TRAINING GROUP FILE COPY
FROFERTY CF 8SD3
TRAINING DEPT.

S DS 3

SGIENTIFIG DATA SYSTEMS

Reference Manual

SDS 930 Gomputer

Mnemonic

Octal Code

CENTRAL PROCESSOR

LOAD, STORE

EAX

ARITHMETIC

SUB A, T
ADD A,T
SUC A, T
ADC A,T
MIN A, T
ADM A, T
MUL A, T
DIV A,T

LOGICAL

ETR AT
MRG A, T
EOR A,T

REGISTER CHANGE

CLA
CLB
CAB
CBA
XAB
CBX
CXB
XXB
STE
LDE
XEE
CXA
CAX
XXA
CNA
BAC
ABC
CLR
CLX

0 46 00001
0 46 00002
0 46 00004
0 46 00010
0 46 00014
0 46 00020
0 46 00040
0 46 00060
0 46 00122
0 46 00140
0 46 00160
0 46 00200
0 46 00400
0 46 00600
0 46 01000
0 46 00012
0 46 00005
0 46 00003
2 46 00000

SDS 930 BASIC INSTRUCTIONS

Name

Store A

Store B

Store Index

Exchange M and A
Load Index

Load B

Load A

Copy Effective Address
into index

Subtract M from A
Add M to A
Subtract with Carry
Add with Carry
Memory Increment
Add A to M
Multiply

Divide

Extract
Merge
Exclusive Or

Clear A

Clear B

Copy A into B

Copy B into A
Exchange A and B
Copy B into Index
Copy Index into B
Exchange Index and B
Store Exponent

Load Exponent
Exchange Exponents
Copy Index into A
Copy A into Index
Exchange Index and A
Copy Negative into A
Copy B into A, Clear B
Copy A into B, Clear A
Clear AB

Clear X

Legend:

Page
Ref.

€0 00 CO O 0 0 00

11

11

Mnemonic Octal Code
BRANCH
BRU A, T 01
BRX A, T 41
BRM A, T 43
BRR A, T 51
TEST/SKIP
SKS A 40
SKE A, T 50
SKB A, T 52
SKN A, T 53
SKR A, T 60
SKM A, T 70
SKA A, T 72
SKG A, T 73
SKD A, T 74
SHIFT
LRSH N, T 066 24XXX
RSH N, T 066 00XXX
RCY N,T 066 20XXX
LSH N,T 0 67 00XXX
LCY N,T 067 20XXX
NOD N, T 067 10XXX
CONTROL
HLT 00
NOP 20
EXU A, T 23
BREAKPOINT TESTS
BPT 4 0 40 20040
BPT 3 0 40 20100
BPT 2 0 40 20200
BPT 1 0 40 20400
OVERFLOW
ROV 0 02 20001
REO 0 02 20010
OovT 0 40 20001
INTERRUPT
EIR 0 02 20002
DIR 0 02 20004
AIR 0 02 20020
IDT 0 40 20002
IET 0 40 20004
MEMORY EXTENSION
0 06 200SR
0 40 4000T

Name

Branch Unconditionally
Increment Index &Branch
Mark Place &Branch
Return Branch

Skip if Signal Not Set

Skip if A Equals M

Skip if M and B Do Not Compare Ones
Skip if M Negative

Reduce M, Skip if <0

Skip if A =M on B Mask

Skip if M and A Do Not Compare Ones
Skip if A Greater Than M

Difference Exponents; Skip

Logical Right Shift AB
Right Shift AB

Right Cycle AB

Left Shift AB

Left Cycle AB
Normalize; Decrement X

Halt
No Operation
Execute

Breakpoint No. 4 Test
Breakpoint No. 3 Test
Breakpoint No. 2 Test
Breakpoint No. 1 Test

Reset Overflow
Record Exponent Overflow
Overflow Test; Reset

Enable Interrupts
Disable Interrupts
Arm Interrupts
Interrupt Disabled Test
Interrupt Enabled Test

Set Extension Register
Extension Register Test

A = address; *A = indirect address; T = tag field; N = number of shifts

23
23
23
23
23

19

Mnemonic

Octal Code

SDS 930 INPUT/OUTPUT INSTRUCTIONS

Name

INPUT/OQUTPUT INSTRUCTIONS

GENERAL

EOM A
EOD A

=4

=

=
NONNO<KS<S000

czT

0 02 50000
0 02 00000
0 02 14000
0 40 20010
0 40 20020
0 40 21000
0 40 22000
0 02 12000
0 40 14000
0 40 11000
0 40 10400
0 40 12000

Energize Output M

Energize Output to Direct Access

Channel
Memory into W when Empty
Memory into Y when Empty
Parallel Input
Parallel Output
W into Memory when Full
Y into Memery when Full

Alert Channel
Disconnect Channel
Terminate Output
Buffer Error Test W
Buffer Error Test Y
Buffer Ready Test W
Buffer Ready Test Y
Alert to Store Address

Channel Active Test; Skip if Inactive
Channel Error Test; Skip if no Error

Channel Inter-Record Test

Channel 0Count Test; Skip if Count=0

PERIPHERAL DEVICE INSTRUCTIONS AND TESTS

Octal Codes given are for the W Channel, device number 0 (bits 21-

23), and 4 character/word mode (bits 15, 16).

PAPER TAPE

RPT CU,CC
PTL C,U,CC
PPT C,U,CC

CARD

CRT CU
FCT CU
RCD CU,CC
RCB C,U,CC
CFT GU
SRC C,U
CPT CU
PBT CU
PCD C,U,CC
PCB C,U,CC

0 02 02604
0 02 00644
0 02 02644

0 40 12006
0 40 14006
0 02 02606
0 02 03606
0 40 11006
0 02 12006
0 40 14046
0 40 12046
0 02 02646
0 02 03646

Legend:

Read Paper Tape
Punch Paper Tape, Leader
Punch Paper Tape, No Leader

Card Reader Ready Test

First Column Test

Read Card Decimal (Hollerith)
Read Card Binary

Card Reader EOF Test

Skip Remainder of Card

Card Punch Ready Test

Punch Buffer Test

Punch Card Decimal (Hollerith)

Punch Card Binary

Page
Ref.

Octal Code

Mnemonic

MAGNETIC TAPE

TRT CU 0 40 10410
FPT CU 0 40 14010
BTT CU 0 40 12010
TGT C 0 40 12610
ETT CU 0 40 11010
DT2 CU 0 40 16210
DT5 CU 0 40 16610
DT8 CU 0 4017210
TFT C 0 40 13610

0 40 10210

RTD C,U,CC 00202610
RTB C,U,CC 00203610
RTS C 0 02 14000
SRR C 00213610
SFD C,U,CC 0 02 02630
SFB C,U,CC 002 03630
SRD C,U,CC 002 06630
SRB C,U,CC 002 07630
WTD C,U,CC 0 02 02650
WTB C,U,CC 002 03650
EFT C,U,CC 00203670
ERT C,U,CC 002 07670

REW GU 00214010
LINE PRINTER
PRT C,U 040 12060
EPT C,U 040 14060
PFT C,U 040 11060
POL C,U 002 10260
PSC C,UN 002 IN460
PSP C,U,N 002 IN660

PLP C,U,CC 0 02 02660
TYPEWRITER

RKB C,U,CC 002 02601
TYP C,U,CC 00202641

Name

Tape Ready Test

File Protect Test
Beginning of Tape Test
Tape Gap Test

End of Tape Test

Density Test, 200 BPI
Density Test, 556 BPI
Density Test, 800 BPI
Tape EOF Test

MAGPAK Test

Read Tape Decimal (BCD)
Read Tape Binary

Convert READ to Scan
Skip Remainder of Record
Scan Forward Decimal (BCD)
Scan Forward Binary

Scan Reverse Decimal (BCD)
Scan Reverse Binary

Write Tape Decimal (BCD)
Write Tape Binary

Erase Forward Tape

Erase Reverse Tape

Rewind

Printer Ready Test

End of Page Test

Printer Fault Test

Print Off-Line

Printer Skip to Channel N
Printer Space N Lines
Print Line Printer

Read Keyboard: -
Write Typewriter

OCTAL CODE CHANNEL SELECTION

Channel EOM (02) SKS (40)
W 00000000 00000000
Y 00000100 00000100
C 20000000 20000000
D 20000100 20000100
E 00400000 00040000
F 00400100 00040100
G 20400000 20040000
H 20400100 20040100

Add the appropriate entty to the octal code to select the channel.

Example: PCD (i.e., 00202646) for channel G is 20602646.

A=address; T=tag field; C = channel number; U = unit number; CC = character/word count; N = number.

Page
Ref.

Price: $2.50

SDS 930 COMPUTER
REFERENCE MANUAL

February 1966

SDS

SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California/(213)UP 1-0960

Printed in U.S.A. ©I965, 1966 Scientific Data Systems, Inc.

REVISIONS

This publication, SDS 90 00 64D, dated February 1966, is a revision of the SDS 930

Computer Reference Manual, SDS 90 00 64C. Changes to the previous manual are

indicated by a vertical line in the margin of the page.

