MODEL 92 COMPUTER
THEORY OF OPERATION
MANUAL

(PRELIMINARY)

SDS 900864A June 1965

SCIENTIFIC DATA SYSTEMS

MODEL 92 COMPUTER
THEORY OF OPERATION
MANUAL
(PRELIMINARY)

SDS 900864A June 1965

SCIENTIFIC DATA SYSTEMS/1649 Seventeenth Street/Santa Monica, California/UP 1-0960

©l965 Scientific Data Systems, Inc. Printed in U.S.A,

Chapter 1

-Chapter 2

Chapter 3

Chapter 4

- Chapter 5

Chapter 6

CONTENTS

Page
Introduction to the Hardware
1.1 ‘Hardware Characteristics : 1-2
1.2 Hardware Organization 1-3
Introduction to Programming
2.1 Memory Word Format 2-1
2.2 Instruction Wo‘rd Forrﬁat ' | 241
2.3 Operand Word Format : 2-5
2.4 vDescri"ption‘ of Opcodes : 2-5
2.5 Memory Allocation‘ o 2-12
Timing
3'. 1 VCommon Clock - | 3-1
3.2 Clock Counter 3-1
3.3 Phases | ‘ 3-1
3.4 Cycle Alteration , o 3-1
3.5 Summary | 3-2
Memory
4. 1 ‘Basic Operation - | 4-1
4.2 Parity B 4-2
4.3 Timeshare | 4-4
Adder
5.1 Introduction ' 5-1
5.2 Operations : 5-2
Basic Internal Operations
6.1 Introduction to Timing Charts 6-1
6.2 End | 6-1
6.3 | Operand Assembly - : -2
6.4 Trap ‘ 6-13
6.5 Basic Opcodes ’ | : 6-15

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

CONTENTS (Continued)
Console Operations
7.1 Introduction

7.2 Register Display/Alteration

7.3 Console Functions
7.4 Fill
7.5 Miscellaneous Switches

7.6 Lights

Interrupts
8.1 Introduction .
8.2 Recognition

8.3 BRC Opcode

8.4 Leaving Idle

8.5 Single Instruction Interrupts
Alert and Text I/O Equipment

9.1 Introduction

9.2 EOM Opcode

9.3 SES Opcode
Parallel 1/0

10.1 Introduction

“10.2 Connectors

10.3 POT/BPO Opcodes

10.4 PIN/BPI Opcodes

Standard I/O Channel

11.1 Initialization

11.2 Character Transmission and Precessing

11,3 Parity

11. 4 Channel Error

ii

Page

7-2

8-4
‘8-6
8-8

8-10

10-1
10-4
10-6

10-10

‘Chapter 11

11.5
1',1.-6‘
11.7
11.8
11.9
11,10
11,11
11,12
11.13

11.14

CONTENTS (Continued)

Standard I/O Channel (Continued)

"Termination

Channel Tests

Interrupts

Mag-tape Scan

Interlace

Connectors

Channel Timing Charts

Channel Opcodes
WOT/ROT Opcodes

WIN/RIN Opcodes

- iidi

Page

11-6

11-8

11-9
11-9

11-10
11-12
11-14
11-38
11-39

11-41

- PREFACE

Mode_l 92 Compixter is a high-speed', general purpose
digital computer désigned for réal-time systems

control, direct digital control.,' message switching,

and repetitive, h'igl.m-speed computation. The computer
is completely modular, ufilizing monolithic integfated

circuits.

This p:jelimin\ary}manual describes the hardware logic
and operation of the central processor, memory, ‘and
control console. Additional inforination on programming,

logic, and circuits can be found in the foHowin‘g

pub_lications :
SDS 900505B - SDS 92 Conipu-ter Reference Manual
SDS 900925A Model 92 Computer Logic Equations,
Main Frame and Memory
SDS 900921A Model 92 Computer General Reference

Drawings

SDS 900922A 92 Computer Module Reference Data

il

Model 92 Computer

CHAPTER 1
Introduciion to the Hardware
1.1 Hardware characteristics

1.2 Hardware organization

v

Ja Lines

¥4

SEsS

Respons:

POT/

> Wor

1/0
Wr R Charac
0 _ 11 " 1 12

)
go A_.ll“\/
N
— U |
Pct ’ (
v

Unit.

W > Addre

EOM/:

' =
w0 11 0
0 | L)
C (
O O
9 11 r 5
V
N ., {>uo 7 11
. |
™S P 11

BLOUL DIAGRAM

Jm BUSS <
0 1]
M Data
Multiplexi:
0 12 System ©
> 'L Lines Q—————)
0 14
Interlace

{> Contr
Wor

1.1 Hardware characvt'e_ristics 4

- All flip~flops used in the 92 main frame have the following hardware

characteristics:

1. Al flip;ﬂbps are the usual RS type. However, they also -

receive a common clock. All changes of state are made

on the falling edge of this clock. [This _me'ans that the

contents of two flip-flops may bé d‘irectly:interchanged;

e.g.
sAl -
rAl

sB1l
rBl

When the gating

Axb Rl
 Axb Bl

Axb Al
Axb AT

term Axb is true, the falling edge of the

clock will swap Al and B1.]

,. 2. - If the set term and the reset term-are both true, the flip-

flop will set on the falling edge of the clock. [This means

the example above may be simplified to:_v

sAl

rAl .

sBl

. rR1

Logically, any flip-flop in the

Axb Bl

Axb

Axb Al

Axb]

92 main frame falls into one of two groups:.

1. Standard RS type. These are recognizable in the equa.tiohs as

those flip-flops which have both a SET equation and a RESET

equation; e. g.,

.1-2

sAl Axb E1

rAl Axb

H

2. Repeater type. " These flip-flops will automatically reset
| if there is no set input. However, ‘these flip-flops will |
not set or reset unless they feceive an enable signal.
[This is accomplished by holding the reset true and
uéing the enable fo gate the common clock.] These flip-
flops are recognizable in the equafions as those which
have Aa SET equétion (only) %md an ENABLE equation; e. g.,
sBl = Al . |

Axb

EFg

Most of the logic is implemented via AND-OR-BUFFER or AND-OR -
- INVERTER hardware. The outstanding exceptions are the terms which
enébl_e the proper inputs to the adder. These have been implemented

via NANDS because of speed considerations.

1.2 Hardware organization

A REGISTER

FUNCTION:

- The A register is the index register. A also defines the block
length for block 1/O opcodes (50,51,54,55). A may also be used

as an auxillary accumulator.

IMPLEMENTATION:

12 repeater flip-flops designated AOQ,..., All.

CONTROL TERMS:

Ag - enabhles the repeater flip-flops that make up A

shifts A left one binary bit position

Axas -
Axb - interchanges A and B
Axja - gates Ja into A
Axjas - gates Ja, shifted right one binary bit position,
into A
B REGISTER
FUNC TION:

The P register is the main accumulator.

IMPLEMENTATION:

12 repeater flip-flops designated BO,...,B11,

CONTROL TERMS:

Bg - enables the repeater flip-flops that make up B

Axb - interchanges B and A

Axjas - shifts B right one binary bit position

Bxbsf - shifts B left one binary bit position
C REGISTER

FUNCTION:

- The C register acts as the main exchange register
between memory (M) and both the internal 16gic and the input/

output logic.

IMPLEMENTATION:

12 repeater flip-flops designated CO,...,Cl1.

CONTROL TERMS:

Cg - enables the repeater flip-flops that make up C

Cxi - gates a PIN input word into C

Cxja

- gates Ja into C
Cxjm - gates Jm into C
Cxw - gates Wr into C
®
FUNCTION:
Fi hold_s arithmetic overflow information. FJ/4 also holds the
result (0 ér 1) of a sense or comp.are instruction.
IMPLEMENTATION:
1 RS flip-flop designated F{ . However, the implementation is
such that F{ appears to be a repeater flip-flop. |
CONTROL TER MS:
Flg - enables the quasi-repeater flip-flop F{.
Ffs - is the set signal to the quasi—repevater flip-flop F{.
Ja LINES
FUNCTION:

- The Ja LINES are the outputs of the adder.

IMPLEMENTATION:

15 lines designated Jau0, Jaul, Jau2, Ja0,..., Jall.

CONTROL TERMS:

Gpxa - gates A onto Ja
Gpxad - ‘gates. A + C onto Ja

Gpxam

gates A-1 onto Ja.

Gpxc gates C or C + 1 onto Ja

1-5

Gpxeo - gites A () C onto Ja

Gpxex - gates A A C onto Ja

Gpxs - gates S onto Ja

Gpxsi - gates S + 1 onto Ja

.pr'su - | gates A-C onto Ja

Gnnac - gates C-A onto Ja

Prbu - merges the control panel SET BUTTONS with the

current contents of Ja

Jm RBUSS
FUNCTION: .

The Jm BUSS is the memory buss.

IMPLEMENTATION:

12 lines designated JmO0, ..., Jmll.

CONTROL TERMS:

Jmxa - gates A onto Jm
Jmzxc - gates C onto Jm
Jmxp - gates P0-Pl1l onto Jm
Jmxpu - gates [Ff,Pct,0,-+0% Pu0, Pul, Pu2] onto Jm.
- Jmxwr - gates Wr onto Jm
Mw - gates M onto Jm
Jmxz - gates the Data Multiplexing Systems inpu‘t word onto Jm
L LINES
FUNCTION:

The L LINES contain the address of the current memory referencé.

IMPLEMENTA TION:

15 lines designated LO,...,L14.

CONTROL TERMS:

T ot

‘Ts - gates S onto L

Ts Dmc - gates the interlace's memory referenﬁe address
onto L

Dmec - gates the Data Multipvlexing System's memory

reference address onto L

M REGISTER

FUNCTION:
The M register holds the contents of (read) or for (write)

 the currently referenced memory location.

IMPLEMENTATION:
13 flip-flops designated MO, ...,MIl2.

M12 is the parity bit.

CONTROL TERMS:

Mw: - gates Jm to MO through M1l and even parity to Ml2.

O REGISTER

FUNCTION:

The O register holds the current opcode.

IMPLEMENTA TION:

6 repeater flip-flops designated Or, O1,..., O5.

1-7

CONTROL TERMS:

Og - enables the repeater flip-flops that make up O ‘
Tp End - gates the next opcode into O

09,010,011
FUNCTION:

09-011 provide temporary storage for the most significant
three bits of a 15-bit operand address. 09-0O11 also hold part

of an EOM/SES control word.

IMPLEMENTATION:

3 RS flip-flops designated O9, O10, Oll.

CONTROL TERMS:

$0 Tp Lp’ - gates Su0-Su2 into 09-Ol1.

40 Tp Lp - gates C9-C11 into 09-O11,

P REGISTER

FUNCTION:

The P register holds the address of the next instruction.

 IMPLEMENTATION:

15 repeater flip-flops designated Pu0, Pul, Pu2, PO,...,Pll.

CONTROL TERMS:

Pg - enables the repeater flip-flops that make up P
Pxbu - gates the control panel set buttons into P
Pxja - gates Ja into P

Pxp - recirculates P

1-8

Pct

FUNCTION:
Pct gates the normal execution of the full -word I/O opcodes
(10/50, 11/51, 14/54, 15/55), Pct causes these commands

 to trap.

IMPLEMENTA TION:

1 RS flip-flop designated Pct.

R REGISTER
FUNCTION:
The R register receivés/presents the input/output character

from/to the connected peripheral.

IMPLEMENTATION:

12 repeater flip-flops designated R1,...,R12.

CONTROL TERMS:

Rg - enables the repeater flip-flops that make up R

| W4 W9 - gates the output precessing (i.e. ‘intershifting) of R
and Wr |
W4 W9 - gates the input précessing (i.e. iniershifting) of R
and Wr
Wg W6 W9 - gates the merging of an input character into R
'S REGISTER
| FUNCTION:

The S register holds the address of the current memory reference

by the main frame.

1-9

IMPLEMENTATION:

15 repeater flip-flops designated Su0, Sul, Su2, S0,...,S11.

CONTROL TERMS

Sg - - enables the repeater flip-flops that make up S
Sxef - gates C7-Cll‘into S7-S11

Sxcm - gates 09-Ol1 into Su0-Su2 and C0-C6 into S0-S6
Sxcs - gates 1 into S7and C9-C11 into 58-S10

Sxja - gates Ja into S

Sxp - gates P into S

Int - gatés the proper interrupt address into S (S2-S10)
Tr - gates the proper trap address into S (SS—SIO)

W REGISTER

FUNCTION:

The W register holds the unit address of the currently connected

peripheral.

IMPLEMENTATION:

5 repeater flip-flops designated W9, Wll,...,Wl14

1 RS flip-flop designated W10

CONTROL TERMS:

Wg - enables the repeater flip-flops that make up W
Wc - clears W

Ws - gates C6-Cl1 into W

Tl Ta Wh - clears W

Wr REGISTER

FUNC TION:
The Wr regiéter provides a ohe-computer-wofd‘buffer between

the main frarme 10gié (C) and .the input/out'puf character (R)..

IMPLEMENTA TION:

12 »ré'peaté'r‘ flip-flops designated Wr0, ..., Wrll.

 CONTROL TERMS:

Wrg - e.nvabvles'the repeater flipeﬂops‘that make up Wr
Tw Wx - . gates C into Wr | | |
w4 - gates the precessing (i.e. intershifting) of Wr and R

B

Wrxjm ~ gates Jm into Wr

CHAPTER 2

Introduction to Programming

2.

2.

1

2

Memory word format
Instruction word formats
Opérand word format
Description of opcodes

Memory allocation

2.1 Memory word format

The 92 computer word is 12 binary bits long.

11

0O

The bits will be numbered from left to right as shown above.

2.2 Instruction word formats

The 92 allows 6 different modes of addressing. Some of these modés
need only one computef word to define botk the opcode and either the
effective address (i.e. the address of tﬁe operand} or the indirect
The

address (i.e. the address at which addressing is reinitiated)ﬂ.

remaining addressing modes require two contiguous computer words

to define both the opcode and a computer address.

Addressing Type: Immediate

Instruction Length: One Word

Addressing Area: Next Location

Location Computer Wofd
s i e e s et kit s en e o) - !
0 1 2 3 4 5 6 7 8 10 11
'. Operand————— “”q
L+1 0 1 2 3 4 5 6 7 8 9 10 11
L +2 Next Instruction
Comments: This addressing mode should not be used with the following
0pcodés
EXU
BEMC
BRM

Addressing Type: Direct Scratch Pad

Instruction Length: One Word

Addressing Area: Scratch Pad (000018-—000378)
Liocation Computer Word
L. —— Opcode -1 S S S S S]

0123456789 10 11

L+1 Next Instruction

Comments: The operand is taken from location

-00 O.OOOOOOOSSSSS2

where

SSSSS # 00000

Addressing Type: Full Direct

Instruction Length: Two Words
Addressing Area: Full Memory
Location Computer Word
L ——Opcode——0 0 0 Y Y Y

01234567829 10 11

L+ 1 X X XX X XX XX XXX

01 2 3 45 6 7 8 9 10 11

L+ 2 Next Instruction

Comments: The operand is taken from location

YYYXXXXXXXXXXXX2

» Addressing Type: ‘Index

Instruction Length: Two Words
Addressing Area: Full Memory
Location Computer Word
L : "‘""—'-Opcode-——-o 0 1Y Y Y

01234567891011-

L+1 xxxxxxxxxxxy
0123456789 10 11

1.+ 2 Next Instruction

Comments: The operand is taken from location

E]EJI:')EEEEEEEEEEEE2

where

YYY XXX XXX XXX XXXZ

-000 AAA AAA AAA AAA,

EEE EEE EEE EEE EEEZ
and the contents of the A register is given by

AAA AAA AAA AAA2

Addressing Type: Full Indirect

Instruction Length: Two Words
Addressing Area: Full Memory

Location Computer Word

L —Opcode lO 1 O.Y Y Y
C 12345678 9 10 11

L +1 ‘XXXXXXXXXXXX
01234567891011

L +2 Next Instruction

Comments: The opcode, as given in location L, is saved; but
addfessing is reinitiated at location
YYYXXXXXXXXXXXX, .

Any mode of addressihg may be specified at this indirect

address.

Addressing Type: Indirect Scratch Pad
Instruction Length: One Word 7
Addressing Area: Upper, Even Scratch Pad (000208—000368)
Liocation Computer Word

L Opcode 01 18 8 S

01234567891011
L +1 Next Instruction

Comments: The opcode, as given in location L, is saved; but
addressing is reinitialized at location

00000000001SSS0,,,

Any mode of addressing may be specified at this indirect address.

2-4

2.3 Operand word format
All operands are treated as 12-bit unsigned (i.e. positive) binary

integers.

Y T Y N 7 ; * T T]
' : : R . i K
' . ! . ‘ : !

) ‘
[-y

01

2 3 45 6 78 9 10 11
The most significant bit is bit 0. The least significant bit is bit 11,

2.4 Description of opcodes
The most signiﬁcaht 6 bits of (the first word of) an instruction specify

the opcode. All opcodes will be written as 2-digit octal numbers.

Many pairs of opcodes perform the same function; only the accumulator
referenced (A or B - as specified by the most significant bit of the opcode,
Or) differs. In these cases the opcode pair will be discussed as one -

with-all references to an accumulator made by the ambiguous letter X.

The effective address will be denoted by E; the fifteen bits of the effective

address will be numbered EO through E14.

00-EOM
40-EOM
[Or, E] = 16-bit EOM control word
01-SES
41-SES
[Oor, E] = 16-bit SES control word

no response =>clear F/

response =set F[

2-5

02-CYB
42-CYA |
E10 =

0(c.f. CYD)

(X) is left, circular shifted ETT-ET4 bit positions

02-CYD
42-CYD

El0 =

1 (c.f. CYX)

(A, B) is left, circular shifted E11-E14 bit positions

03-CFB
43-CFA

ElC =

0 (c.f. CFI and CFD)

(FA, X) is left,\ circular shifted EII-E 14 bit positions

03-CF1I

ElC =

1 (c.f. CFB)
(F{, B, A)is left, circular shifted ETT-ET4 bit positions

43-CFD

E1lC

1 (c.f. CFA)

'v(F[, A, B) is left, circular shifted EII-E14 bit positions

04-STE

44-STA

(X)=~(E)

05-COB

45-COA

H

(X) A (E) 1 anywhere =»clear FAL

(X) A (E)

C everywhere =>set FL

2-6

46-CEA
(X) = (E) =>clear F ..
(X) # (E) =>set F..
G7-CMB
47-CMA

(X)< (E) =>clear F.

(X) > {(E) =>set Fl

10-POT

(E) = POT output word
50-BPO

(E) = POT output word

(E + (A)) = POT output word

11-WOT

(E)Y=Wr

51-ROT
(E) ~Wr

(E + (A))~>Wr

12-DVE
(B,A) : (E)-RE

remainder—A

52-DVA
(A,B) : (E)-PE

remainder—A

13-MUA
53-MUB

(X) x (E)>(A, B)

14-PIN

PIN input word—>(E)

54-BPI

PIN input word—~(E)

PIN in:put word—(E + (A))
15-WIN

Wr—>(E)

55-RIN
Wr—(E)

vs/r»(E' +(A))

16-MPO
(E) + 1~(E)
no carry=sclear FL

_carry=>set FJ

56-MPF
(E) + (E)~(E)
no carry=»clear ¥/

carry=s>set FL

17-XMF

(E)o P 4

57-LDF

7
(E)o Fi

20-SUB
60-SUA
(X)-(E)~(X)
no borrow =»clear F/L

borrow =>set F.{

21-SCB
61-SCA
(X)-(E)-(FL)~(X)
no borrow=>clear Fi

borrow=»set Fi .

22-ADE
62-ADA
(X) + (E)=>(X)
no carry=sclear F/L

carry=>set Fi. -

23-ACB

63-ACA |
(X) + (E)+EFL)>(X)
no carry=>clear Fi

carry=set FL

24-LLDB
64-LDA

(E)~(X)

2-9

25-ANB
65-ANA

(E) A (X)=>(X)

26-FEOB |
66-EOA
(E) @ (X)~(X)

27-ORB
67-ORA

(E)v (X)~(X)

30-BAX
(A)e—>(B)

Take next instruction from E

70-BDA
(A)-1~(A)
(A) = 17714 =Take next instruction in sequence

(A) £ 7777 =Take next instruction from E

8

31-BFF
(FL) = 1 =>Take next instruction in sequence

(F{) = 0 =%Take next instruction from E

71-BFT
(FL)
(FA)

0 =»Take next instruction in sequence

I

1 =>Take next instruction from E

32-BRC
Load FJ
Load Pct
Clear currently active inter;‘rupj;, level of highest priority

Take next instruction from E

72-EXU

Execute the instruction at E

33-BRL
Lioad F,Z
Load Pct

Take next instruction from E

73-BRU

Take next instruction from E

35-MAB,
75-MAA

(X) N (E)>(E)

- 36-MPB
76 -MPA
(X) +(E)~(E)
no carry =»clear Fj{

carry =—p»set F.J

37-BMC

[F¢, Pct, 0,...,0, PuO, Pul, Pu2]=(E) .

