
SOS 940 TIME-SHARING SYSTEM
(Version 4.0)

TECHNICAL MANUAL

SDS 90 11 16C AAarch 1969

SJDlS

Price: $5.25

SCIENTIFIC DATA SYSTEMS/701 South Aviation BoulevardlEI Segundo, California 90245

© 1967, 1968, 1969, Scientific Data Systems, Inc, Printed in U.S.A.

REVISION

This publication, SOS 90 11 16C, is a revision of the SDS 940 Time-Sharing
System Technical Manual, 90 11 16B (dated August, 1968). Although the
general organization of the manual remains the same, drawings have been
corrected, new material has been added, and existing text has been rewritten.
Any change from the previous manual is indicated by a vertical line in the
margin of the page.

RELATED PUBLICATIONS

Title

SOS 940 Computer Reference Manual
SOS 940 Terminal Users Guide
SOS 940 FORTRAN II Reference Manua I
SDS 940 BASIC Reference Manual
SOS 940 TAP Refere.nce Manual
SOS 940 DOT Reference Manual
SOS 940 CAL Reference Manual
SOS 940 QED Reference Manual
SOS 940 FORTRAN II Technical Notes
SOS 940 Conversational FORTRAN Referen~e Manual

NOTICE

Publ ication No.

900640
90 11 18
90 00 10
90 11 11
90 11 17
90 11 13
90 11 14
90 11 12
90 11 42
90 1579

The specifications of the software system described in this publication are subject to change without notice. The availability or performance of some features may
depend on a specific configuration of equipment such as additional tape units or larger memory. Customers should consult their SDS sales representative for detai Is.

ii

CONTENTS

l. INTRODUCTION Devices 33

The Monitor 1
System Data on Outer Arm Position of Disc-- 33

BRSs for Direct Disc Access 33
The Executive 2
Subsystems 3

10. SEQUENTIAL FILES 35

2. SCHEDULER 3 File Numbers 35
Fi I e Contro I Blocks 35

Program Activation Tabl e 3
Opening and Closing Files 36

Time-51 icing 6
Accessi ng the Tel etype as a Fi I e 36

Schedul ed Queues 6
Permanently Open Files 36

Phantom User 7
Sequential Disc Fi I es 36

Summary of Scheduler Functions 9 I/o SYSPOPS 37
Other Sequential Files 38

3. FORKING STRUCTURE 11

Jobs 11
1l. SUBROUTINE FILES 40

PMT and SMT Tables 11
Pseudo-Relabel ing 11 12. EXECUTIVE TREATMENT OF FILES 40

Memory Acquisition 12 General Description 40
Changing Relabeling 12 Physical Devices 41
Creati ng a Lower Fork 14 Stri ng Po inters 41
Panic Conditions 15 Theory of Hash ing 41

940 Hashing Algorithm 42
The Hashing Table 42

4. SWAPPER, MEMORY ALLOCATION AND
File Directory Hash Table 43

RAD ORGANIZATION 17
File Directory Corresponding Table 43

Swapper 17 BRS 5 and 6 43
Memory Allocation 18 Commands Hash Table 45
RAD Organ ization 18 Subsys tem Hash a nd Correspond i ng Tab Ie 46

User BRSs for File Manipulation 47

5. SOFTWARE INTERRUPTS 20

Interrupts 6 through 10 20
13. EXECUTIVE COMMANDS RELATED TO FILES 48

System Interrupts 20 Magnetic Tape 48
Time-Out Interrupts 20 BCD Tape Files 48

Standa rd Magneti c Tape Fi I es 49
6. BRS LOGIC 21

7. INITIALIZATION AND TERMINATION
14. EXECUTIVE COMMANDS 49

OF A USER 22 User Commands 50
Operator Status 51

Initial ization of a User 22
System Commands 52

Termination ofa User 22
Subsystem Commands 53

8. TELETYPE INPUT/OUTPUT 23 15. REE NTRANT SUBROUTINE CALLS 55

Tel etype Buffer 23
16. MISCELLANEOUS FEATURES 55

Output Path 23
Echo Tabl es 23
940 Byte Addressing 26 17. UTILITY PROGRAMS 56

8-Level Mode 26 DSWAP 56
Input Path 26 OPER Program 56
Miscellaneous Tabl es 27 Control Commands 56
Linking of Teletype 28 General Operating Instructions 56

Program Loading and Assembly Procedure -- 57

2f} Operator Executive Routine 57 9. DEVICES AND TS PAGE BUFFERS
Output Descri ption 60

File Storage on Disc 29 Disc Edit Program 67
Fife Buffers 29 Phase One 67

iii

Phase Two 67 File Directory Format on Disc or Tape 172
Phase Three 68 User Account Directory on Disc 173
Phase Four 68
Phase Five 68 D. MO NITOR FILES 174
Phase Six 68
Phase Seven 68 E. THE EXECUTIVE FILES 176
Phase Eight 68
Phase Nine 68 F. INITIALIZATION AND ASSIGNMENT OF

Operating Instructions 68 THE PAC TABLES 177
Commands to the Edit Program 68
Error Messages 69 G. INITIALIZATION OF SYSTEM AND
Messages RequL~ Operator Action 69 ACTIVATION OF FIRST USER 179
Messages Requiring No Operator Action 70
Map Program 70 H. THE PHANTOM USER LOGIC 180

Operating Instructions 71
Error Messages and Action 71 I. PHANTOM USER LOGIC TO PROCESS A

TELETYPE 0 N INTERRUPT 181
18. STRING PROCESSING SYSTEM (SPS) 72

J. FLOW REQUIRED TO INITIALIZE THE
19. FLOA TING-POINT 73 EXECUTIVE WHEN A USER LOGS

Standard SYSPOPs 73
ON THE SYSTEM 182

Quick SYSPOPs 73 K. SUBROUTINE TRACE OF THE SWAPPER
FORTRAN II SYSPOPs 73

183

Floating-Point Overflow 74
L. THE DISC LOGIC 185

Input/Output of Floating-Point Numbers 74

20. SCHEDULING, FORKS AND PROGRAM M. BRS LOGIC FLOW 186

INTERACTION 76
N. TRACE OF THE SUBROUTINES WHICH ARE

21. INPUT/OUTPUT 89
CALLED BY THE BRS 1 (MONOPN) IN
ORDER TO OPEN THE DISC 187

22. TELETYPES 109
O' SUBROUTINE TRACE FOR BIO FLOW WHEN

23. MEMORY 119
THE DEVICE IS THE DISC ON INPUT 187

24. STRING PROCESSING 126
P. SUBROUTINE TRACE FOR THE LOGOUT

COMMAND 188

25. NUMBERS 136 Q. SUBROUTINE FLOW FOR THE PHANTOM

26. EXECUTIVE COMMAND OPERATIONS 152
USER TASK WHICH PROCESSES A
TELETYPE OFF INTERRUPT 188

27. MISCELLANEOUS OPERATIONS 153
R. AUTOMATIC RESTART 189

APPENDIXES

A. GLOSSARY OF TERMS 160

B. BRS AND SYSPOP INDEXES 164
lLUSTRATIONS

Index of BRSs and SYSPOPs By Number 164 1. Typical Forking Structure
Index of BRSs and SYSPOPs By Type 166 2. Concept of Locked Pages 2

Schedu I ing, Forks and Program Interaction- 166
Input/Output 167 3. PAC Table - One Per Fork 5
Teletype Operations 168

4. Simplified Clock Interrupt Routine 7 Memory Operations 169
String Process 169 5. Fork Searching Scheme 8
Number Operations 170

6. Phantom User Queue Entry 9
Executive Command Operations 170
Miscellaneous Operations 170 7. Overview of Scheduler 10

C. GENERAL DESCRIPTION OF THE COMBINED 8. Private Memory Table Entry or Shared Memory
FILE DIRECTORY 172 Table Entry 12

File Directory Block 172 9. Job T.:sbles 17

iv

10. Format of Real Memory Tabl e (RMT) 17 28. FILES Command Terminated by aline Feed -- 61

11. RAD Queue Entry 18 29. Garbage Collection 62

12. Teletype Tables 24 30. Example of SIZE ACCOUNT 66

13. Typical Disc Layout 30 31. Exampl e of TIME 66

14. Disc Address Word 31 32. Exampl es of User Ou tpu t 67

15. Flow Required to Access a Disc File 31 33. Format Word for Floating-Point 75

16. File Buffer 32 34. Memory Diagram for the Monitor 175

17. Tables Indexed by Device Number 34 35. Memory Diagram for the Executive 176

18. File Control Block 35 36. Initial ization of PAC Tables 177

19. Format for Magneti c Tape Fi I es 39 37. A Disc Queue Entry 185

20. Format of BCD Magnetic Tape 39 38. The Disc Queue (DRQ) 185

21. Hash Tabl e 42

22. File Directory Hash Table 43
TABLES

23. Hash Table Entry and Corresponding Table 1. Panic Table 14
Entry for Fi leD i rectory 44

2. Significance of Bits in A Register 14
24. Commands Hash Tabl e Entry 45

3. Device Numbers 33
25. Subsystem Hash Tabl e and Corresponding

File Control for Magnetic Tape 38 Table Entries 46 4.

26. SUBIT Macro Data Words 47 5. Executive Commands 49

27. FILES Command Terminated by a Carriage 6. Control Commands 57

Return 60 7. Error Conditions 74

v

vi

PREFACE

This manual describes the SDS 940 Time-Sharing System (Version 4.0). The design and
implementation of the system is explained, as well as certain of its operational features.
The manual covers this in three major parts: Monitor, Executive, and subsystems.

Chapters 2-11 deal with the Monitor, chapters 12-19 discuss the Executive, and chapters
20-27 explain the various system programmed operators (SY5PO Ps) and branch system
routines (BRS) that can be used with this system.

Illustrations and explanations are also given of important tables associated with the sys
tem, such as the PAC Table (PACT), Phantom User Queue Entry, Job Table, Pseudo
Memory Table, etc.

This publ ication is a reference guide for experi enced programmers. It assumes that the
reader is familiar with the basic concepts of the 5DS 940 Time-Sharing System. Addi
tional information about the system can be obtained from the related publications list.

1. INTRODUCTION

The SDS Time-Sharing System (TSS) links the 940 CPU with
up to 40 remote terminals. The system consists of three
main parts: Monitor, Executive, and subsystems. The mon
itor executes in monitor mode while the Executive and the
subsystems execute in user mode.

Both RAD and disc storage are required, the RAD for storing
the subsystems and for swapping and the disc for user's files,
fi Ie directories, accounting information, and copies of the
Monitor and Executive

THE MONITOR

The Monitor is the portion of the system concerned with

• schedu ling

• input/output operations

• interrupt processing

• memory allocation

• swapping of programs and data from disc and RAD to
and from core memory

• control of active programs

Initially when the system is put into operation, the compu
ter is operating in the 930 mode. The execution of an EOM
022000B puts the computer into the 940 Monitor mode.
When the Monitor executes a branch instruction with bit 0
of the branch instruction set, user hardware relabeling is
invoked and a transfer is made to user mode. Once the
computer is in user mode, it will revert to Monitor mode
by the occurrence of an interrupt or trap, or the execution
of a SYSPOP (System Programmed Operator).

The basic program unit with which the 940 time-sharing
system is concerned is called a fork - a self-contained body
of code consisting of a main program and all subroutines
necessary to perform a particular process. A fork may have
a maximum of 16K memory active at any time. The "fork
ing structure" concept is analogous to the "overlay struc
ture" concept used by many batch monitors. An overlay
structure consists of segments of a program that, when
loaded, will reside in the same locations in memory at dif
ferent times. At any given time only a part of an overlay
structure will be active. When this segment completes exe
cution it can take action to bring in another segment of the
overlay structure.

Similarly, a user can have only one fork active at any given
time. While this fork is active it can take action to estab-
I ish and transfer control to a lower fork. When the lower

fork has finished executing, it can transfer control back to
the parent fork. The lower fork may share pages of memory
with any of the parent forks, and it may acquire more mem
ory independently of the parent. Whi Ie the lower fork is
executi ng, the pages of the parent fork that are not bei ng
shared with the lower fork have most I ikely been swapped
out to the RAD. However, sufficient information has been

retained to establ ish the environment of the parent fork when
the lower fork terminates.

Figure 1 illustrates a forking structure for four users (the
Phantom User is discussed in Chapter 2). A user may have
a total of 32K in his forking structure. The user is not
charged for the memory required by the reentrant part (pro
cedural part) of the reentrant subsystems. A maximum of 8
forks is allowed in the user's forking structure.

Figure 1. Typical Forking Structure

The most important aspects of the forking structure are that

1. The software deals with forks, the scheduler activates
a fork, not a job or a user.

2. A user can have only one fork in hi s forking struc ture
currently active. This fork is either running or wait
ing on one of the queues to be allotted a time slice.
The rest of the forks in the user's forking structure
have been dismissed and will be reactivated when the
lower fork terminates.

Figure 2 is a diagram of the Monitor showing its functional
parts, not the actual core layout. The Monitor pages are
"locked", that is, not available for swapping. The locking
is software-implemented. If a fork initiates an I/o opera
tion, it will be dismissed to allow activation of another fork
whi Ie its I/o is in progress. The page where the I/o is

being performed wi II be locked unti I the I/O operation is
completed, although the rest of the fork's memory may be
swapped. Upon completion of the I/o, the original fork
wi II be reactivated when the system can assign it a time
slice.

The scheduler is the most important element of the 940
Monitor. It decides which fork to activate and it calls
the swapper which collects from the RAD any pages the
fork requires. When the swapping has been completed, the

Introcluc ticn

I/O control section
and drivers

Uti I ity routines (such as
SYSPOPS and BRSs)

Teletype package

Scheduler and swapper

The currently running
fork

The resident user

I/O locked pages

Unlocked swappable
pages

~

The Monitor 18K

All pages are locked

Maximum of 18K
(a 2K temporary
storage (TS) page + a
maximum of 16K)

Maximum of 18K

All pages are locked

Figure 2. Concept of Locked Pages

scheduler transfers control to the fork and, by so doing,
effects a transfer to the user mode. The fork will execute
un ti I a spec ifi ed quantum of time has elapsed, or unti I the
fork requests I/O and a call must be made to activate an
I/O device, or until the fork takes some action that dis
misses itself. At this time, control is returned to the sched
uler, which finds another fork to activate.

A 64K system uti lizes the "compute whi Ie swap" option.
With this option, the memory a fork requires is allocated,
the necessary RAD I/O operations are initiated, and the
fork is placed on the swap wait queue (SWQ). This fork
will remain on SWQ until all of the pages the fork requires
have become core -resident.

After the fork has been placed on the SWQ, the system then
activates that fork on SWQ that has all of its memory core
resident, or the resident user fork. The resident user fork is
the last fork that was dismissed for quantum time overflow.
Since such a fork is compute-bound, the system can be exe
cuting this fork whi Ie the other fork is being swapped into
core.

When a fork becomes the resident user, the pages it requires
are locked so that the system can immediately transfer to this
fork when a swap has been initiated. When the resident user
is activated, its pages are unlocked. The fork wi II execute
unti lit is di smi ssed for any of the usua I reasons or unti I a fork
that is on the SWQ has all of its page core resident. Note
that a fork wi II lose its identity as the resident user if another
fork (activated from the SWQ) is dismissed for quantum overflow.

2 Monitor/Executive

If there is no resident user (no forks have been dismissed
for quantum overflow or the system has 48K of memory) the
system will wait until one of the forks on SWQ has all of
its pages core resident. There can be a maximum of two
forks on SWQ,

When the swapper activates a fork, all of the pages belong
ing to the fork are marked "read-only". If the fork exe

,cutes any instruction that alters memory, a trap routine
will change the status of the page to "not read ani/I. The
amount of RAD I/O required is significantly reduced in
this way. The swapper does not have to output a "read
only" page since a copy already exists on the RAD, The
only pages in the system that are truly read-only, however,
are the reentrant Executive or subsystem pages. The trap
routine produces an error condition if a read-only trap
occurs in one of these reentrant pages.

THE EXECUTIVE
The executive is the intermediary between the Monitor and
the user. It is concerned with

• the command language through which the user controls
the system from his teletype

• identification of the various users

• the specification of the limits of each user's access to
the system

• control of the directory of symbolic file names, and
backup storage for these files

• requests for a subsystem.

The Executive is a reentrant program that uses a Temporary
Storage (TS) page, 2048 words, to accompl ish reentrance.
Each user is assigned a TS page when he dials onto the sys
tem. Therefore, each user actually has a maximum of 30K
available memory (32K minus the TS page),

The TS page contains the I/O buffers, various constants
pertaining to the user, and reserved storage for the Band
X registers. Requests by the user for fi Ie I/O (other than
tel etype) involve a transfer of data from the device to a
TS page buffer. Various I/O SYSPOPs exist that accom
modate a transfer of information from the TS page buffer
to the user's program area.

The access a user has to the system is defined by h is status.
The user's status determines what Executive commands are
availabl e to him and what SYSPOPS he may execute.
Four I evels of status are avai labl e:

1. Operator

2. System

3. Subsystem

4. User (the Executive commands available to the user
are explained in the "Terminal Users Guide"
90-11-18A)

Any of the above may be granted peripheral status or sub
system class status, or both. With peripheral status the
user may access certain periphera I devices through the
medium of the Executive command structure. Subsystem
class status permits the user the use of TAP and DDT.

SUBSYSTEMS

Subsystems are major processors such as FORTRAN II, CAL,
QED, etc. that perform special ized functions. These sub
systems are programs that are permanently connected to the
main system. Each subsystem is called by name through the
Executive, and the Executive then establ ishes a lower fork
for the subsystem.

The processors implemented as 940 subsystems have such a
high rate or usage that they have been written as reentrant
programs, enabling many users to share the same processor
simul taneously.

-Programming reference information on the maj or subsystems
is contained in individual manuals I isted under related pub
I ications in front of this manual.

2. SCHEDULER

PROGRAM ACTIVATION TABLE

Since a time-sharing environment involves the dynamic
swapping in and out of user forks, tables must be main
tained that enabl e the system to establ ish the program
the fork had before it was dismissed. Each fork has a PAC
table (PACT) associated with it. The format of the PACT
is shown in Figure 3.

Note that the PACT contains locations for saving the pro
gram counter, P, and the contents of the A register. The
B and X registers are saved in the TS block. The PACT
also contains two of the three pseudo-relabeling registers
for the fork. The third, which specifies the TS block, is
kept in one of the job tables (RL3). Pseudo-relabeling is
discussed in detail later in this chapter. The word PTEST
determines the conditions under which the fork should be
reactivated if it is not currently running. The panic table
address in PTAB and the two pointers called PFORK and
PDOWN are discussed under II Panic Cond itions".

Once the fork has become active, it can be in one of five
states

1. currentl y runn ing;

2. on the scheduled queues awaiting allocation of a
ti me -s I i cei

3. on the swap wait queue

4. dismissed (in limbo); the fork executed a BRS 9 and
dismissed itself in order to activate a lower fork.
The fork can be reactivated because the I inking is
intact in the PFORK and PDOWN entries in PACT.

5. terminatedi e. g., the fork ran to completion, exe
cuted an illegal instruction, the user logged-off, etc.
Once terminated, the PACT is returned to the free
PACT list.

The function of the various PAC table entries is shown in
Figure 3. Detailed explanations for each word of the
tabl e entri es are as follows

PNEXT
(Word 0)

o

Next queue or next program on queue
<0 - next program >0 - next queue

Used in the queue chaining scheme. Three possibilities
exist:

a. If the fork defined by this PAC table is on a queue and
PNEXT is > 0, th is fork is the last on a particular queue,
and PNEXT points to the next queue.

b. If the fork is on a queue and PNEXT is < 0, it is a
pointer to the next PAC table on the queue.

c. If the fork defined by this PAC table is not on a
scheduled queue, or if this PAC table is not in use,
PNEXT is not meaningful.

PL
(Word 1)

Saved (P)

o 1 2 3 8 9 10 23

UM

OV

User Mode. This bit is set if the fork executes
in user mode. This is the case for all forks except
the phantom user.

stored overflow - status of the hardware over
flow indicator is stored into this bit when the fork
is dismissed. The overflow status can then be re
stored when the fork is activated.

Saved(P) the virtual (see chapter on "Mapping" in
940 Reference Manual) address of the cell to which
control must be transferred when the fork is reacti
vated. The following coding is executed when a
fork is activated.

LDA PL,2
STA 0

BRU* o will transfer to user mode if
UM=l

Scheduler 3

PA
(Word 2)

o
Saved (A)

23

Saved (A) the contents of this cell will be placed
in A when the fork is reactivated. The cell is
initialized from the A register if the fork was dis
missed or from the panic tabl e if this is a new fork.
"PB" and IIPX" are stored in the user TS page, and
are indexed by fork number (bits 18 through 20
of PIM).

RU
(Word 3)

First pseudo-relabeling register

o 23

RL2
(Word 4)

o
Second pseudo-relabel ing register

23

RL 1 and RL2 these are the pseudo-relabeling regis-
ters for this fork. Each six-bit byte points to an
entry in the SMT or user PMTwhich in turns
points to a real page or RAD address.

PPTR
(Word 5)

o
PDOWN PFORK

11 12 23

This word can have two configurations

a. If PAC table is not is use, bits 10 through 23 contain
a pointer to the next free PAC table.

b. If PAC table is in use, PPTR links this fork within the
hierarchy of this user's forking structure.

1. PDOWN contains the PACT pointer to the next
lower fork.

2. PFORK contains the PACT pointer to the parent
fork.

PTEST
(Word 6)

Activation Test word addrs., or interrupt
condi tion number or status

Activation conditions are

(Bits 3-8)

o Word greater than 0

Word less than or equal to 0

4 Program Activation T abl e

(Bits 3-8)

2
3
4

5

6
7

Word greater than or equal to 0
Word less than or equal to tel etype early warning
Special test. The address points to a special
activation test routine. Appl ies to Phantom User.
Interrupt occurred. The address contains the
number of the interrupt whi ch occurred.
Word less than or equal to real-time clock.
Special address =

o dead
1 running
2 BRS 31 (see Chapter 6 re BRSs)
3 BRS 106
4 Executive BRS
5 BRS 109
6 BRS 9 (User Program)

10 Do not activate
11 Bit 1 of word = 0 (buffer ready)
12 Word I ess than 0

PQU
(Word 7)

I~I ~I 0 I QR 0 PPAR

o 123 89 1112 23

Program Quantum Word:

EX fork has system status.

EXB fork was created by an Executive BRS.

QR contains the long quantum remaining for the
fork (measured in 60 HZ clock ticks).

PPAR PACPTR of a parallel fork. Parallel forks

PTAB
(Word 8)

are not impl emented'

Panic Table Address

o 1 2 3 89 10 23

LM fork is local memory. This means, essentially,

EX1

that this fork will obtain memory independent of
its ancestors which means, in turn, that its ances
ters are protected from this program. See "Mem-
ory Acquisition. II .

fork has subsystem status.

TS A TS page has been assigned to the user in
whose forking structure this PAC table appears.

Job number has nothing to do with user or TT num-
ber but is assigned arbitrarily when user logs on.

Panic Table Address The virtual address of a 7-word
panic table to be filled in when this fork ter
minates. It is usually within memory "owned" by
the control I ing fork.

PIM
(Word 9)

PNEXT

PL

PA

RLl

RL2

PPTR

PTEST

PQU

PTAB

PIM

UM
OV
EX
EXB
OR
LM
EX1
TS
MT

Next queue or next program on queue
<0 - next ro ram > 0 - next ueue

o 23

Saved {P}

o 1 2 3 8 9 10 23

Saved {A}

o 23

First pseudo-relabel ing register

o 23

Second pseudo-relabel ing register

o 23

PDOWN PFORK or chain for free entries

o

1~1~lo I QR

o 1 2 3

I~I ~ I~ JoI Job No.

= User mode (1)
= Overflow
= System Status
= Exec BRS

o 1 2 3

1~1~1~loll 2
o 1 2 3 4

= Amount of long quantum left
= Local memory
= Subsystem status
= TS block assigned
= Add no memory

3

0

8 9

H
8 9 10

IEM

11 12 23

Test word addrs., or into no., or status
of dead fork

PPAR

11 12

Panic Table Address

23

23

23

4:56789 10:111 0 XPB TO

TP
NT
IEM

XPB
TO

14 15 17 18 20 21 23

= Termination pending (checks for rubout)
= Non-terminability
= Interrupt enable mask

1-4 = System interrupt
5-10 = Program interrupt
11 = Interrupt on disc errors

= Fork number
= Number of time-out interrupts armed

Figure 3. PAC Table - One Per Fork

TP termination pending; set by the Phantom User ifan

o 1 2 3 4 14 15 17 18 20 21 23

escapeoccurswhileNTis set. If the fork executes a
BRS 47 (turn escape on), both the TP and NT bi ts are re
set. If theTPbitwas set/the fork is dismissed onto
OQE. The task forprocessing the escapes isstill on
the Phantom Userand can nowbe processed. IfTPbit
was not set, then the fork continues execution.

Program Interrupt Mask:

MT fork may acquire no memory. Any attempt to do
so will result in the fork being terminated on mem
ory panic. See "Memory Acquisition".

NT non-terminability; set by the BRS 46 (turn escape
off). The escape task is still placed on the

Program Activation Table 5

phantom user queue. However, phantom user
takes no action regarding termination of this fork.

IEM software interrupt mask. See "Software
Interrupts".

XPB the fork number; used to index PB and PX in
the TS page. This number may range between 0
and 7.

TO count of the number of time-out interrupts that
the fork is currentl y using. A fork may have a
maximum of 3 time-out interrupts armed.

TIME·SLlCING

In order to implement time-slicing, the system defines a
long and short quantum. These parameters are defined in
c lock -ticks and can be easi Iy modified at system-generation
time. All times in the discussion are measured in periods of
the 60-cycle computer clock.

Two dedicated cells in the system are used to contain the
amount of time remaining for the currently active fork.
These are TIME {short quantum} and TTIME {long quantum}.
These cells are initialized each time the scheduler acti
vates a fork.

Once a fork is activated it wi II be allowed to execute
unti I its short quantum has expi red. The fork may take
action that will cause itself to be dismissed (such as an
I/O request) before the short quantum has elapsed. How
ever, if the fork is compute bound, it will execute for
at least one short quantum.

Once a fork has consumed a short quantum, it can be dis
missed if any of the forks previously dismissed for I/O
(i. e., any of the forks on QTI or QIO) are ready to be
activated. If this occurs, the currently active fork is
dismissed for short quantum overflow.

The clock interrupt routine determines if any I/O bound
forks are ready for activation by checking a word called
ACTR. ACTR is set to -1 when the scheduler determines
that no I/O bound fork is ready for activation. ACTR is
incremented by an I/O interrupt routine whenever any
I/O bound fork is ready to be activated.

If the short quantum has expired, but no I/O bound forks
are ready to be activated, the currel,tly active fork is per
mitted to execute until it consumes a long quantum. Once
a fork has expi red its long quantum, it is uncondi ti onall y
dismissed. This permits another computer bound fork to be
assigned a time slice.

The long quantum is cummulative; that is, when a fork is
dismissed, the long quantum remaining is recorded into the
PAC table. Whenever this fork is activated, TTIME is set
to the previously recorded value. If a fork is dismissed for
long quantum overflow, it is assigned a new long quantum
and this val ue is stored in the PAC table.

In order to activate a fork, the system must allocate a con
siderable amount of its resources. These resources are in
the form of core memory, RAD operations, etc. In order to

6 Time-Slicing

make this allocation worthwh i Ie, the system always guar
antees a fork a full short quantum each time it is activated.
An exception to this occurs if a fork was activated from
resident user status. Since this fork has already executed
for at least a short quantum and si nee another fork is in the
process of being swapped into core, the resident user is not
guaranteed a short quantum of execution time. Th is fork
will be dismissed for simulated long quantum overflow as
soon as the swap in progress has completed. This prevents
the resident user from executing for a maximum of a long
quantum (in the event that no forks dismissed for I/O are
ready to be activated) and enhances the probability that
the system wi II have a resident user to activate when the
next swap is initiated.

The clock interrupt routine forces forks to be dismissed for
quantum time out by arming the Monitor-to-user transition
trap. (See the SDS 940Computer Reference Manual, Publi
cation No. 90 06 40, for a discussion of the Monitor-to
user transition trap). If the fork was executing in user mode,
this trap wi II occur when the c lock interrupt is cleared. The
trap routine then determines if the short quantum has expired
and causes the fork to be dismissed to the appropriate queue.
Since the Monitor is not reentrant, no qttempt is made to
dismissafork that isexecuting inMonitor mode. Therefore,
no user fork is dismissed while executing a SYSPOP. The
c lock routine wi 1/ have armed the transition trap when
either quantum has expired, however, the trap will not
occur until the Monitor exits from the SYSPOP. Note that
this mechanism also prevents the system from dismissing
itself or the phantom user for quantum overflow.

SCHEDULED QUEUES

When a fork has been dismissed or is awaiting activation,
its PAC table wi II be on one of the four scheduled queues.
The queues are listed in order of priority.

QTI Forks dismissed for teletype input/output.

QIO

QSQ

QQE

Forks di smissed for other I/O, forks that have
i ust been in itiated by a BRS 9, and forks acti
vated by escapes, program panic, etc.

Forks dismissed for short-quantum overflow.

Forks di smissed for long-quantum overflow.

The information in any PAC table can be retrieved by using
the PAC pointer associated with the PAC table. The PAC
pointer is a negative index that allows retrieval of any
entry in a fork's PAC table. Assume that PACPTR contains
the index to a particular PAC table in the array of PAC
tables. Then

LDX

LDA

LDA

PACPTR

Fetches the PA word

Fetches the PQU word

Location PACPTR always contains the PAC pointer of the
fork the system is currently running. PAl PQU, PNEXT,
etc., are defined in relation to the end of the PAC table
array. Currently the system isdimensioned for 144 PAC tables.

Figure 4. Simplified Clock Interrupt Routine

When a PAC table is on the scheduled queues, the PAC
pointer for this fork in in the PNEXT word of the PAC
table immediately before it on the queue. The sched
uled queues are each 3 entries long and have the fol
lowing format:

Word 0

Word 2

PAC pointer to the first PAC table on this
queue, or the address of the next queue

PAC pointer to the last PAC table on this
queue, or a ointer to this queue

Address of the next queue Word 3 I
~O---2~3

The scheduler begins searching a queue by fetching Word 0
of the queue. If this word contains a positive number, there
are no entries on this queue since a PAC pointer is always
negative. However, if Word 0 does contain a PAC pointer,
it can easily obtain the PTEST word associated with the PAC
table and determine if activation is possible. If activation
is not possible, the PNEXT word can be retrieved (since
each PAC table on a queue points to the next one on
the queue) and the next PAC table can be checked for acti
vation. If an entire queue has been searched and no acti
vatible fork is found, the scheduler wi II then search the
next lower priority queue.

For example, assume PAC tables numbered:

are on QTI

2,8 are on QIO

15,4 are on QSQ

None are on QQE

The numbers are assigned for convenience in the following
diagram (Figure 5). Note that if a queue has no entries,
the first word contains a positive number which is the ad
dress of the next queue.

If there are no forks on the scheduled queues which are
ready to be activated, the system searches the swap wait
queue for a fork that has all of its pages core resident. If
no fork on the swap wait queue is ready, the system acti
vates the resident user, if any. If no activatable fork is
found, the system returns to search the beginning of the
scheduled queues and repeats the same process.

PHANTOM USER

There are certain operations that the Monitor must perform
for the users on the system. Some of these tasks are

1. Processing of a teletype ON interrupt

2. Processing of escapes

3. Processing of the software time-out interrupts

4. Processing of teletype OFF interrupts

5. Typing of certain error messages

6. Testi ng of I/O devices for ready.

Consider the processing of a teletype ON interrupt. This
involves the assignment of a job number, initialization of
various tables, assignment and initialization of the PAC
table for the Executive fork, etc. It is not feasible to per
form all of these functions in the teletype ON interrupt

Phantom User 7

routine. Therefore, the interrupt routine should simply
honor the interrupt and notify the Monitor to finish pro
cessing the task.

Since many of the tasks are initiated by an interrupt, the
Monitor must have a task queue where a function that it
is to perform can be added. As the system performs a task
it con remove it from the queue. However, in order to
process these tasks, the Monitor must be allotted a time
sHce.

It is the scheduler that decides which fork on the system to
activate. What whould be given priority - the process
ing of a teletype OFF interrupt or the activation of a fork
on QTI that was dismissed for teletype input and is now
ready? The problem of priority assignment for all users on
the system is handled byestablishing the scheduled queues.
Therefore, the Monitor can conveniently be assigned a
time slice if it has fork on the scheduled queues. When
this fork is activated it could check the task queue and
perform the various functions. This fork is referred to as
the phantom user. The phantom user runs in Monitor mode
and requires no memory of its own. Its memory and re
labeling are those of the Monitor. The Monitor task queue
is cotted the POCT toble.

The PAC table for the phantom user is set up and put on
QTI when the system is first initialized. The PTEST word
contains an immediate activation condition. When the
scheduler activates the phantom user, if first checks a word
called PUCTR (Phantom User Counter). PUCTR is incremented
by every routine that adds a task to the PUCT queue (the
Phantom User Task Table). If PUCTR~ {no tasks}, the phan
tom user dismisses itself onto QTl.

If PUCTR is greater than 0, the phantom user begins to
search the PUCT table for a task to perform. Each task
the phantom user can perform is given a code number.
(See bits 3-8 of the second word of a PUCT entry.) Each
time an attempt is made to process a task the following
occurs:

1. A check is made to determine if the task is ready to
be processed. For instance, the phantom user can do
nothing about a time-out interrupt unti I the appropri
ate amount of time has elapsed. If the task cannot be
processed, the phantom user continues to scan PUCT
until it reaches the end of the queue.

2. If the task can be processed, PUCTR is decremented.
The phantom user then branches to the appropriate
routine for performing the task. All of the routines
return to where the phantom user can begin to scan
the PUCT table.

The phantom user will execute until either all of the tasks
have been performed (PUCTR=O), or until the tasks that re
main on the queue cannot be processed at this time. When
this occurs, the phantom user dismisses itself onto OTI with
an activation code of 4.

Whenever the phantom user is dismissed, location ACTPU
is set negative to indicate that all of the tasks that were
ready to be processed have been completed. Any routine
that causes a task on PUCT to be ready for processing will
increment ACTPU. With a phantom user activation code
of 4, the schedulerwill activate the phantom user if ACTPU
is non-negative. The phantom user will be unconditional I y
activated when at least 3 seconds have elapsed. Figure 6
shows the format for the PUCT table entries. A routine
named EPU adds an entry to the -PUCT list. .

PAC ptr PACT 1 PACT 3 PACT 10

PAC ptr 1

PACptrlO

Addr 010

PNEXT

1 PAC ptf 31 rAC
ptf 11 rATA Ql°1

QTI

QIO PAC ptr 2
PACT 2 PACT 8

PAC ptr 8 PN EXT PAC ptr 8 DATAOSO

Addr OSO

QSQ PAC ptr 15

PAC ptr 4

Addr QOE PACT 15 PACT 4

QQE DATA QTI PN EXT PAC ptr 4 DATA QQE

OOEO

DATA OTI

Figure 5. Fork Searching Scheme

8 Phantom User

EPU accepts its input parameters through the A, B, and
X registers.

SUMMARY OF SCHEDULER FUNCTIONS

Figure 7 is a flow diagram showing the functions of the
schedu ler. The schedu I er searches the schedul ed queues
for an activatable fork. When it finds one it calls the
swapper. The input to the swapper is the pseudo-relabel ing
registers and a flag called MGTS5. MGTS5 is set to 0
to indicate that the swapper is to build upan appropriate
list of RAD commands and initiate the RAD I/o, but not
wa it unti I the RAD I/o is campi eted. The swapper re
turns to the scheduler the real (hardware) relabel ing regis
ters. Since MGTS5=O, the swapper does not at this

time set the hardware relabeling. If the swapper is unable
to allocate real pages to this fork because sufficient memory
is not available at this time (i. e., a sufficient number of
pages are not unlocked), it takes an abnormal exit. The
scheduler will then attempt to find another fork that the
swapper is able to allocate.

The schedul er then puts the fork onto the swap queue (SWQ).
SWQ consists offive tabl es. These contain the PAC pointer
of the fork (SWQPAC), the number of pages (negative count)
thatstill remain to beread from theRAD (SWQPGC), and the
three real relabeling registers, (SWQRL 1, SWQRL2, and
SWQRL3). The RAD logic wi II increment the page count each
time a page is brought in. The schedule determines if a fork
on SWQ is ready to beactivated by checking the page count.
When the count is zero, the fork is in core and ready to be run.

o Poi nter in next entry in queue

a

A ° I PU test no.

0 23 89

B 2 I I N I
0 23 89

3 I I Data for routine

0 23

PU Test No.:

a Continue disc I/O

Escape or teletype off interrupt

2 Magnetic tape ready

3 BLK31=O

4 Card reader ready

5 Start PU fork

6 Data set time-out (liteletype on
interruptI!)

23

Routine address

23

Data for the routine

23

17 18 23

7 Program interrupt time-out

8 Line printer ready

9 Card punch ready

10 Dead entry - the phantom user wi II ignore
this task and remove it from the PUCT queue.

N is mean ingful for the following tasks:

N = 1 on interrupt

2 off interrupt

3 escape

Figure 6. Phantom User Queue Entry

Summary of Scheduler Function 9

*One pass thru
sched Qs for
statistics.

Search scheduled
queues for an
activatable fork.

RU

Put the fork
on SWQ.

Resident User (dismissed for quantum overflow).

SWQ Swap Queue.

This pass'through the queues can easi Iy be removed.
The system will take statistics at various points if the
variable CNTPKG is set to I when the Monitor is
assembled.

Take the fork
off of SWQ.

Establish fork
environment from
PAC table.

Run this
fark unti I
dismissal.

Figure 7. Overview of Scheduler

10 Summary of Scheduler Functions

Take RU off
scheduled Qs.
Unlock RU pages.

yes Release
old RU.

The SWQ is scanned at ACT for forks that are ready to run.
If none is found, then the resident user (a user dismissed for
quantum overflow) is run. If there is no resident user and
no fork has yet completed its swap, then the system con
tinues to scan SWQ. If a fork has all the required pages,
the entry is removed from SWQ and the swapper is again
called. This time MGTS5=-1. The swapper verifies that
all of the pages are in, i.e., no RAD errors have occurred,
and sets the hardware relabeling. The fork is then activated.

If a RAD error did occur, the fork is dismissed on QQE with
an immed iate activation condition. The system wi II then
search the schedu I ed queues for another activatabl e fork.

At PACQE, any fork which is dismissed for quantum over
flow will have its memory locked in core and its real re
labeling saved in RURRL 1, RURRL2, and RURRL3. The mem
ory of the previous resident user, if any, is rei eased at this
time. Whenever there are no forks on SWQ that are ready
to run, the resident user is activated, thus using CPU time
which would otherwise be wasted. Whenever the resident

user is activated, he loses his identity as the resident user
and will be the resident user again only if he is dismissed
for quantum overflow.

There can be a maximum of two forks on SWQ. This is
accompl ished by the coding at PACGO 1. A fork will be
added to SWQ only if there is no resident user. If there
is no resident user, the coding at ACT will continue to
search SWQ until one of the forks can be activated and
thus removed from SWQ. If the fork that was placed on
SWQ first is sti II not finished swapping, and the second
fork has all of its memory (often the case with the phan
tom user), then the second fork wi II be activated. The
system does not attempt to put more than two forks onto
the swap wait queue due to memory limitations. The
two forks could account for a maximum of 36K of core
(2 K for the TS page and 16K for the fork). Some of the
memory may be locked into coredue to prior I/O requests.
The system shou Id have pages avai labl e to accomodate re
quests by the running fork for relabel ing changes, memory
acquisitions, and the processing of panics.

3. FORKING STRUCTURE

JOBS
The system refers to a currently active user as a II job". A
job number is associated with every forking structure. If
the system is dimensioned to handle 32 users, the job num
bers range from 0 to 32, with the phantom user always
ass igned job number O. The job numbers are assigned in
a somewhat random fash ion. As a user logs on the sys
tem, he is assigned a job number that is currently not in
use. When he logs off, his job number is returned to the
free job list. The available job numbers are chained in
the TTNO array.

The job number is used to index several tabl es. These
tables contain information that pertains to the job, rather
than an individual fork, such as the teletype numberasso
ciated with the user, CPU time, etc. The job number is
stored into the PAC tabl e for every fork in a userls struc
ture. The job tabl es are shown in Figure 9.

PMT AND SMT TABLES
The PMT (Private Memory Table) preserves the environment
of the userls memory. The table provides a real page num
ber and a RAD address and indicates whether the page is
in core or on the RAD. Each user is assigned a PMT. The
table is 20B entries in length which represents the 16 pages
or 30K and one TS pagethatauser can acquire. The PMT
table that a user is assigned is a function of his job number.

There is one SMT (Shared Memory Table) in the system.
The SMT is similar in format to the PMT. The SMT pro
vides information about the Monitor, Executive, and re
entrant subsystem pages. This table contains60B entries.

Each entry in the table is unique to a particu lar subsystem.
The entri es are assigned when the system is assembl ed.
(See Figure 8).

PSEUDO-RELABELING
When a fork is dismissed, it would be meaingless to save
the contents of the hardware relabeling registers, since
memory is being changed dynamically. Therefore, each
fork has a pair of "pseudo-relabel ing" registers associated
with it. Each pseudo-relabeling register consists of four
bytes. Each byte points to a PMT/SMT entry. Using the
PMT/SMT tables, any necessary swapping can be initiated
and the hardware relabeling can be constructed.

Psuedo-relabel ing bytes with a value of 0 through 57B point
to SMT entries. Bytes having a value of 60B through 77B
point to a PMT entry.

The Executive always uses PMT entry 60B for the TS page.
All of the reentrant subsystems use at I east one page of
the userls memory for scratch storage.

As a fork acquires new memory (e. g., by executing a
"store A" instruction referenc ing a page that the fork
does not have) a page is acquired and a RAD address
is suppl ied. This process can continue unti I the user
has acquired all 32K.

In this way, the PMT reflects all the memory that a
user has acquired. The pseudo-relabeling registers in
dicate which PMT/SMT entries (i. e., what memory) are
necessary in order to activate a particular fork.

Forking Shucture 11

MEMORY ACQUISITION

A fork may have a maximum of 16K. When the fork is
activated it may have less than 16K and then acquire more
memory as needed while it is executing. The following is
a partial list of how not to acquire more memory}.

• By falling through a page (to a page which is not in
the pseudo-relabel ing) to get the next instruction.

•

•
•

•
•

•

By going indirect via some address which is out of
bounds (i. e., LDA *100 where 100 is out of bounds).

By doing an EXU to an address which is out of bounds.

By doing a POP if page 0 is not in the fork's
relabel ing.

By an unconditional branch to an out of bounds address.

By doing a BRS 44 and requesting a byte that points to
a PMT entry that has not been acquired.

By doing a BRS 9 and requesting pseudo-relabel ing
bytes that are not meaningfu I.

The correct way to acquire more memory is to execute any
instruction (such as LDA, STA, ADD, MIN, etc.) that
directly references a location in a page that has not been
acquired. This includes the initial loading of a program or
an I/O request into a page which has not been acquired.

If the fork addresses a block of memory that is not assigned
to it, a check is made to determine whether the machine
size specified by the user has been exceeded. If so, a
memory panic is generated. If the fork is fixed memory,
a memory panic is also generated. Otherwise, a new block
is assigned to the fork so that the illegal address becomes
legal. For a local memory fork, a new block is always
assigned. Otherwise, the following algorithm is used:

The number, n, of the relabel ing byte for the block ad
dressed by the instruction causing the memory trap is deter
mined. A scan is made upwards through the fork structure
to (and including) the first local memory fork. If all the
forks encountered during this scan have Rn (the nth relabel
ing byte) equal to 0, a new entry is created in PMT for a
new block of user memory. The address of this entry is
put into Rn for all the forks encountered during the scan.

If a fork with nonzero Rn is encountered its Rn is trans-
m i tted down to a \I the forks between it and the fork caus
ing the trap. If any fixed memory fork is encountered be
fore a nonzero Rn is found, a memory pan ic occurs.

This arrangement permits a fork to be started with less mem
ory than its controlling fork in order to minimize the amount
of swapping required during its execution. If the fork later
proves to require more memory, it can be reassigned the
memory of the controlling fork in a natural way. It is, of
course, possible to use this machinery in other ways, for
instance, to permit the user to acquire more than 16K of

12 Memory Acquisition

memory and to run different forks with nonoverlapping or
almost nonoverlapping memory.

~~i or I~ I ~ I 0 I M I 0 I RAD address I~ I Page No·1
o 1 2-4 5 6-9 10 17 18 19 23

RD On RAD

EX This page cannot be released by a user (e. g.,
the TS page has this bit set).

M Used by the memory acquisition routine to
inform the swapper that a RAD read into
this page is not required.

RO Read only. Set for SMT read only entry.

RAD RAD address truncated by 5 bits {since RAD
is always addressed in 2K blocks}.

Figure 8. Private Memory Table Entry or
Shared Memory Table Entry

The acquisition of memory is performed in a routine named
MGET. The RAD bit map is checked and an available page
is found. The RAD address is stored into the next available
PMT entry and the swapper is called. The swapper then
finds an available core page. MGET calls the swapper with
MGTS5=-1. The swapper waits unti I any necessary RAD -
I/O has been completed and sets the new hardware re
labeling. See Chapter 4 for more information on mem
ory allocation.

CHANGING RELABELING-

Several BRSsare available to the user to allow him to manip
ulate his pseudo-relabeling.

BRS 43

BRS 44

Returns the pseudo-relabel ing of the call ing
fork in A and B.