RELATED PUBLICATIONS

Title of Manual

SDS ALGOL 60 Reference

SDS 900 Series FORTRAN II Reference

SDS 900 Series FORTRAN II Operations

SDS MONARCH Reference

SDS SYMBOL and META-SYMBOL Reference

SDS 920,930 Programmed Operators Technical

SDS 930 Computer EXAMINER Diagnostic System Technical
SDS 900 Series Utility and Debug Package (AID)

SDS Project Management System Reference

SDS SORT/MERGE Reference

SDS Business Language Reference

Publication

Number

90 06 99
90 00 03
90 05 87
90 05 66
90 05 06
90 00 20
90 00 97
012013
9008 18
90 09 97
90 10 22

CONTENTS

L. GENERAL DESCRIPTION 1 IV. (Continued)
Introduction. « v v v v s o e e e 1 Peripheral Equipment Description 49
ggg Zgg ‘;:9'5‘\8"5 """"""""" 3 Paper Tape Input/Output vv v .o 49
EMOTY v v ettt it oo ien e ns 4 Card Input/Output 52
ard Input/Output . ..o oo i e i
Memory Word Formats 4 Maanetic T Input/Output 56
¢ nat gnetic Tape Input/Output
Special Characteristics 6 Line PEInter .« v v oo 62
IL MACHINE INSTRUCTIONS 8
APPENDICES
Introduction 8
Load/Store Instructions 8
Arithmetic Instructions 9 SDS Character Codes .« v v v v v v v v vt ee et A-1
Logical Instructions 11 Table of Powersof Two . v v v v i v i i v n A-2
Register Chcng? Instructions 12 Octal-Decimal Integer Conversion Table A-3
Branch Instructions 14 Octal-Decimal Fraction Conversion Table ... A-7
Test and Skip Instructions 15 Two's Complement Arithmetic A-10
Shift Insfruction.s """""""""" 17 Optional Equipment A-11
gonflzol 'Infst.ltucthons ------------ :3 Data Multiplexing System A-11
reakpoint 1ests Memory Interface Connection A-15
Overflow Instructions 19 Aufomoyfic Power Fail-Safe A-15
Memory Extension Instructions 19 Memory Parity Interrupts « o« oo v v v v A-15
Floating Point Operations 20 Real=Time Clock . vvvvvvennn e, A-16
Programmed Operator Instructions A-17
HL - INTERRUPT SYSTEM 21 Channel Memory Access Priority A-19
Division Instructiono A-19
Priority Interrupt System 21 Instruction List — Functional Categories A-20
Priority Interrupt Operations 21 Instruction List — Numerical Order A-25
Interrupt Control.l 22 Instruction List — Alphabetical Order A-29
Non-Interruptable Instructions 22
Enable/Disable Interrupt Instructions 22
Arming Feature (Optional) 23
Channel Interrupt Designations 24 FIGURES
End-of -Word/End-of ~Transmission Interrupt
Operations; Compatible Mode 24,
Count Equals Zero/End-of-Record; .. .
Extended Mode - .+ o o oo o 24 SDS 930 Computer (Fron.hsplet.:e) iv
1-1 SDS 930 Computer Configuration 2
IV. INPUT/OUTPUT INSTRUCTIONS 25 l‘f S‘BSS‘CQQZQT'#“ FA‘A°V|VFD;°9“3’“Q;W;W-‘ AR 3
- ime-Multiplexe u
Introduction25 Chunnel,. Block Diagram . . R 29
Direct Memory Access System 26 4-2 SDS 930 Direct Acc‘ess Communication
Primary Input/Output Instructions 26 Channel, Block Diagram 30
Communication Channel Input/Output 28 4-3 SDS 930 Computer Contr‘ol Panel EEEEREE 45
Communication Channel EOM 3 4-4 Co.lrd Read Into N\e{nory |n'Ho||er|th Ceeaes 52
Standard EOM/EOD Instructions 33 4-5 Printer Control Indicator Lights c.md Svyltches .. 62
Compatible/Extended Input/Output Modes . . 34 A-l SDS 930 Computer Overall Configuration ... A-12
Input/Output Class EOM/EOD 34
Terminal Functions; Extended Mode 35
Channel and Device SKS 37 TABLES
Single-Word Data Transfer Via
Channels Wand Y 38
Direct Parallel Input/Output Instructions . . . 41
Single-Bit Input/Output 41 3-1 Interrupt Location Assignments 22
Communication Channel Programming 42 4-1 Unit Address Codeso v vt v oo n 32
Control Console 44 4-2 Format Control Characters 65

SDS 930 Computer

. GENERAL DESCRIPTION

INTRODUCTION

The SDS 930 is a high-speed, low=cost, general-purpose digi-
tal computer with the following characteristics:

24-bit word plus parity bit
Binary arithmetic
Single address instructions with
Index Register
Indirect Addressing

Programmed Operators

Basic core memory 4, 096 words, expandable to 32,768
words, all addressable with

0.7 microsecond access time
1.75 microsecond cycle time

Memory overlap between Central Processor and 1/0
with two memory banks

Memory available in 4, 8, and 16 K banks
Multi-precision programming facility

Typical execution times (including memory access and
indexing)

Fixed-Point Operations (in microseconds)

Add 3.5
Multiply 7.0

Floating-Point Operations (in microseconds)

24-bit Fraction 39-bit Fraction
(plus 9-bit Exponent) (plus 9-bit Exponent)

Add 77 92
Multiply 54 147

Program interchangeability with other SDS 200 Series
Computers

Parity checking of all memory and input/output
operations

Priority Interrupt System

SDS 1/O Options Interrupts 2 levels standard,
38 optional

System Interrupts, 896 optional

Optional power fail-safe feature permits saving contents
of memory and programmable registers in case of power
failure.

Up to four I/O communication channels (with optional
interlacing capability), time-multiplexed with com-
puter operation, providing input/output rates of up to
one word per 3.5 microseconds

An optional Direct Memory Access System that allows
input/output transfer to occur simultaneously with
computer memory access, providing input/output rates
of up to one word per 1.75 microseconds

One to four Direct Access Communication Channels
that incorporate the Direct Memory Access System

Data Multiplex Channel that uses direct memory access
connection and accepts/transmits information from ex-
ternal devices, or subchannels, which may operate
simultaneously; thus, externally controlled and se-
quenced equipment may perform input/output buffering
and control operations rather than the computer,

Time-Multiplexed Input/Output Channels operate upon
either words or characters. A 6-bit character is the
standard character size; 6= and 12-bit characters, or
6-, 12-, and 24-bit characters can be specified as de-
sired. Direct Access Channels operate upon words and
characters. These channels accept 6-, 8-, 12-, and
24-bit characters. The number of characters per word
is specified by the external device.

Input/output with Scatter-Read and Gather-Write
facility

Standard input/output
Time-Multiplexed Communication Channel (without

interlace)

Control Console
Optional input/output devices
Automatic typewriter

Photoelectric paper-tape reader and paper-tape punch,
and spooler mounted on cart

MAGPAK Magnetic Tape System

Magnetic-tape units (IBM-compatible; binary and
BCD)

Punched-card equipment
Line printers, graph plotters

Typewriter with electromechanical paper-tape reader
and punch, auxiliary disc files

Up to 896 System Priority Interrupts
[|

l Iloo.ooao-oocl

1Y |

EOM
D Smmamm e |
~_Operands 40‘?(‘:dwgalrdst
SKS SDs 930 Instructions Core erpancanle o
—_ 32K
Computer Time- Memory
. SRS
Multiplexed
POT/PIN Vo T
~————— i
| Second Memory Path
1 | (Optional)
24-bit Word
Parallel

\

Time-Multiplexed
Communication
Channels

A N\
/I \\ \
S35

* W-Buffer Standard;
W Channel optional

Figure 1-1.

e G

|
| | | |
| | | | Data Multiplex System

- Direct Access | | | |

Communication | | | |
Channels | | | |

E, F, G, H Subchannels

See Appendix A-11 for complete
description of Data Multiplex System

SDS 930 Computer Configuration

Communications equipment, teletype consoles, dis-
play oscilloscopes

A/D converters, digital multiplexer equipment, and
other special system equipment

e FORTRAN II and symbolic assembler as part of complete
_ software package

o All-silicon semiconductors
o Operating temperature range: 10° to 40°C
‘e Dimensions: 124 inches x 25-1/2 inches x 65 inches

e Power: 3 kva

SDS 930 REGISTERS

The 930 Central Processor contains the following arithmetic
and control registers. They are full-word, 24-bit registers ex-
cept as noted.

AVAILABLE TO THE PROGRAMMER (see Fig. 1-2, dark lines)

The A Register is the main accumulator of the computer. The
B Register is an extension of the A Register. The B Register
contains the less significant portion of double-length numbers.

The Index Register, X, used in address modification, is a full-
word register. Indexing operations occur only with the least
significant 14 bits.

The P Register is a 14-bit register that contains the memory
address of the current instruction. Unless modified by the pro-
gram, the contents of P increase by one at the completion of
each instruction. '

The Memory Extension Registers, EM3 and EM2, are 3-bit regi-
sters that specify the portion of extended memory being used.