[PO, P1, P2,..., P8, P9, P10, Pll]>(E + 1)

Clear FL

Set Pct

Take next instruction from E + 2

77-BRM

[F{, Pct, 0,..., 0, Pu0, Pul, Pu2]>(E)

- [po, P1, P2,..., P8, P9, P10, Pll]=(E + 1)

Take next instruction from E + 2

2.5 Memory allocation

00000

00001 - 00037

00040 - 00077
00100 - 00117
00120
00122
00124

00126

00130
00132
00134
00136

00140

Unassigned

Scratch Pad

Unassigned

(First four) DSC Interlace control word pairs
Trap-12

Trap-52

Trap-13

Trap-53

Trap-10
Trap-50
Trap-11

Trap-51

_ Trap-14

-

2-12

‘ ru....v,. ran .

00142
0Cl44

00146

00150

e

00152
0C154

00156

00160
00162
00164

00166

0017¢C
00172
0c174

00176

00200-01176

Trap-54
Trap-15.

Trap-55

interrupt-power on {always armed)

Interrupt-power off (always armed)

Interrupt-main frame rmemory parity (armed via console switch)
Interrupt-]jata Multiplexing System memdry parity (armed

via console switch) |

Unassigned

Unassigned

Interrupt-clock sync {always armed)

Interrupt-clock pulse (arm furnished-Ij type)

Interrupt-I1 (arm furnished) \L

7 standard I/O channel
Interrupt-I2 (arm furnished) e :
Unaséigned

Unassigned

System interrupts (up to 256 levels - any may be

of Ij type if desired)

Ij = Single instruction interrupt

Ir =>

Is =2

Int;:arrupt system must be enabled before inte'r'rupt may go »
active : :

Interrupt may always proceed from waiting to active

CHAPTER 3

Timing

3.1 Common clock
3.2 Clock counter
3.3 éhases

3.4 Cycle alternation

3.5 Summary

3.1 Common clock

All flip-flop changes of state occur on the falling edge of a common
clock. This clock is derived from a-1.7143 megacycle crystal -
making the clock period 583 nanoseconds. During one clock time
(one period of the clock - measured from falling edge to falling
edge) the clock will be symmetrically low (false) through the first

‘half and high (true) through the last half.

3.2 Clock counter

One machine cycle is 1. 75 microseconds. This means that there
are exactly 3 clock times in each machine cycle. These clock times
have been,named “

T1l, TO, Tp
and three ﬂip-ﬂ'qps have been used to logically distinguish these

. three clock times.

3.3 Phases

As a further aid in decoding the current state of the internal logic,

eight phases
W,..., 7
have been defined by the binary count in three phase control flip-flops
Fl, F2, F3,
These three phase control flip-flops change state only at Tp time (i.e.
only on the trailing edge of the common clock which rises while Tp is

true). Thus, to every machine cycle corresponds one of the eight

possible phases.

3.4 Cycle alternation
An additional timing flip-flop
Ta

toggles at every Tp time. Ta essentially defines 3.5 microsecond

machine cycles (from T1 Ta through Tp Ta) which are used in parts

of the I/0 logic.

3.5 Summary

The contents of this chapter are epitomized by the following:

Common Clock

1T 1

TO -
Tp _ L
Ta » -
— J\)
\4 'S
1 machine cycle 1 machine cycle

CHAPTER 4

Memory
4». 1 Basic operation
4.2 Parity

. 4.3 Timeshare

4.1 Basic oioeravtion

A memory cycle, like a machine cycle, takes 1.75 microseconds.
However, unlike a machine cycle, a memory cycle starts at the
beginning of TO. If the memory is doing a read cycle (Mw), the data
will be available (on Jm) at Tp. If the memory is doing a write cycle
(Mw), the data should be presented to the memory (via Jm) from the

start of TOthrough Tp.

A memory cycle occurs as follows:

The main frame sends a siAgnal TOm (which is just a copy of T0). On
‘the leading edge of this signal the M register is cleared an_d Mgrh
(another signal from the main frame) is inspected. If Mgm is false,
nothing further happens. If Mgm is true, a memory cycle is initiated.
This memory c'ycle will address the location given by L (the memory
address lines); thus L (and hence S) must be stable from the start of |

" TO through T1 whenever a memory reference is made. If the memory

cycle is a read cycle - signalled by Mw (another signal from the main
frame) - the memory logic will read the data from memory into M and
then place M on the bi-directional memory buss, Jm. If the memory
cycle _is a write cycle - signalled by Mw - the memory logic will read the

data from Jm into M and then write the data word into memory from M.

The memory logic also provides a signal, Tem, which indicates that the

temperature of the memory stack is above some certain operating minimum.

A basic memory cycle is epitomized by the following:

Tl -

TO T

- Tp

Start a memory cycle I—L | | ﬂ

Read Enable

Write Enable

X-~-Y current W

Sense amps—>M (Mw)

Jm-M (Mw)
\ J
"4
1 Machine Cycle
N\ J
4
1 Memecry Cycle
4.2 Parity

If the memory parity option is installed, the memory logic will determine
the parity of the Jm buss. During a write cycle; if the parity of Jm (i.e.
the word to Be written into memory) is odd, M12 will be set. This will
write a one into the parity bit of the memory word. During a read cycle;

if the parity of Jm (i.e. the word read from memory) is unequal to M12

(i.e. the parity bit read from memory), a signal (viz. Jme) will be
sent from the memory logic to the main frame logic. This signal

denotes a parity error.

Jme is not gated by Mw. Furthermore, every word read from memory
should not be parity checked (e.g. the wérd at th/e shift count address).
Therefore, the main frame logic must lock at Jme only when the parity
of a memory fead cycle is to be checked. This is effected By the parity
enable ‘ﬂi_p—flop, C_pe.‘ Cpe will be set at Tp time when parity is to be
checked. During.Tl time, Cpe will gate Jme. Cpe will always be reset

at the end of T1 time.

When a parity error is recognized the affect depends upon a 3-position
console switch:

1. HALT Go immediately {T1 time) to idle (¢l) and remain
interlocked until the parity error indication (O10)
is cleared - by either the RESET button or the
PARITY CONTINUE switch.

2. CONTINUE The parity error is ignored and the program
continues. Any parity error indication is cleared.

3. INTERRUPT The program continues. However, one of two
possible intefrupt signals

1) Cp Dmc Kpi (the parity incorrect read
was made under the control of the main
frame or standard I/‘O channel interlace)

2) Cp Dmc Kpi (the parity incorrect read
was made under control of the Data
Multiplexing System)

is sent to the interrupt logic.

Following is a list of the memory references during which parity is
not checked:

1. During a write cycle

2. During idle (¢l) unless the console function
INCREMENT P, MEMORY OUT, STEP, or RUN
is being performed.

3. When accessing the effective address of an EOM
(00/40), SES (01/41), or SHIFT (02/42, 03/43)
instruction

4. When accessing the word following the last word in
a defined output block (10/50, 11/51)

5. When accessing sequential scratch pad 10cat5.6ns
OFOOOI through 00013 while executing DVX (12/52)

6. When reaccessing ‘d"le multiplicand while executing
a MUX (13/53)

7. When accessing the instruction at the branch-to
address but the branch is not taken (70, 31/71)

8. When accessing the instruction at the branch-to
address of a BRC (32) for the first (¢0 Lp) or

second (d4) time,

4.3 Timeshare

Aithough the 92 main frame is a constant user of the memory, it is
possible for other sources to have direct access to the memory.‘
When another source wishes to Timeshare the memory, processing

inthe main frame is halted. The main frame will resume its operations

only when the memory is again available for its use.

The 92 main frame is able to Timeshare memory with two other controllers:

1, " Standard I/O Channel Interlace

2. ‘Data Multiplexing System

A request for a Timeshare

Tsq
is sampled at T1 timé. Tsq must be stable during this clock time.
Tsq Wﬂl cause the Timeshare flip-flop

re :
to set. Ts will remain set for the duration of the timeshared memory
cycle (from the sfart of TO through T1). Ts will block most of the
processing in the main frame by Blocking the varioUs. phase (¢) signals.

Other operations are blocked directly by Ts. Any double-cy..cle I/0

operation (see Ta) must continue to conclusion-even though a Timeshare

occurs during the second machine cycle of the operation.

The Timeshare user controls his memory cycle via

1. L (the fnemory address lihes)
2. - Mw (writeftead cycle)
3. Jm (write/read data word)

The 92 main frame will monitor the parity of all read cycles (Mw) and

take appropriate action (as described above) in case of a parity error.

Since there must be some way of distinguishing between the two Time-
shafe users, the Data Multiplexing System must bring up a signal.
Dmc |
whenever it has control of memory (from the start of TO through T1).
Then |
Dmc =>Data Multiplexing System Timeshare

Ts Dmc == Standard I/O Channel Interlace Timeshare

Ts =>No Timeshare (the 92 main frame has control of the memory)

4-5

From the above it may be concluded that:

1,

A Timeshare request always takes precedence over
the main frame's use of memory

A Data Mulitplexing System’'s Timeshare request
always takes precedence over a Standard I/O

Channel interlace's Timeshare request.

4-6

CHAPTER 5
Adder
5.1 Introduction

5.2 Operations

5.1 Introduction
The adder has fifteen output stages
Jau0, Jaul, Jau2, Ja0,...,Jall
The most significant 3 bits (JauO, Jaul, and Jau2) are only used in

three of the adder's multitude of operations

1. SorS+1
2. Iridexing
3. Zero

and are hence formed directly. The remainder of this introduction

will be concerned with the least significant 12 bits (JaC,...,Jall).

We begin with a few definitions:
1. GnC,...,Gnll - the ''generate carry' term for a given

stage of the adder

2. PrC,...,Prll the ''propagate carry' term for a givén

stag~ of the adder

3. KGC,...,Kll - the "'carry' into a given stage of the
adder
4. Kul - the ""carry' out of the most significant

stage of the (12 bit) adder

The logic may directly control:

1. the general form of Gn:

Gn = g,AC + gZA?Z + g3EC
2. the general form of Pr:

Pr = g4AC + gSAE + géz(l + g_igff + gSS
3. K11

where the g (j) are gating terms.

The logic has no direct control over:

1. Ku2 = GnO0 + Pr0 KO
2. K(j) = Gn(G+1) + Pr(j+1) KG+1);j = 0,1...,10

Pr(j) ®KG);j = 0,1,...,11

3. Ja(j)

5.2 Operations

The various,operatiohs of the adder i'nay now be described:

1. Addition (A + C)
" Gn = AC
Pr = AT + AC
K1l = 0]
Ja = answer

Ku2 =>carry out

2. Addition with carry (A + C + 1)
Gn = AC
Pr = AC +AC
K1l = 1
Ja = answer

Ku2 = carry out

3. Subtraction (A-C)
Gn = AC
Pr = AC + AC
Kll = 1
Ja = answer

RuZ =>borrow out.

4, Subtraction with borrow (A-C-1)

Kll

Ja

Ku2

>
@
+
b= |
@

answer.

—> borrow out

Indexing (C-A)

Gn

‘Pr

K1l

Ja

A-1

]

AC
AC + AT
1

answer

= {Jaulb-Jaul)

= 0

S AC + AC
= 0

= answer

= AC + AC
= AC + AC
= 0

= answer
- Ja = 7777
= 0

= AC + AC
= 0

=>(Jaul0-Jau2)

H

>

> |

(09-011)

(09-011) minus 1

Ja = answer
9. C +1

Gn = 0

Pr = AC +AC =

K1l = 1

Ja = answer

Kuz => Ja = 0000y
10, S

Gn = 0

Pr = S

K1l = 0

Ja = answer

(iauO—JauZ) = (Sul-Su2)
11. s+1

Gn = 0

Pr = S

K1l = 1

Ja = answer

KuZz => (Jau0-Jau2) =

Ku2

12, Extx_"act (AC)

Gn
Pr

K1l

Ja

= (Jau0~-Jau2)

=

0
Ac
0

answer

I

(Su0-Su2)

(SuC-Su2) plus 1

5-4

13. Exclusive or (A @ C)

Gn = C

Pr = AT +AC = APC
Kll = 0

Ja = answer

14. Inclusive or (A v C)

Gn = 0
Pr = AC +AC +AC = A +¢C
Kl = 0
. Ja = answer
15, Comi)are ones (AC = 1 anywhere?)
| Gn =. AC

Pr = AC + AC + AC = AC
Kll = 0

Ku2 => No

Ku2z = Yes

16, Compare equal (A = C?)
Gn = AT +3AC = A®C
Pr = AC+ACT = A(®C
Kll = 0
Ku2z = No

Kuz = Yes

17, Compare magnitude (A > C?)

Gn = AAE'
Pr = AC + AC
K1l = 1

5-5

18.

19.

Zero

One

KuZ2 = No

Ku2z => Yes

Gn = C

Pr = G
Kll = G

Ja = OOOO8
(Jau0-Jau2) =
Gn = C

Pr = 0
K1l = 1

Ja = OOOl8

b

8

5-6

- CHAPTER 6

Basic Internal Operations

6.1
6.2
6.3
6.4
6.5

Introduction to timing charts
End

Operand assembly

Trap

Basic opcodes

6.1 Introduction to tirﬁing charts

The opcodes will be described by means of timing charts. A timing
chart is divided into machine cycles. Each machine cycle is headed
by an identifying logical expression opposite which are listed the
events thé.t OCC\;r throughout that cycle. The three individual clock
times (T1, TO, Tp) then follow-opposed by those events peculiar to

the given clock time. Both hardware implicit in the performance of

an event and fhe timing of some of the signals are listed in'parentheses
following the event. Explanatory notes are bracketéd and appear,

indented, immediately underneath the event they expound.

In order to obtain a complete picture of an opcode it will be necessary
to mentally superimpose the End timing chart and the appropriate

operand assembly timing chart upon the timing chart of the given opcode.

6.2 End
During the last phase oif every opcode, preparations must be made for
fhe next instruction. These preparations are effected by the signal

End.
Most opcodes hold End true throughout the last phase of their execution.
Howevér, those opgodes which change the instruction sequence {viz.
BRANCH instructions, EXECUTE instructions, and TRAPPING instructions)
obviously will not gate

P-S.
This is avoided by having these exceptional opcodes bring up End only

at Tp time of their last phase (which, in fact, is always d0).

End

End Int
T1 P-S

[Access the next instruction from the address in P] 6-1

TO
Tp Or = A«—B
[Restore A and B - During operand assembly (40),
Or caused A and B to be swapped] o
M—-C (Jm)
[i.e. next instruction-*a]
(MC-M5)—~0 (Jm)
[i.e. next opcode—~O]
Mé6-Lp (Jm)
[Set up Lp for ¢0] '
Set Fp |
[Set Fp for ¢C]
Clear 010
[Clear the memory parity error indicator - in case a
transfer to IDLE is gated (see below).]
Clear Ol1
[Set up for a possible transfer to IDLE (see below)]
(Ht + Ip) ==> Set Cpe
[Check pafity of the next instruction]
Go to ¢0 | |
[Perform the next instruction]
Ht Ip =Go to ¢l (more precisely, ¢l OI1 Ht)
[IDLE - Note that the HALT flip-flop, Ht, must
be set and this (Ip) must not be the End phase of

an EXU opcode or a trapping opcode.]
6.3 Operand assembly

The initial decoding of every instruction is similiar. This similarity

extends from the read-out of the instruction to the referencing of memotry

6-2

at the effective address.The term OPERAND ASSEMBLY will be used

to refer generally to the whole breadth of this initial decoding.

Operand assembly takes place in ¢0 ; conversely, ¢0 is only entered for

operand assembly.

Some éf the general purpose flip-flops used in ¢0 include:

Fp - Fp signéls that the current cycle throu.gh 40 is
processing the first word of'a'(possible) instruc-
tion word pair. TFp signals that the current cycle
through 40 is processing the se’éond word of an
instruction word pair.

Lp - Lp signals that the current cyﬁle through ¢0
will conclude operand assembly.

Ip - Ip is examined at ¢0 Tl. During ¢0 Fp, it will
block any change of P; during 40 Fp, it will gate

indexing (as opposed to no indexing).

09-011 09, 010, and Ol1 will temporarily (during ¢0 Fp

Tl) hold the mosf significant 3 bits of any 15 bit

address. |

| 010 - O10 is also used (at ¢0 Fp Tp) to effect (via S + 1>
- P) updating (effectively P + 2-P) of P for double
Word‘instructions. |

Ooll1 - O1ll is also used (at ¢0 Lp Tp) to gate the conclusion

(viz; S—-P, End) of the opcodes which change the

instruction sequence.

The adder (Ja) is used at Tl and Tp times by the opérand assembly

logic. The adder is reserved at ¢0 TO time for use by the particuiar

opcodes. These ¢0 TO uses of the adder, as well as all other ¢0 events

peculiar to certain opcodes, are described under the particular opcode.

Operand Assembly

(Immediate Addressing)

End ~ M-—C; (M0-M5)-~0; M6—~Lp; Set Fp; Set Cpe
¢ Fp Lp
Tl S +1-»S (Ja, Pr, Kl11)

[Access operand from next location]
Clear OI10
Ip =Set O10
[0O10 will cause P to be incremented at Tp]
Clear .Ol 1
[Opcodes which change the instruction sequence
will set Ol1 at TO]
Clear Ip
[Opcodes which temporarily leave the instruction
sequence will set Ip]
Or =>Ae—B
[Instructions which operate on B actually effect
their operation in Al

TO

Tp | 010 OT1 =S + 1-P (Ja, Pr, Kl1)
[i.e P + 2-P]
Clear 09-011
[For use during the execution phases of certain
opcodes]
Clear Lp
[For use during the execution phases of certain

opcodes]

6-4

Leave Fp set
[For use during the execution phases of certain

opcodes]

Operation Assembly

(Direct Scratch Pad Addressing)

End M~C; (M0-M5)—0; Mb—~Lp; Set Fp; Set Cpe
40 Fp Lp
Tl TIp =5 + 1-P. (Ja, Pr, Kl1)

[i.e. P + 1—>.P]-
(C,...,6, C7,...,Cl11)->S
| [Access operand from‘ scratch pad]
Clear O10 |
[O10 wéuld gate the incrementing of P at Tp]
Clear Ol1l
[Opcodes which change the instruction sequence
will set O11 at TO]
Clear Ip |
[Opcodes which temporarily leavye the instruction
sequence will set Ip]
Or =% A& B
[Instructions which operate on B actually effect

their operation in A]

TO
Tp Clear 09-0Ol1

[For use during the execution phases of certain

opcodes]

6-5

End

40 Fp Lp

T1

TO

Clear Lp |
‘[For use during the exécutiqn phases of certain
opcodes]

Leave Fp set
[For use during the execution‘”phases of certain

opcodes]

Operand Assembly
(Full Direct Addressing)

M-C; (M0-M5)—~0; Mé-Lp; Set Fp; Set Cpe

S + 1-5 (Ja, Pr, Kl1) .
[Access bottom 12 bits of the effective address]
Clear 010 |
Tp =Set O10
[010 will gate the incrementing of P at Tp]
Clear Ol1 |
[O11 would gate a'kchange in the instruction sequence
at Tp] |
Cle‘ar Ip

[Ip gates the proper setup of S at ¢0 Fp Lp T1]

010=>5 + 1-P (Ja, Pr, Kl1)
[i,e. P + 2-P]
(C9-C11)=(09-011)

' [Save the upper 3 bits of the effective address]

6-6

W Fp Lp

T1

TO

M~C (Jm)
['fhe bottom 12 bits of the effective address go
to C]
Set Lp
[The next cycle through ¢0 will be the last]
Clear Fp
[The next cycle through ¢ will be to process
the seco‘nd word of an instruction word pair]
Set Cpe
| [Check parity of these bottom 12 effective

address bits]

EE:(O‘;, ol0, O1l1, CO,...,Cl1)-S
[Access the operand]
Clear O-IO
[010 would gate the incrementing of P at Tp]
Clear Ol1
[Opcodes which change the instruction sequence
will set Oll at TO]
Clear Ip
[Opcodes which temporarily leave the instruction
sequence will set Ip]
OF =>A<—>B
[Instructions which operate on B actually effect

their operation in A]

Tp Clear 09-011

[For use during the execution phases of certain
opcodes]

Clear Lp
[For use during the execution phases of certain
opcodes]

Set Fp
[For use during the execution phases of certain

opcodes]

Operand Assembly

(Index Addressing)

End M-C; (M0-M5)—~0; M6é6—Lp; Set Fp; Set Cpe
40 Fp Ip
T1 S + 1-S (Ja, Pr, K11)

[Access the bottom 12 bits of the base address]
Clear O10
Ip =>Set O10
[010 will gate th_e‘ incrementing of P at Tp]
Clear Ol1
- [O11 would gate a change in the instruction sequence
at Tp]
Set Ip
[Ip gates the proper setup of S at ¢0 Fp Lp T1]

TO

Tp 010 =S + 1-P (Ja, Pr, Kl1)
[i.e. P + 2~-P]
(C9-C11)>(09-011)

[Save the upper 3 bits of the base address]

6-8

M~-C (ij
[The bottom 12 bits of the base address go te CJ
Set Lp
[The next cycle through ¢0 wiil be the last]
Clear Fp
[The next cycle through ¢ will be tc process the
second word of an instruction word pair]
‘Set Cpe |

[Check parity of these bottom 12 base address bits]

%0 Fp Lp
T1 Ip "-==)1‘309, o010, 011, ¢CO0,...,Cl11)-(0,0,0, AC,... ,All)f)
| [Access the operand]
Clear O10
[010 would gate the incrementing of P at Tp]
Clear Ol11
[Opcodes which change the instructior sequence
will set O1l1 at TO]
Clear Ip
[Opcodes which temporarily leave the instruction
sequence will set Ip]
Or =>A«—>B
[Instructions which operate on B actually effect
their cperation in A]

TO

Tp Clear O9-0O11

[For use during the execution phases of certain cpcodes]

6-9

- End

40 Fp Lp

T1

TO

Clear Lp
| [For use during the execution phases of certain
opcodes]
Set Fp
[For use during the execution phases of certain

opcodes]

Operand Assembly
(Full Indirect Addressing)

M—C; (M0-M5)~0; Mé~Lp; Set Fp; Set Cpe

S + 1-5 (Ja, Pr, Kll1)
[Access bottom 12 bits of the indirect address]
Clear O10
Tp =>Set O10
[010 will gate the incrementing of P at Tp|
Clear Ol1
[O11 would gate a change in the instruction sequence
at Tp]
Clear [p

B gates the proper setup of S at ¢0 Fp Lp T1]

010=>S$ + 1-P (Ja, Pr, K11)
[i.e. P + 2-P]

(C9-C11)=(09-011)
[Save the upper 3 bits of the indirect address]

M-C (Jm)

[T}.le bottorﬁ 12 bits of the indirect address go to C]
Leave Lp clear

{ fhe next cycle t‘z'zfa:-ugh ¢C wiil not be the last]
Clear Fp

[The 1:1ext cycle through ¢0 wili be to process the

second word of an instruction wcrd pair|
Sevt Cpe

[Check parity of these bottom 12 indirect address bits]

%0 Fp Lp
T1 Tp=>(09, Ol¢, Oll, CCG,...,Cll)-8S
[Access the indirect instruction]
Clear O10
[010 would gate the incrementing of P at Tp]
Clear O1l
[O11 would gate.a change in the instruction sequence
at Tp]
Set Ip
[Ip will block any change to P during the next ¢0]
TO -
Tp M-C (Jm)

[Indirect instructionr goes to C]
Mé-~Lp (Jm)

[Re-initialize Ll
Set Fp

[Re-initialize Fp]

- Set Cpe
[Check parity of the indirect instruction] .
Stay in ¢0

[Operand assembly begins again]

Operand Assembly

~(Indirect Scratch Pad Addressing)

End ' M~C; (M0-M5)—~0; Mé~Lp; Set Fp; Set Cpe
0 Fp Ip | |
T1 . =S + 1-P (Ja, Pr, Kl11)

[i.e. P + 1-P] !