Sets the pseudo-relabeling with the contents
of A and B. There are several restrictions
associated with this BRS:

1. The user cannot relabel over a system
page unless he has the proper status.

2. The user cannot specify a pseudo
relabeling byte that points to a PMT
entry that he has not acquired.

When a fork is activated, all of its pseudo-relabe I ing bytes
are satisfied. Depending on the execution path, the fork
may not actually need all of the pages. The fork can re
lease a page by replacing the desired byte with O. This
wi" reduce the amount of swapping necessary each time the
fork is activated. The BRS 44 does not remove the entry
from the PMT. Therefore, the page can be retrieved by
executing the BRS 44 and specifying the byte.

PMT

TTNO

DB

PMTP o
o 9 10

PMA Blocks left

3 8

RL3 o
o

TTNO o
o 1 2 789

Starting Address of jobs PMT

Blocks used

o

23

Length of PM T

17 18

!pseudorelObeling I
for temp storage

17 18 23

tTY No. orovoil-I
ble job number

17 18 23

ETTB Amount of CPU time (in clock) = ticks used by this job

o 23

AUNN Account and user number

o 1

CPARW

o 1 2 3 4 5 6 8 9 1112

Private Memory Table

Contains teletype associated with job if
the job number is assigned; otherwise,
contains a chained I ist of the free job
numbers

Disc busy for BRS BE+ 1 or BE+2

23

o
23

CPARW Status of user

s System

C Control

o Operator

SS Subsyste~

CL2 Class 2 subsystem status (not used)
OS Disc error

CLl Class 1 subsystem status:

LB User Receiving Broadcast Letter bit 9= TAP, bit lO=DDT

Fi gure 9. Job Tables

Changing Relabeling 13

For example, assume a fork consists of five pages. All of
the error routines are in one page. This page can be rela
beled out when the fork begins execution. When an error
occurs, the page can be relabeled in and a branch made to
the appropriate error routine.

It is possible for one fork to acquire all 30K of memory.
However, it must use the BRS 44 to relabel some of the
pages out, since a fork can have only 16K of memory act
ive at anyone time.

CREATING A LOWER FORK

The for'king structure consists of up to 8 forks including
the Executive fork. The forking structure provides the
following advantages:

• Swapping time can be significantly reduced by seg
menting a program.

• It permits central ized control. The user can activate
one of the subsystems, return to the Executive to have
various functions performed, return again to the sub
system, call another subsystem, etc.

BRS 9 will initiate and activate a low~r fork, taking its
argument from the A register. The first six bits of the A
register specify various attributes the lower fork should
have while the remaining bits specify the address of a
7-word panic table.

The pani c tabl e a Ilows the parent fork to transfer various
parameters to the lower fork. When the lower fork ter
minates, information is returned to the parent via this
table. A panic table must not overlap a page boundary
or be used for more than one dependent fork.

Table 1. Panic Table

Word Contents

0 Program counter

1 A register

2 B register

3 X register

4 First relabeling register

5 Second relabel ing register

6 Status

The status word is set by the syster;t and may be:

-2 Dismissed for input/output

-1 Running

o Dismissed on escape or BRS 10

Dismissed on illegal instruction panic

3 Dismissed on memory panic

14 Creating A Lower Fork

Bit

o

2

3

4

5

Table 2. Significance of Bits in A Register

Significance

Make fork system if current fork is system

Set fork relabeling from panic table. Otherwise,
use current relabel ing.

Propagate escape assignment to fork (see BRS90).

Make fork fixed memory. It is not allowed to
obtain any more memory than it is started with.

Make fork local memory. New memory will be
assigned to it independently of the controll ing
fork.

Make fork subsystem status if current fork is
subsystem.

BRS 9 causes the following to occur:

1. A PACT is obtained and initialized. The PA and PL
words are set from the panic table entries. Various
other bits in the PAC table are set from the informa
tion supplied in A. RL 1 and RL2 are set up from the
contents of the panic table or from the relabel ing
registers of the currently running fork. Linkage to the
parent fork is established by setting the PFORK and
panic table address entries. The PDOWN parameter
is set in the PAC tabl e of. the parent fork.

2. A fork number is obtained. A job may have a maximum
of 8 forks, including the Executive fork. The values
for B and X that are supplied in the panic table are
stored into the TS page indexed by fork number.

3. "The supplied pseudo-relabel ing ischecked for validity.
The bytes must point to PMT entries that have been
acquired, a user fork cannot relabel in system
pages, etc.

4. A word called TTYASG (indexed by teletype number)
contains the PAC pointer of the fork that is to be ter
minated when an escape occurs. The fork pointed to by

TTYASG and all lower forks will then be terminated.
BRS 9 wi II set TTYASG to the PACPTR of the fork it is
creating unless bit 2 of A is O.

5. The lower fork (the one being created by BRS 9) is put
on 010 with an immediate activation condition.,

6. The parent fork is now dismissed (i. e., placed II in
limbo" which implies that the fork is not on a sched
uled queue) with an activation condition of 7 @ 6.
The parent fork will be reactivated when the lower
fork panics. If the parent fork has subsystem status,
it is not dismissed and continues execution at the
instruction following the BRS 9.

The parent fork and lower forks may interact in the fol
lowing three ways:

1. If the parent fork is not dismissed by BRS 9:-

BRS 30 reads the current status of a lower fork into
the panic table. It does not influence the
operation of the fork in any way.

BRS 31 causes the controlling fork to be dismissed
until the lower fork causes a panic. When
it does, the control I ing fork is reactivated
at the instruction following BRS 31, and the
panic table contains the status of the fork on
its dismissal. The status is also put in X.

BRS 32 causes a lower fork to be unconditionally
terminated and its status to be read into the
panic table.

BRS 106 causes the controlling fork to be dismissed
until any subsidiary fork causes a panic.
When it does, the controlling fork is reac
tivated at the following instruction with
the panic table address in A, and the panic
table contains the status of the fork at its
dismissal.

BRS 107 causes BRS 30 to be executed for all subsid
iary forks.

BRS 108 causes BRS 32 to be executed for all subsid
iary forks.

2. If interrupt 3 is armed in the controll ing fork, the ter
mination of any subsidiary fork will cause that interrupt
to occur. The interrupt takes precedence over a BRS 3l.
If the interrupt occurs and control is returned to BRS 31
after processing the interrupt, the fork will be dis
missed until the subsidiary fork specified by the restored
(A) term inates.

3. The forks can share me'mory. The creating fork, can,
as already indicated, set the memory of the subsidiary
fork when the latter is started.

PANIC CONDITIONS

The three kinds of pani c conditions that may cause a fork
to be terminated are listed in the description of the status
word. If the panic was caused by an escape, the following
occurs to the fork being pointed to by TTYASG, and to all
lower forks.

1. The page in the parent fork that contains the panic
table is brought into core if necessary. Data is in
serted into the panic table.

2. The B and X registers are stored into the TS page.

3. The PAC table is returned to the free PACT list. The
only exception is that the PAC tabl e of the Executive
is not released by any panic condition.

If the panic was not caused by an escape, the above three
steps will affect the fork causing the panic.

The PAC table of the controlling fork (or the fork above the
one being pointed to by TTYASG) is put onto QIO with an
immediate activation condition. If TTYASG contains the
Executive PACT pointer then the Executive fork is placed
on QIO. When the controlling fork is activated, execution
wi II begin at the location indicated by PL. For user forks
this wi II be one instruction after BRS 9.

The panic that returns a status word of 0 is called a fork
panic and may be caused by either of two conditions:

1. The escape button on the controll ing tel etype is pushed,
or an off interrupt occurs. This terminates a fork with
a fork panic. A fork may declare that it is the one to
be terminated by executing BRS 90. If a user fork is
terminated by escape, the tel etype input buffer is
cleared. If the controlling fork of the terminated fork
is executive, the output buffer is also cleared.

If a fork to be terminated by escape has armed software
interrupt 1, the interrupt will occur instead of a termi
nation. The teletype buffers will not be affected.

If the Executive is activated, control goes to the loca
tion EXECP in the Executive. Executive programs can
turn the escape button off with BRS 46 and turn it back
on with BRS 47. An escape occuring in the meantime
wi II be honored when BRS 47 is executed. A program
which is running with escape turned off is said to be non
terminable. BRS 26 skips if there is an escape pending.

If two escapes occur within approximately O. 12 seconds,
the Executive fork wi II be activated. Th is has the same
effect as having TTYASG contain the Executive PACT
pointer. (This device permits a user trapped in mal
functioning lower forks to escape). Closely spaced
escapes can be conveniently generated with the repeat
button on the teletype.

2. A BRS 10 can be executed in the lower fork. This con
dition can be distinguished from a panic caused by the
escape button by the fact that, in the former case, the
program counter in the pan ic tabl e points to a word con
taining BRS 10.

An extension of this system provides a way in which several
forks may be terminated simultaneously by a lower fork. BRS
73 provides a count in the A register. A scan is made upward
through the fork structure, decrementing this count by one
each time a fork is passed. When the count goes to 0, the
scan is term inated and a II forks counted are term inated. If
an executive program is reached before the count is 0, then
all the user programs below it are terminated.

The panic which returns a status word of 1 is caused by the
execution of an illegal instruction in the fork. There are
two kinds of illegal instructions:

1. Privileged machine instructions.

2. SYSPOPs, either forbidden to the user, or provided with
unacceptable arguments.

Panic Conditions 15

A status word of 2 is returned by a memory panic. This
may be caused by an attempt to address more memory
than is permitted by the machine size the user has set,
or by an attempt to store into a read-only page. If
interrupt 2 is armed, it wi II occur instead of the mem
ory panic.

16 Panic Conditions

Note that no type of panic releases memory. The PMT
entries remain intact. This allows pages of memory that
are acquired by one fork to be shared with the other forks
in the hierarchy. Also, after the panic occurs, the parent
fork can again issue the BRS 9 and resume execution in the
lower fork.

4. SWAPPER, MEMORY ALLOCATION AND RAD ORGANIZATION

SWAPPER

The swapper accompl ishes the allocation of memory. It is
called to activate a fork, change relabel ing, or acquire a
page of memory. The input to the swapper is the pseudo
relabeling. To determine the exact location of each of the
pages the fork requi res, the pseudo-relabel ing is decoded
and the SNT and PMT tables are consulted. The swapper
can then determine how many pages need to be read in from
the RAD. This count in then compared with the Memory
Avai lability Count (MAC). MAC contains the number of
un locked pages (minus one).

The system keeps tables that define the status of real mem
ory. These tables, both indexed by real page number, are
the Real Memory Table (RMT) and Real Memory lock Count
(RMC). The RMC entry indicates whether a page is locked
or unlocked. If RMC = -1, the page is unlocked and avail
able for swapping. An RMC entry may be made non
negative (the page can be locked) for any of the follow
i ng reasons:

1. Part of the Monitor is in the page.

2. The resident user occupies the page.

3. The page is I/O bound. This implies that the page
contains an I/O buffer that is currently active. Pages
which are being swapped are also I/O bound. Any rou
tine that initiates an I/O operation will increment the
appropriate RMC entry. The I/O interrupt routine will
decrement the RMC entry when the operation has been
completed.

4. The scheduler locks thE::! pages of a fork that is on SWQ
so that the memory wi II not be assigned to the second
fork that could be placed on SWQ. The memory is
unlocked when the fork is activated,

If the number of pages a fork requires is greater than MAC,
the swapper is unable to allocate memory at this time and
exits with an abnormal return.

If sufficient memory is available, the pages to be swapped
are sel ected. The RMT table is scanned to determine the
optimum pages to be swapped. The format of RMT is shown
in Figure 10

At most, three passes are made through the RMT tabl es to
select the required number of pages, The following method
is used to determine which pages are to be released:

1. No locked page (see RMC) is released.

2. Pages that are not locked are selected in the following
manner:

a, User pages (PMT pages) marked as read-only
(RMT bit 1 = 1, bit 2 = 0). No RAD write is

U R S S
S 0 M W ~~~to 0
E T Q

0123489

Address of SMT/PMT
respons ib I e for th is page

10 23

USE The page is in use, The setting of this bit
indicates to the swapper that a RAD write must
be performed before this page can be allocated.

RO The page is marked as Read Only in the
hardware relabel ing registers,

SMT This page is an SMT page.

SWQ This page is being brought off the RAD at
this instant in time by a fork which is on swap
queue.

4-8 Meaningful only if bit 3 is a 1. If so, this
is a pointer to the entry on the swap queue which
is responsible for this page.

10-23 Core address of the SMT/PMT entry which
is responsibl e for this page.

Figure 10. Format of Real Memory Table (RMT)

required in this cast since there is a valid copy
of the page on the RAD.

b. User pages that are not read-only (RMT bit 1 = 0,
bit 2 = 0). Requires RAD write-out.

c. SMT pages (RMT bit 2 = 1).

This scheme provides the SMT pages, which are the most
I ikely to be used within the next few activations, with the
best chance of remaining in core.

Memory is allocated and a I ist of RAD operations is con
structed, After the pages which are to be written out to
the RAD have been selected, all the read and write com
mands are placed on the RAD queue. The commands are
placed on the queue in a sequence that guarantees minimum
rotational latency. When a RAD read is put on the list,
the actual (real) memory address of the page is placed into
the low order five bits of the PMT or SMT entry. Pages
that have been selected to be released are marked in
the SMT/PMT entry as being on the RAD. When all the
commands have been placed on the RAD queue, the RAD
driver is called. Figure 11 shows the format of the RAD
queue.

If the swapper was called in the process of activating a
fork (MGTS5 = 0; see Function of the Scheduler), certain
parameters must be set to indicate that the fork is being
placed on swap queue. As each RAD read command is

Swapper, Memory Allocation and RAD Organization 17

Word 0

I RAD address I
0 23

Word 1

I Low Order
Low Order Core Address

Word Count
0 9 10 23

Word 2

E High High
I 0 EOD 0 0 1 1 1 1 0 1 core Oraer

word
1 Add count

0 1 2 3 89 10 11 12 13 14 15 16 17 18 19 23

Word 3

~I Check I Routine
0

,
23

Ell Early warning interrupt required. Used only
for read operations. Th i s will cause the Il
(zero word count) interrupt to occur about
16 machine cycles early.

WR Write Commands.

EOD Operation code for EOD instruction (06B)

Word 2 See format for EOD instruction.

Figure 11. RAD Queue Entry

added to the queue of RAD commands, a pointer to the
swap queue is inserted in bits 3 through 8 of the appro
priate RMT entry. Since MGTS5 = 0, the swapper does
not wait for the completion of the RAD I/O. Now, all
the SMT or PMT entries in the current pseudo-relabeling
are examined and a set of real relabeling registers is con
structed. The real relabeling registers are saved in the
current input position of SWQRL 1, SWQRL2, and SWQRL3
and are used to lock the fork's memory in core until it is
activated.

Bit 1 of RMT indicates a read-only page. This bit is set
for all pages being read from the RAD. The bit is set in
the OMR routine which sets up the read commands. When
the user's real relabeling is constructed in P KRL, all pages
are marked as read-only. As the relabeling is being pre
pared for output in LABEL, the TS page is marked as not
read-only to facilitate the handling of the read-only trap.
As the user runs, any attempt to storf' into a user page re
sults in a read-only trap and the code at TRAPR determines
whether the page referenced is a true read-only page or
not. If the page is not a true read-only page, then bit 1
of the RMT entry is cleared, and the user's relabeling is
changed so that the page is no longer read-only.

If a running fork calls the swapper to change its relabeling
(or acquire more memory), a similar path is taken with the

18 Memory Allocation/RAD Organization

following exceptions: The swapper waits until the RAD
I/o is completedi and the real relabel ing registers are
constructed and stored in the fixed Monitor locations RRL 1,
RRL2, and RRL3 and output to the hardware relabel ing
registers.

When the scheduler attempts to activate a fork that is on
the swap queue, it calls the swapper with MGTS5=-1.
When the swapper examines the pseduo-relabeling, it
should find all of the required pages in core and set the
hardware relabel ing. If the pages are not core resident,
a RAD error has occurred. The RAD interrupt routine
marks a page (in the SMT/PMT entry) as being on the
RAD and changes the RMT entry to indicate that the
page is not in use whenever a read error has been
detected. The swapper will again attempt to bring
this fork into core and since MGTS5=-1, the system
will wait for RAD I/O completion. If a RAD error
again occurs, the swapper will take an abnormal re
turn. The scheduler will then dismiss this fork on
QQE with an immediate activation condition.

MEMORY ALLOCATION

The method of memory acquisition is described in Chap
ter 3. Pages can be completely released by use of
BRS 4 or BRS 121. BRS 4 requires an address (virtual)
in A: BRS 121 requires a relabeling byte. When the
BRS is executed, the PMT entry for the page is cleared,
the pseduo-relabeling bytes are zeroed for all forks in
the structures, and the RAD map is adjusted to indicate
the availability of the page. A page released in this
manner is unrecoverable. A user cannot use these BRSs
to release an SMT page or his TS page. (See EX bit
in PMT/SMT).

BRS s that are restricted to Executive forks include:

116 Read relabel ing from user's TS page

117 Set relabeling in user's TS page

120 Obtain a page

56 Make page Executive (see EX bit in the PMT)

104 Read a page from the RAD

105 Write a page on the RAD.

RAD ORGANIZATION

RAD space is allocated at the rate of one page (2K
words) at a time when requested. A bit map, DRAT,
with one bit for each page on the RAD, is used to deter
mine which pages are avai lable. When a user requests
a page of memory, the code at PMTA assigns a space
on the RAD for the new page so that the user's pages

will be rotationally consecutive in their order of occur
rence in his PMT. This means that, although two pages
which are consecutive in the PMT may be quite far apart
on the RAD, they may be read in with no rotational delay
between them. The job number of the user determines

whether the first page of the user's memory is assigned
an even or an odd position on the RAD. When a
user rei eases a page of memory, the code at MPUT3
returns the appropriate bit to bit map. The first 64 pages
of the RAD contain the subsystems and Executive.

RAD Organization 19

5. SOFTWARE INTERRUPTS

A facility is provided in the Monitor to simulate hardware
interrupts. There are eleven possible interrupts: five are
reserved for specia I purposes and six are avai labl e to the
programmer for general use. A fork may arm the interrupts
by executing a BRS 78 with an 11 -bit mask in the A register.
This causes the appropriate bits in PIM to be set or cleared
to correspond to the bits in the mask. Bit 4 of A corresponds
to interrupt number 1, etc. No other action is taken at this
time. When an interrupt occurs the execution of an +SBRM *
to location 200 plus the interrupt number is simulated in the
fork that armed the interrupt.

Whenever any interrupt occurs, the corresponding bit in the
interrupt mask is cleared and must be set explicitly if it is
desired to keep the interrupt on. Note that there is no restric
tion on the number of forks which may have an interrupt on.

To read the interrupt mask into A, the program may execute
a BRS 49.

INTERRUPTS 6 THROUGH 10

A fork may generate an interrupt by executing a BRS79 with
the number of the desir.ed interrupt in the A register. This
number may not be one, two, three, four, five, or eleven.
The fork that arms the interrupt shou Id not be the one that
triggers it using the BRS 79 0. e., a fork should not inter
rupt itself using the BRS 79). The interrupt causes the fork
structure to be scanned upward. The first fork with the
appropriate interrupt mask bit set is interrupted. The inter
rupted fork is put on QIO with an activation condition of
5 @ interrupt number. Execution of the program in the
fork causing the interrupt continues without disturbance.
If no interruptable fork is found, the interrupt instruction
is treated as a Nap. If there is an interruptable fork, it
skips on return.

SYSTEM INTERRUPTS
Interrupts 1, 2, 3, 4, 5 and 11 are the system interrupts.
They can be caused by the same fork which has the inter
rupt armed.

If the fork which is being pointed bo by TTYASG also has
interrupt 1 armed, a program panic (BRS 10 or escape key)
'that would normally terminate the forking structure, wi II
instead cause interrupt 1 to occur. The fork will be placed
on QIO and begins execution at the location indicated by

ZO Software Interrupts

the contents of location 201 B. This permits the programmer
to control the action taken when the escape key is pushed,
without establishing a fork specifically for this purpose.
If depressing the escape key causes an interrupt to occur
rather than terminating a fork, the input buffer will not be
cleared.

If a memory panic occurs in a fork that has armed interrupt
2, it will cause interrupt 2 to occur rather than terminating
the fork. If an illegal instruction panic occurs in an exec
utive fork that has armed interrupt 2, if will cause interrupt
2 to occur rather than terminating the fork.

Interrupt 3 is caused, if armed, when any lower fork ter
m inates. Interrupt 4 is caused, if armed, when any input/
output condition occurs that sets a flag bit (e. g., end of
record, end of fi Ie and error conditions).

Interrupt 5 is caused, if armed, when overflow occurs in
the Floating Point Arithmetic Unit (FPAU). This interrupt
is unique in that it may be armed by the user for use as a
time out interrupt, but may not be triggered by use of the
BRS 79.

Interrupt 11 is caused, if armed, if a disc error is encoun
tered during a BRS BE + 1 or BRS BE + 2. These BRSs require
system status. Consequently, interrupt 11 has no meaning
for user or subsystem forks.

TIME-OUT INTERRUPTS

A fork may be interrupted after a specified period of
time by issuing BRS BE + 12. It takes the interrupt
mask in A, the time (in msec) in B, and the interrupt
number in X. If the spec ified interrupt is armed when
the time runs out, the fork wi II be interrupted.

The interrupt number which is specifi ed in X may be any of
the user interrupts (6 through 10). A fork may have a max- I
imum of 3 time-out interrupts pending. The number of time
out interrupts that are pending is noted in the TO entry of
the PAC table.

+SBRM* When a fork is being activated because of a
software interrupt, the scheduler simulates the execution of
a BRM* 200B+N where N is the interrupt number. See des
cription of BRS 78.

6 .. BRS LOGIC

The BRSs are divided into classes 1, 2, and 3. The class
of each BRS is I isted in Appendix B. See Appendix M for
flow chart of BRS logic. See the 940 Computer Reference
Manual for a discussion of SYSPOP logic.

The majority of BRSs are class 1. This class must not call
any other BRS since the contents of location zero would
be altered.

The string processing system is implemented as class 2 BRSs.
The system wi II save the contents of location zero when any
of these BRSs is executed. Therefore, a class 2 BRS may
call a class 1 BRS.

Both class 1 and class 2 BRSs execute entirely in Monitor
mode. Thus, the calling fork will not be dismissed until
execution of the BRS has been completed. The coding
for these BRSs is entirely within the resident Monitor.

Any BRS which requires a considerabl e time to execute or
deals with file manipulation is implemented as a class 3
BRS. The class 3 BRSs (also call ed Executive BRSs since
much of the coding is within the Executive) all declare
a lower fork to execute. This fork runs in user mode and
therefore may be dismissed during execution. A class 3
BRS may call both class 1 and class 2 BRSs.

When a BRS is executed, flow enters the BRS fi I e at loca
tion BS. Absolute location zero contains:

o LOC

o 2 3 8 9 10 23

U BRS executed in user mode

OV Status of overflow indicator

LO C Location of the BRS instruction. This wi II
be a virtual address if BRS was executed in
the user mode.

The contents of the central registers are stored into SSO 1,
SS02, and SS03 ..

The number of the BRS can be obtained by referenc ing
location O. The transfer vectors for the BRSs are stored at

locations BST through BSTU. Location BSX is set to contain
the transfer vector. The transfer vector wi II be:

BRU ROUTl for a Class 1 BRS

EAX ROUT2 for a Class 2 BRS
BSX =

NOP N for a Class 3 BRS

BRM TRAPB for an unimplemented
or nonexistent BRS

F low is transferred to a class 1 BRS when the system executes
an EXU BSX. Real location 0 will contain its initial setting
whi Ie the BRS is executing. A class 1 BRS returns to the
calling program by branching to the POPX routine. POPX
wi II restore the control registers and execute a BRR O. If
it is not necessary to have the central registers restored
(the BRS may return data in the registers), the BRS may exit
by only executing a BRR on location zero. If the BRS gives
a skipping (exception) return it will increment location 0
before branching to POPX.

Wh i I e a class 2 or 3 BRS is executi ng, location SBRSRT
contains the initial setting of location O. Flow is trans
ferred to a class 2 BRS when the system executes a BRU*
BSX.

This BRS returns to the call ing program by branching to the
EPOPX routine. EPOPX executes a BRR SBRSRT.

The value N in the transfer vector of a class 3 BRS indicates
what pseudo-rei abel ing the BRS fork should have and pro
vides information for setting the fork's PL word. A PAC
table is obtained and initi al ized. The pseudo-rei abel ing
includes the TS page, the COMPG file, and either the
GSBR or the FL TIO fi I e. The PL word is initial ized to
begin execution at a jump table in either GSBR or FL TIO
(see Executive files in Appendix E). The contents of loca
tion zero and the central registers are saved in locations
UPL, UPA, UPB, and UPX in the user's TS page. The BRS
fork is put on QIO. The parent fork (the fork which exe
cuted the class 3 BRS) is dismissed with an activation con
dition of 7 @ 4.

The BRS fork will execute a BRS 111 when it has finished
executing. The BRS 111 will delete the BRS fork's PAC
table. The contents of location UPL are stored into loca
tion O. The swapper is called to rei abel in the parent fork.
A branch is then made to POPX.

BRS Logic 21

7. INITIALIZATION"AND l'ERMINATION OF A USER

INITIALIZATION OF A USER

When the user dials on the system, the "teletype on" inter
rupt is generated. The interrupt routine places a task on
the phantom user. The phantom user will process the task
when four seconds (from the time the interrupt was sensed)
have elapsed. This delay in pro~essing allows time for
the teletype carrier signal to become stable.

The major part of the coding for this phantom user task is
performed in a routine named TSON. TSON assigns a job
number to the user and acquires a PAC table for the Exe
cutive fork provided there is a job number and a PAC table
available. The PAC table is initialized to contain the
pseudo-relabeling and status parameters applicable to an
Executive fork. The PL word is initialized to begin exe
cution in the TSO NI routine. (TSO NI is a monitor rou
tine.) The PMT table that corresponds to this job and the
WERIS entry for the teletype are zeroed, and TTYASG is
initialized to contain the PAC pointer of the Executive
fork. The PAC table is then added to the QlI queue.

When this fork is allotted a time slice, execution begins
at TSONI. A TS page is acquired and relabeled into logi
cal page zero of the Executive relabeling and logical page
seven of the monitor relabel ing. The Executive subroutine
transfer vectors and other constants in the TS page are
initialized. A branch is then taken to a location in the
Executive, causing a transfer to the user mode. The Exe
cutive then attempts to log the user onto the system. If
the user does not successfully log on within 90 seconds,
his teletype is deactivated and the Executive fork is
terminated.

The system wi II handle a maximum of 40 users (i .e., there
are 40 job numbers available). However, more than 40
teletypes can be handled by the communications equip
ment. Therefore, it is possible to receive a IIteletype on ll

interrupt and have no job numbers or PAC tables available.
In this case the teletype number of the user is placed onto

22 Initialization and Termination of a User

a dial-in-and-wait queue. A task is placed on the phantom
user to type a message to the user indicating that he should
wait until the system can accept him. A second task is
placed on the phantom user that causes the system to check
at certain intervals for the availablity of a job number and
a PAC table. When it is possible to accommodate thi s user,
he is initial ized to the system as described above.

TERMINATION OF A USER
A user can indicate the termination of his job by giving the
LOGOUT or EXIT command, or by hanging up the te letype.
The LOGOUT command releases all the program memory.
(clears PMT entries 61B through 77B), writes the user's file
di rec tory, outputs accounti ng information the system requi res
for bi" ing, prints an e lapsed time message to the user, closes
all fi les, and releases the TS page. The Executive then exe
cutes a BRS 112which resets such tables asWERIS, TTYASG,
LCW (used for linking), releases the PAC table for the Exe
cutive fork, removes any tasks from the phantom user that
apply to this teletype, and deactivates the teletype if the
operator has issued the SHUT DOWN command. The BRS
112 then causes the same task as that which results from a
"teletype on" interrupt to be added to the phantom userls
task queue. This allows another user on the same teletype
to log onto the system provided that the fi rst user did not
hang up.

The EXIT command is simi lar to LOGOUT except that the user's
filedirectoryisnotwritten. Therefore, any user files estab
lished during this session are not entered into his directory.

The "teletype Offll interrupt places on the phantom user a
task that is similar to the processing of a high speed escape.
With the exception of the Executive fork, the entire forking
structure is terminated. The teletype input and output buf
fers are cleared and the Executive fork is placed on QIO
with the PL word containing OFFINT (OFFINT is a location
in the Executive). At OFFINT a dump file of the user's
memory is taken if the user has established a /$/ file and
has not logged off the system. The path taken now is the
same as if the user had given the LOGOUT command. That
is, the memory is released, file directory written, etc., and
finally the BRS 112 is executed.

8. TELETYPEINPUTjOUTPUT

TELETYPE BUFFER

Monitor file TTY contains the teletype buffers, pointers,
and tables. (See Figure 12.) Each teletype has one buffer
which is 30 words in length. The label on this buffer is
TTYBUF. TTYBUF is initialized in TTYSET.

TTYBUF

{ 30 words

-30

-30

Buffer for
Teletype 0

Dummy Word the
i ndicates end of
Buffer

Buffer for
Teletype 1

Buffer for
eletype n T

The teletype buffers are "ring buffers". Pointers indicate
where the next character is to be read into (or taken out of)
the buffer. Assume a character for TTY 0 has just been put
into TTYBUF + 29. When the next character comes in, the
dummy word wi II be detected, the input pointer will be
adjusted by the value of the dummy word (-30), and the
character wi II be placed into location TTYBUF.

The format for each word in TTYBUF is:

Input Char. Output Char.
or Zero
Echo Char.

o 7 8 15 16 23

When a character is typed on a teletype, it is converted
to 940 internal code and added to the input buffer. The
echo character is in trimmed ASCII. The output character
is formed by adding 240B to the internal code.

Although the input and output buffers share the same loca
tions, separate pointers allow the buffers to be manipulated
independently of each other. Teletype associated vari
ables are shown in Figure 12.

OUTPUT PATH
To output a character from location M, the 5YSPOP

TCO M (tel etype character output)

is used. This instruction outputs a character from the

rightmost eight bits of location M. Normally, the character
is in internal format.

If the user executes a TCO instruction, TOS5 is incremented
and the character is placed into the location indicated by
TOS5. The character count in T052 is also_incremented.
If th is is the first character that is being sent out (TO 52 is
negative) the character out interrupt must be in itiated. Thjs
is accomplished by "potting" 001400CN where CN is the
teletype channel number. The setting of bit 9 will cause
the character out interrupt to be generated as soon as the
buffer within the CTE (Communications Teletype Equip
ment) is empty. Note that this interrupt will be sent each
time the CTE has finished processing an output character.

The interrupt routine will increment T054, decrement TOS2,
and output a character from the location pointed to by T054.

A fork will not be dismissed for teletype output unless the
buffer is full (i. e., T052 = 30). When the buffer is full,
the fork is dismissed with an activation condition of 3 @
T052 + CN. The fork will be reactivated when T052 is
less than or equal to the teletype early warning (TTYEWM)
- a system parameter with the value 6.

If a fork wishes to send out a mu Itiple number of spaces, a
135B (the multiple blank character) is sent. The next char
acter that is sent represents the number of blanks to be out
put. The TOS3 indicator keeps track of the detection of
the 135B and the outputting of the blanks.

The output interrupt will respond with both a carriage return
and a line feed if either character is detected. An excep
tion to this rule occurs if the user outputs a carriage return
(or a sequence of carriage returns) ~hen the system deter
mines the carriage is already at the left margin. In this
case, only line feeds will be output.

ECHO TABLES
The teletypes used are fully duplexed to allow simultaneous
keyboard transm ission and reception. That is, when the user
types a character, no printing occurs. As illustrated below,
the character is transm itted to the940 and the software echoes
it back (prints the character). Four echotablesareavailable.
Present Iy the system may choose to print or not to print a
character (echo or not).

5end Echo

-
TTIY

Keyboard Send Character___.
L-~ __ -J---- -

Look up
character in
echo table

The way the echo table logic is implemented, it would
be hypothetically possible to modify an echo table so that
when an A is typed a Z is echoed. The input character
serves only as a pointer into the echo table. The corres
ponding table entry is then output to the teletype.

Teletype Input/Output 23

TOS2

TOS4

TOS5

TOS3

TlI55

ATlS2

ATIS5

ATlS4

TIS2

TlS4

TIS5

TTYTBL

~ , '

Number of characters in output buffer; has the value -1 when output buffer is inactive.

Output readout pointer. The output interrupt routine outputs a character from the location indicated by TOS4.

Output write-in pointer. Pointer to next available space in the output buffer, e.g. the TCO routing will
place a character in the location indicated by TO S5.

o - not in multiple blank mode; 20000000B - just received 135 (multiple blank character); other - number
of blanks to be output. This is used to simulate the tab settings on a typewriter.

o

o 2 3 20 21 22 23

ILF Last input character was a line feed

ICR Last input character was a carriage return

ACe See description of BRS BE + 11

o LF Last output character was a I ine feed

OCR Last output character was a carriage return

LM Carriage is at left margin

Number of IIpinned ll words in ATTBUF. This location is incremented by the input interrupt routine and
decremented by the 205 interrupt routine.

Write-in pointer. The input interrupt routine will put a word into the location pointed to by ATIS5.

Read-out pointer used by the 205 routine. A word is pulled out of ATTBUF from the location pointed to
by ATIS4.

Number of characters in the input buffer. This word is incremented by the 205 routine and decremented
by any routine requesting teletype input {such as TCn.

Write-in pointer used by the 205 routine. A character is pulled out of ATTBUF and put into TTYBUF in
the location pointed to by TIS4.

Read-out pointer used by any routine requesting teletype input {such as TCn. A character is read out of
TTYBUF from the location pointed to by TIS5.

ADDR or TC

012345678910 23

NS Not 8-level. mode

BK Waiting for a break character

XO Paper tape reader is to be turned off because input buffer is becoming full.

SI 8-level input

SO 8-level output

XN Paper tape reader has been turned off and shou Id be turned on again when there is room in the buffer.

LI Input buffer full. IIDon l t I isten for input bit ll

P Output routine is in the process of turning on the paper tape reader.

AI Accept I inked input bit. Currently not used.

AM Accept linked output. Teletype is willing to be linked.

ADDR Address of echo-tabl e

TC Terminal character for 8-level output

NOTE: These tables are indexed by teletype channel number.

Figure 12. Teletype Tables

24 Teletype Input/Output

LCW UNSUC CP o LTTY

a 7 8 9 10 17 T8 23

NL Teletype not linked to another

UNSUC Number" of teletype making unsuccessful linking attempt. That is, teletype was already linked,
or in the 8-level mode, or busy, etc.

CP Count of the number of control Ps that have been sent to start the paper tape reader. CP is not
used in conjunction with linking.

LTTY Number of the linking teletype

PACPTR of fork to terminate on escape

TTYASG 0 I F1 I F2 I 37777

o 2 3 23

F1 Teletype "on" interrupt has placed a task on phantom user to initialize a user to the system

F2 BRS 112 has placed a task on phantom user to initialize a user to the system

TTYTIM ES I Value of clock when last action occurred on this TTY

o 23

ES Last action on this teletype was an escape.

WERIS -1, 0, or User Number

o 23

NOTE: These tables are indexed by teletype channel number.

Figure 12. Teletype Tables (cont.)

In addition to specifying the echo character, the echo tables
also define the "break" characters. A fork will not be dis
missed for teletype input unless the input buffer is empty.
However, once the fork is dismissed, it will be reactivated
again when a break character has been input or the buffer
is almost full. Suppose a program requires an entire line of
text before it can do any processing. It cou Id then define
the control characters as break characters. Once the pro
gram has been dismissed, it wi II not be reactivated unti I
the entire line is available.

There are four standard echo tables in the system, referred
to by the numbers 0, 1, 2, and 3. Zero is a table in which
the echo for each character is the character itself, and all
characters are break characters. Table 1 has the same
echoes, but all characters except letters, digits and space
are break characters. Table 2 also has the same echoes,
but the only break characters are control characters {includ
ing carriage return and line feed} and exclamation mark.
Table 3 specifies no echo for any character, and all char
acters are break characters. This table is useful for a pro
gram that can either compute the echo itself or direct that
no echo be sent. The Executive uses echo tabl e 3 to sup
press password printing.

Each echo table is 32 words (3 characters per word) in length.
The 8-bit characters are stored in trimmed ASCII code. The
total character set includes 96 characters. The input char
acter is converted to trimmed ASCII code. Therefore, the
table look-up is done with a character that has a value be
tween 0 and 1378.

The format of the echo tabl e is:

I BI Char lsi Char IB I Char

a 1 789 151617

where

B is 1 if this is a break character.

Char is character to be echoed in trimmed
ASCII code. If the character is not to be
echoed, character is set to 1.

23

The echoes for characters having a trimmed ASCII val ue of
0, 1, or 2 are in word 0 of the echo tabl ej 3, 4, or 5 are
in word 1i etc.

Teletype Input/Output 25

Consider echo table 0 which wi II echo everything and
break on everyth ing. The echo for a B, C, or D (ASCII
102, 103, 104) will be in word ETOt26B and have the value

6054 1 70 4B = 111000010 \11000011 \110001001

302B 303B 304B

102B, 103B, 104B plus break char
acter bit set

The echo table a fork wishes to use can be set by executing
a BRS 12 which causes TTYTBL (indexed by the teletype
number) to contain the address of the chosen echo table.

940 BYTE ADDRESSING
An echo tabl e can be thought of as a tabl e of 96 consecu
tive bytes. For echo tabl e 0, the byte addresses of the
entries in the table would have values between ETO and
ETOt 137B.

ETO Word 0

ETO+3

ET0+6 2

ETO+135B 37B

Suppose an ASCII character has been input and the trimmed
7 bits have been stored in CHAR in bits 14-23.

LDA

MUL

CHAR

=12525253B Divided by three

A byte address can be converted to a word address by divid
ing it by three. The remainder from the division represents
the byte position that the character has in the word. The
multiplication by 12525253B (this constant effects a divide
by three) will leave the word address in A, and bits 0 and
1 of B w ill contain 00, 01, or 10. We then

ADD
CAX
LDX
LCY
ETR
COpy
Ley

TTYTBL,2

0, 2
5
=30B
XB, AX
8, 2

Get address of Echo T abl e

Load X with ec ho word
Get 5 bits of B
Extract 00, lOB or 20B
Echo word in B, Shift count in X

The proper character wi II now be in the last 8 bits of the A
register. For example, in trimmed ASCII:

B = 102S

C 103S

D 104B

102B/3 = 26B

103B/3 = 26B

104B/3 = 26B

(Remainder = 0)

(Remainder = 1)

(Remainder = 2)

26 940 Byte Addressing/8-level Mode/Input Path

Therefore, the echoes for B, C, and D are in word 26B of
the echo table in positions 0, 1, and 2, respectively.

Note that this technique of byte addressing is al so used by
the stri ng processi ng system.

8-LEVEL MODE

Special provision is made for reading 8-bit codes from the
teletype without sensing escape or doing the conversion
from ASCII to internal. To switch a teletype into this mode,
execute:

LDX

LDA

BRS 12

teletype number

terminal char~cter + 40000000S

This wi II cause each 8-bit character read from the teletype
to be transmitted unchanged to the user's program. The
teletype can be returned to normal operation by

1. Reading the terminal character specified in A.

2. Setting the echo table with BRS 12

No echoes are generated while the teletype is in 8-level
input mode. Teletype output is not affected.

A parallel operation, BRS 85, is provided for 8-level out
put. While in 8-level output mode, the system does no
special processing of line feed and carriage return char
acters. The BRS 86 will reset 8-level output mode, as does
any setting of the echo table.

INPUT PATH

To input a character from the controlling teletype (the tele
type on which the user of the program is entered) into loca
tion M in memory, the SYSPOP

TCI M (teletype character input)

is used. This SYS POP reads the character from the teletype
input buffer and places it into the 8 rightmost bits of loca
tion M. The remainder of location M is cleared. The char
acter is also placed in the A register, which destroys the
former contents.

Two interrupts and an additional buffer are associated with
the input path. When the input interrupt occurs, the word
is "pinned" into a buffer called ATTBUF.

The input interrupt routine then arms the 205B interrupt so
that a lower priority routine can complete the processing
of character. Since the 205B interrupt is "hard wired"
(always tri ggered), it wi II go to the waiting state as soon
as it is armed.

The 205 interrupt routine takes a word from ATTBUF, gets
the appropriate echo character, attempts to process the
echo, puts the input character into TTYBUF, and decides
if a break character has just been received.

ATTBUF (one per system) has the following format:

ATTBUF Char
D

0 TTY
0

0 7 8 9 17 18 23

Char
D

0 TTY
0 ATTBUF+29

ATTBUT+30 -30

o 7 8 9 17 18 23

where

Char is ASCII character.

DO is Data Overrun.

TTY is Teletype Number

Suppose a fork exexutes a TCI. As long as TIS2 is greater
than 0 a character is extracted from TTYBUF using the
TIS5 pointer. When the 205 routine places this character
into TTYBUF, it sends the echo if one is required! and none
of the the following conditions prevail: (1) output active!
i.e.! TOS2 is not negative! (2) no previous echoes were
deferred! (3) teletype is not linked. If these conditions
are absent, the echo is sent and bits 16 through 23 of the
word pointed to by TIS5 are reset. The echo is sent by
placing it into the output position of TTYBUF.

If the echo is not sent immediately (205 routine), it wi" be
sent later by the TCI routine. The echo transmission is
accomplished by moving the echo character to the output
position of the TTYBUG word pointed to by TOS5. If the
teletypes are linked, the echo will be placed into the
output buffer of the I inked teletype as well.

IF TIS2 is zero, the input buffer is empty, and the fork is
dismissed with an activation condition of 11 @ TTYTBL.
Bit 1 of TTYTBL is set to indicate that the fork is waiting
for a break character.

The 205 routine resets bit 1 of TTYTBL when a break char
acter is detected and also increments ACTR so that the
scheduler knows that a fork on OTI is ready. The routine
wi II take the same action whether a break character has
been detected or not, if the buffer is within 10 characters
(TTYEEW) of becoming fu".

The buffer becoming full presents a problem when the input
is from paper tape. If the buffer is within 6 characters of
becoming full, bit2 (XOFF) of TTYTBL is set and the dummy
output interrupt is sent. When the output interrupt routine
is entered and XOFF is set, the paper tape reader is turned
off. XOFF is then reset and XON (Bit 5 of TTYTBL) is set
to indicate that the reader must be turned back on. When
the input buffer becomes empty and XON is set! the dummy
output interrupt is generated. XON is reset and bit 7 of
TTYTBL is set to indicate that the output interrupt routine

should send out two interrupts and the XON ASCII char
acter to reactivate the paper tape reader. Bits 8 and 9 of
LCW are set to keep track of the number of interrupts that
that have been sent. The two interrupts are sent for ti ming
purposes. This guarantees that the teletype has finished pro
cessing the XOFF request before turning it back on.

MISCELLANEOUS TABLES

Any time an action occurs at a teletype (either input or out
put) the value of REAL is stored into TTYTIM. If a user hits
two high-speed escapes, this indicates he wishes to return
to the Executive fork. When an escape is processed, the
value in TTYTIM is compared with REAL to determine if this
was a high-speed escape. TTYTIM is set to -1 if a high
speed escape was received. TTYTIM is also set to -1 in I
TSOFF when an interrupt has been received.

TTYASG is initialized to 37777B when the teletype becomes
inactive. An array named TTYBIT and the high-order bits
of the TTYASG array are used to allow the system to ignore
duplicate "on" and "off" interrupts. TTYBIT is a two-word
array whose bit positions correspond to a teletype number
(i.e., bit 0 is associated with teletype 0, bit 1 with tele
type 1, etc.) When the tel etype line is not in use, the cor
responding bit in TTYBIT is set and TTYASG contains the
va I ue 37777B.

When the teletype "on" interrupt is received, the appropri
ate bit in TTYBIT is reset (to indicate that an "on" interrupt
has been received) and a one is merged into bit position one
of TTYASG (to indicate that the task to initialize a user to
the syste.m has been placed on the phantom user queue). Be
fore the phantom user processes this task, checks are made
to determine if the carrier is stable and the data set is ready.
If the data set is not ready, TTYBIT and TTYASG are initia
lized to indicate that the teletype is not in use, the teletype
line is activated to allow another user to access the line,
and the remainder of the task is ignored. If the carrier and
the data set are ready! the Executive fork is initialized and
TTYASG now contains the PAC pointer of the Executive fork.
If the corresponding TTYBIT is reset when the I10n" interrupt
is received, the interrupt is ignored and the above process
ing does not occur.

Throughout a user's session, TTYASG is modified to contain
the PAC pointer of the fork to be terminated (or interrupted
if software interrupt 1 is armed) when an escape occurs.

User execution of either the LOGOUT or EXIT commands
causes eventual execution of the BRS 112 (see Chapter 7).
The BRS 112 wi" place the initialization of a user task on
the phantom user queue so that another user at the same
teletype may log onto the system. TTYASG is now set to con'
tain the value 1037777B. The initialization task is pro
cessed in the mannerdescribed above. If the user disconnects
after issuing the LOGOUT or EXIT command, the task wi"
not be processed since the data set wi" not be ready.

When a teletype "off" interrupt is received, TTYBIT must be
reset or the "off" interrupt processing wi II not occ ur (essen
tially, the interrupt is ignored). If bit one of TTYASG
is set! the "off" interrupt is also ignored, since an "on"

Miscellaneous Tables 27

interrupt has been received but has not been processed.
The "off" interrupt can be ignored since the "onl! inter
rupt processing will not occur if the data set is not ready.

If the "off" interrupt is legitimate, TTYBIT shou Id be
reset. TTYASG should contain a negative PAC pointer
or bit two of the word should be set if the user exe
cuted to LO GO UT or EXIT command- 'before disconnect
ing. If TTYASG is negative, the "off" interrupt proces
sing task is placed onto the phantom user queue. This
task forces termination of the forking structure and then
functions similarly to the LOGOUT command 0. e., the
file directory and accounting data are written and even
tually the BRS 112 is executed). If bit two of TTYASG
is set, the "off" interrupt processing task is not placed
on the phantom user queue, since the termination of
th is user was al ready performed by the LO GO UT or
EXIT commands.