NOT AVAILABLE TO THE PROGRAMMER (see Fig. 1-2, light

lines)

The S Register is a 14-bit register that contains the address of
the memory location to be accessed for instructions or data.
The address is augmented by one of the Memory Extension
Registers.

The C Register is an arithmetic and control register used in
multiply, divide, and other operations. All instructions come
from memory to the C Register before decoding. Address modi-
fication and parity generation/detection take place in the

C Register.

The O Register is a 6-bit register that contains the instruction
code of the instruction being executed.

The M Register is a 24-bit register that holds each word as it
comes from memory. Recopying of a word into memory takes
place from the M Register.

A Register B Register X Register
(Main Accumulator) (Extended Accumulator) (Index)
(@]
Reg.
(Instruction)
P Register C Register M Register

(Program Counter)

(Arithmetic and Control)

(Memory Access)

S Register
(Memory Address)

EM3 EM2

Memory

Figure 1-2, Basic Register Flow Diagram

SDS 930 MEMORY

Core memory is expandable from 4,096 to 32,768 words. Word
length is 24 bits plus parity. The addressfield in the instruction
format is 14 bits long, allowing direct access of up to 16,384
words. The Memory Extension System provides direct access to
the total 32,768 words.

Memory isavailable in4,096-, 8,192-, and 16,384 -word banks.

As an optional feature, if a power loss is detected, the com-
puter may be interrupted and the transient, programmable reg-
isters stored to provide complete fail-safe capability. With this
option, power failure causes no loss of information.

Even parity is automatically generated or checked during each
read/write cycle. A control panel switch may be set tohalt the
computer automatically in case of parity error detection.

The memory iscyclic, or "wrap-around", foreach 16,384 words
beingaddressed. Anattempt to accessfroma location whose ad -
dress is greater than that available results in anaccess of all zeros.
An attempt to store intosuch a location resultsina "no-op" oper-
ation, with the next instruction in sequence being executed.

MEMORY EXTENSION SYSTEM

The Memory Extension System, containing two memory extension
registers, allows addressing of memories greater than 16,384
words. The program loads either or both of the Extend Memory
Registers and activates them as desired. Each register contains
3 bits, or one octal digit, that canbecome the mostsignificant,
or fifth, digit of any operand address.

EM3 EM2

012 012

The program uses the first extension register, EM3, by calling
for an address with a 1, 1 in the most and next most significant
address bits, respectively (a "3" for the most significant octal
digit). The program calls for EM2, the second extension regis-
ter, by setting the same two address bits to 1,0 (a "2" for the
most significant octal digit). Via memory extension instructions,
the program can set each of the registers to a desired "5th
digit" and can test the current setting of each register. Once
set, the contents of either register remain set until changed by
program or by pressing the START button.

The program always addresses the first 8,192 words of core,
00000-17777, directly without regard to the Extend Memory
Registers. Whenever the operator initializes the computer
(presses START), the computer presets a 3 in EM3 and a 2 in
EM2. This allows the programmer to address the first 16,384
words of core, 00000-37777, without being concerned with the
extension system,

Example 1. By previously setting EM2 to 4, the program adds
the contents of location 43300 to the A Register by executing
ADD 23300, The "2" calls for register EM2:

ADD 23300 yields 2 3300

J

43300

(EM2)

"ADD 43300"

Example 2. EM3 setting is 5; EM2 setting is 7:
ADD 34000 yields 3 4000

"ADD 54000" 54000

When (EM3) #3, the computer lights the EM3 light on the control
panel. When (EM2) # 2, the computer lights the EM2 light on the
control panel. When executing the MARK PLACE AND BRANCH
(BRM) instruction, the computer records the contents of EM3, EM2,
and the Overflow Indicator in the mark location. BRM stores
overflow in bit 0 of the mark; it stores the contents of EM3 in
bits 3 through 5 and the contents of EM2 in bits 6 through 8.
Bits 1 and 2 are unpredictable; bit 9 is zero.

(EM3) =

Memory Write Lock-Out Feature (Optional)

Permanent memory protection for selected areas of memory in
the SDS 930 Computer is provided by a memory lock-out fea-
ture, which is controlled either manually by switches or by the
program with a lock-out register, protects the contents of
memory from inadvertent destruction by operating programs.

The entire memory isdivided into 2048 word blocks. This first
block, from 0000 to 2047, isfurtherdivided into four subblocks

of 512 words each. Each of these blocks can be individually
protected by turning on the appropriate switch with the manual-
controlled option or placing a one in the appropriate position
of the lock-out register with the program-controlled option.

Read operations are always allowed, but if a programor /O chan-
nel attempts to store or write into a protected block of memory, an

internal interrupt occurs to octal location 35. The memory cell
referenced is not altered. Therefore, not only is memory pro-

tected, but also the supervisory program is notified that an at-

tempt to write into an interlocked area has occurred.

MEMORY WORD FORMATS

A computer word is 24 binary digits (bits) long.

1 2- -
0 o0 Ol 02 o3 04 o5 06 o7

The format above numbers the bits from the left, or most sig-
nificant end of the word, to the right, or least significant end
of the word. This numbering format is the basis of references

to bit positions or bit numbers. Octal notation most easily de-
scribes the contents of the 24 bits of a word. Thus, one octal
digit, 0 through 7, represents three binary digits. For example,
the octal number, 01234567, represents its binary equivalent,
000 001 010 011 100 101 110 111.

The computer instruction word format is:

RIX | Instruction Code |1 Address Field
1. 1 1 i L
T T 1 T

0 12" 8910 23
oo Ol 02 o3 O4 05 06 o7
Bit position O contains the Relative Address Bit. Standard load-
ing programs use this bit; central processor decoding logic does

not use orsense thisbit. A 1-bit(octal value of 4) in thisposition
causes some standard loading programs to add the assigned loca-
tion of the instruction to the address field contents prior to ac-
tual storage into the assigned location.

Bit position 1 (octal value of 2) contains the Index Register Bit.

Bitpositions 2 through 8 contain the Instruction Code Field which
determines the operation to be performed. The Programmed Oper-
ator facility usesbit position 2 (octal valueof 1); itispart of the
"Tag" Field (bit positions 0 - 2).

Bit position 9 (octal value of 4) contains the Indirect Address Bit.

Bitposition 10 (octal value of 2) contains the Memory Extension Bit
that controls addressing above location 8,191, A 1-bit in this
position activates the memory extension logic.

Bit positions+10 through 23 contain the Address Field which
usually represents the location of the opetand called for by the
instruction code.

The following examples use standard assembler format in express-
ing instructions. This format is:

LDA 1000, T
where :

LDA is a representative mnemonic instruction code,

1000 is a representative address that is written decimally,
and T is a 1-digit octal integer that represents the Tag
Field.

To express indirect addressing (that is, a "one" in the Indirect
Address position), the programmer prefixes an asterisk to the
address field:

LDA *1000, T

The interpretation of the Tag Field (bit positions 0 - 2) integer,
T, when required, is composed of the sum of the octal values of
its constituents; it is written as follows:

Tag Field Integer T
0 (or blank)

Interpretation

No Relative Address, No Index,
No Programmed Operator

1 Programmed Operator
Index
Programmed Operator and Index

Relative Address

O &~ W N

Programmed Operator and
Relative Address

. Both Relative Address and Index

o~

Programmed Operator, Index,
and Relative Address
Tag Fields of 1,3,5,7 are usually replaced by a specific
Programmed Operator mnemonic along with Tag Fields of
0,2,4,6, respectively.

In the explanation of specific instructions, the format used for
the instruction word is:

RIX 000 I M

0T o f 5570 y ' T
00 Ol 02 O3 04 O5 06 07

where R, X, and I are as defined previously, 000 represents
the instruction, and M represents a generalized memory address.

FIXED-POINT FORMAT

Fixed-point data words have the format :

-+
-

01 2 23

Numbers held in this format are 8-digit, octal numbers, with
the sign incorporated as the "leading bit" in the most significant
octal digit. Bit position 0 is the sign bit, with negative numbers
having a "1" in bit position 0 and positive numbers having a "0"
in bit position 0.

The memory holds fixed-point numbers as 23-bit fractions with
an assumed binary point to the left of bit position one. Numbers
held in one word have the equivalent precision of over six
decimal digits. The range of values of the fixed-point format

is from minus one to slightly less than plus one. Scaling is used
in handling numbers during computation.

Programmers sometime consider fixed-point numbers to be integers,
with the binary point to the right of bit position 23. The range of
integer values is from -24° to +223.7,

The memory holds negative, fixed-point numbers in two's com-
plement form; the computer operates on these numbers arithmeti-
cally in a two's complement number system. See Appendix A-10
for a discussion of two's complement arithmetic.

FLOATING-POINT FORMAT

SDS offers standard programmed operator packages for performing
double and single-precision floating-point arithmetic. The
following paragraphs explain the standard floating-point number
formats.

