7 .•...••.•••••••• 1
9 -8 •.••••••••••••••••••••••• 0
9-9 and 9-10 .•.....•..••••••.•• 1
9-11 and 9-12 •..•..•..•.•.••••. 0
9-13 ••..•..•..•...•..••••.•. 1
9-14 .•....••...••••.•••••••. 0
9-15 1

* Change
Number

9-16 through 9-32 •...•.•.••.••. 0
10-1 and 10-2 ••••.••••••..••.• 0
11-1 through 11-8 ••.•••••••••• 0
11-9 and 11-10 ••••..•••••••••• 1
ll-ll through 11-13 •••••••••••• 0
11-14 and 11-15 .•.•.•••.•...•• 1
11-16 through 11-20 •••••••••••. 0
11-21 through 11-23 .••••.•••••. 1
11-24 through 11-29 •••••••.•••• 0
11-30 1
11-31 through 11-34 ••••••..••.• 0
11-35 .•••..•••••••••••..•.•. 1
11-36 through 11-44 •••••••••••• 0
11-45 1
11-46 through ll-53 •• • • • • • • . • • . 0
11-54 1
11-55 through 11-62 •....••...•. 0
12-1 through 12-5 ••.•••.•..••• 0
12-6 ••.•.•••.•••••••••.•••. 1
12-7 through 12-19 •..••.....•• 0
12-20 •.••...••.••••••••••.. 1
12-21 through 12-27/12-28 •....•. 0
13-1 and 13-2 •.•••••••••••.•• 1
13-3 through 13-4 •••••.•••...•. 0
13-5/13-6 .••.••..••••.•.•... 1
14-1 through 14-6 •.•••••...•.•. 0
14-7/14-8 •...•••.•.••....•.. 1
15-1 and 15-2 •••••.•...••••.• 0
15-3 ••••.••..•••••••••....• 1
15-4 through 15-20 ••...••••.•• 0
A-I 0
A-2 through A-4 •.•.•........• 1
8-1 through 8-23/8-24 ••••.•...• 0
C-l through C-7/C-8 ...•••..••. 0
D-l through D-3 •••.••..•...•. 0

* Zero in this column indicates an original page.

Change 1

*' Change
Number

0-4 through 0-5 •.•...•••••••. 1
0-6 and 0-7 a
0-8 1
0-9 through 0-10 .•.••••..•••• 0
0-11 1
0-12 through 0-14 ••.•••.••••• 0
0-IS and 0-16 •.••.••••.••••• 1
0-17 and 0-18 ••••.••••••••.. 0

*' Change
Number

E-l through E-6•....••... 1
IN-l and IN-2 0
IN-3 and IN-4 ••••.•••.•.•.•..• 1
IN-5 0
IN-6 1
IN-7 0
IN-8 and IN-9 •••••••.••••••••• 1
IN-IO .. 0

*' Zero in this column indicates an original page.

On a change page, the portion of the page affected by the latest change is indicated by 8

vertical bar in the outer margin of the page. However, a completely changed page will
not have a full length bar, but will have the change notation by the page number.

Change 1

CONTENTS

History • • • • . • • . • • • • . . ••......

OiAPTER 1 INTRODUCTION

1.1
1.2
1.3
L4

Modes of Installation
FORTRAN 77+ Release 4.1 Versus Release 4.0
FORTRAN 77+ Versus ANSI X3.9-1978 ••
Documentation Conventions ••••••••

OiAPTER 2 THE FORTRAN PROGRAM

2.1

2.2

2.3

2.4

2.5

2.6

Program Units •••••••••••••
2.1.1 Main Program ••••••
2.1.2 PROGRAM Statement
2.1.3 Subprogram ••••••••
Fields•........•..
2.2.1
2.2.2
2.2.3
2.2.4

Statement Label Field
Continuation Field.
Statement Field •••
Identification Field.

Statements •••••••••••••
2.3.1 Executable Statement.
2.3.2 Nonexecutable Statement

.....

........

2.3.3 Compiler Directive Statement ••
2.3.4 Order of Statements.
2.3.5 Multiple Statement ••
Lines.
2.4.1
2.4.2
2.4.3

.
Comment Lines ••
Trailing Comment
Initial Line •••••••

Character Set •• •••••••••
2.5.1 Alphabetic Characters
2.5.2 Numeric Characters.
2.5.3 Alphanumerics ••••
2.5.4 Special Characters •••••
Compiler Directive •••••••
2.6.1 INCLUDE Directive
2.6.2 OPTION Directive
2.6.3 PAGE Directive ••
2.6.4 SP ACE Directive
2.6.5 USER Directive •••••

. .'

· ...
·

.. ·

OiAPTER 3 DATA TYPES, CONSTANTS, SYMBOUC NAMES, VARIABLES, AND
ARRAYS

3.1
3.2

General ...•.•.••....•.•.
INTEGER Data Types •••••
3.2.1 Integer Constants. • •

1-1
1-3
1-3
1-5

2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-3
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-6
2-7
2-7
2-7
2-7
2-7
2-9

2-10
2-11
2-11

3-1
3-1
3-2

iii

3.3 REAL Data Type •.•••••••.•
3.3.1 Real Constants •.••••

3.4 DOUBLE PRECISION Data Type ...
3.4.1 Double Precision Constants.

3.5 COMPLEX Data Types ••••••
3.5.1 Complex Constants.

3.6 Bit Data Type
3.7 LOGICAL Data Types ••••••••

3.7.1 Logical or Bit Constants.
3.8 CHARACTER Data Type

3.8.1 Character Constant ••••
3.8.2 Character Constants

versus Hollerith Constants
3.9 Hollerith Constants
3.10 Hexadecimal Constants ••
3.11 Binary Constants
3.12 Octal Constants.
3.13 Symbolic Names.

3.13.1 Implicit Typing Conventions
3.14 Variables
3.15 Arrays •

3.15.1 Array Declarators
3.15.2 Dimensions of an Array ••
3.15.3 Subscripts •••
3.15.4 Array Storage

CHAPTER 4 EXPRESSIONS

4.1
4..2

4..3

4..4

4..5

4.6
4.7

4..8

General•......
Arithmetic Expressions ••••••••••••••••••
4.2.1 Evaluation of Arithmetic Expressions.
Character Expressions •••••••••••••••••
4.3.1 The Value of a Character Expression
4.3.2 Character Constant Expression

4.3.2.1 Character Substring
Relational Expressions •••••••••••••
4.4.1 Relational Operators •••••••
4.4.2 Arithmetic Relational Expressions.
4.4.3 Character Relational Expressions
Logical Expressions •••••••••••••••••
4.5.1 Logical Operators ••••••••••••
4.5.2 Evaluation of Logical Expressions
Use of Hollerith Constants in Expressions ••
Use of Hexadecimal, Binary, and Octal Constants

in Expressions ••••••••
Use of Strings in Argument Lists.

CHAPTER 5 ASSIGNMENT STATEMENTS

5.1
5.2
5.3
5.4
5.5
5.6
5.7

iv

General
Arithmetic Assignment Statements
Logical Assignment Statements •••
Character Assignment Statement
ASSIGN Statement •••••••••••
Multiple Assignment Statements
Full Array Assignments •••••••

...

.

....

3-3
3-4
3-5
3-5
3-6
3-7
3-8
3-8
3-8
3-9
3-9

3-10
3-10
3-11
3-12
3-12
3-13
3-13
3-14
3-14
3-15
3-15
3-16
3-17

4-1
4-1
4-6
4-7
4-8
4-8
4-8

4-10
4-10
4-10
4-11
4-12
4-12
4-14
4-15

4-17
4-18

5-1
5-2
5-8
5-9

5-10
5-11
5-12

Q-lAPTER 6 CONTROL STATEMENTS

6.1
6.2

6.3

6.4

6.5
6.6
6.7
6.8
6.9
6.10
6.11

6.12
6.13
6.14

General e • • • • • • • • • • • • • •• 6-1
GO TO Statements a ••••••••• iii. 6-2
6.2.1 Unconditional GO TO Statement • • • • • • • • • • • • • • . • . . • • . • . • .• 6-2
6.2.2 Computed GO TO Statement ••••••••••••••••••.•••••••.•• 6-3
6.2.3 Assigned GO TO Statement. • • • • • • • . • • • • • • • • • • • • . • • • • • . •• 6-4
IF Statements * 6-5
6.3.1 Arithmetic IF Statement •••••••••••••••••••••••..••.•••• 6-5
6.3.2 Logical IF Statement ••••••••.•••••••••••••••.••••••••• 6-6
6.3.3 Block IF Construct. • • • • • • • • • • • • . • • • • • • • • • • • • • • • • • • • . •• 6-7

6.3.3.1 IF THEN Statement •••••••••••••••••••. • • • • • •. 6-8
6.3.3.2 ELSE IF THEN Statement. • • • • • • • • • • • • • • • • . • • • •• 6-9
6.3.3.3 ELSE Statement. • • • • • • • • • • • • • • • • • . . . • • • • • • •• 6-11
6.3.3.4 END IF Statement •••••••••••••••••••• • • • • . •• 6-12
6.3.3.5 Nested Block IF Construct ••••••••.••••••••.••• 6-13
6.3.3.6 IF Level. .. 6-14

DO Statement ,. 6-15
6.4.1 Range of the DO Statement ••••••••••••••••••••••••.•.. 6-16
6.4.2 Active and Inactive DO Loops. •• 6-16
6.4.3 Terminal Statement of the DO •••••••••••••••.•••••••••• 6-17
6.4.4 Index of the DO .. 6-17
6.4.5 DO Iteration Control ••••••••••••••••••••••••••••••••• 6-18
6.4.6 Nested DO Loops. • • • • • • • • • • • • • • • • • . • • • • • • . • • . • • • • . •• 6-18

6.4.6.1 Transfer of Control in
Nested DO Loops •••••••••••••••••••••••••.•

DO Forever Statement
DO UNTIL Statement .. .
DO WHILE Statement ~
LEA VE Statement
CONTINUE Statement •••••••••••••••••••••••••••••••••.•••••
END DO Statement GO

SELECT CASE Control Structure •••••••••••••••••••••••••••.•••.
6.11.1 SELECT CASE Statement •••••••••••••••••••••••••.••.•
6.11.2 CASE Statement ••••••••.•••••••••••••••••••••••..••.
6.11.3 END SELECT Statement ••••••••••••••••••.•.••••••.•••
STOP Statement •••••••••••••••••••••••••••••••••.••••••..••
END Statement ,. .. ,. ,. ' ... ,.
PAUSE Statement

6-19
6-20
6-21
6-22
6-23
6-24
6-24
6-25
6-25
6-26
6-27
6-28
6-28
6-29

Q-lAPTER 7 SPECIFICA nON STATEMENTS

7.1 Introduction. • • • • • • • . • . • • • • • • • • • • • • .• 7-1
7.2 DIMENSION Statement. • . • • • • • • • • . . • . . • . • .. 7-2
7.3 Type Statements ••••••••••••.••••••••••••.•.•.•.•.•.•.•..•.• 7-3

7.3.1 Explicit Type Statement ••••••.•.••••.•••••• '.' 7-4
7.3.2 Explicit CHARACTER Statement ••••••• . • • • • • • • . . • • • • • . •. 7-6
7.3.3 IMPLICIT Statement. . • . • • • • • • • • • • • • • • . . • • • . . • . • • • . • • •. 7-8
7.3.4 IMPLICIT NONE Statement. •••••••••••••..•••••••••••••. 7-9

7.4 PARAMETER Statement •.•.•••••••••••••.••.••••.•.••.•••.•.. 7-10
7.5 COMMON Statement ••••.•.••.•••••••••••••••••••••..••••.•• 7-11

7.5.1 Global COMMON • • • • • • • • • • • • • • • • . • • • . • • • • • • . • • • • . . •. 7-13;
7 .5.2 OAT APOOL . . • • • . • • • • • . • • • . • • . . • . . • . • • . . • . . . • • • . • •. 7-14

7.6 EQUIVALENCE Statement .••••...••••••••••.•••.•.•••.•.....• 7-15
7.6.1 EQUIV ALENCE and Boundaries. . • • • . • • • . • • . • • • • . • 7-16
7.6.2 EQUIV ALENCE and Arrays. • • • • • . . • • • • . • • 7-17

Change 1
v

7 .6.3 EQUIVALENCE and Substrings 00 0 • 0 • •• 0 0 0 •••• 0 • • • • • • • • • •• 7 -20
7.6.4 EQUIV ALENCE and COMMON Interaction . • • • . • . • • • • • • • • • • •• 7 -22

7.7 EXTERNAL Statement. • . • . .. 7-23
7.8 INTRINSIC Statement. • • • • • • • • • • . . • . • • . .. 7 -25
7.9 SAVE Statement .. eo ... •• 7-26

CHAPTER 8 OAT A STATEMENT

8.1 General 8-1
8.2 Implied DO in a DATA Statement ••••••. • .. 8-4

CHAPTER 9 FUNCTIONS AND SUBROUfINES

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9
9.10
9.11

General
9.1.1 Dummy Arguments
Statement Functions
9.2.1 Referencing a Statement Function ••••.••.•••••••••..•••••..
Intrinsic Functions ... 11

9.3.1 Specific Names and Generic Names ••••.•.•••.•.••.•••••.•..
9.3.2 Inline Intrinsic Functions ••••••••••••••••••.••••••••.••...
Function· Subprogram
9.4.1 Referencing a Function Subprogram ••••••••.•••••••.•••••..
Subroutine Subprograms _
9.5.1 Referencing a Subroutine Subprogram •.•••••••••.••••••••.•
Internal Procedures (Function and Subroutine) ••••••••••••••••••••••
9.6.1 Dummy Arguments '
9.6.2 Referencing Internal Procedures ••••••••••••••.•••••••••••
ENTRY Statement _ ... _ _
9.7.1 ENTRY Association •••••••••••••••••.••••••••••••••••.
Function and Subroutine Subprograms Returns ••••••••••••••••••••.•
9.8.1 Alternate Returns ___ . _ _
Processing Arrays in Subprograms •••..••••••••••••.•••.•••.•••..
Processing of Arguments for Subprogram Calls ••••••••••••.••••..•.•
Mismatched Argument Lists _ .. _

9-1
9-1
9-3

9-5
9-6
9-6

9-19
9-20
9-21
9-22
9-24
9-25
9-25
9-26
9-27
9-27
9-28
9-30
9-31
9-32

CHAPTER 10 BLOCK DATA SUBPROGRAMS

10.1 Introduction ". _ ... _ .. _ _ .. e _ ••• __ • • • • • • • • • • • • • •• 10-1
10.2 BLOCK DATA Statement • • • . • . • • • • • • • • • •• 10-1

CHAPTER 11 INPUT IOUTPUT

11.1 Introduction ... _ .. 11-1
11.2 Records...................... .. 11-1
11.3 Files _ .. 11-2
11.4 Sequential and Direct Access Methods. •• 11-3
1l.5 Blocked and Unblocked Files •••. ' • • • • • • • • • • • • • . • • • • • • • • • • • • • . • •. 11-3
11.6 Control Information List. • . . • • • • • • • •• 11-4

11.6.1 The Unit Speci fier •.•••••••••••.••••••.•••.•••••••• .• 11-5
11.7 Input/Output List. • • . • • • • • • • • • . • • • • • • . . . • • . • • . . • . • . . . • • • 11-5

11.7.1 Single Datum Identifier ••.••.•.•.•••••••.••.••.••...•.. 11-6
ll. 7.2 Multiple Data Identifiers. • . • . • • • . • . . . • . . . • . . . • • . . • . • . .. 11-6

1l.S Control and Interpretation of Data •.•...•..•.. , • • .. 1.1-7

vi

~
\

11.9

11.10

11.11

11.12
11.13
11.14

Input/Output Statements. •• 11-8
11.9.1 Input Statements •••••••••••••••••••••••••••••••••• 11-8
11.9.2 Output Statements ••••••••••••••••••••••••••••••.•• 11-13
11.9.3 Input and Output Using NAMELIST ••••••••••••••••••••• 11-19

11.9.3.1 Input from a User Terminal •••••••••••••••••• 11-20
11.9.3.2 Input from

Other Than a User Terminal •••••••••••••••• 11-20
11.9.3.3 Input Data Item Format •••••••••••••••••••• 11-21
11.9.3.4 Output Data Formats •••••••••••••••••••••• 11-22

List-Directed Formatting •••••••••••••••••••••••••••••••••••• 11-24
11.10.1 List-Directed Input ••••••••••••••••••••••••••••••••• 11-25
11.10.2 List-Directed Output ••••••••••••••••••••••••••••••• 11-26
Auxiliary Input/Output Statements ••••••••••••••••••••••••••••• 11-27
11.11.1 OPEN Statement •••••••••••••••••••••••••••••••••• 11-27
11.11.2 CLOSE Statement ••••••••••••••••••••••••••••••••• 11-39
11.11.3 INQUIRE Statement •••••••••••••••••••••••••••••••• 11-41

11.11.3.1 INQUIRE by File, Native Mode •••••••••••••• 11-41
11.11.3.2 INQUIRE by File, Compatible Mode ••••••••••• 11-41
11.11.3.3 INQUIRE by Unit, Native Mode •••••••••••••• 11-42
11.11.3.4 INQUIRE by Unit, Compatible Mode •••••••••• 11-43
11.11.3.5 INQUIRE Statement Specifiers •••••••••••••• 11-43

11.11.4 BACKSPACE Statement ••••••••••••••••••••••••••••• fl-51
11.11.5 BACKFILE Statement ••••••••••••••••••••••••••••••• 11-52
11.11.6 SKIPFILE Statement •••••••••••••••••••••••••••••••• 11-53
11.11.7 ENOFILE Statement •••••••••••••••••••••••••••••••• 11-54
11.11.B REWIND Statement •••••••••••••••••••••••••••••••• 11-56
ENCODE and DECODE Statements ••••••••••••••••••••••••••••• 11-57
BUFFERIN and BUFFEROUT (Asynchronous I/O) ••••••••••••••••••• 11-59
CALL STATUS .. 11-62 I

a-IAPTER 12 FORMAT SPECIFlCA TION

12.1 General. .. 12-1
12.2 Format Specification Methods. •• 12-1

12.2.1 FORMA T Statements •• 12-1
12.2.2 Format Specifications Stored in Variables

and Arrays. • .. 12-2
12.2.3 Format Specifications Expressed as Character

Constants•........... 12-2
12.3 Form of a Format Specification •••••••••••••••••••••••••••••••• 12-3

12.3.1 Edit Descriptors. •• 12-3
12.3.2 Interpretation of Blanks on Input. •• 12-4

12.4 Format Control List Specifications and Record

12.5
12.6

Demarcation .. 12-5
F arms Control on Output 12-6
Numeric Editing ... ~•............... : ,12-7
12.6.1 0 Editing and Output •• .• 12..:7
12.6.2 0 Input 12-8
'12.6.3 E Editing. • .. 12-9
12.6.4 E Output and Input. •• 12-9
12.6.5 F Editing 12-10
12.6.6 F Output and Input ••••••••••••••••••••••••••••••••• 12-10
12.6.7 G Editing•...•..................... 12-10
12.6.8 G Output and Input ••••••••••••••••••••••••••••• ' •••. 12-11
12.6.9 Complex Editing •••••••••••••••••••••••••••• ~ ••••.• 12-12
12.6.10 I Editing ... 12-12

ChEmge 1
vii

12.7

12.8

12.9

12.10
12.11
12.12
12.13

12.6.11
·12.6.12
12.6.13
12.6.14
12.6.15
12.6.16

I Output.
I Input ••
Z Editing
Z Output
Z Input
S, SP, and SS Descriptors

12.6.17 BN and BZ Descriptors
Character Editing •••••
12.7.1 A Editing.
12.7.2 A Output ••
12.7.3 A Input ••
12~7.4 Apostrophe Editing.
12. 7 ~5 H Editing ••••••••
12.7.6 H Output ••••••••
12.7.7 A Editing with Noncharacter Data Types
12.7.8 A Output with Noncharacter Data Types
12.7.9 A Input with Noncharacter Data Types ••
12.7.10 R Editing.
12.7.11 R Output
12.7.12 R Input •
Logical Editing •••••
12.8.1 L Output
12.8.2 L Input
Positional Editing •••
12.9.1 The X Descriptor
12.9.2 The T Descriptor
Scale Factors ••••••••
Repeat Specifications ••
Field Separators.
Colon Descriptor •••••

a-lAPTER 13 EXTENDED ADDRESSING

13.1
13.2
13.3
13.4
13.5

Introduction ••••••••••••••
EXTENDED BLOCK Statement
EXTENDED BASE Statement
Extended Dummy Statement ••
Extended Memory Restrictions

a-fAPTER 14 INLINE ASSEM3L Y LANGUAGE CODING

14.1
14.2
14.3
14.4
14.5
14.6

14.7
14.8
14.9

viii

Introduction .•••
Label Field
Operation Field
Argument Field
Comment Field
General Instruction Format.
14.6.1 Memory Reference Instructions.
14.6.2 Interregister Instructions
14.6.3 Immediate Operand Instructions
14.6.4 Memory Bit and Condition Code Instructions
14.6.5 Operation Control Instructions
Argument Field Conventions
OAT A Directive ••
GEN Directive ...•.. , . , ••

. ..

.12-12
• .12-13
· .12-13
• .12-13

.12-14
· .12-14
• .12-15

•.••• 12-16
. • . • •. •. 12 -16

...

.12-16
.•• 12-17

.12-l7
· .12-17
· .12-17

.12-18
· .12-18

.12-18
• .12-19
· .12-19

.12-19

.12-20

.12-20
· .12-20
· .12-21
· .12-21
• .12-21

.12-22

.12-24

.12-26
· .12-27

13-1
13-1
13-2
13-2
13-4

14-1
14-1
14-1
14-1
14-1
14-2
14-2
14-3
14-3
14-3
14-L
14-L
16.-L:
lL.;.-S

.. ./

14.10
14~1l
14.12
14.13
14.14

14.15
14.16
14.17

AC Directive '. 14-5
BOUND Directive. .. 14-5
RES Directive ~ 14-6
EQU Directive.. 14-6
Referencing Variables in Local Storage,

COMMON, GLOBAL COMMON, or DA T APOOL • • • . • • • • • • • • • • • • • •• 14-6
Referencing Dummy Variables. •• 14-6
Referencing Variables in Extended Memory ••••••••••••••••••••• •• 14-7
Setting and Clearing Extended Addressing Mode. • • • • • • • • • • • • • • • • • •• 14-7

CHAPTER 15 USING TI-E FORTRAN 77+ COtvPD....ER

15.1 Introduction.. • 15-1
15.2 Logical File Code Assignments •• 15-1
15.3 Compiler Options.. ... 15-1
15.4 Run-Time Options .. 15-3
15.5 Job Control Language.. 15-3

15.5.1 Compiling 15-4
15.5.2 Compiling, Cataloging, and Executing ••••••••••••••••••• 15-4
15.5.3 Compiling and Cataloging. • •• •• 15-5

15.6 Using a Tape File as a Data Source ••••••••••••••••••••••••••••• 15-5
15.7 Using a Disc File for Output Data •••••••••••••••••••••••••••••• 15-6
15.8 Using Data from Cards. .. 15-7
15.9 Calling Assembly Routines from FORTRAN 77+ Programs. • • • • • • • • • • •• 15-7

15.9.1 Assembly Routine with No Parameters ••••••••••••••••••• 15-8
15.9.2 Assembly Routine with One Parameter •••••••••••••••••• 15-8
15.9.3 Assembly Routine with Two or More Parameters ••••••••••• 15-8
15.9.4 Parameter Area. •• 15-8
15.9.5 Calculation of the Return Address. •• 15-9
15.9.6 Function Calling Conventions ••••••••••••••••••••••••• 15-17

15.10 Calling FORTRAN 77+ Subroutines from Assembly
Language Programs•....... , 15-17

15.10.1 FORTRAN 77+ Subroutine with No Parameters ••••••••••••• 15-17
15.10.2 FORTRAN 77+ Subroutine with One Parameter •••••••••••• 15-17
15.10.3 FORTRAN 77+ Subroutine with Two or

More Parameters ... 15-18
15.10.4 Parameter Lists Generated by the Compiler ••••••••••••••• 15-18

APPENDIX A I/O USING MPX-32

A.l Input/Output Terms ... A-I
A.2 General Observations •••.•••••••••••••••••••.••.••..••••••••• A-21
A.3 End~of-File. Detection ~ A-2 '
A.4 Maxlmum Slzes •• A-2
A.5 Unformatted I/O Records ••••••••••••••••••••••••••••••••••••• A-3
A.6 Device Type Codes " A-4

APPENDIX BUSTING EXAMPLES

B.l

B.2

B.3

Source Listing ... B-1
B.l.1 Source Listing Format ••••••••••••••••••••••••••••••• B-1
Storage Dictionary .. 8-9
B.2.1 Storage Dictionary Format ••.••••••••••••••••••••••••• B-9
Symbolic Cross Reference. •• B-13
B.3.1 Symbolic Cross Reference Format •••••••••••••••••••••• B-13

Change 1
ix

8.4 Generated Code Listing
8.4.1 Generated Code Listing Format.

APPENDIX C Ascn CODE SET ••••••••••••••

APPENDIX D DIAGNOSTICS

0.1 Compile-Time Diagnostics
0.1.1 Source Line Errors
0.1.2 Context Errors •••
0.1.3 Abort Codes - FT

10 .2 Execution-Time Diagnostics
0.2.1 lOST A T Values •••
0.2.2 Abort Codes - RS and RT

0.3 Minor Errors

I APPENDIX E COMPARISON CF FORTRAN 77+ AND FORTRAN 77/X32

~DEX •••••

Change 1
x

8-9
8-9

C-l

0-1
0-1
0-1
0-3

.0-4A

. .0-5
O-ll
0-18

. E-l

IN-l

/

f

l,,; __

FIGURES

Figure

2-1 Order of Statements. . . • 2-4
3-1 Array Storage .. 0 • •• 3-18
6-1 Simple Block IF Construct. •• 6-8
6-2 Block IF Construct with ELSE IF THEN Statement Block. • • • • • • • • • • • • • •• 6-9
6-3 Block IF Construct with Multiple ELSE IF THEN

Statement Blocks. .. 6-10
6-4 Block IF Construct with ELSE Statement Block •••.••••••••••••••••• 6-11
6-5 Nested DO Loops 6-18
7-1 Mixed Data Type Storage in Common. •• 7-12
7-2 Equivalence of Character Arrays. •• 7-21

TABLES

Table

1-1 FORTRAN 77 +/SRTL Installation Modes ••.•••••••••••••••••••••••• 1-2
4-1 Expression Type Determination from Arithmetic

4-2
4-3
7-1
7-2
7-3
9-1
9-2
9-3
9-4
11-1
11-2
11-3
15-1
15-2

Operands of Different Types •• 4-4
Hollerith Constants Used with Operators •• 4-15
Hollerith or Hexadecimal String Conventions •. 4-18
Standard and Optional Type Lengths •••••••••••••••••••••••••••••• 7-3
Equivalence of Array Storage •••••••••••••••• '.................. 7-18
Equivalence of Arrays with Nonunity Lower Bounds •.•••••••••••••••• 7-19
Arithmetic and Conversion Intrinsic Functions •• 9-7
Lexical Comparison Intrinsic Functions ••••••••••••••••••••••••••• 9-14
Word and Bit Intrinsic Functions •••••••••••••••••••••••••••••••• 9-15
Trigonometric Intrinsic Functions ••••••••••••••••••••••••••••••• 9-17
Input Statements•.........•..........•..• 1.1-11
Output Statements .. 11-16
Maximum Transfer Counts (E Class) •••••••••••••••••••••••.•••••• 11-60
Compiler Parameter Lists 15-19
Type Code < •• 15-20

xi/xii

(~--.

CHAPTERl

INTRODUCTION

This manual describes the Gould Model 1413-2 FORTRAN 77+ compiler, which supports a
superset of ANSI X3.9-l978 when combined with the Gould Scientific Run-Time
library. FORTRAN 77+ also complies with MIL-STD-1753 and ISA Standards 561.1 and
561.2.

Ll Modes of Installation

There are four possible installation modes for the FORTRAN 77+ compiler. They are:
native/hardware assisted, native/non-hardware assisted, compatible/hardware assisted,
and compatible/non-hardware assisted.

The native and compatible aspects of the compiler are indicative of the file system
interface being selected with regards to the Scientific Run-time library (SRTL). Code
for accessing available MPX.;32 resources, when generated by the native mode compiler,
will call SRTL routines which access the MPX-32 file system in accordance with methods
nati.ve only to MPX-32 Rev. 2 and Rev. 3. Similar code, when generated by the
compatible mode compiler, will call SRTL routines which access the MPX-32 file system
in accordance with methods compatible with MPX-32 Rev. 1. The installation of this
release of the compiler is not supported on MPX-32 Rev. 1. However, FORTRAN source
code developed under prior releases of FORTRAN 77+ running under MPX-32 Rev. 1, will
still be valid if compiled in the compatible mode.

The hardware assisted and non-hardware assisted aspects of the compiler allow for the
selection or non-selection of cer:tain hardware floating point instructions. These are
available on CONCEPT 32/67, 32/87 and 32/97 machines. Code generated by the
compiler in the hardware assisted mode will contain special hardware FIX/FLOAT
register to register instructions whenever conversion from floating point math to fixed
point or vice versa is required. Code generated in the non-hardware assisted mode will
contain calls to SRTL floating point and fixed point conversion routines when such
conversion requirements exist.

The compiler can be used in the default mode in which it was installed, or it can
optionally be used in other modes. If the compiler is installed with the native mode as
default, compatible mode can still be selected by setting TSM option 12 at the beginning
of compilation. Conversely, option 17 allows the selection of native mode from a
compiler which was installed with compatible mode as the default. If both options 12 and
17 are used, the compiler will default to compatible mode no matter what the
installation default mode was. Option 13 will allow a compiler installed with hardware
assisted mode as its default to run in the non-hardware assisted mode. There is no option
to allow a compiler installed in the non-hardware assisted mode to run in the hardware
assisted mode. Chapter 15 describes the compiler options.

In order to catalog programs compiled under FORTRAN 77+, the SRTL must be assigned
as one of the available object libraries to the cataloger. Selection of the mode for the
SR TL can not be changed by options but is solely dependent upon which installation of

FORTRAN 77+
Reference Manual Introduction 1-1

the SRTL is assigned to the cataloger. The SRTL has the same possible installation
modes as does the compiler. It is therefore recommended that the modes selected at
installation for the SRTL, match those selected for the compiler installation.

Table 1-1
FORTRAN 77+/SRTL Installation Modes

REV. 2 REV. 3

NON-HW compatible
SERIES 32/7X AssiST --- --I- - - - ---- - -

ONLY native *

NON-HW compatible compatible
CONCEPT 32/27 ASSIST 1------~-- - ------

ONLY native native *

HW compatible
ASSIST native *

CONCEPT 32/67 - - - - r- - -- -1----- - - - --
NON .. HW compatible
ASSIST native .

HW compatible compatible
ASSIST native native *

CONCEPT 32/87 - - - - 1-----to-- -- - - - - ---
NON-HW compatible compatible
ASSIST native native

HW compatible
ASSIST native *

CONCEPT 32/97 - - - -r- - - - ~ - - - -- - -
NON-HW compatible
ASSIST native

* - RECOMMENDED

Care must be taken at all times, to ensure that the modes used during compilation match
the modes of the SRTL used during cataloging. The programming aspects that are mode
dependent are so indicated in this manual. For a complete description of the file
systems, refer to the MPX-32 Reference Manual. The SRTL Reference Manual further
describes the relationship between the SRTL and the compiler.

1-2 Introduction
FORTRAN 77+

Reference Manual

t .. /

1.2 FORTRAN 77+ Release 4.1 Versus Release 4.0

Release 4.1 of the FORTRAN 77+ compiler differs from Release 4.0 in the following
ways:

• The compiler may optionally use big blocking buffers for blocked I/O as defined by the
operating system on which the compiler is running.

• Regular FORMAT statements are now converted to format item tables. These are
readily used by the run-time library routines to eliminate redundant re-evaluation of
formats during run time 1/0. .

• The overlay structure of the compiler has been replaced by sectioned code to make
the compiler a shared task. Symbol tables and work stacks are now in a 32K word area
of extended memory. This completely eliminates the need for, and prohibits the use
g!, the $ALLOCA TE directive at compiler execution time.

Extended memory addressing has been improved.

• The logical functions lAND, lOR, IEOR, and NOT will now be expanded inHne unless
these functions are specifically defined as external to the program. .

• Date and time of compilation and product identification information is now collected
at the user's option and stored in the object code and load module.

• A second conditional compilation marker, Y, has been added to the already available
marker, X.

• The utility of BUFFERIN/BUFFEROUT has been modified so that the user can select a
"sector specifier" as an optional parameter in order to do random 1/0 on disc files
only.

• Modifications were made to allow FORTRAN 77+ to resolve bit variables in
DA T APOOL items.

• Identification of file system mode and hardware assist and/or Scientific Accelerator
67 options are listed on the title output line.

1.3 FORTRAN 77+ Versus ANSI X3.9-1978

The full language of ANSI X3.9-1978 is supported. However, FORTRAN 77+ differs from
it in the following ways:

• Assembly language statements can be intermixed with FORTRAN 77+ statements.

• The first four characters of a keyword (or the entire keyword if fewer than four
characters) must be on a single line. For IF statements, the subsequent opening
parenthesis is considered part of the keyword.

· The receiving operand and the equal sign of an assignment (replacement) statement
must appear on the same line. This line must be the first line of the statement unless
the assignment statement follows a logical IF. In that case, the replacement must
occur no later than the end of the first line after the end of the logical expression or
closing parenthesis.

FORTRAN 77+
Reference Manual Introduction 1-3

•

• The equal sign and first comma of a 00 statement must appear on the initial line of
the statement.

• Symbolic names can be of unlimited length. However, only the first eight characters
are significant in establishing identity. The colon (:) and underline U characters are
permitted in names.

• Statements are not limited to 19 continuation lines.

Hexadecimal, binary, octal, and Hollerith constants are permitted in DA T A
statements.

• Multiple statements per line, separated by semicolons, are permitted.

• Multiple assignment statements are provided.

• Additional format codes (Z and R) are prov ided.

An additional form of Hollerith constant (nR) is provided.

• Hexadecimal, binary, and octal constants (Z and X, B, and 0 forms) are provided.

• Subscript expressions are converted (truncated) to integer values.

• Data type specification statements (implicit or explicit) can specify a size for each
variable as follows:

Integer byte (INTEGER*l)
Integer halfword (INTEGER*2)
Integer word (INTEGER or INTEGER*4)
Integer doubleword (INTEGER *8)
Real (REAL or REAL*4)
Double preCision (DOUBLE PRECISION or REAL*8)
Complex word (COMPLEX or COMPLEX*8)
Complex doubleword (COMPLEX*16)
Logical bit (BIT)
Logical byte (LOGICAL*l)
Logical word (LOGICAL or LOGICAL *4)

• Explicit data type specification statements can include data initialization.

• The capability of assigning a value to a full array with a single assignment statement
is prov ided.

• The IMPLICIT NONE statement is provided.

• 00 statement extensions such as 00 forever, 00 WHILE, 00 UNTIL, END 00, and
LEAVE are prov ided.

• SELECT CASE, CASE, CASE DEFAULT, and END SELECT are provided.

• INTERNAL procedure statements are provided.

• Additional input/output features are provided:

Asynchronous input/output (BUFFERIN and BUFFEROUT)

1-4 In trod uction
FORTRAN 77+

Reference Manual

(

(

PUNCH, TYPE, and ACCEPT statements with implied unit designators (file
codes)

ENCODE and DECODE compatible with FORTRAN IV

Namelist READ/WRITE

BACKFILE and SKIPFILE

I/O unit status availability by means of STATUS and EOF subroutines

· Additional comment features are provided:

End-of-lin~ comments initiated by an exclamation mark CD
Optional compilation of X and Y comment lines

• No check is made at compile time or execution time on the type of arguments supplied
in subroutine calls or function references.

No checks are made on the values of array subscripts, except in EQUIVALENCE
statements.

• The format specifier in a formatted READ or WRITE statement can be a variable,
array element, or array name with a data type other than CHARACTER.

• The unit specifier in an input/output statement can be a logical file code in the form
'lfc', where 'lfc' consists of from 1 to 3 ASCII characters.

· Statements are provided for using the extended memory feature (EXTENDED BLOCK,
EXTENDED BASE, EXTENDED DUMMY).

• USER, INCLUDE, SPACE, PAGE, and OPTION directives are provided.

1.4 Documentation Conventions

The conventions followed in documenting command syntax, examples, and messages in
this manual are:

• lowercase letters identify a variable element that must be replaced with a value. For
example,

PROGRAM name

means you must enter the symbolic name of the main program in which the
PROGRAM statement appears.

• UPPERCASE LETTERS specify a string that must be entered as shown for input, and
is printed as shown in output. For example, .

PROGRAM name

means enter PROGRAM followed by the name.

• Brackets surrounding an element specify it as optional. For example,

DO [x] [,] UNTIL (e)

means x and the comma (,) are optional.

FORTRAN 77+
Reference Manual Introduction 1-5

• Braces surrounding elements specify a required choice. You must enter one of the
arguments from the group. F' or example,

OPTION nl t =- }
means enter either a plus sign (+) or a minus sign (-).

• Parentheses are part of the command line typed by the user and must appear as shown
in statement syntax when input. F' or example,

IF (e) THEN

means an expression e is required and must be enclosed by parentheses.

· Horizontal ellipsis following an element means the element can be repeated as many
times as needed. F' or example,

CASE canst 1 [, constZ] •••

means enter one or more constant expressions separated by commas.

· Vertical ellipsis specifies that commands, parameters, or instructions are omitted.
F' or example,

J=3

GO TO US

means one or more commands are omitted between the J=3 and the GO TO US
commands.

, specifies a blank. F' or example,

~&NAM1~I(Z,3)=S,

means &NAMl must be preceded and followed by a blank.

• A carriage return is required at the end of every input line in programming examples.

1-6 Introduction
F'ORTRAN 77+

Reference Manual

~
/

CHAPTER 2

THE FORTRAN 77+ PROGRAM

.
2.1 Program Units

A FORTRAN 77+ program is composed of one or more program units. A program unit
consists of a sequence of statements and optional comment lines. A program unit is
either a main program or a subprogram. The last line of a program unit is denoted by an
END statement.

2.1.1 Main Program

A main program is a program unit that does not have a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement; it can have a PROGRAM statement as
its first statement.

A FORTRAN 77+ program must have one and only one main program. A main program
can not be referenced by a CALL statement within another program unit.

2.1.2 PROGRAM Statement

A PROGRAM statement is not required. If used, it must be the first statement of the
main program.

Syntax

PROGRAM name

name The symbolic name of the main program in which the PROGRAM statement I
appears. This name may not be used as a variable name elsewhere in the
main program.

The name MAIN is assigned to a main program that does not contain a PROGRAM
statement.

2.1.3 Subprogram

A subprogram is a program unit that has a FUNCTION, SUBROUTINE, or BLOCK DATA
statement as its first statement.

FORTRAN 77+
Reference Manual The FORTRAN 77+ Program

Change 1
2-1

Fields

2.2 Fields

Each line of a FORTRAN 77+ program is divided into four fields.

/""".--------------.. Une Character Positions -----------.. ~I

1 2 3 4 5 6 7 8... . .• 72 73 80
~~----.... ~¥~ .. ----,,1~ ~~ ____ ~~~ __ --~~ '-~ ____ y~---'/

Statement
Label Field

Continuation
Field

2.2.1 Statement Label Field

Statement
Field

Identification
Field

A statement label is a numerical means of referring to an individual line of a FOR TRAI'J
77+ program. The statement label field is character positions 1 through 5.

The following rules govern the use of statement labels:

• A label is an integer from 1 to 99999. Leading zeros and leading or embedded blanks
in the label are not significant. Each of the following statement labels is the number
102.

1 2 3 4 5 •••
1 0 2

1 a 2
a a 1 a 2

• A label is placed on the initial line of a statement.

• A label is unique within a program unit.

• Any statement can be labeled, but only executable and FORMAT statements can be
referenced by the use of statement labels.

2.2.2 Continuation Field

The continuation field, character position 6, indicates that the line is a continuation
line. Continuation lines are used when a statement is too long to fit on one line.

The following rules govern the use of continuation lines:

• Character positions 1 through 5 are blank.

• Character position 6 contains any FORTRAN 77+ character except blank or zero.

• Character positions 7 through 72 contain the continuation of the statement.

• There is no limit on the number of continuation lines used.

2-2 The FORTRAN 77+ Program
FORTRAN 77+

. Heference Manual

',,-- ./

f
"

Example

1 2 3 4 5 6 7 8
Y = (A*X**2+S**2+

+ C - (A**2+B**2))/
+ (A -B-C)

2..2..3 Statement Field

Statements

. •. 72

The statement field-character positions 7 through 72-contains assignment,
specification, con"trol, input/output, or function statements. These statements are
composed of keywords--such as DO and GO TO--along with constants, variables,
operators, and delimiters.

The first four letters of a keyword must be on the same line. For example, GO TO of a
GO TO statement and SELE of a SELECT CASE statement. Furthermore, the left
parenthesis of an IF statement must be on the same line as the keyword IF.

Blanks have no meaning in a statement field; therefore, they can be used to make
statements more legible.

2..2..4 Identification Field

The identification field-character positions 73 through 80--is used for comments or
other input that is not to be processed. The compiler ignores the field.

2..3 Statements

FORTRAN 77+ statements are composed of keywords used with constants, variables,
operators, and delimiters that are elements of the language set. FORTRAN 77+
statements are either executable, nonexecutable, or compiler directives.

2..3.1 Executable Statement

An executable statement specifies actions. There are three types of executable
statements:

Assignment
• Control
• Input/Output

2..3.2 Nonexecutable Statement

A nonexecutable statement specifies the nature and arrangement of data. There are six
types of nonexecutable statements:

Specification
• Data initialization
• State.ment function definition
• Subprogram
• Program
• Format or namelist

FORTRAN 77+
Reference Manual The FORTRAN 77+ Program 2-3

Statements

2.3.3 Compiler Directive Statement

A compiler directive statement provides information required for compilation. Compiler
directives are described in Section 2.6. These statements are:

• INCLUDE
• OPTION
• PAGE

SPACE
• USER

2.3.4 Order of Statements

Statements must be written in a certain order so that compilation proceeds as
expected. The order of statements and comments for FORTRAN 77+ is sl,lmmarized in
Figure 2-1.

Horizontal lines in Figure 2-1 indicate the order in which statements appear. For
example, PARAMETER statements follow BLOCK OAT A statements, but they precede
DATA statements. Statement function statements follow IMPLICIT and other
specification statements, but they precede executable statements.

Vertical lines in Figure 2-1 indicate the way in which statements can be interspersed.
F or example, FORMAT, ENTRY and NAMELlST statements can be interspersed with
PARAMETER, DATA, statement function, and executable statements; and with
IMPLICIT and other specification statements.

Comment
Lines
and

Compiler
Directives

2-4

PROGRAM, FUNCTION, SUBROUTINE, or
BLOCK OAT A Statement

PARAMETER
Statements

FORMAT,
ENTRY,

and
NAMELIST
Statements

DATA
Statements

END Statement

Figure 2-1. Order of Statements

The FORTRAN 77+ Program

IMPLICIT
Statements

Other Specifications
Statements

Statement
Function

Statements

Executable
Statements

810552A

FORTRAN 77+
Reference Manual

r
"

Unes

2.3.5 Multiple Statement

A multiple statement consists of several statements on the same line, with the
statements separated by semicolons. A label on a line with multiple statement applies to
the first statement on the line.

Example

10 I=N/4; J=N*M+4; X=Y(I,J)

is the same as

10 I=N/4
J=N*M+4
X=Y(I,J)

2.4 Unes

In addition to executable, nonexecutable, and compiler directive statements, FORTRAN
programs can also contain comment lines.

2.4.1 Comment Unes

Comment lines are explanatory notes within a program that make the program more
understandable to a programmer. Comment lines are ignored by the compiler.

The following rules govern the use of comment lines:

• Character position 1 has a C, *, X, or Y. Character positions 2 through 72 cafl contain
any character.

When option 20 is set, a line with an X in character position 1 is processed as a
FORTRAN n+ statement.

When option 9 is set, a line with a Y in character position 1 is processed as a
FORTRAN 77+ statement.

• A line with blanks in character positions 1 through 72 is a comment line.

Examole

1 2 3 4 5
*
C
C
X

678 •
T HIS I S A COMMENT LINE
NOTE THE CHARACTERS C AND
COLUMNI
P R I N T 100, A, B
FOR MAT C IHI , 'DEBUG', 2F10.3)

• •• 72

* I N

X 1 a a
C THE ABO V E TWO STATEMEN T S ARE
C T REA TED A S COMMENTS UN L E S S
C
Y
Y
Y
C
C
C

OPT ION 2 a
D 0 1=1,10

XC I)=Y(I)+ZC I)
END D 0
THE ABOVE
TREATED A
OPT ION 9

ISS E T

T H R E EST ATE MEN T 5
5 COM MEN T 5 U N L E 5 5
I SSE T.

FORTRAN 77+
Reference Manual The FORTRAN n+ Program

ARE

2-5

Olaracter Set

2.4.2 Trailing Comment

Comments added to the end of a statement are trailing comments. An exclamation point
(I) anywhere within character positions 7 through 72, except in character constants,
marks the beginning of a trailing comment. The trailing comment can continue through
character position 72 of that line.

Example

1 6 7 ••• 72
A=8*(C+O) TH 1 SIS A a:::MvENT

2.4.3 Initial Line

An initial line is the first line of a statement. The following rules govern the use of
initial lines:

• Character positions 1 through 5 may contain a statement label or each of the
character positions 1 through 5 must contain a blank.

• Character position 6 is a blank or zero.

Refer to section 1.3 for additional information.

2.5 Character Set

The following sections contain the characters which may be used in writing FORTRAN
77+ programs.

2.5.1 Alphabetic Characters

A,8,C,D,E,F ,G,H,I,J,K,l.,M,N,O,P ,G,R,S,T ,U,V ,W,X, Y ,Z,

a,b,c.d,e, f ,g,h,i,j,k,l,m,n,o,p,q,r,s, t,u, v, W,x, y,z

Lowercase ASCII letters are converted to uppercase except in Hollerith and character
strings. The order in which the letters are listed above specifies the collating sequence;
that is, A is less than Z, Z is less than a, and a is less than z.

2-6 The FORTRAN 77+ Program
FORTRAN 77+

Reference Manual

c

r ,

r

Compiler Directives

2.5 •. 2 Numeric Olaracters

0,1,2,3,4,5,6,7,8,9

The order in which the digits are listed above specifies the collating sequence; that is, 0
is less than 9.

2.5.3 Alphanumerics

Alphanumeric characters include all alphabetic and numeric characters, and the
characters colon (:) and underline (j.

2.5.4 Special Olaracters

"
II
$
%
&

*
+

/

Blank
Exclamation point
Quotation mark
Number sign
Dollar sign
Percent sign
Ampersand
Apostrophe
Opening parenthesis
Closing parenthesis
Asterisk
Plus sign
Comma
Minus sign
Decimal point
Slash
Colon

;
<
=
>
?
@
[
\
]

/

{

1

Semicolon
Less than
Equal sign
Greater than
Question mark
At sign
Opening bracket
Backslash
Closing bracket
Circumflex
Underline
Accent grave
Opening brace
Vertical line
Closing brace
Tilde

The order in which the special characters are listed above specifies the collating
sequence; that is, ! is less than $, and : is less than ;.

2.6 Compiler Directives

Compiler directives aid in listing control, selection of input from alternate files, and
dynamic changing of options during compilation. Syntactically, directives are treated as
comment lines. Directives cannot have continuation lines.

2.6.1 INCLUDE Directive

The INCLUDE directive is used to enter a portion of text from a named file with the
source to be compiled. The compiler processes the INCLUDE directive from the current
file, processes the source from the file specified in the INCLUDE directive, and
continues processing after the INCLUDE directive. Nesting of INCLUDE directives
within included source is permitted. The keyword INCLUDE must be within character
positions 7 to 72.

FORTRAN 77+
Reference Manual The FORTRAN 77+ Program 2-7

Compiler Directives

Syntax

INCLUDE 'pathname' [,start, end]

INCLUDE filename [, [password],[start, end]]

'pathname'

filename

password

start

end

Rules for Use

The pathname, enclosed in apostrophes, in the following form:

resource name

[...] (directoryyame)resource_name

@volume_name [..] (directory.!'ame) resource_name

volume name

directory_name

resource name

The 1 to 16 character volume name on which
the required resource resides.

The 1 to 16 character directory name on the
specified volume in which the required resource
is defined.

The 1 to 16 character name of a permanent disc
file to be located in the specified directory' on
the specified volume. It must contain source
text in blocked, uncompres~ed form.

The 1 to 8 character name of a permanent disc file containing source
text in blocked, uncompressed form. The default is the current user
(pirectory). If none is found, a system file of the same name will be
included. If a system file is to be used and a user file by the same
name exists, a USER directive with a blank user name must precede
the INCLUDE directive.

Ignored. (Permitted for compatibility.)

The beginning line number of the text to be included within the named
file. This is a physical line count, not a sequence number in character
positions 73 through 80.

The final line number within the named file of the text to be included.

• Either filename or pathname can be used in the INCLUDE directive. However, if
filename is used, the file will be allocated from the current working volume and
directory if it exists there. Otherwise, an attempt will be made to allocate it from
the system volume and directory.

• Pathname can be used to include files in volumes and directories other than the
current working volume and directory. This eliminates the need for the USER
directive and removes the restrictions associated with INCLUDE filename. Refer to
the MPX-32 Reference Manual for a complete description of pathname.

• If either start or end is used, both must appear. If using INCLUDE filename they must
be preceded by two commas if no password is used. However, if an END statement is
encountered before the end line number is reached, inclusion of text is terminated and
a warning message is issued.

Change 1
2-8 The FCJRTR,~N 77-t- i==rogram

FORTR.~N T""
Refereilce !vlanuai

I

/

i~ /

Compiler Directives

• If start and end are not specified, the entire text of the named file will be included for
compilation. Text following an END statement will not be included.

• An INCLUDE statement cannot have a continuation line.

• No other statement may appear in the same line as an INCLUDE statement.

• Some special characters cannot be used as part of filename or pathname since they I
are delimiters. These include comma (,), at sign (@), parentheses (()), and braces
({ }).

Examples

INCLUDE BIG FILE,,1,10
INCLUDE '@LANG 2(PROJECT4) NOTES',5,15
INCLUDE' "(FRufT) APPLE'
INCLUDE MYFILE" 11,20

The portions of text entered by the preceding directives could be complete program
units.

2.6.2 OPTION Directive

The OPTION directive initiates or suppresses specific compiler options within a
program. Refer to Chapter 15 for a list of compiler options and the rules concerning the
use of those options.

Syntax-l

n· 1·

OPTION n1 Cd [,n2 Cd ... ,ni td]

OPTION n+
OPTION n-

Valid option numbers

Turns option n on
Turns option n off

Example

OPTION 1+, 2+, 6-

The preceding example results in the following:

1+ Initiates option 1, which suppresses listed output
2+ Initiates option 2, which suppresses binary output
6- Turns off option 6, which lists generated code

Syntax-2

OPTION (DATE_TIME= {.:t.})
Example

OPTION (DATE _ TIME=+)

Rules for Use

• OPTION (DATE _ TItvlE=+) corresponds to the setting of TS M $OPTION 15.

• The date .and time are placed in the module's object code and can be recognized by the n
cataloger using cataloger option 15. Note that the cataloger will not process this.
information for load modules containing overlays.

FORTRAN 77+
Reference Manual The FORTRAN 77+ Program

Change 1
2-9

Compiler Directives

• The latest setting of OPTION 15 (DATE TIME) is in effect for the remainder of the
compilation unit, until changed by a source option (DA TE _TIME = { .:!:.}) statement.

Syntax-3

OPTION (PRODUCT _ID = 'module identifier')

module identifier ASCII string of up to 32 characters

Example

OPTION (PRODUCT _ID='This is the product identifier')

Rules for Use

I. The module identifier is placed in the module's object code and can be recognized by
I the cataloger by using cataloger option 15. Note that the cataloger will not process

this information for load modules containing overlays.

• If more than one module identifier is specified in a program unit, only the first one is
taken and an error message is issued.

• PRODUCT _10 is only in effect for the current program unit.

2.6.3 PAGE Directive

The PAGE directive causes the compiler's listed output to go to the top of the form. A
heading may be specified for the top of each page of listed output. The PAGE directive
itself is not in the listed output.

Syntax

PAGE [heading]

heading 1 to 62 ASCII characters.

Ru les for Use

• A heading, if specified, appears at the top of each subsequent page in the listed output
of the current program unit until changed by another PAGE directive containing a
heading. A PAGE directive without a specified heading does not change the current
heading.

• Consecutive PAGE directives without intervening text or bl"ank lines will generate one
page only.

Change 1
2-10 The FORTRAN 77 + Program

FORTRAN 77.
Reference Manus l

'C', '-,
"

r

Compiler Directives

Example

PAGE DO LOOP STRUCTURE
DO 20 NUMBER = I,J
M = NUMBER + K

20 D(M) = Q (M)

PAGE IF STRUCTURE
80 IF (I.GT .20) GO TO 115

PAGE
103 ALPH = .5

Note that the last PAGE directive will not result in a heading change.

2.6.4 SPACE Directive

The SPACE directive inserts a specified number of blank lines in a compiler listing. If
the output is to other than SLO or UT, and fewer than n blank lines remain at the bottom
of the page, blank lines will not be inserted at the top of the next page. The SPACE
directive itself is not in the listing.

Syntax

SPACE [n]

n An integer constant. The default for n is one.

Examples

SPACE 4

SPACE

! Four blank lines will be placed at this point in the listed output.

! One blank line will be placed at this point in the listed output.

2.6.5 USER Directive

The USER directive is required when selecting a file with the INCLUDE file directive
indicating the directory to be searched.

Syntax

USER [username [,key]]

username A sequence of 1 to 8 ASCII characters that redefines the directory.

key Ignored. (Permitted for compatibility.)

FORTRAN 77+
Reference Manual The FORTRAN 77+ Program. 2-11

Compiler Directives

Rules for Use

• The USER specified remains in effect until another USER directive is specified (unless
within an included file).

• A USER directive within an included file only applies to the next INCLUDE filename
directive.

• The USER directive with no username (e.g., USER •••) establishes the SYSTEM
directory, if one exists, on the current working volume as a default.

• The USER directive cannot be used to change to a username on a different volume.

Example

USER JOHNS, CD

2-12

! The USER name JOHNS becomes the username in
! effect for this task. The key, CD, is ignored.

The FORTRAN 77+ Program
FORTRAN 77+

Reference Manual

c
"

[

Q;APTER 3

OAT A TYPES, CONSTANTS, SYMBOUC NAMES, VARIABLES, ARRAYS

3.1 General

Symbolic names identify data items. Each symbolic name must have a data type;
constants always have a data type. The data type defines the operations that can be
performed on the data.

The seven data types are:

integer
real
double precision
complex
bit
logical
character

3.2 Integer Data Types

Integer data types are used to represent exact integer values. The four integer data
types differ in the range of values that each can represent and the number of bytes
required for storage (one storage unit = one byte).

How Specified in
Type Specifiers

INTEGER"l

INTEGER"2

INTEGER or INTEGER"4

INTEGER"B

Range of Values
Represented

o to 255

-32768 to 32767

(_215 to 215 - 1)

-2147483648 to 2147483647

(_231 to 231 - 1)

-9223372036854775808
to

9223372036854775807

(_263 to 263 - 1)

Number
of Bytes

1

2

4

8

For each of the integer data types, except INTEGER"l, negative values are represented
internally in twols complement form.

FORTRAN 77+
Reference Manual Data Types 3-1

Integer Data Types

Because Gould CSD hardware does not contain double precISion integer arithmetic
instructions such as multiply and d~vide, all such operations must be implemented by
software. Under this implementation, div~ion requires the use of a dividend's
complement. Since a maximum negative INTEGER*8 value does not have a complement,
division with this value as the dividend will result in an incorrect quotient.

3.2.1 Integer Constants

An integer constant represents an exact .value of the integer data type. The form of an
integer constant is a sign (optional for positive values) followed by a string of digits as
shown below. .

L!:.l d1 dZ• •• di

Digits interpreted as a decimal (base 10) number.

Rules for Use

• Integers must contain from 1 to 19 digits, not including leading zeros.

• A preceding plus sign (...) is optional for pqsitive numbers. A minus sign (-) is required
for negative numbers.

• No decimal point (.) or comma (,) is allowed.

• Blanks are aHowed, but are not significant.

The amount of precision indicated by the constant will determine the type of integer
storage required.

Examples

3-2

Valid Integer Constants

o
45
205
-94761

Invalid Integer Constants

38.
992829392029928293920564836
3,947

Error Analysis

Contains a decimal point
Exceeds the allowable range
Contains an embedded comma

Data Types
FORTRAN 77+

Reference Manual

/

I
"'-/

../

(,

(-;--
j

Real Data Type

3.3 Real Data Type

The real data type represents an approximation of a real number over a larger range than
allowed in the integer data types. The values can be positive, negative, or zero.

How Specified in
Type Specifiers

REAL or REAL *4

Range of Values
Represented

16-65 to 1663

Number
of Bytes

4

T he range of real numbers represented by the real da ta type is approxima tel y 5~ 10-79 to
7* 10 7 5 (in general, 6 to 7 digits of decimal accuracy).

The internal representation of the real data type in storage is as follows:

o

E
I I I I

7 8

F
I I I I

4 BYTES

I I
31

830623-18

A real number can be represented by a sign, a fraction, and an exponent. The sign (bit 0)
applies to the fraction and denotes a positive or negative value. If the sign is negative,
the entire word is the two's-complement of the absolute' value. The fraction is a
hexadecimal normalized number with the radix point to the left of the high order
fraction bit (bit 8). The exponent (bits one through seven) is a seven-bit number from
which 64 (decimal) is subtracted to obtain the power to which base 16 is raised.

All operands are assumed normalized before being operated upon. A positive number is
normalized when the value of the fraction is less than one and greater than or equal to
one sixteenth. A negative number is normalized when its two's complement is
normalized. The result, of an operation with normalized operands will be properly
normalized. Nonnormalized operands may produce incorrect results.

FORTRAN 77+
Reference Manual Data Types 3-3

Real Constants

3.3.1 Real Constants

A real constant represents an approximate value of a real number with the precision and
range of the real data type. The form of a real constant is an optional sign (for positive
values), an integer part, a decimal point, and a fractional part, in that order. 80th the
integer part and the fractional part are strings of digits; either of these parts can be
omitted, but not both. A real constant can contain an exponent, which is formed by the
letter E followed by an optionally signed integer constant. Therefore, a real constant
can be expressed in one of the following forms:

or or

where r is one of the following forms:

i .
• f
i.f

and i, f, and e are each sequences of digits representing integer, fraction, and exponent,
respectively.

The interpretation of the E+e part of the real constant is a power of ten exponent, so
that .:,rE+e is interpreted as the value of the real number times lQ!.e.

Rules for Use

• A plus sign (+) is optional.

• If the constant preceding E.:!:.,e contains more significant digits than the precision for
real data allows, truncation occurs and only the most significant digits in the range
are processed.

Examples

Valid Real Constants Exponent Interpretation Decimal Value

+0.
-493.6843
4.0E+0
249Ja.J6E+l
8E2
9.00
9.0E+03
6E-03

Invalid
Real Constants

4

4,580.3
3.4E+140
45.7E+97
6a.3E-95

3-4

N/A
N/A

4.0 x 100
24938.36 x 10i

8.0 x 103
9.0 x 103
9.0 x 10 3
6.0 x 10-

Error Analysis

Missing a decimal point or a decimal exponent
Embedded comma

0.0
-493.6843

4.0
249383.6

800.0
9000.0
9000.0

0.006

Magnitude outside the allowable range; that is, 3.4 x 10140 > 1663

Magnitude 'outside the allowable range; that is, 45.7 x 1097 > 1663
Magnitude outside the allowable range; that is, 68.3 x 10-95 < 16-65

Data Types
FOR TRAN 77+

Reference Manual

/

[
,

/

Double Precision Data Type

3.4 Double Precision Data Type

The double precision data type represents an approximation of a real number over a
larger range than allowed in integer data types. A data item with the double precision
data type can have a positive, negative, or zero value. The only difference between
double precision and real data types is in the precision of the approximation and number
of bytes of storage required.

How Specified in
Type Specifiers

DOUBLE PRECISION or REAL *8

Range of Values
Represented

16-65 to 1663

Number
of Bytes

8

The range of real numbers represented by the double precIsIon data types is
approximately 5*10-79 to 7*1075 (in general, 15 to 16 digits of accuracy).

The internal representation of the double precision data type is as follows:

I±, E I F I I I I I I
a 7 8 31

I I I I I I I
32 63

8 BYTES

830623·38

The exponent and fraction are defined in the same manner as the real data type. The
increased fraction size provides more precision within the same range of magnitude.

3.4.1 Double Precision Constants

A double precision constant represents an approximate value of a real number with the
precision and range of the double precision data type. A double precision constant is
formed in the same manner as a real constant. The form and interpretation of a double
precision exponent are identical to those of the real exponent, except that the letter D is
used instead of the letter E.

The value of a double precision constant is the product of the constant that precedes the
D and the power of ten indicated by the integer following the D.

FORTRAN 77+
Reference Manual Data Types 3-5

Olmplex Data Types

Examples

Valid Constants for
Double Precision

-5.9003

or

.59003

5.9003

5.90+03

5.90+3

5.900

8003

EXDonent Interpretation

3 -5.9 x 10

.59 x 103

5.9 x 103

5.9 x 103

5.9 x 103

5.9 x 100

8.0 x 103

Decimal Value

-5900.0

590.0

5900.0

5900.0

5900.0

5.9

8000.0

Invalid Constants for
Double Precision Error Analysis

4

4,580.3

4.0

3.40+140

45.70+97

68.30-95

68.3 .

Missing a decimal point or a decimal exponent

Embedded comma

Missing the one- or. two-digit integer const~t following the D.
Note that it is not interpreted as 4.0 x 10

Magnitude outside the allowable range; that is, 3.4 x 10140 >1663

Magnitude outside the allowable range; that is, 45.7 x 1097 >1663

Magnitude outside the allowable range; that is, 68.3 x 10-95 < 16-65
, .
Missing 0 exponent

J.5 Complex Data Types

Complex data types represent an approximation of complex numbers in the form of an
ordered pair of real or double precision data types. The first of the pair approximates
the real part, and the second approximates the imaginary part. The two complex data
types differ only in the precision of the approximation and number of bytes of storage
required.

How Specified in
Type Specifiers

COMPLEX or COMPLEX*8

COMPLEX*16

Range of Values
Represented

16..;65 to 1663
(6 to 7 decimal digits)

16-65 to 1663
(15 to 16 decimal digits)

Number
of Bytes

8

16

The range of each half (real/imaginary) of each complex data type is the same as the
corresponding real or double precision data type.

3-6 Data Types
FORTRAN 77+

Reference Manual

c:

C, ~, , ,

Complex Data Types

The internal representation of COMPLEX*S is as follows:

I±I
E

I
F I I I I I I

a 7 8 31 REAL PART

I±I
E

I
F I I I I I I

a 7 8 31 IMAGINARY PART
8 BYTES

83062348

The internal representation of the COMPLEX*16 data type is as follows:

I±I
E I F I I I I I I

0

I
32

o

I

E
I

7 8

I I I

I I I
7 8

F
I

31

I I
63

I I
31

REAL PART

I I I I I I I
IMAGINARY PART

32 63
16 BYTES

830623·28

3.5.1 Complex Constants

A complex constant represents an approximation of a complex number. The form of a
complex constant is a left parenthesis followed by an ordered pair of real, double
precision, or integer constants separated by a comma, and followed by a right
parenthesis. The components of the ordered pair need not be of the same type.

Automatic type conversion is made to COMPLEX*S unless one of the constants is a
double precision constant, in which case the conversion is to COMPLEX*16. Thus, (1,2)
is legal and is identical to (1.0,2.0). (1EO,2DO) is legal and is identical to (1.0DO,2.0DO).

The first constant of the pair is the real part of the complex constant and the second is
the imaginary part. - .

(real,imaginary)

Rules for Use: Complex Word Constants

A pair of real or integer constants represents the real and imaginary parts of a
complex word constant.

• The rules for integer and real constants govern the construction of each of the two
parts.

FORTRAN 77+
Reference Manual Data Types 3-7

Bit Data Type

Rules for Use: Complex ooubleword Constants

• A pair of integer, real or double precision constants represents the real and imaginary
parts of a complex doubleword constant. One of the constants must be double
precision.

• The rules for integer, real and double precision constants govern the construction of
each of the two parts.

Examples

Valid Complex Constants

(4.3,-9.54)
(-3.0E+03,.1ZE+OZ)
(3.60+2,1.6734839)
(360+2,290+3)

Invalid Complex Constants

(360+2;290+3)

3.6 Bit Data Type

Value (i =V-l)

4.3 -9.54i
-3000.+ 12.Oi
360.+ 1.6734839i
3600.+ 29000.i

Error Analysis

Constants must be separated by a comma

The bit data type represents the logical values true and false.

How Specified in
Type Specifiers

BIT

3.7 Logical Data Types

Values
Represented

true and false

Number
of Bytes

1/8

Logical data types are used to represent the logical values true and false.

How Specified in
Type Specifiers

LOGICAL*l

LOGICAL or LOGICAL *4

3.7.1 Logical or Bit Constants

Values
Represented

true and false

true and false

Number
of Bvtes

1

4

Logical or bit constants represent the value true or false for use with logical or bit data
types. Therefore, there are only two forms a logical constant can have:

3-8

.TRUE.

.FALSE.
logical value true
logical value false

Data Types
FORTRAN 77+

Reference Manual

l
~· \

/

Character Data Type

3.8 Character Data Type

The character data type represents strings of characters. The character string can
consist 'of from 1 to 4095 ASCII characters. The blank character is valid and significant
in a character datum. The length of a character datum is the number of characters in
the string, and it is specified by the character type statement (see Chapter 7). One
character requires one byte of storage.

Each character in a string has a character position that is numbered consecutively 1, Z,
3, etc.. The number indicates the sequential position of the character in the string, from
left to right.

3.8.1 Character Constant

A character constant represents a character string value with the character data type.
The form of a character constant is an apostrophe followed by a nonempty string of
characters followed by an apostrophe. The delimiting apostrophes are not part of the
datum represented by the constant. An apostrophe within the string is represented by
two consecutive apostrophes with no intervening characters. In a character constant,
blanks embedded between the delimiting apostrophes are significant.

The length of a character constant is the number of characters between the delimiting
apostrophes, except that each pair of consecutive apostrophes counts as a single
character; the delimi ting apostrophes are not counted.

Rules for Use

• All characters, including blanks, are significant.

• An apostrophe within the constant is represented by two consecutive apostrophes.

• The length of a character constant must be greater than zero.

• The quotation mark is used as an escape. The character following the quotation mark
is included in the string but the quotation mark is not included.

Examples

Valid Character Constants

'STOP'
'FORMULA'
'CAN' 'T'
'" ,
, " " ,

invalid Character Constants

FORMULA
'CAN'T'

F"ORTRAN 77+
Reference Manual Data Types

STOP
FORMULA
CAN'T

"

Error Analysis

Apostrophes omitted
Two apro.strpphes needed

3-9

Hollerith Constants

3.8.2 Character Constants versus Hollerith Constants

Associated with each character constant are two values: a start address and a length.
This is in contrast with a Hollerith constant, which consists of only the byte, halfword,
word, or doubleword containing the constant. Quoted strings can be assigned to variables
because the context of the quoted string (character or Hollerith) is determined by the
type of variable the string is being assigned to. However, when quoted strings are used
as arguments to subroutines or I/O lists, the compiler generates, by default, a character
constant. If you want these quoted string arguments to be built as Hollerith constants,
option 10 must be set at compile time.

Note that whenever a quoted string constant is a parameter in· the calling list of an
M:xxxxxx subroutine or function call, option 10 must be set.

3.9 Hollerith Constants

A Hollerith constant is a string of characters, delimited as follows:

• The string can be preceded by nH, where n is the number of characters in the string.
This form is left-justified and blank-filled.

• The string can be preceded by nR, where n is the number of characters in the string; R
indicates that it is right-justified and zero-filled. Note that n cannot exceed 8 for
right-justified Hollerith constants.

The form of a Hollerith constant is a nonzero, unsigned, integer constant n followed by
the letter H or R, followed by a string of exactly n contiguous characters. The string can " /
consist of any characters capable of representation in the processor. The string of n
characters is the Hollerith datum.

n

s

nHs

nRs

An unsigned integer specifying the number of characters in the string.

A string of characters.

Hollerith data can be associated with various data types by using assignment, data
initialization, and CALI. statements and through input/output operations using the Aw
format specifications. Hollerith data can be used in CALL statements or function
reference argument lists as data initialization values (including assignment statements).
Hollerith data is stored as follows:

3-10

Data Type

INTEGER*8
DOUBLE PRECISION (REAL *8)
REAL (REAL*4)
INTEGER (INTEGER *4)
INTEGER*Z
INTEGER*l

Data Types

Number of
Characters

8
8
4
4
2
1

FORTRAN 77..
Reference Manual

(

Hexadecimal Constants

Rules for Use

• All characters, including blanks, are significant in Hollerith character strings.

• If nRs is used, the n must be less than or equal to eight.

Examples

Valid Hollerith Constants

1HA
2RGT
5HG0\60N

Invalid Hollerith Constants

5HUNABLE

3.10 Hexadecimal Constants

Represents

A
GT
G0\60N

Error Analysis

Too long

A hexadecimal constant is a hexadecimal number (base 16) formed from the set 0 through
9 and A through F. It is coded in one of the following forms:

X'd1 ••• di' or Z'd1 ••• di' or nZs

n An unsigned integer specifying the number of digits in the string. The range
of n is between 1 and 16. Constants are typed as follows:

INTEGER (INTEGER*4)
INTEGER (INTEGER*8)

s

d· I

A string of hexadecimal digits.

o through 9 and A through F.

Note that a hexadecimal constant cannot contain embedded blanks.

Examples

Valid Hexadecimal Constants

Z'098700FD'
Z'FFFFE560'
8Z0000FFFF
2Z0F
X'64'

FORTRAN 77+
Reference Manual Data Types

Decimal Value

159842557
-6816
65535
15
100

Change 1
3-11

I

Binary Constants/Octal Constants

Invalid Hexadecimal Constants

21Z347
Z527
2ZtPOF

3.11 Binary Constants

Error Analvsis
(

n must be < 16
No value for n
Contains an embedded blank

. Binary constants represent a number in binary notation (base 2) and have the following
form:

B'd1• •• di'

o or 1. Embedded blanks are not permitted.

Examples

Valid Binary Constants

B'101'
B'llOl'

Invalid Binary Constants

B'1001
B'1012'
B'lltPl'

3.12 Octal Constants

Decimal Value

5
13

Error Analysis

Missing apostrophe
d must be 0 or 1
Embedded blank

Octal constants represent a number in octal notation (base 8) and have the following
form:

0'd1• •• di'

o through 7. Embedded blanks are not permitted.

Examples

3-12

Valid Octal Constants

0'10'
0'77'

Invalid Octal Constants

0'68'
0'7tP7'

Data Tvpes

Decimal Value

8
63

Error Analysis

d must not be > 7
Embedded blank

FORTRAN 77+
Reference Marual

\~ /

[\

r~--

Symbolic Names

3.13 Symbolic Names

A symbolic name identifies an element in a program unit. Symbolic names can consist of
any combination of from one to eight alphanumeric charact.ers (more than eight
characters may be specified but only the first eight are significant). The first character
of a symbolic name must be an alphabetic character; blank characters are ignored.