WERIS = -1 when teletype is inactive, 0 when the user
is in the process of logging on, and user number after
the user has logged on.

28 Miscellaneous Tabl es/Linking of Teletypes

LINKING OF TELETYPE
It is possible for one teletype to accept linkage to another,
break the I inkage, or refuse to be I inked. When the user
logs on the system, bit 9 of TTYTBL, the accept message
bit, is set.

LCW is initial ized to 400000FT. Bit 0 indicates that the
teletype is not linked and FT is a fictitious teletype number.

Once a teletype is linked, the associated teletype numbers
are inserted into bits 18 through 23 of the LCW word of both
teletypes. The teletype output routine checks bit 0 to see
if N L is reset. If it is, the output character is p laced into
the TTYBUF for both tel etypes.

In order for one teletype to I ink to another, bit 9 of TTYTBL
(the accept message bit) must be set. Also, the teletype
must not be in the 8-level mode, be already linkedt or
have just turned off the paper tape reader or be in the
process of turning it back on. All these conditions will
cause the link to be unsuccessful and the number of the tele
type that attempted to I ink will be placed in bits 1 through
7 of LCW.

9. DEVICES AND TS PAGE BUFFERS

FILE STORAGE ON DISC

The physical records for the storage of files are divided into
blocks of 256 words. The fi les use the disc in groups of 4
sectors of 64 words each.

The disc files used by this system consist of 8 to 32 physical
discs, with each disc having a movable arm. The arms have
64 positions numbered 0 to 63 and each arm position on a
disc can access 8, 192 words. Each arm posi tion contains
four pages {a page is 1/4 of an arm position} and one page
contains 2,048 words. It is possible to access four pages
without moving an arm position.

For example, if the total number of arm positions is multi
plied by the number of wo rds per arm position, the total
number of words per disc can be calculated (i. e., 8,192
words x 64 arm positions equals 524,288 words per disc).

The disc is divided into two major sections: system data
and file storage. The disc map in Figure 13 illustrates the
disc sections. Octal addresses 0, 40, 100, 140 are the
beginning oddresses for the four pages in a specified arm
position. In this addressing scheme, each increment of one
represents a sector of 64 words. Therefore, four addresses
such as 0, 1, 2, and 3 would represent a physical record
contai~ing 256 words.

II User 400 FDII in arm position 0 at disc 0 represents the file
directory of the individual's user number. "Acct @ 1 UAD"
(arm position 1 at disc 4) is the user's account directory for
for account @ 1.

The format for the disc address word is shown in Figure 14.

Figure 15 shows the flow necessary to retrieve a disc file.
When a user logs on the system, the account number is used
to calculate the disc address of the User Account Directory
(UAD). The UAD contains a list of the user names associated
with this account. Associated with each user name is the
status of the user and his user number. The user number is
assigned to a user by the operator. It can be used to calcu
late the disc address of the file directory associated with
this user name.

A file directory (FD) is 128 words long and contains the
ASCII nome of' a file and four control words that specify
parameters peculiar to the file for all the files that pertain
to this user. The number of files that can be represented in
the file directory is a function of the length of the file
names. If a user gives all of his fj les 3 character names,
there wou Id be room for about 24 fi les. One of the param
eters that is associated with each fi Ie is the disc address of
the jndex block.

Every file is written on the disc in data blocks of 255 words.
The index block contains the disc address of the data blocks
for the fjle. Currently the index block contains pointers

(disc addresses mod 4) for 76 data blocks. Therefore, a file
may be 255 x 76 or 19,380 words in length.

When a fi Ie is wri tten, the system collects 255 words in a
buffer, searches a disc bit map for an available area, and
writes the contents of the buffer on the disc. The disc
address is stored into the index block. When the file has
been completely written, the index block will then be
written on the disc.

The formats for the UAD and the FD are shown in Appendix
C. The layouts of the file buffer and of the index block
buffer are shown in Figure 16.

Avai lable storage in the fi Ie area of the disc is recorded in
a bit table. A bit indicates that the corresponding block
on the disc is free. The bit map is set every time the sys
tem is updated to agree with the files in the file directories.
To set the bit map, BRS BE+5 is used, requiring index block
pointer (mod 4) in A. When al I files have been checked,
the BRS is ca lied with A set to -1, the new overflow pointer
in B, and the accounting area address in X.

FILE BU FFERS

Every open fi Ie in the system with the exception of purely
ch~racter-oriented files, such as the teletype, has a file
buffer associated with it. The form of this buffer is shown
in Figure 16. The index block is used only by disc fi les
but is present in all cases. Each user has three buffers in
his T5 page. Therefore, any user can have a maximum of
three fi les open. -The Monitor always relabels the TS page
into logical page 7.

Note that the amount of buffer space actually used is a
function of the device attached to the file. In all cases,
the two pointer words at the head of the buffer indicate the
location of the data. The first word points to the beginning
of the relevant data and is incremented as data isread from
or inserted into the buffer. The second word points to the
end of the data. On the output path, the second poi nter is
set to the physical record size that pertains to the device.

On the input path, this pointer is set by the routine that
drives the device once it determines the number of words
read. When the buffer pointers are equal, the buffer is
either empty (input) or fu II (output).

The si ze of a T5 page buffer is:

255 Data Words
2 Buffer pointers
6 Index Block parameters

@ Size of Index Block (only 76 words are used)

391 Words per buffer

Although only the disc files require an index block, every
device that requires a T5 page buffer is assigned a 391
word buffer.

Devices and TS Page Buffers 29

Disc

• o

2

3

4

5

6

7

10

17

20

27
30

37

s 0

FD user
number
400-477
FD user
number
500-577
FD user
number
600-677
FD user
number
700-777

FD user
number
1000-107i

FD
overflow
1100-117i

FD
overflow
1200-1277

FD
overflow
1300-137i

FD user

number

1400-

2377

FD user

number

2400-

3377

FD user

number

3400-

4377

Arm positions
1 2

FD user
number
1-77
FD user
number
100-177
FD user
number
200-277
FD user User
number file
300-377 storage

UAD
(Acct. nos.
@ - 0)

UAD
(Acct.nos.
P - Z)

Account-
ing

Letters

30 File Buffers

11

--

l4-Oisc bit map area for 8 or 16 discs~

\.-Disc bit map area for-.J
I 24 or 32 discs I

12 122 411 51 52 61
I I I
I I
I I
I I
I I
I User

I fi Ie

I I
storage

~

I I
I I
I I
1 I
I I
I I
I I

I

I I
I I
I I
I 1

I I

I
I
I

I I
I I
I I
I I
I I
I I

Figure 13. Typical Disc Layout

System area

62 63

~ Saved CRASH -

Monitor 1

r- -
Exec 1

Monitor 2

~ -

Exec 2

Monitor 3

- -

Exec 3

Reserved

for

systems

work

Reserved

for

systems

work

Reserved

for

systems

work

o

2

3

4

5

6

7

10

17
20

27
30

37

Sector in one position

I o
o

IPhy.sical I Logical I
disc tggr~ I

5 6 10 11 16 17

I Sector I
18 19 23

where

Physical disc Bits 6-10 speciFy one of the 32 possible discs in the file unit.

Logical track pair Bits 11-18 specify one of the 256 track pairs on the disc. A track pair consists of one outer and
one inner track.

Bits 11-16 specify one of the 64 positions of the access arm.

Bits 17-18 specify one of four logical pairs that can be accessed without moving the arm.

Sector Bits 19-23 specify one of the 32 sectors in each logical track pair. Two disc revolutions are required to
access the 32 sectors on one logical track pair.

Bits 17-23 specify the 128 sectors that can be accessed without moving the arm. Eight disc revolutions are required
to access the entire sector string from one arm position.

User Account
Directory

User name is asso
ciated with a user
number Via

User
Num
ber

Figure 14. Disc Address Word

Fi I e Directory

/ A/ versus Index
Block Pointer

Via

Index Block
for File /A/

DA Data Block 1

Index DA Data Block 2
Block
Pointer ..

Via
Index
Block
Pointer

Index Block
for File /B/

...

..

Data Block 1
255 Words

Da~a Block 2
255 Words

Data Block 1
255 Words

/B/ versus Index
Block Pointer

... DA Data Block 1 - "'"'-------....

DA Data Block 2

DA = Disc Address

/ A/, /B/ represent the names
given to a user's fi I es

Note: See Appendix C for format of UAD and FD. See Figure 16 for Index Block format.

Figure 15. Flow Required to Access a Disc File

Data Block 2
255 Words

File Buffers 31

Layout of Data Block and Pointers

BUFF Pointer to first relevant data word of buffer

0 I:I~I~I Pointer to last relevant data word of buffer

First data word

BUFF + 256 255th data word

o 56789 23
Layout of Index Block Buffer and Associated Pointers for a Disc Fi Ie

BUFF + 257 = BIN Number of words in the record

BIC Index changed flag

BDN Number of the data block in buffer

BDC Data changed flag

BIP Pointer to index block entry for current data block

BIA Disc address of current index block

BXO First index block word

plol~1 Disc address

121st index block word

IXC Check sum

where o 1 2 3 23

Check sum "Exclusive or ll of the first 121 words in the index block.

BIN When a disc data block is written, 256 words are output. The 256th word (contents of BIN) specify the
number of words in t~,e record. .

BIC Initialized to -1.' Incremented by an output operation to indicate that the index block must be output
when the file is closed.

BDN Initialized to -1: Currently not used.

BDC Initial ized to -1. Incre~ented by an output operation to indicate that the data block must be output to
the disc.

BIP Contains BUFF + N where BUFF is the TS buffer address and N points to the entry in the index block that
is being used.

BIA Storage for the disc address of the index block that is currently being used.

ERR, EOF, EOR Flags that are set by the device drivers, indicating error, end-of-file, and end-of-record,
respectively. These flags are checked by the GPW (Get/Put Word) routine.

BXO Beginning of Index Block. All disc addresses are Mod 4 {truncated by 2 bits}.

Figure 16. File Buffer

32 File Buffers

DEVICES

Every i nput/ output device attached to the system has a
device number. The numbers assigned to specific devices
are given in Table 3. The various tables indexed by device
number are described in this section. See Figure 17. The
entries in these tables are specified by assembly parameters.

The major parameters of a device are:

1. the opening routine, which is responsibl e for the opera
tion needed to attach it to a fi Ie.

2. the GPW routine, which performs character and word
I/O.

3. the BIO routine, wh ich performs block I/O.

4. the SEL routines, which perform the physical device
I/O.

The minor parameters are:

1. maximum legal unit number.

2. physical record size (determining the proper setting of
buffer pointers and interface control words for the
channel), and the expected time for an operation.

Table 3. Device Numbers

Device Number

Paper Tape Input 1

Paper Tape 0 utput 2

BCD Tape Input 3

Magnetic Tape Input 4

Magnetic Tape Output 5

Hollerith Card Output 6

Binary Card Output 7

Disc File Input 8

Disc File Output 9

BCD Tape Output 10

High Speed Printer Output 11

Hollerith Card Input 12

Binary Card Input 13

Binary Magnetic Tape 14

When a file is opened, the device number is specified. The
device number is used to index into the device tables. The
device-dependent parameters are abstracted from the device
tables and stored in the file control block (see Figure 18).
Every open file in the system has a file control block asso
ciated with it.

Figure 17 shows tables indexed by device number. The DEV
table specifies various characteristics of the device and the
address of the entry point into the GPW (Get/Put Word)
routine. This routine is used by the CIO, WIO, and BIO
SYSPOPs. On the input path the GPW routine will take a
word from the buffer in the TS page and place it in the A
register. When the buffer becomes empty it wi II call the
device driver (whose address is specified in SEU and read
the record size (specified in BUFS) into the TS page buffer.
The opposite flow is taken for the output path. Word 0 of
the DEV table contains the FD word (see Figure 18) of the
currently active file.

The DIU table will contain an entry of -1 if the device is
not in use. If the device is in use it will contain the file
number of the file using the device. The disc will never
have a meaningful entry in this table since it can be ac
cessed by more than one user at one time. For magnetic
tape it is not sufficient to indicate whether the "device"
is busy since there may be several magnetic tape units.
Therefore, the DIU entry for magnetic tape points to an
other array named ADIU. ADIU is indexed by tape unit
number and contains the same information (-lor file num
ber) for each tape unit.

The address portion of the OPNDEV table contains the ad
dresses of the routines that are call ed by BRS 1 to open a
particular device. Bits 3-8 of this table contain the maxi
mum amount of time (in 60 HZ clock ticks) that should
occur once this device has started. Any routine that initi
ates action at a device will extract these bits and store
them right justifi ed into FTIME. The c lock interrupt wi II
decrement FTIME; if it becomes negative, action is taken
to try to correct the fault. Once an interrupt from an I/o
device is received, FTIME is set positive (37777777B).

SYSTEM DATA ON OUTER ARM POSITION OF DISC

Arm positions 62 and 63 contain systems which are loaded
by a uti I ity routine named DSWAP. This routine dumps the
first 32K of core on discs 0 and 1, then reads a new system
into the first 16K of core. The disc from which the new sys
tem is read is determined by console switch settings. The
Executive commands SYSDP and SYSlD can be conveniently
used to access arm positions 62'and 63 of any disc.

Arm positions 0 and 1 contain the file directories, account
ing information and data.

BRSs FOR DIRECT DISC ACCESS

There are four BRSs available to system level forks to
read and write the system data on the disc. These
are: BRS BE+ 1, BRS BE+2, BRS BE+9, and BRS BE+ 10.
They require the core address in A and the disc address
in B. In add ition, BRS BE+ 1 and BRS BE+2 require
the word cOL!nt in X. BRS BE+9 and BRS BE+ 10 always
read or write a page (2 K) from or to the disc.

Devices/System Data on Outer Arm Position of Disc 33

DEV word

BUFS
Buffer size

BDEV
Block I/o
Routine

DIU
device in
use

OPNDEV
Opening
Routine

SEL

GPW routine

o 2 3 4 5 6 7 8 9 10 23

CH a character oriented device. The WIO and BIO POPs cannot be used to
access this device.

DSC indicates the device is the disc. This bit determines whether to relabel
in the WPAGE or DISC files into page 6 of the Monitor's relabel ing.

RX Random fiI e. Currently not used

BF device uses one of the buffers in the TS page. Presentlyall devices have
this bit set.

WD W buffer device. Presently this bit is not used.

OUT Output device.

o 0 N Max unit U Physical record size
C number

o 1 2 3 8 9 10 23

NC not common. Most devices can be accessed by only one file at a time.
This is not true of the disc. This bit is set for the disc.

Unit the maximum unit number. Applies to multi-unit devices (such as mag
netic tape), Presently magnetic tape units 0 and 1 are used,

U indicates this is a multi-unit device such as magnetic tape,

II o Entry into BIO routine

0 9 10 23

File number using this device or -1 U 0

Point to ADIU (has unit number added) if multi-unit device U
~------------~----------~--~--~--~~~~~--~
o 23

Expected
o 0 E wait time 0 Opening subroutine

0 in cycles

o 1 2 3 8 9 10 23

EO Executive only allowed to open

Test Device driver address

o 1 2 3 8 9 10 23

CS check user's status

Figure 17. Tables Indexed by Device Number

34 System Data on Outer Arm Position of Disc

10. SEQUENTIAL FILES

FILE NUMBERS

The term "file" refers to:

1. A disc fi Ie (i. e., a collection of data that has been
named and output to the disc in blocks of 255 words).

2. A magnetic tape fi Ie (i. e., a collection of sequential
blocked records that have been output to magnetic
tape).

3. A physical device.

When a file is opened, the system will return a file number.
The system may have up to 40 fi les opened. The user may
have a maximum of 3 fi les that require a buffer open, as he
is restricted by the number of available TS page buffers.

The fi Ie numbers range between 0 and 39 and are assigned
in a somewhat random manner. As a user opens a fi Ie, he
is assigned a free file number. When the file is closed, the
number is returned to the free file number list which is kept
in the FA table (see file control block).

Once the fi Ie number has been assigned, the user references
the file by that number. Note that the I/O SYSPOPS (CIO,
BIO, WIO) require the file number as an argument.

FILE CONTROL BLOCKS

Every open file in the system has a file control block asso
ciated with it. Th is block consists of four words shown in
Figure 18.

FA 0 U Index block address, tape unit number, subroutine address,
free file number or 0

o 12 3

E B C 0
FD R B H D R R B a UO

R F X D P aT

o 1 2 3 4 5 6 7 8 9 10

FC
Char.
count Job no. 0

023 8 9 10

o 7 8

U FA contains a free file number.

ERR Error occurred at the device.

BB When action at the device is initiated this

CH

DF

bit is set. When the interrupt occurs this
bit is reset. If a fork is dismissed for I/o,
the PTEST word points to FD. This bit is
examined to determine when to reactivate
this fork.

Character oriented. See CH in DEV table.

Disc file. See DSC in DEV table.

23

Device Number

23

Disc buffer address or 0

23

15 16 23

Read only. RD

BP The file is using oneof the buffers in the TS page.

OUT Output file.

Char. count -1 to 2.

C Word being packed or unpacked.
n

RX Random File - currently not used

00 Old output fil e. A previously existing file
open for output.

Figure 18. File Control Block

Sequential Files 35

This block is initialized when the file is opened ... The file
control block tables are indexed by file number. "Note that
the FD entry contains the device number of the physical
device that is attached to the file. The system can use this
number to reference the physical device tables. The entries
in these tables provide the information that is necessary to
completely define the file.

The FA array contains free file numbers. The word FFLST
contains the next free fi Ie number. The corresponding entry
in FA wi II contain the next avai lable fi Ie number or a if
there are no free files. The free file list is initialized in
TTYSET. When a file is in use, FA will contain the disc
address of the index block for a disc file or the magnetic
tape logical unit number for a magnetic tape file. FA is
not used for any other device.

The FC array contains the address of the TS page buffer
that is being used by this file and the job number of the
user. The job number is set to 77B for ape rmanentl y opened
file. The character count has significance if the CIO is
being used to access a word-oriented device. On the input
path, CIO will fetch a word from the buffer, store it into
the FWarray, and return a characterto the calling program.

,Subsequent CIO calls will retrieve a character from FW.
When all of the characters in FW have been sent, the next
CIO call will again fetch a word from the buffer. The
opposite flow occurs on the output path. The character
count in the FC word has the following significance:

Bit
Confi guration Input

111

001

000

010

001

000

111

There a re no cha racters in FW.
Call GPW to get a word.

There are 2 characters in FW.

There is 1 character in FW.

Output

There are no characters in FW.

There is 1 character in FW.

There are 2 characters in FW.

There are 3 characters in FW.
Call GPW and place the FW word into the
buffer and place this character into FW.

OPENING AND CLOSING FILES

In order to manipulate a file, it must first be opened. A
user can open a file by executing one of th~ opening BRSs
(see BRS 15, 16, 18, 19, 48, 60). These BRSs obtain all
of the necessary parameters from the user's fi I e directory
and then execute the BRS 1.

Opening a fi Ie accompl ishes the following:

1. A file number is assigned.

2. An available TS page buffer is dedicated to this fi Ie.

3. ~he buffer pointers are initialized.

4. Where applicable, a check is made to determine if the
device is already in use.

5. A call is made to the opening routine that is associated
with this device. See OPNDEV table.

6. The file control block is initialized.

The operations performed by the device opening routines
depend on the complexity of the device. For many devices,
the routine simply issues adevice ready test. The disc open
ing routine must obtain and initialize the index block for
the fi Ie. All of the BRSs whi ch open fi les wi II return the
fi Ie number. Once the fi Ie number is avai lable, the user
can execute any of the I/O SYSPOPS to input/output data
to the fi Ie.

A fi Ie must be closed when its processing has been com
pleted. This is accomplished by executing a BRS 2 with the
file number in the A register. BRS 2 is available to both
use r and Executive programs. To close all hi s open fi les,
the user may execute a BRS 17. Closing the file releases
it for other uses. The file number and the buffer are also
released.

ACCESSING THE TELETYPE AS A FILE

The te letype can be a accessed by using the CIO SYSPOP.
However, the teletypes do not require a TS page buffer.
Each teletype on the system has a dedicated buffer which
is core resident. . Chapter 8 describes the teletype buffers.
When the teletype is accessed as a file, it does not have
to be opened since the teletype is a permanently opened
file.

PERMANENT(Y OPEN FILES

The system has the following built-in sequential files with
fixed file numbers:

a controlling teletype input

control I ing teletype output

2 nothing (discard all output)

1000+n input from tel etype n

2000+n output to teletype n

SEQUENTIAL DISC FILES

A sequential file has a structure very similar to that of an
ordinary magnetic-tape fi Ie. It consists of a sequence of
logical records of arbitrary length and number. Disc sequen
tial files, are however, considerably more flexible than cor
responding files on tape, because logical records may be
inserted and deleted in arbitrary positions and increased or
decreased in length.

36 Opening and Closing Files/Accessing the Teletype as a File/ Permanently Open Files/Sequential Disc Files

The system opens a disc fil e by the following sequ ence of
instructions:

LDX device number, 8 (input) or 9 (output)

LDA Address of the index block (mod 4) t

BRS

If a new output file is being opened, the A register should
be 0 since an index block does not exist.

If BRS fails to skip, it returns in A the following:

-1 Device already in use. For the disc, produced by
an attempt to open a file for output twice.

-2 too many files open - no file control blocks or
no buffers available.

-3 no disc space left. This inhibits opening of output
files only.

BRS 1 returns the file number in the A register and the disc
accress (mod 4) of the index block in the X register.

A file that is open for output cannot be opened again for
either input or output and a file that is open for input can
not be opened for output. However, a fi Ie may be opened
for input any number of times.

The disc opening routine wi II read the index block into the
buffer and initialize the index block pointers. If this is a
new file, the disc bit map will be checked and an available
space for the index block is obtained and the index block
area (BXO and followi ng) in the buffer wi II be reset to O.

When the first I/O SYSPOP is encountered on the input
path, the index block will be referenced and the data
block read. The 256th word read will cause the next data
block to be read. This process is continued unti I an index
block entry of 0 is obtained (i. e., all of the data blocks
have been read). The EOF or EOR flags will be set in the
second word of the buffer.

When a file that already exists is used for output, the first
attempt to write the data block wi II cause all of the old
data blocks, as specified in the index block, to be released
to the bit map. An available disc block will be obtained,
the data block written, and the address of the data block
will be stored into the first index block entry. Another
disc block is also obtained in preparation for the next data
block write. This disc address is stored into the next posi
tion (obtained by incrementing BIP) of the index block.

Subsequent requests to write the data block wi II use the
disc address that is pointed to by BIP, increment BIP, and
obtain another available disc block. This process will con
tinue until the index block is full or the fi Ie is closed.

I tmod 4 means the lowest 2 bits are truncated.

If a new output file is being written the path is similar to
the one described above except that there is no need to
release the old data blocks.

When an output fi Ie is closed, the remaining words in the
buffer are written on the disc. The EOF flag is set in the
index block entry that points to the last data block. The
index block is then sent to the disc. The disc address of the
index block was stored in BIA when the file was opened.

I/O SYSPOPS

Three kinds of input/output may be done with sequential
fi les. They are: character input/output (CIO), word input/
output (WIO) and block input/output (BIO). Each of these
SYSPOPS can perform input or output since the fi I e must be
spec ified as an input or an output fi Ie when it is opened.

To input a single character to the A register or output it
from the A register, the instruction

CIO file number

is executed. During input, an end of record will set bits 0
and 8; an end of file condition will set bits 0 and 7 in the
file number. These are called flag bits. An end of record
will return a 134B character; an end of file, a 137B char
acter. If interrupt 4 is armed, it will occur. The end of
record condition occurs on the next input operation after
the last character has been input. The end of file condition
occurs on the next operation after the end of file, which
signals the last record of the file. The user may generate
an end of record while writing a file using the control oper
ation to be described. An error condition sets bits 0 and 6
in the fi Ie number.

To input a word to the A register or output it from the A
register,

WIO file number

is executed. An end of file condition returns a word of three
137 characters. Mixing word and character operations is not
recommended.

To input a block of words to memory or output them from
memory, the instructions

LDX fi rst word address

LDA number of words

BIO file number

should be executed. The contents of A, B and X wi II be
destroyed. The A register at the end of the operation con
tains the first memory location not read into or out of.

If the operation causes any of the flag bits to be set, it is
terminated at that point and the instruction fails to skip. If
the operation is completed successfully it skips. Note that
a BIO cannot set both the EO R and the EOF bi ts.

I/o SYSPOPS 37

The flag bits of the file number are set by the system
whenever end-of-record (0 and 8) or end-of-file (0 and 7)
is encountered and cleared on any input/output operation
in which neither of these conditions occurs. Bit 0 is set on
any unusual condition. In the case of a BIO the A register
at the end of the operation indicates the first memory loca
tion not read into or out of. For any input operation, the
end of record bit (bit 8) of the file number may be set. An
output operation never sets either. of these bits. BitsO and
6 of the fi I e number may be set on an error condition.
Whenever any flag bit is set as a result of an input/output
operation in a fork, interrupt 4 wi II occur if armed.

A program may delete all. the information in a disc file by
executing the instructions:

LOA fi!e number

BRS 66

Putting the fi Ie number of a sequential fi Ie in A and exe
cuting BRS 113 wi II cause the fil e to be scanned to find the
total number of data words. The number of data words is
added to X,

A new disc fi I e with a new index block can be created by
BRS 1 with an index block number of 0 in A. The file num
ber is returned in A and the index block number in X. The
read-only bit may be set (bit 0 of A) and

BRS 67

returns the index block with address to available storage in
A. An executive fork may read an index block into core
with

BRS 87

which obtains the address of the block from A, and X will
contain the address of the first word in core into which the
block is to be read.

OTHER SEQUENTIAL FILES

In addition to disc sequential files, the user has other kinds
of sequential files available to him. The system opens these
files by the following sequence of instructions:

lDX devi ce number

lDB RECl (BCD tape output only)

lDA unit number

BRS

RECl is positive for 80 characters and negative for 132
characters.

The device number is put into X. The unit number, if any,
is put into A, The file number for the resulting open
file is returned in A. If BRS 1 fails, it returns an error

38 Other Sequential Fi les

condition in A. Three error conditions apply to magnetic
tape only:

o T ape not ready

Tape file protected (output only)

2 Tape reserved

BRS 1 is inverted by BRS 110, which takes a file number in
A and returns the corresponding device number in X and
unit number in A.

These files may also be closed and read or written in the
same manner as sequential disc files.

CTRl = 1 (end of record)

is available for physical sequential files 2, 5, 10, and 14
(paper tape and magnetic tape output). Other controls
available for magnetic tape files only are listed in Table 4.

Table 4. File Control for Magnetic Tape

Operational
Control Magnetic Tape File Control
No.

1 Write end of record

2 Backspace block

3 Forward space fil e

4 Backspace fi I e

5 Write three inches blank tape

6 Rewind

7 Write end of file

8 Erase long gap

These controls may be executed only by Executive tape
programs.

An Exe.cutive program may allocate a tape unit to itself by
putting the unit number in A and executing BRS 118, which
skips if the tape is not attached to some other job. BRS 119
releases such a tape,

The format for magnetic tape (devices 4 and 5) is shown in
Figure 19. Note that the records are 200 words in length.
For compatabi I ity with earlier versions of the system, mag
netic tapes (devices 4, 5) have three dummy records after
the load point. The records are placed on the tape by the
operator1s NEWTAPE program.

The format for BCDTAPES (devices 3 and 10) is shown in
Figure 20.

~ 200 words -+ ~200 words' '--~~~ End of Tape

F
P N P E X word

1 1
P

P
T 199 word dummy 199 word data 3 feet E

E W E N data 3 3 E Filler
P data block block

..
of gap 0

N
R R W block

7 7
R

F

P

-1
199 word dummy E
data word block 0

F

FTPN Tape file position number (e.g., the fifth physical file on the tape will have FTPN=5). Note that the first
record of every fi Ie contains FTPN as the first word and 199 dummy words.

PER Physical end of record.

NW First word of a record contains the number of words in the record.

ENW Same format as NW only bit a is set to indicate this is the last record of the file. The last record contains
X words of data. The remainder of the record is padded with 137B characters.

PEOF Physical end of fi Ie.

Fill er A record (0.5% of the original file length) of 137B characters.

Allowance for expansion of the file. 3 Feet Gap

End of Tape The last file on the tape is followed by a dummy record with NW = -1.

Figure 19. Format for Magnetic Tape Files

P P
Record E Record E

R R

P
P P
E E

Record E
0 0

R
F F

Physical end of record. PER

PEOF Physical end of fi Ie. The last fi Ie on the tape is followed by two PEOFs.

Record Length 3 to 132 characters for input and 80 or 132 characters for output.

NOTE: 79, 80, or 81 character len~ths will be assumed to be 80 character transformations (card images).

Fi gure 20. Format of BCD Magneti c Tape

It is possible for magnetic tape and card reader files to set
the error bit in the file number. The first I/O instruction
after an error condition will read the first word of the next
record; the remainder of the record causing the error is
ignored. The magnetic tape routines take the usual cor
rective procedures (i. e., reread or rewrite) when they see
hardware error flags, and the routines signal errors to the
program on Iy as a last resort.

In order to make the card reader and BCDTAPE look more
like other files in the system, the following transformations
are made by the system on card input:

1. More than two blanks are converted to a 135 'character
followed by a character giving the number of blanks.
The teletype output routines will decode this sequence
correctly.

2. Trailing blanks are not transmitted to the program.

3. The character 155 (carriage return) is added to the end
of each transformati on.

The result of this configuration is that the string of charac
ters obtained by reading in a card deck or a BCDTAPE fi Ie
may be output without change to a teletype and will result
in a correct listing of the deck.

Whenever a card reader error (feed check or validity check)
occurs, the program is dism issed unti I the reader is ready.

The EOF light is sensed as an end of file at all times.

Because of critical timing requirements, the card punch
should be operated when there is but one user in the system,
i. e., the operator.

Because of the interactive nature of the system peripherals,
device speeds wi II decrease as the number of users in the
system increases.

Other Sequential Files 39

11. SUBROUTINE FILES

In addition to the previously mentioned operations for
performing input-output through physical files, a facility is
provided within the system for making a subroutine call
appear to be an input-output request. This facility makes
it possible to write a program which does input-output from
a file which causes further processing to be performed before
the actual input-output is done. This is accomplished by
simply changing the file from a physical to a subroutine
file. A subroutine file is opened by executing the
instructions:

LDX parameter word

BRS

The instruction never skips. The operation code field of the
parameter word indicates the characteristics of the file. It
may be one of the following:

1 10 00000 (octa I) Character input subroutine

111 00000 (octal) Character output subroutine

010 00000 (octal) Word input subroutine

all 00000 (octal) Word output subroutine

I/O to the fi Ie may be done with CIO or WIO, regardless
of whether it is a word-oriented or a character-oriented
subroutine. The system will take care of necessary pack
ing and unpacking of characters. BIO is also acceptable.

The opening of a subroutine file simply creates a file
control block and returns a file number in the A register.
When an I/O operation on the file is performed, the sub
routine is called. This is done by simulating an S B R M to
the location given in the word following the BRS 1 which
opened the file. The contents of the B and X registers
are transmitted from the I/O S Y S POP to the subroutine
unchanged. The contents of the A register may be changed
by the packing and unpacking operations necessary to
convert from character - oriented to word - oriented opera
tions or vice versa. The I/O subroutine may do an arbi
trary amount of computation and may calion any number
of other I/O devices or other I/O subroutines. A sub
routine file should not call itself recursively.

When the subroutine is ready to return, it executes BRS 4l.
This operation replaces the SBRR which would normally be
used to return from a subroutine call. The contents of B
and X when the BRS 41 is executed are transmitted unchanged
back to the call ing program. The contents of A may be
altered by packing and unpacking operations. A subroutine
file is closed with a BRS 2.

In order to implement BRS 41, it is necessary to know which
I/O subroutine is open. This information is kept in 6 bits
of the PAC table. These 6 bits are transferred into the
operation code field of the return address when an I/O
subroutine is called, and are retrieved when the BRS 41 is
executed.

12. EXECUTIVE TREATMENT OF FILES

GENERAL DESCRIPTION

The user's sole access to files is through the Executive. The
Executive provides a connection between a symbolic name
for a file created by the user, and the file numbers the user
must have to execute input/output operations. This con
nection is established through the file directory. Supple
mentary to this function is the need to prevent the user from
damaging or destroying other users' files.

The first part of this section describes the fi Ie naming sys
tem as it appears to the userj the second part describes the
Executive tables that implement various features.

A user may give his files arbitrary names containing any
characters other than' or I, because the names of disc fi les
must be surrounded by I, and the names of tape fi les by '.

40 Subroutine Files/Executive Treatment of Files

When a user types a file name not enclosed within slashes or
quotes, he need on Iy type enough characters of the name to
uniquely define it. If the user starts an output fi Ie name with
a quote or slash, he must type the entire name. If it is an
output file name and not already in his file directory, a new
fi I e wi II be created. In any other context, a name not in
the file directory is in error.

When an output fi Ie name is being typed, the system, after
determining the name, will type out either OLD FILE or
NEW FILE and await a confirmation that the name has been
given correctly, If the user types either a line feed or a
carriage return, the name wi II be regarded as correct. Any
other character will be regarded as an indication that the
name was incorrect, This procedure is designed to make it
more difficult for the user to destroy old files or create new
ones inadvertently.

When a user gives a new (slashed) output fi Ie name to the
system, this creates a new entry in the fi Ie directory and a
new index block on the disc.

The user is allowed to reference files belonging to other
users if the file name to be referenced contains at least one
control character or an @. He does this by typing that userls
account number and name, enclosed in parentheses, before
the file name. Thus, to get at file/@PROGRAM/belong
ing to user JONES, he types

(A lJONES)/@PROGRAM!

In this way Jones can control the extent to which other
users access his files.

Files in a public file directory may be accessed by typing the
fi I e name in quotes

"PROGRAM".

It is possible for a user to rename his files by typing for
example

RENAME /PROGRAM/ AS /ROUTINE/

The rename logic protects the user against creating file names
that conflict with existing file names or with the file type.

PHYSICAL DEVICES

Some of the physical devices can be accessed as files. There
are six file names built into the system:

BDCTAPE }

~:::RS TAPE
PRINTER

TELETYPE J
NOTHING

the user must have peripheral
status to use these fil es

Avai lable to all users

These names may be used at any time. If the device
referred to is not avai lable because it is attached to some
other user, a suitable error message will be generated.
Paper tape output files opened by giving this name to the
Executive wi II have the type of the fi I e punched as the fi rst
word. Similarly, paper tape input files opened by giving
this name to the Executive wi II read the first word as the
file type.

There are four standard fi I e types:

1. File written by Executive save command (sequential)

2. General binary file (sequential)

3. Symbolic file (sequential)

4. Dump file (sequential)

STRING POINTERS

Many of the BRSs that deal with file manipulation require
string pointers as arguments. A string pointer is a character
address found by multiplying the word address by three and
adding 0, 1, ;r 2. The string pointer P1 points to the char
acter before the beginning of the file name. The pointer
P2 points to the last character of the name.

TAP assembles string pointers as follows for string pointers
P1 and P2:

P1 DATA (R) Z-l

P2 DATA (R) Z+2

z ASC I/T/I

Suppose that Z was at location 1000B. Then P1 would have
the value 2777B and P2 would equal 3002B. See "Special
Relocation" secti~~ of TAP refer~nce m~nual for discussion
of (R) in the DATA operators above.

THEORY OF HASHING

"Hashing" is a technique of having the system assigna ''num
ber" to a character string to avoid the need for a character
by-character search through an entire list of character strings.
This number is calculated by adding the number of characters
in the string and the ASCII code for the first and last three
characters, and dividing the sum by a constant. This algor
ithm associates a number with a character string, and the
information associated with the string can now be fi led in
a table indexed by the II hash number".

The number will not be unique. There are three words of
data associated with each hash table entry. After a user's
fi I e directory has been read from the disc, the pertinent
information can be abstracted from the file directory and
stored into the hash table. If two strings produce the same
hash number (HN), the second entry is placed in the first
available space preceding the calculated hash number (lower
numbered core location). All unused hash table locations
contain O.

Assume the followi ng hash numbers for a user's fi I es:

File Name Hash Number

SMITHJ M

SMITHM N

FILANAM P

FILBNAM p

If FILANAM is inserted before FILBNAM, the hash table will
have the format shown in Figure 21.

The first two of the three data words contai n string pointers
to where the character string for the file name is stored.

Physical Devices/String Pointers/Theory of Hashing 41

TABLE

Unused

TABLE+ N

SMITHM

- ---------

Unused

FILBNAM

TABLE+ P

FILANAM

Unused

TABLE+M

~ SMITH

} Unused

Figure21. HashTable

The third is the "hash value word" which is a data word
pertaining to the particular entry. When the system wishes
to retrieve file information, it must be able to verify that it
has found the correct fi Ie.

The system can retrieve information about a specific fi Ie by:

1. calculating the hash number;

2. verifying that the string names match, or if not, search
ing the table backward and cycling around until all the
entries have been searched; and

3. returning, if successfu I, the word address of TABLE+HN
in the B register.

42 940 Hashing Algorithm/The Hashing Table

If the search is successfu I, the following coding will retrieve
the three data words associated with the file:

CBX

LOA 0,2 First Data Word

LOA 1,2 Second Data Word

LOA 2,2 Third Data Word

940 HASHING ALGORITHM

Wl -I c 1 c2 c c 1- First 3 characters of the string

W2 -~ - Last 3 characters of the string

N Number of characters in the string

L Length (number of words) in the hash table

[] Integer divide {ignore remainder}

x = 8*N + Wl
0

_
11

+ Wl
12

_
23

+ W2
0

_
11

+ W2
11

_
23

y = [f] = Quotient + R (remainder)

HN = ~ * 3
L

R is some value between 0 and L-l. HN is an even multiple
of 3 since the hash table is grouped by three.

If the character string contains 3 characters or less, the
algorithm is slightly different. The missing characters in Wl
and W2 are effective Iy reset to O.

THE HASHING TABLE

There are three hashing tables used by the 940 software: the
fi Ie directory, the commands, and the subsystem-names hash
tables.

A hashing table consists of four distinct parts (see Figure 22,
hashing tables for the file directory):

1. Control table - contains pointers into the other parts of
the table.

2. Hash table - contains string pointer into the string stor
age area and other information pertinent to the entry.

3. Corresponding table - indexed parallel to the hash table.
It contains three words of additional information per
taining to the entry. The commands hashing does not
require a corresponding table.

4. String storage - stores the character string for each
entry. The hash table entry contains pointers into
this area.

The four parts of the tabl e need not occupy contiguous core
locations.

FDCTl

FDCTLl

FDCTl2

FDCTLC

FDCTlE

FDHT

SZH

FDHT
+ SZH

FDSS

Word Addr-Segin Hash
Table

Word Addr-End Hash Table

Working Cell

Char. Addr-Current Ptr.
into FOSS

Char. Addr-End of FOSS
storage

Hash Table

48 Entries

3 words/entry

144 words

Corresponding Table

144 words

String Storage

120 words

Control
Table

Figure 22. File Directory Hash Table

FILE DIRECTORY HASH TABLE

When a user logs on, his file directory is read in from the
disc. This file directory is then stored in a hash table in
the user's TS page. Figure 23 shows the format for the
3-word hash-table entries for magnetic tape, physical device
and disc files. The three words consist of information
abstracted from the file directory and pointers (character
addresses) to the string starage table (FOSS). As an entry is
inserted into the hash table (into FDHT+HN, where HN is
the hash number), the character string (ASCII fi Ie name) is
stored into FDSS in the character address pointed to by
FDCTLC. Therefore, the file names are put into FDSS chron
ologically. FOCTlC must then be updated by the number of
characters in the file name. Word 0 of the hash table entry
contains the pointer (character address) into FOSS to the
beginning of the character string. Word 1 contains the
pointer to the end of the string. Word 2 of the hash table
entry for ~ hash table is referred to as the II hash value
word". Nate that for disc file the hash value is the index
block pointer.

When the user's file directory hash table is created, the
names of the physical devices that can be accessed as files
are always inserted into the tabl e. Note the hash table
entry for a physical device.

FILE DIRECTORY CORRESPONDING TABLE

Three more data words, called the corresponding table entry
and also indexed by hash number, are associated with every
file. These three words consist of data abstracted from the
file directory for storage in FDHT+SZH+HN and following,
where SZH is the difference between the beginning of the
hash table and the beginning of the corresponding table.

The creation date of the file is set to the current data each
time it is opened as an output fi Ie. The field "No. of
Accesses" is incremented each time the file is opened for
input or output.

BRS 5 AND 6

SRS 5 is used for two operations:

1. to look up an entry for a particular character string
already in the hash table.

2. to find where in the hash table a new character string
should be inserted.

The input for the first operation consists of pointers to the
character string and to the address of the control table of
the hash table that is to be searched. The output is the
address of FD HT +HN (where FDHT is the address of the hash
table) in S, and the value word (i.e., the 3rd word of the
hash table entry) in A.

File Directory Hash Table/File Directory Corresponding Table/BRS 5 and 6 43

Magneti c Tape

CB FT Pointer

LTP To File name (in IIFDSS" table)

HTP 0 (32K) FS (Value)

o 23 56 8 9
PhysiCQI Device

1 0 Pointer to

0 file name (in "FDSS" table)

1 2 3 4 0 DN

...

o 23 5 6 8 9 11 12 19 20
Disc File

2 FT Pointer

0 To file name (in "FDSS II table)

Index block pointer

o 23 56

Corresponding Table Entry

C 0 fL

Creation date
o Account No. No. of accesses

I Month Day

CB FT LTP Future controls

o 23 56891112 14 15 17 18

23

23

23

23

fT File type

L TP Low order tape position

HTP High order tape position

FS Tape file size

FL File length for disc files

C Change in file length

CB

DN

File control bits
0= Tape file
2 = Disc file

Executive device number for the six built
in files

1 = Paper Tape

2 = Teletype

3 = Nothing

4 = Printer

5 = BCD tape

6 = Binary tape

7 = Cards

Figure 23. Hash Table Entry and Corresponding Table Entry for File Directory

44 File Directory Hash Table/File Directory Corresponding Table/BRS 5 and 6

Example:

Get the index block pointer for a disc file named /JOHN/.
Also, increment the number of accesses which is stored in
the 3rd word of the corresponding table.

NAME ASC '/JOHN/'

PTRB DATA (R) NAME-1
PTRE DATA (R) NAME+5

LDA PTRB
LOB PTRE
LOX =FDCTL Address of control

table for File Direc-
tory Hash table

BRS 5
BRU BAD String not in table
STA IBP Value word is index

block ptr.
CBX
LDA SZH+ 1,2 Get 2nd word of

corresponding table.
CLB
LRSH 9
ADD =1
LSH 9
STA SZH+ 1,2

For the second operation - to find where in the hash table
a new character string should be inserted - the BRS 5 wi II
perform the hashing algorithm on the string and get a hash
number~ If the entry is already in use, the hash table will
be searched backward until an available slot is found. The
value FDHT+HN (address for insertion into the hash table)
will be stored into the third word (working cell) of the hash
control table. If there are no available entries in the hash
table, the working cell will contain -1. BRS 6 is used to
insert the string pointers into words 0 and 1 of the hash
table once BRS 5 has determined where the hash table
entry should be placed. The BRS 6 does not move the
string into FOSS.

Example:

Insert a new file name into a hash table. Refer to Figure 21.

NAME
PTRB
PTRE

ASC
DATA
DATA

LDP
LDX
BRS
BRU
BRU

'/NEW/'
(R) NEW-l
(R) NEW+4

PTRB
=FDCTL
5
$+2
BAD Name shou Id not be

in table.

SKN FDCTL2 Working cell = -I?
BRU $+2
BRU BAD Hash table is full
BRS 6 Make entry
CBX
BRM XPHT This routine inserts

words into the hash
and corresponding
tables.

LDP PTRB
LDX FDCTLC FDCTLC points to

next avai lable space
in FOSS

BRM INSERT This subroutine wi 11
insert the character
string into FDSS

LDA FDCTLC
ADD =5
STA FDCTLC Update pointer since

5 characters in
/NEW/

COMMANDS HASH TABLE

The entry for the Commands Hash Table is shown in Figure 24.

Word 0 Beginning String Pointer

Word 1 Ending String Pointer

Word 2 Address

o 1 2 3 4

A Command requires system status

B Command requires operator status or above

C Command requires subsystem status

D Command requires a carriage return confirmation

Address The virtual address of the routine that pro-
cesses this request (command)

Figure 24. Commands Hash Table Entry

The commands and subsystem hashing tables are initial ized
after the Executive has been assembled. This isaccomplished

by loading the new version of the E~ecutive and also load
ing a file called INTLE. The INTLE file includes a routine
named SYSIN and two arrays named CIT and SIT which con
tain the information necessary to form the commands and sub
systems hashing tables. The SYSIN routine uses the BRS 5
and 6 to insert the information provided by the CIT and SIT
arrays into hashing tables which are in the Executive.

Commands Hash Table 45

A macro named IT is used to generate the CIT array. A
macro named SUBIT forms the SIT array.

IT forms the ASCII string for each command, followed by
several data words. The exact number of data words formed
depends on the number of parameters in the macro call.
Presently, there are at most 2 arguments which will produce
2 data words.

The IT macro provides the following data words for each
command:

Word 0 to
Word N

1 st Data
Word

2nd Data
Word

HolBlclDI Address

0 1 2 3 4 5

0

0

See Figure 24 for description of 1st Data Word.

23

23

Note that bit 9 of the 2nd data word is O. This indi cates
that there are no data words generated for the SYSIN rou
tine to insert into the corresponding table.

SUBSYSTEM HASH AND CORRESPONDING TABLE

The Subsystem Hash Table and Corresponding Table entries
are shown in Figure 25.