Double-Precision Floating-Point Format

Most Significant Word

+
L T
01 23
Least Significant Word
+
} } } } } t
0 141516 23

The fractional portion of a double=precision, floating-point
number is a 39-bit, proper fraction, with the leading bit being
the sign bit and the assumed binary point just to the left of the
most significant magnitude bit (bit 1 of the upper word). I
The floating-point exponent is a 9-bit integer, with the lead-
ing bit being the sign. The standard routines operate on both
fraction and exponent in two's complement form. If F represents
the contents of the fractional field and E represents the contents
of the exponent field, the number has the form F x 2°.

Double-precision, floating-point numbers have over 11 decimal
digits of precision and a decimally equivalent exponent range
of 10777 to 10%77.

Standard Programmed Operators assume that the more significant
word is in the A Register, or stored in memory location M + 1,
and that the less significant word is in the B Register, or stored
in memory location M.

Single-Precision Floating-Point Format

Fractional Word

+
51 t } -+ t t +- t =
Exponent Word
Not Used +
0 = = : = 141516 ! t 23

The fractional portion of a single-precision, floating-point
number is a 24-bit proper fraction, with the leading bit being
the sign and the assumed binary point just to the left of the

most significant magnitude bit. The floating-point exponent is

a 9-bit integer with a leading sign bit. The standard routines
operate on both fraction and exponent in two's complement form.

Single-precision, floating-point numbers have over six decimal

digits of precision and a decimally equivalent exponent range
of 10777 1o 1077,

Standard Programmed Operators assume that the fractional word
is in A, or stored in memory location M + 1, and that the
exponent word is in B, or stored in memory -location M. When
entering a standard Programmed Operator routine, bits 0-14
of the exponent word are ignored.

SPECIAL CHARACTERISTICS

Certain computer features simplify programming and provide
significant economies in memory and in program running time.

ADDRESS MODIFICATION

Indexing and indirect addressing, used singly or in combination,
perform address modification. In both indexing and indirect
addressing, the computer performs address modification after
bringing the instruction from memory but before executing it.
The instruction remains in memory in its original form. The
results of indexing and/or indirect addressing form the "effective
address".

INDEXING

The computer contains an Index Register for address modification.

The use of this register to modify the address in an instruction
does not increase instruction execution time.

If the content of the Index Bit in an instruction is a "one", the
computer adds the contents of bits 10 through 23 of the X Regis-
ter to the contents of the Address Field of the instruction prior
to execution. This addition does not keep any overflow or carry
beyond the fourteenth address bit.

The instruction set provides instructions for modifying and test-
ing the X Register, and for transferring information between the
X and B Registers, the X and A Registers, and the X Register
and memory.

INDIRECT ADDRESSING

The Indirect Address Bit is in bit position 9 of the instruction.
This bit determines whether the computer uses indirect address-
ing with the instruction being executed.

A zero in the Indirect Address Bit causes the computer to use
the contents of the Address Field (bit positions 10 =23 in the
instruction) as the 5-digit, octal address requested by the in-
struction. A one in the Index Bit causes the computer to add
the contents of the Index Register to this address to form the
effective address.

A one in the Indirect Address Bit causes the computer to decode
the contents of the effective address, accessed as described
above, as if it were an instruction without an instruction code;
that is, the address logic reinitiates address decoding, using
the word in the effective location (the memory cell whose
address is the effective address). This is an iterative process
and provides multi-level indirect addressing. ~Indirect address-
ing adds one cycle time to instruction execution time for each
level of addressing. The programmer can use indexing to mod-
ify indirect addressing at every level,

EXAMPLES: INDEXING AND INDIRECT ADDRESSING

The octal instruction code for LOAD A REGISTER (LDA), used
in the examples, is 76.

Location Contents Effect

X 00000001
1000 00001001
100100041002
1002 00001003
1003 ooéooobgy .
2000 076 01000 (1000) = 00001001 —> A
2001 276 01000° (1000 +1) = (1001) = 00041002 —> A
2002 076 41000 ((1000)) = (1001) = 00041002 —> A
200327641000 (1000 +1)) = (1001)) = (41002) =

((1002)) = (1003) = 00000002 —>A
P '

Nomenclature

When discussing properties of the various instructions, including
the indirect addressing facility, several terms describe specific
locations or addresses.

The term "effective memory location" describes the location
in memory from which the final operand is taken at the con-
clusion of all indirect addressing and indexing. This term is
sometimes shortened to "effective location." It is the location
whose address is the effective address.

The term "effective operand" means the contents of the effective
memory location.

PROGRAMMED OPERATORS

Programmed Operators (called POP)permit the calling of subrou-
tines with a single instruction of the same form as built-in ma-
chineiinstructions. The computerdecodes the codes 100g - 177g
asspecial instructions and transfers to asubroutine uniquely de-
termined by the code. The computer records the address of the POP
instruction at location 00000 together with an indirect addressbit
so that the program continuity may be maintained. By indirect ad-
dressing which refers to location 00000, which in turn refers to the
POP instruction, the subroutine can gainaccess to the effective
address of the operand associated with the POP instruction.

Programmed Operator subroutines are assigned three-letter,
mnemonic designations in the same manner as built-in, machine
instructions described in Section II. A program can use up to
64 Programmed Operators at any one time; however, since
Programmed Operators are programmer-specified, the program-
mer can select alternate sets or sub-sets of the 64 Programmed
Operators from program to program or from section to section

of the same program. The total number of Programmed Oper-
ators is without limit; but it is inconvenient to use more than

64 in one program. Other computers in the SDS 900 Series
maintain symbolic homogeneity through use of Programmed
QOperators. Mnemonic designations are identical in all com-
puters. For example, while the designation "FLA" (for Floating
ADD) may refer to a built-in, machine instruction in one com-
puter, it refers to a Programmed Operator subroutine in another.
This technique preserves the one-to-one instruction relationship;
programs written for one 900 Series Computer can run on any
other computer in the series.

A more detailed discussion and a list of standard SDS Pro-
grammed Operator routines are in Appendix A-17.

OVERFLOW

The Overflow Indicator in the computer permits the detection
of erroneous arithmetic operations that occur during the execu-
tion of a program. The Overflow Indicator turns on if any of
the following occur:

A sum or difference resulting from an addition or subtraction
that cannot be contained within the A Register.

Multiplication of N by N where N is 40000000, the largest
negative number that can be represented in an SDS 930 word.
The A and B Registers cannot contain this product.

A division operation where the absolute value of the numer-
ator is equal to (positive result) or larger than the absolute
value of the denominator. The A Register cannot contain
this quotient.

A left=shift operation that shifts a bit of absolute magnitude
equal to one beyond position 1 of the A Register.

The instruction set (see Section II) contains instructions to
reset, or test and reset the state of the Overflow Indicator.

The only instruction whose execution is altered by the state of
the Overflow Indicator is OVERFLOW TEST (OVT), which skips
if overflow is reset. Thus, the state of the Overflow Indicator
can be ignored if desired. This is unlike some machines in
which overflow causes a trap or halt.

To determine whether a particular instruction causes overflow,
turn off the Overflow Indicator before executing the instruction.
An instruction that may be used to turn on overflow is BRR. The
instruction A BRR A, 4 "branches" to the next location and turns
on the Overflow Indicator.

If the Overflow Indicator is on, it remains on until the appro-
priate instruction turns it off.

The execution of Programmed Operator, closed and interrupt
subroutines automatically preserves the status of the Overflow
Indicator. In the execution of a Programmed Operator instruc-
tion, the computer automatically places the status of the Over-
flow Indicator in bit position 0 of location 00000 and resets the
Overflow Indicator. The instruction, MARK PLACE AND
BRANCH (BRM), places the status of the Overflow Indicator

in bit position 0 of the effective memory location and does not
disturb the Overflow Indicator.

The instruction, RETURN BRANCH (BRR), automatically merges
the contents of the Overflow Indicator with the contents of bit
position O of the effective memory location and places the
result in the Overflow Indicator. Section II contains a descrip-
tion of the above branch instructions.

SUBROUTINE EXECUTION

The SDS 930 Computer provides three distinct methods of sub-
routine execution:

Normal closed subroutine where the input parameters are
specified in appropriate registers such as the A Register

Interrupt subroutine that is entered as the result of an
interrupt

Programmed Operator subroutine.

A program enters a normal closed subroutine viaa MARK PLACE
AND BRANCH (BRM) instruction; BRM automatically stores the
contents of the Program Counter (P) Register and the status of
EM3, EM2, and Overflow Indicator in the branch-to location.
P Register value is the address of the BRM instruction. A RE-
TURN BRANCH (BRR) instruction accomplishes the return to the
main program; the BRR adds one to the stored P Register value
and transfers control to that location. See Section II, Branch
Group, for a description of the branch instructions.