The colon (:) and underline <'J characters can be used within symbolic names; however,
the use of the colon should be avoided in a context where it would be a legal delimiter
(e.g., character substrings, variable lower dimension bounds).

3.13.1 Implicit Typing Conventions

The following implicit typing conventions are assumed unless a symbolic name has been
explicitly declared to be a particular data type, an IMPLICIT statement has been used to
Change the convention, or the IMPLICIT NONE statement has been used.

• Symbolic names beginning with I, J, K, L, M, or N assume the INTEGER (INTEGER*4)
data type.

• Symbolic names beginning with letters other than I, J, K, L, M, or N assume the REAL
(REAL*4) data type.

Examples

Valid Symbolic Names

B8302
GAMMA
HOytE
M:WAIT

Invalid Symbolic Names

IIGAMMA
7XX

Error Analysis

Symbol used as first character
Number used as first character

Spellings generally associated with specific statements can also be symbolic names. The
example below illustrates statements containing symbolic names that are the same as
FORTRAN 77+ keywords.

GOT03 = 1.0

DOS! =1.7

GO TO and DO are FORTRAN 77+ keywords; however, in these examples, GOT03 and
0051 are both symbolic names. Note the similarity between the statements 0051=1.7
and DO 5 1=1,7. The compiler recognizes the first as an assignment statement rather
than as a DO statement. Use the IMPLICIT NONE statement to avoid confusing one kind
of statement with another (refer to Chapter 7).

FORTRAN 77+
Reference Manual Data Types 3-13

Variables/ Arrays

Symbolic names are used to identify the following items of a F'ORTRAN 77+ source
program:

Variables
Constants
Arrays
Array elements
Functions
Subroutines
External procedures
Common block names
NAMELlST names
Block data subprograms
Programs

3.14 Variables

A variable is a symbolic name that identifies a storage location. Variables are data
whose values can change during program execution.

Every variable must be assigned a value before it is referenced or the value of the
variable will be undefined. An initial value can be assigned in a DATA statement, or it
can be defined during program execution.

Variables can be any of the following data 'types: INTEGER*l, INTEGER*Z, INTEGER
(INTEGER*4), INTEGER*S, REAL (REAL*4), DOUBLE PRECISION (REAL*S),
COMPLEX*S, COMPLEX*16, BIT, LOGICAL*l, LOGICAL (LOGICAL*4), or
CHARACTER.

3.15 Arrays

An array is an ordered set of data characterized by the property of dimension and
identified by a single symbolic name. An array name must conform to the rules for
writing symbolic names. Individual storage locations, called array elements, are
referenced by subscripts appended to the array name.

The following FORTRAN 77+ statements can establish arrays:

• Type declaration
• DIMENSION

COMMON
• EXTENDED BLOCK

These statements can contain array declarations that define the name of an array, the
number of dimensions in an array, and the number of elements in each dimension.

An array can have from 1 to 7 dimensions. To reference a specific value in an array,
specify the subscript values of each dimension for the particular element (see Figure 3-
1).

The use of an array name in an assignment statement without subscripts enables you to
assign a single value to every element of the array.

3-14 Data Types
FOR TRAN 77+

Reference Manual

r
~.

Arrays

3.15.1 Array Declarators

An array declarator is used in specification statements to specify the symbolic name that
identifies an array within a program unit and to indicate the properties of that array.

An array declarator has the form:

a

d

a (d [,d]. ••)

The symbolic name of the array.

A dimension declarator; it can specify both a lower bound and upper bound as
follows:

[dl:] du

dl the lower bound of the dimension.

du the upper bound of the dimension.

• Within a program unit, an array name can be in one array declarator only.

• If dl is a variable name that contains a colon (:), the name must be in parentheses.
Likewise, if dl is an expression containing a variable name with a colon, the expression
must be in parentheses.

3.15.2 Dimensions of an Array

The number of dimension declarators indicates the number of dimensions in the array and
can range from one to seven.

The value of the lower bound dimension declarator can be negative, zero or positive; the
upper bound dimension declarator must be greater than or equal to the lower bound
dimension declarator. The number of elements in a dimension is du-dl+l. If the lower
bound is not specified, it is assumed to be one, and the value of the upper bound specifies
the number of elements in that dimension.

Examples

DIMENSION A(2:10)

DIMENSION A(10)

Specifies an array A; the dimension declarator 2:10
indicates a lower bound of 2 and an upper bound of 10; the
number of elements in the dimension is 9.

Specifies an array A; the single dimension declarator
indicates the dimension contains 10 elements.

Lower and upper dimension bounds are integer arithmetic expressions. Note the
following:

• F' or dummy arrays within subprograms, the upper dimension bound of the last
dimension in an array can be an asterisk. F' or example, the first DIMENSION example
above could be written:

DIMENSION A(2:*)

F'ORTRAN 77+
Reference Manual Data Types 3-15

Arrays

• For dummy arrays within subprograms, each operand of a dimension-bound expression
can be an integer constant, an integer dummy argument, or an integer variable in a
common or extended block. The last dimension-bound expression can be an asterisk.

A dimension-bound expression must not contain a function or an array element
reference.

Integer variables can be in dimension-bound expressions only in dummy array
declarators.

• If the type of' a symbolic name of a constant or variable in a dimension-bound
expression is not the'same as the name's default implicit type (see Section 3.13.1), it
must be specified as INTEGER (INTEGER*4) by an IMPLICIT statement or a type
statement before the name is used in a dimension-bound expression.

3.15.3 Subs:ripts

A subscript is a parenthesized list of expressions appended to the name of the array it
qualifies. A subscript determines which element in an array is being referenced. A
subscript expression is an integer exp-ession that can contain array element references
and function references.

An array element is considered undefined until it is aSSigned a value. If reference is
made to an undefined array element, the value of the element will be unknown and
unpredictable.

The form of a subscript is

s a subscript expression.

The following rules govern the use of subscripts:

• A subscript contains one to seven subscript expressions enclosed in parentheses.

01(1)

07(1,2,3,4,5,6,7)

Two or more subscript expressions within the parentheses must be separated by
commas.

O(I,2,K)
X(2*J-3,7)

• The number of subscript expressions must be the same as the specified dimensions of
the array declarator.

• A subscript expression can be of any arithmetic type. The value of the expression,
however, is converted to an integer value as necessary.

• Subscripts themselves can be subscripted.

C(N(I), J-2)

3-16 , Data Types
FORTRAN 77+

Reference Manual

,-- "
I

,/

~, ./

r
I
t~ /

Arrays

3.15.4 Array Storage

In FORTRAN 77 ... an array is stored as a linear sequence of values. A one-dimensional
array is stored with its first element in the first storage location and its last element in
the last storage location of the sequence. A multidimensional array is stored in row
major order; that is, the leftmost subscript, which represents the row, varies most
rapidly. Figure 3-1 illustrates array storage in one, two, and three dimensions.

FORTRAN 77 ...
Reference Manual Data Types 3-17

3-18

ONE-DIMENSIONAL. ARRAY BRT
DIMENSION BRT (4)

1

2

1 BRT (1)

2 BRT (2)

3 BRT (3)

4 BRT (4)

t'--____________________ MEMORY POSITIONS

1 ERP(1,1) 5

2 ERP (2.1) 6

3 ERP (3,1) 7

4 ERP (4,1) 8

TWO-DIMENSIONAL AR RA Y ERP
DIMENSION ERP (4,3)

ERP (1,2) 9 ERP (1,3)

ERP (2.2) 10 ERP (2,3)

ERP (3,2) 11 ERP (3,3)

ERP (4,2) 12 ERP (4,3)

t~ ______ t_'__ _____ t"'__ ______ MEMORY POSITIONS

17 GOM (1,1,3)

18 GOM (2.1-.3)

9 GOM (1.1,2) 11

10 GOM (2.1.2) 12

THREE-DIMENSIONAL. ARRAY GOM
DIMENSION GOM (2.4,3)

19 GOM (1,2.3) 21 GOM (1,3,3)

20 GOM (2,2.3) 22 GOM (2,3,3)

GOM (1,2.2) 13 GOM (1,3,2) 15

GOM (2,2,2) 14 GOM (2,3,2) 16

23 GOM (1.4,3)

24 GOM (2.4,3)

GOM (1.4.2)
r--

GOM (2.4,2)

GOM (1,1.1) 3 GOM 11,2.1) 5 GOM (1,3,1) 7 GOM (1.4.11
~

GOM (2.1.1) 4 GOM (2.2.1) 6 GOM (2.3,1) 8 GOM (2,41..1)

; ______ t ______ • , ______ t _ MEMORY POSITIONS

Figure 3-1. Array Storage

Data Types

840206

FORTRAN 77+
Reference Manual

CHAPTER 4

EXPRESSIONS

4.1 General

An expression consists of a single operand or a string of operands connected by
operators. Operands can be constants, variables, array elements, or function
references. Operators can be unary (operating on a single operand) or binary (operating
on a pair of operands). An expression can contain sub expressions (expressions enclosed in
parentheses) as operands. There are four types of expressions: arithmetic, character,
relational, and logical.

4.2 Arithmetic Expressions

Arithmetic expressions express numeric computations; evaluation of an arithmetic
expression produces a numeric value.

Arithmetic expressions consist of constants, variables, array elements, function
references, and sub expressions of any data type (except BIT, LOGICAL*l, LOGICAL
(LOGICAL *4), or CHARACTER).

The operators and their meanings are:

+

*
i

Addition
Subtraction or negation
Multiplication
Division

** Exponentiation

Rules for Use

• Contiguous arithmetic operators are not allowed. F or example,

x*-y

is prohibited. However,

x*(-y)

•

is aHowed because the minus sign designates a negative value rather than the
subtraction operator.

FORTRAN 77+
Referenc~ Manual Expressions 4-1

Arithmetic Expressions

• Parentheses, when included "to form subexpressions, can be used freely to determine
the order of evaluation in mathematical expressions. Parentheses do not indicate
multiplication. The only acceptable indication of multiplication is the asterisk (*)
appearing between multiplier and multiplicand.

CD Unacceptable to mean C times 0
C(O) Unacceptable to mean C times 0
C*D Acceptable to mean C times 0

A variable, array e~ement, constant, or function reference standing alone is an
expression.

S
A (I)
JOBNO

Z17
17.Z6
SQRT(Z.O)

If E is an expression whose first character is not an operator, then .E and -E are
expressions.

-S
.A(I)
.JOBNO
-Z17

+217
+17.26
-SQRT(X)

• If E is an expression, (E) is a subexpression meaning the quantity E is taken as a unit.

(.S)
(A (I)
(JOBNO)

(217)
(17.26)
(-SQRT(X»

If E is an expression whose first character is not an operator and F is any expression,
then F +E, F -E, F*E, FIE, and F**E are all expressions.

-(BO,JO)+SQRT(X»

1.7**(A+5.0)

• Subexpressions can be nested, as indicated below:

A *(Z-«Y +M)/T »** J

where (Y.M) is the innermost subexpression, «Y +M)/T) is the next innermost, and (Z
«Y +M)/T» the next. In all expressions, the number of left parentheses must equal the
number of right parentheses.

4-Z Expressions
FORTRAN 77+

Reference Manual

["-\ -

_/

Arithmetic Expressions

. The order of precedence determines the data type of a value resulting from any valid
binary operator.

~

COMPLEX*16
COMPLEX (COMPLEX*8)
DOUBLE PRECISION (REAL *8)
REAL (REAL *4)
INTEGER*8
INTEGER (INTEGER *4)
INTEGER*2
INTEGER*1

Precedence

1 (highest)
2
3
4
5
6
7
8 (lowest)

• An operand of one arithmetic data type can be combined with the operand of any
other arithmetic data type by use of arithmetic operators (+, -, *, /, **). The type of
the result is the same as that of the operand having the higher precedence. The
operand of lower precedence is converted to the type of high precedence before the
operation is performed. Table 4-1 indicates the resulting data type of all arithmetical
combinations by type.

FORTRAN 77+
Reference Manual Expressions 4-3

Type
of

Operand
One

Operator

+, -, *, I, **

INTEGER*l

INTEGER*2

INTEGER
(INTEGER*4)

INTEGER*8

REAL

DOUBLE
PRECISION

COMPLEX*8

Table 4-1 (Page 1 of 2)
Expression Type Determination from Arithmetic

Operands of Different Types

Type of Operand Two

INTEGER
INTEGER*1 INTEGER*2 (INTEGER*4)

INTEGER*l INTEGER*2 INTEGER
(INTEGER*4)

INTEGER*2 INTEGER*2 INTEGER
(INTEGER*4)

INTEGER INTEGER INTEGER
(INTEGER*4) (INTEGER*4) (INTEGER*4)

INTEGER*8 INTEGER*8 INTEGER*8

REAL REA~ REAL

DOUBLE DOUBLE DOUBLE
PRECISION PRECISION PRECISION

COMPLEX*8 COMPLEX*8 COMPLEX*8

INTEGER*8

INTEGER*8

INTEGER*8

INTEGER*8

INTEGER*8

REAL

DOUBLE
PRECISION

COMPLEX*8

COMPLEX*16 COMPLEX*16 COMPLEX*16 COMPLEX*16 COMPLEX*16

Expressions
FORTRAN 77+

Reference Manual

(

r

[

Table 4-1 (Page 2 of 2)
Expression Type Determination from Arithmetic

Operands of Different Types

Type
of

Operand
One

Operator

+, -, *, I, **

INTEGER*l

INTEGER*2

INTEGER
(INTEGER *4)

INTEGER*8

REAL

DOUBLE
PRECISION

COMPLEX*8

COMPLEX*16

FORTRAN 77+
Reference Manual

Type of Operand Two

DOUBLE
REAL PRECISION COMPLEX
(REAL*4) (REAL*8) (COMPLEX*8)

REAL DOUBLE COMPLEX*8
PRECISION

REAL DOUBLE COMPLEX *8
PRECISION

REAL DOUBLE COMPLEX*8
PRECISION

REAL DOUBLE COMPLEX*8
PRECISION

REAL . DOUBLE COMPLEX*8
PRECISION

DOUBLE DOUBLE COMPLEX*8
PRECISION PRECISION

COMPLEX*8 COMPLEX*8 COMPLEX*8

COMPLEX*16 COMPLEX*16 COMPLEX*16

Expressions

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

COMPLEX*16

4-S

Arithmetic Ex~ons Evaluation

4.2.1 Evaluation 01 Arithmetic Expressions

Expressions are generally evaluated according to the following rules:

• Subexpressions are generally evaluated first. If there are nested subexpressions, the
innermost is evaluated, then the next innermost, and so on, until all subexpressions
have been evaluated.

• Within sub expressions, or wherever parentheses do not govern the order of eyaluation,
the hierarchy of operati~ns in the order of precedence is

Function evaluation

Subscript evaluation

Exponentiation

Multiplication and div ision

Addition and subtraction

F or example,

F +«A+B)*C)+O**2

is evaluated in the following sequence:

El=A+S
E2=El*C
E3=O**2
E4=F + E2
E5=E4 + E3

The expression

A*(Z.«Y+M)/T»**J+VAL

IS evaluated in the following sequence:

4-6

El=Y+M
E2=El/T
E3=Z·EZ
E4=E3**J
E5=A*E4
E6=E5+VAL

Expressions
FORTRAN 77+

Reference Manual

c

r

" .

Character Expressions

Whenever operations of the same level of hierarchy are involved, evaluation proceeds
generally from left to right, except as indicated by the interpretation of the last
expression below:

EX!2ression Inter!2retation

W*X/y*Z «W*X)/y)*Z

9**2-4. *A*C (9**2)-«4. * A)*C)

x/viZ (X/Y)/Z

-X**3 -(X**3)

X**y**Z X**(y**Z)

For the commutative operators + and *, evaluation of operations at" the same
hierarchy normally proceeds from left to right; however, the order of evaluation can
vary when values of terms or factors are present in registers because of a prior
evaluation.

F or example,

X-y-Z

can be interpreted as

(-Z-y)+X

• Use of an array element name requires the evaluation of its subscript. The same rules
that govern the evaluation of expressions apply to subscripts; however, the value of
each subscript expression is converted to integer (if necessary) before any address
calculations are performed.

• If a function reference causes definition of an actual argument to the function, that
argument or any associated entities must not appear elsewhere in the same
statement. For example:

A(I) = F(I)
WRITE(6,50) I, F(I)
y = F(l) + I

are prohibited if the reference to F defines I.

4.3 Character Expressions

A character expression, which is used to create a character string, is composed of a
sequence of one or more character primaries (see below) separated by the concatenation
operator. Evaluation of a character expression produces a result of type CHARACTER.

The character primaries are

• Character constant
• Symbolic name of a character constant

FORTRAN 77+
Reference Manual Expressions 4-7

Character Expression Value/Character Constant 'Expression

• Character variable reference
• Character array element reference
• Character substring reference
• Character function reference

Character expression enclosed in parentheses

Combining one or more character operands with the concatenation operator (j j) and
parentheses forms a more complicated character expression.

The forms of a character expression are:

• Character primary
• Character expression / / character primary

4.3.1 The Value of a Character Expression

The result of a concatenation operation is a character string formed by successive left
to-right linking of the character expression elements (primaries). The length of a
character expression is the sum of the character primary lengths.

F or example, the value of

lAB' / / 'CDEt

is the string ABCDE, which has a length of five.

4.3.2 Character Constant Expression

A character constant expression is a character expression in which each primary is a
character constant, the symbolic name of a character constant, or a character constant
expression enclosed in parentheses.

4.3.2.1 Character Substring

A character substring is a contiguous portion of a character string and is of type
character. A character substring is identified by a substring name and can be assigned
values and referenced.

There are two ways to identify a substring name:

and

v A character variable name.

a(i,s]. ••) A character array element name.

4-8 Expressions
FORTRAN 77+

Reference Manual

(

(

e2

Character Constant Expressions

An integer expression called a substring expression. The value e1
specifies the leftmost character position of the substring. The
expression e1 must not contain any symbolic names having a colon (:) in
the name at an unparenthesized level.

An integer expression called a substring expression. The value e2
specifies the rightmost character position.

The values of e1 and e2 must be such that

1 ~ e1 ~e2 ~ len

len The length of the character variable or array element.

For example, A(2:4) specifies characters in positions two through four of the character
variable A, and B(4,3)(1:6) specifies characters in positions one through six of the
character array element B(4,3). .

The default value for el is one, and the default value for e2 is the value of len. Both e1
and e2 can be omitted, 10 which case the following apply:

v(:) is equiv~lent to v

and

a(s(,s])(:) is equivalent to a(i,s])

The length of a character substring is e 2-e1+1.

A substring expression (e1 or e2 above) can contain array element references and
function references. Evaluation of a function must not alter the value of" any other
expression within the substring name.

Rules for Use

• A character expression and its operands must identify values of type CHARACTER.

• A character expression must not involve concatenation of a dummy argument whose
length sped fication is an asterisk in parentheses except in a character assignment
statement.

• No part of a character string that is being assigned a value by an assignment
statement can be a part of the expression on the right side of the equal sign.

FORTRAN 77+
Reference Manual Expressions 4-9

Relational Expressions

4..4 Relational Expressions

A relational expression consists of two arithmetic expressions or two character
expressions separated by a relational operator.

4..4.1 Relational Operators

Relational operators test for a relationship between two arithmetic expressions or
between two character expressions. These operators are:

RelationalOoerator

.GT.
.GE.
.LT.
.LE.
.EQ.
.NE.

Definition

Greater than (»
Greater than or equal to (»
Less than «) -
Less than or equal to «)
Equal to (=) -
Not equal to (I:)

Delimiting periods are a required part of each operator.

4..4..2 Arithmetic Relational Expressions

Relationa! operators express an arithmetic condition that can be either • TRUE. or
.F ALSE.. Arithmetic relational operators can combine only arithmetic expressions
whose types are INTEGER, REAL, or DOUBLE PRECISION; however, COMPLEX types
can use the relational operators .NE. and .EQ ••

The following examples illustrate valid and invalid relational expressions, given the valid
variable names:

4-10

Variable Name

ALPHA,B
I, K, M
L
C
X

Valid Relational Expressions

I .LT. K
B**3.6 .EQ. (4*ALPHA+9)
5 .GT. 1.2*ALPHA
B .NE. 29.10+03

real
integer
logical
complex
character

Expressions
FOR TRAN 77+

Reference Manual

Invalid Relational Expressions

, C .LE. (102,4.3E2)

L .EQ. .TRUE.

E**3 .L T 38.E7

• NE. 58

X .EQ. 5

OIaracter Relational Expressions

Error Analysis

Complex quantities can only appear in relational
expressions using the .EQ. or .NE. operators.

Logical quantities can never be joined by
relational operators.

Missing period, which is part of the relational
operator •

Missing arithmetic expression before the
relational operator.

Relational operators cannot join a character
expression and an arithmetic expression.

Examples of valid relational expressions are presented below; values for previously
defined variables are:

ALPHA = 1.2
8 = 3.1
I = 2
K = 5
M = 7

Expression Result

I .LT. K .TRlJE.

8**3.6 .EQ. (4*ALPHA+9) .FALSE.

5 .GT. 1.2*ALPHA .TRlJE •

8 ./\E. 29.1D+03 • TRUE.

4.4.3 OIaracter Relational Expressions

A character relational expression is interpreted as the logical value .TRUE. if the values
of the operands satisfy the relation specified by the operator; otherwise, it is interpreted
as the logical value .F ALSE.. .

For character relational expressions, .L T. means precedes in the ASCn collating
sequence, and .GT. means follows in the ASCn collating sequence. Relational operators
can also be used with character expressions. If the operands are of unequal length, the
shorter operand is considered to be extended on the right with blanks to the length of the
longer operand. A blank precedes letters and digits in the collating sequence. The
collating sequence does not influence the result of operators .EQ. and .NE_

Character relational expressions are evaluated at run-time and can not be used in
constructing constants at compile-time. Therefore, statements such as

P.ARJ3tvETER (LOOICl=' ABC' ./\E. 'DEFI)

are not allowed.

FORTRAN 77+
Reference Manual Expressions 4-11

Logical Expressions

The foilowing are examples of legal character relational exp,ressions and their results:

Expression

'ALFA' .LT. 'ZETA'
, SavE ' • EG. ' AN(,

'ABC' .GT. 'XYZ'
'9' .LT. '8 '

4.5 Logical Expressions

Result

.TRL£.

.FALSE.

.FALSE.
• TRUE.

A logical expression can be a single logical operand or a combination of logical operands
and logical operators.

The value of a logical expression is always either • TRUE. or .F ALSE.. A logical
expression can be either simple or compound. A simple logical expression can be any of
the following:

• A logical constant
• A logical variable
• A logical array element
• A relational expression
• A logical expression enclosed in parentheseS

A logical function !eference

A logical expression may have one of the following forms:

or

A logical operand.

A unary logical operator.

A binary logical operator.

e2 A logical operand.

4..5.1 Logical Operators

F or the following examples, let T be a • TRUE. expression and F be a .F ALSE. expression.

Operator Example

Unary

.NOT. .NOT. E

4-12

Meaning

This expression has the value • TRUE. only if E is
.F ALSE.; it has the value .F ALSE. only if E is • TRUE ••

Expression

.NOT. T
• NOT. F

Expressions

Result

.FALSE •

.TRUE.

FORTRAN 77+
Reference Manual

r
I

\
Binary

.AND. E.AND.G

• OR. E.OR.G

.EQV. E.EQV.G

.NEQV. E.NEQV.G

Logical Operators

This expression has the value. TRUE. only if E and G are
both .TRUE.; it has the value .FALSE. if either E or Gis
.FALSE ..

Expression

T .AND. T
T .AND. F
F.AND.T
F.AND.F

Result

.TRUE.

.FALSE.

.FALSE.

.FALSE •

This expression has the value • TRUE. if either E or G is
.TRUE.; it is .FALSE. only if both E and G are
.F ALSE.. This is known as the inclusi ve OR.

Expression

T.OR.T
T .OR. F
F.OR.T
F.OR.F

Result

.TRUE.

.TRUE.

.TRUE.

.FALSE.

This expression has the value. TRUE. only if E and G are
both • TRUE., or if E and G are both .F ALSE.. It has the
value .F ALSE. only if the values of E and G are
different.

-Expression

T.EQV.T
T.EQV.F
F .EQV. T
F.EQV.F

Result

.TRUE.

.FALSE.

.FALSE.

.TRUE.

This expression has the value. TRUE. only if E and G are
different; it is .F ALSE. if the values of E and G 'are the
same.

Expression

T.NEQV.T
T.NEQV.F
F.NEQV.T
F.NEQV.F

Result

.FALSE.

.TRUE.

.TRUE.

.FALSE.
.EOR.

• XOR.
The logical operators .EOR. and .XOR. are equivalent to .NEQV ••

FORTRAN 77+
Re ference Manual Expressions 4-13

Constructing and Evaluating Logical Expressims

Rules for Use

• Parentheses can be used to specify the ordering of an expression evaluation. Within
parentheses, and where parentheses do not dictate evaluation order, the order is
understood to be as follows:

Function reference
Subscript evaluation
Exponentiation
Multiplication and division
Addi tion and sub traction
.L T., .LE., .EQ., .NE., .GT., .GE •
• NOT •
• AND •
• OR •
• EQV., .NEQV., .XOR.,.EOR.

• It is invalid to have two contiguous logical operators except when the second operator
is .NOT.; however, two consecutive .NOT. operati-ons are not permitted.

Valid Expressions

F .AI'O.

M .CR.

A .AP\O.

.f\OT. 0

.f\OT. N

.f\OT. (S.CR.C)

The latter expression is • TRUE. if and only if A is • TRUE. and both Sand Care
.FALSE ••

Invalid expressions

A .AND •• OR. S

A .NOT •• NOT. 8

4..5.2 Evaluation of Logical Expressims

Error Analysis

Two contiguous logical operators

Two contiguous .NOT. operators

All terms of a logical expression are completely evaluated.

4-14 Expressi ons
FORTRAN 77+

Reference Manual

(: "'.
0/

[

(/

Hollerith Constants in Expressions

4.6 Use of Hollerith Constants in Expressions

A Hollerith constant of one to eight characters can be used as an operand in an
assignment statement, relational expression, or arithmetic expression. The value of the
Hollerith constant is the ASCII code representation of the character based on the forms:

nHs A left-justified string with trailing blank character padding if necessary.

nRs A right-justified string with leading binary zero padding if necessary.

The data type of. the Hollerith constant is determined by its use in the assignment
statement, relational expression, or arithmetic expression. The Hollerith constant is
treated as the same data type as the other operand involved in the assignment statement
or expression. (F or double complex, the constant is treated as the real part of a double
complex constant; the value of the imaginary part is zero.)

Using Hollerith constants in this manner is allowed primarily to provide compatiblity
with earlier uses of FORTRAN. However, it is recommended that the CHARACTER
data type be used instead of Hollerith because the CHARACTER data type is more
ceneral and tends to be more convenient. In addition, CHARACTER is part of the ANSI-
78 standard for FORTRAN; Hollerith is not.

Table 4-2
Hollerith Constants Used with Operators

• Number of Number of

Type of
Other Operand

INTEGER*l

INTEGER*2

INTEGER
(INTEGER*4)

INTEGER*8

REAL (REAL *4)

DOUBLE PRECISION
(REAL*8)

COMPLEX (COMPLEX*8)

COMPLEX*16

FORTRAN 77+
Reference Manual

Leftmost Rightmost
Characters Characters

(nHs) (nRs)

1 1

2 2

4 4

8 8

4 4

8 8

8 8

8 8

. Expressions

Type of
Constant

INTEGER*2

INTEGER*2

INTEGER (INTEGER*4)

INTEGER*8

REAL (REAL*4)

DOUBLE PRECISION
(REAL*8)

COMPLEX (COMPLEX*8)

COMPLEX*16
(real part only)

4-15

Hollerith Constants in Ejqlressions

Examples

Variable Type

INTI is INTEGER*1

IHF is INTEGER*2

IWO is INTEGER
(INTEGER*4)

INTI is INTEGER*I

IHF is INTEGER *2

REAL is REAL

DP is DOUBLE
PRECISION

IHW is INTEGER*2

INTI is INTEGER*I

IW is INTEGER
(INTEGER*4)

Statement

INTI = 1HA

IHF = IHA

IWO = 2RAB

INTI = 3HABC

IF(IHF .EQ. 4HABCD) THEN

~(REAL.GT.5HABCDE)THEN

IF(OP.LE.2RAB) THEN

IHW = 4HABCD+1

INTI = 3RAGE-2

IW = 2HAB+4

Result (hexadecimal)

41

4120

00004142

41

Comparison is made
on leftmost 16 bits
(4142)

Comparison is made
on leftmost 32 bits
(41424344)

Comparison is made
on the 64 bit constant
(0000000000004142)

4345
(rightmost 16 bits)
of 41424344 + 1)

43
(rightmost a bits
of 414745 - 2)

41422024
(41422020 + 4)

A Hollerith constant used in conjunction with an arithmetic operator (+,-,*,/, or **) is
formatted as follows:

• Form nHs is left justified with trailing blanks and is typed as an integer word constant
(1<n<4) or as an integer doubleword constant (.5<n<8). -- --

• Forms'S' * and nRs are right justified with leading ze.ros and are typed as integer word
constants (1~4) or as integer doubleword constants (~).

* This form of Hollerith constant is valid only if option 10 is set at compile time.

4-16 Expressions
FORTRAN 77+

Reference Manual

",--,

o

C:

(

[/

Hexadecimal, Binary, Octal Constants in Expressions

4.. 7 Use of Hexadecimal, Binary, and Octal Constants in Expressions

Hexadecimal, binary, and octal constants can be used as operands in expressions and
argument lists, or they can be used in OAT A statement definitions. Such a constant is
represented by a string of characters in one of the forms:

s

n

Z's' or nZs or X's' A hexadecimal constant

B's'

O's'

A binary constant

An octal constant

A string of hexadecimal characters (0-9 and A-F) for the Z or X forms, a
string of binary digits (0-1) for the B form, or a string of octal digits (0-7)
for the 0 form.

A positive integer specifying the number of characters in the string.

The constant will be right-justified, zero-filled, and typed according to the context in
which it is used.

A hexadecimal, binary, or octal constant used with a replacement operator (e.g., the
equal sign =) or any of the relational operators (.L T., .LE., .EQ., .NE., .GE., .GT.) is
formatted so that the type of the constant is the same as the type of the other operand.
The imaginary part of complex and double complex numbers is assumed to be equal to
zero if it is not specified (i.e., without parenthesis).

A hexadecimal, binary, or octal constant used as an initializing value in a OAT A
statement is formatted into the size appropriate to the item being initialized; however,
no type conversion (integer to real or real to integer) is made.

If the hexadecimal, binary, or octal constant is used in conjunction with an arithmetic
operator (+, -, *, /, or **), the constant is interpreted as integer. For single and double
precision real types, the integer constant is converted to floating point. For very large
values, some precision may be lost in the conversion. All floating point types are
normalized. Complex constants of the following forms are allowed:

(Z'41100000', Z'BEFOOOOO') is the same as (1.0, - 1.0)

(Z'4110000000000000', Z'BEFOOOOOOOOOOOOO') is the same (100, - 100)

FORTRAN 77+
Reference Manual Expressions 4-17

Strings in Argument Lists

4.8 Use of Strings in Argument Lists

The following conventions apply when constructing Hollerith or hexadecimal strings that
are used as parameters in subroutine or function calls.

Table 4-3
Hollerith or Hexadecimal String Conventions

Constant

String Designation Address Type Constant Form

nHs s is 1-4 chars Word Left-justified/
blank-filled

or
's'* s is 5-8 chars Doubleword Left-justified/

, blank-fiUed

s is more than Word Left-justified/
8 chars long blank-filled in word array

nRs s is 1-4 chars Word Right-justified/
zero-filled

s is 5-8 chars Doubleword Right-justified/
zero-filled

nZs s is 1-8 chars Word Right- justi fied/
zero-filled

s is 9-16 chars Doubleword Right-justified/
zero-filled

.. This form of Hollerith constant is valid only if option 10 is set at compile time.

FORTRAN 77 ...
4-18 Expressions Reference Manual

c

/-~
(,I

\'l ~'

c

5.1 General

Q;APTER 5

ASSIGNMENT 5T ATEMENTS

Assignment statements cause the value of variables, array elements, or character
substrings to be set to the results of the evaluation of an expression.

The four types of assignment statements are:

• Arithmetic
• Logical
• Character
• Statement label (ASSIGN)

With the exception of statement label (ASSIGN) statements, assignment statements have
the form:

v

. e

v=e

Any variable, array element, or character substring.

An arithmetic, logical, or character expression •

The equal sign denotes replacement rather than equality. Thus, an assignment statement
causes evaluation of the expression on the right of the equal sign and the placement of
the result in the storage space allocated to the variable or array element on the left of
the equal sign.

Rules for Use

• If e is an arithmetic expression, v must be a variable or array element of type integer,
real, double precision, or complex.

• If e is a logical expression, v must be a logical variable or array element.

• If e is a character expression, v must be a character variable, character array
element, or character substring.

• Both v and the equal sign must appear on the same line even when the statement is
part of a logical IF statement. Moreover, the line containing v= must be the initial
line of the statement unless the statement is part of a logical IF statement; in such a
case the v= must occur on the same line as the logical IF or on the line immediately
following it.

FORTRAN 77+
Re ference Manual Assignment Statements 5-1

Arithmetic Assignment Statements

5.2 Arithmetic Assignment Statements

An arithmetic assignment statement assigns the value of the expression on the right of
the equal sign to the numeric variable or array element on the left of the equal sign.

The arithmetic assignment statement has the form:

v=e

v An arithmetic variable or array element.

e An arithmetic expression.

Rules for Use

• The data types of v and e can be integer, real, double precision, or complex.

Values must have been previously assigned to all symbolic references in the
expression.

• The expression must yield an arithmetic value.

Conversion Rules

• If the data. type of v and e differ, the expression is evaluated and the result is
converted to the type of v. The following chart details the required conversions.

Variable (v)
Type

INTEGER+1

5-2

Expression (e)
Type

INTEGER+l (IB)

INTEGER +2 (IH)

INTEGER or
INTEGER +4 (IW)

INTEGER+S (10)

REAL or
RtAL+4 (R)

DOUBLE PRECISION
or REAL+S (OP)

COMPLEX or
COMPLEX+S (CW)

COMPLEX+16 (CD)

Description of Conversions

No conversion required

Bits 8-15 of IH are stored into v

Bits 24-31 of IW are stored into v

Bits 56-63 of 10 are stored into v

R is converted to an IW; bits 24-
:n of IW are stored into v

DP is converted to an ID; bits 56-
63 of 10 are stored into v

The real part of CW is converted to
an IW; bits 24-31 of IW are
stored into v

The real part of CD is converted to
an 10; bits 56-63 of ID are
stored into v

Assignment Statements
FORTRAN 77+

Reference Manual

Variable (v)
Type

INTEGER'*' 2

INTEGER or
INTEGER'*'4

FORTRAN 77+
Reference Manual

Expression (e)
Type

INTEGER'*'l (IB)

INTEGER'*'2 (IH)

INTEGER or
INTEGER'*'4 (IW)

INTEGER'*'8 (10)

REAL or
REAL'*'4 (R)

DOUBLE PRECISION
or REAL*8 COP)

COMPLEX or
COMPLEX'*'8 (CW)

COMPLEX'*'16 (CO)

INTEGER'*'1 (IB)

INTEGER'*'2 (IH)

INTEGER or
INTEGER'*'4 (IW)

INTE GER '*'8 (10)

REAL or
REAL'*'4 (R)

DOUBLE PRECISION
or REAL'*'8 COP)

COMPLEX or
COMPLEX'*'8 (CW)

COMPLEX'*'16 (CD)

Arithmetic Assignment Statements

Description of Conversions

IB is stored into bits 8-15 of v;
zeros are stored into bits 0-7

No conversion required

Bits 16-31 of IW are stored into v

Bits 48-63 of 10 are stored into v

R is converted to an IW; bits 16-
31 of IW are stored into v

OP is converted to an 10; bits 48-
63 of 10 are stored into v.

The real part of CW is converted to
an IW; bits 16-31 of IW are
stored into v

The real part of CD is converted to
an 10; bits 48-63· of 10 are
stored into ':I

IB is stored into bits 24-31 of v;
zeros are stored into bits 0-23

IH is stored into bits 16-31 of v;
zeros are stored into bits 0-15

No conversion required

Bits 32-63 of 10 are stored into v

R is converted to an IW and then
stored into v

OP is converted to an 10; bi ts 32-
63 of 10 are stored into v

The real part of CW is converted to
an lW and then stored into v

The real part of CO is converted to
to an IO; bits 32-63 of 10 are
stored into v

Assignment Statements 5-3

Arithmetic Assignment Statements

Variable (v)
Type

INTEGER*B

REAL or
REAL*4

Expression (e)
Type

INTEGER *1 (IB)

INTEGER*2 (IH)

INTEGER or
INTEGER*4 (IW)

INTEGER*8 (ID)

REAL or
REAL*4 (R)

DOUBLE PRECISION
or REAL*8 COP)

COMPLEX or
COMPLEX*8 (CW)

COMPLEX*16 (CD)

INTEGER *1 (IB)

INTEGER *2 (IH)

INTEGER or
INTEGER*4 (IW)

INTEGER*8 (10)

REAL or
REAL*4 (R)

DOUBLE PRECISION
or REAL *8 COP)

COMPLEX or
COMPLEX*8 (CW)

Descriotion of Conversions

IB is stored into bits 56-63
of v; zeros are stored into
bits 0-55

IH is stored into bits 48-63 of v;
zeros are stored into bits 0-47

rN is stored into bits 32-63 of v;
zeros are stored into bits 0-31

No conversion required

R is converted to a DP; DP is
converted to an 10 and stored
into v

OP is converted to an IO and
stored into v

The real part of CW is converted to
a OP; OP is converted to an 10
and stored into v

The real part of CO is converted to
an ID and stored into v

IS is converted to an IW; rN is
converted to an R and stored
into v

IH is converted to an IW; rN is
converted to an R and stored
into v

rN is converted to an R and stored
into v

10 is converted to an IW; IW is
converted to an R and stored
into v

No conversion required

Bits 0-31 of OF> are stored into v

The real part of CW is
stored into v

FORTRAN 77+
5-4 Assignment Statements Reference Manual

[

Variable (v)
Type

DOUBLE
PRECISION
or REAL*'8

COMPLEX or
COMPLEX*'8

FORTRAN 77+
Reference Manual

Expression (e)
Type

COMPLEX*16 (CD)

INTEGER*'l (IB)

INTEGER*2 (IH)

INTEGER or
INTEGER*'4 (IW)

INTEGER*'8 (ID)

REAL or
REAL*'4 (R)

DOUBLE PRECISION
or REAL *8 (DP)

COMPLEX or
COMPLEX*'8 (CW)

COMPLEX*'16 (CD)

INTEGER*l (IB)

INTEGER *'2 (IH)

INTEGER or
INTEGER'*'4 (IW)

Arithmetic Assignment Statements

Description of Conversions

Bits 0-31 of the real part of CD
are stored into v

IS is converted to an 10; 10 is
converted to a DP and stored
into v

IH is converted to an 10; 10 is
converted to a DP and stored
into v

IW is converted to an 10; 10 is
converted to a OP and stored
into v

ID is converted to a OP and stored
into v

Bits 0-31 of R are stored into bits
0-31 of OP; zeros are stored
into bits 32-63

No conversion required

The real part of CW is converted to
a DP and stored into v

The real part of CO is stored into v

IS is converted to an IW; IW is
converted to an R and stored
into the real part of CW; zeros
are stored into the imaginary
part of CW

IH is converted to an IW; IW is
converted to an R and stored
into the real part of CW; zeros
are stored into the imaginary
part of CW

IW is converted to an R and stored
into the real part of CW; zeros
are stored into the imaginary
part of CW

Assignment Statements 5-5

Arithmetic Assignment Statements

Variable (v)
Type

COMPLEX*16

Expression (e)
Type

INTEGER*8 (10)

REAL or
REAL*4 (R)

DOUBLE PRECISION
or REAL*8 (DP)

COMPLEX or
COMPLEX*8 (CW)

COMPLEX*16 (CD)

INTEGER*l (IS)

INTEGER*2 (IH)

INTEGER or
INTEGER*4 (IW)

INTEGER*8 (10)

Description of Conversions

10 is converted to an IW; IW is
converted to an R and stored
into the real part of CW; zeros
are stored into the imaginary
part of CW

R is stored .into the real part of
CW; zeros are stored into the
imaginary part of CW

DP is converted to an R and stored
into the real part of CW; zeros
are stored into the imaginary
part of CW

No conversion required

Bits 0-31 of the real part of CO
are stored into the real part of
CW; bits 0-31 of the imaginary
part of CD are stored into the
imaginary part of CW

IB is converted to an 10; 10 is
converted to a DP and stored
into the real part of CD; zeros
are stored into the imaginary
part of CD

IH is converted to an 10; 10 is
converted to a OP and stored
into the real part of CD; zeros
are stored into the imaginary
part of CO

IW is converted to an 10; 10 is
converted to a OP and stored
into the real part of CD; zeros
are stored into the imaginary
part of CD

10 is converted to a DP and stored
into the real part of CD; zeros
are stored into the imaginary
part of CD

5-6 Assignment Statements
FORTRAN 77+

Reference Manual

(

r

Variable (v)
Type

Expression (e)
Type

REAL or
REAL*4 (R)

DOUBLE PRECISION
or REAL*8 (DP)

COMPLEX or
COMPLEX*8 (CW)

COMPLEX*16 (CD)

Arithmetic Assignment Statements

Description of Conversions

R is converted to a DP and stored
into the real part of CD; zeros
are stored into the imaginary
part of CD

DP is stored into the real part of
CD; zeros are stored into the
imaginary part of CW

Bits 0-31 of the real part of CW
are stored into bits 0-31 of the
real part of CD and zeros are
stored into bits 32-63. Bits 0-
31 of the imaginary part of CW
are stored into bits 0-31 of the
imaginary part of CD and zeros
are stored into bits 32-63

No conversion required

Examples of valid arithmetic assignment statements and their descriptions follow. I and
J are INTEGER variables; A, B, C, and D are REAL variables; E is a COMPLEX variable.

Statement

A=B

I = B

B = I

E = I**J+D

D=E

E=D

FORTRAN 77+
Reference Manual

Description

The value of A is replaced by the current value of B.

The value of B is truncated to an integer value which
replaces the value of I.

The value of I is converted to a real value that replaces
the value of B.

I is raised to the power J and the result is converted to a
real value, to which the value of D is added. This result
replaces the real part of the complex variable E. The
imaginary part of the complex variable is set to zero.

The real part of the complex variable E replaces the value
of D.

The value of D replaces the value of the real part of the
complex variable E; the imaginary part is set to zero.

Assignment Statements 5-7

Lagic::al Assignment Statements

5J Logical Assignment Statements

A logical assignment statement assigns the value of the logical expression on the right of
the equal sign to the variable or array element on the left of the equal sign.

The logical assignment statement has the form

v A logical variable or array element.

e A logical expression.

Rules for Use

• Values7 either numeric or logical, must have been previously assigned to all symbolic
references in the expression.

• The expression must yield a logical value.

Conversion Rules

• If the data type of v and e differ, the expression is evaluated and the result is
converted to the type of v. The following chart details the required conversions.

Variable (v)
Tvpe

(Logical) BIT

LOGICAL*l

LOGICAL or
LOGICAL*4

5-8

Expression (e)
Type

BIT (LBID

LOGICAL *1 (LB)

LOGICAL or
LOGICAL *4 (L W)

BIT (LBIT)

LOGICAL *1 (LB)

LOGICAL or
LOGICAL*4 (LW)

BIT (LBIT)

LOGICAL*1 (LB)

LOGICAL or
LOGICAL *4 (L W)

Description of Conversions

No conversion required

Bit 7 of LB is stored into LBIT

Bit 31 of LW is stored into LBIT

LBIT is stored into bits 0-7 of v

No conversion required

Bits 24-31 of LW are stored into v

LBIT is stored into bits 24-31 of Vi
bits 0-23 are unchanged

LB is stored into bits 24-31 of Vj

bits 0-23 are unchanged

No conversion required

Assignment Statements
FORTRAN 77+

Reference Manual

r
l

Logical Assignment Statements/Character Assignment Statement

Examples of valid logical assignment statements and their descriptions follow; G and L
are logical variables; I is an integer variable.

Statement

G = .TRUE.

L = .NOT. G

G=4 •• LT. I

Description

The value of G is replaced by the logical value • TRUE ••

If G is • TRUE., the value of L is replaced by the logical
value .F ALSE.. If G is .F ALSE., the value of L is replaced
by the logical value. TRUE ••

The value of I is converted to a real value; if the real
constant 4. is less than this result, the logical value
.TRUE. replaces the value of G. If 4. is not less than I, the
logical value .F ALSE. replaces the value of G.

5.4 Character Assignment Statement

The character assignment statement assigns the value of the character expression on the
right of the equal sign to the character variable, array element, or substring on the left
of the equal sign.

The character assignment statement has the form

v=e

v A character variable, array element, or substring.

e A character expression.

Character expressions are interpreted as strings of characters. The value of v is
determined by evaluating the expression and replacing v with the value of the
expression. This value is affected only by the possible extension to the right by blanks or
truncation.

Rules for Use

• None of the character positions being replaced in v can be referenced in e; thus, the
following assignment is incorrect.

STRING (1:10) = STRING (5:14)

• Values must have been previously assigned to all symbolic references in the
expression.

• Assigning a value to a character substring does not affect character positions in the
character variable or array element that are not included in the substring. A
character position that is undefined or has a previously assigned value remains
unchanged if it is outside the substring.

FORTRAN 77+
Reference Manual Assignment Statements 5-9

Olaracter Assignment Statement/ ASSIGN Statement

Conversion Rules

If the length of the character expression value is greater than the length of v, the
character expression value is truncated on the right.

• If the length of the character expression value is less than the length of v, the
character expression value is filled on the right with blanks.

Examples of valid character assignment statements follow. Assume that all variables
and arrays in the examples are of CHARACTER data type.

Statement

FILE = 'PROG2'

CODE (1) = 'MAR'//'COM'

TERM(3:10) = 'POSTDATE'

5.5 ASSIGN Statement

Description

The value of FILE is replaced by 'PROG2'.

The value of array CODE element 1 is replaced by
'MARCOM'.

The value of TERM character positions 3 through
10 are replaced by 'POSTDA TE'. .

The ASSIGN statement assigns a statement label value to an integer variable. The
variable can then be used to specify a transfer destination in an assigned GO TO
statement or to specify a FORMAT statement that is to be used in an input/ output
statement.

Syntax

m

ASSIGN i TO m

A statement label of an executable statement or a FORMAT statement in
the same program unit.

Either an INTEGER (INTEGER*4) or INTEGER*8 variable.

The ASSIGN statement is similar to an arithmetic assignment statement with one
exception: the variable becomes defined for use as a statement label reference and
becomes undefined as an integer variable.

The ASSIGN statement must be executed before any assigned GO TO or input/ output
statement(s) in which the assigned variable is to be used. The ASSIGN statement and any
assigned GO TO or input/output statement(s) that reference the ASSIGN variable must
occur in the same program unit.

F or example,

ASSIGN 100 TO NUMBER

The preceding statement associates the variable NUMBER with statement label 100. As
in the foilowingstatement, arithmetic operations on the variable become invalid, since
arithmetic operations on a statement label are undefined.

NUMBER = NUMBER+l

5-10 Assignment Statements
FORTRAN 77+

Reference Manual

(

(

ASSIGN Statement/Multiple Assignment Statements

The following statement disassociates NUMBER" from statement 100, assigns it an
integer value 10, and returns its status to an integer variable.

NUMBER = 10

An assigned GO TO can no longer use the variable NUMBER.

Examples

ASSIGN 10 TO NST ART

ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR

5.6 Multiple Assignment Statements

KSTOP, ERROR, and NST ART must be
INTEGER (INTEGER*4) or INTEGER*8
variables

A multiple assignment statement assigns a value to more than one variable. The form of
the statement is:

v· 1
Variable or array elements, including character var:iables, character array
elements, and character substrings. Character data cannot be mixed with
other types of data.

e An expression.

Replacement is performed from right to left. Type conversion is performed, if
necessary, across each equal" sign. Therefore, you can control the number and order of
conversions.

RR = I = R = D = 1.457634219876200

is equi valent to

0=1.457634219876200
R=D
1= R
RR = I

performed in that order.

Therefore, if RR and R are REAL, I is INTEGER, and 0 is DOUBLE PRECISION, then the
assigned values would be

0=1.457634219876200
R = 1.4576342
1=1
RR = 1.0

Note that even though RR and R are both real, they are not assigned the same value,
since replacement proceeds from right to left.

FORTRAN n+
Reference Manual Assignment Statements 5-11

Multiple Assignment Statements/Full Array Assignments

Execution of a multiple character assignme,nt statement causes the character expression
e to be evaluated. The character entities v!' •• 0, Vi in turn, taken from right to left, are
defined and assigned the value of e. This value is affected only by possi~le truncations
and extensions to the right by blanks, depending on the sizes of the intermediate entities
Vi- For example, if A, B, and C are CHARACTER *6, *3, and *5, respectively, then:

A = B = C = 'QUOTE'

will result in

C :,'QUOTE'
B = 'QUO'
A = 'QUObbb'

5.1 Full Array Aasignments

A full array assignment statement may be used to assign a value to every element of an
array. The statement is of the form:

a=e

An array name.

e An expression.

For example,

TABLE = 1.0

would initialize each element in the entire array TABLE to the value 1.0. Notice that if
the statement is altered to an array element assignment, such as:

TABLE (3) = 1.0

only element three (3) of array TABLE receives the value 1.0. All other elements of the
array are unaffected.

5-1Z Assignment Statements
FORTRAN 77+

Re ference Manual

/' ~, , '

(

6.1 General

Q;APTER 6

CONTROLSTATENENrrS

Control statements are executable statements that determine the order in which other·
statements are executed. Execution normally begins with the first executable statement
and proceeds sequentially through successive statements. Control statements permit
alteration of this normal process and allow the user to transfer control to a point within
the same program unit or to another program unit. These statements also govern
iterative processing, suspension of program execution, and program termination.

The control statements described in this chapter are:

• Unconditional GO TO·
• Computed GO TO
• Assigned GO TO
• Arithmetic IF
• Logical IF
• IF THEN
• ELSE IF THEN
• ELSE
• END IF
• DO
• DO forever·
• DO UNTIL
• DO WHILE
• LEAVE
• CONTINUE
• END DO
• SELECT CASE
• CASE
• END SELECT
• STOP
• END
• PAUSE

The CALL and RETURN control statements are discussed in Chapter 9.

FORTRAN n+
Reference Manual Control Statements 6-1

GO TO Statements/Unconditional GO TO Statement

6.2 GO TO Statements

GO TO statements transfer control to an executable statement specified by a statement
label in the GO TO statement. Control is transferred either to the same statement each
time the GO TO is executed or to one of a set of statements based on the value of an
expression.

The three types of GO TO statements are:

• Unconditional GO TO
• Computed GO TO
• Assigned GO TO

6.Z.l Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same statement each time it
is executed.

Syntax

GOTOx

x The statement label of an executable statement within the same program
unit.

Example

GO TO 376
310 V(7): ABAR.V(lO)

.
376 V(5)=ZOT

GO TO 310

In the preceding example, statement 376 may be executed before statement 310 even
though it appears after statement 310 in the text.

6-2 Control Statements
FORTRAN 77+

Reference Manual

(

Computed GO TO Statement

6.2.2 Computed GO TO Statement

The computed GO TO statement transfers control to a statement based on the value of
an integer expression within the statement.

Syntax

GO TO (Xl [,xn] •••) [,] i

Labels of executable statements within the same program unit.

An INTEGER*l, INTEGER*2, or INTEGER (INTEGER*4) expression.

Control is transferred to the ith statement label depending on the current value of i.

Rule for Use

If the value of i is less than one or greater than n, control proceeds to the first
executable statement after the computed GO TO.

Example

99

J=3

.
GO TO (115, 306, 700, 8019, 73),J
CONTINUE

In the preceding example, when J is equal to 1, the computed GO TO transfers control to
statement 115; when J is equal to 2, control is transferred to statement 306, and so on.
If J were less than 1 or greater than 5, control would fall through to the statement
following the computed GO TO (s.tatement 99).

FORTRAN 77+
Reference Manual Control Statements 6-3

Assigned GO TO Statement

6.2.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to a statement label that is represented
by a variable. The relationship between the variable and the specific statement label
must be established by an ASSIGN statement. Thus, the transfer destination can be
changed depending on the most recently executed ASSIGN statement.

Syntax

GO TO i [,] [(x [,xn] •••)]

An INTEGER (INTEGER*4) or INTEGER*8 variable name.

Labels of executable statements within the same program unit.

Rules for Use

• When a list of statement labels is specified, the value of i should have been assigned to
one of the labels in the list. However, no check is made to verify this assignment.

• The execution of an ASSIGN statement specifying a variable name must logically
precede the execution of an assigned GO TO that references that name. (

Example

ASSIGN 50 TO IERROR

.
GO TO IERROR

ASSIGN 90 TO LOCAL

GO TO LOCAL, (70, 90, 110)

6-4 Control Statements
FORTRAN 77+

Reference Manual

"'--_/

c

JF Statements/Arithmetic IF Statement

6 • .3 IF Statements

If statements transfer control to one of 8. series of statements depending upon a
specified condition. The three types of IF statements are:

• Arithmetic
• Logical
• Block

6.3.1 Arithmetic IF Statement

The arithmetic IF statement transfers control to one of three statements based upon the
value of an arithmetic expression.

~~

If (e) xl'x2,x3

e An arithmetic expressiona

Labels of executable statements 'within the same program unit.

Control is transferred to statement label xl' xzs or x3 depending on whether the value of
the arithmetic expression e is less than, equal to, or greater than zero, respectively.

Rules for Use

• The data type of e can be integer, real, or double precision; it must not be complex.

• All three statement labels are required; however, they need not refer to different
statements.

Examples

IF (ZAP) 2,3,4

In the preceding example, when ZAP < 0, control is transferred to statement 2; when
ZAP=O, control is transferred to statement 3; when ZAP > 0, control is transferred to
statement 4.

IF (NUMBER) 2,2,4

In the preceding example, when NUMBER < 0, control is transferred to statement 2; when
NUMBER> 0, control is transferred to statement 4.

IF (AMTX (3,1,2»7,2,1

In the preceding example, when the value of the element (3, 1, 2) of array AMTX is less
than 0, control is transferred to statement 7; when the value is equal to 0, control is
transferred to statement 2; when the value is greater than 0, control is transferred to
statement 1.

FORTRAN 77+
Reference Manual Control Statements 6-5

Logical IF Statement

6.3.2 Logical IF Statement

The logical IF statement conditionally executes a single FORTRAN statement.
Execution of the statement is based on the value of a logical expression within the
logical IF statement.

Syntax

IF (e) s

e A logical expression.

s An executable statement.

The logical expression e in the IF statement is evaluated first. If the value of the
expression is • TRUE., the statement s is executed. If the value of the expression is
.FALSE., control is transferred to the next executable statement after the logical IF; the
statement s is not executed.

Rules for Use

• The executable statement s must not be a DO, END, block IF, ELSE IF, ELSE f END IF,
END DO, SELECT CASE, CASE, END SELECT, or another logical IF statement • .

• If s is an assignment statement, the left side of the assignment and the equal sign <::)
must be on the same line, either immediately following the IF (e) or on a continuation
line with all blanks following the IF (e) (refer to statements 4 and 5 in the following
example).

Example

LOGICAL Q,R,Z
1 IF (I.L T .20) GO TO U5
Z IF (G.AND.R) ASSIGN 10 TO J
3 IF (Z) CALL oECL (A,B,C)
4 IF (A .GT. 10 .OR. B .LE. Pl/Z)I::J
5 IF (R .GT. 12 .OR. A .LE. 15)

X K::M

Control Statements
FORTRANn+

Reference Manual

r---"',
i~J

r
l ...

Block IF Construct

6.3.3 Block IF Construct

Block IF constructs conditiona,lly execute blocks (or groups) of statements. The
statements associated with the block IF are:

IF (e) THEN
ELSE IF (e) THEN
ELSE
END IF

The block IF construct has the form

e· 1

IF (e1) THEN
block

[ELSE IF (e2) THEN
block]

[.] ELSE
block

END IF

A logical expression.

block A sequence of zero or more complete FORTRAN 77+ statements. (This
sequence is called a statement block.)

Each statement in a block IF construct, except the END IF statement, has an associated
statement block. The statement block consists of all the statements following the IF
statement up to (but not including) the next IF statement in this block IF construct. The
statement block is conditionally executed based on the values of logical expressions in
the preceding IF statements.

FORTRAN 77+
Reference Manual Control Statements 6-7

IF THEN Statement

6.3.3.1 IF THEN Statement

The IF THEN statement begins a block IF construct. The block following is executed if
Lhe value of the logical expression in the IF THEN statement is true, as indicated in
F igul'e 6-1.

21!ltax

IF (e) THEN

e A logical expression.

CONSTRUCT FLOW OF CONTROL

IF (e) THEN

block

END IF

Rule for Use

EXECUTE
block

Figure 6-1. Simple Block IF Construct

FALSE

a10554A

Transfer of control into an IF block from outside the IF block is prohibited •.

Examole

6-8

100 IF (A.L T .B) THEN
DIFF=B-A
PRINT 300, A,B,DIFF

300 FORMAT C'A= ',F6.2, 'B= " F6.2, 'DIFFERENCE= " F6.2)
END IF

Control Statements
FOR TR.A.N 77+

Reference Manual

(

ELSE IF THEN Statement

In the preceding example, the statement block consists of all the statements between the
IF THEN and the END IF statements.

The logical expression A.L T.B is evaluated first. If the value of the expression is true,
the statement block is executed. If the value of the expression is false, control passes to
the END IF; the block is not executed.

6.3.3.2 ELSE IF THEN Statement

The ELSE IF THEN statement is optional. It specifies a statement block to be executed
if the value of the logical expression in the statement is true and no preceding statement
block in the block IF construct has been executed as indicated in Figure 6-2.

Syntax

e

ELSE IF (e) THEN

A logical expression.

CONSTRUCT

IF (e,) THEN

block,

ELSE IF (e2) THEN·

block2

END IF

EXECUTE
(block,)

FLOW OF CONTROL

FALSE FALSE

810555A

Figure 6-2. Block IF Construct with ELSE IF THEN Statement Block

FORTRAN 77+
Reference Manual Control Statements 6-9

ELSE IF THEN Statement

A block IF construct can contain any number of ELSE IF THEN statements, as indicated
in Figure 6-3.

CONSTRUCT

IF (e1) THEN

block 1

EL.SE IF (e2) THEN

block2

ELSE IF (e3) THEN

block3

ENOIF

EXECUTE
(block1)

FL.OW OF CONTROL.

EXECUTE
(block2)

EXECUTE
(block3)

810556A

Figure 6-3. Block IF Construct With Multiple ELSE IF THEN Statement Blocks

Rules for Use

• Transfer of control into an ELSE IF THEN block from outside the block is prohibited.

The statement label, if any, of an ELSE IF THEN statement must not be referenced by
any statement.

An ELSE IF THEN b lock can be emp ty.

6-10 Control Statements
FORTRAN 77+

Reference Manual

(

(

Example

100 IF (A.EQ.8) THEN
PRINT 200,A

200 FORMAT ('A AND B=', F6.2)
ELSE IF (A.L T .B) THEN

DIFF=8-A
PRINT 300, A,B,DIFF

300 FORMA T (' A=',F 6.2, 'B=I ,F 6.2, 'DIFFERENCE=' ,F 6.2)
END IF

ELSE Statement

In the preceding ~xample, block 1 consists of all the statements between the IF THEN
and the ELSE IF THEN statements; block 2 consists of all the statements between the
ELSE IF THEN and the END IF statements. Execution proceeds as follows:

1. If A is equal to B, block 1 is executed.

2. If A is not equal to B but A is less than B, block 2 is executed.

3. If A is not equal to B and A is not less than B, neither block 1 nor block 2 is
executed; control transfers to the END IF statement.

6.3.3.3 ELSE Statement

The ELSE statement specifies a statement block to be executed if no preceding
statement block in the block IF construct has been executed (see Figure 6-4).

Syntax

ELSE

CONSTRUCT

IF (e) THEN

block,

ELSE

block2

END IF

EXECUTE

(block,)

FLOW OF CONTROL

FALSE

EXECUTE
(biock2)

Figure 6-4. Block IF Construct with ELSE Statement Block

FORTRAN 77+
Reference Manual Control Statements

810557A

6-11

END IF Statement

Rules for Use

• An ELSE block must end with an END IF statement.

• Transfer of control into an ELSE block from outside the ELSE block is prohibited.

• The statement label, if any, of an ELSE statement must not be referenced by any
statement.

Example

100 IF(AD.L T. TR) THEN
COUNT =COUNT + 1
TERM(COUNT) = AD

ELSE
NEW = NEW + 1

END IF

In this example, block 1 consists of all the statements between the IF THEN and ELSE
statements, and block 2 consists of all the statements between the ELSE and the END IF
statements. Execution proceeds as follows:

1. If the value of AD is less than TR, block 1 is executed.
2. If the value of AD is equal to or greater than TR, block 2 is executed.

6.3.3..4 END 1F Statement

The END IF statement is used to end a block IF construct.

Syntax

END IF

Rule for Use

For each block IF construct, there must be a corresponding END IF statement in the
same program uni t.

Example

IF (B.LT.SO) THEN

.
ELSE IF (VAL .LE.lO) THEN

.
ELSE

END IF

6-1l Control Statements
FORTRAN 77+

Reference Manual

C' ;
./--

r/

Nested Block IF Construct

6.3.3.5 Nested Block IF Construct

A block IF construct can be included in a statement block of another block IF construct.
However, the nested block IF construct must be completely contained within a statp.ment
block; it must not overlap statement blocks. Similarly, a block IF construct can be
included in the range of a DO statement if the complete construct is written within the
DO range.

Form

IF (e) THEN

IF (e) THEN

blocka

blockl ELSE

blockb

END IF

ELSE

block2

END IF

50

100

200

300

400

Example

IF (B.L T .50) THEN

GO = GO + 1

ELSE

IF ry AL .LE. 10) THEN

TOT = TOT +1

ELSE

UNTOT = UNTOT + 1

END IF

OUTGO = OUTGO + 1

END IF

500 END

In the preceding example, blockl contains a nested block IF construct. Execution
proceeds as follows:

1. If B is less than 50, blockl is executed. If the value of VAL is less than or equal
to 10, blocka is executed. If the value of VAL is greater than 10, bloc;:kb is
executed.

2. If B is greater than or equal to 50, block2 is executed; the nested IF construct
is not executed, because it is not in block2.

FORTRAN 77+
Reference Manual Control Statements 6-13

IF Level

6..3..3.6 IF Level

Awareness of the IF level of a statement helps insure that block IF constructs are
completely contained within a statement block.

The IF level of a statement s is defined as:

nl-n2

nl

n2

The number of block IF statements from the beginning of the program unit,
up to and including s.

The number of END IF statements in the program unit, up to but not
including s.

Rules for Use

• The IF level of every statement must be zero or positive, i.e., there must be at least
as many block IF statements to and including a given statement as there are END IF
statements that precede it. In the previous example (section 6.3.3.5), the following IF
levels apply:

Statement Number

50
100
200

IF Level

1
2
2

• The IF level of each block IF, ELSE IF, ELSE, and END IF statement must be positive
(refer to the example in section 6.3.3.5).

Statement Number

100
300
400

IF Level

2
1
1

• The IF level of the END statement of each program unit must be zero, i.e., there must
be one block IF statement for every END IF statement (refer to the example in
section 6.3.3.5).

Statement Number

sao

6-14

IF Level

a

Control Statements
FORTRAN 77+

Reference Manual

c/

DO Statement

6.4 DO Statement

The DO statement specifies iterative processing; statements in its range are executed
repeatedly a specified number of times.

Syntax

DO [x[,]] i= m1' mZ [, m3]

x The statement label of an executable statement. x is optional when END
DO-is used as the terminal statement.

A variable of any integer, real or double precision data type.

The initial, terminal, and incremental parameters, respectively. Each is
an arithmetic expression with a data type of integer, real, or double
precision. The default value of m3 is one.

The expressions ml' mZ' and m3 are evaluated first to determine values for the initial,
terminal, and incremental parameters. The value of the initial parameter m1 is assigned
to the control variable i, and the executable statements in the range of the DO loop
are executed. During the second execution, i = ml + m3; during the third,
i = m1 ;. Zm3' etc., until i is out of the range of ml to mZ•

Rules for Use

The terminal statement of a DO loop is identified either by the label x that appears in
the DO statement, or by an END DO if x is not specified.

• The DO, a comma, and the equal sign must appear on the initial line of a DO
statement. Thus, either of the following is correct:

DO 33 1=40,
* 60,2 or

DO 33, I =
* 40,60,2

• It is invalid to transfer control into the range of a DO loop from outside the loop.

• Within the range of a DO statement, there may be other DO statements, in which case
the DO statements are said to be nested.

FORTRAN 77+
Reference Manual Control Statements 6-15

Range of the Dol Active and Inactive DO Loops

6.4.1 Range of the DO Statement

The range of the DO statement includes all executable statements following the DO
statement that specifies the DO loop, up to and including the terminal statement.

If a DO statement appears within an IF block, ELSE IF block, or ELSE block, the range of
the DO loop must be entirely within that block.

IF (A.GT .8) THEN
DO 50 L=10,250,2

.
50 E{T)= D(L)+F

END IF

If a block IF statement appears within the range of a DO loop, the corresponding END IF
statement must also appear \yithin the range of that DO loop.

DO 50 L=10,250,2
IF (A.GT.8) THEN

D=8
F=A-8

ELSE
0=0.0
F=O

END IF
50 E(T) = D(L)+F

6.4.2 Active and Inactive 00 Loops

A DO loop is initially inactive. It becomes active only when its DO statement is
executed.

Once active, the DO loop becomes inactive only when:

• Its iteration count is tested and determined to be zero.

• A RETURN statement is executed within its range.
(

• Control is transferred to a statement that is in the same program unit and is outside
the range of the DO loop.

• A STOP statement in the executable program is executed, or execution is terminated
for any other reason (error conditions).

Execution of a function reference or CALL statement that appears in the range of a DO
loop does not cause the DO loop to become inactive, except when control is returned by
means of an alternate return specified in a CALL statement to a statement that is not in
the range of the DO loop.

6-16 Control Statements
FORTRAN 77+

Reference Manual

(/

DO Terminal Statement/DO Index

6.4.3 Terminal Statement of the DO

The terminal statement of a DO loop is identified by the label that appears in the DO
statement, or it may be an END DO statement. The following rules govern the use of the
terminal statement:

• The terminal statement must be an executable statement.

• The terminal statement must physically follow its associated DO.

• The terminal statement must not be an arithmetic IF, unconditional or assigned GO
TO, RETURN,. STOP, PAUSE, END, or another DO; also, it may not be a block IF,
ELSE IF, ELSE, END IF, SELECT CASE, CASE, END SELECT, or LEAVE statement.

• If the terminal statement is a logical IF statement, it can contain any executable
statement except a DO, block IF, ELSE IF, ELSE, END IF, END, SELECT CASE,
CASE, END CASE, or another logical IF.

• If the, terminal statement is a logical IF and its expression value is .FALSE., the
statement in the logical IF is not executed before the statements in the DO range are
repeated. '

• If the terminal statement is a'logical IF and its expression is .TRUE., the statement of
the logical IF is executed, after which the statements in the DO range are reiterated
unless the statement contained in the logical IF statement alters the flow of control.

• The terminal statement of the inner DO of a nested DO loop may also be the terminal
statement of the outer DO. Note however, that an END DO used as a terminal
statement terminates only the pTeceding DO loop.

• If the terminal statement is shared, it is "owned" by the innermost active DO loop.

6.4.4 Index of the DO

The controlling variable i is called the index of the DO range. The index is negative,
zero, or posi~ive, depending upon the evaluation of the initial and terminal parameters
m1 and m2·

The following rules govern the use of the index and associated parameters:

• The terminal parameter need not be greater than or equal to the initial parameter; m3
can be negative.

• Evaluation of mIl m2' and m3 (when represented by arithmetic expressions) occurs
only once at the oeginning of execution of the DO statement.

• m3 is optional; the default is 1.

• The DO index may not be redefined during execution of the range of the DO loop.

FORTRAN n+
Reference Manual Control Statements 6-17

DO Iteration Control/Nested DO Loops

6.4.5 DO Iteration Control

The number of times a DO loop is executed is called the trip count, which is determined
as

The value of the count establishes the number of times the loop range is executed. If the
count is zero, the loop immediately becomes inactive and its range is not executed.

Users may set compiler option 11, which causes all DO loops to execute at least once.

The trip count is determined at the time the DO statement is executed. Entities that
appear in the expression used to calculate this value may be changed during execution of
a loop without affecting the number of times a loop is executed.

The user should note that the trip count calculation itself must not cause arithmetic
oVffflow, or unpredictable results will occur. The maximum allowed trip count value is
(2 -1).

When a DO loop has been executed, the DO index variable retains a value that is the
value it would have had in the next execution of the loop. However, premature exiting of
a DO loop by a LEAVE, GOTO, or call to a procedure that has an alternate return causes
the index variable to retain the value that was current when the loop was exited.

6.4.6 Nested DO Loops

A DO loop can contain one or more complete DO loops. The range of an inner nested DO
loop must be completely contained within the range of the next outer loop. Figure 6-5
illustrates nested loops.

Correctly Nested
00 loops

0020 NUMBER-1.J · .
•
•

L 40
0040 l."1,100,2
TOTAl.(l.)=SUM (l.,M)·1 L::20

"----20 O(M)=O(M) 40

Figure 6-5. Nested 00 Loops

6-18 Control Statements

I ncorrectly Nested
00 loops

0020 NUMBER-1,J

•
•
•

0040 l.=1, 100,2
O(M)=O(M)
TOTAL(l.)=SUM (L,MH

810558A

FORTRAN 77+
Re Ference Manual

c

/" "\

c

[

Nested DO Loop Control Transfer

Nested DO loops can share terminal statements. For example,

DIMENSION A (15,15) , B(15), C(15)

DO 73 K=1,15
C(K) = 0.0
DO 73 J=1,15

73 C(K) = C(K) + A(K,J)*B(J)

In the preceding example, K is set to 1 and the inner DO is repeated, with J varying from
1 to 15. K is then .set to 2, and the process is repeated; execution continues until K=16.
Notice that both of th~ DO loops share the terminal statement 73.

6.4.6.1 Transfer of Control in Nested DO Loops

Within a nested DO loop, control can be transferred from an inner loop to an outer loop.
However, a transfer from an outer loop to an inner loop is not permitted. For example,
the following sequence is legal.

DO 99 1=1,10

DO 40 M=1,30,2

GO TO 99

.
40 D(M) = Q(M)

99 CONTINUE

However, the following sequence is illegal, since control is being transferred from an
outer loop to an inner loop.

DO 99 1=1,10

GO TO 99

DO 99 J=1,15

99 CONTINUE

The shared terminal statement is owned by the innermost DO.

FORTRAN 77+
Reference Manual Control Statements 6-19

DO Forever Statement

6..5 DO Forever Statement

A DO forever statemen~ specifies a DO loop having no explicit loop termination.
Following execution of the associated terminal statement, provided this latter statement
causes no transfer of control, control is unconditionally transferred to the first
statement in the range of the DO forever statement.

The DO forever statement is designed to provide enhanced control structuring.