(0,...,0, 1, C9, C10, Cl1, C)>S
[Access the indirect instruction]

Clear Ol10

'. [010 would gate the incrementing of P at Tp]

Clear Ol1l '
[O11 would gate a change in the instruction sequence
at Tp]

Set Ip

[Ip will block any changes to P during the next ¢0]
TO |

Tp M-C (Jm)
[Indirect instruction goes to C]
Mé-+Lp (Jm)
[Re-initialize Lp]
Leave Fp set

[Re-initialize Fp]

6-12

Set Cpe
[Check parity of the indirect instructien]
Stay in ¢0

Operand assembly begins again
P y g g

6.4 Trap

Logical proviéions have been made to TRAP certain opcodes instead

of executing them normally. When trapping a giveﬁ opcode, all normal
operations are in>hibited; the P register is not incremented. Instead, the
instruction (pair) at a uniguely defined location pair‘ is execu.f:ed. The
instruction at the trap address will normally be a BMC/BRM to a trap
subroutine; siﬁce the P register contains the address of the first word
of the trapping instruction (pair), proper linkage between the trap sub-

routine and the-trapping instruction is established.

DVX (12/52) and MUX (13/53) are optional instructions. If the option
is installed, these instructions will never trap. If the option is not

installed, these instructions will always trap.
POT/BOT (10/50), WOT/ROT (11/51), PIN/BPI {14/54), and WIN/RIN
(15/55) may operate normally (Pct) or trap {Pct). The program controls

the operation via Pct.

The trap address pairs have been defined as follows:

Opcode Address
POT (10) 00130
BPO (50) 00132
WOT (11) 60134
ROT (51) 00136

End

&0 Tr

Tl

TO

Opcode ' Address

DVB (12) 00120
DVA (52) 60122
MUA (13) o 00124
MUB (53) - 00126
PIN (14) 00140
BPI (54) 00142
WIN (15) : 00144
RIN (55) 00146

M-C; (M0-M5)~0; Mbé-Lp; Set Fp; Set Cpe

Tr = Pct O 0204 + Option OT 02 O3 04

Block all normal transfers to S and P.
[Thus P remains pointing to the trapping instruction]
TRAP ADDRESS**S
[Access the instruction at the trap location]
Set Ip
[Ip will block any change of P during the next ¢0. Thus
the instruction at the trap address is truly executed
(a la-mode de EXU)!
Block the possible interchange of A and B

[¢0 Lp Or would have gated this interchange]

Block the possible clearing of A
[(¢0 Lp) (O1 02 O3 04 O5) would have gated this
clearing. But (OT 02 O3 04 05) is held at ground

when the MUUX /DVX option is absent.]

6-14

Tp End (only at Tp)

[End gates the preparation for the next instruction]

Block the possible increment of P
[¢0 O10 would have gated this increment]
- Block the possible interchange of A and B
[End Or would have gated this interchange]
Block all set pulses to Lp that are not gated by Jmé

[End will, as always, transfer Jmé to Lp]

6.5 PRasic opcodes
CYX, CYD, CFX,C¥FI,CFD

(02/42, 03/43)

The shift commands (02/42, 03/43) have the capability to effect both
single-register and double-register shifts. All shift commands have

the following common general structure:

1. All shifts are left circular.
2. 0 € shift count < 178
3. The least significant four bits of the effective address (E11l-

E14) determine the shift count-these four bits should contain
thé l's complement of the desired shift count.

4. . The fifth least significant bit of the effective address (E10)
determines whether the shift will be single-register or
double -register:

E1C =>single-register shift
E10 ==>double-register shift

5. Thus, the operaticn of a particular shift opcode is completely

determined by the least significant five bits on the effective

address (E10-E14).

$0 Lp
T1

TO

Tp

(§0-S11)-~C (Ja, Pr)
[i.e. Complemented shift count—»{C8-C11)

Shift indicator—=C7]

(C8-Cl11 # lillz)=:>C + 1-C (Ja, Pr, Kll)

[Increment shift count if terminus

has not yet been reached]

Shift A left one binary position

[A is shifted during all SHIFT opcodes]

(C8-Cll1 # 1111,) C7=>Also shift B left one binary position

5!
[B is shifted only during double-register SHiF T opcodes]
(C8“-C‘ll # 1111,) CYX =>A0-All |
[X is shifted left circular]
(C8-CI1l # 1111,) CFX = AO—F{
F. —-All
[F,,X) is shifted left circular]
(C8-Cl11 ¢ 11112) CYD = B0—+All
A0-BI11
[(A,B) is shifted left circular]
(C8-Cl1 ¢# 11112) CFIl = RB(0—All
AC—F<

Tl

TC

Tp

o7

T1

TO

_Ip

(Frs7, B, A’ is effectively shifted left circular|
(C8-Cll # 11112) CFD =B(0—-A1ll
AC—Fi
F«—-Bll

[(F{,A,B) is shifted left circular]

(C8-C11 # 111x2) =>Stay in 43
[The shift is not finished - and will not be finished
on this clock time. Continue shifting]

(C8-C11 = 111X,) =>Go to 4
[The shift is finished-or will be finished on this

clock time]

End (through Tp)

[End gates the preparation for the next instruction]

%0 Lp

Tl

TO

TO

40 Lp

Tl

TO

Tp

STX

(04/44)

Mw (through Tp)

[The memory reference of the effective address
‘thus becomes a write cycle]
A—>M (Jm-through Tp)

[A will be written into memory]

End (through Tp)

[End gates the preparation for the next instruction]

COX, CEX, CMX

(05./45, 06/46, 07/47)

M-C (Jm)

[i.e. operand—C]

6-18

rrl

TO -

Tp

Set Cpe |
[Check parity of the operand]
COX =>AC—~Gn
AC-Pr
[Thus any AC will result in Ku2]
CEX =A (! C~Gn
[Thus a difference of bits in any corresnonding
position of A and C will result in Ku2}

CMX %Effeét a normal subtract (Gn, Pr, Kl1l)

[Thus A 2C will result in Ku2]

COX =>Ku2—~Fi
[Whence Fi =>(X) A (E) # 1 anywhere]
CEX = Kul2—~F.
[Whence Fi =>(X) # (E)]
CMX ::;quz»}?.{
[Whehce FL=>(X) > (E)]
End (thrqugh Tp)

[End gate s the preparation for the next instruction]

DVX
(12/52)
The divide operation is entirely straightforward. In essence the
internal logic performs the division
(A, B) + (C)
The logic will initially assume that
(4) < (C)
the division can then be effected by 12 (trial) subtract operations.
These subtractions will always take place in A. This means that
(A, B) must be shifted left one binary position before each subtraction.
This allows the quotient to be inserted, a bit at a time, into B from the
least significant end (B1ll). In fact, the left shift of A will preceed the

left shift of B. This will allow the quotient bit to be inserted into B at

the time of B's left shift.

A divide step consists of:

L. Shift A left one binary position
A0-09
BO—»A‘II

2. . Try subtracting C from (O9, A). (The logic need only subtract
C from A.) The subtraction will be possible either if 09 = lor
Ku2z = 1 (Ku2 is the borrow out of the subtract operation A-C).

3. Shift B left one binary position (quotient bit = 09 + Ku2-Bl1l).
If the subtract is possible (i.e. quotient bit = 09 + Ku2 = 1),

then replace A with the new partial remainder (viz. A-C).

If the above sequence is done a total of 12 times (this divide step count
will be made in S), the results will be:
1. The final quotient, properly shifted, in B

2. The final remainder in A

The 12 divide steps are sumewhat ai.legentiated v, », and Lp:

¥ Lp

T1

TO

Tl

Fp Lp Divide Step
1 0 ist
0 0 » 2nd through l‘lth
o 1 11th
1 S 12th
M-C (Jm)
’ [i.e. operand - divisor—C]

Set Cpe

[Check parity ot the operand]

Shift A left one binary positicen
[This is the start of a divide step]

A0-09

[Save the most significant bit of A for the ensuing

subtraction]

RO-+All
[This consummates the left shift of A]
Fp Lp =>1-5 (Ja, K11)
[Fp was left set and Lp was left reset by ¢0.

This initializes the divide step count to 1]

6-21

To

Tp

Tp Tp =S + 1-§ (Ja, Pr, Kl1)
[This increments th2 divide step count]
Fp Lp =r End (through Tp)
[This is the lest divide stop - End gates the

preparation for the next instruction]

Effect a normal subtract operation (through Tp - Ja,

Gn, Pr‘, Kll) |
[Ku2 will be examined at Tp to sece if this subtraction
is possible]

(s8-511 = 1X112) =+ Set Lp
[This is the penultimate divide step - FI; Lp will
gate End throughout the last divide step]

Shift B left one binary position _

‘. [A had already beon shifted at Tl]

(09 + Ku2)—-Bll
[i..e° quotient bit~P11. This consummates the
left shift of B]

(09 + Ku2) > Ja—A
[i.e. A-C—A. This places a new (partial) remainder

in Al

Clear Fp
[Fp Lp had gated the initialization of the divide step
count] |

Lp =>Set Fp
[This is the end of the penultimate divide step and
concludes the preparations that will allow End to be
true throughout the last divide step]

End =>Block the possible interchange of A and B

[This interchangc, normally gated by End 6?, would

have interferred with other A and B registef transfers. |

(%]

MUX

(13/53)

The multiply operafion is achieved, quite directly, by 12 additions. In

essence the internal logic performs the multiplication.

®) + (C)

by the following steps:

lo

2,

Clear the partial product (A)

Examine the least significant bit of the multiplier (B11)

fpll = 1, add C to A and place the sum.in A.

1Bl = 0, do nothing.

Shift the partial product (A) right one bit pbsition. fR1l = 1,
place the carry from the above addition (A + C)in A0, If B1l
= 0, place zero in AQ,

The bit shifted out of the least significant end of A is the least
signiﬁcént bit of the final answer. It can not be éhanged by aﬁy
further additions,

Shift the mu],tiﬁlier (B) right one bit position. Place the final
answer bit (that was shifted out of A) in R0, The former con-
tent of B11 (the least significant multiplier bit) are lost; it
has been used and is nolonger needed.

Since both the multiplier ahd partial product have been shifted
right one bit position, we are in a position to return to step 2

to process the second least significant bit of the original multiplier.

By pérfo.rming steps - 2-6 (above) a total of 12 times the multiplication is

accomplished. The final answer appears in (A, B).

Because of shifted transfer paths, the internal logic can perform a complete

addition and shift in one clock time. Therefore, after the multiplicand has

been accessed, only 4 machine cycles are needed to coniplete the

6-23

Fp and Lp:

Fp Lp Count
1 0 1
0 0 2
¢ 1 3
1 1 4
¢ Lp
Tl
TO 0 +A
- [This initializes the partial product to zero. i is
effected by directly pulsing the enable, Ag]
e M~C (Jm)
[i.e. operand = multiplicand—=C]
Set Cpe
[Check parity of the operand]
$3 ' Bll=Effect a normal add operation (Ja, Gn, Pr)

[i.e. A + C—Ja]
B11 =>A~Ja (Pr) |

[Note that, in this case, Ku2 = 0]
Ja (shifted right one binary position)—~A
Ku2—-A0

[This gives us a new partial product]
Shift B ri-ght one binary position

[This repositions the next multiplier bit at B11 and

makes room for a final product bit at B0O] 6-24

Jall-BO
| [i.e. final product bit~B0]
T1 Fp Lp =» End (through Tp)

[End gates the preparation for the next instruction]

TO
Tp T'p = Clear Fp
[This changes the count from 1 to 2]
Fp = Set Lp
[This changes the count from 2 to 3]
Lp=> Set Fp»
[This changes the count from 3 to 4]
End=> Block the possible interchange of A and B
[This interchange, normally gated by End Or,
would have interferred with the Ja {right shift)>A
and B (right shift)~B transfers at this time]
MPO/MPF
(16/56)
¢ Lp
T1
TO
Tp M~C (Jm)

[i.e. operand—~C]
Set Cpe

[Check parity of the operand]

6-25

Tl

TO

Tp

o7

T1

TO

Tp

¢$0 Lp

Tl

TO

Tp

MPO =1-Kll

MPF =>F{ K11

C + Kll=-C (Ja, Pr, K11)

[The operand hzs been properly incremented]
Ku2-F[

[i.e. carry out*Fi]
Mw (through Tp)

[This memory cycle will be a write cycle]
C->M (Jm - through Tp)

[The incremented operand will now be returned to

memory]
End (through Tp)

[End gates the preparation for the next instruction]

XMF, LDF

(17/57)

M—C (Jm)

[i.e. operand—C]

6-26

T1

TO

&7
Tl

TO

Tp

¢0 Lp
Tl

Set Cpe

[Check parity of the operand]

c—-C (Jz, Pr)

[This is a2 hardware quirk]

Mw (through Tp)
[This mémory cycle will be a write cycle]
XMF =»(F{, C1-C11)>M (Jm-through Tp)
[F{ will be written into the most significant bit of
the operand (along with the other original eleven -
bits)] |
LDF =C—-M (Jm - thrcugh Tp)
[Thus LDF (needlessly) rewrites the original operand

Lback into memory]

End (through Tp)

[End gates the preparation for the next instruction]
Cc ~FL

[The most significant bit of the cperand has been

loaded into F.]

SUX, SCX

(20/60C, 21/61)

6-27

TO

Tp

T1

TO

Tp

$0 Lp

Tl

TO

Tp

M-~C (Jm)

[i.e.

Set Cpe

[Check parity of the operand]

operand—C]

SUX =>1-Kl1l

A-C-KI1-A {Ja, Gn, Pr, Kl11)

[The subtraction has been properly performed]

RuZ—F{

[i.e. borrow out—F/]

SCX => FT—~Kl11

End (through Tp)

[End gates the preparation for the next instruction]

M-=C (Jm)

[i.e.

ADX, ACX

(22/62, 23/63)

operand->C]

o

T1

TO

Tp

$0 Lp
T1

TO

Tp

T1

Set Cpe
[Check parity of the opberand]
ADX =»0-Kl1l1
ACX =>FL~-Kll
[A hardware quirk causess F{—~Kl1 to be also gated
by OT1; howe\./er, O11 was left cleared by &0 Lp]
A+ C + Kil—-A (Ja, Gn,Pr, Kl11) |
[The addition has been properly performed]
Ku2—Fo
[i.e. carry out=F[]
End (through Tp)

[End gates the preparation for the next "instruction]

LDX, ANX, EOX, ORX

(24/64, 25/65, 26/64, 27/67)

M=C (Jm)
[i.e. operand—=C]
Set Cpe

[Check parity of the operand]

LDX =C—A (Ja, Pr)

[The LOAD has been performed]

6-29

ANX=>AAC—A (Ja, Pr)

[The AND has been performed]
EOX =>A) C~>A (Ja, Pr)

[The EXCLUSIVE OR has been performed]
ORX =>AvC~A (Ja, Pr)

[The INCLUSIVE OR has been performed]
End (through Tp)

[End gates the preparation for the next instruction]

TO
Tp
BAX
(30)
¢0 Lp
T1 A<>B
[This is gated, as always, by ¢0 Lp Or]
TO Set Ol1
[O11 will gate the completion of this opcode at Tp]
Tp | ~ Oll=>End (only at Tp)

[End gates the preparation for the next instruction-
which is actually the operand currently being read
from memory]

S—~P (Ja, Pr)

[i.e. effective address—P; the branch is made|]
End =>Block the interéhange of A and B
[By blocking this interchange, normally gated by

End Or, A and B remain swapped (see T1 above)]

6-30

$0 Lp
T1

TC

Tp

o7
T1

TO

Tp

BDA

(70)

A-1-A (Ja, Gn, Pr)

[This decrements A]
Ku2 => Set O11
[If the decremented contents of A are unequal to
77778,
Kul2 =2 Leave Oll clear

then the branch is taken (gated at Tp by O11)]

[1f the decremented conients of A are equal to 77778’
then the next instruction in sequence will be taken]

O1l1 = End (only at Tp) |
[End gates the preparation for the next instruction-
wﬁich is actually the operand currently being read from
memory |
S—-P (Ja, Pr)
[i.e. effective address—P; the branch is taken]

End =>Go to &7
[The branch was not taken - the rext instruction in

sequence must be accessed]

End (through Tp)

[End gates thc preparation for the next instruction]

6-31

Tl

TO

Tp

o7
Tl

TO

. BFF, BFT

(31/71y

BFFATL + BFTAEL =>Set Ol1
[1f FLis in the condition being tested for>, the
branch is taken (gated at Tp by O11)]
BF'F/\RQ + BFTAEL => Leave Ol1 clear
[1f Efis not in the condition being tested for,
the next instruction in sequence will be faken] .
Oll =End (only at Tp)
[End gates the preparation for the next instruction-
which is actually the operand currently being read
from memory]
S—-P (Ja, Pr)
[i. e. effective addresé*P;-- the branch is taken]
E;ﬁa-$Go to &7
[The branch was not taken-the néxt instruction in

sequence must be accessed]

End (through Tp)

[End gates the preparation for the next instruction]

6-32

EXU

(72)

0 Lip

Tl Set Ip
[ip wili block any change of P during ihe next ¢0.
Thus the instruction at the effective address is
truly EXECUTED]

TO Set O11
[O11 will gate the completion of this opcode at Tp]

Tp Oll1=»End {only at Tp)
[End gates the preparation for the next instruction-
which is actually the operand currently being rcad
from memor 7]
Block the transfer cfS ic P
[Ip will actually block this transfer. This transfer
(normally gated by Oll) must be klocked because
EXU only leaves the instruction sequence tc execute
this one instruction]

BRL, BRU
(33/73)
$0 Fp
Tl
TO BRL=>CO~F.

[This loads F. from bit 0 cf the first word of an

instruction reither direct or indirect)]

6-33

Cl—>Pct
[This loads Pct from bit 1 of the first word of an

instruction (either direct or indirect)]

Tp
40 Lp : Nofe that this machine cycle could be concurrent with
¢0 Fp above.
T1
TO Set O11
[O11 will gate the completion of this opcode at Tp]
Tp Oll=>End
[End gates the preparation for the next instruction-
which is actually the operand currently being read
from memory]
S—-»P (Ja, Pr)
[i.e. effective address—P; the branch is taken]
XMX
(34/74)
¢0 Lp
Tl
TO
Tp ~ M-=C (Jm)

[i.e. operand—C]

6-34

Tl

TO

&7
Tl

TO

$0 Lp
T1
TO

' Tp

' Set Cpe

[Check parity of the operand]

C—C (Ja, Pr)
[This is a hardware quirk]
Mw (through Tp)
| [This memory cycle will be a write cycle] '
A-M (Jm - through Tp) | |

'[The register is stored at the effective address]

C—A (Ja, Pr)
[The operand is stored in the register]

End (through Tp)

[End gates the preparation for the next instruction]

MAX

(35/75)

M-C (Jm)

[i.e. operand—C]

6-35

Tl

TO

7
T1

‘TGO

T

¢0Lpﬁ.