Interrupt subroutinesare closed subroutines that are initiated by
the detection of program-controlling interrupts that automati-
cally cause the specific interrupt subroutine to be entered. A
BRM instruction enters an interrupt subroutine; the BRM auto-
matically stores the contents of the P Register, EM3, EM2, and
Overflow Indicator in the branch-to location. The value
stored from the P Register is the address of the instruction to
which program control should return after the interrupt is serv-
iced by the interrupt subroutine. ABRANCH UNCONDITION-
ALLY (BRU) instruction with indirect addressing returns control
to the main program at the completion of the subroutine. BRU
also clears the interrupt from the active state. Note that this
differs from the normal closed subroutine return that uses the
BRR (stored P value + 1—==P). The point in an execution cycle
at which the interrupt routine-entering BRM executes has al-
ready caused the proper incrementing to occur.

II. MACHINE INSTRUCTIONS

INTRODUCTION

This section describes SDS 930 instructions; the instructions

. are in functional groups. Lists of instructions, in functional,
numerical, and alphabetical order are in Appendices A-20,
A-25, and A-29, respectively. :

The following statements apply to the instruction descriptions:

All instruction times are in memory cycles, where each
cycle is 1,75 microseconds, angd include accessing the
instruction and all required operands. :

Parentheses denote "contents of." For example, "(A)"
denotes "contents of the A Register."

Indexing and Indirect Addressing apply to all instructions
except as noted. Indexing does not change the instruction
execution time, Each'level of indirect addressing requires
one additional memory cycle.

The interrupt system can interrupt the program sequence at
the end of any instruction except as noted.

Each instruction description specifies.the registers affected.

With the description of each instruction is a diagram represent-
ing the format of the instruction. Preceding this diagram is the
mnemonic code that identifies the instruction and the name of
the instruction.

EXAMPLE :
R |x|0 55 I Mo
0123 ' 8910 ! ' 23

o0 o1 02 o3 04 o5 06 o7
The letter M represents the address part of the instruction.
Some instructions have octal numbers in the address field.
These instructions do not refer to memory.

LOAD/STORE INSTRUCTIONS

LDA LOAD A
R Ix]o 76 I M

L 1 1 1 i -
01273 ' 8910 ' ' ' 23

LDA loads the contents of the effective memory location into
the A Register.

Registers Affected: A Timing: 2
STA STORE A

RIX |0 35 I M

0123 ' g§910 ' ' N 23

STA stores the contents of the A Register in the effective
memory location.

Registers Affected: M Timing: 3

LDB LOAD B
RiX|o 75 I M
01273 ' 89 10 i Too23

.~

LDB loads the contents of the effective memory location into
the B Register.

Registers Affected: B Timing: 2
STB STORE B
RI{X]0 36 [M

+ } } }
0123 8910 23

STB stores the contfents of the B Register in the effective
memory location.

Registers Affected: M Timing : 3
LDX LOAD INDEX

RI{X]0 71 I M

01273 ' 8’910 ' 23

LDX loads the entire 24-bit contents of the effective memory

location into the Index Register.

Timing: 2

Registers Affected: X

STX STORE INDEX

RIX]0 37 I M

0123 ' 8910 ' R

STX stores the entire 24-bit contents of the Index Register in

the effective memory location.

Registers Affected: M

Timing: 3

EAX COPY EFFECTIVE ADDRESS INTO INDEX REGISTER
R [x |0 77 I . LM ‘
0123 8910 ' T3

EAX copies the address of the effective memory location into
the Index Register.

The addressing process for this instruction operates as in a

Load A instruction, except that instead of obtaining the contents
of the effective memory location, the effective memory address
acts as the operand. This addressing process is sometimes called
"immediate addressing." For example, if execution of this
instruction occurs with a zero indirect address bit and a zero

in the index field, then the actual bit configuration in the
address field of EAX copies into the Index Register.

The ten most significant bits of the Index Register are unaffected.

Registers Affected: XIO-23 Timing: 2
XMA EXCHANGE MEMORY AND A
RIX |0 62 I M

Il L 1 1 1
0123) 8910) ' X

XMA loads the contents of the effective memory location into
the A Register and stores the contents of the A Register in the
effective memory location.

Registers Affected: A,M Timing: 3
ARITHMETIC INSTRUCTIONS
ADD ADD MEMORY TO A
Rixlo 55 1 M
1 i 1 [l
0123 ' 8510 1 ' ' T3

This instruction adds the contents of the effective memory loca-
tion to the A Register and places the result in A.

After execution, bit position 0 of the Index (X) Register con-
tains the carry from bit position 0 of the 24-bit adder. There-
fore, the programmer should be careful when attempting to hold
a full word quantity in X while performing an addition.

If both numbers are of the same sign but the sign of the result is
opposite, overflow has occurred and the computer has set the
Overflow Indicator.

Registers Affected: A, XO’ Overflow Indicator Timing: 2
ADC ADD WITH CARRY
RIX |0 57 I M

s I [Il }
0123 ' 87910 ' ' ' T3
This instruction performs multi-precision addition. Using the

instruction, ADD M TO A (55), the program adds the lower
halves of the numbers first. ADD automatically retains the
carry in the sign position of the X Register. The program then
adds the two upper halves, using ADC. ADC is the same as
ADD M TO A (55), except that it adds the carry bit previously
generated into the low-order position.

After execution, bit position 0 of the Index (X) Register con-
tains the carry from bit position 0 of the 24-bit adder. There-
fore, the programmer should be careful when attempting to hold
a full word quantity in X while performing an add with carry.

J;yﬁ/% AN

v et

o

s£7 €

Erererim

The computer automatically clears the Overflow Indicator prior
to execution of this instruction since overflow resulting from
the addition of the lower half of the multi-precision numbers is
not meaningful.

If both numbers of the upper half are of the same sign but the
sign of the result is opposite, an overflow has occurred and the
computer sets the Overflow Indicator.

Registers Affected: A, X), Overflow Indicator ~ Timing: 2 |

EXAMPLE :

Assume the A and B Registers contain a double-precision

number to which the double-precision number, 15034166
12300000, in Locations 1021 and 1020 is added. The less
significant half appears in 1020,

The sign position of B and the sign position of the less signi-
ficant half (1020) are not considered signs but are binary
digits, Thus, a double=-precision number in AB consists of

a sign (Ag) and 47 binary digits (A1 -A23, Bg-B23). The

number is in two's complement form,

The program is:

Location Instruction A B Carry
(Prior to Execution) 20314624 71510426 -
2100 XAB 71510426 20314624 -
2101 ADD 1020 04010426 20314624 1
2102 XAB 20314624 04010426 1
2103 ADC 1021 35351013 04010426 0

NOTE: Since the process is self-propagating, this instruction

is used in performing additions of any precision, See
the instruction, EXCHANGE A AND B (XAB), one of
the Register Change Instructions, this section, for an
explanation of its operation.

ADM ADD A TO MEMORY
RIX]0 63 I M
0123 ! 8'9 10 ' ' T 23

ADM adds the contents of the A Register to the effective memory
location iand stores the result in the same location,

If both numbers are of the same sign but the sign of the result is
opposite, an overflow occurs and the computer sets the Overflow
Indicator. The contents of the A Register do not change.

Registers Affected: M, Overflow Indicator Timing: 3
MIN MEMORY INCREMENT
RIXI0 | 61 I M

] 1 [l i [l
0123 8910 ' ' '

23

MIN increases the contents of the effective memory location
by one, and places the resulting sum in the same location. The
contents of the A Register do not change.

Overflow occurs with this instruction only when the contents of
M are 37777777 before execution. In this case, 40000000 is the
result in M.

Registers Affected: M, Overflow Indicator Timing: 3
SUB SUBTRACT MEMORY FROM A
RIX|O 54 I M

} } } + .L
0123 89 10 23

SUB subtracts the contents of the effective memory location
from the A Register and places the result in the A Register.

After execution, bit position O of the Index (X) Register
contains the carry from bit position 0 of the 24-bit adder.
Therefore, the programmer should be careful when attempt-
ing to hold a full word quantity in X while performing a
subtraction,

If both numbers are of the same sign after the subtrahend has
been complemented for addition but the sign of the result is
opposite, an overflow has occurred and the computer sets the
Overflow Indicator.

Registers Affected: A, XO’ Overflow Indicator Timing: 2
suc SUBTRACT WITH CARRY
RIX]|0 56 I M

} 1 $ 1 1
01273 ’ 89 10 ' ' ' ! 23

This instruction performs multiple precision subtractions. The
program uses the instruction, SUBTRACT M FROM A (54), to
subtract the lower half of the numbers first; this automatically
retains the carry in the sign position of the X Register. This
instruction (SUC) then subtracts the two upper halves. SUC is
the same as SUBTRACT M FROM A (54), except for the reten-
tion of the carry bit previously generated in the sign position
of the X Register.

After execution, bit position O of the Index (X) Register
contains the carry from bit position O of the 24-bit adder.
Therefore, the programmer should be careful when attempt-
ing to hold a full word quantity in X while executing

SUC.

The Overflow Indicator automatically clears prior to execution
of this instruction since overflow resulting from the subtraction
of the lower half of the numbers is not meaningful.

If both numbers of the upper half of the subtraction are of the
same sign after the computer complements the subtrahend for
addition but the sign of the result is opposite, overflow occurs
and the computer sets the Overflow Indicator.