Syntax

DO [x] [,] [BEGIN]

x

BEGIN

The statement label of an executable statement following the DO forever
statement and within the same program unit.

A keyword provided for the convenience of the programmer.

Rules for Use

• It is invalid to transfer control into the range of a DO loop from outside the loop.

• Within the range of a DO statement there may be other DO statements, in which case
the DO statements are said to be nested.

c

• Exit from .a DO forever loop occurs only upon execution of some control transfer ('
statement within the loop range. The.LEAVE statement is appropriate.~_j

Example

6-20

DO

.
IF (A.EQ.39.0) LEAVE
A = A + 1.0
END DO
SUM = A + B

Control Statements

j

FORTRAN 77+
Reference Manual

~-~

~J

DO UNTIL Statement

6.6 DO UNTIL Statement

The DO UNTIL statement is an extension that provides enhanced control structuring.

Syntax

DO [x] [,] UNTIL (e)

x The statement label of an executable statement following the DO UNTIL
statement and within the same program unit.

e A logical expression.

Execution of a DO UNTIL statement proceeds as follows:

• Control proceeds to the first executable statement in the DO range. Thus, the DO
loop is executed at least once.

• Statements in the range of the DO UNTIL loop are executed in the same manner as a
standard DO.

Following the execution of the terminal statement of the loop, the expression e is
evaluated. If e is • TRUE., the loop becomes inactive and control is transferred past
the terminal statement in the same manner as a standard DO. If e is .F ALSE., the
execution process is repeated. .

Note: Executing a statement within the loop range that explicitly transfers control
outside the loop may also be used to exit a DO UNTIL loop.

Rules for Use

• It is invalid to transfer control into the range of a DO loop from outside the loop.

• Within the range of a DO statement there may be· other DO statements, in which case
the DO statements are said to be nested.

Example

DO UNTIL (A.EG.33.0)

A = A + 1.0
END DO
SUM = A + B

FORTRAN 77+
Re ference Manual Control Statements 6-21

DO WHILE Statement

6.7 00 WHILE Statement

The DO WHILE statement is an extension that provides enhanced control structuring.

Syntax

x

e

DO [x] [,] WHILE (e)

The statement label of an executable statement following the DO WHILE
statement and within the same program unit.

A logical expression.

Execution of a DO WHILE statement proceeds as follows:

1. The expression e is evaluated. If e is .FALSE., control is transferred past the
associated' terminal statement in the same manner as a standard DO. If e is
.TRUE., control proceeds to the first executable statement in its range.

2. Statements in the range of the DO WHILE loop are executed in the same
manner as a standard DO.

3. F allowing the execution of the terminal statement of the loop, the execution
process is repeated with step 1 above.

Note: Executing a statement within the loop range that explicitly transfers control
outside the loop may also be used to exit a DO WHILE loop.

Rules for Use

• It is invalid to transfer control into the range of a DO loop from a statement outside
the loop.

• Within the range of a DO statement there may be other DO statements, in which case
the DO statements are said to be nested.

Example

6-22

DO WHILE (A.L T .12.0)

A = A + 1.0
END DO
ALL=A+B

Control Statements
FORTRAN 77+

Reference Manual

c

LEAVE Statement

6.8 LEAVE Statement

The LEAVE statement is an extension to the DO statements, including DO forever, DO
UNTIL, and DO WHILE statements.

Syntax

LEAVE [x]

x The statement label of the terminal statement of a DO loop (including a DO
forever, DO UNTIL, or DO WHILE loop) statement.

Rules for Use

• The LEAVE statement may only occur within the range of the DO statement.

• If the statement label is present, execution of the LEAVE statement causes control to
be transferred to the next executable statement following the terminal statement
labeled x.

• If LEAVE is executed without a statement label, control is transferred from the
innermost active DO loop only.

Examples

19 DO 33

A = A + 1.0
IF (A.EG.15.0) LEAVE 33
SUM = A + B

33 CONTINUE

In the following example, control is transferred from the innermost active DO loop.

DO lI=1,N
DO 2 J=l,K

.
IF (J.EG.I) LEAVE

2 CONTINUE
1 CONTINUE

Execution of LEAVE in the following example transfers control out of both loops.

DO 10
1=1+1
DO 10
J = J+1
IF (J.EG.4) LEAVE 10

10 CONTINUE

FORTRAN 77+
Reference Manual Control Statements 6-23

CONTINUE Statement/END DO Statement

6.9 CCNTINUE Statement

The CONTINUE statement transfers control to the next executable statement. It is used
primarily as the terminal statement of a DO loop when that loop would otherwise end
illegally.

Syntax

CONTINUE

Example

In the following example, the CONTINUE statement is used to avoid ending the DO loop
with an arithmetic IF statement.

DO 15 K=I,10

IF (C2) 20,15,15
15 CONTINUE

20 C2=C2 + .005

6.10 END 00 Statement

The END DO statement is used as the terminal statement of a 00 loop; it has no other
effect.

Syntax

END DO

Rules for Use

• The END DO may only be used as the terminal statement of a DO loop.

• An END DO statement must be labeled if it terminates a DO specifying a label (see
the first example below).

• An unlabelled END DO statement terminates only the DO loop that corresponds to the
DO statement immediately preceding the END DO statement, i.e., an unlabelled END
DO statement cannot terminate multiple DO statements.

Example

6-24

DO 1 J=I,K

· · · 1 END DO
DO J=I,K
DO I=l,N.

END DO
END DO

Control Statements
FORTRAN 77+

Reference Manual

~ ... /

c

r

(

SELECT CASE Control Structure/SELECT CASE Statement

6.11 SELECT CASE Control Structure

The SELECT CASE control structure enables a user to select one block of statements for
execution from several alternate blocks based upon the value of an expression.

The SELECT CASE construct,

SELECT CASE
CASE

blOC{
END SELECT

contains:

• An initial SELECT CASE statement.

• A set of statement blocks. (The first statement of each block is a CASE statement, a
CASE DEF AUL T statement, or an ELSE statement)

A terminal END SELECT statement

There may be zero or more CASE blocks in a SELECT CASE construct. The execution of
the SELECT CASE construct begins with the execution of the SELECT CASE
statement. This causes control to be transferred to the CASE, CASE DEF AUL T, or ELSE
statement of one of the CASE blocks or to the END SELECT statement. If control is
transferred to a CASE statement, the normal execution sequence is followed starting
with that CASE statement. When the last executable statement of the CASE block is
executed, control is transferred to the END SELECT statement.

Only an entire SELECT CASE construct may be nested"within any block of statements.
No transfer of control may occur into any CASE block from outside of the block.

6.11.1 SELECT CASE Statement

When SELECT CASE is executed, an expression is evaluated. The value of the expression
determines the statement to which control is transferred.

Svntax

SELECT CASE exp

exp An INTEGER*l, INTEGER*2, INTEGER*4, REAL*4, LOGICAL*l, or
LOGICAL *4 expression.

FORTRAN 77+
Reference Manual Control Statements 6-25

CASE Statement

Rules for Use

• If the value of exp . equals none of the values specified in any of the CASE statements,
and a CASE DEF AUL T or ELSE statement is present in the SELECT CASE construct,
control is transferred to the CASE DEFAULT or ELSE statement; if no CASE
DEF AUL T or ELSE statement is present, control is transferred to the END SELECT
statement of the SElECT CASE construct.

• Transfer of control from outside the SELECT CASE structure to a statement within
the structure is improper.

The range of a case expression for an integer word is from -2147483648 to
2147483646.

6 .. 11.2 CASE Statement

Execution of a CASE statement has no effect; it is used to mark the beginning of a CASE
block and to specify the values that cause control to be transferred to a CASE block •

. Syntax

CASE const1 [,const2] •••

CASE DEF AUL T

A constant expression or range of the form [(] I : u [)], where 1 and u are'
constant expressions.

Rules for Use

• The range forms of consti may be used with the integer or real data types.

Note that CASE generates a full word value, which is compared to the SELECT CASE
expression. For example, in comparing a byte I to a IHH word, the right-justified,
zero-filled word value of 1 is compared to the left-justified, blank-filled Hollerith
constant IHH or X'48202020' Therefore, the byte I must be compared to lRH or
X'00000048' to 'obtain correct results.

• The value of 1 must be less than the value of u.

• The form 1: u specifies every value between the values of 1 and u including the
endpoint values 1 and u, with the following exceptions:

If the SELECT CASE type is REAL, ranges can be expressed in three additional forms:

6-26

(i:u) indicating the range is from 1 to u excluding both 1 and u.

l:u) indicating the range is from 1 to u including 1, but excluding u

(I:u indicating the range is from 1 to u excluding 1, but including u.

Control Statements
FORTRAN 77+

Reference Manual

o

" -

END SELECT Statement

• The type of consti' 1, and u must agree with the type of the SELECT CASE expression,
expo

• The CASE constant expression and ranges within a SELECT CASE structure must be
distinct and nonoverlapping.

At most, one CASE DEF AUL T or ELSE statement may be specified in a SELECT
CASE construct.

6.l.l.3 END SELECT Statement

Execution of END SELECT has no effect; it marks the end of the SELECT CASE
construct.

Syntax

END SELECT

Example

SELECT CASE H+1.
CASE 1.

CASE 2.:4.

CASE DEF AUL T

CASE 5.:7.) ! Range is from 5.0 up to but not including 7.0

.
CASE (7.:12. ! Range is up to 12.0 but excluding 7.0

END SELECT

Depending upon the value of the SELECT CASE expression H+1., control is transferred to
one of the case statements within the CASE block. If the value of the. expression equals
none of the values specified in any of the CASE statements, control is transferred to the
CASE DEF AUL T statement.

FORTRAN 77+
Reference Manual Control Statements 6-27

STOP Statement/END Statement

6.12 STOP Statement

Execution of the STOP statement causes the termination of a program.

Syntax

STOP n

n A sequence of alphanumeric characters (the last eight nonblank characters
are made a~ailable to the program's execution environment.)

Rules for Use

• If n appears, the message STOP, followed by the last eight nonblank alphanumeric
characters of the string n, is output to the spooled printer output.

• There is no output if n does not appear.

6.13 END Statement

The END statement marks the end of a program unit. If control is transferred to the
END statement in a main program, the effect is as if a STOP statement (with no
character string) were encountered. If control is transferred to the END statement in a
subprogram, the effect is as if a RETURN statement were encountered.

Syntax

END

Rules for Use

• Every program must end with this statement; the END statement must be the last
(physical) source line of every program unit.

• If the END statement is the only executable statement found within a program MAIN,
then no object code will be generated.

• No other statement in a program unit may have an initial line that appears to be an
END statement.

Example

1 2 3 4 5 6 7

END
+ 00

END I
+ F

6-28 Control Statements

Illegal
Continuation
LIne

Legal
Continuation
Line

FORTRAN 7i+
Reference Manual

t~\

c-

(

PAUSE Statement

6.14 PAUSE Statement

The PAUSE statement temporarily suspends program execution and displays a message on
the operator's console or user terminal. When PAUSE is encountered during execution of
an interactive program, the message PAUSE, followed by the last eight alphanumeric
characters of the string n, is output to the operator's console or user terminal, depending
on the mode of execution. Task execution is then suspended.

Syntax

PAUSE n

n A sequence of alphanumeric characters (the last eight nonblank are
displayed).

Rules for Use

• Execution of an interactive program may be resumed by the use of the CONTINUE or
DEBUG statement. -(Refer to the MPX·J2 Reference Manual for a description of
interactive processing).

• In batch or independent mode execution of the program after a PAUSE statement
requires use of the OPCOM CONTINUE command.

• Execution continues with the first executable statement following the PAUSE
statement if CONTINUE is used.

FORTRAN 77+
Reference Manual Control Statements 6-29/6-30

f'\

\l/'

(

7.1 Introduction .

CHAPTER 7

SPEClFICA nON STATEMENTS

Specification statements are nonexecutable statements that specify the type and storage
characteristics of variables, arrays, and functions. These statements must precede
statement function statements, DATA statements, and any executable statements in a
program unit.

The following specification statements are described in this chapter:

DIMENSION - provides information about storage required

Type Statements - override or confirm implicit typing

PARAMETER - names a constant

COMMON - provides information about storage

EQUIV ALENCE - provides information about storage

EXTERNAL - identifies an external procedure

INTRINSIC - identifies an intrinsic function

SAVE - provides information about storage

Many of these statements involve the use of arrays, which are described in Chapter 3.

Three additional specification statements (EXTENDED BASE, EXTENDED BLOCK,
EXTENDED DUMMY) are discussed in Chapter 13, Sections 13.1 through 13.4. .

FORTRAN 77+ .
Reference Manual Specification Statements 7-1

DIMENSION Statement

7.2 DIMENSION Statement

The DIMENSION statement specifies the number of dimensions in an array and the
number of elements in each dimension.

A number of storage elements are allocated to each array named in the statement, and
one storage element is assigned to each array element in each dimension.

Syntax

DIMENSION al (ci(,d] •••) [,ai(d(,d] •••)]

aied) An array declarator.

ai The symbolic name of an array.

d A dimension declarator of the form [dl:]du where dl is the lower dimension
bound (the default value is 1) and du is the upper bound. The dimension bounds
can be expressions. The dimension size is du-dl+l.

Rules for Use

• The data type of an array determines the length of each storage element.

• The total number of storage elements assigned to an array is equal to the'product of
all dimension sizes in the array declarator for that array. For example,

DIMENSION T ABLE(4, 4), LES(5, 5, 10)

defines array TABLE as having 16 elements and array LES as having 250 elements.

• An array can be dimensioned only once in a program unit.

• If a DIMENSION statement is used to declare an adjustable array and that array name
is used in a SUBROUTINE, FUNCTION, or ENTRY statement, all variables in the
array declarator for that array must either be passed to the SUBROUTINE,
FUNCTION, or ENTRY statement, or the variables must be in COMMON or extended
common. In addition, an array name and the actual parameters included in its
declarator must be given in each call to the subroutine or function in which the array
is referenced. For example, the following statement declares an ad just able array:

DIMENSION DUMI (J,K)

7-2 Specification Statements
FORTRAN 77+

Reference Manual

(

(-~

Type Statements

The name DUMI must occur as a dummy argument in a SUBROUTINE, FUNCTION or
ENTRY statement within the same program unit in which the array declarator
occurs. Each of the dimension bounds J and K mus~ either occur as a dummy
argument in all of the SUBROUTINE, FUNCTION or ENTR Y statements in which
DUMl occurs On this case they occur in the SUBROUTINE statement for program unit
SUB1), or as a variable name in a COMMON or EXTENDED BLOCK statement within
the program unit.

PROGRAM ENTER
DIMENSION AMTRX (5,6), DMTRX (9, 9)

CALL SUB1 (AMTRX, 5,6)

CALL SUB1 (DMTRX, 3,3) . .
END

SUBROUTINE SUB1 (DUMl,J,K)
DIMENSION DUMI (J,K)

END

7.3 Type Statements

In the absence of an IMPUCIT statement (including IMPUCIT NONE), variables, arrays,
and functions (other than intrinsic functions) are automatically assigned the type
INTEGER or REAL unless they are explicitly declared in type statements.

All variables, arrays, and functions (other than predefined functions) that are required to
be DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX, LOGICAL, CHARACTER, or
integers of optional sizes must be implicitly or explicitly assigned the proper type in each
program unit in which they are used.

The following table presents lengths (in bytes) for specified types:

Table 7-1
Standard and Optional Type Lengths

Type Standard Lengtti Optional Length
(bytes) ·(bytes)

INTEGER 4 1, Z, or 8
REAL 4 8
DOUBLE PRECISION 8 None
COMPLEX 8 16
LOGICAL 4 1
BIT one bit None
CHARACTER 1 1 through 4095

FORTRAN 77+
Reference Manual Sped fication Statements 7-3

Explicit Type Statement

7.3.1 Explicit Type Statement

Type statements explicitly define the types of variables, arrays, or functions.
Optionally, they can declare arrays and define initial values for variables or arrays. . .

Syntax

type (*s] a1 [*zl] (d1] (*Zl] (lx1!],· •• ,an [*zn] [dn] (*zn] (Jxn!]

type

s

Integer" real, double precision, complex, logical, bit, or character.
CHAR can be used as a synonym for INTEGER*1.

One of the permissible length specifications for the associated type (see
Table 7-1). (FORTRAN 77+ implementation, not ANSI standard.)

Variat;lle, array, or function names.

Dimension dec lara tors of the form (d[,d] •••). Each d may have the form
[dl:] du, where dl is the lower bound (the default value is 1 if dl is absent)
and du is the upper bound.

Length specifications that apply only to the name immediately preceding
the specification. (FORTRAN 77+ implementation, not ANSI standard.)

Constants or lists of constants On the case of an array specification)
that represent initial data values. Unlike DATA statement constants,

, these constants do not correspond to a list of variables or arrays, but to
the preceding variable or array. Refer to the OAT A statement for a
description of the permissible types of constants. (FORTRAN 77+
implementation, not ANSI standard.)

Rules for Use

• Explicit type specifications override any implicit type specifications.

• Length specifiers sand Z must not be used concurrently to specify the same array,
variable, or function. For example, the following statements are correct:

INTEGER HW*Z (10)
or
INTEGER HW (10)*2

CHARACTER C*100 (10)
or
CHARACTER C (10)*100

However, the following statements are incorrect:

7-4

INTEGER HW*2 (10)*2
CHARACTER C*100 (10)*100

Specification Statements
FORTRAN 77+

Reference Manual

C;,\ " "

r /

("" ""

.~)

Type Statements

The name DUMl must occur as a dummy argument in a SUBROUTINE, FUNCTION or
ENTRY statement within the same program unit in which the array declarator
occurs. Each of the dimension bounds J and K must either occur as a dummy
argument in all of the SUBROUTINE, FUNCTION or ENTRY statements in which
DUM1 occurs On this case they occur in the SUBROUTINE statement for program unit
SUB1), or as a variable name in a COMMON or EXTENDED BLOCK statement within
the program unit.

PROGRAM ENTER
DIMENSION AMTRX (5,6), DMTRX (9,9)

CALL SUB1 (AMTRX, 5,6)

· ·
CALL SUB1 (DMTRX, 3,3)

· · ·
END

SUBROUTINE SUB1 (DUM1, J,K)
DIMENSION DUM). (J,K)

END

7.3 Type Statements

In the absence of an IMPUCIT statement (including IMPUCIT NONE), variables, arrays,
and functions (other than intrinsic functions) are automatically assigned the type
INTEGER or REAL unless they are explicitly declared in type statements.

All variables, arrays, and functions (other than predefined functions) that are required to
be DOUBLE PRECISION, COMPLEX, DOUBLE COMPLEX, LOGICAL, CHARACTER, or
integers of optional sizes must be implicitly or explicitly assigned the proper type in each
program unit in which they are used.

The following table presents lengths (in bytes) for speci fled types:

Table 7-1
Standard and Optional Type Lengths

Type Standard Length Optional Length
(bytes) (bytes)

INTEGER 4 1, 2, or 8
REAL 4 8
DOUBLE PRECISION 8 None
COMPLEX 8 16
LOGICAL- 4 1
BIT one bit None
CHARACTER 1 1 through 4095

FORTRAN 77+
Reference Manual Specification Statements 7-3

Explicit Type Statement

7.3.1 Explicit Type Statement

Type statements explicitly define the types of variables, arrays, or functions.
Optionally, they can declare arrays and define initial values for variables or arrays.

Syntax

type [*s] al [*zl] [dl] [*zl] Uxlf],· •• ,an [*zn] [dn] [*zn] UXnf]

type

s

al,···,an

Integer,. real, double precision, complex, logical, bit, or character.
CHAR can be used as a synonym for INTEGER*l.

One of the permissible length specifications for the associated type (see
Table 7-1). (FORTRAN 77+ implementation, not ANSI standard.)

Variable, array, or function names.

Dimension declarators of the form (d(,d] •••). Each d may have the form
[dl:] du, where dl is thE' lower bound (the default value is 1 if dl is absent)
and du is the upper bound.

Length specifications that apply only to the name immediately preceding
the specification. (FORTRAN 77+ implementation, not ANSI standard.)

Constants or lists of constants (in the case of an array specification)
that represent initial data values. Unlike OAT A statement constants,
these constants do not correspond to a list of variables or arrays, but to
the preceding variable or array. Refer to the DATA statement for a
description of the permissible types of constants. (FORTRAN 77+
implementation, not ANSI standard.)

Rules for Use

• Explicit type specifications override any implicit type specifications.

• Length specifiers sand Z must not be used concurrently to specify the same array,
variable, or function. For example, the following statements are correct:

INTEGER HW*2 (10)
or
INTEGER HW (10)*2

CHARACTER C* 100 (10)
or
CHARACTER C (10)*100

However, the following statements are incorrect:

7-4

INTEGER HW*2 (10)*2
CHARACTER C*100 (10)*100

Specification Statements
FORTRAN 77+

Reference Manual

['

Explicit Type Statement

• The type statement must precede any reference to variables, arrays, or functions that
it defines except in the case of FUNCTION, SUBROUTINE, ENTRY, or NAMELIST
statements. For example, the statements

PARAMETER (1=10)
INTEGER I

would result in an error; however, the following is correct

Examples

NAMELIST /NLIST /I,J,K
INTEGER I
REALJ
COMPLEX K

REAL BX, ITEA, KEPH

BX, ITEA, and KEPH are of type real. Note that BX is redundantly typed since it would
be of type real by default.

INTEGER*l ED

ED is defined as an integer byte.

BIT STATE

ST A TE is defined as a bit.

REAL *8 SUM!3.5DZ/

SUM is defined as double precision (REAL*8 is equivalent to double precision). The
variable is initialized to the value 350.0 converted to internal floating point doubleword
form.

REAL LOT, DBL *8, IT*4

LOT and IT are defined as real, while DBL is defined as double precision.

INTEGER JMP*8 (15), RATE*Z (4) /5, 10, 1Z, -3/

JMP*8 (15) is a constant array declarator specifying a one-dimensional array of 15
integer doublewords. RA TE*Z (4) is a one-dimensional array of four integer halfwords.

FORTRAN 77+
Reference Manual Specification Statements 7-5

Explicit CHARACTER Statement

Each element of the array is initialized as follows:

RA TE (1) has the value 5
RA TE (2) has the value 10
RATE (3) has the value 12
RATE (4) has the value -3

In the following example, Ll and L TEMP are defined to be logical words. In addition,
L TEMP is initialized as .TRUE.

LOGICAL Ll, L TEMP /. TRUE.!

7.3.2 Explicit CHARACTER Statement

As in numeric type declaration statements, the explicit CHARACTER type declaration
statement explicitly defines the data types of specified symbolic names.

Syntax

CHARACTER [*5 [,]]name [,name] •••

s

name

7-6

The length (number of characters) of a character" variable, character array
element, character function, or character constant that has a symbolic
name. s is referred to as the length specification and is one of the following:

An unsigned, nonzero, integer constant.

A positive value integer constant expression enclosed in parentheses.

An asterisk enclosed in parentheses (*). This form may be used for
the foUowing:

dummy arguments in subroutines or functions

symbolic constants defined in PARAMETER statements in
which the assumed length is the same as the defining character
constant

names of functions in FUNCTION subprograms

entry names in FUNCTION subprograms

statement function names

internal function names

A variable name, array name, symbolic name of a constant, or function name
that can have one of the following forms:

v

a

a(d)

v [*5]

a [(d)] [*5]

a [*s] [(d)]

A variable name, symbolic name of a constant, or function
name.

An array name.

An array declarator.

Specification Statements·
FORTRAN 77+

Reference Manual

(

Explicit CHARACTER Statement

Rules for Use

• A length immediately following the word CHARACTER is the length specification for
each entity in the statement that does not have its own length specification. Thus,. in
the following statement, a length of 6 applies to NAME and LAST.

CHARACTER*6 NAME(lO), FIRST*8, LAST

The maximum number of characters, s, allowed in any explicit CHARACTER
statement is 4095.

• A length specification immediately following an entity is the length specification for
only that entity (as in FIRST*8 in the preceding example).

• A length specification for an array refers to each array element. For example, the
length 6 applies to each element of array NAME in the preceding example.

• The default for s is one. Therefores the statement

CHARACTER LETTER(26)

specifies an array, LETTER, containing 26 one-character elements.

• A dummy argument with a declared length of (*) assumes the length of the associated
actual argument for each reference to the subroutine or function. If the associated
actual argument is an array name, the length assumed by the dummy argument is the
length of each array element in the actual argument array.

CHARACTER*10 A
CHARACTER*20 B
CALL SUB (A)
CALL SUB(B)

.
SUBROUTINE SUB(X)
CHARACTER X*(*)
DO 100 1 = 1, LEN(X)

• If an external function has a length of (*) declared in a function subprogram, a
FUNCTION or ENTRY statement in the same subprogram must reference the function
name. When a reference to such a function is executed, the function assumes the
length specified in the calling program unit.

• A character constant (denoted by a symbolic name) having a declared length of (*)
assumes the length of its corresponding constant expression in a PARAMETER
statement.

• Because the data type CHAR (synonymous with INTEGER*I) is supported under
FORTRAN 77+, do not use statements such as:

CHAR

FORTRAN 77+
Reference Manual

ACTER*4 ALPHA

Specification Statements 7-7

IMPLICIT Statement

7.3.3 IMPLICIT Statement

The IMPLICIT statement changes or confirms the default integer or real typing. It also
defines the length (in bytes) of the items implicitly typed by the IMPLICIT statement.

Syntax

type

s

IMPLICIT type [*'s](a1[,aZ" •• ,an]), •• .[,type[*'s] (a1 [,aZ' ••. ,an])]

Integer, real, double precision, complex, logical, bit, or character.
(CHAR can be used as a synonym for INTEGER*'l.)

An unsigned integer that is one of the permissible length
specifications for its associated type (refer to section· 7.3 for
permissible length specifications).

Single alphabetic characters or a range of characters in alphabetic
sequence. The range of aJphabetic characters is denoted by a minus
sign between the first and last characters of the range; for example,
A-G.

Rules for Use

• In a subprogram, the IMPLICIT specification statement affects the types of dummy
arguments as well as the types of subsequently mentioned symbolic names. However,
the name of the subprogram is not affected.

'. An IMPLICIT statement cannot type the same letter differently; therefore, the
following example is invalid and will result in an error:

IMPLICIT INTEGER (A-F), REAL(D)

• The names of intrinsic functions are not affected by the use of the IMPLICIT
statement.

• Explicit data type specifications override the IMPLICIT typing mechanism.

Examples

IMPLICIT INTEGER (B), INTEGER*'Z (J-N), COMPLEX (G,P)

All variables, arrays, or functions (other than intrinsic functions) that have names
beginning with B are of type INTEGER (INTEGER*'4); those that have names beginning
with J, K, L, M, or N are of type INTEGER*'Z; those that have names beginning with Gar
P are of type COMPLEX (COMPLEX*'8).

IMPLICIT REAL *8 (A-C), DOUBLE PRECISION (X),
+ LOGICAL (T), COMPLEX*16 (D)

All variables, arrays, or functions (other than intrinsic functions) that have names
beginning with A, B, C, or X are of type DOUBLE PRECISION (REAL*8); those that have
names beginning with T are of type LOGICAL (LOGICAL*'4); those that have names
beginning with 0 are of type COMPLEX*'16.

7-8 Specification Statements
FORTRAN 77i

Reference Manual

[

IWUCIT NONE Statement

IMPLICIT CHARACTER (Q, T), CHARACTER*8 (F)

All variables, arrays, or functions (other than intrinsic functions) that have names
beginning with Q or T are of type CHARACTER (a length of one is assigned by default);
those that have names beginning with F are of type CHARACTER and are eight
characters long.

7.3.4 IMPUCIT NONE Statement

The IMPLICIT NONE statement disables implicit typing. All variable names, array I
names, and function names (except the names of intrinsic functions) must be explicitly
typed. However, if an IMPLICIT NONE statement is used with a function declared
external, the function type is implicitly INTEGER unless otherwise explicitly typed.

Syntax

IMPLICIT NONE

Rule for Use

A program unit containing an IMPLICIT NONE statement cannot contain any other
IMPLICIT statement.

Example

IMPLICIT NONE

The following sequence will cause a compiler diagnostic indicating that I has not been
typed:

IMPLICIT NONE
1=0

FORTRAN 77+
Reference Manual . Specification Statements

Change 1
7-9

PARAMETER Statement

7.4 PARAMETER Statement

The PARAMETER statement assigns "a symbolic name to a constant. Once defined, a
symbolic name can appear in any subsequent statement within the program unit as a
primary in an expression, or it can appear in a DATA statement.

Syntax

PARAMETER (sl = el'· •• , si = ei)

Symbolic names.

Constant expressions.

Rules for Use

If the symbolic name s is of type integer, real, double preclsIOn, or comple><, t:,6
corresponding expression e must be an arithmetic constant expression. If the symbolic
name is of type character or logical, the corresponding expression must be a character
constant expression or a logical constant expression, respectively.

• The value of s is determined from the expression e in accordance with the rules for
assignment statements. Character relational expressions are not supported in the
PARAMETER statement.

• Any symbolic name of a constant in an expression must" have been defined previously
in a PARAMETER statement within the same program unit.

• If a constant's symbolic name and length are not of the default type, they must bs
specified by a type statement or an IMPLICIT statement before the name can be used
in a PARAMETER statement. The constant's length must not be changed by
subsequent statements.

• A symbolic name of a constant must not be part of a format specification.

• A symbolic name of a constant must not form part of another constant, for example,
any part of a complex constant.

• A symbolic name in a PARAMETER statement can be used only to identify the
corresponding constant in that program'unit.

• When a parameter is declared as INTEGER*l, the internal constant generated by the
compiler for this variable will be a halfword constant.

Examples

7-10

PARAMETER (INT = 58, BET A = 1.10)
LOGICAL STOW
PARAMETER (STOW = .TRUE.)

Specification Sta::ements
FOP,TRft,N r,:.,.

(

c

COMMON Statement

7.5 COMMON Statement

The COMMON statement defines one or more contiguous areas (blocks) of storage. A
symbolic name identifies each block; however, the symbolic name for one block in a
program unit can be omitted. This block is the blank common block. COMMON
statements also define the order of variables and arrays in each common block.

Syntax

COMMON U YIIJ al [[,]fYZ!aZ] •••

Symboiic names, called block names. If the first Yi is blank, the first pair of
slashes can be omitted (the block of storage so indicated is called blank
common).

Lists of variable names, array names, or constant array declarators
separated by commas. (The elements in ai compose the common block
storage area specified by the name Yi')

Rules for Use

• Entities within a common block should be either all numeric data or all character data
to comply with ANSI X3.9-197B; however, a common block can contain both numeric
and character data in FORTRAN 77+.

There can be at most one blank common block in an exedUtable program, but there can
be several named common blocks.

• A DATA statement cannot be used to initialize a variable or array in blank common
storage or in a named common block with one exception: A DATA statement can
initialize data in a named common block when used in a BLOCK DATA subprogram.

• A common block name can appear more than once in the same COMMON statement or
in more than one COMMON statement.

• The size of a common area can be increased by the use of EQUIVALENCE statements;
however, an EQUIVALENCE statement must not cause the association of two
different common block storage sequences that are in the same program unit.

• Named common blocks are independent of each other and of blank common.

• The length of a common block is the number of storage units required to contain the
variables and arrays declared in the COMMON statement (or statements), unless it is
expanded by the use of EQUIVALENCE statements or as a requirement to meet
bounding conditions. The FORTRAN 77+ compiler does not validate or enforce
consistent common block lengths. For consistency and control, it is good practice to
have common block definitions exactly the same in all program units. Operating
system loaders may have different rules for processing common blocks of different
lengths, defined in different program units.

FORTRAN 77+
Reference Manual Specification Statements 7-11

COMMON Statement

A mixture of data types in a common block often requires unused space to be
generated within the common block. In the following program for example, unused
space is generated in storage locations 1, 4, 5, 6, and 7. A common block, when
loaded, is aligned at a file boundCiry (0 file boundary occurs at every eighth word).

COMMON/C/IBYTE,IHALFWORD,IDBL WORD
INTEGER*1 IBYTE
INTEGER*2 IHALFWORD
INTEGER*8 IDBL WORD

o

IBYTE

4

8

2

I

IDBLWORD
I
I

IDBLWORD
I

3
I

IHALFWORD

/ '",

8105598 ~ ,/
~--~

Figure 7-1. Mixed Data Type Storage in Common

• To avoid problems with unused space in common blocks, data items can be arranged in
descending order of boundary alignment requirements; e.g., DOUBLE PRECISION
(REAL*8) before REAL (REAL*4), before INTEGER*2. In this way, no extra space is
needed to produce boundary alignment.

• The maximum common block size depends on the hardware, the use of extended
memory and the combined size of the operating system and task. The operating
system and task (including non-extended commons) cannot exceed 128 KW. (For
maximum sizes of extended memory, see Chapter 13, Extended Addressing.)

7-12 Specification Statements
FORTRAN 77+

Reference Manual

(':
, /

COMMON Statement

Examples

COMMON / / AI, Bl /CDAT A/ lOT(3,3) / / T2,l3

In the preceding example, AI, Bl, T2, and l3 are assigned to blank common in that
order. Note that the first pair of slashes could have been omitted. CDAT A names
common block storage for the nine-element array lOT. The array must not have been
previously dimensioned. T2 and l3 are assigned to blank common after B1.

Main Program

COMMON HEAT, X/BLKI/KILO, Q

CALL FIGURE

Subprogram

SUBROUTINE FIGURE
COMMON /BLKI/MR, T/ /ALF, BT

RETURN
END

The COMMON statement in the main program puts HEAT and X in the blank common
block and puts KILO and Q in a named common block BLKI. The COMMON statement in
the subroutine makes ALF and BT correspond to HEAT and X in the blank common block
and makes MR and T correspond to KILO and Q in BLKl.

To avoid confusion, use the same names in the main program and subprogram, as shown in
the following example:

Main Program Subprogram

COMMON HEAT, X/BLKI/KILO, Q SUBROUTINE FIGURE
COMMON HEAT, X/BLKI/KILO, Q

CALL FIGURE .
RETURN
END

7.5.1 Global Common

A general description of GLOBAL COMMON can be found in the MPX-32 Reference
Manual.

The range of virtual addresses occupied by a GLOBAL COMMON partition must be
defined by declaring it as a static core partition at system generation (SYSGEN) time or
as a dynamic partition by the volume manager CREATE COMMON directive before a
user can execute a FORTRAN program containing a GLOBAL COMMON. If a partition IS
dynamic, access to it must be established by executing the X:INCL (Compatible mode) or

FORTRAN 77+
Reference Manual . Specification Statements 7-13

COMMON Statement/Oatapool

the X INCLD (Native mode) service. For larger commons, extended addressing must be
used. - The GLOBAL COMMON may be as large as extended memory, i.e., .5MB on a
32/77, 1.5MB on a 32/27 or 32/87, and 15.5MB (minus the operating system) on a 32/67
and 32/97. Designation of a GLOBAL COMMON is made by a FORTRAN COMMON

. statement:

Syntax

IF IF A pair of decimal digits from 00 to 99.

ai Variable names, array names, or constant array declarators.

Example

COMMON/GLOBALll/ A,B,C

In this example, space for the three variables A, B, and C is allocated within the
GLOBAL COMMON area GLOBALll.

7.5.2 Oatapool

OAT APOOL, a resident memory partition that serves as a special common block, is
referenced by the COMMON statement. However, OAT APOOL items are bound to their
addresses by reference to a OAT APOOL dictionary at catalog time, rather than at
compile time. The OAT APOOL partition must be established as a static core partition at
SYSGEN time or as a dynamic partition using the file manager or volume manager
utilities. If the partition is dynamic, access to it must be established by calling the
X:INCL (Compatible mode) or the X INCLD (Native mode) service. However, if the
OAT APOOL partition is to lie in the extended address space of the task, the ~DPXMNT

l or X_INCXDP services must be called. Note: These services are only available in native
mode. Datapools cannot be in extended memory· in compatible mode.

I

Additional information on OAT APOOL can be found in the MPX-32 Reference Manual.
Information on the services mentioned above can be found in the Scientific Run-Time
Library Reference Manual.

If multiple datapool areas are needed, there are 100 reserved common names that can be
referenced as datapools. The names are DPOOLOO, DPOOL01, through DPOOL99. Up to
16 of the datapools (OAT APOOL or DPOOLOO - DPOOL99) can be used in the same
task. These DPOOL partitions are accessed in the same way as OAT APOOL. If a
datapool is in extended memory, X INCXDP is used to include the partition. X INCXDP
can also be used for non-extended datapools. For more information, refer to the
Scientific Runtime Library Reference Manual.

Syntax

COMMON / {DATAPOOq / a1,a2" •. ,ai
DPOOUIfI)

Change 1
7-14

Lists of variable names, array names, or constant array dec lara tors.

A pair of decimal digits from 00 to 99.

Specification Statements
FORTRAN 17-

P,eference Manual

EQUIVALENCE Statement

Example

COMMON/DA T APOOL/ A,B,C

In this example, the variables A, B, and C must have been entered in a OAT APOOL
dictionary. Their relative addresses within the DATAPOOL partition must be found in
this dictionary. Access to a OAT APOOL is acquired in the same manner as access to a
GLOBAL COMMON partition.

Rules for Use

• DATAPOOL list items may be in any order. The same execution would result if the
previous example had been C, S, A. However, maintain compatible typing and sizing.

• OAT APOOL may be a shared area, and a number of users can reference it at the same
time. Avoid establishing conflicting OAT APOOL dictionaries, although it is valid to
~~ .

• GLOBAL COMMON and OAT APOOL cannot be initialized by a BLOCK DATA
subprogram.

If the OAT APOOL partition is included in the user's extended address space, the
EXTENDED BLOCK statement must be used to establish the base address for the
DA T APOOL. For example:

EXTENDED BLOCK/DA T APOOL/ A,B

7 .6 EQUIVALENCE Statement

The EQUIVALENCE statement permits two or mrre entities to share the same storage
unites). The statement specifies that the storage sequence of the entities appearing in
nlist have the same first storage unit. Such equivalence implies storage sharing only, not
mathematical equivalence.

·Svntax

EQUIV ALENCE (nlist) [, (nlist)]

nlist A list of variables, arrays, array elements, and character substring
references, separated by commas.

Rules for Use

• An entity of type CHARACTER must be specified in the EQUIVALENCE statement
only with other entities of type CHARACTER in order to comply with ANSI standards
(X3.9-1978) and to avoid problems in transportability. FORTRAN 77+ does allow
equivalence between numeric and character entities.

FORTRAN 77+
Reference Manual Specification Statements 7-15

EQUIV ALENCE and 800ndaries

Examples

DOU8LE PRECISION DMOO
INTEGER IA80R(2)
EQUIVALENCE (DMOD, IABOR(l»

The EQUIVALENCE statement in the preceding example causes the two elements of
integer array lABOR to occupy the same storage as the double precision variable DMOD.

CHARACTER DA Y*16, STRM*lO
EQUIV ALENCE (DA Y,sTRM)

The EQUIVALENCE statement in this example causes the first characters of the
character variables DAY and STRM to share the same storage location. The character
variable STRM is equivalent to the substring DA Y(l:lO).

7 .6.1 EQUIVALENCE and 800ndaries

The boundary alignment of each element within an equivalence group is consistent, if
possible, with its type:

• Complex, double preCision elements must begin on a half-file (four-word) boundary.

• Double precision, complex, and integer doubleword variables or arrays must begin on a
doubleword boundary.

Integer word, real, and logical word variables or arrays must begin on a word " .. /
boundary.

• Integer halfword variables or arrays must begin on a halfword boundary.

• Integer byte and logical byte variables or arrays begin on a byte boundary.

• Logical bit variables or arrays align at any bit.

• Character variables will start on arbitrary byte boundaries.

For example, the following EQUIVALENCE statement forces the byte element FIELD(Z)
to be on a word boundary.

INTEGER FIELD*1 (4), WRDARY*4 (4)
EQUIV ALENCE (WRDAR Y (1), FIELD (2»

FIELD

WRDARY I 1 2 3 4

Care must be taken- to insure that no prior constraint has been placed on entities that
appear in the same EQUIVALENCE statement; i.e., entities that are in common or
entities that have appeared in a previous EQUIVALENCE statement.

7-16 Specification Statements
FORTRAN 77+

Reference Manual

EQUIV ALENCE and Arrays

The following EQUIVALENCE statement results in an error:

INTEGER SFIEl.D*2, WORD*4 (2,2), FORM*l (3)
EQUIVALENCE (FORM (2), WORD (2,1», (SFIELD, FORM(l»

FORM (1)

LSFIELD

FORM (3)

Note that FORM (2) aligns with byte 1 of WORD (2,1). Thus, FORM (1) aligns with byte 4
of WORD (1,1) and FORM (3) aligns with byte 2 of WORD (2,1). Due to this alignment,
SFIELD attempts to align on FORM (1); i.e., byte 4 of WORD (l,l)s which results in an
error because SFlELD is declared an integer halfword and must begin on a halfword
boundary.

Variables of different data types can be made" equivalent by making components of a
lower-ranked data type equivalent to a single component of a higher-ranked data type.
For example, an integer variable can be made equivalent to a complex variable (the
integer variable shares storage with the real part of the complex variable).

7.6.2 EQUIVALENCE and Arrays

When an element of one array is made equivalent to an element of another array, the
EQUIV ALENCE statement also sets equivalences between the corresponding elements of
the two arrays. Thus, if the first elements of two arrays of equal size are made
equivalent, both arrays share the same storage space. For example, the arrays in the
following example would share the same storage space as a result of the EQUIVALENCE
statement.

INTEGER STORE(7), T ABLE(7)
EQUIVALENCE (STORE,TABLE)

If the third element of array STORE is made equivalent to the first element of array
T ABLE, the last five elements of STORE overlay the first five elements of array TABLE.

EQUIV ALENCE (STORE(3), TABLE (1»

TABLE 11 I 2 I 3 I 4 I 5·1 6 I 7 I

STORE 11 I 2 I 3 I 4 I 5 I 6 I 7 I

FORTRAN 77+
Reference Manual S peci fication Statements 7-17

EQUlV ALENCE and Arrays

The following EQUIVALENCE statement results in the array storage indicated in
Table 7-2.

DIMENSION STORE(2,2), T ABLE(2,2,2)
EQUIVALENCE (STORE(2,2), TABLE(1,2,2))

The following statements also align the two arrays as shown in Table 7-2.

E QUIV ALENCE (STORE, T ABLE(2,2,1))
EQUIVALENCE (TABLE(1,1,2), STORE(2,1)

EQUIV ALENCE statements must not be used to assign the same storage locations to two
or more elements of the same array. For example, the following statement results in an
error:

EQUIV ALENCE (XT ABLE(6), XT ABLE(15)

In addition, memory locations must not be assigned in a way that is inconsistent with the
normal linear storage of array elements. For example, the first element of one array
cannot be made equivalent to the first element of another array and then the second
element of the first array made equivalent with the sixth element of the other array.

7-18

EQUIVALENCE (XTABLE(l), YSTORE(l))

.
EQUIVALENCE (XTABLE(2), YSTORE(6))

Table 7-2
Equivalence of Array Storage

ARRAY TABLE ARRAY STORE

Array Element Array
Element Number Element

TABLE (1,1,1) 1
TABLE (2,1,1) 2
TABLE 11,2,1) 3
TABLE 12,2,1) 4 STORE 11,1)
TABLE 11,1,2) 5 STORE IV)
TABLE (2,1,2) 6 STORE (1,2)
TABLE 11,2,2) 7 STORE (2,2)
TABLE (2.2.2) 8

Specification Statements

Element
Number

1
2
3
4

810560A

FORTRAN 77+
Reference Manual

(

EQUlV ALENCE and Arrays

If an EQUIVALENCE statement contains an array element, the number of subscripts
must be the same as the number of dimensions established by the array declarator, or it
must be a single subscript that specifies the array element number relative to the first
element of the array. For example, if the dimensionality of an array Z has been declared
as Z(3,3), within different EQUIVALENCE statements the terms Z(6) and Z(3,2) have the
same meaning (the sixth element and element (3,2) are the same).

Arrays can be made equivalent with nonunity lower boundse For example, an array
defined as A(2!3,4) is a sequence of eight storage locations. A reference to A(2,2) refers
to the third element in the sequence. The following statement can be used to make array
A(4:3,4) share the same storage with array B(2:4,4):

EQUIV ALENCE (A(3,4), B(2,4»

The entire array A shares part of the storage space allocated to array B. Figure 7-3
shows how these statements align the arrays.

Note that the following statements also align the arrays as shown in Table 7-3:

EQUIV ALENCE (A, B(4, 1»
EQUIV ALENCE (B(3, 2), A(2, 2»

Table 7-3
Equivalence of Arrays with Nonmity Lower Bounds

FORTRAN 77+
Reference Manual

ARRAY A ARRAY 8

Array Element Array Element
Element Number Element Number

8(2,1) 1
8(3,1) 2

A(2,1) 1 8(4,1) 3
A(3,1) 2 8(2,2) 4
A(2,2) 3 8(3,2) 5
A(3,2) 4 8(4,2) 6
A(2,3) 5 8(2,3) 7
A(3,3) 6 8(3,3) 8
A(2,4) 7 8(4,3) 9
A(3,4) 8 8(2,4) 10

8(3,4) 11 -
8(4,4) 12

Speci fication 5 tatements

810561A

7-19

EQUIV ALENCE and Stbstrings

7..6.3 EQUIVALENCE and Stbstrings

When a character substring is made equivalent to another character substring, the
EQUIVALENCE statement also sets equivalences between the other corresponding
characters in the character entities.

For example,

CHARACTER NAME*18, EMP*S
EQUIVALENCE (NAME (11:13), EMP (2:4»

As a result of the preceding statements, the character variables NAME and EMP share
space as illustrated below:

11121314151617 /S 1 9 10 11 12 13 14 15 16 17 18 1

1 2 3 4 5 6 7 8

The following statement also aligns the arrays as shown in the preceding example:

EQUIV ALENCE (NAME (10:10), EMP (1:1»

If the character substring references are array elements, the EQUIVALENCE statement
sets equivalences between the other corresponding characters in the complete arrays
(refer to Figure 7-2).

Character elements of arrays can overlap at any character position. For example, the
statements

CHARACTER TABLE(50)*- 2, TOOL(5)*- 5
EQUIVALENCE (TABLE(3)(1:2), TOOL(2)(3:4»

result in overlapping character positions, as indicated in Figure 7-2.

The EQUIVALENCE statement cannot be used to assign the same storage location to two
or more substrings that start at different positions in the same character variable or
character array. For example, the following EQUIVALENCE statement will cause an
error condition:

CHARACTER NAME* 10, 10*9
EQUIVALENCE (NAME(lO:13), 10(2:5), NAME(l:3»

In addition, the EQUIVALENCE statement cannot be used to assign memory locations in
a way that is inconsistent with the normal linear storage of character variables and
arrays.

7-20 Specification Statements
FORTRAN 77+

Reference Manual

r

(

FORTRAN n+
Reference Manual

EQUIV ALENCE and Stbstrings

ARRAY TABLE

Subscript

.2

3

4

5

6

7

8

9

10

l'
12

13

49

50

Character
Position

ARRAY TOOL

Character
Position Subscript

1
2
3
4
5
1

2
3
4
5
1

2
3
4
5
1
2
3
4
5
1
2
3
4
5

2

3

4

5

Figure 7-2.. Equivalence of Character Arrays

~
Specification Statements

810562A

7-21

EQUlV ALENCE and COMMON Interaction

7.6.4 EQUIVALENCE and COMMON Interaction

Variables may be made equivalent to variables in a common b~ock through the use of the
EQUIV ALENCE statement.

When components are made equivalent to entities stored in a common block, the common
block can be extended beyond its original boundaries. However, it can only be extended
beyond the last element of the previously established common block. The common block
cannot be extended in such a way as to place the extended portion before the first
element of the existing common block. For example, the following extension is valid:

DIMENSION 8(3),E(6)
COMMON 8
EQUIVALENCE (8(2),E(1»

(81) 8(2) 8 (3)

E (l) E (2)

EXisting
Conmon

E(3) E(4)

Extended
Par t ion

E (5) E(6)

The following extension is invalid since the common block would be extended before the
first element of the existing common block.

DIMENSION 8(3),E(6)
COMMON 8
EQUIVALENCE (8(2),E(3»

8(1) 8 (2) 8Cn

E(l) E(2) E(3) E(4) E (5) E(6) ---Extended EXisting Extended
Portion Cammon Portion
Invalid

If two components are assigned to common blocks, equivalence cannot be established
between them through the use of the EQUIVALENCE statement. The following example
is invalid:

DIMENSION D(5),XTA8LE(20),8(lO), A(lO)
COMMON A,8
EQUIV ALENCE (A(7),8(3), XT A8LE(6»

Care must be taken when using an EQUIVALENCE statement with an array that is in
common with another, larger array that is not in common. For example,

DIMENSION T(7)
COMMON A(3), 8(4)

stores arrays A and 8 in sequence as indicated below:

A(l) A(2) A(3) 8(1) 8(2) 8(3) 8(4)

7-22 SpeCification Statements
FORTRAN 77+

Reference Manual

,

',,- /

(

EXTERNAL Statement

The following statement causes the entire common storage to be made equivalent:

EQUIVALENCE (A(l), TCl»

T(l) T(2) T(3) T(4) T(5) T(6) T(7)
A(l) A(2) A(3) B(l) B(2) B(3) B(4)

If the value of T(7) is now changed (as in T(7) = X), the value of B(4) is also changed.

A common block begins on an eight-word boundary. The boundary alignment of an entry
in a common block cannot be changed by equivalence. For example, the following
statements are inconsistent and will result in an error:

COMMON X, Y,Z
DOUBLE PRECISION 0
EQUIV ALENCE (0, Y)

7.7 EXTERNAL Statement

The EXTERNAL statement identifies a symbolic name as representing an external
procedure, a dummy procedure, or a block data subprogram. An external procedure name
or a dummy procedure name so declared can then appear as an actual argument to a
subprogram Crefer to Chapter 9). In an EXTERNAL statement, the occurrence of a block
data subprogram name enables the block data subprogram to be loaded by name from a
binary object file or library (refer to Chapter 10).

The EXTERNAL statement also indicates that user-defined functions are to be used
rather than specific intrinsic functions having the same name. An EXTERNAL statement
containing the names of all external procedures used by a program unit insures that those
procedures will not be interpreted as intrinsic functions by the compiler. Thus, the
function name will not have the predetermined type of the intrinsic function of the same
name, and no inline code generation will occur as for certain intrinsic functials.
However, it is the userls responsibility to provide an extemal user-defined procedure at
catalog time for those function names that, as intrinsic function names, correspond to
library procedures called as extemal procedures.

Syntax

EXTERNAL proc [,proc] •••

proc The name of an extemal procedure, dummy procedure, or block data
subprogram.

Rules for Use

• An EXTERNAL statement must precede statement functions and executable
statements.

• An external subprogram name used as an argument in a subprogram reference must
have appeared in a preceding EXTERNAL statement.

FORTRAN 77+
Reference Manual Specification Statements 7-23

EXTERNAL Statement

• A function name must not appear in both an EXTERNAL and an INTRINSIC statement
within a program unit.

A symbolic name may represent an external procedure in the absence of the
EXTERNAL statement.

Examples

Main Program

. EXTERNAL SUM,AFUNC,BD

CALL SUBR (SUM, AFUNC, X, Y)

Subprograms

SUBROUTINE SUM (A, B, C)
A = B+C

RETURN
END

BLOCK DATA BD

END

FUNCTION AFUNC (X, Y)
AFUNC = X*Y

RETURN
END

In the preceding main program, SUM and AFUNC are subprogram names used as ,~ /
arguments in the subroutine SUBR. The appearance of BD in the EXTERNAL statement
assures that the block data program BD is loaded with the main program.

In the main program of the following example, the EXTERNAL statement indicates that
a user-defined function, DABS, is to be used rather than the specific intrinsic function
DABS. This user-defined function is subsequently used as an argument in the CALL TRIG
statement.

7-24

Main Program

EXTERNAL DABS

x = DABS (Y)
CALL TRIG (DABS)

Subprogram

FUNCTION DABS ex, T)
DABS = X - T
RETURN
END

Specification Statements
FORTRAN 77+

Reference Manual

f /

IJ'..ITRINSIC Statement

The appearance of a generic intrinsic function name in an EXTERNAL statement will
override the generic property of that name when it is used in a function reference within
the program unit.

EXTERNAL ABS

.
I=ABS (J)

.
CALL S(ABS,X, Y)

In the preceding example, the reference ABS (J) selects the external function ABS rather
than the specific intrinsic function lABS. The name ABS is passed as an external
procedure to subprogram S.

7.s INTRINSIC Statement

The INTRINSIC statement identifies a symbolic name as representing an intrinsic
function. The name can then be used as an actual argument to a subprogram. The
INTRINSIC statement can also verify that symbolic names do, in fact, correspond to
intrinsic functions recognized by the compiler.

Syntax

INTRINSIC func [, func]

func An intrinsic function name.

Rules for Use

• The name of a specific intrinsic function used as an actual argument in a program unit
must appear in an INTRINSIC statement in that program unit.

• The names of intrinsic functions for type conversions (I NT , IFIX, IOINT, FLOAT,
HFIX, OREAL, SNGL, REAL, DBLE, CMPLX, ICHAR, and CHAR) must not be used as
actual arguments.

• The names of intrinsic functions for choosing the largest or smallest value (MAX,
MAXO, AMAXI, AMAXO, MAXI, MIN, MINO, AMINI, AMINO, DMINI, DMAXI and
MINI) must not be used as actual arguments.

• The names of intrinsic functions for logical relationships (LGE, LGT, LLE, LL T) must
not be used in actual arguments.

• The appearance of a generic function name in an INTRINSIC statement does not cause
that name to lose its generic property.

FORTRAN 77+
Reference Manual Specification Statements 7-25

SAVE Statement

• A function name should appear only once in all of the INTRINSIC statements of a
program unit.

• A function name must not appear in both an EXTERNAL and an INTRINSIC statement
within a program unit.

Example

INTRINSIC EXP, MOD, lOR

CALL SUBR (EXP, MOD, lOR)

7.9 SAVE Statement

The SAVE statement enables a variable, array, or array element to retain its definition
status after the execution of a RETURN or END statement in a subprogram. The
variable, array, or array element does not become undefined as a result of the execution
of a RETURN or END statement.

Syntax

SAVE [a [,a] •••]

a A common block name (preceded and followed by a slash), a variable name,
or an array name.

Rules for Use

• A SAVE statement is optional in a main program and has no effect.

• A SAVE statement must not contain a dummy argument name, procedure name, or
entities within a common block.

• A SAVE statement without a list is treated as though it contained the names of all
allowable items in that program unit.

• A SAVE statement containing a common block name preceded and followed by slashes
specifies all of the entities in that common block.

• A SAVE statement specifying a named common block causes the current values of
common block entities to be retained at the time a RETURN or END statement is
executed. These values are made available to the next program unit that specifies the
common block name.

7-26 Specification Statements
FORTRAN 77+

Reference Manual

/

.~.j

c

(

f ' .

SAVE Statement

• To comply with the ANSI X3.9-1978 standard, a common block name specified by a
SAVE statement in a subprogram must be specified by a SAVE statement in every
subprogr"am in which that common block appearsi however, FORTRAN 77+ does not
require this. .

Examples

SAVE /AREA/
SAVE ALPHA
SAVE

In the above examples, AREA is a common block and ALPHA is a variable name. The
last statement illustrates a SAVE without a list. In this case, the names of all allowable
items in the program unit will be saved.

Note: Under FORTRAN 77+, all entities are saved by default.

FORTRAN 77+
Reference Manual Specification Statements 7-2717-28

r- .

a-iAPTER 8

DATA STATEMENT

8.1 General

The DATA statement initializes variables, arrays, array elements, and substrings.

Syntax

nlist A list of variable names, array names, array element names, substring names
and implied DO lists.

clist A list of constants with the following form:

c

r

al[,a2···,ai]

where ai has one of the forms

c

r*c

A constant or the symbolic name of a constant (i.e., not a constant
expression).

A nonzero, unsigned integer constant or the symbolic name of an integer
constant that specifies the number of times the same value c is to be
assigned to successive entities in the associated nlist.

Constant values in each clist are assigned to the entities in the preceding nlist. Values
are assigned in order as they appear, from left to right.

Rules for Use

• The number of constants must correspond exactly to the number of entities in the
preceding nlist.

• When an unsubscripted array name appears in a DATA statement, values are assigned
to every element of that array. The associated constant list must therefore contain
enough values to fill the array. Array elements are filled in the order of subscript
progression.

• If both the constant value in clist and the entity in nlist have numeric data types, the
conversion is based on the following rules:

The constant value is converted, if necessary, to the data type of the variable
being initialized.

FORTRAN 77+
Reference Manual DATA Statement 8-1

DATA Statement

8-2

Hexadecimal, octal, and binary constants are stored (unconverted) right
justified with leading zeros within the number of storage units required by the
corresponding item. If the number of significant characters in the string IS

greater than the number of storage units required by the corresponding item,
only the rightmost characters will be used to define the constant. For example,
an integer halfword can contain only four hexadecimal digits; therefore, in the
statement:

INTEGER*2 H
DA T A H/Z'ABCDEF'/

the rightmost characters (CDEF) will be used to define the constant. If more
than twice as many characters are specified than required, an error message is
issued.

Hollerith constants (of the form nHs) may be used in a DATA statement. The
following rules are applicable:

If the number of characters in a Hollerith item is less than the number
of storage units required, the constant will be left-justified within the
required number of storage units, and the remaining units will be filled
with blanks.

F or a Hollerith string comprising more than n characters, the leading n
characters are stored in the corresponding item. A new storage item is
obtained from the data list until the Hollerith constant is exhausted.

An example of initialization of several items with a single Hollerith
constant follows:

INTEGER M(2)
DA T A M/8HABCDEFG~/

is the same as

INTEGER M(2)
OA T A M/4HABCD, 4HEFG~/

If a constant is entered that is too large, an error message is issued, and
the compiler accepts as many characters as it can, keeping them left
justified.

Right justified Hollerith constants CnRs form) values are stored unconverted
and right justified with leading zeros. Any excess characters are truncated
from the Ie ft.

DATA Statement
FORTRAN 77+

Reference Manual

(

DATA Statement

If the constant value in clist and the entity in nlist are both of CHARACTER data
type~ the processing is based on the following rules:

If the length of the character entity in nlist is greater than the length of its
corresponding character constant in clist, the additional rightmost characters
of the entity are blank-filled. For example,

CHARACTER*'4 TOT
DATA TOT /'ABC'/

results in TOT having the value 'ABC~'

If the length of the character entity in nlist is less than the length of its
corresponding character constant in clist, the excess rightmost characters are
ignored. F or example,

CHARACTER*'4 TOT
DATA TOT I'ABCDE'/

results in TOT having the value 'ABCD'

Example 1

REAL MATRIX
DIMENSION MATRIX (2,2)
DA T A K, MATRIX (1,1), MATRIX (2,1), MATRIX (1,2), MATRIX (2,2) 112,

X 4.5, 2*'6, Z'lF AO'/

The DATA statement in the preceding example causes the following:

K will have the value 12
MA TRIX (1,1) will have the value 4.5
MA TRIX (2,1) will have the value 6.0
MA TRIX (1,2) will have the value 6.0
MA TRIX (2,2) will have the value X'OOOOlF AO' (base 16)

Example 2

DIMENSION NT ABLE (3,2)
INTEGER*'l NT ABLE
DATA NTABLE, BASE /1,7,4HDATA,2RNE/

The DATA statement in the preceding example causes the following:

NT ABLE (1,1) will have the value 1
NT ABLE (2,1) will have the value 7
NT ABLE (3,1) will have the value 44 (base 16)
NT ABLE (1,2) will have the value 41 (base 16)
NT ABLE (2,2) will have the value 54 (base 16)
NT ABLE (3,2) will have the value 41 (base 16)
BASE will have the value X'00004E45' (base 16)

FORTRAN 77+
Reference Manual DATA Statement 8-3

DATA Statement Implied DO

In the preceding exampie, the appearance of NT ABLE within the data list causes the
entire array NT ABLE to be initialized.

Notice in the following example that a comma in the last line begins a new data
statement nlist. Note also that each element of an array may be referenced (as in the
case of array H), or an array may be referenced as an entity, for example, array PI.

REAL RTT(2)
COMPLEX Y
LOGICAL L T, LF
DIMENSION H(2,2), PI (3)
DATA A, B, Y, KO, LT, LF, H(l,l),

X H(2,1), H(1,2), H(2,2), PI /5.97,
X 2.5E-14, (2.73,6.75), 750, .FALSE., .TRUE.,
X 1.73E-3, 0.8E-l, 2*75.0, 1., 2., 3.141/
X ,RTT(l) /4HNG-S/

8.2 Implied DO in a DATA Statement

The form of an implied DO list in a DATA statement is

dUst A list of array element names and implied DO lists.

The name of an integer variable, called the implied DO variable.

The initial, terminal, and incremental parameters, respectively.
These may be integer constant expressions or implied DO variables of
other implied DO lists that have this implied DO list within their
ranges.

The following rules govern the use of implied DO statements in data statements:

• An iteration count and the values of an implied DO variable are established from ml'
m2' and m3 exactly as for a DO loop. However, the iteration count must be greater
than zero.

• The statement does not affect the definition status of a variable of the same name as
the implied DO variable within the same program unit.

Examoles

DIMENSION CO)
DATA A, B, (C (1),1=1,3) /7.5,6.0,3*7.0/

8-4 DATA Statement
FORTRAN i7+

Reference Manual

[

r-\

DATA Statement Implied DO

The preceding DATA statement assigns the following values:

A = 7.5
B = 6.0
C (1) = 7.0
C (2) = 7.0
C (3) = 7.0

The following statement has the same result:

DATA A /7.?/, B /6.0/, C /3*7.0/

The implied DO in the following DATA statement contains an incremental parameter
(m3) of 2:

DIMENSION C(7)
OAT A A, B, (e(I), 1=1,7,2) / 7.5, 6.0, 4*7.0/

Therefore, the following values are assigned:

A = 7.5
B = 6.0
e (1) = 7.0
e (3) = 7.0
e (5) = 7.0
e (7) = 7.0

DIMENSION e(3,2)
DATA «e (I,J), J=1,2), 1=1,3) / 6, 5, 4, 3, 2, 1/

The implied DO in the above DATA statement assigns the following values:

e (1,1) = 6
e (1,2) = 5
e (2,1) = 4
e (2,2) = 3
e (3,1) = 2
e (3,2) = 1

Note that the innermost
producing row-major order.

implied DO is executed first, i.e., J varies from 1 to 2,
The following DATA statement, on the other hand, produces

column-major order:

DATA e /6,5,4,3,2,1/

The values assigned are:

e (1,1) = 6
e (2,1) = 5
e (3,1) = 4
e (1,2) = 3
e (2,2) = 2
e (3,2) = 1

FORTRAN 77+
Reference Manual OAT A Statement 8-5

uAT A Statement Implied DO

The following implied DO contains an example of the implied DO index in an outer loop
(M) being used as the terminal parameter in an inner loop: .

DA T A «Y (M,N), N=l,M), M=1,3) /6*0./

This example has the same effect as executing the following:

DO 1 M=1,3
DO 1 N=1,M
Y(M,N)=0.

1 CONTINUE

The values assigned are:

Y (1,1) = 0
Y (2,1) = a
Y (2,2) = 0
Y (3,1) = a
Y (3,2) = a
Y (3,3) = a

8-6 DATA Statement
FORTRAN 77+

Reference Manual

('

9.1 General

CHAPTER 9

FUNCTIONSANDSUBRO~

Functions and subroutines are procedures that can be used repeatedly by a program. A
procedure may be written once and referenced each time it is required. This chapter
discusses the following functions and subroutines:

• Statement functions
Intrinsic functions

• F unction subprograms
Subroutine subprograms

• Internal functions
• Internal subprograms

A function name reference is considered to be an external reference:

If the name appears in an EXTERNAL statement

or

If it .22!! ~ appear in an INTRINSIC statement, statement function statement, or
INTERNAL FUNCTION statement; and it is not one of the intrinsic function names
listed in Tables 9-1 through 9-4.

A subroutine name reference 'is considered to be an external reference if the name
appears in an EXTERNAL statement or if it.22!!~ appear in an INTRINSIC statement
or INTERNAL SUBROUTINE statement.

9.1.1 Dummy Arguments

Functions and subroutines can be referenced at more than one point throughout a
program. Arguments used by a function or subroutine can be different each time the
procedure is used. Dummy arguments in functions and subroutines represent the actual ,
arguments that are passed to the procedure when it is called.

Functions and subroutines use dummy arguments 'to indicate the type of the actual
arguments they represent and whether those actual arguments are variables, array
elements, arrays, subroutine names or external function names. Each dummy argument
must be used within a function or subroutine as if it were a variable, array, array
element, subroutine, or external function identifier. Note, however, that a statement
function dummy argument can be only a variable. (Examples of argument lists are
presented in the following sections.)

FORTRAN 77+
Reference Manual F unctions and Subroutines 9-1

Dummy Arguments

When a procedure is referenced, the actual arguments supplied are used where the
corresponding dummy arguments appear. Except for subroutine identifiers and literal
constants, a valid association between dummy and actual arguments occurs only if both
are of the same type; otherwise, the results of procedure executions will be
unpredictable. Argument association can be carried through more than one level of
procedure reference if a valid association is maintained through each level.

The following rules govern the use of dummy arguments:

• Dummy argument names cannot appear in EQUIVALENCE, DATA, PARAMETER,
SAVE, INTRINSIC, or COMMON statements except as common block names.

• A variable dummy argument must have a variable, an array element, a substring, an
expression, or a constant as its corresponding actual argument. Note that a constant
cannot be used as an actual argument if the variable dummy argument is going to be
changed. This would result in the constant being changed. .

• An array dummy argument must. have either an array name or an array element
identifier as its corresponding actual argument. If the actual argument is an array,
the length of the dummy array must be less than or equal to that of the actual array.
Each element of a dummy array is associated directly with the corresponding elements
of the actual array unless the association is started by other than the first array
element.

• A dummy argument representing a subroutine identifier must have a subroutine name
as its actual argument.

• A dummy argument representing an external function must have an external function'
as its actual argument.

• A dummy argument name must not be the same as the procedure name appearing in a
FUNCTION, SUBROUTINE, ENTRY, or statement function statement in the same
program unit.

• If a dummy argument is defined or redefined in a referenced procedure, its
corresponding actual argument must be a variable, an array element, or a substring.

• Arguments are passed by reference; i.e., the addresses of the arguments are passed
rather than their values.

• If a subprogram has an argument list of more than 250 dummy arguments, set option 7
before compiling the subprogram.

Additional information regarding the use of dummy arguments and actual arguments is
given in the descriptions of specific procedures on the following pages.

9-2 Functions and Subroutines
FORTRAN 77+

Reference Manual

I\.... j

(~
I. J

'~

l

Statement Functions

9.2 Statement Functions

A statement function is a procedure specified in the form of a single arithmetic, logical,
or character assignment statement. A statement function can be referenced only within
the program unit in which it appears.

SYntax ,

name

d· 1

e

The symbolic name of the statement function.

A statement function's dummy argument(s).

An arithmetic, logical, or character expression.

Rules for Use

• A statement function statement can only appear after specification statements and
before the first executable statement of the program unit in which it is referenced.

• The type of the expression e can be different from the type of the statement function.
name; however, the relationship between name and e must conform to the assignment
rules for arithmetic, logical, and character assignment statements.

• Each primary of the expression e must be one of the following:

A constant or the symbolic name of a constant

A variable reference

An array element reference

A character substring reference

An intrinsic function reference

A reference to a statement function for which the statement function
statement appears in the preceding lines of the program unit

An external function reference

An internal function reference

A dummy procedure reference

An expression enclosed in parentheses that meets all of the requirements
specified for the expression e

A dummy argument reference

• Any statement function name or dummy argument can be explicitly typed in a type
specification statement, or it can be implicitly typed.

• The statement function dummy argument list serves only to indicate the order,
number, and type of arguments for the statement function.

• Each d is a distinct variable name; however, since each is a dummy argument, it can
have the same name as a variable of the same type appearing elsewhere in the
program unit.

FORTRAN 77+
Reference Manual Functions and Subroutines 9-3

Statement Function Referencing

• The symbolic name of a statement function dummy argument can identify other
dummy arguments of the same type in different statement function statements.

• Mismatching of argument lists is permitted.

• The data type of any dummy argument cannot be logical bit.

9.2.1 Referencing a Statement Function

A statement function is referenced by using its name, followed by a parenthesized list of
arguments, in an expression. Execution of a statement function reference results in the
following:

• Evaluation of actual arguments that are expressions.

• Association of actual arguments with the corresponding dummy arguments.

• Evaluation of the expression e.

Conversion, if necessary, of an arithmetic expression value to the type of the
statement function according to the assignment rules in Chapter 5.

The resulting value is available to the expression that contains the function reference.

When a statement function reference is executed, its actual arguments must be defined.
An actual argument list in a statement function reference can be any expression of the
same data type as the corresponding dummy argument (except a character expression
involving concatenation of a variable or array element whose length specification is an
asterisk).

Examples

FUNCI (A,S,C,D) = «A+8)*'*C)/D

ZOT = Al - FUNCI (X,Y,ZIP,TAN)

The following definition is invalid; a statement function dummy argument cannot be a
constant:

TOT AL (X, Y,Z,40.0) = (A+8+C)/E

The following reference is invalid; the data type of the third argument L does not agree
in type with the corresponding dummy argument C.

FUNCI (A,S,C,D) = «A+S)**C)/D

.
ZOT = Al - FUNCI (X, Y,L,Z)

9-4 Functions and Subroutines
F"ORTRAN 77+

Reference Manual

C" -"
, ,

y-

r
L

Intrinsic Functions

9.3 Intrinsic Functions

Intrinsic functions are functions that are built into the FORTRAN 77+ language. Their
names are predefined to the compiler and have predefined data types. An intrinsic
function is called by referencing its name in an expression.

These functions are listed alphabetically in Tables 9-1 through 9-4. Table 9-1 contains
Arithmetic and Conversion Functions, Table 9-2 contains Lexical Comparison Functions,
Table 9-3 contains Word and Bit Functions, and Table 9-4 contains Trigonometric
Functions.

Syntax

name

a· 1

The name of the intrinsic function.

Actual arguments.

Rules for Use

• All angles are expressed in radians.

• The result of a function of type complex is the principal value.

• The arguments must agree in type, number, and order with the specifications indicated
in Table 9-2.

User-defined external functions having the same names as the functions listed in
Table 9-1 must appear in an EXTERNAL statement in the program units in which the
functions are referenced.

The following intrinsic functions will not accept integer *8 arguments:

Example:

NOT
BTEST
CHAR

FLOAT
lAND
IBCLR

BGST = AMAXl(X, Y,Z,A1)

· MAGN1 = ABS (A1)

· S3 = SIN (F2)

·

lBITS
IBSET
lEOR

lOR
ISHFT
ISHFTC

ROOT = (-8 + SQRT (8**2 - 4. *A*C» / (2.*A)

FORTRAN 77+
Reference Manual Functions and Subroutines

Change 1
9-5

I

I

Specific and Generic Names

9..3.1 Specific Names and Generic Names

Generic names simplify the referencing of intrinsic functions because the same function
name can be used with more than one type of argument. Only a specific intrinsic
function name can be passed as an actual argument when the dummy argument is a
dummy procedure.

If a generic name is used to reference an intrinsic function, the type of the result (except
for intrinsic functions performing type conversion, nearest integer, and absolute value
with a complex argument) is the same as the type of the argument.

For intrinsic functions that have more than one argument, all arguments must be of the
same type.