Hash Table Entry:

Word 0 Begin String Pointer

o 1 5 6 23

Word 1 LS End String Pointer

o 5 6 23

Word 2 Hulc Cl I RA HS

o 1 2 3 8 9 15 16 23

Corresponding Table Entry (Non-reentrant Subsystems)

Word 0 LOS

o 5 6 9 10

Figure 25. Subsystem Hash Table and
Corresponding Table Entries

46 Subsystem Hash and Corresponding Table

23

Word 1 o
o 23

Word 2 RSW

o 23

Corresponding Table Entry (Reentrant Subsystems)

Word 0 R1

o 23

Word 1 R2

a 23

Word 2 RSW

a 23

T test bit

V version 10

LS low-order bits of the starting address

HS high-order bits of the starting address

E propagate Executive status

U cannot co-exist with user's memory

C common (reentrant) subsystem

CL class {must agree with user's control parameters}

RA location on RAD for the subsystem. Appl ies
only to the non-reentrant subsystems, since the
reentrant subsystems have SMT entries.

N P number of pages for a non-reentrant subsystem

LOS load starting address

RSW relabel ing status word

R 1 first pseudo-relabel ing word

R2 second pseudo-relabeling word

Figure 25. Subsystem Hash Table and
Corresponding Table Entries (cant.)

The subsystem hash table is in page 1 of CMN DS and is
labeled SYSHT. The corresponding table is labeled SYSCT.

The SUBIT macro forms the ASCII string for the name of the
subsystem followed by five data words. Subroutine SYSIN

inserts the five data words into the hash and corresponding
tables.

The SUBIT macro produces the data words shown in Figure 26
for each subsystem.

USER BRSs FOR FILE MANIPULATION

A program may open a disc file and obtain a file number by
executing BRS 15 and BRS 16 (input) or BRS 18 and BRS 19
(output). BRS 15 and BRS 18 require the file name from the
teletype. If the name is known to the program, BRS 15 and
18 may be replaced by BRS 48. These BRSs are used in the
followi ng way.

LDA command file number

BRS 15 (or BRS 18)

EXCEPTION RETURN

NO RMAL RETURN

The normal return leaves a fi Ie directory pointer, i. e., the
location of the fi rst word of the hash table entry (FDHT + HN)
in A, and BRS 18 leaves the character typed after OLD FILE
or NEW FILE in B. If no character was read, B contains a
-1. The X register is modified.

LOA fi Ie directory pointer

LDX file type (BRS 19 only)

BRS 16 (or BRS 19)

EXCEPTION RETURN

NORMAL RETURN

The normal return leaves a file number in A, and BRS 16
leaves the file type in B. X is modified.

BRS 48 or 60 may be substi tuted for BRS 15 or 18. BRS 48
is used if the name is in the file directory and BRS 60 will
create a new name if necessary.

LOP string pointers

BRS 48 or 60

EXCEPTION RETURN

NORMAL RETURN

Word 0
The ASCII name terminated by a / to

Word N
0 23

1 st Data I Elu/cl CL RA HS
Word o 1 2 3 8 9 15 16 23 -----

1 1 1
0(5) 0(9) D(3) D(4)j100B

2nd I 0 I V III 0 LS I
a 5 6 89 10 17 18 23

D(2) 0(4)-HS

3rd I RSW I
0 0(6) 23

*4th o NP LOS

o 56 910 23
D(8)

4th Rl

o 0(7) 23

*5th o
o 23

5th R2

o D(8) 23

* generated for non-reentrant subsystems

Figure 26. SUBIT Macro Data Words

User BRSs for File Manipulation 47

13. EXECUTIVE COMMANDS RELATED TO FILES

When a user logs on the system, his complete fi Ie directory
is read from the disc and placed in the file directory hash
table along with the names of the physical devices. The
"LOGIN" procedure is described in the SDS Terminal Users
Guide.

The following executive commands are related to the user's
fi Ie directory and are also described in the 50S Terminal
Users Guide.

1. filES

2. WRITE fO

3. FD

.4. DELETE

5. RENAME

DELETE file is used to delete a file from the directory, and
RENAME is used to change the name of a fi Ie in the directory.

FILES causes the complete directory to be typed while FB
types only a single entry. Executive class users who have
system status wi II receive the following special output:

p, dt, s name

Key Tape Fi les Disc Files

p Tape position Not used
(octal)

d Blank 2

t Fi Ie type Fi Ie type
(1 through 4) (1 through 4)

s File size Index block pointer

A colon typed after FD or FILES in the above commands,
wi II cause the length {in number of words} of a disc fi Ie to
be typed out; the format is as follows where I is the length

p, dt, s, I name

Example:

-fO:/DEMO/CR

23, 512/0EMO/

Another feature of the system status typeout is that any con
trol characters in the file name will be typed out in two
characters; the first character is the ampersand" 8:'. For
example, if the name of the file was /(bell)PROGRAM/,
it would type out the message

23, 12640/&GPROGRAM/

48 Executive Commands Related to Files

The command" DF" can only be used by users with a special
system status since it can create new file names while bypass
ing all system protection. The complete file parameters must
be typed as fo II~ws

Df file name AS p, dt, s

OF and AS are part of the command and are required for
defining files. The disc file would be written in the follow
ing way.

DF /file name/ AS 23, 10240

An example of a tape file would be

Df 'file name' AS 7,3, t"o240

The command "WRITE FOil causes the current file directory
(as it appears in the file directory hash table) to be written
on the disc. A description of the disc format is given in
Figure 13.

MAGNETIC TAPE

It is possible to read and write fi les on magnetic tape. The
system wi II also read and write BCD tapes (with a defined
format). Only users with peripheral status can cause tape
commands to be executed. Normally only one user should
be accessing tapes at any given time and such use should be
restricted to periods of time in which there are not more than
two or three users on the system.

All tape operations use an impl ied tape drive number of O.
This can be changed to 1 by typing the executive command:

-STN 1 @)

Under no circumstances should the same physical tape reel
be used for recording both BCDTAPE fi les and standard 940
fi les.

BCD TAPE FILES

Each fi Ie is separated by an end-of-fi Ie (EOF) mark with two
consecutive EOFs as the fast recorded data on the reel. Input
or output can begin at load point as file number 1.

For input the system will read multiples of 3 character/word
up to 132 characters. If a record is 79, 80, or 81 charac
ters long, the system assumes an 80 character record is
desired (card image). If the record is not a multiple of 3
character/word, zeros are appended to the data.

For output, the records are written as either 80 or 132
character/word records.

The commands associated with BDCTAPE are:

-COPY BCDTAPE TO /FILE/ @)

START AT: N @)

-COpy /FILE/ TO BCDTAPE @)

BDCTAPE Input

N = fi Ie position
The defaul t for
N is the current
tape pos i ti on

BCDTAPE output

80 CHAR. REC? (YES/NO) e Default = 132

START AT: N 0 N = number
(Defaul t is cur
position)

-BCDREW @ Rewinds and positions
to fi Ie 2. This com
mand shou Id be used
on lyon tapes which
have at I east 2 EOFs
already recorded.

File position is by EOF count only. For standard files, the
software outputs a position word at the beginning of the file
which indicates the position count. For more inf~rmation
on BCDTAPE format see Figure 20.

STANDARD MAGNETIC TAPE FILES

To write files on magnetic tape the tape must first be initial
ized. This is done with the operator's NEWTAPE program.

This program causes the tape on drive 0 to be rewound and
3 dummy files will be written on the tape. Therefore, the
first meaningful file on the tape will have a file position
number of 4.

A disc file can be placed onto tape by:

-COpy /FILE/ TO 'FILE' e

Note that the disc file /FILE/ is not affected by this opera
tion. There is no confusion petween the name /FILE/ and
'FILE' because the slash or prime characters are stored as
a part of the file name in the file directory. The copyoper
ation wi II cause an entry to be made in the fi Ie di rectory
for the file 'FILE'.

To copy files from tape to disc, the tape file directory entry
must be in the fi Ie directory in use. If the tape fi Ie was not
created by the user who wishes to copy it to the disc, (as is
often the case) it will not be in the user's file directory.
Therefore, the operator wi II type:

-DF 'FILE' AS 4,3, 7640 (see p, t, s)

-COPY 'FILE' TO /FILE/

NEW FILE

The choice of names for tape fi les is completely arbitrary.
No file name identification is carried with the file on the
tape. See Chapter 9 for more information on the format of
magnetic tape fi les.

14. EXECUTIVE COMMANDS

Table 5 gives a complete list of Executive Commands.

Table 5. Executive Commands

The following commands are accepted by the executive
for all users.

LOGOUT Allows user to log out

WRITE FD Write file director on disc

RENAME Renames a fi Ie

DATE Types date and time

KILL PROGRAM Ki lis program relabeling only

RESET Clears all of user's memory

COpy Copies file to file

FILES Types file directory

FD FOR Types selected file directory entry

GO TO

PLACE

SAVE

BRANCH

DELETE

TIME

STATUS

MEMORY

II (Quote)

DUMP

Table 5. Executive Commands (cont.)

Goes to a "GO TO" (type 1) file

Places a "SAVE" type program (type 1)
in core

Save program; creates GO TO or type
1 file

Branches into a program

Delectes a fi Ie

Types rea I ti me used

Types user's relabeling status

Types user's unused memory

Causes typing to be ignored by EXEC
Allows user to type comments

Dumps a II program, saves status

Executive Commands 49

Table 5. Executive Commands (cant.)

RECOVER

CONTINUE

RELEASE

EXIT

ACCEPT
MESSAGES

REFUSE

LINK TO

Control 0
(Joint pressing
of CONTROL
and "0" keys of
the keyboard)

BREAK LINK

PMT

CREATION

CFD

Recovers from a Dump file (type 4)

Returns to subsystem being used before
the return to Executive

Releases a subsystem

Allows a user to LO GO UT wi thout
writing fi Ie directory

Indicates the user is willing to be
linked

Indicates the user is not wi II ing to be
linked

Allows a user to link to the operator
or a porticu lar account and user nome

Cancels the effect of II (Quote)

Allows a user to discontinue I inking

lists the PMT entries that a user
has acquired

Creation date of fil es

Creation date of a particular fi Ie

The following commands are recognized by the Exe
cutive for users with operator status.

SHUT DO WN Starts system shut down

UP Cancels shut down

HANG UP "Hangs Up" selected teletype phone
lines

ANSWER Answers (or enables) data subset

WACCO UNTING Controls accounting to paper tape

LETTER Types broadcast I etters

GFD

ENABLE

DISABLE

LOOK

SYSLD

Gets another user's file directory

Enables a subsystem group

Disables a subsystem group

Looks at real core locations

Allows load from disc directly into
user's core

The following commands are recognized by the Exe
cutive for users with system status.

USERS

WHERE IS

WHO IS ON

REWIND

RLT

STN

Types number of users on system

G ive Teletype number for a user

Types users on system by account
and name

Rewinds tape, resets tape logic

Release tape

Sets tape number

50 User Commands

Table 5. Executive Commands (cont.)

PTN

SETEXEC

Types tape number

Sets user status

PO SITIO N TAPE Positions tape (not to be used on BCD
tapes)

MTP

OF

REMOVE FILE

PSP

BCDREW

OBITS

SMT

SDATE

Types current tape position

Allows a fi Ie directory entry to be
set up (see Chapter 13)

Removes file from directory (without
deleting)

Types error counters, etc.

Rewinds a BCD tape

Prints the number of 256 word data
blocks remaining in the disc bit mop

lists the SMT table entries

System start-up time

The following commands are recognized by the Executive
for users with subsystem status.

RSMT

SYSDP

SSMT

LINK TO

Reads in from RAD a SMT Page

Allows core to be dumped directly on
disc

Sets the shared memory table

USER COMMANDS

Account Number User Number or OPER

This command allows a user to link to another user that is
currently on the system or to the operator. If (") is typed,
the Executive wi II ignore {not regard as a command} any
thing that is input until a control D is typed. This allows a
user to converse with the user that he is linked to. If the
link cannot be made at this time, the Executive will respond
with one of the following messages:

NOT ENTERED

BUSY

IN a-LEVEL MODE

NOT ACCEPTING LINKS

Example: LINK TO F5103

LINK TO OPER

PMT

Types the user's current Program Memory Table in the follow
ing format:

aa DRMPOS: bb, cc (PAGE dd)

where

aa is the pseudo relabel ing byte number.

bb is the RAD address (shifted right three places).

cc will type: RO for read only

dd (if typed)

EX for Executive page
DR for RAD page

will be the real page number in memory.

CREATION @l or :

This command can be used to output the creation date (the
date that the fi I e was last updated) and the access count
(the number of times the fi I e was accessed since the EDIT
utility program was run) of a user's files. If the command
is executed with user status (see SETEXEC command) the
following is output:

dt, MID NAME terminated by carriage return

dt, MID, a NAME terminated by colon

where

d = 2 for disc file or blank for tape file

t = file type (1 through 4)

M = month

D = day

a = access count

NAME = fi Ie day

If the command is executed with system status (Executive
flag has value of minus one), the following is output:

p, dt, IB, MID NAME terminated by @)

p, dt, IB, MID, a NAME terminated by
colon

where

CFD

p tape position (octo/)

IB index block address (MO D 4) for disc fi Ie or size
of tape fi Ie.

: (or blank) NAME @)

This command outputs the creation date and access count of
the particular file specified by NAME. The command may
be followed by a blank or a colon. The output format differs
slightly depending on the setting of the Executive flag. See
CREA TIO N command for output format.

OPERATOR STATUS

SHUT DOWN (toggle switch 1 required)

After the operator toggles console switch 1, the command
will set a flag that initiates system shutdown. All lines

that are not currently being used wi II be made unavai lable.
As soon as the users that are currently on the system either
log off or hang-up, their teletype lines will be made
unavailable.

UP (toggle switch 1 required)

After the operator toggles console switch 1, the automatic
shut down flag described under SHUT DOWN is reset so
that teletype lines are now available. The operator must
re-answer (by using the ANSWER command) all lines that
have previously been made unavailable.

ANSWER (toggl e switch 1 required)
k, m-n, •

This command enables selected teletype lines for users. The
operator may specify single numbers, indicated by "k", sep
arated by commas, ora range of numbers where the range is
separated by a dash, or any combination. Spaces are ignored.
The strings is terminated byacarriage return. If the line has
a I ready been enabled, the command wi II have no effect.
Note that after the SHUT DOWN command has been issued,
a line can be made available by this command but it will
become unavai lable after the user logs out.

HANG UP
k, m-n, •

(toggle switch 1 required)

The command has two functions; it may be used to hang up
a user while he is' logged in (in this case the line will go
ready again after the hangup operation has been completed
provided the SHUT DOWN command has been used), or it
may be used to make a line unavailable if no one is cur
rently using the line. The format is the same as ANSWER.

LETTER @)

LETTER OFF ION (Response from Executive)

LETTER n

This command has three functions and two formats. The
second format, where a number n is typed after the com
mand is used to type a broadcast letter, where n is the
letter number from one to six. The operator can then in
spect the text of any letter.

The first format is used to control the transmission of
broadcast letters. If the letter switch if OFF no users will
receive broadcast letters. If the letter switch is ON all
users wi II receive the letters. The operator can add or de
lete letters using commands in IOPERI program.

While the operator is inserting a letter, the letter switch
must be OFF. If the operator uses the fi rst format of thi s
command, the status of the letter switch will be reversed
and the new status wi II be pri nted.

Examp I e: Assume the letter switch is on:

-LETTER e
LETTER OFF
-LETTER @)
-LETTER 0 N

The switch is now off
This will set switch on

Operator Status 51

When the operator adds a new letter, each user will receive
the letter when he logs on. The users that are on the sys
tem while the letter is being added will receive the letter
when they return to the Executive (escape to the part of
the Executive that types the - •

WACCOUNTING n €V (Currently not implemented)

After the @) is typed, the following message will type:

TOGGLE SW. 1 @)

The command wi II not be executed until console switch
is toggled.

If n = 0, accounting information being punched on paper
tape when users log out will be stopped.

If n = -1, punching of the accounting information on paper
tape when users log out will be started.

GFD aa nnnn @)

The command is used by the operator to get a file directory
belonging to another user for special background or non
timesharing processing. The operator's own fit e directory
and user number is replaced by those belonging to the
account number "aa" and user name "nnnn" a Ithough the
operator's account number and contro I parameters are
retained. Subsequent to issuing a GFD command, the
operator must not issue: RENAME, DELETE, WRITE FD,
EXIT, or LOGOUT; otherwise, accounting misinformation
witf result.

EItABLE s(§

DISABLE s9

where

is the name of a subsystem in the group.

The subsystems ore:

Group 1 - TAP, DDT

Group 2 - Currently not used.

LOOK

This command is typed in the following format:

LOOK a, n @)

o+T IS~

etc.

This command allows an operator or system class user to
display real memory addresses where "a" is the first loca
tion to be displayed (in octal) and "n" is the number of
locations (in decimal) to be displayed. The format of the

52 Operator Status

typeout is as indicated in the example where "a" and
"a+ 1" are the octa I addresses and "-ts" represents the
contents in octal.

SYSLD

The command is typed in the format:

SYSLD a @>

TO b e
LOC c E>

This command allows a user to load his program merrmry from,
any location on the disc into any of his eight pages. "a"
and "b" refer to his page numbers (0 to 7) and "c" is either
a real disc address or a number from 0 to 7 referring to
discs 0 through 7, with the load starting at arm position 64
of the given disc. Also, "c" may be formatted "n. mil where
"n" is the disc number described above and "m" is a number
from 0 to 7 referring to a relative page number of arm
position 63.

Arm position 62 63
n.O n.5

Disc n
n. 1 n.5

n.2 n.6

n.3 n.7

SYSTEM COMMANDS

USERS (§)

nn

Types the number of users (nn) currently logged on the
system.

WHERE IS aa nnnnnnn 9

xx

By typing the account number ("aa") and the user's name
("nnnnnnn. • • "), this command will type the current tele
type number ("xx") of the user.

WHO IS ON e
xx aa nnnnnnn. •

xx ss

This command outputs the date and time and then lists the
users that are currently logged onto the system.

xx

aa

teletype number

user's account number

nnnn.. user's name

ss status of I ine (if user is logging on or off)

REWIND @

This command releases and rewinds the tape regardless of its cur
rent status. It isapplied to the currenttape number (0 or 1).

RLT @)

This command rei eases the tape making it avai labl e to other
users.

STH n (§

Allows a user to specify the tape unit number (0 or n. BCD
TAPE operations will normally use tape unit 0 unless 1 is
specified by issuing this command.

PTN @)

n@

Types a user's current tape number (0 or n.

POSITION TAPE @

This command will cause the current tape to move to the
beginning of the next fi I e.

MTP €V

Types the current tape position as far as is known to the
Executive. This command does not check the actual posi
tion by reading tape.

PSP €9

This command outputs the date and time followed by a sym
bol which indicates a type of system error and the count of
the number of such errors that have occured. If an error
counter has the value zero, neither the symbol nor the count
wi II be I isted. The symbols are as follows:

TN Tape noise errors

TU Unrecoverable tape read errors

TR T ape read errors

TW Tape write errors

PF Power Failures

DC Disc channel errors

D Disc controller errors

DU Unrecoverable disc errors

OF Disc fai lures

RC RAD channe I errors

R RAO controller errors

RU Unrecoverable RAD errors

12 RAD 12 interrupt errors

CP CPU memory pari ty count

IP I/o parity errors

XB Map index block error

FD File directory errors

DO Teletype data overrun

TO

IT

Oupl icate teletype on interrupts

Illegal teletype off interrupts

SETEXEC nn @

Sets or resets executive status if the user's status parameters
allow the use of that status. The status set is then assigned
to any fork started by the system executive with the II GO
TO II command.

nn

-1 Sets executive status

o Cancels executive status

REMOVE FILE nn, @)

Th is command a IIows a user with system or operator status to
remove an entry from a file directory without using the
DELETE command. Since it may not be possible to delete
a file if the name contains leading spaces or other spurious
characters, it may be required to use this command as a
last resort. The command removes a file from the lIin-core ll

directory by referring to the file name's position IInn" in
the printed file directory. The FILES command must be
given just prior to using this command in order to find the
current relative position of the name. The file directory is
NOT rewritten on the disc by this command.

SMT @)

This command I ists the SMT entri es. The format is the same
as the PMT command.

SUBSYSTEM COMMANDS

SOATE @)

The system responds: ENTER DATE AND TIME: MID TTTT
(under! ined text is system response, M/D TTTT is operator
input).

This command is used if the operator errs when providing the
system start-up time. It is essential that the system start-up
time be correct since the accounting records are affected by
this parameter.

M/D Month and day (as 1/22)

TTTT Time (where 1300 means 1 PM)

SYSOP

The command is typed in the following format:

SYSDP a

TO b

LOC c

This command allows a user to dump h is program memory onto
any location on the disc from any selected pages of his eight
pages of program relabeling. The format is the same as
SYSLD.

Subsystem Commands 53

RSMT e N (N-SMT pseudo-relabeling byte)

This command reads an SMT page from the RAD if the
page is currently in core. The purpose of this command
is to read in a new copy of an SMT page in case the
copy that is currently core resident has been damaged
or altered. The new copy will reside in the same
core occupied by the old copy. This command is the
same as the BRS BE+ 15.

54 Subsystem Commands

SSMT @

N e
DRMPO S: aaa, E, R

N SMT pseduo-relabeling byte

E Make page Executive (set bit 1 of SMT entry)

R Make page Read-Only (set bit 180f SMT entry)

aaa RAD address truncated by 3 bits (see output of
SM T command)

SSMT is used to set an SMT entry. E and R are optional.

15. REENTRANT SUBROUTINE CALLS

Since the Executive is reentrant, any instruction it executes
that will alter memory will always reference the TS page.
The TS page is in page 0 of the Executive's relabeling. The
BRM instruction must be used indirectly since it alters mem
ory by storing the return I inkage into the effective address
of the instruction.

Assume the following is avai lable to the Executive in the
user's temporary storage page:

LVLl ZRO
BRR* LVLl

LVL2 ZRO
BRR* LVL2

The Executive wishes to call subroutine SUB 1 whi ch in turn
will call a subroutine SUB2.

EXC BRM* SUB 1

SUB 1 ZRO LVLl

SUB1C BRM* SUB2

SUB1N BRR LVLl

S UB2 ZRO L VL2

BRR LVL2

The instruction at EXC stores a markword at LVLl. LVL1+1
is executed as the next instruction. Since LVL 1 now con
tains EXC (the markword), the BRR* transfers control to
SUB1+1:

((LVLl»+l = (EXC)+l =SUB1 +1 - P

The BRR at sUB1N will transfer control to EXC+1:

(LVLl)+l = EXC+ 1 - P

The call at SUB 1 C wi II store the markword (SUB 1 C) at L VL2
and the BRR* at LVL2+ 1 wi II transfer control to SUB2+ 1.

The word pairs (LVLl, LVL1+l, etc.) are in the TS page
from the CFIl through RLV4+ 1. They are initialized for
each user when he is given his Ts page. The coding which
does the initial ization is at TSONI.

16. MISCELLANEOUS FEATURES

A user may dismiss his fork for a specified length of real
time by executing a BRS 81 with the dismissal time, in mil
liseconds, in A. At the first available opportunity after
this time has been exhausted, his fork will be reactivated.
The contents of A are changed.

A user can read the real-time clock into A and the system
start-up date and time into B by executing a BRs 42. The
number obtained increments by one every l/60th of a sec
ond. An Executive fork can read the elapsed time counter
for the user into A by exe~uting a BRS 88. This number is
set to 0 when entering the system and increments by 1 at every
1/60th second clock interrupt while the fork is running.

To obtain the date and time, the user can execute a BRS 91.
This string pointers in the A and B registers. The string
contains in order, the month/day, hour (0-23) and minute
at which the instruction is executed.

A user may dismiss a fork unti I an interrupt occurs or the
fork is termi noted by executing a BRS 109.

A fork tests whether it is Executive or not by executing a
BRS 71. The type of Executivity is returned in B. If B equals
1, the fork is subsystem. If B equals 0, the fork is user. If B
equals -1, the fork is system and subsystem. If B equals -2,
the fork is system. If B is negative, BRS skips on return.

An Executive fork can dismiss itself explicitly by executing
a BRS 72 (see Chapter 2).

There are two operations designed for Executive BRSs which
operate in the user mode with a map differing from the one
they are called from. BRS 111 returns from one of these
BRSs, transmitting A, B, and X to the calling fork as it finds
them. BRS 122 simulates the addressing of memory at the
location specified in A. If new memory is assigned, it is put
into the relabel ing of the call ing fork. If memory panic
occurs, it appears to the calling fork that it comes from the
BRS instruction.

An Executive fork can cause an instruction to be executed
in the system mode by addressing it with EXS.

Reentrant Subroutine Calls/Miscellaneous Features 55

There are switches in the Monitor that can be set by an
Executive fork with a BRS BE+ 13. It takes the new switch
value in A and the switch number in X. It returns the old
swi tch value in A.

An absolute location in the Monitor relabeling can be read
or changed by an Executive with a BRS BE+4. The absolute
location is in X, the new value, if any, in A. The BRS
reads if B is positive and changes the word if B is negative.

'An Execu'tive fork can also force a new page to be read from
the RAD with a BRS BE+15. It requires an SMT pointer in A.

An Executive fork can test the state of any breakpoint switch
with a BRS BE+7. The switch number is in X. The BRS skips
if the switch is down. .

An Executive fork can crash the system with BRS BE+8. A
fork can set Executive status with a BRS BE+ 16 and 76543210B
in the A register. System status is required.

17. UTILITY PROGRAMS

DSWAP

DSWAP is a self-loading utility program, usually stored on
magnetic tape, that initial izes the TSS system. It performs
the following' functions:

1. If breakpoint 1 is reset, the first 32K of core is written
onto discs 0 and 1 in arm positions 62 and 63. If break
point 1 is set, the current contents of core are not
wri tten onto disc.

2. The first 14K of the Monitor is loaded into core from
arm positions 62 and 63 of the disc selected by break
poi nts 2 through 4.

Copies of the monitor can be stored on discs 2, 4,
and 6.

The three breakpoint switches are regarded as repre
senting a binary number between 0 and 7. Therefore,
to load the system from disc 2, breakpoint 3 would be
set.

After the monitor is loaded, DSWAP halts at location 24B.
When the hal t is cleared, a branch occurs to a portion of
the Monitor which has just been loaded. The system exe
cutes a transfer from 930 to 940 time-sharing mode and the
remaining 4K of the Monitor is read into core.

OPER PROGRAM

The general function of the OPER program is to provide the
operator with information or control of the following per
manently assigned areas of the disc;

• File directories.

• User/Account directory.

• Accounting data storage area.

• Broadcast letter area.

56 UtiUty Program

The specific programs provided are not used as often as the
functions which are avai lable through system Executive.
Therefore, the program is initiated with a GO TO type
statement and is normally the operator's file directory.

CONTROL COMMANDS

The program has a simple command dispatcher that indicates
it is ready to receive a command by typing an asterisk. In
order to reduce operator error, the commands must be typed
completely. Each command is described in detail in this
chapter and the commands are I isted by category with a
brief description in Table 6.

GENERAL OPERATING INSTRUCTIONS

The operator calls the program by typing

GO /OPER/ @)

*

where

/0 PER/ is the name of the program.

* which is typed by the program, indicates that the
program is ready to receive the first command.
The typed command is then followed by a carriage
return or a linefeed if appropriate.

e Generally the carriage return confirmation
indicates to the program that the complete output
is desired. There is also a linefeed (0) command
which indicates that a sel ected output (for a par
ticular user number in case of the file directories
or for a particular account number in case of the
user account directories) is desired and that a user
number or account number will be supplied as
appropriate to the command.

If an inval id command is typed, the program will respond
with a question mark and type the asterisk, indicating that
the program is ready for another command.

COMMAND

FILES

CLEAR FILE

TIME

RESET TIME

SET DAY

SET HOUR

LENGTH

SIZE ACCOUNT

GARBAGE

POINTER

UAD

ACCOUNT

NAME

CANCE L ACCOUNT

CANCEL NAME

COpy RECORDS

CLEAR RECORDS

COUNT LETTER

REMOVE LETTER

LETTER

HELP

Table 6. Control Commands

DESCRIPTION

File Directories

Outputs all or selected file directories.

Clears a selected file directory.

Outputs the user's real and computer time as carried in the file directory.

Same as ti me but a I so cI ears the ti me words to zero.

Validates all or selected users for 24 hour/day.

Val idates all or selected users for any selected time.

Computers length of all files by account number.

Uses length output to compute maximum storage used.

Removes unused areas from the overflow file directory area.

Indi cates next available overflow storage area.

User Account Directory

Outputs all or selected user/account directories.

Creates a new account or changes an account password.

Creates a new user name or changes a user name.

Cancels an account directory.

Cancels a user name out of a user/account directory.

Accounting Storage

Copies accounting records to a file.

Copies accounting records to a file and then clears the accounting storage area.

Broadcast Letter

Counts the number of users who have not received each of the six broadcast letters.

Allaws the operator to remove a broadcast letter.

Allows the operator to create a broadcast letter.

Miscellaneous

Lists all of the operator executive routine commands.

PROGRAM LOADING AND ASSEMBLY PROCEDURE OPERATOR EXECUTIVE ROUTINE

The program consists of two symbolic files, usually called
/OP1/ and /OP2/. The first file is assembled by TAP in
the usual manner whi Ie the second fi Ie is assembled using
the CONTINUE command to the Executive since it uses con
stants contained in the first fi Ie. Both binary outputs are
loaded using the DDT command ;T, and the program is then
ready to run, starting at location 240B. Norma Ily a pro
gram identifier is placed at location 237B so that the pro
gram is saved from 237B to the final address (as typed by
DDT) with the starting address as 240B.

The fallowing paragraphs describe all the commands con
tained in the operator Executive routines program. The com
mand is shown along with the appropriate terminator.

where

e only the carriage return is appropriate

(0 only the linefeed is appropriate

e / 0 either carriage return or line feed is appropriate.

OPER Program 57

The function of the command is then described, followed by
the operating instructions; if any messages are typed by the
program, the messages are then shown along with the appro
priate action to be taken by the operator. Actual example(s)
of the use of the command is then shown along with a typi
cal output, if any. In the examples, underscored copy
represents copy produced by the system. Unless otherwise
indicated, copy that is not underscored in an example must
be typed by the user. Following the example an output des
cription is supplied if appropriate.

Note: The outputs and inputs, if any, of all commands are
symbolic files except for the COpy RECORDS and
CLEAR RECORDS which supply binary (type 2) out
put fi les. This means that the comment OUTPUT
FILE includes the physical devices such as the
printer and teletype, except for the COpy REC
ORDS and CLEAR RECORDS co~mands.

ACca.T

COMMAND: ACCOUNT @

FUNCTION: Creates a new account or changes an account
password in the account user directory.

After giving the command the operator types the account
number and the password, terminated by a carriage return.
This will either create a new password or change an old one.
The operator types the account parameter words, separating
each parameter by a space, and terminating the list with a
carriage return.

"Examples:

*ACCQUNT E>
B1XYZ

o 0 9/ <0

where

II B 111 is the account number

IIXYZII is the password,

o 0 set the account parameters to zero. The
account parameters are currently not used by the
system. However, they must be suppl ied for the
command to work properly.

This command may be used to change more than one account.
Note that after the operator types the new account param
eters he may respond with either a line feed or carriage
return. A carriage return ind icates that the operator does
not wish to change more accounts. The line feed allows
another account to be changed.

*ACCOUNT @)

A1PASS @)

00 0)

58 OPER Program

A2PASS @)

o 0 @

*

CANCEL ACCOUNT

COMMAND: CANCEL ACCOUNT ®

FUNCTION: Cancels account password and user names from
an account directory.

After giving the command terminated by a carriage return,
the operator types the account number followed by a carriage
return. The program will then type the asterisk.

Examples:

*CANCEL ACCOUNT @>

B1 @) /6

Several accounts may be canceled by terminating the account
number with a I ine feed.

*CANCEL ACCOUNT

C5 <0
A8 (0

B7 @)

*

CANCEL NAME

COMMAND: CANCEL NAME @

FUNCTION: Cance Is a user name out of a user account
directory.

After giving the command terminated by a carriage return,
the operator types the account number and user name, fol
lowed by a carriage return. If the name is located, the
program will type

OLD

*

completing the operation. If the name cannot be located,
the program wi II type

NEW

INVALID USER

*

and the operator may then correct the name.

Examples:

*CANCEL NAME @

BlJONES @>

OLD

The command con be continued if the operator wishes to
cancel more than one name. Note that either a line feed
or carriage return can follow the account and user name.

*CANCEL NAME @)

A2BET e
OLD

A3CET @)

OLD

*

CLEAR FILE

COMMAND: CLEAR FILE e
FUNCTION: Clears a selected file directory.

The operator types the user numbers for the fi Ie directories
that are to be cleared. The command must be terminated
by typing a user number that is greater than the last valid
user number. Normally the operator will terminate by
typing 7777 and the program will respond with the message

END OF JOB.

Examples:

*CLEAR FILE G

234 9

416 8

7777 e
END OF JOB

This command does not clear the bit map. The MAP pro
gram must be run in order to update the bi t map.

CLEAR RECORDS

COMMAND: CLEAR RECORDS @l

FUNCTION: Copies accounting records to a file and then
clears the accounting storage area.

After the operator has given the command, the program will
ask for an output file; this file cannot be a physical device
such as the PRINTER or TELETYPE since the output is binary
(type 2 file). If a satisfactory file name is given, the pro
gram will write the accounting records to the file and return
to the asterisk. If a bad fi Ie name is given, the program
wi II ask for the output fi Ie again.

Examples:

*CLEAR RECORDS @)

OUTPUT FILE: / ACCTj @)

NEW (OLD) FILE @l

COpy RECORDS

COMMAND: CO PY RECO RDS e

FUNCTION: Copies accounting records to a file.

After the operator has given the command, the progrom wi II
ask for an output file; this cannot be a physical device such
as the PRINTER or TELETYPE since the output is binary (type
2 file}. If a satisfactory file name is given, the program will
write the accounting records to the file and return to the
asterisk. If a bad file name is given, the program will ask
for the output fi Ie again.

This command outputs the account number, user, name, con
nect tirre, and CPU time. It then calculates the maximum
amount of disc storage used and prints it with the above
information.

Examples:

*COPY RECORDS @)

OUTPUT FILE: / ACCT/ @)

NEW (0 LD)FILE @)

ACCOUNTING DATE (M-D): 5-27

COUNT LETTER

COMMAND: COUNT LETTER @

FUNCTION: Counts the number of users who have not
received each of the six broadcast letters.

The operator merely gives the command terminated by a
carriage return; the program wi 1\ then give the count in the
following format:

a

2 976

3 a

4 a

5 1024

6 o

where the number in the left column is the letter number and
the number in the right column is the number of users who
have not received the letter (0 indicates the letter is not
be ing used and 1024, as for letter number 5, indicates the
letter has not been released). The letter program is cur
rently implemented for a maximum of 1024 users.

OPER Program 59

FILES

COMMAND: FILES e /@

FUNCTION: Provides to an OUTPUT FILE the complete or
selected file directories.

If the command is followed by a carriage return (Fig-
ure 27) the program wi II ask for the output fi Ie by typing

OUTPUT FILE:. The operator may then type any appro
priate output file name. If a wrong file name is supplied
the program will again type the message OUTPUT FILE:.
The normal output file will be the printer since the out-
put may exceed the capacity of disc files. The message
END OF JOB will be typed when the last file directory
has been printed. The output begins with user number 1
and continues for all the valid user numbers on the sys
tem. If a particular user number has an overflow fi I e
directory associated with it, the overflow directory will
be listed immediately following the user's first directory.

When the fi Ie directory for the last user number has
been printed, all of the overflow directories should have
been printed. If any overflow directories remain (were
not referenced by a user number), they will be supplied
at the end of the listing under the title LOST OVER
FLOWS.

If the command is followed by a line feed (Figure 28), the
program assumes the output file will be the teletype. The
operator must type the user numbers for the fi Ie directories
desired. When a user number is typed that is greater than
the last valid user number, the program will type END OF
JOB and terminate.

OUTPUT DESCRIPTION

Typical output has the following form:

211 0:00.51 0: 15 77777777

Al 5 9/26 2 23000000 31176/CONVERT/

where

211 user number

0:00.51 hours, minutes, and seconds of com-
puter time.

0: 15 hours and minutes of real time used (since
reset time).

77777777 Valid on-time where each bit repre-
sents an hour of the day. The left-most bit
represents 00:00 to 01 LOO.

60 OPER Program

Al Account number

5 Number of times the file was accessed
since last disc re-ordering. Reaches a
maximum of 77B and stays there.

9/26 Creation date,

60000000 (wou Id appear instead of the 2)
Flag bits indicating file was written on. t

tThese bi ts are used by the concurrent tape back-up routine
and the disc file re-ordering routine.

-Gel .IePER.I

*F'ILES

0UTPUT T0: TELETYPE

2.13 U:31
1 99105.23 "1059137 77777177
*1 2 01.122 12 21000000 116<430 .IF'0R3.1
*1 o 11/27 2 23000000 17413 ,lSI
*1 2 12/10 42 21000000 15303 .ITAP/
*1 2 01/22 22 21000000 115243 /F'2CI
*1 2 10/01 2 21000000 15301 WSO
*1 3 08/13 32 21000000 11307 /XF'2RI
*1 2 01/22 12 21000000 136427 /F'0R21
*1 3 02/01 60000000 21000000 61305 ,If 19/
*1 2 06/29 21 21000000 5326 /QEDI
*1 2 01/22 32 21000000 142401 /F'0Rl1
*1 3 01.122 32 21000000 115265 .IF'2R/
*1 2 08/21 22 21000000 55323 /ODT/
*1 1 11/07 40000000 21000000 131373 /to/
*1 2 03127 52 21000000 45317 /CALI
*1 0 10/10 2 21000000 31000 NEWTAPE
*1 2 01.122 32 21000000 122402 /F'0R4/
*1 0 07126 12 21000000 115126 IXF0R2/
*1 2 08/07 32 21000000 51331 /BASIC/
*1 0 01/22 12 21000000 164717 /MAP4/
*1 2 08/09 22 21000000 101332 IXF'2C/

2 8105.35164112 77177777
*1 o 06/19 32 21000000 34153 /f0RIt.l
*1 o 06/19 12 21000000 40145 /f0R28.1
*1 o 03/12 21 21000000 137604 /QEOi/
*1 o 06/19 12 21000000 40151 /f0R30/
*1 o 03.112 12 21000000 137625 /CTROP./
*1 o 06/10 22 21000000 110162 /oon/
*1 o 12/17 12 21000000 163277 /1"'108/
*1 o 06/19 32 21000000 40171 /f0R41i1/
*1 o 11/11 16 21000000 67212 /0PEXI
*1 o 01/09 32 21000000 74501 If2Ril
*1 o 06/24 22 21000000 44114 /F'2Ci/
*1 o 03/12 42 21000000 137637 /TAP'/
*1 o 03/12 21 21000000 147601 /PL0Pt/
*1 o 03/12 32 21000000 141622 /BASIC./
*1 o 10/01 2 21000000 137533 /WSO./

4 4:53.95 192:44 77717177
*1 o 10/09 6 23000000 53251 /G/

*1 o 07/09 2 23000000 167541 /5/
*1 o 01/28 2 23000000 112663 iii 8
*1 o 0 I /28 3 23000000 112665 iii 3
*1 o 01/28 3 23000000 11145 '2
*1 0 10/09 5 23000000 53257 0
*1 0 09/25 7 23000000 43260 BB
*1 0 10/10 7 23000000 57255 L
*1 0 01/28 2 23000000 112610 .,
*1 0 04/11 7 23000000 130530 /CL0SEO ACCTS/
*1 0 10/10 10 23000000 51245 M
*1 0 10/09 4 23000000 53264 E
*1 0 09/25 4 23000000 43261 I'
*1 0 01/28 2 23000000 146735 t5
*1 0 10/09 1 23000000 53270 H
*1 0 01/28 "I 23000000 162763 .IA/
*1 0 10/09 6 23000000 53277 CC
*1 0 01/28 3 23000000 112672 ...
*1 0 12/07 4 23000000 140563 /N/

5 22:43.35 237:02 77177771
*1 0 10/09 2 23000000 173502 /ASSM/
*1 o 01/24 2 23000000 "17040 /5/

Figure 27. FILES Command Terminated by Carriage Return

-G9 .lePER/

*FILES

21'3 14137
426

426 16128.66 809:44 77771777
*3 o 09/11 3 23000000 27260 /BENtl
*3 o 07/25 30 23000000 170205 IPReCI'
*3 o 011'31 2 23000000 103350 1'0CTAL.I
*3 o 0B/05 2 23000000 170237 /XX/
*3 0 11/13 4 23000000 4447 IUNAMI'
*3 o 08/01 3 23000000 103352 I'USN01
*3 o 111'02 2 22000000 137406 IBLAB/
*3 o 01/25 2 23000000 4666 /ADDI
*3 o 07/26 3 23000000 177502 .ICARDI'
*3 o 01/24 3 22000000 160251 IBSEXI'
*3 o 01/22 17 21000000 41260 CHECK
*3 0 101'31 14 23000000 14441 /USI'
*3 o 08/01 13 21000000 164303 1'0CTAL USEII'
*3 o 07/1 B 2 22000000 57557 18TPT/
*3 o 071'05 3 23000000 13532 I'INSTCHKI'
*3 o 01/09 1
*3 o 01/22 6
*3 o 01/22 3
*3 o 011'29 1

9VERF'U'WI 4365

4365 0100.00 0:00 0
*3 o 011'29 4
*3 o 11/13 2
*3 o 01/22 3
*3 0 11/02 2
*3 0 101'31 3
*3 o 01/22 10
*3 o 09/11 4
*3 o 091'13 3
*3 o 011'22 3

0VERF'L0W: 426

231
231 0107.65 5:53 77777777

82 o 041'24 4
82 o 11/13 2
82 0 111'13 2
B2 o 04/01 11

7717

TeTAL: 16:36.31 815137

END J0B

23000000
23000000
23000000
23000000

23000000
22000000
22000000
23000000
22000000
22000000
22000000
21000000
23000000

23000000
23000000
22000000
23000000

13020 I'TAX81'
36423 ICHK/

116151 /BB00K/
175367 /.1'

71340 /B0eKI'
4463 /SUNAM/

45256 I'BT/
47420 /LABI'
30313 /BUSN0/
61326 /BCHKI'
20207 /SBENI
100~n5 /11'
131316 ITI

124301 /USC11
60476 /MIKEI
53337 /SM/

120307 /USC21

Figure 28. FILES Command Terminated by a Line Feed

2 The number of data blocks in the disc file

230000000
file)

31176

File type (23 means symbolic disc

Index block pointer {or file size for
magnetic tape).

Ico NVERTI Name of fi Ie {control characters are

GARBAGE

preceded by an & on the tel etype or by a t::. on the
printer}.

COMMAND: GARBAGE e
FUNCTIO N: Removes unused overflow areas from the

overflow directory area and makes the area
available for use. See Figure 29.

The program first determines the current location of the
overflow pointer; in other words, it finds the next avail
able overflow area. This is typed out as follows where
nnnn is the pointer:

OVERFLOW POINTER AT: nnnn

The program next types the fa Ilowing message:

GARBAGE COLLECTION READY TO START.

ONLY 1 USER ALLOWED ON SYSTEM.

"ESCAPES" WILL BE INHIBITED.

TYPE@) TO CONTINUE.

The program pauses here unti I a confirming carriage re
turn is typed by the operator. Since this program can
not be run if any users except the operator are logged
on the system, the program next checks the number of
users on the system. If more than one user is on the
system the following message is typed, followed by a
return to the EXEC:

MORE THAN 1 USER ON.

If the operator is the only user, the following message
is typed:

GARBAGE CO LLECTIO N STARTED.

The program wi II proceed with no further messages unti I
the garbage collection has been completed. At that
time it will again determine the location of the over
flow pointer and type the message:

OVERFLOW POINTER AT: nnnn

The difference in the pointers will indicate the gain in
overflow directory storage area due to the garbuge col
lection. The message END OF JOB will than type and
the operator wi II be forced to EXIT from the system so
that his new file directory overflow pointer on the disc
wi II not be destroyed. The operator should then take
the system down and take a disc dump to save the new
fi Ie directory arrangement.

HELP

COMMAND: HELP @

FUNCTIO N: Lists all of the commands the operator Exe
cutive routine will recognize.

LENGTH

COMMAND: LENGTH @/@)

FUNCTION: Outputs the amount of disc storage used by
the account number.

OPER Program 61

Before GARBAGE After GARBAGE

(1100) SOY (1100) •

Empty

Empty

(1351) ,
(1352) Used

(1353) Used

(1354) Empty

(1355) Used 1-

(1356) Used (1355) ,

r
(1356) J

Used

j
(1371) Used Used

(1372)
..

Empty --
(1373) Empty

.... --
(1374) Used -
(1375) Empty

.. -
-

(1376) Used -
(1377) Used LUNO (1377)

Note: Overflow file directory organization before and after running the GARBAGE command. The numbers in
parentheses represent the overflow file directory user number.

Figure 29. Garbage Collection

If command is terminated by carriage return/ the program
asks for an output fi Ie by typing OUTPUT FI LE:. The
operator should then type any appropriate output fi Ie
name. If a bad file name is supplied/ the program will
type the message OUTPUT FILE: again. The me'ssag~
END OF JOB wi II be typed when the last user's fi Ie
directory has been processed/ and the output file has
been closed.

62 OPER Program

If command is terminated by line feed/ the program asks for
an output fi Ie as described in the previous paragraph. The
operator must type a user numberfor each file directory (and
eachoverflowdirectory forwhich size he desires. The oper
ator types a user number greater than the last val id user num
ber (normally 7777), to terminate the list of user numbers.
The disc storage by account for the se lected user numbers
wi II then be output as in paragraph 1.