EXAMPLE :

Assume that Registers A and B and memory location M con-
tainatriple-precision number from which the triple-precision
number in location L+2, L+ 1, and L is subtracted. The:
octal numbers 36142070 31567000 10000001 and 14236213
46120000 10000000 are in the following locations: -

A B M

36142070 31567000 10000001
12 | L

14236213 46120000 10000000

The sign of one triple-precision number is in A, while its
71 binary digits are in Aj_23, Bg_23, and Mg_23. The sign
of the other number is in Ly, and its 71 digits are in L1_23,
L+1g_23, and L+2g_53.) o

Execution:

Location Instruction 5_ B » Carry
2100 XMA M 10000001 31567000 -
2101 SUB L 00000001 31567000 0
2102 XMA M 36142070 31567000 0
2103 XAB 31567000 36142070 0
2104 SUC L+l 63447000 36142070 1
2105 XAB 36142070 63447000 1
2106 SUC L+2 21704655 63447000 0

Answer: 21703654 63447000 00000001

NOTE: Since the process is self-propagating, this instruction
performs subtractionsof any precision. See EXCHANGE
A AND B (XAB), under Register Change Instructions,

this section, for explanation of its operation.

Registers Affected: A, X, Overflow Indicator Timing: 2 '
MUL MULTIPLY
RIX]0 64 I M

} —4 + t -
0123 8910 23

This instruction multiplies the contents of the A Register by the
contents of the effective memory location and places the pro-

duct in the A and B Registers with the more significant portion

in A. The sign of the product is in AO; the bit in By is part of

the product, not treated as a sign bit. Since the product con-
tains at most 46 significant bits, the content of By3 is not sig-
nificant and is zero.

The original contents of B do not affect the operation of the
MULTIPLY instruction and are destroyed. If the contents of
both the multiplier and multiplicand have the value 400000008,
overflow occurs and the computer sets the Overflow Indicator.

Registers Affected: A, B, Overflow Indicator Timing : 4 |

EXAMPLE: Multiplication of 3 by 3

A B Memory
Before Execution 00000003 Not Meaningful 00000003
After Execution 00000000 00000022 00000003

Note that 00000000 00000011y scaled ot £ £l
is equal to 00000000 00000022 scaled at 8. ¢7)

DIV - DIVIDE
R|x [0 65 1 M
0712 %10 1 ‘ t LE—F

This instruction divides the contents of the A and B Registers,
treated as a double-precision number, by the contents of the
effective memory location and places the quotient in the
A Register, with the remainder in the B Register.

(A,B)

No overflow occurs if -1<—"=2<1 (if the contents of A and B
divided by the contents of the effective location are greater
than or equal fo minus one but strictly less than plus one). If
the quotient exceeds these boundaries, overflow occurs and the
computer sets the Overflow Indicator. In this latter case, the
results are not arithmetically correct. See Appendix A-19 for a
further description of division.

Registers Affected: A,B, Overflow Indicator Timing: 10

EXAMPLE :
Division of 7 scaled at binary 46 by 3 at binary 23 is:

é E Memory
Before Execution 00000000 00000016 00000003
After Execution 00000002 00000001 00000003
LOGICAL INSTRUCTIONS
ETR EXTRACT
R|x [0 14 I M
0123 g§570 1 ‘ ’ 7

ETR performs a logical "AND" between corresponding bits of
the A Register and the effective memory location and places

the result in A. This instruction performs the operation bit by
corresponding bit according to the following:

A M Result in A
0 0 0
0 1 0
1 0 0
1 1 1
Registers Affected: A Timing: 2

EXAMPLE :
A M
Before Execution 64231567 00777600
After Execution 00231400 00777600
MRG MERGE
R|X [0 16 I M
0123 ' 8'9 10 ' ' ' ' 23

MRG performs a logical "Inclusive OR" between corresponding
bits of the A Register and the effective memory location and
places the result in A. This instruction performs the operation
bit by corresponding bit, as follows:

A M Result in A
0 0 0
0 1 1
1 0 1
1 1 |
Registers Affected: A Timing: 2
EXAMPLE :
A M
Before Execution 06446254 02340712
After Execution 06746756 02340712
EOCR EXCLUSIVE OR
R[X 1|0 17 I M
i i 1 1 1
01273 ' 89 10 ' ' ' 23

EOR performs a logical "Exclusive OR" between corresponding
bits of the A Register and the effective memory location and
places the result in A. This instruction performs the operation
bit by corresponding bit, as follows :

A M Result in A
0 0 0
0 1 1
1 0 1
1 1 0
Registers Affected: A Timing: 2
EXAMPLE :
A M
Before Execution 34165031 70077021
After Execution 44112010 70077021

The proper memory word configuration logically inverts selected
bit positions of the A Register. If all "ones" appear in the
memory word, a one's complement of A results.

11

EXAMPLE :
A M
Before Execution 10357211 77777777
After Execution 67420566 77777777

REGISTER CHANGE INSTRUCTIONS

The facility to operate on and exchange data between the
A, B, and Index Registers is available within the set of micro-
instructions in the Register Change Group.

All instructions in the group use the same operation code, 46.
Bit positions 14 through 23 of the address field specify the
function to be performed by each micro-instruction. The pro-
grammer may specify combinations of address bits to perform
simultaneous operations.

If the selected bits copy two registers into a third during one
operation, a merge of the former two registers into the latter

results.

If the selected control bits copy into a register and clear that
same register, the clear has no effect.

The function of each address bit is:

Instruction Bit Octal Position Octal Value Function

1 (o]1] 2 Clear X
23 1 Clear A
22 o7 2 Clear B
21 4 Copy (A) into B
20 1 Copy (B) into A
19 (02 2 Copy (B) into X
18 4 Copy (X) into B
17 1 Bits 15-23 only*
16 (OF) 2 Copy (X) into A
15 4 Copy (A) into X
14 04 1 Copy -(A) into A

*See STORE EXPONENT (4600122) for special functions of this
bit.

EXAMPLE ;
The following instruction copies (A) into B and clears the
A Register: :

0 46 00005

Both functions occur simultaneously, that is, within the one
cycle time of the instruction,

Indirect addressing and indexing do not apply to these
instructions.

These instructions require one machine cycle regardless of the
number of functions performed. As an aid to the programmer,
the most useful combinations have mnemonic designations
assigned to them that are recognized by standard SDS program-
ming systems.

12

CLA CLEAR A

0 46 00001
1 L 1 1 1
0 23 ' 89 ' ' ' ' 23
CLA clears the contents of the A Register to zero.
Registers Affected: A Timing: 1
CLB CLEAR B
0 46 00002
} } [I [
0 2 3 T 8 9 T T T T 23
CLB clears the contents of the B Register to zero.
Registers Affected: B Timing: 1
CLR CLEAR AB
0 46 . ' 00003
0 2'3 T 39 T T T T 23

CLR clears the contents of both the A and B Registers to zero.

Registers Affected: A, B Timing: 1
CAB COPY A INTO B
0 46 00004
1 1 1 1 I
0 23 ' 8'9 ' ' ' 23

CAB copies the contents of the A Register info the B Register.

Registers Affected: B Timing: 1
CBA COPY BINTO A

0 46 . 00010I
0 2 3 1 8 9 1] 1 1 23

CBA copies contents of the B Register into the A Register.

Registers Affected: A Timing: 1
XAB EXCHANGE A AND B
0 46 00014
L 1 B 1 1
0 23 ' 89 ! ' ' K 23

XAB copies the contents of the A Register into the B Register
and, simultaneously, copies the contents of the B Register into
the A Register.

Registers Affected: A, B Timing: 1

BAC COPY BINTO A, CLEAR B

00012
} Il 4 1]

CBX COPY B INTO INDEX

00020

O 23 T 89 T T T T 23

BAC copies the contents of the B Register into the A Register
and, simultaneously, clears the B Register to zero.

Registers Affected: A, B Timing: 1
ABC COPY A INTO B, CLEAR A
0 46 00005
] 1 [1 il
0 23 ' 879 ' ' ' 23

ABC copies the contents of the A Register into the B Register
and, simultaneously, clears the A Register to zero.

Registers Affected: A, B Timing: 1
CLX CLEAR INDEX REGISTER

2 46 00000
: } +— + t +
0 23 89 23
The contents of the Index Register are set to zero.
Registers Affected: X Timing: 1
CXA COPY INDEX INTO A

0 46 00200

1 i 1] l

0 273 ' 8’9 ' ' ' 28

CXA copies the contents of the Index Register into the A
Register.

Registers Affected: A Timing: 1
.CAX COPY A INTO INDEX
0 46 00400
0 213 T 3’0 T T T T 23

CAX copies the contents of the A Register info the Index
Register.

4

0 23 ' 8'9 ! ' ' 23

CBX copies the contents of the B Register into the Index Register.

Registers Affected: X Timing: 1
CXB COPY INDEX INTO B
0 46 00040
1 1 1 1 1
0 2 3 1 8 9 T) L] T 23

CXB copies the contents of the Index Register info the B Register.