If the specific name or generic name of an intrinsic function appears in the dummy
argument list of a function or subroutine in a subprogram, that symbolic name does not
identify an intrinsic function in the program unit. The data type identified with the
symbolic name is specified in the same manner as for variables and arrays.

9.3.2 Inline Intrinsic Functions

The FORTRAN 77+ compiler generates inHne code for the intrinsic functions listed
below.

ABS lABS JABS
DIM 101M JDIM
CMPLX DCMPLX SNGL

DABS
REAL
DBLE

SIGN ISIGN
OREAL AIMAG

JSIGN
DIMAG

DSIGN
CONJG

The, compiler will not generate inHne code under the following circumstances:

the function is declared EXTERNAL
the function is declared INTRINSIC and referenced in a subprogram where the
name of the function was passed as an argument to the subprogram

In those cases, the FORTRAN 77+ compiler generates a branch and link instruction for
those references to the function. Note that the use of inHne code results in faster
execution at run-time.

Change 1
9-6 Functions and Subroutines

FORTRAN 77+
Reference Manual

/ '\

r

r

(-.-.-~

./

Generic
Name

ABS

AI NT

ANINT'

Table 9-1 (Page 1 of 7)
Arithmetic and Conversion Intrinsic Functions

Specific No. of Argument
Name Args. Data Type

lABS 1 integer
JABS integer*8
ABS real
DABS double precision
CABS complex*8
CDABS complex*16

Returns absolute value (lal) of any numeric argument.

AIMAG
DIMAG

1

J=IABS(a)

complex*8
complex*16

Result
Data Type

integer
integer*8
real
double precision
real
double preCision

real
double precision

Returns imaginary part of complex argument. A complex value is
expressed as an ordered pair of reals, (ar,ai), where ar is the real part
and ai is the imaginary part. '

AINT
DINT

1

R=AIMAG(a)

real
double precision

real
double precision

Returns the truncated value of a real or a double precision argument.
If lal < 1, AINT(a)=O.O; if lal > 1, AINT(a) is the real value whose
nonfractional part is equal in magnitude to the largest integer that
does not exceed the magnitude of a and whose sign is the same as the
sign of a. The fractional part is zero. For example, AINT(-3. 7)=-3.0.

ANINT
DNINT

1

R=AINT(a)

real
double precision

real
double precision

Returns nearest whole number of real or double precision argument. If
a ~ 0, ANINT(a)=INT(a+.5); if a < 0, ANINT(a)=INT(a-.5).

R=ANINT(a)

FORTRAN 77+
Reference Manual Functions and Subroutines

Change 1
9-7

I

Generic
Name

CMPLX

DBLE

Table 9-1 (Page 2 of 7)
Arithmetic and Conversion Intrinsic Functions

Specific
Name

CHAR

No. of
Args.

1

Argument
Data Type

integer

Result
Data Type

character

Returns the character in the ath position in the ASCII collating
sequence. a must. be of type integer. The value returned is of tYDe
character and has a length of one. ICHAR(CHAR(i))=i for 0 < i <255; .
CHAR(ICHAR(c)=c for any character c. - -

CH=CHAR(a)

--- lor 2 integer complex
--- lor 2 real complex
--- 1 or 2 double precision complex
--- 1 only complex*8 or *16 complex

Converts one or two numeric arguments to return complex value(s). If
there are two arguments, they must be of the same type. For a of type :
complex, CMPLX(a) is a. For a of type integer, real, or double ,I

precision, CMPLX(a) is the complex value whose real part is REAL(a) \"
and whose imaginary part is zero. CMPLX(a1,aZ) is the complex value 'I

whose real part is REAL(a1) and whose imaginary part is REAL(aZ)'

Z=CMPLX(a1,aZ) I
i

CONJG
DCONJG

1 complex*8
complex*16

complex*8
complex*16

Returns complex conjugate. For a=X+iY, result is X-iY. A complex
value is expressed as an ordered pair of reals, (ar,ai), where ar is the
real part and ai is the imaginary part.

1

Z=CONJG(a)

integer
real
double precision
complex*8 or *16

double precision
double precision
double precision
double precision

Converts any numeric argument to a double precision value. For a of
type double precision, DBLE(a) is a. For a of type integer or real,
DBLE(a) is as much precision of the significant part of a as a double
precision datum can contain. For a of type complex, DBLE(a) is as
much precision of the significant part of the real part of a as a double
precision datum can contain.

DP=CBLE(a)

FORTR/2~J.j ~ .. - ~

. R.~.:;ference :\,1~nu:Jl

(

Generic
Name

DCMPLX

DIM

Table 9-1 (Page 3 of 7)
Arithmetic and Conversion Intrinsic Functions

Specific No. of Argument Result
Name . Args. Data Type Data Type

--- I or 2 integer complex*16
--- I or 2 real complex*16
--- lor 2 double precision complex*16'
--- 1 only complex*8 or *16 complex*16

Converts one or two numeric arguments to return complex value(s). If
there are two arguments, they must be of the same type. For a of type
complex, DCMPLX(a) is a. For a of type integer, real, or double
precision, DCMPLX(a) is the complex value whose real part is DBLE(a)
and whose imaginary part is zero. DCMPLX(al,a2) is the complex
value whose real part is DBLE(al) and whose imaginary part is
DBLECa2)'

IDIM
JDIM
DIM
DDIM

2 integer
integer*8
real
double precision

integer
integer*8
real
double precision

, Returns positive difference (al-MIN(al' a2» between two non-complex
numeric arguments.

DPROD 2 real double precision

Returns double precision product (al *a2) of two real arguments.

EXP
DEXP
CEXP
CDEXP

1 real
double precision
complex*8
complex*16

Returns value obtained after exponentiation (ea).

R=EXP(a)

real
double precision
complex*8
complex*16

FORTRAN 77+
Reference Manual Functions and Subroutines

Change 1
9-9

I

Generic
Name

INT

Change 1
9-10

Table 9-1 (Page 4 of 7)
Arithmetic and Conversion Intrinsic Functions

Specific
Name

ICHAR

No. of
Args •.

1

Argument
Data Type

character

Result
Data Type

integer

Converts character argumen't to return integer value. The position of
that character in the ASCII collating sequence is the value of ICHAR.
The first character in the collating sequence corresponds to posi tion 0
and the last to position Z55; there are Z56 characters in the sequence.,
a must be a character from the ASCII character set and it must have a
length of one. For any characters cl and cz from the ASCII character
set, (cl .LE. cz) is true if and only if (ICHAR(cl) .LE. ICHAR(cZ)) is
true, and (cl .EQ. cZ) is true if and only if (ICHAR(cl) .EQ. ICHAR(cZ))
is true.

J=ICHAR(a)

INDEX Z character integer

Returns an integer value indicating the starting position within
character string al of a substring identical to string aZ. If aZ occurs
more than once in aI' the starting position of the first occurrence is
returned. If aZ does not occur in aI' or if string aZ is longer than string
aI' the value zero is returned. .

J=INDEX(a 1,aZ)

-- I integer intege,r
JINT integer*8 integer*8
INT or IFIX real integer
HFIX real integer*Z
IOINT double precision integer
--- complex*8 or *16 integer

Converts any numeric argument to return integer value. For a of type
integer, INT(a)=a. For a of type real or double precision: If lal < 1,
INT(a)=Oj if lal > 1, INT(a) is the integer whose magnitude is the largest
integer 'that does not exceed the magnitude of a and whose sign is the
same as the sign of a. For example, INT(-3.7)=-3. For a of type
complex, INT(a) is the value obtained by applying the aforementioned
rule to the real part of a.

J=INT(a)

Functions and Subroutines
FORTRAN 77+

Reference tv1anuai

j

I

c

(

(

Generic
Name

LEN

LOCF

LOG

LOGIO

Table 9-1 (Page 5 of 7)
Arithmetic and Conversion Intrinsic Functions

Specific
Name

LEN

No. of
Args.

1

Argument
Data Type

character

Result
Data Type

integer

Returns the length of character string. The LEN function can
determine the length of the variable or constant specified as the
argument without that variable or constant having been initialized.

LOCF
ADDR

1

J=LEN(a)

any
any

integer
integer

Returns the address of the argument. LOCF and ADDR differ in that
ADDR returns a 24-bit pure address with the format bits cleared. The
AD DR function is generated in line by the compiler and is not available
on the SRTL.

ALOG
DLOG
CLOG
CDLOG

1

J=LOCF(a)

real
double precision
complex*B
complex*16

real
double precision
complex*B
compiex*16

Returns the natural logarithm (loge(a)) of the argument. The
arguments of ALOG and DLOG must be greater than zero. The
argument of CLOG or CDLOG must not be (0.,0.). The range of the
imaginary part of the result of CLOG or CDLOG is: - 1T' < imaginary
part ~ 1T'. The imaginary part of the result is 7r only when the real part
of the argument is less than zero and the imaginary part of the
argument is zero.

ALOGIO
DLOGIO

1

R=ALOG(a)

real
double precision

real
double precision

Returns the common logarithm (log10(a)) of the argument. The
arguments for LOGIO must be greater than zero.

R=LOGIO(a)

FORTRAN 77+
Reference Manual Functions and Subroutines 9-11

Generic
Name

MAX

MIN

MOD

NINT

9-12

Table 9-1 (Page 6 of 7)
Arithmetic and Conversion Intrinsic Functions

Specific No. of Argument. Result
Name Args. Data Type Data Type

MAXO 2 or more integer integer
AMAXO integer real
MAXI real integer
AMAXI real real
DMAXI double precision double precision

Returns maximum value of arguments.

J=MAXO(a1' a2' , "an)

MINO 2 or more integer integer
AMINO integer real
MINl real· integer
AMINI real real
DMINI double precision double precision

Returns minimum value of arguments.

J=MINO(a1' a2' • "an)

MOD 2 integer integer
AMOD real real
DMOD double precision double precision

Returns remainder when a1 is divided by a2 with the sign of al' The
result is undefined when the value of the second argument is zero.

J=MOD(a1,a2)

NINT 1 real
IDNINT double

Returns nearest
INT(a-.S),

integer for argument. If a ~ 0,

J=NINT(a)

Functions and Subroutines

integer
integer

INT(a+.S); if a < 0,

FORTRAN 77+
Reference Manual

c

C' , , _ i

(

(

Generic
Name

REAL

SIGN

SQRT

Table 9-1 (Page 7 of 7)
Arithmetic and Conversion Intrinsic Functions

Specific No. of Argument Result
Name Args. Data Type Data Type

REAL 1 integer real
FLOAT integer real
-- real real
SNGL double precision real
-- complex*8 real
DREAL complex*16 real

Converts any numeric argument to return real value. For a of type
real, REAL(a) is a. For a of type integer or double precision, REAL(a)
is as much precision of the significant part of a as a real datum can
contain. For a of type complex, REAL(a) is the real part of a.

R=REAL(a)

ISIGN 2 integer integer
JSIGN integer*8 integer*8
SIGN real real
DSIGN double double

Returns the magnitude of the first argument with the sign of the
second argument. If the first argument is zero, then zero is returned.
If the second argument is zero, then a positive value is always
returned.

SQRT
DSQRT
CSQRT
CDSQRT

1 real
double precision
complex*8
complex*16

real
double precision
complex*8
complex*16

The argument of SQRT and DSQRT must be greater than or equal to
zero. The result of CSQRT or CDSQRT is the principal value with th~
real part greater' than or equal to zero. When the real part of the
result IS zero, the imaginary part is' greater than or equal to zero.

R=SQRT(a)

FORTRAN 77+
Reference Manual Functions and Subroutines

Change 1
9-13

I

Generic
Name

Specific
Name

LGE*

Table 9-2
Lexical Comparison Intrinsic Functions

No. of
Args.

2

Argument
Data Type

character

Result
Data Type

logical

Returns the value .TRUE. if a1 =a2 or if a1 follows a2 in the ASCII
collating sequence. Otherwise, returns the value .F ALSE.

LGT* 2 character logical

Returns the value • TRUE. if a1 follows a2_ in the ASCII collating
sequence. Otherwise, returns the value .F ALSE.

LLE* 2 character logical

Returns the value. TRUE. if a1 =a2 or if a1 precedes a2 in the ASCII
collating sequence. Otherwise, returns the value .F ALSE.

LLT* 2 character logical

Returns the value .TRUE. if a1 precedesa2 in the ASCII collating
sequence. Otherwise, returns the vahJe .F ALSE.

'* If the argument values for these functions are of unequal length, the shorter
operand is considered as if it were extende"d on the right with blanks to the length
of the longer operand.

9-14 Functions and Subroutines
FORTRAN 77+

Reference Manual

" .. /

[

(
/

Generic
Name

Specific
Name

BTEST

Table 9-3 (Page 1 of Z)
Word and Bit Intrinsic Functions

No. of Argument
Args. Data Type

2 integer

Result
Data Type

logical

The bits are numbered a through 31, from right to left. BTEST tests
the t bit of al· If a2 is set, BTEST =. TRUE. If a2 is clear,
B TES =.F ALSE.

L=BTEST(al,a2)

lAND 2 integer integer
AND real real

Returns result of logical AND (al A a2).

J=AND(al,a2)

IBSET 2 integer integer
IBCLR 2 integer integer

The bits are numbered a through 31, from right to left. The argument
a1 is not altered. IBSET returns the value of al with the a2 bit set.
ISCLR returns the value of a1 with the a2 bit cleared.

IBITS 3 integer integer

The bits are numbered a through 31, from right to left. The argument
a1 is not altered. The value of a2+a3 must be less than or equal to 32.
IBITS extracts a bit field from aI' starting at bit a2 and extending left
for a3 bits. The result field is right justified and the remaining bits are
set to zero.

IEOR 2 integer integer

Returns result of exclusive OR (al A a2).

J=IEOR(al,a2)

FORTRAN 77+
Reference Manual Functions and Subroutines

Change 1
9-15

I

Generic
Name

9-16

Specific
Name

lOR

Table 9-3 (Page 2 of 2)
Word and Bit Intrinsic Functions

No. of
Args.

z

Argument
Data Type

integer

Returns result of inclusive OR (al v aZ)'

ISHFT
SHIFT

z integer
integer

Result
Data Type

integer

integer
integer

Returns al that has been shifted by aZ places. aZ < a for right shift,
a2 > a for left shift.

ISHFTC 3 integer intager

The rightmost a3 bits of al are circularly shifted by aZ places. The
btts shifted out of one end of the sub field a3 are shifted into the
opposite end of the sub field a3' The shifted bits are combined with the
leftmost (3Z-a3) unshifted bits to form the function result.

J=ISHFTC(al,aZ,a3)

NOT 1 integer integer

Returns the bit complement (a) of the argument in decimal form. For
each bit in a, the complement (opposite) binary value is inserted.

J=NOT(a)

Functions and'Subroutines
FORTR.~N 77+

P,eference iv-1anual

(

(

Generic
Name

ACOS

ASIN

ATAN

ATAN2

cos

Specific
Name

ACOS
DACOS

Table 9-4 (Page 1 of 2)
Trigonometric Intrinsic Functions

No. of
Args.

1

Argument
Data Type

real
double precision

Result
Data Type

real
double precision

-Returns the arc cosine (cos-l(a)) of the argument. The absolute value
of a must be less than or equal to one. The range of the result is:
o < result < IT •

ASIN
DASIN

1

X=ACOS(a)

real
double precision

real
double precision

Returns the arc sine (sin-1(a)) of the argument.. The absolut.e value of a
must be less than or equal to one. The range of the result is:
- 71' /2 S result S 11" /2.

ATAN
DATAN
ATAN2
DATAN2

1

2

X=ASIN(a)

real
double precision
real
double precision

real
double precision
real
double precision

Returns the arc tangent (tan-l(a) or tan-lCa1/aZ)) of the argument.
The range of the result for AT AN and DA TAN is: - 71'/2 < result < 11" /2.
If the value of the first argument of AT AN2 or OAT ANZ is positive,
the result is posit.ive. If the value of t.he first argument is zero, the
result is zero if the second argument is positive or the result is 7r if the
second argument is negative. If the value of the first. argument is
negative, the result is negat.ive. If the value of the second argument is
zero, the absolute value of the result is 7r /2. The arguments cannot
both have the value zero. The range of the result. for AT AN2 and
DATAN2 is: - rr< result < 11".

COS*
DCOS*
CCOS
COCOS

1

X=ATAN(a)

real
double precision
complex*8
complex*16

Returns the cosine (cos(a)) of the argument.

X=COS(a)

real
double precision
complex*8
complex*16

FORTRAN 77+
Reference Manual Functions and Subroutines 9-17

.

Generic
Name

COSH

SIN

SINH

TAN

TANH

Specific
Name

COSH
OCOSH

Table 9-4 (Page 2 of 2)
Trigonometric Intrinsic Functions

No. of Argument
Args. Data Type

1 real
double precision

Result
Data Type

real
double precision

Returns th.e hyperbolic cosine (cosh(a» of the argument.

X=COSH(a)

SIN* 1 real real
OSIN* double precision double precision
CSIN complex*8 complex*8
COSIN complex*16 complex*16

Returns the sine (sin(a» of the argument.

X=SIN(a)

SINH 1 real real
o SINH double precision double precision

Returns the hyperbolic sine (sinh(a» of the argument.

X=SINH(a)

TAN* 1 real real
OTAN* double double

Returns the tangent (tan(a» of the argument.

X=TAN(a)

TANH 1 real real
OTANH double precision double precision

Returns the hyperbolic tangent (tanh(a» of the argument.

X=TANH(a)

* The absolute value of the argument for these instrinsic functions can be greater
than 2 7!' •

9-18 Functions and Subroutines
FORTRAN 77+

Reference Manual

(

Function Subprogram

9.4 Function Subprogram

A function subprogram is a program unit that has a FUNCTION statement as its first
statement, followed by other statements, and terminated by an END statement. It is an
independently written program unit that is executed whenever its name is referenced in
another program unit. A function subprogram returns a single value to the calling
program unit by assigning that value to the function name.

Syntax

type

s

name

[type [* s]] FUNCTION name ([dl [,dZ' •• [,di]]])

Integer, real, double precision, complex, logical, bit, character.

One of the permissible length specifications for its associated type.

The name of the function subprogram.

Dummy arguments that represent variable names, array names, subroutine
names, or function names.

Rules for Use

• The data type of any dummy argument cannot be BIT.

• The FUNCTION statement must be the first noncomment statement in the program
unit.

• The function name within the function acts as a variable that contains the value of the
function to be retumed to the calling program; it must be assigned a value before a
RETURN is executed. In the following sequence of statements, the function name
ZEDl appears in an assignment statement that defines the value of the function.

FUNCTION ZEDl (A, B, C)

.
ZEDl = 5. *(A-B) + SQRT(C)

RETURN

END

• The symbolic name of a dummy argument must not appear in EQUIVALENCE,
COMMON, or DATA statements in the function subprogram, except as a common
block name. The names in the dummy argument list may not appear in PARAMETER,
SAVE, or INTRINSIC statements in the function subprogram.

• If a dummy argument is an array name, an array declarator must appear in the
subprogram with dimensioning information consistent with that in the calling program.

FORTRAN 77+
Reference Manual F unctions and Subroutines 9-19

Function Subprogram Referencing

• A character dummy argument whose length specification is an asterisk in parentheses
must not appear as an operand for concatenation, except in a character assignment
statement.

• The function returns a value that is the same data type as that of the FUNCTION or
ENTR Y statement through which it was entered. If no data type is given, the function
returns an integer or real value depending on the first letter of the function or entry
name.

• The logical termination of the execution of a function subprogram is a RETURN
statement. The RETURN statement returns the computed value and control to the
calling program.

• The END statement specifies the last statement of the subprogram. AU function
subprograms must be terminated by an END statement. If the END statement is
executed, it has the effect of a RETURN statement.

• Alternate returns are not allowed within function subprograms.

• The equal sign of a statement function must appear on the initial line of the
statement.

• A function subprogram must not reference itself, directly or indirectly.

• If the type of the function is specified in the function statement, the function name
must not appear in a type statement.

Examole

FUNCTION SUM (ED, I, J)
DIMENSION . ED (I, J)
SUM = 0.0
DO 10 K = 1,1
DO 10 M = 1,J

10 SUM = SUM + ED (K,M)
RETURN
END

In the preceding example, the value of SUM is returned to a calling program.

9.4.1 Referencing a Function Subprogram

Function subprograms are called whenever the function name (or the name af an entry
within the function subprogram) is used in an expression. Such references take the form:

name

a' 1

9-20

A function name.

Actual arguments.

Functions and Subroutines
FORTRAN 77+

Reference Manual

(

f

Subroutine Subprograms

The type of the function name in the function reference must be the same as the type of
the function name in the referen'ced function. The arguments aj must agree in type and
order with the dummy arguments in the FUNCTION statement of the called function
subprogram, and they must agree in number except as discussed in section 9.10. The
arguments can be any of the following:

A variable name
An array element
A substring
An array name
An expression
A subroutine' or function name

If an actual argument is a subroutine or function name, that name must have appeared in
an EXTERNAL or INTRINSIC statement to distinguish it from an ordinary variable. The
corresponding dummy arguments in the called function subprograms must be used only in
subprogram references.

If a function subprogram contains an adjustable array declarator, the actual argument
list of the subprogram call must contain not only the actual array name, but also the
actual dimensions for all of the adjustable dimensions within the array declarator unless
those dimensions are in COMMON.

When a function subprogram is called, program control transfers to the first executable
statement following the referenced FUNCTION or ENTRY statement.

9.5 Subroutine Subprograms

A subroutine subprogram is a program unit consisting of a SUBROUTINE statement
followed by a series of statements terminated by an END statement. A CALL statement
transfers control to a subroutine subprogram, and a RETURN statement returns control
to the calling program unit.

When control transfers to the subroutine, the values of any actual arguments in the
CALL statement are associated with any corresponding dummy arguments in the
SUBROUTINE statement. The statements in the subprogram are then executed.

Syntax

SUBROUTINE name [(d1 [,d2 ••• ,[di]])]

name The name of the subroutine subprogram.

Dummy arguments that represent variable or array names, other subroutine
or function names, or alternate returns •

. Rules for Use

• The SUBROUTINE statement must be the first noncomment statement of the
subprogram.

The subroutine subprogram name must not appear within the subroutine in any
statement other than the initial SUBROUTINE statement.

FORTRAN 77+
Reference Manual Functions and Subroutines 9-21

Referencing a Subroutine Subprogram

• If a dummy argument is an array name, an array declarator must appear in the
subprogram with dimensioning Information consistent with that in the calling
program. Variables in the bounds of an array declarator must be dummy arguments in
the argument list, or they must be in COMMON or extended memory.

• Dummy arguments representing values to be determined by the subroutine subprogram
and returned to the calling program must appear within the subprogram either on the
left side of the equal sign in an assignment statement or in the input list of an input
statement.

• A character dummy argument whose length specification is an asterisk in parentheses
must not be an operand for concatenation, except in a character assignment
statement.

• A subroutine subprogram must not reference itself, directly or indirectly.

• The data type of any dummy argument can not be bit.

• The logical termination of the execution of a subroutine subprogram is a RETURN
statement. The RETURN statement returns control to the cailing program.

• The END statement specifies the last statement of the subprogram. All subroutine
subprograms must be terminated by an END statement. If the END statement is
executed, it has the effect of a RETURN statement.

9.5.1 Referencing a Subroutine Subprogram

A subroutine subprogram is invoked by a CALL statement.
statement is:

CALL name [([a1 [,a2' • .[,ai]]])]

The form of a CALL

name The name of a SUBROUTINE subprogram, internal subroutine, or entry
to a SUBROUTINE subprogram.

The actual arguments to be used by the subroutine.

If an argument list is specified, the CALL statement associates the values in the list with
the dummy arguments in the subroutine. It then transfers control to the first executable
statement following the named entry point in the subroutine. Parameters are passed by
reference, i.e., their addresses are passed rather than their values.

Arguments in the CALL statement must agree in type and order with the corresponding
dummy arguments in the subprogram-defining SUBROUTINE, INTERNAL SUBROUTINE,
or ENTRY statement.

The arguments in a CALL statement must also comply with the following rules:

• FUNCTION and SUBROUTINE names in the argument list must have previously
appeared in an EXTERNAL or INTRINSIC statement.

• An alternate return parameter for a subroutine subprogram is indicated by an asterisk
(*) or a dollar sign ($) followed by a statement label. Alternate returns are not
permitted from an internal procedure.

9-22 Functions and Subroutines
FOR TRAN 77+

Reference Manual

(

Referencing a Subroutine Subprogram

. If the called subroutine contains a variable array declarator, the CALL statement
must contain the actual name of the array and the actual dimension specifications as
arguments. Actual dimension specifications can also be passed in COMMON elements
or in an EXTENDED BLOCK.

. If an item in the dummy argument list is an array, the corresponding item in the CALL
statement argument list must be an array.

Examples

CALL COUNTP
CALL LISTED (A,N,'ABCD')
CALL FFT (A,B,'*'10,'*'20,C)

If an actual argument is a subroutine or function name, that name must have appeared in
an EXTERNAL or INTRINSIC statement to distinguish it from an ordinary variable. The
corresponding dummy arguments in the called function subprograms must be used only in
subprogram references.

If a subroutine subprogram contains an adjustable array declarator, the actual argument
list'of the subprogram call must contain not only the actual array name, but also the
actual dimensions for all of the adjustable dimensions within the array declarator unless
those dimensions are in COMMON or in an EXTENDED BLOCK.

Arguments must agree in type and order, and they must agree in number except as noted
in section 9.10.

If an argument list is specified, the CALL statement associates actual arguments with
the corresponding dummy arguments in the SUBROUTINE or ENTRY statement.

When a subroutine subprogram is called, program control transfers to the first executable
statement following the referenced SUBROUTIt\lE or ENTRY statement.

Example

Main Program

DIMENSION X(200), Y(lOO)

K = 100
CALL TRANS ex, Y, K)

Subroutine Suboroaram

SUBROUTINE TRANS (A,B,N)
DIMENSION A(100), B(100)
DO 10 I = 1, N

10 B(I) = A (I)
RETURN
END

In the preceding example, the main program (or calling program) calls the subroutine
TRANS. The object of the subprogram is to copy part of one array directly into another.

The CALL statement transfers control to the subroutine subprogram TRANS and
associates the dummy variables (A, B, N) with the actual arguments that appear in the
CALL statement.

FORTRAN 77+
Reference Manual F unctions and Subroutines 9-23

Internal Procedures

9.6 Internal Procedures (Function and Subroutine)

Internal procedures (function and subroutine) perform the same function as external
functions and subroutines; however, unlike external procedures, an internal procedure is a
closed routine compiled within its host program unit. They share the data environment
of the program unit and can be referenced at any point within the program unit where a
subprogram call or a function reference is allowed.

Syntax

name

INTERNAL FUNCTION name ([dl [,dZ···[,di]]])

INTERNAL SUBROUTINE name [([d1 [,dZ •• .[,d i]]])]

The symbolic name of an internal procedure (function or subroutine).

Dummy arguments that represent variable names, array names, subroutine
names, or function names.

Rules for Use

• An internal procedure can be referenced at any point within the host program unit;
however, it can not be referenced from within the internal procedure itself.

• Execution of a GOTO statement to transfer control into or out of the body of an
internal procedure is improper.

Statement numbers within an internal procedure must be unique within the host
program unit.

• ENTRY statements, alternate returns, another internal procedure or a statement
function, and specification statements other than type or DIMENSION can not be used
in an internal procedure.

• Internal procedures must be located after all host specification statements and all
statement function statements.

• The data type of any dummy argument can not be bit.

• If a dummy argument is an array name, an array declarator must appear in the
subprogram with dimensioning information consistent with that in the calling program.

• A character dummy argument whose length specification is an asterisk in parentheses
must not appear as an operand for concatenation, except in a character assignment
statement.

· Internal procedures must not be defined within a SELECT CASE statement.

• An internal procedure with the same name as an intrinsic function should be declared
before any reference is made to it.

9-24 Functions and SubrC'lJtines
FORTRAN 77+

Reference Manual

r
l

Dummy Arguments/Referencing Internal Procedures

9.6.1 Dummy Arguments

An internal procedure can have dummy arguments; otherwise, any variable referenced
within the internal procedure is the same as any variable of the same name in the host
program unit. Dummy arguments within an internal procedure can be given attributes by
means of type and DIMENSION statements immediately following the INTERNAL
FUNCTION or INTERNAL SUBROUTINE statement.

9.6.2 Referencing Internal Procedures

An internal pro~edure is composed of statements beginning with an INTERNAL
SUBROUTINE or INTERNAL FUNCTION statement and ending with an END INTERNAL
statement.

Control is transferred into an internal procedure only by a CALL statement (for a
subroutine) or by a function reference using the name of the internal procedure (for a
function).

Control leaves an internal procedure through a RETURN or an END INTERNAL
statement. Execution of a GOTO statement to transfer control into or out of the body of
an internal procedure is improper.

Format statements anywhere within a host program unit can be referenced at any point
within or outside of an internal procedure.

An internal procedure having the same name as an intrinsic function should be declared
before it is referenced.

Example

P~ tv\C\IN
REAL X,Y,F

· D.L.L S(K,L)

•
X=F(Y)

· INTERNAL SUBRO.JT 11'£ S (I , J)
ISLM=I+J

EN) INTERNAL
INTERNAL F1..N:T I CN F (Z)
REAL Z
IF (Z.GT.O) TI-EN

F=Z*Z
ELSE

F=O
EN) IF
EN) INTERNAL
EN)

FORTRAN 77+

! I SLM ~TS VALUE K+L

Reference Manual F unctions and Subroutines 9-25

ENTRY Statement

9.7 ENTRY Statement

The ENTRY statement provides multiple entry points within a subprogram. The normal
entry point is to the first executable statement within a subroutine or function
subprogram. An alternate method of entering a subprogram is to use a CALL statement
(to reference subroutine subprograms) or a function reference (to reference function
subprograms) that refers to an entry name in the subprogram. In this case, control is
passed to the first executable statement following the associated ENTRY statement.
Any number of ENTR Y statements can be contained in a subprogram.

Syntax

ENTRY name ([dl[,dZ' • .[,d~]])]

name An entry name.

Dummy arguments.

Rules for Use

• Any ENTRY statement must follow all specification statements.

• . Entry names ina FUNCTION subprogram can return function results; within a
FUNCTION subprogram, all variables whose names are the same as entry names or the
names of the FUNCTION subprograms are automatically equivalenced (i.e., occupy the ./'
same storage element). ~_j

• An entry name can be used in an EXTERNAL statement in the same manner as a
function or subroutine name.

• ENTRY statements must not be used within the range of a DO loop, nor in a block IF,
SELECT CASE construct, or internal procedure.

• Within a subprogram, two or more entry points can not have the same name.

If an· adjustable array name is in the entry argument list, aU variables used in its
dimension declarators must also be within the argument list, or they must be in
COMMON or in an EXTENDED BLOCK.

• Entry dummy arguments need not match dummy arguments within other ENTRY,
FUNCTION, or SUBROUTINE statements in the subprogram, with respect to order,
number, or type. .

• Alternate returns from a subroutine subprogram entered by means of an entry name
are discussed in 9.8.1.

• Statement functions can follow an ENTRY statement only if the statement function
precedes the first executable statement of the subprogram.

• If an entry name in a function subprogram is of type character or bit, each entry name
and the name of the function subprogram must be of type character or bit, C' ... -' .. :.
respectively. If the name of the function subprogram or any entry in the subprogram
has a length of (*) declared, aU such entities must have a length of (*) declared;
otherwise, all such entities must have a length specification of the same integer value.

9-26 Functions and Subroutines
FORTRAN 77+

Reference Manual

[

(

ENTRY Association/Function and Subroutine Subprogram Returns

Examoles

Main Program Subprograms

CALL SUBB (X, Y,Z) SUBROUTINE SUB (A,B,C)

.
RETURN
ENTRY SUBB (G,R,S)

.
RETURN

In the preceding example, the CALL is to an entry point SUBB within the subroutine
SUB. Execution begins with the first statement following ENTR Y SUBS (G,R,S), using
the actual arguments ex, Y,Z) passed in the CALL statement.

9.7.1 ENTRY Association
. .

All variables whose names are also the names of entries within a function subprogram are
equivalenced. These variables are also equivalenced with the variable whose name is also
the name of the function subprogram. Therefore, any such variable that becomes defined
(i.e., is assigned a value) causes all equivalenced variables of thl! same type to become
defined; all equivalenced variables of different type become undefined.

Such variables are not required to be of the same type unless the type is character or bit;
however, the variable whose name is used to reference the function must be in a defined
state when a RETURN or END statement is executed in the subprogram.

9.8 Function and Subroutine Subprograms Returns

The logical termination of the execution of a function or subroutine subprogram is a
RETURN statement, which transfers control to the calling program. The form of the
RETURN statement is:

RETURN

When a RETURN is executed in a function, control is returned to the calling program or
to the statement that contains the function reference. When a RETURN statement is
executed in a subroutine, control is returned to the next executable statement in the
calling program that could logically follow the CALL statement.

Subprograms can contain more than one RETURN statement; however, a subprogram
need not contain a RETURN statement. The END statement acts as a RETURN
statement in a subprogram.

FORTRAN 77+
Reference Manual F unctions and Subroutines 9-27

Alternate Returns

Examples

SUBROUTINE ROAM (A,B,C)
READ (3,7) B
A = B**C
RETURN

7 FORMAT (F9.2)
END

In the preceding example, control is returned to the calling program at the first
executable statement following the CALL ROAM statement.

In the following example, the subroutine subprogram RETURN statement transfers
control to the first executable statement in the main program following the call, i.e., in
this case, the WRITE statement.

Main Program

DIMENSION X(lOO), T(50)

.
CALL NEW (X,50,BEG)
WRITE (6,20) X (1),X(50),BEG

20 FORMAT (lX, 3F12.3)

"

Subroutine Subprogram

SUBROUTINE NEW (LIST, N, TOT)
DIMENSION LIST (100)

RETURN
END

During execution of a program, a function or subroutine subprogram must not be
referenced a second time without the prior execution of a RETURN or END statement in
that procedure.

9.8.1 Alternate Returns

Alternate returns enable the user to transfer control to a statement in the calling
program other than the one immediately following the subroutine call. The form of an
alternate return is:

RETURN e

where e is an integer expression.

The value of e indicates that the eth alternate return (as specified from left to right) in
the actual argument list is to be taken. Alternate returns in the actual argument list are
denoted by an asterisk (*) or a dollar sign ($) immediately preceding the statement label
in the argument list (refer to the examples below). Note that the subroutine program
unit must contain a corresponding asterisk (*).

Alternate returns return control to the statement in the calling program associated with
the statement label specified in the main program. The position of the statement label in
the main program corresponds to the value of the integer expression e in the RETURN
statement.

9-28 Functions and Subroutines
FORTRAN i7+

Reference Manual

('

(

Alternate Returns

Example

Main Program Subroutine SubproQram

CALL FIRST (A,B,*20,*30,C) SUBROUTINE FIRST (X, Y,*,*,Q)

20 A=B

.
30 Y=SIN(X)

IF(Z) 60, 70, 80
60 RETURN
70 RETURN 1
80 RETURN 2

END

In the preceding example, the SUBROUTINE statement argument list contains two
dummy alternate return arguments, corresponding to the actual arguments *20 and *30 in
the CALL statement argument list. The RETURN taken depends on the value of Z, as
computed in the subroutine. Thus, if Z is less than 0, the normal return is taken; if equal
to 0, return is to statement label 20 in the main program; if greater than 0, return is to
statement label 30 in the main program.

Generally, if n is the number of asterisks in the subprogram or ENTRY statement that
specifies the currently referenced name, and e is the integer expression in the RETURN
statement then:

. If e is not specified in a RETURN statement, or if the value of e is less than one or
greater than n, control returns to the statement following the CALL statement that
initiated the subprogram reference, thus completing the execution of the CALL
statement.

• If 1 ~ e ~ n, the value of e identifies the eth asterisk in the dummy argument list.
Control is returned to the statement identified by the alternate return specifier in the
CALL statement that is associated with the eth asterisk in the dummy argument list
of the currently referenced name, thus completing the execution of the CALL
statement.

Alternate return locations can be specified in an ENTRY statement. For example,

SUBROUTINE SUB (T,*,*)

.
ENTRY SUBA (J,K,*,*,Y)

RETURN 1

.
RETURN 2
END

FORTRAN 77+
Reference Manual Functions and Subroutines 9-29

Processing Arrays in Subprograms

A CALL issued to entry point SUBA must include actual alternate return arguments. For
example,

CALL SUB A (N,M,*50,*150,G)

In this case, RETURN 1 transfers control to the statement labeUed 50, and RETURN 2
transfers control to the statement labelled 150 in the calling program.

9.9 Processing Arrays in Subprograms

If a calling program passes an array name to a subprogram, the subprogram must contain
the dimension information pertinent to the array, or the calling program must provide
this information. A subprogram must contain array dec lara tors for any of its dummy
arguments that represent arrays.

F or example, a function subprogram designed to compute the average of any one
dimensional array might be the following:

Calling Program

.
DIMENSION ZAP(SO), ZOT(2S)
AI::: AVG (ZAP,50)
A2 = AI-AVG (ZOT,25)

Function Subproaram

FUNCTION AVG (ARRA Y,I)
DIMENSION ARRA Y(l)
SUM=O.O
DO 20 J=I,I

20 SUM::: SUM+ARRA Y(J)
AVG::: SUM/!
RETURN
END

Note: Actual arrays to be processed by the function subprogram are dimensioned in the
calling program. The array names and their actual dimensions are transmitted to the
function subprogram by the function subprogram reference. The function subprogram
contains dummy array and subscript names and an adjustable array declaration.

Dimension information can be provided to a subprogram in common, as illustrated in the
following example:

9-30

DIMENSION ZAP(50), ZOT(25)
INTEGER ARRA YSIZE
COMMON I ARRA YOA T AI ARRA YSIZE

ARRAYSIZE= 50
Al ::: AVG(ZAP)
ARRA YSIZE ::: 2S
A2::: AVG(ZOT)

FUNCTION AVG(ARRAY)
INTEGER ARRA YSIZE
COMMON
I ARRA YOA T AI ARRA YSIZE
DIMENSION ARRA Y(ARRA YSIZE)

SUM::: 0.0
DO 20 J:::l,ARRA YSIZE
SUM::: SUM + ARRA Y(J)

20 CONTINUE
A VG ::: SUM I ARRA YSIZE
RETURN
END

• Functions and Subroutines
FORTRAN 77+

Reference Manual

f

('

Processing of Arguments for Subprogram Calls

9.10 Processing of Arguments for Subprogram Calls

The FORTRAN 77+ compiler handles subprogram calls by passing the addresses of the
arguments from the calling routine to the corresponding dummy arguments of the
subprogram. This is accomplished by one of two methods: inline argument processing or
calls to F .PR, a Scientific Run-Time Library routine.

The default method is inline argument processing. However, if any of the dummy
arguments are declared as EXTENDED DUMMY, the arguments will be processed by
using a call to F .PR. .Also, setting option 7 before compiling the subprogram causes the
system to process the arguments using a call to F .PR.

lnline argument processing is the most efficient method of transferring the arguments
between the calling routine and the subprogram. While this technique is very fast, the
program size can increase if the subprogram has a large dummy argument list.

Therefore, inline argument processing should be used for procedures with fewer than
sixteen arguments. When the number of arguments is sixteen or more, the speed increase
provided by inline argument processing becomes negligible. In such cases, you should set
option 7 so that F .PR is called.

FORTRAN 77+
Reference Manual Functions and Subroutines 9-31

Mismatched Argument Lists

9.11 Mismatched Argument Lists

FORTRAN 77+ usually requires that the argument list of a called subprogram match the
argument list of the cailing program in type, order, and number of parameters. However,
it is possible for the number of parameters present in the calling list to be less than the
number of dummy parameters in the called program parameter list, subject to the
following rules:

• Option 7 must be set before compilation.

• A one-argument entry point must be referenced with exactly one argument.

• An entry point with more than one argument can not be called with fewer than two
arguments. '

• F or at least the initial call to a subprogram, the number of actual arguments must be
equal to the number of dummy arguments in the called subprogram in order to give
defining values to all arguments. For subsequent calls, the previously defined
association of any unspecified arguments (i.e., trailing arguments, but not arguments
missing from the beginning or middle of the list) will be retained for use within the
called subprogram.

Example

Main Program Subroutine Program

A=B=C=2.0
CALL SUB (A,B,C) SUBROUTINE SUB (X, Y,Z)

. .
C = 1.0 T = X*y*Z
CALL SUB (A,B)

In the previous example, the dummy argument Z will be associated with the variable C
when the initial call to SUB is performed. For the second call to SUB, Z will retain its
association with the variable C. Since C has been redefined prior to making the call, the
value 1.0 will be used for Z in the calculation X*Y*Z.

9-32 Functions and Subroutines
FORTRAN 77+

Reference Manual

,,,c"-,,

~-/.

(

()

CHAPTER 10

BLOCK DATA SUBPROGRAMS

10.1 Introduction

A block data subprogram initializes data in one or more common blocks during the
loading of a FORTRAN 77+ object program.

A block data subprogram begins with the BLOCK DATA statement, followed only by
DA T A, COMMON, DIMENSION, EQUIVALENCE, IMPLICIT, PARAMETER, SAVE, or
type statements associated with the data being defined. Comment lines are permitted.
The last statement in a block data subprogram is the END statement.

10.2 BLOCK DATA Statement

The BLOCK DATA statement has the following form:

Syntax

• BLOCK DATA [name]

name The symbolic name of the block data subprogram in which the BLOCK DATA
statement appears.

Rules for Use

• A block data subprogram without a name cannot be referenced, nor can it be selected
from an object library. Only one block data subprogram without a name is allowed in
an executable program.

• If any element in a common block is to be initialized, all elements of the block must
be listed in a COMMON statement, even though they might not all be initialized (refer
to the following example).

• Data in more than one common block can be initialized in one block data subprogram
(refer to the following example).

• Blank common cannot be initialized;' only data within named common blocks can be
initialized.

• Global common and DA T APooL cannot be initialized by a block data subprogram.

• A block data name can be used for external identification, for example, in an
EXTERNAL statement within a program unit (e.g., a MAIN program); this will force
the inclusion of the named block data subprogram from a subroutine library (refer to
the MPX-32 Reference Manual).

• A common block cannot be initialized in two block data subprograms.

FORTRAN 77+
Reference Manual BLOCK DATA Subprograms 10-1

BLOCK OAT A Subprogram

Example

BLOCK DATA PNAME
LOGICAL Al
DOUBLE PRECISION C
COMMON/BET A/ B(3,3)/GAM/C(4)
COMMON/ ALPHA/ Al,E,G,O
OA T A «B(I,J), 1=1,3), J=1,3)/

X 1.1, 2.5, 3.8, 3*PI
X 2*0.52, lol/,C(l), C(2), C(3), C(4)/
X 1.200, 5.600, 2*1.00/

DATA Al/.TRUE./,E/ -5.6/
END

Elements G and 0 are included in the COMMON statement even though they are not
being initialized; also, the BLOCK DATA subprogram is initializing more than one
common block.

10-2 BLOCK DATA Subprograms
FORTRAN 77+

Reference Manual

11.1 Introduction

CHAPTER 11

INPUT/OUTPUT

FORTRAN 77+ provides a set of statements to control and define transmission of data
between a compiled program and data handling devices such as card readers, line
printers, magnetic tapes, and direct access mass storage devices. The data that are to
be transferred can belong to a file or device.

The transmission can be performed using many methods. Formatted or unformatted are
the methods most commonly recognized. Refer to Appendix A for additional information
on input/output methods.

The FORTRAN 77+ input/output statements have been organized into three groups for
discussion:

• READ, WRITE, PRINT, PUNCH, TYPE, and ACCEPT statements that cause specified
data to be transmi tted between data handling devices and computer internal storage.

Auxiliary input/output control statements that:

1) position magnetic tapes and disc files,

2) establish correspondence between unit numbers (logical file codes) and specific
devices or files, and

3) determine attributes of connections to files or devices.

• FORMAT statements that specify conversion and editing of data between internal and
external (character string) form in conjunction with formatted record transmission.

NOTE: A function reference appearing in any part of an input/output statement must
not cause the statement to be executed; i.e., a recursive input/output statement
reference.

The first two groups are discussed in this chapter. FORMAT statements are discussed in
Chapter 12.

ll.2 Records

A record is a sequence of values or a sequence of characters. It does not necessarily
correspond to a device's physical record. There ar~ three kinds of records:

• Formatted
• Unformatted
• Endfile

FORTRAN 77+
Reference Manual Input/Output 11-1

Files

A formatted record consists of a sequence of characters. Its length is measured in
characters and can be zero. To insure predictable results, formatted records must be
read from or written to by formatted input/output statements. These records can be
prepared by mea~s other than FORTRAN 77+, such as keypunch or text editor.

An unformatted record consists of a sequence of values. It can contain character and
noncharacter data, or it can contain no data. Its length is measured in bytes and depends
on the external medium and the input/output list used when it is written. The length can
be zero. To insure predictable results, these records must be read from or written to by
unformatted input/output statements.

An endfile record is written by an ENDFILE statement. Execution of an ENDFILE
statement causes a file mark to be written on the specified file or device if applicable.

lLJ Files -

A file is a sequence of records and can be either an internal or external file.

An internal file provides for transferring and converting data between two internal
storage areas. Internal files have the following properties:

• The file is a cDaracter variable, character array element, character array, or
character substring.

A record of an internal file is a character variable, character array element, or
character substring.

• If the file is a character variable, character array element, or character substring, it \
~ consists of a single record whose length is the same as the length of the variable,

array element, or substring, respectively. If the file is a character array, it is treated
as a sequence of character array elements. Each array element is a record of the file,
and the ordering of the records of the file is the same as the ordering of the elements
in the array. Every record of the file has the same length, which is the length of an
element in the array.

• The variable, array element, or substring that is the record of the internal file is
defined by writing the record or by other means; e.g., the record can be defined by a
character assignment statement. If the number of characters written in a record is
less than the length of the record, the remaining portion of the record is filled with
blanks.

• A record can be read only if the variable, array element, or substring that is the
record is defined.

• An internal file is always positioned at the beginning of the first record prior to data
transfer.

Internal files have the following restrictions:

• Records must be read from and written to by sequential access formatted input/output
statements that do not specify NAMELIST.,

• An auxiliary input/output statement cannot s'pecify an internal file.

11-2 Input/Output
FORTRAN 77+

Reference Manual

(

(

Sequential and Direct Access/Blocked and Unblocked

li.4 Sequential and Direct Access Methods

An internal file can only be accessed sequentially, while an external file can be accessed
sequentially or directly. Some files may have more than one allowed access method;
other files may be restricted to one. The set of allowed access methods depends on the
file. The method of accessing a file is determined when the file is connected to a unit.

When connected for sequential access, a file has the following properties:

• The order of the records is the order in which they were written; however, if the file
can also be accessed directly, the order of the records is the same as that specified
for direct access. A record that has not been written since the file was created must
not be read.

• The records of the file are either all formatted or all unformatted. The last record of
the fHe, however, can be an end file record.

The records of the file cannot be read or written by direct access input/output
statements.

When connected for direct access, a file has the following properties:

• The order of the records is the order of their record numbers. However, the records
can be read from or written to in any order, regardless of their record numbers. Any
record can be written to a file while it is connected to a unit. For example, it is
permissible to write record 3, even though records 1 and Z have not been written. Any
record can be read from the file while it is connected to a unit, provided that the
record was written since the file was created.

• The records of the file are either all formatted or all unformatted. If the file can also
be accessed sequentially, its endfile record (if any) is not considered to be part of the
file while it is connected for direct access. If the file can only be accessed directly,
the file cannot contain an endfile record.

• Only direct access input/output statements can be used to read and write records.

• All records of the file have the same length.

• Each record of the file is uniquely identified by a positive integer called the record
number.

• The records of the file must not be read or written using list-directed or NAMELIST
formatting.

li.S Blocked and Unblocked Files

External files can be either blocked or unblocked.

Blocking is the ability of the MPX-3Z operating system to place multiple logical records
into a 768-byte physical record, along with record control information.

With unblocked files, the file record size is the full 768-byte physical record.. The
default for files under MPX-3Z is blocked, but for FORTRAN 77+ the default is
unblocked.

FORTRAN 77+
Reference Manual Input/Output li-3

Cmtrol Information Ust

When performing an input or output operation on an external file, MPX-32 reads or
writes one logical record. If the file has been assigned as unblocked, the logical record
will be a full 7'68-byte physical record.

If I/O is performed using unblocked files, record management must be done by the user.
List-directed formatting and NAMEUST do not operate on unblocked files.

1l.6 Control Information List

A control information list is a list that must include:

• A unit specifier that references the source or destination of the data to be
transferred:

[UNIT=]u

and may include:

• A format specifier that indicates editing processes:

[FMT=]b

• Error and end-of-file specifiers that determine the execution sequence if an error
occurs or an end-of-file is encountered:

ERR = c
END =d

• A record specifier that identifies a record:

REC =r

• An input/output status specifier that provides the return of the input/output status:

IOSTAT = ios

The following general rules govern the use of the control information list:

• A control information list must contain only one unit specifier and at most one format
speCifier, one record speCifier, one input/output status specifier, one error specifier,
and at most one end-of-file specifier.

• A control information list cannot contain both a record specifier and an end-of-file
specifier.

If the control information list contains a format specifier, the statement is a
formatted or a NAMEUST input/output statement; otherwise, it is an unformatted
input/output statement.

• If the control information list contains a record specifier, the statement is a direct
access input/output statement; otherwise, it is a sequential access statement.

Additional information concerning control information list items is provided in the
discussion of each input/output statement.

11-4 Input/Output
FORTRAN 77+

Reference Manual

Unit Specifier/Input/Output List

11.6.1 The Unit Specifier

A data transfer input/output statement that contains a control information list includes a
parameter that indicates an external unit or internal file. An external unit identifier
refers to an external unit, while an internal unit identifier refers to an internal file.

The unit specifier is composed of the keyword UNIT= and the constant or variable u,
which is called the unit identifier. The keyword is optional; however, the unit identifier
is required.

An external unit identifier can be one of the following:

• An integer expression whose value must be either between a and 999, or a left
justified, blank-filled string of one to three ASCn characters (referred to as a logical
file code) contained in an INTEGER*4 variable.

• A logical file code constant in the form's', where s is a string of one to three
characters.

• An asterisk designating a default assignment for the external unit. An asterisk cannot
be used as a value in an auxiliary input/output statement. Possible default
assignments are:

Statement

READ
ACCEPT
WRITE
PRINT
PUNCH
TYPE

Default Assignment

'51'
ruT'
'LO'
'LO'
'BO'
ruT'

(interactive operation only)
•

(user terminal for interactive
operation; System Listed Output (SLO)
for batch or independent operation)

Note that PRINT, PUNCH, ACCEPT, and TYPE do not specify a unit; it is implied.

An internal file identifier is the name of a character variable, character array, character
array element, or character substring.

Physical data handling units (discs, tapes, etc.) must be assigned to their corresponding
unit identifiers before execution of the I/O or auxiliary I/O operations. This assignment
can be made using job control language or an OPEN statement. Direct access files must
be explicitly opened by an OPEN statement before reading or writing. Refer to the
MPX-3Z Reference Manual for a discussion of $ASSIGN statements and how they are
used to establish the correspondence between unit identifiers and devices or files.

11.7 Input/Output List

An input/output list specifies the names of variables, arrays, array elements, and
character substrings to whie:h input data are to be assigned or from which data are to be
written. For an output data list, list elements can be expressions.

FORTRAN 77+
Reference Manual Input/Output 11-5

Single Datum/Multiple Data Identifiers

Input/output lists have the form:

List items separated by commas.

An input/ output list can contain variable names, subscripted array names, unsubscripted
array names, or array names accompanied by indexing specifications in a form called an
implied DO. Constants, function references, and expressions (except BIT type) can be
present in an output list. Data names of type BIT cannot appear as list items in
READ/WRITE statements. Function references must not cause definition of any other
item in the same output list.

11.7.1 Single Datum Identifier

A single datum identifier item is the name of a variable, array element, or character
substring.

The following are single datum identifier lists:

A
ALPHA, I (10,10) , M (10,9), SAM
JOHN (5:11)

11.7.2 Multiple Data Identifiers

There are two forms of multiple data identifer items:

• An array name appearing in a list without subscript(s) is considered equivalent to the
ordered listing of each successive array element. For example, if B is an array with
two dimensions, the list item B is equivalent to list items:

B (1,1), B (2,1), ••• ,8 (J,K)

where J and K are the subscript limits of B.

• Implied DO items are lists of one or more single datum identifiers or other implied DO
items, followed by a comma and an expression of the form:

enclosed in parentheses.

The elements i, ml' m2, and m3 have the same meaning as defined for the DO
statement; however, ml' mZ' and m3 cannot be expressions. An implied DO applies to
all list items enclosed in parentheses with the implied DO.

11-6 Input/Output
FORTRAN 77+

Reference Manual

(/

Control and Interpretation of Data

Examples of implied DO lists follow:

Implied DO Lists

(X(I), 1=1,4)

(Q(J), R(J), J=3,4)

(P(K), K=Z,8,3)

«A(I,J), I=3,4),J=Z,B,3)

ABLE, (R(L), L=1,3),BET A

(A, Y(M), M=1,3)

Egui valent Lists

X(I), X(Z), X(3), X(4)

Q(3), R(3), Q(4), R(4)

P(Z), pes), PCB)

A(3,Z), A(4,2), A(3,5), A(4,5),
A(3,B), A(4,8)

ABLE,R(1), R(Z), R(3), BET A

A, Vel), A, Y(2), A, Y(3)

All or a portion of an array can be transmitted through the use of implied DO lists.

The following notes further define input/output list specifications:

• The ordering of a list is from left to right.

o Items enclosed in parentheses (other than as subscripts) with controlling implied DO
index parameters are repeated until the index parameters are exhausted.

o Entire arrays can be transmitted using the array name (unsubscripted) in an
input/oufput list.

o For input lists, the implied DO index parameters (i, ml' mZ' and m3) cannot appear
within the parentheses as list items.

READ (1,ZO) (I,J,A(I), I=1,J,Z) is not valid

READ (1,ZO) I,J,(A(I), I=1,J,Z) is valid

WRITE (1,20) (I,J,A(I), I=1,J,2) is valid

o Any number of items can be in a single list.

• In formatted transmission (i.e., READ (u,b) list or WRITE (u,b) list), each list item
must be of the correct type, as specified by the FORMAT statement.

11.8 Control and Interpretation of Data .

Data transmission is controlled and interpreted in one of the following ways:

• Unformatted

• Formatted

• NAMEUST

• List-directed

FORTRAN 77+
Reference Manual Input/Output 11-7

Input/Output Statements

/.""
In unformatted mode, the data are transferred between program variables and a file L
without any data conversion; no F'ORMAT statement is involved. That is, the data in the
fiJc ~re in internal, machine-dependent form.

In formatted mode, the data in the file are typically in character form. READ and
WRITE statements in formatted mode perform a specified translation of each data item
between its internal and character representations, as directed by specifiers supplied in
the F'ORMA T statement.

In NAMELIST mode, the external representation of each data item includes its program
variable name along with tne character representation of the data item.

In list-directed mode, the need to be concerned with card columns, line boundaries, and
format statements is eliminated. The data to be transferred and the type of each
transferred datum are specified by the contents of an input/ output list included in the
input/output command.

11.9 Input/Output Statements

Input/output statements are used to store and retrieve data in a fixed order. These
statements are device independent and can be used for files on any device.

The data transfer input/output statements include: READ, ACCEPT, WRITE, TYPE,
PRINT and PUNCH.

/'

il.9.l Input Statements 1",--/

READ and ACCEPT statements transfer data from peripheral devices into specified
program variables, arrays, or array elements.

Syntax

READ ([UNIT::] u [, [FMT::] b] [,END=c] [,ERR::d] [,REC=r] [,lOST AT =ios]) [list]

11-8

or

READ b [,Hst]

or

READ nl

or

READ (u,n!)

or

ACCEPT b (,list]

or

ACCEPT nl

Input/Output
F'ORTRAN 77+

Reference Manual

r·

l

u

b

nl

c

Input Statements

A unit specifier as described in section 11.6.1

A format specifier; b is a statement label or array name identifying the
FORMA T statement that describes the record(s) being read. This
identi fier can also be a character array name or character expression
that contains the format information. This parameter can also be an
asterisk (*) specifying list-directed formatting.

A NAMELIST name as described in section 11.9.3.

An end-of-file specifier; c is the statement label to which control is
transferred when the end of the input file is encountered.

d An error specifier; d is the statement label to which control is I
transferred when an error condition is encountered during data transfer.

r

ios

A record specifier; r is the number of the record to be read. This
specifier is used for direct access input/output. .

An input/output status specifier; ios is an integer word variable or array
element. Execution of an input statement containing this specifier
causes ios to become defined with a zero if no error condition exists,
with a positive integer if an error condition exists, or with a negative
value if an end-of-file condition is encountered and no condition error
exists. lOST AT values are listed with the execution-time diagnostics in
Appendix D.

list An input/ output list (refer to 11.7).

Rules for Use

If the optional characters UNIT= are omitted from the unit specifier, the unit
identifier u must be the first item in the control information list.

If the optional characters FMT= are omitted from the format specifier, the format
identifier b must be the second item in the control information list; the unit specifier
must be the first item.

• The specifiers END= and REC= cannot appear in the same statement.

ACCEPT can only be used interactively.

• If an asterisk is used as a format identifier, the format is determined by the data Clist
directed). This eliminates the requirement for putting input data in certain columns,
since the data can be written in the form of FORTRAN constants, separated by
commas, blanks, or slashes (refer to 11.10).

• Parameters that are specified with keywords can be in any order; for example, END=c
and ERR=d can be reversed within the parentheses. .

The following notes define END=, ERR=, and lOST A T = processing.

I/O Completes Normally:

I

Control returns to the next executable statement. If lOST AT = was specified, ~
lOS = o. a

FORTRAN 77+
Reference Manual Input/Output

Change 1
11-9

Input Statements

EOF or EOM Detected:

If neither END: nor lOST AT = was specified, a run-time message is generated
and the task is aborted.

If only lOST AT = was specified, program control goes to the next executable
statement. The user is responsible for testing 105 and taking appropriate
action.

If only END= was specified, program control goes to the statement specified in
END=.

If END= and lOST AT = were both specified, program control goes to the
statement specified in END=, and status is sent to 105.

I/O Error Detected (note that the position of the file becomes indeterminate):

If neither ERR= nor IOSTAT= was specified, a run-time message is generated
and the task is aborted.

If only IOSTAT = was specified and the error is nonfatal, program control goes
to the next e"ecutable statement. The user is responsible for testing IOS and
taking appropriate action. If a fatal error (one that cannot be recovered)
occurs, the program will be aborted even though lOST AT =105 is specified.

If only ERR= was specified, program control goes to the statement specified in
ERR=.

c

"

If ERR= and 105TAT = were both specified, program control goes to the ~.~
statement specified in ERR=, and status is sent to 105.

• Entities of type BIT cannot appear as list items in input statements.

The following notes. further define the function of input statements:

• A new record is read each time an input statement is executed.

• The list and format specifications determine the number of records read.

• If only a portion of a record is specified by the list and format when an input
statement is executed, the rest of the record is ignored. The next input statement
processes the next record.

• In the case of a formatted input statement, records are read until the list is
satisfied. In either case, only enough values to satisfy the list are read.

• In the case of a formatted input statement in which the referenced format contains
Hollerith or literal field descriptors, the string constant characters of the descriptors
are replaced by corresponding characters from the input record.

· An unformatted input statement without a list causes one logical record of the input
medium to be skipped.

I. If a file is implicitly opened via an input statement, that file is opened in update
mode.

Table 11-1 shows each of the possible forms of formatted and unformatted input
statements.

Change 1
11-10 Input/Output

FORTR~1'-J 77+
Reference t'v'1a:H_!a!

(

(

Statement

READ (u,b)list

READ (u,b)

READ b

READ b,list

READ nl

FORTRAN 77+
Reference Manual

Table 11-1 (Page 1 of 2)
Input Statements

Use

Reads data from the file associated with the unit identifier
u, formatted according to the specifications given in the
format identified by b, into the items identified in the
input list.

Example:

READ('SI' ,10)ARRA Y(10,30),ALPHA,BET A,GAMMA

Skips one or more records on the file associated with the
unit identifier u according to the number of effective slash
edit descriptors in the format identified by b.

Example:

READ (14,45)
45 FORMA T (/ ,I)

Skips one or more records on the resource assigned to the
logical file code '51'.

Example:

READ 45 !THIS WILL SKIP 3 RECORDS
45 FORMAT (/ ,I)

Transfers data from the resource assigned to the logical
file code '51' into the items identified in the input list. The
input data are formatted according to the specifications
given in b.

Example:

READ 25, X, Y, (Z(I), 1=1,10)

Specifies input to the previously defined NAMELIST
statement. Records are read from a logical file code lSI'
until a record is encountered that contains the NAMELIST
name. specified- in the READ statement. Variable and
array values are then written to their corresponding
NAMELIST variables until a record containing the
NAMELIST end code is encountered.

Input/Output 11-11

Statement

READ (u,nl)

ACCEPT b

ACCEPT b,list

ACCEPT nl

READ (u)list

11-12

Table 11-1 (Page 2 of 2)
Input Statements

Use

Specifies input to the previously defined NAMELIST
statement. This form of the READ statement differs from
the previous example by the explicit use of the unit
identifier rather than the default value; records are being
read from a specified unit.

Example:

READ (6,NAMl)

Skips one or more input records on the file associated with
the logical file code 'UT' according to the format
identified by b.

Example:

ACCEPT 10
10 FORMA T(/ ,/ ,I)

Transfers values to the items specified by the input list
according to the format identified by b. The source of the
values is the file associated with the logical file code 'UTI.

Example:

ACCEPT lO,A,S

Specifies input to the previously defined NAMELIST
statement. Input is from the file associated with the
logical file code 'UTI.

Reads one logical record of data from the file associated
with unit identifier u and assigns successive values from
the record to items identified in the list. The file must
have been previously written as an unformatted file. The
number of list elements cannot exceed the number of data
values from the unformatted record. You must correctly
type and order the variables.

Example:

READ (UNIT =9) B,C(l,l)

Input/Output
FORTRAN 77+

Reference Manual

[

Output Statements

11.9.2 Output Statements

The output statements WRITE, PRINT, PUNCH, and TYPE transfer data from specified
program variables to peripheral devices or internal files.

Syntax

u

b

nl

c

d

r

WRITE ([UNIT =] u [, [FMT =] bJ [,END=c] [,ERR=d] [,REC=r] [,lOST A T =ios]) [list]

or

WRITE (u,nl)

or

PRINT b [,list]

or

PRINT nl

or

PUNCH b [,list]

or

PUNCH nl

or

TYPE b [,list]

or

TYPE nl

A unit specifier as described in section 11.6.1

A format specifier; b is a statement label or array name identifying the
FORMAT statement that describes the record(s) being written. This
identi fier can also be a character array name or character expression that
contains the format information, or it can be an asterisk (*) specifying list
directed formatting.

A NAMELIST name as described in section 11.9.3.

An end-of-file specifier; c is the statement label to which control is
transferred upon encountering the end of the medium on which the file is
being written.

An error specifier; d is the statement label to which control is transferred
upon encountering an error condition in data transfer.

A record specifier; r is the number of the record to be written. This
specifier is used exclusively for direct access input/output.

FORTRAN 77+
Reference Manual Input/Output 11-13

Output Statements

ios . An input/output status specifier; ios is an integer word variable or array
element.. Execution of an output statement containing this specifier causes
ios to become defined with a zero if no error condition exists, with a positive
integer if an error condition exists, or with a negative value if an end-of-file
condition is encountered and no error condition exists. lOST A T values are
listed with execution-time diagnostics in Appendix D.

list An input/output list.

Rules for Use

If the optional characters UNIT= are omitted from the unit specifier, the unit
identifier u must be the first item in the control information list.

If the optional characters FMT = are' omitted from the format specifier, the format
identifier b must be the second item in the control information list; the unit specifier
must be the first item.

If an asterisk is used as a format identifier, the format is determined by the data (list
directed).

Parameters that are specified with keywords can be in any order; for example, the
order of END=c and ERR=d can be reversed within the parentheses.

• The following notes define END=, ERR=, and lOST A T = processing.

I/O Completes Normally:

Control returns to the next executable statement. If IDSTAT= was specified,
lOS = O.

EOF or EOM Detected:

If neither END= nor lOST AT = was specified, a run-time message is generated
and the task is aborted.

If only IOSTAT= was specified, program control goes to the next executable
statement. The user is responsible for' testing lOS and taking appropriate
action.

If only END= was specified, program control goes to the statement specified in
END=.

If END= and lOST AT = were both specified, program control goes to the
statement specified in END=, and status is sent to 105.

I/O Error Detected (note that the position of the file becomes indeterminate):

Change 1
11-14

If neither ERR= nor lOST AT = was specified, a run-time message is generated
and the task is aborted.

If only lOST AT = was specified and the error is nonfatal, program control goes
to the next executable statement. The user is responsible for testing IDS and
taking appropriate action. If a fatal error (one that cannot be recovered:
occurs, the program will be aborted even though IDSTi\ T =105 is speci fied.

Input/CutP~t
FORTR;"'I~ 77 +

Refer'?nc2 IV~8nu8!

(..... .
\

Output Statements

If only ERR= was specified, program control g~es to the statement specified in i
ERR=.

If ERR= and lOST AT = were both specified, program control goes to the
statement specified in ERR=, and status is sent to lOS.

• Entities of type BIT cannot appear as list items in output statements.

The following notes further define the function of output statements:

• The execution of output statements can produce several records. An unformatted
output statement produces one logical record, which can consist of several physical
records.

• The list and format specifications determine the number of records produced by any
output statements.

• Successive data are output until the list is exhausted.

During output to a file that specifies a fixed length record, if the data specified in the
list do not fill a record, the remainder of the record is filled with blanks (if formatted)
or zeros (if unformatted).

• If a file is implicitly opened via an output statement, that file is opened in update I
m~&. I

Table 11-2 shows possible forms of formatted and unformatted output statements.

FORTRAN 77+
Reference Manual Input/Output

Change 1
11-15

Statement

WRITE (u,b)list

PRINT b,list

PRINT b

PRINT nl

11-16

Table 11-2 (Page 1 of 3)
Output Statements

Use

Writes the values of the items identified in the list to the
file associated with unit identifier u or an internal file.
This statement converts and arranges the output data
according to the specifications given in a format identified
by b.

Example:

WRITE ('La', 64) A, B, C

Writes the values of the items identified in the list "to the
resource assigned to the logical file code 'La'. This
statement converts and arranges the output data according
to the format identified by b.

Example:

PRINT 33, OUT(3,6), W, X, Y

Writes the contents of any Hollerith or literal field
descriptor(s) contained in the format identified by b to the
resource or file assigned to the logical file code 'La'. If
neither type of field specification is found in the format,
no output transfer is performed, but one or more records
are written according to the number of effective slash edit
descriptors in the format.

Example:

PRINT 44

Specifies output for use with the previously defined
NAMELIST statement. Output is written to. the device
assigned to the logical file code 'La'. This statement
results in a minimum of three records being sent to 'LO'.
The first record contains the NAMELIST name; the
following records contain the symbols and current values
for items specified in the NAMELIST statement in order of
definition. Records are written until all symbols for the
NAMELIST name have been written. The NAMELIST end
code is then written.

Example:

PRINT NAMI

Input/Output
FORTRAN 771-

Reference ~"ianuai

I
I

(

Statement

PUNCH b,list

PUNCH b

PUNCH nl

WRITE (u,n!)

TYPE b

FORTRAN 77+
Reference Manual

Table 11-2 (Page 2 of 3)
Output Statements

Use

Writes the values of the items identified in the list to the
resource assigned to the logical file code '80'. This
statement converts and arranges the output data according
to the format identified by b.

Example:

PUNCH 33, OUT(3,6), W,X, Y

Writes the contents of any Hollerith or literal field
descriptor(s) in the format identified by b to the resource
assigned to the logical file code '80'. If neither type of
field specification is found in the format identified by b,
no output transfer is performed, but one or more records
are written according to the number of effective slash edit
descriptors in the format.

Example:

PUNCH 44

Specifies output for use with the previously defined
NAMELIST statement. This statement differs from PRINT
nl in that output is to the logical file code '80'.

Example:

PUNCH NAMI

Specifies output for use with the previously defined
NAMELIST statement. This statement di ffers from other
output statements using NAMELIST in that output is to the
unit identified by u.

Example:

WRITE (7,NAMl)

Transfers the contents of Hollerith or literal field
descriptors according to the format specification b. The
destination of the values is the file identified by the file
code JUT'.

Example:

TYPE 10

Input/Output 11-17

Statement

TYPE b,list

TYPE nl

WRITE (u)list .

11-18

Table 11-2 (Page 3 of 3)
Output Statrnents

Use

Transfers values of items specified by the output list
according to the format specification b. The destination
of the output is the logical file code UT.

Example:

TYPE 10,A,8

Specifies output for use with the previously defined
NAMELIST statement. This statement differs from other
output statements using NAMELIST in that output is to
logical file code 'UT'.

Example:

TYPE NAMI

Writes the values of the items identified in the list into the
file associated with input/output unit u. No conversion of
output data is performed. The omission of the format
specifier initiates unformatted (binary) output.

Example:

WRITE (39) TOT AL(lO,lO), SUM (2,5,4)

Input/Output
FORTRAN 77+

Reference Manual

l.

f

Input and Output Using NAMELIST

1l.9.3 Input and Output Using NAMELIST

The NAMELIST statement enables the reading and writing of data by referencing a single
symbolic name instead of a format specification and argument list. This symbolic name
is defined in a NAMELIST statement and represents a specific set of variables.

Syntax

NAMELIST I xl a,b, •• • ,nU y I o,p, •• "z] .•.

x,y

a,b, ••• ,n
o,p, ••• ,z

Rules for Use

"NAMELIST names

Variable or array names that form a NAMELIST list

• NAMELIST names are symbolic names.

• A NAMELlST name is enclosed in slashes (/) in a NAMELlST statement. The list of
variable or array names belonging to a NAMELlST name ends with another NAMELIST
name enclosed in slashes or with the end of the NAMELIST statement.

• A variable or array name can belong to one or more NAMELIST lists.

• A NAMELIST name must be defined in a NAMELIST statement before it can be
referenced and the name can be defined only once.

• Once defined, a NAMELIST name can only be used in NAMELIST input and output
statements.

Input/output conversion of NAMELIST data is the same as that described in Chapter
12. However, NAMELIST input must be in the format described in this chapter.

• A NAMELIST statement that includes variable or array names in a COMMON block
can only occur after the first DATA, executable or statement function statement in
an individual source module.

• If NAMELIST input is to be from a file created by the edito~, you must STORE (as
opposed to SAVE) the file unnumbered.

• NAMELIST can not operate on unblocked files.

Example

NAMELIST INAM11 Q,B,I,L,J,K/NAM2/ C,J,I,L,K

This NAMESLIST statement defines two NAMELIST lists, NAM1 and NAM2. The variable
names I, J, L, and K belong to both NAMELIST lists. Additional examples of the use of
NAMELIST appear on the following pages.

FORTRAN 77+
Reference Manual Input/Output 11-19

Input and Output Using NAMEUST

11.9.3.1 Input from a User Terminal

In interactive processing, NAMEL.IST prompts the user with an ampersand (&) followed by
the NAMEUST name •. The cursor is then positioned on the next line.

If the TSM command OPTION PROMPT has been specified, the NAMEUST prompt will
consist of the first three characters of the load module name. Refer to the MPX-32
Reference Manual for more information concerning the TSM command OPTION
PROMPT.