LETTER

COMMAND: LETTER @

FUN CTIO N: Allows the operator to create a broadcast
letter.

Before giving this command, the operator must first SAt the
EXEC letter switch to OFF. This is done by giving the
EXEC command LETTER §. The EXEC will respond with
LETTER OFF. Then the operator may GO TO the operator
program and give the LETTE R command. The program wi II
respond wi th:

LETTER NO.:

and the operator must respond wi th a number from 1 to 6,
corresponding to the letter that he wishes to create. The
operator should then type a carriage return (after the letter
number) and normally shou Id type another carriage return
so that the letter starts at the left edge of the paper. The
operator should then type the letter and terminate with a
control "0", the E. O. T. character. If the operator makes
a mistake and would like to delete the character just typed,
he may type a # sign; one character is deleted for each
pound sign typed. When the operator has typed the control
0, indicating end of letter, the program wi II respond with
the asterisk. The operator must then return to the EXEC
and type LETTER again. The EXEC will respond with LET
TERON and the new letter will be typed for the operator.

EXAMPLE: (starting from the EXEC)

-LETTER @ Giving the EXEC command to turn
the letter swi tch off.

LETTER OFF

-GO 10PER! @ Calling the OPER program

*LETTER @ Giving the command

LETTER NO.: 2 @)
number

TEXT OF LETTER e @
size is 189 characters

*

The program asks for a letter

The letter; maximum

. -LETTER 2 9 EXEC command to type a letter

TEXT OF LETTER EXEC types the letter

-LETTER @) Turning the letter switch on

-LETTER ON

TEXT OF LETTER The operator and everyone cur-
rentlyon the system receives the letter when they
come back to the Exec.

NAME

COMMAND: NAME @

FUNCTION: Creates a new user name, changes a user
name in an account/user directory, or
changes the parameters for a user.

After giving the command, terminated by a carriage return,
the operator types the account number and the user name,
followed by a carriage return. The program wi II respond
with one of the two following messages:

OLD

NEW

indicating that the user name is new (not presently in the
account user directory) or old (already in the account direc
tory). If OLD is typed, the operator may continue if he
desires to change the parameters. The operator types the
parameter wcr d, term ina ted by a carriage return. Note that
the parameter word must contain the user number in the low
order 12 bits and the user's control status in the high order
12 bits. If the user account directory for the account indi
cated already has 11 names assigned to it, the following
messages wi II type:

NEW

FULL

The operator must first cancel an old name before he can add
a new name if the directory is full (see CANCEL NAME).

EXAMPLES:

*NAME @

BlJONES @)

OLD

60000023 @) / 0

This command can be continued for subsequent account and
user names. Note that the parameter word can be followed
by either a carriage return or line feed.

*NAME 9/0
A1ABC 8/0
00001025 @J/0
A2BCA @/G
00001026 @/@

POINTER

COMMAND: POINTER @)

FUNCTION: Determine the next available overflow file
directory storage area.

OPER Program 63

After the command has been given, the program wi 1\ respond
with the message:

OVERFLOW POINTER AT: nnnn

where nnnn is the current location of the overflow printer.

REMOVE LETTER

COMMAND: REMOVE LETTER @)

FUNCTION: Allows the operator to remove a broadcast
letter from the letter bit map so that it is no
longer addressed to anyone. Note that this
makes the count (see COUNT LETTER) equal
to zero. The actual letter text is not changed.

REMOVE LETTER automatically resets the
letter switch to "ON". Therefore, the Exec
utive will begin typing letters to any users
which are on the system. The operator should
not attempt to add a letter after removing
one without first returning to the Executive
and executing the LETTER command.

After giving the command, the program wi II type:

LETTER NO.:

and the operator must respond with a letter number, which
must be a number from 1 to 6. The program will then
remove the letter from the letter bit map.

EXAMPLE:

*REMOVE LETTER @)

LETTER NO.: 2 @)

*

BESET TIME

COMMAND: RESET TIME e / C0

FUNCTION: Provides to an OUTPUT FILE the real and
computer time for all users and clears the
computerand real times from the file direc
tory storage area; the command may also be
used for sel ected users.

Same as for the command TIME.

For examples of output see TIME.

Note that this command actually clears the computer and
real time words from the file directories after outputting
the information.

SET DAY

COMMAND: SET DAY 0 / @

FUNCTION: Val idates all or selected users for 24-hour
usage of the time-sharing system.

64 OPER Program

If command is terminated by carriage return, no other action
is required by the operator. The routine will set the valid
time word in every file directory to 77777777 which validates
the users for 24-hour usage of the system. The program wi II
type END OF JOB when completed.

If command is terminated by line feed, operator must type
the user numbers for the users to be val idated for 24 hours.
The command must be terminated by typi ng a user number
greater than the last val id user number such as 7777; this
will cause the program to type the END OF JOB message.

EXAMPLES:

-GO IOPER! @)

*SET DAY @)

END OF JOB

-GO IOPER! @)

*SET DAY @

121 @

23 @)

7777 @>

END OF JOB

SET HOUR

COMMAND: SET HOUR €V I <0

FUNCTION: Validates all or selected users for any selec
ted time of the day.

If command is terminated by carriage retu rn, the program
will type each user number, together with computer time,
real time, and val id on-time and wi II pause after typing out
the parameters for each user to allow the operator to change
the val id on-time. If the operator does not care to change
the valid on-time for a particular user, he merely types a
I ine feed. Otherwise, he types the val id on-time word ter
minated by a carriage return. The program will then type
out the parameters for the next user. After the last user
parameters have been typed out, the program will type END
OF JOB. -

If command is terminated by line feed, the operator must
type the user numbers of those users whose time parameter he
wishes to change. The program wi 1\ respond by typing the
user number, computer time, real time and val id on-time.
The operator may then type the new on-ti me parameter and
terminate by typing a carriage return. (If a line feed isused
to terminate the val id time word, the program wi II not change
the valid time word.) The operator must terminate the com
mand with a user number greater than the last valid user

number, normally 7777. The program will then write out
the last file directory and type the message, END OF JOB.

Note: The time parameter word consists of one bit for each
hour of the day where the left-most bit validates a
user from 0000 to 0059, the second bit from 0100
to 0159 etc. To validate a user from noon to 1559,
the operator would type the following time
parameters:

7400 @)

EXAMPLES:

-GO /OPER,! @)

*SET HOUR @

1 0/03.41 1: 10 77777777 ® (Does not desi re
to change)

2 0:00.00 0:00 7777777 70 @) (Val idates a user for
the hours 1800 to

3 etc. 2059 only)

-GO /OPER! e
*SET HOUR C0
240 @)

240 0:01.23 3:45 70000000 (0 (No change)

137 @l

1370:02.23 10.547777 17777

7777 e

END OF JOB

SIZE ACCOUNT

COMMAND: SIZE ACCOUNT e

@) (Changes the valid
hours from "1200
to 2359 11 to II 1 1 00
2359 11

)

FUNCTION: Computes the maximum disc storage used by
account from LENGTH outputs and provides
this maximum as an input for the next SIZE
ACCOUNT run.

The routine requires two input fi les and two output fi les
which are requested by the program as needed. The con
tents of these files are as follows and the file names must
be typed in the order indicated:

File 1 - INPUT FILE:

New input. Normally the output of a LENGTH run
for the current day.

File 2 - INPUT FILE:

Previous maximum. Normally the maximum output from
a previous SIZE ACCOUNT run which was produced as
output file 4 previously. This input may also be the
output of a LENGTH run if there has been no previous
SIZE ACCOUNT run.

File 3 - OUTPUT FILE:

The complete report of the current run. First column
is the same as input number 1, second column is the
maximum between input file 1 and 2 and is the same
as output file 4. The third column is the difference
between input fi I e 1 (new input) and the input fi Ie 2
(previous maximum) anum ber preceded by a minus sign
indicates that the new SIZE is less than the previous
maximum and that output on fi Ie 4 will not change from
the previous maximum. If the third column is positive,
then the new size fi Ie 1 was greater than the previous
maximum so that the new maximum output will be equal
to the new input.

Fi Ie 4 - OUTPUT FILE:

New maximum. The format of this output is exactly the
same as the format of the LENGTH output. This will
normally be input file 2 for the next days run of SIZE
ACCOUNT.

The program will type END OF JOB when completed. Fig
ure 30 shows an example of SIZE ACCOUNT.

TIME

COMMAND: TIME @) / @

FUNCTION: Provides to an OUTPUT FILE the real and
computer time for all users or types the real
and computer time for a selected user.

If command is terminated by a carriage return, the program
wi" ask for the output fi Ie by typing 1I0UTPUT FILE". The
operator shou Id then type any appropriate output fi Ie name.
If a bad fi Ie name is suppl ied the program wi II type the
message "OUTPUT FILE:" again. The message END OF
JOB will be typed when the last user's time has been output.

If command is terminated by a I ine feed, the program
assumes the output file will be the teletype. The operator
must type the user numbers for the time parameters to be
typed out. When a user number is typed that is greater
than the last val id user number (normally 7777), the pro
gram wi II type out the total that has been typed and then
wi II type END OF JO B. Figure 31 shows an example of
TIME.

UAD

COMMAND: UAD @ / @

FUNCTION: Outputs to a file all or selected user account
directories.

If command is terminated by carriage return, the program
will ask for the output file by typing OUTPUT FILE. The
operator should then type any appropriate output file name.
If a bad file name is supplied, the program will type the
message OUTPUT FILE:. The message END OF JOB
will be typed when the last user account directory has
been output.

OPER Program 65

7/1 0:31

ACT NEW INP. NEW MAX. - DIFF.

*1 797696 1330176 - 532480
*2 260352 574720 - 314368
*3 445696 557056 - 111360
*4 721408 1173248 - 451840
*5 856832 1026816 - 169984
*6 88320 122624 - 34304
*7 317696 338432 - 20736
A8 12544 12544 512
Al 217088 217088 4608
A2 52736 52736 0
A4 182784 183552 - 768
A5 87040 133376 - 46336
A6 12800 13312 - 512
B8 27136 27136 0
B1 13824 22784 - 8960
B2 80384 85760 - 5376
B3 11008 11008 1024
B5 123904 124928 - 1024
B6 528640 539904 - 11264
C8 133888 136704 - 2816
C1 58880 72960 - 14080
C2 2560 2560 @

J1 2560 2560 0
J2 12288 13312 - 1024
J4 6912 8704 - 1792
K1 70400 100608 - 30208
K2 175872 177408 - 1536
L2 24064 46592 - 22528
L3 22784 27136 - 4352
H1 13824 28672 - 14848
N1 1536 10752 - 9216
N2 4352 9728 - 5376
N3 38656 44800 - 6144
N4 10240 10240 1792
N5 39936 39936 8960
N6 7936 7936 0
N7 0 10496 - 10496
08 0 35840 - 35840
07 0 5376 - 5376

TOT: 7373056 9600168 - 2200832

Figure 30. Example of SIZE ACCOUNT

If command is terminated by line feed, the program wiH
ask for an output file as above. After typing the output
fi I e name, the operator shou Id then type the account num
ber of the user/account di rectories that he desires with
each account number except the last one terminated by a
Ii ne feed. The last one wi II be terminated by a carriage
return. The account numbers are typed by the opera
tor in the usual letter/number format. Figure 32 shows
examples of users' output.

66 OPER- Program

-GO IOPER/ @)

:::TIME @>

OUTPUT TO: TEL @l

7/3
1
5
6

17
20
25
27
32
45

14:08
0:00.71
0:03.40
0:00.20
0:00.15
0:00.26
0:96.53
0:00.00
0:00.41
0:0 @

-GO IOPERI €V

~TIME G

7/3 14:09
25 @
25 0:06.53
20 @
20 0:00.26
5 €V

5 0:03.40
7777 @)

TOTAL: 0: 10. 20

END JOB

0:24
0:29
0:03
0:05
0:08
1:26
0:01
1:14

77777777
77777777
77777777
77777777
77777777
77777777
77777777
77777777

1:26 77777777

0:08 77777777

0:39 77777777

2:03

Figure 31. Example of TIME

USERS

COMMAND:

FUNCTION:

USERS @>

Provides the operator with a list of valid
users on the system, sorted by user number,
account number or user name.

The operator types the command USERS terminated by a
carriage return. The program wi II then request an out
put fi Ie. After the operator types the fi Ie name, the
program will respond with:

SORT ON WHAT COl. (1,2, or 3):

The operator then types 1, 2, or 3 for output sorted by user
number, account number, or user name, respectively.

EXAMPLE: See user output on previous page.

DISC ZERO

COMMAND: DISC ZERO (0

<Password>

FUNCTION: This command will zero out all the discs on
the system.

-GO 10PERI @>

~(USERS

OUTPUT TO: TEL

7/3 14: 13

SORT ON WHAT COL.? (l,2,OR 3) : 3

12 ')~2 * 1 = User Number
1166 Gl 0038 2 = Account number

522 Gl 0035 3 = User Name
521 Gl 0036

1171 Gl 0500
525 E5 1
277 D5 1
536 E5 10
537 E5 11
654 G3 141
655 G3 142
656 G3 143
526 E5 2
301 D5 2
624 G7 200 WRIGHT
623 G7 200 SPEIR
622 G7 200 CHIOCHIO
621 G7 200 JOHNSON
711 G7 200 PATAPOFF

1170 Gl 2000
626 Gl 250 BRICK
625 Gl 250 SNYDER
527 E5 3
302 D5 3

1167 G1 3000
657 G3 345
660 G3 349
530 E5 4
531 E5 5
630 G7 500 SCHWARTZ
627 G7 500 GUGGENHE
532 E5 6

1210 12 658&C
1206 12 671&0
1207 12 674&N

533 E5 7
661 G3 7466
534 E5 8
662 G3 8466
602 E4 8803
604 E4 8811
603 E4 8810
357 E4 8812
535 E5 9

1172 Gl 9000
663 G3 9466

1232 N8 @LMY&SK&C
6 *2 A

433 F3 A BROWN
171 Bl A. COX

1203 G4 A. BELL

Figure 32. Examples of User Output

The operator types the command DISC ZERO, then a line
feed. After the line feed which terminates the command,
there will be no output on the teletype. However, the
program is waiting for the password to be typed. Suppose
the password is the word SDS and the control key must be
depressed while all of the letters are typed. The following
example appl ies:

*DISC ZERO ®

Control SDS

*

If NDISC (a system parameter) were equal to 8, then all 8
discs would be zeroed.

DISC EDIT PROGRAM

The purpose of the disc edit is to arrange the files on the
disc for optimum data access. This routine places the fi les
that are I east often accessed farthest from the center arm
positions {outside the mapped area}. The fi les most often
accessed are placed nearest the center, thus leaving all
available free space at the access center.

The I/O control section of the Monitor always writes files
within the mapped area of the disc. If the user opens for
output (rewrites) an old file that has been moved to the
outer arm positions by EDIT, the Monitor will rewrite the
fi Ie within the mapped area.

PHASE ONE

In Phase One, each file directory (FD) is read, the edit bit
set (bit 2 of word 1 of the file entry), the file length com
puted and stored in the fi Ie entry, and the FDs rewri tten.
The index blocks, for fi les which have been updated since
the last time this program was run, are read, the user num
ber stored in the last word, and the block written back.

An entry for every file on the disc is created in one of two
tables that are built as the FDs are read. On table con
tains a two word entry for each fi Ie which has been read or
written since the I ast time this program was run. (This is
called the AB table.) The two words contain the last·
access data, access count, index block, disc address, and
the number of data blocks in the file (includes the index
block). The other table contains an entry for each file
wh i ch has not been accessed since the la"st time the pro
gram was run. Each entry is one word containing the
index block blocks of the file. (This is called the
C table.)

PHASE TWO

The two tables (AB, C) are sorted. The AB table is sorted
by access count and access date. The C table is sorted by
index block disc address.

Disc Edit Program 67

PHASE THREE

The files in the AB table are read from the disc, new index
blocks created, and the fi les written on tape. A three
word record for each file is created and written on the RAD.
The record contains the user number, the old index block
disc address and the new index block disc address.

PHASE FOUR

Reads files in the C table and either writes them at their
new location on the disc or ~rites them on tape unti I suffi
cient space is available to start writing them on the disc.
This situation would occur if the total space required for
the fi les was reduced since the last time this program was
run and the free space exceeded 25 percent of the total
capacity. A three-word record is created for each file
and is written on the RAD. It contains the same informa
tion as the records written for the AS type fi les.

PHASE FIVE

The AB type fi les are read from tape and written in their
assigned locations on the disc.

PHASE SIX

The C type fi les (if there are any on tape) are read from
tape and written in their assigned locations on the disc.

PHASE SEVEN

The FDs are updated using the records written on the RAD.
All records on the RAD are, so to speak, "passed" twice
against each block of 64 FDs.When a RAD record is found
to match a file entry for ~ particular user, it is marked and
written back to the RAD and the index block disc address
and access count is updated and the edit bit reset in the
file entry of the FD. On the second "pass", before the
block of FDs are wri tten back to the disc, the edit bit is
checked in each file entry and if found still set, a message
is output to the typewriter with the user number and file
name of the entry. Any file lost because its index block or
data blocks were in error or couldn't be read or wri tten,
would appear in this list. All the RAD records are read and
checked for mark bit set. If the mark bit is not set the user
number and the old and new index block disc addresses are.
output to the typewriter .. These should match with previous
typeouts from the edit bit check of the FDs.

PHASE EIGHT

The operator is allowed to correctly enter new index block
disc addresses for files which the program could not correctly
identify.

PHASE NINE

All the index blocks are read and the last word checked
against the user number to see that all files are properly placed.
A message is outputforfileswhichdonotcheckand should
match with messages from phase seven. This is a check only
and is notreally necessary. It can be aborted at any time.

68 Operating Instructions/Commands of the Edit Program

OPERATING INSTRUCTIONS

The operator may wish to take a disc dump to preserve the
old status of the disc before running the edit.

1. With the system in time sharing mode, the operator'
shou Id log in and type:

2.

-PLACE /Name of disc edit/

-SYSDP o @)

TO

LOC

This will put the edit program onto disc 1.

Take the system down by setting breakpoint 4. After
a few seconds, lower the run switch to "idle" and press
"start" •

3. Mount the utilities tape which contains the DSWAP
program. Also, mount a scratch tape on unit 6, set at
800 bpi. The edit routine uses this tape. After DSWAP
has been read in, mount a second scratch tape on unit
7, set at 800 bpi.

4. Insure that the console teletype is turned on. The edit
routine converses through this teletype.

5. Set break points 1 and 4 and load the DSWAP program.
DSWAP wi II bring in the edit program from disc 1.

COMMANDS TO THE EDIT PROGRAM

EDIT wi II begin to type the following commands. New unit
and old unit will be the same except when it is desired to
increase or decrease the number of discs being used by the
system. The part of the command typed by the operator is
underl ined.

FILE REORDER ROUTINE. READY MT 6, 7

TYPE DATA AS FOLLOWS: MM-DD-YR 12-06-68

TYPE LAST USER NUMBER-: 2377

TYPE NUMBER OF DISCS IN NEW UNIT AS :DD:
(Type :08:, : 16:, or :32:)

TYPE NUMBER OF DISCS IN OLD UNIT AS :DD:
(Type :08:, : 16:, or :32:)

SET USER NUMBER IN I. B. -: (Type YES @Jor
NO @> @» -

Used for initial edit or when user number has been
lost from the index block.

BEGINNING - 00146440 ENDING 00177374

At this point the system will type any error messages. The
error messages will be discussed later.

JOB FINISHED

ANY FILES TO CO RRECT: (The operator responds
YES or NO depending on whether or not there
were error 11essages.)

CHECK STARTED

END CHECK

ERROR MESSAGES

The following procedure can be used to recover files which
the EDIT program could not identify. EDIT will first list
the files for which it has a name but has lost the new index
block pointer. Next it will list the files for which it has
a new index block pointer but has lost the user number and
file name. The operator can match up the two entries (if
possible) when the line IJANY FILES TO CORRECT" is
typed.

The format of the error messages is:

I. B. L: iiiiiiii USER uuuuuuuu FILE NAME ffffff

I. B. OLD iiiiiiii USER nnnnnnnn IB NEW iiiiiiii
LOST FILE

If the operator responds "YES" to the II ANY FILES TO
CORRECT II message, the following will be typed.

USER NUMBER: (Type the .± digit user number)

OLD INDEX BLOCK ADDRESS: (Type the ~ digit
index block address)

NEW INDEX BLOCK ADDRESS: (Type the ~ digit
index block address)

OK: (Type YES @l if the information input is correct)
(Type NO @) @ to start over)

IB OK: iiiiiiii USER uuuuuuuu FILE NAME ffffff

OK: (Type YES @if this is the correct file and
NO @) @) if not correct file. It will allow you
to try again.)

ANY FILES TO CORRECT: (Type YES @)if more
fi les to correct, otherwise type NO @ ®)

CHECK STARTED (This procedure may be aborted any
time.)

END CHECK

MESSAGES REQUIRING OPERATOR ACTION

FATAL ERROR, CAN'T R/W FDs AT (Disc Address)

Action: This message indicates a bad disc spot.

TAPE NOT READY - TOGGLE RUN SWITCH WHEN READY

Action: Put tape in ready and follow the instruction in the
message.

SET 800 BPI----TOGGLE RUN SWITCH WHEN READY

Action: Follow the instruction.

PUT RING IN----TOGGLE RUN SWITCH WHEN READY

Action: Follow the instruction.

BAD TAPE----TOGGLE RUN SWITCH WHEN READY

Action: Mount different tape.

BAD TAPE----RESTART THE JOB

Action: Restart the program from disc, will not be necessary
to restore the disc since nothing has been written yet.

FATAL ERROR WHILE WRITING ON TAPE--OK TO RESTART

Action: Restart the program from disc, will not be necessary
to restore the disc since nothing has been written.

RAD ERROR HAS DESTROYED DISC DATA
RECOVER DISC FROM PREVIOUS DUMP AND RESTART

Action: Total restart.

DISC ERROR HAS DESTROYED DISC DATA
RECOVER DISC FROM PREVIOUS DUMP AND RESTART

Action: Total restart.

TAPE ERROR HAS DESTROYED DISC DATA
RECOVER DISC FROM PREVIOUS DUMP AND RESTART

Action: Total restart.

IF CORRECT TAPE TOGGLE RUN TO TRY AGAIN

Action: Caused by a tape label error. If the correct tape
is mounted, follow instructions.

TAPE READ ERROR--
RECORD NUMBER IS-: nnnnnnnn SIB nnnnnnnn TOGGLE

RUN TO START AGAIN

Action: Follow instructions. If it does not correct, the
record can be accepted as is by setting switch 4 before tog
gling run, then resetting switch 4.

DISC WRITE PROTECT

Action: Set disc write protect switches off and toggle run
swi tch.

IB RD: iiiiiiii USER uuuuuuuu FILE NAME ffffff

Action: Look in the listing of files under the user given the
message for a matching index block disc address and file

Error Messages/Messages Requiring Operator Action 69

name. Recover this fi Ie from a previous disc dump. Files
indicated by this message cannot be recovered during file
recovery procedure.

DISC ERROR AT (disc address)

FILE BAD IB: iiiiiiii

Action: The index block address will match with q and r
messages. This fi Ie can be recovered during the fi Ie recov
ery procedure but wi II have errors in it.

IB L: iiiiiiii USER uuuuuuuu FILE NAME ffffff

Action: Match with r messages for recovery.

IB OLD iiiiiiii USER uuuuuuuu IB NEW iiiiiiii LOST FILE

MESSAGES REQUIRING NO OPERATOR ACTION

JOB FINISHED

CHEC K STARTED

END CHECK

TAPE ERRORS--: nnnnnnnn

BEGINNING - nnnnnnnn ENDING - nnnnnnnn

EXAMPLE OF AN EDIT RUN

FILE-REORDER ROUTINE. READY MT 6:7

TYPE DATA AS FOLLOWS: MM-DD-YR 07-05-67
TYPE NUMBER OF DISCS IN OLD UNIT AS :DD: :16:
TYPE NUMBER OF DISCS IN NEW UNIT AS :DD: :16:
SET USER NUMBER IN I. B. -: NO @> @) -
BEGINNING - 00327454 ENDING - 00377374

DISC ERROR AT 00025362
DISC ERROR AT 00025365
FILE BAD IB: 00025361

IB L: 00075304 USER 00000027 FILE NAME /ER/

IB L: 00025361 USER 00000107 FILE NAME /EVEN/

IB L: 00025044 USER 00000414 FILE NAME /MOON/

IB L: 00005615 USER 00000650 FILE NAME /RAB/

IB L: 00002231 USER 00000667 FILE NAME /PAYROLL/

IB OLD 00075304 USER 03300200 IB NEW 00026457
LOST FILE

IB OLD 00025361 USER 40000107 IB NEW 00062155
LOST FILE

IB OLD 00025044 USER030274471B NEW 00051333
LOST FILE

70 Messages Requiring No Operator Action/Map Program

IB OLD 00055615 USER 01627460 IB NEW 0006571333
LOST FILE

IB OLD 00002231 USER 0000000 IB NEW 00045140
LOST FILE

JOB FINISHED

ANY FILES TO CORRECT: YES @

USER NUMBER: 0027
OLD INDEX BLOCK ADDRESS: 00075304
NEW INDEX BLOCK ADDRESS: 00025457
OK: YES @

IB OK: 00075304 USER 00000027 FILE NAME /ERI

OK: YES @l

ANY FILES TO CORRECT: YES @)

(Repeat the above procedure for users 107, 414, 650 and 667)

ANY FILES TO CORRECT: NO <§ @)

CHECK STARTED

IB CH:00026457 USER 00000027 FILE NAME /ER!
IB CH:00062 155 USER 00000107 FILE NAME /EVEN/
IB CH:00051333 USER 00000414 FILE NAME /MOON/
IB CH:00065713 USER 00000650 FILE NAME /RAB/
IB CH:00045140 USER 00000667 FILE NAME /PAYROLL/

END CHECK

MAP PROGRAM

The Monitor assigns disc space for files by utilizing a disc
bit map. Each bit in the map represents a 256 word block.
If the bit is set, the block is available. The bit map is in
the Monitor. The purpose of this program is to initialize the
bit map, release the disc space occupied by bod files (fi les
with invalid index block pointers, conflicting information,
etc), and indicate in the user's file directory that the file
has been deleted. .

Note that MAP does !!2.! attempt to ei ther re-allocate or
optimize the disc files. This function is performed by the
EDIT program. MAP simply reads each file directory in the
system <:lnd initializes the bit map to reflect the current sta
tus of the disc.

The MAP program is run if a new version of the Monitor has
been brought into core using the DSWAP program. When the
Monitor is assembl ed the bi t map contains all ones. The
map must be changed to reflect the current disc environment.
The MAP program is a Iso run after the edi t program has
changed the positions of the fi les.

The disc map does not reflect all of the area of the disc.
On an 8 or 16 disc system the bit map only represents arm
positions 12 through 51. On a 24 or 32 disc system, arm
positions 22 through 41 are mapped.

It is not advisable to restart the MAP program if any errors
occur while it is running. The program will have partially
initialized the bit map at this point. To start the program
again would cause conflicts in the map. One should reload
the Monitor system and then restart MAP.

In order to reduce disc arm movement the index block
pointers are first collected from the file directories and
sorted according to disc location. In the process of going
through the file directories, a message is typed if the end
of-file directory flag is missing or if the index block
pointer (BP) is invalid. The sorting is accomplished by
first extracting off the high order six bits of the disc address
of the IBP and packing the remaining bits with the user
number into a single word (the user number occupies the
low-order 12 bits). The user number would be used in case
of an error to remove the fi Ie from the fi Ie di rectory. The
high-order six bits are used as an index into 64 pockets,
two pockets for each disc. The packed IBP and user num
ber is sorted into the appropriate pocket by using strings of
128 word packets as necessary. Since the storage area
consists of six pages, a total of 96 packets are available(
allowing the storage of well over 10(000 index block
pointers.

After the sort, the index block pointers are de I ivered to
the Monitor using the BRS BE+5. If there is an error return,
the program stores the IBP and the user number in an error
I ist and sets an error flag. Also the program wi II type the
IBP, the word returned by the Monitor in the A register
(which is usually the disc address of the error), and the
user number and then wait until a carriage return is typed
by the operator before continuing.

After executing the BRS BE+5 for all IBPs, the error flag is
checked. If there has been an error, the program types a
message that the file deletion is about to start and waits
for a carriage return to be typed before continuing. After
receiving the carriage return, the program goes through the
list of errors and releases the disc space occupied by the
bad files. The MAP program does not delete the bad file
entry from the customers file directory (FD). However,
the file type (see bits 0 through 5 of word 2 of a FD entry)
is set to 40B. Since 40B is not a legitimate file type, the
file will be removed from the FD the next time the user's
file directory is written (by LOGOUT, WRITE FD, etc.).

If there are no errors or when the last bad entry has been
del eted, the program searches the accounting storage area
for the next available sector, indicated by the first word
of the sector being zero. The sector number of the account
ing area is typed for the operator. The program then searches
the file directory overflow area and determines the location
of the next available overflow area and types it out. If
there are less than 40 overflow areas left, a special mes
sage is typed giving the actual number of areas left.
The disc address of the next available accounting area
and the address of the next overflow area are delivered
to the Monitor using the BRS BE+5 along with a termi
nation flag. ThiS completes the operation of the MAP
program.

OPERATING INSTRUCTIONS

The program is a "GO TO II type program and the operator
starts the program by typing:

-GO /MAP/ @l

The program responds by typing the following message and
begins going through the file directories:

SYS. V MAP STARTED.

V is the MAP program version number.

No further action is required by the operator unless there
is an error message. The program will type the following
messages upon compl etion of bui Idi ng the map:

ACCOUNTING AT: aaa

OVERFLOW POINTER AT: bbb

END JOB

where "aaa" is an octal number correspondi ng to the account
ing area sector (64 words) area. If "aaa" is 0 there is no
accounting information stored. If it is 177 there is no
remaining accounting storage area and the area must be
cleared by using the CLEAR RECORDS command in the
/OPER/ program. Note that the system must be taken down
after clearing the accounting area so that the /MAP/ pro
gram can be rerun. The number "bbb" is the next available
overflow area and normally varies from 1377 to 1100 on an
eight-disc system and from 2377 to 2000 on a 16- or 32-
disc system. Note that the first number (1377 and 2377)
shows that no overflow directories are being used while the
second number would show that no more overflow directories
are available. The 10 PER! command GARBAGE must be
executed before these second numbers are reached.

ERROR MESSAGES AND ACTION

FILE DIRECTORY END FLAG MISSING FOR USER: nnn

where "nnn" is the user number. The operator may:

1. Type a carriage return in which case the program will
continue and the bad file directory will remain on the
disc.

2. Stop the MAP program and use DDT to supply a valid
end pointer to the file directory. The system must then
be reloaded and MAP restarted.

CO NFLICT AT ppppp qqqqqq nnn @)

where "pppppll is the index block pointer and "qqqqqqll is
the disc address of the data block that caused the conflict,
and "nnn ll is the user number (or overflow pointer) of the
file directory that contains the conflict. A conflict implies
that two or more files reference the same disc area. MAP
will always map the first file and regard the second file as
the conflict. The conflict is easily recognized because the

Map Program 71

BRS BE+5 will aftempt to reset a bit that is already reset.
The operator may:

1. Type a carriage return in which case the program will
continue after storing the IBP and user number in an
error list.

2. Take the system down and reload the disc.

BAD INDEX BLK. PTR.: ppppp nnn e
where "ppppp" is the bad index block pointer and "nnn IS

the user number. This message indicates that the number
"ppppp" is an illegal disc address. A disc address must be
greater than 0 and I ess than or equa I to LIBP :

LISP: 37777B 8 Disc

77777B 16 Disc

137777B 24 Disc

177777B 32 Disc

The operator may:

1. Type a carriage return in which case the program will
continue and the bad pointer will rem':lin in the fi Ie
directory.

2. Stop the MAP program and use DDT to remove the file
directory entry from the disc. If the file type is changed
to 40B, the fi Ie will be deleted from the user's directory
the next time his directory is written.

BAD FILE DELETION STARTING.

This message will only type if the error message "CONFLICT
AT" has previously been typed by the program. At this point
the bit map has been built and the program is ready to delete
the bad fi I es. The operator may:

1. Type a carriage return in which case the bad files will
be deleted.

2. Take the system down and either reload the disc or start
up again in the case of disc errors.

ONLY nn OVERFLOW F. D. AREAS LEFT

where nn is the actual number of overflow file directory
areas left. This message is only typed if there is less than
40 areas left. The operator may:

1. Run the "GARBAGE" routine in the "OPER" program
(see "OPER" instructions).

2. Ignore the message, hoping that the remaining areas
wi II be suffici ent unti I the GARBAGE routine can be
run at a later time.

18. STRING PROCESSING SYSTEM (SPS)

A resident part of the system is a package of string handl ing
outlines. These are discussed in detail in the second half
of this fYKloual. They ore:

GCI

WCI

WCH

SKSE

SKSG

GCD

Get character and increment

Write character onto string

Write character onto string storage

Skip on string equal

Ski p on string greater

Get character and decrement

WCD Write character and decrement

BRS 5 Look up string in hash table

BRS 6 Insert string in hash table (must be preceded
by BRS 5)

BRS 33 Input string

BRS 34 Output string given word address

72 String Processing System (SPS)

BRS 35 Output string given string pointer

BRS 37 General command lookup

SPS includes symbol table lookup facilities, and a string
storage data collector, avai lable as a I ibrary routine.
Stri ngs are composed of 8-bit characters packed 3 per word
and are addressed by 2-word string pointers. Two SYSPOPs
formally part of SPS but useful in floating point operations
and in general programming are:

LDP

STP

Load pointer

Store pointer

These are doubleword operations which load A and B from
the effective address and the next location, or store A and
B into the effective address and the next location.

String pointers are discussed under "Executive Treatment of
Fi les". The general concept of man ipulating characters
that are packed three per word is discussed under "Echo
Tables". String handling routines are discussed in detail
under "String Processing".

19. FLOATING-POINT

Floating-point arithmetic is incorporated into the 940 sys
tem through the use of programmed operators. Floating
point hardware {referred to as "The Floating Point Arithmetic
Unit (FPAU)") is available as an option. Conditional
assembl y of the Moni tor allows the floating-point SYS POPs
to uti lize the FPAU or to use software simulation. Three
sets of floating-point SYSPOPs are included: standard
SYSPOPs, Quick SYSPOPs, and FORTRAN II SYSPOPs.
A detai led description of the S YS POPs is avai lable in
Chapter 25.

STANDARD SYSPOPS

The floating-poi nt numbers are normal ized doubleword
values. The first word is a sign bit followed by the 23-bit
high-order part of the mantissa; the second word consists of
the 15 low-order bits of the mantissa followed by a 9-bit
exponent. Both words are two's complement. These SYS
POPs require that the result of any operation be returned in
the A and B registers. If the FPAU is implemented, the
current contents of the A and B regi sters are output to the
FPAU, the operation performed, and the result copied to the
Aand a registers. The following SYSPOPsare implemented:

FAD Floating-add

FSB F loati ng-subtrac t

FMP Floating-mul tiply

FDV Floating-divide

aRS 21 Floating-negate -, -SKNF Skip if floating-accumulator negative

lDP load double precision (FPAU not affected)

STP Store double precision (FPAU not affected)

QUICK SYSPOPS

These SYSPOPs are included for use with the FPAU if it is
not necessary' to have the result of each operation returned
in the A and a registers. Thus, a time saving is provided
during successive floating-point operations. All of the
SYSPOPs perform the operation with the current contents
of the FPAU and leave the result of the operation in the
FPAU. For compatibility, these SYSPOPs are also included
if the FPAU is not implemented. In this case, the quick
SYSPOPs behave identically to the standard SYSPOPs. The
format of the floati ng-poi nt words is the same as the
standard SYSPOPs. The quick SYSPOPs include:

QFAD

QFSa

Quick floating-add

Quick floating-subtract

QFSI Quick floating-subtract inverse

QFMP Quick floating-multiply

QFDV

QFDI

QFNA

QlDF

QSTF

CAF

CFA

Quick floating-divide

Quick floating-divide inverse

Quick floating-negate

Quick double precision load

Quick double precision store

Copy A and a to FPAU

Copy FPAU to A and a

FORTRAN II SYSPOPS

These SYSPOPs are used by the FORTRAN II run time
and library. FORTRAN II requires that the first floating
word consist of the 15 low-order bits of the mantissa fol
lowed by a 9-bit exponent while the second word contain a
sign bit followed by the 23 high-order bits of the mantissa.
For ease in handling array variables, the SYSPOPs double
the contents of the index register before performing the
effective addrdss computation, and then restore the initial
value of X. The following SYSPOPs are included:

FFAD FORTRAN floating-add

FFSB FORTRAN floating-subtract

FFMP FORTRAN floating-multiply

FFDV FORTRAN floating-divide

FLDF FORTRAN load floating

FSTF FORTRAN store floating

Consider the following example which uses the FORTRAN
floating SYSPOPs to access array variables.

Example:

A and B are array variables dimensioned for ten elements:
A (1) through A (10) and B (1) through a (10). Perform the
following operation:

A (3) + a (2) -TEMP

A

B

TEMP

lDX

FlDF

LDX

FFAD

FSTF

ass
ass
BSS

END

=2

A,2

= 1

B,2

TEMP

20

20

2

Floating-Point 73

FLOATING-POINT OVERFLOW

If the floating-point operations are software simulated,
esponent overflow wi II cause the CPU overflow indicator
to be set. If the indicator is set by a floating-point opera
tion, it will remain set until the user executes the "ovr l

i nstruc ti on.

If the Floating-Point Arithmetic Unit is implemented, ex
ponent overflow wi II cause the overflow indicator in the
FPAU to be set. The setting of the indicator forces an
interrupt to occur. The interrupt routine wi II reset the
FPAU overflow indicator, set a flag that indicates that
overflow occurred, and arm the Monitor-to-user transition
trap. When the transition trap routine is entered, the
overflow flag is examined. If the flag is set, the CPU
overflow indicator is set and software interrupt five, if
armed, wi II be triggered. If the software interrupt is
not armed, a return to the user program wi II occur. The
user can issue the "OVT" instruction to test for overflow
and reset the CPU overflow indicator.

INPUT jOUTPUT OF FLOATING-POINT NUMBERS

The BRS 52 and 53 can be used for the input/output of
floating-point numbers to a fi Ie. Both of these BRSs require
a format word as input. The description of the format word
is given in Fi gure 33.

The BRS 52 requires a format specification in X, and inputs
characters from the file numbersupplied in the format word.
If the number input is floating-point, the skipping return is
taken and the integer value is in the A register. Free form
input wi II accept characters unti I a terminating character
(any character except +, -, ., E, or digit) is input.

The BRS 53 requires a floating-point number in the A and B
registers (the most significant fractional part in A and the
least significant fractional part and exponent in B). The
number will be output according to the format specified in
X. If an error is detected during conversion, the index

register on return wi II contain the error codes described
in Table 7. If free form output is used, the number wi II be
output in F 16 format with five leading spaces if the exponent
is less than 37B. For exponent values between 37B and
377B, E16.9 format is used.

The ISC and SIC SYSPOPs function simi larly to the BRS 52
and 53 except that the values are not input/output to a fi Ie.
SIC converts the characters in a given string and returns the
value in the A {integer} or the A and B (floating-point)
registers. SIC exits skipping if the value is floating-point.
ISC c onve rts the n umbe r input in the A and B reg i ste rs
and stores the characters into a desi gnated character string.

Table 7. Error Conditions

Error
No. Error Type

X=o No error was detected.

X=l

X=2

X=3

X=4

X=5

X=6

Number of decimal digits after the decimal point
exceeds 12for single precision and 18 for extended
precision on formatted input. Twelve and 18
used respectively.

Field too short for E format on output. Overflow
action will be taken depending on the value of
bit 15 of the format word.

Input number exceeds the maximum allowable
bounds.

Field too short for F or I format on output.
Overflow action will be taken depending on
the val ue of bit 15 of the format word.

An E format was specified for input but the input
string does not contain an liE II or ".". The number
will be converted using an equivalent F format.

An illegal character was encountered in the
input scan. Character is ignored.

74 Floating-Point Overflow/Input/Output of Floating-Point Numbers

T laD lOW a FN

o 2 3 8 9 14 15 16 23

where

T Format Type

0

2

3

4

5

6-7

laD

lOW

0

I II ega I format type

Integer (I format)

E format with number right justified in field

F format with number right justified in field

E format with number left justified in field

F format with number left justified in field

III ega I format type

Number of digits following the decimal point

Total field width. If lOW is zero, free form output is used.

Overflow action. If the field width is too small on output and this bit is set, the first character of
the output field will be an asterisk. If this bit is reset and field width overflow occurs, characters
on the right wi II be lost.

FN File number to be used for BRS 52 and 53. If a file number is not supplied, the teletype is assumed.

Figure 33. Format Word for Floating-Point Input/Output

Format Word for Floating Point Input/Output 75

20. SCHEDULING, FORKS AND PROGRAM INTERACTION

NUMBER: 78

NAME: SAIR

FUNCTIO N: Arm/Disarm Software Interrupts

STATUS: User

CALLING SEQUENCE: LDA M
BRS 78

M is the complete new interrupt mask.

DESCRIPTION: The new interrupt mask is substituted for the old one. A user moy orm
interrupt 1-10. An exec fork moy orm interrupt II olso. Interrupt I is in bit 4 of the
mask word. The interrupts are as follows:

I Interrupt if Program Ponic (BRS 10 or escape)

2 Interrupt if Memory Panic

3 Interrupt if Lower Fork terminates

4 Interrupt if any I/O condition occurs which sets a flag bit (0, 7 or 8 in file number
word)

5 Interrupt if FPAU overflow

6 through 10 interrupts on condition set by user

II Interrupt if DSU error

Location 200B plus the interrupt number must be set to point to 0 routine to process the
interrupt. When an interrupt occurs, the fork which has the interrupt armed is placed
on one of the scheduled queues (Q[O) with an activation code of 5 (see descrip-
tion of PTEST word in Chapter 2\. When the scheduler activates this fork, the
execution of a SBRM * to the interrupt location (20IB-213B) is simulated. The SBRM *
stores into the mark word the location where the fork was interrupted. Therefore, the
user can return to the interrupted location by executing a BRU * on the saved mark
word.

76

Example:

LDA =ESCAPE
STA 20lB
lDA =2B6
BRS 78

ESCAPE ZRO MARK

Process Interrupt

BRU * MARK

MARK ZRO

REGISTERS AFFECTED: None

NUMBER: 79

NAME: SIIR

FUNCTIO N: Cause Interrupt

STATUS: User

CALLING SEQUENCE: LDA
BRS

N
79

N Interrupt number. N has the range of 6 to 10.

DESCRIPTION: Parallel forks in the structure are searched first and then higher forks. The
interrupt will be caused in the first fork found which has the interrupt armed. If no fork has
the interrupt armed, it is treated like a NOP. This would normally be used to cause inter
rupts 6 through 10 to interrupt.

REGISTERS AFFECTED: None

77

NUMBER: 49

NAME: SRIR

FUNCTION: Read Interrupts Armed

STATUS: User

CALLING SEQUENCE: BRS 49

DESCRIPTION: Reads the interrupt mask into the A register. Bit 4 corresponds to interrupt
number 1, 5 to number 2, etc. There are 11 programmable interrupts. See BRS 78.

REGISTER AFFECTED: A

NUMBER: BE+12

NAME: TIMINT

FUNCTION: Interrupts a Fork After a Specified Period of Time.

STATUS: User

CALLING SEQUENCE: LDA
LDB
LDX
BRS
NORMAL

M New interrupt mask.

M
T
N
BE+ 12
RETURN

T Time in milliseconds after which the fork will be interrupted.
N Interrupt number.

DESCRIPTION: The fork issuing this BRS will be interrupted after the delay if the interrupt
specified by N is armed at that time. (Exception: The interrupt will be ignored if the fork
is dismissed on a BRS 9 at the time of the interrupt.) If a fork gives this BRS again with the
same N before the time has passed, the new time will be set. A fork may haveamaximumo;
three timing interrupts pending simultaneously. See BRS 81.

REGISTERS AFFECTED: None

78

NUMBER: 90

NAME: DFR

FUNCTION: Declare a Fork for "Escape"

STATUS: User

CALLING SEQUENCE: BRS 90

DESCRIPTIO N: The PACT pointer of the fork that executes this BRS will be placed into
location TTYASG (see Teletype Tables), If the user types "escape", this fork and all
lower forks will be terminated. The fork above TTYASG will be activated. However, the
Executive fork will never be terminated, even if TTYASG has been assigned to it.

REGISTERS AFFECTED: None

NUMBER: 46

NAME: NROUT

FUNCTION: Turn Escape Off

STATUS: System

CALLING SEQUENCE: BRS 46

DESCRIPTION: This BRS causes the NT bit (see PIM word of PAC table) to be set. If an
escape occurs after this BRS has been executed, it will not be honored. However, the TP
bit will be set (see PIM). If the TP bit is set when the user executes the BRS 47, the
escape will then be honored. This scheme allows the first Bscape that occurs to be processed
later and ignores any subsequent escapes.

A program running with escape turned off cannot be terminated by a higher fork.

See also, BRS 26 and 47.

REGISTERS AFFECTED: None

79

NUMBER: 47

NAME: SROUT

FUNCTION: Turn Escape On

STATUS: System

CALLING SEQUENCE: BRS 47

DESCRIPTION: This BRS reverses BRS 46; that is, reactivates the escape interrupt. If an
escape occurred while in an off condition, the escape will now be processed.

REGISTERS AFFECTED: None

NUMBER: 26

NAME: SKRO UT

FUNCTION: Skip if Escape Waiting

STATUS: System

CALLING SEQUENCE: BRS 26
EXCEPTIO N RETURN
NORMAL RETURN

DESCRIPTIO N: Checks for a stacked escape for this program and if there is one, transfers
control to the "normal return" or, if not, to the "exception return". Significant only after
BRS 46.