T1

TO

Tp

Set Cpe

[Check parity of the operand]

A/\.C-fC (Ja, Pr)
[The AND has been performed]
Mw (through Tp)
B [This memory cycle will be a write cycle]
C—-M (Jm- through Tp) |

'['I_‘he AND result is returned to rnemory]

End (through Tp)

[End gates the preparation for the next instruction]

MPX
(36/76)

M-C (Jm)

[i e. operand—C]

6-36

Set Cpe

[Check parity of the operand]

4
T1 A+ C~-C (Ja, Gn, Pr)
[The addition has been performed]
Ku2—-Fi
[i.e. carry out—F/]
TO Mw (through Tp)
[This memory cycle will be a write cycle]
C-M (Jm - through Tp)
[The sum is returned to memory]
Tp
¢7
T1 End (through Ip)
[End gates the preparation for the next instruction]
TO
Tp
BMC, BRM
(37/77)
¢ Lp
T1
TO Mw (through Tp)

[The memory referon~2 of 1ne ciiective address

thus becomes a writc cycle]

6-37

Tl

TO

Tp

&7
Tl

TO

Tp

(FL, Pect, 0,...,0, Pu0, Pul, Pu2)-M (Jm - through Tp)
[The first word of the mark is stored at the effective

address|

S + 1-»8 (Ja, Pr, Kl1)
[The ensuing memory reference will be at the
effective address + 1]
Mw (thfough- Tp)
[The ensuing membry cycle will be a write cycle]
(PO—PII)—»M (Jm - through Tp)
| [The second word of fhe mark is stored at the

effective address + 1]

S + 1-P (Ja, Pr, Kl1)
[i.e. effective address + 2--P; the branch is made]
BMC =»Clear FL

Set Pct

End (through Tp)
[End will gate the preparation for the next instruction-
which will be located in the effective address + 2 (P

was set to this address at ¢4 Tp)]

6-38

CHAPTER 7

Console Operations

7.1
7.2
C 7.3
7.4
7.5
7.6

.Introductionl

Register display/alteration
Cénsole functions

Fill

Miscellaneous switches

Lights

=4

Model(Computer Control Panel

7.1 Introduction

A unique phase is entered and remained in when not performing opcodes.
¢l is this IDLE phase. The computer may enter IDLE because of any of
the following: o

1. The operator depresses the RESET button. [St will gate an
immediate IDLE.]

2. The operator moves the RUN-IDLE-STEP switch from RUN to
IDLE. [Ht will gate an IDLE at the completion of the current
instruction (End Tp).]

3. The ope'rator'STEP's an instruction. [Ht will gate a return tc
IDLE at the completion of the instruction (End Tp).]

4. A HALT‘ insfruction is executed by the program. [Ht will gate
én IDLE at the completi_on of the HALT iﬁstruction (End Tp).]

5. A memor‘y. parity error halt occurs. [Cp Kp will gate an imme-

diate IDLE.]

¢l has been divided into four subphases:

¢l 'oTI Ht - This is the subphase of IDLE that is always entered
first. This is basically an interlocking subphasé;
there is nc way to leave the subphase u.ﬁless certain
internal and external conditions are met.
¢l Oll Ht - This is thé subphase of IDLE which allows the registers
| to be displayed and their contents changed. This is also
the subphase which recognizes and instigates any console
function.
¢l O11 Ht - These two subphases of IDLE execute every console
¢l OT1 Ht
‘ function.
End Ht Ip M~C; Clear O10; Clear O11
¢l OTI Ht = Clear O -

7-2

Tl

TO

Tp

[Thié clears out fhe opcode and initializes Cr for
register‘ display (see ¢l O1l1 Ht - Or => A and B
are home)]
ﬁ = Set Fp
[This initializes Fp for register display (see ¢l Ol1 Ht-

Fp would cause A and B to swap)]

Clear 09

[This forc.es ‘C to be displayed on the RECISTER
DISPLAY lights during this subphase]
Ciear Ip
[This initializes Ip for a return to instruction execution]
Cvlear Lp . '.
[This initializes Lp for a possible FILL operation]
09 =>C-~REGISTER DIS PLAY lights (Ja, Pr)
 [The REGISTER DISPLAY lights are driven from Ja]
010 =>MEMORY PARITY light
OT0=>HALT light

[A memory parity error halt will set O10]

(St + Tem)=>Mgm
[If either the computer is being reset (St) or the
memory stack isnot up to a minimum operating
temperature (_-T-e-?h—), then a memory reference

will not be made]

OT0 Kg Ks ®mi Kmo Kpu St=>Set Ol1
[1f there is no memory parity error indication (‘(-)_1_6),
all console functim switches are unactivat’ed,‘ and 'fhe
computer is not being reset (.S—t);theAn‘ go to subphase

¢l O11 Ht.]

7-3

7.2 Register display/alteration
¢l Ol1l Ht is the IDLE subphase which allows the contents of A, B, C,

and P to be examined and changed.

A,B, and C are all displayed via the REGISTER DISPLAY lights. These
lights are actually driven from Ja. A or C may be directly displayed.
Since there is no way to put B on Ja, B is displayed by interchanging A
and B and then actually displé.ying B from the A register. This operation

requires two flip-flops:

or - The Or flip-flop indicates if A and B are swapped (Or)
or home (Or). |
Fp | - The Fp flip-flop will sypcronize theA REGISTER DISPLAY
SELECT switch (A or B) with the internalvdisplay logic.
[Fp signals a change of the REGISTER DISPLAY SELECT
switch.]
A thifd flip-flop is used to control the actual register (A or C) currently

being displayed via Ja:

09 - 09 =>display C
| 09 =>display A

The additional logic needed to alter the currently displayed register (A,
B, or C) are minor. The set buttons will also be placed on Pr; thus ORing
them, atJa, with the register currently being displayed. Finally,
Ja will be read back into the particular register. To clear the given
register, it is only necessary to block the gating that places the register
on Ja; then, when Ja is recirculated back into the register, all zeros will

be read in.

The P register display/alteration operates on the same principles as abave.

However, Ja is not used. Te PROGRAM LOCATION lights are driven

directly from P. P is directly recirculated. The set buttons are gated

directly into P.

Some of the perﬁnent console signals are:

Kb

Kb

Kre

Krul0-Kru2

Kr0-Krll

¢l O11 Ht

-

The REGISTER DISPLAY SELECT switch is requesting B

' The REGISTER DISPLAY SELECT switch is requesting A

or C

The REGISTER DISPLAY SELECT switch is requesting C
ThevREGISTER DIS.PLAY SELECT'swi.tch is requesting A
or B ..

'fhe clear and set buttons should affect the PROGRAM
LOCATION (P) | »

Tile clear aﬁd set buttons should affect the REGISTER
DiSPLAY (A, B, or C)

The clear button

- The fifteen set buttons

Clear O9
Kc=>Set 09 ; ‘
[09 will gate the display of A; O9 will gate th‘e display -
of C] | |
Clear Ip
[This initializes Ip for a return to instruction exegution]
Clear Lp

[This initializes Lp for a possible FILL operation]

7-5

[eF; "“*>(, {(Krc + Krp) + (SET BUTTONS) Krp Tp} -Ja-~C (Ja, Pr)

09 =2A (Krvc + Krp) + (SET BUTTONS) Krp To- ~Ja—=A (Ja, Pr)

Ja=~REGISTER DISPLAY lights
[O9 gates the display of C; O9 gates the display of A]
é‘Lzs—? (Krc + Erp) + (BET BUTTONS) Krps ~P
P->-PROGRAM LOCATION lights
[P is displayed directly]
Tl P-S
[1he ensuing memory reference will thus be at the
address currently in P]
(Kb {4} Or) =Clear Fp

[¥ will gate a swap of A and B at TC]

TC Tem =& Mgm

[if the memory stack is not up to a minimum operating

temperature (Tem), then a memory reference will not

e made |

Fo = Ae>B

[Swap A and B. The possible Ja—A tr.asfer at this

time must be blocked.]

Toggle Or

[Or ivdicates whether A and B are swapped (Or)or

nome (Gr)] .
Set ¥p
[The A and B registers now correspond to the REGISTER
DISPLAY SELECT switch]
Tp Tem (Kg + Kmf. + ¥mo + Kpu + Kg)== Clear Ht
[The memory stack is at an operating temperature (Tem)

and a console function has been requested. Go to ¢l Ol1 Ht:

7.3 Console functions

There are, basically, five console functions. Each function generates
two signals from its console switch, From the names given the two
signals, each signal of a pair appears to be the logical inverse of tﬁe |
other. 'Hdwever, this is not the case. Whenever either signal of the
pair bounces true, its complement must already be stably false. These

signal pairs obviate any logical elimination of switch bounce.

(g, Kg - Kg =>The RUN/IDLE/STEP switch is at RUN.
This will cause a return to the instruction sequence
beyginniny with the instruction in the location specified
by P.
Kmi,Kmi - Kmi->the MEMORY switch is at IN.
This will cause the contents of C to be stored in the
location specified by P.
Kmo,Kmo - Kmo =>The MEMORY switch is at OUT.
Thi‘s will cause the contents of the location spééified

by P to be read into C {and parity checked).

Kpu,Kpu - Kpu=>The PROGRAM LOCATION switch is at
INCREMENT
This will cause P to be incremented by one. Then
the contents of the location specified by this new P
will be read into C (and parity checked).

Ks,Ks - Ks =>The RUN/IDLE/STEP switch is at STEP

This will cause the execution of one instruction-
the one in the location specified by P- followed by

a return to IDLE.

(Kg)

¢l Ol1 HE
TI S-S (Ja, Pr)
S—P (Ja, Pr)
[These are hardware quirks; P—>S occured at every
T1 time of ¢l O11 Ht] |
Or => Clear Fp
| [Or %A’ and B were swapped; Fp will gate them
home at TO]
TO | Tp =>Ae>B |
| [Swap A and B]
.Toggle Or |
[i.e. Clear Or - thus O is now completely clear]
Set Fp
[A and B are now home]
Tp - M->C (Jm)
[This is a hardware quirk- the next instruction is
read into C and parity checked a whole machine
cycle before it is needed. In fact, End will gate a
repeat of these operations during the next machine
cycle, ¢1 OT1 Ht| |
Set Cpe
 [Check parity of the next instruction]
Clear Oll
| [i.e. Go to ¢l OT1 Ht)

ol OTT Ht

Tl

TC

Tp

ol O11 AT

Tl

TO

End (through Tp)
[End gates the preparation for the next instruction-
note that O is cleared, thus"an interrupt cpﬁld be

recognized at this time]

End=»Block the interchénge of A and B
[End Or would have gated this interchange]
End Ht=Go to |

[Enter the instruction sequence and begin program

execution]
MEMORY IN
{(Kmi
S-S (Ja, Pr)

S—-P (.Ja, Pr)
[These are hardware quirks; P—S occured at every
T1 time of ¢1 O11 Ht]

Or =>Clear Fp
[Or = A and B were swapped; Fp will gate fﬁem

" home at T 0]
Fp =>Ae>B

[Swap A and B]
Toggle Or

[i.e. Clear Or- thus O is now completely cleared]

-9

setFp
[A and B are now home]
' Mw_(t'hrrouvgh Tp) | |
| ~ [This meAm_o'__rAy» cycl_é w-ill.b.e a write’ éycle]
"C+M (Jm-through Tp) |
‘ [C will be writtén ‘in,t"o memory]
Tp C=C (Jm)

[This is & hardware quirk]

Clear O11 4,
[i.e. Go to ¢l OTI]
41 OTI ffE |
S
TO
Tp ~ End=>Set Ht |
o [i.e. Return to ¢l OTI Ht]
MEMORY OUT
. (Rho) |
¢l O11 Tt
T1 58

T
' [These are hardware qu.irl;s; P~5 occured at every
T1 time of 4 O11 Ht] |
- Or => Clear Fp

[Or=»A and B were swapped; Fp will gate them

~horne at TO]

7-10

TO

Tp

¢l OT1 ™

TC

Tp

A

¢k ©11 Ht

T1

Fp=>A<«>B
| [Swap A and B]
Toggle Or
’ [i,.e.,A Clear Or -thus O is now compfeﬁel‘y. c}eame&;}
Set Fp |) A
[A and B are néw home]
M~C (Jm) |
[i.e. operand—C; this pejrf{o,rnis- the desired memory
read-out] | | '
Set Cpe‘
[Lheck parity of the operand]
Clear Ol1

fi.e. Goto & OT1 Ht]

End => Set Ht

[i.e. Return to ¢I OTT Ht]

PROGRAM REGISTER INCREMENT

e

(RpD)

S + -5 (Ja, Pr, KIl) '

S + 1P (Ja, Br, KI1). |
[Both. P and: 5 are incremented by one.. Note: that!
when entering this machine - e.}gcke; S =B was:

assured since P—S8 occured at:every Tl time: of ¢l @11 Ht]

T-1L

TC

Tp

ol OTT Bt

T1
TGO

Tp

ol O11 Bt

T1

Or =» Clear Fp
[Or > A and B were swépped.; Fp will gate themn
home at TO]
Fp =>A<—B
[Swap A and ©]
Toggle Or
[i.e. Clear Or-thus O is now comnletely clearcd]
Set Fp
[A and B are now home!
M—C (Jm)
[iv.e. operand—C; this verforms the desired memory
read-out]
Set Cpe
[Check parity of the operand]
Clear O11

[i.e. Go to & OT1 Ht!

End => Set Ht

[i.e. Return to ¢1 OT1 Ht]

S-S (Ja, Pr)

S—~P (Ja, vPr)‘
[These are hardware quirks; P-S occurred at every T1
time of ¢l Ol1 Ht]
Or:>Clear Fp
[Or}l =>A and B were swapped; F'f) will gate them hofrie
at TO]
TC Fp=>A«—B
[Swab A and B]
Toggle Or
[i.e. Cleé.r Or -thus O is now completely cleared]
Set Fp
[A and B are now home]
Tp M-C (Jm)
| [This is a hardware quirk-the next instruction is
read into C and parity checked a whole machine
cycle before it is needed. In fact, End will gate
a reioeat of these operations during the next machine
cycle, ¢l OTI Ht]
Set Cpe
[Check parity of the next instruction]
Clear Ol1
[i.e. Go to ¢1 OT1 Ht]

|

1 End (through Tp)
[End gates the preparation for the next instruction]
Block the recognizing of any interrupts

[No interrupts are recognized while STEPPING]

TO
Tp | Eﬁd%Block the interchange of A and B
'[End Or would have gated this inmfchangu}
End Ht=>Go to ¢0 .
[Enter the instruction sequence and ex:cute ore
instruction. HI—(E will set Ht so that {DLE is

re-entered at the End of this instruction]

7.4 Fill

It is possible to automatically read in a nine word program. This
bdotstrap process is _called‘FILL. The nine word prégram will
usually be ba small loader to bring in and execute 2 much bigger
prograrn.‘ A FILL}‘is effected as follows:

-1‘. Momentarily depress the RESET button.

2. Ehgage‘.the appropriate FILL switch, corresponding to
‘the pekzl'ipheral from which it is desired to FILL. The
FILLING peripheral may be

a. PAPER TAPE

b. MAG TAPE

c. CARDS
d. DRUM
3. While keeping the appropriate FIIL switch engaged,

throw the RUN/IDLE/STEP switch from IDLE to RUN.

FILL operates as'foilows:
1. In 41 O11 Ht, Kg will gate a transfer to ol O11 Ht.
2. S (the addfess to store t_he first input word) and P (the
| address at which execution of the program begins) are

both set to 000008.

3. Set A = 00108. This gives a word count of 9 for the

énsuing, automatic RIN instruction.
4, Set up an EOM opcode (i.e. o = 008) with a control word '

of 013XX_, (i.e. ©O9-0O11 = C¢_; C = 13XX_) where

8’ g
for a FILL from PAPER TAPE

g (

XX = v048

XX = 068 for a FILL from CARDS

il

XX 10, for a FILL from MAG TAPE

8

| XX = 268 for a FILL from DRUM

5. Set Ip |

6. Go to ¢b |

7. ¢b will gate the transmission of the EOM to the indicated
peripheral. A two character per word, binary inpuf is
specified.

8. Upon completion of the EOM, ¢b Ip will block End. Instead,
a RIN opcode will be forced into O (O = 558)' and control |
will be transferred to ¢2.

9. Once in ¢2 the .0pervation is similar to any RIN command:
Nine words (A = 00108) will be read into memory starting

at location 000008 (S = 0(}0008); then the instruction sequence

is begun at location 000008 (P = 000008).

Note that if, instead of throwing the RUN/IDLE /STEP switch from

IDLE to RUN, the operator throws the RUN/IDLE/STEP switch from
IDLE to STEP; the above 9 steps will still be performed. Howéver,

the computer will halt after the RIN opcode-instead of executing instruc-
tions starting at location 000008‘ This could prove useful to the main-

tenance man.

The console signals app‘osite to a FILL are:

Kic
Kfd
Kim
Kip

Kf

The CARbS FILL‘switch is engaged.

The DRUM FILL switch is engaged.

The MAG TAPE FILL switch is engaged.
The PAPER TAPE FILL switch is engaged.

Any one of the FILL switches is engaged.

The ¢l FILL operations will be described on the following timing

chart. The ¢b operations are described on the EOM timing chart.

The ¢ (and following) operations are identical to those of any RIN

opcode.

41011

T1

TC

FILL

(Rg Ki)

Clear O9
[This initializes O9 for a FILL)]
Clear Lp
[This initializes Lp for a FTLL]
¢—s {(Ja)
[Thus the first data word will be storedat 000008]
¢ —-P (Ja)
[Thus instruction execution will begin at 000008]
Or => Clear Fp
[Or = A and B were swapped. Fp will gate them
home at TO]
Fp =>A<—B
[Swap A and B]
Toggle Or

[i.e. Clear Or-thus O is now completely clear]

Set Fp
[A and B are now home. This also initializes Fp
for a FILL]
Tp IOS*A
[The RIN will read in 9 words]
Correct EOM control word-+C
[Thisk control word will depend on Kfc, Kfd, Kfm,
and Kfp] |
Clear O11
| [09 is also being cleared; O10 must already be
clear (¢l O10=>MEMORY PARTTY)]
Set Ip
[Ip will gate a direct transfer from ¢ to ¢2 following
the ‘conclusion of the EOM. 7p will also force a RIN
opcode (557) into O when this transfer is made] |
Go to ¢6 Fp Lp
[No{;e that O = 00, = EOM]
7.5 Miscellaneous switches
The PROGRAM LOCATION HOLD switch will allow no change to P-
except via the console clear and set buttons.

Kr -~ - The PROGRAM LOCATION HOLD switch is engaged.

The consequences of a MEMORY PARITY error are determined by

a 3-position console switch:

CONTINUE (Kp, Kpi) - The MEMORY PARITY is ignored. Any
MEMORY PARITY indication ($1 O10) is cleared.
HALT (Kp, Kpi) - The MEMORY PARITY causecs an immediate

halt {(i.e. transfer to ¢l OT1 Ht). The IDLE logic will

7-17

remain interlocked until the MEMORY PARITY indication
k(O‘10) is cleared - either by RESET or MEMORY PARITY
CONTINUE.
IN'TERRUPT (Kp, Kpi) - The parity error interrupts are logical.ly'
" armed when the MEMORY PARITY switch is in this
polsitio’n. Thus any MEMORY PARITY‘ will result in
one of two possible interrupts:
1) The main frame or standard i/O channel
interlace was using rhe'mory'.

2) The data multiplexing system was using memoryy

The position (RESET or SET) of each of the four BREAKPOiNT switches
on the console may be individually tested:

‘Kbl BREAKPOINT #1 is SET.

Kb2 - BREAKPOINT #2 is SET.
Kb3 - BREAKPOINT #3 is SET.

Kb4 - BREAKPOINT #4 is SET.

- The RESET button on the console causes a clear of the internal logic

via the signal St. St does the following:

1. Holds the logic in ¢l OT1 Ht

2. Clears any MEMORY PARITY ‘indication (010)

3. Blocks any memory references (via Mgm)

4, Clears F{

5. Sets Pct

6. Clears the interrupt enable flip-flop, En

7. Clears the standard I/O channel interrupt arms, Aiwl and
Aiw2

8. Clears the standard /O channel (via Wc)

7-18

St is also made available to both external devices (viag the POT connector)

and the interrupt logic (via the interrupt connector).

7.6 Lights

The actual sources of all the indicator lights on the console follows:

REGISTER DISPLAY
.PROGRAM LOCATION
FLAG o
HALT

MEMORY PARITY
INTERRUPT ENABLE
INPUT-OUTPUT UNIT

INPUT-OUTPUT ERROR

Ja
P.
FL
¢l OT1 Ht OT0
ol OT1 Ht O10

En

W9 through W14 "

We

CHAPTER 8
.Int_erfupts
8.A1‘ Introduction
8.2 Recognition
8.3 BRC opcode
8.4 Leaving IDLE

8.5 Single-instruction interrupts

8.1 Introduction |

A prioritjr interrupt level has three states:

| INACTIVE - - No interrup't signal has been received into the
level and none is currently being processed by
its interrupt servicing subroutine.