The following would be· displayed for a NAMEUST named NL.STI. A represents the
cursor; XXX represents the beginning of the load module name. Une numbers have been
added for the purpose of explanation.

Une 1

Une Z

or

Une 1

&NL.STI

(.. represents the cursor)

XXX>A

In the first example, data items can be entered beginning on line 2. In the second
example, data items can be entered on line 1 and on successive lines. In either example,
data items can be entered in any column.

11.9.3.2 Input from Other Than a User Terminal

In batch processing, NAMEL.IST input must be in the following format:

• All lines must have coiumn one blank.

• The first line of a NAMEUST input group must have an ampersand (&) in column two.

• The NAMEUST name must begin in column three of the first line of a NAMEUST
input group.

For batch processing, the first line of input for a NAMEUST named NL.STI must be:

kS&NL.STl

If data items are included in the same line as the NAMEL.IST name, the name must be
followed by a blank

~&NLST 1~I(2,3)=5

11-20 Input/Output
FORTRAN 77+

Reference Manual

(1'\
,~-)

f

Input and Output Using NAMEUST

11.9.3.3 Input Data Item Formats

Data items in NAMELIST input can take three forms:

varsubstring=constant

arrayname=constant1, constant2, ••• ,constantn

arrayelement=constant1, constant2, ••• ,constantn

Commas separate the data items and a comma must follow the last item in the data for
each NAMELIST name. The constants in these data items can be of type integer, real,
double precision, complex, logical, bit or character. If a constant is logical, it can be of
the form T or • TRUE., F or .F .A.LSE ••

varsubstring=constant

arrayname=constantn

arrayelement=constantn

varsubstring is a single variable name or a substring.
Substring expressions must be integer constants. For
example:

J=4, B=3.2, C(2:4)='ABC',

arrayname is the name of the array. The constants,
separated by commas, are placed in the array in
column-major order. The number of constants must not I
exceed the number of elements in the array. Successive
occurrences of the same constant can be represented by
k*constant, where k is the number of repetitions. For
example:

L=2,3,7*4,

array element is an individual array element; that is, an
array name followed by a list of integer constants
within parentheses. Data item constants are separated
by commas. If one constant is listed, it is placed in the
specified array element. If more than one is listed, they
are placed in the array, starting with the specified
element and continuing in column-major order. I
The number of constants must not exceed the number of
array elements between the specified array element and
the last array element. Successive occurrences of the
same constant can be represented by k*constant, where
k is the nu.mber of repetitions. For example:

A(4,3)=5,8,3*2,7,

Any subset of the set of variable or array names specified in the NAMELIST statement
can be transmitted as input; i.e., the entire set need not be included. The subset is
defined by including in the data items only those variable or array names to which the
user wants to assign values.

The order of the data items in NAMELIST input does not have to match the order of the
variable and array names in the NAMELIST statement.

FORTRAN 77+
Reference Manual Input/Output

Change 1
11-21

Input and· Output Using NAMEUST

Trailing blanks after integers and exponents in numeric fields are interpreted as zeros.
Embedded blanks are not permitted in names or constants, except for constants of type
CHARACTER. Embedded quotation marks (") or apostrophes (') are not permitted for
data of type CHARACTER.

In batch processing, the end of a group of NAMELIST data items is denoted by &ENO.
Data items following the &END are ignored for that input group.

In interactive processing, a group of NAMELIST data items can be terminated by &END
or by pressing CTRL/C.

11.9.3.4 Output Data Formats

A NAMELIsT output group consists of the NAME LIST name on one line followed by t.he
data items on successive lines. A value is listed for each of the variable names specified
in the associated NAMELIsT statement in the same order as defined in that statam c ilt

If a data item listed in the NAMELIST statement does not have a value in the ir;:,u'
I record, it retains its previous definition. Array element values are listed in colUini1-

major order. A line containing &END is the last line of a NAMELIsT output group.

Examples, Batch

The following is an example of the use of the NAMELIsT statement and input in batch
processing. Line and column numbers have been added for purposes of explanation.

REAL Q(3)
INTEGER 1(3,3), L(3,3), K(4,2)
NAMELIST /NAMl/Q,B,I,L,J,K/NAM2/C,J,I,L,K
READ (5,NAMl)

..
WRITE (6,NAM2)

The NAMELIST statement defines two NAMELIST lists, NAMI and NAM2. The READ
statement causes data to be read from the resource associated with unit specifier 5 and
written to the variables and arrays specified by NAMI. The data consists of:

Line 1
Line 2
Line 3
Line 4

Column 2

~&NAMUn(2,3)=5,
~J=4, B=3.2, Q(3)=4.0,
~L=2,3, 7*4,
~K(3,1)=2,4,5,3*7 ,&END

Line 1 is read and examined to verify that the NAMELIST name is consistent with the
name specified in the READ statement. If it is not, an error results.

When the remainder of line 1 is read, the integer constant 5 is placed in !(2,3) .. When line
2 is read, the integer constant 4 is placed in J; the real·constants 3.2 and 4.0 are p16cad C-~
in Band Q(3), respectively. ;, . '

Chan(y~ 1
ll-V input/Out .. J;it

(

Input and Output Using NAMEUST

When line 3 is read, the entire array is filled in column-major order with the constants I
listed because L is an array name not followed by a subscript. Therefore, the integer
constants 2 and 3 are placed in Ul,l) and L(2,1), respectively, and the integer constant 4
is placed in LC3,1), LCl,2), ••• LC3,3).

When line 4 is read, the integer constant 2 is placed in array element K(3,1), and the
remaining integer constants are placed in the remaining array elements in column-major;
order. Four is placed in 1«4,1), 5 is placed in K(1,2), and 7 is placed in K(2,2), (3,2), and
(4,2).

The WRITE statement causes data to be read from the variables and arrays specified by
NAM2 and written to the resource associated with unit specifier 6. Assume that the
values of J, L, 1(2,3), and K(3,1) through K(4,2) were not altered since the previous READ
statement; that C=428.0E+03; that 1(1,3)=6; and that the rest of the elements of I and K
were set to zero. The output is as follows:

Column 2

Line 1
Line 2
Line 3
Line 4

Example, Interactive

&NAM2
C=428000. 00, J=4,1=0, 0, 0,0, 0, 0, 6, 5, 0,
L=2,3,4,4,4,4,4,4,4,K=O,O,2,4,5, 7,7,
&END

The following is an example of the use of the NAMELIST statement and input from a user
terminal. Line and column numbers have been added for the purpose of explanation.

LOGICAL L
INTEGER 1(3)
CHARACTER*10 C
DA T A C/'~~~~~~~161616' /
NAMELIST /NLISTI/1, L, C
READ (5, NLISTl)
WRITE (6, NLISTl)

The NAMELIST statement defines one NAMELIST list, NLISTI. ,The READ statement
causes data to be read from the resource associated with unit specifier 5--a user
terminal--and written to the variables and arrays specified by NLISTl. The input
consists of:

Line 1
Line 2
Line 3

Column 1

&NLISTI
1=2*1,3, C(2:4)='ABC',
L=.TRUE.,

Line 1 is a prompt. Lines 2 and 3 are entered by the user; they can begin in any column.
The input group is terminated by pressing CTRL/C.

The integer constant 1 is placed in 1(1) and 1(2); the integer constant 3 is placed in I(3);
the data 'ABC' are placed in bytes 2, 3, and 4 of the variable C; the logical constant
. TRUE. is placed in L.

FORTRAN 77+
Reference Manual Input/Output

Change 1
11-23

List-Directed Formatting

The WRITE statement causes data to be read from the variables and arrays specified by
NLISTi arid written to the resource associated with unit specifier 6, a user terminal. Tt-::}

. output is displayed on the terminal in the following format:

Line 1
Line 2
Line 3

Column 1

&NLISTI
1=1,1,3,L= T, C='16ABC1616I61616t6',
&END

ll.lD List-Directed Formatting

List-dir~cted input/output eliminates the need to be concerned with card colur.!ns, !ir'C'
boundaries, and format statements. An asterisk (*) used as a format identifier L'i 'T.

input/output statement indicates list-directed formatting. The data to be transferlc'c
and the type of each transferred datum are specified by the contents of an inutio!),::!~
list included in the input/output command.

Examples

WRITE(6, *)I,INK,L

WRITE(FMT =*,UNIT =6)I,(A(I),I=1,9)

READ ('SI',*)K,KAN,LIMA,M

A BACKSPACE statement should not be executed for a unit connected to a file that is
used for list-directed input/output. If such a combination is used, the results are
unpredictable. The record specifier REC=rec must not be used because list-directed
input/output is record-oriented to or from a formatted sequential file, while the record
specifier is used for direct access files. List-directed formatting should not operate or
unblocked files. '

The characters in one or more list-directed records constitute a sequence of values and
value separators. The end of a record has the same effect as a blank character, unless it
is within a character constant. Any sequence of two or more consecutive blanks is
treated as a single blank, unless it is within a character constant.

Each value is either a constant, a null value for input, or one of the forms

c

r

r*c

r*

A constant

A positive integer cons~ant that specifies the number of times the constant
represented by c is to be repeated. The r* form is equivalent to r successive
null values.

Neither of the forms r*c or r* may contain embedded blanks, except where permitted
within the constant c if c is of CHARACTER type.

11-24

/ "

C
"~

.'" "
" ,

r-
l

List-Directed Input

A value separator is one of the following:

A comma optionally preceded by one or more contiguous blanks and optionally
followed by one or more contiguous blanks

• A slash optionally preceded by one or more contiguous blanks and optionally followed
by one or more contiguous blanks

• One or more contiguous blanks between two constants or following the last constant

Examples

5*4
2*'MAKE'
7*

represents
represents
represents

11.10.1 List-Directed Input

4,4,4,4,4
'MAKE', 'MAKE'
seven null values

Value separators in data for list-directed input must comply with the following:

• Value separators may be preceded or followed by any number of blanks or line
terminators (end-of-record, carriage return, etc.); any such combination is treated as
only a single separator.

• A null value is specified by one of the following:

Having no characters between successive value separators.

Having no characters preceding the first value separator in the first record
read by each execution of a list-directed input statement.

The r* form. Any number of blanks may be placed between the value
separators.

Each time a null item is specified in the input data, its corresponding list item is left
unchanged. A null value may not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire complex constant.

• Blanks in a list-directed input record are considered to be part of some value
separator, except for the following:

Blanks embedded in a character constant.

Embedded blanks surrounding the real or imaginary part of a complex constant.

Leading blanks in the first record read by each execution of a list-directed
input statement, unless immediately followed by a slash or comma.

• Slashes (/) cause the current input operation to be terminated, even if all the items of
the directing list are not filled. The contents of items of the directing input/output
list that have not received input before the transfer is terminated remain unchanged.
If the input/output list of the controlling input/output statement has been satisfied,
the use of the slash as a delimiter is optional.

• Once the input/ output list has been satisfied, any items remaining in the input record
are ignored.

FORTRAN 77+
Reference Manual Input/Output 11-25

List-Oirected Output

Data for list-directed transfers are composed of alternate constants and delimiters. The
constants should have the following characteristics:

• Input constants must be of an acceptable type.

• Leading blanks are allowed in the first record read by each execution of a list-directed
input statement.

• Decimal points may be omitted from real and double precision constants that do not
have a fractional part. The decimal point is assumed to follow the rightmost digit.

• The input form of complex data is a left parenthesis followed by the real part, a
comma, and the imaginary part, followed by a right parenthesis. Each of the numeric
input fields may be preceded or followed by blanks. The end of a record may occur
between the real part and the comma or between the comma and the imaginary part.

• The input form of logical data must not include either slashes or commas among the
optional characters permitted for L editing.

• The input form of character data cf)nsists of a nonempty string of characters enclosed
in apostrophes. Each apostrophe (or quotation mark) within the string is represented
by Ii pair of apostrophes (or quotation marks) without an intervening blank or end of
record. Character constants may be continued from the end of one record to the
beginning of the next record, for as many records as needed. The characters blank,
comma, and slash may appear in these constants. Note that an embedded apostrophe
pair cannot immediately follow the initial apostrophe; also, a quotation mark should be
folloWE"d either by a quotation mark or a pair of hexadecimal digits denoting an ASCU
character code.

• Glven a character type list item of length I and a character string of length n to be
transmitted to the item, the following occurs: If I is less that n, the string is
truncated; that is, the leftmost characters of the string fill the item. If 1 is greater
than n, the string is left-justified in the item and the rest of the item is blank-filled.

ll.l.D.2 List-Oirected Output

The form of the values produced by list-directed output is the same as that required for
input, except as noted otherwise. With the exception of character constants, the values
are separated by one of the following:

• One or more blanks

• A comma optionally preceded and/or followed by one or more blanks

New records are begun as necessary. Neither the end of a record nor blanks may occur
within the constant, except in the case of complex constants and character constants.

Slashes, as value separators, and null values are not output.

Each output record begins with a blank character to provide carriage control when the
record is printed.

11-26 Input/Output
FORTRAN 77+

Reference Manual

(

r
l.

Auxiliary Input/Output/OPEN Statement

Characteristics of output data are:

· Integer output constants are produced with the effect of an 120 edit descriptor.

· Real and double precision constants are produced with the effect of an E20.13 edit
descriptor.

· Complex constants are produced with the effect of a '(', E23.16, ',', E23.16,')' edit
descriptor. The end of a record may occur between the comma and imaginary part of
the constant. Embedded blanks may appear between the comma and end of a record,
and one blank may appear at the beginning of the next record if a complex constant is
split over two lines. All listed output is preceded by leading blanks; therefore, blanks
may occur between fields.

• Logical output constants are T for the value true and F for the value false in the form
L20.

· Character constants produced are not delimited by apostrophes, nor are they preceded
or followed by value separators. Each intemalapostrophe is represented externally
by one apostrophe; a blank character is inserted by the processor for carriage control
at the beginning of each record that begins with a continuation of a character
constant from the preceding record.

With the exception of the blank at the beginning of the record, character constants
are not preceded or followed by a value separator.

li.li Auxiliary Input/Output Statements

Auxiliary input/output statements are used to control the connection, position, and file
marking of files or devices, or to query attributes of a connection to a file. The auxiliary
input/output statements OPEN, CLOSE, INQUIRE, BACKSPACE, BACKFILE, SKIPFILE,
ENDF1LE, and REWIND are discussed on the following pages.

li.ll.l OPEN Statement

The OPEN statement is used to connect a device or an existing file to a unit, create a
file and connect it to a unit, or change certain attributes of a connection between a
device or file and a unit.

Svntax

OPEN ([UNIT =] u [,specifier=item] •••)

u The unit identifier. It is defined in the description of the UNIT specifier on
the following pages.

specifier A keyword that identifies a particular specification.

item An expression of a type required by the specifier.

FORTRAN 77+
Reference Manual Input/Output 11-27

OPEN Statement Specifiers

The OPEN statement specifiers are listed below in alphabeticai order, grouped according
to the mode (native or compatible) in which they can be used. The specifiers and their
corresponding items are defined on the foUowing pages in alphabetical order. The mode
in which the specifier can be used is listed opposite the specifier definition; not all
specifiers can be used in both modes.

Some specifiers require the use of certain other specifiers. Such cases are noted in the
specifier definitions and in the Rules for Use section following the definitions.

Native Mode Soecifiers

ACCESS
ALLOCATE
ALTUNIT
BLANK
BLOCKED
CLEAR
CONTIGUOUS
CONTROLBITS
DENSITY
DEVICE
ERR
EXTEND

EXTENDIBLE
FILE
FILESIZE
FORM.
INCREMENT
IOSTAT
MAXSIZE
MININCREMENT
OPENMODE
OTHERACCESS
OWNERACCESS
PROJECT

PROJECT ACCESS
QUEUE
RECL
REEL
SHARED
SPOOLFILE
START
STATUS
UNIT
VOLUME
WAIT

Compatible Mode SpeCifiers

ACCESS
ALTUNIT
BLANK
BLOCKED
CLEAR
DEVICE
ERR
FILE

ACCESS=acc

nati ve,compatible

ALLOCA TE=alacc

native

11-28

FlLESIZE
FORM
IOSTAT
KEY
PASSWORD
READONLY
RECL
REEL

SPOOLFILE
STATUS
UNIT
USER
VOLUME
WAIT

acc is a character expression that specifies the access method
for the connection of a file. The value of acc when any trailing
blanks are removed is SEQUENTIAL or DIRECT. The default
for acc is SEQUENTIAL. Far existing files, the specified access
method must be included in the set of allowed access methods
for the file.

alacc is a character expression indicating the access mode
associated with the resource when the resouce is allocated. The
value of this specifier must be a subset of the set of combined
modes established in the access rights speci fiers
OWNERACCESS, PROJECTACCESS, and OTHERACCESS. For
example, IRWMA' may be specified for alacc only if each mode
was specified in at least one of the other access specifiers.
Possible modes are:

'R' Read
'W' Write

'A' Append
lU' Update

Input/Output

1M'
, I

Modify
Use system default

FORTRAN 77+
Reference Manual

, ..

(

AL TUNIT =alt

native, compatible

BLANK=blnk

native,compatible

BLOCKED=blk

native,compatible

FORTRAN 77+
Reference Manual

OPEN Statement Specifiers

Each mode may appear, at most, once in the string. Embedded
blanks are not permitted. Trailing blanks are ignored. The
access mode defaults to any allowable access rights for a
specific file. If the ALLOCATE keyword is omitted, all
allowable access modes which were established when the file
was created are permitted. For example, all access modes are
allowed for the owner of a file; however, update mode may not
be allowed for the same file accessed under PROJECT ACCESS
or OTHERACCESS if this mode was not specified during file
creation. If the QUEUE or SPOOLFlLE is used, the system will
force append mode.

alt is a unit identifier that must be one of the forms listed for u
(refer to the UNIT specifier). Use of this specifier causes all
the properties that exist for the connection of the unit specified
by alt to also become the properties for the connection of the
unit specified by u. For example, the statement sequence:

OPEN (UNIT =6, FlLE='FILEX', ACCESS='SEQUENTIAL',
BLOCKED=. TRUE.)

OPEN (UNIT = 7, AL TUNIT =6)

results in units 6 and 7 being connected to the file FILEX for
blocked, sequential access. Any change of the connection
between unit 6 and file FILEX from this point on has no effect
on the connection between unit 7 and file FILEX.

The unit specified by the value of alt must be connected to a
resource before the execution of the OPEN statement
containing the specifier.

In native mode, if the AL TUNIT specifier is given in an OPEN
statement, the only other sped fiers allowed are UNIT,
ALLOCATE, and OPENMODE. In the compatible mode, if the
AL TUNIT specifier is given in an OPEN statement, the only
other spec ifier allowed is UNIT.

blnk is a character expression whose value is NULL or ZERO
when any trailing blanks are removed. If NULL is specified, all
blank characters in numeric formatted input fields on the
specified unit are ignored, except that a field of all blanks has a
value of zero. If ZERO is specified, all blanks other than
leading blanks are treated as zeros. The default for blnk is
NULL; however, runtime option 8 can be used to cause the
default for blnk to be ZERO. This specifier is valid only for a
file being connected for formatted input/output.

blk is a logical expression. If its value is . TRUE., the file is
opened as a blocked file; otherwise, it is treated as an unblocked
file. The default for blk is .F ALSE. (refer to the MPX-32
Reference Manual for a discussion of blocked files).

Input/Output 11-29

I

OPEN Statement Specifiers

CLEAR=cl

native,compa tib Ie

CONTIGUOUS=cont

native

c1 is a logical expression. If its value is • TRUE., the file s
zeroed (i.e., filled with zeroes) when created. This specifier s
valid only when a file is being created. The default for cl s
.F ALSE.. The CLEAR option has no effect on temporary files n
the compatible mode.

cont is a logical expression. A value of • TRUE. indicates that
extensions to an extendible file will be obtained contiguously if
possible. However, if no free contiguous space exists, the
extension will be obtained from any available space on the
disc. A value of .F ALSE. indicates the file need not. he
contiguous. .F ALSE. is the default for' cont.

CONTROLBITS=cntrl cntrl is an integer expression that specifies the special control
bits (bits 9-12 in word 2) in the File Control Block (FeB) thE'
user wishes to set; e.g., parity, density, format inhibit. Refer to

native the MPX-32 Reference Manual for more information concerning
the FCB. An integer number corresponding to the correct bit
settings should be entered (e.g. cntrl=15 would set all four
bits) •. A shift of the integer number to the correct bit fields for
the control bits is done internally by the Scientific Run-Time
Library and must not be done by the user.

DENSITY=den

native

DEVICE=dev

na tive,compa tib Ie

Change 1
11-30

den is a character expression that contains the density
specification to use while connected to an XIO high speed tape
unit. The tape unit must be in software select mode and at load
point in order for the density to change. Possible densities are
as follows:

N indicates 800 BPI nonreturn to zero inverted (NRZI)

P indicates 1600 BPI phase encoded (PE)

G indicates 6250 BPI group encoded recording (GCR)

The default for den is 6250 BPI.

If DENSITY is specified, the device connected must be an XIO
high speed tape unit, and a DEVICE specifier is required.

dev is a character expression whose value when any trailing
blanks are removed is the ASCII device mnemonic (refer to
Appendix A), device channel address, and device subaddress of
channel address, and device subaddress of the device that is to
be connected to the specified unit. The value of dev must have
the form 'ttccss' where:

tt
cc
ss

Two ASCII character device mnemonic
Two ASCII character device channel address
Two ASCII character device sub address

Input/Output
FORTR;.\N T~

Reference ty1;:mual

~ .. /

c

(

ERR=s

Native,compatible

EXTEND=extd

native

EXTENDIBLE=extbl

native

FORTRAN 77+
Reference Manual

OPEN Statement Specifiers

F or example, each of the following is acceptable:

DEVICE='MT090l'
DEVICE='LP7 A'

If DEVICE is specified, FILE and AL TUNIT must be omitted and
a disc device must not be specified.

Do not use the DEVICE specifier to obtain temporary disc space
on a mounted volume. Use the FILE specifier for this function.
If the volume on which temporary disc space is to be obtained is
not important, specify ST A TUS=5CRA TCH.

s is the statement label of an executable statement that appears
in the same program unit. If an OPEN statement contains the
ERR specifier and the processor encounters an error condition
during execution of the OPEN:

1. Execution of the OPEN statement terminates

2. The position of the file specified in the OPEN statement
becomes indeterminate

3. Execution continues with the statement labelled s

4. If the OPEN statement contains an input/output status
specifier (lOST AT), the variable or array element ios
becomes defined with a positive integer value.

extd is a character expression indicating the method by which a
file can be extended. Possible choices are:

'AUTO' Indicates a file will extend automatically as
defined by the INCREMENT, MININCREMENT,
and MAXSIZE specifiers when end-of-medium
(EOM) is encountered.

'MANUAL' Indicates extensions must be handled manually by
use of the extend function (X EXTEND) when EOM
is encountered. -

This specifier is only valid if the EXTENDIBLE specifier is
given. If EXTENDIBLE=.TRUE. and the EXTEND specifier is
omitted, the file is automatically extendible.

extbl is a logical expression. If the value of extbl is .TRUE., the
file is extendible; otherwise, the file is not extendible. The
default is .TRUE., in which case the file is automatically
extendible.

Input/Output 11-31

OPEN Statement Specifiers

FILE=fname

compatible

FILE=fname

native

FILESIZE=fsz

native,compatible

FORM=fm

nati ve,compatible

INCREMENT =inc

native

IOSTAT=ios

nati ve,compatible

KEY=ky

compatible

11-32

fname is a one-to-eight character expression whose value when
any trailing blanks are removed is the name of the file to be
connected to the specified unit, or it indicates that a system file
is requested when used in conjunction with the SPOOLFILE
specifier. Allowable types of system files are SLO, PRINT
(indicates SLO), 580 and PUNCH (indicates 580).

fname is a character expression representing either the
pathname of the resource to which the user wishes to be
connected and opened, or it indicates that a system file is
requested when used in conjunction with the SPOOLFtLE
specifier. Allowable types of system files are SLO, 580, PRINT
(separate SLO files for each open) and PUNCH (separate S80
files for each open). To specify a temporary file on a specific
volume, specify only the volume name in the pathname.

fsz is an integer expression whose value is the size On sectors)
of the file to be created (appropriate only when creating disc
files; one sector = 192 words). The value of fsz will be rounped
up to the next larger allocation unit of the volume. The default
for fsz is the allocation unit size for the specified disc.

fm is a character expression whose value when any trailing
blanks are removed is FORMATTED or UNFORMATTED. It
specifies that a file is being connected for formatted or
unformatted input/output, respectively. The default for fm is
UNFORMATTED if a file is being connected for direct access
and FORMATTED if a file is being connected for sequential
access. For an existing file, the specified form must be the
same as the form under which the file was written.

inc is an integer expression indicating the number of sectors
desired with each extension of a file. If the file is automatically
extendible, inc designates the extension increment each time
the file is extended. If the file is manually extendible, the
identifier inc will be used only if it is not specified in the
manual extension function (X_EXTEND). This specifier does not
apply to nonextendible files. The default for inc is 64 sectors.

ios is an integer word variable or array element that becomes
defined with a zero value if no error condition exists or with a
positive integer value if an error condition exists. rOST A T
values are listed with execution-time diagnostics in Appendix D.

ky is a character expression containing a maximum of eight
characters that specify the user key. This speCifier is required
if a key is associated with the user name (refer to the USER
specifier).

Input/Output
FORTRAN 77+

Reference Manual

(

MAXSIZE=max

native

OPEN Statement Specifiers

max is an integer expression indicating the maximum size to
which a file can be extended. This specifier can only be used
for extendible files. Once this value is set, it is used each time
automatic extension is specified. The default for max is the
maximum space available on the volume.

MININCREMENT =minc minc is an integer expression indicating the minimum acceptable
sector size on each extension of a file. If the file is auto-

native matically extendible, mine designates the minimum acceptable
extension increment each time the file is extended. This
specifier does not apply to nonextendible files. The default for
minc is 32 sectors.

OPENMOOE=opacc opacc is a character expression indicating the access mode
desired when a file is opened. This parameter must contain

native exactly one of the modes that was specified in the ALLOCATE
specifier. Possible modes are:

'R' Read
'W' Write
'U' Update

'M'
'A' , ,

Modify
Append
Use system default

'W' and 'A' are invalid for direct access. If the OPENMODE
keyword is omitted, update mode is the default except if the
QUEUE ur SPOOLFILE specifier is used. In that case, the
OPENMOOE defaults to append.

OTHERACCESS=otacc otacc is a character expression indicating the access mode(s)
associated with the resource when it is created. This specifier

native applies to users other than the owner of the resource and
members of the owner's project. Possible modes are:

'R' Read
'W' Write
'U' Update
'M' Modify

'A'
'0'
'N' , ,

Append
Resource may be deleted
No access
Use system default

Any or all of the modes ('R','W','U','M','A','D') can be specified in
a concatenated string for a new file. Each mode can appear, at
most, once in the string. 'N' must not be used in a concatenated
string. Embedded blanks are not permitted. Trailing blanks are
ignored. .

OWNERACCESS=owacc ow ace is a character expression indicating the access mode{s)
associated with this resource when the resource is created. This

native specifier applies to owner name access rights only. Possible
access modes are:

FORTRAN n+
Reference Manual

'R' Read
'W' Write
'U' Update
'M' Modify

Input/Output

'A'
'0'
'N' , ,

Append
Resource may be deleted
No access
Use system default

11-33

OPEN Statement Specifiers

(
Any or all of the modes ('R','W','U','M','A','D') can be specified ~ /'

PASSWORD=pass

compatible .

PROJECT =pname

native

in a concatenated string for a new file. Each mode can appear,
at most, once in the string. 'N' must not be used in a
concatenated string. Embedded blanks are not permitted.
Trailing blanks are ignored.

pass is the character expression that speci fies a password. If a
file is new, a password is assigned; if a file is old, the correct
password must be specified.

pname is a character expression specifying the project name
that is associated with the resource.

PROJECTACCESS=pacc pacc is a character expression indicating the access mode(s)
associated with the resource when it is created. This specifier

native applies to project access rights only. Possible access modes

QUEUE=que

native

READONL Y=ro

compatible

11-34

are:

'R' Read 'A' Append
'W' Write 'D' Resource may be deleted
'U' Update 'N' No access
'M' Modify , , Use system default

Any or aU of the modes ('R','W','U','M','A','D') can be specified
in a concatenated string for a new file. Each mode can appear,
at most, once in the string. 'Nt must not be used in a
concatenated string. Embedded blanks are not permitted.
Trailing blanks are ignored.

que is a character expression that specifies the system
spoolfile queue upon which a file will be placed when the file is
closed and deallocated. Possible values are:

SLO place the file on the print spoolfile queue
sao place the file on the punch spoolfUe queue

If this specifier is omitted, the file will not be queued. If this
specifier is used, the OPENMODE will default to append due to
SLO restrictions. The SPOOLFlLE specifier must not be used
with the QUEUE specifier.

ro is a logical expression. If ro. has the value • TRUE.; the file
is opened with read-only access; otherwise, read/write access
is assumed.

Input/Output
FORTRAN 77+

Reference Manual

(

RECL=rcl

native,compatible

REEL=rel

native,compatible

SHARED=shar

native

SPOOLFILE=spl

native,compatible

START=star

native

STATUS=sta

native,compatible

FORTRAN 77+
Reference Manual

OPEN Statement Specifiers

rcl is an integer expression whose value must be positive. It
specifies the. length, in bytes, of each record in a file being
connected for direct access. For an existing file, the value must
match the record length; otherwise, unpredictable results will
occur. For a new file, the processor creates the file with
records of the specified length. RECL must be specified when a
file is being connected for direct access; otherwise, it must be
omitted.

reI is a character expression with a maximum of four
characters that is used for reel identification of magnetic
tapes. The specified name will be used in the MOUNT message
if such a message is necessary (refer to the MPX-32 Reference
Manual).

shar is a logical expression indicating whether the file is to be
shared. A value of .TRUE. indicates a file can be shared amonq
other tasks that open. the file with SHARED=. TRUE.. This is
referred to as explicit sharing. A value of .F ALSE. indicates
that a file is being used exclusively by a task and is not
shareable by any other task. If SHARED is not specified, the
default is implicit sharing, which provides that one task may
open the file with both READ and WRITE access while other
tasks may open the file concurrently as READONL Y. It is yourD
responsibility to ensure synchronous access to shared files
through the use of X:FSLR, X:FSLS, X:FXLR, X:FXLS (refer to
the Scientific Run-time Library Reference Manual).

spl is a logical expression. If its value is • TRUE., the file to be
opened is to be a spooled system file O.e., SLO, S80). When spl
is • TRUE., the FILE specifier is used to identify the spooled file
(which must be an SLO or SBO file specified as 'SLO', 'SBO',
'PRINT' or 'PUNCH') to be opened. For example,

FILE='SLO'

If the value of spl is .TRUE., and the FILE specifier is SLO or ~
SBO, then a single SLO or 580 file will be created, regardless of ~ ...
the value of the STATUS specifier. If the FILE specifier is f
PRINT instead of SLO or PUNCH, a single SLO or SBO file will'
be created for compatible mode or separate SLO or SBO files \;
will be created for native mode. When the file is closed, the;
SLO and SBO file is automatically linked to the print or punch'
queue. If this specifier is used, the access mode will default to
append.

Input/output to any spooled file must be formatted, blocked, and
sequential. (Refer to the MPX-32 Reference Manual for
information on the use of spooled files.)

star is an integer expression that indicates the absolute starting
block number for file creation. If the starting block number is
unavailable, creation of the file will be denied. If ST ART=O, file
space is allocated wherever available.

sta is a character expression whose value when any trailing
blanks are removed is OLD, NEW, SCRATCH, or UNKNOWN.
The following rules apply to the value of sta:

Input/Output
Change 1

11-35

OPEN Statement Specifiers

UNIT=u

native,compatible

USER=usr

compatible

11-36

If OLD or NEW is specified, the FILE specifier must be
present.

If OLD is specified, the file must exist.

If NEW is specified, the file must not exist.

Successful execution of an OPEN statement with NEW
specified creates the file and changes the status of the file
to OLD.

If SCRATCH is specified with an unnamed file, the file is
connected to the specified unit for use by the executable
program; however, the file is deleted at the execution ofa
CLOSE statement referring to the same unit or at the
termination of the executable program.

SCRATCH must not be specified with a named file.

If the value of sta is UNKNOWN and the file exists, it is
opened. If the value of sta is UNKNOWN and the FILESIZE
specifier is used but the file does not exist, it is created and
its status changed to OLD.

ST A TUS has no effect on alternate assignments or system
file assignments.

ST ATUS can not be used with device assignments.

The default for sta is UNKNOWN.

u is the unit identifier. The specifier UNIT is optional; however,
the unit identifier is required in all OPEN statements. An
external unit identifier can be one of the following:

An integer expression whose value must be either between 0
and 999, or a left-justified, blank-filled string of one to
three ASCII characters (referred to as a logical file code)
contained in an INTEGER*4 variable.

A logical file code constant in the form's', where s is a
string on one to three characters.

usr is a character expression with a maximum of eiqht
characters representing the user name associated with the file
to be opened. For example, the following statement creates a
file named NOTES under the user name JOHN.

OPEN(UNIT=l, STATUS='NEW', USER='JOHN', FILE='NOTES')

If the USER specifier is not in the OPEN statement, the user
name defaults to the name associated with the executing
program.

A blank user name, i.e., USER=' t6 " is used to specify a system
file. (Refer to the MPX-32 Reference Manual for a discussion
of user name attributes).

Inpu t!CJutput
FOPTRAN 77..

\~eferenc8 ~v;:3n~_;2l

OPEN Statement Specifiers

VOLUME=vol vol is an integer expression that contains a volume number for a
magnetic tape. Supplying vol in an OPEN statement associates
the integer value with the currently mounted volume and
indicates multivolume magnetic tape processing. When an end
of-medium is encountered, a mount message is issued for the
next volume, if required. The default for magnetic tapes is
single volume only. This specifier must not be used for nontape
devices.

nati ve,compatible

WAIT=w

nati ve,compatible

w is a logical expression. If the value of w is • TRUE., the
processor will wait until the desired resource is free and can be
allocated; otherwise, the processor will take a denial return
immediately if the resource cannot be allocated. The default
for this argument is • TRUE ••

Rules for Use

• The UNIT parameter can be used without the keyword UNIT. However, keywords must
be used with all other parameters.

• When the UNIT parameter is used without its keyword, it must be the first
parameter. Otherwise, UNIT and the other parameters can be in any order.

• No specifier can appear in the same OPEN statement more than once.

A comma must precede the first specifier following the unit identifier (u), and a
comma must precede any additional specifiers.

• An equal sign must separate a specifier and its corresponding item.

• The following types of OPEN statements require the following specifiers in addition to
the unit specifier:

Sequential access to permanent disc file assignments: FILE

Direct access to permanent disc file assignments: ACCESS, FILE, RECL

Sequential access to spooled file assignments: BLOCKED, SPOOLFILE, FILE

Sequential access to temporary disc file assignments: none

Direct access to temporary disc file assignments: ACCESS, RECL

Sequential access to device assignments: DEVICE

Direct access to device assignments: DEVICE, ACC:::;ESS, RECL

Association of a LFC with another file: AL TUNIT

• If the value of STATUS is OLD or NEW, the FI~E specifier is required.

• The RECL specifier is required for all direct access OPEN statements.

· A unit can be connected by the execution of an OPEN statement located within any
program unit of an executable program. Once an external unit is connected, it may be
referenced in any program unit of the executable program.

FORTRAN 77+
Reference Manual Input/Output 11-37

CPEN Statement Specifiers

• If an OPEN is attempted on a currently open logical file code (LFC) and the
parameters specified for the new OPEN match those already in effect, then the new
OPEN attempt will be ignored, no error status will be returned, and no parameters will
be changed for the current open state. This is also true if only parameters from the
following list differ in the new OPEN. They are: BLANK, CLEAR, CONTIGUOUS,
ERR, EXTEND, EXTENDIBLE, INCREMENT, IOSTAT, MAXSIZE, MININCREMENT,
OTHERACCESS, OWNERACCESS, PROJECTACCESS, START, STATUS, and WAIT. If
any of the parameters other than those stated above differ from the parameters in
effect, the current connection to the LFC will be closed then deallocated and the new
OPEN will be attempted with normal error reporting procedures in effect should an
error occur.

• If a file is connected to a unit, execution of an OPEN statement on that file and a
different unit is not permitted; i.e., connecting two units to the same file. The
AL TUNIT specifier provides the means for connecting two units to the same file.

, If a DENSITY specifier is used, the DEVICE specifier is required, and the device must
be an XIO high speed tape unit.

Examoles ,

OPEN (UNIT =10, FD...E='NOTES')

The preceding statement causes a file named 'NOTES' to be connected to unit number 10.

OPEN (UNIT=6, FD...E='LISTING', QUEUE='SLO', ALLOCATE='A', OPENMODE='A')

The preceding statement causes a file named 'LISTING', to be connected to unit number
6. The file is to be allocated in the append mode; therefore, it must be opened in the
append mode as indicated by OPENMODE='A'. When the file is closed, it will be placed
on the print spoolfile queue (SLO).

11-38 Input/Output
FORTRAN 77+

Reference Manual

(

a..OSE Statement

1l.lL2 a..OSE Statement

The CLOSE statement is used to terminate the connection of a particular file to a unit.

Syntax

CLOSE ([UNIT =] u [,specifier=item] •••)

u

specifier

item

ERR=s

IOsTAT=ios

sTATUS=sta

The unit identifier. It is defined in the description of the UNIT specifier
in the previous section.

A keyword that identifies a particular specification. CLOSE statement
specifiers and their corresponding items are listed below.

An expression of a type required by the specifiers.

ERR is an error specifier; s is the statement label of an
executable statement in the same program unit aa the error
specifier. If a CLOSE statement contains an error specifier and
the processor encounters an error condition during execution of
the CLOSE:

1. Execution of the CLOSE statement terminates

2. The position of the file specified in the CLOSE statement
becomes indeterminate

3. Execution continues with the statement label s
4. If the CLOSE statement contains an input! output status

specifier (lOST AT =ios), the variable or array element ios
becomes defined with a positive integer value.

lOST AT is an input! output status specifier; ies is an integer
word variable that becomes defined with a zero value if no error
condition exists or with a positive integer value if an error
condition exists. lOST A T values are listed with execution-time
diagnostics in Appendix D.

sta is a character expression whose value is KEEP or DELETE
when any trailing blanks are removed. This specifier determines
the disposition of the file connected to the specified unit. KEEP
must not be specified for a file whose status prior to execution
of the CLOSE statement is SCRATCH. If KEEP is specified for
a file that exists, the file continues to exist after the execution
of the CLOSE statement. If DELETE is specified, the file will
not exist after execution of the CLOSE statement. The default
for this specifier is KEEP, unless the file status prior to
execution of the CLOSE statement ~s SCRATCH, in which case
the default is DELETE. STATUS has no effect on device
assignments or system file assignments.

If other units are connected to the same file, the following
applies: If the value of sta is DELETE and other units are still
~onnected to the same file, the specified unit Iu' will be closed
and the file will be marked for deletion; further allocations will
not be allowed for the file. When the last unit connected to the
file is closed, the file will be deleted.

FORTRAN 77+
Reference Manual Input/Output, 11-39

a.OSE Statement Specifiers

Rules for Use

• The UNIT parameter can be used wi thout the keyword UNIT. However, keywords must
be used with all other parameters.

• When the UNIT parameter is used without its keyword, it must be the first
parameter. Otherwise, UNIT and the other parameters can be in any order.

• A comma must precede the first specifier following the unit identifier (u), and a
comma must precede any additional specifiers.

• An equal sign must separate a specifier and its corresponding item.

• A CLOSE statement that refers to a unit can be executed in any program unit of an
executable program. The CLOSE statement does not have to occur in the same
program unit as the OPEN statement referring to that unit.

• Execution of a CLOSE statement specifying a unit that does not exist or has no file
connected to it is permitted and affects no files.

• After a unit/file has been disconnected by execution of a CLOSE statement, it may be
connected again within the same executable program, either to the same unit/file or a
different unit! file.

• After an executable program is terminated for reasons other than an error condition,
all connected units are closed. Each unit is closed with the status KEEP unless the
file status prior to termination of execution was SCRATCH, in which case the unit is
closed with status DELETE.

Examoles

CLOSE (UNIT =6, ERR=20, IOSTA T =INP)

The preceding statement disconnects the file connected to unit 6. Control passes to the
statement labelled 20 upon detection of an error condition, and the integer variable INP
becomes defined with a positive integer value. If no error condition exists INP becomes
defined with a zero.

CLOSE (UNIT =6, ST A TUS='DELETE')

The preceding statement disconnects the file connected to unit 6 and deletes the file.

11-40 Input/Output
FORTRAN 77+

Reference Manual

(

INGUIRE Statement

li.ll.3 INGUIRE Statement

The INQUIRE statement is used to determine the attributes of a particular named file or
the attributes of the connection to a particular unit. There are two forms of the
INQUIRE statement: INQUIRE by file and INQUIRE by unit. All value assignments are
performed according to the rules for assignment statements.

The INQUIRE statement may be executed whether or not a file is connected to a unit.
All values assigned by the INQUIRE statement are those that are current at the
time the statement is executed.

A variable or array name or any associated entity that is used as a specifier in an
INQUIRE statement must not be referenced by any other specifier in the same INQUIRE
statement.

11.11.3.1 INQUIRE by Files Native Mode

The INQUIRE by file statement examines the properties of a file or a connection.

Syntax

INGUIRE (FlLE=fname [,PROJECT =pname] (,specifier=item] •••)

fname

pname

specifier

item

A character expression representing the pathname of the resource about
which the user wishes to inquire. The named file need not exist or be
connected to a unit. The value of fname must be of a form acceptable as a
pathriame.

A character array element or character expression that specifies the
project associated with the file. pname must be given if the project is
different from the project name associated with the program in execution.

A keyword that identifies a particular specification. INQUIRE statement
specifiers are listed on the pages that follow.

An expression of a type required by the specifier.

11.ll.3.2 INQUIRE by File, Compatible Mode

The INQUIRE by file statement examines the properties of a file or a connection.

Syntax

INQUIRE (FlLE=fin (,USER=usr] [,specifier=item] •••)

fin A character expression whose value, when any trailing blanks are removed,
is the name of the permanent disc file being inquired about. The named
file need not exist or be connected to a unit. The value of fin must be of a
form acceptable to the processor as a file name.

FORTRAN 77+
Reference Manual Input/Output 11-41

~GU1RE Statement

usr

specifier

item

A character expression with a maximum of eight characters. In an
INQUIRE by file, a username must be supplied if different from the
username associated with the program in execution. A blank username
(USER=~) specifies a system file. Refer to the MPX-32 Reference Manual
for a discussion of username attributes.

A keyword that identifies a particular specification. INQUIRE statement
specifiers are listed on the pages that foUow.

An expression of a type required by the specifier.

li.l!'3.J INGUIRE by Unit, Native Mode

The INQUIRE by unit statement examines the properties of an existing file on a specified
unit.

Syntax

INQUIRE ([UNIT=] u [,PROJECT..: pname] [,ALTUNIT=alt] [,VOLUME=vol]
[,speci fier=i tem] •••)

u

pname

alt

vol

specifier

item

11-42

The unit identifier which can be one of the following:

An integer expression whose value must be either between a and 999,
or a left-justified blank-filled string of one to three ASCII characters
(referred to as a logical file code). contained in an INTEGER'*'4
variable.

A logical file code constant in the form's', where s is a string of one
to three characters.

A character variable or array element that returns the project name
associated with a file when it was created.

An integer variable or array element that returns the value of the unit
(logical file code) that is connected to the same file to which unit u is
connected. The logical file code returned is the one that was specified in
the AL TUNIT specifier in the OPEN statement for unit u. A value of zero
indicates that no alternate unit exists.

An integer variable or array element that returns the volume number of the
currently mounted volume for a magnetic tape device.

A keyword that identifies a particular specification. INQUIRE statement
specifiers are listed an the pages that follow.

An expression of a type required by the specifier.

Input/Output
FORTRAN 77+

Reference Manual

f

INQUIRE Statement Specifiers

11.lle3.4 INQUIRE by Unit, Compatible Mode

The INQUIRE by unit statement examines properties of an existing file on a specified
unit •

.§l.ntax

INLlUIR.E ([UNIT =] u [,USER=usr] [tAL TUNIT =alt] [, VOLUME=voi]
[tspeci fier=i tem] •••)

u

usr

alt

vol

specifier

item

The unit identifier which can be one of the following:

An integer expression whose value must be either between a and 999,
or a left-justified blank-filled string of one to three ASCll characters
(referred to as a logical file code) contained in an INTEGER*4
variable.

A logical file code constant in the form's', where s is a string of one
to three characters.

A character variable, substring, or array element with a maximum of eight
characters. In an INQUIRE by unit, this argument returns the value of the
username associated with .the logical file code u.

An integer variable or array element that returns the value of the unit
(logical file code) that is connected to the same file to which unit u. The
logical file code retQJrned is the one that was specified in the AL TUNIT
specifier in the OPEN statement for unit u. A value of zero indicates that
no alternate unit exists.

An integer variable or array element that returns the volume number of the
current mounted volume for a magnetic tape device.

A keyword that identifies a particular specification.

An expression of a type required by the specifier.

11.11.3.5 INQUIRE Statement Specifiers

The INGJUIRE statement specifiers are listed below in alphabetical order, grouped
according to the mode (native or compatible) in which they can be used. The specifiers
and their corresponding items are defined on the following pages in alphabetical order.
The mode in which the specifier can be used is listed opposite the specifier definition;
no t all sped fiers can be used in bo th modes.

Some speCifiers require the use of certain other specifiers. Such cases are noted in the
specifier definitions and in the Rules for Use section following the definitions.

FORTRAN 77+
Reference ;'v'lanuai Input/Output 11-43

INQUIRE Statement Specifiers

Native Mode Specifiers

ACCESS
ALLOCATE
BLANK
BLOCKED
CONTIGUOUS
DEVICE
DIRECT
ERR
EXIST
EXTEND
EXTENDIBLE
FILESIZE

FORM
FORMATTED
INCREMENT
IOSTAT
MAXSIZE
MIN INCREMENT
NAME
NAMED
NEXTREC
NUMBER
OPENED
OPENMODE

OTHERACCESS
OWNERACCESS
PROJECT ACCESS
QUEUE
QUEUED
RECL
SEQUENTIAL
SHARED
SPOOLFILE
UNFORMA TTED

Comeatible Mode Specifiers

ACCESS
BLANK
BLOCKED
DEVICE
DIRECT
ERR
EXIST

ACCESS=acc

native,compatible

ALLOCA TE=alacc

native

BLANK=blnk

native,compatible.

BLOCKED=blk

native,compatible

11-44

FILESIZE
FORM
FORMATTED
IOSTAT
NAME,
NAMED
NEXTREC

NUMBER
OPENED
READONLY
RECL
SEQUENTIAL
SPOOLFILE
UNFORMA TTED

acc is a character variable, character substring, or character
array element that returns the value SEQUENTIAL if a file is .
connected for sequential access or DIRECT if it is connected for
direct access.

alacc is a character variable, character substring, or character
array element that returns the value of an eight character, left
justified, blank-filled, concatenated string indicating the access
modes that were assigned to a file when it became connected.
The file must be explicitly opened within the program before
alacc is defined.

blnk is a character variable, character substring, or character
array element that returns the value NULL or ZERO according
to the type of blank control that is in effect for a file. If there
is no connection, or if the connection is not for formatted
input/ output, blnk becomes undefined.

blk is a logical variable or logical array element. It returns the
value .F ALSE. if a file is unblocked; otherwise, the value
.TRUE. is returned for blocked files. (Refer to the MPX-32
Reference Manual for a discussion of blacked files.)

Input/Output
FORTRAN 77+

Reference Manual

CONTIGUOUS=cont

native

DEVICE=dev

native,compatible

DIRECT=dir

nati ve,compatible

ERR=s

native,compatible

EXIST=ex

native,compatible

EXTEND=extd

native

FORTRAN 77+
Reference Manual

INQUIRE Statement Specifiers

cont is a logical variable or logical array element that returns
the value • TRUE. if a file was marked contiguous when it was
created; otherwise, .F ALSE. is returned.

dev is a character variable, character substring, or character
array element that returns the device mnemonic (refer to
section A.5), channel, and sub address of the device to which the
unit is connected.

The value of dev must have the form 'ttccss' where:

tt The two ASCII character device mnemonic

cc The two ASCII character device channel address

ss The two ASCII character de'lice subaddress

dir is a character variable, character substring, or character
array element that returns the value YES if direct is included in
the set of allowed access methods for a file, NO if direct is not
included in the set of allowed access methods for a file, and
UNKNOWN if the allowed access methods are unknown.

s is the statement label of an executable statement in the same
program unit. If the processor encounters an error condition
during execution of the INQUIRE statement, all inquiry specifier
variables or array elements are undefined except for the
variable or array element ios in any lOST AT specifier, which
becomes defined as a positive integer value. Execution
continues with the statement labelled s.

ex is a logical variable or logical array element. Execution of
an INQUIRE by file statement causes ex to return the value
.TRUE. only if the file specified exists in the specified directory
searched; otherwise, ex returns the value .F ALSE .. Execution of
an INQUIRE by unit statement causes ex to return the value
• TRUE. if the specified unit exists (i.e., the set of units that
exist are those in the range 0-999 with 1-3 ASCII characters, I
left-justified and blank-filled); otherw"ise, ex returns the value
.FALSE ••

extd is a character variable, character substring, or character
array element that returns the value 'AUTO' if a file is auto
matically extendible and 'MANUAL' if a file is manually
extendible. If the file is not extendible, extd becomes
undefined.

C~ange .L
Input,!Outpul:

INQUIRE Statement Specifiers

EXTENDIBLE=extbl

native

FILESIZE = fsz

native,compatible

FORM=fm

native,compatible

FORMA TTED=fmt

nati ve,compatible

INCREMENT =inc

native

IOSTAT=ios

na ti ve,co mpatib Ie

MAXSIZE=max

native

extbl is a logical variable or logical array element. It returns
the value • TRUE. if the file is extendible; otherwise, the value
.F ALSE. is returned.

fsz is an integer variable or integer array element that returns
the current I;!ize (in sectors for MPX-32) of the flle.

fm is a character var~able, character substring, or character
array efement that returns the value FORMATTED if a file is
connected for formatted input/output; or the value
UNFORMA TTED if a file is connected for unformatted
inp'ut/output. If there is no connection, fm becomes undefined.

fmt is a character variable, character substring, or character
array element that returns the value YES if formatted is
included in the set of allowed forms for a file, NO if formatted
is not included in the set of allowed forms· for a file, and
UNKNOWN if the allowed forms are unknown (e.g., the file is
not open).

inc is an integer variable or integer array element that returns
the extension increment value specified for a file when the file
was created. If the file is not extendible, inc becomes
undefined.

ios is an integer word variable or array element that returns a
zero if no error condition exists or a positive integer value if an
error condition exists. lOST AT values are listed with execution
time diagnostics in Appendix D.

max is an integer variable or integer array element that returns
the value specified by MAXSIZE when the file was created. If a
file is not extendible, max becomes undefined.

MININCREMENT =minc minc is an integer variable or integer array element that returns
the value specified by MININCREMENT when the file was

native created. If a file is not extendible, minc becomes undefined.

NAME=fn

native,compatible

NAMED=nmd

native,compatible

11-46

fn is a character variable, character substring, or character
array element that returns the name (pathname) of a file, if the
file has a name; otherwise, it becomes undefined.

nmd is a logical variable or logical array element that returns
the value .TRUE. if the specified file has a name; .FALSE. if
it does not.

Input/Output
FORTRAN 77+

Reference Manual

)

./

C··· ~\
-- -?

NEXTREC=nr

nati ve,compatible

NUMBER=num

nati ve,compatible

OPENED=od

nati ve,compatible

OPENMODE=opacc

native

INQUIRE Statement Specifiers

nr is an integer variable or integer array element that returns
the value n+1, where n is the record number of the last record
read or written on a file connected for direct access. If a file
is connected but no records have been read or wri tten since the
connection, nr returns the value one. If a file is not connected
for direct access, or if the position of the file is indeterminate
because of a previous error condition, nr becomes undefined.

num is an integer variable or integer array element that
returns the value of the external unit identifier (logical file
code) of the unit currently connected to the file. This value
consists of from one to three left-justified ASCII characters.
If there is no unit connected to the file, num becomes
undefined.

ad is a logical variable or logical array element. Execution of
an INQUIRE by file statement causes od to return the value
.TRUE. if the specified file is connected to a unit; .FALSE. if
it is not. Execution of an INQUIRE by unit statement causes
od to return the value .TRUE. if the specified unit is connected
to a file; .F ALSE. if it is not.

opacc is a character variable, character substring, or character
array element that returns the access mode that is currently
in effect for an opened file or unit. If the file or unit is not
open, the value of opacc becomes undefined.

OTHERACCESS=otacc otacc is a character variable, character substring, or character
array element that returns the value of an eight character,

.,ative left-justified, blank-filled, concatenated string indicating the
OTHERACCESS modes that exist for a file.

OWNERACCESS=owacc owacc is a character variable, character substring, or
character array element that returns the value of an eight

nati ve character, left-justified, blank-filled, concatenated string
indicating the OWNERACCESS modes that exist for a file.

PROJECTACCESS,=pace pace is a character variable, character substring, or character
array element that returns the value of an eight character,

native left-justified, blank-filled, concatenated string indicating the
PROJECT ACCESS modes that exist for a file.

FORTRAN 77+
Reference Manual Input/Output 11-47

JNQUIRE Statement Specifiers

QUEUE=que

native

QUEUED=qued

native

READONL Y =ro

compatible

RECL=rcl

nati ve,compatible

SEQUENTIAL=seq

native,compatible

SHARED=shar

native

SPOOLFILE=spl

nati ve,compatible

UNFORMA TTED=unf

nati ve,compatible

11-48

que is a character variable, character substring, or character
array element that returns the value 'SLO' if a file will be
placed on the print spoolfile queue when the file is closed and
deallocated. It is assigned the value '580' if a file will be
placed on the punch spoolfile queue when the file is closed and
deallocated. If there is no connection, que becomes undefined.

qued is a logical variable or logical array element that returns
the value .TRUE. if the file will be placed on the system
spooffile queue (SLO,S80) when the file is closed and
deallocated; otherwise, .F ALSE. is returned.

ro is a logical variable or logical array element that returns
the value • TRUE. if the file has read-only access; otherwise,
.F ALSE. is returned.

reI is an integer variable or array element that returns the
length, in bytes, of each record in a file connected for direct
access. If there is no connection or if the connection is not for
direct access, rci becomes undefined.

seq is a character variable, character substring, or character
array element that returns the value YES if sequential is
included in the set of allowed access methods for a file, NO if
sequential is not included in the set of allowed access methods
for a file, or UNKNOWN if the allowed access methods are
unknown.

shar is a logical variable or logical array element that returns
the value • TRUE. if a file is connected for shared use; other
wise, .F ALSE. is retumed.

spi is a logical variable or logical array element that returns
the value .TRUE. if a file is a system spoolfile (SLO,SBO). The
spoolfile name will be assigned to variable fn of the NAME=
speCifier, if present. The value .FALSE. is retumed if a file is
not a system spool file.

unf is a logical variable or logical array element that returns
the value YES if unformatted is included in the set of
allowed forms for a file, NO if unformatted is not included in
the set of allowed forms for a file, or UNKNOWN if the forms
of a file are unknown.

Input/Output
FORTRAN 77+

Reference Manual

C'
"

<', - .,:'

r

INQUIRE Statement Specifjers

Rules for Use

• The UNIT parameter can be used without the keyword UNIT. However, keywords must
be used with all other parameters.

• When the UNIT parameter is used without its keyword, it must be the first
parameter. Otherwise, UNIT and the other parameters can be in any order.

• A comma must precede the first specifier following the unit identifier (u), and a
comma must precede any additional specifiers.

• An equal sign must separate a specifier and its corresponding item.

• In the INQUIRE by file statement, UNIT must not appear in the specifier list.

o In the INQUIRE by file statement, the following specifiers are defined when the value
of the FILE specifier is a valid file name and when the file name exists (i.e.,
EXIST =. TRUE. and OPENED=.F ALSE.).

In Native Mode

CONTIGUOUS
DEVICE
EXTEND
EXTENDIBLE
FILESIZE

INCREMENT
MAXSIZE
MININCREMENT
NAME
NAMED

In Compatible Mode

NAME
NAMED

• The following specifiers are defined when the value of the FILE specifier is a valid file
name, the file name exists (i.e., EXIST=.TRUE.), and the OPENED specifier has a
value of • TRUE.:

In Nati ve Mode

ACCESS NAMED
ALLOCATE NEXTREC
AL TUNIT NUMBER
BLANK OPENMODE
BLOCKED OTHERACCESS
CONTIGUOUS OWNERACCESS
DEVICE PROJECTACCESS
DIRECT QUEUE
EXTEND QUEUED
EXTENDIBLE RECL
FILESIZE SEQUENTIAL
FORM SHARED
FORMA TTED SPOOLFILE
INCREMENT UNFORMA TTED
MAXSIZE VOLUME
MININCREMENT
NAME

In Compatible Mode

ACCESS
ALTUNIT
BLANK
BLOCKED
DEVICE
DIRECT
FILESIZE
FORM
FORMATTED
NAME

NAMED
NEXTREC
NUMBER
RECL
SEQUENTIAL
SPOOLFILE
UNFORMA TTED
USER
VOLUME

• In the INQUIRE by unit statement, the following specifiers can be assigned values only
when the specifit;!d unit exists and when a file is connected to the unit; otherwise, they
are undefined.

FORTRAN 77+
Reference Manual Input/Outpu~ 11-49

INQUIRE Statement Specifiers

In Native Mode

ACCESS
ALLOCATE
ALTUNIT
BLANK
BLOCKED
CONTIGUOUS
DEVICE
DIRECT
EXTEND
EXTENDIBLE
FILESIZE
FORM
FORMATTED
INCREMENT

MAXSIZE
MININCREMENT
NAME
NAMED
NEXTREC
NUMBER
PROJECT
PROJECT ACCESS
RECL
SEQUENTIAL
SPOOLFILE
UNFORMA TTED
VOLUME

In Compatible Mode

ACCESS
ALTUNIT
BLANK
BLOCKED
DEVICE
DIRECT
FILESIZE
FORM
FORMATTED

NAMED
NEXTREC
NUMBER
RECL
SEQUENTIAL
SPOOLFILE
UNFORMA TTED
USER
VOLUME

• If an error condition occurs during the execution of an INQUIRE statement, all of the
inquiry specifiers except IOSTA T are undefined.

• The specifiers EXIST and OPEN always are defined unless an error condition occurs.

• For files preconnected by static assignments, the following specifiers are defined; all
others are undefined.

ALTUNIT
DEVICE
ERR
EXIST

Examples

IOSTAT
NAME
NAMED

CHARACTER*lO FAMT, SQT
INQUIRE (FILE='WHO', FORMA TTED=F AMT, SEQUENTIAL=SQT, NUMBER=NUM)

The preceding statement is an example of an INQUIRE by file.

The following statement causes an inquiry about the name of the file, if any, connected
to unit 6.

11-50

LOGICAL ISIT
CHARACTER *8 N
INQUIRE (UNIT =6, NAME=N, NAMED=ISIT)

Input/Output
FORTRAN 77+

Reference Manual

(

BACKSPACE Statement

11.11.4 BACKSPACE Statement

The BACKSPACE statement causes the file assigned to the specified unit to be
backspaced one logical record. If there is no preceding record, the position of the file is
unchanged.

Syntax

BACKSPACE ([UNIT=] u[,alist])

or

BACKSPACE u

u

alist

ERR=s

IOSTAT=ios

The unit specifier as described in section 11.6.1.

A list of specifiers as follows:

ERR is an error specifier; s is the statement label of an executable
statement in the same program unit as the error specifier. If a
BACKSPACE statement contains an error specifier and the processor
encounters an error condition during execution of the statement:

1. Execution of the BACKSPACE statement terminates

2. The position of the file specified in the BACKSPACE statement
becomes indeterminate

3. Execution continues with the statement label s

4. If the BACKSPACE statement contains an input/output status
speci fier (lOST A T =ios), the variable or array element ios becomes
defined with a positive integer value.

ios is an integer word variable that returns zero if no error condition
exists or a positive integer value if an error condition exists. lOST AT
values are listed with execution-time diagnostics in Appendix D •

. Rules for Use

• Exactly one unit specifier must appear in the statement.

• One of each of the alist specifiers may appear in the statement.

· Backspacing a file that is connected but does not contain any data is prohibited.

· Backspacing over records written using list-directed formatting or a NAMELIST write
is prohibited.

FORTRAN 77+
Reference Manual Input/Output 11-51

BACKFlLE Statement

• If an error exists, but neither the ERR= specifier nor the IOSTA T = specifier is present,
the program will be aborted and a· run-time error message will be written. If only the
lOST AT:: specifier is present, execution of the statement terminates, the position of
the file becomes indeterminate, and control proceeds to the next executable
statement.

Examples

The following statement causes unit 8 to backspace 1 record.

BACKSPACE 8

The following statements cause unit 8 to backspace 10 records.

DO 2 1=1,10

2 BACKSPACE (UNIT=8, IOSTAT=INP)

lLll.5 BAO<Fn..E Statement

The BACKF'ILE statement causes the device assigned to the specified unit to be
positioned to the end-of-file mark in the preceding file. If there is no preceding file, the
device is positioned to the beginning-of-medium (BOM).

Syntax

BACKF'ILE ([UNIT =] u [,alist])

or

BACKFlLE u

u

alist

ERR=s

11-52

The unit specifier as described in section 11.6.1.

A list of specifiers as follows:

ERR is an error specifier; s is the statement label of an executable
statement in the same program unit as the error specifier. If a
BACKFILE statement contains an error specifier, and the processor
encounters an error condition during execution of the statement

1. Execution of the BACKF'ILE statement terminates

2. The position of the file specified in the BACKF'ILE statement
becomes indeterminate

3. Execution continues with the statement label s

4. The status specifier ios, if present, becomes defined with a positive
value.

Input/Output
FORTRAN 77+

Reference Manual

(

l

(

(/

SKIPFILE Statement

IOSTAT=ios lOST AT is an input/output status specifier; ios is an integer word
variable that returns zero if no error condition exists, a positive value
if an error condition exists, or a negative value if an end-of-file
condition is encountered and no error condition exists. lOST AT values
are listed with execution-time diagnostics in Appendix D.

Rules for Use

• Exactly one unit specifier must appear in the BACKFILE statement.

One of each of the alist specifiers may appear in the statement.

The use of BACKFILE for a file that is connected but does not contain any data is
prohibited.

• If an error exists, but neither the ERR= specifier nor the lOST A T = specifier is present,
the program will be aborted and a run-time error message will be written. If only the
lOST AT = specifier is present, execution of the output statement terminates, the
position of the file becomes indeterminate, and control proceeds to the next
executable statement.

11.11.6 SKIPFD..£ Statement

The SKIPFILE statement causes the device assigned to the specified unit to skip one file;
the system1s pointer will be pointing to the beginning of the succeeding file and an end
of-file bit is set. If there are no succeeding files, the device is positioned to the end-of
medium (EOM). The next READ will result in an end-of-file indicator unless CALL
ST A TUS is issued to reset the end-of-file bit.

Syntax

SKIPFILE ([UNIT =] u [,alist])

or

SKIPFILE u

u

aUst

ERR=s

The unit specifier as described in section 11.6.1.

A list of specifiers as follows:

ERR is an error specifier; s is the statement label of an executable
statement that appears in the same program unit as the error
specifier. If a SKIPFILE statement contains an error specifier and the
processor encounters an error condition during execution of the
statement

1. Execution of the SKIPFILE statement terminates

2. The position of the file specified in the SKIPFILE statement
becomes indeterminate

FORTRAN 77+
Reference Manual Input/Output 11-53

ENOFD...E Statment

IOSTAT=ios

Rules for Use

3. Execution continues with the statement label s

4. The status specifier ios, if present, becomes defined with a positive
value.

IOSTAT is an input/output status specifier; ios is an integer word
variable that returns zero if no error condition exists, a positive value
if an error condition exists, or a negative value if an end-of-file
condition is encountered and no error condition exists. lOST AT values
are listed with execution-time diagnostics in Appendix D.

• Exactly one unit specifier must appear in the SKIPFILE statement.

• One of each of the. alist specifiers may appear in the statement.

• The use of SKIPFILE for a file that is connected but does not contain any data is
prohibited.

• If an error exists, but neither the ERR= spec~fier nor the lOST A T = specifier is present,
the program will be aborted and a run-time error message will be written. If only the
lOST AT = specifier is present, execution of the output statement terminates, the
position of the file becomes indeterminate, and control proceeds to the next
executable statement.

11.11.7 ENDFlLE Statement

I The ENDFILE statement causes an end-of-file mark to be written on the specified file or
device. For formatted/unblocked magnetic tape or disc files, a data pattern of X'OF' will
be written to the first byte of the end-of-file record if the default method of end-of-file
processing is used~ A pattern of X'OFEOFEOF' will be written to the first word of the
end-of-file record, if X:MPXEOF was called at the beginning of the user's task.

Syntax

ENDFILE ([UNIT =] u [,alist])

or

ENDFILE u

u The unit specifier as described in section 11.6.1.

alist A list of specifiers as described below.

Change 1
11-54 I~put/Output

FORTRAN 77+
Reference Manual

~."

lJ

(\

ERR= s

IOSTAT= ios

Rules for Use

ENDFU..E Statement

ERR is an error specifier; s is the statement label of an executable
statement in the same program unit as the error specifier. If an
ENDFILE statement contains an error specifier and the processor
encounters an error condition during execution of the statement

1. Execution of the ENDFILE statement terminates

2. The position of the file specified in the ENDFILE statement
becomes indeterminate

J. Execution continues with the statement label s

4. If the ENDFILE statement contains an input/output status specifier
(lOST A T =), the variable or array element ios becomes defined with
a positive integer value.

lOST AT is an input/output status specifier; ios is an integer word
variable that returns zero if no error condition exists or a positive
integer value if an error condition exists. lOST A T values are listed
with execution-time diagnostics in Appendix D.

• Exactly one unit specifier must appear in the statement.

• One of each of the alist specifiers may appear in the statement.

• If an error exists, but neither the ERR= specifier nor the IOSTA T = specifier is present,
the program will be aborted and a run-time error message will be written. If only the
lOST A T = specifier is present, execution of the output statement terminates, the
position of the file becomes indeterminate, and control proceeds to the next
executable statement.

Examples

ENDFILE 8

ENDFILE (UNIT =6, lOST A T =INP, ERR=60)

FORTRAN 77+
Reference Manual Input/Output 11-55

REWIND Statement

11.11.8 REWIND Statement

The REWIND statement causes the specified file or device to be repositioned to the
beginning of the medium. If the file is already at the beginning of the medium, execution
of the statement has no effect.

Syntax

REWIND ([UNIT=] u [,alist])

or

REWIND u

u

alist

ERR= s

IOSTAT= ios

Rules for Use

The unit specifier as described in section 11.6.1.

A list of specifiers as follows:

ERR is an error specifier; s is the statement label of an
executable statement in the same program unit as the error
specifier. If a REWIND statement contains an error specifier
and the processor encounters an error condition during execution
of the statement

1. Execution of the REWIND statement terminates

z. The position of the file specified in the REWIND statement
becomes indeterminate

3. Execution continues with the statement label s

4. If the REWIND statement contains an input/ output status
specifier (lOST AT =), the variable or array element ios
becomes defined with a positive integer value.

IOSTA T is an input/ output status specifier; ios is an integer
word variable that returns zero if no error. condition exists or a
positive integer value if an error condition exists. lOST AT
values are listed with execution-time diagnostics in Appendix D.

• Exactly one unit specifier must appear in the statement.

• One of each of the alist specifiers may appear in the statement.

• If an error exists, but neither the ERR= specifier nor the lOST AT = specifier is present,
the program will be aborted and a run-time error message will be written. If only the
lOST AT = specifier is present, execution of the statement terminates, the position of
the file becomes indeterminate, and control proceeds to the next executable
statement.

11-56 Input/Output
FORTRAN 77+

Reference Manual

("
"---~

ENCODE and DECODE Statements

Examples

REWIND 8

REWIND (UNIT ;:10, lOST AT =IST, ERR=30)

11.12 ENCODE and DECODE Statements

The ENCODE/DECODE statements provide a means of mernor-y-to-memory data
conversion between the input/output list and a user-specified internal recordG

ENCODE is similar to WRITE and transfers the list elements into the internal record
using specified format conversions. DECODE is similar to READ and transfers the
contents of the internal record into the list elements using specified format conversions.

Note: Conversion can also be done by using internal files with WRITE/READ statements.

Syntax

n

ENCODE (n, f, v) [list]

DECODE (n, f, v) [list]

The number of characters in the internal record.

f The statement number, variable name, array name, array element, or format
statement number representing the FORMAT statement controlling the
conversion.

v The variable name, array name, or array element that is the starting
location of the internal record. The name may be of any data type.

list An input/output list (refer to 1l.7).

Rules for Use

• The internal record begins with the leftmost character position of the entity specified
by v and continues for n ASCII characters.

• If more than n characters are transferred, an error message will occur at execution
time in the diagnostic listing. If fewer than n characters are transferred, the
remainder of the internal record will be blank-filled by ENCODE or ignored by
DECODE. .

• ENCODE and DECODE contain no concept of multiple records; therefore, a slash (/) in
the format statement is an undefined operation.

FORTRAN 77+
Reference Manual Input/Output 11-57

ENCODE and DECODE Statements

Examoles

In the following example, parameters have been defined as indicated. Note that
CHARACTER type may be used as the internal record entity.

DIMENSION A(2), 8(2), ALPHA(4), A6(2), 86(2), GAMMA(4)
CHARACTER *'10 ALPHA, A, 8, GAMMA, A6, 86

AU) contains 'A8CDEFGHIJ'
A(2) contains 'KLMNO~9999'
8(1) contains 'PQRSTUVWXY'
8(2) contains 'Z12345TTTT'

The following statement transfers a total of 20 characters from list elements A and B
into an internal record whose starting location is denoted by ALPHA.

ENCODE (20,1,ALPHA) A,B
1 FORMAT (AS, A2, A7, A3)

Characters are transferred according to the format specified by statement number 1
(eight characters from A(l), two from A(2), seven from 8(1), and three from 8(2».

ALPHA ABCDEFGHKL PQRSTUVZ12

Array Element 1 Array Element 2

The remainder of the internal record is blank-filled if the specified format does not
satisfy the character count.

The following statement transfers a total of 32 characters from list elements A and 8
into an internal record whose starting location is denoted by ALPHA.

ENCODE (32, 1, ALPHA) A,B
1 FORMAT (2(AI0,A6»

Characters are transferred according to the specified format in statement 1 (ten
characters from A(l), six from A(2), ten from 8(1), and six from 8(2».

I ALPHA A8CDEFGHIJ KLMNO~PQRS TUVWXYZ123 I 45

Array Element! Array Element2 Array Element3 Array Element 4

DECODE is similar to READ and transfers the contents of an internal record into list
elements using specified format conventions.

DECODE (36, 3, GAMMA) A6, 86
3 FORMAT (2 (AI0, AS»

The preceding DECODE statement transfers the contents of an internal record, whose
starting location is denoted by GAMMA, into the list elements A6 and 86.

11-58 Input/Output
FORTRAN 77+

Reference Manual

BUFFERIN and BUFFEROUT Statements

In the following example, the data contained within GAMMA are transferred according to
the format specified in statement 3.