REGISTERS AFFECTED: None

80

NUMBER: 9

NAME: FKST

FUNCTION: Open Fork

STATUS: User

CALLING SEQUENCE: LDA
BRS

T
9

T Address of a "Panic Table". (See format of Panic Table in Chapter 3).
Bits 0 through 5 of register A have the following significance:

o Make fork system if current fork is system.

Set fork relabeling from panic table. Otherwise use current relabeling.

2 Propagate escape assignment to fork (see BRS 90).

3 Make fork fixed memory. It is not allowed any more memory than it
started with.

4 Make fork local memory. New memory wi II be assigned to it independent of
the controlling fork. (See section on "Memory Acquisition").

5 Make fork subsystem status if cur(ent fork is subsystem.

DESCRIPTION: BRS 9 is used to create a lower fork. The panic table indicated by register
A must not be the same for two forks of the same fork or overlap a page boundary; if it is,
BRS 9 is illegal. BRS 9 creates a new fork as a fork of the fork creating it, which is called
the controlling fork. The fork is lower in hierarchy of forks than the controlling fork. The
controlling fork may itself be a fork of some still higher fork.

When BRS 9 is executed by a user fork, the user fork is dismissed unti I the lower fork termi
nates. This has the same effect as issuing a BRS 31 immediately after a BRS 9. A user may
not have more than eight forks in his fork structure. This includes the system fork and one
fork for each system BRS that is active. Only one system BRS can be active.

REGISTERS AFFECTED: None

81

NUMBER: 57

NAME: CQO

FUNCTION: Guarantee 16 msec Computing

STATUS: User

CALLING SEQUENCE: BRS 57

DESCRIPTION: This BRS guarantees to the user upon return at least 16 msec. of uninterrupted
computation. This is done by dismissing the user if less than 16 msec. remain in his time
guantum.

This time will include some system overhead. Thus, if the time required is very close to
16 msec., a BRS 45 should be used. BRS 45 guarantees several times this amount.

REGISTERS AFFECTED: None

NUMBER: 30

NAME: FKRD

FUNCTION: Read Fork

STATUS: User

CALLING SEQUENCE: LDA P
BRS 30

Panic Table Address

DESCRIPTION: Reads the current status of a lower fork into the panic table indicated by
the A register. It does not influence the operation of the fork in any way.

REGISTERS AFFECTED: None

82

NUMBER: 107

NAME: FKRA

FUNCTION: Read All Fork Statuses

STATUS: User

CALLING SEQUENCE: BRS 107

DESCRIPTION: The status of all lower forks is recorded in the appropriate panic tables.

REGISTERS AFFECTED: None

NUMBER: 45

NAME: SQO

FUNCTION: Dismiss on Quantum Overflow

STATUS: U:;er

CALLING SEQUENCE: BRS 45

DESCRIPTION: This BRS causes the user to be dismissed as though he had overflowed his long
quantum. It guarantees that the next time he is started he will have a complete short time
quantum. See BRS 57 to guarantee 16 msec.

REGISTERS AFFECTED: None

83

NUMBER: 72

NAME: EXDMS

FUNCTION: System Fork Dismissal

CALLING SEQUENCE: LDX N
BRS 72

N The number of the queue that the fork is to be put on.

DESCRIPTION: Dismisses a system fork and puts it on the specified queue. Returns to call
+1 when recalled. The reactivation condition must be in the Monitor. This BRS is used to
dismiss the Phantom User.

a Teletype queue

I/O queue

2

3

Short time quantum queue

Long time quantum queue

REGISTERS AFFECTED: None

NUMBER: 81

NAME: WREAL

FUNCTION: Dismiss for Specified Amount of Time

STATUS: User

CALLING SEQUENCE: LOA T
BRS 81

T Dismissal time in milliseconds.

DESCRIPTION: The fork is dismissed for the number of milliseconds specified in A. See
BE+12

REGISTERS AFFECTED: A

84

NUMBER: 31

NAME: FKWT

FUNCTION: Wait for Fork to Cause a Panic

STATUS: User

CALLING SEQUENCE: LDA
BRS

Panic Table Address

P
31

DESCRIPTION: Causes the controlling fork to be dismissed until the lower fork, or forks,
causes a panic. When it does, the controlling fork is reactivated at the instruction follow
ing this BRS, and the panic table contains the status of the fork on its dismissal. The status
is also put into the X register. The panic table address is put into the A register.

The controlling fork must have armed an interrupt or a lower fork must execute a BRS 10.

REGISTERS AFFECTED: X, A

NUMBER: 106

NAME: FKWA

FUNCTION: Wait for Any Fork to Terminate

STATUS: User

CALLING SEQUENCE: BRS 106

DESCRIPTION: Fork is dismissed until some lower fork terminates. When a lower fork ter
minates, the panic table address will be left in A.

REGISTERS AFFECTED: None.

85

NUMBER: 109

NAME: DMS

FUNCTION: Dismiss

STATUS: User

CALLING SEQUENCE: BRS 109

DESCRIPTION: The fork is dismissed. It can only be activated again by a program inter
rupt which has been armed by this fork or the termination of a lower fork.

REGISTERS AFFECTED: None.

NUMBER: 10

NAME: PPAN

FUNCTION: Programmed Panic. Terminates a Fork.

STA TUS: User

CALLING SEQUENCE: BRS 10

DESCRIPTION: BRS 10 terminates the fork that issues it and returns control to the higher
fork. It is like typing "escape" on the teletype. This condition can be distinguished from
a panic caused by the escape key only by the fact that in the former case the program
counter in the panic table points to a word containing BRS 10. This BRS would normally be
used to terminate a fork when it is finished. The information in the panic table would,
therefore, only be useful to a higher fork or to this fork if interrupt 4 has been armed by
this fork.

REGISTERS AFFECTED: None

86

NUMBER: 32

NAME: FKTM

FUNCTION: Terminate a Fork

STA TUS: User

CALLING SEQUENCE: LDA
BRS

Panic Table

P
32

DESCRIPTION: Causes a lower fork to be unconditionally terminated and its status to be
stored into the panic table. The X register contains the status word upon return.

REGISTERS AFFECTED: X

NUMBER: 73

NAME: EPPAN

FUNCTiON: Economy Panic

STATUS: User

CALLING SEQUENCE: LDA
BRS

N
73

N Number of forks to terminate.

DESCRIPTION: This is like doing a BRS 10 for each of the forks specified. Forks are ter
minated going up until the Executive fork is reached or until N forks have been terminoted,

REGISTERS AFFECTED: None.

87

NUMBER: \08

NAME: FKTA

FUNCTION: Terminates All Forks

STATUS: User

CALLING SEQUENCE: BRS 108

DESCRIPTION: All lower forks are terminated and their status read into the corresponding
panic tables.

REGISTERS AFFECTED: None

88

21. INPUT jOUTPUT

NUMBER: 1

NAME: MONOPN

FUNCTION: Open a File of a Specific Device

STATUS: System

CALLING SEQUENCE: LDA ±I

LDB ±L (BCDT APE output only)

LDX D

BRS

EXCEPTION RETURN

NORMAL RETURN

File number will be in register A on Normal Return.

The relative address (DSU Address MOD 4) of the file's Index block for DSU files,
or unit number for magnetic tape, otherwise anything. (I = 0 for a new output file
since the Index Block address is unknown.)

Make the file read only.

+ Make the file read/write.

D Device number.

+ for 80 char. records, - for 132 char. records.

Available device numbers are as follows:

1. Paper tape input.

2. Paper tape output.

3. BCD tape input.

4. Magnetic tape input.

5. Magnetic tape output.

6. Card input BCD.

7. Card input BIN.

8. Sequential DSU input.

9. Sequential DSU output.

10. BCD tape output.
(Continued on next page)

89

11. Line printer.

12. Card punch BCD

13. Card punch BIN

DESCRIPTION: The "open file" BRS is used to condition a file for input or output processing.
If the file is successfully opened, control is transferred to the normal return with A continu
ing the file numberi otherwise control is transferred to the exception return. Exception con
ditions are as follows:

1. Device or file in use or not available.

2. Too many fi les open.

3. No disc space left.

A file may be opened for input any number of times for the purpose of multiple user access or
multiple processing by a single user. A file that is opened for output must be closed before
it is opened. See also, BRSs 2, 3, 20, 82.

REGISTERS AFFECTED: A, X

90

NUMBER: 110

NAME: RDU

FUNCTION: Read Device and Unit

STATUS: User

CALLING SEQUENCE: LDA FILE No.
BRS 110
NORMAL RETURN

DESCRIPTION: Output X device number.
A unit number.

See BRS 1 for device number description.

REGISTERS AFFECTED: A, X

NUMBER: 2

NAME: MONCLS

FUNCTION: Close a File

STATUS: User

CALLING SEQUENCE: LDA N
BRS 2
NORMAL RETURN

N File number (obtained when file was opened).

DESCRIPTION: The "close file" BRS is used to indicate to the system all processing is com
pleted on this file. All necessary termination processing will be completed and control will
be transferred to the normal return. See BRS 20.

REGISTERS AFFECTED: None

91

NUMBER: 20

NAME: CFILE

FUNCTION: Close a File

STATUS: User

CALLING SEQUENCE: LDA
BRS

N Fi Ie Number

N
20

DESCRIPTION: The "close file" BRS is used to indicate to the system all processing is
completed on this file. If the file number indicates magnetic tape, the file will be termina
ted and,if output, the End of File will be written; but in either case, the tape will be posi
tioned at the start of the next file and the tape is de-allocated. All registers are changed.

REGISTERS AFFECTED: All

NUMBER: 8

NAME: IOH

FUNCTION: Close all Files

STATUS: User

CALLING SEQUENCE: BRS 8
NORMAL RETURN

DESCRIPTION: The "close all files" BRS is used to indicate the the system that all processing
is completed on all fi les. The system wi 11 complete all necessary termination processing on
all files and transfer control to the normal return. This BRS will not close magnetic tape
files correctly. See BRS 2, 20, and 17.

REGISTERS AFFECTED: None

92

NUMBER: 66

NAME: DFDL

FUNCTION: Delete DSU File Data

STA TUS: User

CALLING SEQUENCE: LDA N
BRS 66
NORMAL RETURN

N File Number

DESCRIPTION: This BRS will return to available storage all DSU blocks which are assigned
to the indicated file and clear the index block of DSU addresses. This BRS does not releose
the index block nor does itdeletethe file directory entry from the Customer File Directory.

REGISTERS AFFECTED: None

NUMBER: 67

NAME: DFER

FUNCTION: Delete a Specified Block of the DSU

STATUS: System

CALLING SEQUENCE: LDA D
BRS 67
NORMAL RETURN

D Address of the DSU block.

DESCRIPTION: This BRS will return the DSU block indicated by the address in register A to
available storage and transfers control to the normal return. This BRS should be used to de
lete Index Blocks. The BRS does not clear the Index Block address from the Customer File
Directory, nor does it delete the file entry from the Customer File Directory.

REGISTERS AFFECTED: None

93

NUMBER: 87

NAME: DFRX

FUNCTION: Read DSU File Index Block

STATUS: System

CALLING SEQUENCE: LDA D
LDX W
BRS 87
NORMAL RETURN

D DSU address of the index block (MOD 4)
W Core address into which the block is to be read.

DESCRIPTION: Reads the specified block into the given core location and transfers control
to the normal return. The block read is the size of the currently defined index block. The
size of an index block varies with the assembly.

REGISTERS AFFECTED: None

NUMBER: 104

NAME: RSYB

FUNCTION: Read a Page from the RAD

STATUS: System

CALLING SEQUENCE: LDA C
LDB
BRS 104

C Core Address

RAD Address

DESCRIPTION: Reads one page from the RAD starting at the address R into a page in core.
C may be any location in that page. The data will start in the first word of the page.

Uncorrectable RAD errors result in an instruction trap or interrupt 11 if it is armed. Try com
mand again.

REGISTERS AFFECTED: None

94

NUMBER: 105

NAME: WSYB

FUNCTION: Write a Page on the RAD

STATUS: System

CALLING SEQUENCE: LDA C
LDB
BRS 105
NORMAL RETURN

DESCRIPTION: Wr~tes .one page on the RAD starting at the address R from a page in core.
C may be any locat/on In that page. The data will start in the first word of the page.

Uncorrectable RAD errors result in an instruction trap or interrupt 11, if it is armed. Try
command again.

REGISTERS AFFECTED: None

NUMBER: 113

NAME: DFCD

FUNCTION: Compute File Size of a DSU File

STATUS: User

CALLING SEQUENCE: LDA File Number
BRS 113
NORMAL RETURN

DESCRIPTION: Adds the number of data words (in multiples of 255) in the file to the num
ber in the X register. Returns the result in X.

REGISTERS AFFECTED: X

95

NUMBER; 118

NAME: TGET

FUNCTION: Allocate Magnetic Tope Unit

STATUS: System

CALLING SEQUENCE: LDA Tope Number
BRS 118
EXCEPTION RETURN
NORMAL RETURN

DESCRIPTION: Assigns the tape requested to the user. If the tape is already busy with someone
else the exception return is executed.

REGISTERS AFFECTED: None

NUMBER: 119

NAME: TREL

FUNCTION: De-allocate Magnetic Tape Unit

STATUS: System

CALLING SEQUENCE: LDA Tape Number
BRS 119
NORMAL RETURN

DESCRIPTION: Releases the tape specified.

REGISTERS AFFECTED: None

96

NUMBER: BE+9

NAME: RDSYB

FUNCTION: Read DSU Page

STATUS: System

CALLING SEQUENCE: lOA
lOB
BRS

C Core Address
Disc Address

C
R
BE+9

DESCRIPTION: Use like 105. Con only be called by the Executive. BE+2 can be used to
perform this function if less than a page is to be written.

REGISTERS AFFECTED: None

NUMBER: BE+ 10

NAME: WDSYB

FUNCTION: Write DSU Page

STATUS: System

CALLING SEQUENCE: lOA
LDB
BRS

C Core Address
R RAD Address

C
R
BE+lO

DESCRIPTION: Use like 104. Can only be called by the Executive. BE+1 can be used to
perform this function if less than a page is to be read.

REGISTERS AFFECTED: None

97

NUMBER: BE+7

NAME: BPTEST

FUNCTION: Test a Breakpoint Switch

STATUS: System

CALLING SEQUENCE: LDX Switch Number
BRS BE+7
SWITCH UP RETURN
SWITCH DOWN RETURN

DESCRIPTION: Tests the breakpoint switch (1, 2, 3, 4) indicated in X. If the switch is
down, the BRS skips on return.

REGISTERS AFFECTED: None

NUMBER: BE+ 1

NAME: ARD

FUNCTION: Read DSU

STATUS: System

CALLING SEQUENCE: LDA Core Address
LDB Disc Address
LDX Number of Words
BRS BE+ 1
NORMAL RETURN

DESCRIPTION: Reads up to 2K words from the disc. Transfer must not cross a page boundary
and must be in multiples of 16 words. Errors result in on instructian trap or programmed inter
rupt 11, if it is armed. No two forks that are to run simultaneously should both use this BRS.

REGISTERS AFFECTED: None

98

NUMBER: BE+2

NAME: AWD

FUNCTION: Write DSU

STATUS: System

CALLING SEQUENCE: LDA Core Address
LDB Disc Address
LDX Number of Words
BRS BE+2

DE SCRIPTION: Like BRS BE+ 1. The number of words must be a multiple of 64.

REGISTERS AFFEC TED: None

NUMBER: BE+ 15

NAME: RDPGE

FUNCTION: Read on SMT page from RAD

STATUS: SYSTEM

CALLING SEQUENCE: LDA
BRS

N SMT number

N
BE+ 15

DESCRIPTION: Reads on SMT page from the RAD. The page must already be in memory. It
returns the RAD address in B if a read occurs; otherwise there is no change. The purpose of
this BRS is to read in another copy of the page in the event that the copy of the page in core
has been a I teredo

REGISTER AFFECTED: B

99

NUMBER: BE+ 17

NAME: CKBUF

FUNCTION: Test for last buffer free

STATUS: User

CALLING SEQUENCE: BRS BE+ 17

DESCRIPTION: If a buffer in the user's TS block is available, the program continues.
If not, an instruction trap wi II occur.

REGISTERS AFFECTED: None

NUMBER: BE+ 19

NAME: GTFDT

FUNCTION: Get creation date, access count for a file

STATUS: System

CALLING SEQUENCE: LDA
BRS

L
BE+19

Address in file directory hash table that carresponds to this file. (See contents of
A register on normal return from BRS 37)

DESCRIPTION: Extracts the creation date and the access caunt for a file. A - creatian date.

B - access count.

REGISTERS AFFECTED: A and B

100

NUMBER: 15

NAME: GFN

FUNCTION: Reads Input File Name from a Command File and Looks up the File Name in
the User's File Directory.

STATUS: User

CALLING SEQUENCE: LDA N
BRS 15
EXCEPTION RETURN
NORMAL RETURN

N Command File Number

DESCRIPTION: The routine ignores leading spaces, leading multi-blanks, and leading car
riage return characters. It then uses the BRS 37 to look up the file name in the user's file
directory hash toble.t It returns in the regi sters for both returns exactl y what BRS 37
puts there, which is:

Excepti on Return:

Normal Return:

X
A & B

A
B
X

Pointer to the input file name string pointers
Input file name string pointers

Location of the file in the fi~e directory hash table.
The value woed of the hash tabl e entry
Changed

Note: The information contained in the registers cannot be used directly by the user since
the addresses are in the TS Block; this BRS is normally followed by the BRS 16.

If the input file name string begins with a left parenthesis, or with the full quote,
the file name will be located in another user's file directory or in the public file
directory, respectively; in these cases, the input command file must be the teletype.
Since the BRS 37 is not used in this case, the information in the registers is of no
practical use to the user, and the BR S must be followed by the BRS 16 as indicated
under the BRS 16.

REGISTERS AFFECTED: None

tThe exception return is taken if the input file name string cannot be located in the file
directory.

101

NUMBER: 16

NAME: GIFNB

FUNCTION: Open Input File in File Directory.

STATUS: User

CALLING SEQUENCE: LDA N

BRS 15
BRU (Error)
BRS 16

EXCEPTION RETURN
NORMAL RETURN

N Command file number

DESCRIPTION: Opens an input file located in the user's file directory. BRS 16 requires
in A the location of the first word of the entry in the file directory hash table. The excep
tion return is taken if the pointer in A is not pointing to a proper location in the hash table,
or if the file cannot be opened for any reason, such as a physical device that cannot be an
input file. The file directory pointer may be obtained from BRSs 15, 48, and 60.

Exception Return:
Normal Return: A:

B:
X:

REGISTERS AFFECTED: All

NUMBER: 17

NAME: UABORT

All registers changed
File Number
File Type (0-4)
File Size

FUNCTION: Close all Files (Including magnetic tape)

STATUS: User

CALLING SEQUENCE: BRS 17

DESCRIPTION: If magnetic tape has been used, the lost record will be terminated and if
output, the End of File will be written; in either case, the tape will be positioned at the
stort of the next file. The tape is then closed and the unit is de-allocated. See BRS 8.
All registers are changed.

REGISTERS AFFECTED: All

102

NUMBER: 18

NAME: GOFNA

FUNCTION: Reads File Nome from a Command File and Looks Up the File Name in the
User's File Directory. The Command File Must Be an Input File.

STATUS: User

CALLING SEQUENCE: LDA N

BRS 18

EXCEPTION RETURN
NORMAL RETURN

N = Command File Number

Bit 1 = 1 of A Register = Assume a fi Ie a fi Ie name is correct and does not type "OLD
FILE" or "NEW FILE".

DESCRIPTION: The routine ignores leading spaces, leading multiblanks, ond leading

carriage return characters. If the string begins and ends with a single quote or a slash,
the string is terminated for look-up with this character and the string is looked up in the

user's file directory using the BRS 5. A confirming carriage return must follow the quote

or slash before the string is looked up. The exception exit is taken if the character is not
a carriage return. If the string is found in the file directory hash table, the message "OLD
FILE" is typed, otherwise the message "NEW FILE" is typed. If a confirming line feed,

carriage return, or period is then next in the input string, the normal return will be taken,
otherwise the exception return. In the case of a new file, the file name is inserted into
the fi Ie di rec tory.

If the string begins with a character other than a single quote or a slash, the string is looked
up in the user's file directory using the BRS 37. If the string is not located, the error exit is
immediately taken causing the exception return. The exception return will also be caused

if the file is read only as indicated by the flag in the file directory. Normally, this BRS is
followed by a BRS 19 which opens an output file.

Exception Return:

Normal Return: A:

B:

X:

REGISTERS AFFECTED: All

All registers changed.

Location of the file in the directory hash table.

Confirming character in case of a quote or slash file;
otherwise, the file directory hash table value word.

Changed.

103

NUMBER: 19

NAME: GOFNB

FUNCTION: Open Output File Located in File Directory

STATUS: User

CALLING SEQUENCE: LDA N 1
LDB N2 (For Tape Files Only)
LDX N3
BRS 19
EXCEPTION RETURN
NORMAL RETURN

Nl Information supplied in A by BRS 18 (location in the file directory).
N2 File Size (for tape files only).
N3 File Type.

DESCRIPTION: Opens an output file located in the user's file directory. The information
required in the register is indicated above. The word in A is checked for legality. If it is
not a valid pointer, the exception return is taken. The exception return is also taken if the
file cannot be opened for ony reason, such as a physical device that cannot be used for out
put. In the case of 0 new file, the file directory entry is completed. If the new file is a
disc file and it cannot be opened, the message "NO ROOM" is typed. The message "FILE
TYPE WRONG" is typed as appropriate.

Excepti on Return: All changed.
Normal Return: A File Number.

B & X Changed.

REGISTERS AFFECTED: All

104

NUMBER: 48

NAME: GSFN

FUNCTION: Look up Input/Output File Name

STATUS: User

CALLING SEQUENCE: LDP N
BRS 48
EXC EPTIO N RETURN
NORMAL RETURN

N String pointers for the file name.

DESCRIPTION: The file name is looked up in the file directory hash table using the BRS 5.
If it is not there, the exception return is taken.

Exception Return: A & B:
X:

Normal Return: A:

No change.
Changed.
Location in file directory hash table. Can be used by
BRS 16 or BRS 19.

B: Same as A (Location in hash table)
X: Changed.

REGISTERS AFFECTED: All

NUMBER: 60

NAME: GSFI

FUNCTION: Look Up Input/Output File Name and Insert if New.

STATUS: User

CALLING SEQUENCE: LOP N
BRS 60
EXCEPTIO N RETURN
NORMAL RETURN

N String pointers for the file name.

DESCRIPTION: The file name is looked up in the file directory hash table using the BRS 5.
If it is not there, it is inserted in the hash table. The exception return is taken if it cannot
be inserted in the case of a full directory.

Exception Return: A & B:
X:

Normal Return: A:
B:
X:

REGISTERS AFFECTED: All

No change.
Changed.
Location in file directory hash table.
Same as A (Location in hash table)
Changed.

105

NAME: CIO

FUNCTION: Character Input/Output

STATUS: User

CALLING SEQUENCE: LDA

CIO
C (Output only)
N

C 8 bit data character right justified.
N Address of word containing a file number.

DESCRIPTION: CIO is used to input or output a single character from, or to, a file from
the A register. On input an End of Record or End of File condition will set bits 0 and 8
or bits 0 ~nd 7 in the file number and return a 1348 or 1378 character, respectively. If in
terrupt 4 IS armed (see BRS 78), it will occur. The End of Record occurs on the next input
operation after the last character of the record has been input and the End of File condition
occurs on the next input operation after the End of Record which signals the last record of
the file. If an error occurs, bits 0 and 6 will be set in N and interrupt 4 will occur if it is
armed.

WIO and BIO should not be mixed with CIO to read or write a given file.

REGISTERS AFFECTED: A

NAME: WIO

FUNCTION: Word Input/Output

STATUS: User

CALLING SEQUENCE: LDA

WIO

D Data word to be written.

D (Output only)
N

N Address of word containing a file number.

DESCRIPTION: WIO is used to input or output a word of data to or from the A register. On
input an End of Record condition returns a word of three 134B characters and sets bits 0 and
8 in the file number word. If interrupt 4 is armed (see BRS 78), it will occur. An End of
File condition returns a word of three 137B characters and sets bits 0 and 7 in the file num
ber word. If interrupt 4 is armed, it will occur. If an End of Record or File condition oc
curs with a partially filled out word, the word is completed with 134B or 137B characters.
If an error occurs, bits 0 and 6 are set in N. If interrupt 4 is armed it will occur.

CIO and WIO should not be mixed to read or write a given file.

REGISTERS AFFECTED: A

106

NAME: BIO

FUNCTION: Blocked Input/Output

STA TUS: User

CALLING SEQUENCE: lOA W
LDX I
BIO N
EXCEPTION RETURN
NORMAL RETURN

I Starting memory address.
W Number of words to be read or written.
N Address of word containing a file number.

DESCRIPTION: BIO is used to input a block of words to memory or output a block of words
from memory. The A register will contain the first memory location unaffected at the end
of the operation. If the operation is completed successfully, control will be transferred
to the normal return, otherwise control will be transferred to the exception return.

On input an End of Record or End of Fi Ie condi tion wi II set bits 0 and 8 or 0 and 7 respec
tively in the file number. An error will set bits 0 and 6. Interrupt 4 will occur if armed,
when any ')f these bits are set. Exception conditions are end of record, end of file, and
bad record.

If bit 1 is set in the Data Block disc address in the Index Block of a DSU file, it indicates
the end of the data blocks and is the end of a logical record.

REGISTERS AFFECTED: A, X

107

NAME: CTRL

FUNCTION: Input/Output Control (for paper tape and magnetic tape only)

STATUS: System

CALLING SEQUENCE: LDB N 1
LDA C
CTRL N

C Control number
N File number
N1 Number for control 3 or 4

DESCRIPTION: CTRL provides the following control functions for tape files;

Control

1
2
3
4
5
6
7
8

Description

Write end of record on output. Record count not used.
Backspace physical block.
Forward space (B) files.
Backspace (B) fi les.
Erase tape (output only) (3 inches).
Rewind.
Write EOF. Output only.
Long erase. Output only.

REGISTERS AFFECTED: None

108

22. TELETYPES

NUMBER: 23

NAME: LNKS

FUNCTION: Link Teletypes

STATUS: System

CALLING SEQUENCE: lOA T
BRS 23
EXCEPTION RETURN
NORMAL RETURN

Teletype Number

DESCRIPTION: This BRS will link the controlling teletype with the teletype specified in the
A register. The exception return will occur if: the teletype specified by T is already linked;
is in the 8-level mode; does not have the accept message bit set; or has the XOFF, XON, or
P bits set in TTYBL. If the exception return occurs, the A register will contain either the
number of the teletype that is currently linking to the teletype specified by T or A will con
tain the TTYBL word for teletype T for all other conditions. The controlling teletype number
will then be placed into bits 1 through 7 of the LCW word of teletype T.

If the normal return occurs, bit 0 of LCW of both teletypes will be reset and bits 18 through
23 will contain the linked teletype number.

REGISTER AFFECTED: A

NUMBER: 24

NAME: LNKC

FUNCTION: Break teletype link

STATUS: User

CALLING SEQUENCE: LDX T
BRS 24

T Teletype Number

The controlling teletype link with the teletype indicated by bits 18-23 of LCW is broken
(i. e., bit 0 of the LCW word for both teletypes is set).

REGISTERS AFFECTED: None

109

NUMBER: 25

NAME: MSGS

FUNCTION: Accept/Refuse Messages (links)

STATUS: User

CALLING SEQUENCE: LDX T
LDA I
BRS 25

Any teletype number (-1 to indicate controlling teletype)
Bit 22 set to accept messages (links)
Bi t 22 reset to refuse messages (I inks)
Bi t 23 set to accept input
Bit 23 reset to refuse input

DESCRIPTION: This BRS will set or reset bit 8 (the accept input bit) and/or bit 9 (the
accept message bit) of the TTYBL word for the teletype indicated by the X register.

REGISTERS AFFECTED: None

110

NUMBER: 27

NAME: ASH

FUNCTION: Attach TTY to this program

STATUS: System

CALLING SEQUENCE: LDA T
BRS 27
EXCEPTION RETURN
NORMAL RETURN

T Teletype Number

DESCRIPTION: To give total control over a teletype to the requesting program. If the
indicated type is free, it is attached to the requesting program and transfers control to the
"normal return". If it is not free, control is transferred to the "exception return".

REGISTERS AFFECTED: None

NUMBER: 28

NAME: RSTT

FUNCTION: Release TTY

STATUS: System

NOT IMPLEMENTED

CALLING SEQUENCE: LDA T
BRS 28

T Teletype Number

DESCRIPTION: Returns to a free status the teletype indicated by the A register. If the
teletype was not attached to the requesting program a "panic" will be executed.

Note: All attached teletypes are released when the user logs out.

REGISTERS AFFECTED: None

NOT IMPLEMENTED

111

NUMBER: 11

NAME: CIB

FUNCTION: Clear the Teletype Input Buffer

STATUS: User

CALLING SEQUENCE: LDX
BRS

T
11

T Teletype number (-1 is used to indicate the controlling teletype).

DESCRIPTION: Sets the buffer pointers to indicate there are no characters in the teletype
input buffer.

REGISTERS AFFECTED: None

NUMBER: BE+6

NAME: TTYON

FUNCTION: Turns a Teletype Line On or Off.

STATUS: System

CALLING SEQUENCE: lOA =TTY no.
lOB =0 (off) or -1 (on)
BRS BE+6
NORMAL RETURN

DESCRIPTION: Issues the EOM and POT commands which cause the line to be turned off
(hung up) or made ready to accept an incoming call.

REGISTERS AFFECTED: None

112

NUMBER: 12

NAME: CET

FUNCTION: Declare Echo Table

STATUS: User

CALLING SEQUENCE: lOX
LDA

T
R

BRS 12

T Teletype number (-1 is used to indicate the controlling TTY).
R =0, 1, 2, or 3 to indicate the proper echo table. A user can request a-level input I

by setting the sign bit of R and providing the terminal character in bits 16 through
23 of R.

DESCRIPTION: BRS 12 sets the echo table for the TTY indicated by register X. Echo tables
are as follows:

° Echo each character just as it was received and break on all characters.
1 Same echo as ° but all characters except letters, digits and spaces are break

characters.
2 Same echo as 0, but the only break characters are control characters (including

carriage return and line feed).
3 No echo for any character and break on all characters.

The BRS 12 can be used to request 8-level input. While in 8-level mode, characters are
not converted to internal format, echoes are not generated, escapes are not processed by
the system (the escape character is placed into the user's teletype buffer), and the terminal
character is regarded as the break character. As soon as the terminal character is received,
the system reverts to echo table zero,

S-Ievel output is always reset by any execution of the BRS 12.

REGISTERS AFFECTED: None

113

NUMBER: 29

NAME: COB

FUNCTION: Clear the Output Buffer

STATUS: User

CALLING SEQUENCE: LDX
BRS

T
29

T Teletype Number (-1 indicates the controlling TTY).

DESCRIPTION: Sets the buffer pointers ta indicate there are no characters in the teletype
output buffer.

REGISTERS AFFECTED: None

114

NUMBER: 40

NAME: RDET

FUNCTION: Read Echo Table

STATUS: User

CALLING SEQUENCE: LDX
BRS

T Tel etype number

T
40

DESCRIPTION: Reads the echo table number (0, 1, 2, 3) into the A register.

If the teletype is not in a-level input mode, reads the echo table number (0, 1, 2, 3) into
the A register. If the teletype is in a-level input mode, the sign bit of A is set, the address
field contains the terminal character.

REGISTER AFFECTED: A

NUMBER: 13

NAME: SKI

FUNCTION: Test Input Buffer for Empty

STATUS: User

CALLING SEQUENCE: LDX T
BRS 13
EXCEPTION RETURN
NORMAL RETURN

T Teletype number (-1 is used to indicate the controlling TTY).

DESCRIPTION: This BRS tests for the presence of input characters in the buffer. If the buf
fer is empty, control is transferred to the "normal return". If there are any characters in
the input buffer, control is transferred to the "exception return".

REGISTERS AFFECTED: None

115

NUMBER: 14

NAME: DOB

FUNCTION: Dismiss Until the Teletype Output Buffer is Empty

STATUS: User

CALLING SEQUENCE: LDX
BRS

T
14

T Teletype number (-1 is used to indicate the controlling user TTY).

DESCRIPTION: Dismiss this fork until the teletype output buffer indicated is empty. It is
dismissed only until the last character is transmitted. This BRS is useful anytime the user
wishes to halt program flow unti I a message has been completely output. A fork using
8-level output should execute this BRS previous to the execution of a BRS 12 or BRS 86
to guarantee that the entire buffer is output in 8-level mode.

REGISTERS AFFECTED: None

NUMBER: 85

NAME: SET8P

FUNCTION: Set 8-level teletype output

STATUS; User

CALLING SEQUENCE: LDX
BRS

T
85

T Teletype number (-1 is used to indicate controlling user TTY).

DESCRIPTION: Sets teletype to 8-level input/output mode. The teletype specified must
either be the controlling teletype or an attached teletype. 8-level is transmitted to or
from the teletype exactly as it is received from the user program.

REGISTERS AFFECTED: None

116

NUMBER: 86

NAME: CLR8P

FUNCTION: Reset 8-level teletype output

STATUS: User

CALLING SEQUENCE: LDX
BRS

T
86

T Teletype number (-1 is used to indicate controlling user TTY).

DESCRIPTION: Restores teletype output to normal mode. The teletype specified must
either be the controlling teletype or attached to it.

REGISTER AFFECTED: None

NAME: TCI

FUNCTION: Teletype Character Input

ST ATUS: User

CALLING SEQUENCE: Tel M

M Memory address

DESCRIPTION: This SYSPOP reads the character from the teletype input buffer and places
it into location M right justified. The remainder of location M is cleared. The character
is also placed in the A register right justified.

REGISTER AFFECTED: A

117

NAME: TCO

FUNCTION: Teletype Character Output

STATUS: User

CALLING SEQUENCE: TCO M

M Memory address

DESCRIPTION: This SYSPOP outputs the character from the right-most B bits of location M
to the controlling teletype. In addition to the ordinary ASCII characters, all teletype out
put operations will accept 135B as a multiple blank character. The next character will be
taken as a blank count, and the indicated number of blanks will be typed.

REGISTERS AFFECTED: None

NAME: OST

FUNCTION: Output to Specified Teletype

STATUS: User

CALLING SEQUENCE: OST T

T Tel etype number

DESCRIPTION: OST is used to output a character in the A register to a specified teletype.
This instruction is used for output to an attached teletype. Its accept message bit must be
set or an illegal instruction panic will be generated.

REGISTERS AFFECTED: None

NOT IMPLEMENTED

118

23. MEMORY

NUMBER: 4

NAME: MPT

FUNCTION: Release a Page of Memory

STATUS: User

CALLING SEQUENCE: LDA
BRS

N
4

N Contains any address in the page to be released.

DESCRIPTION: The PMT entry for the block is removed and the byte in any other fork
which has this PMT byte. in its relabeling is cleared.

REGISTERS AFFECTED: None

NUMBER: 121

NAME: DPMTE

FUNCTiON: Release Specified PMT Entry

STATUS: User

CALLING SEQUENCE: LDA
BRS

Relabeling byte

R
121

DESCRIPTiON: Releases the specified page from the PMT. It is similar to a BRS 4
except that it takes a byte number instead of an address.

Instruction Trap:

I. Byte not in PMT.
2. A user fork tried to release a system page.

REGISTERS AFFECTED: None

119

NUMBER: 120

NAME: APMTE

FUNCTION: Assign PMT Entry

STATUS: System

CALLING SEQUENCE: LDA R
BRS 120

Relabeling byte

DESCRIPTION: Obtains a new page for the relabeling byte specified. This BRS is used
only in the recover routine in the executive.

Instruction Trap:

1. PMT entry is already assigned.
2. The relabeling byte number was not in the PMT.

REGISTERS AFFECTED: None

NUMBER: 43

NAME: RDRL

FUNCTION: Read Pseudo-Relabeling

STATUS: User

CALLING SEQUENCE: BRS 43

DESCRIPTION: Reads the current pseudo-relabeling registers into registers A and B.

REGISTERS AFFECTED: A, B

120

NUMBER: 44

NAME: STRL

FUNCTION: Set Pseudo-Relabeling

STATUS: User

CALLING SEQUENCE: LDA Rl
LDB R2
BRS 44

Rl & R2 Relabeling factors

DESCRIPTION: This BRS takes the contents of registers A and B and stores them into the
current pseudo-relabeling registers. It also causes the real relabeling to be reset to corre
spand to the new pseduo-relabeling.

If one page or less must be read from the RAD in order to satisfy the relabeling, the RAD
I/o wi II occur immediately. If more than one page must be read, the new pseudo-relabel ing
will be stored into the PAC table, and the fork will be dismissed onto QIO with an immediate
activation condition. When the fork is alloted a time-slice, it will be activated with the new
pseudo-relabel ing.

This BRS will result in an instruction trap for any of the following reasons:

1. Swapping in the new pages was not completed (usually because of a RAD failure),
2. The user tried to relabel over a system page.
3. The USer tried to relabel over a page he did not have. (This is not the way to

obtain more memory.)

REGISTERS AFFECTED: None

NUMBER: 116

NAME: RURL

FUNCTION: Read User Relabeling

STATUS: System

CALLING SEQUENCE: BRS 116

DESCRIPTIO N: Puts the program relabeling into A and B. This is what the system Execu
tive uses as program relabeling. It is kept in the TS block.

REGISTERS AFFECTED: A, B

121

NUMBER: 117

NAME: SURL

FUNCTION: Set User Relabeling

STATUS: System

CALLING SEQUENCE: LOA RLl
LOB RL2
BRS 117

RL 1 and RL2 are the new val ues for the program relabel ing.

DESCRIPTION: Sets the program relabeling as specified. This BRS is used by the system.
User programs should use BRS 44 to set relabeling for a fork.

Instruction Trap:

1. A specified relabeling byte was not assigned.
2. A user fork tried to relabel a system byte.

REGISTERS AFFECTED: None

NUMBER: 122

NAME: MPAN

FUNCTION: Simulate Memory Panic

STATUS: System

CALLING SEQUENCE: LDA
BRS

A Core address

A
122

DESCRIPTION: This BRS gets new memory for a class 3 BRS. If it succeeds the new memory
is put into the relabeling of the calling program. Can be issued from a class 3 BRS only.

If a memory trap occurs, it looks to the calling program as if it came from 0 BRS
instruction.

REGISTERS AFFECTED: None

122

NUMBER: 56

NAME: MBEX

FUNCTION: Make Page System

STATUS: System

CALLING SEQUENCE: LOA P
BRS 56

P Pseudo-Relabeling byte for page.
If bit 0 of A = I, page will be made system.
If bit 0 of A = 0, page will be made not system.

DESCRIPTION: Sets the use mode of a page depending on the value of bit 0 in the A
register.

Bit 0 of A is set to 1 if page was formerly system or 0 if it was not.

REGISTER AFFECTED: A

NUMBER: 80

NAME: MBRO

FUNCTION: Make Page Read Only

STATUS: User

CALLING SEQUENCE: LDA
BRS

P PMT /SMT number

P
80

If bit 0 of A = I, make page read only.
If bit 0 of A = 0, make page read-write.

DESCRIPTION: Sets the read-write status of the entry according to the value of A. An
SMT entry can only be changed by a system fork. The former status of the entry is retumed
in A.

Instruction Trap:

1. Specified entry is not in use.
2. The swap failed.

REGISTER AFFECTED: A

123

NUMBER: BE+4

NAME: PEBRS

FUNCTION: Reads or Sets One Word in the Monitor

STATUS: System

CALLING SEQUENCE: LDA
lOB
LDX
BRS
RETURN

v
o or -1
=Location in Monitor relabeling
BE+4

V New value for word if it is to be set.
The contents of the location are returned in the A register.
If B is positive, the word is read.
If B is negative, the word is changed and the old value returned in A.

DESCRIPTION: Allows a system program to read or set the contents of any location in the
monitor relabeling.

The original contents of the location are always returned in the A register.

REGISTER AFFECTED: A

NUMBER: 68

NAME: EBSM

FUNCTION: Enter Block in SMT

STATUS: System

CALLING SEQUENCE: LDA B
BRS 68

B Byte number in users pseudo-relabel ing

DESCRIPTION: A free SMT entry is found and the PMT entry put into it. The SMT number
is returned in A.

REGISTER AFFECTED: A

NOT IMPLEMENTED

124

NUMBER: 69

NAME: GBSM

FUNCTION: Get SMT Block to PMT

STATUS: Subsystem

CALLING SEQUENCE: LDA
BRS

SMT number

S
69

DESCRIPTION: Puts the SMT entry into the first free PMT entry. The PMT entry number is
returned in A.

Instruction Trap:

1. A user program tries to relabel a system SMT entry.
2. The SMT number is not valid.

Memory Trap:

There were no free PMT entries.

REGISTER AFFECTED: A

125

24. STRING PROCESSING

NUMBER: 33

NAME: GETSTR

FUNCTION: Read String

STATUS: User

CALLING SEQUENCE: LDA
LDB
LDX
BRS

A Address of string pointer
T Terminal character

File numbe r

A
T
T
33

Bit 0 of A set = The string is taken as null with the second pointer equal to the first.

DESCRIPTION: This BRS reads characters from the file and appends them to the string until
the terminal character is reoched. The terminal character is not appended to the string.
It returns the updated string pointers in the A and B registers and updates the end string
pointer in memory .

REGISTERS AFFECTED: AI B

NUMBER: 34

NAME: OUTMSG

FUNCTION: Output Message

STATUS: User

CALLING SEQUENCE: LOX F
LDA W
LOB C
BRS 34

F File number
W Beginning word address
C Charocter count or -I

DESCRIPTION: This BRS outputs C consecutive characters starting with the first character
of the specified word. If B = -I, characters are output until a / is encountered; the char
acter $ is interpreted as a carriage return and I ine feed.

REGISTERS AFFECTED: None

126

NUMBER: 35

NAME: OUTSTR

FUNCTION : Output String

STATUS: User

CALLING SEQUENCE: LOX
LDA
LDB
BRS

F File number

P+I
35

PI P+l A string pointer pair

DESCRIPTION: Outputs the string indicated by the string pointers in registers A and B to
the specified file.

REGISTERS AFFECTED: None

NUMBER: BE+14

NAME:

FUNCTION: Input String with Edit

STATUS: User

NOT IMPLEMENTED

127

NAME: CIT

FUNCTION: Character Input and Test

STATUS: User

CALLING SEQUENCE: LDA N
CIT F
EXCEPTION RETURN
NORMAL RETURN

N Character to be tested
F File Number (see CIO Input Only)

DESCRIPTION: The character in the A register is compared against the next character in
the input file. If it compares, the normal return is taken and the character is removed from
the input buffer. If it does not compare, the character is left in the input buffer and is
returned in A. If the input buffer is empty the user will be dismissed unti I the next break character.

Exception Return: A
B & X

N A

REGISTERS AFFECTED: A

NAME: SKSE

The next character in the input buffer
No change

The character supplied remains in A (the character is
removed from the input buffer).

FUNCTION: Skip

STATUS: User

String Equal

CALLING SEQUENCE: LDA
LDB
SKSE A
EXCEPTION RETURN
NORMAL RETURN

A Address of a string pointer pair
B Beginning string pointer
E End string pointer

DESCRIPTION: If the string addressed by the pointers in the A and B registers is identical
with the string addressed by A of the calling sequence, control will be transferred to the
normal return. Otherwise, control will be transferred to the exception return. If the strings
are of different lengths or have different contents, control will be transferred to the exception
return.

REGISTERS AFFECTED: None

128

NUMBER: 5

NAME: SSCH

FUNCTION: Look Up String in Hash Table

STATUS: User

CALLING SEQUENCE: LDA

Pond P+l
T

ZRO
ZRO
ZRO

LDB P+ 1
LDX T
BRS 5
EXCEPTION RETURN
NORMAL RETURN

String pointers for a string to be looked up
Address of a three-word table (see control section FDCTl of a hash table)
with the format:

Hash Table Beginning Address
Hash Table End Address
a (working cell)

DESCRIPTION: BRS 5 searches the hash table for a string to match the string indicated by
A and B registers. If successful, it returns in registerBthe address of the hash table string
pointers (the location of the first entry of the three hash table entries), and in register A,
the "hash value" (the third word of the hash table entry) and executes the normal return.
Otherwise, it executes the "exception" return with registers A, B and X unchanged and the
oddress of the next free hash tabl e entry in word 3 of the table. (Word 3 will be -1 if the
table is full.)

See BRS 6.

REGISTERS AFFECTED: A, B

129

NAME: LDP

FUNCTION: Load Double Precision

STATUS: User

CALLING SEQUENCE: LDP M

M Address of a double word

DESCRIPTIO N: The contents of memory location M are loaded into the A register and the
contents of memory location M+ 1 are loaded into the B register. This SYSPOP can be used
to load string pointers or floating point words. Note that LDP and STP do not affect the
Floating Point Arithmetic Unit.

REGISTERS AFFECTED: A, B

NUMBER: 37

NAME: GSLOOK

FUNCTIO N: General String Lookup

STATUS: User

CALLING SEQUENCE: LDA F
LDB S
LDX T
BRS 37
EXCEPTION RETURN
NORMAL RETURN

F Input fi Ie number
S Address of string pointer pair
T Address of the Hash Table Control Table

DESCRIPTION: The hash table is scanned for a string to match the given one. If an exact
match is found the normal return is taken. If the given string does not match the initial
part of any hash table string, the exception return is taken. If the given string matches the
initial part of some hash table string, characters from the input file are appended until the
string is long enough either to determine a unique hash table string, with a matching initial
part, or for no match to be possible; in which case the exception return is taken. In the
case where a unique hash table string has been located, more characters are taken from input
until an exact match is obtained, in which case the normol return is taken, or until the last
character causes a mismatch. If the last character is alphanumeric, the exception return
is taken since it is assumed that only a non-alphanumeric character, such as a space, carri
age return, punctuation marks, etc., can be considered a proper termi nator. The last char
acter (which caused the mismatch) is left in the input file.