WAITING - An interrupt signal has been received into the
level, bﬁt‘is not yet being processed by its
intefrupt servicing subroutine. (’fhis situation
may be due to an interrupt of higher priority
being processed at this time.)

ACTIVE ‘- : An interrupt signal has been received into the
level and is currently being proces;ed by its
interrupt servicing subroutine. This means
the main frame has recognized the interrupt's
presence by exgcuting the instruction in its
assigned memory location (which is usually
a BMC, 37, to the body of its interrupt éer—

vicing subroutine).

- Some flexibility is provided in the transferring betw.een interrupt states:
INACTIVE'*_WA_ITING - Interrupt levels which do not have the
arrriing feature will automatically proceed
from the INACTIVE state to the WAITING
state whenever an interrupt signal is
recognized. Interrupt levels which have |
the arming feature will change states
upon recognizing the interrupt signal
only if the 'correspo'nding arm ig set.
If the arm is reset, no cﬁange of states

will occur and all record of the interrupt

8-1

- signal is lost.
WAITING—~ACTIVE o - Son‘l‘e inierrupt levels will automatically
o proceed from the'WAITING stafe to the
ACTIVE state if/as soon as there are no
interrupts of higher priority in either the
WAITING state or the ACTIVE state.
Other interrupt levels will.. change states
only if there are no interrupts of higher
priority in the WAITING or ACTIVE
state and the interrupt system is ehabled
(i. e. En is set). ‘ ‘
ACTIVE-INACTIVE - - For those interrupt levels whose inter -

fﬁpt 'servicil:l'g subroutine consists of a'
single instfuction (the hardware defines
the single inst'ruvction interrupt levels by
a special signal), the interrupt level will
au.torﬁatica'lly proceed from the ACTIVE
state to the INACTIVE state at the End
of the egé.cu,tion of the instruction in its
é.ssigned memory location. For the other
interrupt levels, the change of states will

occur at the conclusion of the interrﬁpt

| servicing subroufine (signalled by a BRC

instruction).

Each interrupt levei has two flip-flops (Is, Ip) to decode the three states
described aboye, : | |

Ts Tp = INACTIVE state

Is Ip = WAITING state

Is Ip =* ACTIVE state

The signals from_ the main frame to the interrupt logic include:. .

Ti - ' Ticlocks ui. setofthels flip-flop of each
interrupt 1evel,.. Thus, the changc from
the INACTIVE state to the WAITING state
occurs ‘on the trailing edge of Ti. |

Te ‘ - Ie clocksthe set of the Ip flip-flop associated
with the currently WAITING (Is Tp) interrupt
level of highest priority. Thus, the change
from the WAITING state to the ACTIVE state
occure on the trailing edge of Jc.

Ib - | Ib clocksthe clear of both the Is and the Ip flip-
flops associated with the ‘currently ACTIVE
(Is ip) interrupt level of highest ;tariority. Thus,
the change from the ACTIVE state to the INACTIVE

state occurs on the trailing edge of Ib.

Each of the main frame signals to the interrupt logic is normally two clock

times long

Ti TC
Ie T1
Ib T1

te/ib si.gnal onlybduring the entering/leaving of an interrupt servicing
subroutine. Ti is normally signalling during every machine cycle.
Howevef, Ti is not allowed to drop during any machine cycle in which
Ie signals. Since it ic logically impossible to enter two differentv
interrupt servicing subroutines on two consecutive machine cycles,

Ti is maximally five clock times long. This leads to: ANY EXTERNAL
INTERRUPT SIGNAL TO THE INTERRUPT LOGIC SHOULD BE AT

LEAST 3 CYCLES LONG.

The signals from the interruptlevelsto the main frame include:

and all interfu.pt levels of higher priority are in the
INACTIVE state. This interrupt level may proceed
to the ACTIVE state whether the interrupt system
is enabled or not. _ |
Ir o - An interrupt level is currently in the WAITING state
and all interrupt lévels of higher priority are in the
INACTIVE state. This interrupt levelmay proceed
to the ‘A‘CTIVE state only if the interz;upt system is
enabled (i.e. En is set). ' |
Ij - - The currently ACTIVE interrupt level of highest
. priority is a single—instructibn interrupt.
N6-N14 - The interrupt é’ddress associéted witﬁ the currently
| WAITING interrupt level of highest priority. These
address lines will be shifted left one binary position

to define a unique pair of memory locations.

8.2 Recognition

vDuring the End phase of most opcodes, Ir anvd Is are examined. If a
WAITING interrupt level may go ACTIVE, the next instruction is not
‘accessed. Instead, the instruction at the assigned rﬁemory location is
.accesséd and executed-with the P register still containing the address
of the next instruction in the main instruction sequence. [This executed
instruction will normally be a BMC, 37, to the body of the interrupt

servicing subroutine for that interrupt level.]

The following opcodes never allow interrupts during their End cycle:

EOM (00/40)
POT/BPO (10/50)
WOT/ROT (11/51)
PIN/BPI (14/54)
WIN/RIN (15/55)
BAX | (30)

BRL/BRU (33/73)

If the folio{ying opcodes bfanch, then interrupts will not be allowed
during their End cycle: A
BDA ' - (70)

BFF/BFT »(31/7»1)

4Certaix¥ conditions will also block interrupt recognition:

1. When STEPPING (Ks) |

2, . When halting (Ht)

3. - When exééuting ;he instruction of a s_ingle-instruction
inté.‘x‘}rupt' sub’rouv‘ci’n_e (Ij‘). [If‘ intefrupts were‘nAot blocked,
the a%utomatic Ib might occur after a new le)]

4" : when Signalling a memory parity interr_upf (Cp Kpi) [The

v tW-o memory parity i;;nterrﬁpt ‘s’ignals are only one clock
time (Ti) long and their falling edges will gate their
respe.ctiVe interrupt levels from. the INACTIVE .state to
the WAITING state (even though Ti reméins true). If |

interrupts were hot blocked, this change of state might

interfere with Ie.]

END

End In,t.
T1 | N-S
" [Access the néxt.in.struction from the assigned
interrupt address]
‘Set Ip
[Ip will block any change of P during'the next ¢0.

Thus the instruction -at the 'in-terrupto"»address is

truly EXECUTED.]

8-5

Set Ie
tIe will gate the currently WAITING interrupt level
of highest priority to the ACTIVE state]
Do not clear T1
‘[No new interrupt levels will be gated from the
I“NACTIVE state‘ to the WAITING state while we
are gating this interrupt level from the WAITING
state to the ACTIVE state (via Ie)] |
‘TO
Tp "(_)7 = A< B ‘
[Restore A and B-during Qperand assembly (d0),
Or caused A and B to be vswapped] |
M~C (Jm) |
: [1e next instru ction—C]
(MO-M5)>0 (Jm)
[i. e. next opcode—0O]
Mé6-Lp(Jm)
[Set up Lp for ¢0]
Set Fp
[Set Fp for ¢0]
Clear Ie
| [This drops the Ie signal to the interrupt logic]
Ip =>Set Cpe |
[Check parity of tile next instruction]
" "Go to ¢0

[Perform the next instruction]

8.3 BRC opcode

For normal interrupt levels (Ij), the interrupt servicing subroutine

8-6

will control the change trom the ACTIVE state to the INACTIVE state.

A specialrinstruction, BRC (32), will gate (via Ib) the currently ACTIVE
i'nter.rupt level of higﬁe_st priority to .:the INACTIVE state. Unless spe cial
prcﬁgramr’ning précautions are tavken; the BRC instruction should only Ee
used as thé’ last instfuctiou in the interrupt sericing subroutine (i.e. the
instruction that exits from the interrﬁpt servicing subroutine back to the
main prograrﬁ). 'Thek BRC instruc‘tion has been made a 3-cycle instruction

so that another intlerrupt may be recognized during its End phase.

BRC

(32)

¢0Fpk

T1 ’ IR ;
TO co-FL |
[Thislloads FL from bif C of the first word of an
instfuction (either direct or indirect)]
Cl—=Pct _ |
| [ms loads Pct from bit 1 of the first word of an
instruction (either direct or indir.ﬁe»c‘t)]
Tp
w0 Lp Note that this machi.n'e cycie could be concurrent with
¢0 Fp above.
Tl
TO - Set Ol1

[O11 will gate S to P at Tp]
_ Ib (through Tp)
[Ib will gate the currently ACTIVE interrupt level

- of highest priority to the INACTIVE state] 8.7

Tp . = Oll=>»5-P (Ja, Pf)
[i.. e. e,fvfectiﬂvel address-*P; the braﬁch is taken]
Ib =>Block End |
[O11 woul_d normally have gated End at ¢0 Tp.
BRC will have two extra machine cycles to |

allow the recognition of interrupts during its

End phase]

T1

'TO

o
Tl End (through Tp)

[End gates the preparation for the next instruction]
TO

—Ip

8.4 Leaving IDLE
If a HALT instruction is executed but the RUN/IDLE/STEP switch is

left in RUN, any interrupt (En Ir + Is) will be properly processed. Upon
entering the interrupt servicing subroutine, P contains the address of the
instruction following the HALT command. This usually means that, after

processing the interrupt, the instruction sequence will be re-entered at

the instruction following the HALT command.

"End Ht Tp
¢l OTT Ht

Tl

TO

¢l OT1 HE

T1

TO

M~C; Clear O10; Clear o1l

Clear O B
F[This\ clears out the opcode] |

Clear O9 | | |
[Th1s forces C to be d1sp1ayed on the REGISTER
DISPLAY lights]

‘"§=>C»REGISTER DISPLAY 11ghts (Ja, Pr)

| [The REGISTER DISPLAY lights are driVen from Ja]

OT0=—sHALT light

- Tem ==>Mgm

- {1f the mémory stack is not up to a minimum 6p~e§ating
temperature (Tem), 2 rhefnory réféfénéq will.not bé
| made] | |
"OT0 St Tem Kg (En Ir + Is) -—=—*»C1ear Ht
[i.e. Go to ¢l oTl Ht, this is only effected if there is
no parity error indication m,RESET is not be_1ng
~actuated (s'f),the memorsr stack témperature is minimal

(Tem), and the RUN/IDLE/STEP switch is in RUN (Kg)]

‘K'é =>End (through Tp)
[End gates the preparatmn for the next inetruction- -
note that O is cleared thus allowing the int.errupt,to

always be recognized]

End=>Block the interchange of A and B

" [End OF would have gated this interchange]

End (HT + Ip) = Go to ¢0 -

[EXECUTE the instruction at the interrupt‘a:ddre?ss]

8,5 Sihgle—insiruction interrupts
‘Some iﬁtérrupt 1evéls can be completely processed with one instruction
(e.g. real time clock pulse). Hardware provisions have been made to
 handle these single-instruction interrupts: |
1. A sign'al, Ij, will bé held true by the interrupt logic whenever
a singie-instruction interrupt level is ACTIVE.
2. Ib will Be automatically sent tb the interrupt.: logic during the
End pha'sé of the single-instruction interrupt servicing sub-
routine. ‘ |
3. No bnew. interrupts will be allowed during the End phase of the

single -instruction interrupt servicing subroutine.

" Only the following opcodes will be meaningfully interpreted as singlé-
instruction interrupt servicing subroutines:

EOM (00/40)

POT, PIN (10/14)

WOT, WIN (11/15)

MPO - (16)

BMC, BRM (37/77)

EXU (72) - Only the allowable opcodes

above may be EXECUTED

From the above, an earlier rule may be expanded:
ANY EXTERNAL INTERRUPT SIGNAL TO THE INTERRUPT LOGIC

SHOULD BE BETWEEN 3 AND 4 CYCLES LONG.

END

End Ij
‘Tl Biock any interrupt recognition
[End would normally have gated such recognition]
P-s | |
[Access the next instruction from the address in P]
TO Ib (through Tp). | |
[Ib will gate the currently ACTIVE interrupt level
of highesf priority (i.e. the single -instruction
, interrupt level) to the INACTIVE state. Note that
(since interrupt recognition at ’I‘l time wés blocked)
no other interrupt levels are currently being gated
(via Ie) from the WAITING state to the ACTIVE state]
Tp Iplvzz;Block Ib |
[Ivf the single-instruction interrupt subroutine is an
EXU, Ib will not be signalled until the End of the
EXECUTED instrucj:ion]
75}==>Aﬁ~9B ,
[Restore A and B-During operand éssembly (¢0),
‘Or caused A and B to be swapped]
‘M-=C (Jm) |
[i. e. next instruction—=C]
(M0-M5)-0 (Jm)
| [i, e. next opcode—0]
Mé-Lp (Im)
[Set up Lp for ¢0]
Set Fp

[Set Fp for ¢0]

8-11

Clear O10
[Cléar the meméry parity error indicator-in case
a transfer to IDLE js gated (s‘ee below)]
Clear O11 |
[Set up for apossible transfer to IDLE (see below)]
| (it + Ip) =>Set Cpe
[Check parity of the next instruction]
Go to 40
[Pelrform the next instruction]
Ht Ip =Go to ¢l (more precisely, ‘¢l OT1 Ht)
| [I‘DLE -note that the.bHALT flip-flop, Ht, must be set

and this (Ip) must not be the End phase of an EXU opcode]

MPO (16) is significantly altered when executed as a single -instruction
interrupt servicing subroutine. In fact, the use of MPO in this manner is

fairly well limited to the real time clock pulse intei‘r_upt level.

MPO
(16 and Ij)
%0 Lp
Tl
TO -

Tp M~C (Jm)
4 [i.e. oj)erand*C]
Set Cpe

. [Check parity of the operand]

T1 C + 1-C (Ja, Pr, Kl11)
[The operand has been properly incremented]

Do not alter F{

[The carry out of the adder, Kuz2, usuélly goes to F,(’]

8-12

| KuZ %Clear Fp A ‘
[Thus Fp impliea that the incremented Operand now
‘equals 0000, (Fp was left set by ¢0 Lp)]
TO Mw (through Tp) '
. “ tThis merﬁory cycle will be a write cycle]

C-M (Im- through Tp) '
[The 1ncrernented operand will now be returned to
memory]

iﬁ'io’ =>Ski (through ¢ Tp)

| [An infefrupt' signal. is seknt to the real time clock

sync interrupt level if the »in'cret.nented, ‘resto;;ed

operand équals 0.0008] ,

¢
T1 End (thz;ough Tp)
| [End gates the prep_a'tlration for the next instruction]
TO

8-13

CHAPTER 9
Alert aﬁd Test 1/0 Equipment
| 9.1 Intrqduction
9. 2 EOM opcode
" 9.3 SES opcode

9.1 Introduction

The EOM opcodeé (00/40) ﬁrovide one fo:m.of output £1_'om the main-
frame. Correspondingly, the SES opcodes (01/41) provide one form
of input to the main frame. Bpth EOM and SES present a 16 bit cox;trél
word (in fact, only the least significant 12 bits of the control word are
presented at some I/O connectors) and various timing signals at the
1/0 co.nne.ct'.ors. ‘Additionally, the response or lack of response to thé

control word will cause SES to set or clear E/.

The effective address (E0-E14) provides 15 of the 16 bits in an EOM/SES
'cdntrol word., [This effective address is'actually’p‘re'sented from 09-0O1l1l
and C.] I‘he remaining bit is provided by the most signiﬂcaj‘.nt bit of the
opcode, Or. The 16 bits of the EOM/SES control word are labled

cl, c9, Clo,..., C22, C23

 at the I/O connectors. All of the sbove may be summarized as follows:

Control Word Logical Source Actual Source
c1 or . or
C9 | EO . 09
clo0 ' El o10
cll E2 | Ol1
cl2 | E3 : o]
c13 , E4 ' Cl
cl4 E5 | c2
cl5 E6 C3
¢16 E7 _ C4
C17 | ES8 C5
ci8 | , E9 Cé
c19 | EI0 - | c7
c20 Ell C8
cza1 El2 'c9

- c22 El3 clo

Control Word Logical Source ~ Actual Source |

c23 | .~ El4 | cll

In practice, EOM's are generally used to alert an external device for an
ensuing I/O operation (either via the standard I/O channel or via POT/PIN);
SES's are generally used to test operating states and conditions within the

external device,

Several gvenera‘_l remarks may be made concerning the execution of either
an EOM or an SES opcode:
1, The actual execution (i.. e. presentation of the control word and

timing pulses) occurs in ¢b.

2. The actual execution will last exactly two contiguous machine
cycles.

'3, The acfual execution will start at T1 Ta - and hence run throﬁgh
Tp Ta.

4. The actual execution ‘will in no way be altered by any intervening
TIMESHARE.

~ The above is effected by using Fp and Lp to divide cliS into four subphases.

| Fp Lp Subphase

1 0 This is a prbe-exe cution subphase that is remained
in until the first execution subphase, ¢5‘ Fp Lp,

may start at Tl Ta [¢b Fp Lp is only entered if

necessary)
1 1 ' This is the first execution subphase.
0 1 ' This is the second execution subphase.

Fp - Lp Subphase |

0 ‘ 0 This is a post-execution subphase that is

remained in until TIMESHARE is concluded

and the next instruction may be accessed

[¢6 Fp ‘I:f) is only entered if necessary]

9.2 EOM opcode
The timing si'gnals

01, 02

are as shown below for any EOM.

‘The control signal‘

Eom

is as shown below for any EOM.

One of the control signals

4 Buc, loc, Sys}

‘may also be signalling, as shown below, for a given EOM (depending

on Cl, C9, C10, and Cl1).

"Ta

B FpLlpo)

& Fp Lp

Ql

Q2

Eom

Buc

L
. .

- Toc

TO

Tp T1 TO - Tp Ti

Some internal operations are effected via EOM. The associated control

words hé.ve been chosen so as to allow_direct scratch pad addressing.

€1 €10 ¢T1 CI7

signals one of these internal functions. In these

cases only C19.through C23 need be further examined.

¢ Lp

Tl

TO

Tp

- C19

0 .