GAMMA HEADER~121 HEAD~~0131 HEADER~1ZZ HEAD~~OZ31

Array Element! Array ElementZ Array Element) Array Element 4

Therefore,

A6(1) will contain 'HEADER~1Z1'
A6(Z) will contain 'HEAD~~01~~'
86(1) will contain '31HEADER~11
86(Z) will contain 'ZZHEAD~~~W

Only eight characters of word Z were transferred; however, since A and 8 were declared
CHARACTER *10, the remainder is padded with blanks. The transfer continued for list
element 86(1) with the remaining characters in the record.

1L13 BUFFERIN and BUFFEROUT (Asynchronous Input/Output)

BUFFERIN and BUFFEROUT are external subroutines used to access peripheral device
buffers and perform asynchronous input/output operations. The specified number of
words to be input or output is based on the type of record buffer element and the
input/ output device type.

Syntax

u

m

a

w

CALL BUFFERIN I u, m, a, w [, [$n1] [,$nZ]] I u, m, a, w, [$n1] , [$nZ] ,r

J u, m, a, w [, [$n1] [,$nZ]] I l u, m, a, w, [$n1] , [$nZ] ,r

CALL BUFFEROUT

The unit identifier, as specified in section 11.6.1.

An integer expression indicating the mode of operation (O=ASCII, 1=binary).
In either mode, the data is unaltered. In binary mode, bits two and eight of
the file control block word two are set. Refer to the MPX-32 Reference
Manual for a description of the effects on various devices. Note, however,
that there is no effect for a nine-track tape or disc device.

An array or variable to be used as the buffer for the operation. The transfer
starts at the location specified and continues through w words contiguously.
Note that if the buffer is too small, the following data or code locations will
be destroyed. Normally this argument is an array name, but it can also be a
variable or an array element.

An integer expression indicating the number of words to be input or output,
starting at a.

FORTRAN 77+
Reference Manual Input/Output 11-59

8UFFERlN and 8LFFEROUT Statements

r

The statement label of the first statement of an end-action routine to which
control is returned when the software interrupt for input/output completion
is honored. This routine must terminate with a call to the MPX';'32 System
Service X:XNWIO to exit the input/output end-action routine. Refer to the
Scientific Run-Time Library Reference Manual for a description of
FORTRAN-callable MPX-32 System Services; in particular, X:SYNCH and
X:EAWAIT.

The statement label to which control is returned if hardware input/output
errors are encountered. Refer to the Scienti fic Run-Time Library Reference
Manual for a description of FORTRAN-callable MPX-32 System Services.

A record . specifier indicating the number of the record that is written to or
read from the unit specified. This specifier is used exclusively for direct
access input/output.

Rules for Use

A BUFFERIN or BUFFEROUT operation always results in the processing of only one
logical record of arbitrary length.

If n2 is specified and n1 is not specified, a comma must be used to note the absence
of n1.

If r is specified and n1 or n2 are not specified, two commas must be used to note the
absence of n1 and n2.

The bounding resulting from the type of the data buffer (INTEGER'*'4, INTEGER '*'2,
etc.) must be compatible with the type of data transfer required by the device
(disc/word transfer, tape/halfword transfer, etc.). (Example: For transfers to a disc
device, the buffer should be of INTEGER'*'4 type, of REAL'*'4 type, or properly
equivalenced to buffers of one of these types.)

The actual number of words read by BUFFERIN may be less than the value of w •.

The maximum transfer value for E-class devices is based on the variable typing of
the data buffer and the input/output device type. Table 11-3 correlates maximum
transfer count, variable type, and input/output device type.

Table 11-3
Maximum Transfer Counts (E Class)

I/O Device Type
Variable
Type (a) Word Halfword Byte

Word 4095 words 2047 words 1023 words
Halfword 2047 words 2047 words 1023 words
Byte 1023 words 1023 words 1023 words

The maximum transfer value for F -class devices are device dependent. The
maximum value that can be sped fied in the w parameter is four megawords.
However, the reference manuals for the particular I/O device and controller being
used must be consulted for specific maximum transfer limitations.

11-60 Input/Output
FORTRAN 77+

Reference Manual

f

BUFFERlN and BUFFEROUT Statements

When using the r sped fier, the unit specifier must be opened unblocked for direct
access and must be assigned to a file.

If more words are specified by w than exist in the record, the actual number of bytes
transferred can be determined by a call to the external subroutine STATUS (refer to
11.14) or the function M:IOLEN (refer to the Scientific Run-Time Library Reference
Manual). If the number of words specified by w is less than the number of words that
exist in the record, the remaining words are ignored.

When an end-of-file is encountered, magnetic tape will remain positioned
immediately following the end-of-file. No data will be read into memory when an
end-of-file is read~ A subsequent CALL STATUS request will set the status to the
value 3, and turn off the end-of-file indicator; a subsequent read or call to
BUFFERIN will access the first record of the next file, if any.

Data will have been read into memory by BUFFERIN if an input/output error
occurred. A subsequent CALL STATUS will report a status indicator of 4.

The physical buffer size n, written by BUFFEROUT, is set according to w, unless w
exceeds the actual buffer size of the device being used. In that case, n is set
according to the device buffer size.

If a CALL STATUS indicates an error after a call to BUFFEROUT, the error will be
an unrecoverable write error (the write operation will continue until completion).

It is possible to execute any number of FORTRAN statements while the input/output
transfers initiated by the BUFFERIN and BUFFEROUT statements are in progress.
However, before attempting to use or modify the contents of the buffer, the user
should perform either a CALL M:WAIT (refer to the Scientific Run-Time Library
Reference Manual) or a CALL STATUS and wait for the status indica,tor to signal
input/ output completion. It is possible to execute both READ and WRITE statements
during the BUFFERIN/BUFFEROUT operation, but only using a different unit
identifier.

Improper operation or status may result if consecutive BUFFERIN and BUFFEROUT
statements are executed to the same unit identifier without an intervening CALL
ST A TUS value of 2 being detected or a call to M:WAIT being made.

If BUFFEROUT is used with the lfc assigned to Dev=UT, the 'enter CR for more'
prompt will not appear when the page size is exceeded because BUFFEROUT is no
wait I/O.

Example

CALL BUFFERIN (50,0,1,80,100)

100 FLAG:1

CALL X:XNWIO

FORTRAN 77+
Reference Manual Input/Output 11-61

CALL STATUS

11.14 CALL STATUS

CALL STATUS enables the user to test the status resulting from the latest input/output
operation of any given unit.

Calling Seouence

CALL STATUS (Ifc, status [,n])

lfc

status

n

11-62

An integer word variable that specifies the logical file code. The logical file
code may -be one to three ASCII characters, left-justified and blank-filled, or
an integer constant.

An integer variable set according to the results of the status test as follows:

1. Not ready
2. Ready and no previous error
3. EOF or EOM sensed on latest input operation
4. Parity or lost data error on latest input/output operation
5. Unit is not open.

An integer variable that is set to the data transfer count. When the
operation is complete, the data transfer count is in bytes. n is undefined if
status= 5.

Input/Output
FORTRAN 77+

Reference Manual

(

r-

OiAPTER 12

FORMATSPEC~CAnON

12.1 General

A format used with formatted input/output statements provides information that directs
the editing between the internal representation and the character strings of a record or
sequence of records in the file. A format specification provides explicit editing
information.

Formatting may also be influenced by the following:

• The NAMELIST statement, when referenced by a READ or WRITE statement, enables
a user to input or output data values without specifying a format specification or
argument list within the associated READ or WRITE statement.

• An asterisk (*) used as a format identifier in an input/output statement indicates list
directed formatting.

12.2 Format Specification Methods

Format specifications may be given:

• in FORMAT statements

• as values of character arrays, character variables, or other character expressions

• as character constants in input/ output statements

12.2.1 FORMAT Statements

FORMAT statements are nonexecutable statements used with formatted input/output
statements. They specify editing to be performed as data are transmitted between
computer storage and external media.

Syntax

x FORMAT fs

x

fs

The mandatory statement label (one through five digits).

A format specification, as described in Section 12.3.

FORTRAN 77+
Reference Manual Format Specification 12-1

Format Specification Methods

12.2.2 Format Specifications Stored in Variables and Arrays

Format specifications used with input/output statements may be given as values of
character arrays, character variables, or other character expressions. If specifications
are contained in a character variable, array, or array element, the appropriate name is
used instead of a FORMAT statement label in the input/output statement.

The following example shows how the variables I and K and the array B are input
according to format specifications read into the character array FMA T at execution
time.

CHARACTER*4 FMAT
DIMENSION FMA T(5),B(5)

1 FORMAT (5A4)
READ (3,1) FMAT
READ (3,FMAT) I,K,(B(I),I=1,5)

If the format identifier in a formatted input/output statement is a character array name,
character variable name, or other character expression, the leftmost character positions
of the specified entity must be in a defined state with character data that constitute a
format specification when the statement is executed. In the preceding example, the first
READ statement following statement label 1 insures that FMA T is in a defined state.
The format information of input unit 3 might be the character string, (2I5/5FIO.3), which
indicates the I and K are to be read from one record and the array B from another. '"

If the format identifier is a character array name, the length of the format specification
may exceed the length of the first element of the array; a character array format
specification is considered to be a concatenation of all the elements of the array in the
order given by array element ordering. However, if a character array element name is
specified as a format identifier, the length of the format specification must not exceed
the length of the array element.

l2.2.3 F onnat Specifications Expressed as O1aracter Constants

A format specification may be expressed as a character constant in a formatted
input/output statement. Note that the form begins with a left parenthesis and ends with
a right parenthesis. Character data may follow the right parenthesis that ends the
format specification with no effect on the format specification. Blank characters may
precede the format specification.

Examole

WRITE (l,'(X,I6)')I

12-2 Format SpeCification
FORTRAN 77+

Reference Manual

r

(

r

Form of a Format Specification/Edit Descriptors

12.3 Form of a Format Specification

The form of a format specification is:

([flist])

flist A list of edit descriptors, as described in the following section.

12.3.1 Edit Descriptors

Edit descriptors determine the sizes of data fields and the type of presentation for each
transmitted datum.

The format edit descriptors may have any of the following forms. However, the symbolic
name of an integer cannot be used in a FORMAT statement that requires an integer
constant.

Descriptor Classification

srFw.d
srEw.d
srEw.dEe
srGw.d Numeric edit descriptors
srGw.dEe
srDw.d
rIw
rIw.m
rZw

S I SP
~

Output plus sign control
SS

BN } Input blank interpretation control
BZ

rA t
rAw f Character editing

'hI h2···hi' Apostrophe editing

nHhl h2 ••• hi Hollerith editing

rRw R editing

rLw Logical editing

nX 1 Tn Spacing specifications
TLn

~ TRn

Format control

FORTRAN 77+
Reference Manual Format Specification 12-3

Interpretation of Blanks on Input

w

n

d

F,E,G,D,
I,Z,A,R,L

H,X,T,
TL,TR,:,
S,SP,SS,
BN,BZ,/

r

s

h· 1

m

is a positive integer constant defining the field width (including digits,
decimal points, exponents, and algebraic signs) in the external data
representation (0 ~ w ~ 255).

is a positive integer constant defining the number of characters or spaces
(0 ~ n ~ 255).

is an integer specifying the number of digits appearing to the right of the
decimal point (except for G editing) in the external data representation
(d~ 255 and d~ w) •.

is a nonzero, unsigned integer constant specifying the exponent part of E
and G edit descriptors.

indicate thE! type of editing to be appUed to the items in an I/O list.

specify information that is provided directly from the format descriptor
The specifications containing these characters have no corresponding I/O
list items.

is an optional, positive integer constant, indicating the number of times
the descriptor will be repeated (0 ~ r ~ 255).

is an optional scale factor of the form nP where n is a signed integer
constant (-77 ~ n ~ 76).

Note that the scale factor s of the form nP does not have to be attached
to a numeric edit descriptor.

are characters from the ASCII character set.

specifies the minimum number of output digits to be generated.

l2.3.2 Interpretation of Blanks on Input

The interpretation of blanks on input is influenced by FORTRAN 77+ run-time option 8,
which may be set at catalog time or upon execution. Option 8 provides compatibility
with FORTRAN-IV in the following way. The interpretation of embedded blanks in an
input field defaults to zero (0) if option 8 is in effect when an implicit open is executed;
if this option is not in effect, the interpretation of blanks defaults to NULL. To override
the default, use a BLANK= specifier in an OPEN statement, or a BN or BZ edit
descriptor in a FORMAT statement.

12-4 Format Specification
FORTRAN 77+

Reference Manual

r

(

Format Control List Specific3tions and Record Demm'catiDiI

12.4 Format Control List Specifications and Record Demarcation

The following relationships and interactions between fermat control, input/outpui" lis:s,
and record demarcation should be noted:

Execution of a formatted READ or WRITE statement initiates format control.

The editing performed on data depends on information jointly provided by t~e

elements in the input/output list and field descriptors in the FORMAT statement.

If there is an input/output list, at least one descriptor of types 0, E, F, G, I, L, Z, P ..
or A must be present in the FORMAT statement.

Each execution of a formatted READ statement causes one or more new records to b,,!
input.

Each item in an input list corresponds to a string of characters in the record and to ":)
descriptor of the types 0, E, F, G, I, L, Z, R, or A in the FORM,A, T statement.

H editing, apostrophe editing, Hollerith editing, and T and X editing communicate
information directly between the external record and the field descriptors without
reference to list items.

On input, when a slash is encountered in the FORMAT statement, or when the format
descriptors have been exhausted and reuse of the descriptors is initiated, processing of
the current record is terminated and the following occur:

Any unprocessed characters in the record are ignored.

If more input is necessary to satisfy list requirements, the next record is accessed.

A READ statement is terminated when all items in the input list have been satisfied
if:

The next format descriptor is 0, E, F, G, I, L, Z, R, A, or a colon (:) descriptor.

The format control has reached the last outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, and the next FORMAT descriptor is H, T, TL, TR,
/, or X, that descriptor is processed (with the possibility of new records being entered l

until one of the above conditions exists.

If the number of list items is less than the number of format descriptors, the processor
matches from left to right a list item with a format descriptor; any remaining format
descriptors are ignored.

FCR.TR.AI'·J 77+
Reference t'-.':3nual

Forms Control on Output

When a formatted WRITE statement is executed, records are written each time a slash
is encountered in the FORMAT statement or format control has reached the rightmost
parenthesis. The format control terminates in one of the two methods described for
READ termination. ror unblocked or blocked files, records may be padded or
truncated, as required by a device.

I

READ (5, 1, END=99) L, M, N
1 rORMA T (13, 11)

These statements obtain the value of L from positions 1-3 of record 1, the value of M
from position 4 of record 1, and the value of N from positions 1-3 of record 2.

• ror formatted READ statements, a comma or the end of the record, indicated by the
ASCII character with the hexadecimal representation X'OD' (carriage return), may be
used to terminate any numeric field. Thus, the data read need not be the full length
described in the rORMA T statement.

12.5 Forms Control on Output

When the unit to which formatted output is directed is an online terminal or line printer,
the first character of each formatted record is used for forms control. In this mode, the
first character of each record is not printed. Instead, it controls the printer vertical
spacing.

Control
Character

Blank

o

1

+

<

Terminal

Linefeed/carriage
return before write.

Two line feeds/carriage
returns before write.

rive line feeds/carriage
returns before write.

No line feed before write;
No carriage return before
write.

Line feed/ carriage
return before write.

Line Printer

Single space before print.

Doublespace before print.

Eject page before print.

No space before print.

Single space before
print. Inhibit header
output for the SLO file.

I > Line feed/ carriage
return before write.

Single space before
print. Enable header
output for the SLO file.

=

Change 1
12-6

rive line feeds/carriage
returns before write.

Linefeed/ carriage
return before write.

Format Specification

Eject page and print
user specified title record,
beginning with the second
character* •

Eject page before print.
Clear user specified title
output for SLO file.

FORTRAN 77+
Reference Manual

/

(

Numeric Editing/D Editing and Output

* For spooled printer output, a minus sign as the first character of a record
causes a title buffer to be filled from the record; a maximum of three title line
buffers may be filled from a maximum of three successive lines, beginning with
a minus sign.

All other characters appearing as the first character of the record will be treated as if
they were blanks and will cause vertical spacing of one line.

Care must be taken in preparing line printer output; the first character of the standard
length buffer is used solely as the vertical control character and will not be printed. The
statements .

10 FORMAT (IX, 'THISUSISUSPROGRAMUSA')

and

15 FORMA T ('USTHIS~IS~PROGRAM~A')

are equivalent in their resulting output. There will be vertical spacing of one line (i.e.,
the normal spacing of skipping to the next line), after which the following is printed:

THIS IS PROGRAM A

l2.6 Numeric Editing

Numeric edit descriptors are used to specify the input/output of integer, real, double
precision, and complex data as well as the interpretation of blanks (other than leading
blanks) in numeric input fields.

l2.6.1 0 Editing and Output

Form: Ow.d

Double precision and complex doubleword data are processed with this edit descriptor. w
characters are processed, of which d ~e considered fractional.

The external output format is the same as E output format except the letter E is
replaced by the letter O.

Examples

Format
Descriptor

016.9
015.8
015.4
012.6

FORTRAN 77+
Reference Manual

Internal
Value

+12.34567890
-0.0012763
-9.176
+123567

Output
(b:blank)

\6\6.1234567890+02
~-.127 630000-02
US~~US~-.917 60+01
\6.1235670+06

Format Specification 12-7

D Input

12c6.2 D Input

Data values that are to be processed under 0, E, F, or G edit descriptors can be in a
relatively loose format in the external input medium. For example, each of the following
is optional:

• Leading spaces (ignored)
· + sign (an unsigned input is assumed positive)
• A string of digits
• A decimal point
• A second string of digits
• The character 0 or E

A signed decimal exponent

Input data can be any number of digits in length, but precisian will be maintained only to
the level specified in Chapter 3 for real or double precisian data.

Examples

When no decimal point is given among the input characters, the d in the format
specification establishes the location of the implied decimal paint in the input item. If a
decimal point is included in the input characters, the d specification is ignored in
determining the location of the decimal point.

The letters 0, E, F, and G are interchangeable in format specifications or in the input
data. The end result is the same. All input values under these specifications are
formatted first to double precision format and then truncated to fit the defined data
typing, if required. Thus, 0, E, F, or G may enter either double or single preCision
values.

Format
Descriptor

014.3
010.3
010.3

010.3
010.3
010.3

EIO.3
EIO.3
F8.3
F1Z.4
GIO.l
GI0.0

12-8

Input Internal
(kS=blank) ~

~~~~~~~~~~~~~~ +0.000 
~~~~~~~~5. +5.000 
~~~~3gS~~~~ +300.0 (if 8Z is in effect) 

.003 (if 8N is in effect) 
il~1.276E~4 +12760 
-763267E-3 -.763267 
~VS1.27602~ +1.276020 (if BZ is in effect) 

+1.27602 Cif 8N is in effect) 
+0.Z3756+4 +2375.60 
~~~~~l7631 +17.631 
~1628911 +1628.911
kS~VS~-6321132 -632.1132
kS~~~l67223 +16722.3
il~il~~-l263 -1263.0

Format Specification
FORTRAN 77+

Reference Manual

r

r/

E Editing/E Output and Input

12.6.3 E Editing

Form: Ew.d

Real and complex type data are processed using this edit descriptor. w characters are
processed, of which d are considered fractional.

Form: Ew.dEe

Real and comple~ type data are processed using this edit descriptor. w characters are
processed, of which d are considered fractional. The exponent part consists of e decimal
digits. The e has no effect on input.

12.6.4 E Output and Input

Values are formatted, rounded to d digitss and output in order, as

• A minus sign if negative (plus sign if positive and if SP descriptor is in effect).
• A decimal point. .
• d decimal digits.
• The letter E.
• The sign of the exponent.
• e exponent digits; in the first form, e defaults to two (note that the absolute value of

the exponent is always ~ 79).

The values, as described, are right-justified in the field w, with preceding blanks to fill
the field if necessary. The field width w must satisfy the following relationship;
otherwise the output field is filled with asterisks.

> d+e+3 if the SP descriptor is not in effect and the value is not negative.
w _ d+e+4 if the SP descriptor is in effect or the value is negative.

For E input, refer to the description of D input.

Examples

Format
Descriotor

E12.5
E13.7
E7.3
E13.4
E8.2
E8.2
E12.5E02

FORTRAN 77+
Reference Manual

Internal
Value

76.573
-32672.354
56.93
-O.001Z3Z1
-3.567
76321.73
76.573

Output
(kS=blank)

kSij. 7 6573E+02
-.3 267236E +05

kSijij-.1Z3 2E -OZ
-.36E+01
kS.76E+05
ijijij.76573E+2

Format Specification 12-9

F Editing/F Output and Input/G Editing

12.6.5 F Editing

Form: Fw.d

Real and complex type data are processed using this edit descriptor. w characters are
processed, of which d are considered fractional.

12.6.6 F Output and Input

Values are formatted and output as a minus sign Cif negative), a plus sign (if p.ositive and
if SP descriptor is in effect) followed by the integer portion of the number, a decimal
point, and d digits of the fractional portion of the number. If a value does not fill the
field, it is right-justified and preceding blanks to fill the field are inserted. If a value
requires more field positions than aHowed by w, the output field is filled with asterisks.
Therefore, the field width w should satisfy the relationship

w>d+3

For F input, refer to the description of 0 input.

Examples

Format
Descriptor

F10.4
F7.1
F8.4
F6.4
F7.3

12.6.7 G Editing

Form: Gw.d

Internal
Value

368.42
-4785.361
3.75E-2
4739.76
-5.6

Output
(16=blank)

~!636a.4200
-4785.4
16160.0375
ltlU _**'
16-5.600

Real and complex data are processed using this edit descriptor. The descriptor indicates
that the external field occupies w character positions with d significant digits.

Form: Gw.dEe

Real and complex data are processed using this edit descriptor. The descriptor indicates
that the external field occupies w character positions with d significant digits. The
exponent part consists of e decimal digits. The e has no effect on input.

12-10 Format Specification
FORTRAN i7+

Reference Manual

[

(

G Output and Input

12.6.8 G Output and Input

The form of output depends on the magnitude of the number being edited. The following
table shows the editing used.

Number> Magnitude

0.1 < N < 1
1 <N < 10

100-2 < N < 10d-1
lOd-l < N < 10d
Otherwise

Equivalent Editing Effected

F(w-n).d,nX
F(w-n).(d-1),nX

.
F(w-n).l,nX
F(w-n).O,nX
sEw.d or sEw.dEe

n is 4 for Gw.d and e+2 for Gw.dEe. (Refer to 12.10 for an explanation of sEw.d and
sEw.dEe.)

For G input, refer to the description of D input.

Examples

Format
Descriptor

G12.4
G12.4
G12.4
G12.4
C:UO.4

FORTRAN n+
Reference Manual

Intemal
Value

+.056321
-.563217
+5.63217
+56321.7
+563.217

Output
16=blank

161616.5632E-Ol
1616-.563216161616
1616165.63216161616
161616.5632E+05
16563.216161616

Format Specification 12-11

Camplex Editing/1 Editing/I Output

12.6.9 Complex Editing

Complex numbers are made up of two single precIsIon real numbers. Each of the
numbers is described using 0, E, F, or G format descriptors. For each complex item in
the input/output list, there must be a pair of format descriptors in the associated
FORMA T statement.

Example

. COMPLEX CaMPI, COMP2

.
READ (3,20) I, caMPl, COMP2

.
20 FORMA T (16, F8.2,F7.3,
~

ASSOCIATED
WITH caMPI

l2.6.10 I Editing

Form: Iw

F8.2,F7.3)
~

ASSOCIATED
WITH COMP2

Only integer data may be formatted by this form of edit. descriptor. w specifies field
width.

Form: Iw.m

Only integer data may be formatted by this form of edit descriptor. w specifies field
width. m specifies that the unsigned integer constant w must consist of at least m digits
including, if necessary, leading zeros. The value of m must not exceed the value of w.
The m has no effect on input. If the value of m is zero and the value of the internal
datum is zero, the output field consists only of blank characters, regardless of the sign
control in effect.

~.l1 I Output

Values are formatted to integer constants. Negative values are preceded by a minus sign
(or a plus sign if SP is in effect). If the value does not fill the field, it. is right-justified
and enough preceding blanks to fill the field are inserted. If the value exceeds the field
width, the field is filled with asterisks (*).

Format Specification
FORTRAN 77+

Reference Manual

/ '"

r-

f'

(-/

I Input/Z Editing/Z Output

Integer variables may be byte, halfword, fullword, and doubleword in length. The I format
descriptor will be equally valid for all of these variable types.

Format Internal Output
Descriptor Value (~=blank)

16 +281 ~~~281
16 -43261 -43261
13 ,126 126
13 -226 ***
13 46931 ***
16.4 +281 ~~0281

12.6.12 I Input

A field w characters long is entered and formatted to internal integer format. A minus
sign may precede the integer digits. If a sign is not present, the value is considered
positive.

Doubleword integer values in the range -9223372036854775808 to +9223372036854775807
are accepted. The input item is treated as an integer number with an implicit decimal
point immediately to the right of the field of w characters.

Format Input . Internal
Descriptor (~=blank) Value

14 bi124 124
14 -124 -124
17 ~~6732~ 67320 (if BZ is in effect)

6732 (if BN is in effect)
14 1~2~ 1020 (if BZ is in effect)

12 (if BN is in effect)

12.6.lJ Z Editing

Form: Zw

This descriptor processes all types of data. It causes hexadecimal values to be read into
or from a specified list item.

12.6.14 Z Output

The maximum hexadecimal digits that may be transmitted between internal and external
representations using Zw is two times the number of storage units required by the
corresponding list item (for example, 8 digits for real items and 16 digits for double
precision).

FORTRAN 77+
Reference Manual Format Specification 12-13

Z Input/S, SP, and SS Descriptol"3

Format
Descriptor

Z4
Z4
za
za
Z9
Z7

Decimal
Value

516
-2
1.5
-1.5
-1.5
-1.5

~

INTEGER
INTEGER
REAL
REAL
REAL
REAL

Output
Value

0204
FFFE
41180000
BEE80000
~BEE80000
EE80000

If the specified field size is less than the number of hexadecimal digits that the list item
holds, the leftmost hexadecimal digit(s) will be lost. The last line above is an example of
this data loss.

12.6.15 Z Input

Since one storage location (byte) in internal storage contains two hexadecimal digits, if
an input field contains an odd number of digits, the number will be padded on the left
with a hexadecimal zero when it is stored. If the number to be entered is larger than the
storage location, only the rightmost digits will be input.

Format Input Decimal
Descriotor Value ~ Value

Z4 0204 INTEGER 516
Z9 ~BEEaOOOO REAL -1.5
Z2 FF INTEGER 255

12.6.16 5, SP, and 55 Descriptol"3

The 5, 5P, and 55 descriptors may be used to control optional plus characters in numeric
output fields. At the beginning of execution of each formatted output statement, the
processor normally produces a blank rather than a plus in numeric output fields.

If an 5P descriptor is encountered in a format specification, the processor must produce
a plus in any subsequent position that optionally may contain a plus sign.

If an 55 descriptor is encountered, the processor must not produce a plus in any
subsequent position' that optionally may contain a plus sign.

If an 5 descriptor is encountered, the option of producing a plus is restored to the
processor, thus, the sign is noted by a blank rather than a plus.

The 5, 5P, and 55 descriptors affect only I, F, E, 0, and G editing during the execution of
an output statement. These three descriptors have no effect during the execution of an
input statement.

12-14 Format Specification
FORTRAN 77+

Reference Manual

L

(

F or example,

Format
Descriptors

SP,G12.4
S5,F10.4
5,16

Internal
Value

+.OS6321
368.42
+281

Output
(l6=blank)

16+0.S632E-01
~16368.4200
161616281

BN and BZ Descriptors

In the first line, the ?p descriptor appears, so the output includes the plus sign. In the
second line, the 55 descriptor causes the optional plus to be suppressed. In the third line,
the 5 descriptor causes the optional + to be suppressed.

l2.6..17 BN and BZ Descriptors

The BN and BZ descriptors may be used to specify the interpretation of blanks, other
than leading blanks, in numeric input fields. At the beginning of execution of each
formatted input statement, such blank characters are interpreted as zeros or are ignored,
depending on the value of the BLANK specifier in effect for the unit. Note that the
interpretation of blanks defaults to zero if run-time option 8 is in effect on an implicit
open.

If a BN descriptor is encountered in a format specification, all such blank characters in
succeeding numeric input fields for this FORMAT statement are ignored; the effect of a
BN descriptor does not carry over to subsequent READ or ACCEPT statements. The
effect of ignoring blanks is to treat the input field as if blanks had been removed, the
remaining portion of the field right-justified, and the blanks replaced as leading blanks.
However, a field of all blanks has the value zero.

If a BZ descriptor is encountered in a format specification, all such blank characters in
succeeding numeric input fields for this FORMAT statement are treated as zeros; the
effect of a BZ descriptor does not carryover to subsequent READ or ACCEPT
statements.

The BN and BZ descriptors affect only I, F, E, 0, G, and Z editing during the execution of
an input statement. They have no effect during the execution of an output statement.

F or example,

Format
Descriptors

BN,IS·
BN,010.3
BZ,IS
BZ,010.3

FORTRAN 77+
Reference Manual

Input
(l6=blank)

Internal
Value

+7
+0.003
+700
+300.0

Format Specification 12-1S

O1aracter Editingl A Editingl A Output

12. 7 Character Editing

Character edit descriptors are used to specify the input/output of character data.

12.7.1 A Editing

Form: Aw

This descriptor causes u.nmodified bytes to be read into or written from a specified list
item; each byte can be typically considered as representing an ASCII character.

The maximum number of actual characters that may be transmitted between internal and
external representations using Aw is 255.

Form: A

This descriptor causes unmodified ASCII characters to be read into or written from a
specified list item.

If a field width w is not specified with the A edit descriptor, the number of characters in
the field is the length of the character I/O list item.

12.7.2 A Output

If w is greater than n (where n is the number of storage units required by the list item),
the ASCII string will be right-justified and blank-filled in a field of width w. If w is less
than n, the external output field will consist of the leftmost w characters from the
internal representation.

Format
Descriptor

A
A

A4
A5

12-16

Internal
(kS=blank) ~

ABCD CHARACTER
ABCD1234 CHARACTER
ABCDE CHARACTER
AB CHARACTER

Format Specification

Output
(b:blank)

ABCD
ABCD1234
ABCD
bS16bSAB

FORTRAN 77+
Reference Manual

r

(

A Input/ Apostrophe Editing/H Editing/H Output

12.7.3 A Input

If w is greater than n (where n is the number of storage units .required by the
corresponding list item), the rightmost n characters are taken from the external input
field. If w is less than n, the w characters appear left-justified, with w-n trailing blanks
in the internal representation.

Format
Descriptor

A
A4
A3

Input
Characters

ABCD
ABC
ABCD

12.7.4 Apostrophe Editing

Form: 'h1hZ ••• hn'

~

CHARACTER
CHARACTER
CHARACTER

Internal
(~=blank)

ABCD
ABC~
ABC

The characters in the field bounded by apostrophes (') are placed in the external field.
Any number of characters may be in a character string. Blanks are counted as
characters and will be included in the output character stream. The use of a quotation
mark as an escape character in the literal format descriptor is discussed in Chapter 3.

Format
Descriptor

'\6X\6'
'X'
'SHOULDN"T'

12.7.5 H Editing

12.7.6 H Output

Output
(~=blank)

I6x\6
X
SHOULDN'T

The n characters are placed in the external field. The number of characters in the string
must be exactly as specified by n. Otherwise, characters from other descriptors may be
taken as part of the string. For example, if the descriptor 4H1,I2 appears, an error will
not be detected. However, if ZH1Z3 is used, an error will be detected in the compiler
and a message will appear in the diagnostics. Blanks are counted as characters.

Format
Descriptor

IHR
8H~STRINGI6
lZHXI6(1,3)=lZ.O
llHII6SHOULDN'T

FORTRAN 77+
Reference Manual

Output
(l6=blank)

R
~STRING~
X\6(1,3)=12.0
II6SHOULDN'T

Format Specification 12-17

A Editing/A Output/A Input with Noncharacter Data Types

12.7.7 A·Editing with Noncharacter Data Types

The A edit de~criptor should be used with an input/output list item of type CHARACTER
to comply with the ANSI X3.9 - 1978 standard; however, FORTRAN 77+ allows the use of
this edit descriptor with noncharacter data types.

Form: Aw

The maximum number of actual characters that may be transmitted between internal and
external representations using Aw is 255.

Form: A

If a field width w is not specified with the A edit descriptor, the number of characters in
the field is the length of the character I/O list item.

12.7.a A Output with Noncharacter Data Types

If w is greater than n (where n is the number of storage units required by the list item),
the ASCn string will be right-justified and blank-filled in a field of width w. If w is less
than n, the external output field will consist of the leftmost w characters from the
internal representation.

Format
Descriotor

A2
A3
A4
AS
A3
A8
A6

1m
INTEGER
INTEGER
REAL
REAL
REAL
COMPLEX
DOUBLE PRECISION

Internal
Storage

X'24312020'
X'41424320'
X'41424344'
X'41424344'
X'41424344'
X'41424344313Z3334'
X'4142434431323334'

Output

$1
ABC
ABCD
~ABCD
ABC
A8CD1234
ABCD12

12.7.9 A Input with Noncharacter Data Types

If w is greater than n (where n is the number of storage units required by the
corresponding list item), the rightmost n characters are taken from the external input
field. If w is less than n, the w characters appear left-justified, with w-n trailing blanks
in the internal representation.

Format Input
Descriptor TYoe Characters

Al INTEGER*2 $
A3 INTEGER ABC
Al REAL A
A5 REAL ABCDE
A6 COMPLEX A8CDEF

12-18 Format Specification

Internal
Storage

X'2420'
X'41424320'
X'41202020'
X'42434445'
X'4142434445462020'

FORTRAN 77+
Reference Manual

c·

(

(

(

R EditingiR OutputiR Input

12... 7 .10 R Editing

Form: Rw

This descriptor causes unmodified bytes to be read into or written from a specified list
item; each byte can be typically considered as representing an ASCII character.

The maximum number of actual characters that may be transmitted between internal and
external representations using Rw is the same as the number of storage units required by
the corresponding list item (for example, four characters for real items, eight characters
for double precision).

12.7.11 R Output

If w is greater than n (where n is the number of storage units required by the list item),
the ASCII string will be left-justified and blank-filled on the right in a field of width w.
If w is less than n, the external output field will consist of the rightmost w characters
from the internal representation.

Format Output
Descriptor ~ Internal (~=blank)

R2 INTEGER (INTEGER*4) X'20202431' $1
R3 INTEGER (INTEGER*4) X'20414243' ABC
R4 REAL (REAL *4) X'41424344' ABCD
R5 REAL (REAL*4) X'41424344' ABCD~
R3 REAL (REAL *4) X'41424344' BCD
RB DOUBLE PRECISION X'4142434431323334' ABCD1234

(REAL*B)
R5 DOUBLE PRECISION X'4142434431323334' 01234

(REAL*B)

12. 7 .12 R Input

If w is greater than n (where n is the number of storage units required by the
corresponding list item), the leftmost n characters are taken from the external input
field. If w is less then n, the w characters appear right-justified with leading binary
zeros in the internal representation.

Format
Descriptor

R1
R3
R1
R5
R6

FORTRAN 77 ...

~

INTEGER*2
INTEGER (INTEGER*4)
REAL (REAL *4)
REAL (REAL *4)
DOUBLE PRECISION

(REAL*B)

Input
Characters

$
ABC
A
ABCDE
ABCDEF

r8rrr!8t SgeC'_~fic2ti;)!'~

Internal

X'0024'
X'00414243'
X'00000041 '
X'41424344'
X'0000414243444546'

Logical Editing/L Output/L Input

12.8 Logical Editing

Form: Lw

I The Lw edit descriptor indicates that· the field occupies w positions. The specified
input/output list item must be of type logical. On input, the list item will become
defined with a logical. On output, the specified list item must be defined with a logical.

12.8.1 L Output

The output field consists of w-l blanks followed by a T or F as the value of the internal
datum is • TRUE. or .F ALSE., respectively.

Format
Descriptor

Ll
Ll
L5
L7

12.8.2 L Input

Internal
Value

.FALSE.

.TRUE.

.TRUE.

.FALSE.

Output
(!6=blank)

F
T
~!6!6!6T
~I6I6I6I6I6F

A string of w characters is entered. Leading blanks and an optional period as the first
nonblank character are ignored. If the first accepted character of the input string is T,
the value .TRUE. is assigned to the input item. If the first accepted character is other
than T, or if no characters are present, the value .FALSE. is assigned to the list item.
All other characters in the field are ignored.

Format
Descriptor

Change 1
12-20

Ll
Ll
L2
L4
L6
La
L6
L3

Input
(l6=blank)

T

• T
\1l.FA
\1l\1l \1l 16. T
t6FALSE\1l16
\1lTEST\1l
.\1lT

Format Specification

Resultant
Values
Logical

.TRUE.

.FALSE.

.TRUE •

.FALSE.

.TRUE.

.FALSE.

.TRUE.

.FALSE.

FORTRAN 77+
Reference Manual

"-. .. /

c

(

(

(--
'\ .

- -'

Positional Editing/X Descriptor/T Descriptor

12.9 Positional Editing

The positional edit descriptors specify where the n~xt character will be transmitted to or
from the record.

12.9.1 The X Descriptor

Form: nX

The X descriptor causes no editing to occur, nor does it correspond to an item in an
input/ output list. When used for output, it causes n blanks to be inserted in the output
record. When used with input, this descriptor causes the next n characters of the input
record to be skipped. Note that n is optional; if n is not present, the default is 1.

Output Examples

Format
Statement

:3 FORMA TC'X=' ,2X,IJ)

5 FORMAT(:3X,'READ',5X,'WRITE')

Input Examples

Format
Statement

10 FORMA T(F4.1,:3X,F4.1)

15 FORMA T(7X,I3)

12.9.2 The T Descriptor

Form: Tn

Output
List Value

-27

Input
String

12.5ABCI20.

12.5ABC120

String
(l6=blank)

x=I6I6-27

I6I6I6READI6I6I6I6I6 WRITE

Resultant
Input

12.5,120.0

120

The T descriptor causes no editing to occur, nor does it correspond to an item in an
input/ output list; it is a means of tabulating input/output streams. n is an integer
constant between 1 and 255 specifying the character position in the record where the
next data transfer begins.

Form: TLn

The TL descriptor indicates that the transmission of the next character to or from the
record is to occur at the character position n characters backward (left) from the current
position, not to precede the leftmost character position.

Form: TRn

The TR descriptor indicates that the transmission of the next character to or from the
record is to occur at the character position n characters forward (right) from the current
position.

FORTRAN 77+
Reference Manual Format Specification 12-21

Scale F' actors

.9~~tout Examples

Format
Statement

15 FORMAT (I4,2X,G12.2, T7 6,15)

15 FORMAT (I4,2X, G12.2, TR3,I5)

Input Examples

Format
Statement

10 FORMAT (G8.0,T1,I8,T1,Z8)
~

12.10 Scale Factors

Result

One integer is output, two spaces are
skipped, one real number is output, then
a skip is made to the 76th position,
where one integer is output. Blanks
will appear in the parts of the record
that were skipped.

One integer is output, two spaces are
skipped, one real number is output, then
a skip is made three spaces to the right
of the current position, where one
integer is output. Blanks will appear in
the parts of the record that were
skipped.

Result

Allows the input of the same record
item(s) through multiple format
descriptors, since each T1 causes a
return to the beginning of the input
record.

To provide more flexible use of 0, E, F; and G edit descriptors, a scale factor designator
may precede these format specifications.

Form: sOw.d sEw.d sFw.d sGw.d

s is the form nP, with n an integer constant with a range of -77 < n < +76 - -
A scale factor of zero is established when format control is initiated for each REAO or
WRITE statement. Once established, a scale factor applies to all subsequent 0, E, F, and
G editing in this format until a new factor is defined.

12-22 Format Specification
FORTRAN 77+

Reference Manual

i I

~ /

[

(

(/

Scale Factors

Examole

7 FORMAT (3PE7 .3,F 4.1,2PD7 .2,E7 .1)

In this example, the scale factor 3P is in effect for the first two descriptors and changed
to ZP by the third. 2P is still effective for the fourth descriptor.

In the following examples and discussions use the parameter definitions described below.

w The field width.

d The number of digits in the fractional part of the external field.

n The integer constant portion of the scale factor nP.

The scale facto~ affects editing in the following manner:

• On input, if the datum (D, E, F J or G edit descriptor) has an explicit exponents the
scale factor has no effect. If the datum has no explicit exponent, the scale factor
editing formula is ... --_. . .

input datum * 10-n =internal value

n is the scale factor integer constant.

Format Descriptor Input Datum Internal Value

2PE12.4 ~~O. 7 632E-03 .0007632
3PE12.3 ~~~L'+7.732D3 7732.
2PE12.4 ~~~~~~763621 .763621
1PF8.3 -123.762 -12.3762
-2PG10.3 246.731 24673.1

• On output, using E or D edit descriptor, the basic real constant part of the quantity to
be produced is multiplied by lOn and the exponent is reduced by n. In addition, the
scale factor n controls decimal normalization as follows:

If -d < n < 0, the output field contains exactly Inl leading zeros and d- Inl
significantdigits after the decimal point. For example, the format descriptor

-lPEll.2

causes the output field to contain one leading zero and one significant digit to
the right of the decimal point.

If 0 < n < d+2, the output field contains exactly n significant digits to the left
of the decimal point and d-n+l significant digits to the right of the decimal
point. For example, the format descriptor

3PEll.2

causes the output field to contain three significant digits to the left of the
decimal point and 0 significant digits to the right of the decimal point.

FORTRAN 77+
Reference Manual Format Specification 12-23

Repeat Specifications

Other values of n for output are not permitted.

Format Descriptor

-1PEll.2
3PE11.2
4PD12.3

Stored Value

12.7
12.7
12.7

External Representation

~~~01.3E01 
~~~127 .E-01 
~~~1270.D-02 

• On output w~ing F editing, the stated value is multiplied by lOn, actually altering the 
external value. 

Format Descriptor 

3PFll.2 
-ZPFll.5 

Stored Value 

12.7 
-.05634 

Internal Representation 