(Continued on next page)

130

Exits are as follows: (J) The exception return is taken on the nomatch condition with a
string pointer in A. B points to the string so far collected. X is undisturbed. (2) The normal
return is taken on a match with the address of a hash table string pointer in A and the
"hash value" in B. X is undisturbed.

REGISTERS AFFECTED: None

NAME: STP

FUNCTION: Store Double Precision

STATUS: User

CALLING SEQUENCE: STP M

M Address of a doubleword

DESCRIPTIO N: The contents of register A are stored into location M and the contents
of register B are stored into location M+ 1. This SYSPOP can be used to store string
pointers or floating-point words. Note that LDP and STP do not affect the Floating
Point Arithmetic Unit.

REGISTERS AFFECTED; None

131

NUMBER: 6

NAME: SSIN

FUNCTION: Insert String in Hash Table

STATUS: User

CALLING SEQUENCE: A, B, & X must have the output from BRS 5
BRS 6

DESCRIPTION: BRS 6 inserts the string pointer into the hash table at the point determine!.
by the last BRS 5 which did not find a match. If the hash table is full (word 3 of the table
pointed to by X is -1) an "Illegal Instruction" trap results. BRS 6 is intended for use in
conjunction with BRS 5. It should be used only after BRS 5 has failed to find a match.
Furthermore, string pointers shauld not be placed in the hash table in any manner other than
with BRS 6 (otherwise the scanning algorithm used in BRS 5 may cause undesired results).

BRS 6 does not physically move the string to which registers A and B point. On return,
register 8 contains the address of the first word of the new hash table entry and register A
contains the "value" word of the entry.

REGISTERS AFFECTED: A, B

132

NAME: SKSG

FUNCTION: Skip on String Greater

STATUS: User

CALLING SEQUENCE: LDA B
LDB E
SKSG A
EXCEPTION RETURN
NORMAL RETURN

B Beginning string pointer
E End string pointer
A Address of a string pointer pair

DESCRIPTION: The SYSPOP compares the string indicated by A and B registers with the
string indicated by A of the calling sequence, character by character and terminates with
the first unequal character. The numerical internal code representation of characters is
used to determine inequality. If the strings are unequal for the entire length of the shorter
one, the longer one is indicated as greater. If the contents of the string addressed by the A
and B registers is greater than the contents of the string addressed by A, control will be
transferred to the normal return. Otherwise, control is transferred to the exception return.

REGISTERS AFFECTED: None

NAME: GCI

FUNCTION: Get Character and Increment

STATUS: User
CALLING SEQUENCE: GCI A

EXCEPTION RETURN
NORMAL RETURN

A Address of a string pointer pair

DESCRIPTION: This SYSPOP reads into the A register, the first character from the string
indicated by the beginning string pointer given in the calling sequence. If the string is null
or empty, nothing is done and control is transferred to the exception return. If the string is
not null its first character is loaded into the A register right-justified, and the beginning
string pointer is incremented by one such that the beginning string pointer now points to the
string with the first character deleted. Control is transferred to the normal return. Unless a
copy of the original pointer is saved, the contents of the string are effectively destroyed.

REGISTER AFFECTED: A

133

NAME: WCI

FUNCTION: Write Character and Increment

STATUS: User

CALLING SEQUENCE: WCI

Address of string pointer pair

DESCRIPTION: WCI writes the character in the A register on the end of the string addressed
by the end string pointer. The end string pointer is incremented by 1.

REGISTER AFFECTED: B

NAME: GCD

FUNCTION: Get Character and Decrement

STATUS: User

CALLING SEQUENCE: GCD P
EXCEPTION RETURN
NORMAL RETURN

Address of a string pointer pair

DESCRIPTION: A GCD is, in every way, similar to GCI except that the character is taken
from the end of the specified string.

The last character on the string is loaded in the A register, and end string pointer is decre
mented so that it points to the previous character in the string. Control is transferred to the
exception return if the end pointer is not greater than the beginning pointer before it is
decremented.

REGISTER AFFECTED: N

134

NAME: WCD

FUNCTION: Writes Character and Decrement

STATUS: User

CALLING SEQUENCE: WCD

Address of a string pointer pair

DESCRIPTION: This SYSPOP writes the character in the A register on the beginning of the
string and decrements the beginning string pointer.

REGISTERS AFFECTED: None

NAME: WCH

FUNCTION: Write Character

STATUS: User

CALLING SEQUENCE: LOA C
WCH T

C A character right-justified in the A register
T The address of a three word table. The table is as follows:

Word 0 A character address
Word 1 A character address
Word 2 A transfer address

DESCRIPTION: This SYSPOP tries to write a character into the area defined by the charac
ter addresses in the table. Provided that the second address in the table is greater than the
first address, WCH will write the character in A register into the character position indi
cated by the first character address plus one and will increment the first character address in
the table. If the first character address is egual to or greater than the second character in
the table the character is not written and control is transferred to the third word of the table
with A and X registers undisturbed and the address of the WCH in the B register. The address
in the third word of the table can be an exit to a routine which allocates more memory or
GARBAGE collects the remaining characters.

REGISTERS AFFECTED: None

135

25. NUftIIERS

NUMBER: 36

NAME: OUTNUM

FUNCTION: Output Number

STATUS: User

CALLING SEQUENCE; LOX
LOA
LOB
BRS

F File number
N Number to be output
R Radix

F
N
R
36

DESCRIPTION: Outputs a number in the radix R. The number will be output as an unsigned
24-bit integer. If the radix is less than 2, an instruction trap will be given.

REGISTERS AFFECTED: None

NUMBER: 38

NAME: GETNUM

FUNCTION: Read Number

STATUS: User

CALLING SEQUENCE: LOX F

F File number
R Radix

LOB R
BRS 38

DESCRIPTION: Inputs an integer to any radix. The number may be preceded by a plus or
minus sign. On exit the number will be in the A register. The conversion is terminated by
any non-numeric character which will be in the B register on exit. The number is computed
by multiplying the number obtained at each stage by the radix and adding the new digit.

REGISTERS AFFECTED: A, B

136

NUMBER: 52

NAME: FFI

FUNCTION: Formatted Input

STATUS: User

CALLING SEQUENCE: LOX
BRS
BRU

FORMAT
52
X

DESCRIPTION: This routine reads characters from a file specified in the format word,
FORMAT. FORMAT also specifies the format of the input. Free form input from the
teletype results when FORMAT = O. A skip return is generated if and only if (1) the
input is free form, and (2) the input is floating point. The internal translation of the
input file is stored in A, B. See Chopter 19 (Figure 33) for FORMAT description.

REGISTERS AFFECTED: A, B, X

NUMBER: 53

NAME: FFO

FUNCTION: Formatted Output

STATUS: User

CALLING SEQUENCE: LDX
BRS

FORMAT
53

DESCRIPTION: The integer in A or the double word floating point value in A, B is output
to the file according to the file number and format specified in FORMAT. See Chapter 19
(Figure 33) for FORMAT description.

REGISTERS AFFECTED: None

137

NAME: SIC

FUNCTIO N: String to Internal Conversion

STATUS: User

CALLING SEQUENCE: LDX
SIC
BRU
BRU

FORMAT
POINTER
INTEGER
FLOATING

DESCRIPTION: The character string designated by the beginning string pointer (POINTER)
is converted according to the fORMAT statement supplied in X. (See figure 33 in Chapter
19 for discussion of fORMAn. If the number is integer, the normal return is taken, the
value is returned in A, and B is zero. If the number is floating point, the skipping exit is
taken, and the value is returned in the A and B registers. If an error occurs, an error code
(described in Table 7 of chapter 19) is returned in X.

REGISTERS AfFECTED: A, B, X

NAME: ISC

fUNCTION: Converts Internal Numbers to Formatted Strings

STATUS: User

CALLING SEQUENCE: LDX
LDP
ISC

fORMAT
VALUE
POINTER

DESCRIPTION: The value supplied in the A (integer) register or the A and B (floating point)
registers is converted according to the format supplied in X (See figure 33 in Chapter 19
for discussion of fORMAT). Location POINTER should contain the beginning string pointer.
On exit, location POINTER+ 1 will contain the ending string pointer. (See Chopter 12 for
discussion of STRING POINTERS). If an error occurs during conversion, the X register con
tains an error code (see Table 7 in Chapter 19).

REGISTERS AffECTED: A, B, X

138

NUMBER: 50

NAME: FFIX

FUNCTION: Conversion from floating Point to fixed Point

STATUS: User

CALLING SEQUENCE: BRS 50

DESCRIPTION: Fixes the double word floating point value in (A, B). The integer part is
left in A. The fractional part is left adjusted in B.

REGISTERS AFFECTED: A, B

NUMBER: 51

NAME: ffLT

FUNCTION: Conversion from fixed Point to Floating Point

STATUS: User

CALLING SEQUENCE: BRS 51

DESCRIPTION: The integer in A is converted to a normalized floating point value in A, B.

REGISTERS AFFECTED: A, B

139

NUMBER: 21

NAME: FNA

FUNCTIO N: Floating Negate

STATUS: User

CALLING SEQUENCE: BRS 21

DESCRIPTION: The contents of the A and B registers are output to the Floating Point
Arithmetic Unit (FPAU). The FPAU is then negated. The result is copied from the FPAU
to the A and B registers. If exponent overflow occurs, the overflow indication is set.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardware is not implemented, the current contents of the A and B regis
ters are negated. If overflow occurs, the CPU overflow indicator will be set.

NAME: FAD

FUNCTION: Floating Point Addition

STATUS: User

CALLING SEQUENCE: FAD M

M most significant fractional part of mantissa
M+ 1 I east signifi cant fractional part of mantissa and the exponent

DESCRIPTION: The contents of the A and B registers are output to the Floating Point Arith
metic Unit (FPAU). A floating addition is performed between the contents of memory loca
tions M and M+I and the FPAU. The result is copied from the FPAU and placed into the
A and B registers. If exponent overflow occurs the overflow indicator is set.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hordware is not implemented, the following occurs:
(A, B) + (M, M+\) -(A, B)

The result is left in the A and B registers. Exponent overflow will cause the CPU over
flow indicator to be set.

140

NAME: FSB

FUNCTION: Floating Point Subtraction

STATUS: User

CALLING SEQUENCE: FSB M

M most significant fractional part of mantissa
M+l least significant fractional part of mantissa and the exponent

DESCRIPTION: The contents of the A and B registers are output to the Floating Point Arith
metic Unit (FPAU). The contents of memory locations M and M+I are subtracted form the
FPAU. The result is copied from the FPAU to the A and B registers. If exponent overflow
occurs, the overflow indicator is set.

REGISTERS AFFECTED: A, B, FPAU *

.. If floating point hardware is not implemented, the following occurs:
(A, B) - (M, M+l -(A, B)

The result is left in the A and B registers. Exponent overflow causes the CPU overflow
indicator to be set.

NAME: FMP

FUNCTION: Floating Point Multiplication

STATUS: User

CALLING SEQUENCE: FMP M

M most significant fractional part of mantissa
M+l least significant fractional part of mantissa and the exponent

DESCRIPTION: The contents of the A and B registers are output to the Floating Point Arith
metic Unit (FPAUL The FPAU is multiplied by the contents of memory locations M and M+l.
The result is copied f rom the FPAU to the A and B registers. If exponent overflow occurs,
the overflow indicator will be set.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardware is not implemented, the following occurs:
(A, B) x (M, M+ 1)- (A, B)

The result is left in the A and B registers. Exponent overflow will cause the CPU over
flow indicator to be set.

141

NAME: FDV

FUNCTIO N: Floating Point Divide

STATUS: User

CALLING SEQUENCE: FDV M

M most significant fractional part of mantissa
M+ 1 least significant fractional port of mantissa and the exponent

DESCRIPTION: The contents of the A and B registers are output to the FPAU. The FPAU
is divided by the contents of memory locations M and M+1. The result is copied from the
FPAU to the A and B registers. Exponent overflow will cause the overflow indicator to be
set. An attempt to divide by zero will always cause the overflow indicator to be set.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardware is not implemented, the following occurs:
(A, B) / (M, M+ 1-(A, B)

The result is left in the A and B registers. Exponent overflow (or on attempt to divide by
zero) will cause the CPU overflow indicator to be set.

NAME: SKNF

FUNCTION: Test Sign of Floating Accumulator

STATUS; User

CALLING SEQUENCE; SKNF
Accumulator Positive Return
Accumulator Negative Return

DESCRIPTION: If the Floating Point Arithmetic Unit (FPAU) is negative, the skipping
return is taken. If the FPAU is positive, the next instruction in sequence is executed.

REGISTERS AFFECTED: None *

* If floating point hardware is not implemented, the SYSPOP executes as described above,
except that the sign of the A register is tested.

142

NAME: QLDF

FUNCTION: Quick Load Floating

STATUS; User

CALLING SEQUENCE: QLDF M

M most significant fractional part of mantissa
M+ 1 least significant fractional part of mantissa and the exponent

DESCRIPTION: The contents of memory locations M and M+l are loaded into the Floating
Point Arithmetic Unit (FPAU) and into the A and B registers.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardware is not implemented, this SYSPOP is identical to the LDP SYSPOP.

NAME: Q STF

FUNCTION: Quick Store Floating

STATUS: User

CALLING SEQUENCE: QSTF M

M most significant fractional part of mantissa
M+ 1 I east significant fractional port of mantissa and the exponent

DESCRIPTION: The contents of the Floating Point Arithmetic Unit (FPAU) are copied into
the A and B register and memory locations M and M+ 1. The A register wi II contain the most
significant fractional part.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardware is not implemented, this SYSPOP is identical to the STP SYSPOP.

143

NAME: QFNA

FUNCTION: Quick Floating Negate

ST A TUS: User

CALLING SEQUENCE: QFNA

DESCRIPTION: The current contents of the floating point arithmetic unit (FPAU) are
negated. The result is left in the FPAU. Overflow will cause the overflow indicator
to be set.

REGISTERS AFFECTED: FPAU *

* If floating point hardware is not implemented, this SYSPOP is identical to the BRS 21.
The current contents of the A and B registers are negated. Overflow will cause the CPU
overflow indicator to be set.

NAME: QFAD

FUNCTION: Quick Floating Point Addition

STATUS: User

CALLING SEQUENCE: QFAD M

M most significant fractional port
M+ 1 least significant fractional part and exponent

DESCRIPTION: A floating addition is performed between memory location M and M+l, and
the current contents of the floating point arithmetic unit (FPAU). The answer is left in the
FPAU. Exponent overflow causes the overflow indicator to be set.

REGISTERS AFFECTED: A, FPAU *

* If floating point hardware is not implemented, this SYSPOP is identical to the FAD SYSPOP.
The result is left in the A and B registers. Exponent overflow causes the CPU overflow in
dicator to be set.

144

NAME: QFSB

FUNCTION: QuickFloating Point Subtract

STATUS: User

CALLING SEQUENCE: QFSB M

M most significant fractional part
M+ 1 least significant fractional port and exponent

DESCRIPTION: The contents of memory locations M and M+l are subtracted (floating
subtraction) from the current contents of the floating point arithmetic unit (FPAU). The
answer is left in the FPAU. Exponent overflow causes the overflow indicator to be set.

REGISTERS AFFECTED: A, FPAU *

* If floating point hardware is not implemented, this SYSPOP is identical to the FSB SYSPOP.
The result is left in the A and B registers. Exponent overflow causes the CPU overflow in
dicator to be set.

NAME: QFSI

FUNCTION: Quick Floating Point Subtract Inverse

STATUS: User

CALLING SEQUENCE: QFSI M

M most significant fractional part
M+ 1 least significant fractional port and exponent

DESCRIPTION: The current contents of the floating point arithmetic unit are subtracted
from M and M+1. The result is left in the FPAU. Memory locations M and M+l are not
affected. Exponent overflow causes the overflow indicator to be Set.

REGISTERS AFFECTED: A, FPAU *

* If floating point hardware is not implemented, the current contents of the A and B register
are subtracted from the operand. The result is left in the A and B registers. Exponent over
flow causes the CPU overflow indicator to be set.

145

NAME: QFMP

FUNCTION: Quick Floating Point Multiply

ST A TUS: User

CALLING SEQUENCE: QFMP M

M most significant fractional part
M+ 1 least significant fractional part and exponent

DESCRIPTION: The current contents of the floating point arithmetic unit (FPAU) is multi
plied by the contents of memory locations M and M+ 1. The result is left in the FPAU.
Exponent overflow causes the overflow indicator to be set.

REGISTERS AFFECTED: A, FPAU *

* If floating point hardware is not implemented, this SYSPOP is identical to the FMP SYSPOP.
The result is left in the A and B registers. Exponent overflow causes the CPU overflow in
dicator to be set.

NAME: QFDV

FUNCTION: Quick Floating Point Divide

STATUS: User

CALLING SEQUENCE: QFDV M

M most significant fractional part
M+ 1 least significant fractional part and exponent

DESCRIPTION: The contents of the floating point arithmetic unit (FPAU) are divided by
the operand (contents of memory locations M and M+l). The result is left in the FPAU. If
exponent overflow occurs, the overflow indicator is set. An attempt to divide by zero
always causes exponent overflow. If exponent overflow does not occur, the overflow in
dicator is reset.

REGISTERS AFFECTED: A, FPAU *

* If floating point hardware is not implemented, this SYSPOP is identical to the FDV SYSPOP.
The result is left in the A and B registers. Overflow will cause the CPU overflow indicator
to be set.

146

NAME: QFDI

FUNCTION: Quick Floating Divide Inverse

STATUS: User

CALLING SEQUENCE: QFDI M

M most significant fractional part
M+l least significant fractional part and exponent

DESCRIPTION: This SYSPOP is identical ta QFDV except that the operand (contents of
memory locations M and M+ 1) is divided by the current contents of the Floating Point Arith
metic Unit. The result is left in the FPAU. Memory locations M and M+l are not affected.
Exponent overflow wi II cause the overflow indicator to be set.

REGISTERS AFFECTED: A, FPAU *

* If floating point hardware is not implemented, the operand is divided by the current con
tents of the A and B registers. The result is left in the A and B registers. If exponent over
flow occurs the CPU overflow indicator will be set.

NAME: CFA

FUNCTION: Copy FPAU into A and B

STATUS: User

CALLING SEQUENCE: CFA

DESCRIPTION: The contents of the Floating Point Arithmetic Unit (FPAU) are copied into
the A and B registers.

REGISTERS AFFECTED: A, B

* If floating point hardware is not implemented, the execution of this SYSPOP results in
a NOP.

147

NAME: CAF

FUNCTION: Copy A ond B to FPAU

STATUS: User

CALLING SEQUENCE: CAF

DESCRIPTION: The contents of the A and B registers are copied into the Floating Point
Arithmetic Unit.

REGISTERS AFFECTED: FPAU*

* If floating point hardware is not implemented, the execution of this SYSPOP results in
a NOP.

NAME: FFAD

FUNCTION: FORTRAN Floating Add

STA TUS: User

CALLING SEQUENCE: FFAD N

N least significant fractional part of number and exponent
N+1 most significant fractional part of number

DESCRIPTIO N: The contents of the effective address represented by Nand N+ 1 are added
to the current contents of the Floating Point Arithmetic Unit. The result is left in the FPAU •.
For ease in addressing array variables, this SYSPOP doubles the contents of the X register
before calcu lating the effective address. The X register is then restored. The A and B
registers' contents are destroyed. Exponent overflow will cause the overflow indicator to
be set.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardware is not implemented, FFAD executes as described above, except
that the result is left in the A and B registers. Exponent overflow will couse the CPU over
flow indicator to be set.

148

NAME: FFSB

FUNCTION: FORTRAN Floating Subtract

STATUS: User

CALLING SEQUENCE: FFSB N

N least significant fractional part of number and exponent
N+ 1 most significant fractional part of number

DESCRIPTION: The contents of the effective address, represented by Nand N+ 1, are sub
tracted from the current contents of the Floating Point Arithmetic Unit. The result is left in
the FPAU. For ease in addressing array variables, this SYSPOP doubles the contents of the
X register before calculating the effective address. The X register is then restored. The A
and B registers' contents are destrayed. Exponent overflow will cause the overflow indicator
to be set.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardware is not implemented, FFSB executes as described above, except
that the result is left in the A and B registers. Exponent overflow will cause the CPU over
flow indicator to be set.

NAME: FFMP

FUNCTION: FORTRAN Floating Multiply

STATUS: User

CALLING SEQUENCE: FFMP N

N least significant fractional part of number and exponent
N+ 1 most significant fractional part of number

DESCRIPTIO N: The contents of the effective address, represented by Nand N+ 1, are
multiplied by the current contents of the Floating Point Arithmetic Unit. The result is left in
the FPAU. For ease in addressing array variables, this SYSPOP doubles the contents of the
X register before calculating the effective address. The X register is then restored. The
A and B registers' contents are destroyed. Exponent overflow will cause the overflow in
dicator to be set.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardwore is not implemented, FFMP executes as described above, except
that the result is left in the A and B-registers. Exponent overflow will cause the CPU over
flow indicator to be set.

149

NAME: FFDV

FUNCTION: FORTRAN Floating Divide

STATUS: User

CALLING SEQUENCE: FFDV N

N least significant fractional part of number and exponent
N+ 1 most significant fractional part of number

DESCRIPTION: The current contents of the Floating Point Arithmetic Unit (FPAU) are
divided by the contents of the effective address. The result is left in the FPAU. For ease
in addressing array variables, this SYSPOP doubles the contents of the X register before
calculating the effective address. The X register is then restored. The A and B registers'
contents are destroyed. Exponent overflow will cause the overflow indicator to be set.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardware is not implemented, FFDV executes as described above except
that the A and B registers are divided by the contents of the effective address. The result
is left in the A and B registers. Exponent overflow, or an attempt to divide by zero, will
cause the CPU overflow indicator to be set.

NAME: FSTF

FUNCTION: FO RTRAN Store Floating

STATUS: User

CALLING SEQUENCE: FSTF N

N
N+1

least significant fractional part of number and exponent
most significant fractional part of number

DESCRIPTION: The contents of the Floating Point Arithmetic Unit are stored into the
effective address represented by Nand N+1, and also copied into the A and B registers.
For ease in addressing array variables, this SYSPOP doubles the contents of the X register
before calculating the effective address. The X register is then restored. The A and B
registers' contents are destroyed. Exponent overflow will cause the overflow indicator
to be set.

REGISTERS AFFECTED: N, B*, N, N+ 1

* If floating point hardware is not implemented, FSTF executes as described above, except
that the contents of the A and B register are stored into the effective memory locations.

150

NAME: FLDF

FUNCTION: FORTRAN Load Floating

STATUS: User

CALLING SEQUENCE: FLDF N

N least significant fractional part of number and exponent
N+1 most significant fractional part of number

DESCRIPTION: The contents of the effective address are normalized and loaded into the
Floating Point Arithmetic Unit and also into the A and B registers. For ease in addressing
array variables, this SYSPOP doubles the contents of the X register before calculating the
effective address. The X register is then restored.

REGISTERS AFFECTED: A, B, FPAU *

* If floating point hardware is not implemented, FLDF executes as described above except
that only the A and B registers are loaded.

151

26. EXECUTIVE COMMAND OPERATIONS

NUMBER: 95

NAME: ECDUMP

FUNCTION: Dump

STATUS: User

CALLING SEQUENCE: LDA N
BRS 95

N File number

DESCRIPTION: This BRS writes the entire current state af the machine (user's program only)
on the specified file, which is made type 4. The status of the p~eudo-relabeling registers
and all information necessary to restart the user from his current situation are written on the
dump file so it can be restored by a recovery procedure. The only information not preserved
are any shared memory entries which may be in the pseudo-relabeling.

Note: Dumps created by one system cannot be recovered by another.

REGISTERS AFFECTED: All

NUMBER: 96

NAME: EC RECV

FUNCTION: Recover

STATUS: User

CALLING SEQUENCE: LDA
BRS

N File number

N
96

DESCRIPTION: This BRS reads the dump file written by a BRS 95 and recovers the machine
status as it appeared at the time the dump was taken.

REGISTERS AFFECTED: All

152

27. MISCELLANEOUS OPERATIONS

NUMBER: 42

NAME: RREAL

FUNCTION: Read Real-Time Clock

STATUS: User

CALLING SEQUENCE: BRS 42

DESCRIPTION: Read the real-time clock in the A register. Time is given as a 24-bit
binary number representing 60ths of a second. The clock is set to zero when the system is
started and it is incremented by one at every 1/60th second. A binary form of the month,
date and start-up time is put in B. From A and B the user can calculate the month, date
and time.

REGISTERS AFFECTED: A, B

NUMBER: 91

NAME: EXRTIM

FUNCTION: Read Data and Time into a String

STATUS: User

CALLING SEQUENCE: LDA
LDB
BRS

S+1
91

Beginning string pointer
S+ 1 Ending string pointer

DESCRIPTION: The current date and time are appended to the string provided in A and ~
registers and the resul ting string pointers are returned in the A and B registers. The char
acters appended to the string have the form:

MM/dd hh:mm

MM=Month
dd =Day
hh =Hours counted from 0 to 24
mm =Minutes

REGISTERS AFFECTED: None

153

NUMBER: 88

NAME: RTEX

FUNCTION: Read Execution Time

STATUS: System

CALLING SEQUENCE: 8RS 88

DESCRIPTION: Returns the execution time in A in 60 cycle clock ticks accumulated
since log in.

REGISTER AFFECTED: A

NUMBER: 41

NAME: 10RET

FUNCTION: Return from I/O Subroutine

STATUS: User

CALLING SEQUENCE: BRS 41

DESCRIPTION: This is used by the author of an I/O subroutine to return to the calling
program.

REGISTER AFFECTED: A

154

NUMBER: III

NAME: BRSRET

FUNCTION: Return from Class 3 BRS

STATUS; System

CALLING SEQUENCE: BRS III

DESCRIPTION: This BRS is used only by the author of class 3 BRS's. It is the only normal
termination of a class 3 BRS. If corresponds to a BRS 10 for other forks.

Instruction Trap:

BRS issued by a fork which was not a class 3 BRS.

REGISTERS AFFECTED: None

NUMBER: 112

NAME: TSOFF

FUNCTION: Turn Off Teletype Station

STATUS: System

CALLING SEQUENCE: LDX
BRS

Jab Number
112

DESCRIPTION: This BRS is known as suicide. The job disappears completely from the
system.

The teletype line associated with the job will be set ready for another job if he merely
logged out.

REGISTERS AFFECTED: All

155

NUMBER: 71

NAME: SKXEC

FUNCTION: Skip if System

ST A TUS: User

CALLING SEQUENCE: BRS 71

DESCRIPTION: The B register is set to the value of the use code which the user has set for
the iob. These val ues are:

Value of B

1
o

-1
-2

Use Code

Subsystem User
User
Both
System

The BRS skips if the B register is negative.

REGISTER AFFECTED: B

NUMBER: BE+5

NAME: SDBM

FUNCTION: Set Disc Bit Map

STATUS: System

CALLING SEQUENCE: LDA Address of X block Mod 4
BRS BE+5
EXCEPTION RETURN
NORMAL RETURN

Exception Return - A contains address that was in canflict.

DESCRIPTION: Turns off bits in the disc bit map for the X block and each data block refer
enced by the index block. If any conflicts occur (the bit is already off), the address is left
in the A register and the exception return is taken. A conflict also increments one of two
counters, XBERR or FDERR, for errors in the X block or the file directory respectively.

When the bit map has been set, one more call is made to this BRS with A negative. At that
time a switch is set allowing output files to be opened; the new overflow pointer is set from
B and the accounting area pointer is set from X.

REGISTER AFFECTED: A

156

NUMBER: BE+8

NAME: CRASH

FUNCTION: To Crash the System

STATUS: System

CALLING SEQUENCE: BRS BE+8
NO RETURN

DESCRIPTION: Saves the registers in 5501, SS02, SS03. Saves 0 in MCRO. Turns off the
clock and disables the interrupts. Moves the TS block into real page 7 and the current
relabeled page into real page 6.

REGISTER AFFECTED: None

NUMBER: BE+13

NAME: SETSW

FUNCTION: Sets System Exec Switches in COMPG file.

STATUS: System

CALLING SEQUENCE: LDA V
LDX N
BRS BE+13
NORMAL RETURN

V New switch value
N Switch number

DESCRIPTION: The switch is set to the new value and the old value is returned in A.

REGISTER AFFECTED: A

157

NUMBER: BE+16

NAME: MFSYS

FUNCTION: Set Executive -1

STATUS: SYSTEM

CALLING SEQUENCE: LDA
BRS

=76543210B
BE+16

DESCRIPTION: Simulates execution of the Executive command -SET EXEC -1. Executive
status (indicated by PAC table word PQU bit 0) is given to the fork that executes this BRS.
The user must have either operator or subsystem status assigned to him in order to execute
this BRS.

REGISTERS AFFECTED: NONE

NAME: EXS

FUNCTION: Execute Instruction in System Mode

STATUS: System

CALLING SEQUENCE: EXS

Address of the instruction to be executed

DESCRIPTION: This SYSPOP will cause the instruction pointed to by I to be executed in
the system mode.

REGISTERS AFFECTED: Depends on instruction.

158

NAME: SBRM

FUNCTIO N: Reentrant Subroutine Branch

STATUS: User

CALLING SEQUENCE: SBRM SUB

DESCRIPTIO N: The SBRM is used to allow reentrant coding to branch to a subroutine and
store the mark word into a temporary storage area. The subroutine returns to the main pro
gram by executing an SBRR SYSPOP, or a BRR to the mark word location.

Example: TEMP BSS Location in temporary storage

MAIN SBRM SUB

SUB ZRO TEMP

SBRR SUB or BRR TEMP

Note that a branch occurs to the effective address of the SBRM plus one and the mark word
is stored into the effective address indicated by the first location of the subroutine.

REGISTERS AFFECTED: P

NAME: SBRR

FUNCTION: Reentrant Subroutine Return Branch

STATUS: User

CALLING SEQUENCE: SBRR SUB

DESCRIPTION: The SBRR is used by a subroutine that was entered by execution of an SBRM.
The SBRR functions similarly to a BRR*. See SBRM description.

REGISTERS AFFECTED: None

159

APPENDIX A. GLOSSARY OF TERMS

A
ACTPU: Phantom User Activation Counter. If positive

when schedu ler is entered, causes phantom user to be
moved from QQE to QT!.

ACTR: I/O Activation Counter. ACTR is incremented each
time a fork that is on OTI or 010 is ready. Set to -1
when the scheduler begins searching QSQ.

AUNN: Account And User Number. Indexed by job.
Inactive contains O.

B
BlK31: Flag used in W buffer interrupt routine.

=0 When W channel is not in use

=1 When disc is active

Address of the interrupt routine for the appro
priate driver when any W buffer device
(except disc) is active

breakpoint switch: Refers to the four toggle swi tches phys
ically located on the computer console.

c
command file: The particular file from which the commands

to the system Executive and subsystems are input. For
teletype input the command file number is zero.

corresponding table: Contains file directory information.
Each entry is 3 words. The relative posi tion of the
entry corresponds to the position found in the file
directory hash table by the execution of a BRS 5. The
corresponding table contains data about the fi Ie, e. g.,
file size, type, creation date, etc.

customer file directory: The names of all files for a partic
ular user name are recorded in this directory.

o
DSU block: Four consecutive sectors on the disc whose

beginn ing addresses are MOD 4. A block consists of
256 words.

DSU file: A file stored on the disc storage unit. Each file
consists of an index block, and if the file contains
data, then a sufficient number of OSU blocks to record
the data.

ORO: The disc queue. Each entry requi res 3 locations.

DSWAP: Paper tape routine used at system initial ization
to fi II the first 14K from disc to core.

160 Appendix A

DTXS 1: Contains the count (minus 1) of the number of
commands the disc driver wishes to add to disc queue.

DTXS2: Temporary location used by the disc software.

E

Points to the location in DRO where a command was
just added, i. e., the value of EDCl before it was
incremented by three.

EOCl: Points to the location in DRO where the disc driver
shou Id add the next disc command. After a command
is added, EDCl is incremented by three and wrapped
around if necessary.

ETTB: Elapsed time table. One entry per job. TJOB
points to the ETTB for the running job. One of the
ETTB entries is incremented with each clock tick for
the purpose of charging compute time.

F
file number: A file number is assigned by the system to files

as they are opened. Also, there are fixed file numbers
for certain devices. These are as follows:

o Teletype Input

Teletype output

2 Nothing

file type: There are four standard file types. They are as
follows:

1. File written by the system Executive as commanded
by the "SAVEII command.

2. General binary fi I e created by a subsystem .. i. e.,
a FORTRAN object program.

3. Symbol ic file.

4. Dump file.

FPlST: One word pointer to next free PAC table. 0 indi
cat·es all PAC tables in use.

FFlST: One word pointer to next available file number.

FUlST: One word pointer to next free job number.

IDCl: Points to the command in DRQ that the interrupt
routine will initiate when the interrupt for the IOCll
command is received.

IDCl1: Pointer to the entry in DRO for which I/O trans
mission is currently in progress.

I DMRET: F lag that =0 when the interrupt routine (I DM) is
entered as a result of a subroutine call. =-1 when
entered as a response to an interrupt.

index block: A DSU block (256 words) which contains the
DSU addresses for all data blocks of a file.

INT31: Address of W buffer general interrupt routine. This
routine handles all W buffer I/O except disc. This
routine branches indirectly to address specified in BlK31 .

J
JOB: Contains the JOB number of the running fork.

M
MAC: Number of unlocked pages minus 1. Used by swapper.

N
NCMEM: Number of entries in SMT table. (60B.)

NDCl: Contains the count (minus 1) of the number of com
mands that are on the disc queue and are ready for the
disc interrupt routine to process. The interrupt routine
wi II sequentia Ily pull commands off DRQ and execute
them until NDCl has the value -1. At this point there
are no more commands on DRQ that are ready to be
executed.

NPPAR: Number of entries in a PAC table.

N PUQ: Number of tasks that can be put on the Phantom
User.

NTTY: Number of teletypes.

NUMEM: Number of entries in each PM T table. (20B.)

o
OVFP: Overflow file directory flag. -1 means that th is

user has not been assigned an overflow file directory.
When an overflow file directory has been assigned,
OVFP containsa pointer to a disc overflow fi Ie directory.

p
PAC table: Each fork is defined by a program active table.

This table contains most of the information required to
control selection, execution and interruption of the fork
(additiona I information is stored in the user1s TS page).

PACPTR: One word in Monitor that contains the PACT
pointer of the currently active fork.

page: A page can exist on RAD, DSU or in-core memory
but in a II cases refers to 2048 words.

panic: A panic is a signal to the system to terminate execu
tion of a fork.

panic, instruction: A panic caused by attempting to execute
an instruction wh ich cannot be executed in the user
mode, such as a halt or device I/O instruction or a
BRS which is not available to the user.

panic, memory: A pani c caused by a fork attempting to
address memory outside its range or write on memory
wh i ch is set to read on Iy.

panic table:

PB:

Word

o

2

Program Counter

A Register

B Register

3 X Register

4

5

6

First Relabel ing Register

Second Relabeling Register

Status

The status word may be:

-2 Dismissed for Input/Output

-1 Running

o Dismissed on Escape or BRS 10

Dismissed on Illegal Instruction Panic

2 Dismissed on Memory Panic

A pani c table must not overlap a page boundary.

Table in TS page. 8 words long. Used for saving B
register for corresponding fork. Indexed by fork num
ber (XPB).

PIM: Word in PAC table. Contains interrupt mask, fork
number, etc.

Pl: Word in PACT where location counter is saved (P
register) .

PMT: Pseudo Memory Table. One PMT table per job.
Pointed to by PMTP (which is indexed by job number).
Each PMT table is 16 words long. The 16 words cor-
respond to the users vi rtua I 32K of memory. The
pseudo-relabeling bytes have values 60B-77B.

PMT JOB: A location which contains the starting address of
the current users PM T table using SM T as a reference.
PMTJOB is used by the swapper (in conjunction with the
pseudo-relabeling byte) to retrieve entries from PMT.

PMTP: One entry per job. Indexed by job number. Points
to users PMT table.

PN EXT: Word in PACT that is used to chain the PAC tables
when they are on the queues. If PN EXT is negative it
contains a PACT pointer to the next PAC table on the
queues. If PNEXT is positive it points to the next queue.

PPTR: Word in PAC table. Contains the uppointer(PFORK)
and down pointer (PDOWN) to other PAC tables in its
forking structure. If on free PACT list (PAC table not
in use) has the absolute address of the next free PAC
table.

Appendix A 161

PQU: Word in PAC table. Contains long quantum, Execu
tive bits, etc.

PTAB: Word in PAC table. Contains job number, panic
table, address, etc.

PTEST: Word in PAC table. Contains activation condition.

PUBPTR: Pointer to first task on phantom user queue.

PUCLST: Phantom user task activation test list. Indexed
by test number. Dispatches to where the decision is
made as to whether the phantom user is ready to per
form th i s task.

PUCSET: Phantom user task activation I ist. Indexed by
test number. Represents a dispatch I ist for the various
tasks that the phantom user performs.

PUCT: The phantom user task queue. Each task queue
entry consists of four words.

PUCTR: Shows count of the number of tasks put on the
phantom user queue. When PUCTR=O there are no
tasks on the phantom user queue and he is dismissed
to either QTI or QQE.

PUCTR 1: When the system begins to search the PU task
queue, PUCTR 1 is set to PUCTR. If after the entire
PUCT table is scanned, PUCTR 1 is sti II equal to
PUCTR, it indicates that the PU was not able to pro
cess any of his tasks and no interrupts occurred that
placed a new task on PUCT. If this is the case, the
PU is placed on QQE.

PUEPTR: Pointer to the last task on the phantom user queue.

PULlM: Phantom user limit. Limits the number of tasks
that can be put on the PU queue. This parameter is
established when the Monitor is assembled. Causes
a crash if limit exceeded.

PX: Table in TS page. 8 words long. Used for saving X
register for corresponding fork. Indexed by fork
number (XPB).

Q
QIO: Queue of programs dismissed for I/O other than TTY

I/O. Forks that are activated by an escape, software
interrupt, or panic are also on QIO.

QQE: Queue of programs dismissed for exceeding their long
quantum.

Q SQ: Queue of programs dismissed when short quantum
has expired and other programs on QTI or QTO are
ready to run.

QTI: Queue of programs dismissed for TTY input/output.

quantul1J, long time: The maximum length of time a fork can
run before the schedu I er checks for other forks to be run.

162 Appendix A

quantum, short time: The minimum length of time a fork
wi II run before the schedu ler checks for other forks to
be run which were dismissed for I/O.

R
Rea I: Rea I-time counter. Incremented by clock interrupt

routine. Initialized when system is brought up.

Relabeling, pseudo: See format of relabeling registers. Each
byte points to an SM T or PM T entry.

relabeling registers: The relabeling registers are used to
indicate a page number which has been assigned to a
use fora particular logica I page. They are of the form:

First word

Second word

Page 0 Page 1 Page 2 Page 3

Page 4 Page 5 Page 6 Page 7

RLTS: Contains real page number of running forks temporary
storage (TS) page.

RLl: Word in PAC table. Contains the first pseudo relabel
ing word for the fork.

RL2: Word in PAC table. Contains the second pseudo re
la be ling word for the fork.

RL3: Pseudo relabeling table for TS page. Indexed by job
number.

RMC: Real memory count table. Indexed by real page num
ber. Contains a -1 if page is unlocked. Contains a
value greater then -1 if page is locked.

RMT: Real Memory Table. One entry for each page of
memory. Points to the PMT or SMT entry responsible
for having this page in core.

RRL 1: Contains the rea I relabeling for register 1. This word
is potted out to the hardware register.

RRL2: Applies to relabeling register 2. See RRL 1.

RRL3: Applies to Monitor relabeling register. See RRL 1.

s
SMT: Shared Memory Table. Only one SMT in the system.

60B words long. Indexed by pseudo-relabeling va lues
0-57B. The reentrant programs have entries in SM T.

SSRL 1: Two words in TS page that indicate the subsystem
used. The pseudo-relabeling for the system is fetched
from the subsystem corresponding table and loaded into
th ese two words.

string pointers: A pair of pointers which contain a character
address of the character before the first character of a
string and a character address of the last character
of the stri ng.

SWOFF: Word in TS used by Executive. -1 means user
has logged on or is in the process of logging on. Used
by Executive to determine whether $ dump shou Id be
effected.

SWTM: Word in TS used by Executive to determine log on
status of user.

=0 means time ran out whi Ie user is logging on
(1.5 mins)

= - 1 user is in the process of logging on or has
logged on

SYSTL: Word in TS block which contains thehashtablead
dress of the subsystem in use.

T
TIIS5: Indexed by channel number. Used when software

is processing carriage returns and I ine feeds.

=0 if last character output was not a CR or LF

Bit 23=1 when software has sent a CR

Bit 23=0 when software has sent a LF

TIME: Contains the short quantum for the running fork.

T JOB: Word which points to job time counter table (ETTB).
Used to increment compute time for a job. When the
clock interrupt occurs. A MIN *T JOB is performed
and the runn ing job is charged. See ETTB.

TTIME: Word where the total time (long time quantum) is
maintained for the running fork.

TTNO: Contains TTY channel number. Indexed it by job
number. If active, TTNO contains channel number.
If inactive, contains the chain for the free job numbers.

TTYASG: TTY assigne.d table. Indexed it by channel num
ber. If active, it contains the PACTPTR of the fork to
terminate in case of rubout. If inactive, contains
37777B.

u
UNO: Set to user number when a user has logged on the

system.

User Name: The a Iphanumeric characters the user inputs
after typing in the password and semicolon or CR. The
name can be a maximum of 12 characters and may con
tain any character except semicolon, right parent or
CR. A un ique user number is associated with each user
name. A user name must only be unique within an
account.

User Number: A 4-digit octal number which is unique to
each user name. The user number is assigned by the
operator. The user number is a pointer to the fi Ie
directory associated with a particular user name.

UTTY: One word in the system which contains the channel
number of the runn ing fork.

w
WERIS: State of the teletype I ine. I ndexed by channel

number.