Registers Affected: B Timing: 1
XXB EXCHANGE INDEX AND B

0 46 00060
0 2 3 1 8 9 | B ! T T 23

XXB copies the contents of the Index Register into the B Register
and, simultaneously, copies the contents of the B Register info
the Index Register.

Registers Affected: B, X Timing: 1
STE STORE EXPONENT
0 46 00122
L 1 L L
0 23 ' 89 ' ' ' ' 23

STE copies the least significant nine bits of the B Register into
the Index Register, extends bit 15 of the Index Register (the
sign of the exponent) into bit 0, and then clears the nine least
significant bits of B.

EXAMPLE ;
B Index
Before Execution 64152713 -—=
After Execution 64152000 77777713

Registers Affected: X Timing: 1
XXA EXCHANGE INDEX AND A
0 46 00600
4 —
0 23 89 2

XXA copies the contents of the Index Register into the
A Register and, simultaneously, copies the contents of the

A Register into the Index Register.

Registers Affected: A, X

Timing: 1

Note: This instruction assists in the manipulation of
floating=point, double-precision numbers, where
the fraction is stored in the high order 39 bits and
the exponent in the low order nine bits of the
combined AB Register. (See Floating-Point Op-
erations, this section.)

Registers Affected: B, X Timing: 1

LDE LOAD EXPONENT

-+
.

0 2'3 v 8'9 23
LDE copies the least significant nine bits of the Index Register
into the least significant nine bits of the B Register and clears
the nine least significant bits of B prior to the transfer.

EXAMPLE :
B Index
Before Execution 34765712 00000151
After Execution 34765151 00000151

Note: This instruction assists in the manipulation of
floating-point, double-precision numbers, where
the fraction is stored in the most significant 39 bits
and the exponent in the least significant nine bits.

Registers Affected: B Timing: 1
XEE EXCHANGE EXPONENTS
0 46 00160
Il 1 -l 1 [l
0 23 N 8’9 ') ' ' 23

XEE exchanges the least significant nine bits of the B Register
and the Index Register. The exchange loses no information.
The new bit 15 of the Index Register (the sign of the exponent)
then extends into bit 0.

EXAMPLE
B Index
Before Execution 67142355 77777133
After Execution 67142133 00000355

Note: This instruction assists in the manipulation of
floating-point, double-precision numbers, where
the fraction is stored in the most significant 39 bits
and the exponent in the least significant nine bits.

Registers Affected: B, X Timing: 1
CNA COPY NEGATIVE INTO A
0 46 01000
} } +— + —+
0 23 89 23

CNA copies the two's complement of the contents of the
A Register into the A Register.

Registers Affected: A Timing: 1

BRANCH INSTRUCTIONS

Branch instructions conditionally or unconditionally change the
course of the program by altering the contents of the program
counter. The programmer should note that these instructions
branch to locations determined by the effective address; this
means that the branch can operate with all levels of indirect”
and indexed addressing.

BRU BRANCH UNCONDITIONALLY
RIX |0 01 I M

+ S 5 :
0123 8'9 10 23

BRU takes the next instruction from the location determined by
the effective address.

A BRU instruction with an Indirect Address bit equal to "one"
clears the highest priority interrupt level then active in addi-
tion to branching to the effective location.

Registers Affected: P Timing: 1
BRX INCREMENT INDEX & BRANCH

RP 0 41 M

0125 t 8910 ! ‘ ‘ 7

BRX increments the contents of the entire Index Register by

one. If the resultant Index Register value contains a "1" in

bit position 9 of the index, the computer transfers control to
the effective location. If not, it takes the next instruction

in sequence.

If a BRX instruction is indexed, any transfer of control is
to the effective address determined by the valUe of the index
immediately prior to the execution of BRX. The test for trans-
fer is on the incremented value of the Index Register; just as
if the BRX instruction were not indexed.

The most significant bits of the Index Register (bits 0-8) have
no effect on the execution of the instruction, but may be
affected by it.

If a branch occurs, an interrupt cannot occur following the
execution of this instruction.

EXAMPLE ;
Location Instruction X Register
0777 STA 1500 77777776
1000 BRX 1006 77777777
]0101 . LD‘A 2090
1 (;06 BR|X 10‘0 1 00000000
1007 LDA 2100 OOOQOOOO

The execution of these instructions is in the following order
as given by their locations:

0777
1000
1006
1007
Registers Affected: X Timing: 1, if branch
2, if no branch
. BRM MARK PLACE AND BRANCH
RIX 10 43 I M
0123 t 8910 ‘ ‘ 2

BRM stores the contents of the P Register (the address of the
BRM instruction itself) in the effective memory location and
transfers control to the effective memory location plus one.
BRM also stores the status of the Overflow Indicator in bit 0 of
the effective location and EM3 and EM2 in bits 3-5 and 6-8,
respectively. The contents of bits 1-2 of the effective location
are unpredictable. The content of bit 9 is zero.

EXAMPLE :
Location Instruction EM3 EM2
01517 BRM 522 3 2
Overflow Location P
: Indicator 0522 Register
Before Execution 1 (on) -—- 01517
After Execution 1 (on) 43201517 00523

Note: Use this instruction to enter subroutines where a
return to the main program is desired after the sub-
routine has been completed. Use RETURN BRANCH
(51) to return to the main program.

Registers Affected: M Timing: 2
BRR RETURN BRANCH

RIX |0 51 . I M

0123 © 8910 =

BRR copies the contents of the effective memory location into
an internal register and increments the contents by one.. The
instruction then stores the least significant 14 bits in the

P Register. It also performs a logical OR between bit 0 and
the Overflow Indicator; and places the result in the Overflow
Indicator. There is no change in the contents of the effective
memory location. -

EXAMPLE :
Location Contents
2100 BRR 2000
2000 00003220

If the computer executes the instruction in location 2100, it
takes the next instruction from location 3221. Location 2000
still contains 00003220.

Note: Use BRR to return to the main program after com-
pletion of a subroutine in conjunction with MARK
PLACE AND BRANCH (43).

The Memory Extension registers are unaffected by BRR.

Registers Affected: Overflow Indicator Timing: 2
TEST AND SKIP INSTRUCTIONS
SKE SKIP IF A EQUALS MEMORY
RIX10 50 I M

= 1 1 L 1
0123 8910 ' ') ' 23

SKE compares the contents of the A Register with the contents
of the effective memory location. If the contents of A equal
the contents of the effective location, the computer skips the
next instruction in sequence and executes the following instruc-
tion. If the contents of A do not equal the contents of the
effective location, the computer executes the next instruction
in sequence. SKE alters neither A nor memory.
Registers Affected: None Timing: 2, if no skip
3, if skip

SKG SKIP IF A GREATER THAN MEMORY

RIX]0 73 I M

1 1 1

0123 8 9 10 23

SKG algebraically compares the contents of the A Register
with the contents of the effective memory location. If the
contents of A are greater than the contents of the effective
location, the computer skips the next instruction in sequence
and executes the following instruction. If the contents of A
are less than or equal to the contents of the effective location,
the computer executes the next instruction in sequence. SKG
alters neither A nor memory.
Registers Affected: None Timing: 2, if no skip
3, if skip

SKM SKIP IF A EQUALS MEMORY ON B MASK

RI{X10 70 I M

0123 ' 8'9.10 ' ' ' ' 23

SKM compares selected bits of the contents of the A Register
with the corresponding bits in the contents of the effective
memory location. If the selected bits in A are identical to the
selected bits in the contents of the effective memory location,
the computer skips the next instruction in sequence and executes
the following instruction. If the selected bits in the contents

of the A Register are not identical to the contents of the effec-
tive location, the computer executes the next instruction in
sequence.

The programmer selects the bits in A to be compared by placing
ones in the corresponding bit positions of the B Register and
zeros in the remaining bit positions of B.

SKM considers the contents of A,B, and the effective location
to be unsigned, 24-bit, non-numeric quantities, and does not
alter them.

EXAMPLE ;
A B Memory
00043007 00177000 57643240

Since SKM compares bit positions 8-14 only (as determined
by B), and (A) = (M) in these positions, a skip occurs. Note
- that if (B) = 0, a skip occurs regardless of (A) and (M). Note’
also that if (B) = 77777777, instruction SKM functions identi-

cally like instruction SKE.

Registers Affected: None Timing: 2, if no skip

3, if skip

SKA SKIP IF A AND MEMORY DO NOT COMPARE ONES

RIX 10 72 1 M
T)

0123 8910 23

-
-

SKA compares the contents of the A Register, bit by bit, with
the contents of the effective memory location. If the contents
of the A Register and the contents of the effective location do
not have any one pair of ones in corresponding bit positions,
the computer skips the next instruction in sequence and exe-
cutes the following instruction. If the contentsof the A Register
and the contents of the effective location do have at least one
pair of 1-bits in corresponding bit positions, the computer exe-
cutes the next instruction in sequence.

The instruction logically ANDS corresponding bits in A and
Memory, based on the following table :

A Memory Result
0 0 0
0 1 0
1 0 0

1 1 1

If the result produces @ "1" in any bit position, a skip does’
not occur, .