~~~12700.00 
~~~-.00056 

• On output using G editing, the method of representing the output field depends on the 
magnitude of the datum being edited as follows: 

If the magnitude of the datum is less than 0.1, or greater than or equal to 10**d, G 
output editing is "the same as E output editing, i.e., sPGw.d is equivalent to sPEw.d and 
sPGw.dEe is equivalent to sPE.dEe, where s is the scale factor currently in effect. 

Format Descriotor 

2PG12.4 
2PG12.4E3 

Stored Value 

.056321 

.056321 

• The scale factor has no effect on I, A, R, L, H or Z editing. 

12.11 Repeat Specifications 

External Representation 

~t656.321E-03 
~56.321E-003 

The D, E, F, G, I, L, Z, R, and A field descriptors may be indicated as repetitive 
descriptors by using a repeat count r in the form rOw.d, rEw.d, rFw.d, rGw.d, rIw, rLw, 
rZw, rRw, and rAw. 

The following pairs of FORMAT statements are equivalent: 

2 FORMAT (3FB.3,F9.2) 

2 FORMAT (F8.3,F8.3,F8.3,F9.2) 

18 FORMAT (2I6,3A 7 ,2E12.5) 

IB FORMAT (I6,I6,A 7,A 7,A 7,E12.5,E12.5) 

Repetition of a group of field descriptors is accomplished by enclosing the group in 
parentheses, preceded by a repeat count. The absence of a repeat count indicates a 
count of one. Five levels of parentheses, not counting the parentheses required by the 
FORMAT statement, are permitted. A repeat count may not exceed 255. 

12-24 Format Specifiration 
FORTRAN 77+ 

Reference Manual 

/ 



( 

( 

Repeat Specifications 

The following statements are equivalent for transmitting up to four variables: 

3 FORMAT (I7,3(FB.l,4X» 

3 FORMAT (17,FB.l,4X,FB.l,4X,FB.l,4X) 

Repetition of format descriptors is also initiated when aU descriptors in the FORMAT 
statement have been used but there are still items in the input/output list that have not 
been processed; the format descriptors are reused, starting at the opening parenthesis 
that immediately precedes the last closing parenthesis in the FORMAT statement. The 
parentheses enclosing the entire list of descriptors are not considered, unless there are 
no other parentheses in the list. A repeat count preceding the parenthesized 
descriptor(s) is reused if the descriptors are to be reused. When the reuse of a 
parenthesized descriptor is initiated, processing of the current record terminates, and a 
new record is processed. . 

Input Example 

DIMENSION 6(100) 
READ (3,75) 6 

. 
75 FORMAT (5F9.2) 

In the previous example, the first five fields are taken from each of 20 records (so as to 
total 100, the number of array elements) and are input and assigned to the array 
elements of the array 6. 

Output Example 

. 
WRITE (7,9) E,F ,K,L,M,KK,LL,MM,K3,L3,M3 

9 FORMAT (ZF9.3,(317» 

In this example, three records are written. 

Record 1 contains the values of E, F, K, L, M, record 2 contains the values of KK, LL, 
MM, and record 3 contains the values of K3, L3, M3 because the descriptor 317 is used 
three times. 

FORTRAN 77+ 
Reference Manual Format Specification 12-25 



Field Separators 

12.12 Field Separators 

Two adjacent descriptors must normally be separated in the FORMAT statemenl by 
either a comma or one or more slashes. Commas may be omitted in the following cases: 

• Following Hollerith or blank field descriptors 

• Between an nP descriptor and a following D,E,F,G descriptor 

• Before or after a colon (:) descriptor 

The slash not only separates field descriptors, but it also specifies the demarcation of 
formatted records. 

1X,2HOK,F 6.3 
and 

1X2HOKF6.3 
are equivalent and specify a single record 

lX,2HOK/F6.3 specifies two records 

Each slash terminates the current record and initiates processing of the next record. The 
remaining input record is ignored; the remaining output record is filled with blanks. 
Successive slashes (/ /I ••• /) cause successive records to be ignored on input and successive 
blank records to be written on output. 

Output Example 

DIMENSION A(20), J(20) 

. 
WRITE (7,8) J,A 

8 FORMAT (lOI7/10I7/10F7.3/ 
X lOF7.3) 

In this example, the data specified by the list of the WRITE statement are output to the 
specifications of FORMAT statement 8. Four records are written as follows: 

Record 1: 
Record 2: 
Record 3: 
Record 4: 

Input Examole 

J(l) 
J(ll) 
AU) 
A(ll) 

DIMENSION B(10) 

. 
READ (4,17) B 

J(2) 
J(l2) 
A(2) 
A(12) 

17 FORMAT (F10.2/FI0.Z/ / /BF10.Z) 

J(3) 
J(D) 
A(3) 
A(13) 

••• J(10) 
••• J(ZO) 
••• A(10) 
••• A(20) 

In this ex~mple, the two elements B(l) and B(2) of array B receive their values from the 
first data fields of successive records, and the remaining elements of the two records are (-". 
ignored. The third and fourth records are ignored, and the remaining elements of the ~j 
array are filled from the fi fth record. 

12-26 Format Specification 
FORTRAN 77+ 

Reference Manual 



( 

f' 

Colon Descriptor 

12.13 Colon Descriptor 

The colon descriptor (:) terminates format control if no items remain in the I/O list. The 
colon descriptor has no effect if there are more items in the I/O list. 

Example 

N = 3 
K(1)=34 
K(2)=4 
K(3)=4Z 
WRITE ('LO',100). (K(I), I=l,N) 

100 FORMAT (50(' INVENTORY IS',16,' UNITS':/» 
WRITE ('LO', 101) 

101 FORMA T (' END OF LIST') 

The preceding sequence of statements would produce the following sample printout: 

INVENTORY IS 
INVENTORY IS 
INVENTORY IS 
END OF LIST 

34 UNITS 
4 UNITS 

42 UNITS 

In the preceding example, if the colon descriptor were not used the printout would appear 
as follows: 

INVENTORY IS 
INVENTORY IS 
INVENTORY IS 
INVENTORY IS 
END OF LIST 

FORTRAN 77+ 
Reference Manual 

34 UNITS 
4 UNITS 

42 UNITS 

Format Specification 12-27/12-28 





[ 

a-tAPTER 13 

EXTENDED ADDRESSING 

13.1 Introduction 

Three FORTRAN 77+ specification statements support extending addressing: 

• EXTENDED BLOCK 

• EXTENDED BASE 

EXTENDED DUMMY 

The statements enable the use of configured main memory between 512 KB and 16 MB 
for storing/retrieving data items that are bound to absolute logical address locations at 
compile time. For larger commons, extended addressing must be used. The GLOBAL 
COMMON may be as large as extended memory, i.e., .5MB on a 32/77, 1.5MB on a 32/27 
or 32/87, and 15.5MB (minus the operating system) on a 32/67 or 32/97. 

13.2 EXTENDED BLOCK Statement 

A data area can be established in the user's extended data space by using the EXTENDED 
BLOCK statement. 

Syntax 

EXTENDED BLOCK [lYI/] a1 ['/Y2/a2' ••• ,/y/ai] 

EXTENDED BLOCK storage names, which can be any FORTRAN 77+ 
symbolic name other than GLOBALOO through GLOBAL99. 

a· 1 
Sequences of variable names, array names, or constant array dec lara tors, 
separated by commas. 

The elements in ai make up the EXTENDED BLOCK storage area specified by the name 
Yi' 

If any Yi is omitted (two consecutive slashes / I), the block of storage so indicated is 
called BLANK EXTENDED. If the first block name (Yl) is omitted, the two slashes can 
be omitted. BLANK EXTENDED always begins at the first page of extended memory. It 
is referred to by empty block name specifications. For the definition of any specific 
extended block, an extended block name can appear more than once in the same I 
EXTENDED BLOCK statement or in more than one EXTENDED BLOCK statement' 
within a program unit. EXTENDED DUMMY statements are used in subprograms instead : .. 
of EXTENDED BLOCK statements to reference the extended arguments defined in the" 
program unit. Extended common areas in subroutines are stiil defined using the: 
EXTENDED BLOCK statement. 

Variables can be assigned to EXTENDED BLOCK storage in the same manner as for 2 

COMMON block or by using an EQUIY A.LENCE statement. 

FORTRAN 77+ 
Reference Mar:ual Extended Addressing 

Change 1 
1:::-: 



EXTENDED BASE/EXTENDED DUMMY Statements 

A GLOBAL memory partition (either static or dynamic) may be used as the EXTENDED 
BLOCK name. However, the name of the partition must be other than GLOBALOO 
through GLOBAL99; for example, EXTENDOl. 

Access to an EXTENDED BLOCK can be gained by use of the X:GDSPCE service to 
obtain map blocks spanning the desired address range. Alternatively, an extended 
memory partition can be created by using the volume manager CREATE COMMON 
directive; access is then gained by means of the XJNCLD service. 

Items that are assigned to an EXTENDED BLOCK cannot also appear in a separate 
COMMON statement. 

13.3 EXTENDED BASE Statement 

The EXTENDED BASE statement allocates an extended block to a specific address range 
in the user's extended data space. 

Syntax - 1 

EXTENDED BASElY11p1 [,] IY2/p2· • .[,] IY/Pi 
Yi Symbolic names other than GLOBALOO through GLOBAL99, or DATAPOOL. 

Pi Positive integer values of 256 or greater that specify a logical memory page. 

An EXTENDED BASE statement referencing a common block name allocates the 
corresponding common block into extended memory. 

In the absence of an EXTENDED BASE statement, the default allocation is 256. 

Each labeled EXTENDED BLOCK is assigned memory independent of each other and is 
biased at its own unique extended basepage address. An EXTENDED BASE statement 
cannot be given for BLANK EXTENDED; thus, EXTENDED BLOCK II together with 
EXTENDED BASE 256 is incorrect. 

. EXTENDED BASE!VPYn/* I Syntax - 2 - Vector Processor use only 

VPYn is the extended block storage name of the data area (n is the number of the 
bus containing the data area) VPY1, VPY2, VPY3. 

13.4 EXTENDED DUMMY Statement 

If a subroutine or function is to accept extended memory arguments, those arguments 
must be declared with the EXTENDED DUMMY statement. If extended arguments are 
passed to nonextended dummy arguments, unpredictable results will occur. 

Syntax 

EXTENDED DUMMY u1' uZ, ••• ,ui 

Dummy arguments representing variable or array names defined in 
EXTENDED BLOCK storage. 

The EXTENDED DUMMY statement must follow FUNCTION and SUBROUTINE 
statements for subprograms that accept arguments in extended storage. 

The following examples show the FORTRAN specification statements for extended 
memory addressing. The examples accomplish, respectively, zeroing 32K words of 
extended memory, using the EXTENDED DUMMY statement, initializing arrays in 
extended memory, and initializing arrays in OAT APOOL. These examples are for a 
CONCEPT 132 computer; therefore, 2KW map blocks apply. 

Change 1 
13-2 Extended Addressing 

FORTRAN 77+ 
Reference Manual 



c 

( 

EXTENDED DUMMY Statement 

Examcle 1 

C USING THE EXTENDED BLOCK DEF AUL TS, 
. C THE FIRST 32K WORDS OF BLANK EXTENDED 

CARE INITIAUZED TO ZERO 
PARAMETER (NASK=16) 
INTEGER NGET 
EXTENDED BLOCK M(3276S) 
CALL X:GDSPCE(NASK,NGET,,) 
DO 1=1,32768 

M(I)=O 
END DO 
STOP 
END 

Example 2 

C SET 32K WORDS OF EXTENDED MEMORY 
C INITIAUZE EACH BYTE IN A SUBROUTINE 

PARAMETER (NASK=16) 
EXTENDED BLOCK B 
INTEGER NGET 
INTEGER*1 B(131072) 
CALL X:GDSPCE (NASK,NGET,,) 
CALL SETB(S) 
STOP 
END 
SUBROUTINE SETB(M) 
EXTENDED DUMMY M 
INTEGER*1 M(131072) 
M = 1 
RETURN 
END 

Example 3 

C XX STARTS AT PAGE 256 (80000) 
C YY STARTS AT PAGE 266 (85000) 
C ZZ STARTS AT PAGE 276 (SAOOO) 

PARAMETER (NASK=12) 
EXTENDED BLOCK/XX/X(1000)/YY /Y(1000)/ZZ/Z(1000) 
EXTENDED BASE/ XX/256/YY /266!ZZ/276 
INTEGER NGET 

CALL X:GDSPCE (NASK,NGET,,) 
DO 1=1, 1000 
XCI) = I 
Y(l) = X(D*I 
zm = X(I)*Y(I) 
END DO 
STOP 
END 

FOR'TRAN 77+ 
Reference Manual Extended Addressing 

" 

13-3 



Extended Memory Restrictions 

Example 4 

REAL *4 X(lOO), Y(lOO), Z(100) 
EXTENDED BLOCK/OAT APOOL/X, Y ,Z 
CALL X OPXMNT(ISTAT) 
IF (ISTAT .NE. 0) THEN 

PRINT * ,'DA T APOOL NOT INCLUDED, STATUS = ',1ST A T 
ELSE 

DO 1=1,100 
XCI) = 1 
Y(I) = X(I)*I 
Z(I) = XCI) + Y(I) 

END DO 
END IF 
STOP 
END 

13.5 Extended Memory Restrictions 

The following are restrictions on the use of extended memory: 

• Block storage data in the extended memory area cannot be initialized by 
FORTRAN 77+ OAT A statements, BLOCK OAT A subprograms, or type declaration 
statements. The extended variables must be initialized by the user after the memory 
has been included by an explicit call to the Scientific Run-Time Library. 

Procedure code execution is not supported in extended memory. 

• The variable in an assigned GO TO cannot be in extended memory. 

• Variables or arrays that specify formats cannot be specified in extended memory. 

\: Variables in extended memory cannot be used as arguments in statement functions. 

• If the FORTRAN 77+ program includes references to a OATAPOOL in extended 
memory, both the OAT APOOL partition and the required OAT APOOL dictionary must 
exist before catalog time of the task. 

• If the FORTRAN 77+ program includes references to a global memory partition in 
extended memory, the partition must exist before catalog time. 

• Support for extended memory is provided for FORTRAN users "and for assembly 
language users explicitly triggering the extended addressing mode and explicitly 
managing all such addressing. The operating system's environment incorporates no 
conventions for managing or protecting the extended memory area beyond SI2KB. 
Shared use among multiple programs will require user-established conventions for 
memory management and protection. 

13-4 Extended Addressing 
FORTRAN 77+ 

Reference Manual 

c 



c 
Extended Memory Restrictions 

When using a OAT APOOL in extended memory, the largest symbol offset in the I 
OA T ~PO~L must not exceed the amount of extended memory available on the. current· 
machine, l.e., .5MB on a 32/77, 1.5MB on a 32/27 or 32/87, and 15.5MB (mmus the
operating system) on a 32/67 or 32/97. 

FORTRAN 77+ 
Reference f\.·1anuai Extended Addressing 

Change 1 
13-5/13-6 





( 

CHAPTER 14 

lNLlNE ASSEMBLY LANGUAGE CODING 

14.1 Introduction 

All lines following an INUNE statement (up to an ENOl statement) are treated as 
assembly language instructions. The inline code is read by the FORTRAN 77+ compiler. 
You must save and restore registers as required. There is no optimization across inline 
code. 

Any INLINE statement must follow all specification statements and any statement 
function statements. Furthermore, FORTRAN 77+ language data definition is not 
permitted. If the FORTRAN 77+ program unit in which the INLINE statement is found is 
a function or a subroutine, the necessary linkage code will be generated before the 
INLINE code is generated. 

An assembly line can have a maximum length of 72 characters and is considered to be 
composed of a maximum of four distinct fields: the label field, operation field, argument 
field, and comment field. Continuation lines are not permitted. 

14.2 Label Field 

The label field begins in column 1 and is terminated before column 6. A label, when 
present, conforms to the requirements of a FORTRAN 77+ statement number and can be 
preceded by a right parenthesis. 

14.3 Operation Field 

The operation field begins after column 6 and before column 17. The operation field is 
mandatory and is terminated by a blank column. 

14.4 Argument Field 

The argument field begins in the first nonblank column following the operation field and 
is terminated by a blank column. If column 72 or 10 blank columns are encountered, the 
argument field is assumed to be blank. 

14.5 Comment Field 

The comment field begins in the first nonblank column following the argument field and 
terminates in column 72. . 

FORTRAN 77+ 
Reference Manual 

lnline Assembly 
Language Coding 14-1 



General Instruction Format 

14.6 General Instruction Format 

There are five types of general instruction formats: 

• Memory reference instructions 

• Interregister instructions 

• Immediate operand instructions 

• Memory bit and condition code instructions 

• Operation control instructions. 

A more detailed explanation of instructions and instruction formats can be found in the 
appropriate Gould CPU reference manual. All instruction mnemonics supported by the 
assembler are supported by FORTRAN 77+. 

14.6.1 Memory Reference Instructions 

Label Field Operation Field 

[label] instr 

label Any valid statement number. 

instr The instruction. 

reg The destination or accumulating register. 

Indicates indirect addressing. 

addr A symbolic or numeric memory address. 

index The index register. 

One special case of this type of instruction format is: 

[label] instr 

examples of which are the BIB, BIH, BIW, and BID instructions. 

Another special case of this type of instruction format is: 

[label] instr 

examples of which are the BU, BL, and BRI instructions. 

14-2 
Inline Assembly 

Language Coding 

Argument Field 

reg,[*]addr [,index] 

reg,addr 

Clio] addr [,index] 

. FORTRAN 77+ 
Reference Manual 



( 

General Instruction Format 

14.&2 Interregister Instructions 

Label Field -.--.-.--- Operation Field 

[label] instr 

label Any valid statement number. 

instr The instruction. 

sreg The source or referenced register. 

dreg The destination or accumulating register. 

14..6.3 Immediate Operand Instructions 

label 

instr 

Label Field Operation Field 

[label] instr 

Any valid statement number. 

The instruction. 

The destination or accumulating register. 

Argument Field 

sreg,dreg 

Argument Field 

reg,value 

reg 

value An integer constant in the range -32768 to 32767 (i.e., 2-15 to 215.1). 

One special case of this type of instruction format is: 

[label] instr reg 

examples of which are the EXR, EXRR, LCS, ES, RNO, and ZR instructions. 

Another special case of this type of instruction format is: 

[label] instr value 

examples of which are the CALM, EI, AI, RI, OAI, 01, and SVC instructions. 

14..6.4 Memory Bit and Condition Code Instructions 

Label Field Operation Field Araument Field 

[label] instr value, [*] addr [,index] 

label 

instr 

value 

* 
addr 

index 

Any valid statement number. 

The instruction. 

A numeric quantity. 

Indicates indirect addressing. 

A symbolic or numeric memory address. 

The index register. 

FORTRAN 77+ 
Reference Manual 

Inline Assembly 
Language Coding 14-3 



Argument Field Conventions/DATA Directive 

14.6.5 Operation Control Instructions 

Label Field Ooeration Field Araument Field 

[label] instr 

label Any valid statement number. 

instr The instruction. 

The instructions included in this group are NOP, WAIT, and HALT. 

14.7 Argument Field Conventions 

All nonaddress items in the argument field must be written as integer constants. When 
referring to a register, for example, only the digits 0-7 can be used; a reference to an 
index register must use the digits 1-3. 

Address expressions must take one of the following forms: 

$ Reference to current location counter value 

$$ Absolute zero used as an address. 

)s Reference to statement s. 

v A variable or array name. 

na n is a decimal absolute address, and a Cif present) is a B for byte count, H 
for halfword count, W for word count, or D for doubleword count. 

c Any FORTRAN 77+ real or double precision constant. The address of the 
constant will be used as the address expression. 

b+na The parameter na 1s described above; b is one of the first types of address 
expressions defined above. 

14.B DATA Directive 

Label Field Ooeration Field Argument Field 

[label] DATA (i] value 1, [value 2 [, ••• ,[value n] ••• J] 

The DATA directive causes the constants in the argument field to be output in-line 
within the object program. DATAl can be of the form DATAB, DATAH, DATAW, and 
DATAD, representing byte, halfword, word, and doubleword data fields, respectively. 
DATA is interpreted as DATAB. The values in the argument field can be FORTRAN 77+ 
constants or literal strings. This directive automatically aligns the specified data to the 
proper storage boundary. 

14-4 
lnline Assembly 

Language Coding 
FORTRAN 77+ 

Reference Manual 



l 

( 

( 

14.9 GEN Directive 

Label Field 

[label] 

Operation Field 

GEN 

GEN/ AC/BOUND Directives 

Argument~ 

field list 

The GEN directive is used to assemble data of different types and sizes into a string of 
contiguous bits. Each subfield contains a positive integer representing the subfield size 
in bits, followed by a (J) character, followed by a FORTRAN 77+ constant or variable. 
Each subfield is packed in contiguous bits starting from the leftmost byte. If the total 
length of all subfields is not a multiple of eight bits, the last byte will be padded with 
trailing zeros. All address fields must be at least 20 bits in length and right-justified 
within a word. 

Example 

GEN 6/1,6/-1,20/1 

GEN 3/7 

The first line in the above example assembles to 07FOOOOO (hexadecimal) + address of I. 
The second line produces a byte EO (hexadecimal). 

14.10 AC Directive 

Label Field 

[label] 

Operation Field 

AC[i] 

Argument Field 

[*] addr [,index] 

The AC directive is used to generate an address with indexing and/or indirect 
addressing. It can also be used to reserve a 32-bit zero on a word boundary. ACi can be 
of the form ACB, ACH, ACW, and ACD, representing byte, halfword, word, and 
doubleword address fields, respectively. AC will be interpreted as ACB. This directive 
always forces assembly to a word boundary. Bits 0 through 8 of the generated word are 
always set to zero. 

14.11 BOUND Directive 

Label Field Operation Field Argument Field 

[label] BOUND boundary 

The BOUND directive advances the location counter so that it is a byte multiple of the 
boundary designated. boundary is any of the positive integers 1, 2, 4, 8, 16, or 32. 

FORTRAN 77+ 
Reference Manual 

lnline Assembly 
Language Coding 14-5 



RES/EGU/Referencing Variables 

14.12 RES Directive 

Label Field Operation Field ArQument Field 

(label] RES n [a] 

The RES directive causes the location counter to be advanced n times of size a. n is a 
positive integer constant designating the number of units to be reserved. If a is omitted, 
n is interpreted as a byte count. a can be B for byte reservation, H for halfword 
reservation, W for word reservation, and D for doubleword reservation. Halfword, word, 
and doubleword reservations ~ill be forced to the correct boundary. 

14.lJ EGU Directive 

Label Field Operation Field Argument Field 

symbol EQU integer constant 

The EQU directive allows the user to equate any valid symbol used as a label to the 
integer constant as an absolute logical address value. The symbol in the label field is 
mandatory and cannot be redefined or match any FORTRAN 77+ variables. Reference 
the symbol only in the address field of a memory reference instruction or ~ the 
argument of an AC directive. The address value of this symbol has byte attribute unless 
the context of the reference indicates otherwise. (A symbol beginning with letters C or 
X in column 1 results in the line being considered a comment line.) 

14.14 Referencing Variables in Local Storage, COMMON, GLOBAL COMMON, 
orOATAPOOL 

Variables in local memory, COMMON, GLOBAL COMMON, or DATAPOOL can be 
referenced in INLINE assembly code by referring to the item by name. For example: 

INLINE 
LW 3,1 
STW 3,J 
ENOl 

is equivalent to the FORTRAN 77+ statement J=I. 

14.15 Referencing Dummy Variables 

Reference dummy variables, except extended dummies, as indirect. For example in: 

SUBROUTINE SUB(A,B) 

the sequence: 

INUNE 
LW 4,*A 
STW 4,*8 
ENOl 

would be equivalent to the FORTRAN 77+ statement B=A. 

14-6 
InHne Assembly 

Language Coding 
FORTRAN 77+ 

Reference Manual 



Referencing Variables/Setting and Clearing Extended Addressing 

r' T a reference an extended dummy variable, load its address (by referring to the variable 
name) into an index register, then reference the item by indexing with a zero offset. For 
example, in: 

( 

( 

SUBROUTINE EXSUB (X, Y) 
EXTENDED DUMMY X, Y 

the sequence: 

IN LINE 
LW 3,X 
LW 2,Y 
SEA 
LW 7,0,3 
STW 7,0,2 

CEA 
ENOl 

would be equivalent to the FORTRAN 77+ statement Y=X. 

14.16 Referencing Variables in Extended Memory 

To reference an item in extended memory, first load an index register with the base of 
the extended block, then index each reference to the variable with its extended block 
base. Given the data structure: 

EXTENDED BLOCK /IBLOCK/Il,I2 
EXTENDED BASE /IBLOCK/256 
EXTENDED BLOCK /KBLOCK/Kl,K2 
EXTENDED BASE /KBLOCK/257 
INTEGER IBLOCKAD,KBLOCKAD 

IBLOCKAD 
KBLOCKAD = 

= 256*2048 
257*2048 

the sequence: 

INLINE 
SEA 
L W 1, IBLOCKAD 
LW 2, KBLOCKAD 
LW 3, 11,1 
STW 3, Kl,2 
CEA 
ENOl 

would be equivalent to the FORTRAN 77+ statement Kl=l1. 

14.17 Setting and Clearing Extended Addressing Mode 

The user is responsible for setting extended addressing (SEA) mode or clearing extended 
addressing (CEA) mode in any inline coding. The user is also responsible for making sure 
that the addressing mode in force by the compiler when inline code is entered is still in 
force when exitin'g inllne code. -

FORTRL\N 77+ ' 
P, e fer ence ManUel i 

Inline Assembly 
~anguage Coding 

I 





( 

( 

(/ 

Q-lAPTER 15 

USING THE FORTRAN 77+ COMPlLER 

15.1 Introduction 

This chapter describes how to use options, job control language, devices, and assembler 
language routines with FORTRAN 77+ programs. It also describes how to call 
FORTRAN 77+ subroutines from assembler language programs. 

Refer to Appendix B for examples. 

15.2 Logical File Code Assignments 

The following are the logical file codes (LFC) associated with the FORTRAN 77+ 
compiler and their default assignments. 

LFC 

51 

LO 

BO 

GO 

*U1 

*U2 

*U3 

*U4 

Default 

$A5 51 TO 5YC 

$A5 LO TO 5LO 

$AS BO TO 580 

$AS GO TO SGO 

$AS *U1 TO TEMP SIZE=250 8LOC=Y 

$A5 *U2 TO TEMP SIZE=250 8LOC=Y 

$A5 *U3 TO TEMP 5IZE=100 8LOC=N 

dynamically allocated by FORTRAN 77+ 

Function 

source input 

listed output 

binary object output 

binary object output 

temporary utility file 

temporary utility file 

temporary utility file (for 
cross reference) 

input for INCLUDE directive 
files 

15.3 Compiler Options 

The following FORTRAN 77+ compiler options can be specified in an $OPTION statement 
using job control, or they can be specified or changed within a program using the" 
FORTRAN 77+ OPTION directive (refer to Chapter 2). 

Option Result 

1 

2 

3 

4 

5 

6 

FORTRAN 77+ 
Reference Manual 

Suppresses listed output on logical file code LO. 

Suppresses binary output to 580 file on logical file code 80. 

Suppresses storage dictionary on logical file code LO. 

Suppresses symbol cross reference on logical file code La. 

Enables general object output on logical file code GO. 

Lists generated code on logical file code La. 

Using the FORTRAN 77+ Compiler 15-1 



CompUer Options 

Option 

7 

8 

9 

Result 

Allows mismatched argument lists when passing arguments to 
subprograms. Causes arguments to be processed using F .PR instead 
of being processed inline. For more information refer to processing 
of arguments for subprogram calls in Chapter 9. 

Suppresses the flagging of duplicate type declarations as errors. 

Compiles source records containing a Y in column 1 as if the Y were a. 
blank. If this option is not set, these records are treated as 
comments. 

10 Character constant actual arguments are treated as Hollerith 
constants instead of character constants when passed to a 
subprogram. 

11 Code for DO loops is generated to execute all DO loops at least once. 

12 Enables the compiler to run in compatible mode even though native 
made was selected at installation. 

13 Enables the generation of subroutine calls for real-to-integer and 
integer-to-real conversions (non-hardware assisted) even though the 
hardware FIX. and FLOAT op tions (hardware assisted) were selected 
at installation. 

14 Utilize the CONCEPT 32/67 Scientific Accelerator for math intrinsic 
functions ALOG, ALOGI0, SIN, COS, ATAN, SQRT, and EXP. 

15 Includes compilation date and time in object modules (refer to 
Chapter 2). 

16 Utilize the operating system to find big blocking buffers. 

17 Enables the compiler to run in native mode even though compatible 
mode was selected at installation. 

19 Outputs symbolic table information for use by the symbolic debugger. 

20 Compiles source records containing an X in column 1 as if the X were 
a blank. If this option is not set, these records are treated as 
comments. 

Rules for Use 

• Options 1, 2, 3, and 4 may be changed within a program only if they have DEl been set 
in a $OPTION job control statement. 

• Options 7, 8, 11, 12, 13, and 16 may not be changed within a program. 

• Options 6, 10, and 15 may be changed within a program regardless of their having been 
set or not set in a $OPTION job control statement~ 

• Options 9 and 20 can be changed within a program only if it has been set in a $OPTION 
jab control statement. 

15-2 Using the FORTRAN 77+ Compiler 
FORTRAN 77+ 

Reference Manual 



( 

( 

( 

Run-Time Options! Job Control Language 

Changes to options 1, 4, 6, 9, 10, and 20 will take effect at the point in the program 
where they occur and will remain in effect until changed by another OPTION 
direc tive. 

Option 2 can be changed only before any declarations and all executable statements in 
a program unit. Option 2 can be changed before or after a PROGRAM, SUBROUTINE, 
FUNCTION, or BLOCK OAT A statement. 

• Options 3, 15 and 19 will be considered on or off for an entire program unit according 
to the last OPTION (or $OPTION job control statement) directive seen before the end 
of the program unit. 

15.4 Run-Time Options 

Option Result 

7 Minor errors that might abort· a program are ignored (refer to I 
Appendix 0 for a list of minor errors). 

8 The default for the BLANK specifier becomes zero for formatted 
input. 

Options 7 and 8 may not be changed within a program by means of the FORTRAN 
OPTION statement. 

15.5 Job Control Language 

Job control language (JCL) specifies the desired run-time environment. Some of the 
most common JCL statements used with FORTRAN 77+ programs are listed below (refer 
to the MPX-32 Reference Manual for a complete description). 

$JOB jobname Specifies the start of a batch job. 

$EOJ Specifies the end of a batch job. 
$$ 

$OPTION opl,op2, ••• ,opn 

$RUN program 

$EXECUTE program 

$ALLOCA TE size 

$ASSIGN lfc TO file 
or 

$ASSIGN lfc TO DEY: device 
or 

$ASSIGN Ifc TO LFC= alternate lfc 

Specifies the options for the next 
batch program to be executed. 

Executes a cataloged program in 
current working directory. 

Executes a cataloged program in 
system directory. 

Allocates the memory size (in bytes) 
needed for program execution. (The 
FORTRAN 77+ compiler dynamically 
allocates its required memory. 
Therefore, the $ALLOCATE state
ment should not be used for compiler 
execution.) 

Assigns a file, device, or another 
logical file code to the logical file 
code (unit) used in the next program 
to be executed for I/O. 

FORTRAN 77+ 
Reference Manual Using the FORTRAN 77+ Compiler 

Change 1 
15-3 



Compiling, Cataloging, and Executing 

Do not code the character $ in column 1 of the source program or input data passing 
through the SYC stream. Doing so causes premature termination of compilation or 
execution with unexpected results. 

15.5.1 Compiling 

The following is an example of the JCL needed to compile a FORTRAN 77+ program 
under MPX-32. 

$JOB COMPILE TESTl SLOF=E.SORT 
$ASSIGN SI TO S.TSORT 
$EXECUTE FORT77 
$EOJ 
$$ 

15.5.2 Compiling, Cataloging, and Executing 

The following is an example of the JCL needed to compile, catalog, and execute a 
FORTRAN 77+ program under MPX-32. 

15-4 

$JOB COMPILE YOUNG SLOF=E.SORT 
$NOTE COMPILE CATALOG AND EXECUTE A PROGRAM 
$ASSIGN 51 TO S. TSORT 
$ASSIGN SO TO O.TSORT 
$ASSIGN LO TO L.TSORT 
$EXECUTE FORT77 
$ALLOCA TE 10000 
$ASSIGN SGO TO O.TSORT 
$EXECUTE CATALOG 
ASSIGN 51 TO SYC 
ASSIGN LO TO SLO 
SUlLO WORDSORT 
$RUN WORDSORT 
0010 
MANIC 
SEVERAL 
FULFILL 
COMIC 
SLATE 
REVISION 
MOOD 
APPLE 
STALWART 
REFLECT 
$EOJ 
$$ 

NOTE: 
$ASSIGN SI TO S.TSORT 

$ASSIGN SO TO O.TSORT 

Assigns the logical file code SI to the source input 
file S. TSORT. 

Assigns the logical file code SO to the object file 
O.TSORT. 

Using the FORTRAN 77+ Compiler 
FORTRAN 77+ 

Reference Manual 



( 

Compili~ and Cataloging/Usi~ a T ap~ File 

$ASSIGN LO TO L. TSOR T Assigns the logical file code LO to the output file 
L.TSORT. 

$ASSIGN SGO TO O. TSORT Assigns the logical file code SGO to the object file 
O. TSORT for the cataloger. 

$ALLOCATE 10000 Provides adequate core space for the loader and the 
execution of the program. 

ASSIGN SI TO SYC Assigns the program's logical file code 51 to the 
SYC file. 

ASSIGN LO TO SLO Assigns the program's logical file code LO to the 
SLO file. 

$RUN WORDSORT Loads and executes the program WORDSORT. 

OOlO ••• REFLECT Data for the program. 

15.5.3 Compiling and Cataloging 

The following is an example of the JCL needed to compile and catalog a FORTRAN 77+ 
program for future execution. This job involves two steps: 

1. $EXECUTE FORT77 Compiles the program and places the 
resulting object code in the SGO file. 

, 
2. $EXECUTE CATALOG Catalogs the object code from the SGO 

file and places it into the newly created 
disc file. 

$JOB COMP&CAT TEST1 SLOF =E.SORT 
$NOTE COMPLE AND CATALOG A PROGRAM 
$OPTION 5 
$EXECUTE FORT77 . 

• (Note: FORTRAN source statements go here) . 
$EXECUTE CATALOG 
ASSIGN 51 TO SYC 
ASSIGN LO TO SLO 
BUILD WORDSORT 
$EOJ 
$$ 

15.6 Using a Tape File as a Data Source 

The following sequence uses the library format tape file SORTDATA. (A previously 
cataloged FORTRAN 77+ program uses logical file code 51 for input.) 

$JOB T APE.IN . 
$NOTE READS WORDS FROM A TAPE FILE 'SORTDA T AI 
$OPTION 8 
$ASSIGN S11 TO DEV=MT BLOCKED=N 

FORTRAN 77+ 
Reference Manual Using the FORTRAN 77+ Compiler 15-5 



Usirg a Disc File 

Note: 

$EXECUTE UPDATE 
ISKIP SORTD'A T A 
IEXIT 
$ASSIGN SI TO DEV=MT BLOCKED=N 
$RUN WORDSORT 
$EOJ 
$$ 

$OPTION 8 

$ASSIGN SIl TO DEV=MT BLOCKED=N 

$EXECUTE UPDATE 
/SKIP SORTDATA 
/EXIT 

$ASSIGN SI TO DEV=MT BLOCKED=N 

$RUN WORDSORT 

Option 8 specifies that the SIl file 
will be unblocked. 

Assigns the iogical file code SIl to a 
magnetic tape drive. The operator's 
console will receive a message 
requesting that the tape be mounted 
when this job is executed. 

Advances the tape to the file with 
header SOR TDA T A. 

Assigns the logical file code SI (from 
the cataloged FORTRAN program) to 
the tape drive, thus overriding the 
cataloged assignment for 51. 

Executes the cataloged program. 

15.7 Using a Disc File for Output Data 

The following example places the output of WORDSORT in the disc file OUTSORT. 
WORDSORT uses logical file code (unit) LO for output. 

15-6 

$JOB DISK. OUT OWNRNAME 
$NOTE WRITES SORTED WORDS TO USER DISC FILE 'OUTSORT' 
$EXECUTE VOLMGR 
CREATE FILE OUTSORT 
$ASSIGN LO TO OUTSORT 
$RUN WORD SORT 
0010 
MANIC 
SEVERAL 
FULFILL 
COMIC 
SLATE 
REVISION 
MOOD 
APPLE 
STALWART 
REFLECT 
$EOJ 
$$ 

Using the FORTRAN 77+ Compiler 
FORTRAN 77+ 

Reference Manual 



( 

Note: 

$EXECUTE VOLMGR 

CREATE FILE OUTSORT 

$ASSIGN LO TO OUTSORT 

$RUN WORDSORT 

15.8 Using Data from Cards 

Using Data from Cards/Calling Assembly Routines 

Executes the volume manager. 

Creates the user file OUTSORT in the 
user's current directory. 

Assigns the logical file code LO of the 
cataloged program to the disc file 
OUTSORT. 

Executes the cataloged program 
WORDSORT. 

The following is an example of using the card reader as an input device. The FORTRAN 
program WORDSORT uses logical file code (unit) 51 for input. 

$JOB CARD.IN OWNRNAME 
$NOTE READS WORDS FROM CARD READER 
$A551GN 51 TO DEV=CR 
$RUN WORD50RT 
$EOJ 
$$ 

Note: 

$A551GN 51 TO DEV=CR 

$RUN WORD50RT 

• 
Assigns the logical file code 51 from 
the cataloged program to the card 
reader. When this job is run, the 
operator's console will print a message 
asking for the cards to be placed in 
the reader. The user must place an 
EOF card (2-3-4-5 multi-punch in 
column 1) behind the last card. 

Executes the cataloged program. 

15.9 Calling Assembly Routines from FORTRAN TI+ Programs 

The FORTRAN n+ compiler generates three different types of calling protocols for 
CALL statements. The code generated is determined by the number of parameters in the 
CALL statement. The three types of calling protocols are associated with the following: 

• Calling the assembler routine with no parameters. 

• Calling the assembler routine with one parameter. 

• Calling the assembler routine with more than one parameter. 

The code generated must follow protocols for: 

• Parameter locations (addresses) 
• Return address 

FORTRAN 77+ 
Reference Manual Using the FORTRAN n+ Compiler 15-7 



Calling Assembly Routines 

When parameters are passed by FORTRAN 77+, the parameters are formatted as shown 
in Table 15-1. 

15.9.1 Assembly Routine with No Parameters 

To be called by a FORTRAN 77+ routine, the assembly routine must: 

• Declare the name of the assembler entry point (DEF directive). 

• Return to the FORTRAN 77+ routine by a transfer register to the program status word 
instruction (TR5W) using the content of Register a upon entry to the routine. 
Alternatively, the return address can be stored in a memory location and return is 
effected by an unconditional branch indirect (BU *' RETAODR). 

15.9.2 Assembly Routine with One Parameter 

For a FORTRAN 77+ program to call an assembler routine with one parameter, the 
assembler routine must: 

• Declare the name of the assembler entry point (DEF directive). 

Use the value in Register 1 (one) as the address of the single parameter from the 
FORTRAN 77+ program that called the routine. 

• Return to the FORTRAN 77+ routine by means of the link address in Register o. 

15.9.3 Assembly Routine with Two or More Parameters 

For a FORTRAN 77+ routine to call an assembler routine with more than one parameter, 
the assembler routine must: 

• Declare the name of the assembler entry point (OEF directive). 

Use the parameter area in the FORTRAN 77+ routine pointed to by the address in 
Register 0, as illustrated in the foHowing example. 

Calculate the return address and transfer to it (as illustrated in the foHowing 
example). 

15.9.4 Parameter Area 

Example 

word 0 
word 1 
word 2 

word n 

number of parameters*'4 (pointed to by register 0) 
address, possibly indirect, of parameter one 
address, possibly indirect, of parameter two 

address, possibly indirect, of last parameter 

Each of the entries in the parameter area is one word long on a word boundary. 

15-8 Using the FORTRAN 77+ Compiler 
FORTRAN 77+ 

Reference Manual 



( 

r 

Calling Assembly Routines 

15.9.5 Calculation of the Return Address 

The assembler routine can calculate the address within the FORTRAN 77+ routine to 
which control should return. This address is that of the first word after the parameter 
area. If the PSW (received upon call of the assembler routine) is still in Register a, then 
the following assembler code will update Register a and return to the correct return 
address: 

TRR 
ABR 
ADMW 
TRSW 

Examole 

RO,R1 
RO,29 
RO,0,R1 
RO 

The following sequence shows a FORTRAN 77+ routine calling an assembler program to 
print the addresses of specific 'C.DOTS'. 

FORTRAN 77+ 
Reference Manual Using the FORTRAN 77+ Compiler 15-9/15-10 





(~ 

CALLER 

I 
2 
J 
II 
5 
6 
7 
8 
9 
10 
II 
Ii! 
IJ 
III 
15 
16 
17 
18 
19 
?O 
21 
22 
2J 
211 
2'5 
2" 
27 
28 
29 
]0 

C 
C 
C 
C 
C 
C 

C 
C 
C 

C 

c 

c 
c 
C 
70 
11 

,-, 

PAOGR AM CALLE R .. _-----._---------------_.---------------------------._.-.-.-.. _. 
• THIS PROGRAM IS AN [XAMPLE OF , FORTRAN PROGRA~ CALLING 
• AN ASSEMBLER PROGRA~ TO PRI~T THE ADDRESSES OF SPECIfIC 
* 'C.OOTS'. .. _._-----_._----------------------.-._.------_._.-_.-------------
INTEGER NA~E,VALUE,BLANK 
nATA BLANK /IIH / 

LOOPI GET NAME, CALL COOT, PRINT RESULTS 

DO I 00 fOREVER 

READ (*,FMT:'(AII)') NAME 
If (NAME.fQ.BLANK) STOP 
CALL COOT(NAME,VALUE) 
IF (VAlUE.EG.O) THEN 

WRIT~ (*,70) NAME 
ELSE 

WRITE (*,71) NA~E,VALUE 
ENOIF 

ENDOO 

LA6ELED FORMAT STATEMENTS 

READ IN A NAME 
BLANK INDICATES LAST INPUT 
SEARCH FOR 'C.' 
IF lERO I NOT FOuwn 
IoRITE NAME ONLY 

ELSE 
~RITE NAME AND AOPRESS 

FORMAT (IX,I"C.',III,·" DOES NOT EXIST') 
FORMIT (lx,'C.',III,·zl,lB) 
END 

" 

U,10521 

1~-1l/1~-12 I 





~: 

rOOT 

00007 
~OOOIl 

00009 
(lOOIj) 
oon II 
00012 
00011 
oooia 
00015 
00011> 
00017 

00011' 
ooolq 
00020 
0002\ 
00022 
(10021 
00021.1 
00025 
0002f> 
00021 
00028 
00029 
00030 
00(131 
OOOH 
OOOH 
00031.1 
00035 
(1003& 
OOI)H 
000\1\ 
00039 
oooao 
000111 
000112 
0004] 
0001.1/1 
000115 
000111> 
00047 
00041\ 
(looaq 
(100')0 
00051 

Pl)foOOO 

:>1) nt)O 0 
POOO(lO 
POOOOII 
PI)OOO~ 

POOOOC 
rOOOIO 
porOl1l 
1'000Itl 
POfJOIC 
P00020 
Pu00211 
Pli002" 
POOO2C 
POOOlO 

POOO]O 
POOOlO 
POOOlll 
POf'03l' 
POOOl( 
POOOI.IO 
POOOIIU 
POliO"" 
pnOOliC 
P00050 
P(lOOSI.I 
Ponosi:' 
P(II)OSC 
PO~O&O 

"Il.Ib1.lC51 
II11.1E5957 
1.121.195<120 
q3llS4ESI.I 
IllS5S252 
111111\511"5 
1l1.11115920 
11II51S511S 
IIbS21lSU5 
lIeliFIlCilll 
QOll91.14l1C 
SOQfqf'lC 

000800llE 
00080908 
oooeOl8C 
000eOd08 
0008081: 8 
OOOI\OI\()O 
000801106 
00080UII 
0001101100 
0001l09CC 
00080AOO 
OO(lIlOAFI.I 

OOOOE 
00908 
OOASC 
00808 
008E8 
00800 
OOIlOR 
OOAAIl 
1108011 
1I09CC 
OOAOO 
OOAF Il 

-

PROGRAM COnT 
I'EF conT 

•• ***** •• ** ••• * •• **.*.**.* •• *.~ ... **.*.****.**.*.***** •• _*.**.**a*a_*_ •• 
• 
• 
• 
• 
• 
• 

CDOT - HETIJIll'lS YAUE (AflO~ESSI Of A C,XXXl( 

~JOTEI All COOT NA"f!l "uST BE rCtlR ASCII CHARACTERS, LHT
JUSTIfiED, ~LAN~ FILLfD. Th[ ADOIlESS OF THf YA~IA81.E 
CONTAl~ING THE ~A~E MUST ~E ON A WORD dOUNDARY, THIS 
SIIIIROllTJNf. IS fORlPlN cn~ PAT A6LE, 

•• ********************* ••• *********.*.* •••• ***.* •• **** **.*******~** •••• * 
M,fYUS 

• 
• 
* NAf.AES 

[NOM 

NAMES Of 4-CHARACTER couTS 

EO'J 
OAThl 
OATh, 
OAl Ail 
"HAw 
OATAw 
OAU~I 

OATA'" 
nAUw 
DAThl 
OATA,.. 
OATAW 
OUAI\ 

ENONAIIES rail 

S 
C'AfLr!' 
C'ANYv.' 
C'IIIT ' 
C 'Cf'Il' 
C'CURR' 
C'OATE' 
C'OAY , 
C'OUIlE' 
C'FREE' 
C'n(lLD' 
C'''IOL' 
C'POOL' 
f 

• 
• 
* 
OLIJES 

E.rWVAL 

VALUES Of q-CkA~ COOTS IN SAME ORDER AS Nl4ES Of 'I-CHAIl COOTS 

EOU 
ACII 
lCR 
ACa 
ACR 
ACB 
ICIi 
ACII 
lCIl 
ACK 
A(II 
ACq 
ACU 
fQU 

, 
C,AfL\'. 
C.ANYI\ 
r .R IT 
e.CENT 
C.CURf! 
C.OAH 
C.OAY 
C.OQUE 
C.fIlEE 
C.~OlO 

C."IOL 
e,POoL , 

U~u~J2l::i 

1,)-13/15-14 I 





~. ~ "..---., 

conT 

000'11 * 
0005" * fXfClITABLE COilE 
0011<;5 * 
000510 POOObO ocollooeo POOOCO COOT STF RO,SAVEREGS 
00057 POOObli 2CI.!0 TRR RO,RI 

POOOf,b 0002 
000511 POOOb8 153000011 000001 LA A2,*II'4,AI ACTUAL ArDA[SS OF FIRST PAR~(~A~£) 
00(159 POOOH AFIIOOOOO 00000 L~' Rb,0",R2 LOAD COOT NAME 
OoobO * 
OOObl .. FINO ~ATCH OF II-CH.A NAME TO GET OFfStT INTO VALUE TABLE . 
000b2 * 
OOOB POOO70 CAlIOFFno FOURC LJ R5,NA~ES·E~O~AMES GET NEGATIVE • ~OROS I~ NAME TARLE 
O(lObQ POO!'ll1 OORO lR A] 81AS fOR LOOP 

POOOlb 0002 
000b5 POOO71! 9]1>00000 pnoooo LOOPII CAlAI\ Rb,N"04ES,Rl CO NA~ES MATCH 1 
00066 PII007C ££000091 POO090 AEQ "'ATCHII IF SO - IIRAI-ICH 
000b7 poooeo 221'] ABA R],29 ELSE - INCAE~ENT 81AS 

PonllS2 0002 
OOObll POO0811 FbCOOO79 POO071.! AI!' R5,LIlOPIi INCREMENT Alln TRY AG'IN IIIILESS ZERO 
000b9 * 000711 Or NAVES DON'T "'ATCH 
00071 .. 
00072 pOOoe8 06800008 0011011 STw R5,.21't,RI STORE ZERO USING PARAMETER AnDRESS 
00011 POO08C ECOOO090 pI)00ge BU AYE GO RETURN TO CALLER 
000711 .. 
00015 • GET VALUE OF Ii-CHAR N'~f AND STORE AS PARM TO CALLER 
00076 • 
00077 POII090 AEE 000]0 POOO]II MATCHII LI'o R5,vaLlJES,R] GET vaLUE USING OFFSET 
0007" POO0911 IE51 IBR AS,,2 lEAD BYTE-ADDRESS-INDICATOR ~IT 

POOOqb 0002 
0007q POOOqf!, "6ROOOOI! 00008 ST'" R5,·21'o,AI STORE VALUE USING PARAMETER ADDRESS 
oon80 .. 
OOO!U PGOl)qc BII2001101 00002 8YE ADMH RO,IH,RI ADO PARAMETER COUNT dlAS 
00082 POOOAO e('IIIOooq ADI RO,lw ADO O~£ ~ORD 81AS 
00081 POOOAlo 0110000(0 POOOCO STw RO,SAVEREGS SAVE HrTuR~ ADDRESS 
000811 POOO~8 ccooooeo pooocn LF Ro.saVEREGS RESTORE REGI~TER CONTEXT 
0008'5 POOOAC 2800 TASI'o RO AETUR~ TO CALLING PROGAA~ 
001186 .. 
00081 ponoeo flOI)ND IF 
00086 POO(\CO SAVfAEG5 PES IF 
00089 PO(lOEII ENn 

• ooon EPAflAS IN CI'OT 
JEOJ 

H·UJ!...~\.1 

lS-1~/lS-16 I 





( 

(' 

"-

Calling Conventions 

15.9.6 Function Calling Conventions 

Arguments to the function are passed just as they are for subroutines. The function 
value (if not of CHARACTER data type) is returned in one or more registers as follows: 

Value Returned 
Function T YRe in Register(s) Number 

INTEGER*I,*2,*4 
INTEGER*8 

7 
6,7 

(value is right-justified in R7) 

REAL*4 . 
REAL *8,COMPLEX*8 
COMPLEX*16 
LOGICAL*I,*4 

7 
6,7 

4,5,6,7 
7 

A CHARACTER type function value is returned in a memory area, the address of which 
is supplied with the calling .parameter list. This memory area and its address are 
established by the compiler transparently to the user. 

15.10 Calling FORTRAN 77+ Subroutines from Assembly Language Programs 

The FORTRAN 77+ compiler generates three different types of calling protocols for 
. CALL statements. The code generated is determined by the number of parameters. 
Thus, for an assembler program to call a FORTRAN 77+ program, the assembler program 
must use the same calling protocol as the FORTRAN 77+ program. 

Function and subroutine calling conventions are the same, except the function value is 
returned in one or more registers. 

15.1D.l FORTRAN 77+ Subroutine with No Parameters 

To call a FORTRAN subroutine with no parameters: 

1. Declare the subroutine name external (MACRO statement EXT). 

Z. Branch and link to the subroutine (MACRO operation BL). 

The FORTRAN 77+ subroutine will return control to the assembler routine at the word 
following the branch and link. 

15.10.2 FORTRAN 77+ Subroutine with One Parameter 

To call a FORTRAN· 77+ subroutine with one parameter: 

1. Declare the subroutine name external (MACRO statement EXT). 

Z. Load Register 1 (one) with the parameter address. 

3. Branch and link to the subroutine (MACRO operation BL). 

FORTRAN 77+ 
Reference Manual Using the FORTRAN 77+ Compiler 15-17 



Calling Conventions 

The FORTRAN 77+ subroutine will return control to the assembler routine at the word 
following the branch and link. 

Start the parameter storage location in the assembler routine on a boundary compatible 
with the type of FORTRAN 77+ variable associated with the parameter. 

15.10.3 FORTRAN 77+ Subroutine with Two or More Parameters 

To call a FORTRAN 77+ subroutine with two or more parameters: 

1. Declare the ·subroutine name external (MACRO statement EXT). 

2. Set up a parameter area immediately after the branch and link (refer to the 
following examples). 

3. Branch and link to the FORTRAN 77+ subroutine (MACRO operation BL). 

Example 

PARAMETER AREA 

BL 
DATAW nW 
ACx 
ACx 

ACx 

FORTRAN subroutine name 
number of parameters 
address of first parameter 
address of second parameter 

address of last parameter 

15.10.4 Parameter Lists Generated by the Compiler 

The preceding information is adequate for normal FORTRAN 77+ subprogram calls where 
extended memory parameters are not involved. For other cases, it may be necessary to 
duplicate the full parameter word content as generated by the compiler; this content 
includes parameter type information with descriptor flags for array and for extended 
memory parameters. Table 15-1 describes the full parameter word content. 

15-18 Using the FORTRAN 77+ Compiler 
FORTRAN 77+ 

Reference Manual 



( 

r 

r\ 

* 

** 

Bit(s) 

o 

1* 

Z* 

4-7 

Table 15~1 
Compiler Parameter Lists 

Usage 

A pseudo-indirect flag indicating that a parameter word points to a 
remote parameter word containing the Z4-bit address of an 
extended memory entity. 

An extended memory flag indicating that a parameter word has a 
244Jit address field. 

A pseudo-F -bit flag (when bit 1 is set) indicating that a byte is 
addressed. 

A bit parameter flag (when bit 1 is set) indicating that a specific 
entity is of type bit. 

A type code (when bit 3 is reset), as explained in Table IS-Z. 
or 

A bit position within a byte (when bits 1, 2, and 3 are set). 

8 An array flag indicating the parameter is an array (used by 
argument transfer routines A. TF and A. TU). 

9-10 Unused. 

11 An indirect flag indicating the parameter address is to be ob tained 
by indirect reference. 

12-31** An address field, including format bits for halfword or doubleword 
entities. 

Bits 1, 2, and 3 are only present in a remote parameter word pointed to by an actual 
parameter list word in which bit 0 is set. 

When the format bits are set and indexing takes place, the format bits will alter the 
instruction. To prevent this, either remove the format bits before the address is 
used or place the address into a storage location and access the parameter value 
indirectly through that location. However, the indirect method must not be used 
for extended addresses. 

FORTRAN 77+ 
Reference Manual Using the FORTRAN 77+ Compiler 15-19 



Type Code (Hexadecimal) 

a 
1 

2 

3 

4 

5 

6 

7 

B 

9 

A 

B 

Table 15-2 
Type Code 

Type 

INTEGER*l 

INTEGER*2 

INTEGER*4 

INTEGER*B 

REAL*4 

REAL*8 

COMPLEX*8 

COMPLEX*16 

BIT 

LOGICAL*l 

LOGICAL*4 

CHARACTER 

Using the FORTRAN 77+ Compiler 
FORTRAN n+ 

Reference Manual 

r-" 
~/ 



( 

A.l Input/Output Terms 

APPENDIX A 

I/o USlNG MPX-32 

The following is a list of FORTRAN 77+ and MPX-32 terms that relate to input/output. 

• Formatted - A FORTRAN 77+ term applied to those records read or written under the 
editing direction of format, e.g., READ (6,99). 

• Unformatted - A FORTRAN 77+ term applied to those records read or written without 
format editing, e.g., READ. Note that the Scientific Run-Time Ubtary applies its 
own blocking scheme to the physical transfer and this blocking scheme is distinct from 
MPX-32 file blocking. 

• Asynchronous input/output (BUFFERIN/BUFFEROUT) - A FORTRAN 77+ term that 
describes a method of performing a read or write directly to or from a user's buffer by' 
use of CALL BUFFERIN or CALL BUFFEROUT, respectively. No formatting or 
padding is done. No-wait input/output is used; the user is responsible for insuring 
input/output completion before buffer content is used or altered. 

• Blocking - An MPX-32 term that describes the MPX-32 Input/Output Control System 
capability of placing multiple logical records into a 768-byte physical record, along 
with record control information. Applicable to all spooled files and optionally to disc 
oT magnetic tape user files. Independent of formatted, unformatted, and asynchronous 
I/O. 

• Compressed - An MPX-32 term meaning a format for source information that removes 
superfluous space codes and replaces them with count control bytes. It is supported by 
assembler, source update, and editor. Independent of blocking. 

• No-Wait I/O - The MPX-32 capability to start (or merely put into queue) an 
input/output request and to immediately return to the requesting task. 

• Direct I/O - The MPX-32 capability of permitting a privileged task to issue its own 
actual machine language input/output instructions. (Unrelated to the term direct
access input/output.) 

• Logical File Code - An MPX-32 term meaning the one- to three-character 
alphanumeric field used in all file assignments. With the exception of logical file code 
'UTI, this field has absolutely no fixed system-wide relationship to the permanent file 
name, the system file, the physical device assignment, and another logical file code. 

Logical file code 'UTI is automatically connected to user terminal by the operating 
system for interactive tasks. 

FORTRAN 77+ 
Reference Manual I/O Using MPX-32 A-I 



A.2 General Observations 

• If one writes a file in a particular combination of method and format, then one 
generally must read it using the same method and format. 

• Some of the methods and formats can be combined. 

Formatted and unblocked 

Unformatted and unblocked 

Asynchronous and unblocked 

Formatted and blocked 

Unformatted and blocked 

Asynchronous and blocked 

• Some methods are generally more time-efficient than others: 

Asynchronous more than synchronous 
Unformatted more than formatted 
Unblocked more than blocked 

• Blocking is requested by using the OPEN statement with BLOCKED = . TRUE.. If too 
many (31) blocked file codes are opened, an 'RT99' abort code is issued. 

• In MPX-32, assembly language programmers can specify random I/O to 192 words in 
length by setting bit 4 of word 2 of the' file control block (refer to the MPX-32 
Reference Manua!). This method is also available as nonsupported FORTRAN-callable 
subroutines in the SORT package, ISAM package, and in the user's group library. 

A.3 End-of-File Detection 

End-of-file detection is performed for all blocked and/or unformatted files. End-of-file 
detection is also performed for formatted/unblocked disc and magnetic tape files, card 
and paper tape reads. In the default detection method, used by the FORTRAN 77+ 
compiler, X'OF' detected as the first byte of a formatted, unblocked record means end
of-file. 

Because of possible conflicts between data patterns and the end-of-file code on 
formatted/unblocked magnetic tape and disc files, an optional end-of-file method is 
available. A call to the SRTL routine X:MPXEOF causes the optional method of end-of
file detection to override the default method. In the optional method X'OFEOFEOF' 
indicates end-of-file when detected as the first word of a record. 

This optional method provides a better means of discriminating between data patterns 
and EOF indicators, but does not completely eliminate ambiguities. If closer 
discrimination is necessary, blocked files should be used. 

I A.4 Maximum Sizes 

MPX-32 assumed disc sector size: 192 words (768 bytes) 

MPX-32 assumed maximum record lengths: 

Magnetic tape 
Cards 
Line printer 
Teletypewriter or CRT 

Change 1 
A-2 

8190 bytes 
120 bytes 
144 bytes 
80 bytes 

I/O Using MPX-32 
FORTRAN 77+ 

Reference Manual 



Formatted I/O logical record lengths 

Unblocked files 

Blocked files 

SBO 
SGO 
SLO 
SYC 

Unformatted I/O logical record lengths 

Unblocked files 

Blocked files 

SBO 
SGO 
SLO 
SYC 

768 bytes 

254 bytes 

80 bytes 
254 bytes 
133 bytes 
80 bytes 

3,128,580 bytes* 
(4095 physical records of 192 words: 
191 words of user data plus 1 header word) 

736 bytes excluding all header words 

116 bytes excluding header word 
116 bytes excluding header word 
250 bytes excluding header word 
116 bytes excluding header word 

* Record lengths can be further restricted by physical device characteristics. 

( I A.5 Unformatted I/o Records 

r 

For unformatted I/o records, the first word of each physical record is a control word 
with the following format: 

Bits 

o 78 1920 31 

Record Physical Byte Physical Record Number 
Type Count Within This Logical Record 

The physical byte count includes the header record itself. 

Record Type 
(Hexadecimal) 

FF 
DF 

OF 

Description 

Indicates unformatted record 
Indicates last physical record 

in the logical record 
Indicates end-of-file for run

time routines 

This information pertains to magnetic tape as well as to disc units. 

FORTRAN 77+ 
Reference Manual I/O Using MPX-32 

Change 1 
t\-3 



Unblocked physical records contain 192 words. For blocked files, each physical record is 
equal to one blocked record. The physical byte count for a blocked record cannot exceesl 
255 bytes. Logical records can span mUltiple sectors, while physical records within the 
logical record cannot. 

I A.6 Device Type Codes 

The following are the device type codes used for the FORTRAN 77+ OPEN statement, 
INQUIRE statement and the callable MPX-32 subroutines. 

Device 
Type Code 

(Hex) 

00 
01 
02 
03 
04 
05 
06 
07 

08 
09 
OA 
08 
OC 

00 
OE 
OF 
10 

11 
12 
13 
14 
15 
16 
17 
18 
19 
lA 
18 

Change 1 
A-4 

Decimal 
Eguivalent 

00 
01 
02 
03 
04 
05 
0.6 
07 

08 
09 
10 
11 
12 

13 
14 
15 
16 

17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Two-
Character 

Device 
Mnemonic Device Descrietion 

CT Operator console (not assignable) 
DC Any disc unit 
OM Any moving-head disc 
OF Any fixed-head disc 
MT Any magnetic tape unit 
M9 Any nine-track magnetic tape unit 
M7 Any seven-track magnetic tape unit 
CD Any card reader or card 

reader/punch 

CR Any card reader 
CP Any card punch 
LP Any line printer 
PT Any paper tape reader/punch 
TY Any teletypewriter (other than 

console) 

CT Operator console (assignable) 
FL Floppy disc 
NU Null device 
CA Communications adapter 

(binary synchronous/asynchronous) 

UO F or user-defined application 
Ul For user-defined application 
U2 F or user-defined application 
U3 For user-defined application 
U4 For user-defined application 
U5 For user-defined application 
U6 For user-defined application 
U7 For user-defined application 
U8 For user-defined application 
U9 For user-defined application 
LF Lineprinter / floppy controller 

(used only with SYSGEN) 

I/O Using MPX-32 
FORTRAN 77+ 

Reference Manual 



[ 

( 

( 

APPENDIX 6 

USTING EXAMPLES 

6.1 Source Usting 

The FORTRAN 77+ source listing facility provides a sequenced listing of the 80 byte 
program source input records and generated statement markers for use with the Symbolic 
Debugger. Specifying $OPTION 1 or FORTRAN 77+ directive OPTION 1+ suppresses this 
listing. 

B.l.l Source Usting F annat 

The source listing begins with the name of the source module, whether it is a program, 
subroutine, function, etc., in the upper left hand corner of the listing. If listed output 
(LO) is assigned to system listed output (SLO), the module name appears in the upper left 
hand corner of every page in the listing. 

The listing of the 80 byte input source records appears below the name. The format for 
each line on the page is as follows: 

A compiler generated line sequence number appears at the left margin. 

A statement marker for use with the Symbolic Debugger under MPX-32, if 
applicable, appears to the right of the sequence number. The statement 
markers have the form S.n where n is a compiler assigned statement number. 
The numbers are always in ascending order, however, they may not always 
appear in consecutive order since some source statements contain mUltiple 
statement constructs. In that case, only the first marker for that line appears 
in the listing. 

An 80 byte source input record, displayed as read from the assigned inputs for 
the FORTRAN 77+ compiler, appears several spaces to the right of the 
statement marker. 

This format is maintained throughout the compilation of the entire program unit, unless 
the generated code listing is also selected. In that case, the two listings will appear to 
be interspersed. 

A source listing is provided for a program, EXAMPLE. This program is not meant to be a 
program having any utility or to suggest any recommended 'programming practices. It 
was written to show a few FORTRAN constructs and how the elements of the constructs 
relate between the various listing formats. The comments appearing on the right side of 
the source listing lines have been added to aid in comparison of the other listing 
formats. They are not generated by the compiler. Also, the relative addresses will 
change between versions of the compiler. It is important to be able to relate the various 
listing elements for a given compiler. . 

The source listing should be compared with the storage dictionary in section B.2, the 
symbolic cross-reference in section B.3, and the generated code listing in section 6.4. 

FORTRAN 77+ 
Reference Manual Listing Examples B-1/B-2 





~. 

fOATHAN 1,. AflfASf 4.1.1 

EHHHE 

1 
2 
) 
4 
S 
6 
7 

• 9 
10 
11 
12 
15 
14 
15 
16 
11 
18 
19 
20 
21 
22 
n 
24 
2S 
26 
21 
28 
29 
30 
]1 
12 
H 
14 
15 
36 
)7 

18 
39 
40 
41 
U 
4] 
44 
45 
U 
47 
48 
49 
SO 
51 
52 
n 
54 

~~ 

NAIIVE HOOE 

PROGRAM HAMPlE 

(----- THIS EXAMPLE PROGRAM WAS DESIGNED AS AN AID TO UNDERSTANDING 
(----- TilE WAYS IN WHICH THE SOURCE LISTING, THE SIORAGE OICIIONARl, 
C----- IHE SYMBOLIC CROSS REfERENCE, AND THE OPTION 6 GENERATED CODE 
C----- LISTING RELATE TO'EACH OTHER. fOR CLARifiCATION, THE COMMENTS 
C----- HAVE aEfN ADDEO ON THE STATEMEHT LINES TO PROVIDE A MEANS Of 
C----- VfRlfYING RELAIED IIEMS. 

C----C----C-----
C----- oaSERVE IN THE SlORAGE DICTIONARY THE 
C----- aELATlvE ADDRESSES ASSIGNED fOR THE 
C----- VARIAILES AND CONSTANTS. 

c----- DeSERVE IN IHE SYMaOLIC CROSS REfERENCE 
C----- HOW THE OCCURRINCES Of THE VARIOUS 
C----- SYHIOLS ARE LOGGED. 

C----- OISERVE THE CORRELATION IN IHE '5." 
C----- STATEHENT LAIELS fOR THE SYHIOLIC 
C----- D~IUGGER USAGE IE1WEEN THE SOURCE 
C----- LISTING AND THE OPTION 6 GENERATED 
C----- CODE LISTING. 

INTEGER'I REG6lSAV 
JNHGU-I I¥ARt 
INTEGU.4 IVAU 
INHGU'Z IVU) 
INTEGER'I IVAl4 
CHARACTER'IO CVA.' 
CHARACTER'I CVAaZ 
REAL" RVUl 
AUL'4 IUal 
LOGICAL*4 LVUI 
LOGICAl'1 LvU2 
INTEGER" IADORESS 

C----- DeSERVE HOW THE EQUIVALENCE CAUSES THE 
C----- TWO VARIA'LES 10 HAVE 'HE SAME ADDRESS. 

EQUIVALENCE CIVAR4. CVARI) 

C----- OBSERVE HOW THE COMMON STATEHENT AffECTS 
C----- THE RELAIIVE lOORESSES Of THE ITEHS 
C----- DEfiNED TO IE IN COMHON. 

INUGER-' CIVAU 
INtEGER" CIVAH 
INUGU'2 (JUU 
INtEGER'1 C I VAl4 

COHHON I CEXAH'LE I CIVlII.ClvAaZ, 
A CIVAa3,ClvAR4 

IELATIVE Of.UGGEI 
lOOIESS SYHBOLS 

'00001 
'00000 
,OOOEC 
,OOOFS 
,00000 
'00000 
,OOOCI 
POOOEO 
POOOF4 
POOOfO 
,OOOU 
POOOU 

I '00000 

COOOOO 
COOOOI 
COOOOC 
COOOOE 

COOOOO 

0004.000 
OOOS.OOO 
0006.000 
0001.000 
0008.000 
0009.000 
0010.000 
0011.000 
0012.000 
0011.000 
0014.000 
0015.000 
0016.000 
0017 .000 ' 
0018.000 
0019.000 
0020.000 
0021.000 
0022.000 
002).000 
0024 .000 
0025.000 
OOU.OOO 
0021.000 
0021.000 
0029.000 
OOSO.OOO 
00]1.000 
OOH .000 
OOH.OOO 
OOH.OOO 
OOlS.OOO 
0016.000 
DOn .000 
OOH.OOO 
0039.000 
0040.000 
0041 .000 
0042.000 
0043.000 
0044.000 
0045.000 
0046 .000 
0047.000 
0041.000 
0049.000 
0050.000 
0051.000 
OOH.OOO 
0053.000 
0054.000 
005S.000 
0056.000 
0057 .000 

U'lO'J~U 

B-J/ll-4 

I' 





r 

( 

III 
Q 
Q 

z: ... ... -.. 
4( 

z 

. .., 
... .. 
• ... 
-' ... .. . ... ... 
z ... 
c ... .. ~ 

<-
... z: .. • Q '" ... ... 

Q===O=OOOOOO==O=OOOO=OOOOO=OOOOOOOOOOOOOOOOO~OOOOOOOOO 
000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000 . " " ... " " , ... " , " " " " .. " " .. " ... " ... " . . . . . " . " .. " ..... " " " " .. .. O~N~.~~~ .• O~~~.~.~ •. O~N~.~.~_.O_~~.~.~ •. O_N~~~.~_.C~ 
~~~~4.~ ••• ~~~~~~~~~~~~. ________ •••••••••• ~OOQQQQOOOQ_~ 
OOOOOOOOOCOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOO ___________ _
00

-"' •••• • :.~=...........
030030 -- Z::ZZ

N ==== " _ ...
-.4.-.",
IUWIMW

N \D ... ~~ •• _flW ,.,.
31313131

"C4 """''''cCZZZ:c
:'=-0000 ,.. ... ""'-1"'..,
.. 1M '" .. ::::::::
c , ,

• , I I , , , .
I •••
I I ••
IIo.IUUW

u .. "' .. .,00_
0
0000
0000

.........
•••• .C ... C _.a:. --- ..
••••
_N
ca •••
... e
:a»»:.
"" W'"'

... --..
• ..
:: -.....

• Z ,.
Z

• 0 ... -.... c: ,. ..
• I

I
I
I
I ...

... "'....... ...
" . "" .

"" "' ... W't

..
..
N . ..

...... 0 ... "' Ift,..
_NON
0000
0000

..
o
o ~

'" 1M .. 0 VI: _ N .:t._ ... 0
... :a 0 _ II.
Cz_ WIU ...
"'Zt4,...- ..
Z ... ~."' "' "' ..
"" 0

_"" •• >1:0 _.... ..
"' w '"

2l1li:' ... , ... 1ft
o~o ,
..,"' ... 1:1 ...
..... S
• 3 0 _
o :. .. Z»z ,
tU:OZ;,.O.-t
: :::»0 a_a,. 0 2_ ___ ..
20 u
_: CCWM

~ .. o»
-Q -~
:.zz Wi-C. • z..., W
IM.tIC .. _ • • .,. ... 0...... 00 _ ... _"'to'"
O..t '"

I I • I
I • I I
I • I I
t , I I
•• I I
uuu

::II

..

• I I I
I I I
I I I
I I I
I I I

o ...
o
o
o ...

..
• • • •
_"I -'.... -............
•••• :at=-=-=
zzzz
000·0
z:z:z:z:
Z:Z:ZZ
0000
~"'4.l'" , ,
o
:ZZZ ~ -.. ..
z: • o ..
o
o -

• • •

o
p-. • .~
.... tit wtWl

0._.0_ "',. ...
000000
000000

...
...
...... tIt ...
"Z"Z'" ... • v.. a.z --. . ,.
... C'It"' czczc.
::.O*'O,.=
_u, .. • w ... WW . , , ,

, I
I ,
I ,

~ -• c
»

. ...
o --o o ...

...
"'
• e .,.
'" ~ "' ... • • oe
31»
o
0"
_N ...
o C
0" ...o
III
• ::II •

o -.... • OlIo..
VI '" "',.

~
31
"'0
... e
0'"
00
e ...
•
310
1U0
~
ZZ
3131

N "' O-=' .. --~ ... ,..,-.
• •••••• I: •• "" ,... ...

...wo o ___ t.lW..,..,QQCI

~ ~ ... -..........
0000000000
0000000000

,. ,.
.. e
WI ... N
...... Nc
\:tc:» ... :.c=-.»~ ..=- ... »- »,-u, ... u ... "' ... "" •

~:
1M 31 ... :a ..
_0"'0 0 :a 31 •
O::Z ... O ... :. ... : o
I I
I I
I I
I •
, I

... .,. vt .. .,. ...

N O ,..
",VII "' ... "''''.,..,._

c- "'
~.~ •• C ... N"'~~4~ •• O-~"' ... ~.~ •• O .. N~ ... ~.~ •• O_N ".~_.CCQCOCOOO
~~~~~ ...••..... ~~~~~~~~~~ .. __ ._ .............. ~~~~_~~~~ 



1("', 

~~ 



.. ~ 

FORTRAN 77+ RELEASE 4.1.1 

EKAHPL£ 

109 
ttO 
ttl 
112 
11] S.22 
114 s.n 
115 
116 S.24 
117 
118 
119 
120 
121 
122 $.25 
12] 
124 S.U 
tzS 

-

NAlIVE HOOE 

ENOl 

C----- OISERVE IN THE GENt RATED CODE LISTING 
C----- HOW THE LOGICAL VARIAILES ARE LOADED. 

LVAlI •• TRUE. 
LVAlZ • .ULn. 

WRITE'"LO·,100'ENO·~5,£RR.'5) CIVAR1, 
• CIVARZ, CIVARl, CIVAR4 

C----- DeSERvE IN 'HE GENERATED CODE LISTING 
C----- HOW 'HE INLINE FUNCTION "LOC," IS 
C----- GENERATED. 

IAOORESS • LOCf(IVAA1) 

55 5101' 
END 

'001 DC 
,00U4 

,OOUI 

P0021C 

POOU4 
1'00224 

s.U 
5.23 

S.24 

S.H 

5.26 
S.26 

011 Z.OOO 
0113.000 
0114.000 
01U.000 
0116.000 
0117.000 
01U.000 
0119.000 
0~20.000 
0121.000 
0122.000 
O~B.OOO 
OU4.000 
0125.000 
Ot26.000 
OU7.000 
OUI.OOO 

,.....---..." 

r--
j 

U"IJ~~lJ 

U-7/B-ll 





[ 

( 

6.2 Storage Dictionary 

The storage dictionary facility provides a listing of symbolic names f statement numbers, 
and compiler-generated names contained within a program. Specifying $OPTION 3 or 
FORTRAN directive OPTION 3+ suppresses this listing. 

6.2.1 Storage Dictionary Format 

Under the heading of SYMBOL in the listing, the order is as follows: 

1. Statement labels (each preceded by a right parenthesis) and compiler-generated 
symbols beginning with a right parenthesis. 

2. Compiler-generated names for constants. 

3. Symbolic names (user and compiler-generated) beginning with alphabetic 
characters. 

Symbolic names are .listed generally according to the ASCn collation sequence. Each 
listed item is identified under the following headings: 

USAGE 

MODE 

Indicates the manner in which the specific item is used within a 
program; an item may be a constant, variable, array, label, common 
block, extended block, procedure, or namelist. 

Indicates the type of an item, i.e., character, logical word, integer 
full word. A statement number is listed as transfer or format 
depending upon its use. 

STORAGE Indicates whether the specific item is local or external to the 
program, or if it is an inactive, entry, or dummy item. For a common 
block, the size of the block is listed. If an item is within an extended 
block, the name of the extended block is listed. 

LOCA TION Indicates the internal storage location of an item. The location is 
specified as a five-digit hexadecimal address containing one of the 
following prefixes: 

P signifies that the location is local to the program. 

X signifies that the location is external to the program. 

C signifies that the location is within a common block. 

I signifies that the location is an inactive item. 

+ signifies that the location is an offset within an extended block. 

An asterisk (*) before one of the prefixes indicates that the location 
contains the address of the item rather than the item itself. 

A storage dictionary listing is provided for the program, EXAMPLE. This should be 
compared with the source listing in section B.l. 

FORTRAN 77+ 
Reference Manual Listing Examples 6-9/B-10 





,~ '-'. ~ 

FORTRAN 11. RELEASE 4.1.1 NATIVE MCDE 

S¥MIIOL USAGE MODE STORAGE LOCATION 

)100 LAin fORMAT LOCAL '00050 
155 LUn TUNSfER LOCAL ,00U4 
C.0001 CONSTANT REAL LOCAL POOUO 
C.0002 CONstANT INtEGER fULL WORD LOCAL P002S4 
C.OOO) CONSTANT INTEGER fULLWORO LOCAL poona 
C.0004 CONSUNT INTEGER DOUlLE LOCAL ,OOUI 
A. IF PROCEDURE REAL EXTERNAL 100200 
CUAHPLE COHMON non 500000f 
ClVAR' VARlA8LE INTEGER DOUlLE CEXAM'LE COOOOO 
ClVAA2 VARIULE INtEGE' fULLWO'D CEUMPLE COOOOI 
ClVAR] VARlA8LE INtEGE' HALf WORD CUAH'LE COOOOC 
ClVAR4 VARlAlLE INtEGER IYtE CEXAM'LE COOOOE 
CVAR1 VARlAlLE CHAUCtER"IO LOCAL '00000 
CVAU VARIAILE CHARACtER .. I LOCAL POOOCI 
E.XI PROCEDURE REAL EXTERNAL 100224 
EXAMPLE PROCEDURE REAL INtlly ,000fC 
IiDORESS VARlA8LE INTEGER fULLWO.O LOCAL ,OOOEI 
IVAA, VARIABLE INTEGU DOUILE LOCAL '00000 
IVAU VARlA8LE INtEGE' fULL WORD LOCAL POOOlC 
IVAIl] VARlAlLE INtEGER HALf WORD LOCAL POOOU 
IVAIl4 VARIAILE INTEGER ute LOCAL '00000 
LVAIl' VARlA8LE LOGICAL WO.D LOCAL ,000fO 
LVARZ VARlAlLE LOGICAL lYlE LOCAL POOOFA 
REG675AV VARIAILE INTEGER DOUILE LOCAL POOODI 
RVAR. VARIAILE DOUBLE LOCAL POOOED 
RVAR2 VARIABLE .EAL LOCAL POOOf4 
, .If PROCEOURE REAL EXTERNAL 100211 
W.lf PROCEDURE REAL ExtERNAL Kooua 

ti·UI~!;)l 

6-11/0-12 



c 



[ 

( 

( 

8.3 Symbolic Cross-Reference 

The symbolic c:-oss-reference facility provides all the symbolic names and statement 
numbers within a program, listed side-by-side with all the source line numbers at which 
they are referenced. To suppress this listing specify $OPTION 4 in job control or specify 
the OPTION 4+ directive. 

B.3.1 Symbolic Cross-Reference Format 

Symbolic names are listed in alphabetic order. Statement numbers are listed in sequen
tial order, sorted on the leading (i.e., leftmost) significant digit. For example, statement 
number 100 precedes statement number 20, which precedes statement number 3. 
Statement numbers with a common leading digit are listed in descending numerical 
sequence. Nonsignificant zeros and spaces are suppressed. For example, references to 
00600, 600, and 6b10blO will all be listed under symbol 600. 

The symbolic name and statement number items that are included in text strings or in 
comments are not listed in cross-reference output. 

Multiple occurrences of a symbolic or statement number within a single source line are 
all listed. Continuation source statement lines are identified separately from the initial 
source statement line. 

Symbolic names occurring in EQUIVALENCE statements are identified by the code EQV 
instead of a source line number for each occurrence. 

A symbolic cross-reference listing is provided for the program, EXAMPLE. This should 
be compared with the source listing in section B.1. 

FORTRAN n+ 
Reference Manual Listing Examples 8-13/8-14 



j 



~ -, -~ 

FORTRAN llt RELEASE 4.1.1 NATIVE HOOE 
CROSS REFERENCE FOR EKAMPLE 

SYM80L SOURCE LINE 

100 0015 0001 DOn 0116 
55 0015 0075 Don oon 0116 0116 OtH 

CEXAMPLE ODS) 
elVARl 0041 Don Don OOlS 0015 Don 0101 0116 
ClVAR2 0049 0051 0064 Don 0081 0091 010] 0116 
eIVAR] 0050 0051 0065 0016 0090 0094 0105 otll 
ClVAA4 0051 0054 0066 0016 0091 OOU 0101 0111 
eVARl OOH 0041 
eVAAl 0034 
EXAMPLE 0001 
IAODRESS 0039 OUZ 
IVUl 0019 0056 Don 0100 0122 
IVAAl 00]0 0056 0064 0102 
!VAAl 0011 0056 0065 0104 
IVAA4 Don Don 0051 0066 0106 
LoeF 0122 
LVARI 0057 0115 
LYUl 00)8 0114 
REG61SAV ooze 0099 0101 
AYUl 0015 0061 
nUl 0016 0068 

U'llJ~~L 

U-l>/U-16 



c 

C···~ 'r _' 



( 

( 

8.4 Generated Code Ustings 

The generated code listing facility provides a listing of relative addresses, hexadecimal 
machine code instructions and data area contents, statement labels and compiler 
generated statement markers for use with the Symbolic Debugger, and instruction 
equivalent assembler code. Specifying $OPTION 6 or FORTRAN 77+ directive OPTION 
6+ enables the output of this listing. The absence of $OPTION 6 or the presence of the 
FOR TRAN 77+ directive OPTION 6- suppresses this listing. 

8.4.1 Generated C;ode Usting Format 

The generated code listing begins with the name of the source module, whether it is a 
program, subroutine, function, etc., in the upper left hand corner of the listing. If listed 
output (La) is assigned to system listed output (SLO), the module name appears in the 
upper left hand corner of every page in the listing. 

The listing appears below the name. The format of each line of the page is as follows: 

A relative memory address is slightly indented from the left margin. 

. The hexadecimal contents of the memory address appear to the right of the 
address. This may be machine coded instructions or data. 

• The statement labels or the compiler generated statement markers for use with the 
Symbolic Debugger under MPX-32 appear to the right of the memory contents. 
Statement labels have the form n where n is the statement number contained in 
the input source record. The statement markers have the form S.m where m is a 
compiler assigned statement number. Not all lines in the generated code listing 
have statement labels or markers. Data areas such as those generated from 
FORMA T statements and executable instructions may contain statement labels. 
Statement markers appear only on the first executable instruction for a set of 
instructions which were generated from aFaR TRAN 77+ source statement. 

The instruction equivalent assembler code appears to the right of the statement 
label and marker field. The field is made up of the assembler instruction mnemonic 
followed by the operand for the particular instruction. For example, LD 6,IVARl. 

This format is maintained throughout the compilation of the entire program unit unless 
the source listing is also selected. In that case, the two listings appear to be 
interspersed. 

A generated code listing is provided for the program, EXAMPLE. This should be 
compared with the source listing in section B.l. 

FORTRAN 77+ 
Reference Manual Usting Examples B-17/B-18 





~ -, . ....---~ 

fOAIRAN 11. AtltASt 4.1.1 NAIlVE KCot 

t XAHPlt 

00000 00000000 
00004 00000001 
DOOle 00000002 
OOOf, 000) 
00000 04 
OOOH 5.1 UIU , 
00050 ""01]0 )100 
00054 UU4f40 
OOOU 404f4lZ0 
ooose SHUH9 
00060 UUUU 
00064 ZOJUO)O 
00061 20110114 
0006e 00n1101 
00070 201£U., 
00074 4040"41 
00071 ZOSHIU 
aDore U4tH4C 
00010 4UOJUO 
00014 )020UOI 
00011 OIOOUl1 
oOOle ononn 
00090 4f404O" 
ooou 4U05641 
000 .. SU9UU 
000ge 4uuon 
OOOAO ZOIUOU 
ooou 010600U 
OOOU Honan 
OOOle 414'4040 
00080 4f4n056 
OOOU 41524941 
000 .. HUUZO 
DOOle JHUOZO 
oooeo 1E010UO 
000(4 oe 
OOOft AfOOOOOZ LO 6~I"UI 
00100 0700000Z Sto 6.UvUl 
00104 S.2 IQU • 00104 AflOOOle III '.IVAIl 
00101 07l0000e STII ',UVAU 
0010t S.J IQU • oOloe Af8000,9 lH , •• VAR) 
00110 07800000 STH ,.UVARI 
00114 5.4 EOU S 
00114 ueaoooo u~ '.IVAl4 
00118 0761000E ste ,.UVAU 
0011C 5.S EQU • DOlle AflOOOH UI '.avu2 
00120 naa0210 &01'11 7.t.000l 
00124 U70 1 fIR 7.6 
00126 OHO IR I 
001 Z8 070000n no 6 •• VARI 
0012t S., IOU • 

tl·IO~I~.J 

B-19/11-Z11 





( 

( ... 
Q 

'" >: 

... ,. 

... .. 
z 

. -. .. 
... 
." 
C ... .... ... .. . ... ... 
% ... 
c ... 
'" Q. 

z: 
co: .. 
'" ... 

... 
o 

"'-""11 ... 0# 0_ 0_..... • 
~N"~ C. O~.4 4 _... a~ 0> ~» ... » ... 

o 

,. 
C 
~ ~ N ~ 
... .. • tv _ ~ • 

00 ... 
ClO"''''~ 

~ ... C<C~ ............. rat_ ~ 00 ... 
OCltft .... 

_N". ... C .. C • C 
•••• ~ c » c » c ~ 
CCC4. * » _ ~ ... ~ ... 
~»>>>_. u _ u _ w 

~~~»~ ~~ y~ ... ~ ~~ -. 
2

.... 1ft., •
y-.

........... ",. ".. ''''' ~'" '" '" .. '" '" '" '"
~WWW~_ •• _~~.~~.~~~~ W "' C

YYWW __ ._._._~_~_~_~_

0000 0000 QOOCI
... C¥~
0000-'
2:122 •

~~ •• ~ 0= 3= := .~
OOOO_gQ~Q~~Q ... _o ... ~a~
22~3.~~MW_~W_~W_~w.

OOQ ..
•••• 0000-'
2~22_

c ••• =CI~ ~Q= ~2~ =%~
aoao~a~aQa~a2g~O%g~O

2222_ ~ ... *"'~· ... ~"'~ ... *-~

... O ... Q"'.,.. .. ON«tO
a_..,,,,NNO_QQQQQ
ClCJNONNClQCtCCCQ
OClQOOClClQOQOOO
QCO_OOCOClCO_C
_Oc:tClOQ_OOOCO.
.ONQ eOtl"t"" .. O.
... OClOOO""OOOOO"

...
CN
NO
... co
ClQ
00
00
C~

-. ...

--"'0
NO
CIa
00 --.....
C~

..
... 0
... 0
... CI
"0
00 --. ~

. ...

......
"'0
CIa
00
0---. ... uO

.
'"

ClO.,Ollfttft ON.a_a
N W'f'lltN., .. oaOOwt
_ONQNN_CCc»C)C'"
0000000000000 OOo_ooooCloa_o
_oocoo_aOQCla. _CNO ... __ C~N_O_
... OOOOOtO.OOOOO ...

N '" •
... WI tf't WIt tit tit '" lit

c N ... U - ... 0
0 0 CI 1M 0 ... a
a a 0 a CI 0 a
a a a a a a a
a a a a 0 a a
0 a 0 -- • -... to.
0 C ~ C .. C 0

UQ~_UO~_UQ •• ~CC. __ UC04 __ ~OO~_UC4_UO~_UO.~._UUOO~~._UUO
N~~~~4~~~~~~~~ ••••• ~~~~~~. ___ •• ~~~c.cc •• _ ••• _UUUW~~~~Q
--~~~ _______________________ ~ ________________________ _
QQQOCOCOOOOOCOQOOOOooooooaOOCOOOOCCOOOOCOOOOOOQOOOOOQO
OQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOO

'" N ,
:.::: ---"" I
:0

~ .-, ---J

fORIAAN 77. RflEA5f 4.1.1 NAlIVf "OOE

fXA"Plf

00100 Af880000 1I ',IVAU
00104 S.20 EOU ,
00104 O'IIOOOE STB l,CIVAU
0010. S.it EOU • 00101 AfOOOODA LD 6,REG61UV
oOlOe s.u EQU • oOlOe CIIOOOff LI 1,255
001£0 07l000fO STW l,UA"
001E4 s.u EQU ,
OOIU flOIOOfA 1MB LVAU
OOIU S.H EQU ,
OOIU 'IIOOUI IL W.lf
OOIEC 00000010
001fO OZOOOZJ4 WORD C.0002
00lf4 00010050 WORD)100
OOlf, OIOOOHS WORD U5
OOlfe OIOOOHS WORD US
00200 f1800199 IL A.1f
00204 00000010
0020. 01000002 IIORO ClVUI
0020e 02000001 WORD ClVAU
00210 01000000 WORD ClVARJ
00214 OOO.OOOE WORD ClVAl4
00211 fUOOUI IL I.Ef
OOite s.n EQU • OOZle 57.00002 LA " IVA" 00220 Duooon STII l,UODIEU
00224 S.26 EQU • 00224 fllOOOOI US Il I.U
00221 7fff"ff
0022e ffffffff
00210 411UH1
00214 4Ufl020
OOUI lffffff'

lH09~u

B-2l/B-24

(

r

HEX

00
01
02
03

04
05
06
07

08
09
OA
DB

DC
00
DE
OF

10
11
12
13

14
15
16
17

18
19
lA
IB

lC
10
IE
IF

FORTRAN 77+
Reference Manual

DEC

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

APPENDIX C

Ascn CODE SET

ASCII· CARD CODE
GRAPHIC (IBM029)

12-0-9-8-1
12-9-1
12-9-2
12-9-3

9-7
0-9-8-5
0-9-8-6
0-9-8-7

11-9-6
12-9-5
0-9-5
12-9-8-3

12-9-8-:4
12-9-8-5
12-9-8-6
12-9-8-7

12-11-9-8-1
11-9':1
11-9-2
11-9-3

9-8-4
9-8-5
9-2
0-9-6

11-9-8
11-9-8-1
9-8-7
0-9-7

11-9-8-4
11-9-8-5
11-9-8-6
11-9-8-7

ASCII Code Set

INTERNAL ASCII
BINARY NAME

00000000 NUL
0000 0001 SOH
0000 0010 STX
0000 0011 ETX

00000100 EDT
OOOOOlDl ENQ
00000110 ACK
0000 0111 BEL

0000 1000 BS
0000 1001 HT
0000 1010 LF
0000 1011 VT

0000 1100 FF
0000 1101 CR
00001110 SO
0000 1111 SI

0001 0000 OLE
0001 0001 Cl
00010010 DC2
0001 0011 DC3

0001 0100 DC4
0001 0101 NAK
00010110 SYN
0001 0111 ET6

0001 1000 CAN
0001 1001 EM
0001 1010 SUB
00011011 ESC

0001 1100 FS
0001 1101 GS
0001 1110 RS
00011111 US

C-l

~--

ASCII
HEX DEC GRAPHIC

~----
20 32
n 33 !
22 34 "
23 35 II

24 36 $
25 37 %
26 38 de
27 39 ,

28 40 (
29 41)
'l.A 42 *
28 43 +

2C 44 ,
20 45 -
2E 46 · 2F 47 I

30 48 a
31 49 1
3Z 50 2
33 51 3

34 52 4
35 53 5
36 54 6
37 55 7

38 56 8
39 57 9
3A 58 · · 38 59 ;

3C 60 <
30 61 =
3E 62 >
3F 63 ?

40 64 @
41 65 A
42 66 B
43 67 C

44 68 0
45 69 E
46 70 F
47 71 G

C-2

CARD CODE INTERNAL
(I8M029) BINARY

0010 0000
12-8-7 0010 0001
8-7 0010 0010
8-3 0010 0011

11-8-3 0010 0100
0-8-4 0010 0101
12 0010 0110
8-5 0010 0111

12-8-5 0010 1000
11-8-5 0010 1001
11-8-4 0010 1010
12-8-6 0010 1011

0-8-3 0010 1100
11 0010 1101
12-8-3 0010 1110
0-1 0010 1111

a 0011 0000
1 0011 0001
2 0011 0010
3 0011 0011

4 0011 0100
5 0011 0101
6 00110110
7 0011 0111

8 00111000
9 00111001
8-2 00111010
11-8-6 ' 0011 1011

12-8-4 00111100
8-6 00111101
0-8-6 0011 1110
0-8-7 0011 1111

8-4 0100 0000
12-1 0100 0001
12-2 0100 0010
12-3 0100 0011

12-4 0100 0100
12-5 0100 0101
12-6 0100 0110
12-7 0100 0111

ASCII Code Set

ASCII
NAME

SP
Exciamation Point
Quotation Marks
Number Sign

Dollar Sign
Percent
Ampersand
Apostrophe

Opening Parenthesis
Closing Parenthesis
Asterisk
Plus

Comma
Hyphen
Period
Slant

Zero
One
Two
Three

Four
Five
Six
Seven

Eight
Nine
Colon
Semicolon

Less Than
Equals
Greater Than
Question Mark

Commercial At
Uppercase A
Uppercase B
Uppercase C

Uppercase 0
Uppercase E
Uppercase F
Uppercase G

FORTRAN i7+
Reference Manual

(

(/

HEX DEC

48 72
49 73
4A 74
4B 75

4C 76
40 77
4E 78
4F 79

50 80
51 81
52 82
53 83

54 84
55 85
56 86
57 87

58 88
59 89
5A 90
5B 91

5C 92
50 93
5E 94
5F" 95

60 96
61 97
62 98
63 99

64 100
65 101
66 102
67 103

68 104
69 105
6A 106
6B 107

6C 108
60 109
6E HO
6F" 111

F"ORTRAN 77+
Reference Manual

ASCII
GRAPHIC

H
I
J
K

L
M
N
0

P
Q

R
S

T
U
V
W

X
Y
Z
[

\
] ..
-
\
a
b
c

d
e
f
g

h
i
j
k

1
m
n
0

CARD CODE INTERNAL ASCII
(IBM029) BINARY NAME

12-8 0100 1000 Uppercase H
12-9 0100 1001 Uppercase I
11-1 01001010 Uppercase J
11-2 0100 1011 Uppercase K

11-3 0100 1100 Uppercase L
11-4 0100 1101 Uppercase M
11-5 01001110 Uppercase N
11-6 01001111 Uppercase 0

11-7 01010000 Uppercase P
11-8 0101 0001 Uppercase Q
ll-9 01010010 Uppercase R
0-2 0101 0011 Uppercase S

0-3 01010100 Uppercase T
0-4 0101 0101 Uppercase U
0-5 01010110 Uppercase V
0-6 010101ll Uppercase W

0-7 01011000 Uppercase X
0-8 0101 1001 Uppercase Y
0-9 0101 1010 Upper.case Z
12-8-2 01011011 Opening Bracket

0-8-2 01011100 Reverse Slant
11-8-2 01011101 Closing Bracket
11-8-7 01011110 Circumflex
0-8-5 01011111 Underline

8-1 01100000 Accent Grave
12-0-1 01100001 Lowercase a
12-0-2 01100010 Lowercase b
12-0-3 01100011 Lowercase c

12-0-4 01100100 Lowercase d
12-0-5 01100101 Lowercase e
12-0-6 01100110 Lowercase f
12-0-7 01100111 Lowercase g

12-0-8 0110 1000 Lowercase h
12-0-9 01101001 Lowercase i

, 12-11-1 01101010 Lowercase j
12-11-2 0110 1011 Lowercase k

12-11-3 01101100 Lowercase 1
12-11-4 01101101 Lowercase m
12-11-5 0110 1110 Lowercase n
12-11-6 01101111 Lowercase 0

Ascn Code Set C-3

ASCII CARD CODE INTERNAL ASCII (.-\
HEX DEC GRAPHIC (I8M029) BINARY NAME I

\i;.~j/

70 112 P 12-11-7 0111 0000 Lowercase p
71 113 q 12-11-8 0111 0001 Lowercase q
72 114 r 12-11-9 0111 0010 Lowercase r
73 115 s 11-0-2 0111 0011 Lowercase s

74 116 t 11-0-3 01110100 Lowercase t
75 117 u 11-0-4 0111 0101 Lowercase u
76 118 v 11-0-5 01110110 Lowercase v
77 119 w 11-0-6 01110111 Lowercase w

78 120 x 11-0-7 01111000 Lowercase x
79 121 y 11-0-8 01111001 Lowercase y
7A 122 z 11-0-9 01111010 Lowercase z
78 123 { 12-0 01111011 Opening Brace

7C 124 I· 12-11 01111100 Vertical Line
70 125 } 11-0 01111101 Closing Brace
7E 126 11-0-1 01111110 Tilde
7F 127 12-9-7 01111111 DEL

80 128 11-0-9-8-1 1000 0000
81 129 0-9-1 10000001
82 130 0-9-2 1000 0010
83 Pl 0-9-3 1000 0011

"

84 132 0-9-4 1000 0100 "" .. ./
85 133 11-9-5 1000 0101
86 134 12-9-6 1000 0110
87 135 11-9-7 1000 0111

88 136 0-9-8 1000 1000
89 137 0-9-8-1 1000 1001
8A 138 0-9-8-2 1000 1010
88 139 0-9-8-3 1000 1011

8C 140 0;'9-8-4 1000 1100
80 141 12-9-8-1 1000 1101
BE 142 12-9-8-2 1000 1110
SF 143 11-9-8-3 1000 1111

90 144 12-11-0-9-8-1 10010000
91 145 9-1 10010001
92 146 11-9-8-2 10010010
93 147 9-3 1001 0011

94 148 9-4 10010100
95 149 9-5 10010101
96 150 9-6 10010110
97 151 12-9-8 1001 0111

(\
"--/

FORTRAN 77+
C-4 ASCII Code Set Reference Manual

ASCII
HEX DEC GRAPHIC

CO 192
Cl 193
C2 194
C3 195

C4 196
C5 197
C6 198
C7 199

C8 200
C9 201
CA 202
CB 203

CC 204
CD 205
CE 206
CF 207

DO 208
01 209
02 210
03 211

04 212
05 213
06 214
07 215

08 216
09 217
DA 218
DB 219

DC 220
DO 221
DE 222
OF 223

EO 224
El 225
E2 . 226
E3 227

E4 228
E5 229
E6 230
E7 231

C-6

CARD CODE
(IBM029)

12-11-0-9-6
12-11-0-9-7
12-11-0-9-8
12-0-8-1

12-0-8-2
12-0-8-3
12-0-8-4
12-0-8-5

12-0-8-6
12-0-8-7
12-11-8-1
12-11-8-2

12-11-8-3
12-11-8-4
12-11-8-5
12-11-8-6

12-11-8-7
11-0-8-1
11-0-8-2
11-0-8-3

11-0-8-4
11-0-8-5
11-0-8-6
11-0-8-7

12-11-0-8-1
12-11-0-1
12-11-0-2
12-11-0-3

12-11-0-4
12-11-0-5
12-11-0-6
12-11-0-7

12-11-0-8
12-11-0-9
12-11-0 .. 8-2
12-11-0-8-3

12-11-0-8-4
12-11-0-8-5
12-11-0-8-6
12-11-0-8-7

ASCII Code Set

INTERNAL
BINARY

1100 0000
1100 0001
1100 0010
1100 0011

1100 0100
1100 0101
1100 0110
1100 0111

1100 1000
1100 1001
1100 1010
1100 1011

1100 1100
1100 1101
1100 1110
1100 1111

11010000
1101 0001
11010010
11010011

11010100
1101 0101
11010110
1101 0111

11011000
1101 1001
11011010
11011011

11011100
11011101
11011110
11011111

1110 0000
1110 0001
1110 0010
1110 0011

1110 0100
1110 0101
1110 0110
1110 0111

ASCII
NAME

FORTRAN 77+
Reference Manual

(--"
~~

'~j

''''.

r

l

r \

HEX DEC

E8 232
E9 233
EA 234
EB 235

EC 236
ED 237
EE 238'
EF 239

FO 240
Fl 241
F2 242
F3 243

F4 244
F5 245
F6 246
F7 247

F8 248
F9 249
FA 250
FB "251

FC 252
FD 253
FE 254
FF 255

FORTRAN 77+
Reference Manual

ASCII CARD CODE INTERNAL ASCII
GRAPHIC (IBM029) BINARY NAME

12-0-9-8-2 1110 1000
12-0-9-8-3 1110 1001
12-0-9-8-4 1110 1010
12-0-9-8-5 1110 1011

12-0-9-8-6 1110 1100
12-0-9-8-7 1110 1101
12-11-9-8-2 1110 1110
12-11-9-8-3 11101111

12-11-9-8-4 1111 0000
12-11-9-8-5 1111 0001
12-11-9-8-6 1111 0010
12-11-9-8-7 1111 0011

11-0-9-8-2 1111 0100
11-0-9-8-3 1111 0101
11-0-9-8-4 1111 0110
11-0-9-8-5 11110111

11-0-9-8-6 11111000
11-0-9-8-7 11111001
12-11-0-9-8-2 11111010
12-11-0-9-8-3 11111011

12-11-0-9-8-4 11111100
12-11-0-9-8-5 11111101
12-11-0-9-8-6 1111 1110
12-11-0-9-8-7 11111111

ASCII Code Set C-7/C-8

l

r

APPENDIX 0

DIAGNOSTICS

0.1 Compile-Time Diagnostics

The compiler generates error messages when rules of the FORTRAN 77+ language have
been violated. These violations, in areas such as syntax, parameter usage, storage
requirements, and variable typing, are reported as either source line errors or context
errors.