-1 Line free
o User is in the process of logging on
>0 User number for the user on this teletype

Append ix A 163

APPENDIX B. BRS AND SYSPOP INDEXES

INDEX OF BRS'S AND SYSPOP'S BY NUMBER

BRSs Function Page

1 Open a fi Ie of a specific device 89
2 Close a file 91
4 Release a page of memory 119
5 Look up string in hash table 129
6 Insert string in hash table 132
8 Close a II fi les 92
9 Open fork 81
10 Terminates the calling fork 86
11 Clear the teletype input buffer 112
12 Dec lare echo table 113
13 T est input buffer for empty 115
14 De lay unti I the TTY output buffer is empty 116
15t Read input file name 101
16t Open input fi Ie in fi Ie directory 102
17t Close all files 102
18t Read a file name and look it up in the file directory 103
19t Open output file located in file directory 104
20t Close a tape fi Ie 92
21 Floating point negate 140
23 Link/un I ink specified TTY 109
24 Unlink all TTYs 109
25 Set te letype to accept/refuse I inks 110
26 Skip if escape waiting 80
29 Clear the output buffer 114
30 Read status of a lower fork 82
31 Wa it for specifi c fork to cause a panic 85
32 Terminates a specified lower fork 87
33tt Read string 126
34tt Output message 126
35tt Output string 127
36tt Output number to specified radix 136
37tt General string look up 130
38tt Input number to specified radix 136
40 Read echo table 115
41 Return from I/O subroutine 154
42 Read real-time clock 153
43 Read pseudo-relabel ing 120
44 Set pseudo-re labe ling 121
45 Dismiss on quantum overflow 83
46 T urn escape off 79
47 T urn escape on 80
48t Look up input/output fi Ie name 105
49 Read interrupts armed 78
50 Conversion from floating point to fixed point 139
51 Conversion from fixed point to floating point 139
52t Formatted floating point input 137
53t Formatted floating point output 137
56 Make page system 123
57 Guarantee 16 ms computing 82
60t Look up I/O fi Ie name and insert in fi Ie directory if not found 105

tClass 3 (Executive) BRS
ttClass 2 BRS

164 Append ix B

BRSs Function Page

66 Delete DSU fi Ie data 93
67 Delete DSU file index block 93
69 Get SMT block to PM T 125
71 Skip if in system 156
72 System dismissa I 84
73 Terminates a specified number of lower forks 87
78 Arm/disarm software interrupts 76
79 Cause specified software interrupts 77
80 Make page read only]23
81 Dismiss for specified amount of time 84
85 Set specia I TTY output]]6
86 Clear special TTY output] 17
87 Read DSU file index block 94
88 Read execution time 154
90 Declare a fork for escape 79
9It Read date and time into a string 153
95t Dump program and status on file 152
96t Recover program and status from file 152
104 Read a page (2048 words) from RAD 94
105 Write a page (2048 words) to RAD 95
106 Wait for any fork to terminate 85
107 Read status of a II lower forks 83
108 Terminate all lower forks 88
109 Dismiss ca II i ng fork 86
110 Read device and unit 91
111 Return from exec BRS (exec only) 155
112 Turn off teletype station (exec only) 155
113 Compute fi Ie size of a disc fi Ie 95
116 Read user relabeling 121
117 Set user relabeling 122
118 Allocate magnetic tape unit 96
119 De-allocate magnetic tape unit 96
120 Assign PMT entry 120
121 Release specified page from PMT 119
122 Simulate memory panic 122
BE+1 Read DSU 98
BE+2 Write DSU 99
BE+3 Test for carrier present (not implemented)
BE+4 Read/write one word in the Monitor 124
BE+5 Set disc bit map 156
BE+6 Turn a teletype line on or off 112
BE+7 Test a breakpoint switch 98
BE+8 To crash the system for error diagnostic 157
BE+9 Read DSU page 97
BE+10 Write DSU page 97
BE+ll Ignore I ine feed or carriage return (not implemented)
BE+I2 Arm timing interrupt 78
BE+I3 Sets system Executive switches in COMPG 157
BE+15 Read SMT page from RAD 99
BE+16 Set EXEC =-1 158
BE+17 Test if last buffer used 100
BE+19t Get fi Ie creation date and access count 100

tClass 3 (Executive) BRS

Appendix B 165

SYSPOPs Function

BlO Block input/output
CAF Copy A and B into FPAU
CFA Copy FPAU into A and B
CIO Character input/output
CIT Character input and test
CTRL Input/output control
EXS Execute instruction in system mode
FAD Floating point addition
FDV Floating point division
FFAD FORTRAN floating add
FFDV FO RTRAN floating divide
FFMP FORTRAN floating multiply
FFSB FORTRAN floating subtract
FLDF FORTRAN load floating
FMP Floating point multiplication
FSB Floating point subtract
FSTF FORTRA~ store floating
GCD Get character from end of string and decrement end pointer
GCI Get character from beginning of string and increment beginning pointer
ISC Internal to string conversion
LDP Load string pointer
OST Output to specific TTY (not implemented)
QFAD Quick floating add
QFDI Quick floating divide inverse
QFDV Quick floating divide
QFMP Quick floating multiply
QFNA Quick floating negate
QFSB Quick floating subtract
QFSI Quick floating subtract inverse
QLDF Qui ck load floating
QSTF Quick store floating
SBRM Reentrant subroutine branch
SBRR Reentrant subroutine return branch
SKSE Skip if string equal
SKSG Skip if string greater
SIC String to internal conversion
SKNF Skip on negative floating accumulator
STP Store string pointer
TCI Teletype character input
TCO Teletype character output
WCD Put character on beginning of string and decrement beginning pointer
WCH Write character to memory by tabl e
WCI Put character on end of string and increment end pointer
WIO Word input/output

INDEX OF BRS'S AND SYSPOP'S BY TYPE

SCHEDULING, FORKS AND PROGRAM INTERACTION

PROGRAM INTERRUPTS

BRSs or SYSPOPs Function

49 Determines which software interrupts are armed
78 Arm/disarm software interrupts
79 Cause specified software interrupts
BE+12 Arm timing interrupt

166 Appendix B

Page

107
148
147
106
128
108
158
140
142
148
150
149
149
151
141
141
150
134
133
138
130
118
144
147
146
146
144
145
145
143
143
159
159
128
133
138
142
131
117
118
135
135
134
106

Page

78
76
77
78

CO NTRO L OF THE ESCAPE KEY

BRSs or SYSPOPs Function Page

26 Skip if escape waiting 80
46 T urn escape off 79
47 T urn escape on 80
90 Declare a fork for escape 79

ACTIVATION OF FORKS

BRSs or SYSPOPs Function Page

9 Open fork 81
57 Guarantee 16 ms computing 82

INTERROGATION OF A FORK

BRSs or SYSPOPs Function Page

30 Read status of a lower fork 82
107 Read status of all lower forks 83

TEMPORARY SUSPENSION OF FORKS

BRSs or SYSPOPs Function Page

45 Dismiss on quantum overflow 83
72 Executive dismissal 84
81 Dismiss for specified amount of time 84
31 Wait for specific fork to cause a panic 85
106 Wait for any fork to terminate 85
109 Dismiss calling fork 86

TERMINATION OF A FORK

BRSs or SYSPOPs Function Page

10 Terminates the calling fork 86
32 Terminates a specified lower fork 87
73 Terminates a specified number of lower forks 87
108 Term inate all lower forks 88

INPUT /OUTPUT

DIRECT CONTROL OF PERIPHERALS

BRSs or SYSPO Ps Function Page

1 Open a file of a specific device 89
2 Close a fi Ie 91
8 Close all files 92
20 Close a tape file 92
66 Delete DSU file data 93
67 Delete DSU file index block 93
87 Read DSU file index block 94
104 Read a page (2048 words) from RAD 94
105 Write a page (2048 words) to RAD 95
110 Read device and unit 91
113 Compute file size of a disc file 95

Appendix B 167

DIRECT CONTRO L OF PERIPHERALS (cont'd.)

BRSs or SYSPO Ps Function Page

118 Allocate magnetic tape unit 96
119 Deallocate magnetic tape uni t 96
BE+l Read DSU 98
BE+2 Write DSU 99
BE+7 Test a breakpoint switch 98
BE+9 Read DSU page 97
BE+lO Write DSU page 97
BE+15 Read SMT page from RAD 99
BE+17 Test for last buffer used 100

CONTROL OF FILES VIA FILE NAMES

BRSs or SYSPO Ps Function Page

15 Read input file name 101
16 Open input file in file directory 102
17 Close all fi les 102
18 Read a file name and look it up in the file directory 103
19 Open output file located in file directory 104
48 Look up input/output fi Ie name 105
60 Look up I/O fi I e name and insert in fi Ie directory if not found 105
BE+19 Read fi I e creation date and access count 100

I/O OPERATIONS

BRSs or SYSPOPs Function Page

BIO Block input/output 107
CIO Character input/output 106
CTRL Input/output control (tape) 108
WIO Word input/output 106

TELETYPE OPERATIONS

LINKING AND ATTACHING

BRSsor SYSPO Ps Function Page

23 Li nk/ un I ink spec i fi ed TTY 109
24 Unlink all TTYs 109
25 Set teletype to accept/refuse links 110
BE+3 Test for carrier present (not impl emented)
BE+6 Turn a teletype line on or off 112

INPUT/OUTPUT OPERATIONS

BRSs or SYSPOPs Function Page

11 Clear the teletype input buffer 112
12 Declare echo table 113
13 Test input buffer for empty 115
14 Delay unti I the TTY output buffer is empty 116
29 Clear the output buffer 114
40 Read echo tabl e 115
85 Set special TTY output 116
86 Clear special TTY output 117
BE+ 11 Ignore I ine feed or carriage return when followed by same (not implemented)
OST Output to specific TTY (not implemented) 118

TCI Teletype character input 117
TCO Teletype character output 118

168 Appendix B

MEMORY OPERATIONS

PRIVATE MEMORY

BRSs or SYSPOPs Function Page

4 Release a page of memory 119
43 Read pseudo relabel ing 120
44 Set pseudo relabeling 121
56 Make page Executive 123
80 Make page read on Iy 123
116 Read user relabel ing 121
117 Set user relabeling 122
120 Acquire a new page 120
121 Re lease specified page from PM T 119
122 S imu late memory pani c 122
BE+4 Read/write one word in the Monitor 124

SHARED MEMORY

BRSs or SYSPOPs Function Page

69 Get SMT block to PMT 125

STRING PROCESS

STRING I/O

BRSs or SYSPOPs Function Page

33 Read string 126
34 Output message 126
35 Output string 127
CIT Character input and test 128

HASH TABLE SEARCH

BRSs or SYSPO Ps Function Page

5 Look up string in hash table 129
6 General string look up 132
37 Insert string in hash table 130

STRING MANIPULATION

BRSs or SYSPOPs Function Page

LDP Load string pointer 130
SKSE Skip if string equa I 128
SKSG Skip if string greater 133
STP Store string pointer 131

Append ix B 169

CHARACTER MAN IPULA TIO N

BRSs or SYSPO Ps Function Page

GCI Get character from beginning of string and increment beginning pointer 133
GCD Get character from end of string and decrement end pointer 134
WCD Put character on beginning of string and decrement beginning pointer 135
WCH Write character to memory by table 135
WCI Put character on end of string and increment end pointer 134

NUMBER OPERATIONS

NUMBER I/O

BRSs or SYSPO Ps Function Page

36 Output number to specified radix 136
38 Input number to specifi ed radix 136
52 Formatted floating point input 137
53 Formatted floating point output 137
ISC Internal to string conversion 138
SIC String to internal conversion 138

ARITHMETIC OPERATIONS

BRSs or SYSPOPs Function Page

21 Floating point negate 140
50 Conversion from floating point to fixed point 139
51 Conversion from fixed point to floating point 139
CAF Copy A and B into FPAU 148
CFA Copy FPAU into A and B 147
FAD Floating point addition 140
FDV Floating point division 142
FFAD FORTRAN floating add 148
FFDV FORTRAN floating divide 150
FFMP FORTRAN floating multiply 149
FFSB FORTRAN floating subtract 149
FLDF FORTRAN load floating 151
FMP F looting point multipl ication 141
FSB Floating point subtract 141
FSTF FORTRAN store floating 150
QFAD Quick floating add 144
QFDI Quick floating divide inverse 147
QFDV Quick floating divide 146
QFMP Quick floating multiply 146
QFNA Quick floating negate 144
QFSB Quick floating subtract 145
QFSI Quick floating subtract inverse 145
QLDF Quick load floating 143
QSTF Quick store floating 143
SKNF Skip on negative floating accumulator 142

EXECUTIVE COMMAND OPERATIONS

BRSs or SYS PO Ps Function Page

95 Dump program and status on fi Ie 152
96 Recover program and status from fi Ie 152

MISCELLANEOUS OPERATIONS

BRSs or SYS PO Ps Function Page

41 Return from I/O subroutine 154
42 Read real-time clock 153

170 Appendix B

MISCELLANEOUS OPERATIONS (cont.)

BRSs or SYSPOPs Function Page

71 Skip if Executive 156
88 Read execution time 154
91 Read date and time into a string 153
111 Return from 155
112 Turn off teletype station (Executive only) 155
BE+5 Set disc bit map 156
BE+8 To crash the system for error diagnostic 157
BE+13 Sets Executive switches in COMPG 157
BE+16 Set Executive status 158
EXS Execute instruction in system mode 158
SBRM Reentrant subroutine branch 159
SBRR Reentrant subroutine return branch 159

Appendix B 171

APPENDIX C. GENERAL DESCRIPTION OF THE COMBINED FILE DIRECTORY

A user may have one or two file directory blocks on the disc;
the second block is an overflow block. Each block consists
of 128 words containing a variable number of file directory
entries. Each entry is in the format pictured below.

If the first word of the block is zero, the block is considered
to be empty. The last entry is followed by a -1 or -2 word
where the -1 indicates additional entries in the overflow
block.

128
Words

FILE DIRECTORY BLOCK

4 Contro I words

Variable length name

End dir. flag-lor-2

Avai lable storage for unused
entries

Overflow block pointer

Accumulated real-time (con-
nect time)

Accumu lated computer time

Va lid on time (1 bit per hour)

Number of
entries
depends on
length of
file name

Last -3

Last -2

Last -1

Last word

In the case of an overflow block, the last three words are 0,
and the overflow block pointer is a backward pointer to the
first file directory block (i. e., UNO).

The user number (UNO) is a pointer to the disc address of
the user1s fi Ie directory. The ava i lable user numbers vary
with the number of discs. Suppose an insta IIation has a disc
configuration to allow user numbers to range from 1 through
1377B. An arbitrary decision could be made to assign user
numbers 1 through 1 077B, thus a lIowing number 11 OOB through
1377B for overflow file directories. The overflow file direc
tory pointer is actua Ily a IIfictitious user number II .

The variable LUNO (Last User Number) designates the end
of the overflow file directory area. In the above example
LUNO would be set to 1377B and SOY (Start of Overflow
area) would equal 1100B. NOVP would be initialized to
LUNa and decremented each time an overflow fi Ie directory
is assigned.

172 Appendix C

FILE DIRECTORY FORMAT ON DISC OR TAPE

0 Account No. No. of accesses Creation date

0 89 14 15 23

ICCI 0
I

Fi Ie length (FL)

012 11 12 23

2 LTP
Future controls (currently
not used)

11 12 23

3
I

Index block pointer (disc fi Ie)

0 23

or

3 I HTP
I

0 FS (tape fi Ie)

0 56 89 23

4 Char of name

N F Char of name

78

Account No. 41 would be account Dl, 32 account
C2, etc.

No. of Accesses N umber of times the fi Ie was ac-
cessed since last disc reordering. Reaches a maxi
mum of 77B and rema ins there unti I next disc edit.

Creation Date Bits 15-18 are the month number less
one. Bits 19-23 are the day of the month less one;
for example, 154 is Apri I 13.

I

I

I

CC Indicate a change in file size (the file was writ-
ten on). These bits are used by the concurrent tape
back-up routine and the disc fi Ie edit routine.

FL File length for disc files where each bit represents
one data block of 255 words.

CB File control bits, 0 = Tape file
2 = Disc file

FT File type (1 through 4)

LTP Low order tape position; for example, if LTP = 5,
this is the fifth file on a multi-file tape.

F End of entry flag

HTP High order tape position

FS Tape fi Ie size

USER ACCOUNT DIRECTORY ON DISC

Words o 2 3 4 5 6 7

I Acct. password no no

8 User Name 1 C N

13 User Name 2 C N

18 User Name 3 C N

23 User Name 4 C N

28 User Name 5 C N

33 User Name 6 C N

38 User Name 7 C N

43 User Name 8 C N

48 User Name 9 C N

53 User Name 10 C N

58 User Name 11 C N

63 p

o 11 12 23

where

CA This word could be used to contain status
parameters that apply to the entire account. Cur
rently it is not used.

no is not assigned

C

N

p

is a control parameter

is a user number

is reserved for an overflow pointer and not pres
ently used.

The control parameter bits are assigned as follows:

Bit Use

0 System status

1 Control

2 Operator status

3 Subsystem status

4, 5 Not assigned

6, 11 Subsystem classes

Appendix C 173

BRS

CNTRS

I COMPG

DISC

INIT

lOP

MCONST

PMTS

RAD

SCHDR

STRNG

TTY

USERP

WPAGE

APPENDIX D. MONITOR FILES

Contains the B'RS dispatcher and the routines associated with miscellaneous BRSs. The trap routines, the
memory allocation routine and the routines necessary to set up and maintain the forking structure are here.

All of the counters that are used for statistical purposes are here. If the assembly parameter CNTPKG
is set to -1, this fi Ie is not needed.

This file contains some of the constants that are used by both the Executive and Monitor, the job indexed
tables, some of the teletype tables, various error counters, etc.

This file contains the opening and Closing routines and the drivers for the disc. However, the disc queue and
interrupt routine are in the lOP file.

This file is used during system initialization. The DSWAP utility routine reads the first 14K of the Monitor
from the specified disc and then branches to location sETsET (inSCHDR file) which reads the INIT file from
the disc. The coding in INIT initializes pertinent system tables, puts the phantom user onto QTI, and enables
the interrupt system. While the'time-sharing system is operational, INIT is not core resident. The coding
for the automatic restart is also in INIT. .

This file pertains to the I/o dev'ices and file logic. The file control tables and device tables are here. The
131 and 133 interrupt routines and the opening and closing routines are here. lOP contains the general logic
for the devices that are on the W-buffer. The drivers for a particular device will be found in either DISC or
WPAGE.

This file contains the systems configuration dependent parameters, such as number of discs, RAD, description
of peripherals, size of buffers, etc. It also contains OPDs and macros. This file is nongenerative {contains
only assembly directives} and is used only when the Monitor is assembled. The Ts page variables which the
Monitor uses are defined in this file.

This file contains the scheduled queues, the PMT and SMT tables, and the PAC tables.

Contains the RAD driver, interrupt routine, and RAD queue.

Contains the routines that are necessary to dismiss one user and activate another. The scheduler, the swapper,
the phantom user, the clock interrupt routines, the software interrupt routine, and the crash routine are
here.

Contains the routines associated with string processing. The routines used for constructing and maintaining
the hash tables are here. The floating point POPs are also here.

This file contains the routines that are associated with the teletype. The five interrupt routines, the TCO
and TCI SYSPOPs, the majority of the tables indexed by teletype number, the teletype buffers and various
routines that the phantom user performs that are associated with the teletype, such as rubouts and the initial
ization of the Executive for a user, are here.

User page (Ts page). This file provides a map of the symbols used mainly by the Executive. The Ts page
serves to make the Executive reentrant. Each user has a Ts page with the format shown by this fi Ie. This
file is loaded into page zero during generation of the Executive.

This file contains the drivers for all of the devices, except the disc, that are on the W-buffer.

174 Appendix 0

LOGICAL REAL
MEMORY MEMORY

A A
Page Location I \ (,

0 lOP lOP 10 DISC

4140 f- - --- -- r-- -------
COMPG COMPG 11 WPAGE

5001 1------ ------1- ----------

2 TTY TTY 12 INIT

12535 r-------- ---------

3 SCHDR SCHDR 13

17122 1---------- I-1---------

BRS BRS
4 22760 1---- --- !- r--------- 14

RAD RAD
23704

1------- -- - ---

STRNG STRNG
25503 1----- ----- - - - -- ---

5 CNTRS CNTRS 15
25771 I- - ----- ----------

PATCH PATCH

PMTS or

6 DISC or PMTS 16

WPAGE

INIT or
7

USERP
17

Note; The Monitor relabeling register refers to pages 6 and 7. The locations that the Monitor
files occupy were obtained from a typical Monitor assembly. The lOP, DISC,
WPAGE and INIT files are loaded on page boundaries.

Figure 34. Memory Diagram for the Monitor

Appendix 0 175

I EXCNS

G5BR

CMND5

I CMND2

INTLE

FLTIO

APPENDIX E. THE EXECUTIVE FILES

This fi Ie contains configuration dependent parameters, MACRO 5, and OPDs referenced by the Executive. This
file is non-generative {contains only assembly directives} and is used only when the Executive is assembled.

This fi Ie consists of a collection of general subroutines that are used by the Executive.

This fi Ie contains the command processor for the Executive. An escape to the Executive transfers control to this
file. The routines associated with the Executive commands or a transfer to the routines are in this file. The com
mand and subsystem hash tables are here.

This file contains the coding for the less frequently used Executive commands (such as logging a user on and off
the system).

This file is both assembled and executed when the Executive is generated. The routine that sets up the commands
and subsystem hash tables is here.

This file contains the coding for BRSs 48, 52, 53, and 91 and the SIC and 15C sYSPOPS. Although this file is
not a part of the Executive, it is assembled with the Executive since it uses the Ts page and other Executive con
stants. FL TIO is referenced by sMT byte 12.

•

Logical
Page Location Memory SMT/PMT Byte

0 USERP 60B

4140 f----------
COMPG 01B

f--------- ,...-
2 GSBR lOB

13334 ------- --- -

3 CMND5 11B
17710 --------- ---

4 CMND2 13B

23762
1----- ---- ---

Note: The locations that the Executive files occupy were obtained
from a typical assembly.

Figure 35. Memory Diagram for the Executive

176 Appendix E

APPENDIX F. INITIALIZATION AND ASSIGNMENT OF THE PAC TABLES
Assume there are only five PAC tables in the system and the tables begin at location 100B. (Actually there are 144 tables that
are located in the PMT file.)

100B

NPAC
NPPAR
PACT
PEND
PNEXT
PL
PA

PPTR

PIM

EQU
EQU
BSS
EQU
EQU
EQU
EQU

EQU

EQU

When the program is assembled, the following values will be assigned:

Symbol Value

PACT 100B
PEND 162B
PNEXT 162B
PL 163B
PA 164B
PPTR 167B

5
10 (10 entri es per PACT)
NPAC * NPPAR
*
PEND + 0
PEND + 1
PEND + 2

PEND + 5

PEND + 9

When the system is initialized (in INIT), the following values are inserted into the PAC tables. See Figure 36.

Location

PACT 100B

PACT + 5 (PPTR) 0 105B

PPTR (2nd table) 131B 117B

PPTR (3rd table) 143B 131B

PPTR (4th table) 155B 143B

PPTR (5th table) 0 155B

FPLST = 117S

Note: Only the PPTR word of each table is shown.

Figure 36. Initialization of PAC Tables

Appendix F 177

Note that the PPTR word of each table points to the loca
tion of the PPTR word of the next available PAC table. The
PPTR word of the last PAC table contains a zero indicating
that there are no more available tables.

In order to retrieve entries from the PAC table, there is a
PACT pointer associated with each PAC table. The pointer
for the currently active fork in the system is always stored
into location PACPTR. The PACT pointer is a negative num
ber that a Ilows the PAC table entries to be addressed using
the end of the tables (see definition of PNEXT, PA, etc.)
as the point of reference;

When the system is initialized the Phantom User is assigned
the first PAC table .. Location FPLST always contains the
address of the PPTR word of the next available table. If the
address of the PPTR word of an available table is known, the
PACT pointer can easily be calculated.

Considering the above example, the following values would
be assigned at syst~m initialization:

FPLST = 117B

PUPACP = -62B = PACT pointer of phantom user

When the phantom user is active, the following coding
would retrieve his PAC table entries:

LDX PUPACP

INST LDA PA,2 Fetch PA word

LDA PIM,2 Fetch PIM word

The effective address of the instruction at INST would be:

PA 164B

(X) -62B PACT pointer of phantom user

Effective Address = 164 -62 = 102B = Address of PA
entry for phantom user

When a user comes on the system or any fork is dec lared, a
PAC table must be assigned. Coding very simi lar to the fol
lowing is executed in subroutine GFK:

178 Appendix F

LDA FPLST Get point to a free table.

SKG =0 Are there any free tables.

BRU NOROOM

SUB =PPTR Calculate PACT pointer.

COPY AX,A Copy A to Xi clear A.

XMA PPTR,2 Get pointer to next free table.

STA FPLST FPLS T updated.

STX TEMP Save PACT pointer

Once the PACT pointer is assigned, it is stored into the
PN EXT word of the fork previous to it on the scheduled
queues or it is avai lable in the PDOWN or PFORK entries
is the fork was di smissed to activate a lower fork.

When a fork is terminated, the PAC table associated with
the fork is returned to the free PACT list. Coding simi lar
to the following is performed:

LDX PACPTR Get pointer for this fork.

COpy XA

ADD =PPTR Get address of PPTR word of
this table.

XMA FPLST

STA PPTR, 2

Note that FPLST is pointing to the table that has just been
released. PPTR of the table that has just been released is
pointing to another free PAC table (i. e., as a fork termi
nates the PAC table is added to the top of the list of free
tables).

The method that is used for the assignment of PAC tables is
similar to the method used for the assigning of the job and
fj Ie numbers.

The TTNO table contains the chained list of free iob num
bers. Location FULST contains the next available job num
ber. The FA table and location FFLST are used in conjunc
tion with the fi Ie numbers.

APPENDIX G. INITIALIZATION OF SYSTEM AND ACTIVATION OF FIRST USER

The dashed I ine represents the tel etype
on interrupt

EPU puts task on phantom user

Bring in first 14K of Monitor.

Read the INIT file from disc.

In itial ize tabl es, arm tel etype interrupts,
activate 2 phone lines, arm clock, enable
interrupt system.

Charge time to system overhead.

Set a pointer to search QTI.

Begin search ing a queue.

Find an activatable fork. If all Os have
been searched, go to PACGO.

Initiate swap for this fork. Put fork on
swap Q.

Call swapper. Charge time to this user.

Get th is fork off the schedul ed queues.

Search swap Q for a fork whose memory is
core resident. PUwill always have his memory.

Take fork off swap Q.

Verify that this fork has all his memory.

Establ ish this fork·s environment. Activate
him by a BRU* on PL word.

Appendix G 179

APPENDIX H. THE PHANTOM USER LOGIC

Initialize pointer to search beginning of PUCT table.

PUDMS

Search PUCT tabl e for a task.

PUCLST contains addresses of routines that determine whether
PU can process a task; for example, it cannot process a rubout
if NT bit set.

Flow enters at PUACTl or PUACT to process a task. Remove
task from PUCT.

PUCSET contains addresses of the routines that perform the
PU tasks.

All PU routines return to NPUGO. PMT page is relabeled in.
The task may have required the use of DISC or WPAGE.

Put PU on QlI.

Dismiss. Note that the PTEST word contains an activation
condition of 4.

Note: When the phantom user is activated it continues to execute unti I either no tasks are on PUCT, or it is unable
at this time to process any of the tasks that remain on PUCT.

180 Appendix H

APPENDIX I. PHANTOM USER LOGIC TO PROCESS A TELETYPE ON INTERRUPT

BRU*
PUCLST,2

BRU*
PUCLST,2

The activation code for the tt on interrupt = 6.

Make sure 4 sec have elapsed since interrupt occurred. 4 sec delay allows for TTY
carrier to become stable.

PUNXT
Attempt to process next PUCT entry if 4 sec
have not elapsed.

Remove task from PUCT tabl e. Decrement PUCTR.

Location PUTST contains TNI2+ 1.

Make sure data set is ready and carrier is stable.

TIP is a general despatcher for tt on, off, rubout, and BRS 112.

Get job number, get PAC table for Executive fork, set up PAC table parameters, zero
PMT table, set PL word to TSONI, put Executive PAC table on QTI.

Format for PUCT table entry for teletype on interrupt:

Word a Pointer to next task on PUCT

6 @ TNI2+ 1

2 1 @ CN

3 0 :Q) CN

The 6 is the activation code used by PU logic. TNI2 + 1 is
address of routine to process task.

The 1 is used by the dispatcher at TIP.

Teletype channel number.

Appendix I 181

APPENDIX J. FLOW REQUIRED TO INITIALIZE THE EXECUTIVE WHEN
A USER LOGS ON THE SYSTEM

When the phantom user processes a "teletype on" interrupt, the PAC table for the Executive fork is initialized and put on QTI.
When the Executive fork is activated it begins execution at TSONI.

182 Appendix J

Get TS page for user, execute a BRU EXECI,4 to enter user mode.

Sets up various parameters, allows 1-1/2 minutes for log on time.
EXECI is the general entry point to the Executive from the Monitor.

This is the general entry point after rubout.

CR is general entry point to process Executive commands. The third pag~ is re
labeled out since it is used mainly during logging on and off. Since user has not
logged on a branch is taken to XENTER where the third page is relabeled in and a
branch to ENTER occurs.

Types "READY" and "PLEASE LOG IN". Reads AUD and file directory. Verifies
log in parameters.

This is the general entry point into CMNDS from CMND2. Third page relabeled
out.

Types the dash and begins to read the command.

Interprets the command and takes appropriate action.

CHRL

SWAP

SWPI
through
SWP41

SWP2

MA8
through
MA12

SWP10

SWP12
through
SWP36

SWP15
through
SWP23

or

DCRL

OMW

OMR

APPENDIX K. SUBROUTINE TRACE OF THE SWAPPER

UPRL

RTW
RTC

Load pseudo-relabeling into A, S, X.

Decode pseudo-relabeling into SRT table.

Pseudo Byte

o
SRT Entry

40B

Page in core Real page number including read-only
bit (bits 18-23 of PM T)

PM T entry on RAD

SM T entry on RAD

o @ PMT adr, 4

o @ PMT adr, 5

Lock page, reduce MAC for core resident pages. For pages that must be
read, bui Id the following tables:

SWT5 - RAD address (in bits 10-17) of page

SWT14 - SRT entry of page

SPT and SAT - These tables cross-reference each other. They allow
the commands to be later inserted onto the RAD queue in a manner
that is optimum for RAD access.

Check MAC to determi ne if there are enough un locked pages to attempt to
bring in this fork.

Determine which pages will be swapped. The method for selection of
pages is described in Chapter 5. The write commands are added to the
SPT and SAT tables. SWT6 contains the first location in SWT5 that was
not used by the read commands.

SWT5 - Contains PMT/SM T entry of page to be swapped

SWT 14 - Contains RM T entry of page to be swapped

If a read-only (RO) page is released, the in-use bit (bit 0 of RMT) is reset
so that later the system knows that it can put a request on the RAD queue
to read into this page without waiting for the previous contents to be writ
ten out. Bit 0 (on RAD) of the PMT entry that currently corresponds to this
page is set.

The current position of the RAD is obta ined in order to pull commands from
SPT and SAT in an optimum manner.

The RAD requests are built from the information in the SPT, SAT, SWT14,
and SWT5 tables. A RAD read calls OMR while a RAD write calls OMW.
The system distinguishes reads from writes by the SWT6 pointer. If a read
and write command refer to the same page, the write command is entered
onto the RAD queue before the read command. This is accomplished by
exam ining bit 0 (in use) of RM T. Th is bi t is reset after a write command
is added to read queue.

Add write command to RAD queue. Lock page while RAD I/O is active.

Adjust bits 0, I, and 2 of RMT appropriately. If call for activation, insert
swap queue (SWQ) pointer into RM T and adjust page count word of SWQ.
The real page number is inserted into PMT and bit a of PMT is reset. If the

Append ix K 183

RTC

RST
RTS

SWP3
PTRL

PKRL

CHRL+7

LABEL

184 Appendix K

RDR

call was from MGET (DROBlT of PMT set), RTC is not called since no
read is required.

Add read command to RAD queue. Lock page whi Ie RAD I/O is active.

RST is co lied when a II the commands are on RAD Q. Start the RAD. Do
not wait for I/O to complete if call was for activation. Otherwise wait
and exit skipping if error occurred.

PTRL calls PKRL to form the 3 hardware relabeling registers in A, B, and X.
The read-only bit is set for all the bytes.

SWAP exits skipping if successful.

The rea I relabel ing is stored into SRRL 1, SRRL2, and SRRL3. An exit is
taken if this was a call for activation. Otherwise the TS page is marked
as being not read-only. The Monitor accesses the TS page and Monitor
mapping does not include a read-only bit. The hardware relabeling is
then set.

APPENDIX L. THE DISC LOGIC

The software initiates disc I/O by first placing an entry on
to the disc queue (ORQ). Each entry on the disc queue re
quires three locations. The format of a disc queue entry is
shown in Figure 37.

The disc drivers wi II add an entry to ORQ at the location
indicated by EOCl. location NOCl contains the count
(minus one) of the number of commands that are on the disc
queue and are ready for the disc interrupt routine to process.
The disc driver wi II increment N DCl when it adds an entry
and the disc interrupt routine (IDM) wi II decrement N DCl
when it processes an entry. IDM will sequentially pull com
mands off of DRQ and execute them unti I N DCl has the
va I ue -1. At this point there are no more commands on
ORQ that are ready to be executed.

Word 0 Disc Address

0 7\8 23
1 FN Rea I Core Address

2 R \ ETIME\ EN I Word Count

o 1 56 89 23

FN File number

ETIME Estimate of the time (clock ticks) that
this operation should require

EN Index to the post-processing error routine
that th is operation should use

R 1 for write, 0 for read command

Figure 37. A Disc Queue Entry

Since both the disc drivers and the disc interrupt routine
a Iter the contents of NDCl, the drivers must disable the
interrupts while NDCL is being adjusted. To make this pro
cess more efficient, the variable OTXS 1 is implemented.
Suppose the driver wished to perform an operation that re
quired the adding of two commands to DRQ. The driver
would add both commands to DRQ and increment OTXS 1
each time a command was added. Then the driver would
disable the interrupts, adjust NDCl by the value indicated
by DTXS 1, and restore DTXS 1 to a -1. Thus OTXS 1 con
tains the number of commands (minus 1) that the driver has
added to DRQ for any given operation.

The disc interrupt routine is entered in two ways: (IDMRET
indicates how IDM was entered.)

1. as a response to an interrupt (IDMRET = -1)

2. as a subroutine called by a disc driver (IDMRET=O)

If the disc is inactive, the driver must not only add an
entry to DRQ, but also initiate the disc I/O by calling
IDM.

DRQ

IDCl1 - The I/O
transmission for this
entry is currently
being processed.

IDCl - The I/o for
th is entry wi II be
initiated when the
interrupt for IDCl 1
is received.

- EDC L - The disc
drivers wi II add an
entry at th is
location.

There are 3 words per entry.
DRQ is dimensioned for NDRQ entries.

Figure 38. The Disc Queue (DRQ)

When I DM is entered as a response to an interrupt, the fol
lowing occurs:

1. The I/O for the next entry (if any) on DRQ wi II be
initiated. This entry is pointed to by IDCL.

2. The post-processing, i. e., error check, release locked
pages, etc., will be done on the entry for which the
interrupt was received. This entry is pointed to by
IDCll.

When IDM is entered as a subroutine call, IDCLl will equal
-1. The I/O for the first entry will be initiated and IOCLl
will point to this entry. The next entry (ifany) will be
set up (the POT words will be contructed), and pointed
to by IDCL.

When 10M has finished executing all the requests on DRQ,
IDCLl will be set to -1.

Appendix L 185

Remove indirec
ADR bit from
memory O.

Store transfer
vector in BSX.

SYSPOP mark
word (MEM 0)
to SBRSRT.

Restore A & X
registers.

Execute
transfer
(BRU" BSX)

186 Appendix M

no

yes

APPENDIX M. BRS lOGIC FLOW

Set PQU word
to full time
+X6

Restore A
Set PACT

register.
pseudo rei
to 60011000,0

PACPTR to Set PACT PL to

X register. 0010003+lower
9 bi ts of BST war

Execute
transfer
(EXU BSX).

Set PTAB to X5,
EXECL panic
address & job
number.

Set up PA, PB
& PX for new
fork.

Save old param-
eters UBRL 1,
UBRL2, UBA,
UBB, UBL&UBX.

Restore SYSPOP
mark word
(MEM 0).

Set B to Exec
BRS activation
condo

yes

TRAPB

yes

Dismiss until
PAC table
available

yes

Set PACT
pseudo rei
to 60011200,0

tSMT entry: 10'" FLTIO file

12'" GSBR file

APPENDIX N. TRACE OF THE SUBROUTINES WHICH ARE CALLED BY
THE BRS 1 (MONOPN) IN ORDER TO OPEN THE DISC

MONOPN

BIO

BIS

BIG

BGET

DRMOPN

SSET

DTC

DTF

DTS

DTA

DTZ

IDM

DTP

Get a TS page buffer.

Dispatch on OPN DEV table.

The following path is taken (in DRMOPN) to open an old fi Ie.

Get rea I address of buffer.

Put command to read index block on disc queue.

Set file number and index to error routine in disc queue entry.

Increment count of number of commands on disc queue.

This routine called only to start the disc if the disc is currently inactive.

Reset DTXSI variable.

The following path is taken (in DRMOPN) to open a new file.

Allocate a disc block for the Index Block.

Zero the area of TS buffer that the Index Block wi II occupy.

APPENDIX O. SUBROUTINE TRACE FOR B 10 FLOW WHEN THE
DEVICE, IS THE DISC ON INPUT

101

GPW

GPWD

ED

BSET

MPDSC

DRMSI

DTC

DRF

DTS

IDM

DTP

NIODMS

MPPACT

IODMS

POPDMS

Block input/output.

Return buffer address and FD word.

Transfer all available words.

BIG is entered when the data block in the buffer is empty.

Find out it is the disc.

Set up arguments for ED.

Get buffer pointer and drive device.

Get buffer address.

Map in the disc page.

Compute disc address.

Put command on DRQ.

Set file number, interrupt index in DRQ.

Update DRQ command counts.

Start disc (if currently inactive).

Reset command count.

Ca lis:

Map in PMT page.

MakeupPTESTword: 11 @ FD+filenmbr.

Dismiss fork.

Appendix N/ Appendix 0 187

APPENDIX P. SUBROUTINE TRACE FOR THE LOGOUT COMMAND

I
LOGOUT

TIP

OFFINT

LGOUT3

OFDUM

XDUMP

OFINT2

OFINT1

KILL 6

BRS 8

MKFD

WRACT

TIMER

BRs 14

BRS 4

BRs 112

Use BRS 121 to release memory of PMT entry 61 and following.

Close all files.

Output updated fi Ie directory to disc.

Write system accounting.

Print elapsed time message.

Wait unti I elapsed time message is printed.

Release Ts page.

The BRS 112 releases the job number, resets TTYASG and WERIs, re leases PAC table for the Executive,
removes any tasks that this teletype has on the PU queue, and finally puts a task on PU (the same as the
te I etype ON interrupt) to set up an Executive for th is user. The system wi II set up an Executive fork
and allow the user to relog on provided that he has not hung up. Also, a check is made to see if the
operator has issued the SHUT DOWN command. If so, the teletype wi II be deactivated.

APPENDIX Q. SUBROUTINE FLOW FOR THE PHANTOM USER TASK
WHICH PROCESSES A TELETYPE OFF INTERRUPT

TFIP

BRS 14

BRs 4

BRS 112

KILL 6
BRs 8
MKFD
WRACT

HFK Get PACPTR of Executive fork.

RFK Set panic tables for entire forking structure.

TFK Release all PAC table in forking structure except Executive fork. The Executive fork is put
on QIO.

CLIB Clear input TTY buffer.

CLOB Clear output TTY buffer.

TFIP gives the Executive fork an immediate activation condition and sets the PL word to loca
tion OFFINT which is in the Executive.

Decide if user is still logged on system.

The following path is taken in OFFINT if the user is not logged on the system.

Release Ts page

See subroutine trace of LOGOUT command (Appendix 0).

The following path is taken in OFFINT if the user is logged on the system.

Clear sWOFF.

Initialize for using /$/ Dump file.

Check to see if user has a /$/ file. If so, the dump is taken.

Go to LGOUT3

188 Appendix P/Appendix Q

APPENDIX R. AUTOMATIC RESTART

While the time sharing system is operating, some conditions
can occur which cause the system to "crash". When the
system crashes the MO NCR (Monitor Crash) routine is
entered. The Monitor wi II execute a BRM MO NCR if sys
tem tables or pointers are altered t spurious interrupts occur,
a trap occurs due to watchdog timer runout, etc. Also, the
operator can force a system crash by toggling breakpoint 4.

If the system is executing in an infinite loop while in
Monitor mode, no dismissals will occurt and thus' no users
(including the phantom user) are activated. In this event,
the operator is forced to toggle breakpoint 4.

[f breakpoint 3 is set when MO NCR is entered, the system
will execute an unconditional branch to itself (BRU *). The
operator can cl ear this condition and allow the system to
restart automatically, or, run the DSWAP utility program.
Note that the DSWAP routine can store the crash (the cur
rent contents of the first 32K of core) on the system arm posi
tions of discs zero and one. If the system is reinitialized by
using DSWAP, all of the users currently logged onto the sys
tem are disconnected and their current program environment
is lost.

If breakpoint 3 is reset when MO NCR is entered, the system
attempts an automatic restart that wi II save the current pro
gram envi ronment of all the users. In the event of a crash,
the system returns to each user at the Executive level and
outputs the message: SYSTEM RESTARTED. The user can
continue execution in the subsystem in use prior to the crash
by using the CONTINUE command. He should recover the
program environment that existed the last time he was in the
command mode of the subsystem. In general, the restart
capabi I ity allows program recovery to the same extent as
that available when using a /$/ file to recover from a tele
type disconnect.

The automatic restart code first disarms, disabl es, and cl ears
all interrupts. If any write commands remain on the RAD
queue, these are performed (using non-interrupt I/O) since
the swapper has already marked these pages as being RAD
resident in the SMT/PMT entries. If any read commands
remain on the queue, the operation is not performed, but
the RMT and SMT/PMT entries are properly adjusted.

Real page 12B is written (if necessary) to the appropriate
RAD location since the initialization page (see Appendix
E for a description of INIT, the initialization page) must
be read into this page. Page 12B is relabeled into virtual
page 7 of the Monitor for relabeling and a branch to loca
tion RESTRT, which is in INIT, occurs.

At RESTRT, any pages which are marked "not read only" in
the RMT tabl e, are written to the appropriate location on
the RAD. The pages are marked as being RAD resident in
the corresponding PMT entries. At th is time, a copy of all
user pages should be on the RAD.

The following system information is moved to high core:
COMPG file, TTNO, PUCT, PMT file (includes PMT,
SMT, PACT tables, and scheduler queues), and miscellane
ous associated pointers.

If breakpoint 2 is set, the first 32K of core (the crash) is
saved on discs zero and one. A new copy of the first 14K
of the Monitor is then read from the appropriate disc. The
initialization then proceeds in the normal manner except
that new copies of DISC and WPAGE are not read into core.
This saves the disc bit map and alleviates the requirement
of running the MAP program.

The tables previously saved in high core are now moved to
their appropriate locations. The contents of real page zero
are moved to high core since each user's TS page must be
read into these locations.

The scheduled queues are now checked and if any irregu
larity is detected an appropriate message is output to the con
sole teletype. A new copy of the scheduled queues is estab
lished and the phantom user is placed onto QTI.

Next, the phantom user (PUCT) queue is scanned. If it is
intact, all tasks except teletype on/off tasks are removed.
If it is not intact, a message is output to the console tele
type, and a new PUCT queue which contains no tasks is
constructed.

Next, each PAC table is examined. A PAC table is asso
ciated with an Executive fork, a subsidiary fork, or is not
in use. The first PAC table in the array should belong to
the phantom user (job number zero).

When an Executive PACT is encountered, the TS page is
read into core. If the user has a disc file open for output
(and either the data block or index block has been changed),
the checksum word is destroyed and the index block written
out to the disc. This action is necessary to preserve the in
tegrity of the disc bit map. The checksum is destroyed to
insure that the user is cognizant of the fact that his file was
not compl ete Iy written when the crash occured. A scan is
now made through the hierarchy of forks. All the subsidiary
PAC tables are given an activation condition of "dead" and
returned to the free PACT list. If a fork has its panic table
in the TS page, the panic table entries are initialized from
values in the PAC table and the PB and PX arrays in the TS
page. This allows the user to successfully execute the CON
TINUE or BRANCH command once the system is restarted.
Next, the TS page buffers are all marked as being available
and the forking structure is shown to consist of only the Exe
cutive fork. The PAC table for the Executive is initialized
and placed onto QTI.

Note that once the Executive PAC table is found, the asso
ciated forking structure is entirely processed. Since the job
number is available in each PAC table, an array named JOB

Appendix R 189

(indexed by job number) is maintained during restart. When
a forking structure has been examined, the appropriate JOB
table entry is marked to indicate that the processing of this
job has been campi eted.

When the PAC table for a subsidiary fork is found during
the PACT array scan, the job number is extracted and the
table JOB is checked to see if this particular job has been
processed. If so, an error has occurred since this PACT
should have been marked as "dead" when the job was pro
cessed. An appropriate error message is then output. If
the job has not been processed, the PACT pointer for this
PAC tabl e is stored into an array named TBL 1. If the forking
structure for this job is intact, the PACT pointer will be re
moved from TBL Lwhen the Executive fork is found. Thus, if
any PACT pointer remains in TBll after the scan of all the
PAC tables is completed, a PAC table has been lost and
an error message is typed.

When the entire PAC table array has been examined, the
system is ready to be restarted. Page zero is restored, the
RAD bit map is constructed, the error counters are zeroed,
the interrupt system is enabled, the real time clock is
enabled, and a branch to the scheduler is taken.

The system wi II not attempt to restart automatically if the
MO NCR routine is entered whi Ie RAD queue pointers are
being adjusted. These pointers are adjusted by the RAD
driver and RAD interrupt routine. In this case, memory is
in a state of flux and it is impossible to reconstruct the
RMT and PMT/SMT tables so that they properly refl ect the
previous state of memory. In this case, the system will
loop in an unconditional branch to itself, and the operator
must use the DSWAP routine to restart.

The restart will also be unsuccessful if successive RAD errors
are encountered during the attempted reinitializati'on. In
this case, the crash was, probably due to hardware malfunc
tion.

Following is a list of the error messages which may be out
put to the logging teletype during restart.

A. ILLEGAL RMT XXXXXXXX. The octal contents of the
RMT entry are printed. The RMT entry contained an
SMT tabl e address which was marked not read on Iy.

B. CANT WRITE RAD, ADDRESS XXXXXXXX. The address
output is the actual RAD address. Unrecoverable RAD
errors occurred whi Ie attempting to restart.

C. ILLEGAL PMT ENTRY XXXXXXXX. The octal con
tents of the PMT entry are printed. The entry contains
an illegal RAD address.

D. CHECK SCHED QUEUES. The same PACT pointer is
on the queues twice, or a fork is both running and on
the queues, etc.

E. CHECK PUCT LIST. The phantom user task I ist is im
properly chained, contains dupl icate entri es, etc.

F. PU IS LOST. The system has deleted or in some other
way destroyed the phantom user fork.

190 Appendix R

G. lOST PACTS:

XXXXXXXX

XXXXXXXX

The PACT pointers are output in octal two's comple
ment. These are PAC tables which the system considers
to be in use (i. e., the PTEST word does not have a
dead activation cond ition) but they cannot be attached
to any user's forking structure.

H. (REAL) = XXXXXXXX. Contents of cell REAL at the
time of the crash. Verify that this word is not nega
tive.

I. XXXXXXXX HAS JOB NMBR ZERO. The PACT pointer
printed is associated with job number zero. This con
dition is illegal only if the parent fork is not the
phantom user.

J. XXXXXXXX HAS NO PARENTS. Same condition as
described in case G.

K. 2 TOP EXECS FOR JOB XX. Two Executive forks are
associated with the same job number.

L. TS PAGE MISSING FOR JOB XX. The Exec fork for
this job has subsidiary forks but the TS page is lost.
This is due to an illegal RAD address in byte 60B
of the PMT or to the hardware dropping the "TS page
assigned bit" from the PAC tabl e.

M. CANT READ RAD, ADDRESS: XXXXXXXX. Self
explanatory.

N. RAD MAP CONFLICT AT XXXXXXXX. Two PMT
entries point to the same location on the RAD.

O. CANT WRITE DISC, ADDRESS: XXXXXXXX. Self
explanatory. The restart program writes the disc
while attempting to destroy the checksum in user
files which are currently open for output. In this
case, the disc bit map may be invalid.

P. RESTARTED JO B XX. Automatic restart of this user
was impossible because his TS page was lost or it
was impossible to output his index block to the disc.
This user will receive the "PlEASE lOGON" mess
age since the system was unable to preserve his pro
gram environment.

Q. TN XXX

NU XXX

etc.

All the non-zero PSP counters are output. The counters
are then zeroed after this message is output.

	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	078
	080
	082
	084
	086
	088
	090
	092
	094
	096
	098
	100
	102
	104
	106
	108
	110
	112
	114
	116
	118
	120
	122
	124
	126
	128
	130
	132
	134
	136
	138
	140
	142
	144
	146
	148
	150
	152
	154
	156
	158
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190