Nofe: Different configurations of the memory word result in
a wide variety of conditional instructions for use by the
programmer. Some representative configurations are :

Memory Configuration Instruction

40000000 Skip if A is Positive
77777777 Skipif A=0
00000001 Skip if A is Even

Contents of A Register

40000000 Skip if Memory is Positive
77777777 Skip if Memory = 0
00000001 Skip if Memory is Even

Registers Affected: None Timing: 2, if no skip

3, if skip

16

SKB SKIP IF B AND MEMORY DO NOT COMPARE ONES

RIX10 52 I . .M.
0123

-+

8910 23

This instruction functions identically like SKA but operates on
the B Register. .

Registers Affected: None Timing: 2, if no skip

3, if skip
SKN SKIP IF MEMORY NEGATIVE
RIX |0 53 I M
L 1 1 L L
0123 ' 8910 ! ' 23

If the contents of the effective memory location are negative,
i.e., if (Mo) =1, the computer skips the next instruction in
sequence and executes the following instruction. If the con-
tents of the effective location are positive or zero, the com-
puter executes the next instruction in sequence.

Registers Affected: None Timing: 2, if no skip

3, if skip
SKR REDUCE MEMORY, SKIP IF NEGATIVE
R{x |0 60 I . M .
0123 8910 } ' T 23

SKR reduces the contents of the effective memory location by
one, places the result in the same location, and then tests for
negative. If the contents of the effective memory location are
then negative, the computer skips the next.instruction in
sequence and executes the following instruction. If the con-
tents of the effective location are positive or zero, the com-
puter executes the next instruction in sequence.

An overflow occurs if the initial contents of memory are
40000000, The result in memory in this case is 37777777.

Registers Affected: M, Overflow Indicator Timing: 3
SKD DIFFERENCE EXPONENTS AND SKIP
R{X|0 74 I M)

} + } } t
0123 8 910 23

SKD subtracts the contents of bits 15 through 23 of the effective
memory location from bits 15 through 23 of the B Register. It
then stores the absolute magnitude of the difference in bits 15
through 23 of the X Register and destroys the contents of bits 0
through 14 of the X Register. If the 9-bit contents of the ef-
fective location are less than or equal to the 9-bit contents of

“the B Register, the computer executes the next instruction in

sequence. If not, the computer skips the next instruction in
sequence and executes the following instruction.

Timing: 2, if no skip
3, if skip

Registers Affected: X

SHIFT INSTRUCTIONS

The shift instructions operate on the contents of the A and B
Registers and offer a complete facility for right and left shift-
ing, cycling, and normalizing the contents of these two regis-
ters. The A and B Registers, in combination, form a double-
length register whose double-length contents can be shifted,
cycled, or normalized. This double-length register is named
|IAB.|I

When the contents of the AB Register shift right, bits from bit
position 23 of the A Register shift into bit position 0 of the B
Register. When the AB Register shifts left, bits from bit posi-
tion O of the B Register shift into bit position 23 of the A
Register.

The 48-bit contents of the AB Register may be cycled using the
shift instructions. When the contents of the AB Register cycle,
the bits that shift from one end of the one register copy into the
other end of the other register.

These instructions use the instruction code to determine the di-
rection of shift (66 =right; 67 =left); bits 10-11 (octal position 3)
of the instruction address determine the method of shifting
as follows:

Bits 10, 11 Octal Value Function
00 0 AB Shift
10 2 AB Cycle
01 1 Normalize (Left only)

Indirect addressing is permissible with these instructions, bits
10 and 11 of the effective address determining the method of
shifting.

Since the type of shift and number of shifts are determined by
bits 10 through 23 of the effective address, indirect addressing
and/or indexing drastically alter the action specified in a shift
instruction. When procuring the effective location for a shift
instruction,

14-bit indexing is performed with all indirectly addressed
operands, and

9-bit indexing is performed with all directly addressed
operands.

That is, indexing with a direct address can affect only the 9-
bit shift count.

When the computer interprets a shift instruction, bit positions
15 through 23 of the effective address of the instruction deter-
mine the amount of the shift. The computer treats these nine
bits as an unsigned count. If the initial count is equal to zero,
no shifting occurs. If the initial count is greater than 48, it is
set to 48 prior to shifting. Once the shift begins, the count re-
duces by one for each position shifted until it reaches zero. The
count C in the following instructions indicates the number of
places to be shifted. Shift timing is:

Left Shift and Right Shift

Normalize Count Cycles Count
0-6 2 0-3
7 - 26 3 4-14
27 - 48 4 15 - 25
47 =48 5 26 - 36
6 37 - 47
7 48
RSH RIGHT SHIFT AB
olx{o 66 I 00 . c
0123 ' 8910 1415 X

RSH shifts the contents of the AB Register (that is, A and B Reg-
isters) right the number of places specified in bits 15 through 23
of the effective address. The bit in the sign position of A does
not shift, but its value copies into the vacated bit positions of
the shifted number. The bit in the sign position of B shifts. Bits
shifted out of A23 shift into Bo. Bits shifting past position 523
are lost.

Registers Affected: A, B Timing: 2-7

EXAMPLE:
The instruction is: RSH 00022
A B
Before Execution 45261237 27651260
After Execution 77777745 26123727

Note: This instruction may perform scaling of floating-point
numbers by use of indexing, where the difference of
exponents is in the Index Register as positive quantity.

LRSH LOGICAL RIGHT SHIFT AB

0{X|o 66 I 24 C
017273 87910 1415 23
LRSH performs a logical right shift. It shifts the contents of AB
right the number of places specified in bits 15 through 23 of the
effective address. The bits in the sign position of A and the
sign position of B shift with the rest of the number. Vacated bits
on the left fill with zeros. Bits shift out of A, into B,. Bits
P 23 0
shifting past 823 are lost.

Registers Affected: A, B Timing: 2-7
RCY RIGHT CYCLE AB
o|x|o 66 . I 20 C

1 L 1 L
0123 ' 8910 41 T 23

RCY shifts the contents of the AB Register right the number of
places specified in bits 15 through 23 of the effective address.
The bit in the sign position of B shifts like any other bit in B.

_Bits shifting out of A2 shift into B,. Bits from bit position 23

3 0

of B go into bit position 0 of A. The computer treats the double-

length register as if it were circular and cycles it onto itself; it
loses no bits.

Registers Affected: A, B Timing: 2-7
EXAMPLE:
The instruction is: RCY 00017
A B
Before Execution 61235703 41537701
After Execution 37701612 45703416
LSH LEFT SHIFT AB
01X|o 67 I 00 C
0123 ' 8910 1415 23

LSH shifts the contents of the AB Register left the number of
places specified in bits 15 through 23 of the effective address.
Bits shift left through the sign positionof A, but when a bit, dif-
ferent in value from the original sign, shifts into the sign posi-
tion, the computer sets the Overflow Indicator. Bits shifting
out of By go into Apg. Bits shifting past position 0 in A are
lost. Zeros fill the vacated bit positions on the right end of
the B Register.

Registers Affected: A, B, Overflow Indicator Timing: 2-5
EXAMPLE :
The instruction is: LSH 00022
A B
Before Execution 46712370 64132711
After Execution 70641327 HOOOOOQ
LCY LEFT CYCLE AB
0{X|0 67 I 20 C
0123 ' g9 10 ' 1415 T2

LCY shifts the contents of the AB Register left the number of
places specified in bits 15 through 23 of the effective address.
The bits in the sign positions of A and B shift like any other
bits in the number. Bits shifting out of By shift into Ays. The
instruction copies bits that shift from bit position 0 of A into
bit position 23 of B. The computer treats the double-length
register as if it were circular and cycles it onto itself. It loses
no bits.

Registers Affected: A, B Timing: 2-5
EXAMPLE:
The instruction is: LCY 00011
B
Before Execution 71432560 34156723
After Execution 32560341 56723714

18

NOD NORMALIZE AND DECREMENT
ofx|o 67 I 10 C

L 1 L L
0123 N 8910 " 1415 ' ' 23

NOD shifts the contents of the AB Register left until (1) a bit
appears in position 1 of A that is not equal to the bit in the sign
position of A, or (2) until C shifts occur. The computer keeps
count of the number of places shifted and when the normalize
operation is completed, it subtracts the count from the contents
of the Index Register and places the result back into the Index.
If, in the attempt to normalize, shifting exceeds 48 places,

the contents of the AB Register were initially zero. In this
case, the computer subtracts 48 from the Index Register. Zeros
fill the vacated positions.

The number, C, placed in address bit positions 15 through 23,
is an upper limit for the number of left shifts that will occur.
The programmer must ensure that C is sufficiently large to
permit a complete normalization.

EXAMPLE :
NOD 30
A B X

Before Execution 00004632 76124035 00000000

After Execution 23153705 20164000 77777765
Registers Affected: A,B,X Timing: 2-5
REO RECORD EXPONENT OVERFLOW

0 02 20010
Il] 1 1 1

0 123 ' 89 ' ' ' T 23

This instruction causes the Overflow Indicator to be turned on
if the content of bit 14 of the Index Register is not equal to the
content of bit 15 of the Index Register.

This instruction is normally used after a normaliz<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>