When the compiler's interaction with the operating system causes abnormal termination
of compilation, "FTxx" abort codes are generated. Source line errors, context errors, and
abort codes are described in the sections that follow.

0.1.1 Source Line Errors

Errors detected by the compiler in FORTRAN 77+ source input statements are reported
with program-listed output messages that generally precede the source line affected.

The descriptive message qualifies the error as to:

• Terminal (T) or warning (W) in nature.

• Source program line number and column number where the error was detected for
errors in source syntax.

A brief description of the error type and the last eight nonblank characters scanned
before error detection are listed as part of the error message or, in some cases, a
relevant symbolic name is listed.

Warning (W) errors result in a continuation of statement scan by the compiler and an
attempt to compile the statement.

Terminal (T) errors result in termination of statement scan for the source program
statement in which the error was detected.

For certain errors encountered in EQUIVALENCE statements, line numbers are identified
in the listed output message. Generally, however, the word EQUIVALENCE, followed by
the symbol involved in the error, is specified.

0.1.2 Context Errors

Syntactically correct statements that result in context errors because of interaction with
other program elements are detected during the code generation phase of compilation.
The listed output message for these types of errors specifies relative object code
location rather than source statement line and column number. The erroneous symbol
involved is also specified.

FORTRAN 77+
Reference Manual Diagnostics 0-1

The total number of error messages issued, if any, is listed when compilation is
complete. This error summary has the following format:

*ERRORS nn

nn The total number of terminal and warning errors detected during program
compilation.

The error OPTIMIZER LOST POINTER is an internal compiler error resulting from loss of
essential register contents during the code optimization phase. If this error occurs,
submit a Software Problem Report (SPR) to Gould CSD along with a copy of the code
that produced the error.

A sample listed output with error messages follows:

GOULD C5D FORTRAN 77+ (84 APR 02/ RELEASE 4.1)

MAIN

*"** W ERR FOUND AT LINE 00001
1
2
3

COL 12 DIMENT
DIMENTION A(2)
COMMON B,C
EQUIVALENCE (B,C)

ST A TEMENT MISSPELLING

*"** W ERR FOUND AT LINE 00004 COL 14 FORMAT (ST A TEMENT NUfvlBER
MISSING

COL 27 UMBER',N ILLEGAL CHARACTER FOR
SYNTAX .

*** W ERR FOUND AT LINE 00004

*"** W ERR FOUND AT LINE 00004 COL 28 MBER' ,N) ILLEGAL CHARACTER FOR, /
SYNTAX

4 FORMAT ('NO NUMBER',N)
*"** W ERR FOUND IN EQUIVALENCE C A TTEMPT TO EQUIVALENCE

TO PREVIOUSLY USED
COMMON ITEMS

5 DATA AlII
6 DATA B/l.O/
*"** W ERR FOUND AT LOC. 00000 B

7 00 99 1=1,10
8 GO TO 100
*** W ERR FOUND AT LINE 00009 COL 10 STOP

9 STOP
*** W ERR FOUND AT LINE 00010)99

*"** W ERR FOUND AT LINE 00010 COL 72 END
*** W ERR FOUND AT LOC. 00030)l00
10 END
*ERRORS IN MAIN 10

0-2 Diagnostics

A TTEMPT TO INITIALIZE
BLANK COMMON

NO PATH TO THIS
STATEMENT

MISSING DO LOOP TERMINAL
LABEL
ALLOCA TION OVERFLOW
UNDEFINED SYMBOL

FORTRAN 77+
Reference Manual

(/

0.1.3 Abort Codes - FT

CODE

FTOI

FT02

FT03

FT04

FTOS

FORTRAN 77+
R,eference Manual

DESCRIPTION

PHYSICAL END-OF -FILE ENCOUNTERED ON 'NRITE TO THE
FORTRAN SCRATCH FILE *Ul.

If logical file code *Ul is assigned to temporary disc space, the
maximum number of extends was reached. Specify a larger size
TEMP file to reduce the numb'er of extends needed.

PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE
FORTRAN SCRATCH FILE *U2.

If the logical file code *U2 is assigned to temporary disc space, the
maximum number of extends was reached. Specify a larger size
TEMP file to reduce the number of extends needed.

PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE
FORTRAN BINARY OUTPUT (BO) FILE.

If logical file code BO is assigned to the system binary output (S80),
then the maximum number of, extends were reached. SBO can be
increased by specifying the S80=size on the $JOB directive.

If logical file code BO is assigned to a permanent disc file, the file
was too small and could not be extended, or the maximum number of
extends was reached. Recreate the file with a larger size so it can be
extended.

PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE
FORTRAN BINARY OUTPUT (GO) FILE.

If logical file code GO is assigned to the system generated output
(SGO), then the maximum number of extends were reached. SGO can
be increased by specifying the SGO=size on the $JOB directive.

If logical file code GO is assigned to a permanent disc file, the file
was too small and could not be extended, or the maximum number of
extends was reached. Recreate the file with a larger size so it can be
extended.

PHYSICAL END-OF -FILE ENCOUNTERED ON WRITE TO THE
FORTRAN LISTED OUTPUT (LO).

If logical file code LO is assigned to the system listed output (SLO),
then the maximum number of extends were reached. SLO can be
increased by specifying the SLO=size on the $JOB directive.

If logical file code LO is assigned to a permanent disc file, the file
was too small and could not be extended, or the maximum number of
extends was reached. Recreate the file with a larger size so it can be
extended.

Diagnostics

CODE

FT06

FT07

FToa

FT09

FTIO

FTll

FT12

FT13

Change 1
0-4

DESCRIPTION

COMPILA TION ERRORS WERE DETECTED. ERRORS DESCRIBED
IN LISTED OUTPUT (LO).

Source line and/or context errors were detected during compilation.
Their description and location in the source code is described in the
output from logical file code LO. This abort code is available for
conditional job termination.

REALLOCATION OF INCLUDE FILE WAS DENIED SY M.ASSN.

In attempting to reallocate an INCLUDE file from within a nested
structure, the file was no longer av'ailable for allocation. This could
indicate that the file is in use, has been deleted, or the access rights
have changed since the last time it was used by the compiler.

COMPILER STACK AREA OVERFLOW. PROGRAM TOO LARGE TO
COMPILE.

The 32K area in the compiler for the symbol table and compiler
stacks has been exceeded. The program source module must be
divided into smaller compilation units (subroutines, functions, etc.) to
be compiled.

COMPILER F AUL T. TRYING TO ALLOCATE EXCESSIVE MAPS.

An internal logic error in the compiler has caused it to try to allocate
an excessive number of memory maps using the M.GD service. Please
submit a Software Problem Report if this occurs.

COMPILER ALLOCA nON EXCEEDS PHYSICAL MEMOR Y. '

This is most likely an internal logic error in the compiler using the
M.GD service, but it could be caused if at least 256KW of memory
was not sysgened into the system.

COMPILER FAULT. M.MEMS SERVICE IN USE.

An internal logic error in the compiler has caused a conflict between
the M.GD service and the M.MEMS service. Please submit a Software
Problem Report if this occurs.

M.OPENR could not be performed for LFC (SO).

This indicates that the file assigned to LFC (SO) was in use at the
time the compiler attempted to open it.

M.OPENR could not be performed for LFC (GO).

This indicates that the file assigned to LFC (GO) was in use at the
time the compiler attempted to open it.

Diagnostics
FORTRAN 77+

Reference Manual

(

(

FT14 M.OPENR could not be performed for I,...FC (La).

This indicates that the file assigned to LFC (La) was in use at
time the compiler attempted to open it.

I
the ~

I
FT15

FT16

M.OPENR could not be performed for LFC (S1).

This indicates that the file assigned to LFC (SI) was in use at the time ~
the compiler attempted to open it.

M.OPENR could not be performed for cross reference.

This indicates that the file assigned for cross reference was in use at
the time the compiler attempted to open it.

0.2 Execution-Time Diagnostics

While running FORTRAN 77+ compiled user task (not to be confused with the actual
compilation of that task) or while running a task that uses the Scientific Run-Time
Library (SRTL), several potential error indications can be encountered.

If the lOST A T parameter is used in the task's I/O statements, an integer value is
generated when I/O is performed. These values are described below.

When a task is forced by the operating system or the SRTL to terminate abnormally,
IRTxx" and "RSxx" abort codes are generated. The RT prefix may be replaced by a W.
or T. (indicating whether the error was warning or terminal, respectively). The abort
codes are described in the following sections.

FORTRAN 77+
Reference Manual Diagnostics

Change 1
D-4A/D-48

[

(

0.2.1 lOST A T Values

F or all input/output statements, if an input/output status specifier ClOST AT =ios) is
present, the status for the operation will be returned unless abnormal termination of the
program results during execution of the operation. The input! output status will be
returned as an integer word to the user-specified location. The value returned indicates
status for the operation (with the exception of the OPEN, CLOSE, and INQUIRE
operations) as follows:

Integer Value

ios = 0

ios < 0

o < ios < 100

ios) 100

FORTRAN 77+
Reference Manual

Status

No error encountered, operation successfully completed.

EOF /EOM encountered during I/O operation. See status bits
below.

Integer value corresponds to error code RTxx where IOS=xx.

IOeS error detected. See FeB status bits below.

Status Bits From the FeB Status Word:

Bit

0

1

2

3

4

5

6

7

8-11

12-15

16-31

Meaning

Set if EOF /EOM encountered (forces IOS to be
negative).

Error condition found.

Invalid blocking buffer control pointers have been
encountered during file blocking or deblocking.

Write protect violation. I
Device inoperable.

Beginning-of-medium (BOM) (Ioad point) or illegal
volume number (multivolume magnetic tape).

End-of-file.

End-of-medium (end-of-tape, end-of-disc file).

Speci fies general testing status received from an
8000 level test device instruction.

Specified DeC testing status received from a 4000
level test device instruction.

Specifies a device status received from a 2000
level test device instruction. These bits are not
applicable 'for the X-Y plotter, paper tape, card
reader, and teletypewriter. Bit meaning for a
particular device can be found in MPX-32
Reference Manual.

Diagnostics
Change 1

D-5

The following lOST A T values are returned only with the OPEN, CLOSE, and INQUIRE
statements.

Native Mode

Integer
Value

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29
30

31

32

0-6

Status

No errors, operation complete •

.A status of OLD was specified for a nonexistent file.

A status of NEW was specified for an existing file.

A status of OLD/NEW was specified but no FILE was given.

Invalid start address; negative value illegal.

Alternate unit is not connected.

Spoolfile name and queue name both specified but do not match.

Invalid DENSITY specification.

Invalid access restriction.

DENSITY was specified but DEVICE was not.

Multiple assignment type (i.e., only one of FILE, DEVICE,
AL TUNIT may appear at one time).

invalid CONTROLBrts specification.

UNIT specifier missing.

No FILE,- DEVICE, or AL TUNIT was given.

Invalid ACCESS specification.

VOLUME was specified for a nontape device.

An argument other than UNIT was specified with AL TUNIT.

Invalid BLANK specification.

Invalid FORM specification.

REGL value too large.

RECL specifier missing for direct access.

RECL value must be positive.

Invalid STATUS. speci fication.

Invalid QUEUE specification.

Disc devices may not be accessed.

Pathname invalid.

Pathname consists of volume only.

Volume not mounted.

Directory does not exist.

Directory name in use.

Directory creation not allowed at specified level.

Resource does not exist.

Diagnostics
FORTRAN 77+

Reference Manual

C·
'·' \ " ;'

'-

(

Native Mode

Integer

Value

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

FORTRAN 77+
Reference fVisnua!

Status

Resource name in use.

Resource descriptor unavailable.

Directory entry unavailable.

Required file space unavailable.

Unrecoverable I/O error while reading DMAP.

Unrecoverable I/O error while writing DMAP.

Unrecoverable I/O error while reading resource descriptor.

Unrecoverable I/O error while writing resource descriotor.

Unrecoverable I/O error while reading SMAP.

Unrecoverable I/o error while writing SMAP.

Unrecoverable I/O error while reading directory.

Unrecoverable I/O error while writing directory.

Projectgroup name invalid.

Projectgroup key invalid.

FCB destroyed.

Parameter address error.

Resource descriptor not currently allocated.

Pathname block overflow.

File space not currently allocated.

'Change defaults' not allowed.

Cannot access resource in required mode.

Operation not allowed on this resource type.

-Required parameter was not specified.

File extension denied; segment definition area full.

File extension denied, file would exceed maximum size allowed.

I/O error occurred when resource was zeroed.

Replacement file cannot be allocated.

Invalid directory entry.

Directory and file not on same volume.

Reserved.

Replacement file is not exclusively allocated to the caller.

Out of system space.

Diagnostics

I

Native Mode

Integer
Value

65

66

67

68

69

70

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

Change 1
D-8

Status

Cannot allocate FAT IFPT when creating a temporary file.

Deallocation error in zeroing file.

Resource descriptor destroyed.

Invalid resource specification.

Error from Resource Management Module (H.REMM).

Attempted to modify more than one resource descriptor at same
time or attempted to rewrite resource descriptor prior to
modifying it.

Unable to allocate resource for specified usage.

Unable to locate resource (invalid pathname or memory
partition definition).

Speci fied access mode not allowed.

FPT IF AT space not available.

Blocking buffer space not available.

Shared Memory Table (SMT) entry not found.

Volume Assignment Table (VAT) space not available.

Static assignment to dynamic common.

Unrecoverable I/O error to volume.

Invalid usage specification.

Dynamic partition definition exceeds memory limitations.

Invalid Resource Requirement Summary (RRS) entry.

LFC logically equated to an unassigned LFC.

Assigned device not in system.

Resource already allocated by requested task.

SGO or SYC assignment by real-time task.

Common memory conflicts with task's address space.

Duplicate LFC assignment attempted.

Invalid device specification.

Invalid resource id (RID).

Specified volume not mounted.

J.MOUNT run request failed.

Resource is marked for deletion.

Assigned device is marked off-line.

Segment definition allocation by unprivileged task.

Diagnostics
FORTRAN 77+

Reference Manual

(

(

Native Mode

Integer

Value

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123
124

125-132

133

134

135

136

137

138

139

140

141

142

FORTRAN 77+
Reference Manual

Status

Random access not allowed for this access mode.

User attempting to open SYC file in a write mode.

Resource already opened by this task in a different access mode.

Invalid access specification at open.

Specified LFC is not assigned to a resource for this task.

Invalid allocation index.

Close request issued for an unopened resource.

Attempt to release an exclusive resource lock that was not
owned by this task, or a synchronous lock that was not set.

Attempt to release an exclusive resource lock on a resource that
has been allocated for exclusive use.

Reserved.

Attempt to exclude memory partition that is not mapped into
requesting task1s address space.

Reserved.

Invalid J.MOUNT request.

Timeout occurred while waiting for resource to become
available.

Reserved.

Unable to obtain dual port resource lock (dual port only)

Unable to release dual port resource lock (dual port only)

Reserved.

Resource is locked by another task.

Shareable resource is allocated by another task in an
incompatible access mode.

Volume space is not available.

Assigned device is not available.

Unable to allocate resource for specified usage.

Allocated Resource Table (ART) space is not available.

Reserved.

Volume is not available for a mount with requested usage.

Shared Memory Table (SMT) space is not available.

Mounted Volume Table (MVT) space is not available.

Diagnostics D-9

The following rOST AT values are returned only with the OPEN, CLOSE, and INQUIRE
statements.

Comeatible Mode

Integer
Value -

0

1

2

3

4

5

6

7

8

9

10

11

30

31

32

33

41

42

43

44

45

46

48

49

50

51

53

54

55

56

57

0-10

Status

No errors, operation complete.

A. file of the name specified already exists.

A F" AST file was specified and collision mapping occurred with
an existing directory entry.

Restricted access was specified, but no password was entered.

Disc space is unavailable.

The specified device is not configured.

The specified device is offline.

A valid restricted file code was not specified.

The specified device type is not configured.

Invalid username specified.

A status of OLD was specified for a nonexistent file.

A filename was given for a SCRATCH (temporary) file.

Permanent file is exciusively locked.

F"Ue lock table is full.

Nonshared device is busy (already allocated).

Disc space is not available.

Permanent file is nonexistent.

Illegal file password specified.

No F" A T /F"PT space available.

No blocking buffer space available.

Shared memory table entry not found.

Invalid shared memory table password specified.

Unrecoverable I/O error to SMD.

SGa assignment specified by terminal task.

No 'UTI file code exists for terminal task.

Invalid RRS entry.

Assigned device not on system.

Dev ice is in use by requesting task.

SGO or SYC assignment by real-time task.

Common memory conflicts with allocated task.

Duplicate LF"C allocation attempted.

Diagnostics
FORTRAN 77+

Reference Manual

Co'mpatible Mode

Integer
Value

66

74

Status

Timeout has occurred while waiting for resource to become
available.

Attempt to delete a file that does not exist or does not have I
delete access.

0.2.2 Abort Codes RS and RT

RS-Error
Number

RSOl

RS02

RS03

RS04

RS05

RS06

RS07

RS08

RS09

RSIO

RSll

RS12

FORTRAN 77+
Reference Manual

Cause of Error

Error occurred in the routine named in the
extended abort code. See the named service for
specific reason.

Error occurred in the routine named in the
extended abort code. See the named service for
specific, reason.

Error occurred in the routine named in the
extended abort code. See the named service for
specific reason.

Error occurred in the routine named in the
extended abort code. See the named service for
specific reason.

Error occurred in the routine named in the
extended abort code. See the named service for
specific reason.

Error occurred in the routine named in the
extended abort code. See the named service for
specific reason.

I/O error while reading load module.

No free MIOL space.

Insuff~cient memory.

Error occurred in the routine named in the
extended abort code. See the named service for
'specific reason.

Invalid send buffer address or quantity exceeds
768 bytes.

Invalid return buffer address.

Diagnostics
Change 1

0-11

RS-Error
Number

RS13

RS14

RS15

RS16

RS22

RS29

RS30

RS32

RS33

RS38

RS47

RS48

RS49

RS50

RS53

RS60

RS65

RS66

RS67

RS68

RS69

RS70

0-12

Cause of Error

Invalid no-wait mode end-action routine
address.

Memory pool unavailable.

Destination task ql!eue depth exceeded.

Invalid PSB Address.

Missing file control block (FCB).

Request denied, LFC not allocated.

Request denied, specified LFC not assigned to a
permanent disc file.

Error occurred in the routine named in the
extended abort code. See the named service for
specific reason.

Error occurred in the routine named in the
extended abort code. See the named service for
specific reason.

Request denied, time out occurred while
waiting to become lock owner.

Invalid time interval request.

Invalid task number.

Invalid run request.

Missing parameter.

Invalid receiver.

Invalid address specified.

Invalid delete request.

Invalid abort request.

Invalid resource mark request.

Taskname/tasknumber not found.

File control block (FCB) not located.

Allocation error (appears only if IOST A T & $N
parameters have been omitted).

Diagnostics
FORTRAN 77+

Reference Manual

(

RS-Error
Number

RS90

RS99

RT -Error
Number

RTOl

RT02

RT03

RT04

RT05

RT06

RT07

RT08

RT09

RTIO

RTll

RT12

RT13

RT14

RT15

RT16

FORTRAN 77+
Reference Manual

Cause of Error

Request denied, file lock allocated or
exclusively locked.

An attempt was made to mix calls between
SRTL libraries.

Cause of Error

Unformatted read I/O error.

Formatted read I/O errOf.

Unformatted write I/O error.

Formatted write I/O error.

Reference made to non-existent device type Of
address.

Unit out qf range (0-999).

No left parenthesis in format.

Transfer index out of range (option 7 or
M:ERRFLG can be used to avoid an abort).

Format error.

The I/O transfer requirements for the data
buffer are incompatible with the amount of
available data.

Format parenthesis level in excess of two.

Invalid descriptor in format table.

Argument list exceeds logical read record.

Incorrect descriptor in format.

Integer descriptor but non-integer argument
(option 7 or M:ERRFLG can be used to avoid an
abort).

Hexadecimal descriptor but non-hexadecimal
argument (option 7 or M:ERRFLG can be used
to avoid an abort).

Diagnostics 0-13

RT -Error
Number

RT17

RT18

RT19

RT20

RT21

RT22

RT23

RT24

RT25

RT26

RT27

RT28

RT29

RT30

RT31

RT32

RT33

RT34

RT35

0-14

Cause a f Error

O,E,F ,G, descriptor, not real or complex
argument (option 7 or M:ERRFLG can be used
to avoid an abort).

Logical descriptor but non-logical argument
(option 7 or M:ERRFLG can be used to avoid an
abort).

Attempt to read past EOF /EOM.

Attempt to write past EOF /EOM.

Attempt to read past EOF /EOM.

Attempt to write past EOF /EOM.

Attempt to backspace following EOF /EOM.

Rewind after EOF /EOM.

Formatted record read.

Unformatted record read.

Doubleword integer overflow (op tion 7 or
M:ERRFLG can be used to avoid an abort).

Byte integer input with negative sign (option 7
or M:ERRFLG can be used to avoid an abort).

Byte integer overflow (option 7 or M:ERRFLG
can be used to avoid an abort).

Halfword integer overflow (option 7 or
M:ERRFLG can be used to avoid an abort).

Fullword integer overflow (option 7 or
M:ERRFLG can be used to avoid an abort).

Illegal character in O,E,F ,G input (option 7 or
M:ERRFLG can be used to avoid an abort).

Underflow in floating conversion (option 7 or
M:ERRFLG can be used to avoid an abort).

Overflow in floating conversion (option 7 or
M:ERRFLG can be used to avoid an abort).

Argument list overflow (option 7 or M:ERRFLG
can be used to avoid an abort).

Diagnostics
FORTRAN 77+

Reference Manual

~---- /

r
l

RT -Error
Number

RT36

RT37

RT40

RT41

RT42

RT43

RT44

RT46

RT50

RT51

RT52

RT53

RT54

RT55

RT60

RT61

RT62

RT63

RT64

RT65

RT66

RT67

RT68

FORTRAN 77+
Reference Manual

Cause of Error

Argument list overflow (option 7 or M:ERRFLG
can be used to avoid an abort).

Not enough arguments were passed.

Attempt to free busy 10CH/IOCB entry.

Attempt to link busy 10CH/IOCB entry.

IOCH/IOCB table .overflow.

ADI wait I/o returned before I/O termination.

Status parameter not linked to ADI device prior
to I/o request.

ADI table address not on halfword boundary.

Missing parameter.

Parameter out of range.

End of search list reached.

No unit connection.

Service is n~t applicable for SYC.

Error found in math library routine.

Illegal random access.

List-directed I/O (input) encountered, character
string split between two records.

Internal file read/write past EOF /EOM with no
end option specified.

Block number exceeds maximum block number
in file.

Record overflow.

Record length exceeds maximum allowable.

Record length not specified for random access
or specified for sequential file.

Implicit open not allowed or random access I/O.

Reference to sequential operation on a file
opened for direct access.

Diagnostics
Change 1

0-15

!

RT -Error
Number

RT69

RT70

IRT74

RT82

RT83

RT84

RT85

RT86

RT87

RT88

RT89

RT90

RT91

RT92

RT93

Change 1
0-16

Cause of Error

Error(s) encountered on open.

File must be unblocked and opened for random
access for bufferin/bufferout random I/O.

Attempt to delete a file that does not exist or
does not have delete access.

Subscript error. (i.e., subscript not a decimal
number, illegal punctuation, excessive sUb:
scripts, or subscript out of range).

Namelist identifier error (i.e., column 1 non
blank, ampersand character not present, name
does not immediately follow ampersand charac
ter, or non-blank following name).

Symbolic name error (no equal sign after
variable/array name).

Data item error (i.e., excessive values for
symbol or expected to find symbol).

Illegal value (i.e., illegal punctuation, missing
comma, zero hollerith count, or illegal
character in value).

Attempt to read past EOF /EOM.

Attempt to write past EOF /EOM.

Symbolic name not defined in namelist
statement.

Repeat count error.

Symbolic name exceeds eight characters.

Invalid read/write operation.

End-of-file status return pursuant to random
access record.

Random access partition number out-af-range
(i.e., partition number not between 1 and 95
inclusive).

Random access record number out-af-range
(i.e., record number not between 1 and 65,535
inclusive).

Diagnostics
FORTRAN 77+

Reference Manual

(

RT -Error
Number

RT94

RT95

RT96

RT97

RT98

RT99

Cause of Error

Random access transfer length (write/read) or
record size definition (define) out-of-range (i.e.,
transfer record length not between 1 and 65,535
bytes inclusive).

Invalid random access argument list length.

FCB table overflow (31) or maximum number of
entries allowed in the allocation table (30) has
been exceeded.

Diagnostic output messages exceed 100 lines.
To allow more diagnostic messages~ statically
assign the "DO" file (i.e., $ASSIGN2 DO = SLO,
saO).

Denial return when attempting to allocate file
for diagnostic output message.

Insufficient blocking buffer space (each unit
assignment to a system file requires one
blocking buffer unless one file is assigned to
another, i.e., $AS LFC TO LFC).

The RT prefix can be replaced by a W. or T., which indicates whether ,the error is
warning or terminal, respectively.

FORTRAN 77+
Reference Manual Diagnostics 0-17

0.3 Minor Errors

The following errors are considered minor in the sense that option 7 can be set at
\'untime or the M:ERRFLG service can be used in the program to avoid an abort.

Error Number

RT08

RT15

RT16

RT17

RT18

RT27

RT28

RT29

RT30

RT31

RT32

RT33

RT34

RT35

RT36

0-18 Diagnostics
FORTRAN 77+

Reference Manual

/ -

(

APPENDIX E

COMPARISON OF FORTRAN 77+ AND FORTRAN 77/X32

E.l General Information

The FORTRAN 77+ and the Scientific Run-time Library (SRTL) products together define
both the FORTRAN and the MPX-32 system capabilities of nonbase register FORTRAN.
The FORTRAN 77+ compiler is sectioned (i.e., sharable), and not overlaid. It generates
object code in CATALOG form that is not sectioned. All data are statically allocated.
The compiler FORTRAN 77+ accepts the FORTRAN language as defined by the ANSI
X3.9-197B standard, and supports (in conjunction with SRTL), the MIL-STD-1753, IS A
S61.1 and ISA-S61.2 standards. The language contains several extensions commonly
found throughout the industry. The SRTL supplies the I/O and mathematical library
support for the generated code.

The FORTRAN 7.7 /X32 and FORTRAN RTL/X32 product consists of a compiler and a
library for I/o and mathematical support •. The FORTRAN 77 /X32 compiler is overlaid
and not sectioned. It produces an object module acceptable to Linker/X32 that is
sectioned. Data are allocated both statically and on a stack. The FORTRAN 77 /X32
compiler accepts the FORTRAN language as defined by the ANSI X3.9-197B standard,
and with the support library, satisfies most of the MIL-STD-1753 standard and the bit
manipulation functions of the ISA-S61.1 standard. FORTRAN 77 iX32 contains some of
the extensions found in FORTRAN 77+.

E.2 Similarities Between FORTRAN 77+ and FORTRAN 77/X32

As both FORTRAN products are based on the ANSI X3.9-197B standard for the
FORTRAN programming language, the greatest similarities between the two language
products are found in those features specified in the ANSI X3.9-197B standard. The
following language features are syntactically and semantically identical in both products:

• Control Statements
Block IF -THEN-ELSE-ELSE IF -END IF
Logical and arithmetic IF
DO
Assigned, computed, simple GO TO
CALL and RETURN
CONTINUE, STOP, PAUSE, and END

• Data Specification Statements
DIMENSION
COMMON and EQUIVALENCE
IMPLICIT and PARAMETER
EXTERNAL and INTRINSIC
SAVE and DATA
INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, and CHARACTER.
INTEGER*l and INTEGER*2
NAMELIST

FORTRAN 77+
Comparison of FORTRAN 77+· and

FORTRAN 77!X32
Crl ;""iiHJ8 J. j

E' .. l~

• Subprogram Statements
SUBROUTINE, FUNCTION, PROGRAM, ENTRY, and BLOCK DATA

• Other Statements
Assignment

. Statement function
FORMAT

• Other Features
Intrinsic functions
Expressions involving standard data types
Arrays, substrings, and dummy arguments

In the area of input/output, ANSI X3.9-1978 is a permissive standard; that is, it allows
wide latitude in defining the underlying system while specifying a language-level I/O
model which can be used to write portable software. Both FORTRAN products satisfy
the language-level I/O model and both support the syntax of the statements listed below.

READ
WRITE
PRINT
OPEN
CLOSE
INQUIRE
ENDFILE
BACKSPACE
REWIND
NAMELIST

However, I/O implementation restrictions and I/O system-level capabilities differ.

In addition to the features of ANSI X3.9-1978, both products support the following
features, although some differences in syntax, semantics, and limitations may exist:

• INCLUDE of source text

• Symbolic name extensions
Longer than six characters
Underline allowed in name

• Hollerith data type

• Text form extensions (number of continuation lines, trailing comments, conditional
compilation, mUltiple statements per line)

• IMPLICIT NONE statement

• Compiler directive statements (OPTION, PAGE, SPACE)

• DO statement extensions (DO WHILE, END DO, LEAVE, DO FOREVER)

• Debugging support (generated code listing and local symbol support)

• Operating system service entry points (basic I/O)

• Arrayed statement extensions (array as target of assignment statement)

• Intrinsic function extensions (ANSI ax proposals and MIL-STD-1753 features)

Hexadecimal and octal constants in MIL-STD-1753 forms

I Change 1
I E-2

Comparison of FORTRAN 77+ and
FORTRAN 77 /X32 FORTRAN 77+

(

• Data structuring features
Boundary alignment of data in COMMON
Mixing character and noncharacter data in COMMON
EQUIY ALENCE - character and noncharacter

• Datapool support

E.3 Differences Between FORTRAN 77+ and FORTRAN 77/X32

The major differences between the FORTRAN 77+ and FORTRAN 77 /X32 products are in
the support for data types, I/O, control flow constructs, and system-level extensions
(e.g., extended memory).

The differences are more syntactic than functional. For example, specific extended
memory support is provided in FORTRAN 77+, whereas the large memory address space
of base mode is inherent in the design of the FORTRAN 77/X32 product. Where two
features provide redundant capability (e.g., Hollerith and CHARACTER,
ENCODE/DECODE and internal I/O) only the ANSI X3.9-1978 compatible feature is
provided in FORTRAN 77 /X32.

Note that the FORTRAN 77+ and FORTRAN 77 /X32 compiler options are not equivalent
(e.g., the meaning of option 19 differs between the two compilers).

The following features are present in FORTRAN 77+ but are not supported in FORTRAN
77/X32.

• Extended Data Type Support (Implied is support for the IMPLICIT statement, I/O
statements, constants, operators, and conversions for each extended data type.)

INTEGER*8
LOGICAL BIT, LOGICAL*l
COMPLEX*16 (Double Precision Complex)

• I/O Extensions
SKIPFiLE, BACKFILE, ACCEPT, TYPE, PUNCH statements
Auxiliary I/O keywords

• Control Flow Constructs
DO UNTIL
SELECT CASE
Internal procedures (subroutines and functions)

• System Features - functionally equivalent but syntactically different

• Miscellaneous Intrinsic Function Extensions
LOCF

• Miscellaneous Features
Integer character range for ICHAR: 0-127
After PAUSE command, CONTINUE reactivates task in interactive mode;

!CONTINUE reactivates task in batch mode

FORTRAN 77+
Comoarison of FORTRAN 77+ and

, FORTRAN 77 /X32
Change 1 ~

E-3 d

• FORTRAN-66+ Oriented Features (Obsolete)
Extended DO Loop range
Single trip DO Loop option
ENCODE/DECODE
Reduced dimensionality in array subscripts

Symbolic Name Extensions
8 significant characters recognized
Colon allowed in name

• Data Statement Extensions
Use of Hollerith (beyond ANSI X3.9-1978)
Use of CHARACTER (beyond ANSI X3.9-1978)

• Hollerith and CHARACTER Extensions
Hollerith beyond ANSI X3.9-1978 Appendix
CHARACTER quote convention for non-printing characters

Other Forms of Constants
Hexadecimal constants: X'dl ••• dn' or nZdl ••• dn
Binary constants: B'dl ••• dn'

• Miscellaneous Extensions
Inline assembly code
Missing actual arguments in subroutine/function calls
Multiple targets in assignment statement
Use of alternate returns as labeled entry points (as used in SRTL)
INTEGER constant data type determined by magnitude

The following features are supported in the FORTRAN 771X32 product but are not in the
FORTRAN 77+ product.

• System Features
Sharable code
Use of stack default for data (i.e., default is not SAVE)
Subroutine and function interface checking in conjunction with the linker,
LINKER/X32
Use of GLOBAL COMMON provided by the linker (LINKER/X32), not by the
provision of a GLOBAL COMMON statement

• Miscellaneous Intrinsic Function Extensions (beyond ANSI X3.9-1978)
EVEN FRACTION VERIFY ADJUSTR CEILING
ODD EXPONENT ADJUSTL FLOOR

• Symbolic Name Extensions
16 significant characters recognized

• Miscellaneous Features
Integer character range for ICHAR: 0-255
After PAUSE command, carriage return from operator's console reactivates task

I Change 1
E-4

Comparison of FORTRAN 77+ and
FORTRAN 77/X32 FORTRAN 77+

c

c

E.4 I/o Differences

Table E-1 summarizes the differences between FORTRAN 77/X32 and FORTRAN 77+ in·
support for I/O features.

Feature

Extended keywords
UNIT

FILE

BLOCKED
OPENMODE
READONLY
SPOOLFILE
VOLUME
ALTUNIT
DEVICE

File creation
attributes

List-directed I/O
Input
Output

Preconnections

FORTRAN 77+

Table E-l
I/O Features (Sheet 1 of 2)

How supported

FORTRAN 77 /X32

Value must be a non-
negative integer
expression in the range
1-999.

May be an MPX-32 pathname
or an MPX-32 pathname
followed by fields used
in an MPX-32 ASSIGN line.

Pathname field (BLOCKED=)
Pathname field (ACCESS=)
Pathname field (ACCESS=)
Autoconnect
Pathname field
Pathname field (LFC=)
Pathname field (DEV=)

CREA TE string in
OPEN.

No differences.
Format differences;
multiple succeeding values
are emitted with multiplicity;
i.e., N* value

Static assignments
of units 1-999.
Autoconnect units as
specified in Table E-2

Comparison of FORTRAN 77+ and
FORTRAN 77 /X32

FORTRAN 77+

Value mList be a
3-character integer
(0-999), or a 1- to 3-
character string,
left-justified and
blank-filled in an
INTEGER variable.

Must be an
MPX-32
pathname.

Individual
keywords in
OPEN and
INQUIRE.

Individual keywords
in OPEN.

No differences.

Uses MPX-32
LFCs.

Change 1 I
E-51

Table E-l
I/O Features (Sheet 2 of 2)

How supported

Feature FORTRAN 77/X32

Formats No Hollerith editing;
No hexadecimal editing;

o editing emits exponents
as 'E+n'

Scale factor -128 to +127

F arms Control 0, 1, +, -

Unit

1

2

5

6

11

12

I Change 1
E-6

>turn headers on
<turn headers off
= clear header this page

Table E-2
FORTRAN/X32 Autoconnect Units

Equivalent MPX-32 File
Assignment

ASSIGN 1 to LFC=UT User terminal

ASSIGN 2 to LFC=UT User terminal

ASSIGN 5 to SYC System SYC

ASSIGN 6 to SLO System SLO

ASSIGN 11 to SGO System SGO

ASSIGN 12 to SSO System SSO

Comparison of FORTRAN 77+ and
FORTRAN 77 /X32

FORTRAN 77+

Hollerith editing;
Hexadecimal
editing;
o editing emits
exponents as 'O!.n'

-77 to +76

0, 1, +, -
(MPX-32,
Release l.x).
(For MPX-32,
Release 2.x and
3.x, same as
FORTRAN 77 /X32.)

Usage

Input or output

Input or output

Input only

Output only

Input or output

Input or output

FORTRAN 77+

/ - - ,
I

r

A editing, 12-16
noncharacter data types, 12-18

Abort Codes - FT, 0-3/4
Abort Codes - RS and RT, 0-11/17
ABS intrinsic function, 9-7
ACCEPT statement, 11-8, 11-12
ACCESS specifier, 11-28, 11-44
ACOS intrinsic function, 9-17
ADDR intrinsic function, 9-11
AIMAG intrinsic function, 9-7
AINT intrinsic function, 9-7
ALLOCATE specifier, 11-28, 11-44
ALOG intrinsic function, 9-11
ALOGI0 intrinsic function, 9-11
Alphabetic characters, 2-6
Alphanumerics, 2-7
Alternate returns, 9-28/30
AL TUNIT specifier, 11-29, 11-38
AMAXO intrinsic function, 9-12
AMAXl intrinsic function, 9-12
AMINO intrinsic function, 9-12
AMINI intrinsic function, 9-12
AMOO intrinsic function, 9-12
AND intrinsic function, 9-15
ANINT intrinsic function, 9-7
Apostrophe editing, 12-17
Arithmetic assignment

statements, 5-2/4
Arithmetic expressions

definition, 4-1
evaluation, 4-6/7
in assignment statements, 5-2/4
rules for constructing, 4-1/3
type determination, 4-4/5

Arithmetic IF statement, 6-5
Arithmetic operators, 4-1
Arrays

and EQUIVALENCE, 7-15/23
assignment statements, 5-8
declarators, 3-15, 7-2
definition, 3-14
dimensi ons, 3-15/16, 7-2
elements of, 3-16
establishing, 3-14
in specification statements, 7-1/26
processing in subprograms, 9-24
storage, 3-17/18,7-15/16

ASCII code set, C-1/7

FORTRAN 77+
Reference Manual

INDEX

ASIN intrinsic function, 9-17
ASSIGN statement, 5-6
Assigned GO TO statement, 6-4
Assignment statements

arithmetic, 5-2/4
ASSIGN statement, 5-6
character, 5-5
full arra y, 5-8
general considerations, 5-1
logical, 5-4
multiple, 5-7

Asterisk as format identifier, 11-5,
11-24

Asynchronous input/output, 11-59/61
A T AN intrinsic function, 9-17
AT AN2 intrinsic function, 9-17
Auxiliary input/output statements

BACKFILE, 11-52/53
BACKSPACE 11-51/52
CLOSE, 11-39/40
ENDFILE, 11-54/55
INQUIRE, 11-41/43
OPEN,11-27
REWIND, 11-56/57
SKIPFILE, 11-53/54

BACKFILE specifiers
ERR, 11-52
IOSTA T, 11-53

BACKFILE statement, 11-52/53
BACKSPACE specifiers

ERR, 11-51
IOSTAT, 11-51

BACKSPACE statement, 11-51/52
Binary constants, 3-12
Bit data type, 3-8

. Blank character
in symbolic names, 3-13

BLANK specifier, 11-29, 11-44, 12-4,
BLOCK OAT A statement, 10-1/2
BLOCK DATA subprograms, 10-1/2
BLOCKED specifier, 11-29, 11-44
Block IF statement

construct, 6-7
ELSE, 6-11/12
ELSE IF THEN, 6-9/11

IN-l

END IF, 6-12
IF level, 6-14
nested, 6-13

BN descriptor, 12-3/4s 12~15
BTEST intrinsic function, 9-15
BUFFERIN subroutine, 11-59/61
BUFFEROUT subroutine, 11-59/61
BZ descriptor, 12-3/4, 12-15

CABS intrinsic function; 9-7
CALL statement, 9-22/23
CALL STATUS service, 11-61
Calling a FORTRAN subroutine from

assembly language programs, 15-17/18
Calling assembler routines, 15-7/18
CASE statement, 6-26/27
Cataloging a FORTRAN programs 15-4
CCOS intrinsic function, 9-17
CDABS intrinsic function, 9-7
COCOS intrinsic function, 9-17
CDEXP intrinsic function, 9-9
CDLOG intrinsic function, 9-11
CDSIN intrinsic function, 9-18
CDSQRT intrinsic function, 9-13
CEXP intrinsic function, 9-9
CHAR intrinsic function, 9-8
Character

assignment statements, 5-5
constants, 3-9, 8-2
data type, 3-9
expressions, 4-7/10
format specifications, 12-16/17
operator, 4-7
relational expressions, 4-10/11
set, 2-6
strings, 3-9
substrings, 4-8/9

Character editing
A editing, 12-16
Apostrophe editing, 12-17
H editing, 12-17
R editing, 12-19

Character expression
definition, 4-7/6
in assignment statements, 5-5
operand, 4-7
primaries, 4-7
relational, 4-10/11
substrings, 4-8/9

CHARACTER statement, 7-6/7
CLEAR specifier, 11-30
CLOG intrinsic function, 9-11
CLOSE statement, 11-39

IN-Z

CLOSE statement specifiers
ERR,11-39
IOSTAT, 11-39
STATUS, 11-39

CMPLX intrinsic function, 9-8
Collating sequence, 2-6
Colon descriptor, 12-27
Comment Unes, 2-5
Common block storage, 7-12
Common JCL statements used

with FORTRAN, 15-3
COMMON statement, 7-11/13
Compile time diagnostics, 0-1
Compiler options, 15-1/3
Compiler parameter lists, 15-19
Compiling, cataloging, and executing

a FORTRAN program, 15-4/5
Complex constants

complex doubleword, 3-8
complex word, 3-7

Complex editing
I editing, 12-12
Z editing, 12-13/14

Complex constants, 3-7/8
Complex data types, 3-6/7
COMPLEX statement, 7-4, 7-8
Complex word data type, 3-7
Cqmputed GO TO statement, 6-3
Concatenation, 4-7
CONJG intrinsic function,9-8
Constants

binary, 3-12
character, 3-9, 8-3
character versus Hollerith, 3-10
complex, 3-7/8
double precision, 3-5/6
hexadecimal, 3-11/12
Hollerith, 3-10/11
integer, 3-2
logical or bit, 3-8
octal, 3-12
real, 3-3/4

Context errors, 0-1
CONTIGUOUS specifier, 11-30, 11-45
CONTROLBITS specifier, 11-30
Continuation field, 2-2
Continuation lines and logical IF, 6-6
CONTINUE statement, 6-24
Control and interpretation

of data, 11-7/8
Control features of FORMAT

statements, 12-22/28
Controi information list

definition, 11-4
END=,11-4

FORTRAN 77+
Reference Manual

'ERR=, 11-4
FMT =, 11-4
lOST AT =, 11-4
REC=,11-4
UNIT =, 11-4

Control statements
arithmetic IF, 6-5
assigned GO TO, 6-4
block IF, 6-7
CALL, 9-22/23
computed GO TO, 6-3
CONTINUE, 6-24
definition, 6-1
DO, 6-15
DO forever, 6-20
DO UNTIL, 6-21
DO WHILE, 6-22
ELSE, 6-11/12
ELSE IF THEN, 6-9/11
END, 6-28
END DO, 6-24
END IF, 6-12
END SELECT, 6-27
IF THEN, 6-8/9
LEAVE, 6-23
logical IF, 6-6
PAUSE, 6-29
RETURN, 9-22
SELECT CASE, 6-25/26
STOP, 6-28
unconditional GO TO, 6-2

COS intrinsic function, 9-17
COSH intrinsic function, 9-18
CSIN intrinsic function, 9-18
CSQRT intrinsic function, 9-13

o editing
and repeat specification, 12-24/25
and scale factor, 12-22/24
description, 12-7

DABS intrinsic function, 9-7
DACOS intrinsic function, 9-17
DASIN intrinsic function, 9-17
Data Conversion, 8-1
DA T A statement, 8-1/6
Data transfer input/output statements

ACCEPT, 11-8, 11-12
PRINT, 11-13,11-16/17
PUNCH, 11-13, 11-17
READ, 11-8, 11-11/12
TYPE, 11-13, 11-17/18
WRITE, 11-13, 11-16/17

Data types

FORTRAN 77+
Reference iv1anual

character, 3-9
complex, 3-6/7
double precision, 3-5
for list-directed input, 11-25/26
for list-directed output, 11-26/27
for list-directed transfer, 11-26
integer, 3-1/2
logical, 3-8
order of precedence, 4-3
real, 3-3

DA T AN intrinsic function, 9-17
DA T AN2 intrinsic function, 9-17
OAT APOOL statement, 7-14/15
DBLE intrinsic function, 9-8
DCMPLX intrinsic function, 9-9
DCONJG intrinsic function, 9-8
DCOS intrinsic function, 9-17
DCOSH intrinsic function, 9-18
DDIM intrinsic function, 9-9
DECODE statement, 11-57/59
DENSITY specifier, 11-30
DEVICE specifier, 11-30, 11-45
Device type codes, A-4
DEXP intrinsic function, 9-9
Diagnostics

abort codes - FT, 0-3/4
abort codes - RS and RT, 0-11/17
compile time, 0-1
context errors, 0-1
execution time, D-4A
iostat values, 0-5/11
minor errors, 0-18
source line errors, 0-1

DIM intrinsic function, 9-9
DIMAG intrinsic function, 9-7
Dimension range, -3-15/16
DIMENSION statement, 7-2/3
DINT intrinsic function 9-7
Direct access input/output, 11-3
DIRECT specifier, 11-45
Disc files for output data, 15-6
Disc sector size, A-I
DLOG intrinsic function, 9-11
DLOGI0 intrinsic function, 9-11
DMAXI intrinsic function, 9-12
DMIN1 intrinsic function, 9-12
DMOD intrinsic function, 9-12
DNINT intrinsic function, 9-7
DO

forever, 6-20
index of, 6-17
iteration control, 6-18/19
loops and option 11, 6-18
nested loops, 6-18/19
statement, 6-15

Chanqe 1
I!'~-3

I

terminal statement of, 6-17
transfer of control, 6-19
UNTIL statement, 6-21
WHILE statement, 6-22

Documentation conventions, 1-5/6
Double precision constants, 3-5/6
Double precision data type, 3-5
Double precision editing, 12-7
DOUBLE PRECISION statement, 7-3, 7-8
DPROD intrinsic function, 9-9
OREAL intrinsic function, 9-13
DSIGN intrinsi~ function, 9-13
DSIN intrinsic. function, 9-18
DSINH intrinsic function, 9-18
DSQRT intrinsic function, 9-13
DT AN intrinsic function, 9-18
DTANH intrinsic function, 9-18
Dummy arguments

in functions and subroutines, 9-1/2
in internal procedures, 9-24

E editing
and repeat specification, 12-24/25
and scale factor, 12-22/24
description, 12-9

Edit descriptors, 12-3/4
Editing

character editing, 12-16/19
complex, 12-12
logical, 12-20
numeric, 12-7/15

ELSE IF THEN statement, 6-9/11
ELSE statement, 6-11/12
ENCODE statement, 11-57/59
END DO statement, 6-Z4
ENDI statement, 14-1
END IF statement, 6-1Z
END INTERNAL statement, 9-25
END SELECT statement, 6-27
END specifier, 11-4, 11-9, 11-14
END statement, 6-28
ENDFILE specifiers

ERR,11-55
lOST AT, 11-55

ENDFILE statement, 11-54/55
I End-of-file d!!tection, A-2

ENTR Y association, 9-27
ENTR Y statement, 9-20/26
EQUIVALENCE·

" and arrays, 7 -17/19
and "boundaries, 7-16/17
and common interaction, 7-22/23
and substrings, 7 -ZO/21
statement, 7-15/16

Change 1
IN-4

ERR specifier, 11-4, 11-31, 11-45
Evaluation of expressions

arithmetic, 4-6/7
logical, 4-1Z

Exclamation mark, 2-7
Executable statements

arithmetic IF, 6-5
ASSIGN, 5-6
assigned GO TO, 6-4

" assignment, 5-1/8
auxiliary input/output, 11-27/56
BACKFILE, 11-52/53
BACKSPACE,11-51
block IF, 6-7
CALL, 9-22/23
CASE, 6-26
character assi9nment, 5-5
CLOSE, 11-39/40
computed GO TO, 6-3
CONTINUE, 6-24
control, 6-1/29
definition of, 2-3
00,6-15
DO forever, 6-20
DO UNTIL, 6-21
DO WHILE, 6-22
ELSE, 6-11/12
ELSE IF THEN, 6-9/11
END, 6-28
END DO, 6-24
END IF, 6-12
END SELECT, 6-27
ENDFILE, 11-54/55
INQUIRE, 11-41/43
LEAVE,6-23
logical IF, 6-6
OPEN, 11-27/28
PAUSE,6-29
PRINT, 11-13
READ, 11-8
RETURN, 9-27/28
REWIND, 11-56/57
SELECT CASE, 6-25/26
SKIPFILE, 11-53/54
STOP, 6-28
unconditional GO TO, 6-2
WRITE, 11-13

Executing a FORTRAN program, 15-4
Execution-time diagnostics, D-4A I
EXIST specifier, 11-45
EXP intrinsic function, 9-9
Explicit CHARACTER statement, 7-6/7
Explicit type statements, 7-4/6
Exponentiation, 4-1, 4-6
Expressions

FORTRAN 77+
Reference Manual

C··-\ , ,

arithmetic, 4-1/6
character, 4-7/9
character constant, 4-8
character substring, 4-8/9
in assignment statements, 5-5
logical, 4-12/14
relational, 4-10/11
use of hexadecimal, binary, and

octal constants in, 4-17
use of Hollerith constants in, 4-15/16
type determination, 4-4/5

EXTEND specifier, 11-31, 11-45
Extended addressing, 13-1/5
EXTENDED BASE statement, 13-2
EXTENDED BLOCK statement, 13-1
EXTENDED DUMMY statement, 13-2
Extended memory restrictions, 13-4
EXTENDIBLE specifier, 11-31, 11-46
External files, 11-2/3
External functions, 9-1
EXTERNAL statement, 7-23/25

F editing
and repeat specification, 12-24/25
and scale factor, 12-22/24
description, 12-10

Field separators, 12-26/27
File assignments, 15-1
File positioning input/output statements

BACKFILE, 11-52/53
BACKSPACE, 11-51/52
REWIND, 11-56
SKIPFILE, 11-53/54

FILE specifier, 11-32
File system

compatible mode, 1-1
native mode, 1-1

Files
access methods, 11-3
blocked, 11-3/4
external, 11-2
internal, 11-2
record position within, 11-3
unblocked, 11-3/4

FILESIZE specifier, 11-32, 11-46
FLOAT intrinsic function, 9-13
FMT specifier, 11-4
FORM specifier, 11-32, 11-46
Format

control list specification and record
demarcation, 12-5/6

specifications expressed as character
constants, 12-2

FORTRAN 77+
Reference tvlanual

specification methods, 12-1
specifications stored in variables

and arrays, 12-2
FORMAT statement, 12-1,
FORMA T statement control features

colon descriptor, 12-28
field separators, 12-26
repeat specification, 12-24/25
scale factor, 12-22/24

Formatted
input statements, 11-8/12
records, 11-1
output statements, 11-13/18

FORMATTED specifier, 11-46
Forms control on output, 12-6/7
FORTRAN

and job control language, 15-3'
character set, 2-7
compiler options, 15-1/3
compile-time diagnostics, 0-1/2
execution-time diagnostics, 0-5
program, 2-1/12
run-time options, 15-3
statements, 2-3/5

FORTRAN 77+ Release 4.1 Versus
Release 4.0, 1-3

FORTRAN statements
ACCEPT, 11-8, 11-12
ASSIGN, 5-6
BACKFILE, 11-52/53
BACKSPACE, 11-51/52
BIT, 7-5
BLOCK DATA, 10-1/2
CALL, 9-22/23
CHARACTER, 7-6/7
CLOSE, 11-39/40
COMMON, 7-11/13
COMPLEX, 7-4, 7-8
CONTINUE, 6-24
DATA, 8-1/6
DECODE, 11-57/59
DIMENSION, 7-2/3
DO, 6-15
DO forever, 6-20
DO UNTIL, 6-21
DO WHILE, 6-22
DOUBLE PRECISION, 7-3, 7-8
ELSE, 6-11/12
ELSE IF THEN, 6-9/11
ENCODE, 11-57/59
END, 6-28
END DO, 6-24
END IF, 6-12
END SELECT, 6-27
ENDFILE, 11-49/55

ENTRY, 9-20/26
EQUIY ALENCE, 7-15/16
EXTENDED BASE, 13-2
EXTENDED BLOCK, 13-1
EXTENDED DUMMY, 13-2
EXTERNAL, 7-23/25
FORMA T, 12-1
FUNCTION,9-19
GO TO, 6-2/4
IF, 6-5/14
IMPLICIT, 7-8/9
IMPLICIT NONE, 7-9
INCLUDE, 2-7/9
INQUIRE, 11-41/44
INTEGER, 7-4, 7-8
INTRINSIC, 7-25/26
LEAVE,6-23
LOGICAL, 7-4, 7-8
NAMELIST, 11-19
OPEN, 11-27/28
OPTION, 2-10/11
PAGE,2-9
PARAMETER, 7-10
PAUSE,6-29
PRINT, 11-13
PROGRAM, 2-1
PUNCH, 11-13
READ, 11-8
REAL, 7-5, 7-8
RETURN, 9-27/28
REWIND, 11-56/57
SAVE, 7-26/27
SELECT CASE, 6-25/26
SKIPFILE, 11-53/54
SPACE, 2-11
STOP, 6-28
SUBROUTINE, 9-21/22
TYPE, 11-13, 11-17/18
USER, 2-11/12
WRITE, 11-13, 11-16/18

Full array assignments, 5-8
Function reference appearing in I/O

statements, 11-1
FUNCTION statement, 9-19
Function subprograms, 9-19/20

G editing
and repeat speci fication, 12-24/25
and scale factor, 12-22/24
description, 12-11

Generated code listings, B-9/10
I GLOBAL COMMON statement, 7-13

GO TO statements

Change 1
IN-6

assigned, 6-4
computed, 6-3
unconditional, 6-2 .

GOULD CSD FORTRAN 77+ Versus
ANSI X3.9-1978, 1-3/5

H editing, 12-17
Hexadecimal constants

definition, 3-11
in expressions, 4-17
in DATA statement, 8-2

Hexadecimal type code, 15-15
HFIX intrinsic function, 9-6
Hollerith constants

in expressions, 4-15/16
versus character constants, 3-10

Hollerith strings in argument lists, 4-18

lABS intrinsic function, 9-7
lAND intrinsic function, 9-15
IBCLR intrinsic function, 9-15
IBITS intrinsic function, 9-15
IBSET instrinsic function, 9-15
ICHAR intrinsic function, 9-10
Identification field, 2-3
101M intrinsic function, 9-9
IDINT intrinsic function, 9-10
IDNINT intrinsic function, 9-12
I editing

and repeat specification, 12-24/25
description, 12-12

IEOR intrinsic function, 9-15
IF statements

arithmetic, 6-5
block, 6-7
logical, 6-6

IF block, 6-7/14
IF level, 6-14
IFIX ·intrinsic function, 9-10
IMPLICIT NONE statement, 7-9
IMPLICIT type statement, 7-8/9
Implicit typing convention, 3-13/14
Implied DO in DATA statement, 8-4/6
INCLUDE directive, 2-7/9
INCREMENT specifier, 11-32, 11-46
INDEX intrinsic function, 9-10
Index of the DO, 6-17
Initial line, 2-6 .
Inline assembly language coding, 14-1/7

argument field, 14-1
argument field directives, 14-4

FORTRAN 77+
Reference Manual

',- /

,. -

(

(

. comment field, 14-1
general instruction format, 14-2
immediate operand instructions, 14-3
interregister instructions, 14-3
label field, 14-1
memory bit and condition code

instructions, 14-3
memory reference instructions, 14-2
operation control instructions, 14-4
operation field, 14-1
referencing dummy variables, 14-6
referencing variables in extended

memory, 14-7
referencing variables in local

storage, 14-6
IN LINE directives

AC,14-5
BOUND, 14-5
DATA, 14-4
EQU,14-6
GEN, 14-5
RES, 14-6

INLINE statement, 14-1
Input/output definition, 11-5, A-I

mUltiple data identifiers, 11-6/7
single datum identifier, 11-6

Input/output files, 11-2
Input/output statements

auxiliary, 11-27/56
BACKFILE, 11-52/53
BACKSPACE, 11-51/52
data transfer, 11-8/15
ENDFILE, 11-54/55
file positioning, 11-51/56
function reference appearing in, 11-1
READ, 11-8/12
REWIND, 11-56/57
SKIPFILE, 11-53/54
WRITE, 11-13/18

Input/output record~ 11-1/2
Input statements, 11-8/12
Input using NAMELIST, 11-19/24
INQUIRE by file statements, 11-41/42
INQUIRE by file, native mode, 11-41
INQUIRE by file, compatible mode,

11-41/42 .
INQUIRE by unit statements, 11-42/43
INQUIRE by unit, native mode, 11-42
INQUIRE by unit, compatible mode,

11-43
INQUIRE statement specifiers

ACCESS, 11-44
ALLOCA TE, 11-44
BLANK, 11-44
BLOCKED, 11-44

FORTRAN 77+
Reference Manual

CONTIGUOUS, 11-45
DEVICE, 11-45
DIRECT, 11-45
ERR, 11-45
EXIST, 11-45
EXTEND, 11-45
EXTENDIBLE, 11-46
FILESIZE, 11-46
FORM, 11-46
FORMATTED,11-46
INCREMENT, 11-46
lOST AT, 11-46
MAXSIZE, 11-46
MININCREMENT, 11-46
NAME, 11-46
NAMED, 11-46
NEXTREC, 11-47
NUMBER, 11-47
OPENED, 11-47
OPENMODE, 11-47
OTHERACESS, 11-47
OWNERACCESS, 11-47
PROJECT ACCESS, 11-47
QUEUE, 11-48
QUEUED, 11-48
READONL Y, 11-48
RECL,11-48
SEQUENTIAL, 11-48
SHARED, 11-48
SPOOLFILE, 11-48
UNFORMA TTED, 11-48

INT intrinsic function, 9-10
Integer constants, 3-2
Integer data types, 3-1/2
Integer editing, 12-12
INTEGER statement, 7-4, 7-8
Internal files,1l-2
Internal procedures

and dummy arguments, 9-25
INTERNAL FUNCTION, 9-24
INTERNAL SUBROUTINE, 9-24
referencing, 9-25

Interpretation of blanks on
input, 12-4

Intrinsic functions, 9-5/6
INTRINSIC statement, 7-25/26
lOR intrinsic function, 9-16
lOST AT specifier, 11-4, 11-8/10

11-13/14,11-32.11-46
lOST AT values, 0-5/11
ISHFTC intrinsic function, 9-16
ISHIF'T intrinsic function, 9-16
ISIGN intrinsic function, 9-13

Job control for batch jobs, 15-1

IN-7

KEY specifier, 11-32

L editing
and repeat specification, 12-24/25
description, 12-20

LEAVE statement~ 6-23
LEN intrinsic function, 9-11
LGE intrinsic function, 9-14
LGT intrinsic function, 9-14
Lines, 2-5
List .. directed formatting,

definition, 11-24
input, 11-25/26
output, 11-26/27

LLE intrinsic function, 9-13
LL T intrinsic function, 9-13
LOCF intrinsic function, 9-11
LOGI0 intrinsic function, 9-11
Logical assignment statement, 5-4

. Logical data types, 3-8
Logical editing, 12-20
Logical expressions

definition, 4-12
evaluation of, 4-14
operators, 4-12/14
rules for constructing, 4-14

Logical file code assignments, 15-1
Logical IF statement, 6-6
Logical operators, 4-12/14
Logical or bit constants, 3-8
Logical record length, A-3
LOGICAL statement, 7-4, 7-8

Main program, 2-1
MAXO intrinsic function, 9-12
MAX1intrinsic function, 9-12

I Maximum record length, A-2
MAXSIZE specifier, 11-33, 11-46
MININCREMENT specifier, 11-33, 11-46
MINO intrinsic function, 9-12
MINI intrinsic function, 9-12
Minor errors, 0-18
Mismatched argument lists, 9-32
MOD intrinsic function, 9-12
Modes of installation, 1-1/2
MPX-32

datapoo4 7-14/15
extended addressing, 13-1/5
EXTENDED BASE statement, 13-2
EXTENDED BLOCK statement, 13-1
EXTENDED DUMMY statement, 13-2

Change 1
IN-8

extended memory restrictions, 13-4
global common, 7-14
input/output terms, A-l
maximum sixes, A-2/3
observations, A-2

Multiple assignment statements, 5-7
Multiple statement, 2-5

NAME specifier, 11-46
NAMED specifier, 11-46
NAMELIST

data items in input record, 11-21
input from user terminal, 11-20
input from other than user

terminal, 11-20
output data formats, 11-22/24
statement, 11-19

Nested block IF construct, 6-13
Nested DO loops, 6-18/19
NEXTREC specifier, 11-47
NINT intrinsic function, 9-12
Nonexecutable statements

BLOCK DATA, 10-1/2
COMMON, 7-11/13
DATA,8-1/6
DIMENSION, 7-2/3
END INTERNAL, 9-25
ENOl, 14-1
ENTRY, 9-20
EQUIV ALENCE, 7-15/16
EXTENDED BASE, 13-2
EXTENDED BLOCK, 13-1
EXTENDED DUMMY, 13-2
EXTERNAL, 7-23/25
FORMAT, 12-1
FUNCTION, 9-19
IMPLICIT, 7-8/9
IMPLICIT NONE, 7-9
INCLUDE, 2-7/9
INLINE, 14-1
INTERNAL FUNCTION, 9-24
INTERNAL SUBROUTINE, 9-24
INTRINSIC, 7-25/26
NAMELIST, 11-19
OPTION, 2-9/10
PAGE, 2-10/11
PARAMETER, 7-10
PROGRAM, 2-1
SAVE, 7-26/27
SPACE, 2-11

specification statements, 7-1/27
statement function statement, 9-3/4

SUBROUTINE, 9-21/22

FORTRAN 77+
Reference Manual

f"

USER, 2-11/12 SPOOLFILE, 11-35
NOT intrinsic function, 9-16 ST ART, 11-35
No-wait input/output, A-7 ST ATUS, 11-35/36
NUMBER specifier, 11-47 UNIT, 11-36
Numeric characters, 2-7 USER, 11-36
Numeric editing VOLUME, 11-37

and blank interpretation, 12-4 WAIT, 11-37
and plus sign control, 12-14 OPENED specifier, 11-47
and repeat specification, 12-24/25 OPENMODE specifier, 11-33, 11-47
and scale factors, 12-22/24 OPTIOr'-l directive, 2-9/10
complex editing, 12-12 Order of statements, 2-4
D editing, 12-7 OTHERACCESS specifier, 11-33, 11-47
E editing, 12-9 Output statements, 11-13/18
F editing, 12-10 Output using NAMELIST, 11-19/24
G editing, 12-11 OWNERACCESS specifier, 11-33, 11-47
I editing, 12-12
Z editing, 12-13

PAGE directive, 2-10/11
Parameter lists generated

I Octal constants, 3-12 by the compiler, 15-18
OPEN statement, 11-27/28 PARAMETER statement, 7-10
OPEN statement specifiers PASSWORD specifier, 11-34

ACCESS, 11-28 PAUSE statement, 6-29
I ALLOCA TE, 11-28 Physical byte count, A-3

ALTUNIT, 11-29 PRINT statement, 11-13, 11-16/17

(BLANK, 11-29 PROGRAM statement, 2-1
BLOCKED, 11-29 Program units 2-1
CLEAR, 11-30 PROJECT specifier, 11-34
CONTIGUOUS, 11-30 PROJECT ACCESS specifier, 11-34,
CONTROLBITS, 11-30 11-47
DENSITY, 11-30 PUNCH statement, 11-13, 11-17
DEVICE, 11-30
ERR, 11-31
EXTEND, 11-31
EXTENDIBLE, 11-31 QUEUE specifier, 11-34, 11-48
FILE, 11-32 QUEUED specifier, 11-48
FILESIZE, 11-32
FORM, 11-32
INCREMENT, 11-32
IOSTAT,11-32 R editing
KEY, 11-32 and repeat specification, 12-24/25
MAXSIZE, 11-33 description, 12-19
MININCREMENT, 11-33 READ statement, 11-8, 11-11
OPENMODE, 11-33 READONL Y specifier, 11-34, 11-48
OTHERACCESS, 11-33 Real constants, 3-4
OWNERACCESS, 11-33 Real data type, 3-3
PASSWORD, 11-34 REAL intrinsic function, 9-13
PROJECT, 11-34 REAL statement, 7-5, 7-8
PROJECT ACCESS, 11-34 REC specifier, 11-4
QUEUE, 11-34 RECL specifier, 11-35, 11-48
READONL Y, 11-34 Record

(~
RECL, 11-35 demarcation, 12-5
REEL, 11-35 endfile, 11-1/2
SHARED, 11-35 formatted, 11-1/2

FORTRAN 77+ Change 1
Reference Manual IN-9

unformatted, 11-1/2
REEL specifier, 11-35
Relational expressions

character, 4-11
definition, 4-10
operators within, 4-10

Relational operators, 4-10
Repeat specifications, 12-24/25
Required OPEN statement

specifiers, 11-28
RETURN statement, 9-27/28
REWIND specifiers

ERR, 11-56
lOST AT, 11-56

REWIND statement, 11-56
Run-time options, 15-3

S descriptor, 12-14/15
SAVE statement, 7-26/27
Scale factors, 12-22/24
SELECT CASE statement, 6-25/26
Sequential access, 11-3
SEQUENTIAL specifier, 11~8
SHARED specifier, 11-35, 11-48
SHIFT intrinsic function, 9-16
SIGN intrinsic function, 9-13
SIN intrinsic function, 9-18
SINH intrinsic function, 9-18
SKIPFILE specifiers

ERR, 11-53/54
IOSTAT, 11-54

SKIP FILE statement, 11-53/54
Slash descriptor, 12-26
SNGL intrinsic function, 9-13
Source line errors, 0-11
Source listing, B-1/4
SP descriptor, 12-14/15
SPACE directive, 2-11
Spacing descriptors

T descriptor, 12-21/22
X descriptor, 12-21

Special characters, 2-7
Specification statements

COMMON, 7-11/13
DIMENSION, 7-2/3
EQUIVALENCE, 7-15/16
explicit CHARACTER, 7-6/7
explicit type, 7-4/6
EXTERNAL, 7-23/24
IMPLICIT, 7-8/9
IMPLICIT NONE, 7-9
INTRINSIC, 7 -25 /26
PARAMETER, 7-10

IN-I0

SAVE, 7-25/26
SPOOLFILE specifier, 11-35, 11-48
SQRT intrinsic function, 9-13
SS descriptor, 12-14/15
START specifier, 11-35
Statement

field, 2-3
functions, 9-2/3

Statement label field, 2-2
Statement labels

of DO statements, 6~15, 6-21/22
of ELSE IF THEN statements, 6-9/12
of ELSE statements, 6-11/12
of GOTO statements, 6-2/4
of the arithmetic IF, 6-5

Status indicator, 11-61
STATUS specifier, 11-35/36
STOP statement, 6-28
Storage dictionary, B-5/6
Subprograms

and ENTRY, 9-26/27
definition, 2-1, 9-1
dummy arguments, 9-25
mismatched argument list, 9-32
processing arrays, 9-30
processing of arguments, 9-31
referencing, 9-20/21
returns from, 9-27/28

Subroutine
calling conventions, 9-21/22
definition, 9-1
dummy arguments, 9-25
internal, 9-24
referencing, 9-22/23
returns, 9-27/28
subprogram, 9-21/22

SUBROUTINE statement, 9-21/22
Subscript expression, 3-16
Symbolic cross-reference, B-7/8
Symbolic names

definition, 3-13
in COMMON statement, 7-11
in DATA statement, 8-1
in NAMELIST statement, 11-19
in PARAMETER statement, 7-10

System directive lines, 2-7

T descriptor, 12-21/22
TAN intrinsic function, 9-18
TANH intrinsic function, 9-18
Tape 'files as a data source, 15-5/6
Terminal errors, D-1
Terminal statement of the DO, 6-17

FORTRAN 77+
Reference Manual

(\,
, I

)

,/

(

TYPE statement, 11-13, 11-17/18
Type statements .

explicit CHARACTER, 7-6/7
explicit type, 7-4/6
IMPUCIT, 7-8/9
IMPUCIT NONE, 7-9

Unconditional GO TO statement, 6-2
Unformatted

input/output records, A-I
READ statement, 11-11/12
records, Ii-l/2
WRITE statement, 11-16/19

UNFORMA TTED specifier, 11-48
UNIT specifier, 11-5, 11-36, 11-48/49
USER directive, 2-11/12
USER specifier, 11-36
Using data from cards, 15-6

Value separator in list-directed

FORTRAN 77+
Reference Manual

output, 11-26
Variables

definition, 3-14
implicit typing conventions, :LL)i14

VOLUME specifier, 11-37

WAIT specifier, 11-37
Warning errors, 0-1
WRITE statement, 11-13, 11-16/18

X compile option, 15-2
X descriptor, 12-21

Z editing
and repeat specification, 12-24/25
description, 12-13/14

IN-11/IN-12

f

Gould Inc., Computer Systems Civision
6901 W. Sunrise Blvd.
P. O. Sox 409148
F art Lauderdale. F L 33340-9148
Telephone (3051 587-2900

GOULD
Electronics

~'. ~._:r':~:'-'(_~~{:" .l"';"'-." ';.;..,.~'""~:::. .• ,;,.;~. .. ':~."':".;;..

> ~ ~~'!-~!:.~ .. ~ \2/:':~' ;:);/~;.;;i} ; .. ; ..,-~~~~~.~#',':",,~.~~., ,~.~~~ ,.~ .. :~

USER ORGANIZATION: _________________________________ _

REPRESENTATIVE(S): ___________________ ~ ____________ _

ADDRE~: __ _

TELEX NUMBER: ____________ _ PHONE NUMBER: ___________________ ___

NUMBER AND TYPE OF GOULD eso COMPUTERS:

APPLICATIONS (Please Indicate)

1. EDP 2. Communications 3. Design & Drafting

A. Inventory Control A. Telephone System Monitoring A. Electrical
B. Engineering & Production B. Front End Processors B. Mechanical

Data Control C. Message Switching C. Architectural
C. Large Machine Off-Load D. Other D. Cartography
D. Remote Batch Terminal E. Image Processing
E. Other F. Other

4. Industrial Automation 5. Laboratory and Computational 6. Energy Monitoring & Control

A. Continuous Process Control OP. A. Seismic A. Power Generation
B. Production Scheduling & Control B. Scientific Calculation B. Power Distribution
C. Process Planning C. Experiment Monitoring C. Environmental Control
D. Numerical Control D. Mathematical Modeling D. Meter Monitoring
E. Other E. Signal Processing E. Other

F. Other
7. Simulation

A. Flight Simulators 8. Other Please return to:
B. Power Plant Simulators
C. Electronic Warfare Users Group Administrator

O. Other
Date:

243'()6-' (6/841

Gould Inc., Computer Systems Dlvi3ion Users Group.

The purpose of the Gould CSC Users Group is to help create better User/User and User/Gould CSD
Communications.

There is no fee to join the Users Group. Simply complete the Membership Application on the reverse side
and mail to the Users Group Administrator. You will automatically receive Users Group Newsletters,
Referral Guide and other pertinent Users Group Activity information.

Fold and Staple tor Mailing -------,- lITr
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 947 FT. LAUDERDALE. FLORIDA

POSTAGE Will BE PAlO BY ADDRESSEE

GOULD INC., COMPUTER SYSTEMS DIVISION
ATIENTION: USERS GROUP ADMINISTRATOR
6901 W. SUNRISE BLVD.
P. O. BOX 409148
FT. LAUDERDALE FL 33340-9970

NO POSTAGE
NECESSARY
IF MAilED

IN THE
UNITED sTATES

I
I
I
I
I ~
f ~ 1=
I -
IU
I~
I'>;
I:
I
1
1
I

--------·---f Fold and Staple for Mailing

GOULD
Electronics