FoT B T -

Cc20

0

(s0-811)—~C (Ja, Pr)

XWX

cz21

0

0

VIV VINY

EOM

(00/40)

c22

C

1

—t

KXo\ X

C23

X

0

Function
"HALT
Clear. FL
Set FL
Toggle FL
Clear En

Set bEn

Clear Pct

Set Pct

[The least significant 12 bits of the effective address

will be presented from C]

(Su0-Su2)-~(09-011)

V[The most significant 3 bits of the effective address will

be presented from 09, 010, and Ol1]

Ta=>Block the clearing of Lp

[i.e. Go to ¢ Fp Lp and begin the actual execution of

the EQM]

¢ Fp fﬁ

o1
TO

Tp

¢ Fp Lp

Tl

TO

Tp -

¢ Fp Lp
T1

Ta =>Allow Lp to clear
[i.e. Go to ¢b Fp Lp and wait one machine cycle before

béginhing the actual execution of the EOM] -

Ta=>Set Lp
[i.e. Go to ¢ Fp Lp and begin the actual execution

of the EOM]

: Eom (through ¢b Fp Lp Tp)

[Th1s control 51gna1 is not gated by any spec1a1 EOM
control word(s)] -
Eom CT CTI0 CIT=sRuc (through ¢ Fp Lp Tp)

[Internally this is equlvalent-to Eom Or OT0 O11]

'Ql (through ¢b F— Lp TO)

[This timing signal is not gated by any special opcode(s)]
Qz_(through ¢ Fp Lp T1)

{This tirvning’signal‘ is not gated by any special opcode(s)]
Eom €1 TT0 Cll=loc (through & Fp Lp TO)

[Internally this is equivalent to. Eom Or O10 O11]

Clear Fp

[i.e. Go to ¢b 'FE) Lp, where the actual execution of

‘ the EOM is ébﬁéluded]

Eom TY C10 Cll=»Sys (through ¢6 Fp Lp TO0)

[Internally this is equivalent to Eom O9 010 O11]

9-5

Ip Tsq >=—:»E‘nd (fhroﬁgh Tp)
[End gates the preparation for the next instruction-
if a TIMESHARE is not about to begin (Tsq) and_thlis
is not the automatic EOM of a FILL operation (-I.;)']
Block any interrupt recognitioh |

[End would normally have gated such recognition]

TO
Tp | (¢6 Tp End Fp Ts)=>FILL=>55,-0
"[i. e. .RIN-*O]
Set Fp
: [This.initializgs Fp for ¢2]
Clear Lp
[This initializes Lp for ¢2] |
Clear Ip v
[This initializes Ip for the End of RIN]
Go to & |
[The RIN opcode sequence is.
éntered at ¢2]‘
- Ts=>Clear Lp
[i.e. Go to ¢b Fp Ip to gwait the conclusion of TIMESHARE]
%6 Fp Lp
TI Tp ﬁaaﬁhd (through Tp)
[End gates ’the preparation for the next instruction-
if a TIMESHARE{ is not about to begin {Tsq) and this
is not the automatic EOM of a FILL operation (Ip)]
Block any interrupt recognition
[End would nbrmally' have gated such re cognition]
TO

9-6

Tp (¢5 Tp End Fp T's)=FILL=55,~0
| [i.e. RIN-O]
Set Fp
[This initializes Fp for.ci)Z]‘
Leave Lp clear |
[This iﬁitializes Lp for ¢2] "
‘ Clear Ip
[This initializés Ip for the End
of RIN]
G., to $2
- [The RIN vpcode sequence is
entered at ¢2] v.
st = Do nothing
[i.e. Remain in 5 f?a f;; awaiting the conclusion

of TIMESHARE]

9.3 SES opcode
 The timing signals
o1, ©2
are as shown below for any SES.
The control signal
| Skss
is as éhown below. However, note that there ére two possible timings-
depending upon C9 of the SES controi word. The response to tﬂe control
word (this respbnse is stor‘ed in F{) méy come, externally, from either of
Sio, Ssc | |

depending on Cl1, C9, Cl10 and Cl1.

dﬁFpr :

. ®TFpLlp | | | -

Q1 e | EE 1

Q2

" Skss T9 | R - B

Skss C9 ;

P

9-8

Some internal test‘s. are madé via SES. ‘The associated coﬁtrol words have
been chésen so as to allow direct scratch pad addressing. C1 CY Cio0 CIICI7?
s i‘_gnals one of fheAse internal tests.}. In thes‘e cases only C19 through
C23 need be fp.rthe’r éxamined{
| C19 C20 C21 C22 C23 Test |
X X 1 0 0 BREAKPOINT #1 (Kbl—~F{)

X X 1 0 1 BREAKPOINT #2 (Kb2—+F{)
X X 1 1 0 v BR‘EA.KPOINT.#3 (Kb3—~F.)
X X 1 1 1 BREAKPOINT #4 (Kbi~Ff)
X 1 X X Interrupt enable (En—F()
1 X X X X Program controlled trap (Pct#F,Z)
SES
(01/41)
$0 Lp
T1
TO (S0-S11)~C (Ja, Pr) |
[T he least significant 12 bits of the effective address
will be presented.from of |
Tp : | (Su0-Su2)—~(09-011)

[The mos‘t significant 3 bits of the effective address
will bé presented from 09, 010, and Ol1]
Ta=>Block the clearing of Lp.
[i.e. Go to ¢5 Fp Lp and begin the actual execution
of the SES] |
Ta=>Allow Lp to clear

[i.e. Go to ¢5 Fp Ip and wait one machine cycle before

beginning the actual execution of the SES]

9-9

6 Fp Lp
Tl
TO

Tp

¢$% Fp Lp

Tl

- TO

Tp,

4 Fp Lp
T1

TO

Tp

Ta = Set Lp
[i.e. Go to ¢ Fp Lp and begin the actual execution

of the SES]

'C9 =»Skss (through ¢ Fp Lp Tp)
[Internally this is équivalent to O9]
Q1 (through 454 Fp Lp TO)

[This timing signal isnot gated By any special opcode(s)]

Q2 (through ¢6 Fp Lp T1)

- [This timing signal is not gated by any special opcode(s)]

Clear Fp

[i.e. Go to ¢6 Fp Lp, where the actual execution of the

| SES is concluded]

C9 =>Skss (through ¢6 Fp Lp Tp)

[Internally this is equivalent to O9]
Tsq =+ End (through Tp)
[End gates the preparation for the next instruction-

if a TIMESHARE is not about to begin {Tsq)]

Ses—+F/L .
| [Ses is, logically, the response to the SES control word]
Ts =»Clear Lp

[i.e. Go to ¢6 Fp Lp to await the conclusion of

TIMESHARE]

9-10

$5 Fp Lp
T1 - T sq%—?End(through Tp)
 [End gates the preparation for the next instruction-

" if a TIMESHARE is not about to begin {Tsq)] R
TO -

Tp ‘ ~ Ts=>Do nothing
[i.e. Remain in ¢5 F‘*p_ Lp awaiting the conclusion

of TIMESHARE]

9-11

'CHA‘P.TE‘R’ 10 |
Parallel I/O
| 10.1 Introduction
10.2 Cénnecfors
10.3 POT/BPO opcode

10.4 PIN/BPI opcode

10.1 Intr‘odnctien ’ ,
There are two independent I/O paths on all 92 cov‘r'nput,ers:
1. Standard I/O Chénnel _ j.
a. .Cha‘racter 1/0
' 4'b.' : Buffered
c. Orlented towards standard perlpherals‘ |
2. POT/PIN
a Full word I/f)
b Unbuffered
¢. B Orlented towards systenqs applications
'Th1s chapter is concerned W1th the POT/PIN system.' ‘The POT
(parallel_.output) operation is very similar to the PIN (parallel input)

operation; hence the two operations will be discussed simultaneously.

The actual execntion of the PO:T/PI.N oecurs during ¢2. . The logic wiii
hang up in 4)2 waiting for a READY s1gnal from the external equipment.
‘ ’Upon receiving the READY signal, the main frame w111 send a reply
" (Pot2/Pin). If this is a POT operatmn, the output word will be avail-
able at the output connector (Cl2 th;‘ough C23) while Pot2 is true. If

this i.s a PIN voperation, the input word will be sampied at the input

connector (Cdl12 through Cd23) on the trailing edge of Pin.

There are two speeds of POT/PIN available There are two possible
READY s1gnals (Rt and Rtf} from the external equipment to the main
_frarne.v The external equipment will select the high speed mode (Rtf)

or the low speed mode (Rt) by the READY signal which it sends.

HIGH SPEED MODE
Rtf causes Ol0 to set at any T1 time. O10 then gates the execution of a_
POT/PIN operation in one machine cycle; The timing of the pertinent

signals is:

010

Pot2/Pin____ | - . , - .
| TO T

Tp . Tl p Tl TO

LOW SPEED MODE
Rt causes Lp to set at any '1"'1' Ta timé.' Lp then gates the .exec_ution of a
POT./PIN operation in two machine cycles; naturally this execution will
not be alteréd in any Qvay by an intervéning TIMESHARE. bThe timing of

the pertinent signals is:

Lp -

0l

Q2

Pot2/Pin

10-2

The POT (10) and PIN (14) opcodes b-ve the block transfer equivalents
BPO (50) and BPI (54). The logic stays in ¢2 throughout the block
transfer. As each word in the block is transferred,' the A register ‘
will Ee decre1ﬁented by one. The block transfer is tefminated either
by progrém cnntroi (the A register decrements through zero - thus
the original contents of A equaled the block length minus one) or by
external control (the external equipment signals BLOCK TERMINATE,
Bt). In the Iﬁgh speed nqodé, BPO/bri may (depending on Rtf) transfer
a word every machine cycle. In the low speed 'mbde, BPO/BPI may .
(depending on Rt). transfer a word every two machine cycles. i
A POT (BPO) uperation provides one additional signal, Pdtl, which
is true as long as the logic remains in ¢2. A PIN_ (BPI) operation -
provides one édditional pulse, Rti, which is true for two clock times

when the logic leaves ¢2.

Séme of the general purpose flip—.flops used in ¢2 of the execution of
POT/BPO and PIN/BPI include:
| Fp - During BPO operations Fp gates the next output
word into C, the parity checking of this neonutput
word, and the incrementing of S-éo that the following

word in the output block may be accessed.

Durirg BPI operatioﬁs f‘-;; gates the incrementing of
S so that the current input word may be stox;ed into.
the next word of the input block.

Lp - Lp will gate the transfer of one word in the low
speed mode (Rt).

09 - 09 gates the termination of POT/BPO or PIN/BPI.
| (i.e. O9 gates the exit from ¢2). O9 may be

set because:

10-3

‘010

Ol1

A word has been transferred and the

_operation was not a block transfer

(i.e. the opcode was POT or PIN)

All words in the defined block have
been transferred (i.e. A has been
decremented to 77778)

The external device has signalled the

end of the block (via Bt)

- Ol0 will gate the transfer of one word in the high

speed mode (Rtf).

- During BPI operations OTT signals that the last

input word has been stored in memory.

YIO.Z Connectdrs

Following are the logic signals on the POT/PIN connectors. Note also

the many EOM/SES signals on these connectors.

10.

POT
CONNECTOR

Potl
Pot2
Toc
Buc
Sys
Eom
QL
Q2
m.

Rti

~ PIN

CONNECTOR

Pin 1.
2.

Sio 3
4,
5.
6.
7.

Rt 8.

o
ot
|
el

10.

10-4

11,

12.

13,
‘14,

15.°
16.

17.
18.

19,

20.
21.
22.
23.
24,
- 25.
26.

27,

28.
29.
30

.31,

32.

33,
34.
35,
36.
37.
38.

CONNECTOR CCNNECTOR
=
Q2
'Skss- . - Skss
-)
Rt Rt
St h
c1f Bt
Cl
C9
Cl0
Cll
ci2 cdiz
C13 Cdl3
Cl4 Cdi4
Cl15 Cdis
Cié Cdi6
c17 Cdi7
c18 s

11,
12.

13.

14.
15.
16.

17.
18.
19.
20,

- 2al.

22,

23.

24,

25.
26,
27.

28.

29.

30.

31,

32

33.
34,
35.
36.
37.

38.

10-5

39,

40,

41,

42,

43..

 POT - PIN
CONNECTOR CONNECTOR

C19 Cd19 39,
- c20 Cdzo 40.
czl1 Cdz1 41.
c22 Cdzz 42.
c23 Cdz3 43,

10.3 POT/BPO opcodes

$0 Lp
T1
TO
Tp |

$2 Ta~

TL

POT/BPO - LOW SPEED

(10/50)

Set Cpe

[Check parity of the first output word]

NOTE: Fp is set; 09, Ol0, Oll, and Lp are cleared;

Go to ¢2 Ta or $2 Ta - depending on Ta.

Potl (through ¢2) |
| [Potl is true throughout a POT/BPO operation]
va'T_s—==>M4—>C (Jm) .
[This takes the next (ﬁrsbt) output word to C]
S + 1-§ (Ja, Pr, Ki1) |
| [Thus the following word in the output block will
be accessed]

Clear Fp

'[The logic is now ready to output a word from C] |

10-6

Rt O9 (F5 + T5)=>Set Lp ‘,
. [The low speed READY signal, Rt, will be recognized
if the logic is not gated to term:in.até the output {09)
:.anvd either the C register alr.eady has the next 'out:put. i
word {Fp) or this next outbﬁ_t §vord is curr‘ently bei'ng
gated to C (Ts)] -
TO Lp=>Pot2 (through TO Ta)
[Pot2 iﬁdicates, to fhe external equipment, that the
data lines (C12-C23) may be strobed]
Tp Lp BPO =>A-1-A (Ja, Gn, Pr)
[A is decremented by one as each word is traﬁsrh.itted]
Lp RuZ => Set 09 |
[The POT/BPO operation will be‘concl'uded following
‘this tr'aris‘tmission either because it was a single word
transmission (POT »Kﬁ?) or bec‘a.us'e the BPO block
length has been reached (decreménted A = 77.778=>,."K{52).-]
Fp 09 Ts=> Sét Cpe |
[Check parity of thé next v(zoyr»d in the block]
(09 + Lp) =>Stay in ¢2
[The transmission is not completed]
09 Tp =>Go to $7 | |

[The transmission is complete]

2 Ta
T1 - Fp Ts =>M~C
[This takes the next (first) output word to C]
S + 1-S (Ja, Pr, Kl1)
[Thus the following word in the output block will be
accessed]
Clear Fp

[The logic is now ready to output a word from Cl

10-7

TO

Tp'.

$7
T1

TO

Tp

$0 Lp

Tl

TO

Tp

Lp=>Set Fp
' tFp gafes the preparation for the next output word]
Clear Lp
[This concludes the transmission of a data wo-rdj
Fp OY Ts =>Set Cpe

[Check parity of the next word in the block]

D9 =>Stay in $2

[The transmission is not cornpleted]
09 =>Go to ¢7

[The transmission is complete]

End (through Tp)

[End gates the preparation fof_ the next instruction]
Block any interrupt recognition

[End would normally have gated such recognition]

POT/BPO - HIGH SPEED

(10/50)

S'et‘Cpe

[Check parity of the first output word]
N‘OTE:',Fp is set; 09, O10, Oll, and Lp are 'cleared
Potl (through ¢2) | |

[Potl is true throughout a POT/BPO operation]

10-8

T1

TO -

Fp T's' = M~C (Jm)
[This takes the next (first) output word to C]
'S + 1+8 (Ja, Pr, KII) |
[Thus the following word in the (possible) output block
lwi;.llv be accessed] | |
Clear Fp
[The logic is now ready to output a word from cl
Clear O10 | |

[This concludes the transmission of a data word]

Rtf O9 Tsq =>Set 010

[The high speed READY signal,. ‘Rtf, wi‘ll be recognized
if the logic is not gated to terminate the output (65) and -
the next word in the (possible) block may be accessed at
the c.onc'lu.sion of .this word tr’an,smis sion (TEE)’]
610 =>Pot2 (through Tp)
[Pot2 indicates, to the eXternai equipment, that the
dafa lines (ClZV—C2‘3) fnay be strobed]
Set Fp -
[Fp gates the preparation forv the next output w’ord]
010 BPO =»A-1—A (Ja, Gn, Pr)
_ [A is decremented by one ‘as each word is tra‘n’Smitte&-]
010 KuZ =>Set 09 _
V[The POT/BPO operation will be concluded following
this transmission either because it was a éingle,_
word transmission (POT =>Ku2) or because the YBPO

block length has been reached (decremented A = 77778%
Ku2)] | | - &
09 010 Ku2 =>Set Cpe

[Check parity of the next word in the block]

10-9

&

Tl

TC

Tp

(09 + O10) =>Stay in @

[The transmission is not completed]
09 OT0 =>Go to ¢7

[The transmission is complete]

End (through Tp)

[End gates the preparation for the néxt instruction]

Block any interrupt recognition

[End would normally have gated such re cdgnition]

10.4 PIN/BPI opcodes

.40 Lp
T1

TO

Tl

PIN/BPI - LOW SPEED
(14/54)

'NOTE: Fp is set; 09, 010, Oll, and Lp are cleared; Go

to & Ta or & Ta - dépending on Ta.

Mw
[Every memory cycle in ¢2 will be a write cycle]

C~M (Jm) | |
[The input word in C will be written into memory]

Rt 09 (O1I1 + Tsq) =>Set Lp
[The low speed READY signal, Rt, will be recognized
if the logic is not gated to terminate the output (O09) and
either the previous input word Has already been stored
in memory {O11) or this previous inpﬁt.word may b‘e

stored during the ensuing memory refexfence (Tsq).]

1¢-10

TO

Tp

¢2 Ta.

T1

Lp %Pin (through TO Ta).
[Pin indicates, to the external equipment, that the
data lines (Cd12-Cd23) will be strobed (on the trailing
'edge of Pin)]
T§¥>C1ear Ol1
[The current memory reference is storing the last
input word] |
Lp BPI=>A-1-A (Ja, Gn, Pr)
[A._is decremented by one‘as ea‘ch word is transmitted]
Lp KuZ =>Set 09
[The PIN/BPI ‘operat.ion‘will be concluded following
this transmission either because it was a single word

transmission (PIN =>Ku2) or because the BPI block

.‘ length has been reached (decremented A = 77778 =TRazZ)]

(09 + Lp)=>Stay in ¢2
[The transmission is not completed]
09 Lp=>Go to ¢4

[The transmission is complete]

Mw

[Every memory cycle in ¢2 will be a write cycle]

C-;-M (Jm)

[The input word in C will be» written into memory]
‘Lp Fp=>S + 1-S (Ja, Pr, Kl11)
| [The address within the data block is incremented to |
store the currently incoming data word]
Lp =>Clear Fp
[Fp gates the increment of S (see above) befvore

storing evei'y input word except the first one]

10-11

TO

Tp

&4
T1

TO

$7
T1

Lp=> Cd~C
[The input word is gated into C]

Ts Lp =>Clear Ol1 |
[The current memory reference is storing the last
input word]

Lp =>Set Ol1

| [A new input word has been gated into C. and must

bé stored in memory - the current memory reference
is storing unpredic'table résults.since C was changed
in the middle of the memory cycle]

Clear Lp

[This concludes the transmission of a data word]

09 =>Stay in ¢2

[The transmission is not completed]
09 =>Go to ¢4

[The transmission is complete]

C—C (Ja, Pr)
[This is a hardware quirk]
Mw (through Tp)
[This memory cycle will be a write cycle]
C~M (Jm-through Tp)‘
[The last input word will be written into memory]

Rti (through Tp)

[Rti indicates, to the external equipment, the completion

of a PIN/BPI operation]

End (thrdugh Tp)

[End gates the preparation for the next instruction]

10-12

TO

$0 Lp
T1
TO

$2

T1

Block any interrupt recognition

[End would normally have gated such recognition]

PIN/BPI - HIGH SPEED
(14/54)

NOTE: Fp is set; 09, 010, Ol1, and Lp are cleared.
M |

[Every r'némorgr c‘ycle in ¢2 will be a write cycle]
C-*M- (Jm)

[The input word in C.will be written into memory]
010 Fp=>5 + 1S (Ja, Pr, Kl1) |

[The address within the daf;a block is incremented to

store the newly strobed input word]

010 =>Clear Fp

[Z-F-E gates the increment of S (se'e above) before
storing every input word except the first one]

Clear O10
[This concludes the transmission of a data v;/ord]

Rtf 09 Tsq =>Set O10
[The high speed READY signal, Rtf, will be recognized
if the logié is not g~ated to terminate the output (O9)
and the previous input word may be stored during

the ensuing memory reference (’T's‘qS]

10-13

TO

Tp<b'

¢4
T1

TO.

010 =>»Pin (th.rou‘gh' Tp)
: [Pin i_ridicates, to the e.xtérnal equip‘ment,‘ that the
data lines (Cdlz-(;dz3) will be stré_bed (on the trailing
edge of Pin)] o
010 = Cd—~C

[The input word is gated into C] -
010 BPI =A-1-A (Ja, Gn, Pr)

[A is decremented by one as each word is transmitted]
010 KuZ =>Set 09

| [The PIN/BPI operation will be concluded following
this transmission éither. because. it was a single word
transmission (PIN:;KTJ:Z) or because the BPI block

length has been reached (decremented A = 77778=.=>

K2l
(09 + O10)=>Stay in $2

[The transmission is not completed]

09 010=>Go to ¢4

[The transmission is complete]

C—C (Ja, Pr)
[This ié a hardware quirk]
Mw (through Tp)
[This memory Cycle will be a write cycle]
C-M v(Jm-through Tp) |
[The last input word is (unnecessarily) re-written
into memory]
Rti (th‘rlough' Tp)
[Rti indicates, to the external equipment, the

completion of a PIN/BPI opération]

10-14

&7
Tl

TO

End (through Tp)
_ [Endv gates the preparafion for the next iﬁstructibn]
Block any interrupt .recogbnition‘k

[End would normally have gated such recognition]

10-15

CHAPTER 11

. Standard I/O Channel

11.1 Initialization

11

i1.
11.
11.
1.
11.
11,
11.
11.

11.

- 11.
11.

11.

.2

3

10

11

12
13

14

Character transmission and precessing
Parity
Channel error
Termination
Channel te sté
Interrupts
Mag-tape SCAN
Interlace
Connectors

Channel timing charts

Channel opcodes
WOT/ROT opcodes

WIN/RIN opcodes

11.1 Initialization
The stahdard-I/O channel operates, basically, in the following manner.
"A buffer control (-EI—I C10 CIT =»Buc) EOM with C17 true will initialize
Both the:_chann'el and the selected peripheral for an I/O operation, The
initializing of the channel is performed in two'stages_:
1. | Wc clears the channel
2. ‘Ws gatés the set-up of fh'e channel according to the EOM
conﬁrol word: |
a. Cl3 is examined on output opé rations to determine
| if leader is desired. CI3 gates leader-basically
by for-ciﬁg an all-zéro {including zero parity)
output character before transmitting the program-
defined output characters.
b. Gl6, which defines 2 c‘haracte,r/v‘vord mode, is
| ""permanently" stored in Wt and used to initialize.
the character counter, W8.
c. C18-C23 are stored in the unit address register,
W9-W14. Note that‘the most significant bit of

the unit address defines the direction of the

transmission (i.e. CI8 = W9 = INPUT; C18 = W9 =

OUTPUT).

11.2 Character transmission and precessing

After initialization the transmission of I/O characters may begin:

The channel contains a 12-bit buffer register, Wr0-Wrll, and a 12-bit
character register, R1-R12. All input characters are strobed from the
input character lines, Zwl-Zwl2, into' R. All output characters are
presented to the output character lines, Rwl-Rwl2, from R. The Wf

register acts as a one word buffer between the main frame and the

11'-1

peripheral. During input opera’tioné,‘ characters are assembled in Wr
until the defined cizlomputer word is cofnpl_eté (1 or 2 characters/word).

‘Wt signals thaf Wr is full. The main frame must then store this word

_ iri_memory; meanwhile, hoWeve'r,, ﬁe channel could be bstrobing anofhér
inpuf chafactgr 'inth.) During output operations, characters.are.dis'-. N
assembled from Wr ﬁntil the defined corriputer word is exausted (Lor2 ‘
. charac‘:ter,s/;word). Wt signals that Wr is empty. The main frame must
then 1o#d‘Wr with another word from memory; meénwhile,' however, the

_ch_ann,e‘l is presentihg the last, disassembled 'output character from R.

The aétual transr.nis‘slion‘ of I/O characters is contrOlied by character
clo,cks“, E‘cw‘, from the peripherals. The character clock is synéronized
(and voltége spikes eliminated) within the channel by two flip-flops, W6
and W5, |
Wé6 W5 - The channel is awaiting a character clock.
If this is aﬁ output operation, a character
is currently being presented on the éutpdt
lines (fr'om R)
W6 W5 - The channel has recognized the character
| clock. If this is an oufput operation, a
character is currently being presented on
the output lines (from R). If this is an
input operation, the input lines are being
strobed (into R) . |
Wé WS - The channel has r‘ecogniz‘ed the dropping
of the character dock. If this is an output
operation,, the.channel is attempting to
- disassemble the next oﬁtput character
(from Wr) for presentation (the current

contents of the output lines are unpredictable).

11-2

3
=
(6]

If this‘ is an input operation, the channel is
attempting to assemble the just-received
input character (into Wr).

If this disassembly/assembly can be |
effected (Wf) the channel will return to

the W6 W5 state. |

The channel could not effect a disassembly/
assembly (Wf). The channel ﬁust wait, in
this state, until the main frame presents

(to Wr) é new data word (for the output
operation) .or stores (from Wr) the assembled
data word (from the input ope;‘ation).. This
action by the main frame (signalled by Wx)
will thén allow the disassembly/assembly to
be effected (Wx will set Wf) and the channel
will return to the W-é W5 state. [During output
operations., all output lines (iﬁcluding parity)
will be beld clear while the channel remains'

in this state.]

The disassembly/assembly of characters between Wr and R has been given

a special name, precessing.

Precessing is gated by W4. Precessing is

accomplished by an interchange of Wr and R. The actual interchange effect-

ed depends on the operation (input or output) being performed.

During input operations, precessing gates the following shift paths:

6 Wr 11

A

11-3

where the 1 character/word mode must always effect two precessing

steps (on two contiguous clock times).

During output operations, precessing gates the following shift paths:

<3

0 Wr 5
1 R 6

6 Wr 11}
7 R 12

wh‘ere there is no difference between the 1 character/word mode and the

2 character/word mode.

Like most other I/O operations, two machine cycles are (minimally)

needed to complete one character transmission. The timing of the

pertinent signals is: .

Q2

 Ecw

Wé

W5

w4

11-4

11.3 Parity

Thus faf, no logical differences have been noted between 6-bit character
transmission and 12-bit character transmission. The only programming
diffe_renég is that (naturally) all 12- bit character transmissions must be
doné in the 1 character/word mode (6-bit charvacter transmissions may
‘be done in either the 1 character/word mode or the 2 character/word
mode). The pnlsr logical difi_'erencé is in the handling of the parity-

which will now be discussed.

All output characters include an odd parity bit., There are actually two
| parity bits available-at the output connectors: |
Rwp - Rwp will be true if R1-R6 contain an éven
number of bits. R1-R6 and Rwp constitute
a 6-bit character.
Rwe - Rwe will be true if R1-R12 contain an even
number of bits. R1-R12 and Rwe constitute

a 12-bit character.

All input characters include a parity bit, Zwp. This parity bit is strobed
into Rp. Then, when the character is precessed, the total number of bits
of R1-R12 and Rp is checked. If this total number of bits is even, a
channel parity error has occurred (and the channel error flip-flop, We,
will be set). There need be no difference between 6-bit input characters
(Zwl-Zwb and Zwp) and 12- bit input characters (Zwl-Zwl2 and Zwp),
since 6-bit input peripherals will not attempt to alter Zw7-Zwl2 (and all

input lines are normally false).

11.4 Channel error

During channel operation, the channel error flip-flop (We) may be set

11-5

in three possible way:

1. The peripheral can detect an error and signal the channel
(via Wes).
2. The channel can detect a parity error in an input character,

[The peripheral can signal the channel (via Np)to delete the

parity checking of input characters.]

3. The channel can detect a RATE error if an incoming character-

"clock (Ecw TO Ta) can not be processed (because the channel

is in the W6 W5 state).

11.5 Termination

An I/O channel operation may be terminated by the peripheral. The
peripheral halt signal, Whs, is received in the channel halt flip-flop,
Wh. Wh will then gate a disconnect (i.e. the unit address will be
cleared-no peripheral will have a unit address of 008) and the I/O
oi)eration is completed-as far as the peripheral is concerned. The
main frame may still have input characters (in Wr- and even R) to

store in memory.

During a paper tape input operation, the I/O channel actually generates
the halt signal, Wph. Wph will also set Wh and the termination of the
operation will be as above. This paper tape halt signal, Wph, is gen-
erated whén an all-zero input character (including zero parity) is
received into R. This all-zero, halt character is not furthervtreated
as an input character (i.e. unlike the meaningful data characters, it

will not be precessed into Wr).

An I/0O channel operation may also be terminated by program. An

input/output control (CI TI0 Cll=>Ioc) EOM with

11-6

Cl3 = 1

cl7r = 1
c19 = 0
c20 = 0
czl = 0
czz = 0
c23 = 0

will effect this program termination (TIP @Termihate input;

TOP =»> Terminate output)

During th¢ init jalization for an input operation, the terminalge kinput flip-
flop (Wtr) was cieared. When the program terminateé an input operation,
Wtr will be sevt;: Wtr will hold Wf set. Thi‘é means that fhe Wr register
will never again“appear "full". Input characters will be received .nornﬂally.
But these characters will be shuffled throﬁgh'Wr and lost; the main f.rarn'év
will not be gated to store ahy more data words. When a halt signal (Whs or

| Wph) sets. Wh, the channel will conclude’ its ope ration normally.

" During the initialization for an output operation, the terminate output flip-_
flop (W‘0‘) \ﬁ'as se.t. When the program terminates an output operation, WO.
will be cleared. Whén the,lasti 'rernaining character in Wr has been trans-
rﬁitted, the channel will enter the Wb W5 'W.O state. If the chanr;el is not
doing a mag-tape operation, the W6 W5 WO state will directly set Wh and - |
the channel will conclude its operation normally. If the channel is doing a‘
magv-tape operation, the channel will remain.in the W6 W5 WO state until

the mag-tape sets Wh (via Whs). The channel will then conclude its op-
eration normally, [The WO flip-flop has a different ‘fun'ction during ihput

operations. WO is cleared during the initialization for an input operation.

11-7

WO will be set (and remain set) when one computer word of input
characters (1 or 2 characters as defined in the initializing EOM)

has been received (in R) by the channel.]

All terminétion sequences (both input and output - both peripheral |
initiatéd and program initiated) will clea‘lr'WO at some time in the
_sequ.en;:e. W0 gates the conclusion of any termination sequence:

1. W0 will block any TIMESHARE requests by the interlace

| logic.

2, Wwo Willy block any Ilw interrupt signals.

3. WO will block any action by a WOT/ROT or WIN/RIN opcode.

4, W'Will gate the I2w interrupt signal (which must be 2 cycles

“long, since Ti may remain true throughout any one given cycle).

11.6 Channel teéts
Two cénditions in the channel may be pro.gram tested. A‘ buffer control .
(C1 TY TTIO0 TT1) SES with C17 true will effect these test:

1L The channel error flip-flop, We, is tested by also having C2

true.‘ Then '

We=> Set F{
We=> Clear F,(n_,
2. The current operating condition of the channel (ACTIVE or
.IN.ACTIVE) is tested by also having CO true. Then
INACTIVE =>Set FL
ACTIVE =»Clear F[
The qhanhel is INACTIVE only if the unit address is clear (i.e. W9-
Wl4 = 008) and no input characters are remaining to be stored following

the termination of an input operation.

11-8

11.7 Interrupts
Two interrupt levels, with arms, are available for use in conjunction

with an I/O operation.

The Ilw interrupt (armed by setting Aiwl) signals that the Wr registef.

is full (during input operations) or empty (during output operations).

The I2Zw interrupt (armed by setting Aiw2) signals that the channel

has.gone from the ACTIVE state to the INACTIVE state.

These interrupts are armed and disarmed by an input/output control

(C1 CT0 Cll=>loc) EOM with

Cl4 = 1
Ccl7 = 1
cl9 = 0
c20 = 0
CZI = 0
cz2 = ©
c23 = 0

C15 will be copied into Aiw2; C16 will be copied into Aiwl.

11.8 Mag-tape SCAN

The I/0 chan.nel participates in the execution of one, very special
per‘ipheral function: A mag-tape SCAN. When SCANNING, Wf‘.is

blocked from reéetting. This means that input characters are re-
- ceived normally into R but are shuffled through Wr and lost. The
main frame will not be-gated. to store any input words. When the

tape unit reaches the end of the tape record, the mag-tape gap signal

(Mtg) will become true. This will force W{ to ’clear. The main frame

11-9

is now gated'to store a data word (the last two characters in the tape
record). [An Ilw interrupt will also (if armed) be generated when .

Mtg. clears W{.]

SCANNINC is only allowed in the 2 character/word mode. The character
counter, W8, has long since gone to zero (W8) whenthg first becomes-
true. When the main frame stores the data word (the last two characters
in the tape rebcord), the character count will be reinitializea (this means,
in the 2 character/word mode, that W8 will be set). W8 will be used to
block Mtg (which. is still true) from again clearing Wf. [If Wf were agzain

cleared, another Ilw interrupt would be generated (if armed). |

A mag-tape READ operation may be converted to a SCAN operation at any
point in the tape block. This change is effectedby an input/output control

(C1 TTO C11 =loc) EOM with

cl1z2 = 1
cl7 = 1
cl9 = ¢C
c20 = 0
cz2l = ¢
cze2 = 0
c23 = 0

11.9 Interlace

An interlace option is available for the I/O channel. Basicaly, the interlace

- will automatically service Wr (when Wf clears) by directly referencing mem-
ory (via TIMESHARE). During output operations, M will be gated directly to
Wr (via Jm). During input operations, Wr will be gated directly to M (via Jm).

The address of the memory reference is given by the Iwaregister

11-1C

in the inter‘lac‘:e‘llqgic.v "F_he‘i'n:e‘fl_‘a'ce also hés a blockvlé‘ngt‘h regisur,
Iwd.. | Aftér each interlace ‘mem;pr»y‘reference' (sighalléd by theﬁ.aﬂ;, |
ing edge of Dmc Ts), the interlace will increment Iwa by one. and L

de crement Iwd by one, [Note that the interlace will never TIMESHARE

') te: me sat of

two contiguous memory € : laaa iogic

Wi too late in the TIMESHARED memery cycle for axxy pr cessing dxxting
- that memory cycle). Thus the interlace may pérform the increment and

‘decrement at leisure.]

The interlace informs the main frame of 1ts eurrent %tate by three aignals
1. Ewl + Ew2 '__1\:»-’,‘-' | The., 1nter1ace has been alerted ta receiva
or is in the pramss ef receiving the

’ starting addr‘mc: ‘q Iwa) ud t&e b}»ck :

1ength (for ‘Iw e ‘this is actually the

| biock length mi:‘ma ona}. :

| ['I'he mterlaca is ﬂomd, fmr this sé

up by any buffer ccmtrc; {C'I m
.Buc} or inputioutput cpntroi ("C'I G
Toc) EOM whigh has G9 true. 'r;u;

set-up is accampllsh&

the 1ntex'1a,ce logic.

2. Iw . w v'The interlace has bqe :
- - -‘:ito service Wr, by TIMES RES. as Meeﬁed-,

3. wf - A.The black 1ength cmm wa‘j‘-; has been o

:ldecremented to 77775 This means th#t

3, . ~, .
the originally given block{length ha,g keen

reache&,,

When the block length has been react Hed by Iwf], all further -

=1t

memory references by the interlace logic (normally gated by Iw) must

be blocked. One of two possible events will be gated by Iwf:

1. If Ilw is armed (i.e. Aiwl is set), an Ilw interrupt will occur.

[The usual Ilw interrupts have been blocked by Ewl + Ew2 and

rw.]

2. If Ilw is not armed (i.e. Aiwl is reset), then an automatic

termination (TIP or TOP) of the operation will occur. This

‘means that: during'ihput operations, Wtr will be set; during

output operations, WO will be cleared.

11.10 Connectors

Following are the logic signals on the channel connectors. There are

three different connectors:

1, AUX - All peripherals-except mag-tape -

plug into this connector.

2. MAG - All mag-tapes plug into this connector.

It differs from the AUX connector only

at pin 12,

3. EXT - All peripherals which transmit/receive

characters of more than 6-bits must plug

into this connector-as well as either AUX

or MAG.

Note, also, the many EOM/SES signals on these connectors.

MAG

AUX
1, Zwl Zwl
2. 3552‘ Zw2
3 Zw3 Zw3
4, Zw¥ Zwéd
5 75 Zwh

EXT
R7

R8
R9
R10

R1l1

11-12

10.

11,

12,
13.

14,

150 '

16,
17.
18
19,
20.
21,
22.
23,
24,
25,
26.
217.
28.
29.
30.
31.
32,
33,

34.

AUX
Zwb
Zwp

Ecw

Sio

Buc

, WGS

WO

W5

Wé

Q2
Ioc
w9
W10
wll
wiz
W13
W14
R1
R2

R3

R4

R5
R6
Rwp
cl2
Ccl13

Ccl4

Toc
w9
w10
Wil
Wiz

W13

wi4

R1
R2
R3
R4
R5
R6
Rwp
cl2
c13

Ccl4

o)
£

393

. 15.

16.
17.
18.
16,
20,
21,
22,
23,
24.
25,
26.

217.

28,

29.°

3C,

31,

32,
33.

34,

11-13

35..

36.
37.
38.

39,

40,

41,

42.

43,

11.11 Channel timing charts

AUX
C15

Clé

Cl7

cle
c19
c20
c21
c22

Cc23

MAG EXT

C15
Cl6
Cl17
cis
cl9
C20
c21
c22

Cc23

35,
36.
37,
38.
39.
40.

41,

42,

43.

11-14

INITIATE INPUT OPERATION

Buc ﬁ We =3 Clear WO

[WO will be set when one computer word (1 or 2
characters) has beenm®ceived (in Rb).]

Clear W5

Clear Wb
[The channel is initialized to accept character
clocks]

Clear W8
[The character counter is cleared-sce Ws below]

| Clear W9-W14

[The unit address is cleared-sce Ws below]

clear We
[Any channel error indication is cleared]

Clear Wh
[Any channel halt gating is cleared]

Clear Wt
[The characters/word flip-flop is cleared-see
Ws below] | |

Clear Wtr
[Any terminate input gating is cleared]

Set Wf
[Wf will be cleared each time that a computer
word has been assembled (in Wr)]

T1
TO

Tp

11-15

Buc Ta
T1

TO

T1

TO

Tp

Ta

Ws=>(C6-Cl1)>(W9-W14)

[The unit address is set-up from C18-C23_]

C4-Wt

[The characters/word flip-flop is set-up from C16]

C4—-W8

[The character counter is initialized from C16]

INPUT CHARACTER PROCESSING

{2 characters/word (Wt)-first character (WS)}

Assume that W6 and W5 are clear-the logic is then ready

to' recognize a character clock, Ecw.

W’6 W5 W9=sClear R
Clear Rp

[The character register is cleared]

W5 Ecw=Set W6 |
| [Wé6 W5 signals that a charactef clock has been

_ recogniéed]

W6 W5 =(R + Zw)-R
(Rp + Zwp)—Rp.
[The input lines are logically OR'ed into the input

character register]

Reviewing conditions: W6é is set, W5 is reset, and the

11-16

T1

TC

Tp

input lines are be.ing sampled every clock time (i.e.
R + Zw—»R, Rp + Zwp—Rp)-the logic is now ready
to recognize the dropping of the character clock, Ecw.
Wb V7_5=>(f{ + Zw)—R |
(Rp + Zwp)—Rp
[The input lines are logically OR'ed into the input
character register] |
W6 W5 =>(R + Zw)~R
- (Rp + Zwp)=Rp
[The input lines are logically OR'ed into the input
. character register]
W6 Ecw =>Set W5
[Wé6 W5 signals that the dropping of the character
clock has been recognized]
W.S =>Clear W6
[The logic will enter either the Wb W5 state (if
the precessing below could not be effected)‘or
the W6 W5 state (if the precessing below could
be effected)]
W5 Wf Tp =>W4 =>Clear W5

[i.e. Enter the W6 W5 state

and allow new character clocks

to be recognized]

Clear W8
[Decrement the character
counter |

(R1-R6)>(Wr6-Wrll)

[Precess the character into Wr]

Pel2 =>Set We

[i.e. Check the parity of the input

character]

11-17

INPUT CHARACTER PROCESSING
{2 characters/word (Wt)-second character '(WS)}
Ta ‘ Assume that W6 and W5 are clear-the logic is now ready

 to recognize a character clock, Ecw.

T1
TOI_ W5 W6 W9 =>Clear R
Clear Rp
[The character register is cleared]
W5 Ecw =>Set Wb .
[weé W5 signals that a character clock has been
‘recognized] | |
Tp _ W‘6 W5 =(R + Zw)—R
(Rp + Zwp)—Rp
[The input lines are logically OR 'ed into the input
character register] |
W6 W5 W8 =>Set WO
[i)u_ring input operations, WO signifies that enough
characters have been received to assemble into a
computer Word]v
.
.
.
Ta . Reviewing conditions: .W6 is set, W5 is reset, and the
input lines are being sampled every clock time (i.e.
R + Zw—R, Rp + Zwp—Rp)-the logic is now read‘y to
reéogniza the dropping of the character clock, Ecw.
Tl Wé6 W5 =(R + Zw)-R
“(Rp + Zwp)—Rp
[The iﬁp»ut lines are logically OR'ed into the input
character register] |
TO W6 W5 =>(R + Zw)-=R

(Rp + Zwp)—~Rp o 11-18

character register]
W6 Ecw =»Set W5

[Wé6 W5 signals that the dropping of the character
clock has been recognized]
Tp | W5 =>Clear W6
. [The logic will enter the Wb W5 state (since the
precessing below can always be effected)]
W5 Wf Tr =>W4 =>Clear W5
[i. . Entor the W Wg st;;;itg;:
ond allow new character clecks
to be recognized]
(Wré—erl)-(WrO—WrS) “
(R1-R6)>(Wrb6-Wrll)
[Precess the charécter into Wr; a
computer word has now been assem-
bled in Wr] |
Pel2 = Set We
[i. e. Check the parity of the input
character)
Clear Wf{

[Wf implies that Wr is full]

INPUT CHARACTER PROCESSING

51 character /word (Wt VW)

Ta Assume that Wé and W5 are clear-the logic is now rcady
to recognize a character clock, Ecw.
T1

TC 5 W6 W9 =>Clear R

Clear Rp

11-19

Tp

Tl

TO .

[.The character register is cleared]
W5 Ecw =>Set Wb
[Wé6 W5 signals that a character clock has been
recognized]
W6 W5 =>(R + Zw)—-R
(Rp + Zwp)—Rp
[The input lines are logically OR 'ed into the input
chara(,;ter register]
W6 W5 W8 =>Set WO
| [During input operations, WO signifies that enough

- characters have been received to assemble into a

computer word]

Reviewing conditions: W6 is set, W5 is reset, and the
iﬂput lines are being sampled every clock time (i.e. R
+ Zw—R, Rp + Zwp—Rp) - the logic is now ready to
recognize the dropping of the character clock, Ecw.
W6 W5 =(R + Zw)=R
(Rp + Zwp)—Rp |
[The input lines are logically OR'ed into the input
character register]
W6 W5 =(R + Zw)->R
(Rp + Zwp)-Rp
[The input lines are logically OR'ed into the input
character register] |
W6 Ecw =>Set W5
[W6 W5 signals that the dropping of the character

clock has been recognized]

11-20

Tp

TL .

TO

W5 '==>_Ciear W6 |

[The logic will enter either the Wb W5 state (if
the precessing below could not be effected) or the
'W'E W5 state (if the precessing below could be
| effected)]
W5 Wf Tp=>W4=>Clear . W5
[i.e. Enter the W—é W5 sfate and allow
new cha‘rav‘cter clocks to be recqgnizéd].
(R1-R6)~(Wrb-Wrll) |
(R7-rRIz,)—»(R1-R'6I).
‘ ‘F[Precess,the eharacter].
Pel2 =>Set We |
o i Check-'the parity of the input
- cl:laracter]
Set w8 -
[ws will gate another precess1ng at the
next clock time]
Clear Wt

|WI implies that Wr is full]

: W8 Wt =>(Wr6-er 1)>(Wr0-Wr5)

(R1-R 6)—f(Wr6~Wr11)
[Precess the character agaln-a computer
word has now been assembled in Wr]
. Clear W8 |
[The precessing of the character is

completed]

11-21

STORING AN INPUT WORD

w9 Wi Wt signifies'that Wr is full. One more input character -
may be processed into R-but no further pfecessing (W4)
1s‘a11‘owed (and t'huls no more character proceSSing s.inc,e
W5 remains set) until Wf is set.
Wo Wi Iw Aiwl =>Ilw
[Iliw is an intérrupt signal to the i'nterrupt. logic.
It signifies, during non-interlace operations (IW)',

‘that Wr contains an assembled computer word]

Tl W0 Wi Iw wl =Tsq
: [This requests a TIMESI—IARE so that the interlace

logic (Iw) may store Wr in memory]
TO 'ﬁ'r'h_c' Ts =>Mw (through Tl)
| . [The interlace memory cycle will be a
write cycle]
Wr—-M (Jm-th,l;ough T1)
| [Wr will be written into memorsr]
Tp - (WIN + RIN) =>Wr-C
[1f the channel is.being serviced directly by the program
(either a WIN or RIN opcode), ‘Wr will be taken to C
(from whence it will be stored in memory)]
(ﬁ'r}?é‘-Ts + WIN + RIN) =sWx —>Wt—>W8
[Reinitialize the character counter_]
Set Wi |
[Wr has been emptied-allow

precessing to proceed normally]

11-22

i
i

T1

TOC

Tp

INPUT JTERMINAT'ON SECUENCE

-Signal from the perinheral (Wis)

Wh=>Clear W9-W14
[Clear the unit address register]

Whs==>Set Wh
[The halt signal initiates the sequence by setting
Wh-note that the unit address register will not be
cleared until two machine cycles’ later |

Wh =>Block the possible set of Wo
[i.e. ignore further character clocks]

W’S Wf Wh (W8 + Wt + mag tape scan)~=>Set Wtr
[During the input termination sequence, Wtr significs
that there are no more meaningful data words to be
stored. Note that .Wtr will hold Wf set]

Wh =>Block the ;Dossible set of WG

(W6 W5 W8 would have gated this sot]
Block the normal precess (W4) yating
[W5 Wf Tp would have gated a nrecess|

W{f WC Wh Tp =»>W4 =>Effect a norma: pnrecessing
[Thi}s will precess either a received input character
(W5) or a dummy character (WB) into Wr. 'n the
latter case, parity checking cf the (dummy) input

character must be blocked]

11-.23

Ta
T1

TO

Tp

NOTE:

W5 Wf Wh (W8 + Wt + mag tape.scan)'v-%Set Wtr
‘[During the input termination sequence, Wtr '
signifies that there are no more meaningful
‘data words to be stored. Note that thr will
hold Wf set] _
Wh =»>Block i:_h’e nossible set of WG
| [Wé W5 W8 would have gated this set]
Block the normal precess (W4) gating
[W5 Wf Tp would have gated a precess]
W1 WOI Wh 'Ip =»W4 -=>Effécf a normal precessing
[This will precess either a received input characte r
(Ws) or a dummy character (W5) into Wr. In the
latter case, parity checking of the (dummy) input

character must be blocked]

The logic will precess every Tp until Wf is cleared. The logic
will then wait for the meaningfui data word to be stored in

memory. This sequence will be repeated until Wtr is set (see

"TC time above).

11-24

Wh Wtr Ta
Ti Clear W9-Wl4
[Clear the unit address rogister (if it is not a'lréady'
clear)]
Clear WO
- [W0 will gkate the conclusion cf the terminzation sequénce]
TO: Wh =>Block the possible set of Wé
[i. e. ignore further character clocks]
Wh WO =>12w (through Ti Ta) |

[I2w is an interrupt signal to the intcrrupt legic, It

—

state tc the INACTIVE state]
Tp
Wh W0 Ta
T1 |

TO

Wh WO Ta
T1 (W9-W1l4 = 0)=>Wc =>Clear Wb
Clear W5
[The logic is forced into the
We W5 state]
Clear Wh
[This drops tho (2w interrupt
signal and concludes the term-
ination scqugnce]
Clear W9-W 14
[Clear the unit address register (if i't is not alrcady

clear)] | 11-25

TO

. :
INPUT TERMINATION SEQUENCE
{All-zero paper tape input character}
Ta S Assume that a peper tape input unit (W9 WO WIl W12 WI3)
| is currently connected to the channel. ‘Assume further that
the character clock has"been r‘ecogn.ized—so that W6 is set,
W5 is reset,. and the input lines are being sampled every
_clock time (i.e. R + Zw=R, Rp + Zwp~Rp). The logic is
now ready to vrecognize the dropping of the character clock,
Ecw.
T1 wé W5 =>(R + Zw)—-R
(Rp + Zwp)—Rp
[The input lines are logically OR'ed into the input
character register]
TO W6 W5 =(R + Zw)-R
(Rp + Zwp)~Rp
[The input lines aré logically OR'ed into the input
character register]
W6 Ecw =>Set W5 | |
[Wé6 W5 signals that the 'droppin‘g of the character
clock has been reéognized] |
Tp W5 =pClear W6

[The logic will enter the W6 W5 state as the all-
zero character will not be treated like a normal

input character]

11-26

(R1-R8 = 0) RKp W5=>Wph =>Clear W5 o
. | | [_i'.'e.‘ Ent_ei‘_ the m ﬁ ’
‘state] | |
Block vprecessing |
[The all-zero chatacte,xf
'is‘ not considered a data .
_ character]
| Set Wh' |
[It now appears; logic.ally,
as if fhe' peripheral had |
sent a half éignal- (WhS)
-and fﬁe remaind'er of»y k
the termination sequence
' is'entirély é‘imiliar to the

Whs termination sequence

(g v.)]
INITIATE OUTPUT OPERATION
fWith leader (TT3)}
Buc T3 ‘Wc =5 Clear WO

. ’[Buth-O Will be set by Ws (see below)]
 Clear W5 |
Clear W6
[The channel ié initialized to accept character clc;éks]
Clear W8 |
_ [The character couﬁter' is cleared]
Clear W9-W14

- [The unit address is cleared - see Ws below]

11-27

Clear We
[Any channel error indication is cleared]
Clear Wh
[Any chaﬁnel halt gating is cleared]
Cleér‘VVt
[The characters/word flip-flop is cleared-see
Ws below]
Clear Wtr |
| [Any terminate input géting is cleared]
Sét\Vf v |
| - [But Wf will be cleared by Ws (see bellovv)]v
W5 W9 =>Clear R1-R12
[This sets up the all—zero output character (see Rp below)
that signals leader to the peripheral] |
T1 f
‘ 'TO‘
. v
vBuc Ta
Tl
TO = Ws=>(C6-Cll)>(W9-W14)
| | [The unit address is set-up from C18-C23]
C4-Wt | |
[The characters/word flip-flop is set-up from C16]
Set WO . | |
[WO0 will gate the output termination sequence]
Set Rp
[This forces the parities (Rwp and Rwe) of the all-
zero leader character to also be zero]
Clea?'VVf
[Wf is cleared wheﬁever there are no output

11-28

~ characters remaining in the buffer register (Wr)] -

Tp
INTITATE OUTPUT OPERATION
{,Withou.t leader k(C"1:3)}
. Buc TE‘; ° Wc=>Clear WO

[But WO will be set bsr Ws (see below)]
Clear W5 - |

Cl,ear}l W6

[But W5 will be set by Ws (see below) to force

the Wb W5 state]
| Clear VWS
[The eharacfger counter is cleared]
- Clear W9-W14
[The unit address is cleared-see Ws below]
Clear We
_ '_'[Any chal.;melelrror indication is cleared] |
Ciear Wh
- [Ahy channel halt gating is ‘cleared]
- Clear Wt
[The \cha‘.racters/word ﬂip-ﬂep is cleared-see
Ws below]
Clear Wtr
" [Any terminate input gating is cleared]
Set Wf
[But Wf will be cleared by Ws (see below)]

WS W9 ==>C1ear R1-R12

[,This sets up an all-zero output character {see Rp .

below) since a legitimate output’ character has not

yet been provided (in Wr)]

11-29

Tl

TO
Tp
Buc Ta
T1
TO Ws =>(C6-C1l1)>(W9-W14) .
| [Thé unit address is set-up from C18-C23]
C4-Wt |
[The characters/word flip-flop is set-up
from C16]
Set WO
[WO0 will gate the output termination sequence]
Set W5
[This forces the Wb W5 state-which implies fhat
there is not a legitimate output character inR]
Se»t Rp
[This forces the output parity lines (Rwp and
Rwe) to zero, since there is no output character
available (R1-R12 are also zero)]
Clear Wf
[Wf is cleared whenever there are no output
characters remaining in the buffer register
(Wr)]
Tp

OUTPUT CHARACTER PROCESSING

{2 characters/word (Wt)-first character (W§)f

11-30

+
, i

TL

- TO

T1 -

TO

Tp'

Assume that W6 and W5 are clear and an output

‘chara.c'ter is being 'i)resented (from R)-the logic

" is then réad_y_ to recognize a character clock, Ecw.’

| w5 Ecw = Set W6

[Wé6 W5 signals that a character clock has been

krecogl"liz_ed]

Reviewing c'ondit'ions: Wb is set, W5 is reset, and an

ou,tput'charéctevr is being pre sented (from R)-the logic
. is now ready to recognizefthe dropping of the character

'clock,v Ecw.

W6 Ecw =>Set W5

[Wé w5 signals' that the dropping of the character

clock has been re cognized]

W5 =»Clear W6

[The logic will enter the Wb W5 state (since the
. precessing below can always be effected)]

W5 Wf Tp=>W4 =>Clear W5 | |

| [i.e. Enter the W6 WS state and
allow new character clocks to bé
‘recognized]

(Wr0-Wr8)—>(R1-R6)
tThe nekt oufput chafac‘ter.is
. precessed into R-and presented

on the output lines]

11-31

Tl

"

Tl

TO

Tp

Clevar_ Wi

rV\Tf implies that Wr is empty]

- OUTPUT CHARACTER PROCESSING

{2 characters/word (Wt)-second character (W8)}

. Assume that W6 and W5 are clear and an output character

is being pre-s'ent‘ed (from R) - the logic is then ready to

recognize a character clock, Ecw.
W5 Ecw=>Set W6

[W6é W5 signals that a character clock has been

re cognized]

R‘eviewing conditions: W6 is set, W5 is réset, and an ‘

output character is being presented (from R)-the logic

is now ready to recognize the dropping of the character

clock, Ecw.

. W6 Ecw =>Set W5

[Wé W5 signals that the. droppiﬁg of the character.
- clock has been recognized]
W5 =>Clear W6
.[Thellogic will enter either the W6 W5 state (if the
| precessing below could not be effected) or the W6 W5
state (if the precessing below could be effected)]
W5 Wf Tp -‘r;>W4 =»Clear W‘5 v
[i.e. Enter the Wb W5 state and
allow new character clocks to be

recognized]

11-32

Tl

TC .

(Wr0-Wr5)~(R1-R6)

(Wré-er‘l)—>(Wr0-Wr5)
[The next output character is
precessed into R-and pr-ese;nte'd
on the output lines]

Clear Rp
[Rp will allow the correct
parities to be preAsentcd on
tﬁe output parity lines (Rwp
and Rwe)]

Clear W8
[Decrement the cl;aracfer

counter]

OUTPUT CHARACTER PROCESSING
{1 character /word (Wt WB-)}

Assume that W6 and W5 are clear and an output character
is being presented (from R)-the légic is then ready to

recognize a character clock, Ecw.

W5 Ecw =»>Set Wb
[Wé W5 signals that a character clock has been

recognized]

Reviewing conditions: W6 is set, W5 is reset, and an

output character is being presented (from R)-the logic

11-33

~is now feady to recognize the dropping of the character

clock, Ecw.

Tl v
TO W6 Ecw=>Set W5
[Wé w5 signals that the dropping of the character
clock has been recognized] |
Tp Lo W5 =>Clear Wé
[The l'o.gic will enter either the Wb W5 state (if the
precessing below could not be effected) or the Wb W5
state (if the precessing below could be effected)]
W5 Wf Tp =W4 => Clear W5
[i.e. Enter the 'V_V;6 W5 state and
allow new character clocks to be
recognized]
(WrC-Wrll)~(R1-R12)
[The next output character is -
precessed into R -and éresented
on the output lines]
C_léar Rp »
[Rp will éllow the correct parities
to be presented on the output.
parity lines (Rwp and Rwe)]
Clear Wf
[Wf implies that Wr is empty]
FETCHING AN OUTPUT WORD
w9 Wi | Wi signifies that Wr is empty. One ﬁlore output character

may be processed from R -but no further precessing (W4)

11-34

Tl

TO

Tp.

is allowed (and thus no more character processing

. since W5 remains set) until Wf is set.

W5 Wb W9 =>Clear R1-R12
Set Rp
[This holds all output lines-including the parit'ie's' :
(Rwp and Rwe)-at zero] ‘
W0 Wt Tw Aiwl =>1lw
[11w is an intérrupt signal to the interrupt logic.
It signifies, during non-interl.ace operations (Tw),
that Wr contains no more characters for disassembly]
WC Wi Iw Iwf =>Tsq ‘ |
[This réquests a TIMESHARE so that the interlace
logic (Iw) may fetch another output word (for Wr)

from memory]

(WOT + ROT) =C—-Wr
[if the channel is being ‘serviced directly by the
program (either a WOT or a ROT opcode), Wr is
reloaded from C]
(Dmc Ts)=>M-Wr (Jm)
[1f the channel is being serviced by the interlace, Wr
is reloaded directly from memory]
(Dmc Ts + WOT + ROT) —>Wx=>Wt->W8
[Reinitialize the charac_tef
counter]
Set Wi
[Wr has been filled-
allow precessing’ to

proceed normally]

11-35

OUTPUT TERMINATION SEQUENCE

T1 Whs =>Set Wh
[The peripheral signal, Whs, initiates the output
termination sequence]
WO W6 W5 [i-r ‘ape operation) =>Set Wh
[The output termination sequence may be initiated,
under prugram control (TOP clears WO0), when all
available output characters have been transmitted
Ws ws)]
TO Wh =>Block the possible set of W6
[i.e. Ignore further character clocks]
Tp Wh W9 =>Block any precess (W4) gating
[W5 Wi Tp would have gated normal precessing;
Wf WO Wh Tp would have gated halt sequence
precessing]
Ta
Tl
TO
Tp Wh W9 =>Block any precess (W4) gating
[W5 W{ Tp would have gated normal precessing;
Wi WO Wh Tp would have gated halt sequence
precessing]
Wh Ta
Tl Wh =»Clear W9-W14

[Clear the unit address register]
Clear WO
[WO is cleared (if it is not already clear). WOo
will gatc the conclusion of the termination sequence]

11-36

TO S Wh=>]$10ck the‘ péssibleﬁsef of W6
| | [i.e. Ignore further characfer clocks]
Wh W0 v=912w‘(t_hrough'T1 Ta) |
| ,‘ ‘[12w is an interrupt signal to the interrupt logic.
It sigvnifiésv that the channel is going from the
"ACTIVE state to the INACTIVE state]
Tp o Wh WO =>Block any precess (W4) gating |
| [This vinclu.des‘both normal precéssing and halt

sequence pre cessing]

Wh WO Ta
Tl
TO
Tp - : Wh W=>Block any precess (W4) gating
‘ [This inélu.des both normal precessing énd hélt
 sequence p;ecessing'] | |
Wh W0 Ta- | |
Tl . (W9-Wl4 = 0)=>Wc => Clear W6
| | Clear W5
[The logic is forced into the
Wo W5 ‘stateb]
Clear Wh
.[This dréps the I2w intérrupt
signal and concludeé the terrﬁ-
ination sequencej
»C.lear Wé-W14
[Clear the unit address register (if it is not already
clear)] |
TO |
A T».

11-37

11.12 Channel opcodes |
Two opcodes have been provided to dirzctly service the I1/O channel:
WOT (11) - WOT loads Wr withya data word when Wr becqmes
empty during an output operation.
WIN (15‘) - WIN stores Wr in memory when Wr becomes full
during an input operation.
These tWO‘opcodeé also have record transfer equivalents, ROT (51) and
RIN (55). Thrbughout the re'c.ord, the logic rgmains in ¢2. lWhenever
Wr becomes empty/full, the logic will reload/store it. As each word
in the record is tr‘ansferred,‘ the A register will be decremented by one.
The record transfer is terminated either by program control (the A reg-
ister decrements through zerb-thﬁs the orilgi"nal contents of A equalled
the record length minus one) . or byperipheral control (the

peripheral signals a halt via Whs; the peripheral is disconnected by the

- channel; and no input characters remain to be stored).

Some of the general purpose flip-flops used in ¢ of the execution of WOT/

ROT and WIN/RIN include:
Fp - During ROT operations Fp gates the next output

word into C and the incrementing of S so that the

following word in the output record may be accessed.

During RIN operations Fp gates the incrementing of S

so that the current input word may be stored (from C)

into the next word of the input record.

09 - 09 gates the termination of WOT/ROT or WIN/RIN

(i.e. O9 gates the exit from). O9 may be set

because:

1. A Word has been transferred and the operation

was not a record transfer (i.e. the opcode was

11-38

WOT or WIN).

2.. All words in the defined record have been
transferred (i.e. A has been decremented
to 77778).

3. The channel has disconnected (W9 W10 W11

WT2z WI3 WT4) and no more (possible) input.

words remain to be stored (W_d).

ol1¢ : - 010 will gate the actual transfer of one input/output

word between Wr and C. (input=>Wr-~C; output=>

C-Wr).

11.13 WOT/ROT opcodes
WOT/ROT

(11/51)

- ¢ Lp

T1

TO -

Tp Set Cpe |

v[Check parity of the first output word]
NOTE: Fp is set; O9, O16, Ol1, ana Lp are cleared
2
Tl . Fp Ts =>M-C

[This takes the next (first) cutput word to C]
S + 1S (Ja, Pr, Kl1)
[Thus the following word in the {(possible)
record will be accessed]
- Clear Fp
[The logic is now ready with the next (first)

output word in C]

11-39

Clear (510
[Thiscludes the trans "~ r of one output word]
WI W0 09 Tsq =>Set O10
| [The fact that Wr is empty (Wf) will be recognized
if the channel is not gated to terminate the trans-
mission (WO0), the logic is not gated to terminate
the operation (O9), and the next word. in the (possible)
recora may be accessed at the conclusion of this
word transfer {Tsq)]
TO 010 =>Set Fp
- [Fp gates the preparation for the next output word]
Tp 010 ROT =>A-1~A (Ja, Gn, Pr)
[A is decremented by one as each word is transferred]
010 KuZ =»Set 09
[The WOT/ROT operation will be concluded follewing
this transfer either because it was a single word |
transmission (WOT =>Ku2) or because the ROT record
length has been‘_reaehed"(decremented A = 777’78 =
Kul
010 =>Wx
[Wx will actually gate C+>Wr as well as gating certain
channel housekeeping functionsv]
09 010 Ku2 =»Set Cpe
[Check parity of the next word in the record]
(09 + 010) =>Stay in &
[The operation is not completed]
09 OT0 =>Go to 7

[The operation is complete]

11-40

&7 B | . .
Tl S End (thmugh Tp)

Zind gates the preparation for the next mstruction]
Block any 1nterrupt recogmtlon ‘
[tnd would nc ~ally have gated such recogn1tion]
TO -

11.14 WIN/RIN opcodes

 WIN/RIN
(15/277
9 Lp
T1
Tp | NOTE: Fp is set;vO9, olo, Oll, and'Li) are clea:‘ed..
| | [Every merﬁory éycle in "2 will be a write cycle]
 C—~M (Jm) " - |
[The input word in C will be written into memory]
T 010 Fp =5 + 15 (Ja, Pr, K11)

['I’he address w1th1n the record is incremented to
store the newly strobed (from Wr) input word]
010 ==Clear Fp ‘ | -
- [Fp gates the increment of S (see above) befor_e
storing e‘}ery input word except the first one]
| Cleéuj olo0

[This concludes the transfer of one input word]

11-41

WE W0 BF Tsq =»Set 010
[The fact that Wr is empty (Wf) will be recognized
if the channel is not gated to terminate the trans-
mission (WC), the logic is not gated to terminate
the operation {O9), and the previous input word

may be stored during the ensuing memory refer-

ence (Tsq). |

0Ol1¢ RIN =A-1-A (Ja, Gn, Pr)
[A is decremented by one as each word is transferred]
010 RuZ =>Set 09
| [The WIN/RIN operation will be concluded following
this transfer either because it was a single word
transmission (W‘IN @R—G-Z-) or because the RIN record

length has been reached (deci‘emented A = 7777-8 =

Ku2)]
010 =>Wr—~C
[Wr is emptied into C-from whence it will be stored
in memory]
010 =Wx
[Wx will gate certain channel housekeeping functions]
{09 + 010) =sStay in 2 |
[The operation is not completed]
09 OTT =>Go to ¢4

[The operation is complete]

C—-C (Ja, Pr)

[This is a hardware quirk]

11-42

'TO

7
T1

Mw (vth.r‘ough Tp)
~ [This memory cycle will be a write cycle]

CFFM (im-through Tp)

" [The 1ast input word is (unnecessarily) re-written -

into memory]

End (through Tp)

_[End gates the preparafion for the next instruction]
Block anjr interrupt recognition

. [End would normally have gafed such recognition]

11-43

	0001
	0002
	001
	002
	003
	004
	005
	01-00
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	02-00
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	03-00
	03-01
	03-02
	04-00
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	05-00
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-00
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	07-00
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	08-00
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	09-00
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	10-00
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	11-00
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43

